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Abstract

Distribution Automation (DA) is deployed to reduce outages and to rapidly recon-

nect customers following network faults. Recent developments in DA equipment

have enabled the logging of load and fault event data, referred to as pick-up ac-

tivity. This pick-up activity provides a picture of the underlying circuit activity

occurring between successive DA operations over a period of time and has the

potential to be accessed remotely for off-line or on-line analysis. The application

of data analytics and automated analysis of this data supports reactive fault man-

agement and post fault investigation into anomalous network behavior. It also

supports predictive capabilities that identify when potential network faults are

evolving and offers the opportunity to take action in advance in order to mitigate

any outages.

This thesis details the design of a novel decision support system to achieve au-

tomatic fault diagnosis and prognosis for DA schemes. It combines detailed data

from a specific DA device with SCADA data, by utilising rule-based, data science

techniques (e.g. data mining and clustering techniques) to deliver the diagnostic

and prognostic functions. These are applied to 11kV distribution network data

captured from Pole Mounted Auto-Reclosers (PMARs) as provided by a leading

UK network operator. This novel automated analysis system diagnoses the con-

dition of device faults, the nature of a circuit’s previous fault activity, identifies

underlying anomalous circuit activity, and highlights indications of problematic

events gradually evolving into a full scale circuit fault using prognostic function-

ality. The novel contributions also include the characterisation and identification

of semi-permanent faults and a re-usable methodology and approach for applying

data analytics to any DA device data sets in order to provide diagnostic decisions

and mitigate potential fault scenarios.
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Chapter 1

Introduction

1.1 Introduction to the Research

Since the emergence of the smart grid paradigm, existing electricity grids around

the world have seen a rapid increase in the deployment of new technologies. The

increasing prevalence of microgrid developments, energy storage, and renewable

energy has led to noticeable changes in the power system characteristics. In

tandem, Distribution Network Operators (DNOs) are also focusing on improv-

ing the reliability and stability, operational resiliency, and customer service of

the distribution systems [Sma14, MDA+15, Far10, SM11c]. These activities are

supported by Distribution Automation (DA) strategies, which guide the use of

appropriate technologies to deliver the advances in reliability. DA therefore ex-

erts a critical influence on the development of smart grids, especially distribution

systems, when encountering potential challenges and opportunities in improving

the planning, operation, maintenance, and protection [IA09]. For example, the

planning and grid-connection of backup power resources to mitigate the sudden

outage and restore electricity is based on the implementation and administration

of DA strategy [MDA+15].

In general, DA deployed in the distribution network is to reduce the interrup-

tion duration, isolate the faulted area, and rapidly reconnect customers following

network faults. DA can also assist in power system planning by automating
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the closure of normally open points for optimal power flow [SM11c]. Planning,

controlling, and maintaining distribution systems have become more complex as

loads increase and regulatory regimes focus increasingly on the security of supply

and reliability. This is therefore a driving factor to improve the protection and

operation of those systems. In order to effectively manage the networks, major

investments and developments have subsequently been undertaken in the area of

DA [MDA+15, DMA+15].

The implementation of DA technologies has evolved through recent related

technological developments. In the past, the restoration of electricity supply

always required the control engineers or maintenance staff to manually oper-

ate the protection devices. However, new installations of fault circuit indica-

tors or fault passage indicators (i.e. devices which provide an indication of cir-

cuit faults via visualisation or remote tools) offer more flexibility in the detec-

tion and isolation of faulted areas, instead of manual awareness and observation

[DMA+15, VFS13]. Distribution systems are now widely equipped with multi-

functional Intelligent Electronic Devices (IEDs) [KM10, Ibr12, PKK15]. Each

device may have integrated one or more functions, such as protection, monitor-

ing, communication, and data recording. When these functions are combined or

integrated within the Supervisory Control And Data Acquisition (SCADA) sys-

tem [BWM14, SM11c, Off04], the distribution system can be promptly restored

when a transient disturbance occurs, or reconfigured following a long-term power

outage. These automated operations, under modern DA schemes, help improve

the system’s reliability indices [Rel12, APP14, NVKH11].

The metering capability of the installed IEDs can be used to process status

changes and parameters of the integrated protection and control elements when

they experience a fault event or anomalous activity. This captured data can

provide an explicit view of real-time network scenarios by transmission of the

data through a communication system instead of manually logging and reporting

the records from each item of DA equipment. The control engineers can utilise

the data from SCADA and IEDs to analyse the underlying circuit’s conditions to

achieve a fault diagnosis, or even extract emerging fault information over a period

2



of time to predict future behaviour. Both the fault diagnosis and prognosis could

be achieved either off-line or on-line. Thus, the data analysis of the DA operations

can support asset management, provide capabilities of reactive fault management

and post fault investigation. It could also support potential predictive capabilities

which identify the evolving faults and offers the opportunity to take pre-emptive

action.

However, the ongoing implementation of DA reveals two issues. First, al-

though the IEDs have a critical role in DA, it is not cost effective to install a

large number of them, in view of the costs for purchase and maintenance. So the

DNOs need to balance the costs of installation against operational value. Sec-

ond, large-scale deployment of IEDs have led to increasing volumes of operational

data that is becoming overwhelming for the manual processes currently used for

data collection and analysis [SSLFF15]. For example, the IED data used in this

research work is generated monthly within over 200 log files (each file contain

about tens of thousands of sets of data, detailed in Appendix A). Therefore, in

order to reasonably implement the DA technologies in the distribution systems

and efficiently analyse the available network data, the only feasible way is to

acquire and process the data automatically [McD03, SMB+10].

As a consequence, DA data is utilised for automatic fault diagnosis in various

areas, including distribution generator and substation fault diagnosis, fault lo-

cation identification, fault isolation and restoration, etc. [MR15, Che12, Che11,

SdOF+08, THL14, GCF16, SRS+12]. Among the areas, many in the research

community have focused on analysing the SCADA data and available network

data (e.g. IEDs’ data) for fault diagnosis to assist engineers to deal with dis-

tribution network events. Such systems provide diagnostic functions or decision

support for power control and planning by interpreting SCADA data alongside ap-

propriate Digital Fault Recorder (DFR) data, Phasor Measurement Unit (PMU)

data or Digital Protective Relay (DPR) data [DMM+06, HMMM03, BMM+98,

WVKW16, PKK15, DZG13]. However, the existing systems mainly utilise the

available IEDs’ data for supporting the analysis of SCADA data for protection

validation and fault location or detection. For the root causes of fault events,
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there is no in-depth study. Furthermore, these systems are rarely designed and

implemented to consider the use of data from intelligent DA devices for predictive

functions.

The research reported in this thesis takes a further step and provides both

diagnosis of DA equipment problems and also provides a prediction of potential

faults and outages that are emerging. It is concerned with the design of a novel

Decision Support System (DSS) that comprehensively and automatically analyses

the captured data from the SCADA system and protection IEDs. The diagnostic

and prognostic capabilities allow prevention of the outage taking thus positively

impacting security and reliability. Based on the use of experts’ experience, a

Knowledge-Based system (KBS) approach has been developed and implemented.

Such an approach is considered as the most suitable solution for addressing fault

diagnosis and prognosis challenges.

In this thesis, the automatic DSS developed uses the KBS to diagnose the

nature of a circuit’s previous fault activity, identify underlying anomalous circuit

activity, and highlights indications of problematic events gradually evolving into

a full scale circuit fault. These functions are achieved by analysing the SCADA

alarm data and Pole Mounted Auto-Reclosers’ (PMARs’) data (i.e. one spe-

cific type of protection IED), which has been provided by a network operator

(ScottishPower Energy Networks (SPEN) was a partner in this research and co-

funded it). The system has been developed to assist the analysis of SPEN’s daily

control report automatically generated every morning as part of SPEN’s routine

operations. The report summarises anomalous protection operations by filtering

SCADA alarms in last 24 hours in order to prioritise maintenance scheduling.

Since the main purpose of the research work is to automate the manual pro-

cesses of daily PMAR protection operation analysis using SCADA alarm data,

and then identify the root causes of abnormal events on the circuits through

analysis of PMAR data, so the DSS is fully designed to automate the entire

process. The research drives towards the design of a fully automated process

which provides the control engineers early indication of issues in a rapid and

effective manner. The implemented KBS automatically analyses the data by in-
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voking the Rule-Base (RB) generated from the expert knowledge, data mining

and clustering techniques. The methodology is demonstrated through the design

and implementation of this KBS. The key functions and their advantages are

demonstrated through case studies based on actual network configurations and

operational data captured from SPEN’s distribution network.

In addition, the DSS provides automated data analysis and prediction, and

builds this from visualisation tools developed as part of the research. These vi-

sualisation tools also offer the end user advanced functionality when the system

is implemented. The benefit of such a visualisation tool is evaluated and demon-

strated through the case studies.

1.2 Justification for Research

Research concerning the utilisation and analysis of SCADA data and DFR data

has been reported since the early 90s [KRFS94, MMBB95]. This research fo-

cused on protection performance analysis and validation, based on expert system

technology. The Rule-Based (RB) system was designed to provide diagnostic in-

formation by taking DFR data into consideration in 1992 [SLC+92]. With the

increasing metering capabilities integrated with the protection IEDs, the data

produced by them becomes more worthy for automatic fault analysis, including

calculation of fault distance and resistance [IRS07], protection operation valida-

tion and diagnosis [LK05], identification of fault location and operational decision

support [DZG13, PKK15, GR13, GP13]. However, the data analysis research re-

ferred focused on diagnosing the recorded fault events for operational validation

and decision support to assist engineers. In contrast, the PMAR is one category

of protective IED which records the data that can indicate underlying and emerg-

ing anomalous activities as well. These activities are different from fault events,

do not result in protection operations, but are closely related to and often precede

them. Hence, this research focuses on the development of a DSS with analysis

of both fault events and the data that indicates anomalous activities prior to the

fault. It delivers fault diagnosis and prognosis through the implemented KBS.
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RB systems are KBS where the experts’ knowledge has been codified into

logical rules for automated use and analysis. These rule-based KBS have been

extensively used in power system applications, including power system condi-

tion monitoring and event classification [SBG02, SRM+08, RMJ10b], protec-

tion failure and event diagnosis [PWN92, MDM+96, BMM+98, OAA+10], service

restoration and planning [KV91, PL97, SKK+96, AMG+97], and load forecast-

ing [HHC+90, KEDH02b]. The successful applications of such knowledge-based

expert systems have automated arduous tasks and provided technical support

for engineers. Therefore, they offer an obvious solution to evaluate for the DA

challenge in this research. The benefits of KBS are: engineering knowledge can

readily be converted into appropriate rules; and, KBS can also provide excellent

explanation facilities. This is extremely useful for identifying faults and suggest-

ing the appropriate decision support for system operators.

Through comprehensive analysis of the decision support required around DA,

this thesis defines the challenges, opportunities and benefits associated with auto-

matic fault diagnosis and prognosis for distribution automation. This spans from

the data manipulation to the implementation of the automated system. Adop-

tion of the methodologies and techniques developed can lead to a more efficient

and convenient process of analysing the conditions of circuits and intelligent DA

devices for control engineers. They can be generalized for other DA devices and

the more general analysis of distribution automation and network monitoring.

For example, the methods and approaches presented in this thesis for analysing

the fault activities captured from the PMARs could be applied for other similar

protection IEDs installed in the distribution systems.

1.3 Principal Contributions

This research provides the following contributions to knowledge:

� Comprehensive investigation of AI techniques that are suitable for fault di-

agnosis and prognosis within the analysis of SCADA alarm data and PMAR

data for improved network operation and reliability.

6



� The design and implementation of a DSS that employs a KBS for automatic

analysis of fault events and anomalous activities, and demonstration of its

operation through network case studies.

� The design and implementation of a visualisation tool that allows engineers

to manipulate detailed DA log data, explore potential issues and obtain the

results of the diagnostic and prognostic functions.

� The use of a data mining and clustering methodology to uncover predictive

rules for indicating future potential network faults, and the implementation

of these within a knowledge-based system.

� A unique focus on DA auto-reclosing devices and the identification of evolv-

ing or incipient network faults; and, the full implementation of a prototype

with the design of specifications for an end-to-end automated data analysis

system to support control engineers.

1.4 Thesis Overview

This thesis is organised as follows:

Chapter 2 provides an overview of Distribution Automation (DA), including

its role in distribution systems, the main intelligent DA devices’ functions and

their fundamental principles, and the specific key issues and considerations as-

sociated with research work in fault diagnosis and prognosis. Existing activities

and tools that are associated with DA fault diagnosis and prognosis are reviewed

and discussed.

Chapter 3 reviews a number of AI techniques and their applications in au-

tomatic fault analysis for DA, based on which a knowledge-based approach is

proposed for the diagnostic and prognostic tasks. The reasons of why such an

approach is selected are discussed.

Chapter 4 presents the current manual process and outcome of the fault in-

vestigation with available network data, and the challenges around the move

from a manual process to the automated DSS, with the details of the proposed
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knowledge-based methodology through description of the design and operation of

the DSS.

Chapter 5 presents case studies using actual network data to demonstrate

how the KBS can be used for fault diagnosis of PMAR device faults and circuit

conditions, and how the designed visualisation tool integrated DSS system can

offer the decision support for assisting engineers’ diagnosis.

Chapter 6 presents the data mining and clustering methodology to define the

predictive rules. Case studies of actual network data are used to demonstrate how

the KBS can be used for fault prognosis, indicating future PMAR operations.

Chapter 7 summarises the work presented in the thesis, highlights the key

challenges addressed and the contributions of the research. Future work is out-

lined which would extend and augment the system, and allow more widespread

implementation.

1.5 Publications

The following publications have been completed during the course of this Ph.D.:

1.5.1 Journal Article

A Data Analytic Approach to Automatic Fault Diagnosis and Prognosis for Dis-

tribution Automation

X. Wang, S. D. J. McArthur, S. M. Strachan, J. D. Kirkwood, and B. Paisley

accepted by IEEE Transactions on Smart Grid, PP(99): 1-9, 2017. Available as

IEEE Xplore early access: doi: 10.1109/TSG.2017.2707107.

1.5.2 Conference Papers

Decision Support for Distribution Automation Data Analytics for Automated

Fault Diagnosis and Prognosis
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X. Wang, S. D. J. McArthur, S. M. Strachan, and B. Paisley

International Conference on Electricity Distribution (CIRED), Glasgow, United

Kingdom, 2017

Automatic Analysis of Pole Mounted Auto-Recloser Data for Fault Diagnosis

and Prognosis

X. Wang, S. M. Strachan, S. D. J. McArthur, and J. D. Kirkwood

Intelligent System Application to Power Systems (ISAP), Porto, Portugal, pages

1-6, 2015. doi: 10.1109/ISAP.2015.7325519.

Automatic Analysis of Pole Mounted Auto-Recloser Data for Fault Prognosis

to Mitigate Customer Supply Interruptions

X. Wang, S. M. Strachan, J. D. Kirkwood, and S. D. J. McArthur

International Universities Power Engineering Conference (UPEC), Cluj-Napoca,

Romania, pages 1-6, 2014. doi: 10.1109/UPEC.2014.6934653.
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Chapter 2

Review of Distribution System

Protection and Automation

2.1 Introduction

This chapter reviews the fundamentals of distribution system protection and au-

tomation. It focuses on distribution automation strategy, implementation and

the performance improvement through auto-recloser protection schemes. It starts

with an introduction to electrical power systems detailing the characteristics of

distribution systems and distribution automation in Section 2.2. Section 2.3

provides an overview of the SCADA systems supporting distribution automa-

tion, which covers the description of architecture and functions. Information

on SCADA alarm data has also been provided to assist further analysis in the

research work. In Section 2.4, the different electrical faults and main protec-

tion schemes and their functions are introduced, along with discussions of pole-

mounted auto-reclosers in protecting the supply service in the distribution net-

works. The performance of distribution systems is introduced in Section 2.5,

which classifies the electrical faults into supplementary categories and describes

the reliability indices for evaluating performance. In Section 2.6, a review of

existing activities associated with distribution automation fault diagnosis and

prognosis is presented, and the value of analysing the SCADA alarm data and
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IED data to provide fault diagnosis and prognosis in distribution automation are

discussed.

2.2 Distribution Automation

To achieve a good understanding of Distribution Automation (DA) and its role

in an electrical distribution system, a basic description of the main concepts of

electric power systems is given in this section followed by the more details of

distribution systems. The characteristics of a Distribution Automation System

(DAS) are discussed, including the benefits and functions of DA technology. To

enhance the brevity and relevance of this section, only selected schemes or ap-

plications of distribution network control and protection that are related to this

research work are covered. For a comprehensive coverage of operational architec-

tures and implementation strategies of DA further information can be found in

[NGW07].

2.2.1 Electrical Power System

The aim of an electrical power system is to deliver electrical energy to consumers

[SM11a]. The key systems are: generation system, transmission system and

distribution system, which are shown in Figure 2.1.

The generation system is owned by one or several electric utilities who pro-

duce the electricity within power plants, and there is now an increasingly diversi-

fied range of renewable and low-carbon energy resources in use (e.g. solar energy,

nuclear energy, wind power, hydro energy, and tidal energy, etc.) instead of tradi-

tional fossil fuel resources. Recently, Distributed Generators (DGs) are embedded

into the power networks to satisfy local demand, but can also provide ancillary

service in response to supply disturbances, that improve system reliability and

performance [Mom07].

The responsibility of the transmission system is to deliver the power to the

transmission and zone substations (i.e. primary and secondary substations in the

UK) through the transmission lines. Due to the generated power being trans-
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Figure 2.1: Electricity supply system [Act15]
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mitted over long distances, the generation voltage level is increased by using the

step-up power transformers as it reduces losses, where the major part of the en-

ergy losses comes from Joule effect in transformers and power lines (In general,

average values of power losses at transmission and distribution levels are respec-

tively 4%-6% and 4%-8%) during power transfers [IEC07]. The power voltage

will be operated at Extra High Voltage (EHV), High Voltage (HV) and Medium

Voltage (MV) level (typically 400 kV, 275 kV and 132 kV respectively in the UK)

to the distribution networks.

In the distribution system, the power is first transmitted from the substations

to the distribution transformers to obtain a stepped down voltage level, and the

electricity is then ultimately distributed to the local consumers with appropriately

Low Voltage (LV) levels through the distribution lines (or cables). For example,

in the UK, the voltage level for industries and commercial establishments ranges

from 11 kV to 33 kV, and the supplied voltage level of residential customers is at

230 V [Hat15].

2.2.2 Distribution System

As mentioned in 2.2.1, the distribution system is the final power link which con-

nects the electric energy to the end users. The outlined area in Figure 2.1 is

an instance of distribution systems. Alternating Current (AC) distribution is

broadly deployed in present electric power networks [MM05, Ker01].

Commonly, the AC distribution system is divided into primary distribution

network and secondary distribution network [BH12]. The primary distribution

receives the bulk electric energy from the distribution substation and sends it to

the distribution transformers to reduce the voltage level, or directly provide it to

the large consumers. Afterwards, the secondary network distributes the suitable

voltage level of electricity to lower wattage users (e.g. homes). Figure 2.2 shows

the main components built in a distribution system: feeders, transformers, circuit

breakers, voltage regulators and sectionalisers [Wil04].

The feeder is a conductor which transfers the electricity without tappings,

the main factor of designing a feeder is the capacity for carrying the current. An
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Figure 2.2: Distribution system [Mom07]

Automatic Voltage Regulator (AVR) in the distribution network maintains the

stability of output voltage, particularly with respect to the connection of DG. The

circuit breakers and sectionalisers are devices protecting the operation of distri-

bution systems by automatically disconnecting the faulted equipment or areas.

Certainly, a completely modern distribution system also contains other protection

and control pieces, such as relays, auto-reclosers, sensors, etc. [Mom07]. Over-

all, these devices are installed with the purpose of improving the performance

of distribution networks. The following section 2.4 will provide more details of

protection devices on the distribution systems.

In order to ensure the high-quality and cost-effective power flow to the con-

sumers, the topology and structure is a significant aspect in the design of a distri-

bution system. Typically, the topology of a distribution system can be categorised

into three types: radial, loop and mesh, as shown in Figure 2.3. A radial distribu-

tion network transmits the energy from a centre point to the branched customers,

the power flows like water absorbed from the root of a tree to its branches. For a
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Figure 2.3: Different distribution network topologies

loop structure, there is a Normally Open Point (NOP) switch between the radial

branches at the end of each feeder. When a fault is isolated at the upstream of a

feeder, the downstream consumers can be restored by closing the NOP that leads

to the power being delivered from another route. The mesh distribution system

means the network is more highly interconnected with more available open points

to reconnect the consumers when a fault occurs [Bus13]. Although the loop and

mesh structure could increase the reliability of a distribution system, the com-

plexity of operation will increase as well. Hence, appropriate communication

and automation techniques are required to support the system reconfiguration

and restoration instead of traditional control and protection mechanisms in the

power networks.

2.2.3 Distribution Automation System

Nowadays, electricity distribution utilities have been striving to provide satis-

factory reliability and power quality whilst efficiently managing their businesses.

Therefore, in order to improve system reliability, improve operations, and offer

better asset management, DA schemes are being designed and implemented by

more and more distribution companies in many countries. For example, Figure

2.4 demonstrates the rapid increase of the number of automated switches (remote

controlled) implemented outside the primary substations in the UK’s distribution

networks over a 9-year period (With the gradual maturity of the DA technology,

more advanced single automated switch can be used in place of several ‘older’ ver-

sions hence leading to a reduction in the number of automatic switches deployed

from 1999 to 2003). Experience shows the DA implementation improves reliabil-
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Figure 2.4: Number of switching devices installed per year outside the primary substa-
tions automated in the UK’s distribution networks [NGW07]

ity by 20%-30% by reducing the number of outages and interruption durations in

the distribution systems [NGW07].

There are many concepts and perceptions of the DA term. To put it simply,

DA applies the automation into entire distribution system operation with asso-

ciated information and communication technology applications. It is a cohesive

architecture in power distribution systems, mixing together automation of local

devices and central decision making. The structure normally consists of com-

municating relays, remote controlled switches, SCADA system, and distribution

management and information processing system.

The DA functions improve the system performance during normal and ab-

normal situations automatically and efficiently [GASD11]. DA functions cover a

wide range from fast isolation of the fault to the comprehensive consideration of

control and planning, Figure 2.5 indicates the overall structure of effective DA

functions. The value of these functions can be classified as follows [Mom07]:

� Efficiency : DA can minimise the power losses through the network restora-

tion and reconfiguration by appropriate circuit switching for optimum load

performance during an overload. And DA can reduce the energy usage and

demand during peak times through the Demand-Side Management (DSM)

analysis.
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� Reliability : Reliability is one aspect of power quality issues, but it is consid-

ered separately with a greater focus on network outage situations. DA can

reduce the duration and amount of supply outages through the quick sys-

tem restoration and maintenance delivery. Meanwhile, DA could mitigate

the potential power outages with reliability assessment or asset assessment

by analysing historical recorded failures.

� Quality : In addition to reliability, power quality contains voltage sags and

regulation, harmonic contents, etc. [KD11]. Intelligent DA devices could

monitor the power quality and enable the dynamic controls, such as voltage

regulation being automatically controlled through adjustments of capacitor

banks and voltage regulators.

� Security : Physical plant security, cyber security and privacy protection

become an important part of the modern distribution network, which could

be implemented by applying DA technology. For example, the physical

security of substations can use a CCTV systems to monitoring abnormal

human activities integrated with a DA scheme, which may help keep a safe

environment for stable system operations through allowing vision sensors

to detect and analyse intruders [XLS+15].

The key benefits of DA for each of the categories (utility, network, and cus-

tomer) are related to the divisions of efficiency, reliability, quality, and security.

Firstly, DA can reduce operation and maintenance costs. For instance, fast fault

location and isolation replace the staff dispatched and manual local operations,

real-time data analysis of an asset management system provides an optimal main-

tenance plan before outages. Secondly, DA can improve the reliability and quality

through the automatic control of installed intelligent devices responding to un-

expected events. Thirdly, the improved information system of a DA offers more

visibility for the engineers to plan and manage the networks to achieve their

business objectives [NGW07, SW10, IEE07].
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Figure 2.5: DA functions and structure [Mom07]
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2.3 The SCADA System

Supervisory Control and Data Acquisition (SCADA) is the basis of any real-

time power system control. A SCADA system is normally used to control and

monitor the system in industries, such as electric energy, transportation, and

renewable resource management. It acquires and pre-processes the data from

different categories of intelligent devices (e.g. Remote Terminal Units (RTUs),

Programmable Logic Controllers (PLCs)), and transfers it to the control centres

or operator terminals to analyse and support decision-makings for system opera-

tions [Off04, Kum10, GD87]. The SCADA system can be complex (e.g. monitor

all events in a power system) or relatively simple (e.g. control the temperature

service in a building) depending on where it has been applied. Early traditional

SCADA systems used Public Switched Network (PSN) for monitoring and con-

trol. In recent years, the communication of SCADA systems use corporate Local

Area Networks (LAN) and Wide Area Networks (WAN), and some applications of

wireless network technologies are integrated with the SCADA system seamlessly

[Ale02, IEE93, McD93, KDS10]. In this thesis, the focus is on introducing the

architecture and functions of a SCADA system, and detailing the SCADA alarm

data which is analysed in the research work.

2.3.1 Architecture and Functions

The infrastructure construction of SCADA systems will encompass large and di-

verse equipment with the capabilities of monitoring, control, and communication.

Generally, the structure of a SCADA system consists of four main components

as follows [SM11c, Off04, AONI12, KC11]:

� Remote stations (i.e. RTUs or PLCs) deal with data transfer between field

instrumentations and SCADA master stations. The field instrumentation is

the device which measures the parameters on the plant and executes control

operations with the notification from master stations. Here, remote stations

gather converted data (e.g. analogue to digital data) recorded from field

19



Figure 2.6: Simplified logical view of a typical SCADA architecture [AONI12]

instrumentations, and transmit it to the master station. On the other side,

they receive the control commands from master stations and signal the field

devices for operations.

