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‘…because he was one of the people, tied to them by a thousand invisible strings…’

—William Golding,

The Inheritors
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Abstract

Mobile communication devices are now truly ubiquitous; they are present everywhere

in the modern world. They are also the first human artefacts capable of automatically

detecting the subtle ways in which people reveal the nature of the relationships

between them. This information is contained within the communications metadata

available on these devices. By analysing these communications metadata certain tie

signs become discernible and it becomes possible to estimate the current state of the

social relationships of the user of the device. However, although this information is

available on mobile communication devices few established techniques for gathering,

and interpreting it have been defined.

This thesis presents empirical investigations into detecting and categorising social

relationships using mobile devices. It introduces mechanisms to detect the social ties

between the users of mobile devices, based on the interactions between them, and

explores techniques to accurately categorise these ties. The ability to detect social ties

allows the construction of a social graph with out any prior knowledge of the social

relationships between the users of mobile devices.

The results of the investigations reported in this thesis show that, although large

amounts of data are lost while gathering social social data using mobile devices,

estimated ties are confirmed to be correct in the majority of cases.
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1.1. Motivation

This work is motivated by the a need for a tool to improve research into social

relationships.

Social scientists are still conducting analysis of interpersonal ties on data gathered

by observation in the first half of the 20th century [1, 2]. The widespread adoption

of the mobile phone in the last decade and the ubiquitous nature of many mobile

devices in the present day creates a potential opportunity to gather vast amounts

of human social data [3, 2] but the difficulty of gathering this data from mobile

devices, and ensuring the veracity of gathered data still provide challenging research

questions.

A huge increase in the use of Social Network Services has occurred in recent

years. Services such as Facebook and LinkedIn now have more registered users than

many of the countries in the world have citizens: Facebook has over 500 million

registered users [4], and LinkedIn has over 100 million members [5].

Surprisingly, networking—the creating and maintaining of social relationships—is

not the primary use of these services [6]. Although people use social networking

services to communicate with a small subset of their contacts, the primary use of these

services appears to be the dissemination of information among peer groups. The

details of activities, the other people involved, and associated media (photos, videos,

and hyperlinks), are all shared through users’ activity streams [7].

Social networking services are becoming popular on smartphones and tablets.

Existing Social Network Services have ported their services to mobile environments,

and new social network services have been launched specifically for mobile devices.

However, these services are limited. They rely on the user to complete the task

of updating their information; have only one dichotomous method of denoting

complex, changeable social relationships; and fail to take advantage of the wealth

of information available from communications networks which could add significant

value to these services.

Much of the success of social networking sites could be attributed to some users’

desire to be seen to be widely socially connected. The designers of these systems

initially assumed that people would mark their real-life contacts, expecting that

contacts marked on some social web service would have a corresponding real-world

social relationship [8]. However, social network sites consider ties between users as

bidirectional: if you are my friend, then I am also your friend. Therefore, a small

group of power users can create a large number of ties in the network, and even

increase the network size through inviting new participants, simply by pursuing

this goal of an artificially inflated ‘friends’ list. This phenomenon also applies at the
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smaller level: users may derive some satisfaction from the experience of listing their

friends and demonstrating that they are popular [8].

The act of declaring ‘friends’ on an Social Network Service is also inaccurate:

cognitive networks—social networks as perceived by the individual–are not always

accurate, with one study finding that people could only recall their social network

with 50% accuracy [9]. Therefore, a user’s social network as listed on an Social

Network Service is not necessarily representative of their actual social network. A

tie to another person on Facebook or LinkedIn does not always match with a tie

in real life. This inaccuracy is not obviously damaging to the SNS themselves, who

benefit from increased usage of their site through advertising revenue from page-

views, but it devalues the network for its users. If the social networking sites do not

accurately represent their participants’ broad social network, then they cannot be

reliably exploited to benefit the users in their everyday working or personal life.

Social Network Services which are based on a network of socially-aware mobile

devices, which will enable people not only to communicate, but help manage their

manage their social ties allowing them to discover and share information with those in

their social network more easily, have the potential to influence human interaction in

the workplace and beyond.

1.2. Thesis Argument and Problem Statements

The thesis argument put forward by this document is given below. It is followed by

three problem statements which elucidate the thesis argument.

Thesis Argument: Metadata associated with the telecommunications protocols available on mobile

devices contains information about communicants’ social relationships. The existence and certain

aspects of the nature of those relationships can be revealed by analysis of this metadata.

Gathering Communications Metadata. Mobile devices are potentially useful social

data gathering instruments. However, the veracity of any data gathered must be

established in order that it can be used for analysis.

Detecting Social Relationships. Communications metadata, such as the time or

duration of a voice call, contains latent information on the existence of social

relationships between communicants, but, at present, there are no clearly established

techniques for accessing this information.
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Comparing Detected Relationships. All social relationships are not equal. Quantitative

methods to distinguish between different detected relationships analogous to the

qualitative ‘stronger’ and ‘weaker’ social relationships proposed in related social

science literature are required.

1.3. Contributions

In addressing each of these problem statements, this thesis makes four contributions:

A Dataset. A new dataset of social interaction data using mobile phones is pre-

sented. Communications metadata from a group of twenty-seven high school students

was gathered over a period of five months. Data on phone calls and text messages,

Bluetooth device discovery, WiFi access point, and cell tower ID was gathered. The

dataset has been made freely available.

Dataset Accuracy. The veracity of two freely available datasets is assessed by

analysing the corroborating records in the datasets. It is found that at best only

half of communications metadata gathered on mobile devices is corroborated by

corresponding data gathered on other devices.

Reliable Detection of Social Ties. A ruleset which can reliably infer the presence of

a social relationship based only on data gathered using mobile devices, and with no

prior knowledge of the relationships between communicants, is presented.

Classification of Social Ties. Methods to classify detected social relationships based on

patterns in communication metadata are investigated.

1.4. Structure of Thesis Document

This thesis contains six chapters. The remainder of this, the first, chapter provides

some background information about the project on which the author worked as

a research student which lead to this thesis, and discusses the suitability of mobile

devices as sensors for social relationships.

Chapter 2 gives an overview of detecting co-proximity. It discusses the importance

of co-proximity, detecting co-proximity with bespoke devices, and with mobile de-

vices. It introduces a key piece of related work—the Reality Mining study [10]—and

outlines key results from that work on using Bluetooth enabled mobile devices to

detect co-proximate individuals.
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Chapter 3 examines the interdependence between mediated communications and

social relationships. The concept of communication network graphs is introduced

and the necessary system architecture to create them is discussed. Communication

network graphs derived from real data are analysed, and the need for corroboration

in datasets is discussed.

Chapter 4 presents a novel estimated social graph derived from co-proximity

data and communications metadata, and presents comparisons of the estimated

social graph with the social graph reported by the participants and the social graph

observed by the researchers.

Chapter 5 examines tie strength: investigating the phenomenon of triadic closure

and how it relates to neighbourhood overlap in small mobile network datasets.

Chapter 6 draws conclusions and discusses future work.

1.5. PhD Background

The work reported in this thesis document was undertaken as part of the Mobile

Virtual Centre of Excellence Core Four Project: Instant Knowledge [11, 12]. The

Instant Knowledge project aimed to monitor the device state and sensor data from

the handheld devices carried by employees in modern workplaces, to foster informal

workgroups, and gather information about employees’ knowledge and skills.

The Instant Knowledge system consists of several components on each de-

vice [11] as shown in Figure 1.1. A context system gathers pertinent context data

from the device and send it to the other system components as appropriate. A

social network mapper automatically gathers and shares the information required

to build an interpersonal network, mapping the links between communicants. A

recommender system provides context-triggered recommendations by employing

machine learning techniques which pro-actively provide the user with useful contact

suggestions from the interpersonal network. Distributed recommendations can also

be requested from peers, so that the system still works in a local ad-hoc environment

where wider Internet access is temporarily unavailable. A third component ensures

that the user feels in control of the information being communicated between devices,

unobtrusively prompting the user for human input to guide the machine learning

components, and ensuring privacy and security.

The Instant Knowledge project was undertaken by the University of Strathclyde

in conjunction with two partner institutions, Royal Holloway, University of London,

and The University of Southampton. The project was divided into three work

packages, and each partner institution had responsibility for a specific work package.
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Figure 1.1.
The Components of the IK System.

IK Device

Context System

Social Network
MapperUser Interface

Recommender

The University of Strathclyde was responsible for work involving mobile devices;

Royal Holloway, University of London for security and privacy research, and The

University of Southampton for machine learning and recommender systems.

The research undertaken at the University of Strathclyde was further subdivided

into three work tasks: network implementation, communications metadata, and user

control and usability. All work on the Instant Knowledge project undertaken at the

University of Strathclyde was carried out in the Mobile Communications Group,

Centre for Intelligent and Dynamic Communications, Department of Electrical and

Electronic Engineering under the supervision of Dr James Irvine.

The work undertaken by the author was on the network implementation work

task. It focused on building and growing the interpersonal network of a user of

the Instant Knowledge system. The work in this task developed protocols which

enabled the exchange of contact information among users of the system, enabling

establishment and expansion of the number of connections in the network. The

research also defined the meaning of having such a link between two people, and

determined how to describe their relationship. Once methods of establishing a

network were defined, the task examined techniques to pro-actively apply the

protocols to build the network without user effort.

The communication metadata work task was undertaken by Dr Alisdair McDi-

armid. It developed techniques to extract and describe useful context information

from ongoing mobile communications, in order to retrieve implied social links

between communicants. This communications metadata must be presented in a

manner which allowed it to be understood by several other system components.

Therefore, an ontology specification was a key outcome of this area of work. The

challenges in this work task were in determining how much information can be found
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within communications sessions, defining that which may be useful for building

and extending the interpersonal network, and creating a syntax for describing this

information which will scale to future communications systems.

Lastly, the user control and usability work task was undertaken by Stephen Bell.

The interpersonal network in the Instant Knowledge system was designed to be

largely automatic in its operation, requiring no direct user input. However, it was

vital that the user felt in control of the information being communicated between

devices. Automation is only useful so long as it is actually helpful; all intelligent

assistant systems require human input to guide them in the correct direction. This

task examined the human interface issues raised by this new system. Exposing the

network information to the user in a usable manner is vital to the success of the

system, and the research determined how the user should be able to control the

interpersonal network.

While each of these work tasks pursued a different thread of research, there

was some overlap between work tasks. Moreover, a key output of the Instant

Knowledge project was a demonstration system, and as the project progressed the

disparate threads of research became intertwined into a holistic demonstration of

all of the research undertaken as part of the Instant Knowledge project. The thesis

work presented here is the work of the author within the collaborative working

environment described above, and can be considered the author’s own work in all

cases except for the study described in Section 3.5. In this case work undertaken on a

side project involving the author and Stephen Bell is presented. Relevant, background

information about the study, the research methodology employed, and other actors

involved and the role the played in the study is given in Section 3.5.1.

1.6. Social Relationships and Mobile Devices

Mobile devices can be used to detect human relationships. However, before

considering the technical details of how this is possible, and what can be achieved

by doing so, it is necessary to examine two more fundamental issues: clarification of

what is meant by a social relationship, and an explanation of why mobile devices are

relevant when attempting to detect them.

In related work the term social tie is often preferred to social relationship. The

word relationship can be misleading. The more common usage, which describes

romantic involvement or kinship, is not the sense in which it is used here. Instead

the word tie is used to describe the presence of any social link or bond, and avoid the

more emotive connotations of relationships.
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To define a social tie we begin with the work of Erving Goffman. In his book

Relations in Public: Microstudies of the Public Order [13] Goffman describes a set of rules

which outline how the two individuals—or ends in Goffman’s terminology—who

participate in the tie should behave when they are face-to-face. These rules define a

tie as a set of mutual standards of behaviour based on roles. The ends of a tie engage

in specific activities in established situations, each situation has a set of necessary

interactions between the individuals, and repeated dealings between two individuals

in one type of situation result in a role relationship.

The correct behaviour between the ends of a tie is based first and foremost on

identification. Goffman separates identity into two categories: social identity and

personal identity [13].

The social identity of a individual is perceived during simple social interactions.

It is derived from the broad social categories to which they can belong, for example

age-grade, race, sex, or class. Organisations and groups can also be considered

as social categories in this sense. Knowledge of an individual’s personal identity

however, requires that you know them personally. It is what Goffman calls the

‘unique organic continuity’ attributed to each individual, and is established through

distinguishing features such as name and appearance, and elaborated by knowledge

of their biography and social attributes. The distinction between social and personal

identity results in two main categories of relationship: anonymous relations, and

anchored relations [13].

Anonymous relations are the patterned interactions between two individuals

who identify each other solely on the basis of instantly perceived social identity. The

ends engage in fleeting and distant interactions which are so commonplace they

may even pass unnoticed. (Goffman describes ‘an individual courteously passing a

stranger in the street’ as an example.) Anonymous relations might not undergo much

development, and may simply be passing interactions between individuals who never

meet again [13].

Anchored relations involve each individual identifying each other personally

and knowing the other does likewise. There are three fundamental aspects to this

process: the individuals involved openly acknowledge the relationship to one another;

the process of personal identification is irrevocable (individuals cannot become

unacquainted, and will make a faux-pas if they forget that they are acquainted); and

the personal acquaintance begun between them is mutual and understood to be so.

This creates a well defined starting point for anchored social relationships. From this

starting point each anchored tie develops over time and gains a history shared by both

ends of the tie [13].
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The status of a relationship at any time is displayed as a tie-sign; a signal which

allows the status of the relationship between two people to be determined by an

observer. Tie-signs are part of what Goffman called the interaction order; the area

of all face-to-face interactions between people. They include all evidence about

relationships involving objects, acts, expressions and only exclude the literal aspects

of explicit documentary statements. These kinds of signals provide information about

the current state of a relationship but do not allow the entire history of the tie to be

determined. They are usually explicit through body placement, posture, gesture, and

vocal expression of the individuals currently present in a situation [13].

When used in this work the term social tie refers to the anchored relations defined

by Goffman. They are unique social bonds that begin in an irrevocable and mutual

introduction between individuals, and whose current status is displayed via numerous

tie-signs.

The interaction order described by Goffman has been the basis for other work

investigating social interactions between mobile phone users, and although Goffman

was not particularly influential in his lifetime, in the decades since his death the

number of his adherents has increased and his importance is noted in sociological

circles as well as in other disciplines [14].

In New Tech, New Ties [15] Rich Ling expands on Goffman’s theories on face-to-

face interaction when he discusses the changes to social cohesion caused by mobile

communication. He notes that although

Goffman is a fruitful source of insight into the use of mobile telephones in co-

present situations. The question remains, however, how his very physically co-

present analysis can be applied to mediated situations [15].

Goffman’s work considers face-to-face interaction almost exclusively, although,

as Ling points out, this is because the level of mobile interaction common today

was unheard of in Goffman’s time. Ling states that it is therefore unnecessary to

limit interaction to the physically co-present but only limit it to the perceptually co-

present. He argues that Goffman’s ideas remain relevant to mobile communication

because mobile communication allows individuals to maintain interactions when

not physically co-present [15]. He cites empirical studies of the behaviour of mobile

phone users in France [16] and Japan [17] which find that co-present interactions can

blend seamlessly into mediated interactions.

The interaction order described by Goffman is also cited by Mark A. Smith.

In his essay From Hyperlinks to Hyperties [18] he describes how the analogue and

ephemeral nature of tie-signs makes detecting and analysing them extremely difficult.

He proposes that the widespread use of computer-mediated communication channels
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has created a class of ties which are significantly more easy to detect and analyse, and

describes how

the social world is becoming ‘machine readable’. Social networking sites […],

Web discussion boards, e-mail lists, private instant messaging, and such emerging

channels as graphical worlds are all examples of the expansion of the interaction

order into machine-readable media. But they also illustrate the limits of these

tools for impacting the primary interaction order of face-to-face encounters.

Some edge toward the interaction order, as when people use mobile phones

or laptops to instant message or e-mail one another while in the same meeting

or room. But much of the activity of the face-to-face interaction order is not

inscribed in a systematic and widespread manner.

Ties in computational media take on new attributes that are distinct from ties in

the physical world. Computational ties are machine readable; can be collected

from a wide range of ongoing events and systems; and can be aggregated,

searched, and analysed in ways that reveal patterns and connections not

previously visible [18].

The postulation that tie-signs are machine readable is central to the work

contained in this thesis. The explosion in the availability and popularity of computer-

mediated communication channels in recent years has led to unprecedented levels

of digital interactions which are available for analysis. Modern mobile devices are

relevant to any attempts to discover social relationships because they are potential

repositories of all of the examples of machine-readable ties discussed by Smith, with

all of the communication channels he describes potentially available on modern

mobile devices. Furthermore the short range communication channels available

almost universally on these devices allow insights into the face-to-face interactions of

users as well as mediated interactions. Mobile communications is a discipline perfectly

placed to build tools to explore social relationships: they allow access to many new

digital tie-signs from many different communication channels; and their mobility and

ubiquity combined with their ability to detect other local devices create the possibility

of analysis of face-to-face interactions too.
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2.1. The Importance of Co-proximity

The interaction order described by Erving Goffman is based on face-to-face

interactions and although, as discussed in the previous chapter, Goffman’s ideas can

be extended to apply to mediated interactions, knowledge of physical co-proximity is

also relevant to the study of social ties. Mobile devices can create new possibilities for

social interaction, but many social interactions still take place between people who are

face-to-face, particularly when they are exchanging complex information [19].

In fact face-to-face interactions are still the dominant mode of interaction between

people. In Social Interactions Across Media: Internet, Telephone, and Face-to-Face [20] Baym

et al. report results from two studies into the social interactions for college students

conducted at two large midwestern universities. They compare interactions on the

phone, via the internet, and face-to-face and find that of all interactions reported

by the students 64% were face-to-face. Interactions were rarely exclusively face-to-

face however: 64% of participants conduct interactions face-to-face, on the phone,

and online. No participants interact exclusively using the telephone, and only one

participant reported exclusively face-to-face or internet interactions respectively.

In this work, the term co-proximity is defined as ‘corporeal co-presence’ [21]. That

is, where individuals are physically present in the same place at the same time, and

sense that they are close enough to be perceived in whatever they are doing, and to be

perceived in this sensing of being perceived [22, 23].

The proximity of individuals can be itself a kind of tie-sign, revealing information

about the nature of the tie between them. In The Hidden Dimension [24] Edward

T. Hall proposes four ‘distances in man’ which signal some information about

the relationships between co-proximate individuals and the activities that they are

undertaking. They are intimate distance, personal distance, social distance, and

public distance. Each of these zones is then further subdivided into a close and a far

phase.

At intimate distance the presence of the other person is unmistakable. In the

close phase individuals are touching, and in the far phase they are between 15cm

and 45cm apart. Personal distance corresponds to the term of the same name in

Anthropology [24], and designates the distance consistently separating members

of a non-contact species. Known colloquially as ‘personal space’ it creates a small

protective bubble that individuals maintain between themselves and others. In

humans, the close phase is within touching distance between 45cm and 75cm apart,

and the far phase is ‘at arm’s length’ from 75cm to 120cm. Social distance is far

enough away that intimate visual detail in the face is not perceived. Nobody touches

or expects to touch another unless there is some special effort, but conversation is
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possible with normal voice level. It ranges from 120cm to 2m in the close phase to 2m

to 4m in the far phase. Public distance is well outside the circle of involvement. Faces

can be perceived but not in detail, and voice level must be risen to converse. The

close phase is from 4m to 7m and the far phase greater than 7m [24]. The diferences

between each of the eight phases is shown in Figure 2.1.

2.2. Detecting Co-proximity with Electronic Devices

Research has been undertaken in the field of ubiquitous computing into building

devices which detect the distances between individuals [25, 26, 27, 28]. These devices

are typically worn or carried, are powered by microcontrollers, and communicate

with other devices using short-range communications protocols.

In Supporting Group Collaboration with Interpersonal Awareness Devices [25] Holmquist

et al. propose the development of ‘interpersonal awareness devices’ (IPADs). These

are self-sufficient devices identified with a particular user which are carried or worn

at all times. They utilise the relationship between the devices (such as co-proximity)

to convey awareness of other IPAD users. However, these devices do not mediate any

communication between users; they simply communicate some information about

other nearby devices.

A prototype IPAD–the Hummingbird–is discussed. It creates awareness of other

co-present devices by producing an audible ‘hum’ when two or more Hummingbirds

belonging to users in the same group are within 100 meters of one another. At this

distance the granularity of co-proximity detected is solidly in the the far-phase of

the public distance described by Hall, and as such the Hummingbird only begins to

illuminate the ties between users. However, these devices do start to augment the

interaction order slightly. Users become aware of the presence of others through

otherwise impenetrable physical obstacles, and in locations where they would not

expect to meet [25].

