
3ý ýýs3

An Intelligent Design Support Environment
The application of Intelligent Knowledge-Based Systems and

Advanced HCI Techniques to Building Design

James H. Rutherford, B. A. (Hons), MSc.

A Thesis Submitted
for the degree of Doctor of Philosophy

Department of Architecture and Building Science
University of Strathclyde, Glasgow.

July 1990

The copyright of this thesis belongs to the author under the terms of the

United Kingdom Copyright Acts as qualified by the University of
Strathclyde Regulation 3.49. Due acknowledgement must always be

made of the use of any material contained in, or derived from, this

thesis.

ABSTRACT

Building design is becoming an increasingly complex process. Technological

advances in building materials and construction methods have necessitated the

specification of more rigourous regulatory constraints to which the designer must

adhere. Although a diverse range of sophisticated computer based design tools,

addressing the formal functional requirements of building design, exist to assist the
designer in the decision making process, as a result of their sophistication, such tools

often require considerable specialist knowledge of the methodologies employed before

they can realistically be utilized on a routine basis.
As a result a growing interest has developed in intelligent user-interfaces in an

attempt to make complex application software more accessible, maintainable and

extendible. However, owing to inconsistencies between front-ends, the current trend
in user interface management systems tends to propagate the encapsulation of

application functionality within a static, esoteric style of dialogue; restricting interaction

to the lowest common user level and therefore denying the designer unrestricted access
to the embedded methodologies required for creative solution synthesis.

By adopting a communications view of the user-interface, this thesis illustrates
how a dynamically adaptable user-interface, coupled to a multi-level knowledge based

system consisting of surface level models derived from human laws, with deep models
of reasoning, employing non-procedural, opportunistic knowledge acquisition

mechanisms, may be utilised to accommodate the dynamically varying nature of the
design process. The resulting object oriented framework is an intelligent design

support system which isolates the user from the low level aspects of CAD tool
management; enabling experts from different sub-disciplines to access the functionality

of a comprehensive range of design tools in manner suited to their individual

conceptual vocabulary, level of expertise, and idiosyncratic design procedures.
Although the framework described within this thesis is generally applicable

across a range of domains, specific examples of user stereotypes and dialogue

templates used to illustrate the principles behind the system are derived from building

performance assessment and prediction.

PREFACE

PREFACE

Much of the work presented within this thesis has been carried out over a two and a half

year period of which; two years where spent working on a collaborative, SERC

funded, research program between ABACUS and the Informatics Division of the
Rutherford Appleton Laboratory, to develop an Intelligent Front-end for energy

simulation, and more recently a preliminary investigation has been undertaken to

explore the theme of intelligent design assistance which forms the basis of this thesis.
Owing to the collaborative nature of the research it is impossible to describe the

contributions made without referring to the work of other individuals. Therefore this

work is described in as much detail as is necessary to establish contextual reference

points and is acknowledged accordingly.
Research in the area of user interface design, artificial intelligence, and human

computer interaction in general is extensive and much has been documented. It is

impossible to reference or even be aware of all the existing, related literature within each

of these domains. Inspiration for the work documented within this thesis has been

drawn from front-line research and existing literature. All attempts have been made to
identify original sources of ideas which have directly or indirectly influenced this

research. For this purpose a bibliography is provided.
The progression of ideas generated by this research is difficult to represent

sequentially. In the interest of the reader and the production of this thesis it should be

noted that this thesis does not represent the chronological development of ideas but

attempts to present them in a logical coherent manner.

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

The author is indebted to a number of people who have given invaluable guidance
throughout the term of research and therefore contributed to the production of this

thesis.

Acknowledgements are given to my supervisor, Professor Tom Maver, who,

amidst his busy international schedule and commitments as director of ABACUS and

chairman of the department of architecture, has provided perceptive guidance and

encouragement throughout the various stages of research and structuring of this thesis.
In addition to making this research both possible and enjoyable, he has also enabled me
to complete this work within a three year period by providing unlimited access to

resources and allowing me time to complete the production of this thesis.

I am especially grateful to Dr. Alan Bridges who has been a constant source of
information and inspiration, providing informal supervision and direction. His incisive

comments, after reading this thesis in draft form, have enabled me to refine the final

copy before submission.

The author wishes to express his thanks and gratitude to Professor Joe Clarke,

Director of the Energy Simulations Research Unit, University of Strathclyde, and to Mr
Damian Mac Randal, of the Informatics Division at the Rutherford Appleton
Laboratory, who has been a constant source of inspiration and guidance, providing
invaluable feedback and assistance in resolving technical problems during the
implementation of the forms package and resource handler. I am especially grateful for

the patient and informal tuition in C, object oriented programming and interface design

methodologies during the initial stages of the We project, enabling me to progress so
quickly.

I also wish to thank Mr Andy Brown and Mr Frank Horton of Liverpool
University for their continued encouragement and for allowing me to abuse their
valuable resources and facilities during the Easter vacation.

Finally I wish express my thanks to my colleagues at ABACUS for tolerating my
erratic working hours and to my parents who have supported me all the way.

FIGURES AND TABLES

List of Figures and Tables

Figure: 2.1.1.
2.3.1.
2.3.2.
2.3.3.
2.5.1.
2.5.2.1.
2.5.2.2.
2.5.2.1.1.
2.5.2.1.2.
2.5.2.1.3.
2.5.2.1.4.
2.5.5.1.

2.5.6.1.1.
2.5.8.1.
2.5.9.1.
2.5.9.2.
2.5.9.1.1.
2.6.1.1.

3.2.1
3.2.2.
3.3.1.
3.4.1.
3.6.1.3.
3.7.1.
3.7.1.1.1.
3.7.1.2.1.
3.7.2.1.
3.7.2.2.
3.7.2.3.
3.7.2.1.1.
3.7.2.1.2.
3.7.2.1.3.
3.2.7.5.1.
3.2.7.5.2.
3.7.2.6.1.

A classical, procedural model of the design process ..
5

Multiple Design resources ..
8

Communication cycle in problem solving ..
9

-Four individuals' view of the same design space data
9

Intermingled I/O and application specific routines ..
16

Typical UIMS in Context ...
18

Sassafras reference model ...
19

Typical state transition network ...
19

Top-level state transition diagram from the RAPID/USE system
20

Dialogue description fragment 21
I/O and application specific routines separated by a state transition network

1
A Block Interaction Model of the knowledge a user brings to using a computer
system

27
User modelling in other research areas ...

28
Expert Log Analysis System (ELAS) ..

33
Example of the classical expert system structure ...

34
Typical blackboard model ...

34
Blackboard control modules and oportunistic knowledge sources 35
Current We Configuration [IFE 89] ..

38

Concept Sharing between two cognitive systems
41

Strategy for the conceptual decomposition of mental models 41
Transferral process ..

42
The relationship between memory regions and communication

43
Communication overloading .. 49
User adaptable system ... 5 5
Expansion (elaboration) and contraction of conceptual models 58
Conceptual re-phrasing by the dynamic substitution of concept interpreters.......... 59
A generic concept interpreter .. 61
Instance library ... 62
Generic and specific instance data ... 62
Conceptual interpreters ... 6 3
Dynamically alterable n-level hierarchical architecture 63
Contextual concept template and instance list ... 64
Formatted user utterance .. 67
Direct manipulation of concepts .. 67
Current domain and user focus pointers .. 68

4.3.3.1.
4.4.1.
4.6.1.
4.7.1.
4.7.1.1.1.
4.7.1.1.2.
4.7.1.2.1.
4.7.1.3.2.1.
4.7.1.4.1.
4.7.1.5.1.
4.7.3.1.1.
4.7.7.1.1.
4.7.7.1.2.
4.7.7.1.2.1. a.
4.7.7.1.2.1. b.
4.7.7.1.2.1. c.
4.7.7.2.1a & b.
4.7.7.2.1 c.
4.7.8.1.1.1.
4.7.8.1.1.2.
4.7.8.1.1.1.1.
4.7.8.1.1.1.2.

Toolkit layers
...

75
Concept and interpreter

.......... .. 77
Concept and basic free response interpreter

.. 79
Standard menu and help window ... 8 0
Field selection .. 81
Tracking the cursor............ .. 81
On-line assistance for individual concepts .. 83
Help window scrolling cursor patterns ... 85
Transferring data to and from the previous value store 86
Dynamic menu .. 8 7
Invalid mouse event. .. 89
Simple text editing, using ww tx function set .. 91
Selection accelerators............... ... 92
Selecting text to copy into another field

.. 93
Activating the edit menu .. 94
Selected text copied into current, active field

... 94
Manipulation of symbolic diagrams ... 95
All objects re-positioned ... 9 6
Conceptual view of a button field as a two state (Boolean) selection field

97
User interaction with button field ... 98
% grey scale pattern ORed to obscure text and images

......................................
99

Bit alignment ... 9 9

4.7.8.1.1.1.3.
4.7.8.1.1.1.4.
4.7.8.1.1.3.
4.7.8.1.1.4.
4.7.8.1.1.5.
4.7.8.1.1.6.
4.7.8.2.1.1.
4.7.8.2.2.1.
4.7.8.2.2.2.
4.7.8.2.2.3.
4.7.8.2.2.4.
4.7.8.2.3.1.
4.7.8.2.4.1.
4.7.8.2.4.2.
4.7.9.1.
4.7.9.1.1.
4.7.9.1.2.
4.7.9.2.1.
4.7.10.1.1.
4.7.10.2.1.
4.7.10.2.2.
4.7.10.3.1.

4.7.10.5.1.
4.7.10.5.2
4.7.1 0.6.2.1.
4.7.10.8.1.
4.7.10.8.3 1.
4.7.10.8.3 7.
4.7.10.8.4.1.
4.7.10.8.4.2.
4.7.1 0.8.4.3.
4.8.1.
4.8.2.1.1.
4.8.3.1.
4.8.3.2.
4.8.4.1.1.
4.8.4.1.2.
4.8.4.1.4.
4.9.4.2.1.
4.9.4.2.2.
4.9.4.2.3.
4.9.4.3.1.
4.9.4.3.2.

5.1.1.
5.4.1.
5.6.2.1.
5.8.1.
5.8.2.
5.8.3.
5.8.4.
5.8.5.

5.8.6.
5.8.7.
5.8.9.
5.8.10.
5.8.11.
5.8.12.
5.9.5.1.

6.6.1.
6.6.2.

Alignment of text characters ...
100

Bit alignment and registration ..
100

Button field ..
102

Button field ...
102

Button field ..
102

Button field.........
102

Conceptual view of a button field as a multiple choice selection mechanism.......... 104
Cross section through image stack ...

105
Cascading pop-up field

..
105

Popup field ...
10 6

Popup field ..
107

Menu field... 10 8
File browsing field ... 109
Re-scanning and search specification menu .. 109
Forms directory structure ... 111
Date format specification ... 112
Date field ... 113
Viewer display field .. 114
Conceptual view of a form

.. 116
Dynamic (re)sizing..... ... 116
Dynamic substitution of bitmap pointers . .. 117
Cursor patterns indicating scrolling direction for form page/window
variations ... 118
Form stack ... 119
Popping forms

.. 119
Detaching a form

...................... ... 121
Directing input events to a field or form

... 122
Current focus HI 125
Transition between focus Cl and B1 ... 128
Linear node list 129
Absolute paths of current and target fields traced back to root (desktop) 129
Common path between current and target fields .. 130
Connection between the forms package and an external knowledge source............ 131
Software IC....... 134
Bitmap operations for soft de-focus .. 137
Soft focus and defocus ... 138
Absolute addressing /A/B/E .. 14 0
Symbolic addressing c@E ... 141
Relative addressing .. 142
Free response origin and size datums ... 153
Restricted (Boolean) response origin and size datums

...................................... 153
Restricted response (multiple choice) origin and size datums

............................. 153
Field position using character coordinate system ... 154
Field alignment problems .. 15 4

Inter-client communication .. 160
Current We directory structure ... 168
Focus concept ... 172
Free response ... 175
Restricted response .. 17 5
Re-phrased restricted response .. 17 5
Re-phrased free response field.. 176
Location re-phrased by restricted graphical interpretation using map
programme .. 17 6
Re-phrased restricted response fields

... 177
The TAILOR generatative description system .. 179
Constituency schema .. 180
Process trace .. 18 0
Constituency Schema (with decision points) ... 181
Process Trace strategy and its decision points ... 181
Free response field with defaults .. 184

Master form ... 191
Master form ... 192

6.6.3.
6.6.4.
6.6.5.
6.7.1.1.
6.7.2.1.
6.7.2.2.
6.7.2.3.
6.7.2.4.
6.7.2.5.
6.7.2.6.
6.8.1.
6.8.2.
6.8.1.1.
6.8.1.2.
6.8.1.3.
6.8.1.4.
6.8.1.5.
6.8.1.6.
6.8.1.7.
6.8.2.1.
6.8.3.1.
6.8.3.2.
6.8.3.3.
6.8.3.4.
6.8.5.1.
6.8.5.2.
6.8.4.1.
6.9.1.
6.9.2.
6.9.3.
6.9.4.
6.10.1.
6.10.1.1.
6.10.1.2.
6.10.1.3.
6.10.2.1.
6.10.2.1.
6.10.2.2.
6.10.2.3.
6.10.2.4.

Switching between conceptual models ...
193

Entering the project name ..
194

Topics for discussion ..
195

Site location default concept menu ...
196

Site location default concept menu ...
197

Location contextually relevant domain defaults
...

198
Location re-phrashed (graphically) and re-described ..

199
Time zone ..

200
Domain menus for building environment and function

....................................
201

Expert description of building environment in terms of site exposure index.......... 202
Detailed building specification ..

203
Building specification focii form

...
204

Geometry description (root) form ...
205

CAD file form ...
206

Utilising a 3rd party CAD package for the definition of building geometry 207
Geometry import form ..

208
REC instance body ...

210
REG instance body ...

211
GEN body instance form. ...

212
Building construction form

..
214

Multi-layered construction and material specification form
215

Browsing through multi-layered construction types .. 216
Automatic selection of surface in accordance with the construction type 217
Assigning a multi-layered construction type to several surfaces

218
Window opening specification form

...
219

Door opening specification form ... 220
Boundary conditions ..

221
Browse facility

... 222
Browse offering building class and type ... 223
Interactive selection of design exemplars ... 224
Design exemplar selected ...

225
Performance methodologies . .. 226
Defining simulation constraints .. 227
Heating plant sizing script ...

228
Results output from plant sizing script .. 230
Results feedback from energy simulation ... 231
Rippling trough simulation results ... 232
MUlti-functional methodologies ... 233
Interactive 3D display interface

... 234
Monitoring time variant data

.. 235

7.1.1.1. ABACUS viewer terminal interaction
.. 239

7.1.1.2. Perspective image script .. 239
7.1.2.1. Integration of existing software package using protocol interpreters

.................. 240
7.1.2.2. I/O redirection pointers ... 241
7.1.2.3. I/O redirection .. 241
7.1.5.1. Graph-oriented knowledge representation and unification technique

245
7.1.5.2. Solution plan for the task "generate perspective image" 246
7.1.5.3. Possible invocation sequences for the generation of a perspective image

..............
247

7.1.5.4. The MICON System for designing digital computer boards
................................

248
7.1.7.1. Selecting competitive resources .. 249
7.2.2.1. Customising solution plans ... 251
7.3.1.1. Results formatted and a neutral format bitmaped image produced

253
7.4.1. Conceptual Overview of an Integrated Design Environment

.............................. 255
7.5.1. Generic Objects

... 257
7.5.2. Concept Interpreters

.. 257
7.5.3. Abstraction hierarchy .. 25 8
7.5.1.1. Georgian Doorway...

.............
259

7.5.1.2. Example of the decomposition of a product ... 260
7.5.1.3. Interchangeable design solutions

261
7.5.1.4. Functional Units which belong to different Technical Solutions

261
7.6.1. Opportunistic knowledge sources (KS) monitoring areas of a product model.......... 264
7.6.2.1. Selective concept interpreter and data accumulation for question and answer

dialogues
.. 266

7.6.2.2.
7.6.3.1.
7.6.3.2.
7.6.4.1.
7.6.6.1.
7.6.6.2.

8.1.

A. M.
A. 1.2.
A. 2.1.
A. M.
A. M.
A. 3.3.
A. 5.1.
A. 6.1.
A. 6.2.
A. 7.1.
A. 7.2.
A. 7.3.
A. 7.4.
A. M.
A. 11.3.1.
A. 11.4.1.
A. 11.5.
A. 11.6.1.
A. 13.3.1.1.
A. 13.3.1.2.
A. 13.3.3.1.
A. 13.3.4.1.
A. 13.3.9.1
A. 13.3.9.2.
A. 14.1.
A. 14.2.
A. 14.3.

E. 2.1.
E. 2.3.
E. 3.1.
E. 3.2.
E. 3.3.
E. 4.1.
E. 5.1.
E. 5.1.1.
E. 6.1.1.
E. 6.2.1.
E. 6.3.1.
E. 6.3.2.
E. 6.3.2.
E. 6.3.4. a-c.
E. 6.3.5.
E. 6.3.6. a-c.
E. 6.3.6.

Table 4.9.3.2.1.
4.9.3.2.2.
5.5.1.
5.8.1.

Viewer dialogue frame - Input all. ...
267

Networked processing nodes ...
268

Networked File System ..
268

Distributed concurrent design environment (virtual design workstation)
270

Current We file structure ..
272

File structure for an intelligent design assistant. ...
273

Plug compatible interaction tools .. 277

Schematic view of multiplexor ..
281

Event polling - ipfwait()
..

282
FDSET - Extract from ww library ... 284
Main event notifier .. 285
Inform structure ... 285
Noop - blank routine .. 286
Event tokens .. 287
Pipe event handler ... 287
Pipe event parser ... 288
User set ... 289
Notify proc structure. .. 289
User Set Event handler (default) ... 290
Tail function

... 290
Example NotifyProc structure .. 291
Defocus

... 293
Focus event - the window (desk) has been opened ... 294
Resize event - the window has changed size .. 295
The user wishes to terminate the dialogue ... 296
Ask user - initial state ... 298
ask_user("usemame')... 298
tell user(.. @usemame". getenv("LOGNAME")) .. 299
offer user("materials", bricklblocklconcreteltimber")

..................................... 299
Duplicate list handler ... 302
Field duplication protocol ... 305
Simple program ... 306
Vpict - interface

... 307
VPict - source code .. 308

Fractal tree primitive with impresionistic foliage
.. 391

Fractal trees with impressionistic foliage clumped together 392
Translate and rotate .. 393
Object referencing .. 393
Example of Object referencing ... 394
The Glasgow Flourish

.. 395
Introverted Software IC

.. 396
Object script. .. 397
Glasgow Flourish and interface .. 401
Newton's Cradle

... .. 402
Wireline model of chess set .. 403
Initial model state .. 404
Final model state ... 404
Intermediate scaling ... 405
Alternative views of the same problem space .. 406
Simple Scaling

... 407
Virtual reality ... 408

Field creation attributes ... 149
Field attributes .. 149
We communication mechanisms .. 170
Suggested dictionary of concepts ... 178

CONTENTS

Table of Contents

1. Introduction ..
1

" 2.1. Computer Applications as Design Resources / Assistants ...
5

2.2. Software design methodologies and design practice ...
5

-2.2.1. Function oriented software ...
6

2.2.2. Data oriented software ..
6

2.23. The Traditional role of computers in design ..
7

2.3. Design Assistance as an activity -a communications view ...
8

2.4. The quest for an integrated computer based design environment .. 10
2.5. Existing solutions to interface consistency and software integration

.................................
15

25.1. The use of high-level graphics toolkits
15

25.2. User Interface Management Systems (UIMS) and Front Ends
............................. 17

2.5.2.1. Dialogue orchestration in UIMSs
.. 19

2.5.2.2. Encapsulation
..

24
2.5.2.3. Code structure .. 25
2.5.2.4. Mode Locked operations ...

25
2.5.2.5. Modeless operations ...

26
2.5.2.6. Explicit semantics .. 26

2.5.5. The end user's task 27
2.5.6. Intelligent User Interface Management Systems (IUIMS). or intelligent Front-

Ends (IFE)
... 28

2.5.6.1. User Modelling .. 28
2.5.6.2. Encoding knowledge ...

30
2.5.7. Artificial Intelligence (Intelligent knowledge based systems (IKBS)) in design

consultancy .. 32
2.5.8. Multi-level knowledge systems ... 32
2.5.9. Blackboard systems ... 33

2.5.9.1. Blackboard data structures ... 35
2.5.9.2. control and distributed problem solving 36
2.5.93. Knowledge sources in dialogue systems 36

2.5.10. A generic solution ... 37
2.5.10.1. THE Intelligent Front End ... 38
2.5.10.2. We System modules ... 38

3. The User Interface ... 40
3.1. Communication

... 40
3.2. Communication in Design Decision Making -A generalised model of communication

between two cognitive systems .. 40
33. The process of communication -a generalised view ... 42
3.4. Human information processor ... 42
3.5. User Psychology ... 43

3.5.1. User adaptability ... 43
3.5.2. Information Acquisition .. 44
3.5.3. Closure 45
3.5.4. Subject Meaningfulness and Familiarity .. 45

3.6. Communicating with Computers as cognitive systems ... 46
3.6.1. A traditional view of computer applications ... 47
3.6.2. Dialogue styles and interaction mechanisms ... 49
3.6.3. The Dialogue Dilemma

. .. 50
3.6.4. Command language interfaces

... 52
3.65. Natural language -a complete solution .. 53
3.6.6. Adaptable Human-computer interfaces and user modelling -A language view of

computer applications ... 53
3.7. An Adaptable user interface in context ... 55

3.7.1. semantic variation 57
3.7.1.1. Re-description of Conceptual models ...

58
3.7.1.2. Re-phrasing .. 59

3.7.2. A generic architecture ... 61
3.7.2.1. Interfaces ... 62
3.7.2.2. Concept interpreters

..
64

3.7.2.3. A basic taxonomy of concept interpreters
.....................................

65
3.7.2.4. Interface portability .. 65

3.7.2.5. Genetic control mechanisms
66

3.7.2.6. Maintaining the focus of discussion and directing input
68

3.8. Summary ...
68

3.9. An appropriate metaphor ...
69

4. The forms package ..
72

4.1. Why a form filling metaphor? ...
72

4.2. Design methodology ..
73

4.3. Portability considerations ..
73

4.3.1. Window environment ...
74

4.3.2. Toolkit layers ...
74

4.3.3. Hardware platforms ..
75

4.3.4. Higher Level ToolKit ...
75

4.3.5. Colour ..
76

4.4. Architecture
77

4.5. Concept interpreters -A framework for consistency ..
78

4.6. A generic concept interpreter ..
79

4.7. End-user interface - Common concept events ... 79
4.7.1. Domain independent response (command menu) .. 81

4.7.1.1. Selection item ... 81
4.7.1.2. On-line assistance items ...

82
4.7.1.3. The help window .. 83

4.7.1.3.1. Moving the help window ... 84
4.7.1.3.2. Scrolling the help window .. 84
4.7.1.3.3. Destroying the help window 85

4.7.1.4. Default values and error recovery ... 86
4.7.1.5. Domain specific response ... 87
4.7.1.6. Popup menus ... 87

4.7.2. Interpreting mouse events ... 88
4.7.3. Feedback and acknowledgment .. 89

4.7.3.1. Invalid mouse events ... 89
4.7.4. Concept interpreters - three basic types ... 89
4.7.5. Visual cues .. 90
4.7.6. label - generic concept identifier ... 90
4.7.7. Free response ... go

4.7.7.1. Text fields 91
4.7.7.1.1. Derived Character validation fields 93
4.7.7.1.2. Cutting and pasting from other text fields 93

4.7.7.2. Graphics field .. 94
4.7.8. Restricted response .. 97

4.7.8.1. Boolean field ... 97
4.7.8.1.1. Button

..... .. 97
4.7.8.1.1.1. Obscuring concept values 98
4.7.8.1.1.2. Selection dilemma 103

4.7.8.2. Multiple choice .. 104
4.7.8.2.1. Button .. 104
4.7.8.2.2. Cascading popup ... 104
4.7.8.2.3. Menu .. 108
4.7.8.2.4. File browsing ... 108

4.7.83. Sliders ... 110
4.7.9. Obscure functionality ... 111

4.7.9.1. Date........ 111
4.7.9.2. Viewer display field ... 114

4.7.10. Meta-concept interpreters .. 115
4.7.10.1. Forms

...................................... .. 115
4.7.10.2. dynamic memory allocation and (re)sizing 116
4.7.10.3. scrolling .. 117
4.7.10.4. desk .. 118
4.7.10.5. Refresh .. 119
4.7.10.6. removing distractions

.. 120
4.7.10.6.1. Iconising ... 120
4.7.10.6.2. Detaching a form .. 120

4.7.10.7. Types of input .. 121
4.7.10.8. Directing input ... 122

4.7.10.8.1. Selecting and de-selecting fields using the keyboard
123

4.7.10.8.2. De-selection using the keyboard -a dilemma
..................

123

4.7.10.8.3. Selecting a field using the mouse 125
4.7.10.8.4. A brute force method - depth first (Linear) search 129
4.7.10.8.5. Implied selection ... 130

4.8. Application interface
. .. 131

4.8.1. Notification ... 132
4.8.2. Control ... 133

4.8.2.1. Control methods .. 134
4.8.3. Soft focus .. 136
4.8.4. A Communications protocol for unrestricted discourse 139

4.8.4.1. Addressing concepts .. 140
4.9. Proforma interface .. 143

4.9.1. Declaration of a concept - Proforma files ... 144
4.9.1.1. Building a conceptual model .. 145
4.9.1.2. Defaulting .. 147

4.9.2. Customising the forms package .. 147
4.9.2.1. Defining menu items

... 148
4.9.2.2. Inheritance

. .. 14 8
4.9.2.3. Generic attributes ... 149

4.9.3. A guide to developing a proforrtta user interface ... 152
4.9.3.1. Size .. 153
4.9.3.2. Origin 153
4.9.3.3. Positioning fields within a character grid 154
4.9.3.4. label string ... 154
4.9.3.5. label position .. 155
4.9.3.6. border and selection border

.. 155
4.9.3.7. Extending character validation ... 155
4.9.3.8. The de-selection dilemma

.. 156
4.9.3.9. Synonyms .. 156
4.9.3.10. Re-usable concepts .. 156

4.9.4. Command line arguments .. 157
4.10. Mistakes

.. 157
4.10.1. selection border .. 157
4.10.2. bitmaps

.. 15 8
4.11. Summary

.. 15 8

5. The Intelligent front end ... 159
5.1. Inter client communication ... 1 59
5.2. Orchestrating user dialogue

... 160
5.2.1. A high level neutral language

... 161
5.3. Blackboard data ... 166
5.4. Organising knowledge

. ... 167
S. S. Blackboard communication predicates .. 169 5.6. Monitoring user dialogue

... 171
5.6.1. Modifying the user interaction

.. 171
5.6.2. Focusing the user .. 172

5.7. Structuring a knowledge base for re-description .. 173
5.8. Re-phrasing

... 175 5.9. User modelling .. 182 5.9.1. Monitoring user actions .. 182
5.9.2. Query events .. 182
5.9.3. Action events ... 183
5.9.4. Response time .. 183
5.9.5. Errors

... 183
5.9.6. Determining the user's level of experience ... 184 5.10. Employing application programs to solve problems ... 185
5.10.1. Task specification ... 186 5.11. supporting digression ... 188

5.12. An example .. 18 8

6. The Application of the We to building performance assessment and prediction 189 6.1. Designer
.. 189 6.2. Engineer
.. 189

6.3. Modeller
.. 190 6.4. Experience level

.. 190 6.5. A conceptual model for building description
.. 190 6.6. Master form

.. 191

6.7. Building description - Contextual information
...

196
6.7.2. Site location - an example of re-description and re-phrasing

197
6.8. Specific project related information

..
203

6.8.1. Geometry specification ...
205

6.8.2. Construction definition .. 214
6.8.3. Material specification ..

215
6.8.5. Openings in multi-layered constructions ...

219
6.8.4. Intersections .. 221

6.9. Supporting what if - browsing and retrieving existing models .. 222
6.10. Analysis - Performance methodologies .. 226

6.10.1. Defining constraints .. 227
6.10.2. Results, interpretation, formatting and feedback .. 231

7. Intelligent Design Assistance .. 237
7.1. Traditional assistance ... 237

7.1.1. Integrating existing software - (deep models of knowledge) 238
7.1.2 Resource integration using protocol interpreters .. 240
7.1.3. A generic resource description .. 242
7.1.4. Automated task analysis .. 243
7.1.5. Problem analysis and solution synthesis ... 243
7.1.6. Evaluating solution plans .. 248
7.1.7. Selecting and scheduling competitive resources ... 249

7.2. Resource Manager - Solution synthesis engine for automated knowledge acquisition 249
7.2.1. Encapsulation

.. 250
7.2.2. Customizing solution plans ... 251
7.2.3. Revision control and tracking .. 252

7.3. Abstract referencing ... 252
7.3.1. Formatting results ... 253
7.3.2. Constructive criticism .. 254

7.4. Conceptual overview of an integrated design environment .. 255
7.5. Model Description

... 256
7.5.1. Object relationships .. 259
7.5.2. Data management .. 263

7.6. Object monitoring ... 263
7.6.1. Active resources .. 265
7.6.2. Concept filtering .. 266
7.63. Utilising distributed resources .. 267
7.6.4. Virtual design workstation ... 268
7.6.5. Security

.. 271
7.6.6. Handling multiple design domains

... 272

8. Conclusion and Future developments .. 275

APPENDICES1

A. Inform communications library ..
280

A. I. Synchronous 110 multiplexing ..
280

A. 1.1. Pipe read event ...
283

A. 2. System compatibility ...
284

A. 3. Event Notifier ...
284

A. 4. Inform data structure ...
287

A. 5. Pipe event ...
287

A. 6. Processing pipe events ...
287

A. 7. USER_SET event handler
...

289
A. 8. Handling window events ..

291
A. 9. Mouse events ...

291
A. 10. keyboard events ..

292
A. 11. USER ACTION events ..

292
A. 11.1. Deselect ..

292
A. 11.2. Select

...
292

A. 113. Defocus
...

293
A. 11.4. Focus

...
294

A. 11.5. Resize event ...
295

A. 11.6. Kill event ..
296

A. 12. USER QUERY Events
...

297
A. 13. Transmitting messages to the forms package ...

297
A. 13.1. ConForm

...
297

A. 13.2. Addressing concepts ..
297

A. 13.3. High level dialogue interface ..
298

A. 13.3.1. Ask user ... 298
A. 13.3.2. UnAsk user ... 299
A. 13.3.3. Tell user ... 299
A. 13.3.4. Offer user ... 299
A. 13.3.5. Suggest-user ... 299
A. 13.3.6. Focus user .. 300
A. 13.3.7. Defocus_user ... 3 00
A. 13.3.8. Current focus ... 300
A. 13.3.9. Field Duplication .. 301

A. 14. Example applicationS ... 306

B. Proforma templates ... 307

C. Icons
.. 348
C. I. Concepts represented graphically on the master form .. 348
C. 2. Concepts represented graphically on the geometry forms ... 348
C. 3. Concepts represented graphically on the construction openings form

................................
349

C. 4. Concepts represented graphically on the construction materials form 349

D. Knowledge bases .. 368

E. 3D object viewing and manipulation (visulising time variant data) .. 388
E. I. Object definition ... 388
E. 2. Trees

.. 389
E. 3. Multiple instances

.. 392
E. 4. The camera 394
E. S. Software ICs and objects scripts .. 395

E. S. I. Object Scripts 396
E. 5.2. References to geometrical bodies ... 398
E. 5.3. Script Syntax ... 398
E. 5.4. Methods ... 399

E. 6. Examples
......... .. 400

E. 6.1. Glasgow Flourish
.. 401

E. 6.2. Newton's Cradle .. 402
E. 6.3. Interactive 3D models ... 403

Bibligraphy and References .. 404

1 S-- code is not included owing to size the forms package done nuns into 20.000 lines of C code.

1,. INTRODUCTION

1. INTRODUCTION

Building design has become an increasingly complex process. Technological

advances in building materials and construction methods has necessitated the

specification of more rigourous regulatory constraints to which the designer must

adhere; focussing upon a divers range of issues; from the visual impact of buildings in

their surroundings, through to the efficient utilisation of energy resources.
In response to the increasing demands placed upon the designer a new

generation of design tool has emerged to assist in design decision making; ranging

from the realistic contextual visualisation of design solutions, to the detailed appraisal

of the operational performance of environmental control systems, such as heating and

lighting.
Despite increasing interest and investment in Computer Aided Building Design

(CABD) within the last two decades, there is still, however, an apparent lack of useful

of CABD packages. Currently substantial investment is directed towards the

development of tools such as computer aided drafting packages which facilitate the

output of production information but which contributes nothing to the activity of
design decision making [MAUER 90].

Although a diverse range of sophisticated computer based design tools,

addressing the formal functional requirements of building design, exist to assist the
designer in the decision making process, as a result of their sophistication such tools

often require more data input before they can realistically be utilized on a routine basis.

Sophisticated design tools are often the product of academic institutions. While such
developers are expert in their own field, they tend to have only a rudimentary
knowledge of computer science techniques and methodologies relating to the issues of
human computer interaction. The type of data required is usually of a specialist nature

requiring expert knowledge of the methodologies employed. The production of good
(friendly) user-interfaces accounts for more than sixty percent of the development cost

of any application program. Funding for research often only covers the cost of
implementing the most basic of interaction mechanisms. As a result systems tend to be:

" discrete and domain specific,

" monolithic, functionally bound, and un-maintainable,

" machine dependant,

" unfriendly.

1

Not surprisingly such design tools are often confined to use as consultation aids,

never reaching design practice.
The solution to complex real world problems requires the coordinated and

incremental efforts of many designers and experts. In order to support the functional

requirements of such a coordinated computer based design environment, a broad

spectrum of computing facilities ranging from simple PC's, through workstations to

supercomputers is required together with an appropriate project data management

system. Idiosyncrasies in the control protocols and a general incompatibility between

the data abstractions of one design tool and another tends to impair computer aided

design practice of this kind.

While standards are being developed to alleviate the transfer of product

information between systems general acceceptance may take some time. With the

specification and introduction of standards for the exchange of production information

historical evidence indicates continued rivalry between vendors; no one seems to be

able to agree on any one particular solution. Consequentially utility tools have to be

provided to filter data between different representations resulting in project

management problems. The designer, rather than being able to concentrate on the task

at hand, is faced with the distracting and often hostile issues of system programming

and administration.
The procedural nature of the dialogue employed by many design tools requires

that a complete description of a solution is provided before any benefits can be gained.
It is often impossible to utilise such design tools with incomplete, partial solutions.
Application programs therefore tend to be used in isolated instances often out of

context of the overall design solution and usually in a post hoc checking mode.

While many attempts at providing integrated design environments in other

problem domains (such as MICON for electrical engineering) have been successful

such solutions often tend to be domain specific and therefore difficult to extend to

other problem domains.
A fundamental dilemma also exists between making an application easy for

inexperienced computer users to employ and ensuring that the design tools are

sufficiently powerful and comprehensive for the more proficient designer.

As a result a growing interest has developed in intelligent user-interfaces, in an

attempt to make complex application software more accessible, maintainable and

extendible. However, owing to the lack of integration and poor front-ends, the current
trend in user interface management systems tends to propagate the encapsulation of

application functionality within a static style of dialogue; restricting interaction to the

2

lowest common user level and therefore denying the designer unrestricted access to the

embedded methodologies required for creative solution synthesis.
By addressing these fundamental problems this thesis aims to identify a number

of basic generic methodologies for user-interface development based upon the work

undertaken during the IFe project and extend the principles into a generic framework

capable of accommodating and managing existing knowledge resources and design

tools [RUTHERFORD 89] within a coherent user environment
Although this thesis does not aim to solve all of the problems associated with

CABD it aims to illustrate how intelligent knowledge based systems (IKBS) and

advanced human-computer interaction (HCI) methodologies may be utilised to provide

an integrated environment and so support intelligent design assistance. Such a system

should:

" enable experts from different sub-disciplines to access the functionality of
a comprehensive range of design tools in manner suited to their individual

conceptual vocabulary and idiosyncratic design procedures, and enable
designers of different levels of experience to make useful contributions to
emerging design solutions by providing a dynamically adaptable user
interface,

" isolate the user from the low level aspects of CAD tool management by

providing a design procedures and domain knowledge layer between the
interface and CAD tool environment,

" provide mechanisms to enable designers to access knowledge and tools
from other domains,

" provide intelligent, contextually relevant assistance and defaults and hence
accommodate partial design solutions and incomplete knowledge thus
supporting exploratory design,

" facilitate the rapid integration of new and existing design methods to
accommodate shifts in design standards and methodologies in a consistent
and totally transparent manner to the end user and knowledge engineer,

" automate the acquisition of knowledge and data from incidental design
task tools in order to isolate the designer from the operational
inconsistencies arising as a result of this response to changing design
procedures,

3

" allow the customization of existing design solution plans facilitating rapid

prototyping,

" offer distributed/parallel processing support to speed solution evaluation

and synthesis,

" provide an open system architecture to accommodate the integration of the

different types of knowledge required to support such a design

environment and identify a generic communications protocol; enabling
knowledge modules and tools to be tested in isolation and hence allowing

contributions from a wide range of sources to be incorporated without
disturbing the overall system.

In order to achieve these aims and construct a generic design environment a

suitably powerful and flexible computing platform is required. A distributed multi-

tasking UNIX environment is therefore assumed.
A pilot study, presented to the SERC IT initiative group, was undertaken to

investigate the issues involved in Intelligent Design Assistance [RUTHERFORD 89].

A strategy has been formulated based upon the nature of the design process in terms of
inter-disciplinary communication which, it is hoped, yields a sufficiently flexible

framework.
Chapter 2 of this thesis identifies existing IKBS and HCI techniques and

highlights the deficiencies of existing design principles and methodologies for

software development, proposing that the generic infrastructure of the Intelligent

Front-end (IFe) [Clarke, MacRandal, Rutherford] is sufficiently flexible to provide a

solution to these inadequacies by accommodating the requirements of the brief.

Chapter 3 discusses, in broad terms, the issues involved in human computer

communication placing particular emphasis on the issues involved in providing a
generic adaptable user interface an instance of which (forming an integral part of the
IFe), with the necessary control mechanisms for implementing and orchestrating a
dialogue with the user, is described in chapter 4.

The subsequent section documents the collaborative contributions of Damian

MacRandal and Professor Joe Clarke placing the interface in the context of the IFe.

The application of the We to energy simulation is illustrated in chapter 6 while chapter
7 extends the principles described in the previous sections and suggests ways in which
this generic infrastructure may be used to support intelligent design assistance. A

number of generic interaction modules are also illustrated in accompanying appendices

4

2. EXISTING SOFTWARE DESIGN
METHODOLOGIES AND

TECHNIQUES.

2.1. COMPUTER APPLICATIONS AS DESIGN RESOURCES /
ASSISTANTS

The role of the designer, is to produce a complete physical specification, product

model, the purpose of which is to provide enough detailed information for the

production of the artifact described therein.

In an attempt to assist the designer in his/her decision making processes, by

identifying sequences of logical operations and phases within the design process that

could easily be mechanised, once generalised, systematic design methods [CROSS

77], such as the structural analysis of building components, have evolved in the form

of computational software systems resulting in a new class of design resource;

computer aided design (CAD) packages.

End

Yes

Analyse Synthesize
problem solution Hoi

Evaluate
solution

Modify
solution

Figure 2.1.1. A classical, procedural model of the design process [MARKUS, MAUER 721.

Models of design such as the procedural Markus, Maver model, figure 2.1.1,

and the far less formal approaches of the product semanticists [KRIPPENDORF 89]

are mirrored in contemporary software design methodologies. How a software system
is designed and implemented therefore influences the usefulness of that system as a
design tool.

2.2. SOFTWARE DESIGN METHODOLOGIES AND DESIGN
PRACTICE

A software system is a set of mechanisms for performing certain actions on certain data
[MEYER 88] and may be categorised by one of two software design methodologies:

i) function oriented, and
ii) data/object oriented.

5

2.2.1. FUNCTION ORIENTED SOFTWARE

A function oriented software system is one whereby sequences of operations are

performed on a given set of data in a pre-defined and systematic way. Such systems

are procedural quantitative data processors and are therefore more suited to analytical

applications where a design solution has already been formulated. The style of

dialogue employed is also often procedural in nature (question answer) and static.

Functionally oriented CABD systems often do not allow solutions to be modified

interactively and applications usually have to be re-initialised from scratch and re-run.

Current CABD systems of this form are therefore difficult to use in creative

exploratory situations where the problem definition may often be changing or

incomplete. Function oriented systems are therefore restrictive in their application to

creative design procedures. Any design framework developed must be capable of

accommodating incomplete descriptions (partial knowledge) of the emerging design

solution.

2.2.2. DATA ORIENTED SOFTWARE

The basic premise behind object oriented methodologies is that a software system

throughout its diverse forms will almost certainly manipulate the same kind of data

[MEYER 88] at least if viewed from a sufficiently high level of abstraction. An object
is the encapsulation of two basic entities, normally kept apart in traditional software
languages, namely [HOPKINS 89]:

" data - the state of the object is maintained within that object,

" code - the functional/behavioural mechanisms for modifying and enquiring
about the current state (data) of the object are also kept within the object.

An object may therefore be seen as a totally self-contained and self-sufficient
data cell; each class of object containing a set of methods for manipulating the data

contained within it may be accessed simply by passing messages to object instances.
Objects may be defined hierarchically, with new object classes inheriting both
functional and behavioural characteristics, from existing object classes.

Data or object oriented software systems are therefore much more open and
flexible. In terms of interaction they are far less procedural than function oriented

software systems and perhaps more appropriate to creative design processes requiring
direct and unrestricted manipulation of ideas and concepts held as data.

6

The methodology employed can therefore affect the usefulness of a software system as

a mechanism to the creatively manipulate objects and ideas in an unrestricted manner.

2.2.3. THE TRADITIONAL ROLE OF COMPUTERS IN DESIGN

Despite the increasing interest and investment in computer aided building design

(CABD), within the last two decades, there is still an apparent lack of useful CABD

packages for design practice. This is a result of the fact that, spurred by the conviction

that it is possible to isolate, generalise and finally translate design processes and

operations into programs, "architectural CAD researchers have adopted the classical

approaches of industrialized automation" [CARRARA 88], exhibited in Systems

Theory and Operations Research [HASHIMSHONI 78, SHAVIV and GALI 79],

resulting in procedural, function oriented mechanisms. Current investment by

software developers, influenced by academic research, is therefore directed towards

systems such as computer aided drafting packages which facilitate the output of

production information only and contribute nothing to the creative and intuitive activity
of design decision making [MAVER 90].

Packages that do address the formal functional requirements of building design,

although useful in their own right, tend to be discrete and domain specific.
Traditionally developers of CAD packages have concentrated largely on limited
(specialized) aspects of design (eg structural design, energy efficiency and other
quantitative aspects) creating discrete design tools.

Regardless of how design is defined "solutions to complex real-world problems
result from the combined and incremental efforts of many experts" [WILLIAMS 88]

and designers.

7

2.3. DESIGN ASSISTANCE AS AN ACTIVITY -A
COMMUNICATIONS VIEW

Design assistance is the utilisation of specialist, expert consultants, design resourcesi,
to supplement a designers own design experience and expertise, figure 2.3.1.

Figure 2.3.1. Multiple Design resources

An important decision, often made in the early stages of the design process, directly

effecting the outcome of the overall design solution, is one of employing the correct
design resource to solve particular problems.

The need to employ and the choice of specific design consultants is obviously
determined by the deficiencies in the designers own experience. The role of the
designer or design coordinator is to establish what expertise is required to produce a
complete design solution and, based upon the self critical evaluation of the designer's
own capabilities, identify a number of specific tasks that must be dealt with by other
design resources. In order to identify problem areas and delegate specific tasks to
individual resources the design coordinator must posses knowledge of the capabilities
of a number of domain related resources.

Owing to the prototypical nature of design, it is impossible for a design
coordinator to know whether a design resource is capable of handling a specific task.
The knowledge held by the designer about individual resources therefore consists only
of a general categorisation of the functional capabilities of each known resource in
order to aid the identification of potential design collaborators. Each is then invited to
analyse the problem and provide a more detailed description of the their capabilities in

1A design resource may be an individual design consultant or a complete design
organisation.

8

relationship to the required task, which is influential in the final decision to employ a

particular resource.
This is typical of the traditional tendering process that exists in design practice.

The final decision to employ a particular resource is governed by many factors other
than functional capabilities; cost often features significantly in the final evaluation.

analysis -description-ý interpretation

interPretation 4- Presentation*- analysis

L-)

Figure 2.3.2. Communication cycle in problem solving

Whether a designer employs his or her own design experience or that of another
designer a significant proportion of the design activity is concerned with
communication, figure 2.3.2., between resources. Any CABD support system must
account for this distribution of design tasks.

When appropriate resources have been selected the designer must provide adequate
detailed descriptions of the product together with additional, specific detailed
information for each consultant employed. The product model is therefore
decomposed into elemental parts (concepts) or layers (meta-concepts) for each sub-
discipline.

ýý

94LIPOr- IG7 Q

ymI I 'l A II" I1. -C7 .1
ý nýrr-ý O#-4--a u

structural

I I'M- IN

ayb-ýD\'`I

ducting

A
ý 16 6

electrical

Q1I1a I YvRWYW
ý

ctýw N iXV n jn=lur CTIlfJliö
lighting

Figure 23.3. Four individuals' view of the same design space data [from Vidovic 1990].

Each consultant or resource may express an interest in only one aspect of the
overall product in relation to a view of the entire product or a view one or several

9

abstraction levels above the area of interest. The design resources, therefore, have

their own view (or schema) of the product model, figure 2.3.3. Vidovic suggests that
"each view is not just a subset, but contains semantic information via the relations set

up among the data objects by the individual".

For efficient and effective use of a design consultant, both the designer and the

consultant must be able to communicate to each other in a common language; they

must employ the same conceptual vocabulary and symbolic representation and also be

able to communicate their intentions clearly enough to enable information together with
both explicit and implicit relations between objects to be extracted.

2.4. THE QUEST FOR AN INTEGRATED COMPUTER BASED
DESIGN ENVIRONMENT

A fundamental problem encountered by a designer, faced with this new environment,
is one of how well computational methods and traditional manual design procedures
can be integrated together [CARRARA 88]. Many solutions (originating in the 1970s)

to this problem where to create a total design environment within the computer. Early

attempts at providing such an environment where thwarted by limitations in both

software design methodologies and hardware platforms. Integrated design tools where
either implemented as monolithic functionally oriented systems which soon reached the
limits of processing power, or as discrete data processors. When two or more
application programs are utilised, even when they exist within the same computing
environment, a problem of integration between individual systems is usually
introduced often resulting from incompatible data formats.

Despite advances in hardware platforms and therefore a corresponding increase
in the power and sophistication of software, CABD systems continue to be developed
as quantitative data processors, and often as packages become more sophisticated the
amount of data input required before such systems can be usefully utilised, increases
significantly.

The type of data required to initialise the application program and the style of
dialogue employed to communicate to the designer or end-user tends to be of a
specialist nature, literally reflecting the design processes and operation the program
attempts to mechanise. The user is therefore required to posses expert knowledge of
the methodologies encoded within the application program and therefore this approach
to the development of design tools defeats the fundamental aims of computer aided
design. ESP [CLARKE 86] is a typical example of a powerful energy simulation
package requiring a substantial input of energy related information. The dialogue

10

employed is terse and directed towards specialist end-users. As a result ESP, although

powerful, is often rejected by the design profession.
The time consuming procedure of communicating design information between

collaborating consultants is true of computer applications (many computer applications

don't read drawings). For each application utilised by the designer the information

contained within the product model has to be re-formatted (usually by hand) to suite

the conceptual representation of each application program.
Utility programs for data bridging, the process of converting one data format to

another, are often employed to overcome the immediate isolation between systems but

introduce even more difficulties for the designer.

" data managemenn several copies of the original data set in different

formats may exist. The designer has the problem of knowing which

particular set is the most current solution.

" storage: each copy of the original data set increases the demand upon the

storage device.

" resolution: detail may be lost between filtering processes due to rounding

errors or a mismatch between data abstractions.

" computer literacy: data filtering is often a low level process and therefore

requires a high degree of operating system knowledge.

Inconsistencies in the user interface, resulting from idiosyncratic interface design

methodologies, and the conceptual vocabulary employed by different application
programs can introduce serious problems; a command used to invoke a process in one

system may invoke a completely different, perhaps destructive process in another.
Such mechanised design tools, therefore, tend to be used in isolated situations,

often out of context of a complete design solution, and usually in a "post-hoc"

checking mode, quite often in a consultation role performed by the original design tool
developer.

Packages that do cater for a more diverse range of design topics are either bound
in to an unwieldy monolithic system that is difficult to extend or are too fragmented
resulting in inconsistencies both in data abstractions and in the user interface, making
them difficult to use.

11

While attempting to solve an number of design related issues, current CABD software

therefore introduces more fundamental problems relating to communication and

integration and generally tend to be:

" discrete and domain specific,

" monolithic, functionally bound and un-maintainable,

" machine dependant,

" unfriendly.

These fundamental problems have affected the general acceptance of CABD systems in

design practice.

For a system to be used successfully as a design tool it must enable a designer to

develop and manipulate design solutions at both conceptual and detail levels and in a

manner suited to the designers own conceptual vocabulary. While current software

systems facilitate detail design, Lansdown suggests a number of relevant

characteristics of the modelling process which takes place during concept design - of

which any design aid must take account [MAVER 88]:

" creativity: concept design requires imagination and inventiveness

" multiplicity: to any design problem many feasible solutions exist

" empiricism: reliable theoretical foundations may be lacking

" approximation: fuzziness and uncertainty surrounds the knowledge base

" expertise: some people seem to be good at it.

Crucial to these issues is how the user of such a system perceives and manipulates
system modules together with problem specific data. This in turn is determined by the

overall system architecture and software design methodologies.
What is required, in order to achieve a flexible computer based design

environment, is a software design strategy that yields an infinitely extendible
architecture capable of supporting, in parallel, all the resources required for the
definition of a diverse range of products with a consistent user-interface capable of
responding to the differing and idiosyncratic (sub-disciplinary) conceptual vocabularies
of participating members of the design team.

The implications of such inadequacies in current CABD stress the need for
highly familiar command formats and dialogue structures in order to reduce the time

12

required to learn and remember the operation sequence of application packages.
Communication must be fluid enough to enable the user to concentrate on the matter at
hand and not focus the user's attention on the inadequacies of the style of dialogue

employed
Building design is heavily governed by regulatory guideline's and restrictions.

As opinions change (at the dictates of fashion) so do the standards that represent and
enforce these beliefs. Any CAD framework must therefore be sufficiently flexible and
responsive enough to reflect shifts in design standards without changing the user's
perception of that framework.

Traditional software design methodologies have been overly based upon the
functional requirements of the system, resulting in a tightly bound and rigid system
architectures that are difficult to modify and extend, and therefore not suitable for such
an environment.

The formulation of a practical symbiosis between designers and computer
systems is therefore necessary in order to increase accessibility and fluid dynamic

communication. Many attempts have been made to solve one or more of these
problems. However all have been tailored solutions and as yet no generalised software
design methodologies have been formalised for CABD systems.

The user of sophisticated application programs often requires a particular familiarity

with application specific concepts which is not often possessed by casual users.
Application programmes often have a diverse range of interfaces increasing the
problems of the user and an equally varied number of data formats resulting in data

management problems.
The problems associated with conventional CARD design tools are therefore two

fold:

1) the lack of natural dialogues between designer and computer application
and

2) incompatibility between the output of applications.

13

These problems may be resolved by:

" the provision of a consistent and friendly user-environment which must
address issues such as the:

" intelligent interpretation of utterances from the user
" presentation and interpretation of results; tailored to the user
" provision of multiple levels of assistance; again directed at a

particular class of user

" mechanisms available for error handling and recovery
" customisation of the interface and definition of task macros

" the seamless integration of numerous CAD resources, achieved by

accommodating the transparent interchange of information and knowledge
between application programs.

The aim is to create an intelligent "responsive" user-interface. Additional
benefits, such as improved systems management, will also result.

As the end-user possess a significant body of domain related knowledge the idea

of a CAD resource is extended to include the designer in the overall view of the design
framework. By adopting this view, the issues related to the integration of design tools
with manual techniques, should be accommodated.

Regardless of the domain, there is a need to provide a communications buffer
(user-interface) between the end-user and target application program.

As individual designers and those from other disciplines each have idiosyncratic

vocabularies, this approach also highlights the need to accommodate several,
potentially different types of end-user. The actual mechanisms and design implications
for implementing a suitable adaptable user-interface are discussed in chapter 3. Here
the discussion will focus upon the general, currently available methods for developing
user-interfaces and will look at current methodologies and methods for bringing
together several different types of knowledge source.

Current trends in interface design methodologies have focused upon the formal
issues of consistency, both in the visual appearance of the interface and the interaction
mechanisms available for inputing data, together with semantic consistency of
command languages.

14

2.5. EXISTING SOLUTIONS TO INTERFACE CONSISTENCY AND
SOFTWARE INTEGRATION.

The application developer has to meet both the requirements of the user and satisfy the

application brief. It is often uneconomical or unfeasible to provide anything other than

the simplest of user interfaces; these often being highly inappropriate. A need has

therefore developed for a range of tools to assist in the design, development, and

management of the user-interface.
The solution to the problem of integration, from the point of view of designer,

has been tackled by addressing the issues of communication (chapter 3). In particular

by providing similar interfaces to a number of applications. By addressing the various

aspects of consistency a number, providing partial solutions, of well established

methods to aid the development of user-friendly interfaces have evolved These

include:

" Standardised graphics tool dts or libraries (GL).

" User Interface Management system (UIMS)

" Expert Systems (natural language interfaces) (ES)

" Intelligent User Interface Management Systems (IUIMS = UIMS+ES) or
intelligent front-ends (IFEs)

From the point of view of ensuring compatibility between application data,

numerous standards have been developed usually for the interchange of production
information; DXF, IGES, etc. Recent developments such as STeP and PDES focus

on the more relevant issues of the interchange of product models or complete
descriptions of artifacts and is discussed further in chapter 7.

2.5.1. THE USE OF HIGH-LEVEL GRAPHICS TOOLKITS

The traditional approach to developing a user interface is to acquire data as and when it
is required by the application program using various terminal or graphical based

prompting.
There are many high level (and some not so) function libraries and toolkits each

providing functions to handle specific types of representation, interaction and graphical

output (GKS, PRIGS, DORE to name just a few). Most workstations come with
vendors graphics toolkits (Sunview and Core on Sun workstation, Angel with
Whitechapels).

15

By utilising a single graphics toolkit, providing a high level of functionality, the

application developer is able to achieve both visual and interaction consistency. While

this approach provides adequate software, the main disadvantage is one of bound

functionality; interface (I/O) and application specific routines and procedures are
intermingled, figure 2.5.1, resulting in an unwieldy monolithic piece of code which is
difficult to maintain and extend.

O application routine

D I/O function

state transition

Figure 2.5.1. Intermingled I/O and application specific routines.

Software development has largely been prototypical. A number of solutions
have evolved but tend to focus on providing tools to aid development and management
of software. There is a distinct lack of standards, although some are now emerging
such as OPEN LOOK and Andrew for X and NeWS.

Although toolkits standardise the appearance and style of interaction,
inconsistencies in command vocabularies are inevitable owing to the idiosyncratic and
often proto-typical nature of software development.

The standardisation of high level graphics toolkits has lead to the emergence of
User Interface Management Systems which attempt to address the more pertinent
issues of consistency within human computer interaction.

16

2.5.2. USER INTERFACE MANAGEMENT SYSTEMS (UIMS) AND
FRONT ENDS

UIMS are the result of a number of software development criteria. From the

developers point of view UIMS attempt to:

" free the application developer from the low-level details of the user
interface, enabling the software designer to concentrate on aspects specific

to the user interface and application development

" reduce the cost of software development for the user interface and hence

the overall cost of application development

" separate the user interface code from that of the application. The

separation should ideally allow different interface to the same application.

UIMS must also address the needs of the user in the form of dialogue

sequencing and control:

" the dialogue may beflat allowing commands to be accessed at any time,

alternatively a hierarchical command structure may be employed

" the user may be able to carry out tasks using direct manipulation of

graphical objects or by a formal command language or may be lead by a

procedural question and answer dialogue.

" multi-threaded dialogues may be possible, allowing one operation to be

suspended while another is executed. This facility may be extended into a
concurrent environment allowing several, simultaneous operations to be

controlled.

UIMS are also seen as valuable aids in providing a seamless integration across a

range of application software within a coherent and consistent user interface provided
that a single system gains global acceptance.

User interface management systems essentially consist of a library of building

blocks that may be used to assemble a user interface for a particular program
[TANNER 83] and may be thought of as a set of tools to support the design,
implementation, maintenance, and evaluation of the user interface [BAECKER 87]. A

recent report [PRIME 88]2 has been used as a reference for this section on UIMS.

2 User interface Management Systems (UIMS) -a current product review, Martin
Prime, Informatics Division, Rutherford Appleton Laboratory, 1988.

17

UIMS attempt to alleviate the problems of traditional (wirewool) software

development by conceptually providing a clear distinction between the application and

the user interface. This is achieved by breaking the interface into three layers:

[presentation] [control] [application]

first suggested by Sehiem [SE]HEIM]. Tanner and Buxton provide a more illustrative

generic description of a UIMS, shown in figure 2.5.2.1.

[UIMS]

User UI Application

Figure 2.5.2.1. Typical UIMS in Context (from [BAECKER 881).

A typical UIMS consists of two distinct modules:

"a pre-processor used at the dialogue design stage to design and
implement the user interface

" interaction handler which manages the interaction between the user and
the application at run time.

A critical feature determining the effectiveness of any UIMS is how these two modules
interact with each other. Typically a user interface, UI, definition is used to

communicate between the pre-processor and interaction handler. The UI
(encompassing the user's task model and the functional capabilities of the target

application) may be implemented as a shared data structure or a knowledge base. The
Sassafras system [HILL 86], figure 2.5.2.2, provides a more complete overview of a
typical UIMS, highlighting the separation between layers and indicating the

relationship between the various components and stages that comprise the development

graphical user interfaces.

18

WYSWYG
Design Tools

naý

definition Compiler
IQI1ý

Dialogue
Designer

Application
Programmer

Figure 2.5.2.2. Sassafras reference model (from [PRIME 88]).

2.5.2.1. DIALOGUE ORCHESTRATION IN UIMSS

Application
Section

i Dialogue
Control

1.1 T-1
Graphics
Libraries

Output Input

End User

The fundamental difference between traditional application development and that

utilising a UIMS is that operational sequences of the application program are defined

by the interface designer.

password:

Figure 2.5.2.1.1. Typical state transition network (from the CONNECT system) [ALTY 83].

Typically a finite state automaton is employed for the definition of the UI.

usually in the form of a table of state transition information, figure 2.5.2.1.1, (such as
that used in SET, described in [PRIME 88], and RAPID/USE by Shewmake and
Pircher, described in [WASSERMAN 84]) This network is then used to orchestrate
the dialogue and control where the application should pause for input (states),

represented by circles. The paths between states are known as transitions, shown as
arcs with arrows pointing to the next state. State transition diagrams are popular for

19

the specification of interactive dialogues systems as they can be easily visualized
graphically.

In the majority of cases networks are usually drawn on paper and translated by

the interface developer into a textual description. Figure 2.5.2.1.2 illustrates a
transition diagram from the USE Data Dictionary system [WASSERMAN 84] and
shows the resulting coded description.

message header
a: 2, c0, c_'USE Data Dictionary'

message lastline
r$, co; Hit any character to continue'

node setup

node select
tomarLA, ce, r+3, t 0; 'Ple ue choose',
r+2, t 1; 1: Add a dictionary enter. '
r+2, t 1; 2: Modify a dictionary entry. ',
r+2, t_l; 3: Delete a dictionary entry. ',
r+2, t 1; 4: Query data dictionary. ',
r+2, Ll, help: Information an use of program',
r+2, t_1; quit: Exit USE/Data Dictionary. ',
r+2, t 0, 'Your choice: '

node help
u, rS-3, cO, For more information about a command, enter',
r$"2, cO, 'the command number, press return and then type "help" or '1",
r$, cO; Iiit any key to continue'

node nodb

node stet

node x

a, r$, cO, Could not open database directory'

header, markj,

a
node errorl

T$-1, cO, rv, bcU, 'Pleaae type a number from 1 to 4. ', sv,
lastline

Figure 2.5.2.1.2. Top-level state transition diagram from the RAPID/USE system [WASSERMAN 841. Note characters at the beginning of each line are used to control the position of 'text' on the screen: cs - clear screen, c- column, r- row.

20

The corresponding dialogue description fragment for the transition diagram,

figure 2.5.2.1.2, is illustrated below in figure 2.5.2.1.3.

arc setup
skip call startup

when ok to start
when fail to nodb

are select
on'q'. 'quit' call shutdown to x.

to <quay>
to cnodify>
to <delete>
to <add>
to help

on'4'
m'2'
on T
on '1'
w'help'; Y
else to errorl

see help nacho single-key
else to select

arc <modify>
skip to select

axe <delete>
skip to select

arc nodb nacho single key

else to I

are start
skip to select

arc <add>
skip to select

arc <query>
skip to select

arc errorl single key
else to select

Figure 2.5.2.1.3. Dialogue description fragment (from [WASSERMAN 84]).

Network descriptions are then compiled by the pre-processor into a skeleton

program containing a main program together with subroutine entries into which the

application code is inserted to produce the final program [PRIME 88]. This is

illustrated conceptually in figure 2.5.2.1.4.

Q dialogue state

O application routine

O 1/O function

`state transition

Application
program

1300
013Q 131313 000
graphical dialogue application
objects control functions

FC) v

ýP6

Figure 2.5.2.1.4. I/O and application specific routines separated by a state transition (dialogue
control) network.

21

State transition networks are well understood and have been used for the design

of human-computer dialogues for some time [ALTY 84, NEWMAN 68,

WASSERMAN 841. They are however restricted to procedural dialogues and do not

support concurrency; necessary for multi-threaded dialogues, which are useful for the

simultaneous execution of related tasks. In design it is often advantageous to

investigate several solutions to a problem. Haenen, [HAENEN 87], identifies three

types of concurrency within UIMSs:

" concurrent output: simultaneous output of audible and visual feedback

and/or simultaneous updating of display windows.

" concurrent input: input of data by multiple input devices making the
interaction more natural.

" concurrent dialogues: enabling the user to interact with several related
interfaces simultaneously.

The latter form of concurency is, according to Haenen, rarely found in UIMSs.

Other forms of dialogue model include: context-free grammars and event models.
However in order to support concurency a radically different (rule based) approach is

adopted which is described in a later section.
The control over the definition of the UI is also important in determining the

effectiveness of a UIMS for prototyping. The majority of systems require the

compilation of the UI and some post processing before a run time system can be used.
Suspended-time UI editing is a feature of interpretive environments such as Smalltalk

and LISP. This allows the developer to suspend the execution of the application in

order to modify the UI definition and continue execution from the point of interruption

with a different UI template. Examples of suspended-time editing systems are:
Sassafras [HILL 86] (which Prime [PRIME 88] has used as a reference model), and
the Peridot system [MYERS 86]. Strangely, non of the current (state of the art) range
of UIMS provide facilities for suspended-time editing.

Some other systems such as DICE, while not a true UIMS, allow dialogue

sequences to be defined as a hierarchy of units and compiled into a multi-stream parser
and scheduler which controls the flow of the dialogue [PRIME 88].

Examples of currently marketed UIMS may be found in [PRIME 88] and
[BAEKER & BUXTON 87] and include:

" TIGER [KASIK 82] is an early second generation UIMS (with a powerful
glue system) developed by the Boeing Corporation (1984) for the
development of large CAD systems. According to Beaker and Buxton

22

TIGER has a powerful language for defining the low-level details of the

user-interface and it is possible to extend the functionality of the system by

coding and inserting new primitives.

" RAPID/USE. Although this system, described in [WASSERMAN 84],

utilises graphical interface techniques it was not included in Prime's

evaluation of UIMS possibly owing to the fact that it can only support
text-based interaction. This system is an example of a UIMS employing
state transition networks for the UI definition.

" The Trillium system, described in [HENDERSON 86] and BAEKER 88],

was developed to facilitate the rapid prototyping of controls for

photocopying machines. It has a powerful glue system that supports
suspended-time editing; allowing the developer to interrupt execution
while the interface is modified and then step back into interaction mode
with the modified dialogue.

" SET (PA Management Consultants), defines the UI in terms of an
"interaction model" [PRIME 88] which includes command structure,
restrictions on command arguments and prompting. Like the RAPID/USE

system, it too employs a network description.

" BLOX (Template Graphics Software Inc) is according to Prime a UIMS
providing dynamic run-time control over the interface manager and
provides mechanisms for inquiring about and controlling the user
interface.

" Autocad MIPIE is used to develop CAD applications and facilitates the
development of interactive graphical user interfaces.

" MacApp [SCHMUCKER 86] is a software development framework for
the Apple Macintosh. The system provides an extensive toolkit of pull-
down menus and buttons and enables the developer to rapidly put together
application programs by cloning and then customising previously defined
(ready made) applications.

" Peridot UIMS, reviewed by Baecker, 1987, provides semi-intelligent tools
for designing the interface by allowing the developer to sketching how the
interface should look and indicating how it should behave.

23

It was not possible for the author to evaluate the UIMS described, rather the

evaluation was carried out independently by Martin Prime (RAL). The final report was

not available until the second year of the We project and owing to the limited resources

available it was not feasible to purchase any of the existing UIMS. This provided an

opportunity to investigation dialogue control and interface design methodologies in

some depth.

While the modularity of interface design processes can improve the quality of

user interfaces it is apparent that UIMS are tools which aid the development of
application software. The final result being similar in nature to traditionally
implemented application software.

A UIMS should provide intelligent assistance to ensure that mistakes in data
input are diminished. This is facilitated by the provision of:

" on line, contextually relevant guidance,

" intelligent, contextual, defaulting,

" backtracking -a process where by the user may trace the definition of an
entity [PRIME 88] to its origins. None of the reviewed systems facilitated
this activity which is important in an unrestricted design environment.

" good error recovery either by undoing or by the play-back of recorded
sessions (input logging)

While UIMS facilitate the development of portable application programs (most
may be ported to a number of hardware platforms) there are a number of problems
with contemporary UIMS, which may be categorised as follows:

" encapsulation
" code structuring
" explicit semantics
" mode-locked operations

2.5.2.2. ENCAPSULATION

UIMS aim to provide access mechanisms to the functional methodologies encoded
within an application. The functionality of the applications is often encapsulated with
an opaque UI (network) definition template. Although this encapsulation results in
hopefully a consistent interface it is at the cost of denying the user direct access and
control over individual methods.

