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Abstract

Metric planning allows planning problems with numerical resources to be efficiently

modelled and solved. Such problems arise in many real world planning applications.

The plan metric, the optimisation function introduced in metric planning, is designed

to facilitate resource optimisation usage in the developed solutions. However, most

published benchmark domains do not fully exploit the expressiveness of the plan metric

functions and are therefore limited in terms of the resource optimisation problems

that they pose. In particular, the domains do not provide choices of resources that

can influence the value of plan metric. Therefore, many numeric planners ignore the

optimisation of the plan metric and simplify the solution development by focusing on

minimising the plan length.

This thesis contributes to a comprehensive analysis of the structure of a new class

of metric domain called domain-specific metric planning. The domain-specific metric

problems exploit the ability of the plan metric to include aspects of planning and

resource scheduling. The domain is enriched with resource choices that change the

value of the plan metric and result in the generation of different possible plans. The

generated plans are different in terms of the value of both plan length and plan metric.

The trade-off between the plan length and plan metric values is demonstrated in the

solution of domain-specific metric problems.

MetricLPRPG, the planner written in this thesis, extends the previously published

LPRPG planner by including the plan metric in its heuristic. The novel heuristic

implemented in MetricLPRPG uses Multi-Objective Linear Programming to minimise

both values of plan length and plan metric simultaneously. This heuristic provides a

basis for choosing actions with the minimum resource cost with regard to the encoded

plan metric to be incorporated in the relaxed plan.

Results obtained show MetricLPRPG to be a competitive planner that achieves a

compromise between minimising the plan length and minimising the value of the plan

metric. The quality of the solutions obtained is interestingly different from the qual-

ity of solutions obtained by LPRPG. MetricLPRPG can produce better quality plans

(though sometimes at the cost of increased length) particularly in solutions developed

for problems in the domain-specific metric class.



Chapter 1

Introduction

1.1 Domain-Independent and Classical Planning

Domain-independent planning technology is motivated towards solving real world plan-

ning problems. The problem input consists of a description of the world initial state,

a set of operators that perform state transitions and a goal state. Since, it is usually

impossible to include an encoding of all possible states and states transitions, domain-

independent planning relies on an abstract, general model of actions [35]. The simplest

form of the domain-independent planning problem is known as classical planning. The

domain is encoded in propositional logic, typically using STRIPS [21]. In STRIPS, the

states of the world are described together with the set of operators which transform

the current world states to other states. The new states are generated from previous

states by removing all the propositions present in the delete effects list and adding the

propositions in the add effects list only if all the precondition propositions are true

in that state. However STRIPS, only considers conjunctive predicates. An extended

version of STRIPS, called ADL [51], increases the convenience of domain encoding by

extending the syntax to allow disjunctive, quantified and negative preconditions. The

syntax for describing the effects of actions is also extended to allow conditional effects;

effects which are applied whenever a given condition holds.

Despite these extensions, some assumptions hold in classical planning in order to

simplify solution approaches by planners. The assumptions include the following [61]:

• atomic time: a single unit time is required to execute an action and this time is

indivisible

• deterministic: all states in a described world are fully-observable, static and de-

terministic. Transformation from one state to another state of the world is only
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performed by the application of actions. The effects of actions are also determin-

istic.

• no representation of resources: a resource requirement or consumption cannot

be specified, for example to describe the amount of fuel required for turning a

spacecraft or the amount of data storage or power required for taking an image.[56]

These assumptions have weakened the capability to model various essential phe-

nomena in real world planning problems. In particular, the representation of resources,

which is explored in this thesis. Almost every practical application is influenced by the

use of resources. Examples of resources include money, energy, labour and machines.

Different actions in the problem might require different consumption of resources. It

is possible to encode the levels or quantities of resources in classical planning, but

it would be necessary to discretise all quantities and expand a completely grounded

representation. This approach is rather tedious and limits some aspects of modelling

quantities. For example, in cases where resource consumption is a function of other

values, this cannot be modelled. Furthermore, including resource constraints in the

problem requires a means for measuring resource efficiency. For instance, the plan that

uses the minimum cost of resources.

In order to meet these requirements, significant extensions have been made to the

Planning Domain Description Language, PDDL2.1 [24] by introducing new encoding

schemes called metric fluents and a language for expressing a plan metric. Metric

fluents are variables that can take numeric values and can be used to represent re-

source modelling more conveniently, including resource quantities and constraints. The

plan metric acts as an objective function enabling optimisation over selected numeric

variables, usually those representing the critical resources. The extension to support

numbers in classical planning is called Numeric or Metric Planning. These extensions

allow the easy modelling of resources but increase the complexity of solution devel-

opment particularly if a plan metric is used. For example in modelling resources in

a supply chain planning problem in manufacturing. Optimising the resource usage is

important in planning the activities involved in the supply chain. In this kind of prob-

lem, minimising the number of actions, which is the mandatory requirement for good

solution in classical planning, is not the only objective. In fact, the optimisation of

resources makes it possible to increase the number of actions in a solution. This is due

to the fact that a low cost plan might require multiple steps using low cost resources.

In other words, there will be a trade-off between the plan length and plan cost in the

solution. Many state-of-art numeric planners deal with numeric preconditions as they

are usually used to represent the resource constraints, and do not take into account
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the plan metric in the solutions. Furthermore, the plan metric is not required to find

a feasible solution. The trade off between minimising the number of actions and opti-

mising over particular variables in metric planning is a central focus in this thesis. The

extended metric planner developed in this thesis attempts to produce reasonable plans

with respect to both plan length and plan metric.

1.2 Planning versus Scheduling

Planning involves selecting and organising actions to achieve a desired goal and satisfy

a set of domain constraints [25]. Most planning problems are combinatorial in the sense

that the number of action choices, or the time required to evaluate a given course of

action, is exponential in the description of the problem [11]. The tree-like structure

in Figure 1.1 illustrates the massive search space of action choices and their causal

inter-dependencies. As shown in the Figure, each selected action can lead to different

action sequences. If the heuristic value is not appropriately calculated or uninformative,

it will lead to a dead-end or to no solution. Planning technology has traditionally

concentrated on finding feasible solutions, measuring quality by the number of actions

in the generated plan. In other words, planning is concerned with finding what actions

are required in a feasible solution.

In contrast, in traditional Scheduling action selection is eliminated, as the action

sequence is already defined or committed to in most scheduling problems. The main

task is to allocate the limited resources to actions and retain a valid plan [30]. Some

cases of scheduling have action choices, particularly in the manufacturing domain where

resources and times are assigned to actions so that they conform to the constraints on

the schedule [25]. But, it is easier to allocate resources to an existing activity sequence

than it is to choose between multiple different actions. Furthermore, the heart of the

scheduling problem is allocation of resources. The resource allocation task in scheduling

is typically required to be optimal. Hence, the scheduling problem is viewed as an

optimisation problem, but, as explained feasibility is more important than optimisation

in planning [56]. Furthermore both planning and scheduling are different in terms of

complexity of finding the solution. Job Shop Scheduling is categorised as NP equivalent

[26]. However, planning is harder to solve compared to job shop scheduling problem

and it is categorised as PSPACE-complete even if some severe restrictions are applied

[7].
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action choices 

Figure 1.1: Search Space in Planning Problem

The tree-like structure in Figure 1.2 shows the action choices and the resource

allocation activities in scheduling. There are far fewer action nodes than arise in a

planning problem. If the tree-like structure in Figure 1.1 can be called a forest, the

tree in Figure 1.2 is a tree, or sub-forest. As shown in the figure, different allocations

of resources and time slots to the available action choices does not have a big impact

on the action sequences. Therefore for scheduling, the criteria by which solutions are

judged can vary: minimising the use of resources, minimising the total time for the

whole schedule or maximising the slack periods are common strategies. The focus of

this problem in developing a solution is to find when and what resources the action

should use in the schedule.

1.3 Metric Planning

Metric planning is an extended version of classical planning where new encoding schemes

are added into the PDDL2.1 language to make the modeling of quantities more efficient.

Hence in the metric planning problem, facts have not only true or false conditions but

also quantitative conditions. This extension makes the planning technology more ap-

plicable in modelling real applications particularly for resource-intensive problems. In
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action choices 
resources and time choices 

Figure 1.2: Search Space in Scheduling Problem

these problems, action execution is generally constrained by the resource quantities.

In the metric planning domain, a numeric fluent or variable can be encoded in

the action preconditions and effects. The numeric precondition is used to represent a

resource constraint in a particular action. For example, the numeric precondition (fuel

≥ (distance ?c1 ?c2)*(slow-burn ?a)) is encoded in the fly action in the ZenoTravel

domain in IPC3 [46]. The action is executed only if the condition is true. The value

of a numeric fluent is then updated in the action effect or after the action execution

to indicate the resource consumption. For example in the fly action, the updated

value of the numeric resources is accomplished by statement; (decrease (fuel ?a) (*

(distance ?c1 ?c2) (slow-burn ?a))))), as encoded in the action effects. Furthermore,

the numeric constraints are also allowed in the goals, in which the value of a numeric

fluent or variable is either at least as high as or at most as high as a given constant

[24].
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Another significant extension in PDDL 2.1 is the provision of the plan metrics [24].

The plan metric can be said to be an optimisation or objective function. The objective

function provides a new means of plan evaluation which is the plan quality. With the

plan metric and a problem with similar initial and goal states, it would be possible

to produce a few solutions which are completely different in terms of the plan value.

Therefore, the plan metric allows the domain modeller to experiment with the effect

of different sequences of actions with the different metric. The plan metric extension

enhances the expressiveness of the language to model the resource optimisation that

is necessary in almost all resource intensive planning domains. Including resource

optimisation in planning also brings the scheduling element into the classical planning

problem. The problems in planning and scheduling can lie in a continuum which is one

end is pure planning and another end is pure scheduling. At the pure planning end, the

concern is with logical reasoning, since the problems are rich with action choices. Whilst

at pure scheduling end, the problems are rich with resource choices and the concern

is with exact allocation of the resources. Metric planning with resource optimisation,

however, lies in the middle of the continuum. Therefore, the problem is now enriched

with choices of action as well as choices of resources. Figure 1.3 illustrates the search

space and resource allocation in metric planning with resource optimisation. The search

space is far more complex compared to the search space in Figure 1.1 and Figure 1.2.

The development of the solution becomes harder as it must not only seek for a feasible

but also an optimal solution.

Although incorporating the plan metric in the problem is optional, it is necessary

for many real world applications. But, taking the plan metric into the solution develop-

ment can result in many problems with feasible solutions failing to be solved. Therefore,

many state-of-art numeric planners such as Metric-FF [38], SGPlan [8], LPG [33] ig-

nore the plan metric and develop solutions that satisfy only the logical goals. Having

realised that many practical applications require a solution reflecting the plan metric,

the planner developed in this thesis uses the plan metric information in the problem to

develop a heuristic which is later used to guide search towards a solution. The planner

has employed a very well known optimisation tool, linear programming, to obtain the

heuristic during the construction of the relaxed planning graph.

1.4 Scope, Motivation and Objective

The scope of this thesis is to examine a well-defined class of problems characterised

by metric resources and a plan metric which is treated as an objective function to

guide search toward high quality solutions. This class is defined as a domain-specific
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Figure 1.3: Search Space in Metric Planning Problem

metric class. The domain-specific metric class structure is blended with planning,

scheduling and constraints reasoning. As a result, the problem structure is rich with

numerical facts and constraints compared to the standard planning domain. At the
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same time, it is also rich with logical facts and constraints which are nearly absent

in the scheduling problem. The example of real world application of the domain-

specific metric is planning for the manufacturing supply chain. The general structure

of the problem comprises of planning and scheduling elements. Therefore, the solution

developed for such a problem combines the decision about what action and what resource

choices to make, resulting in different values of the objective function. This domain is

also rich with numeric interactions whereby the numeric variables do not simply model

the increasing and decreasing effects of resources but force constraints on other numeric

variables (eg. a numeric resource used to develop another numeric resource).

The motivation of this work is that the domain-specific metric class has so far

been largely ignored by the planning community. This kind of problem exists in many

real world applications and attempts to solve them will increase the applicability of

planning technology to real world problems. Although the plan metric is defined in

some previous benchmark domains [12, 46] they are not properly used to guide choices

between actions that lead to alternative solutions with different metric values. Numeric

interaction is rarely considered, except in the Settlers [46] domain and in some domains

not used in the competition (eg: Market). Most of the benchmark metric problems use

numeric fluents to model simple infinite resources like fuel or energy consumption in

action effects. Investigation of these domains is discussed in detail in Chapter 2.

The interaction between what action and what resources contributes to a trade-off

between plan length and plan cost values in the developed solution. While currently

there are a number of metric planners that have been developed, none of them are able

to deal with this trade-off. Most of the planners only handle numeric preconditions,

because numeric preconditions are critical in action selection. For example Metric-

FF, a top performing numeric planner in IPC3 ignores the plan metric in its solution

development. The plan metric is included only if it has been encoded as the numeric

precondition of actions. Since the aim of the implemented heuristic is to minimise

the number of actions, therefore, the minimum value of the plan metric turns out to

coincide with minimising the number of actions in the plan. A series of experiments

was conducted to investigate the performance of Metric-FF and some other numeric

planners on metric problems with specific objective functions. The results obtained

discovered that numeric planners including Metric-FF, LPG-td and some others in the

literature either fail to produce any plan or only produce results for small problems

and ignore the plan cost in the solution. These results are shown in Chapter 6.

The objective of this thesis is to develop a competitive planner to solve this problem

by incorporating both aspects of plan length and plan cost in constructing the solu-
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tion. It is achieved through extensions made to a planner called LPRPG [10]. LPRPG

is a numeric planner developed with the aim of solving problems caused by the com-

plex numeric interactions. It uses Linear Programming (LP) to determine accurate

bounds on numeric precondition values during the construction of the relaxed planning

graph. Metric-LPRPG, the extended planner, applies the same principles as LPRPG

but extends the numeric variables in the LP model so that it includes the plan metric

variables. This means the bounds and constraints for the plan metric variables are es-

timated and constructed along-side the numeric preconditions across the construction

of the relaxed planning graph in Metric-LPRPG. Whilst LPRPG cannot make use of a

domain-specific objective function, Metric-LPRPG is designed to do so. Managing the

domain specific objective function necessitates extensions to all aspects of the relaxed

graph construction and the extraction of the relaxed plan. As a consequence of these

extensions Metric-LPRPG can arrive at solutions that trade plan length off against

plan cost, producing plans exhibiting a reasonable balance between the two, whilst

LPRPG could only attempt to minimise plan length.

A Linear program is constructed at solution extraction in both LPRPG and Metric-

LPRPG. In LPRPG, the variables in the objective function only include the action

variables. So that, the LP solution will give the minimum number of actions that achieve

all numeric preconditions modelled in the LP. This implies LPRPG emphasises having

the shortest plan, similar to other numeric planners but with more informed resources.

Whilst in Metric-LPRPG, the plan metric variables are added to the objective function.

Therefore, the LP solution is to minimise both action and plan metric variables.

The novel contributions of this work to the community include:

• An understanding of the structure of domains with specific objective functions

• A planner, Metric-LPRPG, that takes into account the plan metric which has

been mainly ignored by the community, resulting in better quality plans.

• A novel heuristic that combines both plan length and plan cost

1.5 Thesis Outline

The next chapter covers the discussion of the research background. It defines the met-

ric planning problems and explains those extended language features in PDDL2.1 that

provide a more convenient way to model numeric resources present in most practical

planning problems. The explanation includes the plan metric, the core issues tackled
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in the thesis, which allows a plan to be measured in terms of quality. Four new charac-

terisations of the expressiveness of planning domains with domain-specific plan metrics

are identified and explained in Section 2.2.1.

Section 2.5 and 2.6 give a brief discussion of some numeric planners and approaches

taken in dealing with numeric problems. This section also highlights that the plan met-

ric is not included in developing a solution in the numeric planner such as Metric-FF,

LPG and MIPs. In Section 2.7 and the differences between planning and scheduling

problems are explained and highlighted. Most practical problems lie in the middle of

the continuum between planning and scheduling. The features of the middle-continuum

problem are found to be similar to most of the domain-specific metric class problems.

This section also includes an abstract discussion of the research approaches that have

been taken to solve problems with planning and scheduling elements. The two last

sections of this chapter cover the discussion on Multi-objective Planning and Multi-

objective Linear Programming. The Multi-objective Linear Programming is the opti-

misation tool adopted in the heuristic developed in this thesis.

Chapter 3 develops a new class of planning domains and problems that are consid-

ered a domain-specific metric class of problems and solved with the technology devel-

oped in the thesis. The new domains designed for the thesis include Extended Settlers

which is the extended version of Settlers in IPC3, Trader, Bread, Production and Sugar

domains. The discussion describes how the resource choices designed in the new do-

mains affect the plan metrics. It also explains how different action sequences with

different costs may be constructed as alternative solutions to problems within the do-

mains.

Chapter 4 gives background on the LPRPG planner, the planner extended in this

thesis. This chapter discusses the approach taken by the Metric-FF planner in estimat-

ing values of numeric variables during the construction of the relaxed planning graph.

It also explains the implications of this approach particularly for domains that inten-

sively use numeric variables. It explains how LPRPG overcomes problems that arise

in Metric-FF by exploiting Linear Programming to obtain better heuristic values and

better estimates of the values of numeric variables.

Chapter 5 describes the implementation of Metric-LPRPG, the extended planner

developed in the thesis. It explains how the plan metric is included in the relaxed

planning graph construction. The explanation also includes discussion on the imple-

mentation of Multi-objective Linear Programming in the relaxed plan extraction in

order to obtain more informative heuristic values. The last section in this chapter
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demonstrates the different between action selection with and without incorporating

the plan metric.

Chapter 6 discusses and analyses results obtained from the implemented system by

comparison with the results of LPRPG and some other selected state-of-the-art numeric

planners using the new problems discussed in Chapter 3.

Finally, Chapter 7 summarises the work presented in the thesis and comments on

the strengths and limitations of the approach taken. It also includes discussion of

possible future work that could be considered to improve the implemented system.
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Chapter 2

Background

2.1 Metric Planning

Metric planning is defined as a planning problem where a set of numeric variables,

V = {v1, ..., vn}, is added to the problem. Notation for the numeric planning task can be

written as a tuple 〈V, P,A, I,G〉 where P , A, I and G are defined similar to the STRIPS

planning task [38]. Thus, states in the numeric planning task can have numeric and

propositional state variables. This development is important and significant in order

to make planning technologies more applicable to model realistic planning problems.

Almost all of the real world planning problems use resources to execute the actions.

The resources can include money, fuel or energy. Numbers, which can be represented

by the numeric variables, provide a natural platform to model resources including their

level or quantities and also their constraints.

The metric planning problem encoding is accomplished by the extensions made in

the Planning Domain Description Language version 2.1 (PDDL2.1)[24]. This language

was first used and tested in the Third International Planning Competition (IPC3) [46].

The syntax for expressing numeric constraints in PDDL2.1 is based on the previous

version of PDDL, the language produced for the AIPS-98 Planning Competition [34].

However, the numeric syntax of PDDL was not tested either in AIPS-98 [49] or in

the following International Planning Competition, IPC’00 [2]. Numeric domains and

technologies were first tested and benchmarked in the third International Planning

Competition in 2002 (known as IPC3).
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2.2 PDDL2.1

The numeric extension allows the expression of numeric conditions and effects. In

PDDL2.1, a numeric expression is constructed, using arithmetic operators, from primi-

tive numeric expressions [24]. Numeric expressions can be employed as both effects and

conditions of actions. In effects, operators like increase, decrease, scale up, scale down

and assign can be used to update the value of a fluent by some function (+,−,×,÷)

of fluents and real numbers. Conditions on the numeric expression are always com-

parisons between pairs of numeric expressions. Conditional operators (≤,≥, <,>,=)

can be used between numeric expressions and employed in the condition. These new

features make the language more expressive enabling the modelling of quantities and

constraints on the resources. With these features, the resource is not only described

as present or absent, as in the propositional domain, but it also can be measured with

quantitative terms, such as level of resource. Therefore, the discretisation of all possible

quantities of the resources is no longer required as changes in resource availability can

be efficiently handled by the new language features.

2.2.1 Plan Metric

The plan metric is a new field provided by PDDL2.1 [24]. It is an optional field and

can be specified within the problem file. The plan metric plays a role like an objective

function. It allows the domain designers to encode alternative solutions for a similar

domain each giving a different value to the objective function. Good solutions are those

that optimise the value of the plan metric. Thus, the plan metric gives rise to a new

dimension of the plan evaluation called metric plan quality. In order to be able to

exploit the metric during search, it has to be instrumented which means it must first

initialise a value and then this value is updated in the domain description as planning

progress[24]. For example, the plan metric defined in the Satellite domain in IPC3 [46]

is as follows,

(:metric minimise (fuel used))

The plan metric is initialised by(=(fuel used)0) statement in the problem file. The

value is then updated as a positive effect in the action called turn to, which consumes

fuel. This is shown in Figure 2.1

Without the above instrumentation, the minimum value of the plan metric cannot

be achieved. Furthermore, the plan metric must be carefully instrumented in the do-

main. For example, a new action called refuel is added to the Satellite. It updates the

fuel value in a similar way to the turn to action but with different quantities. The plan
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(:action turn_to
:parameters (?s - satellite ?d_new - direction ?d_prev - direction)
:precondition (and (pointing ?s ?d_prev)

(not (= ?d_new ?d_prev))
(>= (fuel ?s) (slew_time ?d_new ?d_prev))

)
:effect (and (pointing ?s ?d_new)

(not (pointing ?s ?d_prev))
(decrease (fuel ?s) (slew_time ?d_new ?d_prev))
(increase (fuel-used) (slew_time ?d_new ?d_prev))

)
)

Figure 2.1: Turn-to Action in Satellite Domain

metric is now changed to maximise the fuel used. According to this, the maximum

value of the plan metric can be achieved by including more refuel actions although

these actions do not actually contribute to achieving the goals. But, the plan metric

value can be very high if the constraint such as maximum capacity of the fuel tank or

the available capacity of fuel is not encoded in the domain. In this case, the resource

is considered infinite. Therefore, the optimal solution does not exist and the problem

is said to be an ill-defined plan metric problem.

Besides enhancing the flexibility in domain modelling, the plan metric can result

in a dramatic impact on the solution development. This is due to the interacting

factors that often exist in many practical applications [24]. The interacting factors can

include the fact that some of the actions might improve the plan quality whilst some

other actions might worsen the plan quality [24]. The style of actions and plan metrics

encoding in the domain and their implications for the solution development, particularly

to obtain the optimal value of the plan metric, is examined in the following discussion.

The term metric function is used to refer to the plan metric. Planning problems

with metric function encodings can be classified according to these definitions: strictly

straightforward, straightforward, semi-straightforward and expressive. These definitions

are as follows:-
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Definition 1 (Strictly straightforward metric function) Given a planning prob-

lem Φ = 〈V, P,A, I,G〉, a metric objective function f : PlanΦ → R is strictly straight-

forward if, for any pair of plans for Φ, π1 and π2, such that f(π1) < f(π2), |π1| < |π2|.

If a metric function is strictly straightforward then minimising the length of the plan

guarantees an optimal value of the function.

Definition 2 (Straightforward metric function) Given a planning problem Φ =

〈V, P,A, I,G〉, a metric objective function f : PlanΦ → R is straightforward if, for any

pair of plans for Φ, π1 and π2, such that f(π1) ≤ f(π2), |π1| ≤ |π2|.

If a metric function is straightforward then minimising the length of the plan does

not guarantee an optimal value of the function, but no longer plan can possibly have a

better metric value. This means that there could be multiple plans of the same length

with different metric values. Thus, when searching for a plan in a fixed size structure

(such as a plan graph), once a plan has been found it is guaranteed that there exists

an optimal plan in the same sized structure.

Definition 3 (Semi-straightforward metric function) Given a planning problem

Φ = 〈V, P,A, I,G〉, a metric objective function f : PlanΦ → R is semi-straightforward

if, for any pair of executable sequences of actions in Φ, π1 and π2, such that π1 is a

prefix of π2, f(π1) ≤ f(π2).

If a metric function is semi-straightforward then minimising the length of the plan

does not guarantee an optimal value of the function. However, because actions never

decrease the cost it will always be a good strategy to minimise the number of actions.

This would not be the case if actions could decrease the metric value of the plan during

its construction.

Definition 4 (Expressive metric function) Given a planning problem Φ = 〈V, P,A, I,G〉,
a metric objective function f : PlanΦ → R is expressive if f is not strictly straightfor-

ward or straightforward.

If a metric function is expressive then minimising the length of the plan does not

guarantee an optimal value of the function. Adding more actions to a plan might

decrease its metric cost.

How can a planning problem with a metric function be defined as strictly straightfor-

ward?. The metric function in the above Satellite problem is about minimising the fuel

used. The turn to action increases the fuel-used value. This can be seen from Figure 2.1
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where the fuel is encoded as the numeric precondition and positive effect in that ac-

tion. This means, the metric function value increases, as the number of turn to actions

increases in the plan. As a consequence, the quality of plan decreases. Good quality

solutions are supposed to include the minimum number of turn to actions. As a result

of minimising the number of these actions, the metric function value will be minimum.

In this case, the metric function in this problem is defined as strictly straightforward

since the optimal value of the metric function is obtained as a result of minimising the

number of actions in the plan. Most of the previous benchmarked numeric domains,

particularly those in IPC3, fall within this category. The detailed discussion of these

domains is covered in Section 2.4.