� Communication networks are used to transfer data among the equipment

in the whole SCADA system, including field devices, control units, and the

SCADA central host. The channels of communication could be radio, leased

cables, optical fibre, satellite, and so on. The configuration of communica-

tion networks depends on the size of the SCADA system, the number of

local control units, and the rate of data update.

� Central control station is the heart of a SCADA system, sometimes it is

called Master Terminal Unit (MTU) as well. It collects and stores data

for processing and making necessary decision support, and it exchanges

information with other systems through communication. Finally, the MTU

provides results or proposed actions to the operators.

� Human Machine Interface (HMI) software systems are the bridges to con-

nect the MTUs with the operators, they support the communication and

allow the feedback (remote control) to the local field devices.

Figure 2.6 shows a basic view of a typical modern SCADA system’s archi-

tecture which contains the mentioned main components, including the extended
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communication devices (modems and Private Branch Exchanges (PBXs)). In

reality, there are three generations of SCADA architectures [SP 04, Sch12]:

� The 1st Generation system (1970s technology) is “monolithic” [Off04]. At

that stage, the SCADA system had no connectivity to other centralised sys-

tems. Meanwhile, the communication protocols were not feasible to trans-

fer diverse categories of data between RTUs on the network, because of the

protocols were generally provided by the system vendor. This led to the

limited communication among master stations, remote stations, and the

field devices.

� The 2nd Generation (1980s/90s technology) The improvement of this gener-

ation was applying the LAN technology into distributing the data processes

across multiple operation stations. Each station owned a specific function

with sharing real-time information by connecting to the LAN. These op-

eration stations could serve as communication processors and operator in-

terfaces for communicating field devices with RTUs and providing visual

assistances respectively. But the LAN connectivity between remote sta-

tions and the SCADA master station were still limited due to the RTU

protocols, which were not available for other types of network traffic.

� The 3rd Generation (2000s technology) is the networked SCADA system, the

current generation architecture was widely deployed from 1990s. It is similar

to the second generation, the major advantage of the third generation is that

the open standards and protocols allow the distributed processors across

both the WAN and LAN. The WAN protocols bring the communications

between remote stations and SCADA master station.

At present, due to the complexity and vast capital investment for upgrading

the generation of SCADA systems in large utilities such as power, oil, and gas,

quite a few industries are in a transition period altering from the 2nd generation.

For example, in the UK, current electrical distribution networks are mixed of 2nd

and 3rd generation SCADA systems [SP 04]. However, the standard functions of
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the SCADA systems will not change regardless of the generations. For a modern

SCADA system settled in the DA of distribution systems, it should have the

following basic features [SFK06, Kir14, TM15]:

1. Data acquisition: the responsibility of a SCADA system in a distribution

network is to collect and process the basic operation state information for

supporting system control and protection. The information is automati-

cally collected and transmitted to SCADA databases through the various

installed RTUs or intelligent DA devices with communication ability. The

data can be categorised into three types: status values, measured values,

and energy values. The status values represent digital alarm signals reflect-

ing the status of switching devices (i.e. contacts’ closings and openings).

The measured values mean the time-varying quantities, such as current,

voltage, and power factor. These data will be measured at a fixed frequency

(e.g. every 10 seconds, every 1 hour) based on the requirement. Both the

digital and analogue measured values will be transformed and normalised

before sending to the databases.

2. Event generation and processing: the collected real-time data has little in-

formation by itself. In order to evaluate the conditions of power systems

and provide feasible actions or decision supports accurately, the SCADA

systems need to monitor the presented data and compare them with normal

values or limits stored in the historical databases. For the status monitor-

ing, the received triggered alarm data could be a normal condition when

reviewing the settings and previous assigned data. Without the monitoring,

this alarm signal could generate an unnecessary event processing. For the

limit or trend monitoring, the SCADA system always has a delay function.

It stores the present measured data in temporary memory and combines it

with the following detected changes for monitoring. If the trends or values

exceed the default thresholds, the data will generate an event processing, or

be treated as normal conditions. Event processing is a significant function

in the SCADA systems because the processed alarms assist the operators’
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decision makings that influence the real-time performance the first time.

Usually, both the unacknowledged and identified alarms (with causes of

event occurring) are listed for operators.

3. Control: the plant and equipment could be controlled manually by the

operators and automatically from software applications through SCADA

systems. For corresponding to the two types of monitoring, the manual op-

erations from the control centre have two classes. One is direct command

controls to the individual equipment, such as open or close of one switch-

ing device. The other one is control messages regulate the predetermined

limits of the equipment, such as raise or lower the tap changer position.

Meanwhile, the automatic control of the SCADA systems is based on the

condition of the processed event invokes the pre-set rules.

4. Data storage: as stated previously, the collected data will be stored in the

real-time SCADA databases for applications to process. The data cap-

tured from RTUs will overwrite the old values with the new ones when

the database server receives the data. For the measured values, only the

changed parameters will be updated in the databases. Sometimes, the real-

time SCADA databases have the connection with external data warehouses,

where the archived data could be utilised for further data mining, calcula-

tion and analysis.

In practice, the SCADA systems also contain the functions of decision support

and reporting for control operation through the HMIs [Ver16]. The HMIs will

present a comprehensive view of the network’s conditions with reported specific

information and summarised historical data trends. Additionally, the processed

results and listed alarms helps the operators perform the tasks for managing the

systems. On the whole, SCADA technology and its functions are indispensable

for the large utilities which intend to control and communicate automatically

with their distributed equipment in real-time.
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2.3.2 SCADA Alarm Data

SCADA systems contain alarm signals with important network information. The

formats of SCADA alarms vary greatly within the applications between different

utilities. However, they generally indicate to the operators network disturbances

monitored by intelligent devices. The alarm information can be displayed in a

summary report or in lists of related events. Typically, the SCADA alarms are

triggered to warn the operators to take actions against emergency situations. And

sometimes, alarms are generated to inform that the disturbances are addressed

automatically by SCADA systems themselves [CBG14, AS09].

Due to the SCADA alarm data can provide abundant information of real-

time system conditions, the SCADA alarm data processing therefore becomes

an outstanding aspect of diagnosing the abnormal events to improve the system

performance across various domains [ZL98, LPS+13], such as SCADA alarm pro-

cessing that assists real-time water management by supporting decisions to the

control centre [Agu14]. In particular, in the areas of power systems’ generation,

transmission, and distribution, SCADA alarm processing has been used to diag-

nose fault events or anomalies [ZBWD05, CQF+11, TG13, KSE+00]. The related

activities and application of SCADA alarm data in power system will be detailed

in section 2.6.

In this research work, the analysis of SCADA alarm data supports a portion

of the whole designed automatic DSS for fault diagnosis and prognosis. And the

SCADA alarm data is provided by one of UK’s distribution network operators

(SPEN). Similar to the usual alarm data produced by other SCADA systems de-

ployed in electricity distribution networks, the provided alarms mainly describe

the abnormal situations and feedback on the control actions (manual or auto-

matic). From the view of lists of alarm data, some alarms are triggered by

independent incidents, while others may be raised on the repeat occurrences of a

particular fault in the network. Therefore, if the related alarms are detected and

grouped together, these remaining undiagnosed events could be analysed to pre-

vent potential disturbances resulting from the same fault condition in the future.
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The analysis of SCADA alarms in this thesis focuses on identifying the frequent

supply interruptions for a specific circuit or PMAR by detecting the real-time

data stored in the PSALERTS database [SP 15]. PSALERTS (named by SPEN)

is a data set that archives SCADA alarms which include the status information

(e.g. the opening or closing of a PMAR, test control of a circuit breaker, etc.)

associated with the particular circuit details:

� Activity log time, a synchronised time stamp, through the GPS clock by

communicating the RTU integrated with local intelligent devices upon ex-

ecution of the necessary operations automatically or controlled remotely.

� Circuit name, contains the names of particular circuits, PMARs, circuit

breakers, and switching gears which trigger alarms.

� Status information, represents the contacts’ status (i.e. closed or open) of

related protection devices.

� Tripping information, describes the protection operation as either tele-

controlled manually or tripped automatically by devices themselves.

With the analysis of these prominent features in the PSALERTS database,

there is a potential means of identifying repeated PMAR’s operation and sta-

tus changes of problematic circuits. Then, the in-depth diagnosis and prognosis

through analysis of the PMAR’s data could allow intervention to prevent the

outage taking place. It should be noted that there is no global time reference for

the local intelligent devices (e.g. PMARs), the real time stamps of PMARs’ op-

eration could be different. This needs to be overcome in the system by retrieving

the synchronised time stamps of recorded alarms in PSALERTS.

2.4 The Protection System

It is inevitable that electrical faults occur during the operation and control of the

electricity systems. The impacts can cause the deterioration and breakdown of

electric equipment, which could directly lead to the loss of life and equipment.
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Consequently, any detected faults must be quickly isolated or removed from the

power system. Therefore, the duty of a protection system is to minimise damage

to the overall network by defending against the fault conditions to ensure the cost

of coordination as low as possible [ES13, Blu07]. This section will firstly introduce

the types of electrical faults usually experienced on the circuits, then describe

different protection schemes with associated protection devices, and finally detail

PMAR’s protection mechanism with its related data analysed in this research

work.

2.4.1 Electrical Fault

Faults in the power network always lead to abnormal voltage and current. De-

pending on the existence of current flow when a fault occurs, the electrical faults

can be categorised into Open Circuit (OC) faults and Short Circuit (SC) faults

[IEE06]. The OC faults mean there is no current flow in the faulty area, and

they are normally caused by broken conductors [SKS+00, RBM01]. However, the

majority of occurring faults are SC faults in the networks. A significant feature

of a SC fault is the appearance of high current in the network, due to the neg-

ligible impedance and constant voltage. Thus, if a SC fault is not detected and

isolated quickly, the disturbance could damage the electrical equipment with fires

or explosions, or even large-scale blackouts. In this thesis, the research will focus

on the protection against SC faults.

In three-phase AC power networks, SC faults are classified as: Single Line-to-

Ground (SL-G) fault, Line-to-Line (L-L) fault, Double Line-to-Ground (DL-G)

fault, and Phase-to-Phase-to-Phase (Ph-Ph-Ph) fault [EH08, Y. 13]. The Figure

2.7 illustrates all mentioned fault types, including the fault impedance Zf . When

the Zf equals to zero, the fault can also be called a bolted SC fault [GSO12].

Generally, the electricity breakdown resulting from SC faults are due to the

failure of insulation, the reason could be an overvoltage (e.g. a lightning strike

on the circuit), insulation deterioration (e.g. physical crack or chemical pollution

on the insulators), or inclement weather and environment (e.g. the wind blows

down poles) [Y. 13]. A SC fault can take place on overhead lines or underground

26



Figure 2.7: SC fault types in three-phase AC networks [Hon15]

cables. Table 2.1 lists the statistical proportion of the faults attributed to various

power system components, where the fault statistics were gathered from 200kV

to 250kV power transmission lines during the year of 2008 in the Poland.

It is apparent that the overhead lines and underground cables risk over half

of the power systems’ faults, and about 75% of them are registered as SC faults

[EH95]. Therefore, in order to minimise the disconnection on overhead lines, thus

ensuring maximum security of supply to consumers, many protection schemes

have been applied in the power system protection, and the technologies utilised

in protection devices are refurbished often to improve the system reliability.

2.4.2 Protection Devices

With regard to the characteristics of electrical faults, the distribution system

could encounter different types of faults: OC or SC faults, internal or external

faults, temporary or permanent faults. For the purpose of achieving a safe and

reliable electricity service environment, various protection schemes with technolo-

gies are designed and applied into power networks. The most common schemes

used for fault protection contain relays coupled with circuit breakers, section-

alisers, fuses and auto-reclosers. This subsection summarises the definitions of
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Power system component Prevalence of faults (%)

Overhead lines 50

Underground cables 9

Transformers 10

Generators 7

Switchgear 12

Other equipment 12

Total 100

Table 2.1: Proportion of the faults attributed to various power system components
[Y. 13]

first three protection devices. The background and technology of auto-recloser

will take the installed SPEN’s PMARs as an example in the following subsection

2.4.3.

In general, a protection relay with a circuit breaker is used in the primary

distribution systems for detecting the fault and isolating it upon the control and

protection requirements. Figure 2.8 shows the common components contained

in a typical protection relay system. The voltage transformer (VT) and current

transformer (CT) are the measurement devices that sense the values of voltage

and current from the power system overhead lines, and convert them into appro-

priate levels for the protection relay to deal with. The relay is the main element of

the protection system which utilises integrated algorithms to determine whether

to react to the detected fault or not. If the fault condition exceeds the thresh-

old for action, the relay will register a tripping signal to the associated circuit

breaker, and it isolates the fault immediately. For some protection technologies,

e.g. differential protection, the measurement for detecting faulty condition is re-

quired with the support from additional information sources (e.g. the remote

end protection relay on a transmission line) through communication connections.

And sometimes, the communication is capable of sending the signal for tripping

[Bla13].

From the years of manufacturing simple relays to meet the objectives of pro-
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Figure 2.8: A typical protection relay system

tection in history, the relay technology has been developed over 100 years. As

shown in Figure 2.9, the history of development can be split into four stages,

from the earliest electromechanical relays to the state-of-the-art numerical relays.

Electromechanical relays are constructed with electric and magnetic components

(e.g. operating coil and contacts). They are the first type of protective relays,

and rarely used today, because of the substantial amount of maintenance required

to keep the moving parts operational. In the middle of the 1960s, static relays

were introduced to the protection system with the significance of being faster and

having a more accurate operation. These are based on semiconductor technol-

ogy. However, the static relays could be unsuccessful in adverse environments

due to the failure of one component in them. Until the 1980s, the digital relays

with processing function improved the reliability in the protection systems. And

around 1985, the next generation of digital relays - numerical relays, became

an ever more common choice of relays when designing the protection systems

[SM11b, Lun11, AB14].

Numerical relays are integrated with a programmable microprocessor, which

can monitor real-time circuit conditions for processing and executing protection.

The powerful microprocessor allows multiple protection functions simultaneously

based on advanced computing technologies and large memory capacity. Mean-

while, communication function and digital signal converter of numerical relays
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Figure 2.9: The development of relay technology [Gri11]
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make the engineers’ control more flexible. Numerical relays are referred as one

type of protection IEDs [Gri11].

The sectionaliser is used for automatically isolating the faulted segment of dis-

tribution lines with other protective devices, such as reclosers. The sectionaliser

only senses the current above a predetermined level, without considering the reg-

istered time period of overcurrent. And it counts the number of de-energisations

with a recloser. If the number exceeds a preset value (normally set to 3), and the

current of abnormal condition is still higher than the actuating value, the section-

aliser will open the circuit within its protection zone. Sometimes, the fault could

be isolated by the recloser before the sectionaliser isolates the faulted area, so

the sectionaliser would reset the counted number to zero for the future detection.

[SM11b, Mom07, EAT14].

A fuse is typically used in radial distribution networks. The fuse is a single-

phase device which operates by melting the metallic element to interrupt an

overcurrent fault, and the fuses are not be reusable. Unlike a sectionaliser, fuses

sense both the magnitude and duration of the fault current flowing through them.

When the continuous current exceeds the threshold for respond, the process of

interruption consists of two steps: thermal process and interruption process. At

the stage of thermal process, the heat generated by the fault current is higher

than that of normal condition, the high temperature will then lead to the melting

of element. But after melting, the fault current would still flow through an arc,

which takes some time to quench. Finally, the fuse interrupts the fault on the

circuit, and the time period of the second stage interruption process is called the

“arcing time” [Feh16, SM11b, Cla11, Das12].

2.4.3 Pole Mounted Auto-Recloser

The majority of devices installed in the distribution protection systems are auto-

reclosers, rather than relays, sectionalisers, or fuses described in the previous sub-

section. They are used for isolating and mitigating the affected area when a fault

occurs on the circuit. Typically, most overhead line faults in distribution net-

works are transient, only lasting a few cycles, such as a flashover on the cracked
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insulator [GCF16]. The causes of these faults are probably related to weather

conditions or animals. If these faults do not clear within a prescribed time, they

will result in the tripping of circuit breakers for isolating the faulted area, and

disappear after the closing of circuit breakers. For the special purpose of avoiding

unnecessarily long outages resulting from transient faults, the auto-reclosers are

employed in the distribution networks. Depending on the characteristics of net-

work topology and geography, overhead lines occupy most of distribution lines in

the UK networks compared to underground cables, therefore, the Pole Mounted

Auto-Reclosers (PMARs) are widely applied. Meanwhile, with consideration of

European and UK’s power networks’ requirement, the PMARs are designed with

single tanks for balanced three-phases. Figure 2.10 illustrates one type of PMAR

installed on the overhead lines of SPEN distribution networks, including the main

components for protection operations [SP 12b, ABB07, NOJ16].

As shown in Figure 2.10, a self-controlled PMAR contains two main parts:

main tank is used for executing protection operation through the interrupter

(when a fault occurs, the magnetic actuator will power the pushrod to draw

out a vacuum room, which disconnects the electricity between two terminals;

and when the pushrod resets, the vacuum room disappear and power will be re-

stored) and the control cabinet is responsible for logic algorithm processing and

communication. Generally, based on the interrupter’s categories, the PMARs

can be divided into oil interrupted and vacuum interrupted. For the control cab-

inet, various modules achieve different functions. The driver module controls

the status of the interrupter automatically in the main tank, and the Main Pro-

cessor Module (MPM) analyses the monitored circuit’s conditions for reaction,

and records details of fault events and anomalous activities within its memory as

well. The integrated antenna in the control cabinet will communicate with RTUs

for updating the tripping information to the central database, and receiving re-

mote commands for operations. With these features, PMARs can be classified as

protection IEDs in the distribution networks.

Furthermore, the PMAR’s protection scheme is time-current coordination.

The current sensor first detects the overcurrent anomalous activity, and registers
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Figure 2.10: A typical PMAR with its main tank and control cabinet. 1 = Vacuum
interrupter; 2 = Polycarbonate housing; 3 = Magnetic actuator; 4 = Pushrod; 5 =
Current and voltage sensor; 6 = Bushing; 7 = Terminals [NOJ16]
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Figure 2.11: A typical sequence of PMAR’s operation mechanism. Top: the 1st AR-
shot is successful; middle: the 2nd AR-shot is successful; bottom: both AR-shots fail
and lockout. ’I’ = circuit breaker closed, ’O’ = circuit breaker open [ABB07]

it in the MPM. Secondly, the MPM starts to monitor the time duration, if the

activity lasts longer than the predetermined threshold for tripping, the MPM will

upgrade the activity to a fault event and signal the driver module to command

the tank for response. After a preprogrammed time, the contact will be reclosed

automatically for restoration. The PMAR would try a preset number of attempts

of open and close for eliminating the on-line faults. If the fault does not disappear

during the cycles of the auto-recloser’s operation, the PMAR provides the final

tripping (i.e. lockout) to remain open, and it can only be reclosed manually

or controlled remotely. Otherwise, the fault can be cleared and supply can be

restored automatically by the PMARs. Figure 2.11 demonstrates the sequence of

PMAR’s operation mechanism [ABB07, Mom07].

Within the sequence of PMAR’s protection operation, the automatic reclosing

follows each tripping after a delay time (typically 10 seconds) is called an AR-

shot, and the shot pointer counts the number of trip-reclose cycles. If the fault

disappears within a present number of allowable AR-shots, the shot pointer will

be reset to zero. Otherwise, if the fault still persists, and the counted number
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of the shot pointer exceeds preset value, the PMAR then actuate a final trip

(i.e. lockout) to isolate the fault. In this figure, it shows the particular PMAR’s

sequence with SPEN’s specific requirement, that is the shot pointer is set by 3

and the delay time for automatic reclosing is 10 seconds.

As described previously, the PMARs register the detected fault with overcur-

rent on the circuits in their MPMs, and the MPM determines the reaction decision

based on the monitored time duration. However, the transient fault could clear

itself without the PMAR’s operation, and this activity will be also recorded in

automatically produced log files. In general, the PMAR log file contains data

that can be divided into three main parts [WSKM14] (examples of the original

PMAR log data were shown in Appendix A to demonstrate the three categories

of data information respectively, and to display the data format and structure of

the log file):

� Fault event, which leads to trips or lockout operation of the PMAR. The

MPM will record the time stamp of the occurrence and clearance of this

fault, each time stamp of responded tripping or lockout, current amplitude

of fault, and affected phases, etc.

� Abnormal activity, which does not lead to a trip operation. The MPM

will store the time stamp of registration and disappearance of the activity,

current amplitude, and affected phases, etc.

� Device event, which reflects the conditions of each module integrated in

the PMAR’s control cabinet. The MPM will produce the alarm messages

related to the problematic modules in the log file.

Moreover, the PMAR log file must contain the basic circuit information, such

as specific PMAR’s name and circuit code (concerning the privacy of DNO data,

the basic circuit information was hidden in the examples in Appendix A), which

corresponds to the SCADA alarm database. This thesis will analyse all the above

data for fault diagnosis and prognosis to minimise the supply interruptions and

improve the system performance.
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2.5 Performance of Distribution Systems

Distribution systems are the secondary electricity transmission networks which

deliver the power to the consumers directly. Any temporary interruptions or per-

manent outages within a distribution system will affect the customers adversely.

Therefore, the performance of distribution systems becomes one factor of evalua-

tion criteria of penalty and reward for the distribution network operators, which

covers the areas of reliability, availability and customer satisfaction. This sec-

tion will introduce the performance on the circuits with effects of different fault

scenarios, then briefly describe the reliability of distribution systems and how to

assess the performance through the reliability indices [CK09, Bau10, BA13].

2.5.1 Types of Faults

The previous subsection 2.4.1 classifies the electrical faults into OC and SC faults

based on the current flow characteristic. In addition, the overhead line faults can

also be divided into supplementary categories depending on their performance and

the operation of deployed PMARs. Generally, the three types of faults are tran-

sient faults, semi-permanent faults and permanent faults [WSMK15, NGW07]:

� Transient fault, as stated in the background review of PMARs, is an in-

evitable temporary fault driven by the external environment (i.e. weather,

animals, etc.) which occurs in the networks and might lead to a short-term

supply interruption. According to whether the fault causes a PMAR opera-

tion or not, the transient fault can be sub-divided into two following classes

with typical examples [ABB07]:

(a) Self-clearing fault, which represents the fault clearing itself without an

operation from PMARs. For example, it could be a developing arc

with small value of current and voltage. Although probably the MPM

of a PMAR could detect the arc, it can be extinguished in free air

before allowing the protective device to take action.
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(b) Non-damage fault, is characterised by there being successful operations

(i.e. AR-shots) of PMARs but which does not result in a long-term

power outage in the protection zone, due to the fast restoration scheme

of the PMARs. For instance, a falling tree branch touches the three-

phase uninsulated overhead line and causes a SC fault which leads to a

tripping operation by a PMAR. After the preset delay time, the circuit

is automatically reclosed for restoring supply without a lockout or a

need for permanent repairs.

� Semi-permanent fault, is a class of evolving fault (defined by SPEN experts

when categorising the overhead line behaviour) arising from the degradation

of overhead lines which leads to frequent short-term supply interruptions.

The semi-permanent fault could be either isolated by successful AR-shots

like a non-damage fault, or isolated by a lockout of the PMAR following

failure of AR-shots. An example is rain affecting a cracked insulator on a

wood pole resulting in trips or lockouts of the PMAR (which can dry out

and then no longer provide a fault path).

� Permanent (or damage) fault, is a prolonged power outage which is isolated

by the operation of protective devices, such as the lockout of a PMAR.

This type of fault only be isolated remotely with a control command and

be repaired manually with delivery of maintenance staff. For example,

the storm blew the trees down on the overhead lines, which disrupted the

electricity supply, and should be recovered by the maintenance staff.

With the view of three different fault scenarios, the semi-permanent fault is

an intractable problem due to the difficulty of identification. Not only does the

semi-permanent fault affect the quality of daily electricity service (e.g. resulting

in tripping event due to frequent transient fault activity), but it may evolve into

a more serious permanent fault resulting in long-term outages. Meanwhile, it

is evident that the PMAR is a solution that allows comprehensive protection

for the overhead line. If it is correctly designed and implemented to match the

local regulations and satisfy the protection requirement, the PMAR will provide
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a significant and increasing benefit in defending against the interruptions caused

by transient and semi-permanent faults. This will enhance the reliability and

potentially improve the performance of distribution systems.

2.5.2 Performance with Reliability Indices

The definition of performance of distribution systems varies slightly across dif-

ferent countries due to the network regulations, so the key indicators against the

performance are not always the same. However, there is one factor referred to

for evaluating the performance around the world, which is reliability. It is the

ability of keeping a predetermined satisfactory level of quality and security when

delivering the electricity to the customers. Utilities and regulators could assess

the performance through reliability analysis. To quantify the reliability of distri-

bution networks, a set of reliability indices are defined to measure and recognise

the performance [Sta09, IEE12]. In this thesis, the commonly accepted indices

defined by Institute of Electrical and Electronics Engineers (IEEE) and the simi-

lar indices developed and used extensively throughout the UK’s industries will be

both introduced. These applied indices focus on indicators for the annual aver-

age performance of distribution networks, in terms of frequency and duration of

supply interruptions. They will consider the performance based on the number

of customers whose supplies are affected. The details of basic reliability indices

are shown as the following equations [Mom07, NGW07]:

1. SAIFI (System Average Interruption Frequency Index) is defined as:

SAIFI =
number of customer interrupted

total number of customers served
during the period

SAIFI =

R∑
i=1

Ni

NT

(2.1)
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where

R = number of sustained interruption event during the reporting period

Ni = number of customers interrupted by ith interruption event

NT = total number of customers served in the assessed area.

SAIFI describes the average number of interruptions experienced per cus-

tomer over a period of time in a particular area. If the total number of

customers in the area is fixed, the only way to reduce SAIFI and improve

the performance will be to mitigate the supply interruptions in the distri-

bution systems.

2. SAIDI (System Average Interruption Duration Index) is defined as:

SAIDI =
sum durations of customer interruptions

total number of customers served
during the period

SAIDI =

R∑
i=1

UiNi

NT

(2.2)

where

R = number of sustained interruption event during the reporting period

Ni = number of customers interrupted by ith interruption event

Ui = restoration time after ith interruption event

NT = total number of customers served in the assessed area.

