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Abstract 

The management of civil engineering structures, such as bridges and dams, is 

fundamental for ensuring their continued safe and economical operation, where 

decisions such as whether or not to suspend operations are based on uncertain 

knowledge concerning the state of the structure. Modern development in technology 

has made available several accurate monitoring devices providing Structural Health 

Information, that can be used to support such decision-making through more informed 

assessment of the structural state. 

The wide-spread adoption of these devices has led to the development of Structural 

Health Monitoring (SHM) decision support system, to identify appropriate courses of 

action based on observed data from the monitoring system. Essentially, it is a two-step 

process, which includes the judgment of the structural state based on the SHM 

information, and the decision about the optimal action based on the knowledge of the 

structural state. When engineering knowledge concerning the state of the system is 

uncertain, as the monitoring system does not directly observe the state of the structure, 

Bayesian inference and Expected Utility Theory provide the only consistent way to 

judge and to make decisions, respectively, as all alternative inferential methods for 

decision support are susceptible to logical inconsistency. However, we must recognize 

that in the real world the process followed by decision makers may be distorted. The 

goal of the research proposed in this contribution is twofold: we investigate how 

heuristic behaviours may affect human judgment and decision-making in civil 

engineering, and also how decision-making can be distorted when multiple agents, 

even rational but with different appetites for risk, are involved in the decision chain. 

Firstly, most agents in everyday life apply heuristic approaches rather than a formal 

Bayesian procedure in order to make inference to support decisions. In particular, 

without the use of formal algorithms to support rational interpretation of data, humans 

apply simple strategies or mental processes to interpret data, which are prone to 

systemic errors. This may happen with data that come from various data sources, such 
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as SHM but also engineering expert knowledge. Innovative frameworks to support 

rational decision-making are then required, in order to minimize the risk of biased 

judgments or decisions. For instance, being able to predict the behavior of an irrational 

manager is necessary when we set a general policy for bridge management, and we 

know that someone else who is going to enact the policy may behave irrationally. In 

this doctoral thesis, we start reviewing the literature of heuristics and cognitive biases 

in order to identify the most relevant as regards human judgment and decision-making 

for civil engineering structures. We identify Kahneman and Tversky’s 

representativeness as a heuristic for which SHM-based decision-making is particularly 

susceptible, where simplified rules for updating probabilities can distort the decision 

maker’s perception of risk. Therefore, we reproduce mathematically this observed 

irrational behavior to investigate how it distorts human judgment. In addition, it is 

recognized that heuristic behaviors may affect expert knowledge. Consequently, we 

propose a method for eliciting engineering expert knowledge in order to assess civil 

engineering structures: the process is required in order to support the collection of valid 

and reliable data, by minimizing the adverse impact of cognitive biases. 

Secondly, the decision process can be distorted when multiple agents are involved, 

not only in the case of irrational behaviors, where the distortion is expected, but even 

in the case of rational behaviors. Indeed, decision makers may differ in their decisions 

under uncertainty according to their different appetites for risk. Again, predicting the 

behavior of managers is required for instance when there is a management policy for 

which the final decision of an agent has to consider the opinion of other decision 

makers, who may behave differently. In this thesis, we formalize an innovative rational 

method for quantifying the value of information (VoI) of SHM when two different 

agents are involved in the decision chain: this framework allows one to investigate 

how decisions may be distorted due to the different appetites for risk of decision 

makers. In addition, we understand that the interaction between rational agents with 

different appetites for risk may lead to a negative VoI, which is unexpected since it 

means that the monitoring information may be perceived as damaging. Therefore, we 

develop a mathematical formulation to investigate under which specific circumstances 

it is possible to achieve this unexpected outcome. 
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Finally, all the studied theories and proposed frameworks are applied respectively 

to various civil engineering case studies. In summary: we evaluate the structural safety 

of a common type of bridge of the Autonomous Province of Trento stock, in Italy; we 

investigate the system reliability of the Mountain Chute dam and generating station in 

Ontario, Canada; we analyse the management of a pedestrian bridge in Princeton 

University campus equipped with a monitoring system, in USA. These applications 

allow us to demonstrate the operationalizability of the methods developed in this 

thesis, and to prove their relevance in various civil engineering case studies. 
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1. Introduction 

This thesis is concerned with the effect of management of civil engineering 

structures. Civil structural engineering includes all structural engineering related to the 

built environment, including bridges, dams, tunnels, buildings, and towers. This type 

of structures is often exposed to extreme forces, for instance static and dynamic loads, 

temperature variations and high pressures. When we are managing these structures, we 

are dealing with their stability, strength, and rigidity. Moreover, a large number of 

these critical structures are getting old and therefore they increasingly require 

maintenance, inspection and replacement. It is then fundamental to guarantee their 

continued safe and economical operation, as well as to prevent potential catastrophic 

structural failures. Unfortunately, catastrophic events have happened recently: an 

example is the collapse of the Morandi Bridge (Calvi, et al., 2019), in Italy. The bridge, 

also known as Polcevera viaduct, designed in the early 1960s and opened to traffic in 

1967, collapsed in August 2018 killing 43 people and causing an invaluable economic 

damage, i.e. around €422 million as said by the Genoa Chamber of Commerce. 

Another example is the Brumadinho dam disaster (Cambridge & Darren, 2019), in 

Brazil: on January 2019, the tailings dam suffered a catastrophic failure releasing 12 

million cubic meters of tailings slurry, which caused the death of 248 people along 

with the devastation of the surrounding environment.  

In order to avoid similar catastrophic events and to assure the continued safe and 

economical operation of the structure, it is evident that the management of these 

structures is crucial and in particular decision-making plays an important role. 