Suppose, an action called turn to battery power is inserted as a new action in the

domain. This action is an alternative action to turn to since it achieves a similar state

to the turn to action but with different resources (a battery). Furthermore, the cost of

this type of energy is cheaper than fuel. But, it can perform fewer turning activities

compared to the action that uses fuel. Suppose the metric function for the problem

is changed to minimise total cost. This metric function is then increased according to

the numeric positive effect for both actions turn to and turn to battery power. In this

case, competitor plans could be developed in which one uses more actions, but has

lower cost, than the other. This is because the execution of the turn to action might

decrease the plan length but increase the metric function. In contrast, performing the

turn to battery power action can decrease the metric function but increase the plan

length. In other words, a conflict presents between obtaining the minimum value of

plan length and plan cost. In this domain, the attempt to minimise the plan length

does not guarantee an optimal value of the metric function or the plan cost. Therefore,

this domain is considered as semi- straightforward. The solution development for this

problem can be considered computationally hard due to the choices of resources that

give different values to the metric function. The conflicting factors between the optimal

value of the plan length and metric function in the solution development in such a

domain encoding is interesting and it is being investigated in this thesis.

Assume the metric function is to minimise the fuel-used. The numeric effect of the

above turn to battery power is changed to reduce the fuel-used by 1. This means that

adding more turn to battery power actions would actually reduce the value of the metric

function. In other words, longer plans might have better metric function values than

shorter ones and it would never be a good idea to minimise plan length to optimise

plan cost. In these circumstances, the metric function is classified as expressive. The

solution development of this problem is more complex. However, this kind of domain
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is not investigate in detail in this thesis and will be considered as the future work.

The simplest solution to the problem of minimising the plan metric is to ignore the

plan metric. The generated plan satisfies only logical goals and only addresses plan

quality if the plan metric happens to impose a constraint on the actions. Therefore,

many numeric planners use plan length to guide the solution development. This ap-

proach is widely adopted in the state-of-the-art numeric planners. The discussion on

this is covered in Section 2.6. Although this approach give a feasible solution, it does

not fully exploit the benefit of the plan metric. Furthermore, the use of the plan met-

ric allows alternative actions with different costs to be encoded in the domain. Thus,

measuring plan cost solely in terms of plan length is not appropriate.

2.3 IPC3 Numeric Domains

IPC3 was the first planning competition that benchmarked the numeric domains and

its technologies. The following description explains how the numeric extensions in

PDDL2.1 are used in the IPC3 domains [38] [46]:-

• Depot

The Depot domain combines Logistics and the well-known Blocks World domain.

The numeric variables are used to encode the capacities of trucks as well as to

represent the fuel consumption as the truck moves. Besides trucks, the fuel is also

consumed when the hoist is used to lift the packages and crates. The packages

and crates are associated with weights. The trucks have capacity constraints and

the total weight of crates or packages loaded to it must be less than, or equal to,

the capacity constraint.

• Zeno-Travel

Zeno-travel is another transportation domain in the IPC. In this domain, the air

planes will fly between locations and consume fuel at different rates according to

the speed of travel which is fast or slow. A fast movement is only permitted if

the number of passengers is below a certain threshold value. A refuel operator

can be applied whenever necessary to obtain the fuel level of a plane back to its

maximum capacity.

• Satellite

The main tasks of the Satellite domain is to schedule a number of satellite observa-

tion activities. The activities comprise turning the satellites to the right targets,
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switching the installed instruments to on or off, calibrating the instruments and

taking images. The numeric constraints in the domain represent a finite capacity

of the data memory and fuel. The fuel consumption of the satellite is determined

by the slew time between targets. All images are stored in a limited amount of

data memory.

• Rover

In the Rover domain, data collection at waypoints and data transmission to lan-

ders activities are planned for a number of rovers. The activities involve nav-

igating the rovers, taking or dropping samples, calibrating cameras and taking

images and communicating the data to a lander. These activities decrease the

energy of the rover which then can only be recharged at sunny locations.

• Settlers

In general, the Settler domain is about building facilities such as housing, railway

tracks, wharf, docks and sawmill in some locations in an unsettled area. These

facilities require the raw materials that have to go through some processes before

they become available for building processes. The raw materials such as timber,

stone and ore must first be fallen, broken or mined and some of them are trans-

formed into a refined material, like timber into wood or coal and ore into iron,

before it can be further used. The transformation activities are performed in the

facilities which have to be built first. For example, the saw-wood action which

transforms the timber to wood, has to be done in the sawmill. Furthermore, tim-

ber is also required in order to build the sawmill. The material sometimes have

to be transported to locations where the source of raw materials is not available.

Therefore, vehicles like carts, train or ships must first be built depending on the

availability of the transportation modes in the area.

In order to model the above activities, numeric fluents are used to construct

resources in the actions. Then, the constructed resources are consumed by other

actions in the domain. In other words, numeric interactions exist in this domain.

For example, the saw-wood action increases the amount of wood and decreases

the amount of timber at the respective location by one unit. The sawmill action

decreases timber by two units and increases sawmill by one unit. The sawmill

action has to be performed before the saw-wood action since its effect is the

precondition of the saw-wood action. Transportation of the materials from one

location to another also increases and decreases the amount of the transported

materials at the respective locations. Building some facilities like housing and
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iron-work involve more than one type of material like wood and stone. This task

will increase the unit of facilities but decreases the stone and wood availability at

the location. Numeric fluents are intensively encoded in this domain compared to

other domains in IPC3. Resources are mainly consumed by the actions in Depot,

Zeno-Travel, Satellite and Rover. But in Settlers, the resources are exchanged

from one action to another in which the consumption of one resource also results

in producing another new resource.

2.4 Numeric Domains Analysis

The previous section has discussed the usage of numeric fluents in the IPC3 domains.

Generally, all the domains exploit the numeric fluents to model resources. The domains

however, are also available in a temporal version. But, this analysis is conducted only

on the numeric domains. In this section, we would like to examine the metric func-

tion encoded in the numeric domains described in the previous section. Almost all of

the problem instances created for each domain employ the plan metric. The aim of

the analysis is to investigate whether the metric function encoded in the domains can

fall into any of the categories defined in Section 2.2.1: strictly straightforward metric,

straightforward metric, semi-straightforward metric and expressive metric. In short,

the solution development for an semi-straightforward problem is considered computa-

tionally hard since alternative solutions can be produced and the quality is measured

by the value of the metric function. Furthermore, the conflict between plan length and

plan cost that often exists in the problem, contributes to the complexity of the solution.

The metric function focused on in this analysis only involves numeric fluents though

the metric functions used in IPC3 also include time. Basically, the metric function

designed for time, usually written as (minimize: (total-time)), is used to obtain the

minimum time span for all activities in the generated plan. The numeric version of

Zeno-travel domain also include time, combines with other numeric fluent called total-

fuel-used. Other numeric version of domains such as Depot, Satellite, Rover and Zeno-

Travel, are encoded with metric functions that attempt to minimise the numeric fluents

such as fuel-cost, fuel-used and recharge.

Generally, a planning problem encoded with a plan metric is defined as Semi-

straightforward whenever the following features can be identified in the domain:

• more than one action achieving the same goal or sub-goal states, but giving

different metric effects through different metric variables
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• more than one action achieving the same goal or sub-goal states, but giving

different values for the same metric variable

• resource choices in which different resources result in different metric function

values.

The above features will be analysed in the IPC3 domains. Figure 2.2 exhibits the

possible flow of the action sequences that would be developed in solutions for problems

in the Satellite domain. The alternative actions that achieve similar states are not

captured in the domain. As can be seen from the figure, there is only one flow of

action sequences directed to take image, the action that is responsible for achieving

the goal state. In this problem, the solutions can be different between one to another

in terms of the number of turn to actions, as there is a repeated loop in that action.

The metric function in the problem is minimise fuel use. The metric constraints on

fuel are encoded as preconditions in the turn to action, the action to be minimised

in the solution. Therefore, the metric function is already encoded in the solution

development. In other words, the metric function is strictly straightforward in this

problem. Furthermore, the resource in the domain in not renewable and does not have

any constraint which means optimisation is not necessary. If other images are added

to the goals, the generated plan would contain repeated copies of the same plan.

 

initial  
state 

switch_on 

turn_to 

calibrate 

take_image 

repeated actions 

Figure 2.2: Action Sequences in Satellite Domain

A very similar pattern of action sequences is also discovered in the Rovers do-

main. See Figure 2.3. In this domain, the metric function is to minimise the recharge

value. The recharge value increases 1 unit every time the recharge action is executed.

Therefore, in order to have the minimum value of the metric function, the number of

recharge actions should be as small as possible. Similar to the Satellite domain, the
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optimum value of metric function is obtained simultaneously whenever minimising the

plan length in the solution development. Following this, the domain is classified as

strictly straightforward.

Actions with different levels of consumption of the resources seem to be presented

in the Zeno-travel domain. There are two actions affecting the metric function in the

domain: the zoom and fly actions. Both actions achieve the same sub-goal which is

to transfer a person from one to another location, but the actions require different

amounts of fuel. However, these actions are not considered alternative to each other as

an extra constraint, (≤ (onboard ?a) (zoom-limit ?a))), is imposed on the zoom before

it can be executed at any point in the plan. The metric function in this domain is

classified as straightforward since reducing the number of actions does not guarantee

giving an optimal value of the metric function.

The Settlers domain exhibits interesting numeric interactions as explained in the

previous section. In contrast to the above domains, resources defined in Settlers are not

only consumed but also produced by the actions in the domain. There are three metric

function variables included in the domain problems: labour, pollution and resource-use.

These metric function variables are defined as a numeric positive effect in the actions

rather than as numeric conditions as in the previous domains. This domain still poses

a challenge to the numeric planners to solve the problems mainly due to its numeric

interactions behavior. Besides its numeric interactions feature, the metric function in

this domain is defined according to Definition 3: it is semi-straightforward. In this

problem, there is always a choice to be made when such resources are required. The

resources can either be produced at the target location or transported from another

location. These two strategies of acquiring resources will produce plans that have

different metric effects and plan lengths.

In sum, although all the problems in the metric domains in IPC3 incorporate a

metric function, only Settlers exhibits the semi-straightforward feature. In other do-

mains the metric plan quality solution is constructed along with the minimisation of

the actions in the plan. In other words, the optimal value of the metric function is

generally obtained by minimising the plan length. The alternative actions that have

potential to construct several alternative solutions, each with different values of the

metric function, are not encoded in the domains.
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initial state

navigate

sample_soil

sample_rock

recharge

calibrate

take_image

communicate_rock_data

communicate_soil_data

communicate_image_data

goal_state

Figure 2.3: Action Sequences in Rover Domain

2.5 Approaches in Planning Systems

Among the techniques that increases the efficiency of planning systems is the planning

graph. The first work based on this is GraphPlan[4]. In Graphplan, a compact structure

called a planning graph is constructed and annotated. The planning graph is a levelled

graph that alternates between proposition levels and action levels. It is also a directed

graph in which edges represent the relations between actions and propositions. The

propositions at layer0 represent the current state, actions at layer0 are all applicable

actions, whose add lists made up the proposition layer 1, and so until either the goal

or a fix point is reached [37].

Another significant approach to the planning technology is heuristic search as pro-

posed by Bonet and Geffner[5, 6]. The heuristic search algorithm performs forward

search from initial state to a goal state using a heuristic function. The heuristic func-

tion, hG(s) is an estimate of the number of steps needed to go from a state s to a

state s
′

that satisfies the goal G. It relaxes or simplifies the planning task by ignoring

the delete list. HSP[6] (Heuristic Search Planner) and FF (Fast Forward) [40] both

handle STRIPS and perform heuristically guided forward search from the initial state

to the goal state. But, the FF heuristic technique is relaxed GraphPlan. A heuristic is

calculated based on relaxed planning graph in which the graph is constructed similar to

GraphPlan. Other planners that adopted this heuristic are MetricFF [38] and SGPlan

[8].
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2.6 Numeric Planners

This section discusses approaches adopted in some of the state-of-the-art numeric plan-

ners in solving numeric domains. The state-of-the-art numeric planners included in this

discussion are Metric-FF, LPG and MIPS. The first two are Graphplan based planners,

whilst the last one is based on an efficient model-checking approach combined with the

use of the relaxed planning graph in the heuristic construction.

• Metric-FF

One of the top performing numeric planners in IPC3 was Metric-FF [38]. Metric-

FF extends the capability of Fast Forward (FF) planner[40], which is its prede-

cessor, to handle numeric planning. Many ideas developed in its predecessor are

also inherited by Metric-FF. It uses a two-step process in building its heuristic

similar to FF. The first step deals with the construction of a relaxed planning

graph and the relaxed plan is extracted at the second step provided that the

graph succeeds in reaching the goals [38]. During the construction of the relaxed

planning graph, Metric-FF extends relaxation of the proposition applied in FF

to the numeric facts. This means both negative propositional delete effects and

decreasing numeric effects are ignored in Metric-FF. The numeric variables are

also estimated during this stage using the bounds propagation technique. This

technique estimates the upper and lower bounds value for each numeric variable

by summing the action effects.

The relaxed plan is extracted through a backwards loop from the goal layer to the

initial layer. Basically, at the goal layern, actions to support the respective goal

set will be selected. These action preconditions become sub-goals at layern−1 and

have to be satisfied by actions at layern−1. This backward loop is repeated until

the first layer is reached. The selected actions are used to form the relaxed plan.

The heuristic value is based on the number of actions in the relaxed plan. Chapter

5 gives a detailed explanation of how Metric-FF develops its heuristic estimate. It

also discusses the drawback of negative numeric effects. The heuristic in Metric-

FF, in summary, attempts to minimise the plan length of the solution. Since it

tries to minimise the number of actions in the plan, the heuristic only includes

the numeric precondition variable of the actions. Therefore, the quality solution

can be obtained only if the plan metric variables is encoded in action precondition

in the domain. For example, plan metric variables have been encoded as action

preconditions in the Satellite, Depot, Zeno-Travel and Rover domains in IPC3.
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• LPG

Local search Planning Graphs (LPG) is another numeric planner based on the

planning graph. Instead of building a single planning graph, it uses a sub-graph

called a Numerical Action graph (NA-graph) to represent a partial plan [33]. The

NA-graph is a directed acyclic levelled graph alternating a fact level and an action

level. The fact levels contain propositional nodes and numerical nodes. Each

action level contains one action node labelled with the name of a domain action.

Any action a at level l is connected by precondition edges and effect edges. The

precondition edges are the propositional/numeric nodes at level l whilst the effect

edges are the propositional/numerical nodes at level l+1. The problem goals are

the precondition of the action, aend and the effect of the action, astart, contains the

initial facts of the problem. A numerical action graph is defined as inconsistent if

there is an action with the unsupported precondition, θ. Meanwhile, the solution

graph is the NA-graph without inconsistencies.

To search for the solution graph, LPG uses a local search known as Walkplan.

Generally, the local search selects an unsupported precondition, θ, in the current

NA-graph for a particular numerical state, A, and identifies its neighborhood.

The definition of the numerical state A is given in [33]. The search neighborhood

can be derived by removing the action, a with precondition θ or adding an action

node, a, that can resolve θ. The addition/removal of an action node, a, at level

l can affect the values associated with the numerical fluents at the next level.

An action evaluation function, E, estimates the cost of adding or removing the

action node a. Both the insert and remove part of E consists of two weighted

terms: the search cost and the execution cost. The first parameter estimates the

number of steps needed to reach a solution whilst the second parameter estimates

the increase in the plan execution cost or the quality of the current partial plan.

The parameter weights are dynamically evaluated during search using discrete

Lagrange multipliers. The relaxed plan, π, consists of an estimated minimal set

of actions to achieve θ. LPG also searches for the minimum number of actions

that achieves a particular numeric goal.

LPG improves the plan quality by producing a sequence of plans. The first gener-

ated plan is used to initialise a new search for the next plan. Some inconsistencies

are enforced in the NA-graph representing the best plan, Π, so far, in order to

start a new search. In searching a new solution plan, LPG will remove some

actions from Π. It prefers those actions with the high execution cost if the plan

metric expressions require minimising a numerical expression. The plan cost is
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not directly taken from the plan metric. LPG uses a random search algorithm

that chooses the best successor with probability 1− p.

• MIPS

Model Checking Integrated Planning System (MIPS) [14] [17] is another distin-

guished planner in IPC3. This planner is based on symbolic model checking

technologies. Its general architecture is divided into four parts: precompilation,

heuristic, search algorithm and post compilation. However, its heuristic develop-

ment is influenced by FF for the propositional part [40] and Metric-FF [38] for the

numeric part. Besides a relaxed planning graph heuristic, MIPS also employs the

pattern database heuristic [15] for the propositional parts. The numeric heuristic

is described by the number of steps required to achieve the numerical goal inde-

pendent from the propositional. The relaxed planning graph for numeric facts

is built by computing a fixed point of a state vector restricted to monotonically

increasing propositional and numerical variables. Each numeric value is in the

form of the vector interval (min,max). Starting with the initial states values,

these values will be updated in the while-loop until it reaches a relaxed fix point

value. The fix point for the variable domains is computed by considering the nu-

merical effect in the operator set only. In each iteration, every operator is tested

for applicability by checking all numeric preconditions with the current vector of

the interval(min,max). Both propositional and numeric heuristics are combined

in a unified plan graph. In the forward phase the effects are applied to generate

the layered structure of the relaxed planning graph. In the backward phase, to

obtain the relaxed plan the preconditions are used for propagation.

In summary, the above numeric planners do not include the constructed plan metric

variables in developing the solution. Generally, the heuristic built in these planners aim

to minimise the number of actions in the plan.

2.7 Planning and Scheduling Problem

Planning and scheduling are closely related problems. Planning is defined as a process

of finding what actions to apply by reasoning about the consequence of acting in order

to choose among a set of choices of actions[11]. The input to the planning process

entails a set of initial states, goal states and possible actions. Whereas, the output or

solution to a planning problem consists of one or more courses of action that lead from

the initial states to the goal states. Most planning problems are computationally hard

in the sense that the number of possible courses of actions is exponential [11] and the
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complexity of the solution development is categorised as PSPACE-complete [7]. The

complexity results from cascading sets of action choices that interact in complex ways

as well as the fact that plan length is unknown in advance.

On the other hand, scheduling, as defined in many Operational Research books is a

problem of assigning limited resources to the actions over time to optimise one or more

objectives [57]. In this definition, the resources become the core part of the problem.

Planning and Scheduling are mainly distinguished by the facts that scheduling problems

are not enriched with action choices as in planning. Therefore, in constructing the

solution, scheduling algorithms are not concerned with making the what actions choices

but rather with figuring out when and with what resources the predefined sequence

of actions should be carried out. For example in an established job-shop scheduling

problem, there is a set of jobs where each job has a set of ordered tasks with specified

duration and set of machines. Each machine is capable of carrying out a subset of the

set of all tasks [11]. Sometimes action choices can exist in this problem, for example

choices about resources and perhaps the process alternatives. But, these choices are

highly constrained. Some tasks may be optional and some tasks may allow simple

process alternatives.

The resources and action choices continuum in planning and scheduling problems

can be viewed as in Figure 2.4. Many real world applications are generally to be found

in the middle of the continuum where the problems have almost equal density of the

resources and actions consequence reasoning. The examples of real world applications

that fall in this category are planning and control of supply and distribution logistics,

project management for product introduction, systems engineering construction, pro-

cess flow of assembly, and so on [13]. Realising the importance of resources in planning,

attempts to treat resources in planning have been made and among the earliest develop-

ment made are in [13] [44] [43]. These attempts also mean to bring scheduling elements

into planning. In contrast to scheduling, the resources are not explicitly modelled in

planning problems. They can be treated in different ways. An object in planning can

act both as a resource and as a consumer of resources [59]. For example, the ZenoTravel

domain in IPC3, the plane is a resource when the goal is to transport people from one

city to another but it is also a consumer of resources if it itself must be at the certain

location. The numeric domains benchmarked in IPC3, have witnessed that another

significant effort has been made in the planning community to bring resources into the

planning problems. However, these benchmarked domains are still lacking real resource

choices; the important element of scheduling. Therefore, the domains in general do not

really exhibit a strong element of scheduling.
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Figure 2.4: Resource and Action Choices Continuum in Planning and Scheduling

Including resources in planning results in adding more constraints to the planners

since they can influence the shape and structure of the plan. The resource can impose

constraints on the number of actions that can be executed in parallel. This happens if

the number of resources available at each point in time throughout the plan is limited.

This constraint is known as resource-width[47]. Furthermore, resources also can impose

constraints on the number of actions that can be freely executed during the lifetime of

the plan. This constraint arises from the limited quantity of resources throughout the

plan and it is also known as resource-length[47]. However, the resource-width constraint

is irrelevant to planners that produce totally ordered sequences of actions[47]. Follow-

ing this, apart from maintaining the ordering relationship among actions in developing

a solution, the planners have to ensure there is no conflict in resources, particularly,

in the limited resources [59]. Importantly, once resources are introduced into the plan-

ning problem, the cost and consumption of resources become new attributes to the

plan value. The plan evaluation is far more complex as different resources might have

different values [47].

Combining scheduling into planning means that the solution of the problem now

requires the construction of what action choices with what resource choices. The re-

source constraints and choices, together with the choices of actions lead to a number of

feasible action sequences. Each of these action sequence produces a different objective

value. Furthermore, the resource constraint can impose a new resource constraint if it

is further being used to create a new resource object. The flow of possible action se-

quences in planning and scheduling can be illustrated in Figure 2.5. The branches in a

state implies the alternative actions available in achieving the next state. For example,

the set of feasible solutions nodes are (0, 1, 3, 5, 7, 8), (0, 1, 2, 4, 6, 8) and (0, 1, 3, 4, 6, 8).

These solutions give different values to the plan cost. Suppose the plan cost of each set

are 5, 6 and 8 respectively. The loop at node 4 in the diagram indicates the repetition
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of the unknown action sequences, resulting from the new constraint imposed by the

current state in the plan. For example, if a set of actions (0, 1, 2, 4, 6, 8) is selected, the

next set of actions would be (0, 1, 2, 41, 42, 43, 6, 8) depending on the state resulting from

the effect of the action in node 4. Without the loop, the choices of action sequences

in the Figure 2.5 is known and exhibits more scheduling features rather than planning.

This is due to the fixed action choices of the action sequences. The number of times

around the loop cannot be determined in advance, so the action sequences cannot be

predicted from the beginning of the process. Such problem features exist in the middle

of the continuum from planning to scheduling.
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Figure 2.5: Metric Planning Action Choices Flows

2.7.1 Integrating Planning and Scheduling

There are many approaches that have been taken by researchers in their attempts

to develop solutions for the integrated planning and scheduling problem, precisely in

handling resources in planning. One clever approach is to tackle the two processes

independently [27]. This approach is applied in RealPlan [58]. In this approach, the

decision about what usually comes first and is later followed by when and with what

resources in generating the plan. The main advantages of this approach is the possibil-

ity of obtaining an abstract plan, which is independent from the resources and it can

be reusable. But, the solution is not globally optimal and there is the possibility of

excessive interactions between the planning and scheduling processes [27]. The IPP

[43] planner supports the ADL language, and incorporates resources in the graphplan

framework where the resource is strictly action-centred. This means, specific require-

ment of the resources and the resources effect are determined every time an action is

instantiated.

Some researchers exploit scheduling tools, particularly linear programming, in the

development of their solutions. LPSAT is an example[63]. It converts resource plan-
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ning into the Satisfiability problem (SAT) and uses linear programming as a subsolver

for the numeric part. Another planner that handles resources constraints through

mathematical equations is the ZENO planner [52]. The O-Plan and IxTeT planners

solve resource conflicts using techniques similar to scheduling methods. O-Plan[13]

uses optimistic and pessimistic resource profiles to detect and solve potential resource

conflicts. IxTeT [44] uses a graph search algorithm to identify the minimum critical

sets of actions with conflicts and plots disjunctions of ordering constraints when solv-

ing a conflict[47]. The systems described in the previous, however, do not address the

problem of more complex plan evaluation. Generally, in the above works, the resources

are only used as constraints, not as measures to be optimised.

2.8 Multi-objective Planning

Traditionally, plan evaluation is purely based on the plan length and this approach

has been adopted in many domain independent planners. The discussion on this was

covered in Section 2.4. However, in real world problems, other criteria such as resource

consumption or profit also play an important role in the solution. This is also has been

extensively discussed in the previous section. In planning with resources, particularly,

the plan produced should also minimise the cost of the resources. Therefore, the gener-

ated plan must be evaluated based on more than one criterion. This approach can be

called multi-objective planning in which both plan length and plan cost are taken into

consideration in the plan evaluation. Amongst the works in the literature that claimed

to use a multi-objective optimisation approach in their heuristic include MO-GRT[54]

and TPSYS[28].

MO-GRT [54] is a domain independent heuristic state-space planner that works un-

der the STRIPS framework. It extends the heuristic in its predecessor, called GRT[53].

In GRT, the heuristic function estimates the distance, in terms of the number of ac-

tions, between any state and goal state. The aim of the heuristic is to minimise the plan

length, the common plan evaluation adopted in many domain independent planners.

Besides the plan length, MO-GRT’s heuristic function deals with the multi-objective

criteria by including the information on resources. It is considered as the first attempt

to apply a multi-objective evaluation technique in the area of domain independent plan-

ning. The multi-objective heuristic is accomplished by assigning each fact, p, with a set

of cost vectors in the form, < length,C1, C2, . . . CN >. This cost vector estimates the

cost of various alternative paths that achieve p from the goal and N is the number of

criteria that are being considered in the plan. MO-GRT adopts the Weighted Average

Sum method (WAS) in which weights have to be assigned to each criterion to represent
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their relative preferences to the user or evaluator. This results in a basic ranking among

the alternative solutions. Besides the weight, a scale, the range of allowable values also

assigned to each basic criterion. The weight and scale are defined by the user. The cost

vector is evaluated based on these weights and scales and generally the action with the

best cost vector is chosen in the solution development.

TPSYS [29] is a graphplan-based temporal planner that manages duration action

as proposed in level 3 of PDDL2.1. This work later is extended in[28] by including

numeric fluents. The work is claimed to be a form of multi-objective planning because

the solution development includes both metric and time variables. These two parame-

ters however, are considered separately during the solution construction. The solution

development in this planner is divided into two main stages. The first stage called

spike construction in which each proposition/action is associated with a cost vector.