SAIDI determines the average duration of interruptions distributed on each

customer in the particular area. The known SAIDI plainly reflects the time

duration of customers without electricity service. The unit of SAIDI is

usually in minutes or hours.

SAIFI and SAIDI both are main universal indexes for evaluating system reli-

ability. However, in order to achieve specific business goals and meet regulations
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within organisations, some industries and utilities have their own measures to

appraise the reliability. For example, the distribution network operators in the

UK use self-defined reliability indices instead of SAIFI and SAIDI and report to

the regulators [SP 13, Bri11, ofg09, ofg05, ofg02]. The same values are:

1. CI (Customer Interruption) is defined as:

CI =
number of customer interrupted per 100 customers

total number of customers served

CI =

R∑
i=1

Ii

NT

(2.3)

where

R = number of sustained interruption event during a year

Ii = number of customers interrupted per 100 customers by ith

interruption event

NT = total number of customers served in the assessed area.

From the apparent view of mathematical equation, CI is the same index

as SAIFI, indicates the average customer experiences a sustained interrup-

tion in every 100 customers over a period of time (usually annually) over

all incidents, where the supply interruptions should last more than three

minutes, excluding the re-interruptions caused by the same incident.

2. CML (Customer Minute Lost) is defined as:

CML =
sum lost minutes of customer interruptions

total number of customers served

CML =

R∑
i=1

UiNi

NT

(2.4)
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where

R = number of sustained interruption event during a year

Ni = number of customers interrupted by ith interruption event

Ui = customer minutes lost for ith restoration

NT = total number of customers served in the assessed area.

Like the SAIDI, CML displays the average power outage time of per cus-

tomer per year (mins · yr−1). The CML only considers the minutes lost

where the interruption lasts for three minutes or longer.

For SAIFI and SAIDI or CI and CML, they all indicate the quality of cus-

tomers’ electricity service and the performance of distribution networks. A net-

work kept in good condition will have fewer supply interruptions. And a network

which is affected by frequent and lengthy faults will lead to poorer reliability

indices. Therefore, the major target of improving the performance is to reduce

the CML and CI of distribution systems in the UK.

From the above discussions in Section 2.4 and 2.5, it can be concluded that

the challenge is to improve the performance of distribution networks, which is

not simple. Hence, many utilities apply the auto-reclosing protection scheme into

their systems to assist the reliability improvement, and this protects the networks

against different on-line fault scenarios (i.e. transient faults, semi-permanent

faults and permanent faults) actively. However, the employed auto-reclosers could

only respond to existing faults and not prevent them from occurring. In order to

mitigate the supply interruptions and decrease CML and CI from the root cause,

the large volumes of undiagnosed data generated from the auto-reclosers and

associated SCADA alarm data should be deeply analysed. This is the main mo-

tivation for the research presented in Chapter 4, where a designed and developed

decision support system is proposed to address these challenges.
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2.6 Existing Research Activities and

Commercial Systems Associated with Fault

Diagnosis and Prognosis in Distribution

Automation

This section provides a review of research activities and commercial systems that

are relevant to fault diagnosis and prognosis for distribution automation, which

are mainly focused on utilising the SCADA alarm data or protection IED (e.g.

PMAR) data for analysis. Finally, a discussion of the shortcomings of these

techniques and the potential improvements for filling the gaps are provided.

2.6.1 Systems with SCADA alarm processing

As stated previously, the SCADA technique has been widely deployed in the

power electrical systems. Consequently, many in the research community have

concerned the large amount of SCADA alarm data for fault diagnosis and prog-

nosis to improve the system control and protection. The work covers the areas

of generation system (e.g. the analysis of SCADA data associated with wind

turbine operation to detect the equipment’s degradation [QFS+16]), the trans-

mission system (e.g. parameter estimation on the transmission lines by using

SCADA data [MSAA15]), and distribution system (e.g. SCADA data supports

distribution feeder models to predict the states and measurements at the buses

[HLL15]). Research of SCADA alarm data in DA fault diagnosis and prognosis

can be categorised into two main aspects: one only concentrates on processing

SCADA alarms for distribution fault diagnosis, the other one enhances systems

of fault analysis by combining the SCADA alarms with available IEDs’ data or

network data. A brief review of these approaches is provided as follows.

In [TLZ+14], an alarm management framework was designed and developed

to help recognise event sequences from SCADA alarm streams and to acceler-

ate engineers’ decision making. It automatically categorised the effective events
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for the control centre and reduced redundant, even dubious, alarms by applying

complex event processing technology into the framework. In the proposed alarm

processing framework, the defined constraints combined with complex alarm pro-

cessing technology to recognise isolated events and alarms into integrative events.

That is to say, when the distribution system is affected by the occurring events,

the associated alarms will be first detected and classified into different events

(e.g. fault events (reflected by a sequential relay actions or circuit breaker status

changes), reclose events (i.e. AR-shots), or self-healing events (manual reconfigu-

rations), etc.), the effective events could clearly represent the current conditions

of circuit and assist decision making. However, this framework only detects and

integrates the fault events from the SCADA alarms and provides them to the

control centre. Further fault diagnosis for decision making is not included.

Compared to the previous research work, [CBG14] introduces a method to

evaluate the fault diagnosability from the provided SCADA alarms for assisting

operators’ diagnostic process. In the lists of SCADA alarms, some alarms are

raised based on the occurrence of different fault conditions, while others may be

specific to a particular fault which is valuable for diagnosis. This proposed method

will discriminate the diagnosable fault from a set of other faults by calculating the

index of relevance of each alarm. The relevance is determined by how often the

alarm is (or seldom) raised by a particular fault, and seldom (or often) it is raised

by the other faults. A high value of index indicates the fault is associated with the

relevant alarm, which should be focused on diagnosis. This methodology offers

meaningful alarms for fault analysis by filtering the inactionable alarms. This

mimics a pre-processing stage for fault diagnosis to accelerate decision making.

Apart from these systems for assisting fault diagnosis, [Che12] presents a

decentralised fault diagnosis system for fault section estimation, which details the

hardware implementation of field-programmable gate arrays. This system obtains

the SCADA alarm data directly from RTUs instead of the control centre to avoid

the influence of communication problems. The graphic models are adopted for

knowledge representation in the proposed fault diagnosis algorithm, the nodes

and arrows represent performance (i.e. circuit breaker status change) and related
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conditions (e.g. fault occurrence), and implicational rules describe the relations

between cause and effect. These relations will provide information support for

fault diagnosis. Therefore, based on the detection of a SCADA alarm message, the

fault diagnosis system can estimate the possible fault section with the provided

operation information. Additionally, it can be integrated with existing SCADA

systems for on-line analysis as well.

Other than the hardware implementations of fault diagnosis with SCADA

alarms, the early research work looked at intelligent systems (software implemen-

tation) to provide decision support assistance by analysing SCADA alarm data

for fault diagnosis, which were developed by Burt et al. [BMK+95], Vale et al.

[VF98] and Burrel et al. [BI98] in 1990s. After these, [BMM+98] and [SLK+00]

started to interpret Digital Fault Recorder (DFR) data for fault classification

and protection validation, but these existing systems only interpreted the DFR

data for fault diagnosis. However, McArthur et al. [MBM+98] demonstrated

the integration of SCADA alarms and DFR data could enhance data interpre-

tation with protection validation to support diagnostic systems. And in 2002,

Hossack et al. [HMMM03] developed a flexible and scalable open architecture by

using Multi-Agent System (MAS) technology with automatically retrieving and

interpreting SCADA alarms and DFR data for providing disturbance diagnosis

assistance to protection engineers, which was known as Protection Engineering

Diagnostic Agents (PEDA) and applied into SPEN’s distribution networks for

on-line analysis.

In general, PEDA is an automatic diagnosis system replacing the manual

process of analysing post-disturbance. For the traditional manual approach to

the power system diagnosis, the SCADA alarms occurring near the time of a

particular disturbance should be firstly gathered and selected to identify the dis-

turbance and related events. Then, through the identification of location and

nature (e.g. transient SC fault) of the disturbance incident, the protection en-

gineers can determine the additional data sources (e.g. DFRs) to retrieve and

to interpret the useful disturbance information for fault diagnosis. While, this is

a time-consuming and problematic task. The PEDA designed separate analysis
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tools (e.g. multi agents) to interact and cooperate. These agents can analyse

the data individually and share it to produce a clearer analysis view, from the

collection and interpretation of the suitable data to final disturbance diagnosis.

In this research work, the agents were developed to achieve the functionalities

of gathering SCADA disturbance incidents and interpreting the additional data

sources.

McArthur et al. conducted extensive research on PEDA for further protec-

tion validation and disturbance diagnosis to help assess protection system per-

formance [MD06, MDC+07a, MDC+07b, NDMM09]. The extended system com-

prehensively analysed SCADA alarms, DFR data, protection settings and assets

databases. The entire automated process not only contained the previous de-

signed functionalities, but added protection validation and a diagnosis agent.

The model-based reasoning engine integrated with the agent support diagnosis

by comparing the simulated protection behaviour with actual operation observed

by DFRs. Meanwhile, the upgraded number of engineering assistant agents in

the PEDA could inform protection engineers with new diagnostic information

when it becomes available. [DMM+06] presented the multi-agent system technol-

ogy in the PEDA and demonstrated the robustness and flexibility required for

the on-line post-diagnosis in SPEN distribution network. With the perspective

of the development of MAS technology deployed in disturbance diagnosis, many

researchers conducted diverse work focusing on the fault diagnosis by utilising

SCADA alarms and available network data, such as [EDM+13] designed an auto-

matic model-based diagnosis system for protection performance assessment and

incident identification with SCADA alarm processing. Moreover, [RKD+11] pro-

posed a rule-based system to monitor the performance and health of distribution

automation through analysis of SCADA alarms.

The above work on automatic disturbance diagnosis for assisting protection

validation and performance evaluation is very relevant. This is because the

SCADA systems are generally deployed in modern power distribution networks for

protection and control. And SCADA and IEDs (e.g. DFRs) data contain abun-

dant information reflecting the circuit and equipment conditions, which could be
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retrieved and interpreted for diagnosis. However, many in the research commu-

nity have not yet analysed the SCADA alarms or IED data for fault prognosis

yet. Additionally, protection IED (e.g. PMAR and DPR) data is rarely taken for

disturbance diagnosis while the data also records the details of disturbance and

protection action.

2.6.2 Activities with protection IED data analysis

As discussed in the subsection 2.6.1, the analysis of DFR data integrated with

SCADA alarms could assist fault diagnosis in distribution automation. This is be-

cause the high-frequency captured by the DFR data contains various information

for automated event analysis. Compared to the DFR data, modern protection

IED (e.g. DPR or PMAR) data not only describe the circuit performance (e.g.

manual protection operation or AR-shots), they also has the capability to record

event details. This includes fault location, current and voltage amplitude of fault,

affected phases, and so on. Therefore, research on analysis of protection IED data

for fault diagnosis and prognosis has been increasingly conducted in recent years

[KPS+10, ZDGK10, KG09]. In this subsection, several examples of work related

protection IED data for fault diagnosis and prognosis are presented and reviewed.

‘REZAP Fault Master’ is one type of PMAR installed in Holland’s distribu-

tion network to reduce the number of repeat interruptions causing decreases in

CML and CI. [DZG13] proposes a method to identify the fault location based

on analysis of the records and events stored in the REZAP server. In the pre-

sented method, the fault location is identified based on the calculation of fault

impedance through a fault location algorithm called Single Ended Location of

Fault (SELF), in which the REZAP data provides the voltage and current wave-

forms to calculate the fault impedance. Like REZAP, ‘BIDOYNG’ is another kind

of auto-recloser which is employed by one of the UK’s distribution network op-

erators. It has the ability of storing and communicating the detected anomalous

events combined with protection scheme, which can be referred to as a protec-

tion IED. [GR13] demonstrates the fault location detection by utilising the SELF

algorithm to calculate the fault impedance based on the supported voltage and
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current waveforms. And in this research, a pre-fault voltage disturbance is ap-

parent from the observation of the fault waveforms. The authors exhibit the

characteristics of these disturbances and suggest the detection of pre-fault dis-

turbance could mitigate the supply interruptions before the fault occurs in future

work.

Apart from fault location diagnosis through analysis of protection IED data,

[XK09] presents a complete system solution for automated integration of IED data

captured from distribution networks to generate diagnostic report for protection

engineers. In this developed system, the DFR data, DPR data, and circuit breaker

monitored data will be collected and processed for real-time analysis. Based on

the information exchange between different types of IED data, the automated

application provides the protection validation and disturbance diagnosis of relay

operations by using logic and cause-effect chain, which compare the expected

relay behaviour with the actual one. If the validation result is not consistent with

the performance, the event report will be automatically generated for protection

engineers. Meanwhile, some concise advised actions should be taken immediately

by engineers, which are suggested in the event report through the intelligent

analysis of checking the settings and predefined logic rules.

Kezunovic et al. [Kez11, PKK15, GK09] extended the previous research into

several different applications: optimal fault location, alarms processing for distur-

bance diagnosis, and fault detection, and classification with analysis of SCADA

data and IED data separately or cooperatively. Expect for the discussed fault

location identification and alarm processing for protection assistance, the appli-

cation of detecting and identifying the fault types is a major support to fault

diagnosis as well. In the designed system, the application applies a neural net-

work to train the collected DPR data (i.e. the input voltage and current waveform

signals), and the fault classification is processed through the K-Nearest Neigh-

bour (KNN) algorithm to cluster fault patterns. These identified fault patterns

could be described by engineers’ knowledge and experience and translated into

rules for helping decision making when the similar faults are detected in future.
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2.6.3 Existing Systems that May Be Used for Fault

Diagnosis and Prognosis in DA

With respect to the review of analysis of SCADA alarm data and protection

IED data for fault diagnosis and prognosis in DA, it is evident from there are

existing commercial systems or research activities that may be developed and

used for further fault diagnosis or prognosis, although currently they can not

be used for this purpose. For example, [MBM+98] could add different agents

for protection operation prediction with analysis of DFR data, or [GR13] could

predict a fault event by detecting the pre-fault disturbance and [Kez11] could

utilise the clustered patterns for fault prognosis with matching the suitable DPR

data. The common characteristic of such systems is that they all provide a

platform that allows the processing of information hidden in the provided data for

additional functionalities. The shortcomings of such systems for fault diagnosis

and prognosis in DA are:

� The systems or activities mainly focus on validating the protection opera-

tion on the circuits, and generating diagnostic reports for assistance, which

do not give the reasons of the disturbances or unexpected operations.

� The systems usually diagnose the disturbance based on checking with pre-

determined settings of the protection system; rarely considering protection

engineers’ knowledge and experience. These can be used for fault diagnosis

� The systems analyse the SCADA alarms and IED data but provide no fault

prognosis function.

� All the systems which take the protection IED data into analysis, focus only

on part of protection operation data (e.g. circuit breaker status change).

Although the protection IED data used in the research [Kez11, PKK15] also

could provide more information of anomalous activities, these undiagnosed

details cannot fully support the analysis of identifying the root causes of

fault events. However, the PMAR data (detailed in subsection 2.4.3) can
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be used for fault diagnosis and prognosis to assist protection and asset

management.

2.7 Conclusion

This chapter has provided a review of the fundamentals of distribution systems

with a focus on the topics associated with protection and automation. With

the growing complexity of distribution systems’ design and implementation and

increasing development of DA technologies, it can be concluded that the risk

of electrical faults is inevitable for any power systems. Meanwhile, the data

captured from transient interruptions or permanent outages allows the reactive

fault management and post fault investigation into anomalous network behaviour,

which could support detection and prediction of evolving circuit’s faults. To

mitigate the effect of the faults, and quickly isolate the faulted area and restore

power manually or automatically, the SCADA system and intelligent DA devices

(e.g. PMARs) are deployed into the distribution networks to improve the system

performance. Furthermore, the reliability indices can be evaluated to assess the

performance, which are applied by the distribution network operator around the

world.

The main research activities and commercial systems associated with fault di-

agnosis and prognosis in DA by utilising the SCADA alarm data and protection

IED data have been shown and reviewed in this chapter alongside their fundamen-

tal shortcomings. That is, many of the developed systems do not provide fault

prognosis functionalities, and the disturbance diagnosis were rarely supported

with analysis of details contained in the protection IED. The shortcomings of

these existing systems are addressed by the methodology and design approaches

developed through the research in this thesis, and mainly reported in Chapter 4.
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Chapter 3

Review of Artificial Intelligence

Techniques for Fault Diagnosis in

Distribution Systems

3.1 Overview

The origin of ‘Artificial Intelligence’ (AI) is attributed to Warren McCulloch and

Walter Pins in 1943 [RN10], and the term was first coined in the 1950s, where they

proposed a model of artificial neurons with the capability of computation where

the designed networks of neurons could learn. The birth of AI can be marked

at the workshop in Dartmouth College (US) in 1956. During this workshop,

McCarthy et al. stated that a machine can be made to simulate learning and

intelligence, and attempts were made to describe how a machine can use language

and concepts to solve problems traditionally requiring humans [RN10, Fog06].

So, what is AI? Nowadays, the pressing question is still not easy to answer, even

though the field is almost 60 years old. The definition of AI can vary along

different perspectives, Figure 3.1 shows definitions concentrating on computers

‘thinking’ and ‘acting’ intelligently.

The primary concern of AI is to use computational techniques to make ma-

chines behave (i.e. think and act) as intelligently as human beings for problem-
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Figure 3.1: Some definitions of AI, classified into four categories [RN10]

solving, planning, reasoning, learning, and communication. Meanwhile, this the-

sis describes a Knowledge-Based (KB) system utilising the knowledge from ex-

perts to diagnose and prognose faults automatically. For this, there is an ap-

propriate definition which is that AI is the branch of computer science which

automates intelligent behaviour [Lug09].

Since the start of the study of AI, it has attracted plenty of research and

discussion attentions covering lots of ground with successfully designed and de-

veloped applications, such as game playing, automated reasoning, and human

behaviour modelling. These areas contain machine learning that improves ma-

chines’ behaviours through learning from previous experiences. Two dominant

approaches are: modelling human performance to simulate the process of solving

problems like humans, and KB systems that solve problems using specific do-

main knowledge. Therefore, AI is relevant to any task that requires intelligence

[Lug09]. Particularly, the commercial KB system deployed in the power industry

improved the performance of utilities and customers in recent years. Such suc-

cessful applications use domain knowledge to address problems for experts and

maintenance staff in tasks such as; alarm processing, condition monitoring, fault

diagnosis, and remedial actions for service restoration [M. 94].
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In this chapter, a number of extensively-used AI techniques will be introduced,

which are relevant to the problems described in the thesis. These are techniques

usually used for diagnosis and prediction of equipment and system behaviour.

These reviewed AI techniques will detail some associated applications for auto-

matic fault diagnosis in the power systems. The remaining AI techniques which

out of the scope of the research area reported in the thesis are not considered and

related further information can be found in [RN10].

3.2 Artificial Neural Network

3.2.1 Overview

An Artificial Neural Network (ANN) is an AI technique that belongs to the

field of machine learning dealing with the study of programming previous experi-

ences with computational technologies automatically to improve their behaviours

[Lug09]. ANN provides a general, practical, and robust approach for learning real-

values, discrete-values and vector-values from examples, notably in interpreting

complex sensor data captured from the real world [Mit97]. In this section, ANN

and associated applications will be investigated.

The inspiration of ANN research comes from the observation of biological

neural networks, which are built of vast numbers of neurons [Mit97]. The human

brain is estimated to contain approximate 1011 neurons densely interconnected,

and each neuron is connected to about 104 other neurons [Alp10]. The neurons

are operating in parallel and the connections between them support the typical

excited or inhibited neuron activities. As such, these parallel activities form the

basis of human thinking and performance with surprisingly quick speed of com-

plex computations [Mit97]. Therefore, the ANN system is aimed to model the

complexities of a biological neural system for achieving highly parallel computa-

tion capabilities.

Based on the description of biological neural networks, ANNs are formed by

interconnected processing elements referred to as artificial neurons. Each neuron
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Figure 3.2: ANN processing element (artificial neuron) [Mit97]

has a number of inputs and provides a single output after computation. Figure

3.2 shows the composition of an artificial neuron with the ability of mathematical

modelling, where xi and wi are the input and the weight of each input. Each

input is multiplied by its corresponding weight, and then all weighted inputs are

summed and transferred to determine the activation decision using the related

activation function.

Different types of ANN systems use different numbers of artificial neurons

based on the complexity of the learning task. Generally, an ANN contains one

processing element called a perceptron [Mit97]. A perceptron calculates a linear

combination of input values and uses threshold function to decide the output

signal. That is to say, if the calculated value exceeds a pre-determined threshold,

the neuron will output 1, otherwise -1. As a result, a single perceptron can be

applied to represent many boolean functions, and the learning process of it is

effectively providing the expected outputs by adjusting the weights related to

input values [AS97]. However, for some complex learning tasks (e.g. interpreting

visual scenes), ANN systems with multi-layers of interconnected artificial neurons

are used instead of the single perceptron. These systems consist of an input

and output layer visible to the real world, and intermediate hidden layers like a

‘black box’ of artificial neurons connecting to the input and output layer. Figure

3.3 illustrates a typical ANN, where there is 4 inputs, 5 neurons, and 1 input
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Figure 3.3: A typical ANN [Lug09]

respectively in the input layer, the hidden layer, and the output layer.

A number of algorithms presently exist in the learning process of ANNs. The

back propagation algorithm, also known as the ‘multilayer feed-forward’ algo-

rithm, is the commonly used method in ANNs, especially in pattern recognition

tasks such as image classification and speech recognition [RN10]. The significance

of the back propagation algorithm is to calculate the difference (i.e. errors) be-

tween the target and actual outputs, and propagate the errors backward to the

forward layers to find the suitable set of weights which can minimise the errors

through an effective gradient descent optimisation method. To achieve the best

problem-solving, ANNs should have properly defined inputs and outputs. For

example, the numerical values represent the feature describing the objects in the

real world. Based on the characteristics of ANNs, they are mainly used in ar-

eas where sufficient data can be provided for processing such as the associated

applications in forecasting sea levels [FTKM12], face recognition [Mit97], etc. In

recent years, an advancing branch of ANNs is Deep Learning (DL) [BS14, GB10].

The DL neural networks decompose input data and learn features by themselves

and have more than two hidden layers to address complex tasks rapidly, such as

fast image processing [NVI16]), and fault diagnosis with partial discharge data

in power system [CS15].
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3.2.2 Applications of ANN Systems for Fault Diagnosis

The ANN technique has been extensively applied to the domain of power dis-

tribution systems, including fault location identification [JBRRGM14, CdVR07],

improvement of protection performance [CJ98], fault cause identification [XC06],

and reconfiguration for reducing power losses [SGR06], etc. Many applications

integrate ANN techniques with other intelligent algorithms to improve the per-

formance of research work.

The paper [TKV05] proposes an approach to estimate fault location by analysing

available measurements from the substations or protection devices, which utilises

the ANN technique to replace traditional fault section estimation methods. In

the presented work, the ANN aims to classify Source Short Circuit (SSC) levels

(i.e. the range of load conditions) associated with fault location when a fault

occurs based on the monitored circuit’s conditions. Prior to inputting the data

for ANN learning, the captured data will be pre-processed to identify the fault

types. Figure 3.4 shows the structure of developed ANN for fault section estima-

tion. The inputs are pre-processed three-phase voltage and current amplitudes,

and the single output is the line reactance with classified SSC level and fault

type. In the structure of the ANN, the number of inputs, outputs, and layers are

determined with experts’ experience, and the training data is captured from 52

buses of 3 feeders in the distribution networks. Through testing the developed

system, the observed results indicate the adopted ANN method provides more

accurate fault locations compared to analytical methods.

Within the field of fault diagnosis in power systems, ANNs have demonstrated

their efficiency in pattern recognition and forecasting. However, they usually re-

quire large volumes of training data (i.e. fault events) to improve accuracy in

real-world scenarios which may be encountered in the field. Meanwhile, a poten-

tial challenge of ANNs is to ensure the network is not “over trained”. This means

when fault profiles are too precise, the misclassification of new faults will occur

during the data training. Therefore, the successful and efficient ANN systems

should prevent themselves from being over trained to increase the user confi-
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Figure 3.4: Typical ANN to determine line reactance in a fault section estimation
application [TKV05]
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dence.

3.3 K-Means Clustering

3.3.1 Overview

Clustering is an unsupervised learning method in the field of machine learning for

problem-solving. It focuses on learning a mixture of parameters for unlabelled

data and trying to organise them into different clusters [Alp10]. A cluster is a data

set consisting of grouped vectors with similar characteristics. To be more specific,

if a vector contains n features which are plotted as a point in an n-dimensional

space, then a cluster is a region with a higher relative concentration of points

compared to other regions. K-Means is one of the simplest clustering algorithms.

It determines patterns and groups the data into K clusters [Str06, Rud10].

The main task of the K-Means algorithm is to position the k centroids (i.e.

the centre of each cluster) and assign the points to the closest centroid. When

all points are assigned to the closest centroids, the centroid of each cluster will

be recomputed and updated based on the present points assigned to the cluster.

Then, a loop for repeating assignment and updating centroids is generated, the

algorithm will not finish until no point changes clusters, in other words, until cen-

troids remain unchanged [TSK06]. Figure 3.5 shows the procedures of assignment

and relocation of centroids using nine points and three clusters.

In order to obtain the optimal clusters representing the grouped points with

similar characteristics, the initial placement of centroids is important, because

different starting locations may lead to different end results. The appropriate

choice is to set the k centroids as far as possible from each other. Meanwhile,

to determine which cluster each point belongs to (i.e. the closest centroid to

the point being assigned), typically, the Euclidean distances between the point

and centroids are measured. To obtain accurate clusters, centroids are recalcu-

lated with the repeat algorithmic iteration, the squared error e2k is quoted, which

sums the squares of the Euclidean distance measured between each point and the
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Figure 3.5: Main steps of K-Means algorithm processing
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assigned centroid, and defined in the following equation:

e2k =

nk∑
i=1

‖x(k)
i − ck‖

2
(3.1)

where

nk = number of points in the kth cluster

xi = each point in the kth cluster

ck = the centroid of the kth cluster.