24

2.5.2.3. CODE STRUCTURE

From a development point of view, the way in which UIMS are structured (usually

around a template or network) can restrict the software developer to a rigid inflexible

methodology which may be inappropriate for a given application or design procedure.
Although not strictly a UIMS, in the formal sense of UI definition, Sun's SunView

(Sun Visual/Integrated Environment for Workstations) requires that application event
handling routines, a reference to which, are inserted into the object definition of the
interface primitives. It may be difficult to decompose existing software into a modular
form. From experience, any attempts to interfere with existing, working application

software, often provides more headaches than re-coding from scratch.
While DIMS and IUIMS attempt to integrate application software traditional

approaches have failed owing to a lack of well defined and systematic methods
[HAMALAINEN 88]. Although UIMS alleviate the problem of software development

existing software would require significant re-coding.
It is the aim of this research to utilise as many existing design aids as possible.

A great deal of time and effort has been spent developing software applications in

academic institutions much of which never reaches the design profession. In many
instances software has to be re-written as it is incompatible with current design

philosophy; this is extremely wasteful of development resources [RUTHERFORD

89].

Another problem with network oriented dialogues is that they often result in mode
locked interfaces. The style of interaction offered by a graphical user-interface may be

categorised into one of two groups:

i) modeless: where the user selection is not confined within one set of
operations

ii) mode locked: selection is restricted to a single set of choices.

2.5.2.4. MODE LOCKED OPERATIONS

Mode locked operations are often employed when the users selection must be

restricted. It is often a "feature" of operations requiring confirmation:

" overwriting files
" quiting an application

25

Mode locked operations must provide at least one alternative non-destructive

option usually "cancel" to enable users to abort the operation and return to the initial

state. Mode locked operations are often inappropriate as they:

" result in procedural application interfaces

" dictate an operational sequence which may be inappropriate for a particular
task and therefore

" increase navigational interaction especially when frequently used resulting
in user fatigue and restlessness

An example where mode locked operations may cause frustration is when data

stored within memory is to be written to disk. If the data set requires slight

amendment before storing, the user must abort the operation, make the changes and

repeat the operational sequence.

2.5.2.5. MODELESS OPERATIONS

Modeless operations, in contrast, allow the user to access other functions within an

application in addition to the current set and, although they require greater knowledge

of commands and operational sequences, are much more flexible.

2.5.2.6. EXPLICIT SEMANTICS

Although a number of UIMS such as the Boeing Corporation's TIGER system allow
the range of primitives within the package to be extended, the conceptual vocabulary

employed by the interface remains static in all current UIMS. Although it is possible to

encode mechanisms for adjusting the dialogue, there are no facilities available to
dynamically modify the level of dialogue to suit the level of experience of the user or

adjust the dialogue according to differences in the cultural backgrounds of users, for

instance:

red = danger

green = safe
Separate applications have to be compiled for each user opening up the

possibility of semantic and syntactic inconsistency.
Little attention is paid to subtle issues of communication between cognitive

systems. The emphasis is usually on providing tools to aid development.

26

2.5.5. THE END USER'S TASK

Wilson, 1987, identifies the types of knowledge a user of a design tool draws upon

during interaction and categorises them as primary and secondary sources of

knowledge, illustrated in figure 2.5.5.1. The first group, which the more proficient

user of design tools draws upon, contains knowledge of:

" the problem

" the interface dialogue

" system operations

" the physical interface

" the computer version of the domain

The remaining types of knowledge are those sources a novice user will employ.

Knowledge of
the Domain

Knowledge of
the problem

Knowledge of
the physical

Interlace

1

-1 1 Knowledge of the
computer versior

of the domain

Knowledge of
workbase version

of the domain

Knowledge of
other machines
and procedures

I

Knowledge of
system

operations

Knowledge of
the interlace

dialogue
4

Knowledge of
natural language

Figure 2.5.5.1. A Block Interaction Model of the knowledge a user brings to using a computer
system to solve a problem (after Morton et al, 1979) in Task analysis for knowledge acquisition, from
[WILSON 87].

There is a distinct need particularly at the novice end of computer usage to guide
the user through an interaction session with a design tool. Intelligent front-ends have

evolved to do just that.

27

2.5.6. INTELLIGENT USER INTERFACE MANAGEMENT SYSTEMS
(IUIMS). OR INTELLIGENT FRONT-ENDS (IFE)

IFE's are a special case of "front end" or "user interface" [EDMONDS 82]. "They are
distinguished from merely "rational" or well engineered front ends by their inclusion of

explicit models of both the user and the task (i. e. the package or system which is being

interfaced to)" [BOULAY 82]. This has been designated the general title of user

modelling.

2.5.6.1. USER MODELLING

User modelling has been employed in a variety of Al fields, summarised by

[WAHLSTET 89] in figure 2.5.6.1, in an attempt to predict user actions by

representing their beliefs and goals within a model of formal rules. This kind of

stereotypical model of the user is often utilised in a predictive explanatory role which is

reflected in its current range of applications indicated below.

User
modelling

in intellignet
help systems

User
modelling
in expert
systems

Reader/writer or
character modelling
in text generation/

understanding

ýý
H

User modelling
in NL

dialogue systems
ýý

User
modelling

in cognitive/
software ergonomics in (distributed)

databases

Figure 2.5.6.1.1. User modelling in other research areas (from [WHALSTET 89]).

A more recent application of user modelling, outside that of traditional Al research, has
been in the field of human computer interaction. A User model (UM) in the context of

' Student
modelling

in intelligent
CAL systems

Agent '\
modelling in

multiple-agent
planning
systems

Agent
modelling for

intelligent query evaluation

28

HCI has a slightly different interpretation, defined in terms of current cognitive

psychology by Gent as, "a kind of mental model which persons usually form of things

and people with whom they interact". [NORM 861 identifies three different types of

models that are currently referred to as user models in HCI research:

i "an individual's own personal idiosyncratic model;

ii a generalised 'typical user' model that the designer develops to help in the

formulation of the design model;

iii a model that an intelligent program constructs of the person with which it

is interacting. "

Contrastingly the Al definition does not encompass psychological issues such as

mental entities but is usually [WAHLSTER 89] confined to the third type of model.

Formal representations have been proposed and are now generally accepted as a means

of describing user's and task structures. These structures include:

" state transition networks,

" formal grammars, and

" production systems.

A substantial body of research has been carried out in the field of dynamic user

modelling and cognitive ergonomics. This thesis does not attempt to cover the

psychological aspects of user modelling in any great depth and the reader is referred to

a recent publication, [KOBSA 89], which provides a comprehensive introduction into

this area of research.
To summarise, [WAHLSTER 89], provides convenient definitions of both a

user model and the process of user modelling which will be used within this thesis:

A user model is a knowledge source in a natural language system which
contains explicit assumptions on all aspects of the user that may be relevant to the
dialogue behaviour of the system. These assumptions must be separable by the
system from the rest of the systems knowledge.

A user modelling component is that part of a dialogue system whose
function is to incrementally construct a user model; to store, update and delete
entries; to maintain the consistency of the model; and to supply other components
of the system with assumptions about the user.

Based on this philosophy of modelling the user's beliefs and expectations a
number of intelligent front ends are in existence. KNOME (KNOwledge Model of

29

Expertise) developed at the University of California, Berkley is the user modelling

component of a UNIX consultation system (UC) [CHIN 87]. The purpose of

KNOME is to determine, from a natural language dialogue, the user's level of

experience within the UNIX domain and to customise a template for a particular user in

order to [CHIN 87]:

"1) avoid telling the user something that the user already knows,

2) tailor explanations to the user's level of understanding,

3) utilize the user's background knowledge in interpreting what the user

says".

While obviously useful, systems such as KNOME are still text based employing

quasi-natural language dialogues and are obviously either incomplete in there

vocabulary or incur a number of the computational overheads of natural language

processing, although Chin's third point is a means of reducing deviance in the

dialogue.

The process of design decision making involves visual as well as verbal (textual)

descriptions. An adaptable user interface suitable for communication in design must

therefore facilitate data acquisition in many different forms. Most UIMS, IUMS and
IFEs are implemented within a single language

2.5.6.2. ENCODING KNOWLEDGE

There are many forms of knowledge drawn upon during the design process; absolute
factual knowledge and more abstract or subjective rules referring to human nature,

each requiring different forms of representation which may be broadly categorised in to

the two groups [RADFORD 90]:

1) highly structured knowledge

2) loosely structured knowledge

The way in which the knowledge of the usef s task is encoded determines the
type of dialogue that may be supported. For example highly structured knowledge

often implies procedural dialogues while a loosely structured form of representation
facilitates flexible and natural volunteering of information. The latter is infinitely more
difficult to achieve than the highly structured (hierarchical) method as multiple entry
points must be supported and closure paths to other states must be provided. [ALTY

30

83] proposed the use of path algebras as a means of validating dialogue control

networks to ensure that all possible eventualities (closure), resulting from multiple

entry points, are taken into account. Although a little obtuse, Alty's "Path Algebras -a

useful CAI/CAL Analysis Technique" provides a complete description of the

application of path algebras to dialogue control networks. Once a formal specification

of the UI has been generated the software implementation of the interface may be

designed in a similarly formal manner. As a result the user-interface should also be

more reliable. Several other methods of formalisation have been adopted such as the Z

computer language [SUFRIN 86] used to formalise the behavioural aspects of the
interface, and an algebraic formalism to describe a serries of interactions for a system
(described in DIX and RUNCIMAN, 1985).

These methods aim to provide a finite description of dialogue behaviour.

Sutcliffe [SUTCLIFFE 83] suggests that these guidelines (derived from psychology)
"are heuristic and dependent on context for interpretation. This makes formalisation in

their current state of precision practically imposible". Harrison and Thimbleby
[HARRISON 85] have attempted to provide a reliable and context free formalism
(Generative User Engineering Principles (GUEPS)) based upon generalised principles
of interaction. Therefore rather than a single rule set which attempts to encompass
every aspect of interface design, GUEPS, derived from general human factors

principles, provide rule sets (or cause and effect statements) for each aspect of the user
interface. These principles once generalised may then be encoded in an abstract model.
Such an approach results in a modular knowledge based system which may be

extended to accomodate dynamic user modelling.

For each of the categorisations of knowledge structure a further distinction may be
drawn; indeterminate (for want of a better word), high level surface knowledge
[HART 82], and deep, low level, irrefutable knowledge.

Traditional programming languages cope adequately with the latter while surface
knowledge in dealing with more abstract notions is best encoded in a rule based

system.

31

2.5.7. ARTIFICIAL INTELLIGENCE (INTELLIGENT KNOWLEDGE
BASED SYSTEMS (IKBS)) IN DESIGN CONSULTANCY

Unlike traditional programming methods which are utilised to encode ̀ mathematical

models' and the like, experts systems or intelligent knowledge based systems

encapsulate the knowledge of an expert human consultant. The knowledge, held as
data to improve maintenance, is typically represented as a collection of logically related

rules. As a result of the highly structured nature of rule based systems the dialogue

often follows procedural question and answer data acquisition sessions with the user.

2.5.8. MULTI-LEVEL KNOWLEDGE SYSTEMS

Traditional AI systems (production rule schemes) are effective in representing expert
knowledge in broad domains. As Weis indicates; there are many problems for which
additional knowledge, not represented by these surface models, is required. Hart
[HART 82] describes a multi-level expert system consisting of surface level models
with deep models of reasoning, the objectives of which are three-fold [LANSDOWN
86] (in [JEON 86]); to provide:

i) more force to explicit explanations arising from the knowledge-based

system

ii) a better distinction between objective and subjective knowledge; between
gueswork and more fundamental reasoning; between those elements that
arise from the laws of nature and those derived from human laws

iii) more knowledge and power.

The traditional interpretation and classification knowledge-based systems
(CASNET and MYCIN, used in medical and PROSPECTOR in geological
consultation) are implemented as evidence gathering systems, offering interpretations

when sufficient information has been submitted by the user. The knowledge elicitation
procedure often takes the form of a highly structured and systematic dialogue with the
user. Evidence is often in the form of personal observations but is also supplemented
by instrument data. This type of information is usually interpreted or filtered through
the user and is typical of many closed systems.

32

[WEIS 82] describes a multi-level expert system for oil well log analysis, figure

2.5.8.1, whereby information from monitoring devices is submitted directly to a

central interpretation model.

ELAS
Communications and control

(User interface, monitoring of
results, etc.)

results from

mathematical analysis
and data retrieval

Individual
analysis
and display subroutines
[display, histogram,
general, crossplot, etc.]

Model
(EXPERT)

Interpretations
and action
recommendations

Interpretive

Expert well-log
analysis alogorithms

ITask-oriented compilation
of steps; new code]

Figure 2.5.8.1. Expert Log Analysis System (ELAS): a multi-level expert system comprising
surface level models with deep models of reasoning [Weis, Kulikowski, Aptt, Uschold 80]

The surface model is of the production rule type while the deep model is a purely
mathematical description of a physical object.

By extending this principle it becomes possible to integrate contributions from

other resources or from other sub-disciplines directly in to a high level model acting as

a coordinator. Any design aid must be capable of representing the dynamically varying

nature of the design process.
Expert systems tend to be either forward or backward chaining systems. The

solution to complex problems requires a more flexible framework. In order to provide

a suitably powerful and flexible architecture, non-procedural oportunistic knowledge

acquisition mechanisms are required.

2.5.9. BLACKBOARD SYSTEMS

A result of Al research, blackboard systems have evolved as general problem solving
frameworks, enabling many knowledge sources to participate in the formulation of
solutions to complex problems [ENGLEMORE 88]. Traditional knowledge based

33

systems, figure 2.5.9.1, consist of an inference engine, knowledge bases, and a

working memory for manipulating the emerging solution.

Working
memory

IE-ýI
Inference

engine
F4-

Figure 2.5.9.1. Example of the classical expert system structure

Knowledge
base

In response to the need to make knowledge engineering and problem definition

more modular a common work area is provided which is monitored by several domain

related knowledge based systems, figure 2.5.9.2 a and b.

Knowbdge souras
...............................

...............................

a) A rudimentary blackboard model

Blackboard

b) independent knowledge sources.

Figure 2.5.9.2. Typical blackboard model comprising a central blackboard containing a global data base and a number of [ENGLEMORE 88].

"As there is often no control flow within this scheme of operation, the
knowledge sources are self activating and respond to changes in the state of the
blackboard. " [ENGLEMORE 88].

Although the origins of the blackboard system stems from the early
developments of the Defence Advanced Research Projects Agency (DARPA) Hearsay
II speech understanding system in 1971, [Nil 86] attributes the conceptual
development of blackboard system to Allen Newell:

Metaphorically we can think of a set of workers, all looking at the same blackboard: each is able to read everything that is on it, and so judge when it he has something worthwhile to add to it. This conception is just that of Selfridge's Pandemoniwn (SELFRIDGE 59): a set of demons, each independently looking at the total situation and shrieking in proportion to
what they see fits their nature...

[NEWELL 62]

In order to overcome the problem of multiple resources all screaming at once,
blackboard models require a scheduling protocol.

34

2.5.9.1. BLACKBOARD DATA STRUCTURES

The main function of a blackboard is to hold on a blackboard panel (a reserved section

of volatile memory) "computational and solution state data" [ENGLEMORE 88],

generated and manipulated by knowledge sources. Information required for the
formulation of a solution, such as input data from sensors, partial, alternative, and
final solutions together with control data, is held on a blackboard panel as objects.

Objects may be arranged hierarchically into levels of analysis, figure 2.5.9.1.1,

each object containing property definitions stored as attribute values pairs, defining the

vocabulary of the solution space. Named links are also used in blackboard systems to
define relationships, "part of', for example, between objects on different levels or
"next-to" type relationships between objects on the same level.

Control data

Agenda

KS

Control

Scheduler

Figure 2.5.9.1.1. Blackboard control modules and oportunistic knowledge sources supported by
hierarchical object layers (from [ENGLEMORE 881)..

A solution space may also be arranged into multiple hierarchies (first used in the
CRYSALIS system, Englemore, Feigenbaum, Johnson and Nii, 1983) by means of
stacked blackboard panels.

35

2.5.9.2. CONTROL AND DISTRIBUTED PROBLEM SOLVING

Although the concept of distributed problem solving is not a new one; E-Mail, for

instance has given rise to shared authoring with sub-tasks being assigned to individual

computer users often separated by many miles, blackboard systems provide a

mechanism for orchestrating (or focusing the attention of) several problem solving

knowledge sources within a single (or perhaps multiple) domains.

Typically a blackboard system has a series of control modules which monitor

activity in the various levels of the solution space (or solution islands). The purpose of

the control modules is to apply one of three control strategies, focusing the attention of

an appropriate knowledge source, in order to resolve a pending problem

[ENGLEMORE 89]:

i) decide which knowledge source to activate next

ii) decide which solution islands to pursue next .
iii) decide which knowledge sources to apply to which objects

Knowledge sources are therefore said to respond oportunistically to changes in

the state of the solution space.

2.5.9.3. KNOWLEDGE SOURCES IN DIALOGUE SYSTEMS

State transition networks are generally used to orchestrate computer initiated dialogues

with an end-user. These are procedural in nature and result in hierarchical (context

sensitive) vocabularies; the user must adhere to the dialogue sequencing encoded with
in the system. Procedural networks are also inappropriate when concurrency or

parallelism is required for problem solving. Oportunistic approaches may be adopted
whereby information (concepts) may be exchanged between knowledge sources in an
undefined order enabling dialogue(s) between knowledge source(s) (the user is viewed
as a source of domain knowledge) to take place in an unrestricted, free flowing

oportunistic manner.
Such an approach, offering multiple dialogue entry points must requires loosely

structured knowledge bases.

Although conceptually generic, the major flaw with many blackboard systems is that
they are generally task specific; varying degrees of domain specific knowledge is
embedded within the control modules of the package (HARPY, for example). This is
often done to optimise the performance of the application. In the case of the HARPY

36

system [Bolt, Beraneck and Newman], explicit knowledge was encoded into the

blackboards transactional mechanisms to meet the near run-time identification of

words, required by the original DARPA project brief; in so doing rendering the system

inappropriate for general use. There is obviously nothing wrong with optimization

provided that it is generally applicable.
This view of the blackboard system, with oportunistic knowledge sources

monitoring a central data area, fits perfectly into the model of design assistance with a

number of collaborating design consultants monitoring the development of a product.

The emerging solution is generated incrementally resulting in reduced computational

commitments. Owing to the oportunistic nature of the knowledge sources both

forward and backward chaining may be intermingled. The major benefit of this is that

[FEIGENBAUM 89], "... in contrast with most generate-and-test procedures, a

complete test solution does not have to be built before making a decision to modify or

abandon it".

2.5.10. A GENERIC SOLUTION

The advent of multi-tasking workstations and in particular the UNIX operating system,
developed to improve software portability, with concurrent processing and inter-

process control (IPC) mechanisms enable applications to communicate to each other

provided a common syntax has been established. However such advantages have yet
to be exploited in providing integrated design environments for building design.

It is clear that there are many well established design principles and

methodologies that may be used to successfully develop a user-friendly interface.

Interface design, however, is a prototypical activity with new styles and

methodologies introduced with each new application. Any solution must therefore take

account of changing beliefs, methodologies and technical advances. This shift in

standards also applies to building design and the infra-structure must be capable of
accommodating these transitions in a totally transparent manner to isolate the user from

any inconsistencies that may arise from the substitution of design tool modules.
One solution has been developed which encompasses all the issues involved in

application development and usage (in the context of building design and appraisal) in

an open and extendible manner.

37

2.5.10.1. THE INTELLIGENT FRONT END

The Intelligent Front-end (IFe) is a general purpose, intelligent user interface

management system. In the context of human-computer interaction a system may be

said to posses a degree of intelligence if it has the ability to interpret information from a

range of different users and infer meaning in a particular domain of discourse while in

the context of task analysis and solution planning intelligence may be defined as, the

ability to apply what is currently known (or acquire appropriate information) in order
to solve a particular problem

The system is composed of a series of independent knowledge sources attached
to a central, dynamically partitionable blackboard. In addition to maintaining data

representing the current state of the model under development (in a conceptual form of
attribute/value pairs), the blackboard is also a communications centre, responsible for

updating each of those clients expressing an interest in a particular area.

can.. pt : Interpretation

" Interlaces

User:: F. r..
Map

c. an. tr� tned. ll. n
era

II

Knowledge Data
Handler Handler

Figure 2.6.1.1. Current We Configuration [IFE 89]. The knowledge sources to the left are
concerned with user dialogue while those to the right support the application environment.

2.5.10.2. IFE SYSTEM MODULES

The IFe system architecture is composed of a number of cooperating modules
supported by a central communications module, the blackboard, illustrated in figure
2.6.1.1; each module operating concurrently. Although the blackboard may support
any type of knowledge source, the following generic modules are required regardless
of operational context. These cooperating modules are:

"A Blackboard [MacRandal], which, unlike the traditional "pigeonhole"
view, serves both as a storage device and an inter-resource notifier, and
therefore acts as a communications centre between the various IFe
modules or clients. As yet the existing configuration does not support
scheduling.

I-

38

"A knowledge handler to interpret utterances from the user and, by

inference, complete the current product description model in sufficient
detail for the target application program.

"A Dialogue Handler, which, although it is documented [IFE 89] as
being responsible for conversing to the user in a manner suited to the

users level of experience and conceptual vocabulary, merely translates

messages from a neutral, internal format to that required by its clients,

namely; interaction modules such as the forms package
[RUTHERFORD].

"A User Handler to track the user's progress and ensure that the system

responds in a manner suited to the conceptual awareness of the user.

" An Appraisal Handler to coordinate the performance assessment

methodologies.

"A Data Handler which is responsible for creating a product description,

from information supplied by the user, in a format required by the

application program(s) to which the IFe is interfaced.

" An Application Handler [RUTHERFORD] to orchestrate an
application program against the selected performance methodology, and
passing the required product description data.

Although within this framework developments have been undertaken in many of

the modules (knowledge bases and utilities) to varying degrees, the author has made

specific contributions to dialogue handling by the design and development of a multi-
faceted user interface (forms) and the management of application programs by the

resource handler. Other tools such as the browser and a generic multi-

representataional three-dimensional viewing and manipulation environment (amongst

other things) have also been developed by the author and will be described within the

context of intelligent design assistance.
The actual communication mechanisms for implementing and orchestrating a

dialogue with the user will now be discussed in turn.

39

3. THE USER' INTERFACE

3. THE USER INTERFACE

A user interface is a communications buffer acting as an intermediary between a user

and computer. It is the only means by which the operator and computer communicate

with each other. Interfaces are inherently interactive mechanisms and should facilitate

a continuing dynamic dialogue between the user and application programme.
The power and flexibility of a particular application is governed by the language

embedded within its interface, which in turn, largely depends upon the nature and

sophistication of the application program.
The quality of the language employed, in terms of completeness, and the ease

with which the user can acquire a reasonable level of competence is often a major

concern for application specialists and has lead to numerous philosophical debates

regarding the appropriateness of a particular style of dialogue over another for a

particular task. In general however, computer initiated, question and answer
dialogues, for instance, are more appropriate for novice or occasional users; while user
initiated dialogues such as command languages are more suited to experienced users of
task oriented software.

3.1. COMMUNICATION

Communication is "the exchange of meanings between individuals through a common
syntax of symbolism" [ENCYCLOPEDIA 74].

3.2. COMMUNICATION IN DESIGN DECISION MAKING -A GENERALISED MODEL OF COMMUNICATION BETWEEN
TWO COGNITIVE SYSTEMS

In design the communication of design concepts (mental models) is of paramount
importance. In the example bellow, figure 3.2.1, cognitive system'A' wishes to
describe a mental model to cognitive system 'B' in sufficient detail to enable'B' to
analyse and comment upon it.

40

The optimum approach is firstly to establish what concepts the receptor (B,

figure 3.2.1) is familiar with within the context of the problem domain. In reality this

is often achieved by establishing the receptors educational/occupational background

and making the assumption that a certain basic level of understanding is attainable by

both cognitive systems.

A

Figure 3.2.1. Concept Sharing between two cognitive systems

B

The mental model is then decomposed into elemental instances of concepts that the

receptor'B' is familiar with together with a communication strategy or template,
logically relating the instances together (figure 3.2.2). The model is then transmitted

through an appropriately expressive range of media as a logical sequence of symbols.
Ulm "v. r. 9r ti.. -.

o. -.., Cnsps

Figure 3.2.2. Strategy for the conceptual decomposition of mental models.

The receptor'B' interprets the conceptual model filling in the slots with instances of
familiar concepts, thus constructing a similar mental model. Models in both 'A' and
'B' will differ according to'B's experiences and the precision of the initial model
description. Differences between the two models (figure 3.2.1) may be resolved by

the refinement of instance attributes; based upon individual knowledge and experience.
Many different strategies for one particular model are possible. No two people

think alike and therefore many different descriptions may occur for the same model.

41

The strategy adopted depends upon the degree of commonalty between both parties
level of understanding.

Problems begin to arise when a particular concept is not understood. This is

resolved by continual decomposition until the sum of the elemental parts is

understood. Crucial to this progressive convergence on understanding is the process

of feedback.

In order to communicate an idea or concept, the recipient cognitive system must
already understand the idea or concept or be sufficiently familiar with elemental
components.

A mental or conceptual model may therefore be defined as the decomposition of
ideas and concepts into logically related and familiar elemental concepts.

It is important to note that the definition of a conceptual model applies only to the
formatting of information for the communication of ideas between two cognitive
systems. No attempts are made to describe how concepts are stored in, or retrieved
from human memory.

3.3. THE PROCESS OF COMMUNICATION -A GENERALISED
VIEW

The actual process of transferring information and ideas between cognitive systems
may be summarised as follows, figure 3.3.1:

model

decomposition

"--ýIanguage
primitives

interpretetation

Figure 3.3.1. Transferral process

3.4. HUMAN INFORMATION PROCESSOR

composition

In terms of memory, the process of communication may be viewed as the transferral of
data from the long term memory store of one cognitive system to that of the recipient
system via the short-term (working) memory of both, figure 3.4.1:

42

A B

Figure 3.4.1. The relationship between memory regions and communication.

Considering communication in this form is important as there is a limit to the

capacity of the short term memory region in man that severely affects his/her ability to
learn or communicate [MILLER 57]. Although it is not the purpose of this thesis to
investigate cognitive psychology or cognitive ergonomics, it is necessary to consider

some aspects of human information processing to establish what mechanisms are at
play during the process of human-computer communication.

3.5. USER PSYCHOLOGY

Spurred on by increasing pressure from users, contemporary user-interface design
has triggered off a wealth of new and fresh ideas about man as an interacting part of
larger systems [TOFFLER 74] and has opened up debates on virtually every
intellectual discipline including man's decision making strategies, the way he learns,

and the way in which he remembers. "Above all it has highlighted man's inability and
unwillingness to adapt quickly enough to new and unfamiliar situations and
environments, to cope with the increasingly rapid influx of information such changes
impose" [TOFFLER 74]. This unwillingness may also be a measure of the amount of
importance placed upon a particular aspect of technology; man will only adapt if his

existence is threatened.

3.5.1. USER ADAPTABILITY

Man, as a cognitive system, is not infinitely adaptable, at least not in the short space of
time imposed by the abnormaly rapid and immense acceleration in the rate of
technological change currently experienced in today's computing world. "No

43

hyperbole can realistically describe the extent and pace of such change" [BENNING

73]. Although the biologist Julian Huxley has suggested that'the tempo of human

evolution during recorded history is at least 100,000 times as rapid as that of pre-

human evolution', 'there are a few intrinsic characteristics of the inner environment of

thinking man that limit the scope of thought to the shape of the problem environment'

[SIMON 69]. Toffler suggests that if the current trend in the rate of technological

change continues "man's inner equilibrium will be disrupted so greatly that by the turn

of the next millenium, millions of psychologically normal people will experience an

abrupt collision with the future".

3.5.2. INFORMATION ACQUISITION

Whether or not such predictions become reality, man's capacity to learn, and ultimately
his ability to adapt to new and unfamiliar situations, in a restricted period of time,
despite almost unlimited semi-permanent memory, is severely restricted by the amount

of information that can be held and manipulated in the forefront of the mind at any one
instant [SIMON 69]. Independent research, carried out in an attempt to find empirical

verification of the effective extent of man's adaptability has revealed several limiting

properties of man's inner environment that effects human cognitive behaviour

[SIMON 69] and ultimately the response to unfamiliar concepts.
Experimental observations [MILLER 561 suggest that up to seven (typically

four) short-term (rapid access) memory locations are set aside for simple problem

solving and knowledge acquisition. The great difficulty in acquiring knowledge about

new concepts is associated with the time required to transfer items of information from

limited short-term memory to the long-term memory store. Unfortunately the time

required to complete this information transferral is not directly related to the amount of
data being moved.

In terms of recall rather than recognition, Simon suggests that "subject

meaningfulness, similarity, and familiarity play extremely important roles in the time
taken to actually fixate a single element of data in the more permanent regions of
memory".

Ebbinghaus and Hull-hovland (in [SIMON 69] page 78), while investigating
learning speed, illustrates the importance of subject meaningfulness by commenting
(upon observations made) that the time taken per word to learn a sequence of prose is

one third of the time taken to learn a sequence of unrelated words. Citing an
experiment from B. R. Bugelski's "Presentation Time, Total Time, and Meditation in

44

Paired-Associative Learning" it is also suggested that a time of between ten and fifteen

seconds is required to permanently fixate a single new element of information (a

maximal sub-structure of stimulus [SIMON 69]), in memory.

3.5.3. CLOSURE

In order to reflect and respond to the inadequacies of human information acquisition, it

is important to limit the extent of the user's task by presenting sequences of small

manageable tasks. The user-interface must clearly define the user's goal within a small

problem area and thus help the user achieve mental relief or closure [MILLER 56].

3.5.4. SUBJECT MEANINGFULNESS AND FAMILIARITY

The importance of meaningfulness and familiarity in the context of a particular problem
domain is clearly illustrated in Simon's "Sciences of the Artificial". A single,
unfamiliar element such as'QUV (to use his example) consists of the three chunks
'Q, 'U', and 'V', while the word 'CAT in the context of a computing environment,
for instance, may be associated with the command meaning 'CATALOGUE'. In

another situation this may be interpreted as a small furry animal with four legs, a tail

and whiskers. In any context such a data element is said to consists of a single chunk
because of its high associative value. Being a highly familiar unit it is transferred to

permanent memory more quickly than'QUV would be. Taking a further illustrative

example of the importance of familiarity and meaningfulness in dialogue (interface)

systems and communication in more general, it would be extremely difficult to fixate
(in memory) the command'ISOLG', taken from the INTERNO menu driver of ESP1,

given that it is short for'Opaque surface short-wave flux'. There seems to be no
obvious direct relationship between the command and its effective meaning, unless
perhaps if you are a building and plant engineer. For the same reason, it is found that
the human cognitive system has great difficulty in dealing with tasks that involve

numerosity judgement and discrimination [SIMON 69], since it is virtually impossible
to find familiar patterns within sequences of digits.

1 The example is taken from Appendix 4.1, "Interactive commands of the ESP menu
drivers", page 4-32, "ESP -A building and plant Energy Simulation System",
reference manual, Version 6, Release 2, Clarke, McLean, 1987. any other examples
of poor mnemonics may be found in this section.

45

3.6. COMMUNICATING WITH COMPUTERS AS COGNITIVE
SYSTEMS

The basic philosophy of communication is true for CAD systems as much as it is true

for human interaction. The great difference between human and computer interaction

is that there is an opportunity within a CAD package to explicitly display the extent of

the systems' conceptual vocabulary, enabling the user to structure a mental model

accordingly, thus increasing efficiency by saving time resolving ambiguities between

the two model systems.
In contemporary software design, this is often achieved by utilizing direct

manipulation of graphical representations of data elements, operations and concepts.

However, the majority of CAD systems cannot handle multiple conceptual

representations and therefore users must adapt their way of thinking and design

processes to match those of the package or rather those of the software designer.

The user-interface is often the product of the application developer who has an
introspective and idiosyncratic view of how the package will eventually be used

resulting in esoteric application programs. The advantage of UIMS philosophy is that

it enables the design of the user-interface (perhaps by an ergonomist) and the
development of the application source code to take place independently of each other.

Often the extent of a systems' vocabulary may be limited or different, and

perhaps unfamiliar, 'words' may be used to describe the same concept. Such

problems result in the system being deemed inadequate. Frustration occurs when a

system continually fails to recognise a concept. For novice users this is increasingly

frustrating as they often assume the recipient system to have the same level of

understanding.
The actual expression of ideas is not only a means of communication but also

necessary to clarify meaning and intent. Therefore in some ways interacting with any
form of computer system is like communicating with oneself, owing to the level of

cognitive activity required to continually map concepts from one level of abstraction to

another. Often the user expects the computer to know what he/she knows.

46

3.6.1. A TRADITIONAL VIEW OF COMPUTER APPLICATIONS

Although a number of attempts have been made to implement voice activated user-

interfaces (HEARSAY, for example), the type of dialogue between a human and a

computer system is usually non-verbal. The most common form of human computer
dialogue is text oriented, taking the form of a command or restricted form of natural
language. Figure 3.6.1.1 illustrates the typical, cyclical nature of text oriented human-

compter dialogue systems.

(1) the user types a message on the keyboard;
(2) the message is received and analysed by the computer;
(3) the computer reacts in some way to the user's message;
(4) the computer responds by sending a message to the user;

'- ------- -> dialogue terminates

Figure 3.6.1.1. The cyclic nature of human-computer dialogue (from [BARKER 89]).

The control of the dialogue oscillates between computer and user, each becoming

idle while the other is active analysing incoming information. Figure 3.6.1.2,

illustrates the transition between the three states; transmit, receive, and idle, during this

communication process.

47

tcon1

System State
Transitions

EOT - End of Transimission
EOM - End of Message
(t - transmit; r" receive)
" dependant upon system semantics

Knowledge State
Transitions

HUMAN

Figure 3.6.1.2. The oscillatory nature of human-computer dialogue (from [BARKER 89]).

The illustration is a little unnatural in that, for example, there is no means

available for any one party to interrupt the other and most forms of natural

communication are bi-directional involving many communication channels (gesturing,

sound and pictorial information).

48

Traditional CAD packages employ static conceptual representations and often

uni-directional dialogues, targeting software at a particular class of user. In such

instances the resulting system may either be too complex for all users to use or may be

too inflexible by making general assumptions about the user's class or level of

expertise. Such an approach may also force a user to think and structure their work in

a particular manner (figure 3.6.1.3) - effectively creating a restrictive environment not

conducive to design.

--------------------------- nI

feedback

ý
Description Model. Analysis

Figure 3.6.1.3. Communication overloading (Cognitive saturation). Semantics and interface
intertwined.

By concentrating on one aspect of design decision malting within a particular
domain such systems cannot be classed as comprehensive design tools as they do not
fulfil the first requirement of design process, namely creativity which, it is suggested,
is supported by the unrestricted use of an unlimited range of design tools within a
single environment.

3.6.2. DIALOGUE STYLES AND INTERACTION MECHANISMS

There are wide and varied range of dialogue styles and interaction mechanisms
available for use in interactive systems development; falling into one of two categories:

" user initiated dialogues, such as command and natural language, are
propagated by by the user, while

" computer initiated dialogues tend to fall into the procedural, question and
answer category.

Each of the two basic dialogue categories are appropriate for particular situations
but neither capable of handling the diversities of communication that exist between a
range of user types.

49

Hybrid dialogues combine the features of both user and computer initiated

dialogues. From the point of view of communication the combination of these two

basic mechanisms results in a more natural style of interaction. An example of a

hybrid dialogue would be one where either the computer sets a domain for discourse

by prompting, perhaps offering several alternatives. Either of the two participants

would then volunteer information, within a particular frame, when it became

appropriate to do so.

3.6.3. THE DIALOGUE DILEMMA

Current user-interface design methodologies, in particular the UIMS solution, for

providing user-friendly interfaces introduces two potential risks:

(1) adopting an inappropriate interface, using the lowest common
denominator user level, and therefore,

(2) encapsulating the power and flexibility of applications programs

within a system denying the user full access to the methodologies

within the application

User friendliness is a highly subjective issue. In the context of human

communication Aristotle writes:

Spoken words are the symbols of mental experiences and written words
are the symbols of spoken words. Just as all men have not the same
writing, so all men have not the same speech sounds, but mental
experiences, which these directly symbolise, are the same for all, as so are
those things of which our experiences are the images.

[ARISTOTLE]

This statement, reinforcing the author's view), simply highlights the distinction

between language primitives being less portable than the universaly applicable domain

knowledge. The separation of user-interface and domain-knowledge is relatively easy
to achieve, and, while the domain knowledge remains common to all types of user,
(and therefore unchanged) the user interface must, on the other hand, be capable of

representing and communicating the "mental experiences" of many different users by

offering appropriate symbolic representations of those conceptual models for each of
the anticipated class of user.

50

There is a current trend in HCI research to categorise users into two groups:

expert and novice2 although Chin [CHIN 89] places users into the extended

categories of: novice, beginner, intermediate, and expert. Therefore in addition to

making allowance for the user' s conceptual perception, a conflict exists in dialogue

design; between making the interface easy enough for novice users to learn,

understand, and remember, while ensuring that it is responsive and sophisticated

enough for expert end-users [EDMONDS 81].

Experts are fundamentally different from novices; not only do they know
more, they know differently. Experts perceive their field in terms of rich
interrelationships rather than isolated facts and can make use of far more
information than can novices. The transition from novice to expert
involves fundamental cognitive shifts, analogous to those regressive
stages in children's cognitive development.

[NEWTON 86].

The transition from expert to novice is described by Dreyfus (1985) as follows:

A novice applies context free rules to a problem; as he learns from
experience he develops rules and strategies which work, and learns when
they can be applied; a true expert has solved so many problems that he is
able to match a problem with a prototypical one and produce a solution
without recourse to rules or strategies.

In the case of the novice a certain amount of guidance is required to assist in

his/her decision making process while interaction between experts must be sufficiently
flexible so as not to obstruct the thought processes of the more proficient designer.

Regardless of a persons level of expertise, particular tasks require that people

work at different levels of abstraction (from conceptual to detailed). In conceptual
design many logically related issues are defined but often not attributed until later in the
design process. While during detail design the issues previously defined are

attributed.
Current software accommodates both of these levels of abstraction by dividing

interaction into two processes:

(1) the definition of objects (concepts) in abstract terms

(2) the detailed refinement of object instances by attribution

The degree of freedom offered for the specification of objects is application and
dialogue dependant; rigid conceptual definition (procedural question and answer

2 The term novice is used in the context of computer modelling and does not refer to the
user's level of expertise in their own field of research, where they might be expert.

51

dialogues found in simulation packages), free specification, (user initiated dialogues
in drafting packages, for example). Often the definition and attribution are inseparable

as in the case of drafting packages.

The detailed refinement of object instances requires the input of specific attribute
values relating to the design solution. As indicated in chapter 2, one of the major
problems end-users face in using complex modelling software is the sheer amount of
data required to describe a building and manipulate the model [IFE 89]. Gathering and
entering this data is a time consuming and error prone activity. In many situations the
designer is unable to specify all the information required to run the application
program. Traditional software systems offer little in the way of assistance or
intelligent defaults. The typical procedural question and answer dialogues employed
provide little in the way of error recovery and backtracking. There are currently no
CABD software packages available capable of providing contextually relevant defaults

or assistance or more natural, non-procedural interaction control.
Consequentially, there is an obvious need for the user-interface to dynamically

follow the shift in the user's level of expertise and facilitate the use of different styles
of interaction to match the user's conceptual vocabulary and the task abstraction level,
providing intelligent, contextually sensitive defaults and assistance.

3.6.4. COMMAND LANGUAGE INTERFACES

Command languages have been widely used in human-computer systems stemming
from the availability of the keyboard. Essentially a command (an alpha numeric string,
terminated by a suitable symbol, such as a carriage return) is typed at the keyboard.
The string is the parsed and and analysed by control software embedded within the
application code. The application is responsible for checking the syntactic and
semantic validity of the command within the context of the application domain.

Often commands are context sensitive leading to a form of meta-notation
[BARKER 89] composed of reserved symbols and words. The position of keywords
and arguments is often critical and the user must remember the correct syntax and
ordering. In order to alleviate the burden on a user's memory a the natural language
solution attempts to equip the computer system with a more comprehensive vocabulary
and knowledge of grammatical constructions.

52

3.6.5. NATURAL LANGUAGE -A COMPLETE SOLUTION

One of the aims of artificial intelligence in Ha is to enable the user to communicate

with application programs in a natural and familiar language, using multi-input devices

(keyboard, pictures, speech, etc). While this is, theoretically, an ideal solution such

an approach has to be capable of interpreting all the syntactic and semantic

constructions that occur in natural language and encompass a wide range of

grammatical deviances. "As lexicons, grammars and semantic knowledge bases

increase in size to accommodate wider classes of user" [LEHMAN 88] and more

grammatical deviances are searched failing exact parsing, not to mention errors in

input, a significant increase in response time is inevitable owing to the resolution of

unavoidable ambiguities.
Most natural language interfaces are coupled to speech recognition systems

(HEARSAY II, HARPY) which have to take account of numerous other aspects of
communication including: the psychology of the speaker, semantics, rules of
discourse, syntax, lexicons, the prosodic system, the phonemic system, and the

speaker's articulatory apparatus [NEWELL 75, ERMAN 88] in addition to eliminating
extraneous sounds, and all to be achieved in near real-time. In text oriented natural
language systems the resolution of any ambiguity in the dialogue that may arise will
undoubtedly involve a significant amount of time wasting user/computer dialogue, and
ultimately involve more typing [SOMERVII. LE 85].

This form of personification, it is suggested, also leads the user to believe that
the computer system is capable of recognising and interpreting everything that is said.
This is obviously not the case and the user will undoubtedly soon looses confidence in

the dialogue. This is also a criticism of verbose or literal (graphical) interfaces such as
HyperCard where anything within an image may be sensitized.

3.6.6. ADAPTABLE HUMAN. COMPUTER INTERFACES AND USER
MODELLING -A LANGUAGE VIEW OF COMPUTER
APPLICATIONS

Despite the claims (propagated by the term) of natural language interfaces, early
attempts were tailored to specific domains of discourse ranging from pay-roll data
acquisition to aircraft maintenance and on board voice activated weapon control
systems. The rather unnatural dialogues initiated by these systems prompted, in the
early eighties, the development of a new class of task oriented dialogue system (based
upon user modelling) capable of actively participating in a conversation with the user

53

and predicting, from the user's questioning strategy, their intentions within a

particular domain of discourse (KNOME [CHIN 87]for example).
Therefore, rather than expecting the user to modify their conceptual perception

and adapt to a particular style of dialogue or interface or even expect a developer to

provide an interface capable of complete linguistic coverage a more sensible and
feasible approach is one of producing an interface capable of adapting to the user's

own linguist usage patterns.
In order to achieve this more natural form of conversation an internal

representation of the users conceptual awareness together with their goals and beliefs

[WAHLSTER 891 and a strategy for determining and modifying the model is required.
An approach similar to that adopted in person-person communication [ROSC

83] is employed, whereby human categorisation, or stereotypes, are used to organise
inferences concerning other people.

Once a user has been associated with a particular stereotype, by closely
observing and monitoring feedback from the user, matching responses to reference
templates within the stereo-type, it is possible to predict and anticipate a user's
expectations. This is known as user modelling.

Any user interface developed must therefore provide mechanisms to enable a
user model to dynamically modify the style of dialogue rather than the suspended-time
editing approach of some UIMS.

54

3.7. AN ADAPTABLE USER INTERFACE IN CONTEXT

Figure 3.7.1, below illustrates a system whereby the user's conceptual model is

represented within the computer environment, thus enabling the user to communicate
in a manner suited to his/her level of conceptual awareness. The conceptual models of

a number of stereotypical user types may be'coded' and dynamically interchanged at
the dictates of a user model as discused in chapter 2.5.6.1. This achieves the

separation between language primitives and generic domain knowledge.

User Environment

user's conceptual model

Application Environment
--------------------- 11

1

Figure 3.7.1. User adaptable system (Streamlined information transfer)

By combining a language approach to user interaction providing basic language

primitives together with user modelling to control and manipulate these primitives a
truly adaptable graphical user-interface becomes feasible.

In this model of communication the elemental communications or language
primitive is the concept. The properties of a concept are totally generic:

"A concept is a sufficiently high level abstraction common in all design

areas.

" Concepts are universal - they may be exchanged between systems.

"A concept may be interpreted differently by different systems.

"A concept may have many different representations depending upon the
contextual language employed.

" Any system employing conceptual models is capable of representing any
product.

55

Any approach adopting conceptual models as a medium for communicating
information will apply equally well in other domains. The major problems of this

approach are that:

" users expect recipient systems to have the same level of conceptual
awareness as they do,

" frustration occurs, leading to rejection, when the recipient system fails to

understand a particular concept,

" the majority of CAD systems, unlike the human cognitive system, are not
designed to learn or acquire knowledge about new concepts or accept
decompositions of a given concept.

It is important to note that no attempt is made to synthesise human cognitive
processes within the computer. As True (1975) suggests, "The basic objective is not
to cause the computer to simulate human conceptualisation and the cognitive processes
leading to communication. After all, the inside of a computer is still different from the
human mind as it was when Simon and Newell (1964) described it. Instead, in

considering the man-computer partnership, and given the current states of knowedge

about the functionings of man and the computer, the objective is simply to design the
"computer-understood" command language to be more conducive to man's
conceptualisation and formulation". Here there is an oportunity to develop dynamic,
idiosyncratic dialogues (up to a point) with a range of users. In this situation Guedj
(1980) suggests that "the role of the computer is to accept expressions with their
intended meaning ... and tell in such a way that the human reciever (or group) finds

the computer message sufficiently intelligible and important so that the dialogue may
progress". Therefore the main form of communication from a computer system is

more related to the concept of telling [LEWIS, COOK 69].

56

3.7.1. SEMANTIC VARIATION

In normal conversation the resolution of ambiguities between conceptual models is

achieved by re-description and re-phrasing. Crucial to this iterative process is

feedback. In any form of communication feedback (continual acknowledgement and

questioning) is essential in order to perpetuate the dialogue; ensuring that concepts are

understood.
It is particularly necessary in a design environment where new concepts are

being introduced and are continually evolving. Cultural differences between

individuals must also be accommodated.
If a static descriptive language is employed to communicate concepts, in

situations where ambiguities arise, such languages become inappropriate; failing to

provide alternative descriptions and therefore the receptor fails to extract meaning and
the dialogue fails.

This is an inadequacy of traditional graphical interface design methodologies.
Only in some natural language dialogue systems [TAILOR] "is the acquisition of an
appropriate bias for inductive concept learning" [UTGOFF 82] catered for.

As building design utilises a rich graphical vocabulary natural language is

obviously inappropriate; an adaptable graphical, user interface is therefore required.
If such an interface is to accommodate a range of dialogues it must also exhibit

the flexibility of natural language. In order to achieve such a free transferral of
information and meshing of conceptual models between different classes of user and
computer models, the interface must be capable of two things:

" dynamic re-description by further conceptual decomposition
(elaboration) or contraction,

" dynamic re-phrasing by using different "words" or symbols to
describe or present both the meaning and value of a particular concept.

Both of these processes have not yet been represented by contemporary interface
design which has until now been concerned more with providing tools and libraries to
aid software engineering.

57

3.7.1.1. RE-DESCRIPTION OF CONCEPTUAL MODELS.

The re-description of a conceptual model is achieved by replacing a single concept with
a meta-concept, figure 3.7.1.1.1, containing any number of logically related concepts
and meta-concepts.

c? b
Figure 3.7.1.1.1. Expansion (elaboration) and contraction of conceptual models.

By employing dynamic memory allocation and de-allocation this may be

achieved, thus enabling the interface to respond to more or less detailed descriptions;

allowing the model to `evolve' naturally. The model would expand or contract as
dictated by a user model (monitoring the user's dialogue), guided by knowledge of the
domain.

58

3.7.1.2. RE-PHRASING

Given that a concept is a single element of data the meaning and value of which may be

interpreted in different ways by different cognitive systems, for a concept to be

understood by a cognitive system it may be necessary to decompose it, as above, or to

provide an another interpretation of its meaning or value. This is achieved by

employing a generic form of storage (character string) and by attaching an appropriate

interpreter. The interpreter extracts the data form the concept and presents it in a

particular way. Since the storage format employed for the concept is standardised

many different interpreters may be developed and interchanged dynamically to suite the

conceptual vocabulary of the user (figure 3.7.1.2.1).

1-00,

Figure 3.7.1.2.1. Conceptual re-phrasing by the dynamic substitution of concept interpreters
resulting in a multi-representational system.

The interpreter may employ different words to describe a concept or may employ

a particular style of symbolic representation. In addition to presenting ideas to the user
in different formats, the interpreter also provides the user with different interaction

mechanisms for manipulating the concept value, the most appropriate being chosen for

a particular job.

A single system may also have multiple interpreters for the same class of
concept. For example detailed and schematic representations of objects within a
modeling packages.

By combining a dynamic n-level hierarchical architecture with a morphological
descriptive mechanism it becomes possible to represent or describe anything. This

59

approach has been utilised in the development of a dynamic multi-representational /

mult-faceted user-interface (forms, chapter 4); adopting a restricted form of natural
language as opposed to a fully natural language with all the ambiguity resolution that

entails.
Another function of the concept interpreter is to format events specified by the

user (operations on the value of the concept) into a natural or neutral language

utterance. The user's conceptual model is then translated into one that may be

understood by an appraisal package or packages. The actual mechanisms for

implementing a dialogue system in this manner are discussed in chapters 4 and 5.

To summarise, less static representations of the user's conceptual vocabulary

and perception are required. Greater flexibility in the dialogue system is achieved by

dynamically changing the conceptual template (user conceptualization). While

templates provide the basic structure of a conceptual model the re-descriptive and re-
phrasing mechanisms, described in this chapter, enable the model to be fine tuned or
customised to the needs of an individual user. The issues involved with choosing
alternative descriptions of concepts is discussed further in chapter 5.

The three basic components of a dialogue system are:

1) a dialogue toolkit containing a number of generic language primitives,

2) a knowledge base containing rules and knowledge of the user, as an
interacting part of the system, in order to orchestrate instances of language
primitives

3) knowledge of the users task and domain of discourse.

This three level view fits conveniently into the general IFe infra-structure,
illustrated in chapter 2.

60

3.7.2. A GENERIC ARCHITECTURE

The strategy is one of representing and manipulating conceptual models. Conceptual

models, by definition are hierarchical and therefore a network of nodes is used to

represent such a model in the working memory of the user-interface. By adopting a
language view of the user-interface as opposed to considering the functional

requirements of interface design tools (UIMS) a generic hetra-archical framework for

implementing an adaptable user interface has been identified.

An object oriented approach has been adopted whereby a generic object, figure
3.7.2.1, with which the user interacts, formats events from the user into a high-level

neutral language utterance which is then passed out of the interface environment to the

working memory of the IFe for interpretation.

sub-context

Figure 3.7.2.1. A generic concept interpreter.

Each concept category is represented by a concept interpreter which, in object
oriented terms, contains methods for both displaying and modifying the information

embodied within the concept. From the systems viewpoint, each concept interpreter

responds and behaves in exactly the same manner, allowing concept interpreters to be
interchanged dynamically whilst maintaining a generic command syntax. This ensures
that, regardless of the interpreter employed to represent a particular concept the
utterances from the user in the form of events remain constant. Therefore unlike
traditional approaches to interface design the controlling knowledge base will remain
unaffected by any changes made to the interaction layer.

In addition to the pointers required to establish a relationship between other
nodes (context, sub-context, next and previous) a node contains pointers to:

"a concept held in an instance library (a simple linear linked list), figure
3.7.2.2, and

" an interpreter, figure 3.7.2.1, which is used to both display and
manipulate the contents of the concept.

61

- Aw. 'y

generic

specific
instance

Figure 3.7.2.2. Instance library. Figure 3.7.2.3. Generic and specific instance data.

Data is categorised into two sections, figure 3.7.2.3:

" generic data: this is specific to the display environment and the physical
properties of graphical primitives used to represent concepts, and

" instance data: concept name, value, defaults, examples.

3.7.2.1. INTERFACES

Conceptually the concept interpreter plugs into the concept data cell and extracts
information, as required, from both regions. As will be discused further in chapter 4,

there are two aspects to systems capable of representing conceptual models:

1) description (or specification) of user templates and,

2) the dynamic manipulation of those models.

Owing to the different systems involved in the design and manipulation of the

end user-interface, a different interface is required for each. These are identified and
discussed in the following chapter. However, in order to facilitate both of the
requirements, identified above, three interfaces are required, illustrated in figure

3.7.2.1.1:

1) a template interface to facilitate the initial definition of the conceptual
model (held in a file),

2) a presentation interface which enables the end-user to access and
manipulate the value of the concept,

3) a command interface facilitating the manipulation of the conceptual model
by an external knowledge source using a series of generic control
mechanisms.

62

Command
interface

input

output

ý-GDý
f-0N

Template
interface

." Cd
IV

OL

C

L1

Figure 3.7.2.1.1. Conceptual interpreters.

The relative properties of each of these interfaces is discussed in more detail in

the following chapter. Interpreters fall into one of two categories:
i) Concept interpreters: those representing individual concepts, and
ii) Meta-concept interpreters: those representing meta-concepts; in which case

the reference to data points to a list of logically related concepts or meta
concepts.

Using combinations of these two entities conceptual (hierarchical decompositions)

models may be constructed, figure 3.7.2.1.2.

: i. _J

ý

aU

aiý

Figure 3.7.2.1.2. Dynamically alterable n-level hierarchical architecture

The actual internal data structure for this type of user-interface is therefore partitioned
in to two:

i) an instance library, figure 3.7.2.2, containing the actual concepts, and

63

ii) a template stack, figure 3.7.2.1.3, with each node pointing to an entity in

the instance library.

instance list contextual template

Figure 3.7.2.1.3. Contextual concept template and instance list

Templates may be dynamically configured and substituted; enabling re-
description. It is also feasible to employ a number of templates simultaneously, each

providing a different interpretation of referenced instance data thus resulting in a multi-

representational system. This is also useful for assembling 3D geometrical

mechanisms Appendix E.

In addition to the substitution of templates (resulting in a re-description
mechanism), this approach also enables the dynamic exchange of interpreters at each

nodal point thus facilitating re-phrasing (semantic variation) as outlined in Section

3.7.1. This results in an infinitely extendible architecture which is capable of evolving

with the user's expectations or even design solutions.

3.7.2.2. CONCEPT INTERPRETERS

In essence concept interpreters map the data associated with a particular instance of a
concept to the display environment allowing the user to edit it. The style of
presentation depends upon the:

" hardware platform

" required contextual functionality of the interface, whether: 2d/3d

graphical, or Id text oriented interaction.

64

3.7.2.3. A BASIC TAXONOMY OF CONCEPT INTERPRETERS

By careful categorisation of conceptual interfaces multiple interpretation of concept
values are also possible thus enabling the required re-phrasing mechanism.

For the purpose of describing a building model to a simulation package, conceptual
interpreters may be categorised into two categories (representing the two extremes of

user types) outlined below together with their corresponding graphical representation:

i) free response

ü) restricted response

The actual functional characteristics of these interpreters are identified and discussed
fully in chapter 4.

3.7.2.4. INTERFACE PORTABILITY

On of the main objectives behind the development of user interface management
systems is that of software portability.

In terms of the graphical properties of the window environment of a particular
hardware device, meta-concept interpreters provide graphical environments to support
concepts.

The interface of the top level node or meta-concept interpreter effectively points
to window manager of the current hardware platform. By utilising the functionality of
a high level graphics library it is feasible to port a graphical user-interface based upon
this architecture to other hardware platforms simply by modifying the parent interface;
by making calls to other graphics function libraries.

65

3.7.2.5. GENERIC CONTROL MECHANISMS

The basic mechanism brought in to play during communication is the setting of a

context for discussion which is achieved by focusing the attention of the recipient

system towards a particular set of concepts. In terms of a graphical user interface this

maps to concepts being displayed and hidden.
It is also necessary to modify the value of a concept. This is achieved by

'setting' concept values. Clearing a concept is achieved by setting it's value to null.
Therefore the basic operations required by an interface capable of representing

conceptual models are:

" hide / display a concept

" set the value of a concept

" query the contents of a concept

" dynamic substitution of interpreters and templates

" dynamic modification of generic attributes

" dynamic specification of instance attributes

As attributes are modified the attached interpreter is notified and the display is

updated immediately.
Although a hierarchical model is illustrated, there is no need to follow this

structure as the control mechanisms for focusing the users attention upon particular
concepts and meta-concepts is under the control of external knowledge bases and not
hardwired into the interface.

The template may be manipulated dynamically. Therefore unlike suspended time
editing found in some UIMS the interface is capable, under the control of a user
model, of adjusting to the requirements of the end-user during interaction.

In terms of notifying knowledge bases of events from the user, events are
formatted into an utterance of the form (figure 3.2.7.5.1):

concept: event/method: value

66

user said: power switch: on

formatted utterance
', ýüÄÖCÖo-xz2tibÄ«ö1ý9r'ä ýk?

initial state user event

Figure 3.2.7.5.1. Formatted user utterance; concept: event: value.

In a generic form, events reported by a concept interpreter, should include the

notification of:

" modification (user has set the value of the concept)

" requests for assistance

Other forms of event such as "plan to" and "not plan to" [SZEKELY 90], figure
3.2.7.5.2, should also be accommodated to allow the user model to anticipate and
respond appropriately to user events. Changing the value of a particular concept may
have a number of implications elsewhere in the system. A 'plan to' modify (indicated
by a positive selection) may result in a warning being issued or the suspension or
termination of an application program.

k

R
IN

plan to select

: """ iý.:;

plan to drag

Figure 3.2.7.5.2. Direct manipulation of concepts: "plan to" event tracking. Aborted operations
would be interpreted as "not plan to".

For the purpose of this investigation, rather than considering the language
primitives used by applications and users, a more formalised language approach was
adopted (see Communication protocol, chapter 4.8.4). The protocols and

67

corresponding mechanisms for controlling a dialogue with the user, in the context of a
form filling package, are discused in chapter 4.

3.7.2.6. MAINTAINING THE FOCUS OF DISCUSSION AND DIRECTING
INPUT

Owing to the asynchronous processing activity within the various knowledge sources
of such a dialogue system, the current focus of attention of the application environment
and that of the user may at some time be different. For this reason the interface must
be capable of maintaining the focus for each participant. This is achieved by the use of
two concept pointers, figure 3.7.2.6.1.

user interface

Figure 3.7.2.6.1. Current domain and user focus pointers.

3.8. SUMMARY

From the identification of an appropriate model of human communication, a generic
framework, for constructing and manipulating graphical user interfaces, has resulted
into which many different interpreters may be inserted and manipulated by domain
knowledge.

68

The architecture is device independent and may therefore be implemented on any

hardware platform providing a generic control mechanism for device dependant

primitive objects Owing to a generic communications protocol and a number of

generic control mechanisms (chapter 4.8.4), systems developed using this approach

become plug compatible and may be linked together, providing tailored solutions to

specific tasks.
This generic architecture has been used in the development of two different

categories of interface:

" Forms: form filling text and 2d graphical oriented user-interface,
(chapter 4).

0A 3D viewing and manipulation environment in which concepts may also
be configured with articulatory control mechanisms (Appendix E).

The primitives for each interface are described in detail in the following sections

outlining the design methodologies and technical problems associated with
implementation.

3.9. AN APPROPRIATE METAPHOR

Traditional styles of computer dialogue (text and sound based interfaces) are serial.
Barker suggests that these communication channels, while useful, have a limited

communication capacity.
Owing to the different domains of activity associated with design processes

more comprehensive communication mechanisms are required. Higher bandwidth

communication channels, involving the use of pictorial and multi-media information,

are seen as a natural extension to text oriented interaction providing a powerful means
of communication.

Sommerville [SOMMERVH. LE 85] suggests that majority of problems
associated with natural language dialogues may be resolved by adopting a graphical
rather than linguistic vocabulary, relying upon human abilities of pattern recognition

coupled to a pointing device. This would, it is suggested, help the user to

communicate instructions and perhaps information within a consistent symbolic
system.

69

In order to optomise the communication and assimilation of information

[BARKER 89], multi-media interfaces (Xerox and Apple) utilise several

communication channels in parallel.
Once an appropriate conceptual model has been selected, a lexivisual

presentation system such as this, combining both text and pictures, provides an

efficient and effective mechanism for communicating a wide range of concepts;

stimulating and orientating a user's cognitive activity [BARKER 89].

One of the most effective and natural-looking means of achieving a consistent

form of interaction is the desktop metaphor, one of the greatest proponents of which

are Apple with the Apple Macintosh. This metaphor (devised by Xerox), constructed

around the graphical representation of familiar real-world objects (icons) which are

manipulated using an appropriate pointing device, such as a mouse, on another

graphical entity, the desk top, or window, provides the basic building blocks for

developing "user-friendly" interfaces. By manipulating icons on the desk-top simple

operations may be performed.
By creating a virtual reality within the computer, the user is sufficiently

stimulated to draw upon real-world experiences. This has the obvious benefit that the
interface is easy to learn and remember.

The most important visual device in this virtual world is the cursor. As the

cursor is the main focus of the user's attention (the eye following the selection
process), this graphical data element may be re-defined dynamically, providing a
mechanism facilitating feedback; indicating permitted operations and system

performance reports.
The dynamic modification of visual images is an ideal means of achieving

semantic variation; providing alternative descriptions for a given concept. The desk

top metaphor bridges many cultural and linguistic barriers where conventional
interfaces have failed. The issues of subject meaningfulness and familiarity apply
equally, perhaps more so, to graphical data elements such as icons. It is important that
the visual cues used to represent operations are carefully chosen. A prime example is

the Pafec dogs drafting system which has recently been given an icon driven command
menu3. The poor choice of images result in many contemplative hours trying to
establish what operations these buttons invoke.

The principles behind the desk top metaphor have been utilised in the
development of the forms package (the main user-interface employed by the IFe),

chapter 4, supporting a lexi-visual style of dialogue facilitated by the provision of

3 Note Image unavailable owing to technical problems.

70

graphical display and manipulation interpreters which support graphical feedback from

other resources (such as image browsing tools, perspective image generators and the
like) and allow the user to directly interact with graphical representations of concepts.

71

4. THE FORMS PACKAGE

4. THE FORMS PACKAGE

The forms package is a general purpose, dynamic graphical user-interface toolkit

employing a form filing metaphor.

4.1. WHY A FORM FILLING METAPHOR?

Forms are a special type of communication medium primarily used to communicate

between an organisation and an individual, utilizing a visual rather than verbal

language, employing entities such as questions (with or without answer options),

answer spaces, explanations, and redirection instructions. Although form-filling is a

particularly convenient way of expressing a complex request to a computer it is an

activity that has rarely been used as an alternative means (to other forms of interface)

of commanding an application. [FROHLICH 86].

A screen or paper based form is essentially a template that facilitates the entry of
data through a number of data entry slots (or fields) [BARKER 89]. This type of
interface is often used in text retrieval systems and primarily forms packages have been

confined to simple warehouse invoicing tasks and other, more traditional, business

applications, such as stock control systems (OfficeTalk [ELLIS 80]), where the

computerized forms are used to prepare information prior to submission to an

application for processing. The results of the user's input are often displayed, some

time after, either on the form itself, or by means of some other type of alphanumeric
feedback. Examples of screen based form filling packages are Fillin [WARTIK 86],

SQL*Forms [ORACLE 87], and FormsDesigner [DIGITAL 88].

The majority of forms packages are therefore merely interfaces to data bases,

enabling the user to create and access information by filling in the appropriate form.

Despite the limited facilities these systems offer it is 'the simultaneous presentation of

options and free response answer areas on screen-based forms' (Frohlic) which makes
form-filling suitable for many different types of application; offering the user with an

alternative to menu selection and command language interfaces, resulting in the
flawless entry of data.

72

4.2. DESIGN METHODOLOGY

A user-interface capable of managing hierarchical conceptual models (concepts and

meta-concepts) was required. The analogy of stacked and nested forms containing

logically related fields satisfied the requirement in a manner that users would find

familiar.
The Forms package is based upon a generic architecture derived from a language

view of the user-interfaces, describe in chapter 3, and is a means of representing and

presenting concepts at any level of detail. Both the object management functions and

the concept interpreters are written in C, employing object oriented programming

methodologies. The forms package was developed to meet the following requirements

" manage hetra-archical conceptual models

" facilitate dynamic (run-time) manipulation of concepts and meta-concepts

allowing the dialogue with the user to be adapted during interaction

" provide developers with a clean separation between application and the

user-interface together with providing high level dialogue control

mechanisms; thus ensuring re-use of domain knowledge.

" isolate hardware dependencies within a single module and by utilising a
high-level graphics toolkit ensure portability across a range of hardware

platforms.

4.3. PORTABILITY CONSIDERATIONS

One of the primary concerns when developing the forms package was the issue of
portability. Although the forms package has been developed within a Unix

environment the most obvious limiting factor to software portability is that relating to
graphical input and output (I/O).

73

4.3.1. WINDOW ENVIRONMENT

At the initial stage of the project there where no `stable', truly portable toolkits or

libraries that fitted the requirements of the project. Window managers such as X and

NeWS were still being evaluated and modified and only available for beta test sites. A

stable development base was required. A major decision was made to adopt a

graphics toolkit developed by the informatics division of Rutherford Appleton who are

concerned with developing the user interface. The ww function library was developed

in order to isolate software development from `the ever changing base of machine and

window manager' [MARTIN 87].

4.3.2. TOOLKIT LAYERS

WW is intended for the development of high level tools for window management (and

has even been used as a base for an implementation of GKS [MARTIN 87]). It exists
in two distinct layers:

"a high-level function layer providing rigid functionality (file system
browsing, text editors)

0a low level interface providing simple line drawing and rasterop between

bitmaps [MARTIN 87].

Having some experience with Sunview, Whitechapel graphics, and a little

working knowledge of X and NeWS, this low level layer is relatively high-level

considering all that it hides and provides a consistent interface between numerous
platforms.

Having access to the source code was also a great benefit; enabling a number of

the supplied high level functions to be modified to suite a particular requirement.
Although, ww offers an ideal development platform, the author was conscious

of the need to isolate code from this layer to enable other toolkits to be used. The only
really specific use of ww, apart from bitmap operations is the use of the ̀ tx' (text

editor) function set. These calls have been isolated within a number of macro
definitions and therefore should be relatively easy to replace.

74

4.3.3. HARDWARE PLATFORMS

WW enables the developer to access the base graphics of the following systems:

Graphics Application

WW function library

ICL Perq Whitechapel I F Sun
I 1I l4.1 42 Colour Hitech Suntools SunView News

QX

Figure 4.3.3.1. Toolkit layers

During the research period the development of the forms package was

undertaken on Sun workstations operating with system IV and V. Towards the end of
the project a whitchapel Hitech workstation running the X window manager was

acquired and the forms package successfully ported with relative ease. It has not been

possible to port the application to other platforms owing to the availability of
hardware. None of the network transparent mechanisms of X where explored
although this is intended for future research.