Generally, decision-making is the process of making choices by identifying a decision, 

gathering information, and assessing alternative resolutions. In the case of engineering 

structures, decision-making is about how to make the optimal decision based for 

instance on the knowledge of the structural state. The managers of these structures deal 

with decision-making problems every day: for instance, a bridge manager has to decide 

whether or not to close the bridge to traffic after an accident that can question the 
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structural safety of the bridge; similarly, the manager of a dam has to make decisions 

to optimize the long-term productivity of the asset, subject to safety conditions. 

In order to make the best decision, it is fundamental for the decision maker to have 

an optimal understanding about the condition of the structure, i.e. the actual structural 

state as well as what it is expected to be in the future. Fortunately, in the 21st century 

we are getting access to much better data than we had before: with the development of 

monitoring equipment, the structural state can be evaluated based on accurate data 

referred as Structural Health Information (SHI). In detail, SHI may be provided by 

various sources such as Structural Health Monitoring (SHM) and other digital 

technologies and networks. In particular, SHM is commonly seen as a powerful tool 

as regards the management of critical civil structures, especially in supporting 

decisions concerning maintenance, reconstruction and repairs of their assets through 

reducing uncertainty about the state of the structure. The main purpose of SHM is to 

provide accurate and real-time information about the state of the structure, which can 

be used subsequently as inputs for decision-making regarding its management. SHM 

can be useful both for obtaining information about a structure just after an extreme 

event, e.g. earthquake, and for monitoring the long-term structural behaviour of the 

structure. SHM technology offers significant economic and life-safety benefits: for 

example, the accurate information about the structural state obtained with the 

monitoring system allow to use the available resources effectively, resulting in clear 

economic benefits. SHM for civil structures has been investigated in the literature 

since the early 2000s (Farrar & Worden, 2007) (Chen & Ni, 2018), and it has been 

applied in various structures such as bridges, dams, tunnels, towers, buildings and 

offshore installations (Brownjohn, 2007). For a more in-depth reading about SHM 

applied to civil engineering structures please see (Chen, 2018). 

1.1 Decision theory based on Structural Health Information 

In order to study these engineering decision problems a generic abstract 

representation is needed: the management of these critical engineering structures can 

be formalized with a two-step process, which includes a judgement and a decision, as 

presented in Figure 1.1. This process comprises the acquisition and subsequent 

interpretation of data to support informed decision-making. For instance, in the case 
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of a monitoring system, we can call it SHM-based decision process, i.e. deciding based 

on the information from a SHM system. It is fundamental to highlight that the two 

steps, although linked, are clearly two separate processes: decision-making is a 

complex process that must not be confused with the judgment of the structural state, 

which instead is precisely the starting point of decision-making itself. In addition, 

decision-making based on SHI is challenging as it requires the decision maker to 

choose appropriate actions that maximizes benefits while minimizing cost: we can 

refer to it as a trade-off between risk and benefits to prioritize activities. 

The first step of the process, i.e. the judgement, allows to judge the structural state 

of a structure based on the observations, through an interpretation model. The 

interpretation model, which allows to judge the state of the structure, can be a 

numerical or analytic function, with a mechanical or heuristic background. Generally, 

uncertainties are present in the relationship between states and observations: aleatory 

uncertainties are caused by an intrinsic randomness of the observed phenomenon, e.g. 

sensor noise, while epistemic uncertainties are due to lack of knowledge, e.g. error of 

the structural model. As regards the state, it refers to the condition of the structure 

involved in the analysis, for example in the case of a bridge it can be safe or failure, 

or other classes describing the severity of its damage. Within the scope of this 

dissertation, we define observation to be any information acquired on site which is 

suitable to infer the state of the structure. For instance, it may be data collected by 

sensors temporarily or permanently installed on the structure, in the case of a 

monitoring system, but also data apprised through visual inspections or site tests.  

The second step of the process, i.e. the decision, starts after the assessment of the 

state of the structure, and is about choosing the optimal action based on the knowledge 

of the state, through a decision model. For example, in the case of a bridge the decision 

maker has to choose between alternative actions such as close the bridge, limit the 

traffic, do nothing. Taking an action produces measurable consequences, and the 

consequences of an action can be mathematically described by several parameters, 

encoded in an outcome vector: it measures the direct and indirect consequences of the 

possible combination between an action and the structural state. For instance, it allows 

to consider the economical, e.g. direct and indirect costs, and the safety aspects needed 

to develop the trade-off between risk and benefits. Finally, the choice of the decision 
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model, which allows to identify the optimal action based on its outcome, depends on 

the specific behaviour of the decision maker. 

 

Figure 1.1. The generic framework of the two-step process. 

As we will describe in detail in the literature review, the logic of making decision 

based on SHI is formally stated under the assumption that the decision maker is an 

ideal rational agent. Consequently, the logical inference process followed by a rational 

agent as regards the judgment step is mathematically developed in the Bayes’ rule 

(Bolstad, 2010): the posterior knowledge of the structural state is evaluated based on 

the observation and on the prior knowledge (Sivia & Skilling, 2006). Moreover, as 

concerns the decision step, Expected Utility Theory (EUT) (Neumann & Morgenstern, 

1944) (Raiffa & Schlaifer, 1961) describes the analysis of decision-making under risk 

and is considered as a normative model of rational choice (Parmigiani & Inoue, 2009). 

1.2 Motivation 

The analysis of the current state of art, presented in the literature review of chapter 

2, highlights the necessity to analyse deeper these decision-making processes since 

there are engineering cases in real-life where this framework is somehow distorted: the 

main goal of this thesis is to support rational decision makers through understanding 

the consequences of distorted human judgment and decision-making. 