The sum of the squared errors E2
K measures the error representing the points in

the total k cluster, which is shown in the Equation 3.2. Therefore, the target of the

K-Means algorithm is to calculate the minimal E2
K for describing the unchanged

assignment and centroids in the computation.

E2
K =

K∑
k=1

e2k =
K∑
k=1

nk∑
i=1

‖x(k)
i − ck‖

2
(3.2)

where

K = number of clusters

nk = number of points in the kth cluster

xi = each point in the kth cluster

ck = the centroid of the kth cluster.

3.3.2 Applications of K-Means Clustering for Fault

Diagnosis

Since the first use of K-Means clustering algorithm for multivariate observations

by MacQueen [Mac67], nowadays, the algorithm has been applied into various ar-

eas, including specific cancer diagnosis in medicine [TT15], vehicle route optimi-

sation [gJmH12] and image processing [NKF+16], etc. In the field of power engi-

neering, the related applications contain condition monitoring of partial discharge
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in transformers [MSJ04], electricity load modelling [KHML13] and anomaly pat-

tern recognition [OTYB12].

[DWZ+15] presents an method using the K-Means algorithm to classify and

recognise the patterns of voltage sags related to incidents in distribution substa-

tions. The considered features of large scale voltage sags are duration and am-

plitude. Concerning the clustering of voltage sags, the results show the probable

patterns representing the corresponding characteristics, which belong to possible

causes of incidents in the substations. For patterns grouping shorter sag durations

and lower sag amplitudes, it may indicate the weak link of the power system with

associated substations. The method intensively supports condition assessment as

an efficient pre-analysis of voltage sags by clustering the patterns.

Although the K-Means clustering algorithm sometimes can correctly group

similar events or objects together, the classification of the patterns lack reason-

ing. In addition, the number of centroids should be defined initially before the

clustering. A wrong choice in the number could cause a misclassification of the

real patterns.

3.4 Knowledge-Based (KB) Systems

Knowledge-Based Systems (KBS) are a major part of AI techniques. Generally

speaking, a KBS is a computer program which utilises or generates knowledge

from data, information, and prior knowledge to solve complex tasks [Lug09].

The system is capable of understanding the information obtained and is able to

make decisions based on reasoning with the information or knowledge, whereas

the traditional computer systems cannot learn and know the information they

capture and process [RN10].

‘Knowledge’ can be defined as the information about information that people

use to solve problem. It links a result from observation or analysis, to experiences,

laws, and judgments. Therefore, knowledge can consist of facts, models, concepts,

heuristics, and examples. Meanwhile, knowledge may also be specific or general,

fuzzy or exact, and procedural or declarative. As a result, knowledge can be clas-
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Figure 3.6: Architecture of a KBS [AS10]

sified into various types, including domain knowledge, meta knowledge, common-

sense knowledge, heuristic knowledge, explicit knowledge, and tacit knowledge

[Smi13, AS10]. For example, domain knowledge is to solve the problem in a par-

ticular domain with a combination of theoretical understanding of a problem and

experts’ experience [Rud10].

Two main components are contained in a KBS: a knowledge base and an

Inference Engine (IE). Figure 3.6 shows the architecture of a KBS. The IE is

a software program that infers the available knowledge in the knowledge base

to solve problems. This may include explanations, reasonings, or simulations to

assist the decision-making process. In addition, there should be a user interface

to modify the KBS manually or inform the users automatically.

In recent times, KBSs are tightly integrated with developments in the fields of

health care, social support, and economic analysis. The KBS applications involve

diagnosis, prediction, control, planning, design, maintenance, interpretation, etc.

It manifests in different types. In this section, three subcategories of KBSs are

introduced: rule-based systems, model-based systems, and case-based systems,

alongside a description of how they are applied in fault diagnosis in power systems.

3.4.1 Rule-Based (RB) Systems

3.4.1.1 Overview

Rule-Based (RB) systems (or production systems) are one of the simplest forms of

AI. They are also the most intuitive and widely-used KB systems in practice and

experiments. A RB system uses rules to represent domain knowledge and encodes

the rules into systems for problem solving. Instead of representing knowledge in
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a declarative way describing the truth of things, a set of heuristic rules which are

extracted from human knowledge that tells the user what to conclude or what to

execute in different situations [Lug09].

Typically, the rules are expressed in the form of if-then (or when-then) state-

ments (called IF-THEN rules or production rules), where“If” (or “When”) is a

formula defining the conditions of when the rule can be applied, and “Then” is

the effect of fulfilling the particular conditions in the rule, this could be actions

or logical decisions. A general rule can have multiple conditions jointed by logi-

cal operators (e.g. AND, OR) which precludes a single or multiple consequences

[Lig06, GA11].

The structure of a RB system is similar to that of a KB system, which is given

in diagram in Figure 3.6. The general architecture consists of following elements:

� Rule base, contains the IF-THEN rules representing domain knowledge.

Usually, the rule base is managed independently from the main system to

facilitate convenient modifications and extensions to the rules.

� Database, consists of predicate input data for analysis (also known as facts)

that match the “IF” parts in the rule base.

� Inference engine, responsible for manipulating the input facts to match with

associated rules and carrying the required reasoning to reach a solution (e.g.

determine the firing of rules).

� User interface, provides the communication between the system and the

users. The design of interface can be in various forms (e.g. menu-driven,

graphical-based) through the processing of natural languages.

� Explanation subsystem, analyses the processes of reasoning performance of

the system and explains it to the users, giving any conclusions about the

facts and rules used by the system.

When the inference engine fires a rule by comparing the facts in the database,

the inference chains are obtained. The chains indicate how the system reached its
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conclusion by applying which rules. There are two main strategies of executing:

forward chaining and backward chaining [GA11].

Forward chaining is data-driven, that is to say, given a set of facts in the

working memory, relevant rules are applied to generate new facts or conclusions

until the expected goal is achieved. This way is always applied in the system

where all preliminary facts are prepared [Rud10]. Drools is a common example

of forward chaining engine [Red13]. This thesis will discuss the details of Drools

application in later chapters.

Conversely, backward chaining is goal-driven, focusing on stating a hypothesis

goal and using an inference engine to find the linked proofs. It starts by selecting

the rules with conclusions matching the goal in the working memory, then the

identified conditions of the rule become sub-goals for matching with other rules’

conclusions. The backward work will not be stopped until the facts or provided

information can satisfy all the sub-goals [GA11, Lug09]. In the backward chaining

systems, Prolog engine is an example for reasoning, details of which can be found

in [Bra01].

The choice of forward or backward chaining depends on how the domain

experts solve problems. If the system holds all possible information of the problem

statement for inferring potential goals, forward chaining is preferable, because

it is easy to logically inference the goal with determining the initial conditions

However, if the problem data is not easily available and facts must be tested to

find a ground for proving the hypothetical solution, then the backward chaining

can be applied for the systems.

3.4.1.2 Application of RB Systems for Fault Diagnosis

For power engineering, the development and research of RB system originated in

the 1980s, and since then, it was widely used in the design, operation, control,

and protection of power systems [M. 94]. The applications cover load forecast-

ing [KEDH02a], protection setting and coordination [EAJMB05, LL96, LYYJ90],

service restoration and remedial action [KV91, PL97, TCK+00], and classification

and analysis of power system events [SBG02].
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Along with the successful application of RB system in many aspects of power

system, fault diagnosis was studied to apply RB systems for increasing network

reliability. Recent research work of RB system focuses on power system fault

diagnosis including the fault identification and location estimation [KNUF92,

MIK+95, FK86], condition monitoring of operation and protection equipment

[HPF12, RMJ10a], and analysis of general incorrect operations [MRJ97], etc. In

this subsection, the applications of RB systems related to fault diagnosis in high

voltage equipment (e.g. power transformers) are discussed.

Partial Discharge (PD) is a phenomenon within high voltage insulation in

power system equipment. A variety of techniques are used to detect and diag-

nose PD data. [RMJ10a] presented a KB system offering a generic approach

of analysing phase-resolved patterns with identified associated physical PD pro-

cesses to diagnose faults in gas insulated substations and transformers. Instead of

analysing PD data independently using knowledge pertaining to Ultra High Fre-

quency (UHF) data, the research highlights an application of diagnosing defects

by recognising both the UHF data and IEC 60270 data, based on the performance

of the knowledge captured from UHF phase-resolved patterns. In this developed

KB system, the fault diagnosis is divided into five stages to identify a defect lo-

cation from describing phase-resolved patterns and matching the associated PD

behaviour. In order to match related defect characteristics and classify defect,

semantic network models were built to represent experts’ knowledge and a set of

IF-THEN rules are implemented into a RB system to support classification. The

rules are invoked and reasoned with forward chaining strategy, executed by the

Drool engine. In this work, Figure 3.7 is an example of transforming semantic

network model into the IF-THEN rule for detecting the issue of space charge.

Through the direct and useful conversion from a semantic network, RB sys-

tems show a powerful solution for assisting engineers to solve problem automat-

ically. However, the RB systems also suffer from some weaknesses, this will be

detailed in the later subsection 3.5 discussing the selection of the suitable AI

techniques for this thesis work.
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Figure 3.7: Conversion of semantic network model into IF-THEN rule [RMJ10a]

3.4.2 Model-Based (MB) Systems

3.4.2.1 Overview

A Model-Based (MB) system is another well-established application of KB sys-

tems for problem-solving. It utilises in-depth knowledge to model the behaviour

founded on the specification and functionality of a physical device or system

[Lug09]. A created model in the system is based on the theoretical behaviour

of a device, which should simulate the ideal device operation or the expected

device operation during particular fault conditions. Due to the two types of the-

oretical behaviour of a device (i.e. the ideal behaviour under normal conditions

and expected behaviour during faults), the approaches of Model-Based Reasoning

(MBR) are divided into two categories: consistency-based and abductive-based

MBR [PW03]. Figure 3.8 illustrates the basic principle of MBR.

For the consistency-based MBR, the model predicts the ideal behaviours (i.e.

predictions) when devices or system operates under normal conditions, then the

observations (i.e. observed physical devices’ behaviours) are compared with the

predictions. The identified discrepancies can be used to diagnose fault occurrences

in the physical components. The process of matching and identification in the MB

systems is supported by a reasoning engine, which is responsible for the control of
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Figure 3.8: The basic principle of MBR [DMM03]

data flow and comparison between the simulated results and measured behaviours

[MDDM03]. With respect to the abductive-based reasoning, it focuses on building

the model with fault behaviours, the comparison provides the method to identify

discrepancies where the observed behaviours matching fault signatures in the

models. Generally, the term “MBR” used in typical systems is most referred to

the approach of consistency-based reasoning [PW03].

However, no matter what kind of approach, the task of MB system is to tell

the experts what to expect, what the differences between the observations and

predictions are, as well as how to identify a fault with the discrepancies. The

reasoning includes [Lug09]:

� A description of each component of a device, i.e. the simulated behaviour.

� A description of internal structure of the device, which represents the in-

terconnection between each component. The simulated interactions assist

the identification of discrepancies and required diagnosis.

� The diagnosis of specific problems by analysing the discrepancies from the

model’s predictions and observations of actual device’s performance. Typ-

ically, the diagnosis depends on the measurements of the model’s and de-

vice’s inputs and outputs.

Many MB systems are designed and built with rules to reflect the causality

66



and functionality of a device. The reasoner can find the most probable fault

matching the observed system behaviour to ensure the success of MB system

operation. Meanwhile, additional rules can be used to describe the modes and

their interconnections. But, unlike RB systems, if a problem instance does not

match the heuristic rules in their rule-bases, the problem will not be correctly

diagnosed even though an in-depth analysis would find a solution to identify the

instance. Models in the MB systems allows for a wide range of reactions to

the input stimuli, containing some that are measured but not considered during

the implementation. Therefore, this is also one advantage of MB systems; it

improves the reliability of attempting to address the situations that RB systems

encountered. Due to this benefit, MB systems are particularly applied to systems

involving complex interactions and large numbers of components.

3.4.2.2 Application of MB Systems for Fault Diagnosis

The earliest MBR applications appeared in the 1970s, and now MBR has been

widely used in power system for fault diagnosis, especially in the domain of power

system protection. Models of electric equipment (e.g. transformers, protection

relays, etc.) are available for the automatic analysis of condition monitoring

[AHF+98], protection operation validation [MDM+96, BMM+98], fault location

and diagnosis [LFST94, BDF+93], alarm processing [EDM+13], etc.

[AHF+98] presented an application utilising the MBR approach to assess the

condition monitored in power transformers to identify faults. This approach used

adaptive thresholds which can be altered based on the working conditions of

transformers. The monitored data includes temperature, load, over-voltages, gas

and moisture in oil. Then the MBR engine compared past output values of vari-

ous built-in sensors with the predicted results from mathematical models. Since

the transformer fault is sometimes caused by a number of reasons and the charac-

teristics are not simply linear, the developed MB application could only support

a signal indicating the existence of fault conditions in the transformers without

identifications of fault type and location. In order to solve the problem, two

possible solutions were discussed. One is to use RB systems for fault diagnosis,
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well-defined rules could assist the experts to directly target corresponding faults

based on provided measured conditions; the other is a case-based approached.

The latter technique will be reviewed in subsection 3.4.3. However, both of the

methods were limited due to the lack of available data of normal and fault con-

ditions and the lack of experts’ knowledge of transformer faults.

The Decision Support System (DSS) proposed within [MDM+96] is integrated

with the MBR approach for protection operation validation. It concentrates on

automating the experts’ work of analysing protection operation after a fault oc-

currence. This system contains two models for SCADA alarm processing and

fault diagnosis by utilising a General Diagnostic Engine (GDE) and SCADA

data. The GDE is developed for the assessment of protection operations by mod-

elling the entire protection schemes of correct behaviours [KW87]. In the DSS,

the consistency-based reasoning method is applied, the expected behaviours from

current transformers to circuit breakers are validated against observed behaviours,

i.e. circuit breaker open and current values. The use of current measurement is

not only for signalling the response of the protection device, but also for veri-

fying the behaviour reaction to the faults. Although this system could provide

the functionalities of validation for protection operations, it always cannot offer

the information of specific failure components, for example where some faults

occurred in communication links or in basic elements which are not modelled.

Therefore, model-based applications have their own limitations for providing ac-

curate performance under some circumstances.

3.4.3 Case-Based (CB) Systems

3.4.3.1 Overview

Apart from heuristic rules and theoretical models to solve problems with experts’

knowledge, another powerful strategy is Case-Based Reasoning (CBR) which uses

human knowledge to address new situations by reasoning using explicit cases of

past problems or solutions [Lug09]. When Case-Based (CB) systems run into a

problem faced before, the reasoning will seek and perform the matched solution
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against previous experienced case in the case base. Meanwhile, when the CB

systems encounter a similar scenario, the CBR will find similar cases refer to their

experience and a solution can be developed based on previous provided solutions

without reasoning from first principles. Therefore, the solutions may reflect the

results of previous search-based successes or failures, or may be processed through

experts’ knowledge engineering.

One important aspect of CBR is remembering; once the new problem is solved

by the searched or developed solution, the particular case will be saved in the case

base for solving new problems in the future. These added cases will improve the

reliability of the CB systems by giving more accurate results through the CBR

[Xu94]. The common processing structure of CBR contains four main steps,

which are illustrated in Figure 3.9 [Lug09]:

1. Retrieve: after assessing the current case, the appropriate cases and solu-

tions are retrieved from the case base. This performance is based on the

similarity, which is determined by their common features. For example,

if two patients share a number of common features in their medical drugs

and histories, then they probably have the same disease. So, typically, the

cases are indexed by their significant features to increase the efficiency of

retrieving.

2. Reuse: if the retrieved cases completely matches with current problem,

then the solution can be directly reused. Usually, the retrieved solution is

required with modification to adapt better to the new problem. The rea-

soners need to transform the saved solutions into suitable operations for

current problem. For example, even if the two patients have the similar

medical drugs and histories, some special circumstances can make the pa-

tients have different diseases, so the doctors should make “adjustments” for

the two patients in his/her mind.

3. Revise: sometimes, a modified solution may not lead to a satisfactory result.

In this case, the solution should be revised before it is applied to the problem
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Figure 3.9: The processes of CBR [AP94]

or after the solution has been applied. That is to say, previous steps will

be iterated, i.e. more cases retrieved and the solution adapted.

4. Retain: if the solution was verified as correct, then the solution will be

saved with a record of success or failure. The new case will be updated into

the case base for future use.

From the description of CBR processing, the main advantages of applying CB

systems can be easily realised [Xu94, Lug09]:

� The system can be designed and developed by encoding cases for solving

problems in the specific domain. It is not necessary for understanding

the knowledge itself. Only the cases coded and the performance results

are keys for the CB systems to focus on. This simplifies the knowledge

engineering process and can be particularly suitable for situations where

domain knowledge is lacking.

� Compared to the RB or MB systems, CBR does not need complex reasoning

for finding or developing a solution to solve problems. When an appropriate
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case is searched in the case base and totally matched with the current

situation, then the previous solution can be used directly to address the

problem, which is more effective than other strategies.

Nevertheless, the CBR technique has its own shortcomings. This is because

the reasoning is not required when there is abundant knowledge, the CB systems

cannot always provide sufficient explanations of reasoning for the results when a

solution is found. Furthermore, with the increase in the number of cases in the

database, the computation of retrieving the entire case base for a solution becomes

more time-consuming. Thus, in order to determine the similarities among the

cases, an efficient indexing and similarity matching algorithm is necessary to be

developed in the CB systems.

3.4.3.2 Application of CBR for Fault Diagnosis

Although CBR is a relatively new AI technique, there are numbers of successful

applications in the academic and commercial domain. Most of them are used in

people’s infrastructure services, such as medical diagnostics and intelligent voice

services. For the area of power systems, CBR is less widely applied. [WSM+01]

proposed Design Engineering Knowledge Application System (DEKAS) to assist

the design of protection systems in transmission network by developing new cases

with utilising experts’ knowledge and similar past designs. [QGY06] discussed the

application of CBR to classify the inception fault of the transformers. The fault

diagnosis focuses on retrieving the most similar case matching the symptoms of

the target case from the case base, and then defining the fault classification.

At present, MB condition monitoring and fault diagnosis can improve sys-

tem’s reliability and availability, and reduce the maintenance costs by enabling

the detection and identifications of incipient and repeat faults very reliably. How-

ever, for some equipment such as circuit breakers, the MB systems cannot offer a

cost-effective application for diagnosis feasibly. For example, [SMF01] presented

a methodology of combining the MB and CB approaches to diagnose the faults

within circuit breakers, which could utilise a low-cost computer but provide high-

quality performance. The technique is mainly divided into two parts: preparation
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and diagnosis. The MB and CB diagnosis are responsible for each task respec-

tively, the model simulates the fault modes of circuit breaker off-line and the

search module takes the evaluated results (i.e. cases) to match the most likely

diagnosis on-line. The contrast of similarity between diagnostic cases depends

on the features defined and derived from the monitored quantities in the system

(e.g. contacting time, position and velocity). Through the use of a combination

of MBR and CBR, the system could produce a diagnosis for the current condition

of circuit breakers under a low-cost computation. However, future work is still

required to improve the performance, for example, the monitored parameters

of specific device should self-adapting; advanced methods for pre-processing of

sensor data in order to obtain more significant additional features are necessary.

3.5 Selection of AI Techniques for Automatic

Fault Diagnosis and Prognosis

In the previous sections, this thesis overviewed various AI techniques and their

applications in the field of fault diagnosis in the power system. The purpose of

evaluation is to search the most suitable approach of fault diagnosis and prognosis

with using the analysis of SCADA alarm data and overhead line network data,

which is the core task in this research work. A KB system is considered for

automatic data analysis by invoking RB generated from experts’ knowledge, data

mining, and pattern recognition clustering algorithm. In this section, the reasons

for selecting such an approach as opposed to alternatives are discussed.

3.5.1 Selected Approach: RB Strategy and K-Means

Clustering

In this research work, as introduced in Chapter 1, the automatic fault diagnosis

with analysis of PMAR device faults and abnormal network fault events is sup-

ported by the use of experts’ knowledge. Consequently, a KB approach is the

most suitable and convenient AI technique that can be adopted to address the
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targeted task of this research work. Table 3.1 summarises the strengths and weak-

nesses of the RB, MB and CB approaches with consideration of the specialities

of this research work.

Strengths Weaknesses

RB � Precisely and naturally repre-
sent experts’ knowledge of experi-
enced faults

� Lack of human common sense on
some decision makings

� Flexibly access to update the di-
agnostic and prognostic rule-base

� May fail if a fault scenario (e.g.
particular PMAR device fault) is
not encoded in the rule-base

� Excellent explanation facilities

� High level of automation to sim-
ply and easily verify and validate

MB � Incorporation of numbers of
functional models of physical sys-
tems or devices, identifying the
fault events accurately

� Will not work if the component
or link is not modelled

� Capability of predicting fault
events through simulation of ab-
normal activities

� Different PMARs should have
different model settings

CB � Suitability for incomplete knowl-
edge domain

� Slow at handling large case bases

� Convenience of diagnosing the
specific PMAR device faults

� Not suitable for identifying cir-
cuit faults due to the various con-
ditions

� Incremental learning

� Ease of knowledge elicitation

Table 3.1: Summary of the strengths and weaknesses of the RB, MB and CB approaches
for automatic fault diagnosis

The fault diagnosis of PMAR devices and network conditions is conducted

based primarily on the distribution network operator’s (i.e. SPEN’s) engineers’

knowledge. In practice, the faulted conditions of PMAR devices and distribution

networks are specified and defined by the manufacturers and the network oper-

ator, which are mostly written in the form of rules. So moving the ready-made

rules to a RB system is a natural and suitable approach. Meanwhile, the RB ap-

proach can offer explanations regarding the output reasoning when the suggested
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solution matches with detected conditions. This is a precise and convenient way

to support the engineers with identifying the causes and taking positive actions.

Furthermore, the separate reasoning process and data manipulation will not af-

fect the update of rule-base in the whole system, engineers can flexibly access the

rule-base and manage the rules with requirements.

For the MB strategy, although it can incorporate different fault models to

detect and identify the specific fault scenarios within the PMAR devices, the links

between components is not always easily realised and modelled. Furthermore,

the RB system can diagnose the fault scenarios more directly through clear rules

than MB systems, which finds the discrepancies between the simulated results and

observed behaviours. The main inconvenience of applying MB systems is with the

difficulty of modelling the settings of PMAR devices, some specific PMAR devices

could require particular configurations to keep the correct functionalities; this

could lead to larger volume of work. For the CB strategy, although it is possible

to define different cases to specify the settings to diagnose PMAR device faults, it

needs significant effort to classify the fault conditions on the overhead line, which

require more details to define various fault types. Such an approach will generate

a range of similar cases, imposing a burden on the system’s computation.

There is a common problem existing in these three strategies, that is, the

system may be fail if a fault scenario is not defined or modelled. For this situation,

the RB approach is easier and quicker to add or delete rules when compared to

the other two strategies that must update their knowledge-base. Hence, the RB

approach is adopted in the implementation of DSS for automatic fault diagnosis

of PMAR device and abnormal network conditions.

With respect to support control and protection of distribution networks, the

automatic fault prognosis will predict future potential fault events by analysing

current network conditions. The predictors (i.e. the fault features which are

capable of forecasting future fault activities) and predictions (i.e. the attributes

of potential fault events, such as time of occurrence, locations, etc.) are uncertain.

Unsupervised K-Means clustering algorithms can be utilised to efficiently group

the fault activities with similar predictors and predictions. Then, the thresholds

74



of some clusters (which contains the features that can be used for particular fault

diagnosis and prognosis) could be generated into rules, and implemented in the

KB system to indicate future network faults. Also, the K-Means clustering results

are easy to interpret for classifying and recognising patterns.

Despite ANNs being used for classification and forecasting applications, this

machine learning technique generally involves training a set of data with fixed

outcomes when the same network data are inserted. This data is not readily

available in the case of this research work. So this can be difficult to provide

suitable predictive rules without adding desired values in the technique. As a

result, this thesis selects K-Means clustering algorithm and data mining to offer

satisfactory solutions for automatic fault diagnosis.

3.6 Conclusion

AI is a broad discipline with great development potential, which intends to solve

problems leveraging the efficiency of machines whilst retaining the intelligence of

human beings. This chapter reviewed the AI techniques that are widely used in

the power systems for fault diagnosis and condition monitoring including: RB sys-

tems, MB systems, CB systems, K-Means clustering, and ANNs machine learning

techniques. Based on the comparisons between the advantages and disadvantages

of these techniques, a KB system has been chosen for the automatic fault diag-

nosis and prognosis by invoking a rule-based approach, which is implemented

using experts’ knowledge, data mining, and a clustering algorithm. Although the

other AI techniques have the potential to solve the task of the research work,

they may require extra effort to attain the same level of suitability and efficiency,

such as the MB approach should build different models in response to various

PMAR settings, or the CB approach could revise much cases and solutions to

identify underlying circuit faults. The following chapters discuss the design and

deployment of DSS with implementation of the KB system, which also verifies

the appropriateness of the selected approach.
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Chapter 4

The Design and Development of

a Decision Support System for

Automatic Fault Diagnosis and

Prognosis for Distribution

Automation

4.1 Introduction

Chapter 1 introduced the core novelties of the research work, which are:

� The identification of the root causes of the anomalous fault problems (i.e.

identifying the degradation of devices and circuits) with automatic analysis

of SCADA alarm data and PMAR data.

� The prediction of the evolving faults (i.e. providing ‘early-warning’ of

PMAR operations) to help mitigate customer service interruptions and im-

prove system reliability with an in-depth diagnosis of PMAR data.

� The employment of a KBS for automatic analysis of fault events, and

anomalous activities by applying appropriate AI techniques.
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These DSS capabilities were developed by applying the selected approaches

discussed in Chapter 3. Therefore, details of the proposed methodology and the

operation of the DSS are presented.

This chapter introduces the manual process of daily protection operation anal-

ysis by SPEN’s engineers, along with a description of the involved data types. The

chapter then continues to detail the design and operation of the entire automated

DSS processes for fault diagnosis and prognosis, which includes an integrated vi-

sualisation tool. This tool supports the end user with advanced fault diagnosis

and prognosis functionalities to enable the main objective of supporting the end

user’s decision-making process.