4.3.4. HIGHER LEVEL TOOLKIT

An object oriented toolkit layer, written in C++, has also been designed for future
developments. This layer provides a high level of abstraction an example of which is
the image class with the following methods:

image->rotate
image->flip_horizontal
image->flip_vertical
image->save to file
image->read from_file
image->shift
image->magnify

75

4.3.5. COLOUR

Colour is an important aspect of symbolic representation/presentation. Ideas may be

communicated more readily using colour or other sensory stimuli (sound, smell).
The use of colour within the forms package has been withdrawn for a number of

practical reasons:

i) The use and interpretation of colour is highly subjective. Although

physical properties of fields (size and position) may also be regarded as
subjective, it is suggested that colour is more culturally emotive and
perhaps should be avoided.

ii) A practical limitation of the use of colour results from the use of virtual
screens (bitmaps) for individual forms. Introducing colour increases the
demand upon application memory (eight bits per pixel as opposed to one
bit). As the creation of forms and fields is dynamic, the allocation of large

areas of memory significantly reduces interaction and system response
times.

iii) A final and perhaps the most significant reason for no longer supporting
colour is that, by writing a series of test programs (colour ramping for

example) it was discovered that ww's representation of colour was
inaccurate, inconsistent and therefore unreliable.

One justification for using colour would be for displaying colour images and for
distinguishing between object primitives. A simple grey-scale is used for form
backgrounds to visually highlight conceptual boundaries.

76

4.4. ARCHITECTURE

The key to the Forms package lies in its data oriented architecture. This is based

around a dynamically alterable n-level hierarchy which is used to build a conceptual

model of a user's mental perception of a system, described in chapter 3. Each node in

the tree structure, inheriting attributes from its parent, points to an instance of one of

two basic entities:

a field which is used to represent concepts. The value of a concept is

displayed and manipulated by means of an appropriate interaction

mechanism, and,

a form or meta-concept which facilitates the conceptual classification of a
number of logically related fields and forms.

Thus using combinations of these two basic elements complex models may be

constructed by 'hierarchical decomposition, effectively using nested and stacked forms.

This is particularly useful for defining and limiting a user's task to a particular problem

area and ensuring task completion or closure [MILLER 57].

Both forms and fields are essentially modules containing pointers to a private
data area and to methods for displaying and manipulating this data. These methods are

collectively referred to as a concept interpreter.

Each field has an identity tag (or label) associated with it. This tag represents the

actual concept (or meaning) while the data entry slot or concept interpreter represents
the concept's value. The field identifier also enables the user to access on line

assistance and default values.
The value of a concept is stored as a character string (a series of character

tokens) and therefore may be interpreted in a number of ways, simply by substituting

one concept interpreter for another. Taking the simplest of examples first, figure
4.4.1 illustrates a basic field consisting of a concept together with it's concept
interpreter, positioned on a form.

Figure 4.4.1. Concept and interpreter

77

Screen based forms may be categorised in to:

i) static - rather like paper based forms with simple keyboard transcription

mechanisms, and

ii) reactive - responding to input events and guiding the user through pre-
defined sequences of forms (if deemed necessary by a user model) either
by re-direction instructions or by display sequencing.

As a consequence of implementing reactive form sets, there are essentially two distinct

aspects to the forms package:
i) form creation: the definition of conceptual templates

ii) form manipulation both by end-user and application program

This has resulted in the development of three distinct interfaces for each of the

users of the forms package:

i) an end-user interface for the eventual user of the application program.

ii) a proforma interface for the interface designer

iii) a command interface for the application developer

As so many issues involved with the development of each of these interfaces are
interrelated it is difficult to choose an appropriate starting point. One of the aims of the
forms package is to allow the user to manipulate concepts. As concept manipulation is

a significant aspect of the forms package, the mechanisms for end-user manipulation
will be considered first.

4.5. CONCEPT INTERPRETERS -A FRAMEWORK FOR
CONSISTENCY

Consistency in the user-interface has been a major concern for many developers of
toolkits and application software. The forms package has three user interfaces:

i) Proforma interface

ii) End user interaction interface

iii) Manipulation interface

Note that command consistency between application programs depends entirely
upon the proforma designer and knowledge engineer and not upon the functionality of
the forms package.

78

Since all entities within the forms package are derived from a generic concept
class, regardless of their properties each will inherit generic behavioural characteristics
and therefore result in complete internal consistency.

Another criteria, which is satisfied by the use of a generic object class, is

consistency in the command language, declarative syntax and user interaction layer.
The design considerations for each of these interfaces are described.

4.6. A GENERIC CONCEPT INTERPRETER

Regardless of it's value a concept is represented by either a multi-line text string,
figure 4.6.1, or a bitmaped image.

concept

R
value

Figure 4.6.1. Concept and basic free response interpreter

4.7. END-USER INTERFACE - COMMON CONCEPT EVENTS

The end-user of the forms package interacts with forms and fields by means of the
mouse and keyboard. Irrespective of the concept interpreter, a number of common
activities involved with the manipulation of concepts and meta-concepts has been
identified:

" selection or focusing

" requests for assistance

" manipulation of concept values

Ignoring variations in concept interpreters, the only means of interacting with a
concept is by means of the mouse. Therefore, access to mechanisms fulfilling the
general requirements of interaction with a concept is provided by means of two pop-up
menus, associated with each field label. Assuming a three button mouse, these pop-
up menus are activated by the left and right mouse buttons.

79

As concepts and meta-concepts are essentially derived from the same object class

(class concept) represented in the forms package as a field label and the background of

a form, a number of common activities are made accessible by means of a common

pop-up menu.

select select the form or field for input

help obtain help information

description obtain a description of the concept or meta-concept

The first menu, figure 4.7.1, therefore includes items for selecting (or

activating) the concept, requesting assistance and retrieving default and previous

concept values. The latter being useful as an error recovery mechanism

As this menu allows the user to access information regarding the operation of the
forms package together with interpretations of the meaning of the concept this menu is

activated with the left mouse button since this is the most commonly used button,

particularly by novice users. It is also important that the first few user actions result in

valid non-destructive events otherwise frustration will occur and the user may loose

interest.

select
concept value n-1

zlýý

-I

II
description
example

D: value 1
P: Value
D: value 1
P: value

Tfi:: s::: f: se:: d::: d: ss: p : äys:.. th: e :.......................
current value of the concept
you may change this value by
typing into the field.
Fosition the cursor in the

13

Figure 4.7.1. ® Standard menu and help window

The second menu (4.7.1.5.1), activated by the right mouse button is a concept
specific menu which can be configured dynamically, during run time, with
contextually relevant values.

80

4.7.1. DOMAIN INDEPENDENT RESPONSE (COMMAND MENU)

The command menu, figure 4.7.1, is divided into three sections: selection,

assistances, data retrieval, enabling the user to issue a number of elementary requests.
The order of items has been chosen in descending "destructiveness". The least

destructive placed at the top. On selection the cursor is always placed to the left of the
least destructive item; the help item.

As the items on the command menu are common to all concepts, the menu may
also be activated from the background of a form.

4.7.1.1. SELECTION ITEM

A concept may be selected for input (keyboard or mouse) by clicking any mouse
button in the bounding rectangle of the concept interpreter or by selecting the select
item from the concept menu. When selected the field is highlighted and any other
currently active field is de-selected, figure 4.7.1.1.1.

field activated for keyboard selection
and mouse input border

ý%`)P)C'}}KSý9^}?]GQ: Wl"}DUTý\R\`C}: O Yý})}}}. Vim. "\yk }r T}}]MT}}}1. . ý"NAVhti ; P"h\; 0':)1, C;: ". 1ý}Tý}iýJ1ý. V}\

Figure 4.7.1.1.1. Field selection.

This enables the user to select the field for keyboard input other than clicking the
cursor in the concept interpreter.

Name i
default desktop
cursor

mouse movement
tracked by current active field

I beam

y text cursor i text field

I lý

Figure 4.7.1.1.2. Tracking the cursor.

81

When selected the cursor is tracked by the currently active field and is modified

when it wanders in and out of the field's bounding rectangle, figure 4.7.1.1.2. In

order to facilitate multiple cursor patterns within a single window, ww enables cursors
to be stacked n-levels deep. Unfortunately when managing multiple desktops,

window leave and enter events pop the cursor stack. When the field is eventually de-

selected an attempt is made to pop a (NULL*)cursor stack resulting in a buss error.
In order to by-pass the problem cursors are explicitly set avoiding the need for a cursor

stack.

4.7.1.2. ON-LINE ASSISTANCE ITEMS

This section of the menu may be defined by the application developer. The names are
taken from an initialisation file, which ensures that all command menus behave in

exactly the same manner. Two default items are provided at run time:
i) help, and

ii) description.

Any data, defined in the proforma template, associated with either of these field

attributes is displayed in a pop up window. As the contents of the help and description
items refer to the value of the concept, when selected the window is placed to the top
right hand corner of the field interpreter so as to avoid its contents being obscured,
figure 4.7.1.2.1.

82

write-cut-to-file done ok

grey scale intensity:
I

symbols arrows
Place the cursor where you
intend the centre of the circle
to be. While holding the left
mouse button down move the cursor
to increase or decrease the radius

ý

[e.

pattc
III

�I'll
liii

ý

cl=: I= I II I
��Ii

ý .. ý
r-r=

III I

m

"I

/usr/li b/fonts/fi
xedWidthfonts

110ý

Figure 4.7.1.2.1. On-line assistance for individual concepts. Note that the help window is only
displayed once a positive selection from the concept menu has been made (ie the concept menu is de-
activated before the help window is displayed. This image is taken from the PixEd (Pixel Editor)
interface, Appendix F.

Following the 'modeless' philosophy of the interface, this window does not
lock other events out, although to avoid confusion only one display window may be

open at any one instant.

4.7.1.3. THE HELP WINDOW

Help and concept descriptions are defined in the proforma template and displayed in a
pop-up window when the item is selected.

As either of the help or description items is selected a message of the form:

concept? USER_QUERY? item name,

is formatted and written to standard output. Thus allowing the parent process, or
other monitoring resources, to respond appropriately by overwriting information
defined in the proforma with contextually relevant information.

It is important that the help window remains active until the user wishes to
remove it. The window, when displayed, must not lock the user out and has been

83

designed as a modeless object allowing the user to move, scroll, and destroy it, while

still allowing the user to select and enter data into other fields.

4.7.1.3.1. Moving the help window

The help window is automatically positioned to the top right of fields (so that it does

not cover the contents of the field), and in the centre of forms. In some situations the

user may wish to move the window out of the way so that the information may be

referred to while dealing with other concepts. This may be achieved by holding the

middle mouse button down over the window and dragging it to a new position. When

initially displayed a copy of the area beneath the window is copied and pasted when

the window is closed or moved.
In order to eliminate any flicker that may occur as a result of the continued

bitmap pasting during a move operation the window's bitmap is -stacked with the

WWPUSHOFF flag. This enables changes to be made to the default window's

bitmap without them being seen until the contents of the window is restored by another

call to bmstack with a WWPUSHON flag. The effect is a flicker free movable object.
When the window is moved away from its initial position it is important the user

is aware of what concept, the information displayed, refers to. Therefore, lines from

the corners of the window, are rubber banded to the corners of the field while being

dragged. The field label is also inverted when the mouse enters the window to ensure

relevancy.
The window may be moved by clicking the left mouse button within the

bounding rectangle of the help window and dragging it to the desired position. The

cursor pattern changes to a double box to confirm the operation.

4.7.1.3.2. Scrolling the help window

To prevent the help window occupying the entire form the depth of the window is

restricted to an arbitrary number of lines of text.
The maximum depth of the window is defaulted to five lines (this may be

changed to any depth (see customising the forms package, section 4.9.2). The width

of the window is determined by the maximum line length in the text block. When the

number of lines in the text block exceeds the maximum defined depth, the window
becomes scrollable. To indicate to the user that additional information is available a

virtual shadow, cast by an imaginary light source (positioned to the top left of the

84

window) is pasted along the top and left edge of the window, figure 4.8.1.1. The

shadow is achieved by ORing over an appropriate greyscale pattern once the text has

been printed.
The actual scrolling action was initially a pan operation, with the width of the

window also being defaulted to an arbitrary length. However panning text is a rather

un-natural activity and so the width of the help window is dynamically configured to

the maximum line length within the text block; resulting in a more natural, "page like",

vertical scrolling action.
Scrolling is achieved by holding the middle mouse button down, within the help

window, and moving it in the required direction. The permitted scrolling direction is

indicated by changing the cursor pattern, figure 4.7.1.3.2.1.

r-- --ý
I; I
1WI
II
ý------J

171
IWI

II i '______1 S1
11

r------ý
I ý, I
I I
I 'ý I
ý------ý

I

J

II
II

r------,
II
I AM I
IUI
ý_ _ý

vertical

Figure 4.7.1.3.2.1. Help window scrolling cursor patterns

In addition to mouse activation, the help window may also be invoked by an
application or knowledge resource. This enables the type of assistance to be tailored
to a particular state. The mechanism for achieving this (chat user) will be discussed in

a later section.

4.7.1.3.3. Destroying the help window

By clicking the right mouse button within the bounding rectangle, the help window
may be destroyed.

85

4.7.1.4. DEFAULT VALUES AND ERROR RECOVERY

Each concept may have one default value which is displayed on the command menu as

A--

V

P: value

If this item is selected the concept's default value is transferred and interpreted by the

concept interpreter.

previous

Figure 4.7.1.4.1. Transferring data to and from the previous value store.

The current concept value, before over writing is placed in a buffer, figure 4.7.1.4.1,

and displayed on the command menu as:

for previous value. This allows a single level of error recovery to be achieved

although it is envisaged that previous values may be stacked onto a list.

As with the assistance requests, messages of the form:

concept: USER REQUFST: default_value

concept: USER_REQUEST: previous value

are formatted and written to the standard output stream, enabling any monitoring
resources to respond. This enables contextually relevant defaults to be supplied, and
facilitates a greater depth of error recovery.

86

4.7.1.5. DOMAIN SPECIFIC RESPONSE

Contextual, domain specific, alternative values may be offered to the user by means of

a second pop-up menu which is activated by depressing the right mouse button while

the cursor is positioned over the field label, or concept identifier. The menu items are

usually defined in the proforma template definition, figure 4.7.1.5.1, but may also be

dynamically configured by knowledge bases and applications to provide contextually

relevant values.

new field
name concept
type character
origin 10 10
size 15 1
menu value 1\

value 2\

valuen-1\
value n

end field

Figure 4.7.1.5.1. ® Dynamic menu

If there are no alternative values defined for a particular concept the action taken
by the forms package is to respond with an invalid mouse selection error, indicated by

a cross cursor, figure 4.7.3.1.1.

When a positive selection from this menu has been made the field is selected, if

not already, and the item is then displayed by the interpreter. The previous value may
be retrieved from the the standard concept menu associated with the field label.

4.7.1.6. POPUP MENUS

The interaction by means of pop-up menus has prompted an investigation into event
interpretation.

The pop-up menu is a "high-level" tool provided by WW. Although this
function enables items in a list to be chosen using cursor selection the functionality of

the menu routine required modification. The menu routine returns when the button

state changes; this may be a release or an additional button. Menu items should only
be selected when all buttons are released; i. e. the user returns to the stable state before

the invocation event.

87

4.7.2. INTERPRETING MOUSE EVENTS

Mouse events may be categorised into two distinct groups:

i) positive (button down) events, and

ii) passive (movement) events with all buttons up.

Positive events are those which invoke a process such as:

" selecting a field,

" dragging an icon,

" drawing a line,

" popping a menu,

while passive mouse events are those such as mouse movement, these are typically

managed by mouse tracking routines, changing cursor patterns over active (hot or

sensitive) regions of a display.

Positive events posed a slight problem within the forms package. Although

positive events are used to select and activate forms and fields for input, two possible

alternative actions may be taken on selection:

i) on selection the event activates a form or field and is immediately

processed, or

ii) a positive event is held until the button is released or the combination of
buttons held changes.

Once a working prototype of the forms package had been implemented, these

two issues where investigated. Through use, the first option proved to be rather

aggravating with menus popping up on form and field selection.
From personal observations the act of selecting a field is merely to address a

new concept. The user should not be forced in to a situation, by a pop-up menu, for

instance, requiring a decision for which the user is unprepared. Therefore the second

method; "one event, one process", which is far more consistent, is the method

currently implemented.

88

4.7.3. FEEDBACK AND ACKNOWLEDGMENT

As the cursor is the focus of the users interest this is used, by changing the cursor

pattern, to indicate permitted operations such as text editing, or to indicate heavy

computational activity or initialisation (by showing an hourglass).

4.7.3.1. INVALID MOUSE EVENTS

Not all areas on forms or fields respond positively to mouse events. To indicate

invalid mouse events a cross cursor is displayed, figure 4.7.3.1.1.

cross cursor

x
pattern

concept label

Figure 4.7.3.1.1. Invalid mouse event.

II

Other warnings such as a flashing screen and/or bell sounds are not used as
these cause unnecessary alarm and are annoying to other users.

4.7.4. CONCEPT INTERPRETERS - THREE BASIC TYPES

In order to reflect the capabilities of the two extremes of user types (expert and novice)

within the We two categories of concept interpreter have been provided:

i) free and

ii) restricted response.

Three basic field types exist; each with its individual style of presentation;
providing a visual cue to its function:

89

4.7.5. VISUAL CUES

The following visual cues are used to indicate, to the end-user, what mechanism is

being employed for input:

U free response
11 restricted response (Boolean)

restricted response (multiple choice)

Knowledge of a particular class of user and their task (held in a user model) is

used to dynamically switch between the above input and presentation modes.

The following interpreters are broad set of primitives used within the IFe. A more

complete guide to special purpose dialogue design may be found in [MARTIN 73,

EASON 751.
Where the above visual convention has not been rigourously observed, the

function of the interpreter is obvious by the content of the field (menu, date, etc).

Each of the concept interpreters is now described.

4.7.6. LABEL - GENERIC CONCEPT IDENTIFIER

This field simply displays text or an image and responds only to mouse input;

activating the two general pop-up menus described in section 4.7. and 4.7.1.5.

4.7.7.0 FREE RESPONSE

Free response areas provide the user with the maximum input latitude and are therefore

a more appropriate form of input for expert users performing complex tasks. This is

the least structured of responses and perhaps more prone to miss-communication
between systems [MILLER 76]. For this reason free response areas should be used in

the gathering of unstructured information such as: Name:

Free response functionality is provided within the forms package by text field

and graphics fields.

90

4.7.7.1. TEXT FIELDS

A basic text field, figure 4.7.7.1.1, enables the end-user to interact with a concept

value, by directly editing the character token string. A number of simple editing
facilities are offered as illustrated by figure 4.7.7.1.1 and . 4.7.7.1.2

Go onet ry

current

ANTICLOCK
$EM lectangulap Prism

0" as
 173, - . 1T3. . 7SY,

. 176, -901761 4.35a, ". 176,9.176,4.154,
-9 w

selection
-ý... v. v. a. v. ý.. v%.

_ý. 173, _v. 1T3 , . oeo,
". t7c, _0.176, a. 0"",
". t76, e. 1761 4.434,

-". t73.0.1T3, ý. "0".
", 1, S, e, i,

6,7, t,
4, ", 7, ", f,
"0 f. 0.3.1.
6,1,2,3, ",
4, ", 7, l, C,

"EN iect4n3u1eP Prisn
0.0.

ýý. 123, . 0.125, . 713,
". tIIi, -0.126,0.17i,

select

Gennetry

current

Gevnetry

extended
selection

Nnr7CL0C K
CE N a4ctangular Drisn

6 i,
-Dl17a. -6.173. w_wAw_

". I`ýLý!. Goo, _e_, Ic_ . ý.... w
selection ý. 1. L.

ý, ý, move '
r. 1.

.,,.

DEN 14ctan1guibr Dpisn
i, i,

-D 9123, -4, LES. 68113,
1.172, -1 L211, . ITS,

edit

Figure 4.7.7.1.1. Simple text editing, using ww tx function set.

ANTECLOCK
GEN Rtctee 9vlar Plis n

0. ý.
-e. ýTS, - . 173, i. 17a,

0. T75 -ýr. Z7t - v: r5 e-
. . .
. ITZ,

. 76, -.
-0

. 17C, . 0.1040,
. 176,

00
0 . l76, Amb,

0 -0. iT3. 0 . 177. 0.010.
4, 1,3, 6, 2,
4, Z, 6i 7, 0,
4, 3,7, et 1,
4. *. 0. 3. 1.
4, 1,2, 3, 4,
4, 8,7, 6, i,

GEN Rcctan9yl4r Prisn
O. 0.

-0.123, -m. 12s, 0.175,
0.12G, -O. 129, 0.17C,

extend

91

r ANTICLOCK
GEN Rectangular Prism

8,6,
-10.1, -0.175, fa a'7r

0.150 1 a 4V Aa

M x2 - select word re
ANTICLOCK
GEN Rectangular Prism

6 1
-. 175, -0.175, CCA +'7C ri ý Cii

rý M x3 - select line

Geonetry 6mc
LG tit

qEN ec Un MlnP Prian

-ý; -1.1T3, . m0l, I
ý4T76ý-

...
... 4; Ira

-4 3 71
ý- -I .-S ýö ý 2,

. 1.

.. ý. ý
ec ao w ne, rien

-ý
ý 725, -8.125,

ss

 . LTS,
y.]'dim , -V . lwt. 19, L It, A

x4 - select all

Figure 4.7.7.1.2. Selection accelerators

A number of magic control characters are trapped for editing:

AU - delete line

AW - delete word

výaýo
ýý11eý

92

4.7.7.1.1. Derived Character validation fields

In order to ensure the flawless entry of data a number of character validation methods

have been defined to restrict input a particular type of data string. Each may be

interchanged. The following interpreters are derived from the basic text field and

inherit the behavioural and functional characteristics of the generic text field class. The

currently implemented character validation methods are:

character This is a free response text editor. All characters are

accepted.

alpha input is restricted to ASCII characters <a-Z>.

alpha-numeric Input restricted to ASCII characters <a-Z> and numbers

<0-9>.

integer Only numbers <0-9> accepted.

floating point This interpreter allows only one decimal point to be entered
between characters [0-9], therefore only floating point

numbers are accepted.

Character validation may be extended for each of hte above types as described in

4.9.3.7.

4.7.7.1.2. Cutting and pasting from other text fields

When the contents of a text field is selected (either totally or partially, figure
4.7.7.1.2.1. a), it may be cut or copied into another field using the editing menu.

X

current Fo -. I t- selection

field

selected

Figure 4.7.7.1.2.1. a. Selecting text to copy into another field.

current
active field

When the editing menu is activated in a field other than the one containing the current
selection, the selected text is validated against the method of the target field.

N Z

i
ý

floating point fields

93

deleting text from another field
is not permitted

x

valid ims selection inverted

°i. 3 i'. ' 1 '.

move
edit menu
activated

Figure 4.7.7.1.2.1. b. Activating the edit menu

X

18.7
y Z

Figure 4.7.7.1.2.1. c. Selected text copied into current, active field. Note that the current
selection has moved to the current field.

If it is a valid selection the text is inverted, figure 4.7.7.1.2.1. b, and may be cut or

copied to the required field, figure 4.7.7.1.2.1. c. Otherwise the selection is made in

the new field.

4.7.7.2.0 GRAPHICS FIELD

The graphics concept interpreter was originally intended to just display static bitmaped

images. However, in some applications it is often necessary to interact with graphical

objects. Although, during the development of the graphics interpreter, the author has

deliberately avoided Apple's HyperCard approach to sensitized screen images

(suffering from the same problems of natural language interfaces; ie the user expecting
too much), the functionality of the graphics field is to be extended. It is anticipated
that the interpreter will provide an object drawing layer similar to that found in

applications such as MacDraft.

94

Operations performed on graphical entities will result in formatted utterances of

the form:

concept: attribute: new value

eg.

}

room: size: 15 7

k
®

This will enable domain specific knowledge to be applied directly to the

operations performed on graphical representations of objects. For instance a structural

grid may be displayed, as in figure 4.7.7.2.1a.

a b

Figure 4.7.7.2.1a and b. Manipulation of symbolic diagrams. Single instance of an object
class is modified.

The user may specify, by dragging an iconic representation, a new column
position, figure 4.7.7.2.1b. The corresponding utterance would be:

column_n: origin: x y

Explicit knowledge of the domain and task may establish the offset of the centre
of the column to the intersection of grid lines and modify, by shifting, the position of
all objects in the same class (column) by the same amount [BRIDGES 89], figure
4.7.7.2.1 c.

95

C

Figure 4.7.7.2.1c. All objects re-positioned.

The recognition and generation of symbolic diagrams of this form is a
convenient vehicle for implementing stylistic knowledge. The proportions and
juxtaposition of volumes and components may influenced by encoded knowledge of a
particular architectural style. A large organisation, for instance, may have a particular
house style which if represented as a series of formal rules would enable all designers

and technicians to work within the same shape grammar. This area of research is left
for future investigation.

96

4.7.8. RESTRICTED RESPONSE

Restricted response fields limit the user's options to a number of pre-defined

alternatives. This type of mechanism is therefore useful for novice users and for

enabling the user to direct the dialogue by selecting appropriate topics. In the forms

package there are two types of restricted response fields:

i) Boolean, true/false interpreters, and

ii) multiple choice fields.

4.7.8.1.1u BOOLEAN FIELD

A Boolean interpreter simply allows the value of a concept to be toggled between two

pre-defined states. In the forms package this type of field is referred to as a button.

4.7.8.1.1. Button

Button fields are indicated by two overlapping planes, figure 4.7.8.1.1.1, representing

the two value states of the concept.

/ i---AnLLL

®<::: ý7
Po

n
[KM

Q

Figure 4.7.8.1.1.1. Conceptual view of a button field as a two state (Boolean) selection field.

Figure 4.7.8.1.1.2, illustrates the possible mouse interaction with a button field.

A left button depression cycles the value counter-clockwise while the right button

cycles the value in the opposite direction. The direction is unimportant for a Boolean

field, but is implemented to ensure consistency with other forms of restricted input

field. The middle mouse button activates a pop-up menu, indicating in textual form the

alternative values. The cursor is automatically positioned over the alternative value,
figure 4.7.8.1.1.1.

97

field located button depressed

4m4

(a) (b) (c)

Figure 4.7.8.1.1.2. User interaction with button field.

The design of the button field was carefully considered to reflect the user's

actions. When a button field is selected the alternative state is displayed and
highlighted, figure 4.7.8.1.1.2a. The contents of the field remain obscured until the

button is released. This is done to ensure that the user is fully aware of the
implications of the selection. Moving the cursor out of the bounding box, while the
initial button remains depressed, returns the contents of the field to it's original state,

thus enabling the user to abort the selection safely, figure 4.7.8.1.1.2c

4.7.8.1.1.1. Obscuring concept values

Obscuring information is used in many situations as will become apparent (as in the

case of the button field, above) and is achieved by ORing over a greyscale pattern.
The process of obscuring concept values is used to indicate to the user that the value of

a concept has changed or is about to change as a result of some user initiated event
(with or without the new value being made visible). Although the process is described

as obscuring concept values, it is important that information remains legible.

A greyscale pattern is defined as a percentage from 0% (white) to 100%
(black). Four patterns (the most regular) out of a possible (theoretical) 100 patterns,
illustrated in figure 4.7.8.1.1.1.1 ORred over a Helvetica narrow font together with a
circle, where investigated for their appropriateness.

98

, :... ý'ý'alýt m iýtý. ý ýi l7hfiDýIýýIG rR ý` a. 3W LW
6

LM8t W
'. ý ..

}
.:

[. j c1

ý
.. ýºýý ,, ýýýý umam ý f. :ý 12

__.:. ý......... ýýs -

.....................

..
: 1B

..
©.. FGW.... KLNNßFiýRSTiý? ýVýXýZ

.............
ABCDEFGHIJKLMNOPQRSTUYWXYZ ! @#$X^&*()_+
abcdefghijklmnopqrstuvWxyz 1234567890-=

Figure 4.7.8.1.1.1.1. % grey scale pattern ORed to obscure text and images

25%
.....................

7%
..........

O 0ä

The more dense patterns (50% and 25%) are more likely to obliterate
information, while regular square grids (25%) are more likely to cause bit alignment

problems; note the heavy top and bottom to the circle with the 25% pattern and the loss

of text definition with 50% and 25% greyscale.

50% 25%

..................

..................

..................

 u

..................

Figure 4.7.8.1.1.1.2. Bit alignment. Two lines offset by 8 pixels ORed over a 50% and 25%
grey scale pattern. Note the fuzzy edge to the second line over the 25% pattern.

Theoretically, the more densely packed the bit pattern the more consistent the
effect. Figure 4.7.8.1.1.1.2, illustrates two lines offset by 8 pixels ORed over a 50%
(diamond grid) and a 25% (square grid). The quality of the two lines is more

99

k

consistent with the denser 50% pattern. However, the fonts used for text output are

continuous shapes spanning several pixels in each direction.

.....................

.....................

.....................
.....................

.....................

.....................

.... .

.. ".

......
....

.....................

.....................

.....................

.::::
ýýý::::.

.....................
.
.....................
.....................
.....
.
 ...

.
 .

 ..

T"
"

Im=04 ..
.. .

..... ý ý
was.....

.....

....................

.....................

..

.....................

.....................

.....................

..................... U.

among """""M3 "" """ ""

 s... "
 . .

..... .. .

..... "
..................... " "
.....................

....................

.....................

.....................

.....................

........ .. .

.... ý

.....

1.1...... 1-1......

.....................

.....................

.....................

.....................

Figure 4.7.8.1.1.1.3. Alignment of text characters.

Figure 4.7.8.1.1.1.3, illustrates the effects of offsetting characters by a single
pixel. Although some positions are acceptable ww does not facilitate automatic bit

alignment which would be necessary for guaranteed consistency.

..........................

JU/. 25% 14%

Figure 4.7.8.1.1.1.4. Bit alignment and registration.

7%

100

Figure 4.7.8.1.1.1.4, illustrates the four most regular greyscale patterns ORed

over the word "Off'. The 50% and 25% patterns are obviously inappropriate. The

7% pattern is too open and causes a dazzling effect, the regular grid is also more likely

to cause bit registration problems, figure 4.7.8.1.1.1.2, and interfere with vertical and
horizontal lines (note the squareness of the letter '0'). The 14% greyscale pattern, on

the other hand, is a regular pattern composed of two offset square grids and therefore
less likely to interfere with vertical and horizontal lines. The effects obtained using the
14% pattern are more consistent and is therefore used to obscure concept values
throughout. WW does attempt to allign greyscale patterns during a rasterop using the
WWREGISTER flag, however, it is difficult to predict how fonts are treated.

The button field is essentially a selection mechanism. The field will toggle between the
first two items on the menu only. If only one item is specified the item will be inverted

on selection and the formatted outputs are:

field name: USER_SELECTED: on

field name: USER_SELECI'ED: off

It is hoped that a background image may be specified using "background"
followed by the name of an exrep image file. Text and images would be over printed.
The background image may contain a mask - this would be useful for producing
buttons with rounded corners, for instance.

The relationship between the attributes and the behavioural characteristics of
button fields are indicated in the following figures. Attributes of interest are
highlighted in bold text.

101

Proforma

declaration
new field

name switch
type button
origin 101
size 101
label string User level
label position fit above
menu experts

novice
end field

Event reported: (on selection)
switch: USER SET: expert

User level
I

expert

Figure 4.7.8.1.1.3. Button field: menu items as text

Proforma

declaration i switch: USER SET: expert switch: USER SET: novice

new field
name switch
type button
origin 101
size 64 64 pixels
label string User level
label position tit above
menu expert%

novice
end field

User level

Figure 4.7.8.1.1.4. Button field: menu items as images

Proforma

declaration
new field

name switch
type button
origin 101
size 64 64 pixels
label string User level
label position fit above
menu expertsA\

novices B
end field

E

I swAch: USER SET: novics

User level
I

novice

Event reported: (on selection)

User level

Event reported: (on selection)
switch: USEH SET: A switch: USER SET: B

User level
I

t

Figure 4.7.8.1.1.5. Button field: Aliased menu items

Proforma

declaration
new field

name switch
type button
origin 10 1
size 10 1
label string User level
label position fit above
menu expert

end field

i

User level

Event reported: (on selection)
switch: USER SET: off switch: USER SET: on

User level

expert

User level
mmum

Figure 4.7.8.1.1.6. Button field: Single menu item inverted on selection

102

4.7.8.1.1.2. Selection dilemma

A fundamental dilemma was encountered when designing the button event handler

namely; when the user selects the button is the current state being selected or the next

state?
The answer to the problem depends upon the context the button is used in.

Buttons may be used to acknowledge the current state of an event or may be used to

present an alternative. It is up to the designer of the proforma template to decide which
is appropriate for a given task.

Another issue associated with button selection is the notification response.
Should changes of the concepts value be notified immediately the field is selected or
after field de-selection; allowing the user to'test alternatives?

Both options are supported. By specifying a selection border of zero any

change in the state of the field value is reported immediately. This is useful for actual
buttons. Selection border widths other than zero implies that the field must be de-

selected before the event is reported. This facility is useful (for error prone novice
users) where the state of a button may affect other processes.

103

4.7.8.2. MULTIPLE CHOICE

Multiple choice fields are appropriate when the value of a concept must be restricted to

two or more alternative values.

4.7.8.2.1. Button

The button field, simply by extending the number of menu items defined in the field

declarations, may be used as a cyclical selection mechanism, as illustrated in figure

4.7.8.2.1.1.

Figure 4.7.8.2.1.1. Conceptual view of a button field as a multiple choice selection mechanism.

A more obvious and useful interaction mechanism for multiple choice selection
is the pop-up menu. From experience, the number of alternative values for some

concepts (such as entries from a database, eg. building materials) is often substantial.
In order to accommodate large number of items scrolable pop-menus would provide a

solution. Rather than implement another pop-menu, a cascading pop-up menu has

been designed and implemented.

4.7.8.2.2.1 Cascading popup

Menu items are displayed in a cascading image stack. This field interprets border as

the separation between items on the stack (min 1 pixel max 1/4 field size) and therefore

enables large numbers of items to be condensed into a relatively small region of the

screen. Conceptually, this field may be visualised as a three-dimensional stack of
bitmaped images, figure 4.7.8.2.2.1, which cascade out of the screen with a positive
mouse event in the bounding rectangle of the interpreter.

104

current selection

next and previous
raised in anticipation

form

Figure 4.7.8.2.2.1. Cross section through image
stack

To aid traversal the next and

previous items are raised in

anticipation of the next selection;

providing a previewing
mechanism.

A button down event on the field or label pops the item stack and places the

cursor at the current value.

�0

Figure 4.7.8.2.2.2. Cascading pop-up field; item selection.

Items are selected by moving the cursor back and forth along the stack. A

positive selection is made if the button is released while an item is raised. Moving the
cursor outside the boundary of the image stack aborts the selection preserving the
current value on button release, figure 4.7.8.2.2.2.

As the label may be obscured by the stack (if positioned below), it is displayed

at the front of the image stack, effectively creating a virtual draw front.

The following figures illustrate the relationship between the attributes and visual
characteristics of this field type.

105

Proforma

declaration

Event reported: (on de-selection)

pattern: USER_SET: brick i new field I
name pattern
type popup
origin 101
size 10 2
label string
pattern
label position fit above
menu right batch\

left hatch\
concrete\
brick\
earth\
marsh

end field

Figure 4.7.8.2.2.3. Popup field: menu items as text

pattern

right hatch

pattern

Graphical images may be substituted for text simply by creating an exrep bitmap
image with the same name as the item and setting the forms image directory

accordingly.

106

Proforma

declaration i
Event reported: (on de-selection)

pattern: USER_SET: brick

pattern
new field

name pattern
type popup
origin 10 1
size 64 64 pixel
label string pattern
label position fit above
menu right hatch\

left hatch\
concrete\
brick\
earth\
marsh

end field

Figure 4.7.8.2.2.4. Popup field: menu items as images

As well as being a multiple choice field, the cascading pop-up is also useful for

containing and retrieving information. For example (see figure 6.10.2.1), the results
from a simulation may be displayed as a series of images and retrieved by the user
simply by flicking through the stack.

It is envisaged that forms may also be stacked and retrieved using this
mechanism.

Selecting the previous entry or using the right alternatives button over the label

raises and positions the cursor over the appropriate entry. In order to perform this
function the cursor is re-positioned by shifting it's offset accordingly. The actual
cursor position is unchanged and results in premature (unexpected) de-selection
(window leave events) if a cascading field is positioned near to the window border.
With the current implementation of ww it is not possible to access low level cursor
control mechanisms at the window manager level.

107

4.7.8.2.3. Menu

This field type displays the field menu as a list, figure 4.7.8.2.1. As the menu is

changed so the field's depth (later option for width) will change dynamically in

accordance with the number of items.

Proforma

declaration

new field

Event reported: (on de-selection)

pattern: USER-SET: right hatch

name pattern
type menu
origin 10 1
size ISO
label string pattern
label position fit above
menu concrete\

brick\
earth\
marsh\
regular grid\
right hatch\
left hatch\
horizontal strip\
vertical strip

end field

Figure 4.7.8.2.3.1. Menu field: menu items as text

pattern
concrete

brick
earth
marsh

regular grid
Immmum

left hatch
horizontal strip
vertical strip

The same rules for reporting the selection of items for button fields applies for

the menu interpreter.

4.7.8.2.4. File browsing

In many applications it is often necessary to enter the names of existing files. In order
to simplify the task of accessing files an interface to the UNIX directory structure is

provided by a file browsing field. This is based upon the tx_tree file scanning
function set within the ww library. Two pop-up menus are displayed, one for
directories (.. indicating the one above) and the other displaying the names of files

within the current directory. The user is able to traverse the UNIX directory structure
simply be clicking a second mouse button over a selected directory.

The functionality of the browsing menu is accessed by the right mouse button

and is similar in nature to the domain specific menu, providing alternative concept
values. In the ww implementation the menus are activated by the left mouse button.
In order to make the function consistent within the forms primitive set, the mouse

108

event handler was modified enabling alternative values (files) to be selected using the

right mouse button.

In terms of keyboard interaction, the field is similar in functionality to that of a

character field except that all white space characters are trapped and replaced by an

underscore to avoid problems with the UNIX interface. File names are also restricted

to fifteen characters in length, again for system compatibility. The popup menu

associated with the label will scan the directory system relatively or absolutely
(selected from a choice menu activated by the middle mouse button over the field label,

figure 4.7.8.2.4.1).

fi 1 ena " Fhvproq. 1

mo. frm
pi xed. frm
pi xed2 . frm

Figure 4.7.8.2.4.1. File browsing field. Note files are selected by placing the cursor over the text
string. Directories are shown in a separate panel and may be entered by pressing the middle button
while holding the right button down.

The files are cached and therefore the directory must be re-scanned before newly

created files are accessible from the menu. This facility is also accessed by means the

middle mouse button, figure 4.7.8.2.4.2.

e
absolute pathname in
rescan filesystem

Figure 4.7.8.2.4.2. Re-scanning and search specification menu.

109

4.7.8.3. SLIDERS

Sliders are useful for restricting a user's entry to a range of numeric values.
Restricting the attribute set proved to be troublesome for a number of field interpreters;

particularly sliders.
For purely investigative reasons it was felt that the appearance of a slider should

represent data pictorially; eg a thermometer for setting or displaying temperature.
In order to achieve a certain level of generality the following set of attributes

where deemed necessary:
image
background
image mask

positive / negative hit zones

.... etc

Although other field types would ignore this superfluous information, this
attribute set was too specific.

A compromise (a fudge) was derived. A special "image" file containing the
afore mentioned attributes together with exrep images was derived. The format for
this file is outlined below.

image
background image

masks
hit zones etc

The slider field has been temporally withdrawn until time permits to tackle this
problem again. A simplified slider would perhaps be sufficient for the time being.

110

4.7.9. OBSCURE FUNCTIONALITY

As a result of the object oriented approach adopted, it is relatively easy to add new

concept interpreters.

A number of domain specific concept interpreters have been developed;

including a date field and a vector image display field, and have been integrated within

the set of interpreters owing to their generality within a particular domain.

forms

interfaces

proforma command

desk

character

intepreters

%1/
form

(/1
viewer

alpha

button L pop up

slider

alpha num

Figure 4.7.9.1. Forms directory structure.

ý
date

integer

u j: ý^ Ilia

real graphics

Figure 4.7.9.1, illustrates the source code file structure for the forms package,
indicating the separation between the forms package and the concept interpreter

primitive set.

4.7.9.1. DATE

The concept of time is used extensively in the field of building simulation. It is often

not necessary to specify simulation constraints in terms of hours, minutes and

seconds. Therefore, although a date field does not immediately appear to be a

common interpreter type, the concept of date is sufficiently generic to be included

within the forms primitive set. A time field is also being developed.

In order to avoid ambiguity, which may result from an unrestricted form of data

input, the date field restricts entry of dates by means of a popup calendar, figure
4.7.9.1.2, which is essentially an interface to the Unix timeval structure. The initial

menu

111

value, unless otherwise specified, is set to the current (system clock) date in American

format. The date is displayed in a fixed size box in the current data font in one of two
basic styles:

i) style European -> day: Month: year

ii) style American -> Month: day: year

Dates may be specified, when using the proforma or command interfaces, as a
series of numbers separated by colons ": " or as numbers but with the month specified
by a character string. If this method is used only three characters are checked and the
first character must be an upper case character. Care must be taken when mixing
formats, figure 4.7.9.1.1.

Data Numeric American European
interpretation interpretation interpretation

8: 2: 1964 8: 2: 1964 1 Aug: 02: 1964 08: Feb: 1964
Aug: 02: 1964 8: 02: 1964 1 Aug: 02: 1964

Figure 4.7.9.1.1. Date format specification

OO: Feb: 1964

Date: 1: 12: 1989
Numeric representation

European format

Date: Iý1: Dec: 19891

American format
Date: IJan: 12: 19891

The date field does not support a numerical representation, figure 4.4.7.9.1.1,
owing to the potential ambiguity which may arise when interpreted by the user.

112

hit zones - activate pop-up menus

Date ßi;: ýc :: 1

current value
obscured d changed by the user

December 1989

Sun Mon Tue Wed Thu Fri Sat actual date obtained

\ I-
ý from system clock

r
C.

10 11 12 13 14 15 16
1

31

3456789

18 19 20 21 22 23
24 26 27 28 29 30

selected date

Date

month Is obscured
while selection is being made

Figure 4.7.9.1.2. Date field: Popup calendar.

Figure 4.7.9.1.2, above, illustrates the user interaction mechanisms supported
by the date field.

113

4.7.9.2. VIEWER DISPLAY FIELD

A vector image interpreter has been encoded owing to the constant use of perspective

images generated by an in house application program. Although the graphics field is

capable of responding to move and draw commands, the number of vectors making up

a perspective image is often too great to transmit down a UNIX pipe; resulting in

blocked pipes and unacceptable response time. Therefore, rather than writing a

rasteriser to a neutral format bitmaped image (again increasing system response time) a
field, figure 4.7.9.2.1, capable of reading and displaying a single ABACUS viewer

picture file was developed.

aspect ratio of image

maintained

0

OnEglon5cam

Campus model
Figure 4.7.9.2.1. Viewer display field.

00-- xný
r. ýý

Campus model

The display methods scale the image to fit the bounding rectangle of the field,

maintaining the aspect ration of the original picture.
It is possible to include several perspective views of a model within a single

picture file. Although currently, it is only possible to display the first image specified
within the file, it is anticipated that later versions of the this interpreter will adopt the
characteristics of the cascading pop-up field and thus enable the user to access several
images from the same display area.

Using combinations of these primitive concept interpreters it is possible to construct an
interfaces for the description of a building product model. This is discussed further in

chapters 5 and 6. In order to logically related and arrange concepts together a meta-
concept interpreter has been developed.

114

4.7.10. META-CONCEPT INTERPRETERS

Meta-concepts are groups of logically related concepts and meta-concepts. Within the

forms package a form is used to display and allow the end-user to manipulation meta-

concepts.

4.7.10.1. FORMS

A form may be thought of as sheet of paper on which fields are printed. The

categorisation of concepts (and meta-concepts) is achieved by nesting forms. As

concept (fields) may be created dynamically during run-time, the eventual number of

concepts on a form is un-known (and likely to be many) a form must therefore be

capable of growing in size to accommodate an increasing number of concepts.
Initially this may seem straightforward. However, there is a limit to the physical
dimensions of the screen which introduces the need for scrolling forms.

Scrolling in current interface toolkits (SunView, MacApp) is limited to panels

containing text (scrolling menus) or graphics. Where other entities such as buttons

and other selection devices are placed on panels they are only used to extend the size

of a single window. The forms package in dealing with multiple levels of conceptual
decomposition must accommodate this by ensuring that forms may be nested to any
level.

The need for n-level nesting has resulted in a particular graphical structure for a
form, figure 4.7.10.1.1. A form is composed of a bitmap page on which graphical

entities such as fields (indicated by shaded primitive shapes) may exist, and a window

onto the form's page, which is itself a graphical entity and as such may exist on other
forms. Thus forms containing concepts may be nested to any depth.

115

form A bitmap

orm B

form B bitmap

indo

Figure 4.7.10.1.1. Conceptual view of a form.

4.7.10.2. DYNAMIC MEMORY ALLOCATION AND (RE)SIZING

In order to facilitate the introduction of new concepts during run-time execution,
dynamic memory allocation is used extensively throughout the forms package to create

new forms and fields. The only limiting factor affecting the number of concepts

which may be represented by the forms package is determined by the memory capacity

of the hardware platform.
The position of fields and forms cannot be predicted. Two options are available

for sizing forms: either all forms are created large enough to accommodate any field or
the form is re-sized as new fields (concepts) are introduced. The later is the preferred
option as this ensures that the memory requirements of the forms package are kept to a
minimum. Figure 4.7.10.2.1., below, illustrates the re-sizing procedure.

enclosing

fields
existingj,,,, }- I yrectangie

Figure 4.7.10.2.1. Dynamic (re)sizing. The rectangle enclosing the existing form and new
concept is extended in the direction of the enclosing rectangle for user comfort. The extended
boundary rectangle is used to allocate a new bitmap.

116

It is not yet possible to re-allocate bitmaps in the same sense as character strings
in C can be re-allocated (extending the array length but preserving the contents of the

string). Therefore in order to extend the size of a form's bitmap a rectangle, enclosing

the original form boundary and that of the newly introduced field, is established. To

ensure that the field is comfortably accommodated the enclosing rectangle is extended
by a proportion of the fields font size. This extended rectangle is then used to allocate

a new (clear) bitmap which replaces the existing form bitmap, figure 4.7.10.2.2.

existing bitmap
de-allocated

environment
pointers updated

Figure 4.7.10.2.2. Dynamic substitution of bitmap pointers.

Once substituted the memory tied up in the original bitmap is freed and each
descendant of the meta-concept is informed of the change and re-display themselves

on the new bitmap. With a form containing many fields the process of re-displaying

all the fields takes an unacceptable length of time. Therefore to improve the response
time when new concepts are introduced the original bitmap image is copied onto the

new bitmap once background shades have been pasted. It only remains for the new
concept to display itself for the first time. Although the process has not been timed
there is a significant improvement in response time.

4.7.10.3. SCROLLING

Once re-sized the form bitmap is no longer the same size as it's window and therefore
the form may be scrolled. This is achieved by simply moving the form's window
across it's page.

Although scroll bars (to aid absolute positioning and indicate the extent of the
user's task) have not yet been implemented scrolling control is achieved using the
middle mouse button which when depressed indicates the possible directions of

117

scrolling by modifying the cursor pattern. The current cursor patterns relating to form

scrolling are summarised in the following diagram, figure 4.7.10.3.1.

vertical
rýý
Ir
IWý
ýI

.1

II

-- --
,ii

4b I"I
II
�------a

II
II

. ------� II
I AM I
IUI
Lý - ý

i
i4i I1ý �- J

horizontal

-a

1ýýýýýýJ

r
Iý1IýI
I E ý 1I E 11
IWIIWI
ºýýýýý-J Lýýýýý-J

1

rý _�r
IIIý

--

L±J

Figure 4.7.10.3.1. Cursor patterns indicating scrolling direction for form page/window
variations.

4.7.10.4. DESK

A special meta-concept interpreter known as a desk facilitates the mapping of forms

onto the window managers desktop and hence to the user. The desk is simply a form
(domain meta-concept) in the shape of a window and as such it is possible to re-size
it's bitmap and therefore is also capable of scrolling.

r-7 ý- -1 r

I1IIII
tF"i I1 E * II E il
II IIIII
L. ---ýj ,, ý------'

rýýýýý-�

M-

m-
R

pan
I f: ý IIF: ý ýý Eý-ýI
I r' 11 -W- II 'r I
IIII1I

ýýýýýýJ L-. M. . -J

U
U

I p. ------, I ,ýI I. I ý'',
II
ý------J

i_ý,
_

i
I F! i 1
iw I Výýýýý- J

I

118

4.7.10.5. REFRESH

Forms provide the basic environment for fields to exist. In addition to displaying a

border around a form or field, the entire contents of a field or form is refreshed, on

selection, to the top-level desktop, figure 4.7.10.5.1. This ensures that the user is

aware of the current value of the chosen concept.

SSII
ISII
1111

I

I
ý
ý : »: <>..

ý'ý

Figure 4.7.10.5.1. Form stack

II
IIIII

I11 II II
111 II II
I1 1ChTý
i--s

ý-

Refreshing provided an additional unforeseen bonus with respect to overlapping
forms. When two or more forms overlap a selection event in any of the form
boundaries will make that form active and therefore pop it to the forefront, figure
4.7.10.5.2. The result is a simple window manager.

Figure 4.7.10.5.2. Popping forms.

119

4.7.10.6. REMOVING DISTRACTIONS

In situations where the acquisition of large amounts of data is required the user may
feel overwhelmed or distracted by additional task un-related forms or fields. Two

methods for removing these distractions have been provided:

i) iconsing and

ii) detaching forms.

4.7.10.6.1. Iconising

In addition to the scrolling mechanism forms may be iconised into smaller regions of
the screen. In addition to increasing the available screen real estate it allows the user
remove selected meta-concepts from view to concentrate on other issues.

4.7.10.6.2. Detaching a form

Another method of selectively addressing concepts has been provided. By means of a
positive mouse event inside and near to a form's bounding rectangle an option to
detach the form is given, figure 4.7.10.6.2. When selected the form is detached from

the main desktop and transformed into a window, allowing the main window to be
iconised.

120

detatched form

Figure 4.7.10.6.2.1. Detaching a form.

Although it is not possible to re-attach a form to a desk, once implemented it would
allow the user to export and import information to and from other applications.

4.7.10.7. TYPES OF INPUT.

There are two basic forms of input:

i) selection using pointing devices and

ii) keyboard input.

121

4.7.10.8. DIRECTING INPUT

All form oriented input is achieved by means of the mouse and keyboard. The mouse

is used to direct input by selecting or focusing a concept. When selected the field is

said to be active. The current input status of a field is indicated by a selection border

which is pasted around the field, figure 4.7.1.1.1.

äata

handier

event
handler

LM

Figure 4.7.10.8.1. Directing input events to a field or form.

Any keyboard or mouse input is then directed to the currently active field, figure

4.7.10.8.1. The field may or may not respond to keyboard input depending upon the

type of concept interpreter/interaction device is employed.
In order to select and activate a form or field for input a number of selection

mechanisms have been developed driven by both keyboard and mouse. Note that a
three buttoned mouse is assumed:

Directing input to a concept has presented a number of interesting problems relating to

the general management and handling of hierarchies.

122

4.7.10.8.1. Selecting and de-selecting fields using the keyboard

There are a number of conceptual problems involved with hierarchical navigation using

the keyboard; ascending, descending and traversing. The following keys and control

characters are used to perform these special functions and never reach field

interpreters:
left arrow select next form/field
ri ht arrow select previous form/field

up arrow select parent form
down arrow select the first field of a form

The above characters are rather keyboard specific control characters. A

mechanism is therefore provided to change these characters. Navigation characters

may be re-defined in the forms resource file (section 4.9.2, customising the forms

package).

4.7.10,8.2. De-selection using the keyboard "a dilemma

The de-selection of fields using the keyboard was considered at length and and still
causes anguish; the final solution may not be perfect.

The main issue is which keyboard character should be used to de-select a field.
On many systems (Macintosh application programs, for instance) the return key is

used as this is a natural terminator for users familiar with the keyboard. However,

this restricts keyboard entry to single lines of text and would be inappropriate if the

user is asked supply a list of items or a description, where carriage return is used to
delimitate the end of a line Special concessions could be made for multiple line input
fields but this would introduce a basic inconsistency into the end-user interface.
Another key is therefore required for de-selection. Keyboards on Sun workstations
have an additional new-line key which is used for this purpose. De-selection and
new-line keys may be re-defined in the forms resource file.

A decision was taken to use the return key for multi-line input and the new-line
key for de-selection. This may be considered as the wrong choice. However, it was
considered that most users of computers are familiar with a typewriter analogy and
therefore would expect the return key to move the character cursor to a new clear line.
The concept of field selection has no natural keyboard extension and therefore it would
not matter which key was used.

123

Owing to the graphical nature of the forms package a user's first encounter with
field selection is by mouse. It is often the case that this remains the sole means of field

selection and form navigation for the user.
Although it is not the aim of this research to investigate interface ergonomics a

simple experiment could be employed to find empirical evidence which would indicate

the effectiveness of various keys for de-selection. The first criteria of such an

experiment would be that users are unaware that such a feature was under
investigation. The experiment would rely of the forms package writing an entry into a

pre-defined file each time a user selected and de-selected a field during an interaction

session with a range of applications. The context of the interaction session, the user's

experience and knowledge of the forms package together with concept names and the

number of lines entered must be taken into account and therefore an entry should

contain the following information:

a)
b)
c)

concept I field N°. lines selected de-selected last key before elapsed
type by by de-selection time (s)

quit

name
vertex [I]

button

alpha

real

NA

I

I

mouse
mouse
left arrow

mouse

nl
left arrow

NA

return

0

25.2

The nature of the requested data input is important. If a field requires keyboard

entry the likelihood of another text field being selected by the keyboard is much higher

than it would be for a graphical field.

The interpretation of the data is not straight forward as many aspects are
involved in a users choice of field selection, for instance:

" The first field is most likely to be selected by the mouse

" Fields such as buttons containing images are more likely to be chosen
using the mouse.

" Some users may not be aware of the different navigation mechanisms

" Some users may not like using the keyboard or mouse.

Many factors have to be considered and the problem is left for others to figure
out; Part II "Me User and the Usage of Interactive Computer Systems" [BAECKER
87] and [POISON] provide an insight into some of the physical and psychological
guiding factors involved in designing user interfaces.

124

4.7.10.8.3. Selecting a field using the mouse

Form and field selection using the mouse is much more straight forward. A special

search algorithm was developed to optimism selection response time by anticipating
the user's next selection. The algorithm works on the assumption that the user's next

selection will be within the same context as the current one; i. e. the anticipated field

will be one on the current form which is searched first. The algorithm is essentially a
recursive tree walking function which passes a message to each node in turn. In the

case of field selection the message passed contains the cursor coordinates at the instant

the event occurred. Each form/field evaluates the information by performing a simple
boxinside test. If the test is evaluated as true (the cursor position is inside the
bounding rectangle) the message is passed down until the target field is found and then

processed, otherwise it is recursively passed up to parent of the current form repeating
the test procedure.

Depending upon the result of the boxinside test a node will activate or de-
activate itself for input with one of the following methods being fired to update the
display:

true node->display_select paste border and refresh field contents

false node->display_deselect restore original border.

The selection process is best illustrated diagrammatically. Figures 4.7.10.8.3
1. to 4.7.10.8.3 7, illustrate an number selection possibilities together with the
corresponding focus transition.

11I111111
Illlllllllllllllli

Illllllllllllllllll I
II IIIIIIIIIIIIIIIIIII

ý
111111111111

IIIIIIIIIIII 1111111 ý
IIIIIII ýý

IIIIIIIIIIIiI IIIIIII r-- 0 IIIIIII Cý 1111111 IIIIIII

e/

r(ý

1111111111111

1L

L

ýOý 1111111ý

_______ _________

Figure 4.7.10.8.3 1. Current focus H1

125

v
3111111111111111111'

i 111111111111111111

11111111N1111I1111

I
I

I

I 1 i

IIIIIIIIIIIIIIIIIIII111111111fill IIIIIIIIIIIIIIIIIII»::
F

2

Figure 4.7.10.8.3 2. Target Focus: H2

Figure 4.7.10.8.3 3. Transition between current focus HI and target focus H2.

126

_.
; >; III ; [:

V

17

11111111111 IIIIIIIý

1111111111111111111

Illllllllllllllllll

F71

I
I

7

I
I

.........

111111111111 I
111111111111 I

nnmý

ý Figure 4.7.10.8.3 4. Focus G1

I

1111111
D

7
I

[

1111111

1111111

1111111

1111111

Figure 4.7.10.8.3 5. Transition between focus H2 and GI.

1111111

I

I I

sm 91

127

111i11111111111111

ýinwuuuww
iuuumuuuw

ýwiw --- .. i
': i1p11U111111111111111111111111I111111111U111111111:?: >:

11

Figure 4.7.10.8.3 6. Focus B1.

AB CQ-{ ý

r- Key --I

c

O form

O field

O
current

target

focu
transition

Figure 4.7.10.8.3 7. Transition between focus G1 and B1.

Note 'de-select' message issued ascending and, 'select' message issued descending
the tree.

L Jll

(f (? ", D--0-01ý l l. n

0 C>--O-C) ý--o

--0-4-0 b
0 0-0-0

128

4.7.10.8.4. A brute force method - depth first (Linear) search

Another mouse driven selection algorithm was also tested. It operated by exhaustively

running through a linear list of fields and performing a boxinside test for each field

rectangle. The technique worked on the assumption (as a result of the order of field

definition) that the last successfully tested field was the target field, figure

4.7.10.8.4.1.

iý

ap CO

pFN

E®I

Gý

d'ý]
node is

Figure 4.7.10.8.4.1. Linear node list. Note the field order, the last field on the list is placed on
form A.

This worked well but, owing to the nature of the selection feedback mechanism
(highlighting all levels above the selected field), rather than de-selecting all fields to the

top level desk and then highlighting all fields down to the selected field; resulting in a

great deal of flashing form borders, an additional step was added.

path to path to
target focus current focus

Figure 4.7.10.8.4.2. Absolute paths of current and target fields traced back to root (desktop).

This involved backtracking from current and target fields to the top of the field
hierarchy, figure 4.7.10.8.4.2 and merging the paths; subtracting the common

129

elements up to the point of intersection, figure 4.7.10.8.4.3. De-selection and

selection messages are then passed to each node.

deselect

Figure 4.7.10.8.4.3. Common path between current and target fields. This path is used to de-
select up to the intersection and select fields from the intersection to the target field without having to
pass through the desktop.

Both methods work well, although the linear search method test all nodes to the
left of the target field and therefore becomes less efficient the further right the target

node is; there is no advantage gained by selecting fields on the same form. Fourteen

searches are made for the focus transition between fields H1 and H2 with the linear

search; only two using the recursive method. The relative recursive method performs
the search and de-selection and selection functions in one step and is the one currently
implemented.

4.7.10.8.5. Implied selection

When a user types data, in a situation when no there is no active field in a selected
form, all of the user's efforts are lost. One solution, provided that the cursor is placed
over a field, would be to automatically select and activate a field as soon as keyboard
events are received.

This method has been implemented to an extent, but rather than any keyboard

character selecting a field (causing complete havoc), the space bar activates a field for
input and is interpreted as the user taking a deep breath before continuing with data
input. This method of selection is only applied in situations where there is no
currently active field.

130

4.8. APPLICATION INTERFACE

Most of the issues involved with user interaction have been discussed in the previous

sections. The other main aspect of the forms package is the manipulation (by an

external knowledge source) of the conceptual model.
A user interface management system should separate application code from user

interface code; with each section being written separately [PRIME 88].
In contemporary UIMS the presentation, dialogue and application layers are

eventually merged, usually as a result of compilation and linking. By virtue of a

multi-tasking Unix environment, by employing processing forking, the forms package
exists as a separate process passing and receiving messages to and from another
concurrent application process through a single communications gateway, figure

4.8.1. Messages are interpreted by both the knowledge source and the forms package;
each responding appropriately.

FORMS Knowledge Source

Figure 4.8.1. Connection between the forms package and an external knowledge source; achieved
by connecting the outputs to the inputs of each process.

The actual communication between the application and forms packages is via a
UNIX pipe.

Connecting the forms package to application programs requires a standard
neutral language with which to communicate with application objects and operations
and enable the application program to communicate to the user. In order to achieve a
high degree of independence between the user-interface and the application
(knowledge source) the language must enable a knowledge source to communicate to
the user in abstract terms. Equally the language should enable the interface to be
plugged onto many different types of application and must support two levels of
operation by the provision of:

i) a high level language for communicating concepts to the user, and
ii) an interface specific language or manipulating the interface at a lower level

of abstraction.

An interface has been created to handle the connection and event handling
between the application module and forms package. These functions and macros

131

provide high level communication mechanisms and are fundamental to the perception

of the forms package as a natural language interface. The routines (described in

Appendix A together with a number of example applications) are held in the "inform"

library which, as well as being integrated into the forms package, must be compiled
into the application. The inform application interface consists of two parts:

i) an output (notification handler), and

ii) an input (control) handler.

4.8.1. NOTIFICATION

Natural language interfaces theoretically facilitate unrestricted dialogues.
Unfortunately the practical overhead of resolving ambiguities increases message traffic

and therefore reduces the efficiency interface. By restricting user input to a small but

equally expressive number of constructs a natural language dialogue is achieved
without any great computational overhead.

Messages (user events) from the forms package to the application layer are
formatted into neutral language utterances using the protocol:

concept: utterance_type: value

Utterances have been categorised into four groups:

i) user set the user has set the value of the concept

ii) user request a request for help, description, or an example (issued
from the concept menu).

iii) user action describes what the user is doing; Ie moving the mouse
over a field, or selecting a field

iv) user error an error, with respect to interaction with a particular
concept interpreter has occurred: eg invalid character typed, or invalid

mouse event.

The most common utterance is the user set event. When a field, in the forms
package, is de-selected, if it's value has been modified by the user, the new, modified
value is written to the standard output stream (stdout) in the following formatted
utterance:

concept: USER_SET: value

132

Although the forms package has been specifically designed for the IFe, owing to the

distribution of labour a slight incompatibility exists between the forms package and the

We system. However, how the utterances from the forms package where formatted

was not too important since the dialogue handler would perform the mapping between

the high level neutral language of the We (see chapter 6) and the more specific control

mechanisms of individual interfaces and interaction devices. Any discrepancies

between the forms package and the We system are resolved by the dialogue handler

which converts events from the forms package into a more natural, neutral language

utterance of the form [MAC RANDAL]:

dialogue handler user said concept value

Simply by modifying the output handler of the inform library, the forms package
is capable of transmitting utterances of this form.

To facilitate a two way dialogue with the user a number of control mechanisms
are required. These are managed by the input handler of the inform library.

4.8.2. CONTROL

The high level language is most important for ensuring complete separation and
independence between the user interface and knowledge sources. The basic

requirements of this high level language are to simply communicate to the user in

abstract (non interface specific terms). The most obvious and fundamental operation
required of the forms package was a facility for directing, or focusing and de-focusing

the user's attention towards a particular concept. Also concept values (default and
alternatives) must be set and retrieved and help messages passed to individual

concepts.

The manipulation of fields and forms is controlled by a simple command syntax. The

categorisation of commands is described below.

133

4.8.2.1. CONTROL METHODS

During the development of the command language interface it was necessary to

identify and classify the types of operations that where likely to be used during the

course of interaction with the user.

As a result of the object oriented approach, adopted for the development of the
forms package, a specific protocol for passing messages has evolved in which a

reference to an instance of the generic object class together with the required method

are identified by name and passed an item of data. The protocol therefore takes the
following form:

concept: method: data

A concept in this form is best visualised as a software is in which the software

chip represents an instance of a class of object and the pins are access points to

methods. Messages are parsed by event handlers and the appropriate method is fired,
figure 4.8.2.1.1.

Access pins to
encoded methods

Figure 4.8.2.1.1. Software IC.

This view is extended further in chapter 7 into a dynamically configurable data

cell which the user defines and attributes and is used in a dynamic 3D object
manipulation and viewing program, Appendix E.

134

The range of commands has been kept to a minimum and consist of either attribution,

manipulation or state query commands.
The following control mechanisms for the communication and manipulation of

conceptual models together with methods for the attribution of fields have been

identified. Where an operation has two potential states commands used to invoke the

operation have been defined symmetrically (eg on/off).

mechanism parameter
hide/ display I <rate>

set current I <value>

set previous I <value>

set default I <value>
on / off enable/disable field editing by the user. This is particularly

useful when a item of information supplied by the user is
being processed by a knowledge source or if the information is
a non-editable statement from the knowledge source. Allowing
the user to change such a concept's value would result in
inconsistency. The knowledge resource may change the value
while the field is "off". This prevents the user tampering with
data while it is being modified by the knowledge resource.

contents <concept> obtain the contents of a concept. If the named concept is a
form, the contents of all fields contained upon it are reported.
A -r flag may also be supplied in which case all concepts are
queried recursively.

select activate a concept for user input; ie force the user to address the
concept.

highlight <concept> make a particular concept stand out; ie indicate a number of
concepts which must be addressed (before aborting a session).
This is achieved by hatching the background of the concept
interpreter. Flashing or the use of colour would be more
suitable but would require an interupt handler for each field in
the main event loop.

focus/de-focus the user's attention towards/away from a
concept. These two commands may be given an integer
parameter which is interpreted as a fade rate (0 - 100 steps from
full image saturation to background, and vice versa). This is
useful to prevent large areas of the form "flashing on and off"
which may cause unnecessary discomfort (see 4.8.3).
overwrite the contents of the field. An optional +, preceding
the value, may be used to append to the current concept value.
This is useful when restoring a proforma from a previous
dialogue session.
offer the user a contextually relevant default value

description

In addition to these control methods, all field attributes (described in the
proforma interface) are accepted so that the physical characteristics of specific fields
may be modified dynamically if necessary. This lower level command language also
includes the following mechanisms:

mechanism arameter description
load
store

<proforma> <proforma> load a template or control file from the current focus
<proforma> saves the current template from the current focus to a file.

This is useful for saving the current session or when designing
a proforma interactively.