In The Familiar Stranger: Anxiety, Comfort, and Play in Public Spaces [26], Paulos and

Goodman propose developing mobile devices which explore social phenomena

between co-present individuals. The focus of the work is on ‘familiar strangers’, a

term introduced by Stanley Milgram [29] to describe individuals who are repeatedly

observed but never interacted with. Milgram uses the example of commuters,

describing standing next to the same people at a train station every day for years

but never conversing with them. Familiar strangers are a specific type of anonymous

relation which form a border zone between an individual’s acquaintances and

complete strangers, and, because they are repeatedly observed, establish connections
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Figure 2.1.
Hall’s ‘Distances in Man’.

0m–0.15m Intimate distance (near)

0.15m–0.45m Intimate distance (far)

2m–4m Social distance (far)

0.45m–0.75m Personal distance (near)

0.75m–1.2m Personal distance (far)

1.2m–2m Social distance (near)

4m–7m Public distance (near)

>7m Public distance (far)
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to specific locations [26].

Paulos and Goodman discuss the the Jabberwocky: a device for detecting familiar

strangers [26]. They are personal, wearable, devices which use Bluetooth to detect

other nearby devices. As two people approach each Jabberwocky detects and records

the presence of the other. Jabberwockys can also be placed on objects and at certain

locations allowing connections between familiar strangers and locations that they

inhabit to be made. The range of connectivity is stated to be up to 30 meters giving

better resolution to detected co-proximity than the Hummingbird, but still the far-

phase of public distance. The ability to vary the power of the radio on a Jabberwocky

is mentioned in passing, alluding to the possibility of more sensitive detection of co-

proximity [26].

Devices in the form of ‘active badges’ [30] have also been used to attempt to infer

the presence of social ties from detected proximity. While the original active badge

concept focused on location-aware applications using badges equipped with infrared

sensors [30], badges have also been used to detect relationships between people [27,

28].

In the GroupWear project [27], Borovoy et al. discuss using badges to display the

similarity between users when they are face to face. User co-proximity is detected by

infrared sensors on badges, and similarity is measured by comparing the number of

matching responses to multiple-choice questions. In order to ensure GroupWear tags

correctly identified situations where users were face-to-face, the authors designed the

tags so that they only detected another tag when the users were facing each other, and

at a normal conversation distance [27].

Although the range of the GroupWear badges is not explicitly stated, the phrase

‘normal conversational distance’ implies the close phase of social distance and

therefore a range of up to 2 meters. In related earlier work Borovoy et al. describe the

implementation of a similar device, the Thinking Tag [28], in detail. In these devices

the transmit power of the infrared transmitter was limited to ‘about five feet’ (1.5

meters), exactly in the close phase of social distance [28].

Devices which detect co-proximity with infrared sensors and gather data on social

ties have also been proposed. In their paper Sensing and Modelling Human Networks Using

the Sociometer [31] Choudhury and Pentland describe wearable devices which detect

conversations. Sociometers are personal devices which uniquely identify individuals.

They use infrared to detect co-proximity, and a microphone to detect speech. Like

Jabberwocky devices Sociometers also store information about the interactions they

detect locally in memory on board the device [31].

Four low-power infrared transmitters are used in the Sociometer. They create a
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cone shaped detection area in front of the Sociometer with a range of ‘approximately

six feet’ (1.8 meters) [32]. Like the GroupWear tag the Sociometer detected other

devices in the close phase of social distance. Focusing the detection area to the

front of the device ensures that only individuals directly in front are detected, not

those in a circle around the device (as with devices with radio transmitters like the

Hummingbird). Infrared sensors provide information about face-to-face co-proximity

but the microphone is required to detect conversations. The microphone is placed

slightly below the user’s mouth on the chest, this close placement allows speech by the

user to be separated from other speech and ambient noise by thresholding. The data

gathered by the Sociometers can then be analysed to detect ‘episodes’; continuous

periods of time where users are both co-present and speaking and hence presumed to

be conversing [32].

Sociometers were deployed in an experiment in the MIT Media Lab where

23 people wore the devices for six hours a day for eleven days [31]. After the

deployment, pairs of conversations were identified and the links between individuals

mapped. Links were calculated from the number of episodes which were greater

than 5% of the total interaction time for each participant, and were used to map the

network of interactions which were detected. Choudhury and Pentland presented

their estimations of conversations to the participants to gain a measure of ground

truth, and correctly identified 87.5% of conversations of length one minute or

greater [31].

The Sociometer is the first device which truly attempts to detect the presence of

social ties, and appears to be capable of detecting co-proximity and conversation

interactions with a high level of accuracy. However, implementation issues such

as how the data was retrieved from each Sociometer and collated for further

analysis, and design details such as the precise definition of what constituted a link

are not discussed, making more in depth analysis impossible. (For example, did a

conversation have to be detected by both Sociometers to be considered to contribute

to a link or is detection by one sufficient?)

Although extensive details of the implementation and design of the Sociometer

studies are not available, Choudhury et al. describe the technical specification of a

related device: the Mobile Sensing Platform [33]. The Mobile Sensing Platform gathers

more general context data on individuals, not specifically information on social

interactions, but the type of technical problems encountered are similar. When

discussing the lessons learned from deployments of the Mobile Sensing Platform

Choudhury et al. highlight issues relating to transferring data gathered locally on

devices to external devices for preprocessing, logging, and analysis. In particular, they
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they highlight the problem that

connectivity wasn’t reliable enough to continuously stream sensor data […]. The

packet losses and intermittent connection drops required us to switch to a wired

solution where the sensor board was physically attached to a PDA via a USB

cable.

We used this [combination of equipment] to collect [our data]. This solution

worked as a temporary research prototype, but it clearly wasn’t feasible longer

term because it required participants to carry a bulky, wired device combination

simply to collect data [33].

Although wearable sensors can detect co-proximity, the technical problems

associated with processing data on the device and transmitting data from one

device to another limit the usefulness of wearable sensors to all but the simplest of

research applications. The addition of a mobile device allowed proof of concept to be

established but was ultimately unworkable.

In addition to the technical and logistical problems with bespoke wearable

sensors, cost also becomes a limiting factor when attempting more sophisticated

applications. The MIThril platform [34] was developed in the MIT Media Lab at

the end of the 1990s. It was a prototyping system for wearable pervasive computing

applications which linked a range of sensors to a CPU by a common bus. Initially, like

the Sociometer and Mobile Sensing Platform, custom hardware was used, but at a

cost of more than $3000 per unit in 2001 it was apparent that it would be difficult to

build and maintain more than a handful of devices [34]. However, by 2003

the availability of inexpensive, Linux-capable PDAs with significant signal

processing and communications capabilities [allowed the development of

devices] with many of the capabilities of the original MIThril system, but at a

fraction of the original MIThril 2000 system complexity and cost [34].

More complex applications require additional processing power and more robust

communication channels. Rather than extending the functionality of the bespoke

devices already developed researchers turned instead to mobile communication

devices, which by the early 2000s had significant processing power, memory, and

various communication channels available making them ideal tools for researchers

to build on the early work on detecting co-proximity described here.

The potential of mobile devices as platforms to detect co-proximate interactions

was also noted in earlier work. Paulos and Goodman [26] mention the suitability of

mobile phones to replace custom iMote devices:
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Jabberwockies require a low power localised radio, limited processing, and small

storage. Today’s Bluetooth enabled mobile phones satisfy these constraints and

make an ideal platform to develop a personally carried Jabberwocky application.

These Bluetooth enabled mobile phones support the same interactions and

metaphors as personally carried iMotes.

Although it is possible to investigate co-proximate interactions by building

bespoke hardware, the complexity and cost of such an approach is unfeasible.

Applications which require the storage and processing of data, and the availability

of robust communications channels require the use of PDAs or mobile phones. These

devices have the processing power, memory, and communications capability required

for more complex investigations of co-proximate interactions. Often the various

sensors available on these devices are sufficient to replace the external sensors used

in earlier platforms. Mobile devices, albeit with some modifications to the operating

system and with additional software, can be used as complete sensor nodes when

attempting to detect co-proximate interactions.

2.3. Detecting Co-proximity with Mobile Phones

In their paper VibeFones: Socially Aware Mobile Phones [35], Madan and Pentland

propose that mobile phones are

really the researcher’s wearable computer in disguise. People carry their mobile

phones for most of their day, which makes them ubiquitous wearable sensors

that can collect continuous, long-term, behavioural and social data […].

[However, mobile phones] are social in a very limited sense of the word—while

they connect users and support sharing of information, they understand very

little about the user or the nature of the interaction itself [35].

It is from such a premise—that mobile phones can be considered to be ubiquitous

conveyers of social information, but have no understanding of the nature of the

interactions they facilitate—the authors postulate that mobile devices can be made

to be socially aware, that is, capable of somehow perceiving the social ties between

their users [35]. Like the Sociometer Madan and Pentland propose to combine

speech and proximity information in order to detect social interactions. Rather

than only detecting the presence of conversations they also seek to classify them

according to elements such as rhythm, stress, and intonation which can give insights

into the emotional state of the speaker. Unlike the Sociometer however, proximity is

detected by Bluetooth radios integrated into the phone. This means that although
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no additional sensors are required, face-to-face interactions cannot be directly

detected [35].

The concept of a socially aware mobile device is a compelling idea, and Madan

and Pentland outline how it could be made possible with Linux-based mobile phones

and various software enhancements, but they only allude to the implementation of

their concept and no results are presented. A more detailed implementation of mobile

phones as social sensors is given in another project undertaken at the MIT Media Lab

(in which Pentland was also involved), Reality Mining.

2.3.1. The Reality Mining Study

The Reality Mining Project was carried out in the MIT Media Lab in 2004. One

of the main aims of the project was to show that mobile phones alone could be used

to gather data on social ties. No additional sensors need to be integrated with the

mobile device like those in MIThril or the Mobile Sensing Platform. Reality Mining

also aimed to show that this kind of data gathering exercise was scalable, and hence

practical [2].

One hundred Nokia 6600 mobile phones with custom operating systems were

deployed over the course of an academic year. Seventy-five participants were

either students or faculty at the MIT Media Lab, and the remaining twenty-five

were students at the adjacent Sloan Business School. The dataset includes call

logs, Bluetooth proximity data, and cell tower IDs of all participants, a total of

approximately 450,000 hours of co-proximity, communication, and device usage

behaviour [10]. A dataset containing data for all of the participants over a nine month

period was made available to the research community.

The choice of handset was important to the study. Although the phones acted

as sensor nodes without any additional hardware, custom software was required to

gather the study data. The software used was ContextPhone which can only be run

on Symbian Series 60 mobile phones [2].

ContextPhone was developed by Raento et al. and is described in detail in

their paper ContextPhone: A Prototyping Application Platform for Context-Aware Mobile

Applications [36]. It is a set of open-source C++ libraries and other software compo-

nents which provide the context data available on mobile devices as a resource for

developers. The platform is divided into four modules: sensors, communications,

customisable applications, and system services. Sensors gather context data, including

location data, user interaction data, and communication data. The communications

module implements the standard communications protocols expected on the phone,

local area with infrared and Bluetooth and wide area with GSM and GPRS. SMS
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and MMS are also supported, as is XMPP. Customisable applications allows

developers to build custom applications to a much greater degree than was possible

using Symbian at the time. The systems services module provides the ability to start

and run background services on series 60 phones (a feature which was not available

previously).

ContextPhone enabled Series 60 devices allowed Eagle and Pentland to gather

significant amounts of data during the Reality Mining Study. Reality Mining is

noteworthy for two reasons: it was the first study to use mobile phones as social

sensors where more than a handful of devices were deployed, and the availability of

the data allowed many other researchers access to data that would have otherwise

been unavailable. However, the dataset is not perfect.

In his PhD Thesis, Eagle identifies three ways in which errors were introduced

into the dataset: data corruption, device detection failures, and what he refers to as

‘human error’. Initial versions of the software repeatedly wrote over the same cells

in flash memory cards in the phones, some of these cards failed due to their limited

number of read-write cycles. Data for ten participants was lost due to corruption

caused by this error in the first two months of the study.

The ability of the phones to accurately detect other co-proximate devices was

also an issue. The range of Bluetooth doesn’t guarantee that detected devices are co-

proximate, and the scanning period of five minutes means that short interactions may

be missed. A small percentage of interactions—between 1 and 3 percent—are not

detected due to the Bluetooth server crashing.

Two classes of ‘human error’ are identified by Eagle: the phone being off and

the phone being separated from the user1. The phone is either off because it was

switched off by the user deliberately or because of exhausted batteries. In both cases

it is possible that potential interactions were missed. When the phone is off the user

may still interact with other people, but the phone has no way of detecting these

interactions, and when the phone is separate from the user other co-present devices

may be detected, but the phone is no longer an accurate proxy for the user.

2.3.2. You Are Your Cell Phone (Most of the Time)

The question of the applicability of a mobile device as an accurate proxy for a user

is an interesting one. If one assumes that it is, and by extension that knowledge of the

location or other context of a mobile device is synonymous with the context of the

user of that device, then the possibilities are enormous. In his essay You Are Your Cell

1A user turning their phone off or not having their phone with them at all times is not necessarily an error on the part of
the user. However, these actions by the human users of devices will introduce errors into the dataset, and this is presumably why
Eagle chose the name human error.

20



Phone [37] Roy Want argues that a

characteristic that sets mobile computers apart from desktop computers is that

they’re intimately associated with their user’s daily life and experiences. […]

Now that cell phones have become mobile and ubiquitous in their own right, we

can take the proxy concept to a new level. […] A person’s cell phone experiences

almost all of the physical parameters that the person experiences—it feels the

same forces, travels at the same velocity, is about the temperature, is exposed to

the same sounds and pollution levels, and near the same people and equipment.

By recording the state of sensors attached to a mobile phone, you’re effectively

recording its owner’s experiences across a rich set of dimensions [37].

However, if a mobile device is not an accurate proxy for a user, then user context

may be significantly different from device context. As Patel et al. [38] point out in

Farther Than You May Think: An Empirical Investigation of the proximity of Users to Their

Mobile Phones,

this approach assumes that the mobile phone is an accurate proxy for the

location of its owner. Intuitively and anecdotally, we know that people do in fact

carry their mobile phones with them much of the time, but these same phones are

not physically on their bodies nor within arm’s reach at all times [38].

Patel et al. investigated users physical relationship to the mobile phone in an

empirical study in 2006. Sixteen participants were given small plastic beacons to wear

around their necks for three weeks. The beacons were to be worn almost all of the

time—most subjects wore them even while sleeping—and are therefore assumed to be

a reliable proxy for the individual. The distance between the phone and the beacon

could then be measured and used to provide an estimate of the distance between the

phone and the individual [38]. The beacon, worn around the neck as a pendant,

emits a Bluetooth signal detected by a custom-built application on the user’s

Bluetooth-enabled phone. The application on the phone pings the tag every

60 seconds and approximates the distance based on the strength of the signal

received. This method allows for the determination of three levels of proximity:

within arm’s reach (strong signal); in the same room (signal is weak or varied); or

unavailable (signal could not be detected) [38].

The beacon uses a class 2 Bluetooth module which is reduced to -22 db to extend

battery life and limit the maximum at which the phone can detect the beacon to

around 5 or 6 meters. A signal loss of 5 db is assumed to account for absorption by

the human body [38].
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Rather than use a Received Signal Strength Indicator, which is inconsistently

implemented across mobile phones if at all, Patel et al. implemented their own

simpler signal strength indicator for proximity detection.

In this solution, the round trip time of the Service Discovery Protocol packets

are used to estimate the distance between the tag, the link quality should

degrade. The lower link quality then increases the bit error rate and thus the

number of packet retransmissions. The retransmits in turn increase the service

discovery time.

[…] A phone within arm’s reach typically shows a service discovery time of

about 2000–4000 ms, room level distance of about 4000–7000, and no returned

service discovery information is interpreted as the phone being out of range or

further than room level.

In practice, physical room level distance can result in fluctuating values between

4000 ms and no discovery. This fluctuation is likely due to a BER so high that

the bluetooth module times out and does not report a successful discovery. One

serious issue with this phenomenon is the difficulty in determining whether the

phone transitioning from ‘room level’ and truly out of range or whether the

phone is consistently at room level with erroneous fluctuation described. [38]

If high rates of fluctuation were observed—for example, where the range

transitions with every reading—for more than five minutes Patel et al. classified the

reading as room level.

The proximity levels detected varied. Phones are within arm’s reach between 17%

and 85% of the time, 58% on average. However, a significant increase in the average

time the phone was within arm’s reach is seen during times that they were away from

home: over 70% of the time on average. Conversely, users were less likely to have

their phone at arm’s length while at home; only 50% of the time on average.

The assumption that mobile devices are an accurate proxy for users is valid for

more than half of the time. It is more robust when the user is known to be somewhere

other than the home, although some uncertainty as to the validity of the assumption

remains. This uncertainty must be considered at all times during any attempt to infer

user context from mobile device context, and care must be taken not to allow the

assumption that a mobile device is an accurate proxy for a user to become specious

and undermine the validity of the work.

2.3.3. Suitability of Bluetooth for Co-presence Detection

Discovery services are a crucial part of the Bluetooth framework. Using the service

discovery protocol, device information, services and the characteristics of the services
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can be queried before a connection between two or more Bluetooth devices is

established [39]. By repeatedly running the Service Discovery Protocol on mobile

devices it is possible to detect all the co-proximate devices at a given time.

The maximum range of a class 2 Bluetooth device is 10m. In practice it will be

less than this, albeit, with high variance in bit error rates beyond distances of six

meters reported [40]. If we assume that the effective range of Bluetooth is six meters,

co-proximate users discovered using Bluetooth will be in the near phase of public

distance at least, if not within social distance. Figure 2.2 shows the overlap between

social and public distances, and the effective range of a class 2 Bluetooth radio.

One concern with using Bluetooth to continuously scan for co-proximate devices

is the effect that this may have on the battery life of the devices used. However, related

work by Kukkonen et al. [41] shows that repeated, regular use of Bluetooth does not

significantly affect battery performance.

In BeTelGeuse: A Platform for Gathering and Processing Situational Data they report

a set of experiments in which [they] used BeTelGeuse under different

configurations and measured time it took to drain the battery of five fully-

charged, brand-new Nokia E61i devices (with standard 1500mAh batteries). […]

As [a baseline they] used a version in which only the [data gathering software

ran]. This version lasted between 35 and 36 hours. Adding a GPS device that

was read once per minute decreased that battery life to 34 hours, running

Bluetooth scans on top of this had only minor impact. These values span well

over a day, which makes these setups well suited for long term data collection.

Changing the GPS from periodic reading mode to continuous streaming had a

more significant effect on the battery lifetime, with the mean lifetime decreasing

to 25.7 hours. Again, the Bluetooth scanning had only minor impact on the

performance (mean 25 hours). Thus, BeTelGeuse’s battery usage is well suited to

Bluetooth.

Bluetooth is well suited to detecting co-present devices. Discovered devices will be

in the near phase of public distance, and may well be in social distance. Although it

would be preferable to be certain that co-present devices are within social distance,

the availability of Bluetooth on many mobile devices makes it an attractive choice.

Moreover, the power requirements of running the Service Discovery Protocol

continuously are not so strenuous as to adversely affect the battery life of the device.

2.3.4. Relationship Inference from Co-proximity Data

In his PhD thesis [2] Eagle discusses how
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Figure 2.2.
Overlap Between Effective Bluetooth Range and Social and Public Distance.
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knowledge of the shared context of two users can provide insight into the nature

of their association. For example, being near someone at 3pm by the coffee

machines confers different meaning than being near her at 11pm at a local bar.

However, even simple proximity patterns provide an indication of the structure

of the underlying friendship network […]. [Eagle] trained a [machine learning

process] to detect patterns in proximity between users and correlate them with

the type of relationship. The labels for this model came from a survey taken

by all of the experimental subjects at the end of two months of data collection

[…] [2].

This technique picked up the

common sense phenomenon that office acquaintances are frequently seen in the

workplace, but rarely outside the workplace. Conversely, friends are often seen

outside the workplace, even if they are co-workers [2].

Further analysis of the correlation between co-proximity and social ties is given by

Eagle et al. in Inferring Social Network Structure using Mobile Phone Data [42].

Proximity is generally much higher for friends, but time and location are

important predictors as well, where the ratio of proximity off [sic] hours outside

work is much higher for friends than nonfriends. [Eagle et al.] therefore
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divided proximity into variables corresponding to on campus/off campus,

daytime/nights (separated at 8 a.m. and 8p.m.), weekend proximity, and phone

communication. A factor analysis revealed that two factors capture most of

the variance in these variables. The first factor, which loads most heavily on

proximity at work during the daytime is labeled ‘in-role’, as it represents the

traditional behaviour between colleagues. The second factor, which loads most

heavily on off-campus proximity in the evening and on weekends, is labeled

‘extra-role’ and is representative of behaviours outside the work environment.