To start, Bayes’ theorem and EUT provide the only consistent way to judge and to 

make decision under uncertainties, while any alternative judgment or decision model 

may produce a logical inconsistency (Kahneman & Tversky, 1979) (Pope, 1986) 

(Lindley, 2006) (Parmigiani & Inoue, 2009). However, we must recognize that in the 

real world the process followed by decision makers may be different. For instance, we 
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observe that most people in everyday life favour heuristic approaches to this rational 

framework in order to judge or make decision (Gilovich, et al., 2002). In particular, 

real-life decision makers often depart from this ideal model of rationality, but judge 

and decide using common sense and privileging fast and frugal heuristics to rational 

analytic thinking. Therefore, in order to predict the choices of a real word manager, 

we have to accept that their behaviour may not be necessarily fully rational. Biased 

judgment and decision-making have been widely reported and systematically 

investigated starting 1970s in the fields of cognitive sciences, social sciences and 

behavioural economics (Gilovich, et al., 2002), but rarely implemented in engineering 

applications. An effective corrective strategy is then needed for real-world engineering 

decisions because it is here that a biased judgment or decision has potentially high 

costs. Consequently in this thesis, to support the management of civil engineering 

structures, we will focus on discrepancies in behaviour between idealized rational 

actors and real people. As we will describe in the next chapters, cognitive biases may 

distort decision-making processes based not only on monitoring information, but also 

on different data sources such as engineering expert knowledge (Dias, et al., 2018).   

Moreover, even in the case of rational decision makers we must recognize that the 

decision process may be distorted. In particular, we notice that real-life decision 

problems are typically complex with more individuals involved in the decision chain. 

In this case with various rational decision makers, they may differ in their choices 

under uncertainty, even when they have the same information, for instance because of 

their different appetites for risk. This means that innovative frameworks are needed in 

order to study how the interaction between different rational agents can influence 

decisions-making and its context. As regards the main data source analysed in this 

contribution, i.e. the monitoring system, a clear example can be found in the evaluation 

of the benefit of SHM, that is formally quantified by the so-called Value of Information 

(VoI) (Straub, et al., 2017). By analysing the VoI, we also observe that in the case of 

multiple decision makers, data may have a negative value (which is caused by the 

interaction between agents with different appetites for risk), meaning that it is not true 

that having more data automatically lead to a better decision process. This concept is 

very innovative since it is in contrast with the acknowledged principle (in the case of 

a single decision maker) that “information can’t hurt” (Cover & Thomas, 2006). 
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Consequently, to understand how the interaction between different decision makers 

can distort decision-making, in the next chapters we will focus on the quantification 

of the VoI of SHM. 

1.3 Aims and objectives 

The main goal of this thesis is then to support the rational management of critical 

structures in civil engineering, especially as regards SHM-based decision problems, 

through investigating the consequences of distorted human judgment and decision-

making. Specifically, we have four aims: 

i) To investigate how heuristic behaviours affect human judgment and decision-

making. 

ii) To develop a process to elicit engineering expert knowledge, by minimizing 

the risk of biased judgments. 

iii) To investigate how decision-making can be distorted when multiple decision 

makers are involved in the decision chain. 

iv) To demonstrate that the value of information may be negative in the case of 

multiple rational decision makers with different appetites for risk. 

These aims will be achieved through the following objectives for this research: 

- To identify at least one heuristic behaviour which is relevant as regards 

judgment and decision-making for civil engineering structures. 

- To mathematically reproduce the impact of this biased behaviour.  

- To apply the heuristic mathematical framework to a real-life SHM-based 

decision problem, in order to prove how the cognitive bias affects decision-

making by distorting the representation of information provided by SHM. 

- To develop a process for eliciting engineering expert knowledge that addresses 

key biases, in order to assess civil engineering structures. 

- To apply the developed elicitation process to a real-life case study where it is 

necessary to rely on expert judgment due to a luck of data, in order to assess its 

validity and usefulness as an accurate and reliable data source. 



19 

 

- To assess the impact of the interaction between multiple decision makers, by 

developing an appropriate mathematical formulation that takes into account the 

possibility that they may act differently due to different appetites for risk. 

- To validate the developed framework by applying it to a SHM-based decision 

problem. 

- To develop a mathematical formulation that allows to demonstrate under which 

conditions the value of information of SHM may become negative in the case 

of multiple rational decision makers. 

1.4 Overview 

The thesis comprises 7 chapters, including this introduction. In the second chapter, 

a critical review of both the current literature as well as key theories that underpin our 

research is presented. To start, the current state of art about SHM-based decision 

problems is reviewed, focusing especially on the rational methods that are commonly 

used to solve the two steps of the process, i.e. respectively Bayesian inference and 

Expected Utility Theory. In addition, the criticisms about these rational methods, 

which have motivated the research presented in this thesis, are described: they are 

principally based on the presence of heuristics and irrational behaviours in human 

judgments and decision-making. Therefore, a review of their current state of art is 

presented. Finally, we introduce the state of art about two applications that we have 

developed in our research: the quantification of the benefit of SHM and the elicitation 

process. 

In chapter 3, we investigate the consequences of heuristic distortions on SHM-

based decision problems. Based on the developed literature review as regards heuristic 

behaviours in human judgment and decision-making, we identify one of these 

behaviours that is frequently observed in bridge management: the confusion between 

condition state and bridge safety. This biased judgment can be described by Kahneman 

and Tversky’s representativeness heuristic. The aim is then to describe this bias from 

a mathematical perspective, in order to reproduce it and to understand how it distorts 

the final judgment of the manager, in contrast with the one achieved rationally 

following Bayesian logic. To validate the developed heuristic framework, we apply it 

to a real-life case study concerning the evaluation of the safety of a bridge based on 
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visual inspections: the outcomes properly demonstrate how the judgment of a biased 

inspector is clearly distorted. 