135

A number of response mechanisms have been provided for user request and

user error events; these are:

mechanism parameters description

Chat user <text> Display the text message in the pop-up help window next to
the named concept.

ignore help

error cleared

ignore errors
ignore events

do not issue help requests, use proforma definitions
only one error is issued at a time to prevent overloading or
flooding the application with errors such as invalid characters
being entered into a concept interpreter.
do not report errors
do not report user events

A number of macros have been defined around these methods resulting in a high level

language based on the neutral language defined MacRandal (see chapter 5& Appendix

A).

4.8.3. SOFT FOCUS

Focusing and de-focusing (concepts and meta-concepts) is used extensively
throughout the IFe. In order to minimise the visual impact caused by large areas of the

screen "flashing on and off' a soft focus mechanism has been provided. Simply by

passing an integer value (between 0 and 100) as an argument to the hide and display

commands, forms may be melted into the background of their parent. This is

achieved by an iterative series of raster operations, illustrated in figure 4.8.3.1.

The initial display image is cleared by COPYing over the background image.
For each iteration a mask (a bitmap containing a greyscale pattern) is generated and
COPied onto a temporary working bitmap. The initial foreground image is then ORed

on top of the temporary bitmap and the greyscale pattern XORed out with the mask.
The resulting bitmaped is finally ORed over the display image. The process is

repeated until the final temporary bitmap image is clear. A complete cycle takes the
display image, from full image saturation, to the background image.

The reverse effect (a crystalising image) may be obtained, simply by
decrementing the greyscale intensity at each iteration.

136

.........
.............

i
Figure 4.8.3.1. Bitmap operations for soft de-focus. For soft focus the mask intensity is
decremented at each iteration.

The overall effect is best demonstrated interactively but is illustrated below as a series

of frames, figure 4.8.3.2.

137

.................. ..::::: ý:?

ý1'

E: t

'(. _ ::
~"::..

. "; y

rn

...............

.........................

Figure 4.8.3.2. Soft focus and defocus.

MAw

138

4.8.4. A COMMUNICATIONS PROTOCOL FOR UNRESTRICTED
DISCOURSE

In order to pass messages between each of the modules in particular to the user a

special communications protocol was devised. The basic principle is that described

for person-person communication, section 3.2.

The communications protocol used by the system is equally important. It's

structure represents events from the user.

<address or name of primitive> <method> <data>

The address is used to identify the "primitive" from which the data originates by

the application of a particular method. For example the forms package transmits

messages of the form:

user_name user set fled

date started userquery help

geometry user action de-focused

The modules developed within the We system all respond to the same protocol.
The implication of this is that just as the event is transmitted from a module it can also

respond to the same event. It is merely a question of who is sending the event.
The primitives (described in chapter 4) employed by the system are therefore

important in that they dictate the type of dialogue that is possible. The primitive

element chosen is one identified as being common to all design domains and
fundamental to human communication. The primitive with respect to the overall

system will be referred to as a concept although for each of the modules a different

viewpoint may be used (ie field in the forms package). This therefore results in a
totally generic communications protocol.

139

4.8.4.1. ADDRESSING CONCEPTS

As already emphasized, concepts by their definition are hierarchical and this has lead

to a particular form of addressing. The protocol for addressing a concept within the

generic interface architecture has been adopted from the UNIX directory structure as

this is a convenient means of navigation; taking the form:

/meta-concepdconcept

which enables absolute reference to concepts, as illustrated in figure 4.8.4.1.1, and is

therefore referred to as absolute addressing.

V(F

XYZXYZ

Figure 4.8.4.1.1. Absolute addressing /A/B/E

In normal conversation this form of addressing concepts (or focusing) would be

an abnormal means of communication. It would be strange to constantly refer to an
entity by its class, sub-class, and instance name. Usually, once the context of
discussion has been established (class, sub-class) only the instance name is used. For
this reason an additional means of addressing concepts is provided:

@concept

As this is a means of identification by means of a single symbol, rather than an
absolute address this is referred to as symbolic addressing.

140

H CO
XYZ XYZ

Figure 4.8.4.1.2. Symbolic addressing @E

Symbolic addressing will address the first occurrence of 'concept' and therefore

to pin point a particular concept with absolute certainty all concept names must be

unique. In many situations this is impractical, for instance the concept of geometry

involves the reference of many vertices. Ensuring that every body had a different

vertex reference id, for example, would introduce unnecessary complications and

management problems.

Op 0FH

XYZXYZ

Figure 4.8.4.1.3. Absolute symbolic addressing @H/X

Therefore in order to accommodate multiple occurrences of concept names a
combination of absolute and symbolic addressing are used to narrow down the search

resulting in a combined absolute symbolic addressing, figure 4.8.4.1.3:

@ meta-concept/concept.

Once a concept has been located it becomes the current application focus. An

additional means of navigation is included (again based on the unix directory

navigation mechanism) enabling concepts to be addressed relative to the current focus.
This is relative addressing, figure 4.8.4.1.4:

141

05 .Jr CD (D E
'_/ /I\

_
/I'

0 OOOCSOE
Figure 4.8.4.1.4. Relative addressing; / represents the current focus, .. / parent concept, . J.. / two
levels up, . J. Jmeta-concept/concept, Jmeta-concept/concept descend into a meta concept.

Relative addressing is particularly convenient in situations when the current focus is

no longer at issue. The focus may therefore switch safely to the current context of the

current focus as the conversation is most likely to continue along the same lines.

The choice of addressing has important implications for the way in which the

corresponding user model and the knowledge bases are structured. Employing

abstract "relative" addressing suggests that the structure in both the knowledge base,

user model and interface need not be the same or follow the same principles. For
instance the user's conceptual model (represented in the user interface) may be strictly
hierarchical to aid navigation, while the knowledge base may simply contain discrete

packets of knowledge and transition networks employed to navigate between

concepts. Symbolic, absolute symbolic and relative forms of addressing are therefore

employed throughout the We with the following advantages:

" Complete independence between user interface and domain knowledge

sources; no knowledge, other than conceptual vocabulary, of other
knowledge sources is required resulting in a high degree of modularity
and therefore extendibility.

" appropriate forms of knowledge representation for particular tasks may be

employed without affecting the overall system.

" opportunistic knowledge sources and interfaces; the user dialogue may be

more fluid and natural (less procedural). The user may randomly address
any domain of discourse.

" improved knowledge engineering; knowledge sources (in particular
knowledge bases) may be structured as collections of logically related

142

packets of information, which may be added, modified, and removed
with ease leading to re-usable knowledge which may be applied to
numerous other domains of discourse.

Although any combination of the above methods for addressing concepts may
be adopted for sending messages, when utterances are formatted and passed out of the
forms package an absolute address is used thus ensuring absolute precision. It is the

responsibility of the parent process to extract the concept name. The following

messages illustrate a typical interaction session:

user /building/geometry/zone_name: user setkitchen
/building/bld focus/materials: user seton

application
,

@geometry: hide: 10

. J: load: materials
Jmaterials: display: 10

4.9. PROFORMA INTERFACE

Forms (meta-concepts) are defined by a template file (called a proforma) containing the
definition of field primitives (concepts) together with the physical attributes and
properties of their relative concept interpreters using a simple declarative syntax;
describing each physical attribute.

It is inappropriate to deal explicitly with abstract notions of concepts and mix
physical property declarations. Therefore the analogy of form filling is carried
through to the declaration and creation of form sets and fields.

One of the main objectives of the forms packages is that it should facilitate
different interpretations of the same concepts using interchangeable concept
interpreters. In order to achieve this dynamic interchange and provide a clean interface
between the forms package and a knowledge source it is necessary that concepts and
met-concepts are manipulated in a consistent manner. This in turn implies that all
concept interpreters should respond to the same control mechanisms. This includes
the attribution of their physical (graphical) characteristics. Therefore a generic set of
attributes and control instructions has been identified.

143

4.9.1. DECLARATION OF A CONCEPT " PROFORMA FILES

The proforma contains the physical attributes of forms and fields. Each attribute

together with its associated value must be on a new line. The proforma specified as an

argument to forms must begin with the description of a desk (window). The interface

uses a simple syntactic analyser comparing the first character string with an internal

list.

For optimum performance the following protocol should be observed:
<attribute nameW&<value>

where the attribute and its value are separated by any number of tabs '\f placed hard

against the end of the attribute name. Without a tab the Forms package attempts to

analyse the current line by searching through it's internal attribute list counting the

number of words in each, extracting the same number of words from the current line

and then comparing the two. This procedure obviously takes longer to initialize the

proforma and therefore the user is encouraged to optomise the template. Lines failing

the first analysis are reported as optimization errors in the console window together

with the current profroma name and line number.

In order to achieve a high level of generality, field definition has been restricted to a
small set of generic attributes. As forms and fields are all rectangular, the physical
characteristics of both of these entities may be described using the following generic
set of attributes:

attribute value options description

newkrtd desk create/complete a new desk or form (meta-conc
fort create/complete a new field (concept).
field

name any unique character string assigns the name of a domain concept to a form or field
type the name of a concept interpreter (see specifies the manner in which the concept value is presented

concept interpreters for list), to the user and the degree of freedom the user has in
manipulating it.

cart viable defines the initial (sun-up) state of the from or field
hidden (whether the concept is visible or hidden).

ungtn It y defines the position of the fields concept interpreter m
relation to the parent form (mets-concept) origin

am Ih the sue of the concept interpreter display area.
label string any unique character string defines the name of the concept the user deals with

All fields and forms are defined in this manner. Any additional attribute that is

added to this set must be accommodated by all concept interpreters. The above table
represents the basic attributes necessary for the definition of a conceptual model. A
complete set of attributes together with valid options is provided section 4.9.3.2.2

which describes complete form specification.

144

It is important to note that the type attribute only applies to field definitions;

defining by name, what concept interpreter to employ.
The range of the currently available interpreters is categorised into two groups,

concept and meta-concept. Interpreters from the same group may be interchanged

with each other but not with interpreters from another group.

catagcory interpreter des=on

mraaconcept dealt Gra i« window
form scrollable m on on which fields areplaced

concept character accepts all ASCII characters

alpha character. a-Z only
alpha numenc a-Z and 0-9 only
integer 0-9 only
real o-9 and a single. '
button U)ggle

cascading image suck
51e unix file browsing field
date pop-up islander
grophics graphics display and interaction field
slider not implemented
newer displays a single viewer picture file

4.9.1.1. BUILDING A CONCEPTUAL MODEL

A hierarchical structure may be defined in two ways; by:
1) defining instances of objects and linking them together with a template

2) defining both object instances and the relationship between them in one
stage.

The first instance is useful when libraries of objects have been defined. The
template merely points to a reference of the library object. Objects within the same
template may be interchanged. Alternative templates may also be interchanged.

The second method is useful when only one solution is being defined. This
method is employed in the definition of proforma templates.

145

As fields exist on forms, a form must firstly be defined followed by field

definitions. Thus:

new form

name user details

origin 00

size 50 10

end form

new field

name user-name
type

origin

size
label string name
label position left

end field

would result in the form "user details" on which the field "user name" is placed at 3

characters from the top and 15 character units from the left edge of the form.

Fields and forms are defined relative to the previously defined form (referred to

as the current parent form). This enables forms to be nested. In order to change the

current parent form (provided that it has already been defined) the following attribute

must be specified:

parent form @form name

The top level form or desk is a window and has a special name "f ' (meaning

root). Both "f' and the root's user defined name maybe used. 'Tis particularly

useful when fields and forms must be positioned on the top level desk:

parent form /form/sub form

Another facility is the include file command. This will load the named proforma
template and provided that it does not contain a parent form declaration the contents of
the template to be included will be placed on the current parent form. This enables
forms to be defined as modules and therefore reused for other applications.

146

4.9.1.2. DEFAULTING

In order to minimise the definition of fields or forms and to provide a consistent

appearance all field and form attributes are defaulted at run time.

Every field attribute is defaulted at three different levels:

" hardwired defaults - internal

" system defaults - /usr/lib/formsrc

" user defaults - $HOME/. formsrc

4.9.2. CUSTOMISING THE FORMS PACKAGE

The Forms package, when initialised, attempts to open a resource file in /usr/lib and
the users home directory.

The resource file contains a definition of a form and field which are used to
default fields and forms when created. For example the following entry in a . formsrc
file would default all field types to 3 by 1 integer fields, set the selection borders for all
fields to 2 pixels and define the background shade of all forms created to light grey.

. formsrc:

form
name default form
origin 00
size 2020
shade light grey

end

field
name default field
type integer
origin 11
size 31

end

Apart from the following attributes all defaulted attributes are overwritten by
profroma entries.

" shades

" selection borders

" fonts

147

4.9.2.1. DEFINING MENU ITEMS

The items generating user requests on the concept menu may be re-defined by the
following procedure:

concept menu help\

description\

example\
why

It is important to note that when the concept is being re-defined the default help,
description, and example entries are overwritten and if required must be re-defined.

4.9.2.2. INHERITANCE

Any unspecified field attributes will be inherited from the parent form. Fields and
forms inherit the following attributes from their parent desk or form:

" all fonts

" label position

" foreground and background colours

" shade

" border and selection border

As a result forms and fields may be defined with minimum number of attributes,
indicated below:

Minimum requirement for a desk: new desk
name desk top
origin 20.4 10.5
size 15020

end desk

Minimum required for a form: new form
name form a
origin 00
size 505

end form

148

Minimum required for a field:

4.9.2.3. GENERIC ATTRIBUTES

new field
name field a
type integer
origin 20.410.5
size 23
label string field label a

end field

The following list indicates the current range of field attributes. Specific attribute

values and defaults are given where appropriate.

Note: Attributes are shown in bold type. Alternative attribute values are shown in

italic and defaults are indicated in bold italic.

The number and position of spaces must be observed closely, although the

proforma interface will attempt to handle multiple spaces with a substantial speed

penalty. This is reported as an optimization error in the console.

Table 4.9.3.2.1. Field creation attributes

new/end desk
new/end orm
new end field

Table 4.93.2.2. Field attributes

create/complete a new desk
create/complete a new form
create/complete a new field

name I <unique character
string>
<type> field data

alpha nun alpha numeric field
character I characters ja-z A-Zl onl

button

file system search field
graphics field
non-editable text-field
vangerous - cc
dynamic menu

dump!

149

start

origin

size

shade

current value

default value

previous value

<state> I field state at start up_
visible 3 default
hidden
open
closed

<X Y pixels>

<L H pixels>

<shade>
white
lliight $rey
mid grey
dark grey
black

right hatching
left hatching

intensity <int> i 0% ,,.. W.. -. -..

<tezv

<text>

<text>

10094

set the current contents of the
field. The data format must match
that of the current interpreter

set the default value on the
concept menu

although not immediately obvious
the ability to define the previous
value is useful when when
restoring a form set from a
previous interaction session.

background colour <colour> background colour for desk, forms
and fields.

black
red
green
blue

ellow
can

_magenta white default
rgb <int int int>

foreground colour <colour> foreground colour for text, lines
and images

as for background
colour

default black

label string <character string> a-z A-Z 0-9 . <> etc

field starts invisible
default
iconized not supported)
Field origin relative to parent in
parent character units or optional

_pixels. Field size in character units or
optional pixels; eg: size 64 64
pixels
background shade for forms:

..
MMI"... ""Im

ýý
uºc ntnx

hatching

150

label position < osition> position of label relative to field:

left
above le
below
right
above right
below right
above
below
it above
tt below
it le

fit right
label font <vfont> font for labels
data font <vfont> font for data

application font <vfont> font for defaults and application
use

description text block describing
field

The text may contain tabs '\t', new
line '\n' and line continuations W.

help text block giving help
information about field.

style <style> varies for each field type:
European
American

date field

underlined
enclosed

experimental

menu <items> This is useful for buttons where
the item name is the filename of
an exre bitmap.

selection border <w>
2 pixels

width of border in pixels around
field when
selected.

border <x>
I pixel

width of border in pixels around
field.

vertical offset <n characters> used for duplication.
horizontal offset <n characters> used for duplication.
label colour <shade> as for shades.

151

4.9.3. A GUIDE TO DEVELOPING A PROFORMA USER
INTERFACE

The nature of the information that is represented by a form is context related and also
depends upon how it is designed. Design guidelines for forms may be found in

[RUBINSTEIN 84], [SHNEIDERMAN87], [SMITH 86], [MORELAND 83], and
[JENKIN 82] cited in [BARKER 89] "Basic principles of Human-computer Interface

Design".

The main principles behind the development of the original Xerox Star user-
interface, which have propagated the development of many graphical user interfaces,

are useful guideline's and are summarised below:

i) the use of familiar concepts;

ii) the application of seeing and pointing operations rather than remembering
and typing;

iii) the utilisation of WYSIWYG technology wherever feasible and useful;

iv) the use of universal or generic commands wherever possible;

v) consistency;

vi) keeping the system simple;

vii) modeless interaction;

viii) and allowing the user to tailor the system.

After extensive proforma definition and interaction with the forms package the
following general hints to aid the definition of consistent user interfaces are provided,
addressing some the physical attributes in more detail.

152

4.9.3.1. SIZE

The size of a field or form refers to the length and height of the field in character units

or pixels. Two fonts are used for displaying concept values: data font and application

font. The larger of the two is used as character units.

4.9.3.2. ORIGIN

The origin of a field or form refers to the position of the top left corner of the field

relative to that of the parent form in either parent form character units or pixels.

Figures 4.9.4.2.1 to 4.9.4.2.3, indicate the origin and size datums for each of the

three response types; free, restricted (Boolean), restricted (multiple choice).

f i _o I
Figure 4.9.4.2.1. Free response origin and size datums.

I i
L

z I

U
II

Figure 4.9.4.2.2. Restricted (Boolean) response origin and size datums.

f
Figure 4.9.4.2.3. Restricted response (multiple choice) origin and size datums.

Note origin and size are defined separately rather than defining an area using
top left bottom right; where ambiguities may arise

153

4.9.3.3. POSITIONING FIELDS WITHIN A CHARACTER GRID

When specifying the origin in character coordinates the font size of the parent
form/desk is used to set the grid spacing and not that of the field.

ýýITFýi
« «. . ».. ». .. _. _ «. _. « _. _ «. « }"'}ý}ý}y}¬}¬}¬}ý}ý}ýFl}(}¬}4 _¬_ __ _"_"_"_ _____, _ ... ". ». ». «....... ». ». «. »... _..

"j F¬} } _"_}-"»; -"_; _: _: _: «
, ».... «. «....... » «. » »! « .., ».

HIM
ý¬{iýlý=F. ý¬¬F: i$¬

¬ý}¬}¬}¬}¬}Fs, ¬}¬FF}¬F¬F¬}¬F¬

}
. }... «. �. «. ». ». ». »....... ». »f«.......... «. ». «. ». ». ». »: ». «_.. i«l

«. «......... 3«. «. » _ «. « «. «.... ». «....... «..., «:.....:.. }}FfF}FfF : F: }: j: }FFFF}FFiF.

Provided the maximum sized font
between the application and data
fonts is the same as that of the

parent form alignment of fields is

guarantied, figure 4.9.3.3.1, left.

Figure 4.9.3.3.1. Field position using character
coordinate system

1ý-I-"-FI"Fi-I-"-!: w"{ýi"1"iý1*'.: 1:
{«....... ... »{{.....

«i«. « «! « ... «ý... Z.. __ ..?..
3....

t.. «! » T*

««.. ..
iij.. i

sl1. si Iý isi=faf=it ti=" .. »ý»e«ý 1»ý«ý... «ý.. «=». »f.... ý.. »ý». «ý.... _
siiii

However larger font sizes result in

alignment problems figure 4.9.4.3.2,
left. Positioning fields with a pixel
coordinate system ensures precise field

alignment regardless of parent font sizes.

Figure 4.9.3.3.2. Field alignment problems

4.9.3.4. LABEL STRING

The field label string is the user's concept identifier. It may be specified as a character
string containing any number of characters and new lines. The label may also be a
bitmaped image (see image format and icon directories).

Although it is not necessary to specify a label string, it often good practice to do
so. In the case of button fields, where the contents of the field is sufficient to describe
the concept to the user, the label may be omitted. To enable the user to access the
concept menus, the label colour may be specified as black. The label box is set to a
proportion of the label fonts size, resulting in a black rectangle, which may be
positioned relative to the field.

154

4.9.3.5. LABEL POSITION

The field label position specifies the position of the field label string relative to the field

interpreter. A box is automatically generated for the label string or image and is offset

horizontally or vertically from the field, depending upon its relative position, by a

distance:

wi dhoriz =f2

or avert =f4 he

where; f is the current field data font.

4.9.3.6. BORDER AND SELECTION BORDER

The border around the field or form is specified in pixels. On selection the current
field and parent forms are outlined by a continuous line of thickness n pixels, specified
by the selection border attribute in the proforma template.

4.9.3.7. EXTENDING CHARACTER VALIDATION

The most common field type used is the text field. Each derivative of this field type

restricts data entry to a particular type to ensure flawless data acquisition.

eg. type integer will limit data entry to characters 0-9.

For some applications this may be too rigourous; a field containing a telephone

number, for instance, would require a space or hyphen between the area code and the

remainder of the number. An integer field, while ensuring a valid entry of numbers,
would not allow for this directly. In order to extend the range of permitted characters
a, the field type declaration should be followed by a'+' and a list of additional
characters.

Example: new field
name telephone number
type integer +-

end field

155

This would only allow integer values, spaces and hyphens to to be typed into

the field. Note the format of the data is not checked. A valid entry from the forms

point of view would be:

55 2 44-00, which is a bit silly.

To achieve consistency within a particular application it may be necessary to set

all integer fields within a proforma to accept spaces and hyphens. This is achieved by

using:

accept integer +-

outside the field description, usually at the head of the file.

4.9.3.8. THE DE-SELECTION DILEMMA

Concept values are only reported when a field is de-selected, by selecting another. To

ensure that all values are reported it is necessary to force the user to de-select a field.

This is achieved by providing a dummy field usually of type button and containing the

word OK or done.

4.9.3.9. SYNONYMS

One important feature of this declarative syntax is the use of two concept names: one
fixed concept name, which is manipulated by domain knowledge, and the other (label

string) manipulated by the user. This provides a mechanism for conceptual mapping
between two systems (computer and user). The field label is therefore a synonym, a

word or phrase that means exactly or nearly the same as another (field name) in the

same language [LOD 84](page 606). By enabling the dynamic manipulation of field

labels a means of introducing a re-phrasing mechanism is achieved. Another means of

re-phrasing is by the substitution of concept (value) interpreters.

4.9.3.10. RE-USABLE CONCEPTS

Where the forms package is to be used by a number of applications it is important to
ensure that all concepts are consistent between each application. In order to achieve
this and reduce the amount of work involved in defining the interface it is suggested

156

that common concepts and meta concepts be isolated and stored in separate files for
including in application proformas. Examples may be file management fields for

saving retrieving and deleting files.

4.9.4. COMMAND LINE ARGUMENTS

The forms package may be run interactively from a tty terminal by typing control
messages. This is useful during the development of the proforma interface where field

positions and sizes may be refined.
In order to invoke the forms package simply type:

forms proforma <options>
Valid options are:

-P proforma directory - look in the specified directory first

-I <Image directory> - search here first for exrep image files.

The above options may also be specified in the environment variable
FORMOPS.

4.10. MISTAKES

The forms package has evolved over a period of two years with additions and
refinements being made when deficiencies in its functionality where identified.
Although the package is fairly robust, complaining only when the defined protocols
are not followed, a number of fundamental errors of judgement have been made which
have become apparent over a period of time.

4.10.1. SELECTION BORDER

Adding the border to the field boundary creates positioning problems. If fields are too
close the select/de-select function may overwrite the borders of neighbouring fields.
The selection border would be best accommodated within the bounding rectangle of
the field interpreter, and result in a cleaner appearance.

157

4.10.2. BITMAPS

Using bitmaps as form pages requires an enormous amount of memory. Although

this method has numerous implementation advantages and some for interaction

(scrolling, pseudo window manager) the drain on memory is unacceptable and
therefore a less demanding method for implementing forms has been sought. This
involves bitmap clipping, with each form, rather than containing a bitmap, having a
clip box onto the window's bitmap. When a form is activated all display updates to
the window will be clipped by the form's clip box. A number of experiments have
been undertaken and the method works reasonably well. The only foreseen

disadvantage with the technique is anticipated to be with scrolling. As the forms

window is scrolled, rather than copying another part of the form's bitmap up to the
level above, each descendant of the form will have to be shifted. Therefore scrolling
response will decrease significantly with increased nesting levels and numbers of
fields on each form, whereas the use of bitmaps carries no speed penalty.

4.11. SUMMARY

Since a generic data structure has been developed, all methods are constructed upon a
consistent framework and therefore may be interchanged dynamically, resulting in a
multi-representational system; enabling real-time metamorphosis. By utilising a rich
variety of concept interpreters the look and feel of the user-interface may therefore be
modified to suite a particular class of user simply be replacing the interaction module.
This may be done at the dictates of a user model. Owing to the modular structure of
the forms package it is relatively easy to extend the range of concept interpreters.

The approach adopted during the development of the forms package has also
been applied to the visualisation and manipulation of geometrical bodies (Appendix E).

The benefits of formatted natural language utterances, ensure complete
independence and therefore re-usable knowledge. The following chapter places the
forms package in the context of the We for which it was designed, and describes
dialogue control mechanisms in more detail.

158

5. THE INTELLIGENT FRONT-END

Portions of this Chapter contain extracts from the IFE final report [IFE 89], "The

application of intelligent knowledge based systems in building design" (Clarke,

MacRandal, Rutherford). Individual contributions are acknowledge accordingly.

5. THE INTELLIGENT FRONT END

The discussion has so far concentrated upon the development of an adaptable user
interface. The following sections describe in detail the issues involved in

implementing a front end to a complex application (ESP) placing the forms package in

the context for which it was designed.

The Ife was developed in response to the inadequacies of traditional approaches

to user interface and application development and encompasses many disciplines

which until now have remained confined to their original domains. The We is a

synthesis of current IKBS and HCI techniques and methodologies. Using these

techniques it is possible to construct a user interface which incorporates a significant
level of knowledge in relation to building description (CLARKE)[IFE 89].

The We system is composed of a number of cooperating modules, illustrated in
figure 2.7.1.1. Crucial to the operation of the We are the inter-client communication
mechanisms.

5.1. INTER CLIENT COMMUNICATION

When knowledge sources or modules are initialised, at start up, each makes a request
for the creation of a working memory area on the blackboard. Individual knowledge

sources may also express an interest in other areas. As messages are posted, by
individual modules, into their respective blackboard areas, the blackboard informs

subscribing knowledge sources of the event. Traditionally this would be achieved by

continually polling the blackboard for events; resulting in deadlock. Where two or
more resources express an interest in the same blackboard area each is notified in turn.
Although it is not necessary for this particular application (owing to the relatively
small number of knowledge sources involved), a scheduling mechanism would
normally be invoked, giving priority to a particular knowledge source. This is
discussed in the final chapter on Intelligent Design Assistance.

Figure 5.1.1, bellow, illustrates the current partitioning of the blackboard and
indicates the notification network between each of the modules.

159

Appraisal
Handler

Dialogue
Handler

Figure 5.1.1. Inter-client communication: The relationship between IFE modules. Concepts are
posted by knowledge sources into their respective blackboard areas. Other knowledge source,
expressing an interest in these issues, are duly notified. Note that the relationship between user
dialogue and applications is bridged by the product model or central data base.

The knowledge sources, illustrated above, are categorised into two groups:

i) those, to the left of the product model, relating to issues involved with
human-computer communication (user_dialogue), and those to the right,

i) concerned with the management of product information and the control of
computer applications.

This distinction is indicated figure 5.1.1. Common to both areas is a
product model, containing the current description of the user's product.

The above infra-structure is capable of supporting any form of dialogue with
the user. However, rather than adopting a natural language dialogue, a more
graphical oriented interaction is preferred for the description of conceptual models.
For this purpose the forms package, chapter 4, (and any other interaction

program) may be coupled to the dialogue handler by means of a Unix pipe.
The purpose of the dialogue handler is to support a number of (possibly

simultaneous) dialogues with the user, converting events or utterances between the
different systems.

5.2. ORCHESTRATING USER DIALOGUE

A dynamic dialogue with user may be set up by employing one or a number of the
techniques and mechanisms already discussed.

The communications protocol (in particular absolute symbolic addressing)
described in chapter 4.8.4.1 is fundamental to the operation of the IFe.

160

Utterances from the user (generated by interaction tools, such as the forms

package) are formatted by the dialogue handler and are posted in the form of text

tokens to those knowledge bases concerned with monitoring user dialogue. By

the same means messages are passed to the interface in order to modify and tailor

the dialogue according to a particular stereo-typical template.

5.2.1. A HIGH LEVEL NEUTRAL LANGUAGE

In order to isolate the We from application development in other domains and maintain

a high degree of independence between application programs and domain specific
knowledge sources (which effectively orchestrate these deep models), a standard high

level neutral language has been formulated [MacRandal]. As in the case of the forms

package the range of methods available for orchestrating an interactive dialogue with
the user may be categorised into:

i) dialogue control mechanisms, and

ü) user utterances.

The components of this high level neutral language [MacRandal] and the

corresponding commands issued to and from the forms package [Rutherford] are
outlined below [IFE 89]:

new dialog This is a request to initiate a new dialogue with the user,
usually by starting a new interaction program (for example a
map utility for inputting locations). The predicate requires
three arguments:
" the name of the dialogue utility
" the filename containing the executable (binary or shell

script),
" an argument list passed to the program

The complete request is posted to the user dialog area of
the Blackboard and in turn the dialogue handler is notified.
In order to invoke a map utility the following message is
posted:

< new dialog ife map_prog -ife/bin/map "-s -o -e" >

161

This is a little too low level and should ideally be in a

generic domain related task specification to be solved by

another knowledge source. This is discused in chapter 7.

Currently, only one forms process is supported by the
dialogue handler as the forms package is capable of
supporting multiple dialogues in multiple windows.

focus_user This is a request to direct the user's attention to a new meta-
concept (other current meta-concepts may still be addressed
by the user). The intention is to introduce a new domain of
discourse by presenting the user with a named dialogue

frame. This mechanism is usually invoked in response to the

user's request to progress along a particular thread of
discourse. A typical example is:

< focus user geometry >

The request resulting in a the named mata-concept (form)
to be (re)displayed and highlighted for easy identification.
If the form is not already in memory it is loaded by the
forms package from a file of the same name form the
current user conceptualisation directory

-ife/lib/ucf /forms/geometry. The focus user predicate
also loads the corresponding knowledge base into memory
from -ife/ucf /kbs/geometry (see focus of attention chapter
5.6.2).

unfocus_user This request removes the named meta-concept from the
current domain of discourse; the concepts contained within
the dialogue frame are no longer accessible for input. This
particular command ensures that the user is not overwhelmed
by concepts which would otherwise result in NON closure
[Miller 57]. In addition it ensures that valuable display real-
estate is kept tidy. The unfocus_user predicate is usually
invoked by the user when the particular domain of discourse
has been exhausted (finished input):

< unfocus user geometry >

162

In the forms package this results in the "geometry" form
being removed from the screen (hidden), (see focus of
attention chapter 5.6.2).

ask_user When focusing on a meta-concept, some concepts are implicit

and will be addressed by the user without further prompting
(i. e. the concepts are visible when the form is activated).
Other concepts may only be relevant for particular situations
(re-description or elaboration) in order to resolve ambiguities
or inconsistencies in the blackboard model; the user is forced

to address these particular concepts. In order to explicitly
define a site location, for example, the following tuples are
issued:

< ask user latitude >

< ask_user longitude >

It is also possible to suggest a default value by adding a
further argument:

< ask user latitude 55.7 >

The forms package responds by (re)displaying the field
provided that has been previously defined (usually as
hidden).

unask_user In some cases, a concept that has previously formed part of
the dialogue may become irrelevant owing to other
information. For instance, if a user requests an annual
simulation, it is perhaps inappropriate for the user to specify a
start and finish date. In such an instance the concepts are
withdrawn from the dialogue:

< unask_user start date >

< unask_user finish date >

They may however by re-introduced into the domain of
discourse with the ask-user command.

163

new query This is a mechanism by which previously undefined concepts

may be introduced to the user. It is necessary to also specify

what type of data (syntax checking) is anticipated which is

obviously application specific. This additional information

may be communicated in two ways. Currently it is achieved
by passing a complete description of the field: field name, and

type:

< new query user age integer >

alternatively this additional knowledge may be held in a
dictionary containing concept names, data types and

alternative representations useful in re-phrasing. This

ensures complete domain independence:

< new query user age >

< new query date of birth >

with corresponding dictionary entry:

user age integer

date of birth integer+/ date

The dictionary may also contain preferred screen positions
or general locations such as the name of a particular
dialogue frame in which case the forms package would
automatically position the field.

telluser This is a mechanism for setting the value of a named concept.
Two arguments are required in addition to the concept name:

< tell user session-number 2>

The forms package handles arrays of fields as a simple
list. each list element has a general base name and an
index number, vertex[4] or zone-name[6] (see duplicate).
To address a list element an additional $ is required, for
example:

< tell_user zone name$6 kitchen >

164

The $ symbol is required as prolog does not permit the use

square brackets in argument lists.

suggest-user Default values for concepts, base on contextual knowledge

and in-built knowledge, may be suggested to the user with

this mechanism. Rather than explicitly telling the user, it is

possible to suggest that an associated value is an appropriate

one. The actual value of the concept is not set until explicitly

accepted by the user. It is often much more convenient for

the user (particularly the novice) to select the default value

than enter the same information. For example, to handle the

concept of time, the referenced time zone must be known.

Assuming GMT is the most likely (deduced from a site

environment variable), the knowledge handler may send the

message:

0< suggest user time_zone GMT >

The forms package will display this value in a different
font from that user supplied data is entered with in order to
indicate that it has been set by the knowledge base. The
default value is also stored on a pop-menu so that it may
be retrieved if it is overwritten by the user.

offer user In some instances, the knowledge handler may be able to

make extensive inferences about a subset of possible values
for a concept. For instance, if the user enters the name of a
material that is defined in one of the available domain related
databases, the knowledge handler will extract the relevant
material properties, otherwise the information will have to be

elicited from the user. One option to the knowledge handler
is to supply the user with a list of known materials using:

< offer user material type paper, wood, brick, concrete, stone >.

This information is stored by the forms package and
becomes accessible to the user by means of a pop-up
menu which is activated by a right mouse button event
over the concept label.

165

In summary, the current mechanisms available to communicate concepts to the

user are:

Request Meaning I

new_dialog Switch to a new interaction program
tell_user Inform the user about something

suggest user Suggest an appropriate value for a concept

offer_user Present sensible options to the user.
focus_user Direct the user's attention to a new meta-

concept.
unfocus_user Finish addressing a particular meta-

concept
ask user Request a specific piece of information or

data
unask_user Withdraw a request for data
new_query Ask an unexpected question

Example
Use the map program
Set the contents of a concept
field
Set or reset a field's default
value
Set menu options
Display a form

Hide a (displayed) form

Display a concept field

Hide a (displayed) field
Create a new concept field

Utterances from the user are formatted by the dialogue handler and take the form:

user dialog user said

user dialog user request

uscrdialogue user error

5.3. BLACKBOARD DATA

concept value

concept help/description/example/default

concept error.

Following on from the communications protocol the basic element of information held
and manipulated within the We is a Tuple:

<concept> <value>

A Tuple consists of a concept together with it associated value. All information
is held in this form by the blackboard. In addition to these two elements of data the
source of the concept is stored along side the concept and value; enabling information
to be traced back to it's origin.

<concept> <value> <origin> <time>

The concept is also time stamped ensuring that there are no outstanding events left on
the blackboard. This also enables the user to backtrack through earlier interaction
sessions by recovering previous values.

166

The actual knowledge sources responsible for managing uer dialog are prolog

interpreters (NIP [HUTCHINGS 86]) and are responsible for:

" translating user supplied data in to an internal representation, and for

" transferring data from the short term working memory region of the user

dialogue area to the long-term store of the product model.

5.4. ORGANISING KNOWLEDGE

Knowledge sources are oportunistic in nature and as such must be loosely structured

to avoid procedural dialogues. A knowledge base, representing a meta-concept,

therefore contains discrete logically related packages of knowledge (prolog predicates)

regarding individual concepts. A complete description of a particular problem domain

may consist of many discrete meta-concepts.
The actual structure of an oportunistic knowledge source is hetra-archical

facilitating multiple entry points. The dialogue may be entered at any level of detail,

thus enabling a free unrestricted dialogue to be employed within a particular sub-

domain. Such an approach enables users to address concepts and meta-concepts in

any order, resulting in a system that supports idiosyncratic design procedures (both

top-down and bottom-up). It imposes few restrictions upon the knowledge engineer

although to support multiple dialogue entry points path algebras (chapter 2.6.6.2) and

transition handlers between states must be employed to ensure closure [ALTY 83].

Different people may adopt different conceptual vocabularies and therefore

different interface templates and corresponding knowledge bases are required in order

to communicate effectively with each type (or class) of anticipated user. These are

collectively known as user conceptualizations or stereotypical templates. In order to

simplify knowledge management and ensure complete generality with the IFe system
(no knowledge of the domain is held within the blackboard or interaction handlers) a

systematic approach towards managing knowledge bases and interface templates is

required. Figure 5.4.1, illustrates the method of organising knowledge within the IFe

and must be observed closely. In addition to illustrating the relationships between

knowledge bases the figure also indicates the location of other system related files

such as source code and utility programs.

167

He

HI

I
dh

temp

kbs

bm filters startup uc buildings

sic

bb

forms

templates

i bm

I
Ph

i browse

Figure 5.4.1. Current IFe directory structure. The key to the use of multiple user
conceptulaisations is the symbolic link -ife/lib/uc/uc which points to the conceptualisation the user
model thinks the most likely.

Each user type is represented by a directory containing sub-directories for

knowledge bases (kbs) and proforma templates (forms). A file for each meta-concept

within the domain is stored in each of these directories. The name of the knowledge

base and that of the corresponding interface template must be the same so that both the

knowledge and dialogue handlers can refer to the same meta-concept. So that neither

the dialogue or knowledge handler are aware of what user conceptualisation is being

employed at a particular time, the proforma templates and knowledge bases are

consulted from the -ife/lib/uc/uc directory, which as illustrated in figure 5.4.1, is a

symbolic link to one of the anticipate user stereotypes. This link may be changed
dynamically at any instant by the user model (using the change_cpt_set shell script)

and therefore, rather than a dialogue following a single thread, an appropriate user

conceptualisation may be chosen for individual meta-concepts within the same
interaction session.

168

5.5. BLACKBOARD COMMUNICATION PREDICATES

MacRandal has provided a number of mechanisms, in the form of prolog predicates
and utilities, to aid the development of new user conceptualisation. They essentially
enable knowledge sources to interact directly with blackboard areas. The current set
of mechanisms is included for completeness. In the following list, the variable C is a
concept name, V is a concept value and K is a list of key values used to discriminate
between a collection of identically named concepts (for example <x_coord, [1,3,4],
15> is the x-value of vertex 4 of surface 3 of room 1)[IFe 89].

169

Predicate

startup

The following post a Tuple to the "user-dialog"

new dialog(Name, Command)

focus-user(C)
unfocus user(C)
ask-user(C)
ask_user(C, V)
ask user(C, K)
ask_user(C, K, V)
unask_user(C)
unask user(C, K)
teil user(C. V)
tell_user(C, K, V)
suggeat_user(C, V)
suggest_user(C, K, V)
offer_user(C, V)
offer_user(C, K, V)
chat_user(T)

I Function
Starts the knowledge Handler, creates Blackboard areas
feedback(C), invokes a predicate feedback(C, User_level) for the
appropriate user level (currently novice or expert). These are
supplied in the user conceptualisation alongside the concept.

area on the Blackboard

Starts a new interaction program called "Name" using the unix
command "Command".

Appends the list of strings T to the concept user-chat

The following predicates post a Tuple to the "u cpt" (user conceptualisation) area on the Blackboard

uset(C, V)
uset(C, K, V)
kset(C, V)
kset(C, K, V)

Flagged as user set

Flagged as knowledge base set

The following recover a Tuple from the "u_cpt" area on the Blackboard.

known(C, V)
known(C, K, V)
known(C, W, V)
known(C, W, K, V)
u_cpt_got(C, V)

All keys must be specified
As known(C, V), but W indicates where value originated.

user_supplied, invoked when someone else sets a concept value.

The above are macros defined using the following predicates:

to bb(A 1)
to bb(A1, A2)
to_bb(A1. A2, A3)
to bb(AI. A2, A3, A4)
to_bb(A 1, A2, A3, A4, A5)
quitrgst

The following are are genral utilities

refresh(C)
near()
gen_integer(X, S)
append(H, T, L)
member(E, L)

These create and send a Tuple to the Blackboard.
Al is the Blackboard are to post to.
A3 is a string (usually indicating where the value came from).
A2 is the concept being posted, A4 is a list of keys.
AS is a list of values
Stops the Knowledge Handler (exit gracefully).

in the file "utilities".

Tells the user everything known about the concept.
Compares positions for (close) match - see definition in file.
Implements a for loop X-O, S.
Appends list T to list H resulting in list L
Checks if element E is on the list L

Table 5.5.1. IFe communication mechanisms [MacRandal][IFE 89].

170

5.6. MONITORING USER DIALOGUE

Events or formatted utterances from the user are posted by the dialogue handler on to
the user dialog area on the Blackboard in the following format:

<user dialog user said concept value>

Both the User and Knowledge Handlers are informed of each message and
selectively interpret the information. The Prolog knowledge handler essentially
matches each incoming concept with predicates stored in the knowledge base, held in

memory. When a successful match has been found the predicate is fired, which in

turn fires other predicates, perpetuating the dialogue. Data, once formatted, is posted
onto the Data (product) area on the Blackboard for selective retrieval by the resource
handler (and on to individual application packages) (described in section 7). A full
illustrative example is provided in chapter 6.

5.6.1. MODIFYING THE USER INTERACTION

Very little in the way of user modelling was achieved during the project owing the
complex nature of developing stereotypes. However the following mechanisms are
suggested.

171

5.6.2. FOCUSING THE USER

Owing to the interpretive language of both the prolog knowledge handler and the

forms package, knowledge sources and proforma templates may loaded dynamically

and thus facilitates a truly dynamic dialogue.

In order to take advantage of this dynamic environment two prolog utilities

(focus_concept and defocus,
-concept)

have been developed, illustrated below, to

focus the user's attention towards a particular meta-concept, loading both knowledge

base and interface template dynamically.

focus_concept(Focus_type, Meta concept): -
defocus concept(Focus type), %% defocus relevant meta_cpt
focus_usr(Meta_concept), %% enable input, flag as currently
assert(focus(Focus_type, -Meta-concept)),

%% available for input

assert(called(Meta_concept)), %% has been addressed (data input?)

name(Meta concept, Mcpt_str), %% load handler for this meta-concept
append("lib/uc/uc/kbs/", Mcpt_str, Mcpt_str2),

name(Meta_concept2. Mcpt_str2),
[_Meta_concept2J.

defocus conceptLFocus type): -
(focusLFocus_type, Meta concept) ->

nameLMeta concept, Mcpt_str), %% turn off button; b_ prefix
append("b_ , Mcpt_str, Mcpt_str2),
nameLMeta_concept2. Mcpt_str2),
tell_usrLMeta_concept2, 'off),
unfocus_usrLMeta_concept),
retract(focusLFocus_type, Meta concept))

)"
true

Figure 5.6.2.1. Focus concept: a generalised predicate for focusing the user's attention towards a
meta concept

The predicate is used in the form

focus concept(type, meta_concept)

where; type is the general classification of the meta-concept and in the case of
the forms package is used to determine the position in the conceptual model (parent
form) of the meta concept.

Thus by using:

focus_concept(buiiding, geometry)

the user is directed towards the issues relating to a buildings geometry. Issuing the
command again with the same concept category:

focus concept(building, materials)

172

will result in the current meta-concept (geometry) being de-focused before the

materials specification form is displayed. Note that as meta-concepts (forms) occupy

relatively large areas of the screen, rather than simply flashing forms on and off

(which may cause user discomfort) a soft focus and de-focus mechanism is employed
(this is best illustrated with an interactive demonstration of the software but is

illustrated in figure 4.8.3.2, for completeness).

The focus,
-concept mechanism forms the basis for the re-description technique

described in chapter 3. A number of approaches to use of conceptual re-description

are possible using the inbuilt predicates or macro definitions. Both are now
described.

5.7. STRUCTURING A KNOWLEDGE BASE FOR RE-
DESCRIPTION.

Re-description is the ability to elaborate (or simplify) upon a particular concept;
decomposing a concept into a meta-concept or condensing a meta-concept into a

concept.
For example, a site location may be specified either by its:

location name
or by a coordinate pair:

latitude
longitude.

The knowledge base must contain predicates to handle the components of the

meta-concept or as a whole. Therefore, for the example of location, predicates are
required for.

0 location name - collective value of

0 location latitude and location longitude

In order to provide an environment capable of re-description rules must be

provided to infer the collective value of the concept from the individual elements and
vice versa.

173

location(-Name): -
location(-Name, Lat. Long),
if(location described in detail tell_user(_Lat�Long)

location_latidude(-Lat): -
if(location longitude is know)
infer location name (latitude, longitude).

location longitude(_Long): -
if(location latitdude is know)
infer location name(latitude, longitude);

The extent of conceptual decomposition is related to the user's level of
experience and understanding and may be achieved using dialogue control
mechanisms of the form:

describe(location -user level)
or describe(location,

-dialogue_level)

Mechanisms for switching between verbose and terse descriptions of
site_location are illustrated below:

describe(location, verbosely): - %% in detail
ask user(location latitude);
ask user(location longitude).
%% or focus user(location, coordinates).

describe(location, tersely) %% in less detail
unask user(location_latidude);
unask user(location longitude);
%% or unfocus_user(location, coordinates).
ask user(location_name).

174

5.8. RE-PHRASING

Re-phrasing, utilising a different conceptual vocabulary from that currently employed,

may be achieved by modifying the interpretation of the concept itself or that of it's

value (or both); both methods are facilitated by::

" the dynamic substitution of concept interpreters

" the re-wording of the field label (or use of graphics).

In order to dynamically substitute a concept interpreter with the forms package the
command:

@concept: type: character/button/pop-up

is issued, resulting in:

User level Iexpert User level novice

Figure 5.8.1. Free response

User level I

expert User level novi ce

Figure 5.8.2. Restricted response

User level
I

t

Figure 5.8.3. Re-phrased restricted response

User level

However this is too specific to the interaction device and therefore to maintain
the separation between interaction mechanisms and domain knowledge a neutral
language, re-phrase macro is defined.

re-phrase(-Concept, meaning, user_level)

re-phrase(-Concept, interpretation,
_user

level)

175

Returning to the example of location

re-phrase(locati(xn, free_responce): -
ask user(location_name);

location Pari SI i
Figure 5.8.4. Re-phrased free response field.

re-phrase(location, restricted, graphically): -
new_dialogue(map). i

Figure 5.8.5. Location re-phrased by restricted graphical interpretation using map programme

re-phrase(location, restricted, textual): -
restrict user(location, locations).

I

The restrict_user macro simply issues the command to set the interpreter type of
the concept to a menu or pop-up and sets the contents of the menu.

176

restrict_user(concept, list) \
ConForm(concept, SET_TYPE, \

(style = menu)? "menu": popup); \
ConForm(concept, SET_MENU, Iist);

location
Use Map

Glasgow
Belfast

Edinburgh
Aberdeen

London

Liverpool
Birmingham
Newcastle

Cardiff

location London

Figure 5.8.6. Re-phrased restricted response fields

Both re-description and re-phrasing mechanisms may be employed at the

request of the user_model in response to user actions.

177

In order to achieve an even higher level of abstraction within the knowledge

base it is proposed that dictionaries of selected concepts are used. Dictionaries would
take the form of:

concept context assocnated interaction value e
terse verbose concepts

I

device free restricted
latitude latitude latitude locum lm de forms real
lm tude Ion tude longitude location latitude forms real
location location geographical

position of
bld_spec latitude +

longitude
forms character menu I

u
building map

material material cautniction forms character menu 1
u

Table 5.8.1. Suggested dictionary of concepts -+= and, II = or.

which would be located along side the proforma templates and knowledge bases for

each user conceptualisation. The user model would be responsible for selecting an
appropriate level of representation for the current users level from the dictionary and
posting it to the dialogue handler and, in turn, on to the interaction program.

The fields could be extended to include knowledge of particular applications so
that when a particular interpretation is selected the application (such as the map
program) would start immediately as a new dialogue.

The forms package requires that the physical properties of a field be specified
along side the declaration of the concept. When using the new query predicate, in

order to position the field on a form, application specific knowledge is required, thus
rendering the knowledge base specific. This information would be best

accommodated within the dictionary as environment preferences.

178

Request for an
object description

1 ; ý
ý
ý

ý

USER MODEL

Knowledge of
basic concepts

I
I

list of known
objects

-4

iE

Textual
Component

I

Textual

I
CorMUM d

tw dMnipton

-11

TAILOR

Knowledge
base

Dictionary Interface
(where lexical choice Is made)

I
oaaart of tw daaeriptian
wm lexical Mroica made

I

Surface generator

T

1 Description of the
object in English

Figure 5.8.7. The TAILOR generatative description system [PARIS 89].

ý
ý

-�4

TAILOR [PARIS 891, figure 5.8.7, is a computer system that generates
descriptions of object devices using one the two discourse strategies found in text
(constituency schema and process trace [PARIS 89]) to construct a description for

either a novice or an expert user. Constituency schema (identified by McKeown) is a

means of describing an object (or concept) by decomposition into subparts together

with a description of each part and is characterised by Paris below:

i) [Identify the object as a member of some generic class, using the
identification predicate]'

ii) Present the constituents of the item to be defined (subparts or sub-entities),

corresponding to the constituency predicate
iii) Present characteristic information about each constituent in turn,

corresponding to the depth-attributive predicate
iv) [Present additional information about the item to be defined, corresponding

to the attributive predicate]

I Steps included in square brackets are optional [PARIS 89].

179

Using McKeown's notation2 [MCKEOWN 85] (cited in KOBSA 89) the

constituency schema predicates are [PARIS 89]:

(Identification (description of an object in terms of its superordinate))

Attributive* (associative properties with an entity) / Cause-effect*

Constituency (description of subparts or subtypes.)

(Depth-identification / Depth-attributive

(Particular Illustration / Evidence)

(Comparison; Analogy))+

(Attributive / Explanation / Analogy)

Figure 5.8.9. Constituency schema after McKeown, 1985 (in [PARIS 89]).

The second discourse strategy, process trace, is a step by step methodology for

description and is summarised in figure 5.8.10:

[For each object, given a chain of causal links]

(1) Follow the next causal link

(2) Mention an important side link

(3) (Give attributive information about a part just introduced)

(4) (Follow the subsets if there are any. (These subsets can be omitted for
brevity.))

(5) Go back to (1)
[This process can be repeated for each subpart of the object]

Figure 5.8.10. Process trace (in [PARIS 89]).

The two strategies are interlinked by decision points, figure 5.8.11 and 5.8.12.

2 McKeown's notation as cited in [PARIS 89]: "()" indicates optionally, "/"
indicates alternatives, "+" indicates that the item may appear I or more times,
and "''" indicates that the item may appear 0 or more times. Finally, "; " is used
to indicate that the propositions could not clearly be classified as
corresponding to one predicate.

180

Identification (introduction of the superordinate)
if the is no local expertise for the superordinate

do a Process Trace (for the superordintate) before proceeding.
Constituency (description of the subparts)

For each part, do:
If there is local expertise about this part (or its superordinate),

do Depth"identifcation
Otherwise do a Process Trace (for the part)

Attributive

Figure 5.8.11. Constituency Schema (with decision points) (in [PARIS 89]).

Next causal link
Properties of a part mentioned during the process trace

If a fuller description of the part is desired,
do Constituency Schema (for the part)

Substeps
Back to next causal link

Repeat for each of the subparts:
If there is local expertise about this part (or its superordintate),

do Constituency Schema
Otherwise do a Process Trace.

Figure 5.8.12. Process Trace strategy and its decision points.

Switching between the two strategies is done if the user's expertise is deficient

(deemed by the user model), providing more elaborate information if a particular

concept is not understood. The switch between process and constituency strategies
does not occur if the user lacks knowledge of basic concepts in the process trace
description.

Using these two strategies the TAILOR system can automatically produce
descriptions to suite user levels falling between the two extremes expert and novice.

In the context of the IFe, these mechanisms could be added to the user handler

providing an automated mechanism for generating several alternative descriptions for

a particular concept or object. In the TAILOR system adult3 and junior4

encyclopedias, manuals5 and school text books6 where used as sources for
descriptions of the same objects, providing several stylistic differences addressing the

needs of the two extremes of user levels [PARIS 89].

3 The New Encyclopedia Britannica, Collier's Encyclopedia
4 Britannica Junior Encyclopedia, The New Book of Knowledge - The Children's

Encyclopedia, The Encyclopedia of Science.
5A Woman's Guide to Fixing the Car, Weissler, A 1973.
6 Elements of Physics, Baker, D. L., Brownlee and Fuller, R. W.

181

The alternative solution would be to pre-format descriptions or video sequences
for each user type and class.

5.9. USER MODELLING

The user determines the users conceptual vocabulary and adjusts the dialogue

accordingly by employing re-description and re-phrasing techniques. User modeling
in the IFe has not yet been tackled owing to its complex nature, requiring knowledge

of user psychology (which is perhaps beyond the current capabilities of the author)
however a number of suggestions using the techniques already described are

proposed. These have been implemented to various levels of completeness in order to

explore their potential. None of the methods have yet been formally introduced into

the IFe User Handler.

5.9.1. MONITORING USER ACTIONS

The user model expresses an interest in the dialogue area of the blackboard and in
particular monitors user action and user query events.

5.9.2. QUERY EVENTS

If a user is constantly asking for help, descriptions, or examples, their user level is
demoted and the level of assistance, in the form of feedback and defaulting is
increased.

182

5.9.3. ACTION EVENTS

The range of user action events currently reported are the:

" selection of concepts (user has focused attention)

" de-selection of a concept (implied by selection of a concept).

" errors in data specification

5.9.4. RESPONSE TIME

The time taken for the user to respond to a particular concept together with the

accuracy of the data, may be an indication of how well it is understood.
Rules may be provided to promote or demote the user's level depending upon

the speed and accuracy of response.

5.9.5. ERRORS

Continual data specification errors imply that the style of presentation provided and

perhaps the interaction mechanism is inappropriately matched to the user's conceptual

vocabulary. It may therefore be necessary to employ a local or global re-phrasing

mechanism without affecting the users level.

Also if the user is continually selecting "other" from a particular restricted
concept list, a free response area may replace the current interpreter.

For example; changing from a popup or menu field to a text field, would
provide the user with an unrestricted means of submitting information but (with the
dynamic pop-up menu associated with each concept label), figure 5.9.5.1, provide
access to pre-defined alternatives or defaulted values.

This is perhaps an indication of the users increasing perception and expertise
within the domain; the user model should perhaps consider a promotion of user level.

describe(locationjdialogue level),

describe(location, novice): -
restrict user(location, locations).

183

describe(location, expert): -
ask_user(location_name),
focus user(location, coordinates).

location Paris
zzam

Glasgow
Belfast
Edinburgh
Aberdeen
London
Manchester
Liverpool
Birmingham
Newcastle
Cardiff

Figure 5.9.5.1. Free response field with defaults

5.9.6. DETERMINING THE USER'S LEVEL OF EXPERIENCE

demote_userlevel():
user level = novice

to_kb(use r_level, _user_level).

The user model sets the user level which determines which feedback predicates

are used in the knowledge base and also suggests a particular style of dialogue.

184

input:
User & Fact

stereotype (User)
knows how many facts of

difficulty(Fact)?

A FEW I in4nnwn MOST

1
UNLIKELY

mýwmý wl

UNCERTAIN LIKELY

Figure 5.9.6.1. Algorithm for determining whether User knows Fact [CHIN 89].

The algorithm [CHIN 89], illustrated above, may be of use for determining the

user's level of experience. It is also of use for establishing what concept should be

included in a particular conceptualisation (interface template).

5.10. EMPLOYING APPLICATION PROGRAMS TO SOLVE
PROBLEMS

In addition to the issues related to human computer interaction the knowledge handlers

must employ more domain specific knowledge to solve specific tasks and must
therefore utilise deep model knowledge systems (see chapter 2.6.8). There are a
number of issues related to the integration of application software which are tackled in

greater depth in chapter 7). However the following section provides a brief
introduction to the use of application software for problem solving.

Application programs are used to solve tasks that cannot otherwise be tackled
by the surface level knowledge systems of a particular domain. In general surface
level knowledge deals with elements of knowledge that arise from human laws

185

[LANSDOWN 86], while deep level models deal with laws of nature (physical,

mathematical models).
A necessary distinction must be made between the application program that the

We is interfaced to and those applications which are utilised for automated acquisition

of information. These will be referred to as; the target application and casual task

applications or utilities such as perspective image generation programs, geometrical

modelers, histogram / pie chart presentation programs, database management

systems, etc.
A necessary process when constructing a front end is to identify sub-tasks

within the domain and identify methods or incidental task application programs which
are useful in solving these problems.

5.10.1. TASK SPECIFICATION

Once identified, task application programs must be integrated within the IFe system in

such a manner as to preserve the high-level neutral language of the domain knowledge

source. This is achieved by encapsulating application program specific information

within a task-solution script so that the methods within an application program may be

utilised in abstract terms. For example the generation of a perspective image of a
geometric model requires detailed mathematical techniques. Rather than expect the
knowledge engineer to code an application module to solve this particular problem, an
existing software package is employed. Knowledge of how such a package should be

used is isolated within a script. For the purpose of generating a perspective image the
ABACUS viewer program is used and the task-solution script "perspective" written
around it:

N Resource category: penpectiveJmage
N Design tool: viewer
N location: /package/abacus/bin
M instantiation constraints: views model

rm -f /trnp/viewer. pic.
N If model exists then generate image otherwise abort

if (-f Sl I
then

viewer> /dev/nuII 2>/dev/null <c.

S1
0
/tmp/viewer. pic
B

die

fi

echo "perspective image $1 Amp/viewer. pic canplete"

echo 'perspective imago $1 mode n*jound'

Figure 5.10.1.1. Perspective image script

186

Therefore, rather than coding application related information within the surface
level knowledge bases a predicate of the form:

generate(perspectiveimage, _Model name)

would post a task request to the application handler which in turn would invoke the

script perspective. This is only a general illustration. The issues are discussed further

in chapter 7.

Owing to the multi-tasking nature of the environment, the task may be solved
while the user continues with other issues provided that these issues do not rely upon
the results of active task application programs.

Results are fed back to the surface level system in a similarly abstract form. In

the case of the perspective image a message of the form:

perspective_image model_name image name complete

is returned and must be interpreted by a corresponding predicate in the surface model
of the form:

perspective image(model,
_Image, complete): -

tell_user(picture, _Image).

which would feedback the generated image to an appropriate field on the current form

set.

It is important to note that data formats must be compatible. In the case of the

viewer image a field interpreter dedicated to displaying viewer images (taking full

advantage of inhouse software) was coded within the forms package in order to

minimise response time. A totally generic approach was investigated by coding a
rasteriser between the vector image format produced by viewer and the portable
bitmap representation of the forms package. However, as perspective images of
complex models may contain anything up to and over a thousand vectors per image

the speed penalty incurred by effectively drawing the image twice (once by viewer)
was too great. In some instances the physical properties of the display device or
region may be required by a resource in order to correctly format images. Although it
is currently possible to achieve this using a simple properties request the approach of
X and NeWS is perhaps a little more general whereby, in addition to widget

187

properties being accessible, parametric graphical objects are passed. These are

automatically adjusted to suite the display area.

The example illustrated is a simple one and made easier by the non-graphical

(terminal based) interface of ABACUS software. A number of applications require

decision to be made by the user, based upon a current state solution, before a final

solution can be formulated. A secondary mechanism is provide to interact directly

with an application (discussed further in chapter 7):

modify(perspective image eyepoint 25.3,10.0,1.7)

Results from task solution application programs may also be posted directly to

the data area to be retrieved later by the target application.

5.11. SUPPORTING DIGRESSION

The oportunistic nature of the system closely follows the dynamic fluid nature of
human communication; with mechanisms that enable concepts to be addressed out of

context. By adopting the protocols suggested the IFe allows the user to digress into

other related or perhaps unrelated areas, either to confirm results or explore other

possibilities. With respect to design procedures the protocols for concept

communication enable the designer to follow less rigid courses (top-down or bottom

up approaches) towards solution synthesis and mix modes within the same problem

space. This obviously results in an extremely flexible environment.

5.12. AN EXAMPLE

The techniques and mechanisms described have been used in the formulation of a
front-end for building performance prediction, described in chapter 6.

188

6.: THE APPLICATION OF THE ýIFE TO :
BUILDING PERFORMANCE", ̀-'

AS SESMENT AND : PREDICTION

6. THE APPLICATION OF THE IFE TO BUILDING
PERFORMANCE ASSESSMENT AND PREDICTION

The objectives of the We where to develop an environment capable of acting as an

expert consultant in the field of computer aided building performance modelling to

assist a designer, by offering intelligent defaults, on line assistance and guidance, in

the problem description stage. By encoding the conceptual mapping between the

user's domain and that of a performance prediction package, by formatting it's data

requirements, the We is capable of interfacing complex modelling systems between a

broad spectrum of users. In the field of building performance assessment and

prediction the following three stereotypes where targeted [IFE 89]:

6.1. DESIGNER

The designer, dealing with the early tentative stages of design, characterised by high

level, abstract concepts, is envisaged as operating with partial design solutions and
incomplete data. From a design tool's viewpoint this information is likely to be fuzzy

requiring parameterised defaults. The needs of this user category may also be satisfied
by offering a general sense of the performance of a number of alternative design

solutions (highlighting problematic areas), useful for guiding the decision making

process.

6.2. ENGINEER

Once an overall design solution has been generated, a wealth of specific, detailed

information is available. Although complementary to the above designer stereotype,

objectives are more clearly defined, the task of this category of user will be to establish

a more precise building performance prediction influencing the choice of building

components. Traditional design tools match these requirements well. However, the

role of the We in this instance is to isolate the user from the obtuse operational

complexity of the specific design tools.

189

6.3. MODELLER

The modeller is envisaged as being a proficient user requiring almost direct access to

the design methodologies encoded within the application. The only help required

would be straightforward assistance with data preparation; providing access to

standard databases and offering sensible default values to minimise data input.

6.4. EXPERIENCE LEVEL

In addition to the three types of user a further sub classification is made, placing each
user type into the categories of expert and novice. The terms are used in the relation to
the operation of complex simulation tools and does not refer to the user's ability in

their own field where they may be expert. These two extremes may be bridged by

beginner and intermediate [CHIN 89] classes. Novice users require comprehensive
assistance and guidance facilitated by continuous (verbose) feedback, while expert
users require a different type of (terse) feedback.

6.5. A CONCEPTUAL MODEL FOR BUILDING DESCRIPTION

Although three user stereotypes where identified the constraints of time permitted the
development of a single user conceptualisation only. The following screen images

represent a typical interaction session following an engineering stereotype.

190

6.6. MASTER FORM

In order to establish a context for discussion all users are presented with a master

form, the template description for which is given in Appendix C. The following

screen imagesl illustrate a typical dialogue session with a user.

Rýýý

x+..

"»jeet "+r

cc°418

I

I
User typo Veer level

(941

Figure 6.6.1. Master form: initial settings.

site 14: May 9- 1

ý.. _ Feedbe- ek
..:
prototype IN[ELLIGfM FROIR' END

-Hi ccasie.
: Jost fill In the forms, changing defaults if you
rant, as I will ask on the forms for any data I

'need. I will try not to ask too many questions!
: Anytime I want to chat to you. I will place the
message In this box. Urgent messages will also
be placed in a popup box near the field causing
the problem. Click in the box to make it go away.

I

The master form, figure 6.6.1, consists of a number of concepts specifically

related to the user, in particular: the users name, the currently supposed stereotype and

the the users level of experience. Note that although the concept of user type and

user level are handled by the knowledge bases, the user's perception should be one of

occupation and level of assistance since asking the user to provide a self-critical
evaluation of his/her abilities may result in inaccurate responses.

1 The screen images displayed are sun rasters which are produced at a higher resolution than is possible to
manipulate with a Macintosh. In order to accommodate the images within the format of this thesis and
maintain a degree of clarity the Sun desktop has been removed using a paint package eliminating the need
to photo-reduce the images.

191

The current date is displayed at the top right of the master form together with a
large feedback area. All general messages (in the form of assistance and warnings) are
directed to this area. This provides the user with a familiar response region.
Information regarding specific concepts may be displayed along side those areas by

means of a pop-up window.
On initailisation the user model interrogates the user's environment to determine

the user's name. The user's level and type may be inferred from previous records

produced by the user model, illustrated below:

user level(damian, expert). /* defaults */
userlevel(joe, expert).
user level(james, expert).
userlevel(_User, novice). /* everyone else is a novice
user type(damian, modeller).
usertype(joe, engineer).
usertype(james, architect).
usertype(jser, engineer). /* everyone else is an engineer */

In this instance the Te has picked up the user name ccasl8. No record of such a user
exists so a novice engineer is assumed, figure 6.6.1.

FUNEIMPILEMIllucifflu

A1..

)rejeet some

Es

I

I
Ussr type IIssr level

N Ail f
I

Dat. 114: May: 199e

Feedback
... prototype Ilrl'III1GD ' FROIrr UID
at ccasle.
Just fill in the fores. Changing defaults if you
cant, as I will ask on the forms for any data I
need. I will try not to ask too many questions!
Anytime I want to chat to you, I will place the
message in this box. Urgent messages will also
be placed in a popup box near the field causing
the problem. Click in the box to make it go away.

Figure 6.6.2. Master form: Name field changed. The corresponding user type and level updated
accordingly.

192

At any time the user is free to change the values set by the knowledge bases as

illustrated in screen images 6.6.2 and 6.6.3.

lit"

reouuacw

prototype IRTELLIailT FRCKC DD
R1 eeasie.

: Jost fill in the forms, changing defaults if you
want, as I will ask on the fares for any data I

. need. I will try not to ask too many questions!
. Anytime I want to chat to you, I will place the

message in this box. Urgent messages will also
be placed in a popop box near the field causing
the problem. Click in the box to make it go away.

14: May: 199B

Figure 6.6.3. Switching between conceptual models.

Screen image (Figure) 6.6.2 shows the results of changing the value in the name
field. Both user type and level are updated to architect and expert. Figure 6.2.3,
illustrates how, using a cascading pop-up field, the user is able to switch between

conceptual models. For the purpose of this example the user level is demoted to

novice to illustrate the feedback mechanism (feedback for expert users is rather terse).