[…] [It] is possible with a single parameter to accurately predict 96% of […]

self-reported friendships based only on objective measurements of behaviour

because the strong cultural norms associated with social constructs such as

friendship produce differentiated and recognisable patterns of behaviour.

2.4. Summary

Face-to-face interactions are still the dominant mode of interaction between people.

The proximity of individuals can be itself a kind of tie-sign, revealing information

about the nature of the tie between them, for example individuals interacting at social

distance.

Devices with a badge form factor and infrared sensors are capable of detecting

social distance between individuals but they do not attempt to discover any further

information about the ties between users. Instead they augment the existing

interaction order by highlighting the presence of other users, and in doing so create

the possibility of new types of social interaction.

Although it is possible to investigate co-proximate interactions by building

bespoke hardware, the complexity and cost of such an approach makes it difficult,

particularly for large studies. Applications which require the storage and processing of

data, and the availability of robust communications channels require the use of PDAs

or mobile phones.

Socially aware mobile devices could be made possible with smart phones and

various software enhancements. These devices have the processing power, memory,

and communications capability required for more complex investigations of co-

proximate interactions. Often the various sensors available on these devices are

sufficient to replace the external sensors used in earlier platforms. Mobile devices,

albeit with some modifications to the operating system and with additional software,

can be used as complete sensor nodes when attempting to detect co-proximate

interactions.

The Reality Mining study was an important milestone in the field: the use of
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mobile phones to gather large amounts of social interaction data proved that the

approach was possible, and the accurate identification of many social ties proved

that mobile devices can be suitable proxies for users, and that Bluetooth can be

successfully used to detect co-proximate individuals.
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3.1. Social Ties and Communications

Mobile devices are first and foremost communication devices, and human com-

munication is intrinsically linked to social ties. In Pragmatics of Human Communication

Watzlawick et al. assert that it is impossible not to communicate. The assertion is

derived from the fact that behaviour has no opposite—that there is no such thing as

non-behaviour—and that all behaviour during human interaction has some intrinsic

message value, meaning it can be considered to be a communication. It follows that if

one cannot not behave then one cannot not communicate [43].

Activity or inactivity, words or silence all have message value: they influence

others and these others, in turn, cannot not respond to these communications

and are thus themselves communicating [43].

This fundamental coupling between behaviour and communication has inter-

esting implications for our previous definition of a relationship: if a communication

imposes behaviour as well as conveying information then any communication implies

some commitment or tie and thereby defines the role relationship [43]. Building on

earlier work by Bateson1, the content and relationship aspects of communication are

defined.

The report aspect of a message conveys information and is therefore synony-

mous in human communication with the content of the message. It may be about

anything communicable regardless of wether the particular information is true

or false, valid, invalid, or undecidable. The command aspect, on the other hand

refers to what sort of message it is to be taken as, and, therefore, ultimately to the

relationship between the communicants [43].

If every communication has a content and a relationship aspect, relationships

can classify the communications between the ends [43]. It follows that analysis of

communications will yield information about the relationships between communi-

cants. Detecting the presence of social ties can therefore be achieved by detecting

communications and attempting to estimate the relationships associated with them.

Both email and mobile phone data have been used in attempts to infer the

social networks of communicants. Kossinets and Watts [44] discuss the use of email

communications of students, faculty and staff from a large university to investigate

the underlying network of social ties in Empirical Analysis of an Evolving Social Network.

They recorded the timestamp, sender, and list of recipients (but not the content)

1Here Watzlawick et al. cite Bateson, Gregory, and Jackson, Don D. ‘Some Varieties of Pathogenic Organisation’, in
David McRioch (ed.). Disorders of Communication, vol. 42 (Research Publications, Association for Research in Nervous and Mental
Disease, 1964), pp. 270–283. This article was not available to the author.
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of 14,584,423 email messages over 355 days. All messages with more than four

recipients were removed in order to remove mailing lists and other mass mailings and

to ensure that interpersonal communications were accurately reflected. Eckmann et

al. [45] also use email data to analyse the interactions between people at a university.

In Entropy of Dialogues Creates Coherent Structures in Email Traffic they show that spikes

in email traffic can be used to identify groups of collaborating individuals, and, like

Kossinets and Watts, they use the reciprocal exchange of email messages to denote a

potential social tie.

In Structure and Tie Strengths in Mobile Communication Networks [46] Onnela et al. use

call data from a mobile network provider over an 18 week period to investigate the

social networks of 4.6 million mobile subscribers. Users are considered to have a tie if

they have at least one reciprocal exchange of phone calls during the 18 week period.

The need for reciprocal calls eliminates a large number of one-way calls, most of

which correspond to single events, suggesting that they typically reach individuals

that the caller does not know personally [46]. Palla et al. [47] also use mobile call

data to infer the presence of social ties. In Quantifying Social Group Evolution the authors

examine call patterns between over 4 million subscribers over the course of a year.

Mobile phone data is also used in smaller scale studies. Laursen [48] discusses

the relationship inferences which can be drawn from analysis of the content of calls

and SMS messages in Please Reply! The Replying Norm in Adolescent SMS Communication.

The dataset used contains 511 SMS messages and 287 calls between six 14 year

old Danish school children (three boys and three girls) over the period of one week,

gathered with the help of the network provider.

Although Laursen’s study aimed to correlate patterns in communications with

social ties which are already known to exist, not to infer the presence of new ties, the

work is still relevant. She finds that if an SMS message is sent to someone with an

important social tie then typically a reply is received within three minutes [48]. This

suggests that reply time is another tie sign visible in communication metadata, and

moreover, if messages are consistently replied to within three minutes then there

is an important social tie between communicants. Reply time is therefore a useful

indication of the presence of social ties.

The estimation of social ties from analysis of communications is an established

method of estimating the presence of social ties, although studies vary in both the

number of communicants involved, duration of the study time period, and the

communication channels analysed. Despite this variation they have common features

too: all are done retrospectively on data that is not normally available, and in order

to gather this data some special permission is required to access it. Studies using
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email data received permission to access the data stored in university email servers,

and studies using mobile data use data from mobile network providers. The fact

that the datasets used are rarely made public, potentially creates severe constants on

researchers: those researchers wishing to study mobile communications data usually

require the coöperation of a mobile network provider to access the data.

3.2. Communication Network Graphs

Social Network Analysis is concerned with detecting and interpreting patterns of

social ties between people, organisations, or nations involved in a social relation. It

is applied in various social sciences: to study kinship, friendship, and gift giving in

anthropology; to investigate affective relationships in social psychology; to analyse

power relations in political science; and to examine trade and organisational ties

among firms in economics [49]. In this work, concepts from Social Network Analysis

are used to provide a common language to describe both communication networks

(and later the social networks estimated from them), and to provide tools for the

analysis of these networks.

3.2.1. Relations and Network Analysis

There are three principal data types in the social sciences: attribute data, relational

data, and ideational data [50]. Attribute data relate to the attitudes, opinions, and

behaviour of agents. Relational data are the contacts, ties and connections, and

group attachments and meetings which relate one agent to another (and so cannot

be reduced to the properties of the individual agents themselves). Ideational data

describes meanings, motives, definitions and typifications themselves.

Since the main goal of Social Network Analysis is detecting and interpreting

patterns of social ties between people involved in a social relation it is primarily

concerned with relational data. Relations are ‘substantive connections’, between

the members of the network and a network analysis consists of a body of quantitate

measures of network structure [51].

Wasserman and Faust [51] define a number of relations which may be measured

in a network analysis: individual evaluations (friendship, liking, respect, etc.);

transactions or the transfer of material resources (lending, borrowing, buying, and

selling); transfer of non-material resources (communications and sending or receiving

of information); interactions; movement (both physical movement, from place to

place and social movement, between occupations or statuses); formal roles; kinship

(marriage, descent) [51].
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In this thesis, the relations of interest are social ties and as such the primary

areas of interest in any network analysis are communications and interactions.

One advantage of using mobile devices to capture relational data is access to

communications metadata, for example the time, duration and frequency of phone

calls between users can be recorded. Another—as discussed in Chapter 2—is the

ability of mobile devices to detect co-presence.

3.2.2. Graph Theory: Notation and Terminology

Graph theory has been widely used in social network analysis as a means of

formally representing social relations and quantifying important social structural

properties [52]. Different terminology and notation is used in different related

work. For clarity, the graph theoretic notation and terminology used in this work is

discussed here.

Definition of a Graph A graph G consists of two sets of information: a finite nonempty

set N of N nodes, N = {n1, n2, . . . , nN}, and a proscribed set L of L lines,

L = {l1, l2, . . . , lL}. Each line is an unordered pair of distinct nodes, lx = (ni, nj)

and is said to join ni and nj . If nodes ni and nj are joined by a line lx they are adjacent

nodes, and the line lx and node ni are incident with each other, as are nj and lx. If two

distinct lines lx and ly are incident with common nodes, then they are adjacent lines.

A graph with N nodes and L lines is called a (N ,L ) graph, denoted G (N ,L ).

The (1, 0) graph is trivial; all other graphs are nontrivial. A graph that contains N

nodes and no lines, G (N, 0) is empty. A graph is labeled when points are distinguished

from one another by names [52, 53].

A component is the set of nodes to which a node belongs that can be reached from it

by paths running along the lines of the graph [54].

It is customary to represent a graph by means of a diagram and to refer to it as

the graph. Thus, in the graph G shown in Figure 3.1, the nodes u and v are adjacent

but u and w are not: lines x and y are adjacent but x and z are not. Although

the lines x and z intersect on the diagram, their intersection is not a point of the

graph [53].

A graph is a model for a social network of undirected dichotomous ties. In a social

graph, the nodes represent actors and lines represent ties between actors [52].

There are several variations of graphs. Note that the definition of a graph permits

no loop that is, no line joining a node to itself. In a multigraph, no loops are allowed but

more than one line can join two nodes; these are called multiple lines. If both loops and

multiple lines are permitted, we have a pseudograph [53].
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Figure 3.1.
A graph to Illustrate Adjacency. (Adapted from [53].)

G :

u w

v

x y

z

If more than one relation is measured on the same set of actors, then the graph

representing the network must allow each pair of nodes to be connected in more than

one way [55]. For example, if a network analysis considered actors who called one

another as well as actors who were co-proximate with one another, then two relations

are measured on one set of actors.

A multigraph G consists of a set of nodes, N = {n1, n2, ..., ng} and two or more

sets of lines, L + = {L1,L2, ...LR}. Let R be the number of sets of lines in the

multigraph, and subscript the lines to denote to which set it belongs. If each relation is

nondirectional, each line in each of the R sets is an unordered pair of distinct nodes,

lkr = (ni, nj). A pair of nodes may be included in more than one set of lines. Since

there are R sets of lines, each unordered pair of nodes may have from 0 up to R lines

between them [55].

Many relations are directional—the ties are orientated from one person to

an other. Mediated communications between people are examples of directional

relations, for example ‘made a call to’ or ‘received an SMS from’. In these cases

information is sent from one person to another; one person is the source and the

other is the destination of the information. In the network analysis of electronic

communications the ties are directional and therefore the graph representing such

ties must be directed [56].

A directed graph or digraph D consists of a finite nonempty set N of nodes together

with a prescribed collection L of ordered pairs of distinct nodes. The elements of L

are directed lines or arcs. An arc lx = ⟨ni, nj⟩ is directed from ni to nj . The arc from

node ni to node nj is not the same as the arc from node nj to ni (lx = ⟨ni, nj⟩ ̸=
ly = ⟨nj, ni⟩), there are two distinct possible arcs for each pair of nodes. By definition,
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a digraph has no loops or multiple arcs [53, 56].

Often social network data consist of valued relations in which the strength or

intensity of each tie is recorded. Examples of valued relations include the frequency

of interaction among pairs of people, or the rating of friendship between people in a

group. Relations of this kind cannot be represented on a graph or digraph, since the

lines or arcs in a graph or digraph are dichotomous [57].

A valued graph or a valued directed graph is a graph (or digraph) in which each line

(or arc) carries a value, allowing valued relations to be represented. A valued graph

consists of three sets of information: a set of nodes, N = {n1, n2, ..., nN}, a set
of lines (or arcs), L = {l1, l2, ..., lL}, and a set of values, V = {v1, v2, ..., vL},
attached to the lines or arcs. Associated with each line or arc is a value from the set

of real numbers. A valued graph is denoted by GV (N ,L ,V ), or simply GV [57].

3.2.3. Dyads and Star Graphs

A dyad is the simplest nontrivial graph consisting of a pair of nodes and the possible

line between the nodes. In a graph, an unordered pair of nodes can be in only one

of two states: either the nodes are adjacent or they are not. Thus dyadic states for an

undirected relation are dichotomous; either the actors have a tie present, or they do

not [58]. The graph GD(2, 1) is shown in Figure 3.2.

Figure 3.2.
A Dyad.

GD :

A dyad can show any dichotomous relation between two actors: if a mobile

subscriber s has a contact c stored in the address book of their phone then the dyad

would look like that shown in Figure 3.3.

Figure 3.3.
A Dyad Showing a Mobile Subscriber and a Contact.

GD : s c

If the address book of s’s phone has eight contacts, each dyad can be added to the

graph to create a graph with a star topology. The graph GC(NC ,LC) has a set of
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nodes NC = {s, c1, c2, c3, c4, c5, c6, c7, c8} representing the subscriber and each contact,

and a set of lines LC = {l1, l2, l3, l4, l5, l6, l7, l8} where ln = (s, cn). The graph GC is

shown in Figure 3.4.

Figure 3.4.
A Star Graph Showing a Mobile Subscriber and Eight Contacts.
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Digraph dyads consisting of two nodes and the possible arcs between them are

also possible. Since there may or may not be an arc in either direction for a pair of

nodes ni and nj , there are four possible states for each dyad: null, two asymmetric

states, and reciprocal.

The null dyad has no arcs, in either direction between the nodes. The dyad for

nodes ni and nj is null if neither the arc ⟨ni, nj⟩ nor ⟨nj, ni⟩ is contained in the set

of arcs L . An asymmetric dyad has an arc between the nodes in one direction or the

other, but not both. The dyad for nodes ni and nj is asymmetric if either the arc

⟨ni, nj⟩ or the arc ⟨nj, ni⟩, but not both, is contained in the set of arcs L . Thus, there

are two possible asymmetric dyads. A reciprocal dyad has two arcs between the nodes,

one going in one direction the other going in the opposite direction. The dyad for

nodes ni and nj is reciprocal if both arcs ⟨ni, nj⟩ and ⟨nj, ni⟩ are contained in the set

of arcs L [59].

If the digraph represents voice calls made between mobile subscribers, a null dyad

represents neither subscriber calling the other, an asymmetric dyad represents one

subscriber calling the other, and a reciprocal dyad represents both calling each other.

Instead of analysing the address book of subscriber s, if the call log is used as our

data source a digraph DC(NC ,LC) may be created. The set of nodes NC is identical

to that in GC but the set of arcs LC now contains directed lines where lnin = ⟨s, cn⟩
or lnout = ⟨cn, s⟩. DC is shown in Figure 3.5. There are no calls between s and c1 or
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c2, relations which are represented with null dyads. Calls are received from c3 and c4
and made to c5 and c6, relations which are represented with asymmetric dyads. Calls

are both received from and made to c7 and c8, relations which are represented with

reciprocal dyads.

Figure 3.5.
A Directed Graph Showing the Calls Between a Subscriber and Contacts.
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DC :

3.2.4. Triads and Ego Graphs

A graph consisting of three nodes and the possible lines between them is called a triad.

A triad may be in one of four possible states, depending on whether none, one, two,

or three lines are present among the nodes of the triad. These four possible triadic

states are shown in Figure 3.6 [58].

Figure 3.6.
The Four Possible Triad States. (Adapted from [58].)

0 lines 1 line 2 lines 3 lines

Triads may also exist in digraphs. Consider any three nodes of a digraph ni, nj ,

and nk, where i ̸= j ̸= k. The set of three nodes without the lines which may exist
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Figure 3.7.
The Sixteen Digraph Triad States.
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between them is called a triple, when the lines which join the nodes in the triple are

considered there is a triad. Tijk is the triad involving ni, nj , and nk. In a triad the

ordering of the nodes matters so we will always let i < j < k [60].

For a set of N actors, there are
(
N
3

)
triads. Let T denote the set of all triads: T =

{T123, T124, . . . , T(N−2),(N−1),N}. This set is of size
(
N
3

)
= (1/6)N(N −1)(N −2) [60].

Consider now how many ties can be present in a digraph triad. There are three

nodes in the triad, and each node can join to two others, giving six possible arcs.

There are 26 = 64 states for a triad if the digraph is labeled. (If the digraph is not

labeled then some of the states will be isomorphic—structurally indistinguishable

from one and other—in the same way that unlabelled asymmetric dyad states are

structurally indistinguishable [60].) The sixteen (unlabelled) digraph triad states are

shown in Figure 3.7.

Figure 3.8.
A Triad Showing Calls Between a Subscriber and Two Contacts.

s

c1

c2

If a mobile subscriber s has made calls to two contacts c1 and c2 the relations

between s and c1 and c2 create a transmitter triad—a special case of the star graph

with only three nodes. If, however c1 then calls c2 the triad becomes a weakly

connected triad like that shown in Figure 3.8. By analysing the relations between

contacts in addition to the relations between the contacts and the subscriber shown

in the star graphs of Figures 3.4 and 3.5 we create another social graph topology: the

ego graph.

An ego graph consists of a focal node, termed ego, a set of nodes who have some

relation to ego, termed alters, and the relations between the alters [61]. Ego graphs are

used by anthropologists to study the social environment surrounding individuals and

families, and are also used to study ‘social support’ relationships which aid the health

or well-being of an individual [61].

Figure 3.9 shows an ego graph DE of the calls between a subscriber s and eight

contacts c1 to c8. All of the arcs present in DC (shown in Figure 3.5) are present in DE

as well as the additional arcs ⟨c3, c8⟩, ⟨c4, c6⟩, ⟨c8, c7⟩ between the alters.

When using data from mobile devices to create ego graphs more than one data

source is needed: it is longer possible to use the address book or call logs from a single
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Figure 3.9.
An Ego Graph Showing the Calls Between a Subscriber and Contacts.
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mobile device as these sources of data will not contain any information about the

alters’ contacts or phone calls. To construct a complete social graph it is therefore

necessary to gather data from more than one mobile device.

3.3. Mapping Communication Networks

The data required to map social graphs is communication network data. This section

discusses what can be achieved by analysing communications, and how this data can

be gathered on real mobile devices and combined to create a communications net-

work graph. A method for determining the veracity of the gathered communications

network data is also discussed.

Traffic Analysis

In Secrets and Lies: Digital Security in a Networked World Bruce Schneier defines traffic

analysis as

the study of communications patterns. Not the content of the messages

themselves but, characteristics about them. Who communicates with whom?

When? How long are the messages? How quickly are the replies sent, and how

long are they? What kinds of communication happen after a certain message is

received? These are all traffic analysis questions and their answers can reveal a

lot of information.

In the intelligence community the practice of studying the characteristics

of messages (but not their content) to infer patterns in communications is often
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used [62]. A similar approach is used in this work. No analysis of the content of

messages is considered—neither in voice or text-based communications—instead only

characteristics of the messages, in the form of communications metadata, is used.

Communications Metadata

Metadata is structured data which describes the characteristics of a resource. In the

case of a call made from a mobile device it might include the number the call is from,

the number the call is made to, the direction of the call, the time the call is made,

and the duration of the call. Text-based communications such as SMS messages

or email will have similar metadata although there will be no duration as these

communications are not real-time, instead a length measured in bytes or the number

of characters could be measured. Analysis of communications metadata of this kind

allows traffic analysis to be performed on communications devices.

Pervasive Computing and Context

Pervasive computing aims to enhance computer use by making many computers

available throughout the physical environment which are effectively invisible to the

user [63], and envisions a world of fully interconnected wireless devices, with cheap

wireless networks everywhere.

Today, some aspects of communication infrastructure are ubiquitous: there

is appropriate bandwidth for large-scale wireless networking in large parts of the

developed world [64], the appropriate communications protocols to handle mobility

have seen large-scale deployment [65], and the number of people adopting wirelessly

enabled mobile devices is increasing quickly [65].

Pervasive computing systems take advantage of environmental information,

or context, to enhance the interaction with the user. Context is usually defined

as information that is part of the operating environment of a system that can be

sensed by the system. This can include the location, identity, activity, and state of

people, groups and objects as well as information relating to places or the computing

environment [66].

Communications metadata can be considered to be context data

Mobile devices which gather data on users’ social interactions require context

information pertaining to the nature and state of users’ social relationships. Com-

munications metadata provides ‘social’ context because of the inherent link between

communications and social ties.