4.2 The Manual Process with SCADA Alarm

Data

4.2.1 OHLs’ Unsolicited Openings

Overhead Lines (OHLs) usually deliver electricity in remote areas and distributed

areas of low population density. Difficult terrain and longer distances between

DNO depots and interrupted customers sometimes are the main reason of delayed

supply restoration and network reconfiguration to these areas. [SP 12a]. When a

wide-area blackout occurs, these remote areas have a lower priority of restoration

compared to areas supplying higher population densities. Meanwhile, over 50% of

OHLs’ faults are transient, which occur due to factors such as storms, animals or

lightning. Although these short-lived faults appear and almost immediately clear

themselves, the effect of a transient fault on OHLs can cause protection equipment

to operate. This can increase the CMLs and restoration costs. Therefore, OHLs

require a more reliable protection system to stabilise the supply within regulatory

requirements. Consequently, SPEN has implemented microprocessor-controlled

OHL PMAR technology to overcome these issues [SP 12a].

As introduced in Chapter 2, when a fault is transient in nature, the PMAR

trips when the fault is initially detected and, as the fault clears during the 10
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second period of isolation, the PMAR remains closed after its first attempt at

reclosure; when a permanent fault occurs, the reclosure attempt will not succeed

in isolating the fault, and the PMAR will ‘lockout’ on its third attempt. Following

a ‘lockout’ the PMAR can only be reclosed manually via telecontrol by the control

engineers. Therefore, it is clear that a PMAR can only remain closed if the fault

has been cleared from the circuit or isolated from the PMAR in question.

With respect to the class of semi-permanent faults, the degradation of OHLs

causes frequent short-term supply interruptions, which leads to trips or regu-

lar lockouts of the PMAR, called ‘nuisance tripping’. Not only do these semi-

permanent faults affect the quality of daily electricity service, such as ‘nuisance

tripping’ due to frequent transient fault activity, but they may also evolve into

more serious permanent faults that result in significant outages. Such outages

incur more expensive repair costs, as well as more CMLs and CIs.

If the PMAR fails to remain closed after a manual remote reclosure following

a lockout, it is not conclusive evidence of a permanent fault. In some instances,

where fault conditions remain after the PMAR locks out, the control engineer will

continue with reclosure attempts via telecontrol for a period until the fault condi-

tion is manually cleared or it then becomes apparent that a permanent fault most

likely exists on the line. However, there remains some uncertainty surrounding

the cause of PMAR operations which do not culminate in the definitive identifi-

cation of a permanent fault, i.e. operations that either do not lead to a lockout

or where the control engineer ultimately recloses via telecontrol after the PMAR

has experienced a number of lockouts in relatively close succession. In such cases,

there is rarely any understanding of the root cause of the initial and subsequent

PMAR trips. This undiagnosed PMAR activity is referred to as an ‘unsolicited

opening’ (UO).
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4.2.2 The Manual Process of Analysing Semi-Permanent

Fault Activity

From a technical and/or asset management perspective, the frequency of UOs on

a particular circuit could provide some indication of deterioration in a circuit’s

(or indeed an individual PMAR’s) performance and underlying condition. For

example, the cracked insulator previously mentioned, could ultimately cause an

initial PMAR trip when moisture ingresses the crack. As the PMAR is then

reclosed (in some instances multiple times), this can cause the moisture to evap-

orate and the PMAR to remain closed after a reclosure attempt. Thus supply to

the circuit is restored for a time, until the scenario repeats itself at some point

in the future. As the circuit supply is restored, there is usually the assumption

that some prolonged transient fault has cleared with no lasting damage to the

circuit, but this, in fact, may not be the case. Also, from a customer service

perspective, the assessment of a circuit’s UO activity provides an indication of

which customers may be most prone to nuisance tripping, compromising the level

of customer service they experience, and also exposing the DNO to regulatory

penalties.

At present, for the purpose of identifying the particular areas or points on a

circuit affected by frequent UOs to support engineers’ further analysis and de-

cision makings (i.e. diagnosis of causes of UOs and suggestion of appropriate

actions), SPEN engineers are required to periodically (and manually) review the

number of UOs that occur on the network, in an attempt to ascertain the de-

gree to which the network is affected by this activity. This requires the careful

consideration, alignment, and analysis of a number of separate data sets, which

are stored in different repositories, in order to build a coherent picture of circuit

behaviour and the potential problem. The utilised data sets are:

� Morning report: is the daily report generated manually by the control room

team, including the relevant UO operation activity (e.g. specific PMARs

name, component code, etc.) captured from SCADA system information.
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Figure 4.1: The manual process of analysing UO (semi-permanent fault) activity

� PSALERTS: is a data set that archives SCADA alarms which include trip-

ping information (e.g. test trips, UOs, etc.) associated with the particular

circuit details (e.g. activity log time, specific PMARs name, circuit code,

etc.).

� PROSPER: is a database that includes causal information related to re-

paired faults, which are generated manually by the maintenance staff. This

information contains the causes of faults, the fault clearing time, relative

affected equipment, such as the corresponding PMARs name.

Figure 4.1 shows the manual process currently undertaken for identifying prob-

lematic PMAR by analysing associated data types. The process contains three

stages: morning report check, PSALERTS check, and, PROSPER check.

As illustrated in the diagram, the engineer’s focus is identifying the problem-

atic PMAR through checking the frequent UOs of the relevant circuits. First,

the corresponding circuit code related to the identified UO activity is retrieved.

Then, analysis of previous frequent UOs of the same circuit (by checking records
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in PSALERTS) is conducted. This is to identify events that may proceed a re-

sultant fault which was repaired manually and recorded in PROSPER. Finally,

engineers diagnose the causes of faults related to the UOs. Through the manual

process, the analysis may provide a picture of circuit behaviour and underlying

conditions, and with the identification of problematic PMARs, maintenance staff

can undertake repairs preceding the potential outages raised from these PMARs.

However, due to the limited information provided in PROSPER, the UO

analysis performed (manually) by engineers can only identify problematic circuits

and PMAR devices without necessarily focusing on diagnosing the root causes

of PMAR operations. In order to obtain a clear view of OHLs’ conditions and

provide control engineers more accurate decision supports with diagnosing root

cause problems and predicting evolving faults, this thesis describes the design and

implementation of a DSS that the engineers use, following their manual analysis.

The DSS fully automates the existing approach to analysing and quantifying UO

activity associated with PMARs and circuits, while integrating fault diagnostics.

Furthermore, the DSS also has a predictive capability which would alert engineers

to incipient fault conditions.

This diagnostic and predictive capability is presented as a Knowledge-Based

System (KBS), with the development of a rule base which mainly makes use

of the data captured in the PMAR log files, containing the details of circuit

behaviour and PMAR’s condition. These data recorded as ‘pick-up’ activities,

including anomaly activities (which do not lead to a trip operation) and fault

events (which lead to a trip or lockout operation of the specific PMAR), i.e. the

current amplitude of pick-up activity, the affected phases, and the time stamp

of occurrence and clearance of pick-up activity, etc., previously introduced in

subsection 2.4.3. The design of DSS and implementation of the deployed KBS

will be detailed in the following section.
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4.3 The Design and Development of

Knowledge-Based Decision Support

System

This section describes the designed functionalities of the DSS which automates

the manual process and extends it with the novel analysis of PMAR log files to

support engineers’ decision-making with diagnostic and prognostic results. The

detailed architecture and activity diagrams of the DSS facilitate the development

of the deployed KBS to deliver these proposed functionalities. Additionally, this

section introduces how the designed DSS applies the knowledge based techniques

to analyse the SCADA alarm data and PMAR log data automatically, and which

RB strategy and inference engine are chosen and applied in the implementation

of KBS.

4.3.1 The Design of DSS

4.3.1.1 The Designed Functionalities of DSS

With respect to limitations and weaknesses of the manual process introduced in

earlier sections, the designed DSS not only fully automates the periodical pro-

cessing of SCADA alarm data to identify problematic PMARs, but also provides

decision support with diagnostic and prognostic analysis of the PMAR log files’

data. Figure 4.2 illustrates the proposed functionalities of the designed DSS

for supporting engineers’ decision-making, which provides emergency suggestions

(to be agreed and executed by control engineers) and recommended solutions

(combined with consideration of experts’ experience). Both decision support in-

terventions deliver the benefits for automatic distribution network protection and

operation.

By obtaining and analysing the associated data at sequential stages, the de-

signed DSS will be able to provide:

� the combined information on circuits which are affected by frequent UOs.
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Figure 4.2: The functionalities of designed DSS

In addition, the information indicates the associated PMARs related to the

identified UOs, this allows the DSS to focus on the in-depth analysis of

PMAR data.

� the diagnostic results of faults related to the PMAR device or circuit’s

condition. This information may indicate the cause of the failure of PMAR

operations due to problems of PMAR devices. It could also identify the

semi-permanent faults which lead to frequent UOs affecting the quality

of electricity supply, which may be caused by circuit degradation. For

example, the detection of permanent damage of PMAR devices or circuits

could suggest network reconfigurations to mitigate affected areas or prevent

potential outages through DA.

� the prognostic result of the potential PMAR operation in future. This

information could offer an early warning to the control room, allowing en-

gineers to take appropriate actions (e.g. dispatch maintenance staff to re-

pair/troubleshoot the weak link in the protection zone of the particular
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Figure 4.3: The overall architecture of DSS

PMAR) to prevent potential outages, so that can minimise the CML/CIs.

4.3.1.2 The Overall Architecture of DSS

In order to achieve the proposed functionalities, the DSS deploys and develops a

KBS to analyse the data for fault diagnosis and prognosis automatically. Also,

the visualisation tool was developed as part of the designed DSS to assist in

the design of the KBS, along with supporting automated data analysis. The

whole DSS system has been implemented on the Java platform [Ora14], where

the selected rule engine within the KBS will be described in the next subsection.

Figure 4.3 shows the overall architecture of the DSS, including the following main

components:

� Data importer: The key element for data interaction between the external

network data and internal database of the system. The importer can store

the new generated data into the database, and update historical data, all

the commands are operated through the developed graphical user interface.

� Database: The inner MySQL data container [Ora17] for holding the im-

ported network data. The data will be pre-processed and classified into

various categories for further data analysis.

� Visualisation tool: it allows the users to clearly view the graphical infor-
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mation of the circuit’s conditions (i.e. fault summary over a period, etc.),

this tool also facilitates the tasks of identifying semi-permanent faults for

automatic fault diagnosis. Meanwhile, the visualisation tool is used to as-

sist the development of the rule-base for implementing the KBS. Examples

of the utilisation of the visualisation tool for automated data analysis will

be presented in the case studies of fault diagnosis and prognosis in Chapter

5 and 6.

� KBS: Responsible for performing the automatic fault diagnosis and prog-

nosis by checking the detected conditions against the diagnostic and prog-

nostic rules generated from experts’ knowledge, data mining and clustering

techniques. By capturing and processing the useful information from the

database, the KBS sends the automated analysis results to the visualisation

tool for further identification of semi-permanent faults or directly provides

the diagnostic and prognostic results to the engineers via the user interface.

� Graphical User Interface (GUI): Allows the information exchange between

the user and the DSS. As illustrated in Figure 4.3, the users control all other

elements of the DSS through the functional block of GUI. For example, the

users can ask the GUI to present some particular PMAR’s information

through utilising the visualisation tool by calling the associated data from

the internal database.

With respect to Figure 4.3, the performance of the DSS is based on the suc-

cessful implementation of the visualisation tool and the KBS. When the PMAR

log is imported or updated in the database, the KBS will automatically invoke

the rule-base to diagnose PMAR device faults and detect semi-permanent faults

which are responsible for UOs. Simultaneously, the KBS will provide an ‘early

warning’ of a future PMAR operation in order to assist the engineers to reduce

the impact on customers before it escalates to more serious and damaging sup-

ply outages. All the analysed results will be prepared for posting to the GUI to

demonstrate based on users’ requests (e.g. view of summary of historical faults of

a particular PMAR or circuit), but some results will be given a further analysis,
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such as trend analysis of semi-permanent faults to support engineers’ decision-

making.

4.3.1.3 The Activity Diagram of DSS

Figure 4.4 displays the activity diagram of the DSS which describes the functional

details of the designed KBS and visualisation tools. The automatic analysis for

fault diagnosis and prognosis is based on the identification of problematic PMARs,

which continues the work from the automated manual process.

As illustrated in the diagram, the visualisation stage focuses on analysing the

details of PMAR’s log data (examples shown in Appendix A) after they have

been imported into the system. It will automatically infer useful information so

as to allow the users to visualise it. This information includes the trips summary,

pick-up distributions, and details with selected time periods independently, which

offers an insight into the underlying condition of the circuit. Any specific details

(i.e. fault type, fault duration, the amplitudes of fault currents and voltage, etc.)

of pick-up activities can also be searched for in the visualisation tool. This facility

offers engineers the opportunity to find trends in the underlying circuit pick-up

activity leading to a PMAR operation, and assists engineers’ decision making for

fault diagnosis [WMS+17].

The stage of PMAR log check analysis is conducted in parallel with the vi-

sualisation stage in the automatic analysis. It contains the functionalities of

the diagnosis of PMAR device fault, the detection of the semi-permanent fault

diagnosis, and the early warning or prediction of degrading PMAR or circuit

conditions. The DSS will automatically identify PMAR device faults based on

the detection of specific warnings or messages related to different categories of

device faults, which are stored in the PMAR log file. Meanwhile, the extracted

pick-up information will be evaluated to determine the existence of the SPF,

through identifying the patterns and trends. Finally, the prognostic function in

this analysis stage will predict future PMAR operations to mitigate the customer

interruptions (which may be raised from SPFs) with matching the appropriate

predictive rules [WMS+17].
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Figure 4.4: The activity diagram of DSS
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As for the automated manual process, i.e. the first three stages of DSS au-

tomatic analysis shown in Figure 4.4, the designed functions perform what was

previously the engineers’ responsibility of identifying problematic PMAR devices.

In addition, the automated process can also provide alarms when detecting high

UO frequency of a particular circuit. The details will be described in the subsec-

tion 4.3.2.

At present, the stages of PMAR log check and visualisation are implemented

as part of the designed fully automatic DSS, which achieve the functionalities

of automatic fault diagnosis and prognosis. For the part of automated man-

ual process, the thesis is more focusing on its design, the extended work of the

development of the entire automatic system will be detailed in Chapter 7.

4.3.2 The Automated Process of Identifying Problematic

PMARs

With respect to description of the activity diagram (as shown in Figure 4.4)

of the designed DSS, this subsection introduces how the DSS automates the

manual process of engineers’ daily data analysis and prepares for automatic fault

diagnosis and prognosis. As indicated, the start of the automated process is the

input information retrieved from the daily report, and it is also the start of fully

automatic DSS analysis as well. The morning report contains the detected UO

activities with their sources (i.e. the particular PMAR device). However, some

recorded UO activities in the morning report do not directly show the names of

the affected PMAR devices, they provide component aliases which register the

UO activity on the circuit. Therefore, in order to obtain the PMAR’s name,

the automated process will check another data source, named as ‘NOJA list’,

where the PMAR name can be found through searching the component aliases.

‘NOJA’ is one of the brand names of PMAR devices, which applied by SPEN

and deployed in their distribution network.

The details of the automated process to identify the problematic PMARs

affected with frequent UOs from checking morning reports, which are expanded

88



Figure 4.5: The process of automated analysis

in the flow chart in Figure 4.5, and summarised by the following main steps:

1. The morning report provides the recorded UO activity to the DSS which is

imported through the data importer, and then the DSS checks the PMAR

information with the imported UO activity.

2. If the UO activity contains PMAR information (i.e., the name of the af-

fected PMAR), the DSS will take the PMAR’s name and circuit code (i.e.

circuit’s ID) to search the previous UO activities associated with the par-

ticular PMAR. If not, the DSS will bring the component alias to obtain the

PMAR’s name and circuit code from checking the ‘NOJA list’ database.

Then, the process will drop into the stage of PSALERTS check.
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3. When the historical UO activities are retrieved from PSALERTS database

according to the provided PMAR information, the DSS will automatically

calculate the frequency of UO activities and check the threshold to decide

whether to raise an alarm of the seriously affected PMAR with identification

of high frequency of UOs. The threshold is preset by the control engineers

using their analytic requirement.

4. If the system does not detect a high frequency of UOs with the related

PMAR, the process will directly proceed the stage of PROSPER check; if

the high frequency of UOs exists, a warning message will be generated and

provided to the users through the GUI before the PROSPER check.

5. With the provided circuit code and time stamp of the recorded UO activity,

the system searches the manually recorded fault descriptions correspond-

ing to the UOs. If the fault potentially resulted from asset deterioration

(e.g. cracked insulator, broken insulation, or broken pole, etc.), the system

considers the circuit or the relevant PMARs as affected by potential semi-

permanent faults, and reports the problematic PMARs to the engineers and

extracts the related data for further automatic analysis.

Due to the PROSPER database it always cannot provide the useful infor-

mation of causes of UOs registered by the related PMARs. As shown in Figure

4.4, after the process of PROSPER check, the DSS will automatically continue

the in-depth analysis of associated PMAR data for fault diagnosis and progno-

sis within the developed KBS. The following subsection discusses the design and

development of KBS which focuses on analysing PMAR data for automatic fault

diagnosis and prognosis.

4.3.3 The Development of RB KBS

As discussed in Chapter 3 regarding the selection of the appropriate AI techniques

for fault diagnosis and prognosis, the fault diagnosis of PMAR devices and evalua-

tion of circuits condition is primarily based on the specifications of manufacturers
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Figure 4.6: Development and implementation of KBS

and definitions of distribution network operations, which are mostly written in

the form of rules. Therefore, for the purpose of keeping consistency and flexibil-

ity of the designed DSS, the deployed KBS concentrates on utilising RB strategy

for automatic data analysis by moving ready-made rules and generating practi-

cal rules through knowledge engineering and data science techniques. Figure 4.6

sketches the overall KBS development process based on utilising data science and

expert knowledge, followed by its implementation within the DSS.

As shown in Figure 4.6, the development of the KBS is based on deriving and

defining the diagnostic and prognostic rules, which are generated through visuali-

sation and data mining of actual PMAR historical data, and is also supported by

expert knowledge and experience. In order to implement the functionality, a KBS

is used to deploy the fault analysis rule-base to process the online PMAR data.

It invokes the appropriate rules based on the input data, for both the diagnostic

and prognostic functions [WMS+17].
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4.3.3.1 RB Reasoning Strategy and Development Platform

Since the KBS adopts the RB strategy, the primary task of developing the KBS

is to choose an appropriate reasoning strategy (i.e. forward-chaining, backward-

chaining, or a combination of the two) [Lug09]. This directly affects the determi-

nations of the platform and associated RB inference engine being applied for the

development of the KBS.

Concerning the fault diagnosis and prognosis is based on the analysis of PMAR

data, the data associated with the conditions of PMAR devices or circuits are

prepared and known, the objective is to conclude the diagnostic or prognostic

results and required actions based on the provided data. This situation is nat-

urally data-driven, so the forward-chaining approach is effectively suitable for

developing the KBS. In addition, the forward-chaining strategy is also suited

to the automated manual process, which searches the relevant information with

matched conditions. As a result, the forward-chaining strategy is adopted in this

work.

There are a number of available rule inference engines which help to process

rules efficiently. Two of the most common rule engines are Drools and Java Expert

System Shell (JESS) [Red13]. This type of rule engine provides the developers

with a platform to inject and convert a set of knowledge into a sequence of rules.

The differences between these two rule engines are the different formats for writing

rules and reasoning rules. In this thesis, Drools has been selected as the platform

for implementing the automatic KBS. It provides a forward-chaining reasoning

platform which develops and manages the diagnostic and prognostic rules, with

a set of benefits described as follows:

� Easier to translate and understand rules: compared with procedural code,

Drools rules are much easier for business analysts or new developers to

understand the solutions of difficult problems. It also provides explanations

about the adopted solutions and final decision.

� High flexibility and inference efficiency: Drools separates logic and data,

this makes the management of rules easier that other inference engines,
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Drools uses Rete algorithm [For82] to provide efficient ways of matching

appropriate rule pattern to the objects (i.e. data of PMAR device’s or

circuit’s conditions).

� Reasonable performance and ease of development: the operational environ-

ment of Drools is Java, which offers good compatibility when interfacing

with any other operating systems. This prevents the developers from being

constrained by particular systems or hardware platforms when designing

the logic system. Furthermore, Drools can be easily integrated with devel-

opment tools, such as Eclipse [Ecl14] (and in future, the web based UIs).

These tools can provide ways to efficiently manage, audit, and debug the

rules to obtain quick feedback and validation.

Within Drools, the rules will be represented in the form of “when-then”, where

the “when” defines the conditions for matching the rule and the “then” indicates

the actions after firing the rule. As mentioned in the previous text, Rete algorithm

is responsible for processing the reasoning of rules, which separates the matching

algorithm into two types based on the problems’ patterns:

� One-Pattern: means the problem has a single matching path or pattern to

reach the rule execution.

� Multi-Patterns: is where the problem has multiple pattern matches, that

means when a list of conditions are fulfilled in the rule, the algorithm will

then give the execution.

Figure 4.7 shows the structure of a Drools rule, where the type of problem

is multi-patterns. Within the rule, ‘attributes’ are also defined to control the

rule execution before the Rete algorithm tries to match the object with the listed

conditions. The Drools rules are written in simple text-based files, which can be

easily accessed and updated.
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Figure 4.7: The structure of a Drools rule

4.3.3.2 The Structure of KBS

The inference engine acts as a key part of designing the KBS, Figure 4.8 illus-

trates the overall structure of the KBS, including the inference engine, production

memory and working memory. The production memory is used to store the diag-

nostic and prognostic rules and to perform data analysis. The working memory

is used to store the input data (i.e. the facts required to be reasoned) for tempo-

rary inference. In this thesis, the rule base contains the rules for automatic fault

diagnosis and prognosis, and depending on the different functions, these rules

are stored separately in the dedicated rule package. This can ensure only the

associated rules will be invoked without being erroneously affected by irrelevant

rules when the inference engine performs a reasoning task.

At the centre of the structure is the Drools inference engine, which contains

the pattern matcher and the agenda. The function of pattern matcher is to match

the facts from working memory to the relevant rules in the production memory

based on the defined conditions. When all the conditions are matched within

a particular rule, the conclusion of the rule will be executed. If multiple rules

are matched simultaneously, the agenda will determine the priority of executing

the rules to prevent the conflicts between rules, this process can be achieved by

defining the salience values in the attributes of rules [Red13].

In order to achieve the function of data interaction between the production

memory and the working memory with the inference engine, two elements called

rule selector and knowledge session are used in the data processing of KBS. When
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Figure 4.8: The structure of KBS

the KBS is performing a reasoning task of fault diagnosis and prognosis, the

rule selector will retrieve the correct rule files based on provided case-specific

information. For instance, when the KBS needs to analyse the data for diagnosing

PMAR device faults, the rule selector is required to consider the information to

choose the appropriate rules by validating the PMAR’s name, condition, available

recorded messages, etc. After capturing the right rules, the KBS will create a

new knowledge session, which obtains the relevant facts (i.e. PMAR data) and

combines them with the selected rule to interact with the inference engine for

reasoning. Such processing in the Drool engine allows multiple simultaneous tasks

by creating different knowledge sessions. That means that the KBS could analyse

the data from multiple PMARs at the same time. Although the KBS performs

different knowledge sessions at the same time, each of the sessions are independent

without affecting the others. Figure 4.9 demonstrates the relationship between

the knowledge session and the inference engine when KBS is performing a task.

4.3.3.3 Reasoning Process of Fault Diagnosis and Prognosis

With respect to the descriptions of the structure of KBS and its internal in-

ference engine and data interaction, Figure 4.10 shows the reasoning process of

fault diagnosis and prognosis of the KBS which follows the automated process of

identifying the problematic PMAR devices. The main processing steps are:

1. The information of the identified problematic PMAR devices will be in-

serted into the KBS, to select the related PMAR log files for starting the

automatic fault diagnosis and prognosis.
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Figure 4.9: Data interaction with knowledge session and rule selector

2. The PMAR log data (contains recorded circuit behaviour and device’s con-

dition), the case-specific information, and the associated rule files are cap-

tured by the rule selector for creating a new knowledge session for data

analysis.

3. A knowledge session is created by the KBS, which interacts with the infer-

ence engine for diagnostic and prognostic tasks.

4. The inference engine will process the imported data and match it with the

associated rules based on the requirement of the automatic data analysis.

These rules are divided into: sections of diagnosis of PMAR device fault,

identification of a semi-permanent fault, and the prediction of potential

PMAR operations.

5. The diagnostic and prognostic results will be fed into the GUI for assist-

ing engineers in the decision-making process, and some of them will be

transferred to the visualisation tool for further analysis.
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Figure 4.10: The process of KBS for fault diagnosis and prognosis
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4.4 Conclusion

This chapter detailed the design of a novel DSS for automatic fault diagnosis

and prognosis by developing a KBS analysing PMAR data. This system converts

the daily manual analysis of SCADA alarm data into an automated process,

and continues to diagnose the underlying PMAR devices’ and circuits’ conditions

with related auto-recloser data. This application of data analytics is supported

by the implementation of a KBS to achieve reactive fault management and post-

fault investigations into anomalous network behaviour. Meanwhile, the DSS also

supports predictive capabilities that identify when potential network faults are

evolving and offers the opportunity to take action in advance in order to mitigate

potential outages.

For the development of the KBS, this work applied the RB strategy to di-

agnose the nature of a circuit’s or PMAR device’s fault activity and highlights

indications of problematic events that might gradually evolve into a full-scale

circuit fault. These processes will be achieved by invoking the rules for: diag-

nosing PMAR device fault, detection of semi-permanent faults, and prediction of

potential PMAR operation. All the data analysis steps which are integrated with

identifying the problematic PMAR devices will be automated. In this chapter,

the KBS was introduced with its design and development. The implementation

of the KBS will be detailed in Chapter 5 and 6 with generating the diagnostic and

prognostic rules from expert knowledge, data mining, and clustering techniques.