This vector includes the variable and its estimated minimum and maximum values to

achieve in the proposition/action. Initially, for each proposition, the numeric variables

is initialised with the values indicated in the initial state. The variable values are incre-

mentally updated through the spike construction together with the instantiation of the

actions. The second stage is called the search for a plan and is divided in two stages.

First, generate the initial relaxed plan which consists of actions that are evaluated and

selected according to the estimation of their numeric variables. At the second stage,

the execution time of each action will be allocated to the plan generated in stage 1. The

multi-objective optimisation in this case concerns allocating time to the action within

the estimated value of the numeric variable.

2.9 Multi-objective Functions in Linear Programming

Linear Programming (LP) is an optimisation tool that is widely used in the operational

research community to solve optimisation problems. The classical LP model consists

of a linear objective function and a set of linear constraints. The community, however,

has recognised that many problems addressed by single objective optimisation can be

viewed as multi-objective in nature. Therefore, the community has started to consider

the multi-objective problem and has provided a Multi-objective Mathematical (MOMP)

framework that considers multiple objectives explicitly and simultaneously[20]. The

multi-objective mathematical programming problem is defined and stated according

to[45],
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Definition 5 (Multi-objective Mathematical Programming) The multiple objec-

tive mathematical programming generally consists of more than one objective. Without

loss of generality, all objectives are assumed being maximised, therefore it can be stated

as the following :

max Z̄(x̄) = [Z1(x̄), Z2(x̄), . . . , Zp(x̄)]

subject to constraint x̄ ∈ X where: Z1(x̄) , Z2(x̄), . . . , Zp(x̄) are the problem’s p ≥ 2

objective functions

x̄ = (x1, x2, . . . , xn) are the problem decision variables and X is the explicitly defined

feasible region (Note: minimisation of the objective functions is the negation of the

maximisation of the objective function)

Example of multi-objective mathematical problem according the above definition

can be stated as follow,

max Z1(x) = x1 + x2
2,

Z2(x) = x2
1 + x2,

subject to :

g1(x) = 12− x1 − x2 ≥ 0,

g2(x) = x2
1 + 10x1 − x2

2 + 16x2 − 80 ≥ 0

If all the objective functions and constraints are linear the mathematical model is

called Multi-objective Linear Programming (MOLP). This MOLP is a problem that

minimises several linear objective functions simultaneously subject to a set of linear

constraints and a set of linear decision variables [64]. Generally, however, the optimisa-

tion of MOLP problems rarely results in a unique optimal solution due to the presence

of conflicting objectives. It is common in MOLP problem, that at least two of the p

objective functions are conflicting in nature. For example, minimising the process time

can maximise the cost of a machine due to the increase in the machine capacity. Ac-

cording to [50], the term optimise means to find all the values of the objective function

acceptable to the decision maker. The optimisation of the MOLP problem consists of

more than one solution and is referred to as the Pareto-optimal set. Each point is op-

timal in the sense that no improvement can be achieved in one cost vector component

that does not lead to degradation in at least one of the remaining components [22].

The Pareto-optimal front gives a set of solutions called the non-dominated solution.
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Definition 6 (Non-dominated Solution) x̄∗ ∈ X is a non-dominated solution if

and only if there does not exist x̄ ∈ X such that Zi(x̄) ≥ Zi(x̄
∗) ∀i = 1, 2, . . . , p and

Zi(x̄) > Zi(x̄
∗) for at least one i = 1, 2, . . . , p

One of the principles to find the non-dominated solutions, which is employed in

many heuristic techniques, is scalarisation. This technique basically transforms the

multi-objective problem to a single objective problem that is solved repeatedly[19].

The classical method to obtain the non-dominated solution in the scalarising function

is called weighted-sum. Basically, in this method different weights are given to different

objective functions [9].

Definition 7 ( Weighted-Sum Technique) The weighted-sum techniques is used to

specify a scalarising function by giving weights to the objective functions in the form:

Minimise
∑k

i=1wiZi(x) where wi ≥ 0 are weighting coefficients representing the rela-

tive importance of the objectives. It is usually assumed that
∑k

i=1wi = 1

The set of Pareto-optimal solutions can be obtained by systematically changing the

weight among the objective functions. Therefore, the solution can vary as the weighting

coefficients change. Generally, the designer chooses the weight based on intuition since

there is no proper guideline to be used in choosing the weight. The weighting factors

do not proportionally reflect the relative importance of the objective, but it is used to

locate points in the Pareto set, If the weight, wi closely reflects the importance of the

objective, the function can be transformed into the following [9],

Minimise s
∑k

i=1wiZi(x)ci

where ci are constant multipliers that will scale the objective properly.

However, to obtain the best results, the vector function must be normalised first[9].

Generally, the weighted-sum technique is computationally efficient and generates a

strongly non-dominated solution which can provide initial answers to other problems.

However, the appropriate weights can be difficult to determine particularly if the de-

tailed information about the problem is not available[9].

Linear programming (LP) has also been adopted as the solution technique in plan-

ning as in [42, 60, 62]. But these works only use a single objective function and LP is

generally used to obtain the heuristic that optimises the plan length. This means the

quality of the solution is determined by the plan length. In planning problems that can

be defined according to semi-straightforward metric function problem class, however,

the plan evaluation is based on multi-objective criteria: plan length and plan cost.
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Therefore, this thesis attempts to apply the multi-objective function in the extended

heuristic function to deal with these parameters. The detail about the implementation

of the multi-objective criterion in the developed heuristic is discussed in Chapter 5.

2.10 Conclusion

This chapter has provided an overview of the current knowledge of modelling resource

optimisation, particularly, in the field of numeric planning. There are various ways to

include resources in planning, and different ways of defining optimal solutions. How-

ever, most of the benchmarked numeric domains are found to have adopted a common

approach in which the optimisation of the resources is straightforwardly obtained whilst

minimising the number of actions in the constructed solution. Many numeric planners

that handle PDDL2.1 have also developed heuristics that aim to minimise the value of

the plan length. In other words, the most common plan evaluation is still based on a

single perspective which is the number of actions in a plan. The plan metric is used to

evaluate the solution post hoc. This chapter also discussed the planners that claim to

have used multi-objective approaches in their solution construction. These planners,

however, include time as another objective besides the plan length. Few researchers

have considered using the plan metric to guide the solution development. An overview

of Multi-objective Linear programming, the optimisation tool that uses more than one

objective function, and its solution technique is given in this chapter. This optimisation

tool is implemented in the extended planner described in this thesis, in order to obtain

the heuristic that balances plan length and plan cost in the solution.
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Chapter 3

Domain-Specific Metric

3.1 Introduction

This chapter describes and constructs a new class of metric planning problems called

domain-specific metric planning. The domain-specific metric class is the problem class

for which the extended planner developed in the thesis is designed. The metric func-

tions defined in such problems are semi-straightforward. The general structure of the

domain includes numeric interactions as well as resource choices that give different

values with respect to the metric function. Therefore, various solutions, each with dif-

ferent metric function values can be developed. This structure often exists in many real

world applications, however, it has been largely ignored by the planning community.

The challenge posed by this class is to optimise values of the metric function. Further-

more, the solution development exhibits trade-offs between plan length and plan cost.

This thesis attempts to construct a heuristic function that can obtain a better balance

between plan metric and plan length values. The metric function of the problem is in-

cluded in the heuristic to guide search for the action with the minimum resource cost.

Considering both plan length and cost simultaneously in the heuristic can be viewed

as a multi-objective planning problem in the sense that more than one criterion will be

used to evaluate the plan.

Besides describing the new class of problems, this chapter also reviews some bench-

marked numeric domains. Numeric fluents and metric functions were also encoded in

the metric planning problems benchmarked in the previous competition series[12, 39,

46]. However, the focus given in modelling the metric functions and numeric fluents

differs from one competition to another. This chapter examines the characteristic of

the benchmark problems in the IPCs series so far, particularly those involving numeric

fluents.
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3.2 Characteristics of the Planning Domains in IPCs Se-

ries

In the International planning competitions series, in short IPCs, a set of benchmark

problems is provided for others to use to compare their system to the state-of-art

planning technologies [49]. The first series of the competition was held in 1998 in

conjunction with the International Conference on AI Planning and Scheduling (AIPS)

in Pittsburgh, Pennsylvania. The Planning Domain Definition Language (PDDL) was

created by the AIPS committee and first used as the official language in the first

competition [39]. The other ultimate goals of the IPCs series include to provide an

indication of overall progress in the planning technologies, encourage the development

of more realistic problems and to develop and improve the PDDL language itself [1, 24,

34, 39, 49].

The focus of the planning community on planning technology development and

characteristics of the problems being solved, varies from one competition to another.

The first and second competitions (IPC1 and IPC2) were involved with both STRIPS

[21] and ADL [51] domains and problems. The first competition to deal with numeric

fluents was IPC3. This competition also focused on temporal planning. PDDL2.1 level

3, the official language for the competition, is augmented with durative actions [24].

The discussion of the numeric domains involved in IPC3 was given in the previous

chapter. In summary, the Settlers domain was found to demonstrate interesting nu-

meric interactions and to exhibit semi-straightforward metric features. The numeric

interactions were then later identified by Coles et all as producer and consumer actions

[10]. According to Coles et al., a producer is an action that causes an increase in the

numeric resource quantity whilst a consumer is an action that causes a decrease in

the numeric resource quantity. The rest of the numeric problems in IPC3 are strictly

straightforward, or straightforward, as defined in Chapter 2.

The IPC4 competition continued to use PDDL2.1 and made some extensions to the

language resulting in PDDL2.2. PDDL2.2 is PDDL2.1 extended with derived predi-

cates and timed initial literals [39]. For the first time the competition was separated

into a deterministic track, which can be considered a continuation from the previous

competitions, and a probabilistic track. IPC4 also attempted to pose more realistic

problems. There were five new domains which include Airport, Pipesworld, Promela,

PSR and UMTS. A detailed description of these domains is given in [36]. However, the

majority of the domains, except Promela, stressed the role of derived predicates and

timed initial literals. The Promela domain models deadlock detection in the commu-
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nication protocols formulated in the Promela language [16]. Nevertheless, the usage

of the numeric fluent in this domain is simple, and makes no advancement over the

numeric domains in IPC3. In fact, it excludes the plan metric.

The following competition, IPC5, made an effort to draw back the attention of the

community to the important issue of plan quality. It aims for a better characterisation

of the meaning of plan quality [1]. Along with this competition, the new language PDDL

3.0 which allows the expression of strong and soft constraints on the plan trajectory,

as well as strong and soft problems goals, was developed [31]. In general, the strong

trajectory constraints and goals must be satisfied by any valid plan, while soft trajectory

constraints and goals (called preferences) express desired constraints and goals, which

do not necessarily have to be achieved. With these constraints, the plan metric can

consist of a function whereby it minimises the violations of the constraints.

The benchmark problems involved in this event were Travelling Purchaser, Open-

stacks, Storage, Trucks, Pathway and Extended Rovers domains [12]. These domains

were presented in propositional, metric-time and simple and complex preferences ver-

sions [12]. The plan metrics encoded in the metric-time versions for all domains, gen-

erally involve numeric fluents and time. Generally, the numeric fluent variables are

also encoded as resource preconditions similar to numeric domains in IPC3 except for

the Pathway domain. This domain not only inherits the numeric interaction features

as demonstrated by the Settlers domain in IPC3, but also includes another interesting

feature which can contribute to a few possible solutions that have different completion

times. However, the choices of the processing times are not provided in all problem

instances.

3.3 New Domain Class

A new class of metric problems called a domain-specific metric class is constructed

in this thesis. Domain-specific metrics problems can be defined as planning problems

characterised both by the availability of metric resources, and the presence of a plan

metric that refers to the metric variables in the particular domain. Figure 3.1 illustrates

an example of a problem created for the Bread domain and it is used in the experiment

conducted in Chapter 6. The complete definition of the Bread domain is given in

Appendix C.

The metric function (:metric minimize (+ (+ (* 4(labour)) (*3(pollution))) (*0(en-

ergy)))) stated in the problem is domain-specific because labour, pollution and energy

are the numeric variables defined within the domain and manipulated by the actions
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(define (problem prob1)
(:domain bread)

(:objects
kitchen0 - kitchen
machine0 - machine
)

(:init
(ready-to-use machine0)
(=(has-flour kitchen0)15)
(=(ready-mix kitchen0)4)
(=(ready-dough kitchen0)0)
(=(loaf-bread kitchen0)0)
(=(breakfast-bun kitchen0)0)
(=(cooked-bun kitchen0)0)
(=(cooked-bread kitchen0)4)
(=(energy)0)
(=(pollution)0)
(=(labour)0)

)
(:goal (and
(>=(cooked-bun kitchen0)10)
(>=(cooked-bread kitchen0)10)
(>=(breakfast-bun kitchen0)5)
)
)
(:metric minimize (+ (+ (* 4(labour)) (*3(pollution))) (*0(energy))))

)

Figure 3.1: Example of metric function in Domain-specific metric problem

in the domain as can be seen in Appendix C. In other words, this metric function is

specific to this domain and cannot be applied to other domains. This is in contrast

to the generic metric function, such as (total-time), which can be used to all temporal

domains to obtain the temporal span of the entire plan. In the domain-specific metric,

a set of possible solutions which differ in terms of the plan metric value can be con-

structed for the same problem. For example, the plan metric in Figure 3.1 above is

changed to (:metric minimize (+ (+ (* 0(labour)) (*3(pollution))) (*0(energy)))). A

different plan would expect to be generated as the solution. In order to achieve this,

actions with resource choices must be encoded in the domain. Furthermore, for the
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numeric interactions to be interesting the domain must feature producer and consumer

actions. These actions produce and consume the numeric resources in the domain. Fur-

thermore, the possible solutions also differ in plan length. Importantly, the nature of

the solution development is conflicting between the plan length and plan cost. Quality

solutions seek to minimise the plan metric while also minimising the plan length.

Undoubtedly, the conflicting factors make this problem class more complex. Feasible

solutions do not guarantee the optimal plan cost. The conflicting factors also relate to

the nature of the real world problem. The cheaper resource might have small capacity

so that it can only handle a few jobs. Meanwhile, the expensive resource might have a

larger capacity and be able to perform more jobs. More processes or steps are required

in a plan that chooses the action that uses the small capacity resource compared to

the plan that chooses actions that use the bigger capacity resource. However, the cost

of a plan that includes a small capacity resource is cheaper than the plan that selects

the bigger capacity resource. Sometimes the optimal solution can be obtained from the

plan that combines both resources in achieving a specific value of the numeric quantity.

The circumstances discussed above are exhibited in the domains designed in the

following section. Domains that are categorised as domain-specific metric problems

include the Extended Settler, Bread, Trader, Production and Sugar domains. In general,

the Extended Settler domain inherits the original Settlers domain structure but with

more resource choices available at a particular state. The Trader domain is a logistic

based domain. Whilst, Bread, Production and Sugar are manufacturing based domains.

However, the Sugar domain also combines a logistics aspect. The following section

elaborates in detail the example of the domain-specific metric class to put this work in

context.

3.3.1 Extended Settler Domain

The original Settlers domain, as explained in the previous section, includes producer

and consumer actions. The plan metric variables in the problem instances generally

consists of labour, resource-use and pollution. The plan metric serves as a mechanism to

obtain a plan cost for a particular developed solution. The domain provides alternative

choices of resources so that alternative solutions that differ in terms of the plan cost

can be generated.

Since the Settlers domain has been categorised as semi-straightforward as explained

in Chapter 2, it is included as one of domains in the domain-specific metric class. This

domain however, is extended in order to enrich the choice of resources, particularly
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at certain states. Two new actions are added to the domain. The actions are: build-

house-wood and fell-timber-machine. From now on, the Settler domain with the two

new actions is referred to as the Extended Settler domain. These new actions offer

more choices for the planner to reach a particular state with different resources at a

particular time. The build-house-wood action is an alternative to the existing build-

house action. Both actions can be selected to achieve the same goal/sub goal, called

housing. However, these actions use different types and quantities of the materials.

The existing action requires only wood but the new action requires both wood and

stone. The cost of the plan with the build-house action may differ from the plan with

the build-house-wood action. It uses materials that demand the use of raw materials

which can be obtained using different actions. The wood is a refined material of the

raw material called timber. The timber is obtained either by the fell-timber action or

by its alternative action, fell-timber-machine. Both actions cause the increase in the

timber value but by different amounts. The timber value is increased by 1 unit by the

fell-timber action, and by 3 units by the fell-timber-machine action. Moreover, these

actions affect the different plan metric variables. The fell-timber action increases the

labour metric. Meanwhile the fell-timber-machine increases the value of the pollution

variable.

Choosing the different actions in the plan not only results in different plan metric

value but also gives different plan length values. For example, this occurs if a numeric

goal requires the timber ≥ 3. One solution can consist of a single step of the fell-timber-

machine action. The other solution might include three steps of the fell-timber action.

Now assume, the goal is housing location0 ≥ 1 . The possible action sequences in the

generated plan are illustrated in Figure 3.2. Each of the action sequences has a differ-

ent plan cost. The complete domain encoding for the Extended Settler is attached in

Appendix A. Table 3.1 shows the profile of the new actions compared to the equivalent

actions in the Settlers domain in the IPC3 version.

Table 3.1: Extended Settler plan metric profiles

action
plan metric numeric precondition numeric effect

labour pollution wood stone housing at timber at
location location

fell-timber 1 1

fell-timber-machine 1 3

build-house 1 1 1

build-wood-house 2 1
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Figure 3.2: Alternative Actions that Achieve Subgoal housing location0≥ 0 in Extended
Settler Domain

3.3.2 Trader Domain

This domain is inspired by the Travelling Purchasing Problem (TPP)[12] in IPC5. The

Trader domain consists of a number of markets each with a set of items with different

quantities and prices, similar to the TPP domain. In the original TPP problem, a

subset of markets that meet the given demand as well as minimising the combined

travel and purchase costs is selected in the solution development. The trader domain

basically remains the focus of the solution development as in TPP, but includes choices

of resources so that the solution attempts to minimise the plan metric given in the

problem instances. The plan metric is attributed by labour, resource, expenditure and

liquidity variables. In order to make alternative solutions possible in this domain, a few

choices of resources are encoded. For example, the trader can move the items from one

location to another using one of these actions: (1)load-basket and (2)donkey-carrier.

The first action may result in an increase to the plan metric labour. In contrary, the

second action increases the value of the plan metric resource. In addition, these two

actions are constrained by different values of the capacity. The capacity of the load-

basket is smaller than the capacity of the donkey carrier. If the plan metric attempts

to minimise the labour cost, the plan will include the donkey-carrier action. The load-

basket action will be considered in the plan, if the plan metric seeks to minimise the

resource cost. Both plans can have different plan lengths as the maximum capacity

of the item that can be loaded at one time is different in these actions. Table 3.2

summarises the important features in each encoded action.

The attribute of the market in the trader domain is also enhanced. The markets

not only sell the items but they also buy items from the trader and exchange items.

Initially in almost all instances created in the domain, the trader has some amount of
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Figure 3.3: General Action Sequences in Trader Domain

cash and items on hand. The goal states include the demand of the other items which

are normally different from those that the trader already has on hand. The trader can

increase the number of the demanded items through either buy-cash or exchange-goods

actions. The buy-cash will increase the plan metric expenditure whilst the exchange-

goods increases the value in the plan metric liquidity. In order to obtain the required

item through the buy-cash action, the trader must have enough cash. In addition, the

trader can increase the amount of cash on hand by selling the unwanted or excessive

items through the sell action. Figure 3.3 shows the general flow of the action sequences

that may include in the plan solutions. The complete domain encoding is attached in

Appendix B.

3.3.3 Bread Domain

The Bread domain is a simple example of the manufacturing type domain. This domain

is about a process of producing products called Bread and Bun. Figure 3.4 illustrates

the sequence of actions involved in the domain. The major activities in the domain

include preparing mixture, kneeding dough, making bun or bread and baking. The actions

involved in performing these activities exhibit the producer and consumer features. For

example, the actions that perform the kneed activity consume a numeric resource called

ready-mix which is constructed by the prepare-mix action.

Following this, the kneed action also constructs another numeric resource called

ready-dough which is later being consumed by other actions in the domain. Almost all

the producer and consumer actions in the domain are encoded with their alternative

actions. The alternative actions provides a means by which a few alternative solutions
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Table 3.2: Trader Domain plan metric profiles

action
plan metric

numeric numeric
precondition effectresource labour expenditure liquidity

ld 1 capacity ≤ 4 item

lb 1 capacity≤ 2 item

bc 1 item item

eg 1 item item

sg cash cash & item

Notes
ld - load-donkey
lb - load-basket
bc - buy-cash
eg - exchange-goods
sg - selling-goods

relative to the plan metric value are able to be constructed in the problems. The

complete domain encoding can be seen in Appendix C.
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Figure 3.4: General Action Sequences in Bread Domain

The plan metric defined in the domain includes the metric variables labour, energy

and pollution. The choice of the producer and consumer actions appears in the kneeding

dough process. This process is accomplished either by kneed-hand or kneed-machine

actions. The kneed-hand action increases the ready-dough by 1 unit and affects the

value of the plan metric labour. The kneed-machine on the other hand, causes a 2

units increase in the value of ready-dough and affects the plan metric energy. The

choices of resources are also exhibited in the baking process. The baking-oven and
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baking-charcoal actions perform the baking process to produce loaf-bread and breakfast-

bun. The baking-oven increases the energy variable, meanwhile, baking-charcoal action

increases the pollution value. The profile of the resource choices with regard to the plan

metric ! and numeric effects is shown in Table 3.3 and Table 3.4.

Table 3.3: Numeric preconditions and effects in the Bread Domain

action
numeric precondition numeric effect

ready- ready- breakfast- loaf- ready- cooked - cooked
mix dough bun bread dough bread bun

kneed-hand 1 1

kneed-machine 2 2

baking-oven 10 4 10 4

baking-charcoal 2 2 2 2

Table 3.4: Bread Domain plan metric profiles

action
plan metric

labour pollution energy

kneed-hand 1

kneed-machine 1

baking-oven 1

baking-charcoal 1 

initial state 

prepare-mix 

kneed-hand 

making-bun 

making-loaf-
bread 

baking-oven 

goal state 

labour 

energy 

metric 

Figure 3.5: Solution with Plan Metric labour and energy in Bread Domain
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Figure 3.6: Solution with Plan Metric energy and pollution in Bread Domain

Assume the numeric goal consists of (≥(cooked-bun)10) and ( ≥(cooked-bread)4).

Based on the profile given in Table 3.3 and Table 3.4, the alternative action sequences

are shown in Figure 3.5 and Figure 3.6. The first feasible solution affects the plan

metric labour and energy. On the other hand, the second possible solution affects the

plan metric energy and pollution.

3.3.4 Production Domain

The Production domain is another manufacturing type domain that is constructed in

the thesis. It involves more processes, or actions, compared to the Bread domain. The

Production domain is about manufacturing two finished products called product1 and

product2. Both products can be constructed using a few different product formulae.

Each of the product formulae requires different parts or materials that have to go

through a few different processes. The variety in the product formulae results in a few

alternative solutions which differ in terms of the plan length and cost. Every product

formula, however, has four stages in common. At the first stage, the raw material will

be transformed into the refined material. Then, the refined material is converted into

the shaped material through the cutting process. The shaped material will then go

through some processes in order to make the part. At the final stage, the parts are

assembled according to a formula, to make the products. These stages together with

the action sequences involved in the domain is illustrated in Figure 3.7. Similar to

the Bread domain, this domain exhibits a feature where a resource is constructed by

an action and then used in another action in the domain. In other words, the actions

in the domain demonstrate the producer and consumer behavior. The quality of the

solution is measured by three plan metric variables declared in the domain: (1) hazard,

(2) labour, and (3) machine-cost
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Essentially almost all of the stages can be performed using alternatives resources.

For example, the refined material called plastic and metal can be obtained from two

different actions called; (1) process-raw-material and (2) part-from-recycle. These ac-

tions use different resources in which action (1) uses chemical and iron, whilst action

(2) uses the recycle parts. The recycle part is a co-product that can be obtained from

the making part process. These two actions, however, increase the value of the similar

refined material with different units. Furthermore, action (1) causes an increase to the

plan metric variable called hazard. Besides hazard, there are another two more plan

metric variables being declared in the domain; labour and machine-cost.

The resource choice occurs again at the making part stage. The quantity of a

part called metal-part, is increased through two different actions called painting and

soak-chemical. Both actions also consume similar resources, shaped-metal, but affect

different plan metric variables. The painting action increases the value of labour. In

contrast, the soak-chemical action raises the value of the hazard variable. In addition

to the plan metric, both actions may cause a different value of plan length. The plan

length for achieving the similar numeric goal, ( ≥(metal-part)1), is perhaps longer in

the plan that chooses the soak-chemical action compared to the plan that incorporates

the painting action. Figure 3.7 shows there is a preceding action before soak-chemical

can be selected.

Resource choices also occur at the final step, or in the product assembly process.

As depicted in Figure 3.7, product1 can be constructed using three different actions.

Meanwhile, the assembly process of the product2 is performed by two different actions.

These action differ not only in terms of the resources but also the mechanism used

to perform the assembly. Some action choices conduct the assembly manually which

causes an increase in the labour plan metric. Whilst some other actions perform the

assembly task using a machine which results in an increase to the machine cost.
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Figure 3.7: General Action Sequences in Production Domain

Table 3.5 and Table 3.6 give the summary of some actions particularly those which

incorporate the choice of resources. These actions generally achieve similar numeric

states although with different values. They also modify the values of different plan

metric variables. The complete domain encoding is given in Appendix D.

3.3.5 Sugar-Supply Domain

The Sugar-Supply domain basically combines the manufacturing and logistic problems.