193

Rýýý

riM

Tn]act aaw

ýaýes

d--. o

I
IIssr type Dssr 1svs1

PiAo I Q

Figure 6.6.4. Entering the project name.

late 14: May: 199B

------------------------ Feedback
............................... "---...... -. -... -. -..................... --............. -. -........... -....

prototype IITTELI. IGEWr FRONT END
Hi ccasie.
Jost fill in the forms, changing defaults if you
want, as I will ask OR the forms for any data I

. Reed. I will try not to ask too many questions!
Anytime I want to chat to you, I will place the
aessage in this box. Urgent messages will also

: be placed in a popup box near the field causing
the problem. Click in the box to make it go away.

I

The only domain specific concept presented to the user, at this point in the
dialogue, is that of a project identification name. This is used by the data handler to

either create a new project area or restore a previous model, figure 6.6.4. The

predicate prof exists is used for this purpose.

194

Ma. a

Project lasso

Pats started

lam-es

de .o

1la: Hiy: 1sse

I
User type User level

/ _ý i

Topics for discassisi

)iitU1i/ I. s. ripti. *

Q
Ssssisa aawlsr

Figure 6.6.5. Topics for discussion.

I
Q

lat. 14: May: 1996

Feedback
i'6NY; '1jY"t"ViTl. slk.. 6d.. YA'6''V6YYY"töF AKY-dm-I '........
need. I will try not to ask too many questions!
Anytime I want to chat to you, I will place the

: message In this box. Urgent messages will also
be placed In a popup box near the field causing
the problem. Click in the box to make it go away.

These buttons switch the focus of discussion to
the requested topic. The relevent forms will be
displayed below (existing ones will disappear).
It is suggested that the analysis forms are filled
in firstly in order to minimice specification of
redundant information during building description.

Once entered and checked a secondary set of concepts is presented, figure 6.6.5.
These include general concepts about the current project (date started and dialogue

session; useful for retrieving previous sessions) together with dialogue options.
Currently two dialogue options are provided:

i. analysis which is only presented if there is a sufficiently complete product
description and

ii. a building description button.

In this instance it is assumed that the description is incomplete (the project does

not exist) and that the relevant focus for discussion is that of the building description.
Although this option is provided in the form of a button, it is suggested that the sub
category of building description be selected automatically in situations of incomplete
product descriptions.

As the user selects sub topics, both knowledge bases and proforma templates
relating to those domains of discourse are dynamically loaded by the focus,

-concept
predicate, chapter 5.6.2.

195

6.7. BUILDING DESCRIPTION - CONTEXTUAL INFORMATION

A basic contextual description of the building is addressed in terms of its location,

function, and environment.

Main

Mjaet Nava

Data started

jaýes

deýo

14: May: 1996

I
User type User level

A,

! i'1

iq ics iOr liscIAssiOi

Q
Session aaaisr

1
1Q

11äf Za: May: 1999

Feedback
: 'tlie"y'rö6läö': 'Cll'c"k"1'n'tüe"6öz'tö'Gäk'e'it sö"äüey: '

These buttons switch the focus of discussion to
the requested topic. The relevant forms will be

: displayed below (existing ones will disappear).
It is suggested that the analysis forms are filled

.
in firstly in order to minimise specification of

.: redundant information during building description.

rhis button switches the focus of discussion to
the description of the (proposed?) building.
Subsidary forms will enable the site, geometry,
materials, use patterns, etc. to be specified.

Figure 6.7.1.1. Site location default concept menu.

As illustrated in figure 6.7.1.1, the building description form contains generic
contextual information such as the building's location, environment and function
together with mechanisms for providing more specific detailed descriptions. Each will
now be taken in turn.

196

6.7.2. SITE LOCATION - AN EXAMPLE OF RE-DESCRIPTION AND
RE-PHRASING

The site location is required in order to determine the content of the default values

offered to the user. In particular alternative sites, and standard climate files used
during simulation.

Nor

User type User level

I)IlAý Q
I

L. - T.

deao Project now

Date started

select
help
Aescriptim,
example

Topics for discussion

U

Session number III

Feedback

late La: May: 199e

:: t11eyröb1'e.. L11ck'in tiffs box to aalie it"ýö aray. ::
TAese buttons switch the focus of discussion to
the requested topic. The relevant foes mill be
displayed below (existing ones will disappear).
It is suggested that the analysis forms are filled
in firstly in order to minimize specification of

`redundant information during building description.

This button switches the focus of discussion to
the description of the (proposed?) building.
Subsidary forms will enable the site, geometry,
materiels, use patterns, etc. to be specified.

Figure 6.7.2.1. Site location default concept menu.

Like all other fields, site location may be completed in a number of ways. A
default value (set by the knowledge base) may be obtained from the concept menu,
figure 6.7.2.1. Alternatively, the user may enter the name of the location directly or
use a contextually relevant value from the domain menu, figure 6.7.2.2.

14: Nay: 1999

197

IFE #3.1 February 1

Project lain

Data tartd I14: May: 199-

User type User level

Ssssia .. sisr

Topics for Uscassisa

14: May: 199B

Feedback
lliä' pröbleý': "C'li'ck"9'n'tiie"tiöx'tö "iäke"it "ýö"aýey.

;" These buttons switch the faces of discussion to
the requested topic. The relevant to res will be

:: displayed below (existing ones will disappear).
It is suggested that the analysis forms are filled
In firstly in order to minimise specification of
redundant Information during building description.

This button switches the focus of discussion to
the description of the (proposed?) building.
Subsidary forms will enable the site, geometry,
materials, use patterns, etc. to be specified.

Figure 6.7.2.2. Location contextually relevant domain defaults.

This menu, initialised by the knowledge base, Appendix D (bld_spec), contains

a special value; "user map", which provides a mechanism for the user to ask for

another input method. In this case a separate resource (or new dialogue) is stated.
The process is a simple map program, displaying an bitmaped image of a particular
part of the world, figure 6.7.2.3. The user may select a city by moving the cross-hair
cursor over the desired location and pressing a mouse button. The coordinates are
passed out as:

user-said location x Y.

This is interpreted by the location predicate, Appendix D.
At the same instant that the map program is invoked, a more explicit description

of site location, in terms of its two elemental components: latitude and longitude, is
displayed. This is perhaps how an expert user would specify the site location of the
building rather than giving a general location name.

198

LFE 13.1 FebruN'y IM

Location

I

14: May: 1999

Glasgow

Fhvinwrwt '
d1'i1I

iuCt1"

I

comwareial

arcelona

Figure 6.7.2.3: "Location re-phrashed (graphically) and re-described.

hens

-ý.

When the "use-map" option is selected the map is displayed directly over the

concept of location. This is done to obscure the normal description of the concept and
force the user to address it's value by making a positive selection. Although it is

possible for the user to move the window out of the way and enter the location name

or coordinate value, the map program remains visible until a selection is made. This

is perhaps an undesirable mode locked operation. It is currently only possible to
interact with the map program directly. A more complete and consistent form of
interaction would enable the user to move the cross-hair cursor and monitor changes in

the latitude, longitude and location name fields, figure 6.7.2.3. Likewise the user
should be able to enter partial information, such as the latitude and the cursor should
snap to the location.

If an unknown location is entered or selected from the map the user is asked to

provide a complete description (ie name or latitude and longitude, whichever is

required). The knowledge base then stores this new piece of knowledge in a user
defaults file. This is only done if the user is thought (by the user model) to be

sufficiently knowledgeable.

199

IFE M3.1 iebrusry 1990

Name

Mjest uir

lat. start*&

ýaýýs

demo

14: May: 1999

I
User type User level

/ !f

T. ptc: for Wcassioi

hurtiý

; prill!! ýi! I! Iliýll! i!! ill'aülil! Il i

g
Susie number

I
[I]

Date 14: Nay: 199B

...... _, Feedback _... : _.
:............

....... __ .__........
-:.

<; {]is probfeý. Chck ln 46e 6ö'x to aa lt ýo aýay. >

These buttons switch the focus of discussion to
the requested topic. The relevant forms will be
displayed below (existing ones will disappear).
It is suggested that the analysis forms are filled
in firstly in order to minimize specification of
redundant information during building description.

..
This button stitches the focus of discussion to

. the description of the (proposed?) building.
Subsidary fares will enable the site, geometry,
materials. use patterns. etc. to be specified.

M

Figure 6.7.2.4. Time zone.

The actual choice of location names (major cities in the UK), provided on the
domain menu and the countries displayed by the map program are determined by a
further piece of information (time zone) not normally displayed.

bld_spec(initialize) :- %% now addressing building specification cpts
gctenv('IFE_LOC',

_Loc),
%% init location menu, depending on

%% users location
(_Loc=uk,

offer_usr(location, 'use_map
glasgow edinburgh aberdeen belfast london manchester birmingham newcastle cardif
f)

_Loc = eur,
offer_usr(location, london paris bonn rome madrid'

)'

feedback(bki_spcc_sel).

The time zone, figure 6.7.2.4, is set by the system clock and the site variable
IFE ENVIRONMENT which is set (to EUROPE) at installation. The corresponding
piece of prolog (MacRandal) is listed above.

200

If the time zone cannot be established the concept is presented to the user. The

map program would use a world map and capital cities set on the domain menu.

wa.

Project acac

l. ts startsd

ýaýes

daýo

114: May :1 99B

I
User type User level

A

iqicc for liscascica

2

Ssssin s+aler
I

iQ

Feedback

sate

_.. . _.... _....:. ; ýAs yrobleý. CYick in tti'e'böz fö ýelie iýýýö evay.

These buttons switch the focus of discussion to
the requested topic. The relevant foras will be
displayed below (existing ones will disappear).
It is suggested that the analysis forms are filled

An firstly in order to inimice specification of
: redundant information during building description.

This button switches the focus of discussion to
the description of the (proposed?) building.
Sobsidary forms will enable the site, geometry,
materials, use patterns, etc. to be specified.

Figure 6.7.2.5. Domain menus for building environment and function.

Both the building's environment and function may be completed from their
respective domain menus, figure 6.7.2.5, or in the case of an expert user the site
exposure and ground reflectivity may be entered directly, figure 6.7.2.6.

14: May: 1998

201

IFE N3.1 February 199»

Nam

Project mar

fate started

Jases

0820

14: May: 1996

I
User type User level

, Al
Topics for liscossloa

Session member
I

1Q

Date

Feedback

14: May: 199B

fAe yrö6Teö. Crick in tAa Sox tö iake it ýä aý'sy.

fluse buttons switch the focus of discussion to
the requested topic. The relevent forms will be
displayed below (existing ones will disappear).

'It
is suggested that the analysis forms are filled

in firstly in order to minimize specification of
redundant information during building description.

This button switches the focus of discussion to
the description of the (proposed?) building.
Subsidary forms rill enable the site, geometry,
materials, use patterns, etc. to be specified.

Figure 6.7.2.6. Expert description of building environment in terms of site exposure index and
ground reflectivity.

The values set for the building's environment function category, determine

which climate data files and occupancy regimes are used by the simulation package.
Although concepts are presented in a procedural manner, it is important to note

that the order in which information is volunteered by the user is irrelevant as far as the
knowledge bases are concerned. Therefore the user is free to describe any aspect of
the building in any order.

202

6.8. SPECIFIC PROJECT RELATED INFORMATION

In order to perform an energy simulation for a particular building a more detailed
description of the building is required. The relevant building description issues related
to energy analysis and simulation are accessible from a sub-form activated by selecting
the detailed specification option, figure 6.8.1.

maue

rr. j. et a. a.

lat. started

ja-ea

dsýo

ia: Mey: iese

I
User type User level

ýý
ý

T"VIIT for 1iscusioa

Q
Session number

I
l

Figure 6.8.1. Detailed building specification.

1. t. 14: Hay : 199B

Feedback
; 'tliä"y"rä61'üý'CTi'ck"i'n't66"tiö'x'4ö"iäk's"it"äö"iräy: '

'These buttons switch the focus of discussion to
;; the requested topic. The relevent fares will be

displayed below (existing ones will disappear).
It is suggested that the analysis forms are filled
in firstly in order to minimise specification of

'redundant information during building description.

..
This button switches the focus of discussion to

.. the description of the (proposed?) building.
>Snbsidary forms will enable the site, geometry,

materials, use patterns, etc. to be specified.
f: > .::::::.::::::: , ý;; ý ::: _; <., _ __

203

This building specification focii form, illustrated in its entirety, in figure 6.8.2,

provides access to detailed specification forms.

Figure 6.8.2. Building specification focii form.

Fundamental to most building descriptions are: a geometrical description, materials

specification, and zone connectivity. The other topics presented are of relevance to
building simulation.

Although a comprehensive set of mechanisms are suggested, it has only been

possible to provide conceptual schemes for geometry and construction. Further

research and funding is required to explore the other issues.
Owing to the highly modular structure of the system it is very easy to introduce

these and other knowledge bases.

204

6.8.1. GEOMETRY SPECIFICATION

In response to the idiosyncratic nature of communication a number of alternative

methods of inputting geometrical data have been provided, figure 6.8.1.1:

Import,

Draw,
Form fill

Nam

Project mass

Date started

E-es

de. o

114: May: 199e

rrýrarr
Iconnect iv it yý

ýM-_ =I

Lautiar . Giasýar ý: ý

iljl Hlmlmamnmmfemým

il II

ßývirawwýýt
. oity teatre

±: i: r",
!!! ý
! ülf

ý
ý(IeI ýI

Function

i

ommerci al

r nnv a IFTMW IrT=

Fl=

! i! j

I
User type User level

ýA
ý g

Session esier

Topics for üserssi. x

ii

hll liýhý
Ii

bn so

ý

_. Amffimlmt.

ý

I

I
0

I14: Hay: 1990

..................................
Feedback

Date

j: ix is suggested Inn the analysts Toros are 'dies

: in firstly in order to minimise specification of
: redundant information during building description.

This button switches the focus of discussion to

.
the description of the (proposed?) building.
Subsidary forms will enable the site, geometry,
materials, use patterns, etc. to be specified.

'This button switches the focus of discussion to
the geometric and material properties of this
building. Firstly, the geometry must be given.
Several alternative input mechanisms are provided

f. r_fill dray import

Figure 6.8.1.1. Geometry description (root) form.

Regardless of which method is employed by the user, all data is converter and
stored in a neutral format. This facilitates cross migration of the product model and
enables the user to interact with it in any manner. This system also enables the user to
supplement one method of geometry input with another.

Current Zeu

205

IFE 0.1 February 1996

Naaw E-es I
User type Ussr level

ý \Iiýl I
de0o Project iawg

Date started ia: º+ay: isse Ssssisa aasier

Topics for discussion

I uut I un

1nv 11'O»i*t t

rrlTTWrTjTMIFTT=

.. ý. II ý. ' 1 f.... r. l IýIýlronstý_ctionUl uc. nye.
11

ýr
ý . _. ---.....

l iýnr; rývýiyl,

' L

a-
Figure 6.8.1.2. CAD file form.

I

Date 1c-may--. 19981

........ Feedback
',;: the description of the (proposed?) bulldtkg.

Sebaideryforms will enable the site, geoetry,
materials, use patterns, etc. to be specmified.

I This button switches the focus of discussion to
the geometric and material properties of this
building. Firstly, the geometry must be given.
Several alternative input mechanisms are provided

Select a modelling package from the panel for the
definition of the building geometry. Once you have

: completed the model you may import it into the IFe
: using the 'import' facility.

1Q

form fill

The draw option presents a number of alternative packages for entering
geometry, figure 6.8.1.2. This enables the user to define a building using a familiar

system such as autocad or VIM (Viewer Input Management).

206

BACUS VIM Version 12.2

Date 14: May: 1999

Feedback

.. ascription of the (proposed?) building.
dary forms will enable the site, geometry,
ials, use patterns, etc. to be specified.

utton switches the focus of discussion to
eometric and material properties of this
ing. Firstly, the geometry must be given.
el alternative input mechanisms are provided

ta modelling package from the panel for the
ition of the building geometry. Once you have
eted the model you may import it into the IFe

the `import' facility.

»

11

Number of Objects in Database = 178 11
Input Command ?

draw
1. Plan 2. X Elevation 3. Y Elevation
4. Axonosetric S. All 4 Views

7

ar,: ýý:::: ý! ý: ý lil lüi ýi; ý; L:!; ý,: !:: i! iýýL iý 'i Ia; ýr:;:; ýýý I, ý.... sR
ii I L.

li: ýýý'ýG: I, a1iýiýýýiiý: ýl,; i! ý ;::: ilý: IýlýýIýIýýIýýýýlýýll i ý'lI{ýi6ili"iriiýitil! I: ý

IraM 11 iq. rc

)['avln9 packages

Figure 6.8.1.3. Utilising a 3rd party CAD package for the definition of building geometry.

Once a package has been selected from the scrolling form, the panel is de-
focused and the draw option de-selected, figure 6.8.1.3.

207

As it is often not possible to integrate such packages directly into the We owing

to the availability of source code, an import mechanism is provided, figure 6.8.1.4.

r...

Project aar

Ilat. started

jaýes

deýo

14: May: 199B

I
User type User level

ý!
/ý

Topics for discussion

4
Session aaalsr

Figure 6.8.1.4. Geometry import form.

I
1Q

Feedback

"to la: May: 1999

, : 1niä bntfön sýit'c'Reä fli'e föcää öf discääslön fö
the geometric and material properties of this
building. Firstly, the geometry must be given.
Several alternative input mechanisms are provided

; Select a modelling package from the panel for the
:: definition of the building geometry. Once you have

completed the model you may import it into the IFe
:: uzins the 'import' facility.

; This form allows you to import the geometrical
description of a building from an external source
(viewer, autocad, acropolis).

This form asks for the name of an existing geometrical model file (produced by

another package). In addition to the name of the model file (which may be obtained
using a file scanning field) the user is required to enter the geometry representation
format. Currently only the ABACUS viewer definition is supported although a dxf to
viewer conversion filter (Charles Chen, ABACUS) accommodates most of the
primitives generated by Autocadl. It is envisage that the use of "magic numbers' in
the headers of these files will be used in later versions to automatically select the
conversion filter.

Once converted the in-house ABACUS viewer program is invoked as an
incidental resource (using the solution plan perspective-image) to provide a
perspective image of the model. This is useful as a visual selection aid. Once

confirmed the model may be imported using the "import" button, figure 6.8.1.4.

1 A View to DXF has also been coded [RUTHERFORD 901.

m

208

perspective image of the model. This is useful as a visual selection aid. Once

confirmed the model may be imported using the "import" button, figure 6.8.1.4.

209

The form fill option provides a number of basic editing facilities for creating and

modifying geometry imported from other systems. Three basic representations are

supported:
i) RECtilinear, figure . 6.8.1.5,

ii) REGular extrusions, figure 6.8.1.6, and
iii) GENeral topographical and topological descriptions, figure 6.8.1.7.

Nam

Project aaar

114t" started

E. es

demo

14: May: 199B

1
User type User level

ý!
/ý Q

Session number

Topics for tlssuIUU

I
iQ

... Feedback

Date 14: Hay: 1930

..: :.. definition of the building geometry. Once you have
completed the model you ay import it into the IT.
using the 'import' facility.

This form alloys you to import the geometrical
description of a building from an external source

:; (viewer, antocad, acropolis).
This fore offers several editing facilities
enabling you to create and modify the geometrical
description of your building. Simply select a
shape type to create a new body or select an

'existing object from the 'current zone' menu.

i ;;;:.; <:.;:.;;;;.:.;;;.;;;;;.:.;;;.:;, »;.:;.;: ;;;;;;;;:.: :.; >:; <:.;
Laeatian

'iiili"Ihý! Milý avir....

Glasgow

'Utttab fýGAARIRRR1AAHiAAIAIAI
II IiIýLýqttlýs ý

E ý

mmmKM ME= ýýýººr
city csitrc]

Current Zeno

kitchen
Zone mm

kttchen

shape
type

1 -J'
i

... ý luncl Lu. ((O�ili,
rlýcýiii

OIE1I: [EMEEEE13= ý ... w, ýi
ILYYIrYillý.

°OStnsction usEepE

ýW

COMEtt111ýy
ý_ý

_
1'

lI

origin
x7:

i1 >

I

n
s. e e. e

" rint" t i"s
ýs x

8 Le I 1

Figure 6.8.1.5. REC instance body.

rr. nvmwm

2.3

ý

1rav 11,. rt

I 3" I

210

IfE M3.1 iWrusrY 1996

MAIM ý°ýos

deý0 Project now

Bata startad 14: May: 199B

I
User type User level

1/ g
Session number

Topics for discussion
A

MIM FTTX aaw,

&

Glasgow

fu. f110n ýIIM[11 14 iý1

;iý... ý,.
rrnnrrlTmTrrnTm

MIMI

Current Zone

plant room

z. aa mang
plant rooý

r\q"

ariawtatiaa
 7

LI1OC

Figure 6.8.1.6. REG instance body.

Latitude
I 4MMROIAIitI 1t! 1'! 'ý'Longltwde

I
1Q

Date 14: Hay: 1998

Feedback
.. <definition of the building geometry. Once you have
completed the model you may import it into the IF.
using the 'import' facility.

This form allows you to import the geometrical
description of a building from an external source

: (viewer, autocad, acropolis).

This form offers several editing facilities
ienabling you to create and modify the geometrical
description of your building. Simply select a

: shape type to create a new body or select an
existing object from the 'current zone menu.

vertices
x ý

height

[ilk e. eee e. eee
(21 7.000 0.000

[ö] 7.000 O Se

14 e. see e. see
[S] i5. eee i. eee
161 15.000 i. eae
[7] 9.500 2. see

[S] 9.500 2.500

["1 9.900 2.000

(is] 9.000 2.690

F-7 -4"esee

15.0001 1.000

15.000 1.080

ý

211

IFE 03.1 FebruwrY 1988

Mar

Project aana

Date starte

ja-es

deýo

114 : May 9998

I
Usor type User level

l! i'1

7glea for llscaselon

g
Session member

s. t.

Feedback

14: May: 199-ell

.. > . definition of the building geometry. Once you have
compl. eted..

.
the model.

.

you. may import it into the IFe

I
using the 'import' facility.

This fore allows you to import the geometrical
description of a building from an external source

. (viewer, autocad, acropolis).

This fore offers several editing facilities
: enabling you to create and modify the geometrical
description of your building. Simply select a
shape type to create a new body or select an
existing object from the 'current zone' menu.

1Q

Figure 6.8.1.7. GEN body instance form.

212

The form fill form is divided into two areas:

i) generic geometrical description, include origin and orientation together

with the zone name and instance type.

ii) instance attributes: one of the above REC, REG or GEN descriptions.

Existing zones may be retrieved using the cascading pop-up field "current zone"

or simply by typing the zone name into the "zone name" field and pressing the edit
button. This button serves two purposes, to:

i) force the user to de-select the zone name field and

ii) retrieve existing zones. If the zone does not exist an new instance is

created and the current instance form is cleared.

By not selecting the edit button directly after changing the zone name is taken as
a request to change the name of the current zone.

It is important to note that a body of type REC may be converted to either a
REG, or GEN by selecting the the corresponding value from the shape type pop-up.
Likewise it is possible for a REG body to be converted to a GEN. Once converted it is

not possible to convert back to the original shape type since the body may have been
deformed by the addition or modification of individual vertices.

213

6.8.2. CONSTRUCTION DEFINITION

Another fundamental issue requiring attention is the definition or specification of the

thermo-physical properties of building components. This is achieved by selecting the

construction option from the build spec focii form, figure 6.8.2.1.

N+..) -es

de0o Project aaaa

Nt" started ia: Mey: isse

I
User type User level

Alif

Q
I

Session number

Topics for iiserssisw

Lacat

I

Glasgow

IN

m
:: I hrl7liinf!! ILP, 'ý:! Illlll...... i'ii 1i°li! ÖIII!. ; ,........ ... Fhvir. wwswt

funct -

rnrillITIM131113=

city contra

ýýý seepe

.. aryls

current oo

Figure 6.8.2.1. Building construction form.

current : ewe surface

The construction form contains several fields, figure 6.8.2.1: the materials,

openings and intersections focus buttons, together with the current zone and surface
pop-ups and a graphics field used to provide a visual representation of the current zone
and surface.

1Q

Feedback

Date 14: May: 1990

.. .. This form offers several editing tacIlities
enabling you to create and modify the geometrical
description of your building. Simply select a
shape type to create a nev body or select an
existing object from the 'current zone' menu.

This button switches the focus of discussion to
defining the materiels and construction primitives

: eg. a particular external wall construction to be
: used. These mechanisms provide access to a number of
: standard material and construction databases. If a
material is not shown here, you will be required to
specify its thermophysical properties

latsnectisiu qýýLý: -ii

214

6.8.3. MATERIAL SPECIFICATION.

When selected the material specification form offers the user a number of pre-defined

construction types (determined by the building function category). These are

presented in a schematic form on a cascading pop-up, figure 6.8.3.1.

Nam

Project same

I .. t. rt. 4

ja. es

de-o

14: M a yy: 1999

I
User type User level

/'_'-? ý

Topics for liscusiea

2
Ssssia im/er

I
1Q

Date 14: May: 199e

Feedback
::...:: 'existing object from the `current zone' menu.

This button switches the focus of discussion to
defining the materials and construction primitives
eg. a particular external wall construction to be
used. These mechanises provide access to a number of

: standard material and construction databases. If a
material is not shorn hare, you vill be required to

;: specify its thermophysical properties.

: Select a surface and an appropriate construction type
: from the pop-up menus; then choose a material for each

layer and assign a thickness.

ý .:: ,: ý.: ...: .::.:: ..:; ::.:;; <.; .:::.::: ::.;;.. _.

Figure 6.8.3.1. Multi-layered construction and material specification form.

Along with the graphical representation is a series of attribute fields relating to
individual layers of the multi-layered construction. Each layer may have a number of
alternative material types, obtained by selecting an item from the corresponding layer
fields. The materials for each layer are obtained from standard material database, in

particular ESP's constrdb file. The thickness of each layer may be set by the user,
although for particular building elements such as standard bricks, thicknesses are
defaulted.

Although proforma templates have been defined for the construction definition,
corresponding knowledge bases have yet to be coded. The following screen images
illustrate anticipated user dialogue and system responses. Feedback is also displayed
in the general feedback window.

215

Figure 6.8.3.1, illustrates a vertical surface of a particular zone being assigned

an external multi-layered construction type. The following image, figure 6.8.3.2,

illustrates the user browsing through a series of construction types. It is important to

note that "a plan to" modify event must be sent to the knowledge base which would

respond by obscuring the values in the zone surface field, the graphical representation

of the zone and the multi-layered construction attributes. Thus highlighting the

inconsistency between current data and the user's actions.

ýaýes

14: May: 1998

i

button switches the focus of discussion to
in1 the materials and construction primitives

particular external wall construction to be
These mechanises provide access to a number of

and material and construction databases. If a
ial is not shown here, you will be required to
fy its thermophysical properties.

ta surface and an appropriate construction type
the pop-up menus; then choose a material for each

and assign a thickness.

Location

ý ae t F]avire
.................

Glasgev

I! i! j

Latitude

_. IAt ol n1i__D1Ciii + L]n

P. wc t 1H

wts»,

Extarnal wall

I
ihsiis

`assiýr
aý

ý nviaýs

current sent surface
kittksi

ýaa Pacixl irlcA
E

75 aa Minaral vsel

Efi "a Cavaty
_

ýp rs Drasze ilaew

Y2.1 ýý Perlits ýlas

Figure 6.8.3.2. Browsing through multi-layered construction types.

Figure 6.8.3.3, shows that the user has selected a ground floor construction
which is incompatible with the previous surface selection. This is highlighted in the
feedback window.

14: Nay: 199B

.. existing object from the 'current zone' menu.

Mineral vsel

Gvaty

Dreszs ilsek

perlite Plaster

216

ý

NaM jaýes

Fm. project IMar

Note started 14: May: 1996

Usor type User level

I A-4,

Topics for discussion

. TT11UrTT1T'1

ý

I
LI

yýaials

Date F14-'M-a)-r. 1998

Feedback
ýý

..
, +a+u++s a++o ýeae+aeas a++u a. u+ua+ua. aaar++ y+aýaaa"oa

et. a particular external wall construction to be
used. These mechanisms provide access to a number of
standard material and construction databases. If a
meterial is not shovn here, you will be required to
specify its thermophysical properties.

Select a surface and an appropriate construction type
from the pop-up menus; then choose a material for each
layer and assign a thickness.

This contraction type cannot be assigned to a vertical
sarface. It may only be assigned to the bettew sarface
sf a body, as illustrated below.

iatersectisis kitchen I bottom

I

Ground floor

i'; > .;:.;:. >;:: ,.
.: : >: ý:: ý>

:<>. >; »: <: ';:;. ;;:::
., ': ' .,

Screed

Concrete

5ud llblding

HJrdtirn

Earth

Figure 6.8.3.3. Automatic selection of surface in accordance with the construction type.

I

I
I
I

The knowledge base must contain information regarding valid construction
contexts. In this instance the ground floor constructions may only be assigned to the
bottom surface of a zone, which is automatically selected by the knowledge base,
figure 6.8.3.3.

Glasgow

rrrrmrlTrrlrrn=

2

Ssssiu s+sisr

217

IFE #3.1 Febrwry 1

M... ýaýes

deýo

IE

project Rain

". t. sartd l14: May: 1996

I
User type User level

ýA
ý g

Ssssiq aoisr

Topics for discussion

Licätlii Glasgow

ERviroxwoxt

Nun
týl. SS. "

I

I

m

lluctfolm ',. c. rcLl

nný7 ff7rrMTT=

TiC laarliag

14: May: 1990

Feedback

tandard material and construction databases. If a
material is not shorn here, you will be required to
specify its thermophysical properties.

Select a surface and an appropriate construction type
from the pop-n menus; then choose a material for each
layer and assign a thickness.

This eswstructisa type caww"t be assigned is a vertical
surface. It aay only be assigned to the bettoa surface
of a body, as illustrated below.

This construction type may be assigned to both
horizontal surfaces.

iwbrsýctUas

Floor/coiling

coaitractioa

carreat zone

1.1r...

Iprsvious

E-1-11 -- I r 7-51n1

late

surface

all horizontal

2faior floor jmlsts 9 69 cottrss

Plasterboard

Figure 6.8.3.4. Assigning a multi-layered construction type to several surfaces.

Figure 6.8.3.4, illustrates the ability to assign a construction type (in this case an
intermediate floor construction) to more than one surface at a time. This obviously
increases efficiency.

ml
city ccitre

ýýaliinV

I
1Q

.................................. I

218

6.8.5. OPENINGS IN MULTI-LAYERED CONSTRUCTIONS

This form offers two simple mechanisms for defining openings in multi-layered

constructions. The methods follow those currently implemented in ESP, although the

mechanisms presented here, figure 6.8.5.1 and 6.8.5.2, provide more flexible editing

facilities. In addition to the opening type (either window or door, later cracks), the

state of the opening is also required by ESP. This is entered using the state button

which toggles between open and closed. It is envisaged that standard off the shelf

units, as well as custom designed windows and doors be accommodated. Unit types

my be obtained from standard databases using the unit type pop-up.

Mar

Project new

lac. started

Jaýes

demo
1fl--4--: M-41y: 199-

I
User type User level

Al

Topics for dissusioR

nn<<i.

Q
Session izwler 1Q

Feedback

current memo

io: Nay: 1sse

:..:: , ----- --" ---" a, o. a..,. oaý..., a,.. o,,.
111s coutruction type cannot be assigned to a vertical

, surface. It nay only be assigned to tie bottom surface
if a body, as illustrated blow.

:. This construction type may be assigned to both
horizontal surfaces.

: This facility allows you to define openings in
specified surfaces. In order to perform an
analysis of your building, you must also say
if the door or window is open or closed as this
affects the through-flow of air from zone to zone.

11,400,11 1
0

Figure 6.8.5.1. Window opening specification form.

kitchen

aw qSaiaI

aawior

I

ý

l. c.

surface

1

unit type

double glazed

I

U-valtia

F-57 5

As in the case of material specification a surface must be specified together with
an opening number. This is achieved by selecting the "new opening" button for each
opening in the selected surface. Existing openings may be retrieved for editing
(deleting) using the "number" field.

219

=1

Now ja-Ts

Project as

late started

de-o

cu

I

14: May: 199B

1", q. Y

Topics for discussion

GvirýnnKnt

I! il
ý,.. Iiljjl 1I

. ý.. ijý

9 Juni lion

rm YT lo r-T wTTT; T&m* r7i

city contra

rýllý
IMM

mom

ý
I -t tr. ty

User type User level

/ !, 2
Session member

I

ý

3500

l. t" 114: May: 199B

Feedback
.. [iayernaas asign a tnicxness.
This cewstructiaw type cannot be assigned to a vertical
surface. It may only be assigned to the kette7 surface
ef a kedy, as i llustrated below.

1Q

I

This construction type may be assigned to both

: horizontal surfaces.

,.
This facility alloys you to define openings in
specified surfaces. In order to perform an

, analysis of your building, you oust also say
. if the door or vindov is open or closed as this
affects the through-floe of air from zone to zone.

f>; ,: > _>:;

fatsrssctisas

ý

Figure 6.8.5.2. Door opening specification form.

titelli

I

S I

For both window and door openings a simple attribution form is displayed,

allowing the user to define the lintel and cill heights (windows only) together with the

width of the opening. The offset from the surface datum (the left most corner) must
also be entered. When standard units are selected the width may be automatically
entered. A graphical representation of the current surface and opening is also
provided. It is envisage that subsequent versions of the forms package will enable the
user to directly manipulate this graphical entity.

220

6.8.4. INTERSECTIONS.

Again with incomplete knowledge handlers, the intersections form is intended to allow

the user, or designer, to specify boundary conditions between multi-layered

constructions.

M... la-ss

tleýo Project ur

Mt. started 14: May: 1996

Topics for discussion

Location 61. y..

I
User typo User level

ý4
Session "oY*r

wNrfýlr

Fkvirýwiwwt

ülýi I

IYwltio"] I.

I
, L.

-- -. --
1

ý........ _... i.

[

I
]Q

q. iiLqs

detail

Figure 6.8.4.1. Boundary conditions.

Date 114: May: 199e

Feedback
...............

i
Select two adjacent surfaces and the required detail.
Enter an appropriate material thickness or use a default
one.

ý

ýrnvl. as

current auu
kitchen

iatan. ct with

surface

". cc.

Edge iasalatiea -1a

For example, figure 6.8.4.1, illustrates the user specifying an edge insulation

strip at the external wall boundary.

221

6.9. SUPPORTING WHAT IF - BROWSING AND RETRIEVING
EXISTING MODELS

The ESP system is used to predict the energy performance of fully attributed buildings

and is therefore used to check completed design solutions. However, a flexible

design tool would allow the designer to run tentative design solutions in order to

investigate various ideas. In order to accommodate this function a browsing

mechanism has been provided.

Mau*

Project rave

Date started

''. 'ý FuMc t

llli

E. es

deýo

1la: May: 199e

Glasgow

I
User type User level

)!

/ý 2
Feedback

Date 14: May: 19 81

................: :: This facility alloys you to define openings in
%specified surfaces. In order to perform an

I
;; analysis of your building, you must also say

if the door or window is open or closed as this
affects the through-flow of air from zone to zone.

1Q The browse facility first asks you to select the type
of building, then offers a number of topologies before
finally permitting a limited dimensioning facility
browse cannot be used with any other geometry input
method, as it is designed to create a complete building

: geometry. However, the resulting geometry, once passed

Sessimw arwior

Torics for lisctssisw

Latitude

Longitude

ýmmiumm
iýyýýýýlliiýýýiýýllliliiG; liýiiii
BIIIIýIIýIIII! (I1ý1ý1ý11ý9R!! ý! pI! iIN! ýI!! II! illlgliýiý!!;!!!!

ýw rc ia 1

lrildiat class

1: beck to the if e, can be modified using any other method.

. >;:.: _; ::::.: : :::::: ::. :::: ::::

Eset

Figure 6.9.1. Browse facility; initial state.

)revse iewge steck

faf " rsat iaI

The browse program (Rutherford) (invoked by the application handler at the

request of the knowledge base) scans a predefined directory (-ife/lib/uc/uc/buildings)

which contains a set of sub-directories corresponding to the current user
conceptualisation. Within each of these directories any number of subdirectories,
containing any number of exrepl images, may be placed.

I Exrep image files may be created directly using the PixEd program (J. Rutherford, ABACUS and M. Martin,
RAL) or generated from a source bitmap - such as a sun raster, using the bitmap conversion filter cony
(Martin). Additional filters (rasterizers) have been incorporated within cony (Rutherford) to create
bitmaped images of ABACUS viewer plot files.

222

"influm3ml

Nam ýaýes

de. o

2

I
User type User 1svs1

Q Al
MJect awr

14t" WrtN

iqics for liscusica

Session aaaior
I

1Q

Date

Feedback

14: May: 1998

'The browse facility first asks yon to select the type
of building, then offers a number of topologies before
finally permitting a limited dimensioning facility

ý: Erovse cannot be used with any other geometry input
tmethod, as it is designed to create a complete bnilaing
;: geometry. Hovever, the resulting geometry, once passed
: back to the ife, can be modified using any other method.
: Yea have already started inputting sate sots descriptions

It order to use the breve. facility, you vill have to
; destroy the geometry already defined. The 'select' option
ýývill automatically evervrito any existing data. Be you
? really vast to to this?

Figure 6.9.2. Browse offering building class and type. Note that the user has already made a
selection and the corresponding images have been loaded.

The browse program interacts with the knowledge base which in turn interacts

with the user, by means of two menus, figure 6.9.1. Simply by selecting a building

class the browse utility returns the names of sub-classes of buildings which, when
selected returns the names of images files. These images are then displayed on a
cascading pop-up which the user may ripple through, figure 6.9.2. and 6.9.3.

ia: Nay: 199e

223

IfE 03.1 F@brwrv 1996

M...

Mject uti

Sets started

leiýlian

IN

Inv rt-m, n

Iý(ýýI

r. aet

I

jaýes

demo

14: May: 199B

1; 1as{sv

User t"s O"

I

s. sslsa ab

Topics for lissussiq

Latit. a. ss. ý

longitude aa

<ýty tewl, e

liOW G..;, -1lý,.
f. ýý ý! i; liý: ü,,:

urnial

letal led epec it lcelu*

H

i®

hilIiAt class
rssitsatia1

. isesllas, s. s
i. dstrial

ý rr.
commercial

bu11Uwq typ
yLrrLlTwflE

., b.. 1

"iu ýý�'t'
mu I13 o

ai
a
a
a

... uA _

Irwse tw. ye

"sý

1, _

Figure 6.9.3. Interactive selection of design exemplars.

. t.. 4

I

Bat* 114: Ma

I %.

am
m
m
m

I
0..

a
0

: 1999

r7771

a

T-Wae
ýý

The browse facility therefore allows, for example, complete design exemplars to
be offered to an We user. Entire models may be defined without the need to explicitly
enter topographical and topological information. This facility will also enable related
attribute data (constructional information, for example) to be stored and retrieved. The

examples illustrated are based upon this assumption.
When the browse facility is selected a warning, indicating that the browse

program is intended to define complete building descriptions and therefore overwrites
existing information, is displayed in the feedback field.

0
iýý ý
ýý ý
! ý`r . ''

w

224

MIUJIFIUIýl
Mar ýaýee

deýo

11

I
User type User level

)11il 2
Date 14: May: 199B

........, _. _:::. Feedback:::.......................................
..

; The browse facility first asks you to select the type

I
Fi of building, then offers a number of topologies before

finally permitting a limited dimensioning facility
browse cannot be used with any other geometry input

method, as it is designed to create a complete building

geometry. However, the resulting geometry, once passed
back to the ife, can be modified using any other method.

Tom have already started inputting save zone descriptions
L order to use the browse facility, you will have to
destroy the geometry already defined. The `select' option

!: will automatically overwrite any existing data. M you

Mjoet "+M

Date started Ssssisa aulor 1Q

Topics for discussion

14: May: 1998

Glos,.,

[: really vast to lo t\is?

fevvse fage stack

on-

uýlrsis laillia9

lkildis+q class

rtailaatial
aiseallaaaats

ijkdratrial

c. wwercl. l

building type
rn. VI.. Sit

. el.. l

Figure 6.9.4. Design exemplar selected.

iaf"n. wtiu

"I

M,.

Once building data has been entered using this mechanism, it may be modified
using any of the techniques already described. Currently the user has to indicate that
data input is complete however this could be inferred by the knowledge handler. As

soon as sufficient descriptive information has been entered the available topics for
discussion would then be extended; including the option to analyse the building, figure
6.9.4.

225

6.10. ANALYSIS - PERFORMANCE METHODOLOGIES.

Once the building description is complete, by what ever means, the designer may now

begin to investigate the performance of the building using a number of pre-defined

assessment methodologies.
Each user conceptualisation contains appropriate performance methodologies,

figure 6.10.1, which may be categorised into (Clarke):

i) mono-functional methodologies, and

ii) multi-functional methodologies.

ENUMNIMIM

waM

traJact saw

lsts started

F a. es

de8 0

1ia: May: 1996

I
IIssr type user level

P/Al 2
TcPics for liscussicx

Ssssisa aasisr

l. c. ia: May: ieee

--------- Feedback

iIhis button witches the focus of diaenssion to
the sort of analysis required. Information about
the design stage is asked for so that only
appropriate analysis (and data input) "ill be
carried out.
Results are posted back and displayed in a pop-up
image stack.

I
iQ

Figure 6.10.1. Performance methodologies

These methodologies essentially contain an expert's encoded knowledge of how to run
the target application program (ESP) for a particular goal. By a simple selection
mechanism a user is able to employ the knowledge and experience of a whole range of
experts. In this instance the Unix Bourne Shell is used as a pseudo expert system

226

[CLARKE][IFE 89] shell; executing parameterised shell scripts which interrogate the

product description area on the blackboard via the data handler.

6.10.1. DEFINING CONSTRAINTS

Operational and simulation constraints may be defined by the user by interacting with a

number of fields. The analysis form currently allows the user to set the start and end

times for the simulation using two date fields, figure 6.10.1.1.

mmýýý

mass

Tnjact tawa

Bett st. rt. l

114: May: 199e

building lsssriPtisr

li aaaa

d8 M0

1(i-4-. May: 199e

1-" 4 IVY, 1-3

start

Corfort

I
User type IIser level

Ail
IIR

Ssssisa washer

Date 114: May: 199B

Feedback

-; This button switches the focus of discussion to
the sort of analysis required. Information about
the design stage is asked for so that only
appropriate analysis (and data input) will be
carried out.
Results are posted back and displayed in a pop-up
isage stack.

I

K
Topics for discussion

February
Narch

wic April
s Nay
f June

d, July

T . rn?

Cardawsatian

mmmasmit
M1

1999

n Tue Wed Thu Fri Sat

September ? ̀"E: >üi: '"'"'"; ":;:? Y"i

October : s: "s.. <::; i: 1

November ;;

December

riw

Figure 6.10.1.1. Defining simulation constraints.

Other constraints such as time increments may be set explicitly or inferred from the
current stage of design; a more coarse time increment used at the earlier, tentative
design stages.

227

Behind each button lies a script of the form illustrated below, figure 6.10.1.2 [IFE
89].

if teat *X$(IFcjlOME)" -'X"
that

who "Please set up I Fc� j-IOME' shell"
who "vsriable and'export it"

exit
Ii
clear
echo "ESP Script 1: - Heating Plant Sizing. '

Set up defaults and process command line options.
tesulta $(IFe_HOME)AibAmp/resulta
building=4S (IFeJIOME) /lib/tmp/building
climate-$ (IF"OME) /lib/tmp/climate
control-S (IFe_HOME) /lib/tmp/control
start-"9 1"
finish-"15 1"
timcsceps-2
if test $#-ne0
then

for i do
case "$i" in

-r) results-S2; shift; shift;;
-b) building=$2; shift; shift;;
-c) climate-$2; shift; shift;;
-o) control=S2; shift; shift;;
-a) stut: S2; shift; shift;;
-f) finish-$Z- shift; shift;;
-t) timesteps-$2; shift; shift;;
-) shift;;
-') echo "Unknown option: Si"

echo -n "Usage <FN KEY> -c climate"
echo " -b building -r results -s start"
echo " -f finish -t timesteps -o control"
exit 2;;

aac
done

fi
echo
echo Files used : $[building)"
echo " $(control)"
echo "$ (climate)"
echo " Files created: none"
echo

echo " wait.. -'

sire >/dcv/null c<- N run ESPsim, redirect i/o
-6 N line X
$(climate)
1
$[building)

r
1
3
$(reaulta)
S(Sun)
$(finish)
$(timesteps)
0N the no save option
a
Y
$ (control)
Y
0
n

fM line y

Figure 6.10.1.2. Heating plant sizing script [Clarke][IFE 89].

228

Figure 6.10.1.2 represents a very simple Script [CLARKE] [IFE 89]:

Firstly, the variable IFe_HOME is looked for. This defines the home directory

of the We system where the Scripts are located. Then the Unix program 'clear' is

invoked to clear the window in which the Script will run. All run time variables are

then defaulted before being assigned on the basis of the command line options as

established by the Appraisal Handler. Summary information is then output before the
ESP simulation is requested by issuing the command'sim'. Since the script will have

no user interaction, ESPsim's standard output and input are redirected. In this case

standard output is discarded (put to /dev/null) while standard input is taken from the
Script itself («) until the tilde (-) character is encountered. The ESP simulation is

now performed against the driver commands of of lines X through Y. These

commands are identical to those that would be entered if the system was being

operated interactively. The -6 informs ESPsim that it will be operating in Script mode

and so, internally, it reassigns its output channels to enable text and graphics outputs
to be captured separately.

In this Script no results library is created. Instead ESPsim's summary output
feature is invoked so that the final result passed back to the Application Handler is a
file containing the following information, figure 6.10.1.3:

229

ESP Script 1: - Heating Plant Sizing.
Climate file : /usr/ife/lib/tmp/climate
Configuration file : /usr/ife/lib/tmp/building
Configuration description : ESP standard test

Control file name : /usr/ife/lib/tmp/control

Building save option : No results saved
No. of warning messages :0

Simulation period :1 day: from 9,1

Start-up period :1 day
Building time-step :1/ hr
Number of zones :5
Zone-time increments : 240
Building results file size : Not applicable
Simulation time : 120 secs

Result:
Period simulated from day 9 of month 1 to day 9 of month 1

Zone Mx Air tmp Mn Air tmp Max heat Max cool Heating Cooling

1
2

INdeC) (\(deC) (KW) (KW)

16.00
(ý 850- 9- 1

20.00
ý850-9-1

3 20.09
@17.50- 9- 1

4 16.71
@23.50.9-1

5 -0.14
@13.50.9-1

(KWhr) (KWhx)
6.58 0.908 0.9.9 0.

Q 6.50- 9- 1@s. sa 9- 1@ osa 9- 1
738 1.805 0.

@ 6.50- 9- 1@8.50- 9-1 @ 0.50- 9- 1
19.6 0.

8.08 0.891 0.10.4
@ 6.50- 9- 1@ 10.50- 9-1 @ 030- 9- 1

6.65 1.777 0.3.6
@ 9.50- 9- 1 @22.50- 9- 1@ 050- 9- 1

-4.22 0.0.0.
08.50-9-1 00.50-9-1 00.50-9-1

All zones :
Max. Temp. = 20.1 in Zone 3 on day 9 of month 1 at 1750 hrs
Min. Temp. _ -4.2 in Zone 5 on day 9 of month 1 at 8.50 hrs
Max. Heat. = 1.8 in Zone 2 on day 9 of month 1 at 8.50 hrs
Max. Cool. = 0. in Zone 1 on day 9 of month 1 at 0.50 hrs

Total heating requirements = 43.45 (KWhrs)
Total cooling requirements = 0. (KWhrs)

Figure 6.10.1.3. Results output from plant sizing script.

0.

o.

o.

Much more comprehensive performance assessment Scripts are illustrated in the IFE
final report [IFE 89].

Product data is extracted from the blackboard using a simple query language. For
each target application a data definition script is required.

230

6.10.2. RESULTS, INTERPRETATION, FORMATTING AND
FEEDBACK

Results from client applications are interpreted, according to the assessment
methodologies employed and the user's conceptual vocabulary by a series of generic
tools. Each tool is capable of formatting data in particular ways such as pie diagrams,

bar charts, graphs. Rather than expect the forms package to provide these facilities,

each of the interpretation modules produces a bitmaped image which is transmitted to
the appropriate display field, although grpahical objects would be more appropriate as
it would not be necessary for the resource to know the physical constraints of the
display region.

I2nIrI

Now

Project aaaw

llat" started

!: fTrfl +'r'LIi(7'Tl

jaýes

de-o

14: May: 199B

'rnTT D! T
start

I
Ussr type Ussr level

/! i'f1

7yits for discussion

I (Mriti-trwctiaaa
I Matlaýaiaý

tiaisY
114: May: 1998 14: Aug: 1991

g
Ssssiss sauber LI

Date 14-: I-990

Feedback

... :. This button switches the focus of discussion to
the sort of analysis required. Information about
the design stage is asked for so that only
appropriate analysis (end data input) vill be
carried out.
Results are posted back and displayed in a pop-up
image stack.

Results from energy analysis

Energy Input

statt
meat.,

45%

[J Incidental gains 52.3 GJ
CJL,, lar gains 54.8 GJ

'Face heating 84.8 GJ
191.1 GJ

x

Figure 6.10.2.1. Results feedback from energy simulation.

Results are formatted and presented to the user, usually in a graphical form. A
typical example of the output is illustrated in figure 6.10.2.1.

231

Heat Loss Through
External Cavity Wall

7--Ti

xawa ýaae:

rrojoct i411W de

bats started f4-. M-ay'-1-9961

Toner for l:

iuildia/ description

i'mmi-riv I
mmrrTTTrmrrý.]

CGaf " rt

M'A1t1-fluttl'
M. u. ai.

start iiaish
14: Nay: 199B 14: Aug: 1991

ý

GnbRSatiaa

Cutrnl
I

fiD-A

7. ºae
jnrati

Delivered
E1ectricity ý. t ýl

Figure 6.10.2.1. Rippling through simulation results; highlighting problematic areas.. Options
for hard-copy will be available to the user.

Results are displayed in a cascading pop-up consisting of pie diagrams and tables. By

employing other resources, results may be interpreted and suggestions for

improvements, figure 6.10.2.1, and graphical representations of problematic areas,
figure 6.10.2.2, presented.

u- value
(W(VK))

e. 12s

Ianlt.. l
C.)

ie. e

Maat loss
1xk
(WK)

1.35

leselts Ir" "e"rWy aealysls

232

Y...

project aaaw

Note started

I
User type User level

/! ýý1

R

Ssssisa aaalsr

1. t"

Feedback

This button witches the focus of discussion to
! the sort of analysis required. Information about
the design stage is asked for to that only
appropriate analysis (and data input) will be
carried out.
Results are posted back and displayed in a pop-up
image stack.

I
LI

Topics for discussion

1aimiag oiseeriptlea

ýaýes

deio

14: May: 199B

rose-FORctlýýa
Aatloialap

start

Taad-a
Expert

114: May: 1999

,,
fiiisl

14: Aug: 1991

I Airflow
286

.e .

-200

-a0e
e to 28 39 49 se se

S. C. ($)

78 Be se

14: N ay -'. 19 -9q

n Moat is$ (N)
e Caa4lnf(C)
" N4C
O L1/ntlnf (L)
 NK+L

188

Optimum Shading Coefficient for South-east Window

Figure 6.10.2.2. MUlti-functional methodologies; suggested control systems.

TT1

Suggested eee. trel systeeu

see
rr
,.
tr

400

a1 ý

233

An integral part of any CAD package is a geometrical description of the product.
Based around the dynamic structure identified in chapter 3, one of the resources used

to relay simulation results back to the user is an interactive multi-representational 3D

object visualisation and manipulation program, described in Appendix E. This

program, operating on a Silicon Graphics Iris workstation, displays the building

model as either a 3D wireline or rendered perspective, figure 6.10.2.3.

Y

=Z==

Figure 6.10.2.3. Interactive 3D display interface.

Y

A domain template interface is created (in this case for the interpretation of
thermal information) which interprets utterances generated by the knowledge base and
maps them to program specific commands.

For example
Zone 1: overheating: 10

maps to: Zone 1: colour. 200 00

resulting in a colour change of the graphical representation of Zone 1, figure 6.10.2.4.

Ir

ýJ

234

. --

i ::. - _

Figure 6.10.2.4. Monitoring time variant data.

This program is a current focus of effort and will eventually enable the user to interact

directly with geometrical representations of concepts, formatting and transmitting

utterances.
The example provided illustrates how many different application programs may

be utilized in a useful and easy manner.

Constructing a user interface using the modules of the We may be broken down into

three tasks:

" encoding domain specific knowledge

" defining in terms of form sets, a user interface

" task analysis and delegation.

All three points have been covered sufficiently to illustrate the concept of
intelligent design assistance. However task analysis and solution synthesis requires
additional attention. The issues related to the integration of existing applications (deep

models) in this multi-level knowledge system (after Hart 82) are discussed in the
following chapter together with result interpretation and presentation techniques.

The following chapter will discus the issues for task analysis and intelligent automatic

selection of application programs.

235

7. - INTELLIGENT --DESIGN ASSISTANCE

7. INTELLIGENT DESIGN ASSISTANCE

Communication is only one aspect of an intelligent design assistant. Another equally
important aspect is assistance with operating application programs and interpreting

results. Although the ELAS (Expert Log Analysis System) for carrying out well-log

analysis [HART 82, WEISS 821 comes close to the structure outlined in this thesis.
There are currently no forms of intelligent design assistance in the construction
industry [IBM].

7.1. TRADITIONAL ASSISTANCE

Traditional AI applications have been restricted to consultation systems questioning the

user until enough information has been accumulated for the model to provide an
interpretation.

As with CAD packages and expert systems in general, the source of the
information from the user is often the interpreted results of other packages, filtered

through the user. From the user's point of view, accumulating this data, reformatting
it and re-entering the results is a time consuming and error prone activity, all of which
detract from the real issue involved design. In the same way in which the user
interacts with an expert system or other CAD package it is perfectly feasible for

applications (algorithms etc) to provide information directly to the domain model,
resulting in a distributed problem solving environment.

Although the concept of distributed problem solving is not a new one, E-Mail,
for instance has given rise to shared authoring with sub-tasks being assigned to
individual computer users often separated by many miles, individual application
programs would act as knowledge resources providing contextually relevant expert
information on behalf of the user/designer.

The structure of the IFe is an ideal mechanism for achieving these aims. A more
consistent interpretation is, however, required.

237

7.1.1. INTEGRATING EXISTING SOFTWARE - (DEEP MODELS OF
KNOWLEDGE)

There are two forms of integration: physical integration and conceptual integration of

deep sources of knowledge with surface models.
To physically introduce an application program to the We requires a rudimentary

communications link. All modules are linked to a parent application by means of a

UNIX pipe. The more technical aspects of integration are illustrated in APPENDIX

A. However, the knowledge module may be seen as having a single input (stdin) and

a single output (stdout). Simply by connecting the output of both processes to the

input of the other an inter-process communications link is established. As in the case

of the blackboard and dialogue handlers, the application handler can support several

processes at any one time. The maximum number is actually eight owing to the limit

of sixteen file descriptors (fds) that may be opened for read and write at any one time

(two fds per process). Owing to the dynamic, incidental nature of requests for

applications during interaction eight processes is more than sufficient.
One of the major flaws of the current implementation of the IFe is the use of low

level application knowledge with in the knowledge bases which should deal entirely in

abstract terms. For instance the request to the dialogue handler for a map of Europe is

coded as:

new_dialog(ife_map grog, "~ife/bin/map", "-s -o -e").

The capabilities of other IFe modules are presumed and therefore the only reason
for dividing the various processes and operations into the modules that have been
identified serve only to improve maintenance and to support parallel processing. The
We has potential for being a truly general design assistant embodying generic surface
knowledge together with deep models of knowledge.

It is important that the domain (or surface) knowledge deals only in functional

requests and must not deal in application specific instructions. This ensures total
generality enabling the integration of any application program.

The application handler and the method of integration enables existing
applications programs to be used by the IFe in a very high level manner. For instance

the request for a map of Europe would be coded as:
present(map, Europe).

How the request is interpreted is important. The current implementation of the

application handler [RUTHERFORD] maintains a client list of all the available domain

specific applications and there capabilities. The application handler matches the task

238

request against these capabilities and invokes the appropriate application. In order to

achieve this it was necessary to wrap existing programs in a shell. For instance the
ABACUS program viewer generates perspective images from a topological and
topgraphical description of a model. The normal method of invoking viewer is

illustrated below:

$ viewer
ABACUS VIEWER VERSION XXXX
terminal type >
9
geometry file >
model. vew

»

Figure 7.1.1.1. ABACUS viewer terminal interaction.

At this point the application pauses, waiting or the space bar to be pressed before
displaying a menu containing options for setting various viewing parameters and
generating images in a range of formats and sizes.

The great advantage with ABACUS software is the ability to use application
programs in non-graphical display environments. This stems from the need to
generate images of large models requiring batch submission on VAX Mainframes.

UNIX shell scripts provide similar functionality and, in the case of viewer, the
following script "perspective" was written encapsulating the functionality of the
application program with a shell:

Resource category: perspective_image
Design tool: viewer
location: /package/abacus/bin
instantiation constraints: viewer-model

rm -f /tmp/viewer. pic.
If model exists then generate image otherwise abort

if[-f $1j
then

else

fi

viewer > /dev/null 2>/dev/null «.
-1
S1
0
/tmp/viewer. pic
B

echo "perspective image $1 /tmp/viewer. pic complete"

echo "perspective image $1 model_not_found"

Figure 7.1.1.2. Perspective image script

4

239

The script performs all the tedious invocation of the application obtaining the

name of the model from the scripts command line arguments and redirecting all error

messages and output from the program to /dev/null. The corresponding request for a

perspective image is:

generate(perspective_image, model-name).

The application handler simply matches the task against the application category

of each client and forks the process. The perspective script issues the message:

perspective-image model-name complete
or perspective-image model-name model-not-found

which is passed back to the knowledge handler and dealt with accordingly (see

interpreting results).
The combination of application and shell or interpreter is referred to as a

knowledge resource, a conceptual view illustrated in figures 7.1.2.1. and 7.4.1

7.1.2 RESOURCE INTEGRATION USING PROTOCOL
INTERPRETERS

Each resource within the design environment (figure 7.4.1) consists of the application
itself together with an interpreter (figure 7.1.2.1). The interpreter is responsible for

translating application data and control comands into system data and vice versa. Once

created, the interpreter enables existing software packages to be integrated within a

coherent architecture.

Interpreter

Knowledege/application
resouce

Figure 7.1.2.1. Integration of existing software package using protocol interpreters

Such an approach enables design resources (applications/expertise) to be

encoded and validated in isolation and then inserted into the system with little or no
modification. The system can therefore evolve in step with technological advances
without incurring expensive maintenance costs, bringing new design methodologies
and techniques to the design profession more quickly than otherwise possible.

Perhaps the only major problem with this approach is the doubling of the
number of required system processes. Where source code for a particular resource is

240

available a reasonable solution would be to integrate the interpreter within the

application and invoke it with an appropriate command line argument. Many of the in-

house applications have been designed around a multi-platform I/O library enabling
applications to run on a variety of terminal types. Simply by adding another "terminal"

emulater, resource (consultant) interpreter, integration could be achieved without any
additional overheads.

With this integrated approach a fundamental problem which must be overcome is

one of redirecting the standard I/O function calls. The easiest method is to create the
following function pointers:

int (*Read)(); /* -> input environment
int (*Write)(); /* -> output environment */

Figure 7.1.2.2. I/O redirection pointers.

Depending upon the mode of operation these functions would point to either the

standard I/O functions or those relevant to the selected I/O environment. Figure
7.1.2.3, below, provides a simple switching procedure.

void set_io_environment(mode) int mode;
{

switch(mode)
(

}
)

Figure 7.1.2.3. I/O redirection

case CONSULTANT:
Read = ConsultantRead;
Write = ConsultantWrite;
break;

case TEKTRONIX:
Read = TekRead;
Write = TekWrite;
break;

default:
Read = read;
Write = write;
break;

An appropriate binding should be provided for other languages such as
FORTRAN.

241

7.1.3. A GENERIC RESOURCE DESCRIPTION

The actual process of integrating applications may be generalised and the client
description required by the application handler quantified by the following generic

attributes (also identified by [HAMALAINEN 88]):

i) a unique identifier. used to reference the knowledge resource in the

process table and provide tangible symbolic representation for the

designer.

ii) resource category: categorises and identifies the domain of the knowledge

resource. This is used either by the knowledge base or scheduler to
determine an appropriate resource to satisfy a particular goal.

iii) description: a textual description of the methodologies employed by the

resource. This enables the designer to choose a particular design

methodology over another.

iv) properties: a description of the conceptual vocabulary of the knowledge

resource. These words are used to fine tune the model after initialisation.

The list of inputs and outputs is only required as a design specification for

the interpreter.

v) instantiation constraints: these are required to initialise the resource and are

also used in the decision mating process.

vi) resource name: the actual name of the resource or application

vii) resource location: where the resource is located within the directory

structure of the host processor.

The current method embodies an expert users (iv) knowledge of how to operate
the application (v), encoded within the shell script, while the location of the resource
is held in a much more subtle form namely; the PATH environment variable.

242

7.1.4. AUTOMATED TASK ANALYSIS

Rather than encoding scripts to deal with specific tasks by identifying the actual
processes to utilise an application it becomes possible to automate the selection and
invocation of knowledge resources. The actual stages may be quantified in the
following terms [KAEMMERER 86]:

" problem analysis: The current task is evaluated against the capabilities of
available resources and decomposed into sub problems if necessary.

" solution planning: from detailed knowledge and experience application
programs appropriate for solving the task, either in part or whole, are
brought together in a general problem solving strategy. Many strategies
may be possible, depending upon the resolution of the problem
decomposition and available data.

" plan evaluation: From the range of solution strategies the most
appropriate, meeting any imposed constraints (such as execution time and
accuracy), is selected.

" plan instantiation: for the selected plan, data required for each stage is
gathered, referred to as value acquisition

" instance execution: once completed the plan may be executed

" results gathering and interpretation: On completion results are gathered
and interpreted.

7.1.5. PROBLEM ANALYSIS AND SOLUTION SYNTHESIS

The selection strategy described is suitable only for problems which may be solved by
a single invocation of one resource. However if a particular problem cannot be
resolved by the available resources a different selection strategy must be employed.

The unresolved problem must be analysed and decomposed into discrete
manageable sub-problems. In order to achieve this, low level knowledge of the
functional capabilities of each resource is required. Each sub task is matched against
the functional components of all the available resources. A number of different
solutions may be generated and therefore each must be evaluated against some pre-
defined constraint.

Once an appropriate solution has been selected an executable sequence must be
prepared. This involves extracting relevant data from the product model and

243

formatting it for each resource in the chain. Dialogue frames are completed by

extracting data from the product model. Results from each resource must also be

formatted and filtered to subsequent operations or other participating resources.
Experience has shown that one person implements interface templates,

knowledge bases and resources for a particular sub-domain. As all possible task

problems are anticipated by the developer the problem analysis and solution synthesis

process is performed manually as part of the user conceptualisation preparation.
Solutions to pre-defined problems are synthesized and encoded in the form of

appraisal methodology scripts and stored along side individual user conceptualisations.
Scripts are chosen either by the resource handler or directly by the designer as
illustrated in the example, figure 6.10.1.1(IFE demo). Each appraisal methodology

represents an experts choice of application sequences. By encoding low level

knowledge of individual resources (explicit data requirements) together with

appropriate inferences for problem analysis and solution synthesis, it is feasible to

automate the selection process. Kaemmerer [KAEMMERER 86], provides a

convenient summary of such a selection process which is illustrated bellow in figure

7.1.5.1.

244

USER

STATIC KNOWLEDGE

Domain concepts
Uo is output-voltage
Ui is input-voltage

Model descriptions
Uo is output of M5
Uo is output of M7
M5 needs Ui and G as inputs

System context

PARAMETERS

device: 741
device voltage gain:

Avoix = 10 000
Device input impedance:

Rix = 10 000 000 ohm

CONSTRAINTS:

Ui <= Uix, maximum input
voltage

Task specification
find output voltage
with input voltage = 0.1 V

TASK EVALUATION SPECIFIC PROBLEM INSTANCE
(run-time knowledge)

Problem analysis

Sollution planning
and synthesis

Instance execution

Result gathering and
interpretation

kq: kled krvening amMier models M1 and m5.

omooo DLiDDD oQQoQoQ
Product model

Problem context
goal: Output voltage
preconditions: Input voltage = 0.1 V
Constraintes:

Solution plans

Accepted plan

Instantiated plan

ouput voltage Uo . -0.1 V
with input voltage Ui . 0.1 V
and tesdback resistance R2.10 kohm
and current resltance R1 . 100 kohm

Domain resources

Figure 7.1.5.1. Graph-oriented knowledge representation and unification technique for
automatically selecting and invoking software functions [KAEMMERER 861.

245

[KAEMMERER 86] conveniently summarises the process, Figure 7.1.5.1

placing it in the context of the design of a amplifier design. The solution plan is not

confined to methods contained within a single application. Intermediate results from

methods of one application may be piped through an appropriate conversion filter to

those of another.

input data

original source of
data

l: iiii»:: : ii

AUTO VIEW

resource category: conversion filter

input: dxf model

output: viewer model

optional eye &
focus points

"'1

transfer file

VEWER

output data

resource category: perspective image generator
input: viewer model

optional inputs: eye point
focus pint
field of view

output: perspective image
isometric image

Figure 7.1.5.2. Solution plan for the task "generate perspective image of model from a dxf
representation" of a 3D model.

Figure 7.1.5.2, above, illustrates the solution plan that would be compiled in

order to generate a perspective image from a dxf representation of model (created using
autocad), which is being imported into the neutral (ABACUS) format used by the IFe.,

The resource handler firstly scans through its client list looking for a resource of
the "perspective image" category. Once found the input requirements of this resource
would be matched against the available data. If there is a conflict between these two
data sets the resource handler backward chains through it's client list matching the
outputs of each resource with the data requirements of the original task resource,

246

repeating the process until a match is found. In the case, illustrated above, the

"autoview" program, written by Charles Chen of Computer Science, converts a DXF

model to a viewer model file. The transfer file, figure 7.1.5.2, would normally be a

temporary scratch file which would be deleted once the task is completed. In the case

of the import option (Section 6.8.14) this file would be the original task request and

the perspective image generated as a completely separate task.

In addition to storing input and output requirements of each available resource,

information regarding the input and output formats is also required. For example the

above autoview program, instead of creating a file, may write the converted data to the

standard output stream, which would require either a pipe between resources (if the

second was capable of reading model data from standard input, or a redirection to a

file. The filter may also require data to entered from the standard input stream in

which case the original source data would have to be CATed. Also whether references

to source files may be passed as command line arguments or are required as answers

to program prompts. Some of the possible invocation sequences are illustrated below:

filter model. dxf model. vew; perspective image model. vew model. image

cat model. dxf I filter I perspective image > model. image

filter < model. dxf > model. vew; perspective image model. vew model. image

Figure 7.153. Possible invocation sequences for the generation of a perspective image from a
DXF source file. Processes and programs are shown in bold type; I= Unix pipe, <> = input and
output redirection, ;= command termination.