Each of the chapters will demonstrate case studies for validating the functionali-

ties of automatic fault diagnosis and prognosis designed in the KB DSS.
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Chapter 5

Automatic Fault Diagnosis

Functionality with Case Studies

5.1 Introduction

As described in Chapter 4, this thesis introduced the design of the decision sup-

port system to assist engineers’ data analysis and management of distribution

network operations and control. The developed DSS deploys a KBS to achieve

the proposed diagnostic and prognostic functionalities, which utilises the RB

strategy to process the automatic analysis. In this chapter, the implementation

of the fault diagnostic aspect of the KBS is presented along with details of the

development of the associated rules. These are demonstrated and consolidated

with appropriate case studies.

This chapter begins with an introduction of what knowledge is considered for

PMAR device fault diagnosis and identification of semi-permanent faults and how

the knowledge is used for generating diagnostic rules. Then, the implementation

of fault analysis rules is partitioned into two parts which are based on the two most

important diagnostic functionalities. In order to demonstrate the performance of

the developed rules, the thesis will briefly introduce the prototype of the designed

DSS before utilising the integrated visualisation tool and GUI to illustrate the

mechanism of the fault diagnostic rules through case studies.
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5.2 Knowledge for Fault Diagnosis

As highlighted in the previous chapter, the knowledge-based system serves as

the most suitable technique to solve the problems confronted in this work, which

possess a number of advantages. The main advantage of applying a KBS is the

diagnosis of the PMAR device faults and monitoring of the circuit behaviours

can be directly supported by utilising expert knowledge and network operation

policies including fault or abnormal event explanation and justification. For the

purpose of extracting diagnostic information and transforming relevant knowledge

to develop the rule base for implementing the KBS, the knowledge engineering (in-

volving knowledge elicitation, interpretation, validation and utilisation) [SBF11]

becomes the most important processing stage in developing a comprehensive di-

agnostic rule base. The details of each processing step of knowledge engineering

and related tools can be found in [SWH94, SAA+00]. This section will introduce

the types of knowledge aggregated and the subsequent forms of elicitation which

are required to develop a rule base for automatic fault diagnosis.

Concerning the definition of knowledge described in section 3.4, the knowledge

can be simply divided into explicit knowledge and tacit knowledge. The explicit

knowledge can be easily defined and understood, but tacit knowledge is obtained

by domain experts through the persistent application and learned practical expe-

rience to obtain proficiency within a subject area and can be difficult to quantify.

For instance, the knowledge about driving a car is gained through personal train-

ing rather than reading the handbook. In this research, both of these two types of

knowledge are adopted for the knowledge elicitation from the experts to construct

the KBS. Following the elicitation, the processing of knowledge interpretation,

validation and utilisation will be presented in the next sections.

Generally speaking, the knowledge used for designing and developing the di-

agnostic rule base mainly consists of domain experts’ understanding and experi-

ence, system equipment’ settings and network operation policies. Furthermore,

the appropriate knowledge was gathered through regular interviews and dialogue

between the experts in the field of distribution network operation and protection
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(who work with the) the DA devices, i.e. PMARs) and the researcher. Each

interview is scheduled by an agenda meeting involved with a presentation part

and a discussion part to record current research and future work. Throughout

these meetings, valuable information and understanding of domain knowledge

was captured and utilised to build the rule-base for automatic fault diagnosis.

The overall process of knowledge translation and management is shown in Figure

5.1.

As demonstrated in the figure, The knowledge translation for fault diagno-

sis (i.e. knowledge elicitation and knowledge interpretation) is on the basis of

generic knowledge, experts’ understanding and experience when evaluating cir-

cuit behaviours and asset conditions in the distribution network. The generic

knowledge includes settings and network policies. Here, the settings specifically

refer to the preferences of the deployed PMARs, which satisfy the requirements

of network operation and protection as the priority. The PMARs’ settings can be

adjusted by the engineers to offer more flexibility to control the devices in the DA

schemes as well. For example, the control engineers can determine the appropri-

ate frequency of data transportation between the PMARs and the SCADA system

hubs to ensure the control centre captures applicable data for power system anal-

ysis. For the network operation policies, these are a set of official documents

which define the regulations for reliable and stable electricity service relating to

how the protective PMARs should be configured, and specify the criteria that the

equipment’ settings must conform to. For example, in areas with poor weather

conditions, it accelerates the deterioration of installed devices which can result

in more frequent transient faults or longer duration of individual transient fault

on the overhead lines. In order to prevent long-term outages occurring after the

lockouts are tripped by the PMARs, the number of auto-reclosing attempts (the

PMAR device remains open for a period of 10 seconds before attempting a re-

close) for clearing the fault can be increased from 2 to 3 before the registration

of a lockout. That means the PMAR will ‘lockout’ on its fourth attempt, which

allows another 10 seconds for the PMAR to automatically clear the fault.

To suppress this issue without the underlying requirement of equipment spe-
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Figure 5.1: Knowledge translation and management
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cific parameters and network policies, expert knowledge and experience of fault

diagnosis can be gathered and presented in various ways. The knowledge could

be either an extended definition of the network’s settings and policies, or the

summarised experience of operating and protecting the circuits. For instance,

the definitions of classifying transient, semi-permanent, permanent faults are one

type of experts’ knowledge based on the experience of analysing the circuit be-

haviours. Furthermore, no matter what types of experts’ knowledge is gathered

from engineers and translated to diagnostic rules, the knowledge should be val-

idated to ensure that it accurately reflects the experts’ understanding and ex-

perience of the previous confronted scenarios. A process for validating the rules

transformed from the facilities’ settings and network policies is also required to

guarantee the rules align with the associated expert knowledge. These valida-

tion activities can be evaluated through validation meetings with the relevant

experts to review the knowledge elicitation and translation and ensure that there

is no misinterpretation of the knowledge that is being captured. Meanwhile, tests

of the defined rules can be undertaken to determine whether the rules can be

suitable for various situations.

After the knowledge has been validated, any changes to the knowledge will

be incorporated within the rules to be utilised in the KBS. As shown in Figure

5.1, both of the setting policies and experts’ knowledge are incorporated in the

process of developing the rules, which are categorised into two separate groups

to diagnose the PMAR device faults and detect semi-permanent faults on the

circuits respectively. For identifying the PMAR device faults, each defined rule

can be operated independently to check the expected device fault, because the

fault itself has specific features. However, for identifying the semi-permanent

faults, the detection process can be segregated further into two additional stages,

including the first step to categorise the circuit behaviour based on different

PMAR operations confronting with faults, and then to evaluate the trends of

defined features to detect semi-permanent faults. Within the case studies in

Chapter 5.6, the automatic fault diagnosis will be demonstrated and subsequently

supported by visualisation tools. Examples of the rules will be provided in the
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following sections to convey how the knowledge translation and rule development

are achieved.

5.3 Diagnosis of PMAR Device Faults

PMARs act as an approved type of protective devices widely installed on the

SPEN distribution system, which provide significant protection against fault and

abnormal operating conditions. For the purpose of supplying reliable services,

the physical health of the device is one of the key factors to ensure successful

operation. Therefore, engineers need to check the status of the relevant PMAR

device regularly. However, this process can be inefficient since this would re-

quire engineers to be dispatched to the physical location of the relevant devices

where they would then check and evaluate said device before reporting back.

Although the time-consuming process could identify parts of device faults by

observing warning flash-lights corresponding to particular permanent faults and

detecting the alarm messages displayed in the PMAR’s control panel, abnormal

behaviour or operational degradation may not be detected or registered on-site

due to underlying device faults or human error. These anomalies could lead to

failure operation of the PMAR device and potentially result in permanent device

faults impacting online services in future. As a result, to adequately diagnose

the PMAR device faults for providing fast and accurate assessment reports, it is

important to automatically analyse the underlying information on the PMARs’

conditions. Fortunately, both of the indicative alarms and anomalous informa-

tion can be retrieved from the Main Processor Module (MPM) integrated with

the inside control panel.

As introduced in previous subsection 2.4.3, the MPM is the core component of

PMAR for condition monitoring, which also controls the operation of the PMAR.

The MPM records details (sampled at 12.8kHz, detailed in Appendix A) of on-

line activity (i.e. fault current and voltage amplitudes) and the condition of the

PMARs components. So, depending on the implemented rule-base, the KBS can

automatically detect them (based on the knowledge of operational engineers and
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setting policies), which characterise common known PMAR faults. The aim is

to prevent potentially delayed or failed operations in response to overhead line

faults in addition to analysing the undetected damages with PMAR’s components.

These diagnostic rules operate on the automatically imported MPM’s records

represented in the PMAR log files, detailed in subsection 2.4.3. These faults are

identified through: interpretation of alarms generated by the MPM; calculations

on interval times between the PMAR operations and status changes within the

log file. This section shows some examples of the development of diagnostic rules

for identifying PMAR device faults.

5.3.1 PMAR MPM Fault Diagnosis Rule

The MPM fault indicates the whole PMAR device is not operating as expected

and therefore defective. There are two main causes which primarily lead to the

MPM faults, i.e. the permanent damage of the integrated circuits within the

processor module and the MPM firmware version being out of date. This will

then result in device failure for an in-zone fault. The MPM fault is the only

type of the device faults that can be both identified through checking control

panel manually and invoking the rule with imported log file automatically. The

other PMAR device faults can only be diagnosed by the KBS through analysis

of the data. Although the operating engineers can check the MPM fault by

viewing the displayed multiple flashing LEDs, the indicative alarms may also fail

simultaneously because of the damage to the circuit board. Therefore, the most

reliable method is to interrogate the PMAR log files to perform a comprehensive

data analysis, which can be achieved automatically through the decision support

system.

The approach for confirming an MPM fault is to simply detect the “MPM

fault” alarms in the log file, which were generated automatically by the MPM.

However, under some special situations, such as the replacement of panel’s battery

or the upgrade of the MPM firmware version, several “MPM fault” messages could

be mistakenly generated during a short period in the log file. To prevent the KBS

from reporting false diagnostic results, the developed rule should select the ‘true’
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Figure 5.2: A typical MPM fault with fleeting fault messages

alarm messages. Generally, when an MPM fault occurs, it will last for a few

hours and the MPM will generate around 10 alarms per hour in the log file, as

shown in Figure 5.2.

Hence, based on the nature of an MPM fault and experts’ experience of con-

fronting the MPM fault issues, a critical amount (i.e. 20 consecutive alarms was

set as the threshold with domain expert’s experience) becomes the criterion of

invoking the diagnostic rule. Figure 5.3 shows the rule that determines whether

an MPM fault exists in the imported log file. The rule initially searches for each

“MPM fault” event in the log file, and if an “MPM fault” is found and it exceeds

the critical alarm count, it implies that the specific PMAR has been affected by

an MPM fault. Then, the details of this fault will be reported in the form of text

messages displayed in the designed user interface. The corresponding source code

is shown in Figure 5.4 to provide an example of the operation of Drool’s rules.
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Figure 5.3: Rule for identifying the MPM fault

Figure 5.4: The source code for identifying an MPM fault
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5.3.2 PMAR Driver Module Fault Diagnosis Rule

The driver module fault diagnosis rule is provided to interrogate the status of

the contacts and switches with the PMAR, i.e. the rule checks whether the

driver module performs as required from setting policies. The driver module

acts as an intermediary, which receives the ‘Trip/Close’ control signals from the

MPM and converts them into current pulses applied to the magnetic actuator

coil to drive the contacts into the open or closed position. It also converts the

PMAR’s auxiliary switch status into a logical position signal for use by protection

and indication elements of the MPM. Therefore, the health of the PMAR’s coil

circuit and the driver’s own readiness to execute the next ‘Trip/Close’ operation

is monitored by the driver module.

Usually, when a driver module fault occurs, it can be represented by two

modes: the PMAR failed to operate for a fault within protection zone, or the

PMAR did not complete the auto-reclosing sequence. Either fault will generate

warning events and therefore be logged by the MPM into the log file. These

recorded warning messages include “Driver not ready”, “OSM coil SC”, “OSM

coil isolated”, “Excessive To”, and “Excessive Tc”. Each of them indicates a

driver module fault with particular possible cause. The “Driver not ready” sig-

nal indicates the driver cannot execute the next control operation (‘Trip/Close’)

because the capacitors of the driver are not sufficiently charged. The “OSM coil

SC” or “OSM coil isolated” signals the potential damage of the coil resulting in

the problems with driver’s operations. The “Excessive To” (i.e. contact opening

time exceeds setting time) and “Excessive Tc” (i.e. contact closing time exceeds

setting time) means the driver does not complete the auto-reclosing sequence in

the set duty cycle. So, the rule in the KBS to check a driver module fault is based

on the detection of specific alarms, as shown in Figure 5.5.

5.3.3 PMAR Tank Fault Diagnosis Rule

The PMAR tank fault diagnosis rule is responsible for identifying whether an

issue with the tank will lead to anomalous or failure operation of the PMAR. In
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Figure 5.5: Rule for identifying the driver module fault

general, a tank is constructed from stainless steel with a rated long lifetime under

normal circumstances. Unlike other parts of the PMAR, the tank is significantly

more robust to environmental conditions and potential damage from livestock. If

a common tank fault is detected, it is usually permanent damage, which may be

a result of deterioration due to ageing, or bad weather (e.g. lightning strikes).

Under these expected fault scenarios, the conclusion is to suggested a change of

tank.

With a tank fault, the magnetic actuator will not apply the parallel connected

auxiliary switches to the default positions of the mechanism correctly. This means

that the recommended values for the open and close operations can be unsuitable.

The MPM will repeatedly generate “Open/Closed UNDEFINED” events with

unrealistic time scales (for the realistic time scale, the time duration of changing

status from ‘Open’ to ‘Closed’ should be slightly larger than 10 seconds) into

the log file, which is shown in Figure 5.6. Depending on the typical cases of

tank faults, a threshold is set by the engineers to judge the amount of repeat

logged events for determining the existence of a tank fault, and this is visualised

alongside the diagnostic rule in Figure 5.7.
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Figure 5.6: A typical tank fault with repeat undefined events

Figure 5.7: Rule for identifying the tank fault

110



5.3.4 PMAR Microswitch Fault Diagnosis Rule

The PMAR reports its position status to the auto-recloser control cubicle using

microswitches. Their status is opposite to the main contacts and can be checked

on the control panel. So if the PMAR is open, the microswitch is closed. On

the contrary, when the auto-recloser is closed, the status of microswitch should

be open. Therefore, the microswitch fault diagnosis rule contains the knowledge

that defines the criteria to determine whether a fault incorrectly reflects the main

contacts’ position status. Under normal conditions, when the MPM signals the

driver module to execute an action (Trip/Close), the contact needs a reaction

time, and the reaction time should be within a pre-determined time range. If the

time duration between the contact receives the signal and auto-recloser status

changes exceeds the default time range, then a microswitch fault is indicated.

The PMAR product manual states that contact closing time (i.e. the duration

from signal ‘Close’ to status position of ‘Closed’) exceeding 100ms or contact

opening time (i.e. the duration from signal ‘Trip’ to status position of ‘Open’)

exceeding 60ms can be treated as excessive operating times. Furthermore, the

time out status is indicative of a microswitch fault.

Figure 5.8 shows an example of correct PMAR operation without an indication

of a microswitch fault. The highlighted correct times is the standard duration

between the open and close operations (i.e. 10 seconds between open and close

operations is a function of the protection system set by the network policies).

In Figure 5.9, an example of an auto-reclosing sequence from a PMAR with a

suspected microswitch issue is presented. The sequence is incomplete because

the time difference between open and close operations is too small and the auto-

recloser, recognising the abnormal condition, locks into open position.

Meanwhile, if the time between ‘Trip’ signal and status ‘Open’ indication is

less than 25ms and time between ‘Close’ signal and status ‘Closed’ indication

is less than 40ms, this can also suggest the microswitch may be faulty. Hence,

the KBS identifies this fault by comparing the actual time periods of status

changes with primary settings through automatic time stamp calculations; the
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Figure 5.8: A typical correct PMAR operation without a microswitch fault

Figure 5.9: A typical PMAR operation with a suspected microswitch fault

corresponding rule is shown in Figure 5.10.

5.3.5 PMAR Umbilical Cable Fault Diagnosis Rule

The umbilical cable (i.e. control cable) has a male and female connector, the

female connector fits into the recloser control cubicle, and the male connector

fits into the base of the recloser. All the log data and signals are transmitted

through the umbilical cable to ensure the correct PMAR operation and control.

Therefore, the condition monitoring of an umbilical cable is critical in the health

check of PMAR’s components. By detecting the damage of the umbilical cable,

it could prevent potential significant issues on operations of the PMAR in future.

Due to the umbilical cable always being exposed to the natural environment in

addition to the plastic shielding of the cable, it often suffers deterioration. In

most cases, the ageing umbilical cable will suffer from water ingress, and if this

occurs the umbilical cable should be replaced.

The umbilical cable fault diagnosis rule for identifying the fault is to examine

the log file with specific fleeting alarms. The registered alarms are marked with

“Pickup” event from the source of “Uabc>”, where the “Uabc>” indicates the

maximum voltage is activated on the three-phases (i.e. A, B and C terminals),

that is caused by the water ingress. Figure 5.11 shows the fleeting alarms caused

by water ingress to the umbilical cable retrieved from a typical log file. For

developing the diagnostic rule, the knowledge sets an invoking threshold (was set
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Figure 5.10: Rule for identifying the microswitch fault

with consideration of domain expert’s experience) based on the characteristics of

an umbilical cable fault, which is displayed in Figure 5.12.

5.4 Diagnosis of OHL Distribution Circuit

Degradation - Detection of

Semi-Permanent Fault

As presented in section 5.3, the first stage of automated decision support system

focuses on PMAR device fault diagnostics. In this section, the KB DSS concen-

trates on the diagnosis of overhead line faults. As discussed previously, depending

on the performances and reactions of PMARs, the overhead line faults can be di-

vided into three categories: transient faults, semi-permanent faults (SPFs) and

permanent faults. Among these types of faults, the SPF is the most difficult type

to detect and confirm, but also the most valuable type to identify for increasing

the reliability and security of the power system because successful detection of

this type of faults will allow preventive actions to be performed to avoid irrepara-

ble damage. Therefore, the detection of the SPF will be the key focus of the work

of the diagnosis of overhead line faults.

For detecting the SPF, the designed system breaks down the process into two
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Figure 5.11: The log file shows fleeting alarms caused by water ingress to the umbilical
cable

Figure 5.12: Rule for identifying the umbilical cable fault
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coherent stages to strip out the SPFs from thousands of fault events recorded in

the log files, based on the automatic data analysis and experts’ decisions. The

two processing steps: classification of PMAR operations and evaluation of be-

havioural trends for SPF detection, which are briefly introduced in the section of

knowledge translation and management. As a SPF manifests itself through spo-

radic periods of intense PMAR operation on a circuit, it is therefore necessary to

first classify the circuit behaviour into different classifications of PMAR opera-

tion. The first stage (as shown in Figure 4.4)is data acquisition where we capture

the events within the PMAR log files, and then, the next step is to filter the

activity consistent with SPFs. The suspicious SPF activities will be considered

through trend evaluation to confirm the existence of SPFs [WMS+17].

To assist the detection of potential SPFs, a further rule-base was developed to

automatically classify the PMAR operations being experienced. The rules were

developed using expert knowledge from engineers and knowledge of the PMARs

operating mechanism. Details of a PMAR operating mechanism can be found

in section 2.4.3. Following the classification, a visualisation tool built within the

decision support system is used to allow engineers to observe the results and al-

lows them to determine potential SPF activities through identifying data trends

and patterns associated with PMAR operations. In addition, data can also be

visualised to substantiate the diagnosis of invoked rules. The following subsec-

tions describe how the diagnostic rules are generated and the trends evaluated to

detect SPFs. The visualisation tools are described in the following section 5.5.

5.4.1 Classification of PMAR Operations

As described previously in subsection 4.2.2, the PMAR operations depend on the

fault current amplitude and its duration, which is recorded as ‘pick-up’ activity in

the PMAR log file [WSKM14]. When the MPM registers a pick-up activity due to

excessive current amplitude, a trip signal to open the contact of the auto-recloser

will be considered. If the pick-up has a very small duration, the PMAR will not

take any actions; but if the anomaly lives over the time threshold of executing a

trip, the PMAR will provide one or several reclosure attempts (the number is set

115



by the operator to the specific network) to clear the fault. However, if the fault

remains on the overhead line after all default reclosure attempts, a ‘lockout’ will

be triggered to protect the circuit from damage, where the lockout permanently

opens the faulty area, and can only be reclosed manually or via telecontrol by

the operational engineers.

Based on the fundamental knowledge of PMAR operations, using the log

file pick-up data recorded during the operation of PMARs under different fault

conditions, a set of specific rules are defined to classify the PMAR operations into

different classifications for grouping the anomalous activities consistent with SPF

candidates. These rules are based on the experts’ understanding and experience

of how these faults are likely to manifest themselves in these data sets. Therefore,

the rules divide the fault pick-up activities into four classifications: resulting in

no trip (FP); single trip (ST); multiple trip (MT); and, lockout (L). Figure 5.13

shows the rules for classifying PMAR operations (i.e. FP, ST, MT and L) in

order of increasing severity.

As displayed in the figure, the rules group pick-up activity into different classi-

fications of PMAR operation depending on the pick-up duration and the number

of corresponding PMAR operations. Using these rules, the DSS can then identify,

map out and prioritise potential SPF activity on circuits which have experienced

pick-up activity exceeding acceptable time limits. For example, the protection

zone of a specific PMAR is always affected by frequent ST activities, and this in-

dicates the high frequency of transient faults may be resulting from the existence

of a SPF on the circuit.

From this prioritised mapping of potential SPF activity across the network,

experts can further analyse the data using the visualisation tool for a deeper study

of the pick-up data. This allows them to discern the details of PMAR operation

against phases affected, evidence of earth faults and more. The process of invoking

relevant rules is implemented within the KBS and fed into the visualisation tools

for further analysis. The following subsection show trends of interest identified

using the visualisations.

116



Figure 5.13: Rule for classification of PMAR operation
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5.4.2 Evaluation of Behavioural Trends for SPF

Detection

Following the classification of PMAR operation, the fault pick-up activities are

divided into four groups based on their performance on the circuits where the rep-

resentative trends are analysed, providing an insight into potential SPFs. More-

over, the statistical evaluation of pick-up activities associated with these PMAR

operations could substantiate the existence of potential SPFs. The trends could

directly reflect the evolving conditions associated with this form of fault. Such

as, when a high number of ST activities are detected after classifying the PMAR

operations, the evaluation of frequency distribution could indicate the faulty con-

ditions on account of a SPF. If those ST activities affect the same phase on the

line with an increasing trend, this suggests the existence of a potential SPF.

In this research work, four statistical trends are defined and taken to evaluate

the circuit behaviours for SPF detection, deduced after interviewing engineers and

capturing their expert knowledge and experience. These four statistical trends

respectively focus on assessing the frequency of grouped pick-up activities and

the time stamp of individual pick-up activity in the group. They are [WMS+17]:

� Cumulative Frequency Distribution (CFD): displayed as an increasing line

which sums the distributed frequency of classified pick-up activities to

demonstrate the trend of growth. If the increasing rates keep roughly the

same values for each distribution period, that means the circuit is under

the acceptable conditions with natural numbers of faults. However, if the

rate has an increasing value, this indicates an outbreak of pick-up activities

in a particular period due to some specific reason.

� Frequency Distribution (FD): corresponding with the CFD, this details the

frequency of classified pick-up activities in each period, and clearly shows

the high number of activities of the particular periods related to the in-

creasing value of rate in the CFD.

� Duration Time (DT): describes the time interval between the event regis-
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tration and the end of each associated pick-up activity. This reflects the

duration of a fault activity in the classified PMAR operations.

� Interval Time (IT): describes the time interval between consecutive pick-up

activities. When the IT becomes shorter, that means the classified PMAR

operations affecting the circuit occur more frequently. This provides the

trend of occurrence for each pick-up rather than the frequency trend in the

CFD.

Figure 5.14 shows an example of the trends of the four defined statistical

features with considering the FP PMAR operation after the classification in the

first stage (as detailed in Figure 5.13). These support engineers in determining

whether a SPF exists on the circuit. These trends and statistical features are

applied to other classifications of PMAR operation (i.e. ST, MT and L) as well.

With respect to Figure 5.14, the DSS will calculate and demonstrate the

frequency of a number of FP operations for a specific PMAR. Where there is an

increasing rate in the CFD (as shown in Figure 5.14(a)), this suggests the FP

operations resulted from faults becoming more frequent and the corresponding FD

(as shown in Figure 5.14(b)) exceeds the average number of PMAR operations.

The high number of FP operations during the same time period also indicates an

evolving fault on the circuit (i.e. a SPF). To confirm the existence of the SPF, the

system extracts the DT of each associated pick-up activity and determines the IT

between consecutive pick-ups through calculation. Trends showing an increase

in DT and a decrease in IT (as illustrated in Figure 5.14(c) and (d)) suggest the

condition the circuit is worsening. This may also be indicative of the stage of

maturity of the semi-permanent fault which results in an impending permanent

circuit fault. Using the visualisation tool, the users obtain a perspective on the

evolution of faults and can make informed and faster decisions regarding the

existence of SPFs within the network.

119



Figure 5.14: Trends of statistical features
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5.5 The DSS Prototype

To efficiently interact with the DSS for automatic fault diagnosis and prognosis,

and visualise the information and result of data analysis, a graphical user interface

was designed to provide a staged diagnosis to the experts, and the engineers. The

visualisation tool is one part of the DSS prototype to support decision making and

assist users to observe information ‘of interest’. The DSS prototype is included in

the case studies (both fault diagnosis and prognosis) in the following sections to

display the automatic fault diagnosis and prognosis process. The current version

of DSS prototype has the following main components and features:

� A file importer which is capable of automatically importing all of the rele-

vant network data (i.e. PMAR log file, PSALERTS data, PROSPER data,

and NOJA list) into the MySQL database integrated with the system. The

manipulated data will be stored or updated based on previous records and

current analytic requirement.