In chapter 4, we investigate the role of engineering expert knowledge as a useful 

data source. Even if our research in this case is motivated by a specific real-life case 

study regarding a dam failure analysis, we aim to develop an elicitation process based 

on a structured methodology that can be apply to many different engineering 

structures, in the case that the mathematical model used is the Bayesian network. A 

four-stage structured elicitation process is then proposed, based on the literature review 

and paying close attention to all the biases that can influence the process, such as the 

anchoring. Finally, the application of the developed methodology to the case study 

allows us to prove its validity, along with making us learn some lessons that can be 

useful to improve the procedure for future similar engineering applications.  

In chapter 5, we study how the interaction between multiple decision makers can 

distort decision-making and its context. We decide to analyse it as regards the 

quantification of the benefit of information, such as that coming from a monitoring 

system, through an index called Value of Information (VoI). After a review of the basis 

of VoI, where it is assumed that all decisions are making by only one decision maker, 

we formalize a new method for quantifying the VoI when two different agents are 

involved in the decision chain, as we often observe in the real world. To illustrate how 

this framework works, a hypothetical VoI for a pedestrian bridge equipped with a 

monitoring system is evaluated: the outcomes, evidently different from the case of a 

single decision maker, show how decisions may be distorted depending on the 

different appetites for risk of the two agents. 

In chapter 6, starting from the method for quantifying the VoI of a monitoring 

system proposed in chapter 5, we aim to demonstrate that in the case of multiple 

rational decision makers the VoI may be negative due to their different appetites for 

risk. In particular, we develop a mathematical formulation that allows to understand 

when, under specific assumptions, the VoI becomes negative. To validate this 

framework we apply it to the same case study as in chapter 5, the Streicker bridge at 

Princeton campus. The achieved results prove our statement, which is very innovative 

because a negative VoI means that the monitoring information are perceived as 

damaging, in contrast with the acknowledged principle that “information can’t hurt”. 
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Finally, the last chapter presents concluding remarks, based on a discussion about 

the outcomes of the research in order to demonstrate the achievement of the 

predetermined aims. In addition, the limitations of the developed research along with 

related future works are provided. 
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2. Literature review 

In this chapter, we present a critical review of both the current literature as well as 

key theories that underpin our research. In the first section, we present the general 

framework which provides the basis of our study, i.e. the SHM-based decision process, 

and we describe how rational methods such as Bayesian inference and Expected Utility 

Theory (EUT) are used to support such decision problems. Subsequently, the state of 

art about heuristics and cognitive biases is presented: we review their definitions and 

then we introduce the main heuristic behaviours that have been investigated in the 

literature, focusing principally on the ones that have been applied to our research. 

Finally, the state of art about two key theories that underpin our research is introduced: 

the first concerns the quantification of the benefit of SHM, based on the so-called 

Value of Information (VoI); the second is about elicitation processes that are required 

to elicit meaningful expert engineering knowledge, in order to support rational 

decision-making. 

2.1 SHM-based decision process rational framework 

In this section, we present the concepts of SHM-based decision process, i.e. 

deciding based on the information from a SHM system. The main purpose of SHM is 

to provide accurate and real-time information about the state of the structure, which 

can be used as objective inputs for decision-making regarding its management. SHM-

based decision problems have been recently investigated in the literature: Flynn and 

Todd (Flynn & Todd, 2010a) (Flynn & Todd, 2010b) proposed innovative Bayesian 

approaches to optimal sensor placement for SHM applications, focusing on the 

example of active sensing and implementing an appropriate statistical model of the 

wave propagation and feature extraction process; Zonta et al. (Zonta, et al., 2014) 

evaluated a rational framework for assessing the impact of SHM on decision-making, 

with application to a pedestrian bridge on Princeton University campus (USA) 

equipped with a fiber optic sensing system; Cappello et al. (Cappello, et al., 2016) 
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proposed a decision framework based on EUT for civil engineering decision problems, 

in the case that agents have to act based on the information of a SHM system; Tonelli 

et al. (Tonelli, et al., 2017) proposed a decision support system that interprets the data 

coming from a monitoring system and consequently suggests the optimal decision to 

undertake: this framework is based on rational methods and is applied to the Colle 

Isarco Viaduct in Italy. 

As observed in (Cappello, et al., 2016), SHM-based decision-making is properly a 

two-step process which, following the framework introduced in section 1.1, includes 

a judgement and a decision: first, based on the information y from the sensors, we infer 

the state S of the structure; next, based on our knowledge of the state S of the structure 

we choose the optimal action aopt to take. Figure 2.1 shows the process. In the 

following, each component of the framework is properly described: 

- Structural state: it represents the condition of the structure involved in the 

analysis. For instance the structure, e.g. a bridge, can be in one out of N 

mutually exclusive and exhaustive states S1, S2, …, Si, …, SN (e.g.: S1 = 

’severely damaged’, S2 = ’moderately damaged’, S3 = ’not damaged’, …). The 

state of the structure is generally not deterministically known, so it can be only 

described in probabilistic terms. 

- Observation: within the scope of this dissertation, we define observation y to 

be any information acquired on site which is suitable to infer the state of the 

structure. It may be measurements acquired by sensors installed on the 

monitored structure, documents and reports containing results of tests or 

inspections performed on the monitored structure. 

- Interpretation model: it allows one to judge the state S of the structure, based 

on the observation y, by considering all the aleatory (e.g. sensor noise) and 

epistemic (e.g. error of the structural model) uncertainties that are present in 

the relationship between state and observation. Generically, the model may be 

a numerical or analytic function, with a mechanical or heuristic behaviour. 

- Action: it is an option that the decision maker has to make at the decision step. 

The set of actions can be discrete or continuous. In the case of discrete 

variables, the agent can choose between a set of M alternative actions a1, a2, 

…, aj, …, aM (e.g.: a1 = ‘do nothing’, a2 = ‘limit traffic’, a3 = ‘close the bridge 
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to traffic’, …). In the case of a continuous set, the action may be for instance 

the choice of the frequency with which the structure needs maintenance. 