The MICON Sythesizer Version 1 (Ml) [BIRMINGHAN 87] is a knowledge

based system written in OPS\83 [PSTI 86] used to produce a complete small computer
design from a set of abstract requirements [BIRMINGHAM 89]. The system, figure

7.1.5.4, works in conjunction with an automated knowledge aquisition tool, CGEN

(code Qgnerator) which aquires knowledge of how to build and when to use various

computer structures (legal configurations of hardware: interconections between a

micro-processor and memory array, for example). The operational knowledge

required by the system is obtained from domain experts. The end-user is able to
design computer systems by specifying abstract functional requirements and

operational constraints.

247

User Domain
Expert t-

-L

M1
Synthesis

Module

t
Design Netlist

COEN
Knowled Acquisition

ASSURE
Reliability Module

Reliability
analysis tools

do

Data Entry

L

Database

Figure 7.1.5.4. The MICON System for designing digital computer boards (from [GUPTA 90]).

The MICON system automatically assembles and executes solution graphs

which may be be manipulated at various levels of granularity. Such an approcah may
be readilly adopted in future developments of the design assistant, although this

automated approach is only really valid if resource modules are being constantly
interchanged; simplifying the integration process by avoiding the coding of shell

scripts which is also one of the methods currently employed.

7.1.6. EVALUATING SOLUTION PLANS

Each solution strategy may be evaluated against a pre-defined set of constraints.
Constraints such as execution time and accuracy may be moderated by operational
context. For instance a wire line perspective image or simple guiding U-value

calculations may be acceptable during preliminary design stages while, towards the
final presentation and evaluation stages, a fully rendered image and a complete energy
simulation may be more appropriate in terms of computational time. A number of
applications may embody similar methods and there is also a need to satisfy constraints
for a range of competitive resources.

248

7.1.7. SELECTING AND SCHEDULING COMPETITIVE
RESOURCES

With time it is envisaged that a number of functionally similar resources will exist

within a particular design environment; each offering differing services; rule of thumb

to full simulation.
The resource handler compiles a list of potential clients within a particular

domain. As a request for a resource category is received by the resource handler a

secondary list of those resources able to respond is compiled. Each resource is then
invited to bid for the task. Bids are based upon instantiation conditions. The example
bellow (figure 7.1.7.1) illustrates the bidding process for the generation of a

perspective image.

accumilated weighting moderated
bid factor bid

perspective
model
3poinf4 r. nd. r. d

wirelina
-po 3 int

wireline

rendered

3 point
2 point

laxonometric

10

20

10

30

20

10

20

10

50

no

14

1.0

0.75

Figure 7.1.7.1. Selecting competitive resources

.o

m+

10
Aw

40

bids
evaluated .k

Successful
resource
invoked

37.5

A request for a perspective with a number of constraints is made. Each of the
prospective clients submits a bid; a summation of the methods rating for each
constraint moderated by a weighting factor which is determined by the size of the
model and the accuracy of the methodology employed. The bids are submitted and
evaluated by the resource handler. The successful resource is invoked.

Scheduling and transactional protocols and queues are usually integrated within
the general problem solving functions of the blackboard. As will become apparent,
this functionality has been separated from the blackboard architecture.

7.2. RESOURCE MANAGER - SOLUTION SYNTHESIS ENGINE
FOR AUTOMATED KNOWLEDGE ACQUISITION

A general problem with the UIMS philosophy is one of total encapsulation.
Applications are hidden from view by an interface layer. For most applications this is
not a problem. However, if a system is to be used as a design tool there is often no

249

method of manipulating the applications on a low level basis. The user often has little

direct control of the applications involved or may not even be aware what applications

are being employed.
The actual processes of inter client communication dictate that resources should

be known in order that the end-user is aware of what appraisal methodologies are

being employed, allowing the designer to interrupt packages during execution if

necessary. This is often an advantage when the design solution changes during

analysis or when it is realised that the package is working with an incomplete or

inaccurate description of the model. Rather than waiting for execution to complete

before re-defining the data the user would be able to interrupt the package just as in

normal conversation with a design consultant.
How interaction proceeds after the interruption depends upon how well event

handling is managed by the application. Ideally the application should return to a

stable state and await instructions from the user, thus allowing small changes to be

made to the model as opposed to aborting execution altogether and re-loading the entire

model from scratch.
The Resource manager in the 1Fe does not currently allow interrupts from the

user to filter through to target or incidental resources, although applications may be

told to abort. This instruction is only acknowledged when the application is in a
listening state.

The image below illustrates a refined resource handler capable of displaying

active resources and allowing the user to interrupt them directly. This facility would

perhaps only be presented to expert users, rather than novice users who would be too

engrossed in the input of data to be unaware of the need for such a facility.

7.2.1. ENCAPSULATION

One of the main problems with traditional interface design principles, identified in

chapter 2, is one of encapsulation. While, by providing a transparent operational layer
between the user and target resources, the needs of the novice user are satisfied, there
is a need to provide expert users with almost direct access to the design methodologies
encoded within an application, while maintaining a degree of isolation between the
user and the obtuse operational complexity of the specific design tools.

250

7.2.2. CUSTOMIZING SOLUTION PLANS

The problems associated with encapsulation would be resolved by providing a tool to

directly manipulate or customise solution plans. Such a tool would provide an end-

user with direct access to the solution graph generated by the resource handler or an

expert end-user, perhaps in a graphical form, figure 7.2.2.1.

CAD tool object

solution plan A

I

1M1
I

1M2
M3

1M5

M4

1M6
M8

CAD tool library

]I

Copy of

solution

plan A

Figure 7.2.2.1. Customising solution plans.

solution plan B

fT
tool replaced

with another of the same
class from tool library

solution plan C

The customisation tool would enable existing solution graphs to be copied,
solution plan A and B, figure 7.2.2.1, and provide simple mechanisms to enable the

user to change design parameters (such as the percentage glazing of a wall), solution
plan B, and to replace design methods with others of the same category, solution plan
C. As design practice is continually changing this is a useful facility.

Modified solution plans may therefore by activated (or run) in order to test
tentative or alternative design solutions. Although providing the end user with direct

access to the functionality of a series of design tools, the approach still maintains a
general user-tool abstraction interface. The above approach may also be applied to
objects (graphical for instance) with relationships defined between them.

251

7.2.3. REVISION CONTROL AND TRACKING

The benefits of solution plan manipulation (customisation) will enable a design

environment to respond to shifts in design standards and regulations. Encoded

methods may be replaced with an up to date module of the same resource category,
illustrated by solution plan C, figure 7.2.2.1.

As solution plans directly effect the outcome of the design solution, it is
important, when allowing end-users to modify solution plans directly, to keep records
of those changes. The system should force the user to provide reasons for replacing
design methods in order to provide documentary evidence of the decision making
processes.

An access hierarchy should also be established preventing chaotic manipulation
of solutions by all participating users.

7.3. ABSTRACT REFERENCING

The amount of data generated in CAD systems can be enormous. Passing large

quantities of data through UNIX pipes is slow and would seriously impair the
performance of the system and the designer (this is a serious problem with the X

message passing mechanisms). To overcome this fundamental problem, abstract
references to data sets are passed instead. These references are usually filenames of
bitmaped images or large databases held somewhere on the system environment.
Shared memory may also be employed but is a facility restricted to the host platform.
This allows resources (adopting idiosyncratic schema) to extract only the data relevant
to their needs and also enables the designer to manipulate this data symbolically. The
demands imposed upon the blackboard are also reduced and provides a convenient fail

safe recovery mechanism if the system should crash.

252

7.3.1. FORMATTING RESULTS.

Results from resources should be translated into general statements such as
"perspective completed-image of model" or annual-heating costs. Such statements

are posted onto the blackboard, interpreted by the knowledge bases and presented to

the user in a manner suited to their user type and level of experience. The example
below illustrates how the annual heating costs, predicted by an energy analysis

resource are interpreted. Re-phrasing results in this manner is particularly important in

situations involving numerosity judgement.

energy(_Gains): -
format_results(energy_input,

_Gains).

where; _Gains contains a list of values:
Incidental gains, 52.3 GJ, Solar gains, %$. 0 GJ,...

format_results(energy_input,
-&ns, architect, novice): -

generate(energy_input, pie_chart, "Energy Input"-Gains).

Space
Heating

45%

Energy Input

_;;,
Incidental gains 52.3 GJ

0 Solar gains 54.0 GJ
Space heating 84.8 GJ

1 91
.1 GT

Figure 7.3.1.1. Results formatted and a neutral format bitmaped image produced, the results are
passed back as an abstract reference to the image file.

where; pie chart is the requested style of output,
"Energy Input" is the title for the chart.

253

format results(energy_input. Gains, engineer, expert): -
generate(energy_input, table, "Energy Input"Gains).

enery_input(_Gainsjnterpretedresults): -
tell user(analysis_results, _Interpreted

Results).

7.3.2. CONSTRUCTIVE CRITICISM.

The example above illustrates a relatively straight forward method of providing
different presentation styles. It is also possible to provide subjective interpretation of

the results, for example:

" The atrium is over heating. I suggest that you consider increasing the
number of air changes per hour to 3.

Or

" This infringes building regulation xyz. In order to comply with this
regulation you must increase the width of the stair by 0.5m and use self
closing fire doors to all exits.

Data may also be interpreted in other ways indicating potential problem sources,
as illustrated by Figure 6.10.2.1.

254

7.4. CONCEPTUAL OVERVIEW OF AN INTEGRATED DESIGN
ENVIRONMENT

Rather than returning to the diagram of the IFe the computer based design environment

may be viewed in a more recognisable form (figure 2.1.1). Figure 7.4.1, provides a

conceptual overview of the design environment. Design resources are arranged

hierarchically to illustrate the types of resources necessary for each stage of the design

process, although the order in which individual resources may be utilized depends

entirely upon the designer.

USER

Design ressurce

, .
cYn. r n...,. o. ý

I

Parts & details

sub systems

systems

Product

I .'ý `',

D"W .,. tie

Es-!; n
ý-; ý-ý

ý_.. Product Design Rssouross

Figure 7.4.1. Conceptual Overview of an Integrated Design Environment [RUTHERFORD 89]

Although arranged hierarchically, the oportunistic nature of the overall system
enables the designer (user) to utilise knowledge resources in any order, generate a
complete solution around a specific detail from a much higher conceptual level. Within

this environment the user (represented by an intelligent, adaptable front end) is viewed
as a design resource of which there may be many each contributing to the entire design

solution.
This approach enables users of varying levels and types of expertise to

participate in the design activity on an almost equal basis providing access to a whole
host of knowledge resources and representations of the evolving design concept, each

255

utilizing a knowledge structure to suit a particular aspect of the design decision-making

activity: a kind of multi-lingual design environment. Issues such as access privileges

must also be considered.

A fundamental issue, other than inter resource communication, is data management.
Product information is currently held on the blackboard as a series of Tuples [IFE 89]
(concept value) which are time stamped together with the source of the information
(user, application, inference). MacRandal has provided a number of mechanisms for

extracting information from the model (see the known predicate chapter 5).
Although recent developments such as the ISO standard STEP (STandard for

Exchange of Product data)/PDES(Product Data Exchange Standard (American

counterpart)) (and GARM [STEP 88] focus on the more relevant issues of the
interchange of non spatial product models or complete descriptions of artifacts, the
IFe must deal with many types of knowledge, this simple method of storage and
retrieval is ideally suited to an integrated environment such as this allowing each
resource to create their own schema.

There is however a need for a more structured product model if the We is to be

utilised as a design environment.

7.5. MODEL DESCRIPTION

Product models are defined symbolically using objects. An object consists of a class
identifier, a unique instance label, together with a number of attributes (figure 7.5.1).

Each object also carries with it a generic object manager responsible for the
creation and retrieval of attribute slots. Within the object data is stored as
attribute/value, pairs (figure 7.5.1). Resources can request attributes by name or ask
for a complete update on the current object description. Resources acting as attributers
may also replace attribute values or create new slots. The object is therefore a generic,
dynamically configurable data cell.

256

Concept Manager

aý Mnr

"I. t -]1 dr

Attribute Value

Figure 7.5.1. Generic Objects: Dynamic memory allocation

The same generic communications protocol used by all other resource
interpreters may be extended to include object class names:

object name: method: data

or [class name]: method: data

where method is interpreted by the object manager or other resources. Where class
name is used all objects within the referenced class respond to the method.

Using these basic (generic) objects together with object interpreters multiple
interpretations of the same data are possible (figure 7.5.2).

Concept Manager

Generic

am

Vertex 8urt"""
i: 00 0.0 00
r. loo 0.0 00
L10.0 0010.0
4: 00 0010.0
s: 00 , 00 000
t: ý00 lo0

00,0

nle 01o0l00

A: 1lýi
B: 77B=
C: 4 a7$
D, f61
E: «7{
F: 4 32 1

Colour

Specific

xrz

qWwr lWN

Attribute Value

Figure 7.5.2. Concept Interpreters

.: rm :Am 6rsrb
c: rs r6 tss

rSr6r6
E: rb r6 r6
F: 100 100 100

257

This approach may also enable the end-user to communicate in several different

languages (a music score, for example, may be interpreted as a built form and vice

versa using synonyms (or shape grammars) for common concepts in each context).

This form of storage would enable a designer to dynamically build a conceptual
(hierarchical) framework for a particular design solution by defining data cells
(representing concepts and meta-concepts) and defining relationships between object

attributes, figure 7.5.3

Product

Parts

Details

Product model Design Solutions

Figure 7.5.3. Abstraction hierarchy

This would enable numerous design solutions to be defined and tested within a
complete model. The blackboard would have to be able to merge or fuse multiple
solutions.

In order to accommodate the different schemas of each design tool, product
information should be as comprehensive as possible. However, one should avoid
redundant information which would result in consistency problems. Standards such
as IGES and DXF rely heavily upon the interchange of 2 and 3D graphical
information. Non spatial descriptions would normally be held along side such
descriptions. Information which may have a graphical representation (held within the
same file) must be updated when either the graphical or non spatial data is manipulated
(who is responsible for consistency checking?). It is suggested that a product model
should contain parametric descriptions of entities enabling a single definition to be
interpreted (at run time) by different systems, figures 3.7.1.2.1 and 7.5.2, and thus
reducing the need for consistency checking.

258

7.5.1. OBJECT RELATIONSHIPS

In some instances, in particular those related to geometry the product model alone is

insufficient for the total description of a model. The dimensional control of buildings

and components has always been an important issue; ensuring that elements fit

correctly and are located accurately. For example the position of a geometric body

may be defined in several ways; absolutely, in world coordinates, or relative to other

objects or may be defined using a proportional system, figure 7.5.1.1..

.

B

D
Figure 7.5.1.1. Georgian Doorway, Dimensions fixed by a proportional geometric system (from
An introduction to Dimensional Co-ordination, HMSO, 1978)

F
S

S
S
S

- ---------- I -------

259

A network describing the 'physical' relationships between such objects is, therefore,

also needed if the model is to be more than just an elaborate reference to catalogued

parts.

Example:
A wash hand basin fixed to a wall.
If the wall moves the wash hand basin with fixtures should also move together
with services (plumbing).
If the wash hand basin moves the wall should stay put.

So in addition to the physical relationships between objects, dominance and
submissive characteristics should also be held.

Currently, a simple hierarchical network is used within the We to maintain the

product model together with references to object instances. In order to produce a

comprehensive representation of an 'organic' product such as a building, more

powerful abstraction mechanisms found in the General AEC Reference Model
(GARM) (a subset of the ISO STEP) for instance would be required. The emerging
standard (recently rejected because the documentation presented to ISI exceeded the

maximum one thousand pages) facilitates multiple solutions by the interchange of
technical solutions to Functional units (or specifications), figure 7.5.1.2.

sa..

afar!. Molar
Motor Block

RrlrwM RrwruIt Bt4E Kord ON123
32E1A DNW100 Type 8414

Volvo 53624

Figure 7.5.1.2. Example of the decomposition of a product (car) by means of Functional Units and Technical Solutions.

A Functional Unit (FU) and a Technical solution (TS) are represented as semi-
circles. A car is a Functional Unit (it has a function and it can be defined by means of
a set of requirements). A Volvo 340 is a possible Technical Solution which may

260

satisfy the requirements. The Volvo itself contains certain Functional Units, which

may have been produced by other manufactures. A complete product model is

therefore regarded as an aggregation (composition) of components with certain
functions, which can be fulfilled by various (interchangeable) technical solutions.
(from [STEP 88] page 18).

The STEP model supports both top down, functionally oriented, and bottom up,
technically oriented, design procedures, figure 7.5.1.3, by separating a design

solution into its conceptual and detailed parts.

Functional Unit Top down - functionally oriented

Technical Solution
ý

Bottom up - Technically oriented

Figure 7.5.13. Interchangeable design solutions.

This enables several design solutions (generated in isolation) to be integrated
within a complete product description. The ability to interchange technical solutions,
also enables a product to respond to temporal shifts in design standards and practice.

Relationships between nodes are made using interfaces illustrated bellow in
figure 7.5.1.4.

Figure 7.5.1.4. Functional Units which belong to different Technical Solutions can be connected
via Free Ends, ports of Technical Solutions, and connected Ends on a higher level. For example, a car radio can be connected with the electrical system of the car on the higher level. How the ports of the
radio and the electrical system are connected with internal components is defined by the decomposition
of a Port in Free Ends. (from [STEP 88] page 21).

Relator, developed at the CAD Centre, Strathclyde University, works on a
similar basis; enabling the end-user to construct abstraction hierarchies. This is
achieved by a process of inheritance as in the case of the IFe.

261

The RATAS model [BJÖRK 89] developed specifically for building product
definition also offers class abstraction hirarchies and generic attribute inheritance

mechanisms. Bjork has identified five abstraction levels appropriate for describing

building functionality:

Building layer contains attributed data about the site location, climate,
functions, size and projected cost of the building.

Systems layer describing the systems that together constitute the building.

Subsystems layer or functional group specifies identifies entities such as floor

or lecture theatre.

Parts layer contains references to tangible physical objects used to

construct the subsystems layer. This layer must contain
locational information.

Details layer describing the physical relationships (intersections) between

components in the parts layer.

Direct similarities may be drawn between these layers and those currently used
to describe a building using the IFe.

Product models in STEP are defined in a language called Express. Although no
attempts have been made to accommodate the emerging STEP standard within the IFe,

since STEP/PDES will not be available as an International for several years [THOMAS
89], STEP will be compatible with other standards (such as a restricted form of
IGES) by setting up a series of application protocols [MAANEN 89]. RAL have
developed the RDST (ReaD STep file) program which will read any STEP physical
file, performing syntax and type checking of parameters. RDST is internally driven by

a parser trapping all errors. It is anticipated that the RDST and RAL's Express

compiler will be linked and will eventually enable reader/writer programs to interpret

any standard through express to a STEP file. According to a recent RAL newsletter
(Van Maanen and Mike Mead), software for creating a STEP physical file is under
development.

262

7.5.2. DATA MANAGEMENT

A great deal of research has been undertaken, under the Esprit project and the ISO

standard STEP, to develop standards for data representation. Owing to the diverse

nature of the types of data required for the integration of CAD packages and user

modelling it would not be possible to adopt any of these formats. However, rather

than expecting the blackboard to handle project data, an interface to a relational

database such as ORACLE (which would be more reliable), could be developed as a

resource employing one of the emerging standards. This could readily be achieved,

without any modification to the system, simply by introducing a product model client,

leaving the blackboard to pass messages between the various resources.

Therefore, instead of holding product information and the relationships between

objects, on the blackboard which would overload it's functionality, the product model

on the blackboard would simply be an access port to a database management system

utilising an emerging standard such as STEP.
The Unix environment also provides many tools and utilities for managing and

manipulating data. These utilities may be used as resources for the general

maintenance of database files. Differential control of product files may be achieved by

performing a unix "diff 'between two design solution files, for example, and

extracting the differences from the most recent file.

7.6. OBJECT MONITORING

The knowledge resources are chosen to deal with particular key issues of the design of

a particular product assisting in the design by providing expert knowledge during the
design session.

It is envisaged that the chosen knowledge resources would play an active role in

the design process, constantly monitoring changes to the model.
Each resource may, through the blackboard, express an interest in a particular

class of objects (geometry, stairs, for instance), and therefore would be notified of any
class events; such as creation, modification & deletion.

For example it is envisaged that a geometry analyser would play a fundamental

role in any CAD system; testing for object collisions and performing Boolean

operations (union, intersection, difference) on groups of geometric bodies.
A building regulations resource may actively monitor stairs within a building,

extracting location, size, floor to floor and other measurements from the product
model together with usage information from the designer, establishing from tables the

263

optimum width, number and size of risers, specifying hand rails if necessary. The

resource would be set into one of a number of modes, active (adjust object attributes to

suit regulations), informative (inform the designer of regulatory infringements).

Control data

Agenda

Control

KS

Scheduler

Figure 7.6.1. Opportunistic knowledge sources (KS) monitoring areas of a product model (from
[ENGLEMORE 88]). A consistency enforcer is also required to ensure that, when a data entry is
modified that it is internally consistent with other related information.

It has also been predicted that many resources may, simultaneously, monitor the

same class of object, resulting in counter productive conflicts. In order to reduce the
likelihood of 'bottle-necks' it has been recognised (in the RATAS model) that only in

exceptional circumstances will the designer require to work on the entire product
model but would work at distinct disciplinary levels (conceptual development, or detail

development). This enables the resources to be grouped into distinct, sub disciplinary
bands, (figure 7.6.1). Only those resources in a particular band (representing a
particular stage in the design process) will be available (or active) thus reducing the

number of clients competing for attention. Unlike traditional blackboards, the ife
blackboard dispatches messages only to those clients expressing an interest in a
particular area. The need to reduce competition arises when two or more resources are
actively monitoring the same family of objects. It may be counter productive, even
dangerous, to allow more than one resource to'interact' with a object owing to the
possible conflict of interests. Therefore, in addition to limiting the number of active
resources monitoring the product model, those monitoring the same object class have
to bid for attention. The resource manager deciding, on a simple numerical rating

264

scale, which resource/s to notify, as determined by an appraisals knowledge base.

This knowledge base would decide which resource/s to direct events to, in what order

and may even, under certain circumstances, ignore particular resources.
Many knowledge resources will be design tools in their own right and, since,

each may communicate using the same generic protocol, the designer may interact

directly with any resource in the system to produce 'valid' objects (design solutions)

which may be placed on the product area.
The We as a whole would enable one designer to interact with all of the

specialised knowledge resources (consultants) through a consistent user-interface

which would map the designers conceptual level of comprehension to each individual

resource, providing 'intelligent' defaulting and on-line assistance.

7.6.1. ACTIVE RESOURCES.

The current range of applications have been used as incidental problem solving

workhorses or procedural data processors (data in, results out), run to completion.
Some applications may require information that can only be established after some
initial processing and therefore must, directly or indirectly communicate with the user.
Resources may also monitor the activities of the user and must remain constantly

active. Such resources may express an interest in particular classes of events, objects
or concepts. Instead of relying on the blackboard to notify each resource of particular
class activity, all events within a particular area are reported to the resource handler,

and unless specific resources are specified the data passed to each active resource

which filters out the events of interest.

265

7.6.2. CONCEPT FILTERING

Figure 7.6.2.1, below, illustrates the internal workings of a typical protocol

interpreter. The category of concepts received by the resource is determined by which

blackboard areas are subscribed to and are further refined by explicit discrimination.

All events occurring in the subscribed blackboard areas are reported to the resource.

However the resource may only be interested in a particular class of concepts;

geometry, user events, requests for assistance.

concept
class

data accumulator
and resevoir

Application

reported
concept

dialogue frames

Figure 7.6.2.1. Selective concept interpreter and data accumulation for question and answer
dialogues. A vertical arrow indicates an empty slot.

In order to selectively extract particular concepts the concept class is checked

against an internal list, figure 7.6.2.1. Desired concepts are then passed to an
interpreter which performs data translation and inferencing. Owing to the question and

answer nature of existing applications dialogue frames are required. Each frame deals

with a particular set of concepts pertinent to the interfaced application. Once a

particular frame is complete a dialogue with the application is initiated by the interpreter

and the data held on the dialogue frame is transmitted. Once a frame is complete any

modification to a particular slot is immediately transmitted to the application, unless the
frame is cleared after the initial dialogue in which case each of the slots must be

attributed again from other resources. This enables default values for particular slots
of a frame to be set.

266

Figure 7.6.2.2, below illustrates a dialogue frame for the ABACUS perspective

program Viewer. When run in a non-interactive mode dialogues are initiated by the

user by typing a character. A procedural question and answer session follows. The

frame bellow illustrates the dialogue frame for the INPUTALL command.

Initiator I
Eye point

Focus point

Mid point

Angle of view
one type

Ry

z
Xy z
Xy
z

av
li

Figure 7.6.2.2. Viewer dialogue frame - Input all

pop

55
1

The mid point, angle of view, and the line type are defaulted, while both the eye

and focus points (cleared after each call) must be specified before the application is

notified.
Bridges suggests that an example of a design resource that monitors the user's

activities may express an interest in the column class of object for instance. If a single

column, aligned to a pre-defined grid, is moved from being flush to the grid line to
being centred, the resource may shift all objects within the same class to the
intersection of grid lines (figure 4.8.7.2). Any other relationships, defined in the

product model, would have to be updated and may result in further resource activity.

7.6.3. UTILISING DISTRIBUTED RESOURCES.

The system infra structure relies heavily upon the multiprocessor environment of
the hardware platform. While this enables processes to be executed in parallel, the
exchange of information in the form of messages and results can often grind the
system to a halt. This is a noticeable problem with the current IFe, with two nip
(prolog) processes running in addition to the forms package, dialogue handler, and
data handlers. Current research provides two extreme solutions to this problem.
The first [DENNIS 80] is to arrange for the blackboard to exchange small packets
of information between processes operating on each of the nodes of a networked
system on a regular basis. The other extreme is to operate an autonomous process
[ENSOR 88] on each processing node. In this situation information is passed less

267

frequently with the local node handling the common operations [LESSER &

CORKHILL 78].

m 9

ýJ
workstations

(processing nodes)

Figure 7.6.3.1. Networked processing nodes;. Communication TCP/IP Ethernet.

Such a facility is only possible on networked systems, figure 7.6.3.1. With a

network file system it is possible to access centrally managed databases. This is

achieved by mounting a partition of the storage device on each node, figure 7.6.3.2.,

creating a transparent file structure (although this method is problematic when a

processor is down).

]oo
node a

C5,3
node b

Figure 7.6.3.2. Networked File System. Disk partitions on each processing node may be mounted
and accessed transparently.

7.6.4. VIRTUAL DESIGN WORKSTATION

Rather than embedding the transactional functionality within the blackboard, the

manner in which the application handler has been implemented, enables instances of
the application handler to be placed on satellite processing nodes. Requests may
therefore be passed to each of theses nodes, either to alleviate the computational
burden on the host processor or to take advantage of specific hardware characteristics
of a particular workstation.

Fm-l

268

A special resource (etherlink) has been implemented for passing messages
between processing nodes. On intialisation the application requires the hostname of
the target workstation. A the the same time a remote command to start up another

etherlink process is made and a connection is made (it is envisaged that local and

remote NFS deamons would be more efficient). Etherlink has the potential to fork a

single process. In this case it is another resource handler. The result, illustrated in

figure 7.6.4.1, is an integrated distributed system. Since the control of passing

messages is centrally managed by the knowledge resources, the integrity of the data

passed between the asynchronous clients is maintained.

269

ý

6
workstation resources

lelft

1 workstation a

Ar APU--ý

n-j
ý

ý-Mjl

eý

workstafim resouress

ýý
ýý ý, % wmkaation b

............................... ,.................. ..
..

adaotabla hNrtaos

iii
Qa

..........,.......,, ... K. ý,,........ ý.... ý... ý......... ý

ma

b

®

ca

00 0 ki
00

DO In

ý

wolksUliofl c

19

}

zv_tý Fi -rý ýQ i
ad

DO c

K3 93

F-10 r7l

mma

?5

U3

r1irl L---Lm lI vi

r/ 1 r--v

06U
-WF-

mm

2310
w

rýr .ý , ý,

workstation resources

Igo
wY ui

rewwd handler

Ina

E

'PIP EMenrf

cl

0

.. "I'll. "..... ". 1.1.1 I I wwkataoion rnsaurces

lel-el-e

n'
NM

mosomm

®

task

O

5 T- r/ t=7! rA t=Ta
uv a

workstatbn d

Figure 7.6.4.1. Distributed concurrent design environment (virtual design workstation).

Satellite resource handlers are placed on each of the processing nodes. Task

requests are passed to individual resource handlers and solution plans (graphs)

generated and invoked providing a transparent processing environment. Tasks may
also be assigned to individual designers with different levels of experience
(workstation d) enabling such users to make useful contributions to an emerging
design solution, figure 7.6.4.1.

a

4

Cl

erl

W 1Ij

4
n5

270

Solution graphs may be submitted to specific workstations reducing the burden

upon the host machine. Although the form of distributed processing is intended to

overcome the processing inadequacies of the host workstation, with time such an

approach will inevitably increase message traffic and therefore degrade system

response times. The SWORD system (developed at CMU, for such a concurrent

processing environment) is able predict critical times of network congestion and direct

task requests to less congested processing nodes. This is achieved by modelling
human (operating) characteristics.

7.6.5. SECURITY

A typicäl problem with any database management system is one of security. With a
distributed system such as the one suggested the issue of security is further

highlighted, particularly when processing tasks are assigned to processing nodes
which may not be centrally administered.

Processes active over the network are able to modify the blackboard. If local
and remote demons are used for relaying messages then theoretically anybody could
connect to the design environment, providing an opportunity for mischief.

The Unix operating system, often critised for inadequate security if not
administered correctly, does provide file protection mechanisms. It is suggested that
large volumes of data should not be transmitted across the network but saved to a file
and abstract references to the physical file (with appropriate protections set)
transmitted. This has two additional and obvious benefits:

0 reduced network traffic.

" fail-safe data management: if the system should crash it is less likely that
results and valuable data would be lost.

271

7.6.6. HANDLING MULTIPLE DESIGN DOMAINS

Although modules within the We are generic and may be utilised in a number of
different situations, the current configuration of the We tailored to a single domain.

To enable the designer to access parallel design domains the organisation and

manipulation of the databases would require modification. The diagram bellow

illustrates the current file structure. Simple modifications are illustrated in figure

7.6.6.1.

include

bm_filters startup

Figure 7.6.6.1. Current IFe file structure.

buildings

templates

initial

Critical to the operation of the We is the We file structure in particular the file

-ife/lib/uc/uc (user conceptualisation). This file is symbolically linked to one of the
pre-defined stereotypes illustrated in figure 7.6.6.1. The user, knowledge, application
and dialogue handlers access knowledge bases, appraisal methodologies and proforma
templates through this generic link. This ensures that non of the We modules is aware
of a particular user conceptualisation. Therefore to add a new conceptualisation only
requires the creation of a new directory containing the relevant knowledge base,

272

proforma templates and appraisal methodologies pertinent to that particular

conceptualisation.
Currently the IFe only supports one domain, namely; energy modelling. All the

applications pertinent to this domain are stored in the --ife/bin directory together with

the generic system modules. From the point of maintenance this is perhaps

undesirable. A more suitable directory structure is illustrated bellow in figure

7.6.6.2., where only the system modules are stored in the -ida/resources directory. A

design domain directory is also added to facilitated other knowledge domains; each

containing a resource directory together with a library containing files for individual

packages held in the resource directory. Just as for the We file structure individual

domain directories contain user stereotypes. In addition to the knowledge bases, and

template files, a dictionary directory is included. This replaces the -ife/lib/icons
directory and contains alternative interpretations of concepts; foreign translations,

bitmaped images, etc.

resources

sports
person

personal
modelling

generic
stereotypes

business-
executive

musician

source
& docs

theoretician

conserva-
tionist

utilities

resources

design
domains

I

n_ is Heer

I dictionary
I

methodologies

I
kbs

Figure 7.6.6.2. File structure for an intelligent design assistant. Not all of the directories have
been expanded for clarity.

architect

templates

273

Just as the change_cpt script changes the current user conceptualisation pointer
so a similar change dpt would be responsible for switching between design domains.

In addition to the domain specific user model a secondary person model should
also be included to refine the dialogue. Rich [RICH 89], provides detailed methods
for implementing user models of this kind.

274

8 CONCLUSION ' AND FUTURE-
DEVELOPMENTS

l'

8. CONCLUSION AND FUTURE DEVELOPMENTS

A critical issue in both natural and computer design process is one of communication.

One of the main objectives set out in this thesis, namely; to communicate with a range

of user types, has been satisfied by the construction of a graphical (lexivisual) user

interface (forms, chapter 4) based upon the communication of conceptual models

(outlined in chapter 3). The forms package, with a range of interchangeable concept

interpreters, coupled to the IFe user handler, provides mechanisms to dynamically

interchange templates and facilitates dynamic re-phrasing and redescription, enabling

the system to support several user stereotypes (although currently limited to two

extreme levels within a single stereotype).
By employing multiple levels of abstraction, using synonyms (chapter 4.9.3.9)

for example, a truly adaptable dialogue between computer and user is possible.
Users may not be proficient in all aspects of building specification. The dynamic

loading of domain knowledge and interaction templates enables different levels of

conceptualisation to exist within a single dialogue. The focus mechanism (chapter 5)

also enables the environment developer to modify both knowledge bases and proforma

templates without actually having to suspend interaction as in the case of some UIMS,

chapter 2.

The identification of a generic communications protocol, chapter 4.8, and the

development of a high level formalised neutral language, chapter 5, enables many
different interaction devices to be dynamically interchanged or run in parallel (the map

program, chapter 6, for instance); each communicating, by means of formatted natural
language utterances, chapter 3,4&5, with a central (orchestration) knowledge base.

By encoding knowledge of the user's task, expectations, and problem domain

and physically separating this from the user interface and applications layers, as is

currently implementated, a truly modular system has evolved whereby contributions
from many individuals may be accommodated within a single system. The approach,
although fragmented, is completely modular and therefore infinitely extendible. Since a
central knowledge is responsible for orchestrating the dialogue consistency is ensured.

This also ensures that, regardless of the interaction device(s) employed to

communicate with the user, a consistent and contextually relevant level of assistance
and intelligent defaulting is offered.

The use of application protocol interpreters, chapter 7, enables new and existing
software to be integrated within a consistent environment quickly and easily; facilitating

the automatic acquisition of data and knowledge. Simply by enshrouding an existing
application package within a parameterised shell script and creating a corresponding
resource description, a design environment may be extended or customised without
disrupting any of the other modules within the system.

275

The generic description of application resources detailed in chapter 7, facilitates a
high level (abstract) categorisation of incidental design tools and methods enabling
knowledge bases to be constructed with out reference to the obtuse operational

procedures of the computing environment. In addition to ensuring that the encoded
domain and task knowledge maintains a high level of generality and portability, this

method will also hopefully encourage designers to customise their own environment

and hence extend the range of available conceputalisations.
The key to the operational success of the We is the blackboard, acting as a

communications centre. By separating the transactional functionality of traditional
blackboards from the notification mechanisms, currently implemented, multiple
resource handlers may be placed upon several, networked processing nodes, allowing
tasks to be assigned to specific hardware devices in an abstract manner, chapter 7. As

well as employing application packages, tasks may be assigned to individual users by
initialising another IFe process with an appropriate conceptual template. Thus users of
varying levels and types of expertise may make useful contributions to emerging design

solutions.
Although the system described exists in a protypical form, in order to become a

useful design environment a substantial amount of research and implementation is still
required; particularly at the user-interaction level.

It is envisaged that interaction tools such as the interactive 3D manipulation
package, described in Appendix E, will play a useful role.

276

Since all resources and interaction modules adhere to a standard communications

protocol all are plug compatible. Therefore interfaces such as that illustrated bellow,

figure 81, (similar in nature to the ConMan interface [HAEBERLI 88], but enabling

the the system to respond to a user's utterances, providing appropriate contextually

relevant defaults and assistance) may be constructed quickly and easily by the user in

response to individual problems.

Figure 8.1. Plug compatible interaction tools.

The recent advances in network transparent window managers such as X and
NeWS should make the integration of distributed resources easier bringing the power
of dedicated graphics workstations to the designers desktop.

Since the WW graphics library, developed by Mark Martin at the Informatics
Division of RAL is no longer supported it is anticipated that the X graphics library will
now be used. Although, the current release of WW is implemented on top of the X

window manager it is not possible to exploit the network transparency offered by X.
Therefore in order to exploit the power of workstations such as Silcon Graphics Iris on
a distributed level, it will be necessary either re-code the forms package or adopt a
hypermedia package such as Intermedia [YANKELOVICH 88].

277

In any situation involving the utilisation of knowledge resources direct access
to individual resources is necessary to:

9 establish what methodologies are being employed

" monitor progress

" intervene by interrupting

The current implementation of the We is suffers slightly from encapsulation. In

order to satisfy the requirements of expert users, namely the ability to directly access the
functionality of appraisal packages, a solution plan interface suggested in chapter 7

should be implemented. This would also isolate the end-user from inconsistencies

arising from the substitution of design tools (as a result of shifts in standards and
technological advances) by enabling application programs to be manipulated at a
functional level rather than an operational one.

The automation of solution graphs (plans), although offering no great benefit

over the current implementation of shell scripts, would make the system internally more
consistent and easier to maintain. Further research is required to determine an
appropriate compilation mechanism.

A mechanism, similar to that utilised by the TAILOR system, chapter 5, for

automating the customisation of descriptions would greatly enhance the rephrasing
mechanisms. It is suggested that such functionality should be encoded as a discrete

resource, annexed to the user handler, accepting requests for alternative descriptions
(verbose or terse) of a given concept to suite various user types.

It also suggested, that rather than the knowledge handler formatting messages to
the user, that this should be done by the user handler. The knowledge base should
contain information specific to the domain and should request the communication of
concepts to the user. Such requests would then be processed by the user handler which
would then decide upon an appropriate presentation mechanism. Such an approach
would enable more design oriented knowledge (shape grammars, regulations, design
critics and the like) to play an active part in the specification of building models. Such
knowledge would exist as discrete resources, monitoring activity on a central product
model.

The overall system enables the designer to work within a flexible abstraction
hierarchy, building by defining a conceptual model a complete description of a product.
In to this basic framework object instances are inserted to produce a fully attributed
entity. Issues relating to product definition and description have only be touched upon.
Extensive research in this area has already been carried out by several collaborating
institutions. It is anticipated that aspects of the General AEC Reference Model

278

(GARM), a sub set of the emerging ISO standard STEP/PDES, will significantly
influence subsequent implementations.

Knowledge resources may consist of constraints, paradigms, algorithms and

simulation procedures. The demonstrator project will focus on developing interpreters

which will allow the system to deploy the following resources:

i) a geometry analyser (e. g. GAM) which performs Boolean operations on

groups of geometric bodies and takes off appropriate quantities.

ii) visualisation facilities (such as VIEWER, VISTA) which will allow the

evolving design to be viewed in varying degrees of detail, from bound box

to full coloured, textured and shaded image.

ii) environmental appraisal, including thermal, lighting and acoustic

performance; the range of available applications packages is large and a

number of these, covering the range from 'rule of thumb' to rigourous

simulation, will be implemented

iv) structural analysis, ranging from the concept generator proposed by Rafiq

and MacLeod [RAFIQ 88] to the detailed RC design systems offered by
McDonnel Douglas.

v) cost estimation and construction planning based on for example, the work
of the Civil Engineering Department at the University of Dundee and the
Computer Science Department at the University of Strathclyde
[BUCHANAN 89].

It is suggested that the approach proposed is appropriate to the current SERC ITA

theme "Design Assistance (Intelligent)", offering two very important advantages in a
collaborative research programme:

i) Existing application packages can readily be accommodated as knowledge

resources,
ii) the R&D effort can be partitioned into the modules identified above with

each being the focus of effort for a research term.

In order to extend the principles outlined in this thesis funding is being sought
from the SERC's IT group. If successful a demonstrator Intelligent Design Assistant
will be produced at ABACUS in collaboration with the CAD Centre and the Department
of Civil Engineering at the University of Strathclyde. Current investigations have
already attracted some interest, in particular from IBM UK, BDP, AUTODESK, and
MacDonnel Douglas, who, as industrial partners, will actively participate in future
developments.

279

Inform Communications Library

A. INFORM COMMUNICATIONS LIBRARY

In addition to being an integral part of an interactive dialogue system, the forms

package may also be used as a means of controling application programs directly. In

order to facilitate this additional role an interface (inform) has been developed to enable

the rapid development of graphical user-interfaces. In contrast to the UIMS approach
the high level neutral control mechanism within the library provides the developer with
the most flexible development tools. Inform is a library of both low and high level

functions for message handling between two application programs. The intention is

for a parent process to fork and exec the forms package. Both parent and child

processes communicate via Unix pipes. Owing to the many different input streams

required by for the implementation of such an interface events are handled by a

synchronous I/O multiplexor.

A. 1. SYNCHRONOUS I/O MULTIPLEXING

One of the main difficulties encountered was processing the four event streams:

window events

mouse events

keyboard events

pipe read events

280

Event
Polling

4

4MouseEvent

KeyEvent

ýýD-[LeaveEvent

EnterEvent
ý

S O pe nEve nt

0
. ý. ý
G
ý
>

IconEvent

ResizeEvent

Ki 11 Event

ýýD-ý
PipeEvent

handler

-3

k-ý D--ý
UserSet

UserAction

ýýD- Ewer-
Query

Event Handle

Pointer to event he ndl er

Figure A. I. I. Schematic view of multiplexor.

281

The first three streams where handled by the graphics library. The problem was

to add the standard input event stream. The developer of WW (Martin) has anticipated

this need by allowing application developers to replace the input stream handler ipwait.

This function is called to test the event queue in one of two modes:

request wait for next event

sample return regardless of the state of the event queue.

Events are returned in the d_event field of the dd structure. The currently supported

events are:

IPOrTHER - mouse events
IPKEY - keyboard events
IPLFAVE - window leave events
TENTER - window enter events
IPSEEN - window open events
IPNCJFSEFN - window close events
IPSIZE -window resize events
IPWANTKIIL - window kill (hangup) events

In reality ipwait points to the ipxwait function which does the real event
handling, thus enabling the developer to create a new ipwait function and access the
basic multiplexer. The function ipfwait, figure A. 1.2. bellow, supliments the above
events with a pipe read handler.

ipfwaitQ

c

fd. et rd, wit, ex;
int a. 0;
int event"IPNOEVENT;
static atmet timeval nowait - (0(, OL);
jwindow"jwp;
int wfd;
ex - "(fd ud")dd->d_selectrnore; /"" add fd for window ""/
rd " "(fd_w*)dd->d jelectmorc;
FD_SET(infoun. chancl(READ], &ex);
FD SET(infoim. chanel[READ], &rd);
FDIrERO(&wn);
/"" Shouldn't use ww junk stiucturcs to get window fd "y
jwp . jwin(ddwin);
wfd - (int)window_gct(jwp->jw sunwindow, WINJD);

n- select (32, &rd, &wit, &ex, (stzuct timeval ")NULL)
if(FD ISSET(inform. chanel(READI, &rd))

n- rcad(infomLchanel(READ]. infam. buf, IIJFORMBUFSE! E);
switch (n)

case-1: QaeDown("Cant read pipe');
case 0: QoacDownCQoaing pipe"}
case 1: event - IPPIPE;
default: inform. bufln) -'W;

even - IPPWPE;

)else if(FDISSEf(wfd, (fd jete)ddad_selectmore))

ipwt (IPSAMPLE);
ipxwait 0;
evait - dd->d_went;

I
I
dd->d evaau - event;

Figure A. 1.2. Event polling - ipfwaitO, (inform. c)

break;
break;
break;

break;

282

Select() examines the I/O descriptor sets whose addresses are passed in readfds,

writefds, and exeptfds to see if some of their descriptors are ready for reading, ready
for writing, or have an exceptional condition pending [SUN]. The window file

descriptor and the inform read channel are added to both the read and write descriptors

using the FD_SET macro. Select is then called with a non-NULL pointer to a zero-

valued timeval structure ((struct timeval*)NULL) to effect a poll. The read file

descriptors are then tested for pipe events and window events as illustrated by the

extracted code. The two input sources are merged in a simple event handler illustrated

schematically in figure A. 1.1. and A. M.

A. M. PIPE READ EVENT

If the read channel is flagged as ready an attempt to read it is made and dd->d_event is

set to IPPIPE.

Initially single characters where read from the queue and appended to the buffer.
The reason for this was to prevent user events from the window from being blocked
by long reads. It also enabled the buffer to be dynamically extended. This approach
resulted in a number of unforeseen side effects.

Events from the window stream where not being cleared and had the effect of
being echoed several times. Character repeating was undesirable.

Having tracked down the cause of event feedback, individual character reads
where substituted by a single block read. In addition to resolving event feedback it had

also increased the speed and efficiency of the routine. The only disadvantage to this
method was the difficulty in dynamically extending the buffer. A fixed size buffer of
512 characters was chosen as this is the maximum a unix pipe could reliably handler
handle without being blocked. This imposed restrictions on the size of data that could
be transmitted and data was often lost as a result. The buffer size was increased to an
arbitrary 1000 characters with no loss of data. An attempt will be made to dynamically

extend the buffer.
Carriage return '\n' terminates a data packet. However an attempt is made to

read INFORMBUFSIZE characters so the input buffer may contain several parcels of data.
If the standard input channel does not have a pending read event the window file

discriptor is tested. If the channels associated with window report events pending
ipxwait is called and sets dd->d event accordingly.

283

A. 2. SYSTEM COMPATIBILITY

As part of the system V operating system the select function was changed; file

descriptors where initially specified by setting integer bit fields and subsequently

changed to an fd_set. To comply with both versions the FD_ macros have been

defined for operating systems below OS V.

#ifndef FD SETSIZE
/* cannot typedef int fd_set; as on Sun fd_set is a struct already
define fd set int
define FD SETSIZE 32
define FD CLR(fd, in) *(in) &_ -(1«fd)
define FD_SET(fd, in) *(in) 1= (1«fd)
define FD ISSET(fd, in) (*(in)&(1<<fd))
#endif FD SETSIZE

Figure A. 2.1. FDSET - Extract from ww library (M. M. Martin RAL).

A. 3. EVENT NOTIFIER

Events are intercepted by a low level event polling routine (ipfwait) and dispatched to

the appropriate event handler. The events handled by the interface are shown bellow.

As each event is taken from the queue it is processed. All event handlers apart from

the pipe event handler are user definable and initially defaulted to noopO; (no

operation). The notifier below as well as handling events from a UNIX pipe also
handles window events. This enables the application to employ its own graphics
display as well as utilising that of the forms package. It should be emphasized that the
forms package also employs the functions within the inform library for event handling

and notification.

284

The routine loops indefinitely. Each time round the I/O streams are interrogate

by the re-defined ipwait routine. A simple switch statement is employed to dispatch

events to appropriate event handlers, figure A. M.

InFormQ

c

}

dd-id ipwaiti. ipfwait: /" redefine synchronous I/O mukiplexet "/
ipset(IPON) /'" activate input to window "/
ipset (IPSAMPLE): /" set input sampling' I

while(1)

I

Figure A. 3.1. Main event notifier (inform. c)

char "uaa actin;
char auaerý. Param;
im uacr_event;

)Dialogue;

Dialogue inform;

break;

break;

The inform structure, figure A. 3.2. contains pointers to event handling routines
(initially defaulted to noopO, figure A. 3.3) which may be defined by the application
developer.

typedef atnmt events(
h Event handlers:
hit ('MautcEvmt)O;
in ("KeyEvent)0;
inc
int
int
in
int
äu
ht
int
kg
int

Figure A. M. Inform structure.

ipwait(k
twitch(dd->4-evut)
(

ease WO ER:
we IPKEY:
can IPIEAVE:
came IMWTER:
cue IPSEEN:
cue IPSITE:

case IPNOTSEEN:
cue IPWANTKILL:
can IPPIPE:

1

('I. eavcEvent)0;
(*EnterEvent)();
('IconEvent)O;
('OpanEvent)0;
('ResizeEvent)O;
("KifEvent)O;
('PipeEvuu)0;
('PipcError)0;
('UserSct)O;
("UserQuery)0;

infonn. MouscEventO; break;
inform. KeyEventO;
inform. LeaveEventO; break;
infomt. EnterEventO; break;
inform. OpenEvamO; break;
inform. ResizeEventO; break;
infonn. IconEventO; break;
infotm. Ki]EventO;
ProceuPipeEventa break;

I

int (*UserAction)0;
int d ancl12]; /' pipe read & write
char buf[INFORMBUFSIZE]; I. pipe buffer
char C. /M last character typed
/' buffer parsed into fieldname, action, parameters, event 1

char *ficldname", /a field giving event
rcý
Is event type

.i

q
q

I

y
.1

285

noop0 I do nothing'/

#ifdef DEBUG
fprintf(stdea, "Fonns: noop\n");

Nendif DEBUG

Figure A. 3.3. Noop - blank routine.

Each event type will be described in detail in a following section with example
handlers.

286

A. 4. INFORM DATA STRUCTURE

The important event from the point of view of connecting to the forms package is the

PIPE event.

A. 5. PIPE EVENT

This signifies that a message from the standard input channel has been received.
Events from the forms package are transmitted using the following protocol:

concept<separator>event<separator>value <terminator>

This will be referred to as data packet. Each data packet is terminated by a new
line `\n'. The inform buffer may contain several data packets. The separators signify

the type of event and are currently defined as:

define USA SEf
A define USER QUERY 'V
N define USER ACTION '! '

Figure A. M. Event tokens

A. 6. PROCESSING PIPE EVENTS

The event notifier dispatches pipe events to a fixed command parser, figure A. 6.1.
ProcessPipeEvent(extracts data packets from the inform buffer and processes them
individually using ProcessCommand, figure A. 6.2.

Proca. PipeEventp

1

exam char* strtok0;
char' string;

suing . sutok(infonn. buf, "In");
while(string I- NULL)
t

ProccasCormnand(stäng);
string - strtok(NUÜ. "\n");

3

Figure A. 6.1. Pipe event handler

287

ProcmCommand(string)char* string:
(

char* conmpta. NUI. iFTR(chtr);
char' tncthod - NUI. L. PTR(char);
char* patam - NUÜ. PTR(char):
char* C.

concept- Wring;
if((c-index(string. USER SEP))I-NUUPIR(char))

mothod l;

if((c-index(method, USER SEP))! -NLA. LPrR(chu))
{

1

punm-c+1;
'a-'W ;
ürerSet(ooncapt, nethod, parunk

)&e
if((e-indcx(string. USER QUER1))1-NULI. PTR(char))
I

mahod-c. 1;
"c-V;
if((o-index(mathod, USER QUIItY))! -N[JLI. P'PR(char))

I

1

parun-e+l;
'c-'W';
UaaQucry(concept. mcthod. param);

)ehe
if((c4ndex(atring, USER ACPION))1-NUU. PfR(char))

)
l

method-c+1;

if((c-index(mahod. USER-ICPION))! -NULLPTR(chu))
f

3

Figure A. 6.2. Pipe event parser

param"ca1;
'c-V:
UserAction(concepymthod, puam);

ProcessCommand() determines which of the three event types have occurred,
splits the command string into its three components (concept, method, and value) and
calls the appropriate event handler. The three default event handlers are described
bellow but may be substituted by the application developer although it is envisaged that
those suggested are sufficient to cope with most situations.

288

A. 7. USER SET EVENT HANDLER.

This is by far the most common event. When a field is de-selected, by selecting

another, any changes made to the field's value are reported as:

concept: USER_SET: value

UserSct(conccpt, method, param)chars concept; chars method; char" pscam;

inform. ficldname - concept;
iaform. usa adicn - method;
infoan. user-param - param;
infoan. user_event - USER_SEf;
infonn. UserSdQ;

1

Figure A. M. User set

The UserSet routine sets the appropriate fields in the inform structure and reports
the event to the re-definable inform. UserSet routine. The simplest method of handling

events is to provide a list of concepts and concept handlers; match the incoming

concept name against entries on the list and call the associated routine. For this
purpose the NotifyProc structure, figure A. 7.2, has been defined.

typadcf atrnct _NotifyProc
(

chat 'ficldname;
int ("nocifypmc)0;

)NocifyProc.

Figure A. 7.2. Notify proc structure

289

A typical example of a notification array would be:

static NotifyProc Concepts[] =(
"name", SetName,

"location", SetLocation,

0
};

The default inform. UserSet event handler is shown following listing, figure A. 7.3.

h Check to sea if one of the functions has been fired
* If not than pus to vxmt node to deal with it
I

usa_setQ

char* a;
char* f;
regiater itu i-0;

while((f UaProc[i]. fieldname)I-NUI. LYtR(char))
[

if((: Tail(inform. fieldname))I-NULLPTR(chu))

if(atmcmp(o, f, strlm(f))=NUI. LPTR(chu))
I

if(UsrProc[i]. notifyprocl.. NUI S. PTR(char))
UsrProc [iJ. notifyproc0;

break;

1

1
i++;

)

Figure A. 7.3. User Set Event handler (default).

The fieldname is split into two component parts:

field address and fieldname

using the Tail function, below:

#include <string. h>

char * Tail(string) char *string;
{

char *c;

}
return(((c=strrchr(string, 'f))! =NULL)? c+l: string);

Figure A. M. Tail function.

290

The field name is compared against each entry in the NotifyProc array. Note

that strncmp is used and that the NotifyProc[i]. name is used to provide the length for

the comparison. This enables partial matches to be made. For example:
Assume that an event has been reported by the field "field a" but only "field" is

present in the NotifyProc array, figure A. 7.5. The event is therefore reported to the

SetField procedure. Although not immediately apparent this facility is very useful for

re-phrasing.
If events for "field a" are to be handled explicitly but "field b", etc, events are to

handled generically it is important to enter "field a" notifier before the generic "field"
handler.

.. p=(
"field a", Field_A Handler,
"field", Generic field_handler,
0

};

Figure A. M. Example NotifyProc structure.

Similarly USER_QUERY and USER_ACTION events are handled by

comparing entries in the QueryProc and ActionProc lists.

A. 8. HANDLING WINDOW EVENTS

In addition to managing events from a parent/child process the inform library also
handles events from the window manager. These include: keyboard events, mouse
events and window manipulation events and are dealt with by the inform procedure
(A. 1).

A. 9. MOUSE EVENTS

Mouse events are reported when a button or buttons are pressed. Button release events
are not reported. The button status is held in dd->d_buttons and may be any ORed
combination of:

TIEMBUTTON

MENUBUTTON

SHOWBUTTON

291

The position of the cursor is held in two integer fields:

dd->d_x ,
dd->dy

The coordinate value is updated on subsequent calls to ipxwaitO.

A. 10. KEYBOARD EVENTS

The last character typed is held in inform. key field. It is the responsibility of the

developer to buffer any strings.

A. 11. USER ACTION EVENTS

This class of event descrides the user activity by responding and reporting the

following mouse and window events. It is anticipated that this event category will be

extended to include "plan to" and "not plan to" (after [SZEKELY 90]) in order to

anticipate and respond appropriately to the user's intentions .

A. 11.1. DESELECT

As soon as the cursor leaves the frame of the window the following event is reported:
/meta-concept@USER ACTION@: deselect

A. 11.2. SELECT

As the cursor wanders into a window the event is reported. The event handler within
the forms package determines which window the cursor is in and thus determines the
users current focus of attention which is then used to anticipate further selections (see
Directing input, section 4.7.10.8.).

292

A. 11.3. DEFOCUS

This event type indicates that the window has become iconic and therefore no longer

the focus of the user's attention. The event is reported as:

concept@USER_ACTION@ iconised

...

: ..:

Figure A. 11.3.1. Defocus

While in this closed state it is possible to write directly into the window icon and
therefore provide feedback to the user in the form of animated image sequences or
textual messages. Below is a sample routine for producing an animated sequence of
images in the icon as it closes. Note that an interupt must be provided to enable the

user to interupt the animation otherwise the sequence would have to be complete before

the window may be opened.

ADD Animation routine

293

A. 11.4. FOCUS

This indicates that the previously iconic window has been opened and is therefore is in

the user's frame of attention. The event is reported as:

meta-concept@USER_ACTION@ focused

i
Figure A. 11.4.1. Focus event - the window (desk) has been opened.

294

A. 11.5. RESIZE EVENT

A window resize event may be interpreted as either a request for more information (a

larger work space) or perhaps even an indication of saturation by a reduction of the

window area. This event is reported as:

fieldname@USER ACTION@re-size LH

ýý

dxiin: i

Figure A. 11.5.. Resize event - the window has changed size.

The new window size way be obtained from ddwin->w bm->bm_box. All

window repairs must be handled.

295

A. 11.6. KILL EVENT

In some situation the user may request that the current application be terminated. This

should ideally be handled by the provision of "quit" button. However, window
manager options often include a quit event, as indicated in figure A. 1 1.6.1. In this

situation the window manager should not have the power to terminate an application as
this may be too catestrophic. Therefore this Inal event is trapped and reported as:

meta-concept@USER ACTION@abort

Name F7

... N

Close
ý

ý

Redi splay

Move
Resize
Front
Back
Prupls

L! ItiI

Figure A. 11.6.1. The user wishes to terminate the dialogue.

This prevents the user destroying the window and thus terminating the dialogue.
It enables the application to exit gracefully (confirmation dialogue boxes) and tidily.
This was initially handled by the forms package sig_trap() routine but has since been
incorporated into the ww library.

296

A. 12. USER_QUERY EVENTS

These events are request for information, either help, descriptions or default and

previous values. The request takes the form of the following formatted utterance:
/meta-concept/concept? USER QUERY? X

where; X may be either. help,

description

example
default value

previous value
The value of X is obtained from the concept menu (section 4.7) and may be re-

defined (extended) by the developer (section 4.9.2.).

A. D. TRANSMITTING MESSAGES TO THE FORMS PACKAGE

Message to the forms package follow the same communications protocol (chapter
4.8.4.) for incoming events:

<concept><operator><value>

A number of procedures (or macros) have been defined to facilitate message
transmission based upon a single message handling routine; ConFom().

A. 13.1. CONFORM

The basic message passing procedure is ConForm (Cntrol Forms):

ConForm(char* concept, char* operator, char* value);

ConForm() simply formats and write message to stdout.

A. 13.2. ADDRESSING CONCEPTS

The means of addressing concepts is described fully in chapter 4.8.4). The following
macros have been defined around ConFom resulting in a high level neutral language
(MacRandal).

297

A. 13.3. HIGH LEVEL DIALOGUE INTERFACE

A number of macros have been built around the ConForm procedure providing a high

level dialogue interface. The vocabulary is is illustrated below by both the macro
definition and the corresponding graphical event.

A. 13.3.1. ASK USER

Present the user with a question.

Ndefine uk_uaa(conoept) \
ConFoan(conoept, DISPLAY. " ");

i%IIfrE1

Figure A. 13.3.1.1. Ask user - initial state

id: iigmi

i
Figure A. 13.3.1.2. ask_user("username");

298

A. 13.3.2. UNASK USER

Remove a question.

Adafina wuak usa(coecept) \
ConFomr(conceptjIIDE, " 'ý

A. 13.3.3. TELL USER

Tell the user the value of a concept.

Mde$ne telLueu(cancept, value) \
ConFacm(eonceptýSET_CURRENT, value):

A. User i
Figure A. 13.3.3.1. tell user("@username", getenv("LOGNAME"));

A. 13.3.4. OFFER USER

#deäne offer user(conccpt, vsluc) \
ConForm(concept, SEr_MENU. vslue);

Figure A. 13.3.4.1. offer_user("materials", "bricklblocklconcreteltimber");

A. 13.3.5. SUGGEST USER

ý
Ndefine tuggeat_uaet(cotxxpt, value)

ConFom+(concxpt, SEf DEFAULT, value);

Note that the text is printed using the application font which in this case is bold.

299

A. 13.3.6. FOCUS USER

Set the focus for discussion to a particular meta-concept

A. 13.3.7. DEFOCUS USER

Converse of focus_user.

A. 13.3.8. CURRENT FOCUS

tlirtclude "method}trings. h"

Ndefine curratt. jocus(type, meta_concept)
if(lstmcmp(inform. tuer_panm; on"))

Focus(type, mua_concept);
eise if(lstmemp(infotm. tuer_, panm, "off))

Defoc. vs(typc);

This macro enables the user to change the focus of discussion. This is achieved by

defining a button field with the name:

b meta_concept

and a form with the name:

meta concept.

The macro when used, determines the focus type whether to focus or de-focus the user
towards or away from a meta concept. The current meta concept is defocused and the
button used to focus it is set to "off'.

300

A. 13.3.9. FIELD DUPLICATION

A field duplication handler has been written to manage lists of concepts. For example
it is often necessary to create lists of vertices. This is achieved by duplicating the

physical and behavioural properties and characteristics of a base field. An incremental

vertical and horizontal offset must be defined for the base field in order to establish the

physical direction of growth. This is achieved by the additional field attributes:

horizontal offset <int>

vertical offset <int>

The means of duplicating a field (concept) is achieved using:

parent: duplicate: concept * N-times

This results in 'N' physical copies (appropriately offset) of the named concept which
is adopted by the named parent. Not all fields may be duplicatable. Therefore in order
to flag a field as an element of a notional array the suffix:

concept [n]

must be added to the concept name. This identifies specific list entries which may be
manipulated in the normal manner. It must also be noted that only the physical
properties of the field are duplicated, concept values are not unless the'! ' (literal) flag
is present:

parent: duplicate!: concept * N-times

in which case the new copy inherits current, previous, default and optional (menu)

values.
A similar suffix may also be added to the field label to provide a visual guide.

Both array concept and label suffixes are automatically incremented with additional
calls. The depth of the array must, however, be maintained by the developer. A list
(or duplicate) handler has been defined to manage the task, figure A. 13.3.9.1.

301

/** Duplicate. c Copyright (C) James H. Rutherford. ABACUS 1988

#include <stdio. h>
#include "memory. h"

#iüdef NULLFrR
#define NULLPTR(x) ((x*)O)
#endif NULLPTR

I

char* rootname;
int size;
int displayed;
struct instance* next;

)instance;

static struct
instance* root;
instance* tail;

duplicate list;

instance* CreateDuplicate(name) char* name;

typedef struct instance {

instance* new = (instance*) cmalloc(sizeof(instance));

if(new! =NULL)
1

new->rootname = stralloc(name);
new->size = 0;
duplicate_list_append(new);

return(new);

instance* CheckDuplicateList(name) char* name;
(

instance'iptr = duplicate list. root, *found = NULL;

if(Istrcmp(iptr->rootname, name))

found = iptr,
break;

iptr = iptr->next;

(

while(iptr 1= NULL)

return(found);

duplicate_list append(obj) instance* obj;

I

if(obj = NULLPTR(instance)) return;
if(duplicate_listaoot == 0)

duplicate_list. root = obj;
else

duplicate list. tail->next = obj;
duplicate list. tail = obj;

Figure A. 13.3.9.1 (a). Duplicate list handler

wi

302

Append(name. num) char* name; int num;

instance +iptr;
char cmd[512];

iptr=((iptr=CheckDuplicateList(name))==NULL)? CreateDuplicate(name): iptr;
if(iptr==NULLPTR(instance))

fprintf(stderr, "Append:: failed to create %s[%d]'n", name, num);
return;

}
/+++ perhaps redisplay field[O] to field[iptr->size] ***/
sprintf(cmd. "@ %s[%d]* %d\n", iptr->rootname, iptr->size, num);
iptr->size+=num;
Conform("i, "duplicate", cmd);

t

}
Retract(name, num) char* name; int num;

instance *iptr;
char crnd[5121;
register int i=0;

iptr=((iptr=CheckDuplicateList(name))==NULL)? CreateDuplicate(name): iptr;
if(iptr==NULLPTR(instance))

fprintf(stderr, "Append:: failed to create %s[9c' d]\n", name, num);
return;

}
for(i=iptr->size; i>num; i--)

sprintf(cmd, "@ 9'os[9'od]", iptr->rootname, i);
Conform(cmd, "hide", " ");

):

Conform(field, method, param) char *field, *method, sparam;

#ifdef DEBUG
fprintf(stderr, "%s: %s: %s\n", field, method, param);

#endif DEBUG
ConForm(field, method, param);

Figure A. 13.3.9.1. (b). Duplicate list handler

303

Duplicate(name, num)
{

t

instance "iptr;
int diff = 0;

register int i=0;

char cmd[512];

iptr=((iptr=CheckDuplicateList(name))==NULL)? CreateDuplicate(name): iptr;

if(iptr==NULLPTR(instance))

fprintf(stderr. "Duplicate:: failed to create %s[%d]'rt". name. num); return;

if(num > iptr->size) /** extend list **/
[/** redisplay existing fields **/

if(iptr->size > 0)

for(i=0; i<=iptr->size; i++)
[

sprintf (cmd. "@ %s [%d]", iptr->roo tname, i);
Conform(cmd, "display", " ");

}
}
/** create new fields **/
diff = num - iptr->size;
sprintf(cmd, "Q %s i%d}* %d\n", iptr->rootname, iptr->size, dif f);
iptr->size+=diff;
Conform("f', "duplicate", cmd);

)else if(num < iptr->size) /** close down list **/

sprintf(cmd, "@ %s[4bd]", iptr->rootname, i);
Conform(cmd, "hide", " ");

sprintf (cmd, "@ 96 s[96d]", iptr->roo tn am e, i);
Conform(cmd, "display", " ");

) else if(num == iptr->size) /++ redisplay **/

for(i=iptr->size; 'v=num; i--)

(

)º
for(i=0; i<=num; i++)

c

)

c for(i=0; i<=iptr->size; i++)
{

sprintf(cmd. "@g'os [9'od]". iptr->rootname. i);
Confotm(cmd, "display"; ");

1
}

):

Figure A. 13.3.9.1 (c). Dulicate list handler

An initial dilema regarding an appropriate location for this functioanlity was
encountered; should the handler be inserted into the forms package or the dialogue
handler? As a duplicate facility exists within the forms package exists it has been
decided that the management of lists should be handled externally.

Therefore it is suggested that the overloaded operator call duplicate be added to

the dialogue handler. A suitable protocol also needs to be established, the one
suggested below may be adequate.

304

The duplication handler maintains a list of duplicated fields together with the total

size of the list. Below are a few example calls to illustrate the routine.

Du licate x coord. 10 ; creates 10 copies of the field x coord 0
Duplicate(x_2cooTd, 4); hides x coord S-x coord 11
Du licate x coord.? ; redisplays x coord 0-z coord 8
Du licate x coord 15 " creates an additional 5 copies
Du licate vertex/x_coord, 15 ; as above except narrow down the seacrh

Figure A. 13.3.9.2. Field duplication protocol

The'Duplicate'routine is obviously overloaded; creating and re-displaying
fields. However, the routine was meant to act as a list handler and as such should
make field duplication/creation and re-display opaque to the developer. The usual
methods of hiding and setting fields may also be used, thus enhancing the facility.