� An analysis tool contains the designed fault diagnostic and prognostic func-

tionalities automatically processing and analysing the data and returning

the corresponding results to the users. The current version of the tool allows

the off-line fault analysis after importing the related network data.

� A visualisation tool is capable of providing fault information of circuit be-

haviour with automatic data pre-processing. The current version of the

visualisation tool extracts the trips and anomalous pick-up activities of a

particular PMAR for a summarised or detailed view, and developed func-

tions included in the tool are based on the requirements discussed with

network experts.

Figure 5.15 shows the main user interface of the DSS, which divides the de-

scribed functionalities into three sections. At the top of GUI, it is the primary

section of analysis tool. On the left-hand side are functionalities relating to fault

diagnosis and on the right for fault prognosis, which will be introduced in the
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next chapter. For the area of fault diagnosis, the first button is to automate

the manual process to check the frequent short-term supply interruptions with

diagnosing the potential causes recorded by maintenance staff and identify the

affected PMARs. The function of the middle two buttons is to detect the SPF by

classifying PMAR operations and evaluating the behavioural trends individually.

The last button aims to diagnose the PMAR device faults. At the bottom of

the panel is the file importer to update the relevant databases with independent

functional buttons.

For the section of visualisation tool, the trip and pick-up information will be

automatically pre-processed by the DSS and provided for observation based on

the historical data stored in the database. That is to say, the users can view

information of different PMAR at the same time depending on their interests.

For example, the users can search for a particular event by viewing its time

stamp, affected phases, or the time duration and current amplitude of related

pick-up activity. If the PMAR data does not exist in the container or requires

an update, the user should import the appropriate data for visualisation. To

display the circuit behaviour from different representations, the trip and pick-up

information can be viewed in various forms, such as the trips can be visualised

using either a concise summary, a full distribution, or the pick-up activities that

can be subsequently categorised with particular emphasis on the affected phases.

Figure 5.16 demonstrates the application of the visualisation tool using data from

a specific PMAR (the ID of PMAR has been hidden with consideration of network

operator’s privacy. This situation was applied to the case studies of fault diagnosis

as well) over a time period of four years, which illustrates the trips,concentrating

on fault types and invoked phases respectively in the pie charts.

Such graphical functions, although not critical to the research work or the core

functionalities of the fault diagnosis and prognosis, provide an intuitive method to

assist users in perceiving the fault severity and analysing the circuit condition. As

already mentioned in the analysis tool, the fault diagnosis and prognosis functions

are the main elements responsible for the automatic decision support, and they

are demonstrated using examples in the next sections.
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Figure 5.15: The main GUI of DSS with fault diagnosis and prognosis
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Figure 5.16: The visualisation tool to view the trip summary of a specific PMAR
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5.6 Case Studies

To effectively demonstrate the working of developed fault diagnosis functionali-

ties within the DSS, the appropriate PMARs affected by relevant faults should

be chosen in advance. This case study is based around PMARs which exhib-

ited frequent supply interruptions, detected by checking the alarm message of

unsolicited openings from the morning report and identifying the previous UO

records in the PSALERTS database. These frequent undiagnosed events could

be the result of PMAR components and the degradation of overhead lines. The

related PMAR log files were then imported into the system for further automatic

analysis through the file importer. The following case studies demonstrate the

automatic fault diagnosis.

5.6.1 Case Study Part 1: PMAR Device Fault Diagnosis

To test the diagnostic rules, 12 original PMAR log files were used. After importing

the PMAR log files into the DSS, the knowledge-based system will automatically

identify PMAR device faults and generate a report through the DSS user interface

by clicking the corresponding function button. The diagnostic report contains the

identified fault with a short explanation of the fault cause. For the 12 PMAR

log files, all the rules described in section 5.3 have been invoked. Some PMARs

were even identified with multiple different PMAR device faults, as various fault

conditions matched the diagnostic rules independently. The log data to invoke

the rules and the diagnostic results are shown in Appendix A. The remainder

of this subsection demonstrates one example of PMAR device fault diagnosis,

For this particular PMAR, the report indicates: Microswitch fault with the

detection of an unexpected accelerated contact time , the dialogue box is

shown in Figure 5.17.

In order to validate this result of automated diagnosis, the original PMAR

log file is analysed manually. From the data analysis, an unexpected accelerated

contact time is calculated based on the time interval between the action signal

and status change being less than the initial setting. Figure 5.10 shows the
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Figure 5.17: Identification of microswitch fault

Figure 5.18: Validation for microswitch fault diagnosis

diagnostic rule and Figure 5.18 shows the data that activates it. In the figure,

the time durations from signal ‘Trip’/‘Close’ to status ‘Open’/‘Closed’ are 16ms

and 29ms respectively, both of them are less than the initial settings and result in

the diagnosis. This microswitch fault could lead to additional PMAR operations,

contributing to the number of short-term outages. This manual validation has

been undertaken for all of the case studies in the Appendix.

This case study has shown that PMAR device faults can be identified based

on the rules translated from the setting policies and experts knowledge.

5.6.2 Case Study Part 2: Semi-Permanent Fault

Detection

By utilising PMAR device fault diagnosis to target the potential issues related to

the frequent short-term outages detected from the morning report and historical

PSALERTS database, it is usually impracticable to identify underlying anoma-

lous circuit activity and explore the essence of problematic events, due to the

volumes of data and limited information provided. This is not just because some
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Figure 5.19: Classification of PMAR operation

types of device faults do not have direct relationships with failure of PMAR oper-

ation or circuit supply interruptions (e.g. the MPM fault with a software issue),

more importantly, the PMAR device forms a singular part of the distribution

network and its fault cannot represent the whole circuit behaviour. Therefore, to

diagnose the nature of a circuit’s fault activity, as well as the KBS automatically

identifying the microswitch fault, the analysis tool within the DSS provides the

control engineers with detailed information on semi-permanent fault detection

through automatic data analysis and visualisation functionalities.

To consistent with the previously described analysis stages of SPF detection,

Figure 5.19 illustrates the classification of PMAR operation (i.e. first step of

detecting SPFs) after automatic processing with the imported specific PMAR log

file. By invoking the classification rules in Figure 5.13, there are 41 FP activities

and 25 ST activities, with only two MT activities and four L activities. That

means in the protection zone of the specific PMAR, almost all fault activities are

identified as transient faults which disappeared themselves or cleared by PMAR

operations. These transient faults therefore contributed the frequent short-term

supply interruptions which could have originated from the existence of SPFs.

In order to view the detail of coordinated transient fault activities and pre-

pare for the further analysis of the trend at the second stage of SPF detection,
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Figure 5.20: Distribution of PMAR operation

Figure 5.20 shows the distribution of these classified PMAR operations based

on the affected phases of each independent fault activity. Concerning the figure,

the different fault phases are listed with numbers and classifications of PMAR

operation, marked by distinct colours (i.e. green, yellow, amber and red respec-

tively represents the classification of FP, ST, MT and L activities). Obviously,

the Earth Fault and Sensitive Earth Fault (EF/SEF) is the most frequent of the

eight categories of fault detected in this particular PMAR, which covers all of the

fault scenarios (i.e. the different classification of PMAR operation). Among the

EF/SEF fault events, there are 31 FP activities and 12 ST activities. These indi-

cate that frequent short-term fault activities could be caused by a semi-permanent

fault and lead to a permanent fault. The potential reason of the EF/SEF could

be flashovers occur on the polluted insulator, this leads to the insulation layer

is punctured, and the weak point grounds earth through the arc. Therefore, the

flashover of insulators will result in semi-permanent faults.

To confirm the existence of SPFs, the behavioural trends of the EF/SEF

activities can be evaluated to assist the decision makings. At the bottom of the

128



Figure 5.21: Distribution of PMAR operation

frame in Figure 5.20, the control engineers can expand the details of the key

features (i.e. CFD, FD, DT, IT, described previously) describing the selected

fault type. Figure 5.21 gives the detailed information of EF/SEF’s FD and CFD.

With the frequency distribution shown in Figure 5.21, the EF/SEF fault al-

ways disappear without any PMAR operation or is cleared by a single attempted

reclosure (represented by the green and yellow colours) resulting in the number

of FP activities increasing during the same time period. Though the FP fault

scenario does not lead to any PMAR operations, the growing number (especially

the last distributed period (i.e. 4th quarter in 2011) in the demonstrated win-

dow) indicates increasing severity of this fault condition. This may result in more

supply interruptions or a long-term outage in the future. Furthermore, the cumu-

lative distribution reflects an increasing rate of EF/SEF occurrences. According

to these analyses, the engineers could conclude that the EF/SEF fault events

could be caused by the existence of a semi-permanent fault.

In this part, the presented case study is an example of detecting the SPF based

on the appearance of frequent transient EF/SEF faults either resulting in short-

term supply interruptions or otherwise. This highlights how the DSS processes

the detection with the implemented functionalities of automatic classification

and behavioural trend evaluation. To assist the engineers to make decisions on

the analysis results after automatically invoking diagnostic rules, the integrated

visualisation function, as part of the visualisation tool enhanced the confirmation

of the existence of SPFs.
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5.7 Conclusion

Automatic diagnosis of PMAR device faults and detection of semi-permanent

faults is a challenging task, and uses the unsolicited opening records in the morn-

ing reports and available relevant PMAR log files. In this chapter, it has been

demonstrated how such challenges can be overcome by the decision support sys-

tem that has been developed in this research using a knowledge-based technique.

The knowledge that has been utilised for constructing the rule base of the KBS

has been also introduced. In this chapter, the two main fault diagnosis function-

alities are implemented by deploying the KBS through generating the appropriate

rule-bases, based on the knowledge translation from experts’ knowledge and ex-

perience, in addition to protection and device setting policies.

The functionalities and the associated benefits offered by the DSS have been

demonstrated through two illustrative and realistic case studies (i.e. PMAR de-

vice fault diagnosis and semi-permanent fault detection), based on the developed

visualisation tools, as part of the design of the system. Although the two case

studies do not demonstrate the entire functions of the DSS within its prototype,

they allow the review of the whole process of the described fault diagnosis func-

tionalities, providing positive results after automated analysis. This proves the

designed KB DSS with the implemented rule-bases is effective in diagnosing the

underlying conditions of PMAR devices and circuits, offering a satisfactory and

flexible solution for the decision support tasks.
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Chapter 6

Automatic Fault Prognosis

Functionality with Case Studies

6.1 Introduction

With respect to the designed DSS that assist engineers in recognising PMAR

condition and circuit behaviour, Chapter 5 described the fault diagnostic func-

tionalities of identifying the PMAR device faults and detecting potential semi-

permanent faults present on the overhead lines. These were responsible for the

circuit’s unsolicited openings. In addition to this functionality, this chapter de-

tails the research conducted into developing a prognostic capability which can

predict potential PMAR operations (or evolution of SPFs into permanent faults).

It grades the circuits’ pick-up activity in terms of the imminence of such a threat.

This would enable maintenance staff to take evasive action and potentially avoid

expensive and prolonged outages which are required to repair damage from per-

manent faults.

This chapter describes the processes of how to use the PMAR data to generate

the predictive rules to provide the ‘early-warning’ of PMAR operations, following

the general path of data science technologies (e.g. data mining, clustering, and

denoising techniques, etc.) to analyse data. The data analysis sections include

the PMAR data’s preparation, segmentation, visualisation, interpretation and
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testing. The proposed structured method of data analysis can be reapplied to

other distribution automation and operational devices. In developing this prog-

nostic functionality, the DSS implements the prognostic rule base into the KBS

as well. Finally, the section will demonstrate the case study associated with the

implemented fault prognostic functionality.

6.2 Data Selection and Preparation

The objective is to create predictive rules which can provide ‘early-warning’ of

future PMAR operations. Hence, the first step of the work is to identify a specific

fault scenario or a particular anomalous condition on the overhead line which has

the capability of predicting potential PMAR operations in the future. In order

to target the specific fault scenario or condition with the predictive capability,

the categories of circuit behaviour should be assessed and classified in detail. In

Chapter 5, the research work has already identified four classifications. Three of

these (i.e. single trip (ST), multiple trip (MT), and lockout (L)) mean that the

PMAR has caused a trip operation. The Fault Pickup (FP) classification means

the PMAR has not caused a trip. Trip situations are indicated via ST, MT and

L. Therefore, the challenges is to find enough data that allows the prediction of:

� ST, MT or L from FP events;

� ST or MT events from other ST/MT events;

� L from ST or MT events;

� Looking in the other direction, ST or MT events from L events; or

� L from other L events.

Through applying the enumeration methodology (when making inductive rea-

soning, if individually examined all possible cases of certain types of events, which

draw general conclusion. This conclusion is reliable, this inductive method is

called enumeration method) [Tho03], Table 6.1 lists all the possibilities of pre-

dicting PMAR operations based on different classifications, where the predictor
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Possible patterns Predictor Predictand

1 FP ST/MT

2 FP L

3 ST/MT ST/MT

4 ST/MT L

5 L ST/MT

6 L L

Table 6.1: Possible fault patterns with predictive capability

means the potential classification of PMAR operation with predictive capability,

and the predictand represents the corresponding predicted values.

In the table, the classifications of ST and MT are combined as one category

of fault scenarios, because they are essentially different from L. The L event per-

manently opens the auto-recloser to isolate the fault, but the ST and the MT

reclose after automatically clearing the fault following different numbers of reclo-

sure attempts. As presented, six listed patterns state the potential prediction.

For example, Pattern 1 describes the FP could be capable of predicting ST/MT.

Therefore, in order to identify the specific fault scenario (classification of PMAR

operation with predictive capability), the relationship between a predictor and

the corresponding predictand of each pattern will be evaluated. If a predictive

relationship can be detected from one of the listed patterns, then, the information

of this particular predictor can be extracted and refined to generate the predictive

rules for fault prognosis.

For identifying the possible predictive relationship, in this research work, 12

PMAR log files have been taken into consideration. These data files represent the

pick-up activities captured across seven circuits, spanning a period of up to five

years. In the analysis, the pick-up activities were first classified into four different

levels of PMAR operations (i.e. FP, ST, MT and L) based on invoking the rules

in Figure 5.13. Then, all the classified activities were used to match with the six

listed fault patterns by detecting the preceding classified PMAR operation of each

activity, this process was operated manually through the developed visualisation
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Matched pattern Matched amount

FP to ST/MT 102

FP to L 4

ST/MT to ST/MT 18

ST/MT to L 11

L to ST/MT 0

L to L 0

Table 6.2: The matched patterns

tool integrated within the DSS. As a result, a total of 211 FP activities, 120

ST/MT activities and 15 L activities were derived from the analysed data set.

Table 6.2 shows the number of each pattern after matching process.

From the view of the table, the classified FP activities precede most of the

ST/MT activities (102 of the total 120 activities), which followed by the other

18 ST/MT activities and 11 L activities. Meanwhile, the FP activities directly

precede the rest of (4) L activities, so there should be no matched pattern which

demonstrate the L activity preceding the ST/MT or L. This can also be verified

from the table list, there is no matched Pattern 5 (L to ST/MT) or Pattern 6

(L to L). It is apparent that, the high number of PMAR operations (includes

ST, MT and L) are preceded by the FP activities (defined as a pick-up duration

of greater than 30ms which has not yet led to a PMAR operation). This indi-

cates the potential underlying relationship between the FP activities and PMAR

operations, which may provide information to produce the rules with the capa-

bility of predicting future PMAR operations. Therefore, the work then focuses

on analysing the FP activities to derive the prognostic rules with the following

detailed data science technologies.

6.2.1 Feature Preparation of FP Activity

With the visualisation of 211 FP activities and their following PMAR operations

(i.e. ST/MT, L), an ‘interesting’ phenomenon was detected. Usually before the

appearance of PMAR operations, the preceding FP activities would occur mul-
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tiple times in the period of from one week up to two months. Hence, before

analysing the data of FP activity and extracting the features for generating pre-

dictive rules, the FP activity is grouped into one-month time windows, which do

not contain any recorded trip or lockout activity. The short one-month window

of interest was selected to focus in on activity resulting from the same underlying

cause (semi-permanent fault condition), which may be the explanation of this

particular phenomenon.

After the pre-processing of grouping the FP activities, a total number of 100

FP groups were derived from this training data set (with 211 FP activities).

For identifying and summarising the predictive information from the grouped

FP activities, the features for describing the FP activity should be defined and

categorised. Based on the characteristics of the FP activity and the limited FP

information extracted from the original PMAR log files, this work defined five

features to describe a FP, and those were used for the predictive algorithm to

analyse [WMS+17]:

1. Number of Total Pick-ups (NTP), which is counted in each FP group.

2. Time to Trip (TTT), which is the time duration from the last recorded

pick-up activity in the FP group to the next PMAR operation.

3. Interval Time Trend (ITT) is a Boolean value which represents the increas-

ing or decreasing of the time interval between two consecutive fault pick-ups

in the group of FP activity (i.e. True for the decreasing of the time interval,

False means the trend of the time interval is not decreasing).

4. Average Current Amplitude (ACA), which is the average current amplitude

of FP activities in each group.

5. Average Pick-up Duration (APD), which is the average pick-up duration of

FP activities in each group.

With these defined five features, a FP group can be clearly represented. In

particular, the feature of TTT reveals the relationship with the following PMAR
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operation as well, which may be one of the predictive factors when producing

the rules for predicting future PMAR operations. Through the computation, in

which 100 FP groups are represented with five listed features, the parameters

are prepared into a data sheet and subjected to the data mining and clustering

process discussed in the following sections.

6.3 Data Segmentation and Visualisation

For the purpose of utilising the data mining techniques to extract predictive capa-

bility from the defined features, then the predictable features should be identified

to support the generation of prognostic rules. Since the PMARs operation as-

sociated with the five defined features is unlabelled, data-class associations are

unknown. In order to extract hidden associations between the data characteristics

and those of FP activities, clustering techniques were applied.

6.3.1 The Selection of Appropriate Methodologies

As described in the introduction of AI technologies in Chapter 3, the K-Means

algorithm is a clustering technique used for data mining which is simple to imple-

ment and straightforward to interpret. It partitions similar unlabelled data (i.e.

data without defined categories or groups) into a pre-set number (K ) of clusters

[Alp10]. When compared with alternatives, such as the hierarchical clustering

algorithm [MC11], the performance of K-Means is better if the dataset is small

(i.e. less number of clusters), which presents the K-Means could provide increased

accuracy than the other algorithms. That is, it has more possibilities of parti-

tioning the data point to the correct allocated cluster when the relative weights

of the features are not well understood. Although some alternatives may offer a

higher quality of clustering than the K-Means, such as the self-organisation map

algorithm [Abb08], the algorithm is much harder to implement efficiently and has

much more parameters to set. Also, the clustered results are more complex to

interpret for use. However, the K-Means becomes a great solution for the pre-

processing in this study, with its simplest models. Therefore, the application of a
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K-Means algorithm enables segmentation of the data into distinct clusters where

the specific clusters could be considered indicative of distinct PMAR operating

conditions.

Due to the five features that are taken into the clustering process, the clustered

results would be displayed into five dimensions, where each vector represents

the corresponding feature. To visualise the clustering output from the K-Means

algorithm adequately, a dimensionality reduction technique is required to process

the clustered data. Dimensionality reduction offers a meaningful representation

by transforming high-dimensional data with reduced dimensionality. Ideally, the

reduced dimensionality should represent the essence of the data (i.e. corresponds

to the intrinsic dimensionality of the data), where the compressed representation

has the minimum number of the parameters that accounting for the observed

properties of the data.

Traditionally, dimensionality reduction was performed effectively with real-

world data by the linear techniques, such as Principal Components Analysis

(PCA) or classical scaling methodology [VDMPVdH09]. However, the present

real-world data is more likely to form a highly non-linear manifold. Due to

previous linear techniques cannot efficiently manage complex non-linear data,

consequently, in the last decade, a significant number of non-linear techniques

have been proposed to reduce dimensionality, such as Isomap, Locally Linear

Embedding (LLE), Sammon mapping, and t-Distributed Stochastic Neighbour

Embedding (t-SNE) [VDMPVdH09].

In this research, the five defined features contain non-linear data (e.g. the

data of ITT). Therefore, the non-linear technique for dimensionality reduction

will be adopted in this study. The t-SNE transforms high-dimensional data into

low-dimensionality (two or three dimensions) [MH08], based on two main process-

ing steps: firstly, t-SNE constructs a high-dimensional probability distribution

between each object (i.e. data), which makes similar objects have higher proba-

bilities to be selected, while dissimilar objects have a lower probability of being

selected. Secondly, t-SNE constructs a low-dimensional probability distribution

of these objects as well, Meanwhile, compared to other non-linear techniques, the
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Figure 6.1: Visualisation of 6000 handwritten digits with different non-linear clustering
algorithms [MH08]

t-SNE not only can visualise the clustering map as a scatter-plot more clearly,

but it can keep a higher accuracy when dealing with small data sets. Both of the

benefits are suitable for speciality of this research work. For instance, Figure 6.1

shows the comparison of the results of the experiments with t-SNE, Isomap, LLE

and Sammon mapping on one publicly available dataset, which contains 6000

grayscale images of handwritten digits (from 0 to 9).

In Figure 6.1, 10 different colours represent 10 classes. Here, the class in-

formation is only used to select a colour for the map points, not to determine

the clustering coordinates of the map points. Therefore, the colouring is a way

to assess how well the map preserves the similar points (i.e. the same digits)

within each class. Obviously, the results reveal the perfect performance of t-SNE

compared to the other techniques. Sammon mapping clusters the point into a

construction like a ‘ball’, in which only circumjacent classes are clear relatively.
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Isomap and LLE produce poor solutions with the existence of large overlaps be-

tween the different digit classes. Moreover, with the detailed inspection of the

t-SNE map, the apparent boundaries of each class reveal that the local struc-

ture of the original data is captured and presented effectively. As a result, in

the research work, the t-SNE algorithm was adopted to transform the data into

a more visually appreciable two-dimensional (2D) representation due to its fast

computation, high accuracy and efficiency of processing non-linear data.

6.3.2 t-SNE Visualisation of K-Means Clustering

As discussed previously, for processing the K-Means clustering, the number (K )

of clusters should be first preset. To visualise various clustering results to support

with efficiently extracting predictable information, this study tests a range num-

ber of clusters to segment and visualise the clustering of FP instances, to prevent

potential false clustering of the real similar FP instances. Figure 6.2 demon-

strates the comparison of cluster distributions of feature vectors as the number of

clusters in the K-Means algorithm is increased. In this figure, study shows four

clustering results with pre-determined numbers of cluster (i.e. 7, 10, 15 and 20),

because these are quite different from each other. From the visualisation through

the t-SNE technique, the aim is to identify one or more specific clusters with the

indicative features values, which could be used for generating the predictive rules.

As shown in Figure 6.2, the t-SNE visualises the results in a 2D representation

from compressing the five-dimensional vectors while keeping the properties of the

data. Each cluster is represented by distinct colour, and each point represents one

set of feature vector coordinates representing an instance of FP activity. The rela-

tive distance between points provides an indication of the similarity/dissimilarity

between plotted feature vectors. The closer together these points are clustered,

the greater the similarity that exists between associated FP activity.

From the t-SNE visualisation, it is apparent that the data is distributed in

two main areas, inside and outside the circled area. While the membership (the

similarity between each data point) of the data points in the clusters outside the

circle changes significantly as the number of initialising clusters increases, the
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Figure 6.2: t-SNE visualisation of K-Means clustering with different numbers of clusters
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Figure 6.3: Splitting degree of initial clusters with the increase in number of clusters

membership of the data points inside the circled area does not [WMS+17]. It is

evident that the distributed data in the circled area is more stable and consis-

tent, and demonstrates a higher correlation coefficient. Instead of inspection, to

validate the stability and consistency of the data in the circled area, this work

will evaluate the splitting degree of data points in the clusters as the number

of initialising clusters increases. With the increase in number of clusters, the

clustering constraints will also increase accordingly. That means clustering con-

ditions are more and more meticulous, which can lead to the data points (with

lower similarity) being split from the original cluster and re-clustered into a new

class. In other words, when the number of data in a cluster is less likely to be

greatly affected (i.e. be split) by the increase in number of clusters, this indicates

the data in such cluster is relatively stable and consistent. With the view of

Figure 6.2, when the number of clusters was set at 7, the circled area had two

apparent clusters (coloured by yellow and blue), one distinct cluster (coloured by

coffee) outside the circuit. Figure 6.3 shows the splitting degree of data points in

these three clusters by displaying the remaining number of data points in the ini-

tial clusters after each clustering process with increasing the number of clusters,

where cluster A, B, C represents the yellow, blue, coffee cluster respectively.

Concerning the comparison of splitting degree within three clusters, the cluster
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A and B are obviously more stable and consistent than cluster C, because the

decreasing trend of remaining number of data points in cluster C is larger than

those in others. This means that the feature vectors within the cluster A and B

are most likely to lead to improved accuracy if used to build the predictive model.

The purpose of the prognostic function is to predict potential future operation.

Based on this analysis it is apparent that, if a new log file is presented to the

KBS, rules operating on the NTP, ITT, ACA and APD features can be used to

determine the TTT. That is, given the four feature values, the TTT (i.e. time

to the next PMAR operation) can be predicted within a particular time window.

This allows engineers to take actions before the occurrence of a fault causing

PMAR operation.

6.4 Data Interpretation and Testing

In order to generate rules to predict future PMAR operation, the features of NTP,

ITT, ACA and APD are utilised to determine the TTT to predict a flexible time

window that engineers are available to take actions. The coherent distributed data

points in the circled area are analysed with deriving the values of different features

corresponding to each FP group. Then, the identified range of the features’ values

could be used for generating the thresholds of the predictive rules.

6.4.1 Data Denoising

As the consistency indicated in the circled area, with evaluating the values of five

features in the original dataset, the similarity of these data points was proofed

from the data layer. To better observe how the points within the cluster differ

with respect to the different features characterising them, a parallel chart shown

in Figure 6.4 describing the distribution of values of the features characterising

the cluster representing PMAR operation. These are plotted for the 33 data

points which consistently remain members of the cluster shown as the circled

area in Figure 6.2.