- Outcome: taking an action produces measurable consequences (e.g.: a 

monetary gain or loss, a temporary downtime of the structure, in some case 

causalities); the consequences of an action can be mathematically described by 

several parameters (e.g.: the amount of money lost, the number of day of 

downtime, the number of casualties), encoded in an outcome vector z. The 

outcome z of an action depends on the state of the structure, thus it is a function 

of both action a and state S: z(a, S); when the state is certain the consequence 

of an action is also deterministically known; therefore, the only uncertainty in 

the decision process is the state of the structure S. 

- Decision model: it is a framework that allows one to identify the optimal action 

aopt to undertake based on the outcome z and on the knowledge of structural 

state S. The choice of the decision model is very important and depends on the 

specific behaviour of the decision maker. 

The logic of decision-making under uncertainties based on SHM is formally stated 

under the assumption that the decision maker is a rational agent, who judges using 

Bayes’ theorem (Bolstad, 2010) and decides consistently with Neumann-

Morgenstern’s Expected Utility Theory (Neumann & Morgenstern, 1944), as 

presented in Figure 2.1. In the next subsection, the state of art about the two rational 

steps of the process is presented. 

 

Figure 2.1. The rational process of SHM-based decision-making. 
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2.1.1 Rational judgment: Bayesian inference 

Judgment is about understanding the state of the structure based on the observation, 

which is exactly what SHM is about from a logical standpoint. The logical inference 

process followed by a rational agent is mathematically encoded in Bayes’ rule 

(Parmigiani & Inoue, 2009): the structural state is assessed using a structural model 

along with the prior knowledge. 

Many modern textbooks offer a critical review and applications of this theory to 

data analysis, see for instance Gregory (Gregory, 2005), Sivia and Skilling (Sivia & 

Skilling, 2006), Murphy (Murphy, 2012). In addition, Bishop (Bishop, 2006) 

explained the principles of Bayesian trend fitting, MacKay (MacKay, 2003) presented 

Bayesian model updating, while Beck and Yuen (Beck & Yuen, 2004) applied 

Bayesian model updating to structural identification, and Yuen and Kuok (Yuen & 

Kuok, 2011) proposed some applications to dynamic models. Nowadays, Bayesian 

logic is consistently implemented in SHM techniques: among the many, Beck and Au 

(Beck & Au, 2002) proposed a Markov Chain Monte Carlo (MCMC) to perform 

Bayesian inference based on SHM data; Mthembu et al. (Mthembu, et al., 2011) 

proposed the use of Bayesian logic in the context of model selection; Memarzadeh et 

al. (Memarzadeh, et al., 2014) used Bayes’ rule to propose a novel learning and 

planning method; Zonta et al. (Zonta, et al., 2014) suggested a SHM framework, based 

on Bayesian inference, for quantifying the benefit of SHM in bridge management; 

Cappello et al. (Cappello, et al., 2015) used Bayes’ theorem to judge the structure 

behaviour of a bridge based on data coming from a SHM system. Other examples can 

be found in Sohn and Law (Sohn & Law, 1997), Enright and Frangopol (Enright & 

Frangopol, 1999) and Vanik et al. (Vanik, et al., 2000). 

In summary, Bayesian inference is based on the observation, the prior knowledge 

of the structural state and the structural model that approximates the behaviour of the 

structure: in this way it is possible to achieve an estimation of the structural state. In 

addition, the consequent Bayes’ theorem depends on the type of state variables: they 

can be discrete, e.g. S = (S1, S2, …, Si, …, SN), or continuous, i.e. composed by an 

infinite number of discrete variables. In the first case, Bayes’ theorem in the presence 

of uncertainty states that the state of the structure Si after observing the sensors data y 
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= (y1, y2, …, yK) is probabilistically described by the posterior information P(Si|y) 

(Sivia & Skilling, 2006) (Bolstad, 2007). In formula: 

 
P(Si|y) = 

P(y|Si) P(Si)

P(y)
. (2.1) 

Eq. (2.1) says that the posterior knowledge of the ith structural state P(Si|y) depends 

on the prior knowledge P(𝑆𝑖), i.e. what we expect the state of the structure to be before 

reading any monitoring data (Cappello, et al., 2015), and the likelihood P(y|Si), i.e. the 

probability of observing the data given the state of the structure. P(y) is instead simply 

a normalization constant, referred to as evidence, calculated as: 

 

P(y) = ∑ P(y|Si) P(Si)

N

i=1

. (2.2) 

It is interesting to notice that, if we neglect this normalization constant, it is evident 

that the posterior probability of the state of the structure S after the acquisition of the 

observation y is simply proportional to the product between the probability of 

observing the observation y, given the state S, and the probability of the state S before 

acquiring the observation y. In formula: 

 P(S|y) ∝ P(y|S) ∙ P(S). (2.3) 

On the other hand, in the case of structural states described by continuous variables, 

the definition of the posterior information is different. In this case, rather than a 

discrete structural state S, a state parameter θ has to be inferred, which can be for 

example some damage features of the structure, e.g. material properties or structural 

stiffness. Consequently, Bayes’ theorem becomes: 

 
p(θ|y) = 

p(y|θ) ∙ p(θ)

p(y)
, (2.4) 

where p(θ|y) is the posterior probability function, which tell us how the state parameter 

θ is distributed, p(y|θ) is the likelihood probability function, p(θ) is the prior 

probability function and p(y) is the evidence. If the observation y = (y1, y2, …, yK) are 

uncorrelated, the likelihood can be calculated as follows: 
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p(𝐲|𝜃) = ∏ p(𝑦𝑖|𝜃)

𝐾

𝑖=1

. (2.5) 

In addition, the evidence becomes: 

 

p(y) = ∫ p(y|θ) ∙ p(θ) dθ

Dθ

. (2.6) 

Finally, the likelihood can be seen as a representation of the interpretation model, 

chosen by the individual who judges. It is important to highlight that Bayesian logic 

does not suggest itself which interpretation model should be used, it just provides a 

logical way to calculate the posterior once we have assumed the prior and the 

interpretation model. In any case, the choice of the prior and of the interpretation model 

has an obvious impact on the calculation of the posterior: elicitation processes, 

introduced in section 2.4, can be useful to inform the choice of this interpretation 

model, as well as to provide prior distributions.  