In this domain, a product called sugar, is produced in a variety type called brand

through an action called produce-sugar to fulfill the demands from several Depots. The

produce sugar action is accomplished using several facilities, called mill. Each mill can

process several different types of brand at different mill-cost and capacity. However,

every mill can only process a single brand at one time. A set-up process has to be

performed in order to change the brand type from one to another. Furthermore, each

facility is constrained by the different number of set-up activities. The plan metric

variables defined in the domain include mill-cost, inventory-cost and handling-cost

Every brand type require a similar raw material called sugar-cane. The supply of

the sugar-cane, if needed, can be obtained from the farm. It also can be requested from

the other facilities, provided that the facilities have an excessive stock of the sugar-cane.
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Table 3.5: Production Domain plan metric profiles

action
metric

hazard labour machine-cost

process-raw-material 1

part-from-raw material

painting 1

soak-chemical 1

product1-formula1 10

product1-formula2 1

product1-formula3 1

product2-formula1 10

product2-formula2 1

These resource choices are encoded in the actions called sugar-cane-farm and sugar-

cane-mills. The sugar-cane is considered a perishable item, so that it is preferable

to finish the excessive stock in other facilities before obtaining it from the supplier.

To model this situation, both sugar-cane-farm and sugar-cane-mills actions increase

the plan metric variable called inventory-cost. However, the sugar-cane-farm action

increases the variable by a bigger value compared to the sugar-cane-mills action. In

addition, both actions also increase the amount of the sugar-cane by different quantities.

The sugar products have to be loaded into the truck before they can be delivered to

the customers at the Depots. Choice of resources is also encoded at this point whereby

the loading activities can be performed either manually or using a crane. The encoded

actions related to these choices are called load-truck-crane and load-truck-manual. Both

actions load a different quantity of the sugar products and affect the similar plan metric

variable called handling-cost but with the different quantity. Figure 3.8 illustrates the

possibles flow of action sequences in achieving goals.

The encoded domain has the potential to generate alternative solutions including

solution giving the optimal plan metric value. For example, if the plan metric encoded

is to minimise the mill cost, the solution developed must search for the mills that give

the minimum cost for a given brand at a given quantity. Sometimes, it is also more

cost saving to produce more than one brand using a single facility as the demand can

be fulfilled by a single facility. Table 3.7 summarises the alternative actions encoded in

the domain that reach a similar numeric state variable as well as given different value

to the plan metric variables. The complete domain encoding is given in Appendix E.
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Table 3.6: Numeric preconditions and effects in Production Domain

action
numeric precondition numeric effect

rcp rcm mp pp cp cm p1 p2 mp pp mt pl

process-raw-material 4 6

part-from-recycle 2 3 1 1

painting 1 2

soak-chemical 2 2

product1-formula1 2 2 2

product1-formula2 1 1 1

product1-formula3 1 1 1

product2-formula1 2 1 3

product2-formula2 2 4 4

notes :
rcp recycle− plastic
rcm recycle−metal
mp metal − part
pp plastic− part
cp clean− plastic
cm clean−metal
p1 product1
p2 product2
mt metal
pl plastic

3.4 Conclusion

The class of domain-specific metric planning problems is mainly characterised by the

choice of resources. The choice of resources is then manipulated by actions in the

domain so that they effect the different value of the plan metric variables encoded in

the problem. The resource choices will lead to the construction of alternative solutions

according to the value of the plan metric. The plan metrics defined in the problem

instances are used to guide the search so that good quality solutions are selected. This

means the search for the plan focuses on the plan quality aspect. The extended planner

in this thesis is designed to solve this class of problem by including the plan metric in

its heuristic to obtain the actions with the cheapest cost relative to the value of the

plan metric. Apart from having different values of plan cost, the solutions for domain-

specific metric problems could be differ in terms of the number of actions or the value

of the plan length. The plan length consideration is also included in the heuristic

developed for the extended planner.
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Figure 3.8: General Action Sequences in Sugar Domain

The domains constructed in this chapter include all the above characteristics. They

are similar in terms of all domains included with resource choices and featuring the

producer and consumer actions. However, each domain presents a different complexity

of resource choices at a particular state. The complexity of resources does not only

reflect on the number of resources available at a particular state in the domain, but

also the consequence of choosing one of the alternative resources. For example in the

Bread domain, the numeric variable dough increases as a result of the effect of two

actions namely kneed-hand and kneed-machine. Either kneed-hand or kneed-machine is

selected at the applicable state in the domain, it does not lead to other complex choices

of action. Both of these actions provide the precondition that makes either making-

bread or making bun applicable. However, in Production domain the resource choices

at any state can lead to other complex choices of either resource or action. In other

words, the production domain is encoded with more producer and consumer actions

compared to the Bread domain. In general, the level of producer and consumer actions

is encoded differently in these domains.
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Table 3.7: Numeric Preconditions and Effects in Sugar Domain

action
Plan Metric numeric effect

handling- mill-cost inventory- sugar- sugar
cost cost cane

produce-sugar given by
the mill

sugar-cane-farm 10 5

sugar-cane-mills 1 1

load-truck-crane 10 5

load-truck-manually 1 1
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Chapter 4

Background To LPRPG

4.1 Introduction

The Hybrid Linear Programming and Relaxed Planning Graph or LPRPG [10] is

a numeric domain-independent planner that is being extended in this thesis. This

planner is developed on the basis of Metric-FF. It employs the planning graph based

heuristic [4] but improves the handling of the numeric part of the problem through

the implementation of Linear Programming (LP). Linear Programming is generally

known as a powerful optimisation tool and has been used for a long time particularly

in the Operational Research (OR) community. It is used to solve optimisation problems

with a linear objective function and real valued variables. In Mixed Integer Programs

(MIPs) some of the known variables can be restricted to integer values. In the planning

community, many researchers exploit LP approaches, [3, 42, 55, 60, 63]. However these

works ignore many interesting aspects of the numeric behaviour of the domain.

In LPRPG, the LP is constructed alongside the construction of the Relaxed Plan-

ning Graph (RPG) for each evaluated state, S, in the domain. Since it only concentrates

on the numeric part, the variables in the LP model consist only of the numeric vari-

ables. These are the numeric preconditions and the effects of action variables in each

action layer. The numeric variables are real-valued whilst the action variable can take

only the values 0 or 1 to indicate whether the action is applicable or not with regard

to the current numeric values at the fact layer. The fact that the RPG contains both

real and integer variables might suggest that a MIP is most appropriate. However,

LP is used since LPRPG relaxes the solution of extraction problem into one in which

only real values are present. A detailed explanation of LP construction in a domain is

explained in section 4.2.
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The implementation of the LP in LPRPG overcomes the problems resulting from ig-

noring negative delete effects. This is the approach taken by Metric-FF, and it results in

poor estimates of the numeric values of the state. This leads to the problems identified

by Coles et al; called Helpful Action Distortion (HAD) and Cyclical Resource Transfer

(CRT) [10]. These problems often occur in resource intensive planning domains par-

ticularly whenever the producer and consumer actions are comprehensively encoded.

Definition of these actions are given in [10]. The following section 4.1 discusses the

HAD and CRT issues encountered in numeric domains using Metric-FF.

4.2 Metric-FF

Metric-FF [38] is the successor of the Fast Forward (FF) planner [40] that handles

numeric planning problems. It extends the relaxation introduced in [5, 48], to handle

numeric variables. The numeric negative effects are ignored during the construction of

the relaxed planning graph. Ignoring the delete effects in propositional planning simpli-

fies the solution development and results in a relaxed reachability estimate. However,

deleting negative numeric effects can throw away too much information and result in

poor search control. According to [38], the numeric planning task can be defined as

the following:-

Definition 8 (Numeric Planning Problem) A numeric task is a tuple 〈V, P,A, I,G〉
where V and P are the numeric variables and propositions used, A is a set of actions

that can have both propositional and numeric effects, I is a state expressed in terms

of both facts and numeric quantities, and G is a condition on both propositions and

numeric quantities. A sequence of actions 〈a1, . . . , an〉 ∈ A∗ is a plan if the result of

applying it to I yields a state that models G, ie: result ( I , 〈a1, . . . , an〉)) |= G.

Definition 9 (Numeric Planning Problem) The numeric task is a tuple 〈V, P,A, I,G〉
where V and P are the variables and propositions, A is a set of actions, I is a state and

G is a condition. A state, s = (p(s), v(s)) where p(s) ⊂ P and v(s) = (v1(s), . . . , vn(s))

for all pair of states, s and s
′
, effect of vi, {increase, decrease =}, p.q where p is the

vector of numeric variables and q a vector of constants.

In comparison to STRIPS, a set V of numeric variables is added to numeric task

in which V = v1, . . . , vn. A state, s, in a numeric task is a pair s = (p(s), v(s)) where

p(s) ⊂ P and v(s) = (v1(s), . . . , vn(s)) ∈ Qn is a vector of rational numbers. A relaxed

planning graph is built starting from state s, in a numeric task 〈V, P,A, s,G〉. Metric-FF

[38] expresses numeric problems in linear normal form (LNF) where, ∀vi : vi(s) ≤ vi(s′).
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In achieving this, only positive variables are considered. Therefore, an inverted variable,

−vi, or (−1) ∗ vi, is used to replace each variable vi where vi is decreasing. In building

the relaxed planning graph, each variable vi is in the value range [lower bound, upper

bound]. The upper bound of numeric variables in the fact layer are updated using the

total sum of the increasing effects of the layer. The upper bound of −vi, corresponds

to the negation of a lower bound on vi . This approach to estimating values is referred

to as bounds propagation.

Definition 10 (Bounds Propagation Technique) Given variables v0, v1 . . . , vn at

each layer l0, l1 . . . ln: the upper and lower bounds of the numeric variable, vi, are

updated using bound propagation in which :

upper bound = vi,l = vi,l−1 +
∑n

x=0 pax,l;

lower bound = vi,l = vi,l−1 +
∑n

x=0 cax,l.

The pa are all actions with a positive numeric effect on vi,l and ca are all actions

with a negative numeric effect on the variable vi,l.

To explain bounds propagation, suppose a domain called supply-chain has four

actions, namely produce, load, unload and drive as illustrated in Figure 4.1. In brief,

the domain models a simple production activity together with a logistic system whereby

an item is produced by a facility at a location, store, and then transported to another

location, site, by a truck. Apart from those actions, there is a set of numeric variables =

{ft, st, tk} defined in the problem. The ft, st and tk variables represent the quantity

of the item at the store, site and truck respectively. The role of the action produce

is to produce the item and increase the value of the variable ft. The action load

decreases the value of ft and increases the value of tk. Another action, unload, increases

and decreases the value of st and tk respectively. Importantly, this domain structure

presents a significant numeric interaction between consumer and producer entities.

In this supply-chain domain we assume the variables will increase or decrease by

the application of a particular action at the rate of 1 unit at a time. The initial

value of ft = 2 and the numeric goal for this problem is set as st ≥ 2. The bounds

calculation is as follows. The upper bound for variable ft1 is calculated by, ft1 = ft0 +

produce(p1)=2+1=3. Whilst for the lower bound, ft1 = ft0 - load(l1)=2-1=1. To solve

this problem, MetricFF will develop the relaxed planning graph, layer by layer, until it

reaches the goal state. The layer construction and numeric estimation at every layer,

using bounds propagation, is shown in Figure 4.2. The planning graph will expand

until layer 3 since the goal is considered achievable at this layer.
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Figure 4.1: Simple Supply Chain Domain
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Figure 4.2: Bounds Propagation in the Relaxed Planning Graph for Supply Chain
Domain

This technique results in an inaccurate computation on the numeric values. The

upper and lower bounds for each numeric diverge, as shown in Figure 4.2. For example,

the value of ft3 is in the range of [−1, 7]. Moreover, the negative value does not provide

any meaningful information about the resources available. Realistically, a resource can

hold at minimum a zero value which represents unavailability. In order to obtain

a better estimate of the value, suppose the negative numeric effect is considered in

estimating the bounds value. Using the same initial values and planning graph, another

bounds calculation is conducted manually from the initial layer until the goal layer.

The new estimated bounds are presented at column 3 in Table 4.1. The bounds of the

numeric variables are now more realistic compared to those obtained from the bounds

propagation approach. This also suggests, in general, that the negative numeric effects

should be taken into account to obtain more accurate estimates of the numeric bounds.
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Table 4.1: Difference Between Bounds Propagation and Manual Calculation

variables bound propagation manual calculation

ft0 [2, 2] [0, 2]

st0 [0, 0] [0, 0]

tk0 [0, 0] [0, 0]

ft1 [1, 3] [0, 2]

st1 [0, 0] [0, 0]

tk1 [0, 1] [0, 1]

ft2 [0, 5] [0, 3]

tk2 [−2, 2] [0, 1]

st2 [0, 1] [0, 1]

ft3 [−1, 7] [0, 4]

tk3 [−4, 4] [0, 1]

st3 [−1, 2] [0, 2]

In Metric-FF[38], the relaxed planning graph is extracted in the backward approach

which means it started from the goal layer. An achiever for facts at the goal layer,

layern, creates preconditions that have to be satisfied at layern − 1. This backwards

plan extraction is repeated until the first layer is reached. The heuristic value is the

total number of actions required to reach the goal state from the initial state. However,

actions appearing in the first layer of the relaxed planning graph are considered to be

helpful actions, which are preferred for constructing the successor states in the search.

Poor estimates of numeric bounds can influence the heuristic calculation. An action

is considered as an achiever for a particular fact if all of its propositional and numeric

preconditions hold [10]. The numeric precondition of actions at layer l are satisfied

by the upper bounds of the corresponding numeric variables at layer l-1. Therefore in

the above example, the numeric precondition can always be satisfied since the negative

delete effect only reduces the lower bound of the variable. The consequence of this

situation is that a resource can always be consumed without it being necessary to

execute the action that produces or increases the resource. For example, the produce

action in Figure 4.1 produces 1 unit of resource, which causes variable ft to increase

in value. This variable is consumed by the action load provided that the precondition

ft > 0 is satisfied. Since the execution of the load action does not result in any changes

to the upper bound of variable ft, this indirectly indicates the action load can be

executed as many times as required without it being necessary to place the produce

action in the plan. The specific term used to describe this situation is called Resource

Persistence (ReP) [10]. ReP also happens in propositional domains but only results

in an underestimate of the work required to achieve a fact. It can cause problems in
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numeric domains if the numeric interaction between so called producer and consumer

actions is intensively encoded in a domain. In brief, in the above supply chain domain,

the produce action is classified as a producer action whilst the load action is classified

as a consumer action.

The ReP situation causes the relaxed plan to contain no producer action since its

precondition cannot be achieved without the consumption of the resources. This leads

to a problem called Helpful Action Distortion or (HAD). The HAD means the producer

action will not include producer actions as helpful actions even though the current state

is one in which producers can conveniently be applied. This can result in dead-ends.

Another phenomenon created by the Metric-FF heuristic is called Cyclical Resource

Transfer (CRT) [10]. For example, the valid relaxed plan might include the following:-

0.01: (load item truck store)

1.02: (unload item truck store)

In the above relaxed plan, the first action increases the resource, item, in the truck

by 1 and the second action exploits the item to be unloaded from the truck back

to the store. As a result the number of items at the store is two, because the

action unload behaves like a producer action. CRT is a phenomenon where a resource is

produced by an artificial artifact of the relaxation [10]. In sum, ignoring negative delete

effects can lead to no solution being found, particularly in numeric domain featuring

complex numeric interactions.

4.3 LRPPG

LPRPG has a common structure with Metric-FF whereby both planners apply the

relaxed planning graph and ignore the negative delete effects of the propositional part

during the construction of the solution. But in contrast to Metric-FF, LPRPG includes

the negative numeric effects when estimating the numeric bounds in every layer. In

order to do the estimation, LPRPG exploits Linear Programming (LP), a powerful

optimisation tool, to obtain both upper and lower bounds of numeric variables in every

layer. The LP is further used in the relaxed plan extraction phase to acquire the

minimum number of actions in a particular relaxed plan. The LP solver is called to

obtain the solution of every LP model that is being constructed during the solution

development.
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4.3.1 Relaxed Planning Graph Construction

The relaxed planning graph construction alternates between the fact and the action

layers. The LP models in LPRPG [10] are constructed along with these layers in

every evaluated state. The LP model includes the numeric precondition variables in

the fact layer and all action variables in the action layer. The numeric variables take

real values whilst the action variables accept integer values or precisely the binary 0

or 1 values. The 0 value indicates that the action is not applied whereas the 1 value

implies the action is applied. However to relax the solution, the action variables will

take values within the range [0, 1] to indicate a partial application of an action in

the relaxed plan. Similar to Metric-FF, every numeric variable has upper and lower

bounds. The lower bound results from the minimisation of the objective function

whereas the upper bound will correspond to the maximisation of the objective function

for a numeric variable. Therefore, the LP solver is called twice in doing the bounds

calculation. The constraints are constructed based on the applicability of actions to

a particular variable at a particular layer. The actions are categorised as producer or

consumer actions. These actions are identified prior to the construction of the planning

graph by an inference module called TIM [23]. The producer action basically increases

the numeric value. Meanwhile, the consumer action decreases the numeric value. By

modeling the effects of these actions in the LP, the true flow of resources is modelled

and not just their accumulation as triggered in the bounds propagation technique.

Figure 4.3 demonstrates the construction of the LP model at the first layer for the

above supply chain problem. As can be seen, there are three numeric variables; item

at the facility, ft0, item in the truck, tk0 and item at the site, st0; and three action

variables; action produce, pr1, action load, ld1, and action drive dr1.

However, only two actions are considered applicable which means their precondi-

tions are satisfied at this layer; pr1 and ld1. Application of these actions give increasing

and decreasing effects to variables ft1 and tk1 at layer 1. Therefore, LP models to de-

termine the upper and lower bounds of variables ft1 and tk1 can be constructed as

shown in Figure 4.4 and Figure 4.5. The constraints developed for ft1 can be read as,

the value ft1 at layer 1 is equal to its initial value, which is 2, plus the number of item

produced layer 1, pr1, minus the number of item that being loaded into the truck, ld1.

In the simplest form the value of ft1 = ft0 +pr1− ld1 = 2+1−1 = 2. Therefore, as can

be seen from Figure 4.3 the value of ft1 is [0,2]. But, the LP model has to be written

in the constraint form as presented in Figure 4.4. The value of variable st1 at layer 1 is

similar to st0, value at layer 0, since no action is applicable to this numeric variable at

this layer. The new estimates of the upper and lower bounds at layer 1 help to select
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at truck  site 
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st1[0,0] 

tk1[0,0] 

produce (pr1) 

load (ld1) 

drive (dr1) 

Figure 4.3: LP Estimation for the First Layer in the Relaxed Planning Graph

Min/Max ft1
subject to :
ft1 − 2− pr1 + ld1 = 0
0 ≤ pr1 ≤ 1
0 ≤ ld1 ≤ 1
ft0, ft1 ≥ 0

Figure 4.4: LP Model for numeric variable ft1 at layer 1

the next applicable actions of the following layer. The construction of LP models will

continue until it reaches the goal state.

The overall construction of the relaxed planning graph layers and their estimated

numeric bound values using LP is illustrated in Figure 4.6. As shown, the upper and

lower bounds of each numeric variable are more realistic and informative compared to

the value obtained from the bounds propagation technique. See Table 4.1 for com-

parison. The new bounds estimate from the LP are found similar to those manual

Min/Max tk1

subject to :
tk1 − tk0 − ld1 = 0
0 ≤ ld1 ≤ 1
tk0, tk1 ≥ 0

Figure 4.5: LP Model for Numeric Variable tk1 at Layer 1
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calculated values.
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Figure 4.6: LP Estimation for all Numeric Variables in all Layers of the Relaxed Plan-
ning Graph in Supply Chain Domain

The size of the LP model increases as the layer increases since the number of ap-

plicable actions increase. For example, the LP model constructed for ft3 at layer 3

is shown in Figure 4.7. The overall constraints that constructed during the planning

graph expansion are depicted in Figure 4.8

4.3.2 Relaxed Planning Graph Extraction

Unlike Metric-FF, LPRPG does not apply backward plan extraction to obtain the

heuristic value, but uses LP instead. The heuristic value is still computed as the

number of actions in the relaxed plan. To acquire this, a queue of goal layers is defined

ordered from the deepest first or the goal at the final layer. During regression, for each

variable in a precondition, a linear programming solver is used to find the actions that

contribute to the variable meeting its bound at the appropriate layer in the graph. All

actions are weighted, and these weights are used in determining the heuristic value.

Min/Max ft3 subject to :
ft3 − ft2 − pr3 + ld3 − uf3 = 0
ft2 − ft1 − pr2 + ld2 − uf2 = 0
ft1 − ft0 − pr1 + ld1 = 0
ft0 = 2, ft1, ft2 ≥ 0

Figure 4.7: LP Model for Numeric Variable ft3 at layer 3 in Supply Chain Domain
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ft2 − ft1 − pr2 + ld2 − uf2 = 0
tk2 − tk1 − ld2 + us2 + uf2 = 0
st2 − st1 − us2 = 0
ft3 − ft2 − pr3 − uf3 + ld3 = 0
tk3 − tk2 − ld3 + uf3 − ls3 + us3 = 0
st3 − st2 − us3 + ls3 = 0

Figure 4.8: Numeric Constraints at Layer 2 and 3 in Supply Chain Domain

The weight given to an action is 1.1n , where n is the layer at which the action first

appears in relaxed planning graph. LPRPG also adopts an approach similar to that

of Metric-FF in preferring the helpful actions. The way weights are assigned to each

action variable in the LP objective function results in the helpful actions being chosen

from the actions that appear in the first layer. The LP objective function will minimise

the weighted sum over the action variables. The constraints will include the overall

constraints constructed from first to goal layer. Therefore, the LP model for relaxed

plan extraction for the supply-chain example can be seen in Figure 4.9. The LP solver

will return the number of actions in the relaxed plan as well as the value of the action

variable. The action with non-zero value will be considered to be included among the

actions in the relaxed plan.

Although the use of the LP in LPRPG greatly improves its heuristic estimates,

and leads to better solutions than are constructed by Metric-FF in domains where the

producer and consumer actions interact, LPRPG still has an important weakness. Just

as in Metric-FF, the solution constructed by LPRPG aims to minimise the number of

actions. It excludes the plan metric in its solution development. This thesis extends

LPRPG to address optimisation of the domain-specific metric.
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Min 1.11pr1 + 1.11ld1 + 1.12pr2 + 1.12ld2 + 1.12uf2 + 1.12us2+
1.13pr3 + 1.13ld3 + 1.13uf3 + 1.13ls3 + 1.13us3

subject to :
ft3 − ft2 − pr3 − uf3 + ld3 = 0
ft2 − ft1 − pr2 − uf2 + ld2 = 0
ft1 − ft0 − pr1 + ld1 = 0
tk3 − tk2 − ld3 + uf3 − ls3 + us3 = 0
tk2 − tk1 − ld2 + us2 + uf2 = 0
st3 − st2 − ls3 + us3 = 0
st2 − st1 − us2 = 0
tk1 ≥ 0, tk2 ≥ 0, tk3 ≥ 0
ft1 ≥ 0, ft2 ≥ 0, ft3 ≥ 0
st2 ≥ 0, st1 ≥ 0
0 ≤ pr1, pr2, pr3 ≤ 1
0 ≤ ld1, ld2, ld3 ≤ 1
0 ≤ ls3 ≤ 1
0 ≤ uf2 ≤ 1, 0 ≤ uf3 ≤ 1
0 ≤ us2 ≤ 1, 0 ≤ us3 ≤ 1

Figure 4.9: LP Model for Relaxed Plan Extraction in Supply Chain Domain

4.4 Conclusion

LPRPG [10] is the basis of the extended planner developed in this thesis. It shares

a common structure with Metric-FF but solves the problems that result from ignor-

ing negative numeric delete effects. It uses Linear Programming to do the bounds

calculation for the numeric variables. This approach gives a better estimate of the

bounds value compared to the value given by the bounds propagation technique that

is applied in Metric-FF. Improved estimates of the bounds helps to solve the Helpful

Action Distortion (HAD) and Cyclical Resource Transfer (CRT) problems since it gives

more accurate information about the resource availability. LPRPG applies Linear pro-

gramming in the plan extraction phase in which the solution minimises the number of

actions in the relaxed plan. However, LPRPG does not take domain specific metric

functions into account so, even when these are supplied as part of the domain specifica-

tion, LPRPG is unable to do any better than to attempt to minimise the length (and

not the cost) of the plan. The key novelty in this thesis is the extension of LPRPG to

handle domain specific metric functions and thereby balance plan length against plan

cost.
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Chapter 5

MetricLPRPG

5.1 Introduction

MetricLPRPG is a planner developed in this thesis that extends the LPRPG planner

to include plan quality in solution construction. Plan quality is an important issue

that is captured in the domain-specific metric class. The domain-specific metric class

is a class of metric planning problems enriched with expressive metric functions. The

metric function is referred to as the plan metric, an important extension made in

PDDL2.1 [24]. The plan metric represents how the plan cost should be determined.

Therefore, parameters in the plan metric can include resources that are being used and

considered in the planning problem, such as labour, energy, money, etc. These param-

eters are essential and often included in many realistic planning problems. The plan

metric extension enhances the capability of modeling application problems, however,

it increases the complexity of the solution development. In the same initial and goal

states problem, the availability of resource choices results in various solutions relative to

the objective function. Importantly, the plan evaluation for such problems incorporates

the plan cost, rather than solely depending on the plan length.

A simple example to demonstrate the behavior of action and resource choices that

affect the plan length and cost is a washing laundry problem. The choices available for

this task are either doing it by hand or using a machine. The first choice increases the

labour cost, whilst the second choice may increase the energy cost. The energy cost

is often higher than the labour cost. However, washing by machines might result in a

shorter plan. This is due to the fact that the washing machine can wash in a bigger

quantity compared to manual washing. For this reason, for a certain quantity of the

laundry, there might be fewer wash actions in the plan that chooses the machine than

in the plan that chooses washing manually. In addition, washing by machine usually
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takes out some steps that are performed if washing manually. This also contributes to

shortening the plan length. Following this, the plans with longer plan length perhaps

have lower cost, shorter plans have higher cost. Chapter 3 discusses and gives examples

of this problem. In general, many cases of planning with resources often have a trade

off between the plan length and the plan quality. The trade-off further increases the

solution complexity. The ideal solution is an optimal solution that balances the plan

length and plan quality values.