The following communications channels are available on most mobile devices:

voice and video calls, and SMS and MMS messages via cellular networks; and
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communications via standard internet protocols such as email, instant messaging,

VoIP calls, file transfers, and resource sharing via WiFi and 3G mobile networks.

Each communication attempt, whether or not it was successful or reciprocated, and

information about the timing of communications such as the frequency, the time

elapsed since the last communication, or the duration of any conversations could all

be gathered and used as ‘social’ context data.

3.3.1. System Architecture

Communication Metadata is used to map the communications between mobile

users. If the relation to be map is has called then by analysing the call logs on a mobile

device it is possible to create star graphs like those discussed in Section 3.2. Three

star graphs for three subscribers a, b, and c are shown in Figure 3.10. Each subscriber

has called three other people. Both a and b have called each other, and they have also

called another person—subscriber c.

Figure 3.10.
Star Graphs for Three Mobile Subscribers.

a

b

c

c

b

a

c

It is clear that there is some redundancy in representing the relations between a,

b, and c using only star graphs. The line (a, b) is shown twice as are the lines (a, c) and

(b, c). Each of the star graphs can be combined to make a complete network graph

for the three subscribers. The complete communications network graph is shown in

Figure 3.11.

There are two possible architectures for a system which is able map to mobile

communications networks in this way. Either a centralised architecture is used,

where each star graph is sent to a central point (a dedicated server for example) to

be combined into a complete network graph in a similar way to the Home Location

Register of a cellular network: a given device knows its own location but the HLR
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Figure 3.11.
Complete Communications Network Graph for Three Subscribers.

c

b

a

knows the location of all devices on that network. Or a distributed architecture is

used, where each star graph is shared between devices in some way and devices

create a local version of the complete network graph in a similar way to the sharing

of information in mobile ad-hoc networks [67].

In this work only centralised networks are considered as the focus is on the

problem of detecting social ties between the users of mobile devices. The problem

of efficiently sharing data across a distributed network is a second order issue and not

considered here.

3.3.2. A Note on Gathering Social Context

Some of the nodes shown in Figures 3.10 and 3.11 are not labeled. The identity of

these nodes is not known because they have no context gathering software running on

their devices. Any relation exists between two actors and hence requires two actors in

order to exist. The two ends of a social tie may be the sender and recipient of an SMS

message, for example.

When one attempts to gather communications metadata from mobile devices

two distinct classes of data emerge: data pertaining to interactions between users

whose mobile devices are gathering context data, and data pertaining to interactions

between users of mobile devices and others. The others may be users of mobile

devices with whom social ties exist, but they may also be automated services, PTSN

phones in homes or offices, or even other devices belonging to the same person.

Without context aware software running on a device, and hence some knowledge of

that device, it is difficult to make inferences about any interactions with that device.

For this reason, only data pertaining to interactions between users whose mobile
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devices are gathering context data is of interest in this work.

3.3.3. Data Corroboration

When performing traffic analysis on a centralised dataset of context gathered by

devices each mediated interaction made between two mobile devices will be recorded

twice: once on the sending device and once on the receiving device. This means that

for every call or SMS shown on the communication network graph there are two

corroborating records. The valued digraph in Figure 3.12 represents a single call

between two subscribers a and b. As a made the call to b it is recorded as an outgoing

call to b on device a, and similarly as an incoming call from a on device b.

Figure 3.12.
Two Corroborating Call Records Between a and b.

a b

Incoming : aOutgoing : b

1

By analysing the corroborating pairs of calls it is possible to determine the

reliability of the communications data gathered. If a mediated interaction recorded

on the sending device is corroborated on the receiving device then we can be sure

that the data is correct. However, if a mediated interaction recorded on the sending

device is not corroborated on the receiving device (or vice versa) then the accuracy

of the data gathered is brought into question. Clearly some data is missing, but it is

impossible to know how much. The amount of corroborating data is used to give an

indication of the completeness of the dataset: the higher the corroboration, the more

complete the dataset.

3.4. The Reality Mining Communication Graph

The Reality Mining study [10], discussed in Chapter 2 during the review of systems

capable of detecting human co-proximity, also gathered some communication

metadata from the mobile phones used in the study. This section gives more detail

of the communications metadata gathered, discusses the communications network

graph derived from this communications information, and investigates the veracity of

the data gathered.
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3.4.1. The Dataset

The Reality Mining dataset includes data pertaining to study participants’ calls, SMS

messages, and cell tower data, as well as Bluetooth device discovery. Details of what

data was gathered are given below, and further details such as the database schema

used can be found in Michael Lambert’s Masters thesis [68].

The cell phones used in the study recorded ‘interesting’ events to log files.

The timestamps used when recording these events had the following format:

YYYYMMDDTHHMMSS. (The character T denotes time and acts as a delimiter between

date and time information in self-explanatory formats.) When the phones were on,

three ASCII-formatted logs were created using the current timestamp as part of the

filename starter-TIMESTAMP.txt, call-TIMESTAMP.txt, and log-TIMESTAMP.txt.

starter-TIMESTAMP.txt contains status and debug information about the logging

application, but information about the participants. call-TIMESTAMP.txt contains a

log of phone calls, SMS messages, and data transfers including incoming/outgoing

status, the number dialled, the duration of the call, and other information. log-

TIMESTAMP.txt contains a log of other device context information: current cell tower,

nearby Bluetooth devices, current foreground application, idle/active status, and

charging status. This data was collated and stored in a MySQL database.

The database schema refers to the data stored in call-TIMESTAMP.txt files as

callspans. The following call and SMS message data is available:

Voice Calls

• Start time,

• End time,

• ID of the person whose phone is recording the call,

• ID of the interface at the other end of the call (i.e the phonenumber),

• Direction with respect to the device logging the call, and

• Call duration.

Short Messages

• Start time,

• End time,

• ID of the person whose phone is recording the message,

• ID of the interface at the other end of the message (i.e the phonenumber),

• Direction with respect to the device logging the call, and

• Status of message: sent or delivered.
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The data contains 897,921 call and SMS records, 39,206 (4.4%) of which are

between the ninety-seven study participants. There are 599,097 calls, 108,693 SMS

messages, and 190,131 data transfers. Data transfers are ignored in the remainder of

this analysis as none were detected within the group of study participants.

34,742 calls (5.8%) and 4,464 messages (4.1%) are between the study participants.

(All values for calls and SMSs within the study group do not include self-calls—calls a

participant made to themselves—some of the total number will include self-calls.)

Many of the call and SMS records in the dataset are duplicated: manual

inspection of the data found that many of the call and short message records have

the same person (recorder of the interaction), phone number (opposite end), start

time, end time, and duration. In order to continue the analysis, duplicate calls were

removed from the dataset by the author of this thesis.

After removing duplicate records 4,240 unique voice call records and 657 short

message records between study participants remain. Therefore 87.8% of voice call

records and 98.11% of short messages between Reality Mining participants in the

original dataset are duplicates.

3.4.2. Reality Mining Communication Graphs

The unique call and SMS records in the Reality Mining dataset can be used to create

graphs of the communications between the participants in the Reality Mining study.

Digraphs showing the calls between study participants and SMS messages between

study participants are shown in Figures 3.13 and 3.14 respectively. Each arc on the

digraph represents one or more call or SMS message between participants, with

the arc directed towards the receiver of the call or the message. Study participants

who sent or received voice calls or messages are represented by the nodes on the

graph, study participants who did not send or receive any calls or messages are not

represented. The nodes are numbered according to the person_id numbering scheme

in the dataset.

The call network graph shown in Figure 3.13 indicates calls were made between

seventy-seven of the ninety-seven study participants. Similar to the analysis of the

proximity interactions between study participants performed by Eagle [2], two main

components are clearly visible although four unconnected dyad pairs can also be

seen. The degree of most nodes is in the order of 1–3 with some nodes, such as 29,

83, and 86, having a much higher degree.

The SMS network graph shown in Figure 3.14 is considerably more sparse than

the call graph. (The call graph is shown greyed out in the background for reference.)

The smaller of the two components breaks into two further components, one of
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which is a transmitter triad and the larger of the two components into three smaller

components, two of which are dyad pairs. Most arcs are similar if not the same as

those in the call network graph, although some only appear on one. The arcs ⟨63, 97⟩
and ⟨63, 87⟩ appear in both graphs, ⟨29, 86⟩ and ⟨86, 29⟩ are on the call graph but

only ⟨86, 29⟩ is on the message graph. The edge ⟨75, 73⟩ appears on the call network

graph but not the message network graph, and the edge ⟨84, 75⟩ appears on the

message network graph but not the call network graph.

3.4.3. Corroboration in the Reality Mining Dataset

The unique call and SMS records in the Reality Mining dataset allow the communi-

cations between study participants to be mapped. However, although each of these

records is unique they have not been corroborated as described in Section 3.3.3.

When two members of the Reality Mining study exchange a mediated interaction

(sending or receiving a message or phone call), there should be two records of this

event: a log of an outgoing communication from the sender, and a log of an incoming

communications from the receiver. The Reality Mining dataset does not exhibit this

expected corroboration to any significant degree.

Every (unique) call and SMS message record in the Reality Mining dataset was

tested for a corroborating record. To corroborate one record, another record must be

found where the sender and receiver matched and vice versa, the start time is ±30

seconds (to allow for clock de-synchronisation), and the duration of a call is within ±5

seconds.

Of the 4,240 unique call records in the data set 426 (10.05%) are corroborated

meaning that 213 calls are reliably recorded. Similarly, 36 (5.48%) of the 657 unique

SMS message records are corroborated meaning that only 18 records are reliably

recorded.

To account for larger values of clock de-synchronisation, the corroboration test

was run for a window size of up to 10 minutes. The results are shown in Figure 3.15.

Allowing for clock de-synchronisation of ten minutes increases the number of

corroborated calls to 15.5% and the number of corroborated messages to 11.57%.

These results are significant: the communications metadata in the Reality Mining

data set cannot be considered reliable, and as such, it is not suitable for use as the

basis for an investigation into inferring social ties from communication patterns. A

better dataset is required.
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Figure 3.13.
Reality Mining Call Network Graph.
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Figure 3.14.
Reality Mining SMS Network Graph.
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Figure 3.15.
Percentage of Corroborated Calls and Messages in the Reality Mining Dataset.
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3.5. The Nodobo Dataset

The communications metadata in the Reality Mining dataset is so sparse it is not

suitable for use as the basis for an investigation into inferring social ties from com-

munication patterns. As no other suitable datasets were available, a project to gather

another dataset was undertaken. The Nodobo project gathered communications

metadata from a group of twenty-seven students at Springburn Academy in Glasgow.

The resulting dataset is freely available online2.

3.5.1. Background

The Nodobo dataset was gathered during a University of Strathclyde funded project

entitled ‘Use of Social Networks to Support Education’ undertaken with colleagues

in the Applied Educational Research Centre, University of Strathclyde. The project

explored how social networks and mobile devices are being used by secondary school

2http://uk.crawdad.org/meta.php?name=strath/nodobo
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students to enhance their learning experience.

A group of three researchers from the Applied Educational Research Centre, led

by Alistair Wilson, worked with the students at the school and gathered qualitative

study data. At the same time a group of three researchers, including the author,

led by Dr Alisdair McDiarmid developed a system to gather social interaction data

using smartphones. This allowed traffic analysis to be performed on the voice calls

and SMS messages sent and received by the study participants, and from this traffic

analysis a social graph was derived.

Study participants were all in the fifth year of high school (the second last in

the Scottish system) and were part of a group of discerning students identified by

the school as having a high chance of gaining university admission. Students were

required to attend school from Monday to Friday between 08:30 and 15:45 and

encouraged to attend optional study groups after school on some days. Not all

students attended all of the same classes, but there was some overlap with some study

participants attending some of the same classes.

Ethical Issues

Due to the sensitive nature of the personal information gathered during the study,

ethical consent was sought from the University Ethics Committee. Ethical approval

for the study was given based on the following conditions:

• All participants were required to provide informed consent to take part in the

research.

• To guarantee informed consent there was an opportunity for the parents/carers

and pupils interested in becoming involved to attend an information session

with the research team before the research commenced. In addition the

research team distributed detailed information sheets to each pupil and

parent/carer.

• Only those pupils that attended the information sessions were invited to take

part in the research project.

• Consent forms were given to students, parents (for information), and teachers.

As all of the students are over the age of 12, parental consent was not needed,

however their agreement was sought in addition to consent from the student.

• A researcher had ongoing contact with all participants ensuring they have an

opportunity to withdraw from the project at any time.

• During the course of the project pupils were represented by allocated ID

numbers and there was no display of their names or numbers to other pupils.
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• Where participants contact other mobile devices, outside of the research group,

one way data encryption meant that all external numbers were encrypted and

not visible or knowable to the research team.

• During the course of the project all digital data were held on a secure

University server. Other forms of data including completed consent forms were

stored in locked university accommodation.

• Data was maintained in an anonymised state beyond the duration of the project

with access restricted to the members of the research team, all of whom had

Enhanced Disclosure. Data gathered was only used for the stated purposes of

the research.

System Development

The software used to gather data in the Nodobo study was developed by Stephen

Bell, Dr Alisdair McDiarmid, and the author. It is based on existing software

developed by Stephen Bell and Alisdair McDiarmid which allows precise capture

and replay of smartphone user interactions sessions to enable new usability testing

experiments [69, 70]. This software gathered context data pertaining to users’

interactions with smartphones—such as touching the touch-screen or pressing

buttons—and was used to examine how smartphone applications or mobile websites

are used in the real world.

Working from requirements elicitation performed by the author, Stephen Bell was

able to augment this existing software to gather communications metadata as well as

user interactions context data. The resulting software was then tested by the author

and Stephen Bell before being deployed.

3.5.2. Data Collection

Study Participants were given a handset with some modifications made to the

operating system. The Nodobo Study gathered data using Google Nexus One

handsets running Android 2.3.

The Nexus One was selected for two reasons: it is open enough to allow the

appropriate modifications to the operating system for capturing the social interactions

metadata to be made, and the phone is powerful enough to replace all of the

functionality of the users’ existing phone meaning that they will use it in place of

their old device. (Although at the time of writing the Nexus One is becoming a little

outdated and a new, more powerful device will be required in the future.)

Nodobo Social is a set of software extensions to the Android operating system,

which monitor the applications running on a mobile device to record a variety
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of communications and usage context data. The records are stored in a SQLite3

database on the device’s SD card, which is synchronised periodically over the air with

a web services data store, ensuring that data is continuously received from devices

throughout a deployment, broken or out of contact devices can be detected quickly,

and the SD card on the device acts as a back up of the data gathered in a deployment

rather than the only data store [71].

The software on the phone captures data using a variety of software sensors,

logging phone calls and text messages, Bluetooth device discovery, WiFi access point,

and cell tower ID. The direction of calls and text messages is recorded, along with

the associated phone number, and the duration of the call or length of the message.

Bluetooth proximity is recorded every minute, and includes all phones in the study

as well as any other devices which respond to service discovery. Basic positioning is

achieved through WiFi hotspot and cell tower ID records.

From September 2010 to the end of January 2011 the Nodobo study recorded

13,035 call records, 83,542 SMS records, and 5,292,103 proximity records. There

were 1,309 calls within the study, 25,982 messages within the study, and no duplicate

records.

An overview of the Nodobo Social architecture is shown in Figure 3.16. Context

generators create new context records or clues which are stored on the devices in a

clue database. The contents of the clue database are pushed over the air to a central

server, and are then available for analysis. If data is for some reason not being sent to

the central server the option of manually collecting the contents of the clue database

via USB is available.

Android stores past calls and SMS messages in SQLite3 databases called

contacts.db and mmssms.db respectively. Objects called ‘content providers’ and

‘content observers’ provide a mechanism for interacting with these databases;

specifically, an application can register to receive notifications when the contents of

these databases change. By registering a content observer for each of the databases, it

is possible to record when calls and SMS messages are sent and received.

The simplest mechanism for synchronising the call log, or the SMS log, with

the interactions database is to insert the most recent call, or SMS, in the respective

database into the interactions database directly after a notification is received.

However, this approach assumes a single notification for each interaction which is

not the case. There are three notifications sent for calls, and two notifications sent for

SMS messages, meaning that each call or SMS message would be inserted into the

interactions database multiple times [71].

Instead, when a call or SMS notification is received, the handler selects the
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Figure 3.16.
Nodobo Social Architecture.
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original ID of the latest call in the interactions database. If this original ID is less

than the ID of the newest entry, the newest entry can be inserted into the interactions

database only when the notification is called the first time [71].

Bluetooth is used to detect nearby co-proximate devices. Nodobo uses service

discovery to discover devices for 12 seconds each minute. As the Bluetooth modem

is unavailable when the device is asleep, the application must wake the device in order

to discover devices. Every minute an alarm is registered which wakes the device and

registers a wake lock so the processor will not go back to sleep once the discovery

process is started [71].

3.5.3. Initial Examinations of the Nodobo data

Analysis of the timing of interactions provides an initial common sense check of

the data gathered during the Nodobo study. The timestamps of the interaction

data gathered during the study were filtered by hour and by day of the week, and
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the cumulative percentages were then plotted. They show broadly what would be

expected—most interactions occur during school hours on weekdays, with some

interactions on weekday evenings and weekends—but there are also some interesting

features in the data.

Figure 3.17.
Percentage of Detected Nodobo Interactions by Day.
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Figure 3.17 shows shows the change in the number of calls, SMS messages, and

co-proximate interactions, for study participants, over the course of each week in the

study. More calls are made on Friday and Saturday compared to the rest of the week,

SMS messages are fairly evenly distributed throughout the week, and co-proximity

is detected almost always between Monday and Friday when the participants should

have been attending school.

Figure 3.18 shows the change in the number of calls, SMS messages, and co-

proximate interactions, for study participants, over the course of each day of the

study. Calls peak in the morning before school, and in the evening after school,

although there are some calls being made throughout the day hours and the evening.

SMS messages increase throughout the day and peak in the evening. Interestingly,

SMSs are sent late into the night and early hours of the next morning. Co-proximity
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is detected almost exclusively between 0700 hours and 1600 hours although there is a

long tale suggesting a small amount of co-proximity in the evening. Significant peaks

in the amount of co-proximate interactions are seen at 0900 hours and 1300 hours

during the first class of the day and the lunch break respectively.

Figure 3.18.
Percentage of Detected Nodobo Interactions by Hour (Adapted from [71]).
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Study participants appear to attend school as expected on weekdays: they arrive

each day around 9:00am, spend their lunch break together, and leave school in the

late afternoon. There is some co-proximity on Saturdays, perhaps for sporting or

social events, and very little co-proximity on Sundays. SMS seems to be the common

mode of communication, and is used throughout the week including during school

hours and late into the night. Voice calls on the other hand are made more often on

Friday and Saturday than other days, perhaps when organising weekend activities.

Voice calls are also made less frequently during school hours than SMS messages

but do show spikes before and after the school day, this is presumably because they

harder to conceal than SMS messages when in class!
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3.5.4. Nodobo Communication Graphs

The call and SMS records in the Nodobo dataset can be used to create graphs of

the communications between the study participants like those of the Reality Mining

Study in Section 3.4.2. Again, each arc on the digraph represents one or more voice

call or SMS message between participants, with the arc directed towards the receiver

of the call or the message. Study participants who sent or received voice calls or

messages are represented by the nodes on the graph, study participants who did not

send or receive any calls or messages are not represented. The nodes are numbered

according to the user_id numbering scheme in the dataset.