The chart in Figure 6.4 pplots the range of values, and each continuous line
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Figure 6.4: Parallel coordination plot of the segmented data

represents the value of feature in a PMAR record, where the ranges are set by the

maximum and minimum values related to the features. From the chart, it is clear

that the value range of the NTP, APD and ACA features are relatively concen-

trated. Therefore, this visualisation can be used to derive threshold settings for

these features required to predict the TTT. Figure 6.4 shows that a sequence of

fault activity showing these features will result in a trip will occurring 3 months

(90 days). However, there is noise within this data causing a problem in deter-

mining the accurate thresholds of the conditions for predicting TTT.

To eliminate noise among the data points in the circled area, an approach

of clustering the coherent data together except for the noisy data is required.

Therefore, at this stage of developing the automatic fault prognostic function-

ality, one of the clustering algorithms should be adopted to remove noisy data.

Compared to other alternatives, such as the partitioning methodologies or hier-

archical methodologies, the density-based approaches have a stronger ability for

noise reduction. Because the idea of these density-based methods is that when

the density of the points in the region is greater than a certain threshold, all these

points are attributed to a class. Data which is not in the region, and does not

belong to any other regions of classes will be quickly and effectively recognised

143



as the noisy data.

In this research work, one density-based clustering algorithm named Order-

ing Points To Identify the Clustering Structure (OPTICS) [ABKS99] was used

to remove the outlier (noisy) data points from the encircled data. The reason

for choosing the particular technique is that the OPTICS reduces the error for

misidentification of noisy data, comparing with other density-based methods,

such as Density-Based Spatial Clustering of Applications with Noise (DBSCAN).

These methods sometimes could treat the low-density data as noisy data. How-

ever, the OPTICS overcomes this with its function of detecting varying density

clusters. Meanwhile, in the OPTICS algorithm there is an integrated function

called reachability distance, which has the capability of graphical representation

that highlights the outlier data besides the clusters. In this research, it can be

perfectly used to detect and filter the outliers through the application of a reach-

ability distance function.

Overall, OPTICS aims to segment data into clusters of varying density by

separating the regions of high density and low density. The density means the

number of points within a specified radius. In principle, the work of OPTICS is

to target the core point p by using the defined density (i.e. the number of points

MinPts, and the specified radius r). A point p is a core point if at least MinPts

points are found within distance r. If the number of point within r is larger than

MinPts, another radius r’ will be defined, where the number of points is equal

to MinPts. Finally, the points are not within r’ but within r, the distances from

core point will be calculated and called reachability distances. When the process

ends, the data with higher reachability distance will be considered as noisy data.

Figure 6.5 shows reachability distance function in the OPTICS methodology finds

the outliers in the segmented data [ABKS99].

As illustrated in Figure 6.5, the function will automatically determine the

cluster centre when clustering the raw data and obtain the distance between the

cluster centre and each data point. For the centre of the cluster, it should have

the lowest reachability distance, and a higher reachability distance represents a

greater distance from the cluster centre. Hence, the outlier data must have a
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Figure 6.5: Reachability distance of the cluster-ordering [ABKS99]

high reachability distance that can be indicated obviously from the plot. Based

on this, OPTICS studied the encircled data and plotted the noisy data using the

presentation of the reachability distance function. Figure 6.6 demonstrates the

ability of the reachability distance function to locate the outliers in the circled

area via the OPTICS technique.

With respect to the 33 analysed data points in the encircled cluster, The

reachability distances of most data points are around 0, which means these data

points are close to the cluster centre. However, there are eight data points with

much higher reachability distances, which are marked as red points in Figure 6.6.

These eight data points are then removed as outliers. To produce the predictive

rules the other 25 data points are then subjected to the parallel chart to define

the thresholds.

To validate the accuracy and efficiency of the noisy data reduction (which

was achieved through utilising the reachability distance function integrated with

the OPTICS, as shown in Figure 6.6), the research work displays the cumulative

frequency distribution of each individual feature’s value with a comparison of

before and after noise reduction, as demonstrated in Figure 6.7, where the red

line and blue line respectively represent the cumulative frequency distribution of

the feature’s value with and without noisy data. With the view of the Figure

6.7, it is clear that the distribution of each feature’s value without noisy data is

more concentrated than that of with the noisy data, this leads to the cumula-
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Figure 6.6: Visualisation of noisy data with OPTICS algorithm

tive frequency fast get to 1. Therefore, the reachability distance function of the

OPTICS did the efficient work in the study. In this validation, the ITT feature

is not included, because its value is Boolean value, which is not suitable for this

distribution method.

6.4.2 Predictive Rule Implementation

Consequently, after filtering this noisy data, the maximum and minimum value

of defined features can be used to set the thresholds of the rule to predict the

PMARs operation. Figure 6.8 demonstrates the new parallel coordination plot

of the five features after the removal of outliers.

Figure 6.8 shows the value ranges of the features NTP, APD, and ACA which

form the threshold for the predictive rule shown in Figure 6.9. Furthermore,

Figure 6.8 also shows that the ITT (i.e. the interval time between consecutive

pick-ups) associated with the data in the circled cluster can be seen to both

increase and decrease. The blue lines represent data where the value of feature

ITT is True (i.e. the time interval between two consecutive fault pick-ups in a

group of activity is decreasing), and the orange lines represent data where the

value of feature ITT is False (i.e. the time interval between two consecutive
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Figure 6.7: Cumulative frequency distributions of the features’ values with and without
noisy data
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Figure 6.8: Parallel coordination plot of features without noisy data

Figure 6.9: The prognostic rule for predicting future PMARs operation

fault pick-ups in a group of activity is increasing). From this observation the

ITT feature is redundant in the classification of data in this cluster (the variety

of the ITT feature’s value almost will not affect the distributions of the other

features’ values) and consequently is not included in the derived rule in Figure

6.9. Meanwhile, this unnecessary feature explains the distinction of two main

clusters (represented in two different colours) in the circled area. Compared to

the previous parallel chart with outlier data, the rule is also more precise in terms

of the predicted TTT, which downsizes the predictive duration to 2 months from

previous 3 months.
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Figure 6.10: The prognostic rule with focusing on the detection of EF/SEF pick-ups

Through the visualisation function of pick-up information (described in pre-

vious section of DSS prototype as shown in Figure 5.15), the 25 predictable data

points have been reviewed based on the level of affected phases. There are 19

FP groups with only the pick-ups of the Earth Fault and Sensitive Earth Fault

(EF/SEF), and another 3 FP groups combined with anomalous activities of the

EF/SEF and the phase to phase fault. Clearly, the EF/SEF is the main con-

tributor in the category of FP activity leading to transient supply interruptions

without PMAR operations. Then, the research extracted all the 19 FP groups

with only the pick-ups of the EF/SEF events and aimed to generate another

predictive rule to obtain more precise predictive results. Figure 6.10 displayed

the prognostic rule which focuses on detecting the FP group with the EF/SEF

pick-ups to predict the future PMAR operations.

As shown in the specific prognostic rule, the criteria of redefined thresholds are

based on the updated maximum and minimum range values of the features. The

predicted TTT is reduced by 5 days (i.e. within 55 days) as well. Both of the

rules are concentrating on predicting future PMAR operations with detecting

the appropriate FP groups. Due to the limitation of the actual network data

available at present, the research generated one general and one specific rule for

fault prognosis, the processing of generating a prognostic rule is repeatable, and

the threshold in the rule would be more precise in terms of predicting future

PMAR operation, as more DA data becomes available. To validate the produced

rules, the rules will be tested also with actual network data, then applied and
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written to the designed DSS.

6.4.3 Data Testing

For validating the prognostic rules, new unanalysed original data will be fed

into the designed DSS to invoke the corresponding prognostic rules. In this

thesis, 27 unseen PMAR log files (an independent data set, which has not been

used for previous data training and testing) containing FP activities and PMAR

operations were selected for analysis. Automatic processing of the historical data,

revealed that there are 32 FP groups (including 22 FP groups contributed with

only multiple EF/SEF pick-up activities) of fault pick-up activities that do not

lead to any trips or lockouts within 1 month which ‘fire’ the predictive rules in

Figure 6.9 and Figure 6.10, respectively suggesting that a a trip will occur in 2

months or 55 days.

Through the testing, it was established that 27 of these FP groups did indeed

result in a PMAR operation within the predicted 2-month timeframe. Therefore,

the sensitivity or success rate of the rule is 84.4%. Compared to the specific

rule focusing on EF/SEF pick-ups, although the predicted time to trip is only

more precise for 5 days, 20 included in the 22 previous detected EF/SEF FP

groups improved the sensitivity of prediction to 91%. This analysis of utility data

verifies that the methodology adopted can be used to develop accurate predictive

capabilities. Further predictive rules with more sensitivity or success rate can be

created using this approach as more data is collected by the network operator.

6.5 Case Studies

To effectively demonstrate the operation of both of the prognostic rules imple-

mented in the DSS, two different original PMAR log files are chosen to respec-

tively provide the positive analysis. Meanwhile, in order to ensure the complete-

ness of validation process, the updated log files of same PMARs should be ex-

tracted with related information to verify the prognostic results (i.e. the predicted

time to trip). This case study is based around the PMARs which were affected by
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Figure 6.11: Report of fault prognosis with firing general predictive rule

frequent supply interruptions recorded in the morning reports. Similarly as with

the demonstration of developed diagnostic functionalities, the relevant PMAR

log files are required to import into the DSS to pre-process for the case study of

automatic fault prognosis.

6.5.1 Case Study Part 1: Fault Prognosis with General

FP Group Detection

After importing the PMAR log file, the DSS will automatically analyse the data

for fault prognosis, engineers can also utilise the KBS applications to check the

fault prediction report based on the prognostic rule implemented in the rule-base.

Figure 6.11 shows that the KBS reports a potential PMAR operation will occur

within 2 months from the date of 14/12/2011 by detecting a particular general

FP group which invoking the general predictive rule, where the informed date

(14/12/2011) is the time stamp of the last pick-up activity in the FP group. The

system automatically alarms the user of this.

For validating the prediction, the new PMAR log file which contains the pick-

up information after 14/12/2011 will be analysed manually. Figure 6.10 illustrates

the data table from the updated log file. It can be seen that the time stamp of

the next trip (which is highlighted) is 18/12/2011, which is recorded as a phase

to phase (A to C) fault. This is within the predicted time period of 2 months

from 14/12/2011.
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Figure 6.12: Validation for predicting future PMAR operation in next 2 months

Figure 6.13: Report of fault prognosis with firing specific predictive rule

6.5.2 Case Study Part 2: Fault Prognosis with EF/SEF

FP Group Detection

With respect to the demonstration of fault prognosis by detecting the general

suitable FP group, in this part, another PMAR log file was analysed to predict

future PMAR operations with the identification of specific EF/SEF FP group.

Figure 6.13 displays the similar prognostic result with KBS report to indicate

a future PMAR operation will occur within 55 days (from the time stamp of

11/03/2013). The corresponding Figure 6.14 validates the prediction result by

checking the data in the new relevant log file, where a phase to phase (A to B)

fault had been tripped by the auto-recloser in the next 8 days (19/03/2013), and

highlighted in the data table.

In this section, the presented examples of fault prognosis exhibit the pro-

cess of functionality designed and developed in the DSS, both of the predictive

rules can be used to inform future PMAR operation with relevant data analysis.

Based on the feasible predicted time slot before potential trip occurring within

the automatic KBS report, the engineers can take actions or make decisions on

dispatching the maintenance staff to the location of particular reported PMAR
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Figure 6.14: Validation for predicting future PMAR operation in next 55 days

for future inspection and repair.

6.6 Conclusion

In this chapter, the prognostic functionality is defined and deployed within the

knowledge-based system in the DSS to invoke the generated prognostic rule-base.

By selecting actual PMAR log files, the case study displays the positive prediction

results and shows how the DSS operates to automate the fault prognosis, and the

support that can assist engineers’ decision making. The source code for the rules

is presented in Appendix A.

In particular, the entire process of developing the automatic fault prognostic

functionality is based on the utilisation of various data science techniques to

analyse the PMAR data. These are the data selection and preparation supported

with using enumeration methodology, data segmentation and visualisation with

the K-Means clustering algorithm and t-SNE technology, data interpretation and

utilisation of the OPTICS denoising methodology. The data analysis methods

can be re-applied to new PMAR devices or wider updated log files to generate

more predictive rules to extend the knowledge-based system. This chapter proves

the correct process of developing the fault prognostic functionalities by using the

devices’ data at the level of the low-voltage distribution network.
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Chapter 7

Conclusions and Further Work

7.1 Conclusions

Distribution automation is deployed to ensure reliable operation and protection

of power systems by reducing outages and rapidly reconnecting customers after

network faults occur. Recent developments in DA systems, integrated with in-

telligent equipment (i.e. IEDs), have enabled automatic data analysis of logged

load or fault event data. The application of data analytics and automated anal-

ysis of this data provides a picture of underlying circuit behaviour between the

successive operations over a period of time, which supports post fault manage-

ment and investigation. Moreover, it has the capability of informing the evolving

anomalous conditions to offer feasible opportunities to take action in advance

to mitigate supply interruptions (i.e. reduce CML and CI). A large volume of

research has delivered corresponding diagnostic capability in related areas. For

example, decision support systems utilise intelligent methods to provide fault

analysis and diagnostic assistance for protection and control engineers. These

practical operational systems automatically analyse the data captured from the

SCADA systems or/and IEDs.

However, the complexity of the network and the vast data extracted from

thousands of DA devices (and their associated settings) is an extremely challeng-

ing task. Existing relevant developed systems contain a number of shortcomings:
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the systems mainly focus on fault detection and location identification by inter-

preting SCADA data, with support from the analysis of available IED data. For

the root causes of fault events or anomalous circuit activities, there is no in-depth

study which fully utilises DA devices’ data. Even if research concentrated on us-

ing the IED data as the primary source to support automated data analysis to

assist engineers, the proposed solutions to improve system operation and protec-

tion do not offer the prognostic capability of the potential circuit or device faults.

Furthermore, no research is available on fault diagnosis by explaining the data

from IEDs which are installed in the low voltage distribution networks.

In this thesis, the aforementioned problems have been addressed and the re-

sults of research into a methodology for automatic fault diagnosis and prognosis of

distribution automation has been presented. It is concerned with designing a deci-

sion support system, to automatically analyse both SCADA data and PMAR data

and which assists engineers in recognising underlying circuit and device behaviour.

Meanwhile the system takes a further and detailed step of interpreting PMAR

data to address a gap in the field of power system data analysis with the use of

LV distribution network IED data. A knowledge-based system has been adopted

and implemented for the proposed objectives. The KBS diagnoses PMAR faults

and identifies emerging circuit and device faults (i.e. semi-permanent faults) to

allow preventative measures to be taken to avoid or minimise outages. The au-

tomatic processes are based on invoking the relevant rules, which are translated

from domain experts’ knowledge and experience and network operation settings.

Specifically, the developed DSS contributes the design and proof of a predictive

capability to identify emerging faults within a DA application. The prognostic

functionality is implemented by deploying the KBS in the DSS, which develops the

prognostic rules by applying the data science techniques into analysing the PMAR

data. The processing steps follow the procedures of data mining including data

preparation, data segmentation, and data interpretation and utilisation. Both

the adopted methods of developing diagnostic and prognostic functionalities offer

satisfactory solutions that have been demonstrated in the case studies.

The proposed data analysis functions have been implemented in the DSS
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prototype and tested using actual data from the UK distribution network. The

developed prototype, as a GUI, includes the designed visualisation tool. On

one hand, the visualisation tool provides the diagnostic results and supports

the analysis of circuit behaviour to assist the users with decision making by

observing the detailed information (fault events or anomalous activities) after

automatic data processing. On the other hand, the visualisation tool searches

‘interesting’ fault patterns to support the generation of predictive rules to develop

prognostic functionality. Meanwhile, the case studies of automatic fault diagnosis

and prognosis are demonstrated through the implemented DSS prototype.

In the case studies, the proposed novel solution to timely address the use of

LV distribution network data for fault diagnosis and prognosis is demonstrated

by applying the actual network data against the developed rule-bases. Based

on these demonstrations, it can be seen how the automatic system assists the

control engineers with their fault data analysis and shows the valuable benefits

of supporting the reduction of customer supply interruptions and detection of

underlying asset deterioration.

During research work, it has been realised that the key challenges in devel-

oping the decision support system for automatic fault diagnosis and prognosis

are the accurate selection and sufficient analysis of suitable and available PMAR

data. Furthermore, the adopted methodologies of system design and data anal-

ysis to achieve the proposed functionalities can be applied to wider distribution

automation devices or shifted to larger datasets, when the systems have the simi-

lar motivation of automating the analysis for fault diagnosis and prognosis. With

respect to the current version of developed DSS, the utility is now in the process

of initiating a project to roll this functionality out across all of their PMARs, but

it can be extended over time and with greater data access.
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7.2 Future Work

7.2.1 Enhancement of the KBS

In the existing developed KBS, the implemented rule-base contains the rules for

three applications: rules for diagnosing PMAR device faults, rules for classifying

PMAR operations and preparing visual features for detecting semi-permanent

faults, and rules for predicting future PMAR operations. These existing rules

for data analysis have been proven to be very useful when importing the PMAR

data to execute related designed functions. However, all the above aspects can be

improved for better automatic fault diagnosis and prognosis within more refined

rules and can be incorporated in future.

To enhance the rule-base for fault diagnosis, the next stage of the work would

investigate the definitions of further anomalous conditions of PMAR devices to

cater for a wider range of tests. The new generated rules for diagnosing PMAR

device faults can be achieved by interviewing domain experts and referring to

relevant manufacturers’ documents for validation. For full implementation of the

rules to identify semi-permanent faults on circuits, the previous defined features

can be extracted and amended by embedding engineers’ knowledge and experience

to produce new rules, so that the system can automatically detect the emerging

faults and report to engineers instead of users’ decision makings after manual

observation.

Furthermore, the prognostic rules in the rule-base can be further extended,

which could include the use of current applied data science methodologies to

process more available PMAR data, in order to generate more precise rules to

forecast potential PMAR operations. Otherwise, the proposed approaches could

consider more features (e.g. affected phase, etc.) into the fault pick-up (FP)

groups or study other classifications of PMAR operations (i.e. ST, MT, L) to

generate diversified and detailed predictive rules.
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7.2.2 Migration of System from Off-Line to On-Line

Mode of Operation

Currently, the developed DSS can only use the data which is stored in the PMAR

log file downloaded from each PMAR location as an off-line mode. The main

disadvantage of such a system is that it cannot analyse the latest PMAR data

to predict future PMAR operations with a feasible time period preceding the

occurrence of the faults, which allows maintenance staff to take effective actions

in advance.

The next step of the work can revise the system to interface with the control

room which contains the on-line data sources (e.g. SCADA data or PMAR data

transferred through the ‘Nortech ihost’ system) that can provide real-time distri-

bution network data. Therefore, the timely data can be automatically analysed

to offer the suggestions of system operation and protection.

7.2.3 Further Development of the Prototype Tool for

Industrial Application

The ultimate aim of the work is to deliver an intelligent decision support system

for industrial applications as business as usual. For the purpose of achieving the

proposed functionalities, the DSS prototype should be further refined, developed

and comprehensively tested.

The current prototype supports the fault diagnosis and prognosis with the

import of the related PMAR log files of ‘interest’ affected area of the distribution

network, which simply provides the result report to assist engineers’ decision mak-

ings. Further development work is required to automatically inform the user with

different monitoring levels (condition alarms with green, amber, red indications)

of a wider range of detected circuits or PMARs simultaneously.

Another important aspect of improving the prototype tool is to normalise the

design and compatibility, so that the tool can be easily modified or properly main-

tained with the future industrial requirement, such as insertion of new diagnostic
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or prognostic modules.

7.2.4 Comprehensive Study of Manual Process within

the DSS - Roll out of the Automatic Process to

the Entire System

The designed DSS analyses the PMAR data for fault diagnosis and prognosis

followed by the automated manual process with investigating unsolicited openings

in the morning reports. Once the development and refinement of the prototype

system is complete, a comprehensive study of the manual process which focuses on

analysing the SCADA alarm data (i.e. PSALERTS data) and network operator’s

fault diagnostic data (i.e. PROSPER data) can be performed. This could allow

the successful combination with the on-line data source, and implement the entire

developed DSS to a fully automatic data analysis system, from retrieving on-line

relevant data to provide decision supports to the control engineers.

7.2.5 Fault Diagnosis and Prognosis Validation Based on

the Analysis of Historical Data

Since the detection of semi-permanent fault and prediction of future PMAR op-

erations are required to be verified by the evidence from real occurrences in the

the network, the system cannot guarantee the fault diagnosis and prognosis with

100% accuracy. As a result, future work should also focus on fault diagnosis and

prognosis validation (i.e. the confidence) based on obtaining more historical data

for the analysis of the particular circuits or PMARs. While the results presented

here are promising, this will assist engineers to obtain an overall confidence of

for the results of the automated analysis of circuits or PMARs. For providing

accurate validation function integrated with fault diagnosis and prognosis, the

estimated confidence should be based on the analysis and testing of the PMAR

over latest 5 years.
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Appendix A

Supplementary Information for

Case Studies in Chapter 5 and 6

This appendix provides supplementary details for the case studies of fault diagno-

sis and prognosis presented in Chapter 5 and 6. As described previously, the data

used in all case studies was captured from the installed PMARs in a distribution

network. The voltage level of the network is 11kV, and the PMARs generate

log files containing overhead line current and voltage data sampled at 12.8 kHz.

At present, over 200 PMARs are deployed in SPEN’s distribution network, and

each PMAR can generate tens of thousands of sets of data in the file (the size is

around hundreds of kilobytes) in every month.

The Main Processor Module integrated within the PMAR records the data

as a form of TXT file with encoding. To import the appropriate data into the

designed DSS for automatic analysis, a corresponding decoding software named

as ‘TELUS’ would convert the original data into the prepared data sheet in an

Excel format. As a result, all of the underlying data in the case studies or used

in the DSS functions is stored in an Excel format.

To ensure privacy and security of the distribution network operator data, the

full original data sheet studied in the case studies will not be presented in this

appendix. However, Section A.1 shows some discrete original PMAR log data

to demonstrate the data format and structure of the log file, and also illustrate
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Figure A.1: An example of fault event data

examples of different categories of PMAR data information which supports the

data analysis of fault diagnosis and prognosis in the DSS (detailed in subsection

2.4.3). Section A.2 mainly provides the log data which invoked the PMAR device

fault diagnostic rules, and corresponding results; Section A.3 and Section A.4

offers the source code of fault diagnostic and prognostic rules mentioned in the

thesis.

A.1 Examples of PMAR Data

With respect to the description of PMAR data’s structure detailed in subsection

2.4.3, this section shows the three categories (i.e. fault event, abnormal activity

and device event) of data information can be extracted from the log file.

Figure A.1 displays all detailed information of a fault event registered in the

log file, including the time stamp of fault, current amplitude of fault, affected

phases, etc. In this special case, a Phase A to Phase C fault had been detected to

trip a PMAR operation, where the gray blocks covered the ID of particular circuit

and PMAR device. Figure A.2 exhibits the detailed information of abnormal

activity with the detection of EF/SEF activities in a particular PMAR, but not

resulting in a trip. Figure A.3 shows an example of device event in a log file with

existence of alarm messages about driver module.
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Figure A.2: An example of abnormal activity data

Figure A.3: An example of device event data

A.2 Data and Results for Case Studies in

Chapter 5

As introduced in the case study of PMAR device fault diagnosis in Chapter 5,

the example in section 5.6 only demonstrates the microswitch fault diagnosis, this

section provides the supplementary details of diagnostic case studies of the other

four categories of PMAR device faults.

A.2.1 Data for Case Study of MPM Fault Diagnosis

After invoking the MPM fault diagnosis rule with matched data captured from

the data sheet, the DSS automatically reports the diagnostic result: Main Pro-

cessor Module fault with the detection of a number of fleeting MPM

alarms , as shown in Figure A.4. The associated data is presented in Figure

A.5, where the consecutive number of “MPM fault” events exceeds 20, firing the

corresponding rule in Figure 5.3.
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Figure A.4: Identification of MPM fault

Figure A.5: Validation for MPM fault diagnosis
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Figure A.6: Identification of driver module fault

Figure A.7: Validation for driver module fault diagnosis

A.2.2 Data for Case Study of Driver Module Fault

Diagnosis

Figure A.6 shows the DSS automatically identified a driver module fault with

giving a fault diagnostic report: Driver Module fault with the detection

of excessive contact closing/opening result in alarms . From observing

the original log data in Figure A.7, it is can be seen that the alarm message

“Excessive To” fired the corresponding rule in Figure 5.5.

A.2.3 Data for Case Study of Tank Fault Diagnosis

The diagnostic report (Figure A.8)shows the message of NOJA Tank fault

with the detection of driver status changes faster than settings, which

indicates the DSS identified a PMAR tank fault. Figure A.9 illustrates the as-

sociated data met the conditions of the tank diagnosis rule, described in Figure

5.7.
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Figure A.8: Identification of tank fault

Figure A.9: Validation for tank fault diagnosis

A.2.4 Data for Case Study of Umbilical Cable Fault

Diagnosis

With analysis of imported PMAR data, the report states: Umbilical Cable

fault with the detection of water ingress , the dialogue box is exhibited in

Figure A.10 To validate the automatic diagnosis, Figure 5.12 shows the diagnostic

rule and Figure A.11 shows the data fires it.

Figure A.10: Identification of umbilical cable fault
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Figure A.11: Validation for umbilical cable fault diagnosis

A.3 Source Code for Fault Diagnostic Rules

for Chapter 5

The following figures show the source codes of rules to identify PMAR device

faults, to categorise overhead line behaviours.

A.4 Source Code for Fault Prognostic Rules

for Chapter 6

The following figures show the source code of rules to predict future PMAR

operations.
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Figure A.12: The source code of MPM fault diagnosis rule

Figure A.13: The source code of driver module fault diagnosis rule

Figure A.14: The source code of tank fault diagnosis rule
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Figure A.15: The source code of microswitch fault diagnosis rule

Figure A.16: The source code of umbilical cable fault diagnosis rule
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Figure A.17: The source code of rule to classify PMAR operations

Figure A.18: The source code of general predictive rule

Figure A.19: The source code of specific predictive rule
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