MetricLPRPG, basically implements the idea of balancing between the value of the

plan length and plan metric. The solutions developed have a reasonable plan length

with the best achievable plan cost. This is achieved by extending the objective function

of the Linear Programming used in the plan extraction phase, so that it includes the

metric variables used in the plan metric function. By adding the plan metric, the new

Linear Programming objective function now attempts to minimise both plan length

and plan cost. This corresponds to Linear Programming with Multi-objective functions

(MOLP). The weighted-sum technique which is discussed in detailed in Chapter 2 is

adopted in order to obtain the Pareto-optimal solution of the MOLP. However, only a

single, Pareto optimal is obtained within the implementation of this technique. Beside

extending the Linear Programming objective function, the plan metric variables are

included during the relaxed plan construction. The bounds of the plan metric variables

are estimated as well as those of the numeric preconditions. The estimated values of

the plan metric further helps to choose actions with minimum cost resources. This

chapter explains the implementation of the plan metric variables during the relaxed

plan construction and extraction in MetricLPRPG.

5.2 Construction of Multiple Solutions in Metric Domain

Domain specific metric problems as mentioned before, have the potential to generate

more than one solution that attempts to optimise the objective function value. To

demonstrate this, some modifications have been made in the Settlers Domain in IPC3

[46] as explained in Chapter 3. This domain has interesting numeric interactions in

which it exhibits the behavior of producer and consumer actions but lacks action choices

that effect the plan metric. It is important to add alternatives choices of action and

resource in the domain. The modified version is called the Extended Settler Domain.

The Extended Settler Domain has two new actions: build-wood-house and fell-timber-

machine. Both actions achieve the same goal but have different numeric effects and

therefore different effects in the plan metric. The new actions are encoded as illustrated

in Figure 5.1.
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(:action build-wood-house
:parameters (?p - place)
:precondition (and (>= (available wood ?p) 2))
:effect (and (increase (housing ?p) 1)

(decrease (available wood ?p) 2))
)

(:action fell-timber-machine
:parameters (?p - place)
:precondition (has-cabin ?p)
:effect (and (increase (available timber ?p )3)

(increase (pollution)3))
)

Figure 5.1: Alternative Actions in Extended Settler Domain

The build-wood-house is an alternative action to the existing build-house action.

Whereas, the fell-timber-machine action is an alternative to the existing fell-timber ac-

tion. The existing fell-timber, build-house and break-stone actions are encoded in the

Settler Domain as depicted in Figure 5.2. The complete code for the Extended Settlers

Domain is given in Appendix A. The plan metric variables encoded in the problems

constructed for the Extended Settler Domain are similar to those that have been en-

coded in the Settlers Domain. The plan metric variables are pollution, resource use

and labour. The values of these plan metric variables are increased whenever applying

certain actions in the domain. For example, as illustrated in Figures 5.1 and 5.2,

the execution of the fell-timber-machine action increases the pollution value. Whereas,

the fell-timber action increases the value of the labour variable. Instead of increasing

the value in different plan metric variables, different alternative actions might require

different numeric preconditions or resources. For example, the application of the build-

wood-house action requires only wood compared to the existing build-house action that

demands both wood and stone as the resources.

In order to describe the possible solutions generated for the Extended Settler Do-

main, the goal for such problems is set to (≥ (housing at location1) 1). All relevant

numeric variables required to achieve this goal are initialised to zero value. Suppose,

the possible relaxed plans that achieve the stated goal are depicted in Figure 5.3, 5.4

and 5.5. As shown, these relaxed plans include different actions that result in different

values of the plan length and plan cost .
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(:action build-house
:parameters (?p - place)
:precondition (and (>= (available wood ?p) 1)

(>= (available stone ?p) 1))
:effect (and (increase (housing ?p) 1)

(decrease (available wood ?p) 1)
(decrease (available stone ?p) 1)))

(:action fell-timber
:parameters (?p - place)
:precondition (has-cabin ?p)
:effect (and (increase (available timber ?p) 1)

(increase (labour) 1))
)

(:action break-stone
:parameters (?p - place)
:precondition (has-quarry ?p)
:effect (and (increase (available stone ?p) 1)

(increase (labour) 1)
(increase (resource-use) 1)
))

Figure 5.2: Existing Actions in Settlers Domain

0.001 : fell-timber location1
1.002 : fell-timber location1
2.003 : build-wood-house location1

Figure 5.3: Potential Relaxed Plan for Extended Settler(1)

0.001 : fell-timber-machine location1
1.002: build-wood-house location1

Figure 5.4: Potential Relaxed Plan for Extended Settler(2)

0.001 : fell-timber location1
1.002 : break-stone location1
2.003 : build-house location1

Figure 5.5: Potential Relaxed Plan for Extended Settler(3)

Referring to Figure 5.3, 5.4 and 5.5; which of these figures can be selected as

the solution?. As mentioned previously in the various sections, the domain modeler is

given an opportunity to influence the quality of solution according to their preference

through the plan metric. They can experience the consequence of applying different

coefficients that imply their preference for particular plan metric variables, or only
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include the preference metric variables in the plan metric. For example, the coefficient

of the plan metric variables in the problem for the above Extended Settler Domain are

given as the following;

(:metric minimise (+ (+ (* 3 (pollution)) (* 2 (resource-use)))

(* 0 (labour))))

These coefficients indicate that the domain modeler prefers a plan that consists

of actions that increase labour costs to action that raise the value of either pollution

or resource-use variables. Assume that the possible solutions or generated plans with

regard to this plan metric are similar to the relaxed plans constructed in Figure 5.3, 5.4

and 5.5. The manual calculation of the plan metric values for these relaxed plans shows

that the plan costs are 0, 9 and 2 for the solutions in Figure 5.3, 5.4 and 5.5 respectively.

Based on these values, the solution in Figure 5.3 is selected as the best solution since it

has the cheapest plan cost. However, the plan length value cannot be simply neglected

in the plan evaluation since it has been conventionally used in the previous studies to

determine the best plan. Therefore, it is also included in this evaluation and results in

the total sum of the plan length and plan cost. The manual calculation of this total

sum are 3, 11 and 5 for solutions 1, 2 and 3 respectively. According to these values,

the solution in Figure 5.3 again appears to be the best solution with regard to the

above plan metric function. The following section discusses the technique employed in

MetricLPRPG to find the best solution whenever both plan cost and length have to be

considered.

5.3 Implementation of the Plan Metric in MetricLPRPG

Heuristic

MetricLPRPG generally inherits the principles applied in its predecessor LPRPG, in

constructing the solution. It employs Linear Programming(LP) in the relaxed plan-

ning graph construction but extends the objective function of LP in the relaxed plan

extraction. The solution developed by LPRPG emphasises plan length, while, Metri-

cLPRPG aims for plan quality without neglecting the plan length aspect. Therefore,

the plan metric variables that capture the plan quality aspect of a domain are taken

into consideration in developing the MetricLPRPG heuristic. The attempt to include

the plan metric variables in the heuristic results in significant impact on the quality of

the solution.
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5.3.1 Including the Plan Metric Variables in Relaxed Plan Expansion

In addition to the numeric precondition variables, MetricLPRPG incorporates the plan

metric variables during the construction of the relaxed planning graph. The LP model

is constructed for every plan metric variable at every layer. The upper and lower

bounds of the metric variables are obtained from both minimising and maximising the

LP objective function. This approach is similar to the numeric precondition bounds

calculation conducted by LPRPG. However, the coefficients of the plan metric variables

that are commonly stated in the problem, are ignored when doing the bounds calcu-

lation. The constraints developed for each plan metric variable at each layer, depends

on applicability of actions at a particular layer. The actions are considered applicable

whenever their numeric preconditions are satisfied. Thus, MetricLPRPG considers only

the plan metric variables that appear as effects of the producer or consumer actions. It

does not include the plan metric variables that are present as effects in the actions that

satisfy only propositional facts. Although the constraints for plan metric variables deal

with producer and consumer actions, the constructed LP does not attempt to model

the resource flow. It is instead concerned with modeling the level of resource consump-

tion by different action choices. The estimated bounds of the plan metric variables

conducted at this phase are useful at the relaxed planning graph extraction. It helps

to choose actions which consume minimum resources.

Consider the Extended Settler Domain discussed in Section 5.2. The plan metric

variables consist of labour, pollution and resource use. In this domain, some of the basic

facilities have to be established before other facilities can be constructed. The basic

facilities do not build up from a specific quantity of resources, but are rather constructed

based on propositional facts. For example, cabin and quarry. In consequence, the early

construction of the relaxed planning graph is mainly dealt with propositional facts.

Even though these propositional facts are important, they are not being considered

in the construction of the LP. Therefore, in the following explanation, some of the

important and relevant propositional facts are set to true. Assume the facts of has cabin

and has quarry are already established, then the first layer construction of a relaxed

planning graph is exhibited in Figure 5.6.

The notations defined in Table 5.1 will be used to represent action, numeric precon-

dition and plan metric variables in constructing the relevant LP model. The general

constraint for each numeric facts in Figure 5.6 is presented in Figure 5.7,

The variable with prime notation symbol represents its value at the next layer.

As mentioned before, a constraint at a particular layer is constructed based on the
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Figure 5.6: Relaxed Planning Graph for Extended Settler at Layer 1

house′ − house− bh− bwh = 0
wd′ − wd− sw + bh+ 2bwh = 0
tim′ − tim− ft− 3ftm+ 2bsm+ sw = 0
st′ − st− bs+ bh = 0
ruse′ − ruse− bs = 0
lab′ − lab− ft− 2bsm− bs = 0
pol′ − pol − ftm = 0

Figure 5.7: General constraint for numeric variables in Extended Settler Domain

actions applicable at that layer. In Figure 5.6, the applicable actions at layer1 in-

volve break stone, fell timber and fell timber machine. Application of the break stone

action, increases value in both labour and resource use variables. Meanwhile, the

fell timber machine and fell timber actions increase the value in variables pollution and

labour accordingly. The LP models constructed for these variables are shown in Fig-

ure 5.8, 5.9 and 5.10.

Min/Max pol1
subject to :
pol1 − pol0 − ftm1 = 0
0 ≤ ftm1 ≤ 1
pol0 , pol1 ≥ 0

Figure 5.8: LP Model for Variable pollution at Layer 1 for the Extended Settler Domain
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Table 5.1: Notations for Variables

variable name notation

break stone bs
fell timber machine ftm
fell timber ft
build sawmill bsm
saw wood sw
build house bh
build wood house bwh
pollution pol
resource use ruse
labour lab
housing house
timber tim
wood wd
stone st

Min/Max ruse1

subject to :
ruse1 − ruse0 − bs1 = 0
0 ≤ bs1 ≤ 1
ruse0 , ruse1 ≥ 0

Figure 5.9: LP Model for Variable resource use at layer 1 for the Extended Settler
Domain

Min/Max lab1
subject to :
lab1 − lab0 − ft1 − bs1 = 0
0 ≤ ft1 ≤ 1
0 ≤ bs1 ≤ 1
lab0 , lab1 ≥ 0

Figure 5.10: LP Model for Variable labour at layer 1 for the Extended Settler Domain

Suppose the numeric goal that has been set in the problem is (≥ (housing at loca-

tion1) 1). The completed relaxed planning graph construction reaches the goal layer

as shown in Figure 5.11. As depicted in the Figure, some actions are repeated in the

construction of subsequent layers. Conceptually, the LP model is constructed in paral-

lel with the construction of these layers. The repeated actions cause the number of the

LP variables to increase. To avoid this, in the implementation, the layer is compressed
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so that a single action layer is considered during the expansion [10].

Thus, the layer will contain new actions and actions from previous layers. An

action variable is created only if the action is new to that layer. For those actions

that are already established from the previous layer, the bound of these layers will be

increased to indicate the multiple application of the action. For example, in Figure 5.11,

build saw mill is a new action at layer 2, the range for this variable is [0,1]. Whilst,

the break stone, fell timber machine, fell timber are actions brought from the previous

layer. Therefore, the upper bound of these variables range is incremented by 1, thereby

their range now are [0,2]. The LP model constructed for variable labour at layer 2 is as

follows;

Min/Max lab2

subject to:

lab2 − lab′ − bs− ft− 2bsm = 0

0 ≤ ft ≤ 2

0 ≤ bs ≤ 2

0 ≤ bsm ≤ 1

5.3.2 Multi-objective Linear Programming in Relaxed Plan Extrac-

tion

MetricLPRPG employs Multi-objective Linear Programming (MOLP) in the relaxed

plan extraction. It uses MOLP to work out on how to satisfy all the numeric pre-

conditions with minimum value of plan length and plan cost. The general framework

of MOLP involves more than one objective function as explained in Chapter 2. The

objective functions often have trade-offs between each other. The conflicting objec-

tive functions also happen in the solutions developed for the domain-specific metric

problems for which MetricLPRPG is designed. In general, the MOLP model in Metri-

cLPRPG can be stated as follows,

Minimise
∑
f1(x) +

∑
f2(y)

where:

f1(x);x ∈ X ; X= action variables

f2(y); y ∈ Y ; Y= plan metric variables

The first function, f1(x), consists of actions variables required to achieve numeric

preconditions. Meanwhile, the second function, f2(y), represents the resource consump-

tion along the construction of the relaxed plan. The coefficients of the plan metric vari-

ables encoded in the problem are taken into account in this model. The ideal solution
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Figure 5.11: Complete Relaxed Planning Graph for Extended Settler Domain
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is obtained from the solution of minimise f1(x)+ minimise f2(y). Since these func-

tions are traded-off against each other, whilst minimising f1 it is possible to increase

the value of function f2. The solution that gives the optimal value to each function

is difficult to find. However, we could construct an efficient solution in which it can

be considered good in terms of every objective and better on one of the objectives.

This can be achieved through minimisation of the total sum of both functions. This

indicates, both functions are transformed into a single function, which is also known as

the scalarization approach. The weighted sum technique is used to obtain an efficient

solution, known as the Pareto optimal. This technique is considered since it is simple

but efficient. Furthermore in this technique, a weight is given to every variable to in-

dicate its relative plan metric variables. The weight in the action variables reflects the

principle of choosing helpful actions applied in the relaxed planning graph. The weight

for each action variable is 1.1n where n is the layer at which the action is first appeared

in the relaxed planning graph. The weights for the plan metric variables are extracted

from the problem file. These weights are given by the domain modelers to represent

their preference for the plan quality that they are seek to optimise.

To explain the construction of the MOLP model for plan extraction in MetricL-

PRPG, the relaxed planning graph depicted in Figure 5.11 is taken as the example. All

actions appearing between the first and goal layers in Figure 5.6 and 5.11 are taken as

actions variables for the first objective function, f1(x). Assume that the plan metric

stated in the problem is as follows,

(:metric minimise (+ (+ (* 3 (pollution)) (* 2 (resource-use)))

(* 0 (labour))))

This plan metric is taken as the second function, f2(y), the extra function which is

introduced in MOLP model constructed in the solution development for MetricLPPRG.

The constraints for these functions are actually constraints that are developed from

achieving the relevant numeric fact that appears from the first until the goal layers.

The overall MOLP model constructed for the problem discussed above can be seen as

shown in Figure 5.12.

How can the MOLP model constructed in Figure 5.12 be used to obtain the so-

lution? In MetricLLPRPG, the LP solver software is called to solve such constructed

MOLPs. The solution obtained from the LP solver is employed to facilitate the selec-

tion of cheaper actions relative to the value of the plan metric during the relaxed plan

extraction. The relaxed plan extraction for MetricLPRPG is accomplished according

to Algorithm 1. This algorithm was also implemented in LPRPG [10] to extract the

72



Minimise 1.1ft+ 1.1ftm+ 1.1bs+ 1.21bsm+ 1.33sw + 1.46bh+ 1.46bwh+ 3pol + 2ruse

subject to :

tim′ − tim− 3ftm− ft+ sw = 0
wd′ − wd− sw + bh+ 2bhw = 0
lab′ − lab− ft− bs− 2bsm = 0
pol′ − pol − ftm = 0
ruse′ − ruse− bs = 0
st′ − st− bs+ bh = 0
house′ − house+ bh+ bhw = 0

house ≥ 1
0 ≤ ft ≤ 4
0 ≤ bs ≤ 4
0 ≤ ftm ≤ 4
0 ≤ bsm ≤ 1
0 ≤ bh ≤ 4
0 ≤ bwh ≤ 4

0 ≤ tim ≤ 16
0 ≤ st ≤ 4
0 ≤ wd ≤ 12
0 ≤ pol ≤ 4
0 ≤ ruse ≤ 4
wd, tim, pol, rsue, house , st = 0

Figure 5.12: LP Model for Plan Extraction in the Extended Settler Domain

relaxed plan. However, some modifications have been made in line 31 to represent the

above constructed MOLP model, resulting in differences between LPRPG and Metri-

cLPRPG solutions. The following discussion will elaborate the manual application of

the above constructed MOLP in the algorithm.

In the first example, assume the value of the function represents the plan metric

in the MOLP model constructed in Figure 5.12 is zero. After all, this is the best

minimum value that the plan metric can hold. As a consequence of this, both pollution

and resource use variables are assigned the value zero. The labour variable, on the other

hand, can hold any value since the coefficient for this variable is 0. With regard to these

plan metric values, the MOLP model in Figure 5.12 is manually solved and possible

values that can be assigned to each action variable are shown in column 2 in Table 5.2.

The non zero values indicate the actions that can be selected in the constructed relaxed
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plan. The assignment of non zero value to the action variables is stated in line 33 in the

algorithm. Following this assignment, the plan length value obtained for this solution is

6. Since the plan cost value is 0, the value of the total sum of plan length and plan cost

will be equivalent to value of the plan length. The extracted relaxed planning graph

will consist of actions with the non zero value. For the solution developed in column 2,

the constructed relaxed plan is shown in Figure 5.13. Similar to LPRPG, the actions

that appear at the first layer will be selected as helpful actions for the next step in the

search. This is indicated in line 35 in the algorithm.

0.001 : fell-timber location1
1.002 : fell-timber location1
2.003 : build-saw-mill location1
3.004 : fell-timber location 1
4.005 : fell-timber location1
5.006 : saw-wood location1
6.007 : saw-wood location1
7.008 : build-wood-house location1

Figure 5.13: Relaxed Plan Constructed for Example 1

Solving the MOLP model constructed in Figure 5.12 produces a single solution and

therefore a single Pareto value. In the theory of weighted-sum technique, the weight

given to the variable is changed several times in order to obtain a set of Pareto opti-

mal values. As mentioned previously, the MOLP model constructed in MetricLPRPG

heuristic consists of action and plan metric variables. The weight of each action variable

is given according to the layer at which the action is currently attached. Therefore,

these weights are fixed and cannot be changed in order to comply with the algorithm

applied in the relaxed planning graph extraction. The weight of each plan metric vari-

able is represented by the coefficient of such plan metric variables as stated by the

domain modeler in the problem file. To demonstrate the consequence of changing the

coefficient value of the plan metric variables, consider the following second example.

In this example, assume the second function of MOLP in Figure 5.12 represents the

following plan metric plan metric;

(:metric minimise (+ (+ (* 0 (pollution)) (* 0 (resource-use)))

(* 3 (labour))))

How do the above changes made in the plan metric affect the plan length and

the total sum of the function as a whole? The new plan metric implies the modeler

prefers plan that have cheaper labour cost than either pollution or resource-use cost.
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With regard to the general constraints of the labour variable, as shown in Figure 5.7, the

possible minimum value for this variable is 2. This is due to the fact that build saw mill

action requires 2 units of labour. This action is necessary in any generated solution and

unfortunately it does not have any alternative actions. To solve the MOLP , the most

possible values that would be assigned to each action variable are presented in column

3 in Table 5.2. The non zero actions are selected in the constructed relaxed plan.

The constructed relaxed plan for values assignment made in column 3 is shown in

Figure 5.14.

0.001 : fell-timber-machine location1
1.002 : build-saw-mill location1
2.003 : fell-timber machine location1
3.004 : saw-wood location1
4.005 : saw-wood location1
5.006 : build-wood-house location1

Figure 5.14: Relaxed Plan Constructed For example 2

According to the manual variables assignments of the variables in column 3, the

plan length found has decreased by 2 steps compared to the value of the relaxed plan

length resulting from the variable assignment conducted in column 2. The plan cost

is 0(2) + 0(0) + 3(2) = 6. The total sum of plan cost and plan length is 6 + 6 = 12.

The heuristic value in MetricLPRPG is still based on the value of the relaxed plan

length. Therefore, the heuristic value of the relaxed plan extracted from column 2 and

3 are 8 and 6. The two above examples have shown that the MOLP introduced in

MetricLPRPG heuristic has successfully found the best actions with regard to the plan

metric value.

Without considering the plan metric, the constructed relaxed plan would be differ-

ent. As implemented in the LPRPG heuristic, the LP function only consists of action

variables since the purpose of the heuristic is to minimise the value of the plan length.

Therefore, the relevant objective function for the above problem can be stated as the

following.

Minimise 1.1ft + 1.1ftm + 1.1bs + 1.21bsm + 1.33sw + 1.46bh +

1.46bwh

Assume, in the third example, the LP model only consists of the above objective

function. To solve this LP function manually, the most possible values that can be

assigned to each variable is shown in column 4 in Table 5.2. These assignments have

resulted in the value of the relaxed plan length being 5, which is shorter than the length
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of the relaxed plans constructed either from the values in column 2 or 3. The relaxed

plan constructed based on these value assignments is shown in Figure 5.15. How much

is the cost of this constructed relaxed plan? The plan cost is 3(1) + 2(1) + 0(3) = 5,

according to the plan metric function discussed in example 1 which is 3(pollution) +

2(resource-use) + 0(labour). Whereas, with regard to the plan metric in example 2,

0(pollution) + 0(resource-use) + 3 (labour), the plan cost is 0(1)+0(1)+3(3) = 9. The

plan cost is expensive with regard to the plan metric function in the first two examples

though it has the shortest plan length.

0.001 : break-stone location1
1.002 : fell-timber machine location1
2.003 : build-sawmill location1
3.004 : saw-wood location1
4.005 : build-house location1

Figure 5.15: Relaxed Plan Constructed in LPRPG heuristic

5.4 Conclusion

MetricLPRPG has included the plan metric variables in its heuristic in order to take

into account plan cost without neglecting the aspect of plan length. To accomplish this,

MetricLPRPG has incorporated the Multi-objective Linear Programming(MOLP), in

which the objective function of the MOLP is designed to minimise the total sum of

plan length and cost simultaneously. Before doing the plan extraction, the upper and

lower bounds of such plan metric variables are estimated through LP function which is

similar to the bound estimations made for numeric precondition variables in the LPRPG

planner. The implementation of MOLP in the MetricLPRPG heuristic has produced

a significant improvement in the plan quality, whereby, the solutions constructed will

support the selection of the cheaper actions with regard to the plan metric but within

the achievable minimum value of plan length. Furthermore, as observed in the examples

discussed in this chapter, the new heuristic implemented in MetricLPRPG is observed to

be sensitive to any changes made in the plan metric variables. With this new heuristic,

different solutions are developed for different plan metrics, though the problems solved

have similar initial and goal states.
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Algorithm 1: Relaxed Plan Extraction

Data: R - a metric RPG; PG - propositional goals;
NG - numeric goals

Result: ha - helpful actions, h - A heuristic value
ha← ∅, h← 0;1

q ← deepest-first priority queue of goal layers;2

foreach p ∈ PG do3

l← layer at which p first appears;4

insert (p, 1) into q[l].prop;5

foreach f ∈ NG do6

l← layer at which f first holds;7

insert (f, 1) into q[l].num;8

while q not empty do9

(l, 〈prop, num〉)← pop(q);10

foreach (p, w) ∈ prop do11

h← h+ w;12

a← achiever for p;13

if a in action layer 0 then add a to ha;14

prop← prop \ add effects of a;15

foreach propositional precondition pre of a do16

l← layer at which pre first appears;17

if l > 0 then18

if ∃(pre, k) ∈ q[l].prop then19

if k < w then k ← w;20

else insert (pre, w) into q[l].prop;21

. . . similarly for numeric preconditions of a. . . ;22

foreach non-linear (f, w) ∈ num do23

. . . as in Metric-FF, modified for weights . . . ;24

foreach linear (f, w) ∈ num do25

foreach variable v used by f do26

LP’ ← LP;27

if v is a positive metric RPG variable then28

LP’ = LP’ + {v = max(vl)};29

else LP’ = LP’ + {v = min(vl)};30

solve LP’, minimising weighted action sum + plan metric sum;31

h← h+ w. LP’ objective function value;32

av ← {action variable (a = c) ∈ LP’ | c 6= 0};33

foreach a ∈ av do34

if a is in layer-zero then add a to ha;35

foreach propositional precondition pre of a do36

l← layer at which pre first appears;37

if ∃(pre, k) ∈ q[l].prop then38

if k < w.c then k ← w.c;39

else insert (pre, w.c) into q[l].prop;40
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Table 5.2: Manual Value Assignment of Action Variables

Action variables

variable value 1 value 2 value3

bs 0 0 1

ftm 0 2 1

ft 4 0 0

bsm 1 1 1

sw 2 2 1

bh 0 0 1

bwh 1 1 0

Plan metric variables

pol 0 2 1

ruse 0 0 1

lab 6 2 3

plan length 8 6 5
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Chapter 6

Results

6.1 Introduction

This chapter presents and analyses empirical results obtained from testing MetricL-

PRPG on a variety of domains and problems. The same set of domains and problems

were used to evaluate its predecessor, LPRPG, and some other selected state-of-the-art

numeric planners. The results obtained from these planners are compared against the

ones produced by MetricLPRPG. The comparison is made based on the value of the

plan cost.

The domains involved in the experiment are those described in Chapter 3: Extended

Settler, Bread, Production, Trader and Sugar. These domains are semi-straightforward,

according to the definitions given in Chapter 2. MetricLPRPG was specially designed

for this kind of domain, which is characterised by the fact that the addition of any

action to any plan will always increase its metric cost (or leave it unchanged), and

never reduce it. However, shorter plans are not necessarily of lower cost since some

choices of action for achieving a given effect can be much more expensive than others.