The Nodobo SMS message network graph Dmessage consists of a set of twenty-five

nodes Nmessage and a set of eighty-four arcs Lmessage where

Nmessage ={1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22,

23, 24, 25, 26, 27}

and

Lmessage ={⟨1, 6⟩, ⟨1, 8⟩, ⟨1, 11⟩, ⟨1, 15⟩, ⟨1, 27⟩, ⟨3, 11⟩, ⟨3, 27⟩, ⟨4, 7⟩,

⟨4, 13⟩, ⟨4, 17⟩, ⟨4, 23⟩, ⟨5, 24⟩, ⟨6, 1⟩, ⟨6, 11⟩, ⟨6, 15⟩, ⟨6, 27⟩,

⟨7, 4⟩, ⟨7, 13⟩, ⟨7, 23⟩, ⟨7, 27⟩, ⟨8, 10⟩, ⟨8, 13⟩, ⟨8, 23⟩, ⟨8, 27⟩,

⟨9, 22⟩, ⟨10, 8⟩, ⟨11, 1⟩, ⟨11, 3⟩, ⟨11, 4⟩, ⟨11, 6⟩, ⟨11, 8⟩,

⟨11, 15⟩, ⟨11, 18⟩, ⟨11, 23⟩, ⟨11, 26⟩, ⟨11, 27⟩, ⟨13, 4⟩, ⟨13, 7⟩,

⟨13, 8⟩, ⟨13, 12⟩, ⟨13, 23⟩, ⟨13, 26⟩, ⟨13, 27⟩, ⟨14, 19⟩, ⟨14, 21⟩,

⟨14, 25⟩, ⟨15, 1⟩, ⟨15, 6⟩, ⟨15, 8⟩, ⟨15, 11⟩, ⟨15, 27⟩, ⟨16, 19⟩,

⟨17, 4⟩, ⟨17, 6⟩, ⟨17, 11⟩, ⟨17, 12⟩, ⟨17, 18⟩, ⟨18, 11⟩, ⟨18, 17⟩,

⟨19, 14⟩, ⟨19, 16⟩, ⟨19, 21⟩, ⟨19, 25⟩, ⟨21, 14⟩, ⟨21, 19⟩, ⟨21, 25⟩,

⟨22, 9⟩, ⟨23, 8⟩, ⟨23, 13⟩, ⟨25, 14⟩, ⟨25, 21⟩, ⟨26, 11⟩, ⟨26, 13⟩,

⟨26, 23⟩, ⟨26, 27⟩, ⟨27, 1⟩, ⟨27, 3⟩, ⟨27, 6⟩, ⟨27, 7⟩, ⟨27, 8⟩,

⟨27, 11⟩, ⟨27, 13⟩, ⟨27, 23⟩, ⟨27, 26⟩}.

The SMS network graph in Figure 3.19 shows messages were sent by twenty-

five of the twenty-seven study participants. The graph has two distinct components,

one with sixteen nodes and one with five. The remaining four nodes form the same

disconnected dyad pairs as in the call network graph. The five node component

contains the same nodes as the weakly connected sub-component seen in the call

network graph.
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The Nodobo call network graph Dcalls consists of a set of twenty-three nodes

Ncall and a set of fifty-five arcs Lcalls where

Ncall ={1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24,

25, 26, 27}

and

Lcalls ={⟨1, 15⟩, ⟨3, 11⟩, ⟨4, 7⟩, ⟨4, 8⟩, ⟨4, 23⟩, ⟨5, 24⟩, ⟨6, 1⟩, ⟨6, 11⟩,

⟨6, 15⟩, ⟨7, 4⟩, ⟨7, 13⟩, ⟨7, 27⟩, ⟨8, 10⟩, ⟨8, 13⟩, ⟨8, 23⟩, ⟨8, 27⟩,

⟨9, 22⟩, ⟨11, 3⟩, ⟨11, 15⟩, ⟨11, 23⟩, ⟨11, 26⟩, ⟨11, 27⟩, ⟨13, 4⟩,

⟨13, 8⟩, ⟨13, 23⟩, ⟨13, 26⟩, ⟨13, 27⟩, ⟨14, 19⟩, ⟨14, 25⟩, ⟨15, 1⟩,

⟨15, 6⟩, ⟨16, 19⟩, ⟨17, 4⟩, ⟨17, 11⟩, ⟨19, 14⟩, ⟨19, 16⟩, ⟨19, 21⟩,

⟨19, 25⟩, ⟨21, 19⟩, ⟨21, 25⟩, ⟨22, 9⟩, ⟨23, 4⟩, ⟨23, 7⟩, ⟨23, 8⟩,

⟨23, 13⟩, ⟨25, 21⟩, ⟨26, 11⟩, ⟨26, 13⟩, ⟨26, 25⟩, ⟨26, 27⟩, ⟨27, 7⟩,

⟨27, 8⟩, ⟨27, 11⟩, ⟨27, 13⟩, ⟨27, 26⟩}.

The call network graph in Figure 3.20 shows the calls made between twenty-three

of the twenty-seven study participants. The graph is dominated by a large component

containing nineteen of the twenty-three nodes with the remaining four forming two

disconnected dyad pairs. The main component of the graph also contains a weakly

connected sub-component (nodes 14, 16, 19, 21, and 25) connected to the main

component by the arc ⟨26, 25⟩ alone.
The superset of all nodes in both the call and message network graphs contains

twenty-five nodes

Ncall ∪ Nmessage ={1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

21, 22, 23, 24, 25, 26, 27},

and twenty-three nodes are common to both graphs

Ncall ∩ Nmessage ={1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21,

22, 23, 24, 25, 26, 27}.

There are no nodes which appear on the call network graph but not the message
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Figure 3.19.
Nodobo Message Network Graph.

18
11

6

15

1

8

3

27

26
23

7

4

13

12

17

9 22

5 24

25 16

14

19

21

10

Figure 3.20.
Nodobo Call Network Graph.
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network graph

Ncall \ Nmessage = ∅,

and there are two nodes which appear on the message network graph but not the call

network graph

Nmessage \ Ncall ={12, 18}.

The superset of all arcs in both the call and message network graphs contains eighty-

eight arcs

Lcall ∪ Lmessage ={⟨1, 6⟩, ⟨1, 8⟩, ⟨1, 11⟩, ⟨1, 15⟩, ⟨1, 27⟩, ⟨3, 11⟩, ⟨3, 27⟩,

⟨4, 7⟩, ⟨4, 8⟩, ⟨4, 13⟩, ⟨4, 17⟩, ⟨4, 23⟩, ⟨5, 24⟩, ⟨6, 1⟩,

⟨6, 11⟩, ⟨6, 15⟩, ⟨6, 27⟩, ⟨7, 4⟩, ⟨7, 13⟩, ⟨7, 23⟩, ⟨7, 27⟩,

⟨8, 10⟩, ⟨8, 13⟩, ⟨8, 23⟩, ⟨8, 27⟩, ⟨9, 22⟩, ⟨10, 8⟩, ⟨11, 1⟩,

⟨11, 3⟩, ⟨11, 4⟩, ⟨11, 6⟩, ⟨11, 8⟩, ⟨11, 15⟩, ⟨11, 18⟩,

⟨11, 23⟩, ⟨11, 26⟩, ⟨11, 27⟩, ⟨13, 4⟩, ⟨13, 7⟩, ⟨13, 8⟩,

⟨13, 12⟩, ⟨13, 23⟩, ⟨13, 26⟩, ⟨13, 27⟩, ⟨14, 19⟩, ⟨14, 21⟩,

⟨14, 25⟩, ⟨15, 1⟩, ⟨15, 6⟩, ⟨15, 8⟩, ⟨15, 11⟩, ⟨15, 27⟩,

⟨16, 19⟩, ⟨17, 4⟩, ⟨17, 6⟩, ⟨17, 11⟩, ⟨17, 12⟩, ⟨17, 18⟩,

⟨18, 11⟩, ⟨18, 17⟩, ⟨19, 14⟩, ⟨19, 16⟩, ⟨19, 21⟩, ⟨19, 25⟩,

⟨21, 14⟩, ⟨21, 19⟩, ⟨21, 25⟩, ⟨22, 9⟩, ⟨23, 4⟩, ⟨23, 7⟩,

⟨23, 8⟩, ⟨23, 13⟩, ⟨25, 14⟩, ⟨25, 21⟩, ⟨26, 11⟩, ⟨26, 13⟩,

⟨26, 23⟩, ⟨26, 25⟩, ⟨26, 27⟩, ⟨27, 1⟩, ⟨27, 3⟩, ⟨27, 6⟩,

⟨27, 7⟩, ⟨27, 8⟩, ⟨27, 11⟩, ⟨27, 13⟩, ⟨27, 23⟩, ⟨27, 26⟩}

of which fifty-one arcs are common to both graphs

Lcall ∩ Lmessage ={⟨1, 15⟩, ⟨3, 11⟩, ⟨4, 7⟩, ⟨4, 23⟩, ⟨5, 24⟩, ⟨6, 1⟩, ⟨6, 11⟩,

⟨6, 15⟩, ⟨7, 4⟩, ⟨7, 13⟩, ⟨7, 27⟩, ⟨8, 10⟩, ⟨8, 13⟩, ⟨8, 23⟩,

⟨8, 27⟩, ⟨9, 22⟩, ⟨11, 3⟩, ⟨11, 15⟩, ⟨11, 23⟩, ⟨11, 26⟩,

⟨11, 27⟩, ⟨13, 4⟩, ⟨13, 8⟩, ⟨13, 23⟩, ⟨13, 26⟩, ⟨13, 27⟩,

⟨14, 19⟩, ⟨14, 25⟩, ⟨15, 1⟩, ⟨15, 6⟩, ⟨16, 19⟩, ⟨17, 4⟩,

⟨17, 11⟩, ⟨19, 14⟩, ⟨19, 16⟩, ⟨19, 21⟩, ⟨19, 25⟩, ⟨21, 19⟩,
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⟨21, 25⟩, ⟨22, 9⟩, ⟨23, 8⟩, ⟨23, 13⟩, ⟨25, 21⟩, ⟨26, 11⟩,

⟨26, 13⟩, ⟨26, 27⟩, ⟨27, 7⟩, ⟨27, 8⟩, ⟨27, 11⟩, ⟨27, 13⟩,

⟨27, 26⟩}.

Four arcs appear on the call network graph but not on the message network graph

Lcall \ Lmessage ={⟨4, 8⟩, ⟨23, 4⟩, ⟨23, 7⟩, ⟨26, 25⟩},

and thirty-three arcs appear on the message network graph but not on the call

network graph

Lmessage \ Lcall ={⟨1, 6⟩, ⟨1, 8⟩, ⟨1, 11⟩, ⟨1, 27⟩, ⟨3, 27⟩, ⟨4, 13⟩, ⟨4, 17⟩,

⟨6, 27⟩, ⟨7, 23⟩, ⟨10, 8⟩, ⟨11, 1⟩, ⟨11, 4⟩, ⟨11, 6⟩, ⟨11, 8⟩,

⟨11, 18⟩, ⟨13, 7⟩, ⟨13, 12⟩, ⟨14, 21⟩, ⟨15, 8⟩, ⟨15, 11⟩,

⟨15, 27⟩, ⟨17, 6⟩, ⟨17, 12⟩, ⟨17, 18⟩, ⟨18, 11⟩, ⟨18, 17⟩,

⟨21, 14⟩, ⟨25, 14⟩, ⟨26, 23⟩, ⟨27, 1⟩, ⟨27, 3⟩, ⟨27, 6⟩,

⟨27, 23⟩}.

3.5.5. Corroboration in the Nodobo Dataset

The mediated communications records in the Nodobo dataset were tested for

corroborating records in a similar manner to those in the Reality Mining dataset.

To corroborate one record another record must be found where the sender and

receiver matched and vice versa, the start time is ±30 seconds (to allow for clock de-

synchronisation), and the duration of a call is within ±5 seconds.

The corroboration observed was better than in the Reality Mining data, but still

far from perfect, particularly that of voice calls. 145 (11.08%) of calls corroborated

and 5958 (22.93%) of messages corroborated.

To account for larger values of clock de-synchronisation, the corroboration

test was run for a window size of up to 10 minutes. The results are shown in

Figure 3.21. Allowing for a maximum clock de-synchronisation of ten minutes,

approximately 20% of voice calls and 50% of SMS messages in the Nodobo dataset

were corroborated by another record.

The level of corroboration observed suggests that either the context gathering

software used in the study was not functioning correctly, and, therefore all partici-

pants have similar amounts of corroborating interactions, or the context gathering

software was functioning correctly but the mechanisms for transferring the data

59



Figure 3.21.
Percentage of Corroborated Calls and Messages in the Nodobo Dataset.
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from the device to the server were not, meaning records were missing for some study

participants.

To further investigate the low levels of corroboration, the corroboration for each

Nodobo participant who recorded mediated interactions was calculated. The results

are shown in Table 3.1.

Levels of corroboration ranged from none to complete corroboration for both

calls and SMS messages. Corroboration of messages was generally better than calls.

Only one participant (5) has no corroborated calls or messages, one (16) has full

corroboration for calls, and one (22) full corroboration for text messages, although

the count of interactions in these cases was small. Participant 18 has almost full

corroboration of messages with a total of 154 messages, and participant 26 has 90%

corroboration of 3,423.

The fact that some participants have high corroboration and others low, suggests

that although the corroboration within the dataset as a whole is not high, the context

gathering software was working correctly. The lack of corroboration is instead caused

by some devices being unable to send data back to the server, perhaps because of lack
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Table 3.1.
Corroboration of Calls and Messages for Individual Nodobo Participants.

Participant ID Corroborating Calls Corroborating Mesasges

1 6 (75.00%) 178 (88.12%)
3 1 (50.00%) 57 (90.48%)
4 14 (48.28%) 294 (46.74%)
5 0 (0.00%) 0 (0.00%)
6 1 (12.50%) 121 (63.02%)
7 18 (4.48%) 425 (7.66%)
8 7 (5.38%) 28 (5.18%)
9 1 (50.00%) 4 (57.14%)
10 - 12 (27.27%)
11 5 (35.71%) 530 (63.25%)
13 37 (14.62%) 3,830 (52.75%)
14 0 (0.00%) 104 (30.77%)
15 7 (87.50%) 63 (40.13%)
16 1 (100.00%) 1 (50.00%)
17 0 (0.00%) 31 (9.81%)
18 - 154 (99.35%)
19 55 (41.67%) 1,346 (70.55%)
21 55 (32.16%) 1,364 (45.50%)
22 1 (20.00%) 8 (100.00%)
23 6 (30.00%) 1 (16.67%)
25 1 (50.00%) 31 (75.61%)
26 28 (66.67%) 3,423 (90.13%)
27 14 (21.88%) 695 (75.05%)

of WiFi connectivity, or a data tariff, or because some users put their SIM cards into

other phones during the study period meaning that interactions were recorded at one

end but not the other.

3.6. Summary

Mobile devices are first and foremost communication devices, and human commu-

nication is intrinsically linked to social ties. It follows that analysis of communications

will yield information about the relationships between communicants. Detecting the

presence of social ties can therefore be achieved by detecting communications and

attempting to estimate the relationships associated with them.

Previous studies have used both email and mobile phone data in attempts to infer

the social networks of communicants. Although all have been done retrospectively

on data that is not normally available, and in order to gather this data some special

permission is required to access it. Mining the data available on mobile phones allows

61



access to communications metadata without the need for special access to a particular

silo of data.

Concepts from social network analysis are used to provide a common language

to describe detected communication networks. In particular, the concept of a relation

is used to identify important connections between the members of the network. The

relations applied to communications metadata are used to perform traffic analysis

studying the characteristics of messages to infer patterns in communications without

analysing the content of the messages.

Graph theory can be used to represent the results of network analyses performed

on communications metadata. The resulting communication network graphs show

the relations between the actors as a set of lines connecting a set of nodes. Voice call

and SMS message communication graphs created with the Reality Mining dataset

show clustering similar to that observed in analysis of co-proximate interactions in

related work, but highlighted the sparsity of the data available, particularly SMS data.

The reliability of datasets can be established by testing records of mediated

interactions for corroborating pairs of interactions between communicants. If few

corroborating pairs of calls or SMS messages are found then data must be missing

from the dataset and therefore cannot be considered accurate. The Reality Mining

dataset displays low levels of corroboration for both calls and SMS messages.

The lack of corroboration combined with the sparsity of mediated data in the

dataset meant that a different dataset was required. Since no other freely available

datasets were suitable for studies attempting to infer social ties from communications

metadata, the author and his colleagues undertook a project to create a new dataset.

The Nodobo project gathered communications metadata from a group of 27

students at Springburn Academy in Glasgow. From September 2010 to the end

of January 2011 the study recorded 13,035 call records, 83,542 SMS records, and

5,292,103 proximity records as well as cell tower IDs and WiFi SSIDs.

The data gathered during the Nodobo study gives an insight in to the behaviour

of the study participants. Analysis of the timing of the interactions detected by day

of the week and by hour shows that participants were co-proximate most often on

weekdays during school hours, that SMS messaging is commonly used throughout the

day and the evening on both weekdays and weekends, and that voice calls are more

often made before and after school and on Fridays and Saturdays. Voice call and

SMS message communication graphs created with the Nodobo dataset show strong

similarity although they are not identical suggesting that most of the participants who

send SMS messages also call.

Allowing for a maximum clock de-synchronisation of ten minutes, approximately
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50% of SMS messages and 20% of voice calls corroborated in the Nodobo dataset.

Although these results show that there is clearly some data missing from the Nodobo

dataset, the amount of corroboration is significantly higher than in the Reality Mining

data. While this improvement is welcome the lack of corroboration is worrying:

communication network graphs derived from incomplete metadata may be not be

sufficient to accurately infer social ties due to incomplete data.
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4. Social Graphs
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4.1. Detected and Reported Social Network Data

A social graph—or sociogram in Social Network Analysis literature—is a network of

social ties between actors [72]. The actors are represented by the nodes on the graph

and, like the communication graphs in Chapter 3, are usually people. (Although

network analyses have been performed on relations between companies and nation

states [73].)

Until recently social network data was gathered primarily using questionnaires

or interviews [74] and more recently data from Social Network Services has also

been used [75]. These sources rely on data which is reported by individuals rather than

collected independently by researchers. This can be problematic: one study carried

out by Bernard et al. [9] found that in a blank page report of their social network

individuals were only 50% accurate.

Social network data can also be gathered by observation and from archival

records [74]. Although these methods are useful for gathering affiliation data—who

attended a specific event, for example—observations limit the data to the researchers’

impressions of a given situation and appropriate archival records may not exist for the

desired data.

The popularity of computer-mediated communication channels, and in particular

the mobile phone in the last decade, and the ubiquitous nature of many mobile

devices in the present day creates a potential opportunity to gather vast amounts of

human social data [2, 18]. This detected data allows the inference of social network

data which is implicit in the interactions between users, and does not require users to

explicitly report who their ‘friends’ are.

In this chapter a novel estimated social graph of social ties derived from both

mobile communications metadata and co-proximity data is presented.

4.2. Estimating Social Ties

In order to accurately estimate the existence of a social tie between two participants in

the Nodobo study a set of relations which are an accurate proxy for a social tie must

be defined. It is not enough to assume the presence of a social tie based on a single

mediated or co-proximate interaction.

Like related work which investigates social ties in both mobile phone and email

communication networks [46, 47, 44, 45] this thesis considers study participants to

have a tie if they have at least one reciprocal exchange of phone calls during the study

period. SMS messages are also considered in this analysis, and the definition of the a

relation is extended to include them: study participants are considered to have a tie
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if they have had at least one reciprocal exchange of mediated communications. That

is, participants A and B will be considered to have a tie if they have exchanged voice

calls, SMS messages, or a combination of both.

Proximity interactions are more complicated. There is no need for reciprocity

because, by definition, if participant A is co-proximate to participant B the reverse

must also be true. However, a single interaction may last less than a minute and

for that reason mean little. Moreover, isolated longer interactions may also not be

significant—standing close to someone on public transport or in a queue for example,

or attending the same class once or twice a week but not having any other social tie.

In order to avoid false positives from either of these potential errors, proximity

interactions between participants are only considered pertinent if they satisfy two

criteria: proximity for a ‘meaningful’ period of time, and proximity for a ‘regular’

period of time.

As an initial estimate, a period of at least thirty minutes total proximity in a given

day is used to represent meaningful co-proximity. This is an arbitrary value based on

the assumption that this period of time is long enough that insignificant, incidental

interactions will be avoided but short enough that significant interactions which

happen in passing will be detected.

Similarly, participants are only considered to have a tie if they have been

meaningfully co-proximate on four out of every seven days when both participants

phones were active. This value is again arbitrary, but it is hoped that many of the

longer incidental interactions between participants will be filtered out while regular

interactions between participants will be detected.

Social ties are considered to exist between any participants who satisfy either

of these relations: either they have exchanged mediated interactions or they have

repeatedly been co-proximate for a meaningful period of time, or both. The social

ties detected are therefore dichotomous in accordance with the definition of a social

tie given in Chapter 1.

4.3. The Nodobo Social Graph

The estimation of social ties between the participants in the Nodobo study is achieved

by applying the relations defined above to the data gathered in the Nodobo study.

The resulting graph is referred to as the estimated social graph.

During the Nodobo study, two additional sets of social network data were

obtained: one which was reported by the study participants, and one which was ob-

served by researchers. These datasets were used to create alternative representations
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of the Nodobo social graph—the reported and observed social graphs respectively—and

are compared with the estimated social graph later in this chapter to test the accuracy

of the relations which are used to estimate ties.