In conclusion, although Bayesian inference is the only consistent way to judge 

under uncertainties and any alternative inference model may produce a logical 

inconsistency (Kahneman & Tversky, 1979) (Pope, 1986) (Lindley, 2006) (Parmigiani 

& Inoue, 2009), nowadays the research community recognizes that most people favour 

heuristic approaches to this rational framework (Gilovich, et al., 2002): heuristics can 

be seen as simplified algorithms that approximate the solutions in comparison to 

Bayesian inference. Consequently, in section 2.2 the state of art about heuristics and 

biases will be provided, in order to understand their main features and how they may 

affect human judgment. 

2.1.2 Rational decision-making: Expected Utility Theory 

Decision-making is about choosing the best action based on the knowledge of the 

state, i.e. once the posterior probability of the structural state has been assessed. The 

basis of rational decision-making under uncertainty is encoded in the so-called 

Expected Utility Theory (EUT), which was first introduced by Von Neumann an 

Morgenstern in 1944 (Neumann & Morgenstern, 1944), and later developed in the 

form that we currently know by Raiffa and Schlaifer (Raiffa & Schlaifer, 1961) in 
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1961. EUT is largely covered by a number of modern textbooks, among the many we 

recommend Parmigiani and Inoue (Parmigiani & Inoue, 2009). As regards the 

application of EUT to SHM, the Reader can find an extensive recent reference in the 

doctoral thesis of Cappello (Cappello, 2017). 

In order to choose the optimal action by implementing EUT, three terms have to be 

considered: the probability of the structural states evaluated using Bayesian inference 

P(Si); the quantification of the outcome z, which usually includes direct and indirect 

costs, i.e. the consequences; the appetite for risk of the decision maker, which is 

usually described by the so-called utility function U. In detail, when the structural state 

S is deterministically known, the rational decision maker ranks an action a based on 

the consequences z through a utility function U(z). Mathematically, the utility function 

is a transformation that converts the vector z, which describes the outcome of an action 

in its entire complexity, into a scalar U, which indicates the agent’s order of subjective 

preference for any possible outcome. When the state of the system is uncertain, and 

therefore the consequences of an action are only probabilistically known, Expected 

Utility Theory (EUT) says that decision makers rank their preferences based on the 

expected utility u, defined as: 

  u(a) = ES[U(z(a, S))], (2.7) 

where ES is the expected value operator of random variable S, which we have assumed 

be the only uncertainty into the problem. To clarify the notation, note that U indicates 

the utility function, while u denotes an expected utility. In other words, if each state S 

has a probability P(Si) and has an outcome z(aj, Si) when action aj is taken, the expected 

utility u(aj) of a particular action aj is evaluated as follows: 

 

 u(aj) = ∑ U (z(aj, Si))

N

i=1

P(Si). (2.8) 

Consequently, the decision maker, consistent with EUT, will choose that action aopt 

which carries the maximum expected utility payoff u:  

  u = max
j

u(𝑎𝑗),          aopt = arg max
j

 u(𝑎𝑗). (2.9a,b) 
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As regards the utility function U required to describe the behaviour of decision 

makers, it can be very different based on their particular individual risk aversion 

(Bernoulli, 1954) (Kahneman & Twersky, 1984), as presented in Figure 2.2 and 

explained in detail in chapter 5. For instance, an agent is risk neutral if his or her utility 

function U is linear with the loss or gain z, i.e. U(z) ∝ z. Since the expected utility is 

proportional to the probability of realization, as shown in Eq. (2.8), risk neutrality 

implies indifference to a gamble with an expected value of zero. So, for example, to a 

risk neutral agent, a 1% probability of losing US$100 is equivalent to a certain loss of 

US$1. Moreover, a decision maker can also be risk adverse or risk seeking. An agent 

has a risk adverse behaviour if he or she tends to reject gambles with a neutral expected 

payoff: this condition can be graphically represented with a concave, i.e. with negative 

second derivate, utility function. The condition of risk aversion is consistent with the 

observation that the marginal utility of most goods, including money, diminishes with 

the amount of goods, or the wealth of decision maker, as observed since Bernoulli 

(Bernoulli, 1954). Conversely, an agent with a risk seeking behaviour is clearly the 

opposite: the utility function is convex, i.e. with a positive second derivate. 

In conclusion, even if the basis of rational decision-making is encoded in EUT, 

choices are sometimes made based on heuristics: not rational decision strategies, but 

decisions leaded by shortcuts or emotions, which are influenced by systematic 

cognitive biases. Consequently, in section 2.2, the state of the art about heuristics and 

biases is also discussed to understand how they can influence the decision-making 

process, leading to different models that take into account irrational behaviours and 

heuristic biases in contrast with EUT. 
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Figure 2.2. Different utility functions according to the risk aversion of the decision 

maker (Bolognani, et al., 2018). 

2.2 Irrational behaviours based on heuristics and biases 

Heuristics represent a simplified method to judge or make decision which is based 

on rules of thumb, logical simplifications or shortcuts rather than a proper rational 

method. Even if heuristics have some advantages such as saving time, information and 

energy, the natural consequence of using them is that they can lead to biases. In 

general, depending on their nature, a heuristic may affect the process outlined in 

section 2.1 in the inference step, in the decision step, or in both cases. 