These domains have a common structure in which they include choices of consumer

and producer actions. Different action choices will affect different plan metric variables.

Sometimes, the effect is on the values that similar variables can take. In consequence,

several potential solutions with different plan cost and plan length can be generated.

The detailed explanation on the above domains was discussed in Chapter 3.

6.2 Planners and Experiment Considerations

MetricLPRPG is a numeric planner that handles PDDL2.1. A number of state-of-art

numeric planners have been chosen to compare their generated solutions against Met-
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ricLPRPG. The selected state-of-art numeric planners involved in these experiments

include LPRPG [10], Metric-FF [38], LPG-td [32] and MIPS-XXL [18]. These planners

were developed by different researchers and have different capabilities. These planners

are all categorised as numeric planners. They are all capable of handling the numeric

features and plan metrics of PDDL2.1 [24]. The ability to handle the plan metric is im-

portant since the focus of the experiment is to examine the plan metric values produced

in the solutions. Therefore, all the domains and problems involved in the experiment

are encoded with PDDL2.1, and the necessary plan metric function is encoded in every

problem file.

The aim of the experiment is to evaluate the plan ”quality” in the results presented

by the participating planners. Plan quality in this experiment refers to the plan cost

value. However, conflicts often exist between the plan cost and plan length in domain-

specific metric problems. This means that any attempt made to decrease the plan

cost might increase the plan length value. Therefore, besides comparing the solutions

based on the plan cost and plan length, the trade-off is examined through the per-

centage of the plan cost reduction/increment against the percentage of the plan length

reduction/increment made in MetricLPRPG against the results obtained from other

planners. Furthermore, as discussed in Chapter 5, the new heuristic implemented in

MetricLPRPG is designed to deal with the trade-off that happens between plan length

and plan cost. The automatic Validation tool for PDDL, which is called VAL [41], was

used to obtain the plan cost of each generated solution. This comparison analysis is

important to support the claim made for the new heuristic, that it produces different

plans relative to the plan metric function encoded in the problem file. Furthermore, at

the same time, the heuristic attempts to minimise the plan length while achieving the

best value of the plan cost possible. In other words, the heuristic function seeks for an

efficient minimum value of the total sum of plan cost and plan length, and achieve a

better balance than other planners between the plan cost and plan length values.

In running the experiment, for each problem instance, the planners were limited to

1GB of memory and 1 hour of CPU time. This setup corresponds to the limits estab-

lished by the International Planning Competition committee. There were 20 problem

instances created for each domain. These problem instances are hand coded and can

be accessed from the Strathclyde directory apasshared. All the planners were applied

to the unmodified instances, without exception.

The plan quality issue is incorporated in the solution development in some nu-

meric planners involved in the experiment, particularly, LPG-td and MIPS-XXL. Both

planners are claimed to be able to produce improving quality plans. However, improve-
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ment in the value of the plan metric is made through the generation of a sequence of

plans, each of which is an improvement over the previous ones. In contrast, Metri-

cLPRPG seeks good plan quality in the first generated plan. Moreover, the way that

plan quality improvements are achieved is different between MIPS-XXL and LPG-td.

In MIPS-XXL, a series of plans, in which each one improves the plan metric of the

previous one, will be produced in a single execution. The searching for plan quality

improvements is subjected to the availability of memory and CPU time given in the

experiment setup. The last plan produced is the one that is taken for comparison. The

latest plan usually represents the best plan quality so far that can be found within

the given experiment setup. However, in LPG-td, the search for improvement in the

plan quality is subject to the parameter setting in the execution. One of the required

parameters represents the number of plans that should be generated in an execution.

For example, if the value of the parameter is set to 3, the sequence of plans will consist

of 3 plans. Normally, the third generated plan is expected to have the lowest plan cost

compared to the value of the plan cost of the two plans that are generated previously,

although many more plans might need to be produced to make a significant improve-

ment. The number of plans needed to achieve the lowest plan cost is unknown. Since

the user is free to set the parameter to suit the experimental setup, the parameter that

represents the number of plans is set to 1 in every experiment conducted with LPG-td

planner. In other words, only the first generated plan produced in LPG-td is taken

into consideration in the comparison analysis.

6.2.1 Extended Settler Domain

The Extended Settler domain is a modified version of the Settlers domain in IPC3.

The Settlers domain is considered a tough numeric domain in IPC3 since it is enriched

with numeric interaction behavior. None of the planners that participated in IPC3 was

able to solve all the problem instances. In the Extended Settler domain, another two

producer and consumer actions such as fell timber machine and build wood house were

added and these additional actions have increased the complexity of solution develop-

ment. There were 20 new problem instances have been created for this experiment

but still none of the planners was able to solve all of the problem instances. Each

problem has different objective function. Each objective function consists of a different

combination of the plan metric variables designed in the domain which entails; labour,

pollution and resource use.
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Table 6.1: Results in the Extended Settler Domain

problem
MetricLPRPG LPRPG Metric-FF
length value length value length value

p01.pddl 12 52 12 95 11 76

p02.pddl 18 0 14 9 12 12

p03.pddl 49 141 59 176 not solved

p04.pddl 69 27 60 42 58 42

p05.pddl 77 0 75 17 65 21

p06.pddl 12 5 12 11 11 9

p07.pddl 12 1 12 2 11 2

p08.pddl 8 0 9 1 7 1

p09.pddl 9 0 9 1 7 1

p10.pddl 35 44 36 51 38 65

p11.pddl 61 0 51 25 52 34

p12.pddl 51 0 43 19 42 31

p13.pddl 54 44 54 51 57 70

p14.pddl 62 54 62 61 not solved

p15.pddl not solved 122 180 not solved

p16.pddl 245 669 288 749 not solved

p17.pddl not solved not solved not solved

p18.pddl 77 0 75 17 not solved

p19.pddl not solved not solved not solved

p20.pddl not solved 167 575 not solved

The domain and problems were tested against the following three planners only:

MetricLPRPG, LPRPG and Metric-FF. The other two planners, MIPS-XXL and LPG-

td were excluded since they are unable to handle both assign and ADL statements

that are encoded in the domain. The plan cost for each solution produced by the

participating planners is shown in Table 6.1. The value 0 represents the value of the plan

metric given in the problems. For example, the plan metric of the solution produced

by MetricLPRPG for problem p02.pddl is zero. This value is extremely low compared

to the solutions generated from both LPRPG and Metric-FF planners. The zero values

of the plan metric are also obtained in the solutions produced by MetricLPRPG for

problem instances p05.pddl, p08.pddl, p09.pddl, p11.pddl, p12.pddl and p18.pddl. These

plan cost values result from choosing the alternative actions that have no effect on the

value of the encoded plan metric function in the said problem instances. For example,

if the plan metric in such a problem is to minimise the pollution value, the developed

solution will include those actions that increase the value of other plan metric variables

but do not increase pollution. As can be seen from Table 6.1, MetricLPRPG has
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Figure 6.1: Plan Cost in Extended Settler Domain
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Figure 6.2: Plan Length in Extended Settler Domain

consistently given the minimum plan cost for all the developed solutions, in contrast

to the plan cost value in the plans produced either by LPRPG and Metric-FF. The

comparison of the plan cost is also depicted by the graph in Figure 6.1.

The plan length for the solutions generated by MetricLPRPG were generally longer

than the plan length in the solutions produced by Metric-FF, except for plan length for
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problems p10.pddl and p13.pddl. In these two problems, MetricLPRPG outperforms

Metric-FF in both aspects of plan length and plan cost values. Interestingly, Metri-

cLPRPG only increases the plan length in the solutions of the 6 problems, out of 16

problems that were also solved by both MetricLPRPG and LPRPG. Figure 6.2 presents

the comparison of the plan length obtained from each planners in the form of graph.

Table 6.2: Percentage of Plan cost Reduction in MetricLPRPG in Extended Settlers
domain

problem LPRPG Metric-FF

p01.pddl 45.26 31.58

p02.pddl 100 100

p03.pddl 19.89 not solved

p04.pddl 35.71 35.71

p05.pddl 100 100

p06.pddl 54.55 44.44

p07.pddl 50 50

p08.pddl 100 100

p09.pddl 100 100

p10.pddl 13.73 32.31

p11.pddl 100 100

p12.pddl 100 100

p13.pddl 13.73 37.14

p14.pddl 11.48

p15.pddl

p16.pddl 10.68

p17.pddl

p18.pddl 100

p19.pddl

p20.pddl

average 59.69 69.27

The increment in the plan length is expected because the solution development in

the domain-specific metric problems demonstrates the trade-off between plan length

and plan cost values. Therefore, as has been mentioned earlier in many parts of this

thesis, the heuristic developed in MetricLPRPG aims to minimise both plan length

and plan cost values. In other words, MetricLPRPG attempts to reduce the plan

cost whilst seeking a possible minimum value of the plan length. In order to support

the above claim, the percentage of cost reductions given in the solutions developed

by MetricLPRPG against the solutions developed by other participating planners are

calculated. Table 6.2 shows the percentage of plan cost reduction in the plan generated
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by MetricLPPRG against the plan cost produced by LPRPG and Metric-FF. In the

first instance, MetricLPRPG achieved 45.26 % of the cost given by the plan generated

by LPRPG and 31.58 % of the cost compared to plan produced by Metric-FF. Overall,

on average MetricLPRPG achieved almost 60% of the plan cost given by the LPRPG

planner and 69.27 % of the cost of the plans produced by Metric-FF.

Do the solutions generated from MetricLPRPG also exhibit as significant a change

in the plan length as is demonstrated in the plan cost?. In other words, does a 60

% cost reduction also imply a 60% increment in the plan length value?. Table 6.3

shows the percentage of plan length increment or reduction obtained in the solution

developed from MetricLPRPG against the solutions developed from other participating

planners. On average, MetricLPRPG increases plan length by 2.58% compared to the

plan length given by LPRPG and 15.26% compared to the plan length obtained by

Metric-FF. These values are relatively small and insignificant compared to the benefit

gained in cost reduction. Furthermore, these values do not imply the plan length

always increases as the plan cost reduces. As can be seen, some problems demonstrate

0% and negative value of percentage in plan length increment. The 0% indicates the

plan length obtained from both planners are similar though the plan cost value is

difference. Whereas, the negative percentage implies the plan length produced from

MetricLPRPG is shorter than the plan length produced by the comparison planner.

Therefore, in such cases, MetricLPRPG outperforms its competitor in both aspects

of plan length and plan cost. The values of percentage of cost reduction and plan

length increment/decrement presented in Table 6.2 and Table 6.3 indicate the heuristic

implemented in MetricLPRPG has successfully produced plans with reduced values of

plan cost relative to the plan metric function.

6.2.2 Bread Domain

The bread domain is another producer-consumer domain constructed in this thesis. The

plan metric encoded in problem instances designed for this domain contains labour,

pollution and energy variables. The producer and consumer action choices encoded

in this domain include kneed-hand, kneed-machine, baking-oven and baking-charcoal.

The kneed-hand action increases the value of labour, kneed-machine and baking-oven

increase the value of energy. Meanwhile, the action baking-charcoal increases the value

of pollution. 20 problem instances have been created for this domain and then tested

on all participating planners. The results obtained from the planners involved in the

experiment are shown in Table 6.4. As can be seen, MetricLPRPG solved all the

problem instances and consistently produced the minimum value of the plan cost in its

85



Table 6.3: Percentage of Plan length Increasing in MetricLPRPG in Extended Settler
Domain

problem LPRPG Metric-FF

p01.pddl 0.00 9.09

p02.pddl 28.57 50.00

p03.pddl -16.95 not solved

p04.pddl 15.00 18.97

p05.pddl 2.67 18.46

p06.pddl 0.00 9.09

p07.pddl 0.00 9.09

p08.pddl -11.11 14.29

p09.pddl 0.00 28.57

p10.pddl -2.78 -7.89

p11.pddl 19.61 17.31

p12.pddl 18.60 21.43

p13.pddl 0.00 -5.26

p14.pddl 0.00

p15.pddl

p16.pddl -14.93

p17.pddl

p18.pddl 2.67

p19.pddl

p20.pddl

average 2.58 15.26

generated plans compared to plan cost of the solutions produced by LPRPG, Metric-

FF, LPG-td planners.

Table 6.4 shows that MetricLPRPG planner has produced solutions that have the

plan values equal to its competitors. For example, in the solutions for problem instances

started from p02 until p05, the plan costs given by MetricLPRPG are similar to those

produced by LPRPG planner. The number of such cases is small. Furthermore, the

results are basically correlated to the plan metric encoded in the problems as well as the

relationship between the plan metric variables and the actions. For example, generally

in the above problem instances, the plan metric encoded in the problem is to minimise

the cost of labour and pollution. Based on the implemented heuristic, MetricLPRPG

will find alternative actions available in the domain that would not increase the values

of the plan metric variables. As a result, the kneed-machine and baking-oven are chosen

instead of kneed-hand and baking-charcoal actions in the solutions generated for above
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Table 6.4: Results in the Bread Domain - Plan Cost

problem MetricLPRPG LPRPG Metric-FF LPG-td MIPS-XXL

p01.pddl 11 12 11 19 10

p02.pddl 0 0 18 8 0

p03.pddl 6 6 10 9 0

p04.pddl 0 0 2 1 0

p05.pddl 5 5 27 62 0

p06.pddl 26 30 42 41 20

p07.pddl 11 23 23 30 11

p08.pddl 47 48 49 47 48

p09.pddl 3 not solved 19 26 0

p10.pddl 11 23 15 26 11

p11.pddl 22 40 38 32 30

p12.pddl 18 48 54 30 not solved

p13.pddl 24 30 52 59 not solved

p14.pddl 68 74 74 104 not solved

p15.pddl 34 34 34 78 not solved

p16.pddl 56 70 71 90 42

p17.pddl 58 102 97 72 not solved

p18.pddl 64 70 82 75 67

p19.pddl 88 97 111 101 not solved

p20.pddl 98 102 124 99 not solved

problem instances. These alternative actions as explained in Chapter 3 effect similar

numeric variables, dough and bread or bun, but, increase the value of another plan

metric variable called energy . See Appendix C to see the detailed domain description.

Furthermore, the kneed-machine and baking-ovenactions are also happen to be the

actions that contribute to the minimum value of the plan length. Since the LPRPG

planner attempts to produce a minimum plan length in the solution, it will pick these

actions disregarding the plan metric encoded in the problem. The comparison of plan

cost and plan length between these planners are depicted by the graphs in Figure 6.3

and Figure 6.4.

Besides generating similar plan cost values to those of its competitors, MetricL-

PRPG has been outperformed by MIPS-XXL planner in a few of the problem instances.

MIPS-XXL produced plans with the lower plan cost compared to MetricLPRPG solu-

tions in problem instances p01.pddl, p03.pddl, p05.pddl, p06.pddl, p09.pddl and p16.pddl.

However, most of the MIPS-XXL solutions that have cheaper plan cost, have longer

plan length compared to MetricLPRPG solutions. Moreover, the number of solutions
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solved by MetricLPRPG is greater than the number of problem instances solved by the

MIPS-XXL planner. This is can be seen from Table 6.5.

Table 6.5 presents the plan length value of the solutions generated by each of the

planners. As expected, in many cases MetricLPRPG solutions have longer plan length

values compared to other planner solutions. The best way to describe the improvement

in the plan cost values against the draw back in the plan length made by MetricLPRPG

is through the percentage values discussed above.

Table 6.5: Results in the Bread Domain - Plan length

problem MetricLPRPG LPRPG Metric-FF LPG-td MIPS-XXL

p01.pddl 13 13 15 18 14

p02.pddl 20 20 22 20 20

p03.pddl 10 10 8 7 13

p04.pddl 10 10 8 10 7

p05.pddl 26 26 27 31 31

p06.pddl 31 26 27 35 31

p07.pddl 27 26 26 30 27

p08.pddl 39 39 39 39 39

p09.pddl 16 not solved 16 20 21

p10.pddl 21 20 20 24 21

p11.pddl 35 29 29 35 30

p12.pddl 71 50 44 22 not solved

p13.pddl 39 36 37 45 not solved

p14.pddl 47 44 44 53 not solved

p15.pddl 44 44 44 55 not solved

p16.pddl 38 39 34 41 34

p17.pddl 49 37 38 47 not solved

p18.pddl 47 46 46 51 46

p19.pddl 45 44 45 49 not solved

p20.pddl 60 61 60 61 not solved

Table 6.6 shows the percentage of plan cost reduction in the plan generated by

MetricLPRPG against the plan cost produced by other planners. On average, Metri-

cLPRPG produced plans with cost about 46% lower than the cost of the plan produced

by LPG-td. MetricLPRPG has achieved up to 20% and 41% of the cost given in the

plan produced from LPRPG and Metric-FF. But, the plan produced by MetricLPRPG

on average is 18% higher than cost of the plan produced from MIPS-XXL. However,

as mentioned previously, the number of problem solved by MetricLPRPG is higher

than the number of problem solved by MIPS-XXL. Table 6.7 presents the percentage

88



plan cost

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

problem instances

co
st

MetricLPRPG
LPRPG
MetricFF
LPG-td
MIPS-XXL

 

Figure 6.3: Plan Cost in Bread Domain
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Figure 6.4: Plan Length in Bread Domain

of plan length increment in the solution produced by MetricLPRPG against the plan

length values in the solutions produced by LPRPG, Metric-FF, LPG-td and MIPS-

XXL. As can be seen the increment in the plan length is relatively small compared to

the reduction made in plan cost.
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Table 6.6: Percentage of cost reduction in MetricLPRPG vs other planner in Bread
domain

problem LPRPG Metric-FF LPG-td MIPS-XXL

p01.pddl 8.33 0 42.11 -10.00

p02.pddl 0.0 100 100 0

p03.pddl 0.00 40 33.33 -100.00

p04.pddl 0.00 100.00 100.00 0.00

p05.pddl 0.00 81.48 91.94 0.00

p06.pddl 13.33 38.10 36.59 -30.00

p07.pddl 52.17 52.17 63.33 0.00

p08.pddl 2.08 4.08 0.00 2.08

p09.pddl 84.21 88.46 -100.00

p10.pddl 52.17 26.67 57.69 0.00

p11.pddl 72.50 42.11 31.25 26.67

p12.pddl 62.50 66.67 40.00

p13.pddl 20.00 53.85 59.32

p14.pddl 8.11 8.11 34.62

p15.pddl 0.00 0.00 56.41

p16.pddl 20.00 21.13 37.78 -33.33

p17.pddl 43.14 40.21 19.44

p18.pddl 8.57 21.95 14.67 4.48

p19.pddl 9.28 20.727 12.87

p20.pddl 3.92 20.97 1.01

average 19.80 41.12 46.04 -18.47

6.2.3 Production Domain

This domain and its 20 problem instances were tested on all of the participating planners

except MIPS-XXL. This is due to the inability of MIPS-XXL to solve any of the problem

instances. The detailed explanation of this domain was given in Chapter 3. The

objective function designed in each problem instance generally consists of the plan

metric variables that have been previously encoded in the domain which include hazard,

machine-cost and labour. However, each of the objective functions may either include

different combinations of the plan metric variables or different coefficients value of

the plan metric variables. The solutions developed by each planner are presented in

Table 6.8. Although MetricLPRPG is found unable to produce any solution for problem

p03.pddl, the solutions generated for other problem instances are considered competitive

in terms of the plan cost value. MetricLPRPG has consistently given the lowest plan

cost or at least the plan cost that is equal to the cost given by other planners. For

example, the value of the plan cost for problem p01 is 87 which is within the range 30%
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Table 6.7: Percentage of length increment in MetricLPRPG vs other planners in Bread
Domain

problem LPRPG Metric-FF LPG-td MIPS-XXL

p01.pddl 0.00 -13.33 -27.78 -7.14

p02.pddl 0.00 -9.09 0.00 0.00

p03.pddl 0.00 25.00 42.86 -23.08

p04.pddl 0.00 25.00 0.00 42.86

p05.pddl 0.00 -3.70 -16.13 -16.13

p06.pddl 19.23 14.81 -11.43 0.00

p07.pddl 3.85 3.35 -10.00 0.00

p08.pddl 0.00 0.00 0.00 0.00

p09.pddl 0.00 -20.00 -23.81

p10.pddl 5.00 5.00 -12.50 0.00

p11.pddl 20.69 20.69 0.00 16.67

p12.pddl 42.00 61.36 222.73

p13.pddl 8.33 5.41 -13.33

p14.pddl 6.82 6.82 -11.32

p15.pddl 0.00 0.00 -20.00

p16.pddl -2.56 11.76 -7.32 11.76

p17.pddl 32.43 28.95 4.26

p18.pddl 2.17 2.17 -7.84 2.17

p19.pddl 2.27 0.00 -8.16

p20.pddl -1.64 0.00 -1.64

average 7.29 9.23 5.12 0.25

to 50% lower than the plan cost given in the solutions developed from LPRPG, Metric-

FF and LPG-td. LPG-td, however, is observed to have outperformed all planners in

the solution generated for problem p02. The plan generated for problem p02 has the

lowest plan cost as well as the shortest plan length.

On the other perspective of the plan quality, which is conventionally measured

through the plan length, MetricLPRPG, as shown in Table 6.8 is found to have produced

plans that have plan length longer than the plan length generated by LPRPG only in 8

problems. Overall, MetricLPRPG has produced longer plan lengths than those of the

plans produced by Metric-FF and LPG-td. The graphs in Figure 6.5 and Figure 6.6

illustrate the comparison of the plan cost and plan length in the solutions produced by

each planner in the experiment.

Table 6.9 presents the percentage of cost reduction obtained in the solutions devel-

oped by MetricLPRPG against the cost of the solutions given by LPRPG, Metric-FF

91



Table 6.8: Results in the Production Domain

problem
MetricLPRPG LPRPG Metric-FF LPG-td
length value length value length value length value

p01.pddl 69 87 56 144 56 170 54 120

p02.pddl 81 172 81 187 65 231 44 163

p03.pddl not solved 82 150 85 200 88 140

p04.pddl 118 176 not solved 108 221 97 188

p05.pddl 116 120 81 120 112 230 92 120

p06.pddl 63 12 66 31 48 24 52 16

p07.pddl 63 147 65 151 56 163 59 159

p08.pddl 54 35 60 45 46 55 48 50

p09.pddl 63 147 68 156 56 183 67 165

p10.pddl 71 34 71 38 71 327 74 323

p11.pddl 77 42 71 62 71 47 71 67

p12.pddl 82 32 78 86 62 62 62 92

p13.pddl 8 10 2 20 2 20 4 20

p14.pddl 22 38 23 38 20 48 22 38

p15.pddl 75 292 65 306 58 316 59 318

p16.pddl 76 235 65 256 58 291 57 264

p17.pddl 85 98 86 194 75 158 88 194

p18.pddl 80 135 87 205 67 170 70 135

p19.pddl 66 48 50 76 44 88 56 102

p20.pddl 122 777 123 795 118 1141 118 963

and LPG-td. As can be seen, on average, MetricLPRPG produced plans with cost

about 34% lower than the cost of the plans produced by Metric-FF. Moreover, these

plans achieved up to 24% and 27% of the cost given in the plans produced from LPRPG

and LPG-td respectively. The tremendous cost improvement is found exhibited in the

problem p06.pddl. In this problem, MetricLPRPG generated a solution that cost 61%

less than the solution obtained from LPRPG, and 25% to 50% less than the plan cost

generated from both LPG-td and Metric-FF planners. The percentage of cost reduc-

tion would suggest that MetricLPRPG has made a significant improvement in terms of

reducing the plan cost compared to the other participating planners.

Table 6.10 shows the percentage of plan length increment in the solutions produced

by MetricLPRPG against the plan length values in the solutions produced by LPRPG,

Metric-FF and LPG-td. The difference in the values of plan lengths between the so-

lutions produced by MetricLPRPG and LPRPG is small. On average, MetricLPRPG

produces plans 8% longer than the plans produced by LPRPG. The plan lengths was
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Figure 6.5: Plan Cost in Production domain
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Figure 6.6: Plan Length in Production domain
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Table 6.9: Percentage of cost reduction given by MetricLPRPG in the Production
Domain

problem LPRPG Metric-FF LPG-td

p01.pddl 39.5 48.8 27.5

p02.pddl 8.0 25.5 -5.5

p03.pddl

p04.pddl 20.4 6.4

p05.pddl 0 47.8 0

p06.pddl 61.3 50 25

p07.pddl 2.6 9.8 7.5

p08.pddl 22.2 36.4 30

p09.pddl 5.8 19.7 10.9

p10.pddl 10.5 89.6 89.3

p11.pddl 32.3 10.6 37.3

p12.pddl 62.8 48.4 65.2

p13.pddl 50 50 50

p14.pddl 0 20.8 0

p15.pddl 4.6 7.6 8.2

p16.pddl 8.2 19.2 10.9

p17.pddl 49.5 37.9 49.5

p18.pddl 34.1 20.6 0

p19.pddl 36.8 45.5 52.9

p20.pddl 2.3 31.9 19.3

average 23.9 33.7 27.2

found to be about 18% longer than the plan lengths produced by Metric-FF, and about

15% longer than those of LPG-td. The increase in the plan lengths exhibited by Met-

ricLPRPG is expected and can be considered small. In sum, these results also show

that the heuristic obtained efficient values of the plan length and the plan cost.

6.2.4 Trader Domain

Apart from MetricLPRPG, there were only two other numeric planners capable of

solving the Trader Domain. The other numeric planners were LPRPG and LPG-td.