NOTE: The base field x_coord[0] must already exist on the proforma and that

the concept name argument to the Duplicate function does not include the array suffix.
This is maintained within an internal (private) hash table ensuring that the duplication

functionality is totally transparent. Prolog, used for knowledge encapsulation, also
makes the use of square brackets difficult. Therefore, in order to cater for fieldnames
being passed through prolog predicates the routine strips off square brackets.

A corresponding c utility needs to be written for the initial kb to enable kbs to
create duplicate lists. This should be trivial. The anticipated syntax is:

duplicate(fieldname, number_required)

Individual list members may be controlled in the usual manner using commands such
as:

@element[n]: set current: value

305

A. 14. EXAMPLE APPLICATIONS

The functionality of the forms package may be accessed by a simple procedure outlined

below:
1)

in)

IIl)

define NotifyProc lists for the three events (set, action, and query)

specify a SetDefaults procedure.

call Forms(argv).

The example application bellow illustrates the basic procedures.

ilinclude "infomih"

SnNameQ

I
if(namel. NUL. L VI'R(chu))

free(-e);

name - stralloc(inform. user_param);

SetAgep

ages - atoi(infoem. usesr-param);

tet_defaullsQ
(

offs naa("name", getenvCZAGNAME");

intolmNotir7Pfoc0 -(
name. SetName,
"age". SGAB0.

0
):

infarm. SetDefaulu - sd deSatilu;

main(argc, argv)int argv; ehar°' argv.

I
l:

Fonns(srgv);

Figure A. 14.1. Simple program.

More complex application structures are possible by segmenting the calls as illustrated

in the following application vpict. The application is a simple tool for browsing

through a series of predefined depth cued images developed for the Central Electricty
Generating Board (CEGB). These pre-processed images are displayed in a GKS

workstation display window. Although a command line interpreter was included in the

original program, for the purpose of retrieving images during demonstrations a
graphical front end, using the forms package, was bolted on, figure A. 14.2. Other

programs such as the PixEd Pixel Editor) have also been developed.

306

GKS Display

;/ r
, �'� /�

.; "IA; 1I i; ý . -p

_ ... ý---ý .. r_^'_. --- ,,,,,,,,, ^-.....
.. -"-ý' - ... _ýý----ý........ ý- ý.. ý.. r- ---- -

"S: I['ý": 'sý: °°: i: slvý"....: ý:: ""'ý ýý"ýx"s

».. ». »»». ». »i»»»». ypprrýww'++:

..::: ". .ý- ..,, -- -'ý-": -----..........
. S..

'.. . 0-1-d- s'- .. -

. ". ý "" "" .;.

1
. ýý filename :

I i ýý''

--4-

Figure A. 14.2. Vpict; GKS display with forms interface.

load 1
I

qui t

ommm

Fýý

The following code illustrates how a single graphical application may have three
interfaces:

i) native
ii) forms

iii) resource - used for resource integration into larger systems

This is achieved by a series of #defines (compilation switches) in main() as illustrated
in figure A. 14.3.

lib/pylons/line-35

307

/* vpictc Copyright (c) James H. Rutherford ABACUS. 1989
vpict Displays colour depth cued pluto images

#include <stdio. h>
#include "inform. h"
#include "memory. h"

#ifndef NULU1 R
#define NUUPM (x) ((xi)O)
#endif NUU2IR

extern int ReadFileO;
extern int CloseDownVpictO;

char* filename;

SetFilename()
{

if(filenamel=NULLPTR(char)) free(filename);
filename = stralloc(inform. user param);

LoadFile() /** display if notified **/
{

(

if(filenamel=NULLPTR(char)) ReadFile(filename);
else Feedback("Please enter filename");

lc

DisplayFile() /** immediate display **/

ReadFile(inform. user_param);

NotifyProc Procs[]
"filename",
"display".
"load",
"quit",

SetFilename,
DisplayFile,
LoadFile.
C1oseDownVpict,

0

int Defaults()();

main(argc, argv)int argc; char** argv;

OpenWindow();
#ifdef NATIVE

WindowMainLoopo ;
#else
#ifdef FORMS

Forms(argv, Procs, Defaults);
#else RESOURCE

inform. chanel[READ] =0;
inform. chanel[WRITE]=1;
init_informO;
init_events();
UsrProc=Procs;
Defaultso ;
InForm();

#endif FORMS
#endif STANDALONE
l;

/** Pick up command line arguments **/

/** Open GKS workstation **/

/** Call native event handler **/

/** Forms interface **/
/** Initialise forms package **/

/** Read from stdin **/
/'''* Write to stdout **/
/** Initialise system defaults **/
/** Set default event handlers **/
/** Set concept handlers **/
/** Initialise default values **/
/** Poll events **/

Figure A. 14.3. VPict. Note that the GKS code is ommited for clarity.

308

APPENDIX B,
Proforma Templates

APPENDIX B: Proforma templates:

new desk
name
origin
size
help
data font
label font
application font

end desk

IFE #3.1 February 1990
23 38 pixels
915 655 pixels
This is the IFE master form
/usr/lib/fonts/fixedwidthfonts/serif. b. 10
/usr/lib/fonts/fixedwidthfonts/cour. b. 10
/usr/lib/fonts/fixedwidthfonts/cour. r. 10

new form
name chat area
origin 453 30 pixels
size 443 206 pixels
shade light grey
data font/usr/lib/fonts/fuedwidthfonts/serif r. 10
label font/usr/lib/fonts/fixedwidthfonts/serifa. 10
application font /usr/lib/fonts/fixedwidthfonts/serifr. 10
bonier 2
selection border 2

end form

new field
name chat user
type character
origin 6 28 pixels
size 428 169 pixels
label string Feedback
label position f it above
help A text area for general chit-chat from the ife\n\

description. This field is used by the ife to display\n\
non urgent messages, suggestions and'n\
session status info. It scrolls, so\n\
previous messages can be recovered.

bonier 0
selection border 0

end field

parent form

new field
name
type
origin
size
label string
label position
selection border
help
description

end field

I

user name
alphanum +.
95 32 pixels
179 20 pixels
Name
left
1
The users name (ie. yours)
This field is used to maintain\n\
a cronological record of the\n\
people working on the project.

master

309

APPENDIX B: Proforma templates:

new field
name
type
origin
size
label string
label position
selection border
border
menu

help
description

end field

new field
name
type
origin
size
label string
label position
selection border
menu

help
description

user type
popup
289 33 pixels
64 64 pixels
User type
fit above
0
8
modellers
architects
engineer
for info
This button identifies the currently\n\
selected user type. This dictates the\n\
style and content of the forms to be"n\
displayed during this session. An\n\
attempt will be made to ask only foft\
information liable to be available to\n\
this user, using the internal knowledge"n\
to provide values for the more technicaM\
energy computing aspects. All feedback\n\
given will also reflect this bias.

user level
button
36133 pixels
65 65 pixels
User level
fit above
0
expert'
novice
for info
This button identifies the currently\n\
selected user level. This dictatessn\
the level and style of help/guidance\n\
given during the interaction and also\n\
influences the content of some of the\n\
forms shown. An attempt will be made\n\
to ask only for information liable to\n\
be available to this user, using the'n\
internal knowledge to provide values\n\
for the more esoteric aspects.

end field

master

310

APPENDIX B: Proforma templates

new field
name
type
origin
size
label string
label position
selection border
help
description

dace
date
818 5 pixels
80 18 pixels
Date
left
1
Todays date (supplied by system)
This field is used to timestamp\n\
any modifications made during this'sn\
session. It is used to maintain a\n\
cronological record of the people'n\
working on the project and the\n\
modifications they instigate.

end field

new field
name
type
origin
size
label string
label position
selection border
start
help
description

started
dale
97 135 pixels
8120 pixels
Date started
left
1
hidden
Date of first session for this project
This field gives the start date foi'm\
the work on this project, ie. the date\n\
of the Ist ife session.

end field

new field
name
type
origin
size
label string
label position
selection border
start
help
description

session
integer
411 135 pixels
18 20 pixels
Session number
left
1
hidden
Session number of this consultation
This field is used to timestamp any\n\
modifications made during this session M\
It allows a cronological record of the'n\
people working on the project to be'sn\
maintained.

end field

building specifciation Focii

311

APPENDIX B: Proforma templates

new field
name
type
origin
size
label string
label position
selection border
help
description

project
file
97 105 pixels
333 20 pixels
Project name
left
1
project name or identifier
This field is used to identify the\n\
required project so the data can\n\
be retrieved later. It is also used'n\
to maintain a cronological record of\n\
the people working on the project.

building specifciation Focii

end field

new field
name , m_focus
type label
origin 149 160 pixels
size 152 20 pixels
start hidden
current value Topics for Discussion
help push a button (below) to change topic of discussion.
description These buttons switch the focus ot\n\

discussion to the requested topic \n\
The relevent forms will be displayeft\
below (existing ones may disappear) \n\
It is suggested that buttons are\n\
worked through from left to right to\n\
minimize specification of redundant\n\
information.

selection border 0
bards 0
label font /usr/lib/fonts/fixedwidthfonts/serif. r. 10
application font /usr/lib/fonts/fixedwidthfonts/serif. r. 10
data font /usr/lib/fonts/fixedwidthfonts/serif. r. 10

end field

312

APPENDIX B: Proforma templates building specifciation Focii

new form
name topics
origin 10 186 pixels
size 419 50 pixels
label colour black
start hidden

end form

new field
name b_spec
type button
origin 12 20 pixels
size 156 20 pixels
label position fit above
selection border 0
menu building description

end field

new field
name b analysis
type button
origin 246 20 pixels
size 156 20 pixels
label position fit above
selection border 0
menu building analysis

end field

313

APPENDIX B: Proforma templates

new form
name bld spec
origin 12 249 pixels
size 885 380 pixels
shade mid grey
start hidden
help This is the building specification top level form
data font /usr/lib/fonts/fixedwidthfonts/serif. b. 10
label font /usr/lib/fonts/fixedwidthfonts/cour. b. 10
application font /usr/lib/fonts/fixedwidthfonts/cour. r. 10
border 1
selection border 2

end form

new field
name
type
origin
size
label string
label position
selection border
default value
menu

help
description

end field

new field

building specifciation

location
alpha
67 6 pixels
109 16 pixels
Location
left
1
glasgow
use_map\

glasgow\
belfast\
edinburgh\
aberdeen\
london\
manchestei\
birmingham\
newcastle\
Cardiff
Geographical location of building (MAP -> point to a map).
This data is used to determine site related'n\
information such as climate data and sun position.

name
type
origin
size
start
label string
label position
selection border
help
description

end field

latitude
real +-+. NSEW
176 28 pixels
33 18 pixels
hidden
Latitude
left
I
Latitude, degrees North
This field is used to calculate sun\n\
position during the simulation. It\n\
is also used to help select an' \
appropriate climate set to provide\n\
default boundary conditions.

314

APPENDIX B: Proforma templates

new field
name
type
origin
size
start
label string
label position
selection border
help
description

longitude
real +-+. NSEW
176 50 pixels
33 16 pixels
hidden
Longitude
left
1
Longitude, degrees West
This field is used to calculate sun\n\
position during the simulation. It\n\
is also used to help select an\n\
appropriate climate set to provide\n\
default boundary conditions.

end field

new field
name
type
origin
size
label string
label position
selection border
current value
default value
start
menu

timezone
alphanum
176 71 pixels
33 16 pixels
Timezone
left
1
GMT
BST
hidden
GMT\
WEI\
CET\
EE1\
MET\
EPT\
WAT

help Timezone of location
description This field is used to calculate sun\n\

position during the simulation. It\n\
is also used to help select an\n\
appropriate climate set to provide\n\
default boundary conditions.

end field

new field
name
type
origin
size
label string
label position
selection border
menu

environment
alpha +-
88 108 pixels
88 18 pixels
Environment
left
1
city_centre\
urban\
natal

help Environment of building
description This field is used to estimate the\n\

end field

effect that the building surroundings\n\
will have on its performance.

building specifciation

315

APPENDIX B: Proforma templates

new field
name
type
origin
size
start
label string
label position
selection border
default value
help
description

and field

new field
name
hype
origin
size
start
label string
label position
selection border
default value
help
description

exposure
integer
177 133 pixels
11 18 pixels
hidden
Exposure
left
1
3
Site exposure index
If you don't know, don't use this environment, 'n\
use a standard one.

gmd rflct
real
177 154 pixels
32 18 pixels
hidden
Ground reflectivity
left
1
1.25
Ground reflectivity index
If you don't know, dont use this\n\
environment, use a standard one

end field

new field
name
type
origin
size
label string
label position
selection border
menu

function
alpha
87 190 pixels
88 20 pixels
Function
left
1
residential\
commercial\
industriai\
hospital\
school

help Function of the building.
description This field shows the generic function oM\

end fold

the building. This influences a range\n\
of building attributes, especially those\n\
specified in on the "occupation" forms.

building specifciation

316

APPENDIX B: Proforma templates

new field
name
type
origin
size
label position
selection border
menu

end field

new field
name
type
origin
size
label position
selection border
menu

erd field

b_bld_spec focii
button
6 238 pixels
158 20 pixels
fit above
1
Detailed specification

b bld browse
button
170 239 pixels
47 20 pixels
fit above
1
Browse

building specifciation

317

APPENDIX B: Proforma templates

new form
name
origin
size
start
shade
help

description

bonder
selection border
label colour
data font
application font
label font

end form
new field

name
type
origin
size

bld_spec_focii
9 270 pixels
211 89 pixels
hidden
light grey
Push a button to change\n\
topic of discussion.
These buttons switch the focus of\n\
discussion to the requested topic. The\n\
relevent forms will be displayed below\n\
(existing ones will disappear). It is\n\
suggested that they are worked through\n\
from left to right to minimize\n\
specification of redundant information.
1
0
black
/usr/lib/fonts/f iixedwidthfonts/serif. r. 10
/usr/lib/fonts/fixedwidthfonts/serif. r. 10
/usr/lib/fonts/fixedwidthfonts/serifr. 10

label position
selection border
menu
help
description

end field

new field
name
type
origin
size
label position
selection border
menu
help
description

end field

building specifciation Focii

b_geometry
button
4 21 pixels
52 18 pixels
fit above
1
geometry
push when ready for building geometry input forms
This button switches the focus of\n\
discussion to the description of the\n\
(proposed?) building's geometry\n\
Subsidary forms will enable the\n\
geometry input method to be chosen\n\
and will allow editing of existing data.

b
-construction button

64 21 pixels
78 18 pixels
fit above
1
construction
push when ready for construction definition forms
This button switches the focus oM\
discussion to the description of the\n\
(proposed?) buildings construction\n\
characteristics. Subsidary forms\n\
will enable the use of various default\n\
patterns for the different aspects oM\
the buildings materials. Editing oM\
existing data will be possible

318

APPENDIX B: Proforma templates building specifciation Focii

new field
name b_useage
type button
origin 150 21 pixels
size 52 18 pixels
label position fit above
selection border 1
menu useage
help push when ready for building useage forms
description This button switches the focus of\n\

discussion to the description of the\n\
(proposed?) buildings occupation\n\
characteristics. Subsidary forms will\n\
enable the use of various default\n\
patterns for the different aspects oM\
the buildings occupation. Editing ofrn\
existing data will be possible

end field

new field
name
type
origin
size
label position
selection border
menu
help
description

end field

new field
name
type
origin
size
label position
selection border
menu
help
description

end field

b connectivity
button
63 59 pixels
78 18 pixels
fit above
1
connectivity
push when ready to specify zone connectivity
This button switches the focus of\n\
discussion to describing the\n\
connectivity of the building and its\n\
HVAC system.

b
_site button

4 97 pixels
60 17 pixels
fit above
1
site
push when ready for site description forms
This button switches the focus of\n\
discussion to describing the site'n\
for the building.

319

APPENDIX B: Proforma templates

new field
name
type
origin
size
label position
selection border
menu
help
description

end field

new field
name
type
origin
size
label position
selection border
menu
help
description

end field

new field

b shading
button
72 97 pixels
63 18 pixels
fit above
1
shading
push when ready for shading forms
This button switches the focus oM\
discussion to the shading of the\n\
(proposed?) building. The forms\n\
will enable details of surrounding\n\
buildings to be entered, as well as\n\
the shading mechanism and theii'n\
operational strategy provided on'n\
the building.

b_shading
button
143 97 pixels
59 18 pixels
fit above
1
shading
push when ready for shading forms
This button switches the focus oM\
discussion to the shading of the\n\
(proposed?) building. The forms\n\
will enable details of surrounding'n\
buildings to be entered, as well as\n\
the shading mechanism and their' n\
operational strategy provided on\n\
the building.

building specifciation Focii

name
type
origin
size
label position
selection border
menu
help
description

end field

b_airflow
button
143 97 pixels
59 18 pixels
fit above
1
airflow
push when ready for air flow description forms
This button switches the focus ot\n\
discussion to an airflow analysis\n\
of the building. The data required'n\
includes external press=\n\
distribution as well as the leakage\n\
distribution of the building.

320

APPENDIX B: Proforma templates

new field
name
h'Pe
origin
size
label position
selection border
menu
help
description

b-plant
button
4 137 pixels
60 18 pixels
fit above
1
plant
push when ready for plant description forms
This button switches the focus oi\n\
discussion to a description of the\n\
(proposed?) plant. Subsidary forms\n\
will enable the components and\n\
placements to be specified. Also, \n\
subject to earlier input about\n\
analysis type and design stage, the\n\
plant control strategy / mechanism\n\
can can be given.

end field

new field
name
type
origin
size
label position
selection border
menu
help
description

end field

new field
name
type
origin
size
label position
selection border
menu

end field

b control
button
72 137 pixels
63 18 pixels
fit above
1
control
push when ready for plant control forms
This button switches the focus of\n\
discussion to a description of the\n\
control systems and operations to\n\
be used for the analysis. The\n\
information required depends on the\n\
type of analysis requested earlier.

services
button
143 137 pixels
59 18 pixels
fit above
1
services

building specifciation Focii

321

APPENDIX B: Proforma templates

new form
name
origin
size
start
shade
help
data font
label font
application font
border
selection border

end form

geometry
237 6 pixels
642 367 pixels
hidden
mid grey
This is the geometry input top level form
/usr/lib/fonts/fixedwidthfonts/serif. b. 10
/usr/lib/fonts/fixedwidthfonts/cour. b. 10
/usr/lib/fonts/f ixedwidthfonts/cour. r. 10
1
0

new field
name
type
origin
size
label position
selection border
menu
help
description

b_g_form_fill
button
192 20 pixels
74 18 pixels
fit above
1
form fill
Select form fill method of inputting zone geometries
Geometry can be input one zone at a time according\n\
to shape type.

end field

new field
name bgdraw
type button
origin 285 20 pixels
size 74 18 pixels
label position fit above
selection border 1
menu draw
help Select graphical method of inputting zone geometries
description Geometry can be defined using the ife's geometry'n\

modeller.
end field
new field

name b_Lcad file
type button
origin 378 20 pixels
size 74 18 pixels
label position fit above
selection border 1
menu import
help Select file containing geometry
description Geometry available in a foreign format (known to the\n\

end field
ife) can be read in from a file prepared externally.

geometry

322

APPENDIX B: Proforma templates

new field
name
type
origin
size
label string
label position
selection border
menu

help
description

end field

cutient Zone

popup
5 20 pixels
102 18 pixels
Current Zone
fit above
I
...,.... =CN
kitchen=l\
living=2\
dining=3\
bedl=4\
bed2=5
The number of the zone currently displayed
The current zone is the one shown below. It\n\
can be changed to any other defined zone by\n\
selecting the zone name from the option menu\n\
(left mouse button on field label) or by using\n\
the right button in the field to toggle though\n\
all the options.

geometry

323

APPENDIX B: Proforma templates

new form
name
origin
size
shade
start
label colour
label position
data font
label font
application font
border
selection border 2

end form

new field
name
type
origin
size
label position
selection border
menu

end field

new field
name
type
origin
size
label position
selection border
menu

end field

new field
name
type
origin
size
label position
selection border
menu

end field

9-draW
208 148 pixels
233 90 pixels
white
hidden
black
fit above
/usr/lib/fonts/fixedwidthfonts/serif. b. 10
/usr/lib/fonts/fixedwidthfonts/cour. b. 10
/usr/lib/fonts/fixedwidthfonts/cour. r. 10
1

drawing-package
button
6 19 pixels
64 64 pixels
fit above
0
geom. ex=vim

drawing package
button
81 19 pixels
64 64 pixels
fit above
0
acal. ex=cad

drawing_pwkage
button
154 19 pixels
64 64 pixels
fit above
0
rove. ex=rove

drawing packages

324

APPENDIX B: Proforma templates

new form
name
origin
size
shade
start
data font
label font
application font
border
selection border

end form

g_cad_file
20 58 pixels
599 301 pixels
light grey
hidden
/usr/lib/fonts/fixedwidthfonts/serif. b. 10
/usr/lib/fonts/fxedwidthfonts/cour. b. 10
/usr/lib/fonts/fixedwidthfonts/cour. r. 10
I
0

new field
name
type
origin
size
label string
label position
selection border

end field

new field
name
type
origin
size
label string
label position
selection border
menu

geom_file
file
135 11 pixels
214 20 pixels
geometry filename:
left
2

geom format
PoPuP
425 14 pixels
73 20 pixels
format
left
1
dxR
viewer\
atca&
acropolis

end field

new field
name
type
origin
size
label position
menu
selection border

end field

new field
name
*pe
origin
size
label string
label position
selection border

end field

import file
button
512 14 pixels
74 18 pixels
fit above
import
1

geom_file-pic
graphics
134 41 pixels
368 230 pixels
perspective image
fit below
I

geometry import cad file

325

APPENDIX B: Proforma templates

new form
name form fill-geom
origin 3 44 pixels
size 120 318 pixels
shade white
selection border 1

end form

new field
name zone name
type character
origin 4 15 pixels
size 110 18 pixels
label string Zone name
label position fit above
selection border 1

end field

new field
name shape type
type PoPuP
origin 47 46 pixels
size 64 64 pixels
label string Shape'ntype
label position left
selection border 0
border 8
menu red\

reg\
gen

end field

new field
name edit shape
type button
origin 4 92 pixels
size 33 18 pixels
label position fit above
selection border 1
menu edit

end field

new field
name origin-label
type label
origin 34 150 pixels
size 49 16 pixels
current value origin
selection border 0
border 0

end field

new field
name x origin
type real
origin 4 184 pixels
size 34 18 pixels
label string x
label position fit above
selection border 1

end field

geometry form fill

326

APPENDIX B: Proforma templates

new field
name y_origin
type real
origin 42 184 pixels
size 34 18 pixels
label string y
label position fit above
selection border 1

end field

new field
name z_origin
type real
origin 80 184 pixels
size 34 18 pixels
label string z
label position fit above
selection border I

end field

new field
name
type
origin
size
current value
selection border
border

end field

new field

orientation_label
label
20 214 pixels
82 16 pixels
orientation
0
0

name x_oruntation
type real
origin 4 244 pixels
size 34 18 pixels
label string x
label position fit above
selection border 1

end field

new field
name y_orientation
type real
origin 42 244 pixels
size 34 18 pixels
label string y
label position fit above
selection border 1

end field

new field
name z_orientation
type real
origin 80 244 pixels
size 34 18 pixels
label string z
label position fit above
selection border 1

end field

geometry form fill

327

APPENDIX B: Proforma templates

new form
name rec body
origin 126 44 pixels
size 511 318 pixels
shade white
selection border 1

end form
new field

name
pc
origin
size
label position
selection border
border
current value

end field

rec image
graphics
88 53 pixels
323 202 pixels
fit above
0
0
image: rec_image. ex

new field
name rec height
type real
origin 32 167 pixels
size 49 18 pixels
label string Height
label position right
selection border 1

end field

new field
name
type
origin
size
label string
label position
selection border

end field

new field
name
type
origin
size
label string
label position
selection border

end field

roc-width
real
201260 pixels
49 18 pixels
Width

fit above
1

rep -depth real
404 167 pixels
49 18 pixels
Depth
left
1

geometry form fill rec body

328

APPENDIX B: Proforma templates geometry form fill reg body

new form
name reg-body
origin 126 44 pixels
size 511 318 pixels
shade white
selection border 1

end form

new field
name reg vertices
type integer
origin 5 15 pixels
size 28 18 pixels
label string vertices
label position right
selection border 1

end field

new field
name reg-height
type real
origin 158 15 pixels
size 49 18 pixels
label string height
label position fit above
selection border 1

end field

new field
name reg-image
type graphics
origin 158 38 pixels
size 348 274 pixels
label position fit below
selection border

end field

new form
name reg plan
origin 5 38 pixels
size 147 274 pixels

end form

new field
name xplan[1]
type real
origin 34 7 pixels
size 49 18 pixels
label string [1]
label position left
selection border 1

end field

new field
name y_plan[l]
type real
origin 86 7 pixels
size 49 18 pixels
label position right
selection border I

end field

329

APPENDIX B: Proforma templates geometry form fill gen body

new form
name gen_body
origin 126 44 pixels
size 511 318 pixels
shade white
selection border 1

end form

new field
name number of vertices
type integer
origin 5 15 pixels
size 27 18 pixels
label string vertices
label position right
selection border 1

end field

new field
name number of surfaces
type integer
origin 5 184 pixels
size 28 18 pixels
label string surfaces
label position right
selection border I

end field

new field
name zone display
type graphics
origin 209 38 pixels
size 297 274 pixels
label position fit above
selection border 1

end field

new form
name vertices
origin 5 38 pixels
size 198 134 pixels
shade white
selection border 1

end form
new field

name x vertex[1]
type real
origin 34 7 pixels
size 49 18 pixels
label string [1]
label position left
selection border 1

end field
new field

name yvertex[1]
type real
origin 86 7 pixels
size 49 18 pixels
label position fit above
selection border I

end field

330

APPENDIX B: Proforma templates

new field
name z vertex[1]
type real
origin 137 7 pixels
size 49 18 pixels
label position fit above
selection border 1

end field

parent form @gen_body

new form
name
origin
size
shade
selection border

end form

new field
name
type
origin
size
label string
label position
selection border

end field

surfaces
5 208 pixels
197 104 pixels
white
1

surface[1]
integer
34 7 pixels
153 18 pixels
[1]
left
1

geometry form fill gen body

331

APPENDIX B: Proforma templates

new form
name construction
origin 237 6 pixels
size 642 367 pixels
shade white

end form
new field

name b_materials
type button
origin 24 21 pixels
size 71 17 pixels
label position fit above
selection border 0
menu materials
label colour black

end field

new field
name b_openings
type button
origin 114 21 pixels
size 71 17 pixels
label position fit above
selection border 0
menu openings
label colour black

end field

new field
name
type
origin
size
label position
selection border
menu
label colour

end field

new field

b intersections
button
204 21 pixels
99 17 pixels
fit above
0
intersections
black

name current-zone

type PoPuP
origin 378 21 pixels
size 113 17 pixels
label string current zone
label position fit above
selection border 0
border 8

end field

construction

332

APPENDIX B: Proforma templates

new field
name
type
origin
size
label string
label position
selection border
border
menu

surface
popup
500 21 pixels
107 17 pixels
surface
fit above
0
8
bottom\
top\
all horizontals
all verticals
1\
2\
3\
4

end field

construction

333

APPENDIX B: Proforma templates

new form
name materials
origin 10 42 pixels
size 616 323 pixels
border 0
selection border 0

end form

new field
name
type
origin
size
label string
label position
selection border
border
menu

end field

new field
name
type
origin
size
label position
selection border
border

end field

new field

construction type
popup
14 7 pixels
279 294 pixels
construction
fit below
0
8
ground_floor\
floor ceilings
extemal_cavitywalls
intemal_stud partition

construction zone image
graphics
370 3 pixels
232 137 pixels
fit below
0
1

name assign_construction
type button
origin 301 89 pixels
size 60 17 pixels
label position fit above
menu assign
selection border 1
border 1

end field

new field
name
VAX
origin
size
label position
menu
selection border
border

end field

previous_construction
button
302 127 pixels
59 17 pixels
fit above
previous
1
1

new form
name ground_floor conswction
origin 301 149 pixels
size 304 149 pixels
border 0
selection border 0

end form

materials - multi-layered construction

334

APPENDIX B: Proforma templates

new field
name
type
origin
size
label string
label position
selection border
border

end field

layer 1_thickness
real
4 10 pixels
37 18 pixels
mm
right
1
1

new field

name layer_l material
type
origin
size
label position
selection border
border

end field

new field
name
type
origin
size
label string
label position

popup
64 10 pixels
233 17 pixels
right
0
8

layer 2_thickness
nil
4 39 pixels
37 18 pixels
mm
right

selection border 1
border 1

end field

new field
name layer 2_material
hype PoPuP
origin 64 39 pixels
size 233 17 pixels
label position right
selection border 0
border 8

end field

new field
name layer 3_thickness
type real
origin 5 68 pixels
size 36 18 pixels
label string mm
label position right
selection border 1
border 1

end field

new field
name layer 3_material
type PoPuP
origin 64 67 pixels
size 233 17 pixels
label position right
selection border 0
border 8

end field

materials - multi-layered construction

335

APPENDIX B: Proforma templates materials - multi-layered construction

new field
name layer 4_thickness
type real
origin 4 97 pixels
size 37 18 pixels
label string mm
label position right
selection border 1
border 1

end field

new field
name layer 4_material
type PoPuP
origin 64 97 pixels
size 233 18 pixels
label position right
selection border 0
border 8

end field

new field
name layer 5_thickness
type real
origin 4 126 pixels
size 37 18 pixels
label string mm
label position right
selection border 1
bonder 1

end field

new field
name layer 5 material
type PoPuP
origin 64 126 pixels
size 233 18 pixels
label position right
selection border 0
border 8

end field

336

APPENDIX B: Proforma templates

new form
name
origin
size
border
selection border
data font
label font
application font

end form

new field
name
type
origin
size

materials - multi-layered construction

openings
10 42 pixels
616 323 pixels
0
0
/usr/lib/fonts/fixedwidthfonts/serif. b. 10
/usr/lib/fonts/fxedwidthfonts/cour. b. 10
/usr/lib/fonts/fixedwidthfonts/cour. r. 10

label position
selection border
border

end field

new field

surface opening_image
graphics
18 3 pixels
279 138 pixels
right
0
1

name
type
origin
size
label position
selection border
border

end field

new field
name
type
origin
size
label position
selection border
border
menu

end field

new field
name
type
origin
size
label string
label position
selection border
border
menu

end field

openmg_zone_unage
g cs
370 3 pixels
232 137 pixels
left
0
1

new opening
button
366 167 pixels
78 20 pixels
fit above
0
1
new opening

opening_type
button
464 167 pixels
78 65 pixels
opening type
fit above
0
1
windovA
door

337

APPENDIX B: Proforma templates

new field
name
type
origin
size
label string
label position
selection border
border
menu

end field

new field
name
type
origin
size
label string
label position
selection border
bonder
menu

end field

new field
name
type
origin
size
label string
label position
selection border
border
menu

end field

new field
name
VfPC
origin
size
label string
label position
selection border
border

end field

opening-state
button
554 167 pixels
44 65 pixels
state
fit above
0
1
closed\
open

opening-number
PoPuP
366 215 pixels
78 16 pixels
number
fit above
0
8

unit type
popup
366 260 pixels
176 17 pixels
unit type
fit above
0
8
single glazed
double glazed
triple glazed

unit uvalue
real
558 257 pixels
44 17 pixels
U-value
fit above
1
1

materials - multi-layered construction

338

APPENDIX B: Proforma templates materials - multi-layered construction

new form
name window opening
origin 16 148 pixels
size 284 158 pixels
border 0
selection border 0

end form

new field
name window-image
type graphics
origin 50 26 pixels
size 177 107 pixels
label position left
selection border 0
bonder 0
current value image: window_opening_image

end field

new field
name window width
type real -
origin 134 5 pixels
size 48 17 pixels
label string width
label position fit below
selection border 1
bocdcr 1

end field

new field
name
VJW
origin
size
label string
label position

window cill height
real
234 93 pixels
47 17 pixels
h
left

selection border 1
bonier 1

end field

new field
name window offset
type real
origin 57 137 pixels
size 83 17 pixels
label string X
label position above
selection border I
border 1

end field

339

APPENDIX B: Proforma templates materials - multi-layered construction

new field
name window _lintel

height
type real
origin 2 65 pixels
size 47 17 pixels
label string H
label position right
selection border 1
border 1
default value 2100

end field

parent form @openings

new form
name door opening
origin 16 148 pixels
size 284 158 pixels
start hidden
border 0
selection border 0

end form

new field
name door image
type graphics
origin 52 26 pixels
size 114 109 pixels
label position left
selection border 0
border 0
current value image: dooropening_image

end field
new field

name door width
type real
origin 161 5 pixels
size 48 17 pixels
label string width
label position fit below
selection border I
barrier 1
default value 900

end field

new field
name door offset
type real
origin 57 137 pixels
size 83 17 pixels
label string X
label position above
selection border 1
border 1

end field

340

APPENDIX B: Proforma templates materials - multi-layered construction

new field
name door lintel_height
type real
origin 2 65 pixels
size 47 17 pixels
label string H
label position right
selection border 1
border I
default value 2100

end field

341

APPENDIX B: Proforma templates

new form
name bld browse
origin 31.5 0.2
size 95 32
start hidden
shade white

end form

new form
name building_class_sub
type form
origin 1 1.25
size 2012
shade dark grey
selection border 0
label position fit left
border 1

end form

new field
name browse class
type menu
origin 2.5 1.5
size 15 1
label string Building class
label position fit above
menu ??
selection border 0
bonder 1

end field
parent form @bld browse

new form
name building_sub
type form
origin 1 11
size 2013
shade dark grey
selection border 0
label position fit left
border 1

end form

new field
name browse_type
type menu
origin 2.5 1.5
size 151
menu ?? ý

??
label colour white
label position fit above
label string building type
border 1

end field

parent form @bld browse

browse

342

APPENDIX B: Proforma templates

new field
name

origin
size
label string
label position
menu
selection border
border

end field

new field

browse image
PoPuP
221.5
6827
Browse image stack
fit above
pip -a 0
10

name browse_done
type button
origin 8222
size 61
label position fit right
menu Done=abort
selection border 0
bonier 1

end field

new field
name browse select
type button
origin 7022
size 71
label position fit right
menu select
selection border 0
border 1

end field

new field
name browse info
type button
origin 4422
size 71
label position fit right
menu info
selection borderO
border 1

end field

browse

343

APPENDIX B: Proforma templates

new form
name analysis
origin 112
size 125 30
start hidden
shade light grey
border 1
selection border 2

end form

new field
name
pe
origin
size
label position
label string
help

description

anal_label
label
25 1
00
fit left
Analyses
push a button (right) to change\n\
topic of discussion.
These buttons switch the focus of'n\
discussion to the requested topic. The\n\
relevent forms will be displayed below\n\
(existing ones will disappear). It is\n\
suggested that they are worked through\n\
from left to right to minimizenn\
specification of redundant information.

selection border 0
border 0
data font /usr/lib/fonts/fixedwidthfonts/cour. b. 16
label font /usr/lib/fonts/fixedwidthfonts/cour. b. 16
application font /usr/lib/fonts/fixedwidthfonts/cour. b. 16

end field

new field
name b_mono functional methodology
type button
style key
origin 0.7 1.2
size 162
menu Mono-Functional\n Methodology
label position fit above
label colour black
start hidden
help push when ready to discuss analysis requirements
description This button switches the focus oM\

discussion to a sort of analysis\n\
required. Information about the\n\
design stage is solicited so thatnn\
only appropriate analysis (and data\n\
input) will be carried out.

data font /usr/lib/fonts/fixedwidthfonts/cour. b. 10
label font /usr/lib/fonts/fixedwidthfonts/cour. b. 10
application font /usr/lib/fonts/fixedwidthfonts/cour. b. 10

end field

analysis

344

APPENDIX B: Proforma templates

new field
name
type
style
origin
size
label position
label colour
menu
start
help
description

data font
label font
application font

end field

new form
name
origin
size
start
shade
label position
label colour
selection border
border

end form

new field
name
type
origin
size
menu

end field

new field
name
type
origin
size
menu

end field
new field

name
type
origin
size
menu

end field

b_multi_functional_methodology
button
key
19 1.2
162
fit above
black
Multi-Functional\n Methodology
hidden
push when ready for building description form
This button switches the focus ot\n\
discussion to a description of thft\
(proposed?) building. Subsidary\, n\
forms will enable the geometryM\
and materials to be specified.
/usr/lib/fonts/rixedwidthfonts/cour. b. 10
/usr/lib/fonts/fixedwidthfonts/cour. b. 10
/usr/lib/fonts/fixedwidthfonts/cour. b. 10

mono functional_methodology
13
35 25
hidden
white
fit above
black
0
1

comfortanalysis
button
11
92
Comfort

energy-analysis
button
121
92
Energy

control analysis
button
231
92
Control

analysis

345

APPENDIX B: Proforma templates

new field
name
type
origin
size
menu

end field

new field
name
type
origin
size
menu

end field

parent form

new form
name
origin
size
start
shade
label position
label colour
selection border
border

end form
new field

name
type
origin
size
menu

end field

new field
name
type
origin
size
menu

end field

view
button
23 4
92
View

condensation-analysis
button
14
202
Condensation

@analysis

multi_functional_methodology
13
35 25
hidden
white
fit above
black
0
1

passive expert
button
11
92
Passive\n Expert

airflow
button
12 1
92
Airflow

analysis

346

APPENDIX B: Proforma templates

new field
name
type
origin
size
menu

end field

parent form

new field
name
type
origin
size
label string
label position
selection border
bonier

end field

control systems
button
231
92
Control'nSystems

@analysis

analysis_results
popup
37 1.2
8628
Results
fit above
0
12

analysis

347

APPENDIX C
icons, ýý

ýýý

APPENDIX C: Icons concepts

C. I. Concepts represented graphically on the master form

Qf7
novicel expert architect designer engineer2 modeller2

C. 2. Concepts represented graphically on the geometry forms

rec

rec_body

reg

reg-body

roc-body-attributes

Sea-body

ý
..

r:
. 'ýý ". .

' ;r

1
2
3

autocad3

Sun Microsystems
MacRandal
AutoDesk

vim iris_modellerl

348

APPENDIX C: Icons concepts

C. 3. Concepts represented graphically on the construction
openings form

3
ý-_ý

door window open

closed

closed

1

L
ýý

`. ý.
Lý

+

door attributes

I+
r

1? »

window attributes

C. 4. Concepts represented graphically on the construction
materials form

Floor/ceiling

........................ ===

floor ceilingdetail

349

APPENDIX C: Icons concepts

External wall

outside

extemal_cavity_wall_detail

Ground floor

..
-0

ground-floor-detail

350

APPENDIX-'D
Knowledge Bases :

The knowledge bases (complimentary to the proforma templates Appendix C) listed in

this section have been generated by original authors of the IFe (mainly Damian Mac

Randal, RAL) and are included for competeness.

351

APPENDIX D: Knowledge bases

startup: - /* read and execute clauses*/
promptL, "),
'$char type'("$", ̀ 2), to bb(mk_area, u_cpt), /* ignored, startup problem*/
to_bb(mk_area, u_mdl),
to bb(mk_area, user dialog),
to bb(update me, user dialog, user dialog),
to bb(update me, application, application),
to bb(update me, u_mdl, 'usermodel u_mdl_thinks'),
to bb(updateme, u_cpt, 'user cpt u_cpt_got'),
get dateLDate),
kset(date. Date),
tel usr(date, Date),
chat _w([prototype INTELLIGENT FRONT END',

of
1),

cmd loop.

cmd_loop: -
repeat,

get cmd,
fail.

get cmd: -
write('>'), ttyflush,
gettermLArea, Rest),
(Area abort -> halt ; true),
(Area = quitrqst -> quitrgst ; true),
(_Rest = [user said) Terml] ->

Term =Term 1

/* infinite loop */

/* ignore BB area */

(_Rest= [application said) Term2l -> Term = Term2

Term =Rest

).
(Rest = LCptlhelp] -> Term = true ; true),
(Rest = LCptldescription] -> Term = true ; true
!, Pred=. _Term, !, Pred,
I.

getterm(_Area, Term): -
getname(_Namel, Chr1),
nameCArea, Name 1),
(Chr1\=- 10->

getname(_Name2, Chr2),
name(-Pred name, Name2),
getargsLChr2, Args),
Term=LPred namel_Args]

)"
Term =p

352

/* uchk */

initial

APPENDIX D: Knowledge bases

getargs(,., ChrLArgs): -
(Chfl=--10 ->

gemame(-Name, `Chr
3),

convert(Name�Atom),
getargs(_Chr 3,

_Args_1),
_Args=LAtoml

Args_1]

)" _Ar8s--E1

getnameLName, Chr): -
_Chr

\-=10,
getO(-Chr_1),
(Chr 1ý-9, Chr_1\=-10

getnameLName_1, Chr 2),
Chr= Chr 2,

(Chr 1=32 -> Name=[951Name 1]

)"

)
Name=LChr 11 Name 1]

Name--p,
Chr= Chr 1

getname(_Name, Chr): "
ýýý"

P replace " with _' */

convert([431 String], Var): - % handle 'V signed numbers
convert(_String, Var).

convert([451 String], Var): - % handle'-signed signed numbers
convert(-String, Var2),

_Var
is - Var2.

convert(-String, Var): -
name(_Atm, _String), (number(-Atm) ->

_Var = Atm
Qt(-Atm, Flt) .>

Var = Fit

Var = Atm
)"

initial

353

APPENDIX D: Knowledge bases master

/* Dont listen to what the user says about his name / type / level -
* rely on the user model's opinion

u_mdl_thinks(username, pokey, User name, Who_set) : -
(abolish(user name, 1) ; true),
assert(user name(User name)).

u_mdl_thinks(usertype. nokey, User type,
-Who--set) :-

ß69'o new user type
(called(-Cpt set), %% redo existing cpt sets

Pred=.. [_Cpt_set, refresh],
Pred,

fail

true %% replaced
)"

u_mdl_thinks(userlevel, pokey, User level, Who set) : - (intro(�Userlevel) ; abolish(userlevel, l)),
assert(user level(Jserlevel)). /*for speed in feedback selection*/

intro(expert)
user name(-User name),
chat usr([

['Hi ',
_User name, . '], 'What is the problem this timer,

"DI
retract(intro(expert)). % leave novice mesage in case needed

intro(novice) : -
user name(_Username),
chat usr([

['Hi ',
_User name, '. '],

'Just fill in the forms, changing defaults if you,,
'want, as I will ask on the forms for any data I',
'need. I will try not to ask too many questions! ',
'Anytime I want to chat to you, I will place the',
'message in this box. Urgent messages will also',
'be placed in a popup box near the field causing',
'the problem. Click in the box to make it go away. ',
"D.

abolish(intro, l).

project(help). %%%%% stupid form package
project(description). %%%%% stupid form package
project(Project) :- /* existing project

proj_existsLProject, Session, Started, Data, LogFile),
kset(session, Session),
kset(started, Started),
ask_usr(session, Session),
ask usr(started, Started),
LData], %%%%% retrieve existing master cpts!!!!! (calledLCpt set), %% set up previously done cpt sets Pred=.. LCpt_set, refresh],

Pmd,
fail

Inie %% replaced

to bb(load log,
_Log), uset(project, Project),

start session.

).

354

APPENDIX D: Knowledge bases

project(_Project) :- /* new project
kset(session, 1),
get date(_Date),
kset(started, Date),
ask_usr(session, 1),
ask usr(started, -Date), uset(project, Project),
start session.
tell usr(user type, architect).

start session : -
ask usr(b_analysis),
ask usr(b bld_spec),
assert(user level(novice)), %%%%% demo fudge
feedback(focus enabled).

feedback(focus_enabled, novice) : -
chat usr([

These buttons switch the focus of discussion to',
'the requested topic. The relevent forms will be',
'displayed below (existing ones will disappear). ',
'It is suggested that the analysis forms are filled',
'in firstly in order to minimize specification of,
'redundant information during building description:.

b_analysis(on) : -
focus_concept(master, analysis),
analysis(initialize).

b bld spec(on) : -
focusý_concept(master, bld_spec),
bid_spec(initialize).

master

355

APPENDIX D: Knowledge bases building specification

b1d_spec(initialize) :- %% now addressing building specification opts
getenv('IFE_LOC', Loc), %% init location menu, depending on

%% users location
(Loc=uk,

offer usr(location, 'use-map
glasgow edinburgh aberdeen belfast london manchester birmingham newcastle cardiff

-LM = cur,
offer_usr(location, london paris bonn rome madrid')

).
feedback(bld spec_sel).

feedback(building_sel, novice)
chat-w([

'This button switches the focus of discussion to,
'the description of the (proposed?) building.,
'Subsidary forms will enable the site, geometry,,
'materials, use patterns, etc. to be specified. ',
�3).

bld_spec(reücsh) :- %% tell user all known about this meta-cpt
(known(location, Location) ->

ask usr(location, _Location)

refmshgatiwde),
refreshpongiwde)

).
refresh(environment),
refresh(function).

location(use_map) :- /* user selected map */
new dialogue(map; map -e -o -s'),
ask usroatitude),
ask usr(longitude).

locationLLocation) :- /* current location
known(location,

_Location), uset(location, .
Location).

)

356

APPENDIX D: Knowledge bases building specification

location(-Location): - /* known location */
uset(location, Location),
position ofLLocation, Latitude, Longitude),

/* known, check compatible with user set position, if any
(\+check_positionLLocation, Latitude, Longitude) ->

kset(latitude, Latitude), /*no user supplied position*/
kset(longitude, Longitude),
kset(timezone, 'GMT'),
()Latitude < 0,

Lat2 = Latitude,
name(-Lat2, _Lat2_str), appendLLat2_str, " S", Lat2_str2)

name(_Latitude, _Lat2_str), append(_Lat2_str, " N", Lat2 std)

ask_usr(ladtude, Lat2_str2),
(Longitude < 0,

Lng2 =- _Longitude, name(-Lng2, Lng2 str),
appendLLng2 str, " W", Lng2_str2)

name(-Longitude, Lng2_str),
append(-Lng2 str, " E", Lng2_str2)

).
ask_usr(longitude, Lng2_strl)

tive
)"

check_position(_Location, New-latitude, New-longitude) : -
knownw(latitude,

_Latitude, user set),
knownw(longitude, Longitude, user set),
(near(Latitude, Longitude,

-New-latitude, New_longitude, 1.5) ->
tme
feedback(loc_posclash),
suggest_usr(location, Location),
suggest usr(latitude, New latitude),
suggest usr(longitude, New longitude)

)"
locationLLocadon) :- /* unknown location */

knownw(latitude,
_Latitude, user-set), /* but pos already set

knownw(longitude, Longitude, user-set).

locationLL. ocation) :" /* unknown location */
feedback(location_unknown), /* no position set yet
ask usr(latitude),
ask usr(ongitude).

feedback(loc-pos clash, novice) : -
chat usr([

To the best of my knowledge, the given location is not',
'at the latitude/longitude you specified earlier. ',
'If you want the locations real position, use the default',
'values in the latitude/longitude boxes. ',
�)).

357

APPENDIX D: Knowledge bases building specification

feedback(loc_posclash, expert) : -
chat usr([

'Check latitude/longitude:.
"1).

feedback(location_unknown, novice) : -
chat usr([

'Sorry, I don"t know where that is:,
'You"ll need to give me its position (ie. its latitude/',
longitude). You should also verify the type of site set',
'below (default: city centre), and the suggested climate',
'file (closest suitable collection). ',
1).

feedback(location unknown, expert) : -
chat usr([

'Where is that? ',
"]).

latitude(_Latitude) :- /* current latitude */
known(latitude, Latitude).

latitude(.. Latitude) : -
uset(latitude, _Latitude), tell usr(latitude, -Latitude), (knownw(longitude,

_Longitude, user set) ->
positionLLatitude, _Longitude)

)"
true

longitude(-Longitude) :- /* current longitude */
known(longitude,

_Longitude).

longitudeLLongitude) : -
uset(longitude, Longitude),
tell usr(longitude, _Longitude), (knownw(latitude,

_Latitude, userset) ->
positionLLatitude, Longitude)

)"
we

positionLLatitude, _Longitude) :-
/* known position */

location nearLLatitude, Longitude, Location),
(\+check location(Location, Latitude,

_Longitude) -> tell usr(location, Location),
kset(location, Location)

true
)"

358

APPENDIX D: Knowledge bases building specification

check location(Location, Latitude, Longitude) : -
knownw(location, Loc, user set),
(position ofLLoc, Loc Lat, Lm-Long) ->

(near(-Latitude, Longitude,
_Loc

Lat, Loc_Long, 1.5) ->
true

feedback(locý-. pos clash),
suggest usr(location, Location),
suggest_usr(latitude, Loc_Lat),
suggest usr(longitude, Loc_Long)

)"
true

position(_Latitude, Longitude) :- /* unknown position */
known(location, Location). /* but loc already set

position(_Latitude, Longitude) :- /* unknown position
tel l_usr(location, '??? '),
feedback(position_unknown). /* no loc set yet

feedback(position_known, novice) : -
known(location, Location),
chat usr([

'From the position indicated, I am assuming you mean',
Location, ' but I will use your latitude & longitude. ',

If the assumed location is not acceptable, (and you want',
'to refer to this exact position again), give a name for',
'this location by selecting USER in the Location menu. ',
'In that case, you might also want to set the environment',
'for the new location. ',
"J).

chat _w([NOTE. The locations actual coordinates can be obtained',
'as the default in the Latitude/Longitude boxes',
"1).

feedback(position_known, expert) : -
knownw(location,

_Location,
kb set),

chat usr([
['I am assuming you mean location', Location],
'7)"

feedback(position_enror, novice) : -
knownw(location, Location, kb_set),
position_of(_Location, Loc Lat,

_Loc_Long), known(latitude, Lat),
known(longitude,

_Long), chat usr([
'ERROR! ',
LLocation, ' is at', Loc Lat, N ', -Lop-Long, V. I.
['whereas the position you gave was ', Lat, N ',

_Long,
'W:],

'You should change the location field to something else, ', '(invent a name if you want) or modify the position. I',
'have set the real position and location as defaults in',
'the latitude, longitude and location fields',
�]).

359

APPENDIX D: Knowledge bases building specification

feedback(position_error, expert)
chat usr([

'ERRORt ',
'thats not theret',
"]).

feedback(position_unknown, novice) : -
chat usr([

'If you want to refer to this exact position again, give',
'a name for it by selecting USER in the Location menu. ',
'You will also need to set an environment for the location. ',
9).

feedback(position_unknown, expert) : -
chat usr([

'I could do with a name for this location',
�l).

environment(-Site type) :- /* current site type
known(environment, Site type).

environment(-Sitetype) :- /* known site type
uset(environment, -Site-type), exposure(_Site_type, Exposure),
gmd rflct(-Site_type, Grnd rflct),
kset(exposure. Exposure),
kset(grnd rflct, Gmd rflct),
fecdback(environment_known).

environment(-Site type) :- /* unknown site type
feedback(environment unknown),
ask usr(exposure, 1).
askusr(gmd_rflct, 2.5),
uset(environment, Site-type).

feedback(environment unknown, novice) : -
chatusr([

'Sorry, I don"t know what that means! Unless you know',
'what you are doing, I suggest youselect a standard site',
'type from the menu. Otherwise, you MUST give me an,
'indication of site exposure (int: 1-7) and a figure for',
'the ground reflectivity (real: 0-10). Put these in the',
'appropriate boxes on the form, (use the defaults given, ',
'if necessary',
"]).

feedback(environment unknown, expert)
chat _w(['What does that mean? ',

"1).

360

APPENDIX D: Knowledge bases building specification

exposure(-Exposure): - /* current exposure
known(exposure, Exposure).

exposure()Exposure) :- /* new exposure
check exposure(_Exposure),
uset(exposure,)Exposure).

exposure(_Exposure) :- /* new exposure was bad */
feedback(bad exposure).

check exposure(Exposure) : -
Exposure > -1,
Exposure < 8.

feedback(bad exposure, novice)
chat _w(['Sorry, that number does not mean anything to me,

'Please fix or default it. (I warned you)', 1,]).

feedback(bad exposure, expert) : -
chat usr([

'Error Oxf 12D9 : Illegal op 841 in stream 0, /dev/tty',
'or in other words, I think that value will cause problems. ',

'You should reconsider it. ',
, 1]).

gmd_rflct(Gmd rflct) :- /* current ground reflect */
known(gmd rflct, Gmd rflct).

gmd rflct(.. Gmd rflct) :- /* new ground reflectivity
check_gmd rflct(Gmd rflct),
uset(grnd_rflct, Gmd rflct).

gmd flct(_Gmd rflct) :- /* new ground reflectivity bad*/
feedback(bad-grnd_rflct).

check,,, gind rflct(Gmd rflct) : -
Grndrflct > gind rflct max,
Grnd rflct < rndrflct min.

feedback(badgmd rfict, novice) : -
chat usr([

'Sorry, that number does not mean anything to me',
'Please fix or default it. (I warned you)', III).

feedback(bad-gmd rflct, expert) : -
chat usr([

'I think that value will cause problems. ',
'You should reconsider it. ',
nl).

function(-Function) :- /* current function
known(function, Funtion).

361

APPENDIX D: Knowledge bases building specification

function(_Function) :- /* new function
check-function(-Function),
uset(function, Function).

function(Function) :- /* new function was bad */
feedback(bad function).

check_function(_Function): -
functionLFunction,,.

feedback(bad_function, novice) : -
chat usr([

'Sorry, that category does not mean anything to me',
'I would suggest selecting a category that is on the menu',
'so that, rathter than asking you, I can select sensible',
'values for data required in specifying the analysis',
'methodology. '.
I).

feedback(bad_function, expert) : -
chat usr([

Dons know that category',
"])

b-geometry(on)
focus_concept(bldspec, geometry),
geometry(initialize).

b construction(on) : -
focus_concept(bld_spec, construction),
construction(initialize).

b useage(on) : -
focus_concept(bld_spec, useage),
useage(initialize).

b connectivity(on) : -
focus concept(bid spec, connectivity),
connecdvity(initialize).

b_site(on) : - focus_concept(bld_spec, site),
site(initialize).

b shading(on) : -
focus_concept(bld spec, shading),
shading(initialize).

b_airflow(on)
focus concept(b1d spec, airflow),
airflow(initializebldspec).

b_ plant(on) : -
focus_concept(bld_spec, plant),
plant(initialize).

362

APPENDIX D: Knowledge bases

b_control(on) : -
focus_concept(bld spec, control),
control(initialize).

b_bld browse(on) :- /* ok to browse
focus concept(bld spec, bid browse),
bid browse(initialize).

building specification

363

APPENDIX D: Knowledge bases

geometry(initialize) :- %% now addressing geometry specification opts
feedback(geometryse1).

feedback(geometryse1, novice) : -
chat usr([

"Ibis button switches the focus of discussion to,
'the geometric and material properties of this',
'building. Firstly, the geometry must be given. ',
'Several alternative input mechanisms are provided,
'7).

geometry(refresh) :- %% tell user all known about this meta-cpt
%% get set of existing zone no for menu

setof(-Zone_no, zone_made(-Zone no), -Zone-nos), offer usr(zone_form', Zone nos). %%%%%

zone sewp(_New zn no): -
(nxt zone(_Zn no) ">

/*common setup for new zone*/

retract(nxt zone(,) /* first zone? */

Zn no is 0
),
New zn_no is Zn no + 1,

assert(nxt zone(New zn no)),
assest(zone made(-New_zn_no)),
(ro_zones(_Num_zn) ->

retract(no zonesC))

Num zn is 0
)+

New num zn is Num zn + 1,
assert(no zones(New num zn)),
tell usr('ia_zones'. New num zn),
(g_focusL, ->

retract(g, _focus(New_zone no))
true

/* increment numb of zones */

assert(g_focusLNew_zone_no)). /* currently displayed zone

b form fill(on):
focus_concept(geometry, g_form_fill),
g_form_fill(initialize).

b_. g_draw(on) :- /* user wants drafting package
focus_concept(geometry, g_draw),
g_draw(initialize).

b_. g_cad file(on) :- /*user has geometry in file*/
focus concept(geometry, g_cad_file),
g_cad_file(initialize).

geometry

364

APPENDIX D: Knowledge bases geometry - drawing package

a draw(initialize).
feedbeclc(draw_geom).

feedbeck(draw-ge(m): -
chat user([

'Select the required modelling package,
'from the panel. '
]).

drawing_package(-Packagename): - /* user has selected a package */
new_dialogue(draw, Package_name),
defocus_concept(geometry).

365

APPENDIX D: Knowledge bases geometry- import cad file

gcad_file(initialize).
tell usr(geom_farmat, viewer),
feedback(file-geom).

feedback(file_geom, novice): -
chat-user([

This form allows you to import the geometrical',
'description of a building from an external source',
'(viewer, autocad, acropolis). '
D.

geom file(_Zn_file):
to_bb(application, start, perspective, ýZn_file).

perspective completeLPicname): -
tel usr(geom file-pic, Pic name).

366

APPENDIX D: Knowledge bases geometry - form fill

g_fonn fill(initialize): -
zone_sewp(_Zone_no),
feedback(fonn fill_, geom).

zone_geom(refresh) :- %% tell user all known about current zones
zone made(jone no),
zone-geom(refresh, Zone no),
fail. %% iterate over all made zones

zone_geom(refresh). %% never fail

zone_geom(refresh, _Zone no) :- %% tell user all known about this zone
'zone form$'(-Zone_no, on), %% re-load form
refresh(zone_name, LZone nop,
refresh(zone desc, LZone no]),
refresh(zone orientation, LZone no]),
(known(zone_origin, LZone no], LX, Y, Z]) ->

ask usr(zoneorigin x, _X), ask_usr(zone origin_y, Y),
ask usr(zone origin_z, Z)

true

zone_type(-Zone_no, Zone-type, NoPoints),
(Zone-type = rec ->

ask usr(zone_type, rec),
refresh(zone length, LZone no]),
refresh(zone width, LZone no]),
refresh(zone_height, LZone no])

Zone type = reg ->
ask usr(zone_type, reg),
refresh(zone height, LZone no]),
refresh(vertex list 2d, LZone no])

; Zone_type = gen ->
ask usr(zone type, gen),
refresh(vertex list 3d, Lzone no]),
refresh(surface list, LZone_no])

)"

refresh(vertex lis4_2d,
-Zone-no). refresh(vertex_list 3d,
-Zone-no). refresh(surface list,

_Zone no).

zone name(-Zone_name)
gjocus(-Cur zone no),
uset(zone_name, LCur zone_no], -Zone-name).

zone dcsc(-Zone desc) : -
gjocusLCurzone no),
uset(zone desc, LCur zone no], _Zone

desc).

zone_orientadon(_Orientation): -
gjocus(, Curzone no),
uset(zone orientation, LCur zone_no], _Orientation).

367

APPENDIX D: Knowledge bases geometryformfill

zone origin x(_Xnew): -
g_focus(_Curzone no),
(known(zone_originCur zone no,

X=0,
_Y=0,

Z=0

uset(zone origin, LCur zone no], LXnew,
_Y, _Z]).

zone origin... y(.., Ynew): -
g_focus(_Curzone no),
(known(zone originýCur zone no,

X=0, Y=0, Z=0
).
uset(zone origin, LCur zone no], LX, Ynew,

_Z]).

zone origin z(-Znew):
g_focus(, Cur zone no),
(known(zone originCur zoneno,

X=0, Y=0, Z=0
).

uset(zone_origin, LCur_zone no], LX, Y, Znew]).

zone_type_Set(rec): - /* zone is a rectangle
g_focus(_Cur zone no),

%%%%% unask usr(zone_type), %%%%% cant change type !! III
(zone_typeLCur zone no, Type, No-points) ->

unfocus usrLType),
retract(zone_type(_Curzone no, Type,

-No-points))
true

assert(zone_type(_Cur zone no, rec, 7)),
%%%%% clear form or destroy & recreate

focus_usr(rec), %% display rec subform
uset(zone_type. LCur zone nol, rec),
update_vertex(,, Curzone no, 0,0,0,0),
update vertex(-Cur zone no, 1, X, 0,0),
update_vertex(-Curzone no, 2, X,

_Y,
0),

update-vertex(-Cur-zone-no, 3,0,
_Y,

0),
update vertex(_Cur zone_no, 4,0,0, Z),
update_vertex(_Cur_zone_no, 5,

_X,
0,

_Z), update_vertex(_Ctg zone no, 6, X,
updatc vertex(-Cur zone_no, 7,0,

_Y, _Z), update-surface(-Cur-zone-no, 0, [3,2,1,0]),
update_surfaceLCur zone_no, 1, [4,5,6,7]),
update_surfaceLCur zone no, 2, [0,1,5,4]),
update-surface(-Cur zoneno, 3, [1,2,6,5]),
update surfaceLCur zone no, 4, [2,3,7,6]),
update_surfaceLCurzone no, 5,13,0,4,7]),
ask usr(zone size label),
ask usr(zone length),
ask usr(zone width),
ask usr(zone height).

368

APPENDIX D: Knowledge bases geometry - form fill

zone_type_Set(reg): - /* constant height zone
g_focus(_Cur_zone no),

%%%%% unask usr(zone type), %%%%% cant change type 1!!!!
(zone_type(-Cur zone no, Type, Nopoints) ->

unfocus_usr(_Type),
abolish(zone type, 3)

um

assert(zone type(_Cur zone no, reg, 5)),
focus usr(reg), %% display reg subform
uset(zone_type. LCD zone no], reg),
update vertex(-Cur zone no, 0,0,0,0),
update_vertexLCurzone no, 2, X,

_Y,
0),

update vertex(_Cur zone no, 4,
_X, _Y,

0),
update vertex(-Cur_zone no, 1,0,0,

_Z), update vertex(-Cur_zone_no, 3,
_X, _Y, _Z), update vertex(-Cur zone_no, 5,
_X, _Y,

Z),
update_surfaceLCur_zoneno, 0, [4,2,0]), % floor
update_surfaceLCur_zone no, 1, [1,3,5]), % ceiling
ask_usr(zone_sizelabel),
ask usr(zone_height),
focus usrCvertex list 2d'). %% display vertex subform

zone type_Set(gen): - /* arbitarily shaped zone
g_focus(Cur zone no),

%%%%% unask usr(zone_type), %%%%% cant change type ! 111!
(zone_type(-Cur zone_no, Type, No_points) ->

unfocus_usr(-Type),
abolish(zone_type, 3)

true
)'
assert(zone_typcLCur zone_no, gen, 3)),
focus_usr(gen), %% display gen subform
uset(zone_type, LCur zone no], gen),
update vertex(_Cur zone_no, 0,0,0,0),
update vertexLCur zone no, 1,

_X, _Y,
Z),

update_vertexLCurzone no, 2, X,
_Y,

Z),
update vertex(-Cur zoneno, 3,

_X,
Y,

_Z), focus usrCvertex list 3d'), %% display vertex subform
defocus_usr('vertex_list_3d'),
focus_usr('surfacelist'). %% display surface subform

zone_type Set(,: - /* illegal zone type
feedback(bad_zonetype).

zone_length(-Length): -
g_focus(_Curzone no), zone type(-Cur zone no, rec, 7),
(vertex(-Cur zone_no, 0, X1, Y1, Z1), nonvar(-X1) ; _X1

is 0),
Ln is X1 + Length,

update_vertex(-Cur_zone no, 1, Ln, Y,
_Z), update vertexLCur_zone no, 2, Ln,

_Y, _Z), update_vertex(_Curzone no, 5, Ln, Y, Z),
update vertexLCur_zone no, 6, Ln, Y,

_Z). zone_length(Length): - % oops, not a rec zone
feedback(g_focuserror).

369

APPENDIX D: Knowledge bases geometry - form fill

zone width(-Width):
g_focus(Cur zone no), zone-type(Cur zone no, rec, 7),
(vertex(_Cur zone_no, 0, Xl, Y1, Zl), nonvarLYl) ; _Y1

is 0),
Wd is Y1 + Width,

update vettexLCur zone no, 2, X, Wd, Z),
updatevertexLCur zone no, 3, X, Wd, Z),
update vertexLCur zone no, 6, X, Wd, Z),
update vertexLCur zone no, 7, X, Wd, Z).

zonewidthLWidth): -
feedback(g_. focus_error).

zone_heightLHeight): -
g_focus(_Curzone no), zone_type(-Cur zone no, rec. 7),
(vertexLCur zone no, 0, X1, Y1, Z1), nonvar(-Zl) ; Zl is 0),

_Ht
is Z1 + _Height, repeat, gen_integer(-N, 4), (% dont backtrack into update

vertex(-Cur-zone-no, N, X, Y, Z),
update vertex(Sur zone_no, N, X, Y, Ht),

1), N=7, !. % dont backtrack into repeat loop

zone_height(_Height): - % changing height of reg body
g_focusLCur zone no), zone_type(jCur_zone_no, reg, No-points),
(vertexLCur_zone no, 0, X1, Y1, Z1), nonvarLZl) ; Zl is 0),
Ht is Zl + Height,

repeat, gen_integerLN, 0), (% dont backtrack into update
_N_bot

is N*2,

_N -Pp
is

-N -bot + 1,
vertexLCur zone no, N bot,

_X,
Y,

_Z), update vertexLCur zone_no, N top, X,
_Y, _Ht), !), N_top = No. points, 1. % dont backtrack into repeat loop

zone heightLHeight): % its a gen!
feedback(g.. focus_error).

feedback(g_focus enror, expert): -
chat usr([

'Sorry, are we talking about the same zone?. Could you',
'please deselect and reselect the zone in question',

feedback(g_focus error, novice): -
chat usr([

'Sorry, I am getting confused. I suspect the zone you are,
'looking at is not the one I think it is. Could you confirm',
' which zone you are addressing (by reselecting it)',
, ilk.

370

APPENDIX D: Knowledge bases geometry - form fill

/* NOT USED, vertices now held relative
* zone origin x(-X): - % setting origin of the body
* g_focus(_Cur zone no),
* zone type(_Cur zone_no, Type, No-points),
* repeat, gen integer(_N, 1), (
* vertex(_Cur zone no, N,

_Xold,
Yold, Zold),

* (nonvar(-Xold) ->
* _Xnew

is
_X + Xold

*
* Xnew is

_X *).
* update vertex(_Cur zone_no, N, Xnew, Yold, Zold),
* !),

_N = No_points, !.
*
*zone_origin-y(-Y): -
* g_focusLCur zone_no),
* zonetype(-Cur zone no, Type, Noý-. points),
* repeat, geninteger(N, 1), (
* vertex(-Cur_zone no, N,

_Xold, _Nold,
Zold),

*(nonvar(-Yold) ->
* Ynew is ff + Yold
*

ff new -
Ynew is ff

* updats vertexLCur zone_no, N, Xold, Ynew, Zold),
* 1),

_N = No-points, !.
*
*zone origin_zL. Z): -
* g_focusLCur zone no),
* zone typeLCur zone_no, Type, No-. points),
* repeat, gen_integer(_N, 1), (
* vertex(Cur_zone no, N, Xold, Yold, Zold),
*(nonvarLZold) ->
* Znew is

_Z + _Zold *

-Znew
is

_Z *)ý
* updatevertexLCurzone no, _N,

Xold,
_Yold, _Znew), * !),

_N = Noooints, !.
*1

'x coord$'(_N. X):.
new coordLN, X,

_,,.
'y_eoord$'(., N, Y): -

new coordLN, _,
Y, J.