4.3.1. The Estimated Nodobo Social Graph

The estimated Nodobo social graph Gestimated has a set of twenty-seven nodes: one for

each of the study participants

Nestimated =Nnodobo

={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27},

and a set of fifty-four lines joining twenty-three participants

Lestimated ={(1, 4), (1, 15), (5, 24), (6, 1), (6, 15), (6, 23), (7, 4), (7, 13),

(8, 10), (8, 15), (11, 1), (11, 3), (11, 4), (11, 6), (11, 8), (11, 17),

(11, 18), (11, 23), (11, 26), (12, 13), (13, 4), (13, 8), (13, 26),

(14, 21), (15, 4), (16, 23), (17, 4), (17, 6), (17, 18), (19, 14),

(19, 21), (19, 25), (23, 1), (23, 3), (23, 4), (23, 7), (23, 8),

(23, 13), (23, 15), (23, 21), (23, 26), (25, 14), (25, 21), (26, 4),

(27, 1), (27, 3), (27, 6), (27, 7), (27, 8), (27, 11), (27, 13),

(27, 15), (27, 23), (27, 26)}.

The estimated social graph is shown in Figure 4.1. The graph is dominated

by one component containing twenty-one of the twenty-seven participants, two

participants form an unconnected dyad pair, and four are unconnected to any of the

other participants.

4.3.2. The Reported Social Graph

The reported social graph was derived from interviews with the study participants

after the completion of the study.

Participants were given a graphical representation of our estimation of their star

network based upon the estimated social ties discussed in Section 4.2. They were then

asked to reject any ties with participants who they did not consider to be a friend or

school friend and add any ties to participants who they did consider to be a friend or

school friend. Estimated ties rejected by participants are considered false positives,
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Figure 4.1.
The Estimated Nodobo Social Graph.
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Figure 4.2.
The Reported Nodobo Social Graph.
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Figure 4.3.
The Observed Nodobo Social Graph.
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Table 4.1.
Reported Inaccuracies in the Estimated Social Graph.

Participant ID End IDs of False Positive Ties End IDs of False Negative Ties

1 - 4, 23
3 - 23
4 - 1, 15
5 - -
6 - 17, 23
7 - -
11 13 -
13 11 -
15 - 4, 11, 23
17 12 -
19 16 -
21 16, 27 -
23 - 1, 3, 6, 15, 16, 21
24 27 -
26 - -
27 21, 24 -

(Inaccuracies confirmed by both ends of the tie shown in bold.)

and estimated ties which were missed are considered false negatives.

Due to participants having left school, and otherwise poor attendance, only fifteen

of the twenty-seven participants were interviewed. The results of the interviews are

shown in Table 4.1. Three of the participants interviewed reported no false positive

ties and no false negative ties. Seven participants reported false negative ties, and six

reported false positive ties. No participants had both false positive and false negative

ties. The number of false negative ties for a single participant is at most two, and the

number of false positive ties for a single participant is between one and six.

The reported Nodobo social graph Greported also has a set of twenty-seven nodes

one for each of the participants

Nreported =Nnodobo

=Nestimated

={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27}.

As the estimated ties are dichotomous the incomplete interview data complicated

the analysis slightly: only discrepancies in the estimated graph agreed upon by both

ends of the tie can be considered to be ground truth. The asymmetric interview data
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may suggest directed ties which cannot be directly compared with the undirected

edges of the estimated graph. Therefore a set of fifty-one lines joining twenty-three

participants exist in the reported social graph, which is shown in Figure 4.2.

Lreported ={(1, 15), (5, 24), (6, 1), (6, 15), (7, 4), (7, 13), (8, 10), (8, 15),

(11, 1), (11, 3), (11, 4), (11, 6), (11, 8), (11, 13), (11, 17),

(11, 18), (11, 23), (11, 26), (12, 13), (13, 4), (13, 8), (13, 26),

(14, 21), (16, 23), (17, 4), (17, 6), (17, 18), (19, 14), (19, 21),

(19, 25), (23, 3), (23, 7), (23, 8), (23, 13), (23, 21), (23, 26),

(25, 14), (25, 21), (26, 4), (27, 1), (27, 3), (27, 6), (27, 7),

(27, 8), (27, 11), (27, 13), (27, 15), (27, 21), (27, 23), (27, 24),

(27, 26)}.

4.3.3. The Observed Social Graph

The observed social graph was derived from observations made in the first few weeks

of the study by researchers working with the study participants. They observed the

interactions between the participants while spending time with them in school and

informally interviewed them both alone and in groups.

The observed Nodobo social graph Gobserved again has a set of twenty-seven nodes

one for each of the participants

Nobserved =Nnodobo

=Nestimated = Nreported

={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27}.

and a set of forty-five lines joining twenty-four of the participants

Lobserved ={(1, 6), (1, 15), (3, 11), (3, 27), (4, 7), (4, 8), (4, 11), (4, 13),

(4, 17), (4, 23), (4, 26), (5, 9), (5, 20), (5, 22), (5, 24), (6, 15),

(7, 11), (7, 13), (7, 23), (7, 26), (8, 13), (8, 23), (8, 26), (9, 20),

(9, 22), (9, 24), (11, 13), (11, 26), (11, 27), (12, 13), (12, 17),

(13, 23), (13, 26), (13, 27), (14, 19), (16, 19), (16, 21), (16, 25),

(19, 21), (19, 25), (20, 22), (20, 24), (21, 25), (22, 24), (26, 27)}.
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The observed social graph is shown in Figure 4.3.

4.3.4. Additional Data in the Observed Graph

In addition to observing where ties existed between study participants some further

observations were made about the interactions between them. Four participants are

identified as either not attending school regularly or having left school altogether

Nabsent ={2, 10, 18, 20}.

Two of this group are unconnected in both the estimated and reported graphs and

two are on the periphery of these graphs. This information is interesting but, if

required, the archived attendance records from the school would be a better source

of data.

Two ties described as ‘friends but mostly via text’ are also identified

LSMS ties ={(12, 13), (12, 17)},

and one participant is described as ‘texting a lot of people’

NSMSer ={13}.

The Nodobo message network graph (Figure 3.19) shows SMS messages were

detected from participant 12 to 13 and from 13 to 12. There is also a tie between

them on both the reported and estimated graphs. However, the message network

graph only shows messages sent from participant 17 to participant 12 and not from

12 to 17, and no tie between these participants appears on either the reported graph

or the estimated graph.

Participant 13 has an out degree of 6 on the Nodobo message network graph,

higher than most other participants, but participant 27 has an out degree of 9 and

participant 11 has an out degree of 10. Participant 13 does not send messages to an

especially high number of the study group but is higher than average.

This additional observed data does show that some observations made of the

participants’ interaction behaviour are broadly accurate for some participants,

but analysis of the gathered communications metadata is a more reliable source of

interaction data across the study group as a whole.

The observed data also begins to classify ties between participants. Some

participants are identified as being ‘not as close as others’ and two romantic

relationships are also identified. This kind of classification of social ties cannot be
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done using the dichotomous social graphs above which are concerned simply with

establishing whether or not a social tie exists between participants. It is a logical next

step to take however, and will be considered in Chapter 5.

4.4. Comparing the Estimated and Reported Graphs

The set of participants connected to at least one other participant Njoined is the same

in both the estimated and reported social graphs

Njoined =Nest joined = Nrep joined

={1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24,

25, 26, 27}.

The superset of all lines in both the estimated and reported social graphs contains

fifty-seven lines,

Lestimated ∪ Lreported ={(1, 4), (1, 6), (1, 11), (1, 15), (1, 23), (1, 27),

(3, 11), (3, 23), (3, 27), (4, 7), (4, 11), (4, 13),

(4, 15), (4, 17), (4, 23), (4, 26), (5, 24), (6, 11),

(6, 15), (6, 17), (6, 23), (6, 27), (7, 13), (7, 23),

(7, 27), (8, 10), (8, 11), (8, 13), (8, 15), (8, 23),

(11, 13), (11, 17), (11, 18), (11, 23), (11, 26),

(8, 27), (11, 27), (12, 13), (13, 23), (13, 26),

(13, 27), (14, 19), (14, 21), (14, 25), (15, 23),

(15, 27), (16, 23), (17, 18), (19, 21), (19, 25),

(21, 23), (21, 25), (21, 27), (23, 26), (23, 27),

(24, 27), (26, 27)},

forty-eight lines are common to both graphs

Lestimated ∩ Lreported ={(1, 6), (1, 11), (1, 15), (1, 27), (3, 11), (3, 23),

(3, 27), (4, 7), (4, 11), (4, 13), (4, 17), (4, 26),

(5, 24), (6, 11), (6, 15), (6, 17), (6, 27), (7, 13),

(7, 23), (7, 27), (8, 10), (8, 11), (8, 13), (8, 15),

(8, 23), (8, 27), (11, 17), (11, 18), (11, 23),

74



(11, 26), (11, 27), (12, 13), (13, 23), (13, 26),

(13, 27), (14, 19), (14, 21), (14, 25), (15, 27),

(16, 23), (17, 18), (19, 21), (19, 25), (21, 23),

(21, 25), (23, 26), (23, 27), (26, 27)}.

The set of six lines which appear on the estimated social graph but not reported social

graph is the set of false positive ties Lfpr

Lfpr =Le \ Lr

={(1, 4), (1, 23), (4, 15), (4, 23), (6, 23), (15, 23)},

and the set of three lines which appear on the reported social graph but not the

estimated social graph is the set of false negative ties Lfnr

Lfnr =Lr \ Le

={(11, 13), (2, 27), (24, 27)}.

The differences between the estimated and reported social graphs are shown in

Figure 4.4. Ties common to both are shown as solid black edges, false positive ties are

shown as dashed black edges, and false negative ties are shown as dashed grey edges.

Both graphs are broadly similar with one large component containing most of the

nodes and four nodes completely disconnected from the graph. The reported graph

joins nodes 5 and 24 to the main component with the line (24, 27), joins the small

component of nodes {14, 19, 21, 25} to the main component by the lines (21, 27) and

(21, 23), and adds an additional line in the large component between nodes 11 and

13. All of the false positive ties are interconnections within the largest component.

The similarity of both graphs is encouraging: 89% of estimated ties are confirmed

as being correctly identified. However, the accuracy of estimated ties was varied,

with the estimation of participant 23’s ties particularly inaccurate. Moreover, the

lack of interview data for twelve of the twenty-seven participants makes a complete

comparison impossible because not all reported ties have been confirmed by both

ends of the tie. By examining data used to derive confirmed ties, false positive ties,

and false negative ties, it is possible to determine the cause of some of the inaccuracies

in the estimated social graph.
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Figure 4.4.
Differences Between the Estimated and Reported Graphs.
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4.4.1. Confirmed Ties

Forty-eight ties were confirmed. They show a large range in the number of mediated

interactions between participants: some have no calls, many have a few, and some

have hundreds, with 378 calls recorded between participants 4 and 7. SMS messages

are more common: only a few ties have none, most have dozens, and some have

thousands. Participants 13 and 26 exchanged 10,439 SMS messages in the 144 days

of the study: an average of 72.5 messages a day.

All estimated ties show some proximity interactions between the ends. This

is expected as all of the participants attended the same school. Some have only

hundreds of recorded interactions: there are 185 instances of co-presence between

participants 19 and 25, approximately three hours in total (device discovery scans run

once a minute), meaning that the tie is most likely based on the calls and messages

exchanged by the ends, the co-proximity is incidental. On the other hand, some

confirmed ties have many thousands of interactions: there are 36,704 instances of co-

presence (approx. 25 days) between participants 13 and 26, for example. This suggests

that there is a variation in the proportion of mediated and co-present interactions:

while many ties involve both mediated and co-present interaction, some have many

more co-present interactions.

Sixteen of the forty-eight confirmed ties are estimated based on co-proximity.

Nine of these are estimated based on both mediated interactions and co-proximate

interactions,

{(1, 15), (4, 7), (7, 27), (8, 23), (11, 23), (13, 23), (13, 26), (23, 27), (26, 27)},

and the remaining seven are estimated on co-proximity alone

{(3, 32), (4, 26), (7, 23), (15, 27), (16, 23), (21, 23), (23, 26)}

Although ties derived only from co-proximity are less common, they appear

throughout the graph. In addition to increasing the number of false negative ties to

thirteen—making 27% of all estimated ties false positives—removing ties derived only

from co-proximity significantly alters the topology of the social graph. Participant

16 becomes unconnected from the graph, as does the small cluster of the main

component {14, 19, 21, 25}. The connectedness of the large cluster of the main

component also decreases: the subgroup {3, 11, 23, 27} is no longer fully connected,

and ties such as (4, 26) and (15, 27) are also lost. Removing ties derived from co-

proximate interactions shows the necessity of co-presence data: mediated interactions

are not enough to accurately estimate the social graph as social ties exist been people
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who do not communicate via voice call or SMS.

For more detailed information, a count of the voice calls, SMS messages, and

proximity interactions between the ends of the forty-eight estimated ties confirmed

by the reported social graph are given in Appendix A.

4.4.2. False Positive Ties

The existence of false positive ties suggests that the relations used to estimate ties

between the Nodobo participants are too lenient. Either the ends have exchanged

calls or SMSs but do not consider that there is a tie between them, or there are no

calls or SMSs between the ends and the false positive tie is based on flaws in the rules

for estimating ties based on co-presence.

A count of the total calls, SMS messages, and co-proximate interactions between

each end of the six false positive ties is shown in Table 4.2. There are no calls or SMS

messages between the ends of five of the ties—they are comprised only of proximity

interactions—but the tie (4, 23) includes both calls and SMS messages.

Table 4.2.
Details of False Positive Ties.

Tie Call Count SMS Count Proximity Count

(1,4) 0 0 2,066
(1,23) 0 0 1,967
(4,15) 0 0 924
(4,23) 5 31 598
(6,23) 0 0 2,652
(15,23) 0 0 3,162

Participants 4 and 23 did not identify a tie between themselves despite exchanging

both calls and SMS messages. This is the only instance of the co-proximity relation

incorrectly identifying a tie. Further investigation showed that all calls between these

participants were made on one day shortly after the beginning of the study—the ninth

of September—and that SMS messages were sent on four days between the 17th of

September and 16th of October, with all mediated interactions stopping long before

the end of the study. This false positive suggests that either: the assumption that

reciprocated mediated interaction always signals a tie is incorrect; some participants

who do not identify a tie between themselves do occasionally use mediated channels

to communicate, or that the dynamic nature of the social graph is beginning to show

flaws in this static graph-theoretic analysis; participants 4 and 23 may have had a

social tie at some point in the past, but some weeks later when the tie between them
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was estimated, no longer consider that they do.

The participants at each end of the remaining five false positive ties do not

exchange any mediated communications and therefore false positive ties must be

created by a problem with the co-proximity relation. Although these users do not

identify each other as friends they do spend some time in proximity to one and other

resulting in the estimated tie. This effect may be caused by the fact that although

some of the participants will be within social distance in classes they are compelled

to be there, and given the choice they may not choose to socialise with each other.

The relatively low amount of co-proximity between participants 4 and 15 is

a cause for concern: if a tie can be estimated based only on fifteen hours of co-

proximity then it is likely that either one or both of these participants’ phones were

not active for a significant part of the study period. The time period that co-presence

was detected for each end of the false positive ties was calculated. The results are

shown in Figure 4.5.

Figure 4.5.
Time Periods When Co-presence was Detected for False Positive Ties.

Oct Nov Dec Jan

0 21 52 82 113 144

(15,23)

(6,23)

(1,23)

(1,4)

Days since start of  study

Tie

(4,15)

(4,23)

The periods of time where the ends of false positive ties are co-present are all

significantly shorter than the duration of the study—participants 4 and 15 are

co-present for only a handful of days at the beginning of the study. This suggests

that either these false positive ties are also examples of a friendship which was no

longer considered to exist when the study participants were interviewed, or that a
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malfunction in the devices used by these participants prevented accurate data being

gathered causing false positive ties.

The timestamps of all the interactions for each of the study participants who

reported false positive ties show whether or not data was received throughout the

duration of the study. Five participants reported false positive ties: 1, 4, 6, 15, and

23. Interactions data for a specific participant can be added to the dataset either by

that participant or the participant at the other end of the interaction, denoted self-

gathered and other-gathered in this analysis. The earliest and latest timestamps of

both self-gathered and other-gathered mediated or co-proximate interactions for

participants who reported false positive ties are shown in Figure 4.6.

Figure 4.6.
The Earliest and Latest Timestamps of Interactions of Participants who
Reported False Positive Ties.
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Three different patterns are visible, each of which suggest a different source of
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errors. The first, as seen in data for participants 6 and 15, shows participants for

whom both self-gathered and other-gathered mediated and co-proximate interactions

are present in the dataset. This suggests that the ties were incorrectly identified based

on problems with co-proximity relation and not technical problems gathering data or

participants using a different handset or SIM card. Self-gathered and other-gathered

co-proximity data for the duration of the study show that participants were carrying

their devices throughout, and self-gathered and other-gathered mediated interactions

show that they were using them to communicate.

The second pattern, exhibited by participant 1, shows other-gathered interactions

which span the duration of the study, but self-gathered interactions for part of the

study only. This suggests that the participant was using their device for the duration

of the study—a fact verified by other participants who gathered interactions with that

device—but that a technical problem prevented data being sent over the air to the

server. This may have been due to a malfunction context gathering software on the

device or simply the lack of access to either a cellular or WiFi interface. Whatever the

cause, some data from this participant is missing which may have contributed to the

estimation of false positive ties.

The third pattern, seen in participants 4 and 23, shows participants whose other-

gathered mediated interactions span the duration of the study, but self-gathered

mediated interactions and all co-proximate interactions are only gathered for part

of the study. Mediated interactions were gathered by other devices for the duration

of the study, but only self-gathered (by the participants’ study devices) for part of it,

suggesting that participants used the same SIM card in another phone for part of

the study. Their study devices did report some interactions, suggesting that the study

device was used for some time, and the fact that co-proximity was detected for a large

part of the study suggests that the study device may have been carried in addition

to another phone. Participants using SIM cards in other handsets may have lead to

many, if not all, of the false positive ties as participants 4 and 23 are one of the ends of

all of the false positive ties (and both of the ends in one tie).

Using the same SIM card in another handset also accounts for some of the low

corroboration discussed in Section 3.3.3. When the SIM is removed from the study

device the phone number used to identify the participant (part of the tuple participant

id, phone number, and Bluetooth MAC address) will stay the same, but only one end

of any mediated communications sent or received at that time will be recored and

sent to the database.
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4.4.3. False Negative Ties

False negative ties presumably exist because there were no recorded interactions

between these participants and therefore no tie could be estimated. Either there was

no reciprocal exchange of calls or SMS messages or an insufficient amount of co-

presence was detected. It is also possible that calls or SMSs were sent from one end

of the tie but not the other resulting in an unbalanced, ‘one-sided’ tie.

Table 4.3 shows total counts for calls, SMS messages, and proximity between each

end of the three confirmed false negative ties.

Table 4.3.
Details of False Negative Ties.

Tie Calls Count SMS Count Proximity Count

(11,13) 0 0 10,176
(21,27) 0 0 13,799
(24,27) 0 0 2,713

These results show that, like the majority of false positives, ties inferred solely from

proximity interactions cause all of the false negative ties. False negative ties are not

caused by one-sided mediated communication, meaning that there are no participants

who do identify a tie between themselves but do not have a reciprocal exchange of

mediated interactions.

The time period that co-presence was detected for each end of the false negative

ties was calculated in the same way as that for false positives. The results are shown in

Figure 4.7.

Figure 4.7.
Time Periods When Co-presence was Detected for False Negative Ties.

Oct Nov Dec Jan

0 21 52 82 113 144

(24,27)
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Days since start of  study

Tie
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Unlike false positive ties, co-proximity is detected for false negative ties throughout

the duration of the study. This suggests that the participants who reported false nega-

tive ties are using the study devices and that there are no problems retrieving the data

gathered on those devices. The fact that they contain no mediated interactions—like

most false positives—suggests that the co-proximity relation is too straightforward

and must be improved to detect more ties. It is also possible that participants who

identified false negative ties communicate using channels on which interactions could

not be detected by the devices used in the study, such as instant messaging or social

network services. The periods of time where the ends of false positive ties are co-

present are all significantly shorter than the duration of the study, with participants

4 and 15 being co-present for only a handful of days. Similarly, the date of the last

proximity interaction record for one end of the tie consistently comes significantly

before the end of the study, with the ties (1, 4) and (1, 23) both having no detected

co-proximity between each other after the end of November and none at all after the

beginning of December, nearly two months before the end of the study.

Modified smartphones are useful tools for gathering data on social interactions.

Providing participants with handsets with some software modifications allows both

meditated and co-proximate interactions to be detected. Gathered data is then sent

over the air to a central server were it is collated and then queried for social ties.

However, testing the corroboration of records in the resulting dataset shows that

significant data loss is experienced from some devices.

Despite the loss of some data it is still possible to accurately estimate many social

ties between the participants. Using only a few simple rules we were able to correctly

identify ties between participants 89% of the time. Ties were estimated based on two

relations: one for mediated interactions, and the other for co-proximate interactions.