Biased judgement and decision-making have been widely reported and 

systematically investigated since the 1970s in the fields of cognitive sciences, social 

sciences and behavioural economics. The most important contribution to the formal 

characterization of the heuristic behaviour is the work that Kahneman and Tversky 

carried out in the early 1970s (Kahneman & Tversky, 1973) (Tversky & Kahneman, 

1974) (Kahneman & Tversky, 1979) (Tversky & Kahneman, 1983), which had a 

significant impact to the understanding and description of the human behaviour and 

represents the basis of a new discipline we currently refer to as behavioural economics. 

They developed the so-called heuristics and biases approach, challenging the 
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dominance of strictly rational models. Textbooks such as (Kahneman, et al., 1982) and 

(Gilovich, et al., 2002) are extensive references for those approaching the topic for the 

first time. 

The relevance of heuristics has been recently investigated in various engineering 

applications: for instance, Nikolova evaluated the practical performance of heuristic 

approaches in stochastic traffic engineering problems (Nikolova, 2010); Fortz 

introduced a heuristic approach for internet traffic engineering, by considering 

changing demands and robustness issues with respect to network failures (Fortz, 

2011); Martinelli investigated the nature of  technological changes using engineering 

heuristics in the telecommunications switching industry (Martinelli, 2012); Daly et al.  

studied how engineering students and practitioners generate ideas, using a 

methodology that identifies design heuristics (Daly, et al., 2012); Elms and Brown 

investigated the presence of heuristics in engineering complex systems, in order to 

provide quality control against bias and error (Elms & Brown, 2013); Yakovis and 

Chechurin studied the relationship between heuristics and standard tool application in 

the design of process control systems (Yakovis & Chechurin, 2015). Other examples 

can be found in engineering decision-making (Leonard, 2014), engineering design 

problems (Studer, et al., 2016), optimization engineering algorithms (Larijani & 

Ahmadinia, 2018), and mathematical engineering problems (Rodriguez, et al., 2018). 

In the following, we start reviewing the definition of heuristics and biases during 

history to properly understand their meaning, since everyone who made use of the term 

seemed obliged to give his own interpretation of it. Subsequently, the state of art about 

Kahneman and Tversky’s heuristics and biases approach is provided, since we have 

decided to focus our research principally on their work, in order to understand which 

among the heuristics and biases they introduced can mainly affect the process of 

judgment or decision as regards our engineering applications. 

2.2.1 Heuristic definition during history 

The term heuristic is of Greek origin: εὑρίσκω means to find out, to discover. In this 

sense, Whewell stated that “if you will not let me treat the Art of Discovery as a kind 

of Logic, I must take a new name for it, Heuristic, for example” (Todhunter, 1876). 

Similarly, Immanuel Kant affirmed that “the ideas of reason are heuristic not 
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ostensive: they enable us to ask a question, not to give the answer” (Caird, 1877). The 

concept of heuristic has been subject to several definitions and everyone who made 

use of the term seemed obliged to give his own interpretation of it. Thus, in this section, 

an overview about different meanings and the development of such expression is 

presented. 

To start, according to Holton (Holton, 1988), Albert Einstein included this term in 

the title of one of his Nobel Prize winning papers in 1905 on quantum physics, 

indicating that the view he presented was incomplete, due to the limits of our 

knowledge, but highly useful. Subsequently, as stated by Gigerenzer and Gaissmaier 

(Gigerenzer & Gaissmaier, 2011), the mathematician George Polya distinguished 

heuristics from analytical methods,  and he was listed by Minsky as the earliest 

reference to heuristic in the artificial intelligence (AI) literature (Minsky, 1961). 

Polya’s explanation went as follows (Polya, 1945): “The aim of heuristic is to study 

the methods and rules of discovery and invention…Heuristic reasoning is reasoning 

not regarded as final and strict but as provisional and plausible only, whose purpose 

is to discover the solution of the present problem…We shall attain complete certainty 

when we shall have obtained the complete solution, but before obtaining certainty we 

must often be satisfied with a more or less plausible guess. We may need the 

provisional before we attain the final. We need heuristic reasoning when we construct 

a strict proof as we need scaffolding when we erect a building.” Besides, Polya wished 

to revive heuristic in a “modest and modern form”, explaining that: “Modern heuristic 

endeavors to understand the process of solving problems, especially the mental 

operations typically useful in this process.” Therefore, as pointed out by Romanycia 

and Pelletier  (Romanycia & Pelletier, 1985), Polya’s idea was that heuristic is a 

science of problem-solving behavior that focuses on plausible, provisional, useful, but 

fallible, mental operations for discovering solutions. Moreover, these authors claimed 

that Gelernter was also one of the first to point out that heuristics work in effect by 

eliminating options from an impractically large set of possibilities (Romanycia & 

Pelletier, 1985). Gelernter’s opinion can be summarized as follows: “A heuristic is, in 

a very real sense, a filter that is interposed between the solution generator and the 

solution evaluator” (Feigenbaum & Feldman, 1963). 
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Similarly, in Tonge’s discussion of his heuristic program, he emphasized efficiency 

and effort reduction in achieving a satisfactory solution, introducing the meaning of 

heuristic as any arbitrary “device”, which provides “shortcuts” and employs 

“simplifications” (Tonge, 1960). His official definition was: “…by heuristics we mean 

principles or devices that contribute, on the average, to reduction of search in 

problem-solving activity…Heuristic problem-solving procedures are procedures 

organized around such effort-saving devices” (Feigenbaum & Feldman, 1963). 