'z coord$'(-N, Z): -
new coord(_N, _, _,

Z).

371

APPENDIX D: Knowledge bases

new_coord(-N, X, Y, Z): -
g_focusLCur zone no),
zone typeLCur zone_no, reg. No-points),
varLZ), % no Z input for reg
Pt_no is N+N,

update_vertexLCur_zone_no, Pt no, _X,
Y,,,

Ceiling-pt no is Ptno + 1,
update vertexLCur zone no, Ceilingntno, X, Y, Ht),
(Ceiling-pt no = Nojoints -> %%% open new coord'field'

N2 is N+1,
Nxt_. point is No-points + 1,

update vertexLCur zone no, Nxtýoint,
_, _,

0),
Nxt ceiling-. point is No-. points + 2,

update vertex(_Cur zone_no, Nxt ceiling-point, Ht),
ask_usr(['vert no$', _N2],

N2),
ask_usr([k coord$', N2]),
ask usr(['y coord$', N2]),
retract(zone_type(-Cur zone no, reg,,),
assert(zone type(-Curzone no, reg, Nxtceiling_point))

nue

geometry - form fill

)+
(vertex(Cur zone_no, Pt no, X1, Y1, J, nonvarLX1), nonvarLY1) ->

_Face
is

_N + 1, % got point, update surfaces
Last_pt no is Pt no - 2,
Last-ceiling pt_no is Pt no - 1,

update surfaceLCur zone no, Face, LLast-pt no, Pt no,

_Last_ceiling-ptno,
Ceiling jt_no]),

update surface(-Cur zone_no, 0, Pt no, J, % floor
update_surfaceLCur zone_no, 1. Ceiling_pt no) % ceiling

)"
true

new coord(_N, _X, _Y,
Z):

g_focus(-Cur zone no),
zone type(_Cur_zone no, gen, No-points),
update_vertex(-Cur zone no, N,

_X, _Y,
Z),

(N= No,
_points ->

Nxtnoint is Nonoints + 1,
update_vertex(_Cur zone no, Nxt_point,
ask_usr(['x coord$', Nxt_. point]),
ask usr(['y coord$', Nxt_. point]),
ask usr(['z coord$', Nxtnointj),
retract(zone_typeLCur_zone no, gen,
assert(zone_typeLCur zone no, gen, Nxtuoint))

)"
true

new coordLN, X,
_Y, _Z): -

/* should not occur for rec*/
gjocusLCur zone no),
zone typeLCur_zone_no, rec, No points).

372

APPENDIX D: Knowledge bases geometry - form fill

'surface$'(-N, Points): -
g_focus(_Curzone no),
zone type

.
Cur zone no, gen, No_points),

name(-Points, Pt 1st),
chars_to words(-Pt 1st, List),
check surface(_List, No_points),
update surface(_Cur zone_no, N, List).

check_surface(LPI_List], Nopoints): - %% should do coplanar check!!!!!
nonvarLPt),
Pt =< No-points,!,

check_surface(-List, _No_points).
check surface(LPt], Nopoints): -

Pt =< No points.
check surface(p, Nopoints).
check surfaceLPt, N(Ipoints): -

nonvarLPt),
Pt =< -No-points. check_surfaceLL, Nopoints): -

write("check surface failed given: ["), %%%%% to stderr!!!!!
write(_L),
write("],

"),

write(_Nopoints),
nl.

update_vertex(_Cur zone_no, _N, _X,
Y, Z): -

nonvar(Sur zone_no), nonvar(-N),
(retract(vertex(_Cur_zone no, _N, _Xold, _Yold, _Zold)) ; true),
update_coord(-X, XoIdLXnew),
update_coord(-Y, _Yo1dLYnew), update coord(-Z, _Zo1dLZnew), assert(vertex(Cur_zone no, N, Xnew, Ynew, Znew)),
(nonvar(-Xnew), nonvar(-Ynew), nonvar(-Znew), /* got full vertex

uset(vertex, LCur zone no, N], LXnew,
_Ynew, _Znew]), feedback-. geom(-Cur zone no)

)"
true

updatesurface(_Cur zone no, N, List): -
nonvar(List), nonvar(_Cur zone no), nonvar(_N),
(retract(surface(_Curzone no, _N, _L)) ; true),
assert(surface(Cur zone no, _N,

List)),
uset(surface, LCur zone_no, N], List),
feedback-georn Cur zone no).

update_surface(_Cur zone_no, _N,
Prelist, List): -

nonvar(_Prelist), nonvar(Cur zone_no), nonvar(_N),
(surface(-Cur zone_no, N, List) ; true),
(nonvarLList), member(-Prelist, List)

(nonvarLList), append([_Prelist], List, L)

_L
is LPrelist]

update surface(. Cur zone_no, _N, _L))"

373

APPENDIX D: Knowledge bases geometry - form fill

update_surfaceLCur zone_no, N, List, Postlist): -
nonvarLPostlist), nonvar(-Cur zone no), nonvarLN),
(surfaceLCur zone no, _N, _List) ; true),
(nonvar(jist), member(_Postlist, List)

(nonvar(_List), appendLList, LPostlist], L)

_L
is LPostlist]

).
update-surface(Curzone no, N, L)

)"

update c=dLALAold, Anew) : -
(nonvarLA) -> Anew is A

)"

(nonvar(_Aold) ->
Anew is Aold

)
time

feedback-geom(-Cur zone no). %% perspective feedback?

374

APPENDIX D: Knowledge bases construction

construction(initialize) :- %% now address construction specification cpt
conlst(1, List), %% get list of available materials from database
offer usr(material_type,)List),
feedback(constcuction sel).

feedback(construction sel, novice)
chat _w(["Ibis button switches the focus of discussion to',

'defining the materials and construction primitives',
'eg. a particular external wall construction to be',
'used. The lower half of the form provides access',
'to some standard databases. If a materials is not',
'shown here, its thermophysical properties will be',
'required'
"1).

b construction(refresh) :- %% tell user all known about this meta-cpt
true.

material type(. Material)
conlst(2, Material,

_List), offer usr(material, List),
ask usr(material).

/* browser */

375

APPENDIX D: Knowledge bases

%%%%%b bld browse(on) :- /* browser */
%%%%% no zones(Zn_no), %% should fail or be 0
%%%%% Zn no > 0,
%%%%% feedbxk(browse_eiror).

bld browse(initialize) :- /* ok to browse */
(browsing ->

true /* only start one browser */

assert(browsin8),
to_bb(application, start, browse)

feedback(ixowse-ge(m).

feedback(browse_erroc, novice): -
chat usr([

'Sorry, the browse facility is designed to create a',
'complete building geometry and you already have started,
'inputting some zone descriptions. In order to use the',
'browse facility, you will have to destroy the geometry',
'already input - use the "zap" button on this form iff,
'you really want to do this.
�1)_

feedback(browseerror, expert): -
chat usr([

'You already have a geometry ! Zap it',
. 1D.

fecdback(browse_, geom, novice): -
chat usr([

"The browse facility first asks you to select the type',
'of building, then offers a number of topologies before',
'finally permitting a limited dimensioning facility',
Browse cannot be used with any other geometry input',
'method, as it is designed to create a complete building',
'geometry. However, the resulting geometry, once passed',
'back to the ife, can be modified using any other method,
I,]).

feedback(browse.. geom, expert): -
chat usr([

'The browse facility first asks you to select the type',
'of building, then offers a number of topologies before',
'finally permitting a limited dimensioning facility',
I).

building_class(_ClassJist): -
offec usr(browse_ ype, I? '),
offer usr(browse image, '?? '),
offer usr(browse class, Class_list).

browse classLltem): -
offer usr(browsetype, '?? '),
of fer usr(browse image, '?? '),
to bb(application, inform, browse, [['class: , Item]]).

building_typesLTypeslist):.
offer usr(browsetype, Types list).

browse

376

APPENDIX D: Knowledge bases

browse typeUtem): -
to bb(application, inform, browse, [['type: ',

_Item]]).

building_imagesLImage_list): -
offer usr(b owse image, Image list).

browsp image
current buildingLBuilding_name) ->

retract(current building, l)

true

assert(current building(_Building_name)).

browse select(on): -
%% current building(-Building_name) ->
%% uset(building_nameBuilding_name),
%% to_bb(application, start, init rove),

shell("bin/initrove &"),
to bb(application, start, etherlink).

%% ;
%% hU0
%%).

browse

377

APPENDIX D: Knowledge bases analysis

analysis(initialize) :" %% now addressing analysis specification cpts
offer usr(m_analysisl, 'comfort ann_cons peak_load'),
feedback(analysis_sel).

feedback(analysis_sel, novice) : -
chat usr([

'This button switches the focus of discussion to',
'the sort of analysis required. Information about',
'the design stage is asked for so that only',
'appropriate analysis (and data input) will be',
'carried out. ',
"1).

analysis(refresh) :- %% tell user all known about this meta-cpt
true.

b mono functionalmethodology(on): -
focus_concept(analysis, mono functional_methodology).

m_analysis(comfort): -
shell("lib/uc/uc/appraisals/com fort &").

comfort analysis(-results, complete): -
offer_usr(analysisresults, results).

m_analysis(energy): -
shell("lib/uc/uc/appraisals/energy &").

energy analysis(_results, complete): -
oller usr(analysis results, _results).

m analysis(condensation): -
shell("lib/uc/uc/appraisals/condensation &").

condensation_analysis(_results, c(xmplete): -
offer usr(analysis resultsresults).

b_multi functionalmethodology(on): -
focus concept(analysis, multi_functionalmethodology).

mm analysis(controlsystems): -
shell("lib/uc/uc/appraisals/control_systems &").

control systemsLresults, complete): -
offer usr(analysisresults _results).

378

APPENDIX D: Knowledge bases interf ace

feedback(_Concept) : -
chat usr([", '7),
(user level(-Userlevel) ->

feedback(-Concept, User level)

true.

feedback(_Concept, novice)

focus_concept(_Focus_type, Metaconcept): -
defocus concept(_Focus_type), %% defocus relevent meta cpt
focus_usr(_Meta_concept), %% enable input, flag as currently
assert(focus(_Focus_type, Meta

_concept)),
%% available for input

assert(called(_Metaconcept)), %% has been addressed (data input?)
name(-Meta_concept, Mcpt str), %% load handler for this meta-concept
append("lib/uc/uc/kbs/", Mcpt str, Mcpt str2),
name(_Meta concept2, Mcpt str2),
[_Meta_concept2].

defocus_concept(_Focus_type):
(focusLFocus type, Metaconcept) ->

name(-Meta-concept, Mcpt str), %% turn off button; b_ prefix
append("b ",

_Mcpt_str,
Mcpt str2),

name(-Meta_concept2, Mcpt_str2),
tell usr(-Meta concept2, 'off),
unfocus_usrLMeta_concept),
retract(focus(-Focus_type, Meta_concept))

)"
tcue

tell usr(_Concept, Value) : -
to_bb(user dialog, tell userConcept, Value).

ask usr(-Concept) : -
to_bb(userdialog, ask-user, -Concept).

ask_usrLConcept, Default) : -
to bb(userdialog, ask_userýConcept, Default).

unask_usrLConcept) : -
to_bb(userdialog, unask userýConcept).

focus_usr(-Concept) : -
to_bb(user_dialog, focus_userConcept).

unfocus_usrCConcept) : -
to_bb(userdialog, unfocus userLConcept).

defocus usrLConcept) : -
to bb(userdialog, defocus_userConcept).

offer_usr(-Concept, Values) : -
to_bb(userdialog, offer user, Concept, Values).

suggest usr(_Concept, Value) : -
to_bb(userdialog, suggest user, Concept, Value).

new_dialogue(_Type, Cmd) : -
to bb(user_dialog, newdialog, Type,

_Cmd).

379

APPENDIX D: Knowledge bases

to bbLA, B, C, D, E) :-% eg u_cpt concept keys args who_set
to bbLA), csep,
to bbLB, C, D, E).

to_bbLA, B, C, D) :-% eg user_dialog tell_usr concept value
to bb(-A), csep,
to bb(-B, C.

_D). to bbLA,
_B,

C) :% eg user dialog ask usr cpt
to bb(_A), csep, % or notify-me area id string
to_bbLB, C).

to bb(-A, B) :-% eg mk area area
to_bb(. A), csep,
to bbLB), nl, ttyflush.

to bb(LHead]) : -
writeline(Head).

to bb(LHeadl Tail]) :
to bb(-Head), ksep,
to-bb(-Tail).

to -.
bb([]).

to bbLArg) : -
write(. -Arg).

chat usr(["]): -
chat usr(0).

chatusr(.. Text): -
write('user dialog'), csep,
write('chat user), csep,
writetextLText).

writetext(LHead]) : -
writeline(-Head), nl.

writetext(LHeadl Tail]) : -
writelineLHead), tsep,
writetextLTail).

writetext(Q) : -
tsep, nl.

writetextLArg) :
writeLArg), nl.

writeline(LHeadl Tail]) :
writeline(_Head),
writeline(Tail).

writeline(LHead]) : -
writelineLHead).

writeline(p).
writeline(_Arg) : -

write(Arg).

% text separator on its own

csep
write('

ksep :
write(' ý.

tsep
write('%).

% bb's concept separator
%% = \t
% bb's concept key separator
%% = \t
% bb's text separator
%% =1n'

interface

380

APPENDIX D: Knowledge bases interface

uset(-Concept, Value) :- /* user set concept value */
nonvar(-Concept),
sego cpt, Concept, nokey, Value, user_set).

uset(-Concept, _Keys,
Value) : -

nonvar(-Concept), nonvar(-Keys),
set(u cpt, Concept,

_Keys,
Value, user set).

kset(_Concept, Value) :- /*knowledge handler set concept value*/
nonvar(-Concept),
(knownLConcept, nokey, Value, user set)

set(u cpt, Concept, nokey, Value, kb_set)
)"

ksetLConcept, Keys, Value) : -
nonvar(-Concept), nonvar(_Keys),
(known(_Concept,

_Keys, _Value, user set)
set(u cpt, Concept,

_Keys, _Value,
kb_set)

)"

set(_Area, _Concept,
Keys, Value, Who set) : -

-Old-Term =.. LArea, Concept,
_Keys,

%%%% hold locally ??
(retract(-Old_Term) ; true),
Term =.. LArea, Concept, Keys, Value, Who set],

assert(-Term),
to_bb(-Area, Concept,

_Keys, _Value,
Who set).

knownLConcept, Value) : -
nonvarLConcept), var(, -Value), query(u_cpt, Concept, nokey, Value,,.

knownLConcept, Key, Value) : -
nonvar(-Concept), nonvar(_Key), var(-Value),
query(u cpt, Concept,

_Key,
Value, J.

knownw(-Concept, Value, Who set) : -
nonvar(_Concept), varLValue),
query(u cpt, Concept, nokey, Value, Who_set).

knownwLConcept, Key, Value, Who-set) : -
nonvarLConcept), nonvar(_Key), var(_Value),
query(u_cpt, Concept, Key, Value, Who_set).

queryLArea, Concept,
_Key,

Value, Who_set) : - Term =.. LArea, Concept, Key, Value, Who_set], % check locally
Term.

/*known(-Area, Concept, Value, Who_set) :- %%%% held locally for now * write(query), write(' I
* write(Area), writes
* to-bb(-Concept, '?, '?),
* read ansLConcept, Value, Who set),
* Value`-='? '.
*1

381

APPENDIX 0: Knowledge bases

u_cpt. gotLConcept, Value) :- /* someone else setting values
%%%%% take appropriate action!!!!!
true.

quitrgst
to_bb(quitrgst, kb-uc),
halt.

quitrgst(_,) : -
to_bb(quitrgst, kb-uc),
halt.

quitrgst(j : -
to_bb(quitrgst, kb-uc),
halt.

/* user said quit */

382

interface

APPENDIX D: Knowledge bases

position of(glasgow, 55.9, -4.5).
position_of(london, 51.5,0.1).
position_of(edinburgh, 55.9, -3.1).
position of(manchester, 53.4, -2.5).
position_of(birmingham, 52.5, -1.9).
position_of(exeter, 50.7, -3.5).
position of(belfast, 54.6, -11.6).
position_of(dublin, 53.4, -6.2).

environment(glasgow, city_centre).
environment(london, city_centre).
environment(edinburgh, city-centre).
environment(manchester, city-centre).
environment(birmingham, city_centre).
environment(exeter, city_centre).
environment(belfast, city-centre).
environment(dublin, city-centre).
environment(lenzie, urban).
environment(wantage, urban).
environment(abingdon, urban).
environment(oxon, rural).
environment(wilts, rural).
environment(berks, rural).
environment(chilton, rural).

exposure(city_centre, 1).
exposure(urban, 3).
exposure(rural, 4).
exposure(reference, 6).

gmd rflct(city_centre, 2.5).
gmd rflct(urban, 1.75).
gmd rnct(rura1,1.25).
gmd rflct(refererrce, 1).

climate_set(glas, 4.5,55.9).
climate_set(kew, 0.2,51.5).

climate type(glas82, verybad_week, '7/1', '15/1').
climate_type(glas82, very_bad_day, '7/1', 7/1').
climate_type(glas82, bad_day, '9/1', '9/1').
climate_type(glas82, average_week, '7/1', '15/1').
climate_type(glas82, good week, '1517', '2117).
climate_type(glas82, very_good_day, ' 1711', ' 1717').

function(residential, 1).
function(industrial, 2).
function(office, 3).
function(hospital, 4).
function(school, 5).

defaults

383

APPENDIX 0: Knowledge bases defaults

%%% The following predicates should be C functions
getenv('IFE LOC, uk).
conlst(1, List): -

List =
'asbestos asphalt_and_bitumen brick carpet concrete earth glass insulation metal plaster screeds_
and_renders stone tiles wood.
conlst(2, wood, List): -

_List =
block hardboard(medium) hardboard(standard) fir (20%_mc) flooring cork board chipboard weather
board oak-(radial) plywood softwood.

384

APPENDIX D: Knowledge bases utilities

refresh(-Concept) : -
known(-Concept, Value),
ask usrLConcept, Value).

refresh(j. %% always succeed
refresh(_Concept, _Keys)

known(Concept, Keys, Value),
ask usr(-Concept, Value).

refreshL, J. %% always succeed

: - nearLX1. Y1, X2, Y2,
_Criteria) number(-Xl), number(-Y1), numberLX2), numberLY2),

Criteria > (LX 1- X2) ^2+ LY 1- Y2) A 2).

near(-X1, Y1, X2, Y2, Criteria) : -
(number(_Xl) -> X3 = X1 ; fltLX1, X3)),
(numberLY1) -> Y3 = Y1 ; fltLY1, Y3)),
(number(_X2) -> _X4 = X2 ; fltLX2, X4)),
(number(-Y2) -> Y4 = Y2 ; flt(-Y2, Y4)),
Criteria > (LX3 - X4) A2+ (Y3 - Y4) A 2).

location near(-Latitude, Longitude, Location)
position ofLLocation, Lat, Lng),
nearLLatitude, Longitude, Lat, Lng, 0.3).

%% gen_integer(X, Seed) generates integers, incrementing from Seed.
%% NG if argl is nonvar or arg2 is var.

gen integer(X, Seed) : -
var(X),
integer(Seed),
gen integer_vc(X, Seed).

gen-integer vc(X, Seed) : -
XisSeed;
(New_seed is Seed+1,
gen_integcr vc(X, New_seed)).

%% append(First_part, Second-part, List) iff List is the
%% concatenation of the first two arguments.

append(Q, List, List).
appcnd([Elem I First art], Second part, [Elem I List]) : -
append(First-part, Second-part, List).

member(X, [XIj).
member(X, LIT]) : -

member(X, T).

%% chars to words(Chars, Words)
%% parses a list of characters (read by read-until) into a list of words,
%% striped down to only handle ints

chars to words(Chars, Words) : -
chars_to words(Words, Chars, []).

385

APPENDIX D: Knowledge bases

chars to words([WordiWords], A, B) : -
chars_to word(Word, A, C), !,
chars to_words(Words, C, B).

chars_to_words(UAA).

chars to word(Word, A, B) :- 9696 this bit repeated for valid tokens
'C'(A, Char, C),
is_digit(Char), 1.
Init is Char-48,
chars_to_integer(Init, Word, C, B).

chars_to_integer(Init, Final, A, B) :
'C'(A, Char, C),
is digit(Char), 1.
Next is Init* 10-48+Char,
chars to_integer(Next, Final, C, B).

chars integer(Final, Fina1, A, A).

is_digit(Char)
Char >= "0", Char =< "9". % decimal digit

chars_ o word(Word, A, B) : -
'C'(A, Char, C),
is_space(Char), !,
chars_to word(Word, C, B).

is_space(32). %*
is space(95). %, ' %% for bb input strings is_space(9). %'V'
is_space(10). %'fin'
is_space(11). 9'0 'W
is_space(12). 9'o 'T
is_space(13). %'Y

utilities

386

APPENDIX D: Knowledge bases C utilities

include <stdio. h>
include "plload. h"

include <sys/time. h>
get dateO
{ struct tin *now;

long nowtime;
char date[12];
static char *month[]=("Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec", 0);
nowtime = time(O) ;
now = localtime(&nowtime);
sprintf(date, " %2d: %s: %d", now->tmmday, month [now->tm_mon], now->tm_year);
if (! putatom(1, date)) return(FAIL);
return(SUCCEED);

}

get_envo /** get environment varaible **/
{

extern char* getenvQ;
char* env_name;
char* env_var,

fprintf(stderr, "get enft");
if(lgetatom(1, &env_name)) return(FAII.);

fprintf(stderr, "env name ='%s'lit", env name);
if((env var = getenv(env_name))==NULL) retum(FAIL);
if(! putatom(2, env var)) retum(FAIL);

fprintf(stderr, "env_var ='%s'%", env_var);
return(SUCCEED);

}

prof existsO
(char *name.

if (lgetatom(1, &name)) return(FAIL);
if (strcmp(name, "old proj")) return(FAIL);
if (lputint(2,5)) retum(FAIL); /* session
if (lputatom(3, "01/11/87")) retum(FAIL); /* date started */
if (! putatom(4, "oldjroj_data")) retum(FA! L); /* data file */
if (lputatom(5, "old_proj log")) retum(FAIL); /* log file */
retum(SUCCEED);

}

#include <math. h>
#include <ctype. h>
itO
(cigar *str, *ch ptr,

double f;

);

if (lgetatom(1, &str)) return(FAIL);
for (ch_ptr = str, *chptr !=V; chptr++)

if (lisdigit(*ch ptr) && *ch ptr ! ='. ')
return(FAIL);

f= atof(str);
if (lputfloat(2, f)) return(FAIL);
return(SUCCEED);

387

APPENDIX-. E
3D object viewing and manipulation

(visulising time '-'variant data). ' .
ý,

E. 3D OBJECT VIEWING AND MANIPULATION
(VISULISING TIME VARIANT DATA).

An integral part of any CAD package is a geometrical description of the product.
Following on from the generic architecture identified in chapter 3, used in the forms

package, a 3D object viewing and manipulation environment has been developed to aid

the visualisation of time variant data. The program has been developed on a Silicon

Graphics Iris workstation taking full advantage of the geometry pipeline. ROVE

(Real-time Abject visualisation Environment) developed by Malcolm Shamwana,

formally of ABACUS, has been used as a reference model. The extensions provide

the user with basic mouse and keyboard control over viewing parameters (see camera
E. 4) and will eventually be able to interact directly with individual objects which will
format utterances containing manipulation events which will then be passed to an

appropriate knowledge base and interpreted.

The same principles developed for the forms package apply to the 3D

manipulation package in that coneptual templates are defined hetra-archically with each

node pointing to an instance of a 3D body. By simply grouping bodies in this way
concepts may be represented and mainpulated graphically.

Control mechanism may exist externally and pass messages via IP and TCP to
the package. Alterntively control sequences may be embeded within the object itself

and fired at will. This is achieved using an introverted software IC (E. 5.1) and object
scripts.

E. I. OBJECT DEFINITION

An object is composed of two sets of data:

i) generic
ii) instance

In the case of 3D modelling the genric data consists of the following generic attribtutes:

" origin

" orientation

" scale

" colour

" Material properties may also be included.

while instance data is specific to the form of 3D representation.

388

This very simple distinction between generic and instance data enables any 3D

body to be manipulated in a generic manner. In the same way in which the forms

package utilises interchangeable concept interpreters so gemetrical interpreterations of a

concept may be interchanged dynamically without affecting control knowledge.

This results in a multi-representational system. For example a specific object

may be represented either symbolically or litterally by a complete topological and
topographical description. Symbolic and literal representations of objects within a

model may exist in parralel. In the case of building design it may be appropriate to
display a building in wireline while services are represented using some form of

symbolic notation.
Another advantage is one of extendibility. Since the only reference to a body is

by means of its generic attributes new object primitives may be integrated quickly and

easily without disturbing the rest of the system. The following is a complete list of the

current primitive set:

ABACUS Viewer.
EXT
GEN
LIN
PLA
RAG
REC
REG
TIL
RGB
FIL

Other (parametric) primitives include:

bottle volume of revolution- this expects a profile which is swept at run time.

patch bicubic patch

tree fractal trees

Light sources are also to be added together with 3D raster imaging capabilities.

E. 2. TREES

A fractal tree generator [PETRIC 88] has also been integrated within the system. The
original program was written in FORTRAN by J. Petric (ABACUS) and in order to
integrate models of trees with other 3D primitives it was necessary to generate, from
essentially a parrametric description, a 3D vertex description of a tree. The resulting

389

files typically contained upto and over three thousand line bodies which placed

enormous demands upon the storage device.
The approach taken, during integration (owing to my complete hatred of the

Fortran programming language), was to re-use the original fortran code and write aC

interface arround it. This interface simply reads a parametric desciption from file and

makes a subroutine call to trees. Therefore, rather than create a complete model file, a

FORTRAN to C interface was written enabling 3D vetcors to be pushed onto the

geometry pipeline (after some post processing) resulting is a much more compressed

tree description file; typically a tree is generated from a file containing 10-20

paraameters.
Fortran is a static language in that memory must be assigned at initialisation. C

on the other hand is dynamic enabling memory to be allocated and deallocated during

execution.
The advantages of the C language are exploited fully throughout. In this

instance array sizes (determined by certain parameters in the tree description file) are

dynamically allocated in the C portion of the code and their respective memory

addresses passed as arguments to the Fortran subroutine. From a practical viewpoint

the program is much more efficient and only a single (compressed) representation of

the model is held on disc.

Parametric descriptions are seen as being the key to multi-representaional

systems enabling different interpretations of data to be generated. This was the basis

for the re-phrasing mechanisms for the forms package.
By creating a series of instance interpreters many different representaions of the

same instance data are possible.

390

Figure E. 2.1. Fractal tree primitive with impresionistic foliage.

tree
0

215960.00140.0
1 0.001 0.001 1.0 1.0 0

22
1.0 3.0

70.0 65.0
1

000
0.0
0.0
0.0
0.0

000005
0000000

Figure B2.2. Fractal tree parameters [PETRIC 88]

In the case of the trees primitive, although not yet coded, a series of intepreters

are under development to enable trees and foliage to be displayed at different levels of

391

detail; from literal to impresionistic representations of individual and grouped objects.
Figure E. 2.1 illustrates an impressionistic representation of tree foliage (simple points
randomy placed within a sphere at each twig) with the corresponding growth
paramenters in figure E. 2.2. Figure E. 2.3 illustrates several instances of the tree
primitive clumped together.

Figure E. 2.3. Fractal trees with impressionistic foliage clumped together.

More general 3D interpreter, again although not fully implemented, are:

wireline

flat shaded

gouraud shaded

E. 3. MULTIPLE INSTANCES

Since generic and instance data have been separated the program enables several (N)
objects to be defined, each with their own instance attributes, while pointing to the
same instance data. This is achieved usging the following syntax:

refer instance-base-name * number required
t(x y z) s(x y z) o(x y z) (base translation, scale and

orientation) dt(x y z) ds(x y z) do(x y z) (translation, scale and orientation
increments to be applied to
succesive references.

392

The order in which the trasformations are specified is important. The modelling

routines within the his Graphics Library are not commutative, figure E. 3.1:

(a)

(b)

X

rot(600, 'Z');

..............
ýX

trans (4., 0., 0.);

trans (4., 0., 0.); rot(600, 'Z');

Figure E. 3.1. Translate and rotate (from Graphics library programming guide, 7-20, IRIS 4D
Series, Silcon Graphics)

Figure E. 3. la illustrates a rotation of 60 degrees followed by a translation of 4.0

units along the x-axis. Figure B. 3.1b shows the same operations but performed in the

reverse order.

Figure E. 3.2. Object referencing.

Figure E. 3.2 illustrates each of these transformations radiating from a base

model. The corresponding declaration is listed bellow in figure E. 3.3.

393

bottle. prim:
bottle bottle
5

50
76
7 10
5 12
7 15

bottles. fil:
FIL
models/bottle. prim
0001110

refer bottle * 10
s(. 5 .5 . 5) o(0 0 30) t(-12 0 0)
ds(1 1 1) do(36 0 0) dt(-12 0 0)

Figure E. 3.3. Example of Object referencing.

This facility is useful when defining sequences of repretitive elements such as

columns or trees and significantly reduces physicaly demands upon memory (only one

description is held). Another future development will allow the same instance data to

be referenced N times with each occurance having a different interpreter. This will be

useful when rows of objects pass through several peception boundaries (near, middle

and far) each requiring a different form of representation (detailed to impresionistic).

E. 4. THE CAMERA

The camera primitive is the most important in the system. It provides a viewing port
into this virtual reality. Essentailly a camera consists of a lens and a frame. The lens

which may be switched interactively between camera->projection (s):

a) perspective

b) orthographic and

c) window

points to a private object list or scene. Objects in the camera's scene are then projected
by the current lens routine on to the display film which is essentially a graphics

window. A number of viewing parameters may also be set interactively facilitating:

camera->viewing of:

a) polar

b) lookat

394

Other camera attributributes include:

camera->name

camera->eye (ex, ey, ez)

camera->focus IN, fy, fz)

camera->fov

camera->aspect

camera->twist

camera->clipping {near, far)

camera->window (w_left, w right, w_bottom, w_top)

camera->azim

camera->dist

Since each instance of the camera contains its own personal object list, this list

need not be the same for every camera. Therefore it is possible to view and manipulate

objects in isolation or in context simultaneously, figure E. 4.1.

Figure E. 4.1. The Glasgow Flourish: in isolation and in context.

E. 5. SOFTWARE IC'S AND OBJECTS SCRIPTS

The concept of software IC's was introduced in chapter 4. Here the idea is extended
further forming the concept of an introverted software IC (IIC). An IIC in addition to

395

allowing external access to it's methods, enables control sequences (scripts) to be

defined and embeded within it, figure E. 5.1.

Figure E. S. I. Introverted Software IC

Scripts are defined in a script file using a simple notation, E. 5.1, and are

compiled at initialisation into a linear list of pointers to object methods. This run time

linear list is then played back (simply by running through the list of function pointers)

at the dictates of some external source (a knowledge base) modifying data within the

object itself, which if monitored by objet interpreters results in realtime motion,
articulation, or even growth simulation. The latter form of script may be thought of as
a form of software DNA. The following sections describe motion and articulatory
scripts. Growth scripts are the subject of further investigation.

E. 5.1. OBJECT SCRIPTS

An object script file consists of the (ASCII) definition of one or more objects together

with a description of their relative or absolute motion. An object is a collection of
bodies. Therefore by defining an object template geometrical bodies are effectively
grouped together.

Figure E. 5.1.1, below illustrates a single object script. Each rectangular box

represents a time step. For each time step a number of methods may be called; these
are represented by circles attached to the objects. Many strings of instructions may
exist in parallel.

396

Time step º Repeat marker

Terminator

or [ClassName]: MethodName: Parameters
ObjectN am e: Meth od N ame: Paramete rs

Figure E. S. 1.1. Object script

Object instructions
per time step

The following example illustrates the basic definition of an object held in a file

called a motion script file. All attributes must be typed on a new line and the syntax
observed closely. The file must also begin with the keyword "template".

template
new object

name-. object-name
geom: body_I \

b&6 2\
body_3\
body

_:
4

script: description
{

.: method: n nn

.: method: n nn
)
(
}

(
}

end script
end object

.: method: n nn

. method: n nn

397

E. 5.2. REFERENCES TO GEOMETRICAL BODIES.

The model file will contain the physical definition of a number of bodies. Each body is

defined by a key word followed by numerical data:

GEN
nvertex nsurfaces

xyz

nvlv2v3...

In order to reference a body it must be given a unique tag. This is a single

character string placed after the key word describing the type of body.

eg:
GEN body-1

A pre-processor program called number takes as it's arguments a geomtry input

and output file, numbering each body and writing a list to stdout which may be re-
dirrected into a template file:

number model. vewmodel_n. vew » template

The following convention must also be observed during the specification of methods:
ObjectName: Method: Parameters

[C1assName]: Method: Parameters

For scripts contained within an object, the object name should be omitted or
specified as a single full stop': (current object). Care must be taken when using this

method to mesh the sequence of instructions with other objects. This may be achieved

using the "do nothing" fill-in method The object or class name is only used for a

externally controled models.

E. 5.3. SCRIPT SYNTAX

The following syntax is used to define an object script. As illustrated in figure E. 5.1.1

(above) a series of instructions may be specified for each time step. A single time step
is defined by enclosing instructions within brackets ().

.: Method l: parameters

.: Method 2-. parameters
}
(

I

.:

Method l: parameters
.: Method 3: parameters

398

The script is played through sequentially from beginning to end. By placing a

repeat marker between any of the time steps the script will be repeated in the direction

specified from the marker to the end of the script.

{
.: Method l: parameters
.: Method 2: parameters

}
<repeat marker>
I

}
t

}

.: Method l: parameters

.: Method 2: parameters

.: Method 1: parameters

.: Method 3: parameters

The following are recognized repeat instructions:

repeat - play-back from marker
oscillate - oscillate between end and repeat marker

The above will loop for ever. A number of iterations may be specified in square
brackets [] after the repeat command:

repeat [5]

oscillate[41

After the specified number of iterations the script will terminate. Future

modifications to the script handler will enable the continuation of the script.

Although motion scripts are held as ascii instructions it is not really the intention to
type complex paths. Where the motion of an object may be described by a proven
mathematical law a program should be written to generate the script or communicate
directly with the object using interprocess control.

E. 5.4. METHODS

The following list indicates the current range of methods available together with the
expected parameters. These are generic 3D transformations enabling any object to be

manipulated regardless of it instance attributes. Three parameters are expected for each
method.

399

translate: tic ty tz

rotate: rx ry rz

scale: sx sy sz
Colour: rgb

Translate: tx ty tz
Rotate: rx ry rz
Scale: sx sy sz
Colour. rgb
do nothing: ---

Absolute translation from 0,0,0.
Absolute rotation from 0,0,0.
Absolute scaling from111
Set the colour of the objects current colour
index.

Relative translation
Relative rotation

relative scaling by increments

Relative colour increment/decrement

Does nothing - useful for padding scripts when
meshing is an issue

Note that the object origin for translation is its initial position while its rotational

origin is at 000 unless specified otherwise.
In order to load a script the template definition may be included within the model

file or more efficiently in a separate file which then must be included in FIL file

referencing the model:
FIL

model. vew

xyy sx sy sz 0

INCLUDE

model. script

E. 6. EXAMPLES

In addition to the example given in Chapter 6, the following are illustrations of how the
application may be used to represent time variant data.

400

E. 6.1. GLASGOW FLOURISH

The example below illustrates a proposed structure over the River Clyde at Finnieston.

The Glasgow Flourish (Scottish Sculpture Trust), standing 205 m above the river, is

intended to carry passengers across the river in a ball suspended at the base of a

pendulum. In order to represent this feature a mathematical model of a pendulum,

simply generating a simple harmonic wave (no damping) was encoded as aC program

operating on a Sun workstation. Using the etherlink application transformations are
broadcast across the network to the 3D viewing and manipulation program operating

on a Silcon Graphics Iris. The composite application (shown as a montage) is

illustrated in figure E. 6.1.1.

,. ý W

Figure E. 6.1.1. Glasgow Flourish and interface.

The geometrical representation of that model is then translated accordingly. In

order to fine tune the SI iM script generated, a forms interfaces was bolted onto the
script generator enabling the length, amplitude and time increment to be adjusted.
Since the model lies in a plane at 30 degrees of north a third, orientation, parameter is
used to rotate the script so that the pendulum swings normal to the banks of the river.
Other attributes controlling the inter-client communication are also included within the
proforma template. In addition to broadcasting messages to the application a script file
is also created enabling the articulation commands to be encapsulated within the model
itself once refined.

401

E. 6.2. NEWTON'S CRADLE

Using the same principles as above a sinusoidal motion script (split at it) is assigned to

the outer most spheres of a Newtons cradle, figure E. 6.2.1. Although not a true

representation of the principles of the conservation of momentum, an accurate model

could be implemented to achieve a real time simulation of the colliding spheres.

Figure E. 6.2.1. Newton's Cradle.

The user would also be able to pick and pull back one or more spheres setting
the model in motion.

402

E. 6.3. INTERACTIVE 3D MODELS

The example of a chess set, figure E. 6.3.1, illustrates the ability to perform multiple

operations within a single time step. The complete model is constructed by referencing

only three objects (a tile, a pawn and the queen). Each reference is given a unique

identifier and translation and may therefore be manipulated independently.

Figure E. 6.3.1. Wireline model of chess set - note the pawns are squashed to fit within the board.

Here the pawns are scaled so that they fit within the depth of the chess board, figure

E. 6.3.1 and 2. At the beginning of a new game all the pieces are scaled and translated

to their original size and position, figure E. 6.3.3 rising out of the board to defend their

queen. Although not complete the model would enable the user to interact directly with
individual pieces which would format natural language utterances and would then be

interpreted by a knowledge base containing valid and counter moves.

403

ýý. G = I/, ýºr 111111 Man/ " s" ill, @Saal

=rý
`- %

ýýrýýýr_ iý
ý-/

low
_ý-Mn _ý

Figure E. 6.3.2. Initial model state.

ýIýý1ý111ý itýn... nnn ý uýý 1ýý11/wNý4u
----- . riý--_ýýýý. - -"ýýýý. iý",,. ý, ýý

so. rdmmr Own

Figure E. 6.3.2. Final model state.

Figures E. 6.3.4a -c illustrate the intermediate scaling and translation. The user
would not be confined to any one viewpoint but could either select any viewpoint or
be shown the board from the current piece, figure E. 6.3.5, adding a new dimension to
the game.

404

Figure E. 6.3.4. a-c. Intermediate scaling.

405

Figure E. 6.3.5. Alternative views of the same problem space.

406

The image frames, figures E. 6.3.6a-c illustrate a wireline model of Glasgow City
Chambers being extruded out of a drawing placed on a desktop.

(h

(

Figure E. 6.3.6. a-c. Simple Scaling. (note also the change in the colour of the drawing title).

407

These principles would also be useful in orchestrating or choreographing video

sequences but, rather than having to develop a specific application to articulate bodies,

various 3D representations may be manipulated by a general mathematical (deep)

model of movement and high-level (abstract) messages broadcast.

The 3D viewing and manipulation program is (in its present state) sufficiently general

and extendible to enable other applications to be constructed.

Figure E4.34. Virtual reality -a user's perception of him/herself as an interacting part of a larger
system. The image shows a 3D model of a 19th century Napoleonic fort in front of a frame-grabbed
image with the author positioned in the doorway.

By extending the range of primitives to include raster images, for instance,

realistic contextual backdrops may be incorporated creating an experiential virtual
reality within which the user perceives himself as an interacting part of a larger system,
figure E. 6.3.6, improving the communication of concepts and ideas.

408

The models featured in the above illustrations have been assembled from existing

models created by students and staff at ABACUS. Motion or articulation scripts have

been developed by the author to illustrate specific applications. Acknowledgements

are given for the following models:

Newton's cradle Morag Boyd, advanced computer graphics course, department of architecture.
Chess set Unknown.
Table and chair Andrew Anderson and Mike Grant, ABACUS.
Glasgow model Various.

All other components and models are by the author.

REFERENCES/BIBLIOGRAPHY

[ALTY 83]

[ALTY 93]

[ALTY 84]

[APPELT 82]

[ARISTUME]

(ASIF 89)

[AVRAHAMI 89]

[BAECKER 871

[BARKER 891

[BENNING 731

Alty J. L. (1983).
Path Algebras -a useful CAI/CAL Analysis technique.
Man-Machine Interface Group, Department of Computer Science, University of
Bristol, April 1983.

Alty, JA., Coombs, M. J. (1983).
Computational Approaches to Representation and Control: The representation of
domain knowledge.
In: J. L. Alty and M. J. Coombs, Expert Systems, Concepts and Examples, NCC
Publications, Chpt3.3 pp. 60-76

Alty J. L. (1984).
Use of Path Algebras in an Interactive Adaptive Dialogue System
Proc. Alvey IKBS Research Theme workshop, University of Sussex, UK, 10-11
July 1984

Appelt, D. E. (1982).
Planning natural-language utterances
SRI International, Menlo Park, California,
In. AAAI 82.

Aristotle
From the W. D. Ross edition, 12 Volumes. Oxford, 1908-52.
In Therories of the symbol, Tzvetan Todorov, Cpht 1.: The birth of Western
Semiotics.

Asif M., and Homer R. M. W. (19989).
Economical Construction Design Using Simple Cost Models.
Proc. Int. Conf. on Structural Faults and Reparir Vol. 2, London, June 1989

Avarahami Gideon, Brooks P. K. & Brown M. H. (1989).
A two view approach to constructing user-interfaces.
DEC Systems Research Centre, Computer Graphics, Vol. 23, No. 3, July 1989.

Baecker R. M., Buxton W. A. S. (c1987).
Readings in human-computer interaction :a multidisciplinary approach
Los Altos, CA : Morgan Kaufmann.

Barker, Philip G. (1989).
Basic principles of human-compiler interface design
London: Hutchinson.

Benning W. (1973).
The logic of Scientific Discovery
In: W. J. Horst. Rittel and M. M. Webber (eds) Dilemas in general theory of
planning.
Policy Sciences.

[BIG BOOK] Big Book on User Interfaces
Programming techniques and tools
In: The BIG BOOK on User interfaces, Chapter 12, pp. 555-558.

[BIRMINGHAM 88] Birmingham W.. Brennan A.. Gupta A. P., and Siewiorek D. P. (1988),
MICON: A single board computer synthesis tool
IEEE Circuits and Devices Magazine (January 1988).

[BIRMINGHAM 89] Birmingham W. P. Kapoor A., Siewiorek D. P., and Vidovic N. (1989).
The design of an integrated environment for the automated synthesis of small
computer systems
EECS University of Michegan and ECE, Carnegie Mellon University.

[BJORK 89] Bjork B. C. (1989).
Basic Structure of a proposed building product model
CAD Vol. 21, No. 2, March 1989.

409

[BOIES 741

[BOUTAY 82]

[BRIDGES 89]

[BUCHANAN 89]

[BUNDY 82]

[BUNDY 841

[BUXTON 89]

[CARLSON 89]

[CARRARA 88]

[CHIGNELL 89]

[CHIN 87]

[CLARKE 861

[CLOWES 87]

[DENNIS 801

[DIGITAL 88]

Boies S. J. (1974).
User Behavior in an interactive computer system.
IBM Systems Journal, 13, pp. 1-18.

Boulay, Ben du. (1982).
Modelling.
Alvey IKBS Theme: Intelligent Front Ends, p. 39.

Bridges A. and Rutherford J. H. (1989).
Informal discussion
ABACUS computer room (in front of persi).

Buchanan J. T. (et al) (1989).
Distributed Asynchronous Hierarchical Problem Architecture Applied to Plant
Scheduling.
Al in Engineering. Springer Verlag. July 1989.

Bundy, A. (1982).
Frans and Logic.
Alvey IKBS Theme: Inference, pp. 4-6.

Bundy A. (1984).
An Architecture for Intelligent Front Ends.
Proc. Alvey IKBS Resarch Theme Workshop
University of Sussex. UK, 10-11 July, 1984.

Buxton W., Lamb M. R. Sherman D., and Smith K. C. (1989).
Towards a comprehensive user interface management system
Computer Systems Research Group, University of Toronto, Canada M56 1A4,
In: [BARKER 891, pp. 576-583.

Carlson P. A. (Rose Hulman Institute of Technology, Indiana) (1989).
Hypertext and Intelligent Interfaces for text retrieval
In: The Society of text: hypertext. hypermedia and the social construction of
information.
Cambridge M. A. MIT Press. pp. 59-76.

Carrara G.. Kalay Y. E., Novembri G. (1988).
A computational framework for supporting creative architectural design
La Sapeinza University. Rome, Italy.

Chignell M. H, Hancock P. P. (University of South California) (1989).
An introduction to Intelligent interfaces.
In: Intelligent Interfaces: theory, research and design.

Chin, D. N. (1989).
Modelling what the user knows in UC
In: User Models in dialogue systems, Symbolic Computation, Springer Verlag,
chpt4, pp. 74-107.

Clarke J.. McLean D. (1986).
ESP: A Building and Plant Energy Simulation System
Reference manual 53

Clowes I.
Requirements for User Interface Management Systems.
Logica Cambridge Limited. 15/9/87.

Dennis J. B. (1980).
Data flow supercomputers
Computer 13(11), pp. 48-56.

Digital Technology LTD (1988).
FormsDesigner Reference Manual
Digital Technology Ltd. 10 Victory Business Centre, Worton Road, Islewort,
Middlesex, TW7 6DB.

410

[DODSON 87]

[DREYFUS 851

[EDMONDS 811

[EDMONDS 821

[EIKERTON 891

[EICIS 80]

[ENCYCL OPEA 741

[ENGLEMORE 881

[ENSOR 881

[ERMAN 88]

[FEIGENBAUM 891

[FOLEY "]

[FROHUCH 861

(GIISOW 89]

[GERO 861

Dodson D. C. (1987).
A short report on the second meeting of the intelligent interface.
SIG. Department of Computer Science, City University, London.

Dreyfus S. E. (1985).
The nature of expertise
UCAI 85. Vol Z. 1306.

Edmonds E. A., Gains R. D. (1981).
Adaptive Man-Computer Interfaces.
In: MJ. Coombs & J. L. Alty (eds), Computing Skills and the User-interface

Edmonds, E. (1982).
A note on IFE's.
Alvey IKBS Theme: Intelligent Front Ends, p.. 6.
Elkerton J., Williges R. C. (University of Michegan) (1989).
Dialogue Design for Intelligent Interfaces.
In: Intelligent Interfaces: theory, research and design.

Ellis C. A. and Nutt G. L. (1980).
Office information systems and computer science
ACM Computing Surveys, 12(1), pp. 27-60.

Encyclopedia Britanica Inc. (1974).
Micro Media
Vol 3. page 45 Encyclopedia Britanica 15th Edition.

Englemore R. S. and Morgan A. J. (eds) (1988).
Blackboard Systems
(Insight series in artifical intelligence): Adison Wesley.

Ensor J. R. and Gabbe J. D. (1985).
Transactional blackboards
In: Proceedings of the Ninth International Joint Conference on Artifical
Intelligence (IJCAI. 79) reproduced in chapter 24, [ENGLEMORE 881.

Erman LD., Hayes-Roth F., Lesser V. R. and Reddy D. R. (1988).
The Hearsay II speech-understanding system: Integrating knowledge to resolve
uncertainty.
In: R. Englemore and T. Morgan (eds) Blackboard Systems; Adison Wesley, pp.
31-86.

Feigenbaum E. A. (1988).
Knowledge assembly
Im Blackboard Systems, Englemore R. S. and Morgan A. J. (eds), pp 5-8,
Adison Wesley.

Foley J. D., Van Dam A. (19)
The Design of User-Computer Graphic Conversations.
Fundamentals of Interactive Computer Graphics, Chpt. 6.
Foley and Van Dam

Frohlich D. M., Crossfield L. P. & Gilbert GN. (1986).
Requirements for an Intelligent form-filling interface.
Alvey DHSS Demonstrator, Department of Sociology, University of Surrey.

Geisow A. D. (1989).
Recognition and Generation of Symbolic Diagrams.
In: Geometric Reasoning, IBM UK Scientific Centre, chpt 6.1.
Oxford University Press.

Geor J. S., and Coyne R. D. (1986).
Semantics and the organisation of knowledge in design
Computer Applications Research Unit, Department of Architectural Science, The
University of Sydney, NSW 2006 Australia.

411

[GUEDJ 801 Guedj R. A. (1980).
Remarks on some aspects of man-machine interaction
Methodology of interaction. North-Holland Publishing Company, pp. 235-238.

[GUV A90] Gupta A. P. Sudhalkar A.. Vidovic N.. Siewiorek D. P.. and Prinz F. (1990).
Concurrent engineering of computer systems
Engineering Design Research Centre, Carnegie Mellon University.

[HAEBER11 88] Haeberli P. E. (1988)
ConMan: A visual programming language for interactive graphics
Silicon Graphics, Inc. Mountain View, CA 94043,
In: Computer Graphics, Vol. 22 No. 4. August 4,1988, pp. 103-110.

[HAENEN 87] Haenen P. (1987).
User Interface Management Systems
Laboratoire d7Etudes Methodologiques Architecturales.

[HAMALAINFN88] Hamalainen M. (1988).
An approach to developing intelligent interfaces to conventional software.
In: STeP 88, Vol. 2 p765-775. Finnish Al Symposium.
August.

[HANCOCK 891 Hancock PA., Chignell M. H. (1988).
Intelligent Interfaces: theory research and design
ISBN: O 44487313 9

[HARRISON 851 Harrison M. D., and Thimbleby H. W. (1985).
Formalising guidlines for the design of interactive systems
In: P. Johnson and S. Cook (eds), People and Computers: Designing the interface
(HCI-85), Cambridge University Press, p. 161-171.

[HART 821 Hart. P. (1982).
Directions for Al in the Eighties.
SIGART Newsletter. 79, pp. 11-16.

[HASHIMSHONI781 Hashimshoni R.. ShavivE.. and Wachman A. (1978).
A decomposition model as a tool for evaluation of multicell solutions: A case
study
In: Proceedings of CAD 78Third International Conference on Computers in
Engineering and Building Design. IPC Science and Technology Press, Guildford.

[HAYES-ROTH 851 Hayes-Roth B. (1985).
A blackboard architecture for control
Artifical Intelligence Vol. 26, pp. 251-321.

[HENDERSON 861 Henderson A. (1986).
The Trillium User Interface Design Environment
Proc. CHI 1986, pp. 221-227.

[HILL 861 Hill R. (1986).
Supporting concurency, communication, and sychronisation in Human-computer
interaction - The Sassafras UIMS
ACM Transactions on Graphics, 5(3), pp. 179-210.

[HMSO 781 HMSO (1978)
An introduction to dimensional co-ordination
London: Her Majesty's Stationery Office

[HOPKINS 89) Hopkins T. (1989).
Introduction to Object-Oriented Programming
EASE Education and Awareness Seminar Object Oriented Programming Systems
Department of Computer Science, University of Manchester
18th September 1989.

[HUTCHINGS 861 Hutchings A. M. J. (ed) Bowen D. L.., Byrd I,., Chung P. W. H., Pereira F. CN.,
Pereira Lm>, Rae R. and Warren D. H. D. (1986).
Edinburgh Prolog (The New Implementation)
User's Manual Version 1.5. Al Applications Institute, University of Edinburgh.

[IFE 88a1 Clarke, J. A, Rutherford J. H.. MacRandal D. (1988).

412

[IFE 88b] Clarke, J. A. Rutherford J. H.. MacRandal D. (1988).

[ffE 891

[JENMN 82]

[JEON 87]

[KAEMMERER 861

[KASIK 821

[KOBSA 891

[KRIPPENDORFF
891

(LANSDOWN 861

[LAWSON 801

[LEHMAN 88]

[LESSER 781

Clarke JA, MacRandal D.. Rutherford J. H. (1989).
The Application of Intelligent Knowledge Based Systems in Building Design.
SERC Grant GR/E/18018 Final Report. November 1989.

Jenkin J. M.
Some principles of screen design and software for their support
Computers in Education. 6. pp. 25-31.

Jeon. Y. I. (1987).
Working Memory Aid For Designers (WOMAD) A design Experience Supprot
System.
PhD thesis. Department of Architecture. University of Strathclyde, Glasgow.

Kaemmerer W.. Larson J. (1986).
A graph-oriented knowledge representation and unification technique for

automatically selecting and invoking software functions
AAAI-86, Philadelphia, Pennsylvania. Reproduced in [HAMALAINEN 88].

Kasik D. J. (1982).
A User Interface Management System.
Computer Graphics 16(3). pp. 99-106.

Kobsa A. and Wahlester W. (eds)(1989).
User Models in Dialogue Systems
Symbolic Computation: Springer Verlag.

Krippendorff K. (1989).
On the Essential Contexts of Artifacts or on the Proposition that "Design Is
Making Sense (of things)"
Design Issues: Vol. V. Number 2, Spring 1989.

Lansdown J. (1986).
Requirements for knowledge based systems in design
In: A. Pipes (ed), CAAD Futures, Proceedings of International Conference on
CAAD, Spetember 1985, London: Butterwoths.

Lawson B. R. (1980).
How designers think
London: Architectural Press.

Lehman J. F. and Carbonell J. G. (1988).
Learning the user's language: A step towards automated creation of user models.
In (KOBSA 891 pp. 163-194.

Lesser V. R. and Corkill D. D. (1978).
Cooperative distributed problem solving: A new approach for structuring
distributed systems
Technical Report 78-79, Department of Computer and Information Science,
University of Massachusetts at Amherst.

[LEWIS 691 Lewis B. N., and Cook J. A. (1969).
Toward a theory of telling.
International Journal of Man-Machine Studies (1), pp. 129-176; cited in [GUEDJ
801.

[LOD 841 Little Oxford Dictionary (1984).
page 606.

[MAANEN 891 Maanen J. Van and Mead M. (1989).
The STEP standard for engineering data: Application protocols
News Letter, Informatics Divsion, Rutherford Appleton Laboratory, Chilton
Didcot.

[MacCALLUM 851 MacCallum K. J., Duffy A. & Green S. (1985).
An Intelligent Concept Design Assistant
IFIP Conference on Design Theory for CAD, Tokyo, October 1985.

413

[MARKUS 721 Markus T. A., Maver T. W.. Whyman P., Morgan J., Whitton D� Canter D.. and
Fleming J. (1972).
Building performance.
New York: Halsted Press. 1972.

[MARTIN73]

[MARTIN 87]

[MAVER 90]

Martin J. (1973).
The design of Man-Computer Dialogues.
Englrwood Cliffs, NJ. - Prentice Hall.

Martin. M. M. (1987).
Foundations of a Toolkit.
Eurographics Workshop, August 1987.

Mauer T. W., Rutherford J. H., MacCallum K. J.. MacCleod I. A. (1990).
Intelligent Design Assistant: A Collaborative IT Demonstrator Project in the
Domain of Building Design.
SERC Grant Application. February 1990.

[MCCALLUM 851 McCallum KJ.. Duffy A. and Green S. (1985).
An Intelligent Concept Design Assistant.
IFIP Conference on Design theory for CAD, Tokyo, October 1985.

[MCKEOWN 851 McKeown K. R. and Paris C. L. (1985).
Text generation: using discourse strategies and focus constraints to generate
natural language text
Cambridge Univ. Press.

[MCLEOD 881 MacLeod I. A. and Rafiq M. (1988).
Integrated Computer Aided Structural Design of Buildings.
Structural Engineer, Vol. 66, No. 20, October 1988.

[MEYER 881 Meyer, Bertrand. (1988).
Object-oriented software construction
Englewood Cliffs, N. J.: Prentice-Hall.

[MILLER 561 Miller G. (1956).
The Magical Number Seven, Plus or Minus Two
Pyschological Review, 63(1956): 81-97
Cited In: H. A. Simon, The Sciences of the Artificial pp. 81. and
1. Sommerville, Software Engineering, pp. 230-231.

[MILLER 761 Miller L. A. and Thomas J. C. jr. (1976).
Behavioural issues in the use of interactive systems
In: Interactive Systems, Proc, 6th Informatik Symposium IBM Germany, Bad
HomBurg v. d. H., September 1976.

[MORALEE 831 Moralee S. (1983).
Intelligent Front Ends.
Proc. Alvey IKBS Research Theme Workshop
Cosnors House, Abingdon, England, 26-27 September 1983.

[MORELAND831 Morland D. V. (1983).
Guidelines for technical interface design
Communications of the ACM, 26(7), pp. 484-94.

[MORTON791 Morton J., Barnard PJ., Hammond N. and Long J. (1979).
Interacting with the computer: a framework
In EJ. Boutmy and A. Denthe (Eds.) Teleinformatics 79. Netherlands: Noth
Holland.

[MYERS 861 Myers B., Buxton W. (1986).
Creating highly interactive and graphical user interfaces by demonstration.
Computer Graphics 20(3), pp. 249-258.

414

[NEWAI L 621 Newall A. (1962).
Some problems of the basic organisation in problem-solving programs.
In. proceedings of the Second Conference on Self-Organising Systems, Yovitis
M. C.. Jacobi G . T. and Goldstein G. D. (eds), pp. 393-423, Spartan Books (cited
in Blackboard Systems, Englemore R. S. and Morgan AJ., 1988).

[NEWAIL751 Newall A. (1975).
A tutorial on speech understanding systems
IEEE symposium: Accedemic Press, New York. pp. 3-54
In: [ERMAN 88].

[NEWMAN 68]

[NEWTON 86]

[NII 861

[NORM 861

[NORMAN 85]

Newman W. M. (1968).
A graphical technique for numerical input.
Computing Journal 11, pp. 63 -64.

Newton P. D., Marsden P. H., Rector A. L. (1986).
What kind of system does an expert need?
Department of behavioural Sciences, Hudersfield Polytechniqh.

Nii H. P. (1988).
Blackboard Systems (part 2). Al Magazine 7(3), 82-106.
In [ENGLEMORE 88].

Norman D. A. and Draper S. W. (1986).
User Centred System Design: New pespectives on human-computer interaction.
In [KOBSA 891 p. 9.

Norman, D. A. (1985).
Design principles for human-computer interfaces.
Department of Psychology and Institute of Cognitive Science, san Diego La Jolla,
California.

[NORMAN) Norman D. A.
Design Principles for human computer interfaces.
Department of Psychology & Institute of Cognitive Science,
University of California. chpt 11.

[ORACLE 87] Oracle Corporation (1987).
SQL'Forms Designer's Reference Manual, Version 2.0
Oracle Corporation, Belmont, California, USA.

[PARIS 89] Paris C. L. (1989).
The use of explicit user models in a genration system for tailoring answers to the
user's level of experience.
In: [KOBSA 89] pp. 200-232.

(PETRIC 881 Petric J. (1988).
Computer modelling of landscapes
Phd Thesis, Department of Architecture and Building Science, University of
Strathclyde, May 1988.

[POILIT 821 Pollit, S. (1982).
Dialogue Handling.
Alvey IKBS Theme: Intelligent Front Ends.

[POLSON] Poison P. G.
A quantitative theory of human-computer interaction

[POWELL 88] Powell J. A. (1988).
Towards the Integrated Environment for Intelligent Building Design.
pp. 233-248, pub. UNICOM.

[POWELL 88] Powell J. A. (1988).
Towards the Integrated Environment for Intelligent Building Design.
pp 233-248, pub UNICOM.

415

[PRIME 88] Prime M. (1988).
User Interface Management Systems: A current product review.
Informatics Division, Rutherford Appleton Laboratory.

[PSTI 861 Production Systems Technology Incorporated (1986).
0PS183 User's manual and report version 2.2.

[RADFORD 901 Radford A. (1990).
Guest Lecture held at the Department of Architecture, University of Strathclyde.

[RAFIQ 881 Rafiq M. and MacLeod LA. (1988).
Automated Structural Component Definition from a Spatial geometry model.
Engineering Structures. Vol. 10, No. l. January. 1988.

[REILLY 87] Reilly R. G. (1987).
Communication failure in dialogue and discourse.
North-Holland Publishing Company.

(RICH 891 Rich E. (1989).
Natural Language Interfaces
The University of Texas Austin
In: [KOBSA 89). Chpt 10. pp. 442-450

[RILEY X[

[ROSC 831 Rosc, E. (1983).
Prototype Classification and logicl Classification: The two systems.
In E. Scholnick. ed.: New Trends in Cognitive Representation: Chalenges to

[RUBENSTEIN 841

[RUTHERFORD 89]

[RUTHERFORD 90]

[SCHMUCKER 86]

[SEHEIM]
[SELFRIDGE 59]

Paigets theory. Hillsdale. NJ.

Rubenstein R. and Hersh H. (1984).
The human factor
Designing Computer Systems for People. Digital Press. Burlington, MA.

Rutherford J. H. (1989).
Intelligent Design Assitanee (pilot Study).
ABACUS. Department of Architecture, Strathclyde University, November 1989.

Rutherford J. H. (1990).
View to DXF: A bridge between ABACUS viewer and DXF.
ABACUS technical bulletin (internal).

Schmucker, K. J. (1986).
MacApp: An Application Framework.
Byte 11(8), August 1986, pp. 189-193.

Selfridge O. (1959).
Pandemonium: a paradigm for learning.
In: Proceedings of Symposium on the Mechanisation of Thought Processes,
511.29. HMSO, London.

[SHACKEL 691 Shackel B. (1969).
Man-Computer interaction -- The contribution of the human sciences.
Egonomics, 12, pp. 485-499.

[SHAVI 791 SHAVI and GALT 79

(SHNEIDERMAN 87) Shneiderman B. (1987).
Designing the user-interface
Strategies for effective human-computer interaction, Addison-Wesley,
MA.

PP.

Reading,

[SIMON 691 Simon H. A. (1969).
The Psychology of Thinking
The Sciences of the Artificial Second Edition pp. 63-98: The MIT Press London.

416

[SMITH 86]

[SOMMERVILLE 851

[STEARN 901

[STEP 881

[SUFRIN 861

[SUN 901

[SUTCLIFFE 881

[SUITCUFFE 831

[SZEKELY 891

Smith S. L. and Moiser JN. (1986).
Guidelines for designing user-system interface software
Technical Report ESD-TR-86-278. Hanscom Air Force Base, MA. USAF Electronic
Systems Division. In. [BARKER 89].

Sommerville I. (1985).
The user interface
Software Engineering: Addison-Wesley International Computer Science Serries,
Second edition, pp. 228-251.

Stearn D. (1990).
Viewer unformated binary picture format
ABACUS internal technical bulletin.

STEP. General AEC Reference Model (GARM) (1988).
Standard for the Exchange of Product data.
ISO TC1841SC4/NGI (Draft) Document 3.2.2.1.12th October 1988.

Sufrin B. (1986).
Formal methods and interface design
In: M. D. Harrison and A. F. Monk (eds), People and Computers: Designing for
Usability (HCI-86), Cambridge University Press, pp. 44-64.

Sun (1990).
Reference Manual, Release 33
Sun MicroSystems, April 1990.

Sutcliffe A. G. (1988).
Human-computer interface design
Macmillan Education Ltd.

Suttcliffe A. G. (1983).
Use of Conceptual Maps As Human Computer Interfaces.
Computational Department UMIS.

Szckely P. (1989).
Structuring programs to support inteUigent interfaces
Information Science, University of South California.
ISI/RR-89.231

[TANNER 831 Tanner, P.. Buxton W. (1983).
Some issues in future User Interface Management Systems (UIMS) Development.
IFIP WG 5.2 Workshop on User Interface Management.

[THOMAS 891 Thomas D. and OWEN J. (1989).
Use of CALS (Computer Aided Acquisition and Logistics Support) for product data
exchange

(TOFFLER 741 Tofler A. (1974).
Futureshock
In: Nigel Cross (ed), Man Made Futures, Readings in Society, Technology and Design.
Open University Press.

[TREU 75] Treu S. (1975).
Interactive command language design based on required mental work. International Journal of Man-Machine Studies (7), pp. 135-149.

[UTGOFF 821 Utgoff, P. E., Mitchell. T. M. (1982).
Acquisition of Appropriate Bias for Inductive Concept Learning
Department of Computer Science. Rutgers University, New Brunswick,
In AAAI 82.

[VEERKAMP 88] Veerkamp P., Akman V., Berens P. and ten Hagen P. (1988).
IDDL: A language for intelligent interactive integrated CAD systems
Department of interactive systems. Centre for Mathematics and Computer Science
(CWI), Amsterdam, The Netherlands.

417

[VIDOVIC 901

[WAHI. STER 84]

[WAHI, STER 89]

Vidovic N. (1990).
Design Framework Toolkits for Concurrent Engineering Environments,
Engineering Design Research Centre, CMU, Pittsburgh, PA 15213.1990

Wahlster W. (1984).
Cooperative access systems.
Future Generation Computer Systems 1, pp. 103-111.

Wahlster W. and Kobsa, A. (1989).
User Models in Dialogue Systems.
User Models in Dialogue Systems, Symbolic Computation. Springer Verlag, chpt
1.

(WARTIK 86] Wartik. S. P. and Penedo. M. H. (1986).
Min: A Reusable Tool for Form-Oriented Software
IEEEE Software, 3(2), pp. 61-9.

[WASSERMAN 85] Wasserman, Al. (1885).
Estending State-Transition Diagrams for the Soecification of Human-Computer
Interaction.
IEEE Transactions on Software Engineering 11(8) , pp. 699-713.

[WEISS 821 Weiss, S., Kulikowski, C., Apte, C., Uschold, M. (1982).
Department of Computer Science, Rutgers University.
Patchett, L. Brigham, R., Spitzer, B., Amoco Production Research
Building expert systems for controlling complex programs
In: AAAI 1982, pp. 322-326.

(WILLIAMS 881

[WILSON 87] Wilson M. D. (1987).
Task analysis for knowledge acquisition
Proc. SERC Workshop: Knowledge Acquisition for Engineering Applications, 68-
80. Cosener a House Abingdon. 18th - 19th July 1987.

[YANKELOVICH 881 Yankelovich N.. Haan B. L. Meyrowitz N. K., and Drucker S. M. (1988).
Intermedia: The concept and the construction of a seamless information
environment
IEEE Computer (January 1988).

418