The mediated relation requires a reciprocal exchange of calls or SMS messages

and are a strong indicator of the presence of social ties. Thirty-two of forty-eight

confirmed ties were estimated in this way, with one false positive, in the analysis

presented here. The need for reciprocity also indicates that confirmed ties are not

based on one-sided communication: no false negative ties were identified in which

participants identified a tie between them but only communicated in one direction.

The co-proximity relation requires regular proximity for a meaningful period of

time. For the analysis shown here this was arbitrarily defined as proximity on four

out of seven days for a total of thirty minutes. Seven confirmed ties were estimated

based on this relation with a further nine satisfying both relations. This shows the

importance of co-proximity when identifying social interactions. However, the co-

proximity relation is the source of most incorrectly identified ties. Five of the six false
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positive ties satisfied the co-proximity relation, and all three false negative ties show

co-proximity is detected throughout for the study participants involved.

These errors may be due to missing data, and examples have been shown of both

devices which failed to push data to the server and participants who removed their

SIM cards from study devices during the study, but in future work a more precise co-

proximity relation should be employed.

4.5. Comparing the Estimated and Observed Graphs

The estimated social graph and the observed social graph have considerable

differences. The set of nodes which are joined by at least one tie in observed social

graph Nobs joined is not equal to the set of participants connected by at least one tie in

the estimated and reported graphs

Nobs joined ={1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22,

23, 24, 25, 26, 27}

̸=Njoined.

Two participants are joined by ties in the estimated and reported graphs which were

not joined in the observed social graph

Njoined \ Nobs joined ={10, 18},

and three participants are joined in the observed social graph but not in the estimated

or reported social graphs

Nobs joined \ Njoined ={9, 20, 22}.

The superset of all lines in both the estimated and observed social graphs contains

seventy-two lines,

Lestimated ∪ Lobserved ={(1, 4), (1, 6), (1, 11), (1, 15), (1, 23), (1, 27),

(3, 11), (3, 23), (3, 27), (4, 7), (4, 8), (4, 11),

(4, 13), (4, 15), (4, 17), (4, 23), (4, 26), (5, 9),

(5, 20), (5, 22), (5, 24), (6, 11), (6, 15), (6, 17),

(6, 23), (6, 27), (7, 11), (7, 13), (7, 23), (7, 26),

(7, 27), (8, 10), (8, 11), (8, 13), (8, 15), (8, 23),
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(8, 26), (8, 27), (9, 20), (9, 22), (9, 24), (11, 13),

(11, 17), (11, 18), (11, 23), (11, 26), (11, 27),

(12, 13), (12, 17), (13, 23), (13, 26), (13, 27),

(14, 19), (14, 21), (14, 25), (15, 23), (15, 27),

(16, 19), (16, 21), (16, 23), (16, 25), (17, 18),

(19, 21), (19, 25), (20, 22), (20, 24), (21, 23),

(21, 25), (22, 24), (23, 26), (23, 27), (26, 27)},

with twenty-seven lines common to both graphs

Lestimated ∩ Lobserved ={(1, 6), (1, 15), (3, 11), (3, 27), (4, 7), (4, 11), (4, 13),

(4, 17), (4, 23), (4, 26), (5, 24), (6, 15), (7, 13),

(7, 23), (8, 13), (8, 23), (11, 26), (11, 27), (12, 13),

(13, 23), (13, 26), (13, 27), (14, 19), (19, 21),

(19, 25), (21, 25), (26, 27)}.

The set of twenty-seven ties which appear on the estimated graph which are not on

the observed graph is the set of false positive ties Lfpo

Lfpo =Lestimated \ Lobserved

={(1, 4), (1, 11), (1, 23), (1, 27), (3, 23), (4, 15), (6, 11), (6, 17),

(6, 23), (6, 27), (7, 27), (8, 10), (8, 11), (8, 15), (8, 27), (11, 17),

(11, 18), (11, 23), (14, 21), (14, 25), (15, 23), (15, 27), (16, 23),

(17, 18), (21, 23), (23, 26), (23, 27)},

and the set of eighteen lines which appear on the observed social graph but not the

estimated graph social graph is the set of false negative ties Lfno

Lfno =Lobserved \ Lestimated

={(4, 8), (5, 9), (5, 20), (5, 22), (7, 11), (7, 26), (8, 26), (9, 20),

(9, 22), (9, 24), (11, 13), (12, 17), (16, 19), (16, 21), (16, 25),

(20, 22), (20, 24), (22, 24)}.

Although twenty-seven observed ties are confirmed by the reported social graph

there are equally many false positive ties on the observed graph suggesting that casual

observation is a highly ineffective method of estimating the presence of social ties
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between individuals. Furthermore, as noted in Section 4.1, observation data are

limited to the impressions of the observers and because they cannot be observing

all participants at all times the data gathered is consequently incomplete. This effect

presumably creates the eighteen false negative ties observed and further reinforces the

ineffectiveness of observational data gathering.

4.6. Summary

A social graph is a network of social ties between actors. Using estimated ties to create

social graphs allows the inference of social network data which is implicit in the

interactions between users, and does not require users to explicitly report who their

‘friends’ are.

In this chapter a novel estimated social graph of social ties derived from both

mobile communications metadata and co-proximity data is presented.

Three graphs derived by different techniques are analysed: the estimated graph

derived from social interactions detected using mobile devices, the reported social

graph derived from interviews with the study participants after the completion of the

study, and the observed graph derived from observations made during the study by

researchers working with the study participants

Two relations were defined which are used to create the estimated social graph:

Study participants are considered to have a tie if they have had at least on reciprocal exchange of

mediated communications, and Study participants are considered to have a tie if they have been co-

proximate for a period of at least thirty minutes on four out of every seven days when both participants

phones were active. Social ties are considered to exist between any participants who

satisfy either or both of these relations.

The reported social graph was created by giving each participant a graphical rep-

resentation of their star network based upon the estimated social graph. Participants

were asked to reject any ties with participants who they did not consider to be a friend

or school friend and add any tie to participants who they did consider to be a friend

or school friend. The reported social graph is considered to be ground truth, and as

such, an accurate representation of the social network between participants at the

time that they were interviewed.

The observed social graph was created collating impressions of the social ties

between participants made in the first few weeks of the study by researchers. They

observed the interactions between the participants while spending time with them in

school and informally interviewed them both alone and in groups.

The estimated and reported graphs are broadly similar but not identical. Forty-
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eight of fifty-four estimated ties are confirmed by comparison with the reported social

graph meaning that 89% percent of estimated ties were estimated correctly. There

were six false positive estimated ties and three false negatives.

The high percentage of correctly estimated ties is encouraging, and this initial

attempt at estimating the social graph accurate. However, the accuracy of estimated

ties was varied for some participants, with the estimation of participant 23’s ties

particularly inaccurate. Furthermore, the lack of interview data for twelve of the

twenty-seven participants makes a complete comparison impossible.

Thirty-two of forty-eight confirmed ties were estimated using the mediated

relation, with one false positive. The need for reciprocity also indicates that confirmed

ties are not based on one-sided communication: no false negative ties were identified

in which participants identified a tie between them but only communicated in one

direction. Seven confirmed ties were estimated based on this relation with a further

nine satisfying both relations. This shows the importance of co-proximity when

identifying social interactions. However, the co-proximity relation is the source

of most incorrectly identified ties. Five of the six false positive ties satisfied the co-

proximity relation, and all three false negative ties show co-proximity is detected

throughout for the study participants involved.

The existence of false positive ties suggests that the relations used to estimate ties

between the participants are not stringent enough. By examining data used to derive

accurately estimated ties and the false positive and false negative ties it is possible to

determine the cause of the inaccuracies in the estimated social graph. Three potential

causes of errors were identified: incomplete data, participants not using the study

devices (or using the study device and another device), and changes in the social

graph between the last time some data was received and the time the reported graph

was compiled.

There is much less similarity between the estimated graph and the observed

graph. Although there are some ties in common between the observed and estimated

graphs the large number of both false positive and false negative ties makes any

meaningful comparison impossible. Observation data are limited to the impressions

of the observers and because they cannot be observing all participants at all times

the data gathered is consequently incomplete. The strong similarity between the

estimated and reported graphs also suggests that the observed graphs is not as

accurate over the complete set of participants as either of the other two social graphs.

However, the observed graph does begin to classify the ties between participants.

Some participants are identified as being ‘not as close as others’ and two romantic

relationships are also identified. More detailed information such as this is not
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available on graphs of dichotomous ties, thus a method of valuing each tie is required.
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5.1. The Concept of Tie Strength

The concept of tie strength, and how to measure it, has been studied by sociologists

for some time. In his influential paper The Strength of Weak Ties Mark Granovetter

defines tie strength in terms of the amount of time, emotional intensity, intimacy,

and reciprocal services which characterise the tie [76]. Ties are broadly categorised

into three types: strong, weak, and absent. Strong ties are longstanding, close social

bonds between people. Weak ties are acquaintances who connect with one another,

but overall are not close friends. Absent ties are those without substantial significance,

but imply some occasional, fleeting interaction.

Strong ties are the basis for relationships involving trust [77], and are essential in

helping organisations to cope with crises [78]. Weak ties can be used to find the local

bridges which are the sources of new information to each clique in the network [76],

and aid the transfer of non-complex information through the network [79].

However, the ties discussed in Granovetter’s work are intangible. The definition of

tie strength as a combination of the amount of time, emotional intensity, intimacy, and

reciprocal services which characterise the tie [76] is difficult—if not impossible—to

quantify and measure.

Marsden and Campbell [80] attempt to use indicators of strength based on

Granovetter’s original definition, and additionally predictors of tie strength. The notion

of closeness is used as a measure of the intensity of a relationship: a survey choice

of the tie end as an acquaintance, good friend, or very close friend; duration and

frequency of contact index the amount of time spent in a tie; and measures of the

breadth of topics discussed by friends and the extent of mutual confiding are used to

represent intimacy. Predictors used are kinship, neighbour and co-worker status, and

overlapping organisational memberships [80].

Petróczi et al. [81] gather details of tie strength in online networks using

questionnaires. Information on various tie strength components such as frequency,

intimacy/closeness, voluntary investment in the tie, advice given/received, desire

for companionship, multiple social context (breadth of topics), long period of time

(duration), reciprocity, provide support/emotional intensity, mutual confiding (trust),

sociability/conviviality is gathered [81].

Similarly, Gilbert and Karahalios used questionnaires to gather information

of the ties of Facebook users. Importantly, they also automatically captured data

about study participants and their Facebook friends including: predictive intensity

variables such as wall words exchanged and inbox messages exchanged; intimacy

variables such as participants’ number of friends, friends’ number of friends, days

since last communication, inbox intimacy words, appearances together in photos,
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and friends’ relationship statuses; a duration variable–days since first communication;

reciprocal services variables—links exchanged by wall post and applications in

common; structural variables including the number of mutual friends and groups in

common; emotional support variables such as wall and inbox positive emotion words

and wall and inbox negative emotion words; and social distance variables including

age difference, number of occupations difference, and educational difference [75].

The intimate association of many mobile devices with individuals makes it

possible to use them, and associated technologies, to sense the presence of people

and the creation and modification of their social ties [18]. This chapter investigates

the possibility of using metadata from mobile communications networks to estimate

communicants’ tie strength.

5.1.1. Tie Strengths Observed in the Nodobo Study

In Section 4.3.4 some additional data about the social ties between the participants in

the Nodobo study is discussed. The observed graph also contains some information

about the strength of the ties between some participants: seven ties are described as

‘not as close as others’ and two romantic relationships are identified. If it is assumed

that the romantic relationships are examples of strong social ties then a sample set of

weaker ties and sample set of stronger ties can be defined:

Lweaker ={(5, 20), (9, 20), (16, 21), (16, 19), (16, 25), (20, 22), (20, 24)},

and

Lstronger ={(4, 7), (13, 26)}.

Some potential proxies for tie strength—total number of SMS messages,

aggregated SMS message length, total number of calls, aggregated call duration, and

total number of proximity interactions—were compared for both sample sets. If the

weaker ties have significantly lower values of tie strength for each measure than the

stronger ties, then it may be possible to use these measures to determine the strength

of ties of estimated social graphs.

The results are shown in Tables 5.1 and 5.2. Weaker ties have significantly lower

values of all tie strength proxies than stronger ties. In fact, all but one of the weaker

ties have no calls or SMS exchanged between the ends of the tie, with (16, 19) having

only three of each, while the average values for SMS count and call count of stronger

ties are 8,220.5 and 291 respectively. Similarly, the average number of co-proximity
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Table 5.1.
Weaker Ties from the Observed Social Graph.

Tie SMS Count SMS length Call Count Call Duration Proximity Count

(16,21) 0 0 0 0 3,493
(16,19) 3 170 3 96 7,239
(16,25) 0 0 0 0 696
(5,20) 0 0 0 0 690
(9,20) 0 0 0 0 139
(20,22) 0 0 0 0 520
(20,24) 0 0 0 0 258
Average 0.43 24.29 0.43 13.71 1,862.14

Table 5.2.
Stronger Ties from the Observed Social Graph.

Tie SMS Count SMS length Call Count Call Duration Proximity Count

(4,7) 6,002 131,520 378 110,026 6,973
(13,26) 10,439 450,657 204 93,144 36,704
Average 8,220.5 291,088.5 291.0 101,585.0 21,838.5

interactions is over ten times larger for stronger ties than for weaker, although the

strong tie (4, 7) has fewer proximity interactions than (16, 19): a further indication

that co-proximity interactions cannot simply be thresholded.

These results suggest, anecdotally at least, that tie strength can be inferred from

communication metadata: a stark difference is seen between the stronger and weaker

ties for all of the potential proxies for tie strength tested. However, only the dyadic ties

themselves are considered here; any relationship with the social graph as a whole is

not considered, and therefore the results cannot be generalised beyond the dyadic ties

considered.

5.2. Triadic Closure and Forbidden Triads

If two people in a social network have a friend in common, then there is an

increased likelihood that they will become friends themselves at some point in

the future [82].

This quote from a paper written by Anatol Rapoport more than half a century

ago succinctly describes an intuitive process which is known in sociology as triadic

closure. Triadic closure is a key concept in The Strength of Weak Ties as it enables the
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strength of dyadic ties to be related to the larger social graph [76]. Granovetter asserts

that

the stronger the tie between A and B, the larger the proportion of individuals

[…] to whom they will both be tied, that is, connected by a weak or strong tie.

This overlap in their friendship circles is predicted to be least when their tie is

absent, most when it is strong, and intermediate when it is weak.

Instead of attempting to define tie strength precisely, and considering instead

the ‘friend-acquaintance dichotomy’ proposed in Easly and Kleinberg’s discussion

of the strength of weak ties hypothesis, where strong ties represent closer friendships

with a greater frequency of interaction and weak ties acquaintances with few

interactions [83], then it may be possible to estimate the strength of ties by measuring

the number of common neighbours of each tie.

The number of closed triads which include a given line in the network graph is

equal to the number of common neighbours between the nodes at each end of the

line. This is illustrated in Figure 5.1: each common neighbour adds an other closed

triad to the graph.

5.2.1. Triadic Closure in the Reality Mining Dataset

There are 112 ties based on directed mediated communications in the Reality Mining

data. These relationships are considered to be undirected, there are therefore 56

ties with mediated interactions between study participants. These interactions are

between 54 people, and there are 8 triads with mediated interactions on all sides.

Table 5.3 presents details of the significant triads present in the Reality Mining

dataset. For each triad some detail of each of the three ties is given: the number of

participants at each end of the tie, and the count of calls, short messages, and detected

proximities.

Table 5.3.
Triads Found in the Reality Mining Dataset.

Triad (a, b) (a, c) (b, c)

a b c Call SMS Prox Call SMS Prox Call SMS Prox

15 80 94 6 0 100 62 0 585 2 0 53
15 85 94 8 2 68 62 0 585 21 0 72
20 72 79 42 0 163 6 0 45 12 0 61
7 71 89 4 0 22 5 0 61 1 0 105
35 46 73 4 1 65 2 0 73 1 0 111
29 57 86 10 3 429 66 0 560 17 0 353
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Figure 5.1.
Triads and Number of Common Neighbours.

No common neighbours

One common neighbour

Two common neighbours

Three common neighbours

Although it is clear that triads do form in the Reality Mining data, and that some

Reality Mining participants have common ties to others, there are not many triads.

Furthermore, only two triads share a common tie meaning that only one tie has

more than one common neighbour, and the maximum value of number of common

neighbours is two.

This suggests that the few ties that exist, are not especially strong, and exist

between small groups of participants. The common tie between the overlapping triads

is the tie between participants 15 and 94. Interestingly, this tie has the second highest

count of calls and the highest count of proximity interactions of all the ties which form

triads, providing further inconclusive evidence that counts of interactions act as a

proxy for tie strength.
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5.2.2. Triadic Closure in the Nodobo Dataset

Table 5.4.
Triads Found in the Nodobo Dataset.

Triad (a, b) (a, c) (b, c)

a b c Call SMS Prox Call SMS Prox Call SMS Prox

1 6 11 5 241 10730 0 40 7422 1 20 8680
1 6 15 5 241 10730 15 199 32168 3 17 20371
1 6 27 5 241 10730 0 114 9915 0 54 13344
1 8 27 0 1 6686 0 114 9915 10 38 7343
1 11 15 0 40 7422 15 199 32168 1 6 12628
1 11 27 0 40 7422 0 114 9915 10 856 15999
1 15 27 15 199 32168 0 114 9915 0 1 18906
3 11 27 6 38 10998 0 86 9333 10 856 15999
4 7 13 378 6002 6973 3 7 2253 1 13 13695
4 7 23 378 6002 6973 5 31 598 1 1 3773
4 8 13 2 0 945 3 7 2253 30 36 9108
4 8 23 2 0 945 5 31 598 120 472 7609
4 11 17 0 5 866 3 198 1193 1 67 6311
4 13 23 3 7 2253 5 31 598 71 328 5142
6 11 15 1 20 8680 3 17 20371 1 6 12628
6 11 27 1 20 8680 0 54 13344 10 856 15999
6 15 27 3 17 20371 0 54 13344 0 1 18906
7 13 23 1 13 13695 1 1 3773 71 328 5142
7 13 27 1 13 13695 97 239 18113 4 134 18959
7 23 27 1 1 3773 97 239 18113 0 104 4450
8 11 27 0 2 7587 10 38 7343 10 856 15999
8 13 23 30 36 9108 120 472 7609 71 328 5142
8 13 27 30 36 9108 10 38 7343 4 134 18959
8 23 27 120 472 7609 10 38 7343 0 104 4450
11 15 27 1 6 12628 10 856 15999 0 1 18906
11 17 18 1 67 6311 0 243 2639 0 88 2710
11 26 27 4 20 13540 10 856 15999 5 339 21997
13 23 26 71 328 5142 204 10439 36704 0 1 3148
13 23 27 71 328 5142 4 134 18959 0 104 4450
13 26 27 204 10439 36704 4 134 18959 5 339 21997
14 19 21 5 237 5750 0 10 3559 285 4616 23712
14 19 25 5 237 5750 10 291 434 2 16 185
14 21 25 0 10 3559 10 291 434 12 114 345
19 21 25 285 4616 23712 2 16 185 12 114 345

A similar study performed using the Nodobo dataset (the only difference being

that ties require a reciprocal exchange of mediated interactions). An examination

of the mediated relations in the dataset found thirty-four triads in the Nodobo data.

Counts of calls, SMS messages, and co-proximity interactions are shown in Table 5.4.
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The number of common neighbours in the Nodobo dataset is shown in Fig-

ure 5.2. Like Reality Mining, some triads do not overlap any others (showing

participants with number of common neighbours of one) and in some cases number

of common neighbours of five or six can be seen.

Figure 5.2.
The Number of Common Neighbours in the Nodobo Dataset.
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The increase in the number of common neighbours seen in the Nodobo data

shows that the Nodobo social graph is much more clustered than the Reality Mining

graph. This is possibly because the participants in the Nodobo study, who were all

in the same year-group at school, are more similar than than the Reality Mining

participants, who were students and faculty from two separate schools in MIT [10].

5.3. Using Communications Metadata to Estimate Tie Strength

By using a large corpus of mobile phone user data (N = 4.6×106) Onnella et al. [46],

established that call duration can be used as a proxy for tie strength in large, complex

social networks. A coupling between the neighbourhood overlap of two mobile phone

users’ social graphs and the cumulative distribution of the aggregated duration of the

calls between is observed.
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The strength of weak ties hypothesis establishes a link between neighbourhood

overlap and tie strength: the greater the neighbourhood overlap between two people,

the stronger the tie between them. Overlap is represented quantitatively as the

proportion of common neighbouring nodes [46], and is calculated as shown in

equation (5.1),

Oij =
Number of nodes who are neighbours of both i and j
Number of nodes who are neighbours of at least i or j

=
nij

((ki − 1) + (kj − 1)− nij)
(5.1)

where nij is the number of common neighbours of two nodes i and j, and ki and

kj are the degrees of nodes i and j respectively.