The numeric variables liquidity, expenditure, resourceand labour designed in the do-

main were used as the plan metric variables in the problem instances. Similar to the

domains discussed in the previous section, 20 problems instances were also created for

the purpose of this experiment. Each of the problem instance is encoded with a plan

metric function. In general, at the initial state, the trader is given an amount of cash

and several goods. At the goal, the trader is expected to have some quantities of other
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Table 6.10: Percentage of length increasing given by MetricLPRPG in the Production
Domain

problem LPRPG Metric-FF LPG-td

p01.pddl 18.8 18.8 21.7

p02.pddl 0 19.8 53.6

p03.pddl

p04.pddl 8.5 30.4

p05.pddl 30.2 3.4 34.8

p06.pddl -4.8 23.8 15.9

p07.pddl -3.2 11.1 5.8

p08.pddl 11.1 14.8 8.7

p09.pddl -7.9 11.1 -5.7

p10.pddl 0 0 -4.3

p11.pddl 7.8 7.8 8.7

p12.pddl 4.9.0 24.4 29.0

p13.pddl 75 75 5.8

p14.pddl -4.5 9.1 0

p15.pddl 13.3 22.7 23.2

p16.pddl 14.5 23.7 27.5

p17.pddl -1.2 11.8 -4.3

p18.pddl -8.8 16.3 14.5

p19.pddl 24.2 33.3 14.5

p20.pddl -0.8 3.3 5.8

average 8 18 15

goods that sell in the markets which are usually different from the ones that already on

hand. The trader will travel to the potential markets and use available resources such

as cash and goods, to obtain other goods. The 20 problem instances that have been

created had different plan metric values in the initial and goal states. The choices of

actions available in the domain to achieve the goal states were explained in Chapter 3.

The values of plan length and plan cost of the solutions developed by the participat-

ing planners are presented in Table 6.11. As can be seen, all planners were generally

able to produce solutions to all problem instances. MetricLPRPG consistently gen-

erated the minimum plan cost solutions compared to LPRPG and LPG-td. In fact,

the gap in plan cost value between the solutions from MetricLPRPG and LPG-td is

considered big and significant. For example, the value of the plan cost in the solution

for problem p15.pddl is 146 compared to plan cost value 1189 for the plan generated

by LPG-td. Apart from that, the length of the solutions produced by MetricLPRPG is

generally shorter than the solutions produced by LPG-td. The graphs in Figure 6.7 and
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Figure 6.8 illustrate the comparison of plan cost and plan length between the planners

that were involved in the experiment.

Table 6.11: Results in the Trader Domain

problem
MetricLPRPG LPRPG LPG-td
length value length value length value

p01.pddl 35 16 38 23 144 65

p02.pddl 46 18 45 32 356 501

p03.pddl 42 12 37 54 130 160

p04.pddl 35 36 31 56 137 153

p05.pddl 37 20 57 29 689 146

p06.pddl 65 42 95 75 528 167

p07.pddl 136 88 71 220 313 383

p08.pddl 81 28 72 48 406 124

p09.pddl 141 10 not valid plan 440 266

p10.pddl 66 64 67 90 509 138

p11.pddl 47 28 44 68 256 160

p12.pddl 153 148 92 267 554 445

p13.pddl 131 70 70 254 896 375

p14.pddl 90 294 88 274 866 902

p15.pddl 133 146 82 288 977 1189

p16.pddl 138 22 84 122 882 178

p17.pddl 57 18 51 28 682 20

p18.pddl 59 32 51 50 225 36

p19.pddl 67 17 73 61 671 173

p20.pddl 91 80 67 128 448 550

The percentage of plan cost improvement made in the solutions produced by Metri-

cLPRPG against the cost incurred in the solutions developed by LPRPG and LPG-td

is shown in Table 6.12. The biggest improvement of plan cost has been made in Met-

ricLPRPG against the values of the plan cost produced by LPG-td. On average, the

plan cost of the solution produced by MetricLPRPG is 74% cheaper than the plan value

produced by LPG-td. The solutions obtained from MetricLPRPG were also found to

be about 46% cheaper than the plan cost in the solutions generated by LPRPG.

In terms of plan length, MetricLPRPG generally produced plans about 35% longer

than the plans produced by LPRPG. Table 6.13 presents the percentage of increase in

the length of plans produced by MetricLPRPG solutions against the solutions developed

by LPRPG and LPG-td. However, in some problems, MetricLPRPG found shorter

plans than those generated by LPRPG. This is indicated by the negative values of
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Figure 6.7: Plan Cost in Trader Domain

percentage in the table. In contrast, the lengths of solutions developed by MetrcLPRPG

were always shorter than the lengths of solutions generated by LPG-td. As can be seen

the percentage value is negative in all solutions. These results support the claim that

the heuristic of MetricLPRPG simultaneously minimises the values of the plan length

and plan cost.

6.2.5 Sugar Domain

The plan cost of the Sugar domain is determined by three plan metric variables:

inventory-cost. holding-cost and mill-cost. These plan metric variables were attached

to the different choices of action that achieve similar logical states. The detailed ex-

planation on this was given in Chapter 3. The domain and its 20 problem instances

were tested against MetricLPRPG, LPRPG, Metric-FF and LPG-td planners. Metri-

cLPRPG has successfully solved all the problem instances. The values of the plan cost

and plan length of the solutions developed from each of the planners are given in Table

6.14. The plan values in the table show that MetricLPRPG produced a plan with the

lowest plan cost, in contrast to the solutions developed by other planners.

However, MetricLPRPG has produced a solution to problem p15 which has the

second worst metric value. On the other hand, as shown, Metric-FF has outperformed
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Figure 6.8: Plan Length in Trader Domain

other planners by producing a plan that has a plan cost of 120, which is the lowest

value compared to the other solutions. What sort of circumstances contribute to these

results? Let us closely examine the plan length values given by the other planners

involved in the experiment. Although Metric-FF gives the minimum plan cost, the

value of the plan length is 68, which is longer than the lengths of the solutions obtained

by both MetricLPRPG and LPRPG. The values of the plan length and plan cost of

the solution obtained by MetricLPRPG results from the heuristic which, as discussed,

seeks to minimise aspects of both plan length and plan cost. It attempts to obtain the

best plan cost for the best plan length that can be achieved.

Reduction in the plan cost value does not always greatly increase the plan length.

Table 6.15 and Table 6.16 illustrate the percentage of cost reduction and length incre-

ment gained in MetricLPRPG solutions in contrast to the plans generated by other

planners. For example, in the first problem instance MetricLPPRG produced a plan

with cost 50% lower than LPRPG. Furthermore, this plan cost is 40 % and 71% lower

than those solutions produced by Metric-FF and LPG-td respectively. The increase

in the plan length is observed in MetricLPRPG solutions, however, the percentage
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Table 6.12: Percentage of cost reduction in MetricLPRPG in Trader Domain

problem LPRPG LPG-td

p01.pddl 30.43 75.38

p02.pddl 43.75 96.41

p03.pddl 77.78 92.50

p04.pddl 35.71 76.47

p05.pddl 31.03 86.30

p06.pddl 44.00 74.85

p07.pddl 60.00 77.02

p08.pddl 41.67 77.42

p09.pddl 96.24

p10.pddl 28.89 53.62

p11.pddl 58.82 82.50

p12.pddl 44.57 66.74

p13.pddl 72.44 81.33

p14.pddl -7.3 67.4

p15.pddl 49.3 87.7

p16.pddl 81.9 87.6

p17.pddl 35.7 10.0

p18.pddl 36.0 11.1

p19.pddl 72.1 90.2

p20.pddl 37.5 85.5

average 46 74

increase in length is much lower than the percentage reduction in the cost. Another

interesting cost reduction made by MetricLPRPG appears in the plan generated as a

solution to problem p09.pddl. In this problem, MetricLPRPG has made more than 70%

cost saving in the plan cost value in contrast to the plan cost values obtained from the

plans generated by LPRPG, Metric-FF and LPG-td. On top of the plan cost values,

the plan is shorter than the ones produced by LPRPG. Besides this problem instance,

there are numerous problem instances that better combine plan length and plan cost

qualities.

6.3 Conclusion

The heuristic designed in MetricLPRPG strives to minimise the plan cost with respect

to the plan metric function encoded in the problem. This plan cost is minimised

together with the plan length values during the development of such solution. In sum,

the solution generated using this heuristic can be expected to exhibit a better balance
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Table 6.13: Percentage of plan length increasing in MetricLPRPG compared to other
planners in the Trader Domain

problem LPRPG LPG-td

p01.pddl -7.9 -75.7

p02.pddl 2.2 -87.1

p03.pddl 13.5 -67.7

p04.pddl 12.9 -74.5

p05.pddl -35.1 -94.6

p06.pddl -31.6 -87.7

p07.pddl 91.6 -56.6

p08.pddl 12.5 -80.1

p09.pddl - 68

p10.pddl -1.5 -87.0

p11.pddl 6.8 -81.6

p12.pddl 66.3 -72.4

p13.pddl 87.1 -85.4

p14.pddl 2.27 -89.6

p15.pddl 62.2 -86.4

p16.pddl 64.3 -84.4

p17.pddl 11.8 -91.6

p18.pddl 15.7 -73.8

p19.pddl -8.2 -90.0

p20.pddl 35.8 -79.7

average 35 -81

between the plan cost and plan length values than is achieved by other current planners.

A series of experiments has been conducted and the results obtained have shown that

MetricLPRPG is a competitive planner, giving high quality solutions with respect to

plan cost and plan length for the domain-specific metric problems. Most of the solutions

given by MetricLPRPG are generally cheaper in terms of plan cost but slightly longer in

terms of plan length. These results are expected and represent the behavior that often

exists in domains in the domain-specific metric class. However, some of the solutions

produced by MetricLPRPG are observed to have cheaper plan cost and shorter plan

length compared to other solutions. This indicates that the heuristic is sensitive to the

coefficient values of each of the plan metric variables. The coefficient values represent

the weight given to each such metric variable in evaluating the goodness of a solution.
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Table 6.14: Results in the Sugar Domain

problem
MetricLPRPG LPRPG Metric-FF LPG-td
length value length value length value length value

p01.pddl 20 18 17 36 17 30 32 63

p02.pddl 26 135 28 135 not solve 244 297

p03.pddl 25 42 21 57 33 42 156 159

p04.pddl 33 68 31 70 47 70 not valid plan

p05.pddl 23 58 25 58 not solve 94 93

p06.pddl 35 57 29 140 not solve 114 200

p07.pddl 11 54 11 54 not solve 12 54

p08.pddl 15 114 23 134 19 114 36 113

p09.pddl 44 34 140 132 30 120 103 160

p10.pddl 50 63 32 159 55 109 92 195

p11.pddl 21 14 16 21 11 35 14 20

p12.pddl 36 18 not solve not solve 118 18

p13.pddl 20 73 18 200 17 117 19 117

p14.pddl 21 35 19 35 not solve 162 27

p15.pddl 26 184 36 180 68 120 96 212

p16.pddl 24 125 24 125 not solve 82 120

p17.pddl 21 46 not solve not solve 42 76

p18.pddl 19 120 not solve 20 120 21 120

p19.pddl 50 350 54 375 76 400 222 415

p20.pddl 37 150 not solve fail plan 175 162
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Figure 6.9: Plan Cost in Sugar Domain
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Table 6.15: Percentage of Cost reduction in MetricLPRPG against other planners in
Sugar Domain

problem LPRPG Metric-FF LPG-td

p01.pddl 50 40 71.4

p02.pddl 0 54.5

p03.pddl 26.3 0 73.6

p04.pddl 2.9 2.9

p05.pddl 0 37.6

p06.pddl 59.3 71.5

p07.pddl 0 0

p08.pddl 14.9 0 -0.8

p09.pddl 74.2 71.7 78.8

p10.pddl 60.4 42.0 67.7

p11.pddl 33.3 60 30

p12.pddl 0

p13.pddl 63.5 37.6 37.6

p14.pddl 0 -29.6

p15.pddl -2.2 -53.3 13.2

p16.pddl 0 -4.2

p17.pddl 39.5

p18.pddl 0 0

p19.pddl 6.7 12.5 15.7

p20.pddl 7.4

average 24.3 19.4 29.7
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Table 6.16: Percentage of length increment in MetricLPRPG against other planners in
Sugar Domain

problem LPRPG Metric-FF LPG-td

p01.pddl 17.6 17.6 -37.5

p02.pddl -7.1 -89.3

p03.pddl 19.0 -24.2 -84.0

p04.pddl 6.5 -29.8

p05.pddl -8.0 -75.5

p06.pddl 20.7 -69.3

p07.pddl 0.0 -8.3

p08.pddl -34.8 -21.1 -58.3

p09.pddl -68.6 46.7 -57.3

p10.pddl 56.3 -9.1 -45.7

p11.pddl 31.3 90.9 50.0

p12.pddl -69.5

p13.pddl 11.0 17.6 5.3

p14.pddl 10.5 -87.0

p15.pddl -27.8 -61.8 -72.9

p16.pddl 0.0 -70.7

p17.pddl -50.0

p18.pddl -5.0 -9.5

p19.pddl -7.4 -34.2 -77.5

p20.pddl -78.9

average 1.2 -1.1 -51.9
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Chapter 7

Conclusion

7.1 Summary

Numeric planning allows resources to be efficiently modelled in the planning domain.

Optimisation over the metric resources defined in the planning domain is achieved

through a plan metric, a new field introduced in PDDL2.1. The plan metric provides

a means whereby solutions developed for particular problems can be evaluated based

on the plan cost or the value of the plan metric. Furthermore, several solutions with

different plan costs relative to the value of the plan metric have the potential to be

generated for problems that have similar initial and goal states. These features are

exhibited in a problem class called the domain-specific metric problem class.

The domain-specific metric problem class is a class of planning problems in which

the plan metric is used to direct search towards high quality solutions. This problem

class basically combines aspects of both planning and scheduling. As a result, the prob-

lem structure is blended with how action choices together with what resource choices.

In the development of its solution, seeking for resource optimisation is as important as

finding a feasible solution. Finding the minimum number of actions does not guarantee

the optimal value of the plan metric. In other words, a conflict between minimising

the number of actions and optimising the value of the plan metric is normally pre-

sented while seeking for the solution of such problem. This feature is interesting and

poses a new challenge to the planning community. Furthermore, this feature is of-

ten demonstrated in many real world applications, but, it has been largely ignored by

the community. Attempts to solve this problem class will increase the applicability of

planning technology to real world problems

The thesis has conducted an analysis on the role of the plan metric in the metric

domains benchmarked in the planning competition series. Four types of plan met-
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ric are defined. They are: (1) strictly-straightforward, (2) straightforward, (3) semi-

straightforward and (4) expressive. In general, the solution development of the planning

problem with the plan metric defined as in definitions (3) and (4) is more subtle than

the plan metric in definitions (1) and (2). The majority of the numeric domains in the

IPCs, with the exception of Settlers, were found to encode the plan metric as either

strictly-straightforward or straightforward. In these two types of plan metric encoding,

the minimum value of the metric function is obtained by minimising the number of ac-

tions in the plan. This indicates that plan metrics that combine reasoning over several

resources are not yet much in use in the benchmark domains.

Most of the numeric planners, even if they use PDDL2.1, focus on finding shortest

plans length and the plan quality is considered only to the extent that it coincides with

optimal length. In other words, the minimum plan length also result in the minimum

value of the plan metric. Some numeric planners improve the plan quality by producing

a sequence of plans in which each successor is an improvement over the predecessor. In

this approach, the improvement is made by choosing actions with the minimum cost.

MetricLPRPG the extended planner developed in this thesis extends LPRPG by

incorporating the plan metric in its heuristic. The detailed discussion on the devel-

opment of this new heuristic was given in Chapter 5. The MetricLPRPG planner

is specially designed to handle the trade-offs that occur in solving problems in the

domain-specific metric problem class. Its heuristic attempts to minimise the value of

plan cost and plan length simultaneously during the relaxed plan extraction phase.

This is accomplished through modelling the heuristic using Multi-objective linear pro-

gramming. Multi-objective linear programming is a widely used optimisation tool in

the operational research community to balance trade-offs between different objectives

in multiple objective functions problems. The LP solution is used to facilitate actions

selection in which the actions with cheaper cost according to the plan metric will be

chosen in the constructed relaxed plan. The results obtained in Chapter 6 show the

new heuristic is competitive in providing a better value of plan quality particularly if

the plan metric is encoded as semi-straightforward. Instead of giving a better value

of the plan metric, the heuristic also produces a competitive value of the plan length.

Although the increment in the value of the plan length is expected and presented in

almost all the developed solutions, on average, its percentage is found to be lower

than the percentage of the improvement made in the plan metric. This analysis is

comprehensively discussed in Chapter 6.

The contributions of this work to the community can be summarised into two cat-

egories. The first contribution relates to the exploration of the new planning problem
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class called the domain-specific metric problem class. This thesis has undertaken an

in depth study on how the plan metric encoded in the domain-specific metric can re-

sult in the trade-off between plan length and plan cost in it solution development.

Furthermore, the thesis has constructed a new classification of the plan metric encod-

ing according to four definitions: 1) strictly-straightforward, 2) straightforward,

3) semi-straightforward and 4) expressive. This thesis focuses attention on the

metrics described as semi-straightforward. These classifications furthermore, can

facilitate approaches that can be taken in the development of solutions to such prob-

lems.

The second contribution is the novel heuristic that includes the plan metric variables

encoded in the problem together with the plan length. The solution for the constructed

multi-objective linear programming model is aimed at minimising the value of the total

sum of the plan metric and plan length. Through this, the new heuristic attempts to

obtain a better balance between the two parameters; plan length and plan cost and

guides the selection of the minimum cost actions in the relaxed plan. This heuristic

has been successfully implemented in the extended planner written in this thesis.

7.2 Limitation

MetricLPRPG has performed competitively in the domain-specific metric problems

constructed in the thesis. In many cases it has successfully produced solutions that

have a minimum value of the plan metric compared to its competitors. However, these

values are not guaranteed to be optimal in terms of either plan length or plan cost

alone.

The reason for this is that the quality obtained in the solution is connected to the

approach applied in solving the multi-objective function. As described in Chapter 5,

a simple weighted sum technique was applied to solve the constructed multi-objective

function. According to this technique, a weight is given to each variable in the con-

structed objective function. The value of the weight is highly correlated to the knowl-

edge of the modeller on the problem. In addition, these weights must be changed

several time to obtain a set of efficient solutions. However in its implementation in

MetricLPRPG, the weights are restricted to certain values and set only once in the

development of the solution. This implies only a single relaxed plan is obtained for

an evaluated state, s. There is not much that can be done for the weight given to the

action variables. The current value of the weight given to each action variable reflects

the way that helpful actions are chosen in the relaxed plan algorithm. Changes made

107



to these values might result in infeasible solutions, whereas the weight given to each

plan metric variable in the objective function is directly taken from the coefficient of

the plan metric variables set in the problem. This approach reflects the knowledge of

the domain modeller about the problem. By having all these weights the problem is

solved and result in a single solution and not a set of solutions as expected in typical

applications of the weighted sum approach. This approach cannot guarantee that the

most efficient solution has been achieved in the construction of such a solution. Fur-

thermore, the direct mapping of the coefficient to the weight does not always retain the

relative importance of the components of the plan metric.

The structure of the current domain-specific metric is very rigid. In order to get the

benefit of the new heuristic, behavior that influences the plan metric must be encoded

by means of so-called producer and consumer action choices. This is due to the fact

that the multi-objective function is only constructed for numeric facts in which it only

minimises the cost and number of actions for achieving such numeric facts. In other

words, the multi-objective function is not constructed for propositional or logical facts

in the domain. Therefore, it will not minimise the value of the plan metric in achieving

any particular logical facts. As a result, the domain encoding becomes unrealistic since

the alternative resources that are usually affected by different plan metric variable must

be encoded in the actions that achieve the numeric part.

For example, consider a domain in which several alternative vehicles can be used

to transport materials from one location to another. These vehicles have different

capacities and cost. This means, transporting certain goods from one location to an-

other using different vehicles should incur different costs. Generally, activities involved

in moving goods from one location to another can be accomplished by two separate

different actions. First, loading the goods into the selected vehicle. Second, moving

the loaded vehicle to other location. These two actions basically combine both logical

and numeric facts. The load action achieves the numeric fact whereas the move action

achieves the logical part. Since the move action normally updates the propositional

part, it will not be included in the heuristic. In order to make it work for the imple-

mented heuristic, several load actions, each for different types of vehicle, might need

to be encoded in the domain. These actions represent the alternative consumer actions

that can be used in the constructed relaxed plan. For example, if the choice of vehicles

available in the problem consists of truck and cart. Therefore, actions such as load truck

and load cart have to be encoded in the domain. The metric cost has to be updated

every time an item is being loaded into these vehicles. This can lead to an inefficient

domain encoding. Furthermore, the cost of using a vehicle should be incurred at the
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point where the decision to use a particular vehicle is made. However, since this kind of

action only includes propositions, it is currently not being considered by the heuristic.

7.3 Future Work

The heuristic exploited in the current implementation applies the weighted-sum tech-

nique to obtain the solution, as explained in Chapter 5. However, it only considers a

static weight. It means that the coefficients of the plan metric variables, given by the

domain modeller are simply taken and mapped to the weights attached to each plan

metric variable in the objective function. This approach results in a single solution or

only one Pareto optimal value. If the domain designer attempts to find another optimal

solution, although for similar preference of the metric variables, it is necessary to solve

the same problem with many different coefficients and repeatedly apply the planner

to the problem. With this approach, the designer is still confronted with choosing the

most appropriate solution based on intuition.

The first direction of the future work is to change the weight given to each plan

metric variable dynamically and automatically. This means an appropriate algorithm

is constructed in the planner so that it changes the value of the weights. However,

any changes made to the weight is still constrained by the weight given by the domain

modeller as stated in the problem. This approach can be thought of as similar to those

approaches taken by numeric planners that improve plan quality through a sequence of

plans. Instead of improving the estimated action cost in the plan sequences, the future

algorithm could consider a constant multiplier to be used as a basis to dynamically

change the value of the weight. This constant multiplier scales the objective properly

relative to the initial preference given by the domain modeller. With this, several plans,

equivalent to a Pareto set, can be obtained. More sophisticated and efficient techniques

could be applied to choose the optimal solution within the several generated solutions.

The current structure of the domain-specific metric is restricted. Another direction

of the future work is to extend the resource choice to the propositional and temporal

parts of the planning problem. It can be thought of as including different plan metric

variables or different values that the variables can take to the different action choices

that achieve similar propositional and temporal preconditions. The extension in the

domain structure will perhaps increase the flexibility and allow real world problems to

be modelled. In consequence, the heuristic is supposed to be modified according to the

new domain structure. The implementation of the multi-objective function is extended

to achieve such propositional and temporal facts. The number of action variables in
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the objective function is expected to be increased since more actions will be included.

Furthermore, it might also arise that conflicting factors in the objective function require

more sophisticated techniques to resolve them.

Finally, the future work could consider the numeric problem with the plan metric as

defined in Definition 4 in Chapter 2, expressive metric function. This is another type of

metric function problem that is also exhibited in real world applications. The approach

taken to minimise the number of actions together with the action cost might not be

appropriate when there exist actions that reduce the value of the plan metric. Longer

plans could have lower plan cost if the chosen actions can have negative cost. This

problem is interesting and poses another new challenge to the planning community.

The solution approach is expected to require more complicated techniques.
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Appendix A

Extended Settler Domain

(define (domain civ)

(:requirements :fluents :typing :conditional-effects)

(:types place vehicle - store

resource)

(:predicates

(connected-by-land ?p1 - place ?p2 - place)

(connected-by-rail ?p1 - place ?p2 - place)

(connected-by-sea ?p1 - place ?p2 - place)

(woodland ?p - place)

(mountain ?p - place)

(metalliferous ?p - place)

(by-coast ?p - place)

(has-cabin ?p - place)

(has-coal-stack ?p - place)

(has-quarry ?p - place)

(has-mine ?p - place)

(has-sawmill ?p - place)

(has-ironworks ?p - place)

(has-docks ?p - place)

(has-wharf ?p - place)

(is-cart ?v - vehicle)

(is-train ?v - vehicle)

(is-ship ?v - vehicle)

(is-at ?v - vehicle ?p - place)
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(potential ?v - vehicle)

)

(:functions

(available ?r - resource ?s - store)

(space-in ?v - vehicle)

(labour)

(resource-use)

(pollution)

(housing ?p - place)

)

(:constants timber wood coal stone iron ore - resource)

;; A.1: Loading and unloading.

(:action load

:parameters (?v - vehicle ?p - place ?r - resource)

:precondition (and (is-at ?v ?p)

(> (available ?r ?p) 0)

(> (space-in ?v) 0))

:effect (and (decrease (space-in ?v) 1)

(increase (available ?r ?v) 1)

(decrease (available ?r ?p) 1)

(increase (labour) 1)))

(:action unload

:parameters (?v - vehicle ?p - place ?r - resource)

:precondition (and (is-at ?v ?p)

(> (available ?r ?v) 0))

:effect (and (increase (space-in ?v) 1)

(decrease (available ?r ?v) 1)

(increase (available ?r ?p) 1)

(increase (labour) 1)))

;; A.2: Moving vehicles.

;; Moving trains and ships consumes coal, which has to be

;; loaded in the vehicle.
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(:action move-cart

:parameters (?v - vehicle ?p1 - place ?p2 - place)

:precondition (and (is-cart ?v)

(connected-by-land ?p1 ?p2)

(is-at ?v ?p1))

:effect (and (not (is-at ?v ?p1))

(is-at ?v ?p2)

(increase (labour) 2)))

(:action move-train

:parameters (?v - vehicle ?p1 - place ?p2 - place)

:precondition (and (is-train ?v)

(connected-by-rail ?p1 ?p2)

(is-at ?v ?p1)

(>= (available coal ?v) 1))

:effect (and (not (is-at ?v ?p1))

(is-at ?v ?p2)

(decrease (available coal ?v) 1)

(increase (pollution) 1)

))

(:action move-ship

:parameters (?v - vehicle ?p1 - place ?p2 - place)

:precondition (and (is-ship ?v)

(connected-by-sea ?p1 ?p2)

(is-at ?v ?p1)

(>= (available coal ?v) 2))

:effect (and (not (is-at ?v ?p1))

(is-at ?v ?p2)

(decrease (available coal ?v) 2)

(increase (pollution) 2)

))

;; B.1: Building structures.