This idea is illustrated in Figure 5.3. Nodes i and j are joined by a line, and four

different states of overlap are shown. Oij = 0 when nodes i and j have no common

neighbours, Oij = 1/3 when two of a possible six neighbours are common to i and j,

Oij = 2/3 when four of a possible six neighbours are common to i and j, and Oij = 1

when all six possible neighbours are common to i and j.

Figure 5.3.
An Illustration of Varying Overlap Between Two Nodes. (Adapted from [46].)

i j i j

i ji j

Oij = 0 Oij = 1/3

Oij = 2/3
Oij = 1

By using a large corpus of mobile phone user data, Onnella et al. [46] established

that certain communications metadata can be used as a proxy for tie strength in large,
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complex social networks. A coupling between the neighbourhood overlap of two

mobile phone users’ social graphs and the cumulative distribution of the aggregated

duration of the calls between them is observed. This shows that tie strength can

be estimated from the communications metadata of large numbers of users if data

pertaining to all users is collated.

Measuring the neighbourhood overlap of two users is possible with existing sets of

test data, but it may not be possible or desirable to do this in an application in real-

time:

• the need to send and receive all contacts every time we want to calculate

overlap is not efficient,

• the need to share contacts to calculate overlap endangers users’ privacy,

• users may not be available; they need to be online, or have a proxy policy

enforcer to share up-to-date contact lists.

Therefore suitable proxies are required to estimate overlap using only data

available locally on mobile devices.

Mobile devices provide users with many communications channels. Voice calls,

SMS and MMS messages are possible with every mobile phone. Smartphones add

email, instant messaging, VoIP and video calls, and other internet communications.

Local-area communications and proximity detection are possible with Bluetooth and

WiFi on many smartphones and PDAs.

Metadata from each communication attempt, whether or not it was successful

or reciprocated, and information about the timing of communications such as the

frequency, the time elapsed since the last communication, or the duration of any

conversations can all be gathered from mobile devices and possibly could be used

to infer the strength of ties between communicants.

5.3.1. Aggregated Call Duration as a Proxy for Tie Strength

Onnela et al. [46] ask how the neighbourhood overlap of a tie (line on the social

graph) depends on the strength of the tie. The strength of weak ties hypothesis

predicts that overlap should increase as tie strength increases [83]. This relationship

is seen in the data. Figure 5.4 shows the neighbourhood overlap of edges as a function

of their percentile in the sorted order of all edges by tie strength [83]. Moving along

the x-axis from left to right shows ties of greater and greater strength, and because

of the linear relationship visible on the plot, overlap also increases with increasing tie

strength.

98



Figure 5.4.
Overlap as a Function of Cumulative Tie Strength. (From [46])
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5.3.2. Tie Strength in the Reality Mining Dataset

When the methodology employed by Onnela et al. to estimate tie strength is applied

to the Reality Mining data, the results are mixed. The strength of the ties between

participants who exchanged calls with another participant are considered, although

due to the small number of corroborated calls in the dataset, reciprocity is not

required .

In Figure 5.5, two proxies using call metadata are considered: aggregated call

duration and total number of calls made. For ties between participants, overlap

generally increases as a function of cumulative aggregated call duration, although the

increase is not as smooth as that seen in Figure 5.4, and the range of values of overlap

is an order of magnitude smaller. This significant difference in scale may be due to

the small number (N = 97) of participants in Reality Mining compared to the large

number in the corpus used by Onnela et al. (N = 4.6× 106), and the lack of call data

within the dataset.

This analysis suggests that aggregated call duration and call count may be used as

proxies for tie strength in small mobile communication networks. However, neither is

completely conclusive, and high fluctuation is visible especially for weaker ties.

5.3.3. Tie Strength in the Nodobo Dataset

Similar investigations testing the suitability of certain communications metadata as

proxies for tie strength were performed using the Nodobo data. Because of the high

number of SMS messages in the dataset, SMS data as well as call data was tested.

Figure 5.6 shows the results of SMS metadata tie strength proxies plotted against
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Figure 5.5.
Overlap as a Function of Cumulative Call Metadata in Reality Mining.
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overlap. Both the aggregated SMS length in characters and the total number of

SMS messages are shown. No linear relationship between tie strength and overlap

is observed. Both curves rise sharply before flattening meaning that the overlap in

the tenth percentile of tie strength is approximately the same as the overlap in the

ninetieth percentile.

Figure 5.7 shows the results of voice call proxies for tie strength plotted against

overlap. The results are similar to those seen for SMS proxies: no linear relationship

is observed. Total number of calls initially rises sharply before levelling, and overlap

against aggregated call duration is almost completely flat: average neighbourhood

overlap is constant for all values of tie strength.

These results show that neighbourhood overlap, calculated using both call

and SMS metadata, does not necessarily give any indication of tie strength. The

calculated values of overlap for the Nodobo data are generally constant in most

cases, with only smallest aggregated totals of mediated communication metadata

being slightly smaller. The participants in the Nodobo study are all members of

the same year group in the same school, and as such may have similar relationships

with one another. Certainly, the heterogeneity of individuals (and hence, social ties)
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Figure 5.6.
Overlap as a Function of Cumulative SMS Metadata in Nodobo.
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recorded in the data used by Onnella et al. is significantly different to Nodobo, whose

participants are similar.

The data used by Onnela et al. is from a European mobile network provider

and contains the call metadata of millions of people meaning that a huge variety

of different people and therefore different social ties are represented. The same is

also true, albeit to a lesser extent, with the Reality Mining data. Reality Mining

participants were selected from a larger group than Nodobo and although some

similar ‘classmate’ relationships undoubtedly exist in the Reality Mining data, the

wider variety of participants probably creates a wider variety of social ties explaining

why the linear relationship between tie strength and neighbourhood overlap still holds

loosely.

5.4. Summary

Although the existence of social ties can be inferred from communications metadata,

this inference give no indication as to the current state of the ties. All social ties are

not equal and change over time. The concept of tie strength seeks to differentiate
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Figure 5.7.
Overlap as a Function of Cumulative Call Metadata in Nodobo.
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social ties based on the strength of the bond between individuals. Ties are broadly

classified into three types: strong, weak, and absent by Mark Granovetter. Strong ties

are longstanding, close social bonds between people. Weak ties are acquaintances

who connect with one another, but overall are not close friends. Absent ties are those

without substantial significance, but imply some occasional, fleeting interaction.

Triadic closure is the process through which social networks develop neigh-

bourhood overlap. Examining both the Reality Mining and the Nodobo datasets

found instances of triadic closure occurring in a graph of reciprocated mediated

interactions. Of the thirty-six triads present in the Nodobo data twenty-one are closed

by proximity interactions before mediated, with the proximity interactions happening

on average a month before the mediated interactions.

Few instances of closed triads are seen in the Reality Mining data. This lack

of common neighbours shows low clustering for the Reality Mining network. The

Nobobo data contains many examples of closed triads meaning that many nodes on

the graph have common neighbours. The Nodobo graph is therefore more highly

clustered than the Reality Mining graph. The difference in the demographic of the

study participants may account for the difference clustering: the Nodobo participants,
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who as part of the same year-group in the same school, can be considered to be more

homogeneous than the Reality Mining participants, who were both students and

faculty from different schools within the same university.

Neighbourhood overlap is considered an indicator of tie strength: the greater the

number of common acquaintances, the stronger the tie. In large mobile networks

there is a linear correlation between the average neighbourhood overlap and the

aggregated duration of calls. This allows aggregated call duration to be used as a

proxy for tie strength.

This approach to estimating tie strength was tested on two significantly smaller

datasets: the Reality Mining dataset which has ninety-seven participants and the

Nodobo dataset which has twenty-seven participants. We found that a loose linear

correlation between aggregated call duration and neighbourhood overlap is seen in

the Reality Mining data but not in the Nodobo data. The number of calls were also

tested and gave similar results. SMS message metadata from the Nodobo dataset was

also tested and again no increase in overlap as aggregated SMS length or SMS count

increased.

These results suggest that the techniques used to estimate tie strength in large

networks cannot be applied to smaller networks because the increase in tie strength

seen does not correspond to a clear linear increase in neighbourhood overlap.

However, testing tie strength proxies for weaker and stronger ties observed by

researchers working with the Nodobo study participants did show larger values for

all tie strength proxies for stronger ties.

It does seem that the intuitive idea of stronger social ties between communicants

being visible in increased mediated interaction does have some basis. However, on the

evidence of the datasets tested here tie strength cannot be said to be directly coupled

with neighbourhood overlap.
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6.1. Summary and Conclusions

The results presented in this thesis show that mobile devices can be used to detect

the social ties between communicants. The explosion in the availability and

popularity of computer-mediated communication channels in recent years has

led to unprecedented levels of digital interactions which are available for analysis.

Modern mobile devices are relevant to any attempts to discover social ties because

they are potential repositories of many machine-readable ties. Furthermore, the short

range communication channels almost universally available on these devices allow

insights into the face-to-face interactions of users as well as mediated interactions.

Mobile communications is a domain perfectly placed to build tools to explore social

relationships: they allow access to many new digital tie-signs from many different

communication channels; and their mobility and ubiquity combined with their

ability to detect other local devices create the possibility of analysis of face-to-face

interactions too.

Face-to-face interactions are still the dominant mode of interaction between

people. The proximity of individuals can be itself a kind of tie-sign, revealing

information about the nature of the tie between them, for example individuals

interacting at social distance. These co-proximate interactions are important when

attempting to detect social ties. Mobile devices, albeit with some modifications to the

operating system and with additional software, can be used as complete sensor nodes

when attempting to detect co-proximate interactions.

Mobile devices are first and foremost communication devices, and human

communication is intrinsically linked to social ties. It follows that analysis of com-

munications will yield information about the relationships between communicants.

Detecting the presence of social ties can therefore be achieved by detecting mediated

interactions and attempting to estimate the social ties associated with them.

Previous studies have used both email and mobile phone data in attempts to

infer the social networks of communicants. These studies have been carried out

retrospectively on data that is not normally available and some special permission

was required to access it. Mining the data available on mobile phones allows access

to communications metadata without the need for special access to a particular silo of

data.

This approach has both pros and cons. On the one hand, using rootable, SIM-

unlocked handsets allows modified handsets in which study participants can use their

existing SIM cards to be deployed. It provides a (relatively) straightforward way to

detect both mediated and co-proximate interactions between small (N < 100)

groups of existing subscribers over various mobile networks. However, testing the
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corroboration of records in the resulting dataset shows that significant data loss

is experienced from some devices. Furthermore, deploying customised devices is

expensive in both money and time, and does not easily scale to large numbers of

participants.

Despite the loss of some data it is still possible to accurately estimate many social

ties between the participants. Using only a few simple rules we were able to correctly

identify ties between participants 89% of the time. Ties were estimated based on two

relations: one for mediated interactions, and the other for co-proximate interactions.

The mediated relation requires a reciprocal exchange of calls or SMS messages

and are a strong indicator of the presence of social ties. Thirty-two of forty-eight

confirmed ties were estimated in this way, with one false positive, in the analysis

presented here. The need for reciprocity also indicates that confirmed ties are not

based on one-sided communication: no false negative ties were identified in which

participants identified a tie between them but only communicated in one direction.

The co-proximity relation requires regular proximity for a meaningful period of

time. For the analysis shown here this was arbitrarily defined as proximity on four

out of seven days for a total of thirty minutes. Seven confirmed ties were estimated

based on this relation with a further nine satisfying both relations. This shows the

importance of co-proximity when identifying social interactions. However, the co-

proximity relation is the source of most incorrectly identified ties. Five of the six false

positive ties satisfied the co-proximity relation, and all three false negative ties show

co-proximity is detected throughout for the study participants involved.

These errors may be due to missing data, and examples have been shown of both

devices which failed to push data to the server and participants who removed their

SIM cards from study devices during the study, but in future work a more precise co-

proximity relation should be employed.

Although the existence of social ties can be inferred from communications

metadata, this inference give no indication as to the current state of the ties. All

social ties are not equal and change over time. The concept of tie strength seeks

to differentiate social ties based on the strength of the bond between individuals.

However, the techniques used to estimate tie strength in large networks cannot

be applied to smaller networks because the increase in tie strength seen does not

correspond to a clear linear increase in neighbourhood overlap.

Testing tie strength proxies for weaker and stronger ties observed by researchers

working with the Nodobo study participants did show larger values for all tie strength

proxies for stronger ties, suggesting that the intuitive idea of stronger social ties

between communicants being visible in increased mediated interaction does have
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some basis. Although, using the datasets tested here tie strength cannot be said to be

directly coupled with neighbourhood overlap.

6.2. Contributions

The contributions of this thesis are

1. A dataset;

2. Dataset veracity;

3. Reliable detection of social ties; and

4. Classification of social ties;

each of which is summarised in the following subsections.

6.2.1. A Dataset

A new dataset of social interaction data using mobile phones has been compiled. The

Nodobo project gathered communications metadata from a group of 27 students at

Springburn Academy in Glasgow. From September 2010 to the end of January 2011

the study recorded 13,035 call records, 83,542 SMS records, and 5,292,103 proximity

records as well as cell tower IDs and WiFi SSIDs. The dataset has been made freely

available.

6.2.2. Dataset Veracity

The reliability of datasets can be established by testing records of mediated in-

teractions for corroborating pairs of interactions between communicants. If few

corroborating pairs of calls or SMS messages are found then data must be missing

from the dataset and therefore the data gathered cannot be reliable.

Allowing for a maximum clock de-synchronisation of ten minutes, approximately

20% of voice calls and 50% of SMS messages corroborated in the Nodobo dataset.

These results show that there is clearly some data missing from the Nodobo dataset,

and suggest that using mobile devices to gather social data is a method susceptible to

errors.

6.2.3. Reliable Detection of Social Ties

Two relations were defined to create an estimated social graph: Study participants are

considered to have a tie if they have had at least on reciprocal exchange of mediated communications,
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and Study participants are considered to have a tie if they have been co-proximate for a period of at

least thirty minutes on four out of every seven days when both participants phones were active. Social

ties were considered to exist between any participants who satisfy either or both of

these relations.

The estimated graph derived from these rules was compared to a self-reported

social graph and was found to be broadly accurate. Forty-eight social ties were

accurately identified with six false positive ties and three false negative ties.

By applying simple rules grounded in common sense thinking to communications

metadata gathered by mobile devices, it is possible to accurately estimate the social

graph of a small group despite the loss of large amounts of data.

6.2.4. Classification of Social Ties

Although we have seen that the existence of social ties can be inferred from commu-

nications metadata this inference gives no indication as to the current state of the tie.

Neighbourhood overlap is considered an indicator of tie strength and in large mobile

networks there is a linear correlation between the average neighbourhood overlap and

the aggregated duration of calls. This allows aggregated call duration to be used as a

proxy for tie strength.

This approach to estimating tie strength was tested on the Reality Mining and

Nodobo datasets—both of which have fewer than one hundred participants—and

found that a loose linear correlation between aggregated call duration and neigh-

bourhood overlap is seen in the Reality Mining data but not in the Nodobo data. The

number of calls were also tested and gave similar results. SMS message metadata

from the Nodobo dataset was also tested and again no increase in overlap as

aggregated SMS length or SMS count increased.

These results suggest that the techniques used to estimate tie strength in large

networks cannot be applied to smaller networks, however testing tie strength proxies

for weaker and stronger ties observed by researchers working with the Nodobo

study participants did show larger values for all tie strength proxies for stronger ties

suggesting that all mediated communications are in fact examples of strong ties.

6.3. Future Work

Although it is possible to infer the existence of social ties using communications

metadata gathered from mobile devices, this work is only a beginning. Further to the

method proposed here many additional steps should be taken in the future.
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Scale The study conducted as part of this work was on a small scale. Although

the results were valuable, if the work was to be repeated on a larger scale assistance

from OEMs, or network operators would be required. OEMs could provide APIs

on mobile device operating systems which researchers could utilise, thus making the

process of gathering social data an exercise in application development. Network

providers could provide datasets for research purposes. Although such datasets would

only contain mediated interactions between subscribers on a single network they

would be significantly larger than any dataset gathered by individual deployments

of custom devices.

Co-proximity Any data provided by network providers would not contain co-

proximity interactions. It may be possible to infer the co-proximity of subscribers

from cell tower IDs, WiFi SSIDs, or location systems such as GPS and one aspect

of future work should investigate this, but the use of Bluetooth to detect co-proximity

is also not perfect. Future work into new methods of detecting co-proximate mobile

devices using radio, or perhaps other mediums such as ultrasound, is required.

Tie Strength The ability to classify detected ties is important. Further work into

the differences between the strong ties in the Nodobo data should be carried out.

However, as the main purpose of the Nodobo study was to determine the existence

of social ties from communications metadata, additional studies may be required to

investigate tie strength thoroughly. Further investigation of alternative tie strength

metrics should be a priority. Weak ties should also be investigated more thoroughly

but this may not be possible without improvements in the ability of mobile devices to

detect co-proximate devices discussed above.

Dynamic Network Analysis The network analyses discussed in this work are static.

That is they are conducted on a fixed dataset and produce a single social graph. In

real-world situations social networks are dynamic: ties are formed and experience

changes from one day to the next. The work methods for detecting ties and estimating

tie strengths in this work should be extended to include the dynamic nature of social

networks allowing the changes in social ties which take place over time to be studied.

Security and Privacy The need to ensure that personal information is not leaked

to malicious outsiders by socially aware mobile devices is paramount. It may be

assumed that users (and their devices) are trustworthy, but there is still a threat from

external attackers attempting to harvest social network data. Rogue devices may

attempt to illicitly gather social network data from surrounding users, or a malicious
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insider may attempt to spoof social ties in order to connect with someone who is not

an acquaintance for example. These and other security issues must be addressed

to ensure that in any deployment of a socially aware system users are properly

authenticated and that sensitive information is stored and shared with the appropriate

level of security.

Prototyping and Deployment Lastly, future work should consider the prototyping

and deployment of socially aware mobile devices. By attempting to solve real-world

problems in an organisation by social network analysis of mobile communications

data much can be learned about the ideas proposed in this thesis, and many of the

previous suggestions of areas for further work will be addressed simultaneously. The

host institution may be an enterprise, care facility, school, or university but each

deployment will allow more data to be gathered and studied. Moreover aspects of the

scale of the deployment, co-proximity detection, tie strength, temporal changes in the

social graph, and security and privacy will be addressed in each deployment making

the lessons learned in these deployments extremely valuable to researchers and

academics in this field as well as to the stakeholders in the host institutions themselves.
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A. Details of Confirmed Ties

Some details of the interactions between the ends of the forty-eight estimated ties

confirmed by the reported social graph are given in Table A.1. For each tie a count

of the voice calls, SMS messages, and proximity interactions is given.

Table A.1.
Details of the 48 Estimated Ties Confirmed by the Reported Graph.

Tie Call Count SMS Count Proximity Count

(1,6) 5 241 10,730
(1,11) 0 40 7,422
(1,15) 15 199 32,168
(1,27) 0 114 9,915
(3,11) 6 38 10,998
(3,23) 0 0 2,258
(3,27) 0 86 9,333
(4,7) 378 6,002 6,973
(4,11) 0 5 866
(4,13) 3 7 2,253
(4,17) 3 198 1,193
(4,26) 0 0 2,048
(5,24) 1 3 620
(6,11) 1 20 8,680
(6,15) 3 17 20,371
(6,17) 0 5 10,050
(6,27) 0 54 13,344
(7,13) 1 13 13,695
(7,23) 1 1 3,773
(7,27) 97 239 18,113
(8,10) 2 79 841
(8,11) 0 2 7,587
(8,13) 30 36 9,108
(8,15) 0 2 15,286
(8,23) 120 472 7,609

(Continued overleaf)
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Tie Call Count SMS Count Proximity Count

(8,27) 10 38 7,343
(11,17) 1 67 6,311
(11,18) 0 243 2,639
(11,23) 1 103 3,864
(11,26) 4 20 13,540
(11,27) 10 856 15,999
(12,13) 0 7 1,958
(13,23) 71 328 5,142
(13,26) 204 10,439 36,704
(13,27) 4 134 18,959
(14,19) 5 237 5,750
(14,21) 0 10 3,559
(14,25) 10 291 434
(15,27) 0 1 18,906
(16,23) 0 0 1,228
(17,18) 0 88 2,710
(19,21) 285 4,616 23,712
(19,25) 2 16 185
(21,23) 0 0 2,130
(21,25) 12 114 345
(23,26) 0 1 3,148
(23,27) 0 104 4,450
(26,27) 5 339 21,997
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