(:action build-cabin
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:parameters (?p - place)

:precondition (woodland ?p)

:effect (and (increase (labour) 1) (has-cabin ?p)) )

(:action build-quarry

:parameters (?p - place)

:precondition (mountain ?p)

:effect (and (increase (labour) 2) (has-quarry ?p)))

(:action build-coal-stack

:parameters (?p - place)

:precondition (>= (available timber ?p) 1)

:effect (and (increase (labour) 2)

(decrease (available timber ?p) 1)

(has-coal-stack ?p)))

(:action build-sawmill

:parameters (?p - place)

:precondition (>= (available timber ?p) 2)

:effect (and (increase (labour) 2)

(decrease (available timber ?p) 2)

(has-sawmill ?p)))

(:action build-mine

:parameters (?p - place)

:precondition (and (metalliferous ?p)

(>= (available wood ?p) 2))

:effect (and (increase (labour) 3)

(decrease (available wood ?p) 2)

(has-mine ?p)))

(:action build-ironworks

:parameters (?p - place)

:precondition (and (>= (available stone ?p) 2)

(>= (available wood ?p) 2))

:effect (and (increase (labour) 3)

(decrease (available stone ?p) 2)
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(decrease (available wood ?p) 2)

(has-ironworks ?p)))

(:action build-docks

:parameters (?p - place)

:precondition (and (by-coast ?p)

(>= (available stone ?p) 2)

(>= (available wood ?p) 2))

:effect (and (decrease (available stone ?p) 2)

(decrease (available wood ?p) 2)

(increase (labour) 2)

(has-docks ?p)))

(:action build-wharf

:parameters (?p - place)

:precondition (and (has-docks ?p)

(>= (available stone ?p) 2)

(>= (available iron ?p) 2))

:effect (and (decrease (available stone ?p) 2)

(decrease (available iron ?p) 2)

(increase (labour) 2)

(has-wharf ?p)))

(:action build-rail

:parameters (?p1 - place ?p2 - place)

:precondition (and (connected-by-land ?p1 ?p2)

(>= (available wood ?p1) 1)

(>= (available iron ?p1) 1))

:effect (and (decrease (available wood ?p1) 1)

(decrease (available iron ?p1) 1)

(increase (labour) 2)

(connected-by-rail ?p1 ?p2)))

(:action build-house

:parameters (?p - place)

:precondition (and (>= (available wood ?p) 1)

(>= (available stone ?p) 1)
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)

:effect (and (increase (housing ?p) 1)

(decrease (available wood ?p) 1)

(decrease (available stone ?p) 1))

)

(:action build-wood-house

:parameters (?p - place)

:precondition (and (>= (available wood ?p) 2)

)

:effect (and (increase (housing ?p) 1)

(decrease (available wood ?p) 2)

)

)

;; B.2: Building vehicles.

(:action build-cart

:parameters (?p - place ?v - vehicle)

:precondition (and (>= (available timber ?p) 1) (potential ?v))

:effect (and (decrease (available timber ?p) 1)

(is-at ?v ?p)

(is-cart ?v)

(not (potential ?v))

(assign (space-in ?v) 1)

(forall (?r - resource) (and (assign (available ?r ?v) 0)))

(increase (labour) 1)

)

)

(:action build-train

:parameters (?p - place ?v - vehicle)

:precondition (and (potential ?v) (>= (available iron ?p) 2))

:effect (and (decrease (available iron ?p) 2)

(is-at ?v ?p)

(is-train ?v)

(not (potential ?v))

(assign (space-in ?v) 5)
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(forall (?r - resource) (and (assign (available ?r ?v) 0)))

(increase (labour) 2)

)

)

(:action build-ship

:parameters (?p - place ?v - vehicle)

:precondition (and (potential ?v) (>= (available iron ?p) 4))

:effect (and (has-wharf ?p)

(decrease (available iron ?p) 4)

(is-at ?v ?p)

(is-ship ?v)

(not (potential ?v))

(assign (space-in ?v) 10)

(forall (?r - resource) (and (assign (available ?r ?v) 0)))

(increase (labour) 3)

)

)

;; C.1: Obtaining raw resources.

(:action fell-timber

:parameters (?p - place)

:precondition (has-cabin ?p)

:effect (and (increase (available timber ?p) 1)

(increase (labour) 1))

)

(:action fell-timber-machine

:parameters (?p - place)

:precondition (has-cabin ?p)

:effect (and (increase (available timber ?p )3)

(increase (pollution)1)

)

)

(:action break-stone
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:parameters (?p - place)

:precondition (has-quarry ?p)

:effect (and (increase (available stone ?p) 1)

(increase (labour) 1)

(increase (resource-use) 1)

))

(:action mine-ore

:parameters (?p - place)

:precondition (has-mine ?p)

:effect (and (increase (available ore ?p) 1)

(increase (resource-use) 2)

))

;; C.1: Refining resources.

(:action burn-coal

:parameters (?p - place)

:precondition (and (has-coal-stack ?p)

(>= (available timber ?p) 1))

:effect (and (decrease (available timber ?p) 1)

(increase (available coal ?p) 1)

(increase (pollution) 1)))

(:action saw-wood

:parameters (?p - place)

:precondition (and (has-sawmill ?p)

(>= (available timber ?p) 1))

:effect (and (decrease (available timber ?p) 1)

(increase (available wood ?p) 1)))

(:action make-iron

:parameters (?p - place)

:precondition (and (has-ironworks ?p)

(>= (available ore ?p) 1)

(>= (available coal ?p) 2))

:effect (and (decrease (available ore ?p) 1)
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(decrease (available coal ?p) 2)

(increase (available iron ?p) 1)

(increase (pollution) 2)))

)
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Appendix B

Trader Domain

(define (domain batter-trader)

(:requirements :typing :fluents)

(:types village market - location

person carrier - locatable

donkey basket - carrier

goods

)

(:predicates

(is-at ?p - locatable ?l - location)

(connected-by-trail ?l1 - location ?l2 - location)

(connected-by-stream ?l1 ?l2 - location)

(connected-by-rope-bridge ?l1 ?l2 - location)

(connected-by-wooden-bridge ?l1 ?l2 - location)

(hungry-donkey ?d - donkey ?l - location)

(full-donkey ?d - donkey ?l - location)

(trading ?g1 ?g2 - goods ?m - market)

(buy ?g - goods ?m - market)

)

(:functions

(on-sale ?g - goods ?m - market)

(sell-price ?g - goods ?m - market)

(buy-price ?g - goods ?m - market)
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(available ?g - goods ?l - location)

(quantity-in-carrier ?c - locatable ?g - goods)

(space-in ?c - locatable)

(cash)

(liquidity)

(expenditure)

(resource)

(labour)

(transport-cost)

)

(:action load-donkey

:parameters (?d - donkey ?l - location ?g - goods)

:precondition (and

(is-at ?d ?l)

(>(space-in ?d)0)

(>(available ?g ?l)0)

)

:effect (and

(decrease (space-in ?d)1)

(decrease(available ?g ?l)1)

(increase (quantity-in-carrier ?d ?g)1)

(increase (resource)1)

)

)

(:action load-basket

:parameters (?b - basket ?p - person ?l - location ?g - goods)

:precondition (and

(is-at ?b ?l)

(>(space-in ?b)0)

(>(available ?g ?l)0)

)

:effect (and

(decrease(space-in ?b)1)

(decrease(available ?g ?l)1)

(increase (quantity-in-carrier ?b ?g)1)
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(increase (labour)1)

)

)

(:action moving

:parameters (?p - person ?c - carrier ?l1 ?l2 - location)

:precondition (and

(is-at ?p ?l1)

(is-at ?c ?l1)

)

:effect (and

(not(is-at ?p ?l1))

(not(is-at ?c ?l1))

(is-at ?p ?l2)

(is-at ?c ?l2)

)

)

(:action unload

:parameters (?c - carrier ?l - location ?g - goods ?p - person)

:precondition (and

(is-at ?c ?l) (is-at ?p ?l)

(>(quantity-in-carrier ?c ?g)0)

)

:effect (and

(decrease (quantity-in-carrier ?c ?g)1)

(increase (space-in ?c)1)

(increase (available ?g ?l)1)

)

)

(:action buy-cash

:parameters (?p - person ?g - goods ?m - market)

:precondition (and

(is-at ?p ?m)

(> (on-sale ?g ?m) 0)

(>=(cash)(sell-price ?g ?m))
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)

:effect (and

(decrease (on-sale ?g ?m) 1)

(increase (available ?g ?m)1)

(decrease (cash)(sell-price ?g ?m))

(increase (expenditure)(sell-price ?g ?m))

)

)

(:action exchange-goods

:parameters (?p - person ?g1 ?g2 - goods ?m - market)

:precondition (and

(is-at ?p ?m)

(trading ?g1 ?g2 ?m)

(>(available ?g1 ?m )0)

(> (on-sale ?g2 ?m) 0)

)

:effect (and

(decrease (on-sale ?g2 ?m) 1)

(decrease (available ?g1 ?m)1)

(increase (available ?g2 ?m)1)

(increase(liquidity)1)

)

)

(:action sell-goods-get-cash

:parameters (?p - person ?g - goods ?m - market)

:precondition (and

(is-at ?p ?m)

(buy ?g ?m)

(>(available ?g ?m)0)

)

:effect (and

(increase (on-sale ?g ?m)1)

(decrease (available ?g ?m)1)

(increase (cash)(buy-price ?g ?m))
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)

)

)
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Appendix C

Bread Domain

(define (domain bread)

(:requirements :typing :fluents)

(:types kitchen

machine

)

(:predicates

(ready-to-use ?m - machine)

(need-clean ?m - machine)

)

(:functions

(has-flour ?k - kitchen)

(ready-mix ?k - kitchen)

(ready-dough ?k - kitchen)

(loaf-bread ?k - kitchen)

(breakfast-bun ?k - kitchen)

(cooked-bun ?k - kitchen)

(cooked-bread ?k - kitchen)

(labour)

(energy)

(pollution)

)

(:action prepare-mix
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:parameters(?k - kitchen)

:precondition (and

(>=(has-flour ?k)1)

)

:effect (and

(increase (ready-mix ?k)1)

(decrease (has-flour ?k)1)

)

)

(:action kneed-dough-machine

:parameters (?k - kitchen ?m - machine)

:precondition (and

(>=(ready-mix ?k )2)

(ready-to-use ?m)

)

:effect (and

(decrease(ready-mix ?k)2)

(increase(ready-dough ?k)2)

(increase(energy)1)

(need-clean ?m)

(not(ready-to-use ?m))

)

)

(:action clean-machine

:parameters (?m - machine)

:precondition (and

(need-clean ?m)

)

:effect (and

(not(need-clean ?m))

(ready-to-use ?m)

)

)

(:action kneed-hand
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:parameters(?k - kitchen)

:precondition (and

(>=(ready-mix ?k)1)

)

:effect (and

(decrease(ready-mix ?k)1)

(increase(ready-dough ?k)1)

(increase(labour)1)

)

)

(:action making-loaf-bread

:parameters (?k - kitchen)

:precondition (and

(>=(ready-dough?k)1)

)

:effect (and

(decrease(ready-dough ?k)1)

(increase(loaf-bread ?k)2)

)

)

(:action making-bun

:parameters (?k - kitchen)

:precondition (and

(>=(ready-dough ?k)1)

)

:effect (and

(decrease(ready-dough ?k)1)

(increase(breakfast-bun ?k)5)

)

)

(:action baking-oven-bun

:parameters (?k - kitchen)

:precondition (and

(>=(breakfast-bun ?k)10)
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)

:effect (and

(decrease(breakfast-bun ?k)10)

(increase(cooked-bun ?k)10)

(increase(energy)1)

)

)

(:action baking-oven-loaf-bread

:parameters (?k - kitchen)

:precondition (and

(>=(loaf-bread ?k)4)

)

:effect (and

(decrease(loaf-bread ?k)4)

(increase(cooked-bread ?k)4)

(increase(energy)1)

)

)

(:action baking-charcoal-bread

:parameters (?k - kitchen)

:precondition(and

(>=(loaf-bread ?k)2)

)

:effect (and

(decrease(loaf-bread ?k)2)

(increase(cooked-bread ?k)2)

(increase(pollution)1)

)

)

(:action baking-charcoal-bun

:parameters (?k - kitchen)

:precondition(and

(>=(breakfast-bun ?k)2)

)
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:effect (and

(decrease(breakfast-bun ?k)2)

(increase(cooked-bun ?k)2)

(increase(pollution)1)

)

)

)
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Appendix D

Production Domain

‘‘(define (domain complex-production)

(:requirements :typing :fluents :equality)

(:types

raw-material refine-material cut-material clean-material part recycle product co-product item - material

assembly-machine process-machine cutting-machine tool part-machine oven coater - machine

)

(:predicates

(refine-process ?m - machine ?r - refine-material)

(transform-material ?r - raw-material ?rf - refine-material)

(busy ?m - machine)

(recycle-material ?rc - recycle ?rw - raw-material)

(cut-item ?m - material)

(available ?m - machine)

(current-tool ?t - tool)

(item-cut-make ?rf - refine-material ?ct - cut-material)

(cutting-tool-produce ?t - tool ?ct - cut-material)

(made-from ?p - part ?ct - cut-material)

(combine-item ?cp - co-product ?ct - cut-material ?p - part)

(changing-from ?t1 - tool ?t2 - tool)

(turn-to ?ct - cut-material ?cl - clean-material)

(ready-chemical ?c - item) (prepare-chemical ?c - item)

(produce-to ?cl - clean-material ?p - part)

(warm ?o - oven)
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(cool ?o - oven)

)

(:functions

(instore ?m - material)

(capacity-process ?f - refine-material)

(has-instore ?m - material)

(machine-cost)

(quantity-need ?cy - recycle)

(require-part ?ct - co-product ?p - part)

(changing-tool-cost)

(clean-part)

(product-cost)

(labour)

(hazard) (energy)

)

(:constants product1 product2 uncoated-product2 - product

metal-part plastic-part coated-plastic - part

shaped-plastic shaped-metal - cut-material

recycle-plastic recycle-metal - recycle

substitute - co-product

clean-metal clean-plastic - clean-material

)

(:action setting-machine

:parameters (?m - machine )

:precondition (and

(busy ?m)

)

:effect (and

(available ?m)

(not (busy ?m))

)
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)

;; process raw-material

(:action process-raw-material

:parameters (?m - process-machine ?r - raw-material ?f - refine-material)

:precondition (and (available ?m)

(refine-process ?m ?f )

(transform-material ?r ?f)

(>=(has-instore ?r)1)

)

:effect (and (not (available ?m))

(busy ?m)

(increase (instore ?f)(capacity-process ?f))

(decrease (has-instore ?r) 1)

(increase(hazard)1)

)

)

;; process-recycle material

(:action part-from-recycle

:parameters (?m - process-machine ?cy - recycle ?r - raw-material ?f - refine-material)

:precondition (and (available ?m)

(recycle-material ?cy ?r)

(refine-process ?m ?f )

(transform-material ?r ?f)

(>=(instore ?cy)(quantity-need ?cy))

)

:effect (and (not (available ?m))

(busy ?m)

(increase (instore ?f)1)

(decrease (instore ?cy)(quantity-need ?cy))

)

)

;; cutting process
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(:action cutting-process

:parameters (?m - cutting-machine ?r - refine-material ?t - tool ?p - cut-material)

:precondition (and (available ?m)

(current-tool ?t)

(item-cut-make ?r ?p)

(cutting-tool-produce ?t ?p)

(>=(instore ?r)1)

)

:effect (and (not (available ?m))

(busy ?m)

(increase (instore ?p)2)

(decrease (instore ?r)1)

)

)

(:action changing-tool

:parameters ( ?prev-tool - tool ?next-tool - tool)

:precondition (and

(current-tool ?prev-tool)

(changing-from ?prev-tool ?next-tool)

)

:effect (and

(current-tool ?next-tool)

(not (current-tool ?prev-tool))

)

)

;; making metal-parts

(:action process-shaped-metal

:parameters (?m - part-machine ?cl - clean-material)

:precondition (and (available ?m)

(turn-to shaped-metal ?cl)

(>=(instore shaped-metal)1)

)

:effect ( and (increase (instore ?cl)2)
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(decrease (instore shaped-metal)1)

(busy ?m)

(not(available ?m))

(increase(instore recycle-metal)1)

)

)

(:action soak-chemical

:parameters (?cl - clean-material ?c - item)

:precondition (and

(ready-chemical ?c)

(produce-to ?cl metal-part)

(>=(instore ?cl)1)

)

:effect (and

(increase (instore metal-part)2)

(decrease (instore ?cl)1)

(not (ready-chemical ?c))

(prepare-chemical ?c)

(increase (hazard)1)

)

)

(:action mix-chemical

:parameters (?c -item)

:precondition (and

(prepare-chemical ?c)

)

:effect (and

(ready-chemical ?c)

)

)

(:action painting-metal-part

:parameters (?c - coater ?cl - clean-material)

:precondition (and

(available ?c)

135



(produce-to ?cl metal-part)

(>=(instore ?cl)1)

)

:effect

(and

(decrease(instore ?cl)1)

(increase (instore metal-part)2)

(busy ?c) (not (available ?c))

(increase(labour)1)

)

)

;; making plastic-part

(:action process-shaped-plastic

:parameters (?m - part-machine ?cl - clean-material)

:precondition (and

(available ?m)

(turn-to shaped-plastic ?cl)

(>=(instore shaped-plastic)1)

)

:effect ( and

(increase (instore ?cl)4)

(decrease (instore shaped-plastic)1)

(busy ?m)

(not (available ?m))

(increase (instore recycle-plastic)1)

)

)

(:action coating-plastic-part

:parameters (?c - coater ?cl - clean-material)

:precondition (and

(available ?c)

(produce-to ?cl plastic-part)

(>=(instore ?cl)1)

)
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:effect

(and

(decrease(instore ?cl)1)

(increase (instore plastic-part)2)

(increase (instore recycle-plastic)1)

(busy ?c) (not (available ?c))

)

)

;; assembly product

(:action warming-oven

:parameters (?o - oven )

:precondition (and

(cool ?o)

)

:effect (and

(warm ?o)

)

)

(:action assemble-product1-formula1

:parameters ( ?m - assembly-machine ?o - oven)

:precondition (and (available ?m)

(>= (instore plastic-part)2)

(>= (instore metal-part)2)

(warm ?o)

)

:effect (and (increase (instore product1)2)

(decrease (instore plastic-part)2)

(decrease (instore metal-part)2)

(not(available ?m))

(busy ?m)

(not(warm ?o))

(cool ?o)
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(increase (machine-cost)10)

)

)

(:action assemble-product1-formula2

:parameters ()

:precondition (and

(>=(instore metal-part)1)

(>=(instore clean-plastic)1)

)

:effect (and (increase (instore product1)1)

(decrease (instore metal-part)1)

(decrease (instore clean-plastic)1)

(increase (labour)1)

)

)

(:action assemble-product1-formula3

:parameters (?it - item)

:precondition (and

(>=(instore recycle-metal)1)

(>=(instore clean-plastic)1)

(ready-chemical ?it)

)

:effect (and (increase (instore product1)1)

(decrease (instore metal-part)1)

(decrease (instore clean-plastic)1)

(increase (hazard)1)

)

)

(:action assemble-product2-formula1

:parameters (?m - assembly-machine)

:precondition (and (available ?m)

(>=(instore plastic-part)2)

(>=(instore clean-plastic)1)
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)

:effect (and (increase (instore product2)3)

(decrease (instore plastic-part)2)

(decrease (instore clean-plastic)1)

(not (available ?m))

(busy ?m)

(increase(machine-cost)10)

)

)

(:action assemble-product2-formula2

:parameters ()

:precondition (and

(>=(instore plastic-part)4)

(>=(instore recycle-plastic)2)

)

:effect (and (decrease (instore plastic-part)4)

(increase (instore uncoated-product2)2)

(decrease(instore recycle-plastic)2)

(increase (labour)1)

)

)

(:action coating-product2

:parameters (?c - coater)

:precondition (and

(available ?c)

(>(instore uncoated-product2)2)

)

:effect (and

(decrease (instore uncoated-product2)2)

(increase (instore product2)2)

(busy ?c)

(not (available ?c))

)

139



)

)
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Appendix E

Sugar Domain

(define (domain supply-chain)

(:requirements :typing :fluents :equality)

(:types

brand raw-cane - sugar

mill depot - location

truck crane - loader

farm field

)

(:predicates

(available ?m - mill)

(has-resource ?r - raw-cane ?m - mill)

(produce ?m - mill ?b - brand)

(current-process ?m - mill ?b - brand)

(change-process ?b1 ?b2 - brand)

(place-order ?r - raw-cane ?m - mill)

(transport-to ?r - raw-cane ?m - mill)

(at-location ?d - loader ?l - location)

(connected ?l1 ?l2 - location)

(busy ?m - mill)

(ready-crane ?c - crane)

(service-crane ?c - crane)

)

(:functions

(mill-cost) (cost-process ?m - mill)
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(process-cost ?m - mill)

(resource-use)

(unharvest-field)

(truck-cap ?t - truck)

(in-truck-sugar ?b - brand ?t - truck)

(in-storage ?m - location ?b - brand)

(total-distance)

(distance ?l1 ?l2 - location)

(has-resource ?r - raw-cane ?m - mill)

(max-changing ?m - mill)

(inventory-cost)

(changing-product)

(capacity ?c - crane)

(max-service-time ?c - crane)

(service-time ?c - crane)

(handling-cost)

(max-produce ?m - mill)

(labour-cost)

)

(:action produce_sugar

:parameters (?r - raw-cane ?m - mill ?b - brand)

:precondition (and

(current-process ?m ?b)

(available ?m)

(produce ?m ?b)

(>(has-resource ?r ?m)0)

(>(max-changing ?m)0)

)

:effect (and

(increase (in-storage ?m ?b)1)

(decrease (has-resource ?r ?m)1)

(busy ?m)

(not(available ?m))
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(increase (mill-cost)(cost-process ?m))

)

)

(:action produce_sugar_max

:parameters (?r - raw-cane ?m - mill ?b - brand)

:precondition (and

(current-process ?m ?b)

(available ?m)

(produce ?m ?b)

(>=(has-resource ?r ?m)(max-produce ?m))

(>(max-changing ?m)0)

)

:effect (and

(increase (in-storage ?m ?b)(max-produce ?m))

(decrease (has-resource ?r ?m)(max-produce ?m))

(busy ?m)

(not(available ?m))

(increase (mill-cost)(*5(cost-process ?m)))

)

)

(:action order-sugar-cane

:parameters (?r - raw-cane ?m - mill )

:precondition (and

(>=(has-resource ?r ?m)0)

(<=(has-resource ?r ?m)0)

)

:effect (and

(place-order ?r ?m)

)

)

(:action setting-machine

:parameters (?m - mill)

:precondition (and
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(busy ?m)

)

:effect (and

(not (busy ?m))

(available ?m)

)

)

(:action change-product

:parameters (?m - mill ?b1 - brand ?b2 - brand)

:precondition (and

(current-process ?m ?b1)

(change-process ?b1 ?b2)

)

:effect (and

(current-process ?m ?b2)

(not(current-process ?m ?b1))

(decrease(max-changing ?m)1)

)

)

; sugar cane can be obtained from the farm or from other mills

(:action sugar-cane-farm

:parameters (?r - raw-cane ?m - mill)

:precondition (and

(place-order ?r ?m)

(>(unharvest-field)0)

)

:effect (and

(decrease (unharvest-field)1)

(increase (has-resource ?r ?m)5)

(not (place-order ?r ?m))

(increase (inventory-cost)10)

)

)
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(:action sugar-cane-mills

:parameters (?r - raw-cane ?m1 ?m2 - mill)

:precondition (and

(place-order ?r ?m1)

(>(has-resource ?r ?m2)0)

)

:effect (and

(increase (has-resource ?r ?m1)1)

(decrease (has-resource ?r ?m2)1)

(not (place-order ?r ?m1))

(decrease(inventory-cost)1)

)

)

(:action load_truck_crane

:parameters (?b - brand ?t - truck ?l - location ?c - crane)

:precondition (and

(at-location ?t ?l)

(at-location ?c ?l)

(>=(in-storage ?l ?b)(capacity ?c))

(>=(truck-cap ?t)(capacity ?c))

(ready-crane ?c)

)

:effect (and

(decrease (in-storage ?l ?b)(capacity ?c))

(decrease (truck-cap ?t)(capacity ?c))

(increase (in-truck-sugar ?b ?t)(capacity ?c))

(increase (handling-cost)10)

)

)

(:action check-service

:parameters (?c - crane ?l - location)

:precondition (and
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(at-location ?c ?l)

(>=(service-time ?c)0)

(<=(service-time ?c)0)

)

:effect (and

(not(ready-crane ?c))

(service-crane ?c)

(increase(service-time ?c)(max-service-time ?c))

)

)

(:action maintainence-crane

:parameters (?c - crane ?l - location)

:precondition (and

(at-location ?c ?l)

(service-crane ?c)

)

:effect (and

(ready-crane ?c)

)

)

(:action load-truck-manual

:parameters (?b - brand ?t - truck ?l - location)

:precondition (and

(at-location ?t ?l)

(>(in-storage ?l ?b)0)

(>(truck-cap ?t)0)

)

:effect (and

(decrease (in-storage ?l ?b)1)

(decrease (truck-cap ?t)1)

(increase (in-truck-sugar ?b ?t)1)

(increase (handling-cost)1)

)

)
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(:action drive_truck

:parameters (?t - truck ?y1 ?y2 - location)

:precondition (and

(at-location ?t ?y1)

(connected ?y1 ?y2)

)

:effect (and (at-location ?t ?y2)

(not(at-location ?t ?y1))

)

)

(:action unload_truck

:parameters (?b - brand ?t - truck ?l - location)

:precondition (and

(at-location ?t ?l)

(>(in-truck-sugar ?b ?t)0)

)

:effect (and

(increase (in-storage ?l ?b)1)

(decrease (in-truck-sugar ?b ?t)1)

(increase (truck-cap ?t)1)

)

)

)
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