Recalling Polya’s idea, Minsky underlined also that a heuristic must be applicable to 

more than just a restricted set of problems and an effort–saving method that worked 

on only one problem would be more properly called a specific tool rather than a 

heuristic method (Minsky, 1961). Thus, summarizing several opinions and concepts 

shown above, Feigenbaum and Feldman gave their definition as follows (Feigenbaum 

& Feldman, 1963): “A heuristic (heuristic rule, heuristic method) is a rule of thumb, 

strategy, trick, simplification, or any other kind of device which drastically limits 

search for solutions in large problem spaces. Heuristics do not guarantee optimal 

solutions; in fact, they do not guarantee any solution at all; all that can be said for a 

useful heuristic is that it offers solutions which are good enough most of the time.” 

Finally, according to Romanycia and Pelletier, during the early AI period the 

concept of heuristic was transformed, starting with Polya from a vague psychological 

groping for a solution, into the notion of an exploration guided along paths in a formal 

problem-solving structure or space (Romanycia & Pelletier, 1985). We can say that 

such transformation was strictly connected to the advent of computer programming, 

when it became clear that most problems of any importance are computationally 

intractable, and the optimal solution is unknown. Differently by AI researchers, as 

explained by Gigerenzer and Gaissmaier, psychologists became interested in 

demonstrating human reasoning errors (Gigerenzer & Gaissmaier, 2011). 

On the other hand, Gilovich and Griffin claimed that, in the late 1960s and early 

1970s, after the early AI era, a series of papers by Amos Tversky and Daniel 

Kahneman revolutionized the academic research on human judgment. They developed 

the so-called heuristics and biases approach, challenging the dominance of strictly 

rational models. Their work highlighted the reflexive mental operations used to make 

complex problems manageable, pointing how the same processes can lead both to 
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accurate and to dangerously flawed judgments. Their central idea of the heuristics and 

biases program was that (Gilovich, et al., 2002): “…judgment under uncertainty is 

often based on a limited number of simplifying heuristics rather than more formal and 

extensive algorithmic processing. These heuristics typically yield accurate judgments 

but can give rise to systematic error.” The main innovation lays in the analysis of the 

descriptive adequacy of ideal models of judgment and in the proposal of a cognitive 

alternative that explained human error without invoking motivated irrationality. 

According to the classical model of rational choice, the rational actor chooses the 

optimal action by assessing the probability of each possible outcome, detecting their 

utility and combining them together. The theory of rational choice assumes that people 

judge these two aspects and judge them well. However, evidence displays that people’s 

assessments of likelihood and risk do not conform to the laws of probability. In this 

field, Simon developed the concept of bounded rationality, that is, people reason and 

choose rationally, but only within the constraints imposed by their limited search and 

computational capacities (Simon, 1956). Kahneman and Tversky developed instead 

their own perspective on bounded rationality, asserting that the processes of intuitive 

judgment are not merely simpler than rational models demanded, but are categorically 

different in kind. In fact, they suggested that heuristics are simple and efficient because 

they exploit evolved or learned capacities (Gilovich, et al., 2002). 

As regards to the adequacy of probability theory as a descriptive theory, Angner  

(Angner, 2012) highlighted that the former theory was never designed to capture the 

precise cognitive processes people use when forming judgments, indeed there appears 

to be a wide range of circumstances under which people’s intuitive probability 

judgments differ substantially, systematically and predictably from the demands of the 

theory. In this sense, the heuristics and biases program was a prominent effort to 

develop a descriptively adequate theory of probabilistic judgment, that is, to capture 

the manner in which people actually make judgments (Angner, 2012). Another 

interesting definition was provided by Pearl, who claimed that (Pearl, 1984): 

“Heuristics are criteria, methods, or principles for deciding which among several 

alternative courses of action promises to be the most effective in order to achieve some 

goal. They represent compromises between two requirements: the need to make such 
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criteria simple and, at the same time, the desire to see them discriminate correctly 

between good and bad choices.” 

In the 1990s, Gigerenzer introduced the fast and frugal concept, developing and 

testing quantitative models of heuristics that, “…when compared to standard 

benchmark strategies…can be faster, more frugal, and more accurate at the same 

time” (Gigerenzer, et al., 1999). He defined also three qualities that a heuristic should 

embody: a) heuristics are simple relative to the evolved or learned capacities of an 

organism; b) heuristics exploit structures of environments, that is, their rationality is 

not logical but ecological, thus it suggests that a heuristic is not good or bad, rational 

or irrational per se, but only relative to an environment; c) heuristics are distinct from 

“as–if” optimization models (Gigerenzer, 2004). Similarly, Shah and Oppenheimer 

proposed that all heuristics rely on effort reduction by one or more of the following  

(Shah & Oppenheimer, 2008): a) examining fewer cues, b) reducing the effort of 

retrieving cue values, c) simplifying the weighting of cues, d) integrating less 

information, and e) examining fewer alternatives. Finally, as Tversky, Kahneman and 

Gigerenzer did, Katsikopoulos considered heuristics not from a computational short-

cuts point of view, but as psychological basis. In particular, by psychological heuristics 

he meant models for making decisions that  (Katsikopoulos, 2011): a) rely heavily on 

core human capacities; b) do not necessarily use all available information and process 

the information they use by simple computations; c) are easy to understand, apply, and 

explain. 

2.2.2 Cognitive biases linked to heuristics 

The term bias originates in mid-16th century from French biais and it is probably of 

Greek origin: ἐπικάρσιος means crosswise, oblique. Gilovich and Griffin explained 

that in the work of Tversky and Kahneman each heuristic was associated with a set of 

biases, that is, “departures from the normative rational theory that serves as markers 

or signatures of the underlying heuristics” (Gilovich, et al., 2002). In this sense, 

Tversky and Kahneman identified positive and negative agendas for the heuristics and 

biases program, where positive agenda illustrates the processes through which people 

make a variety of important and difficult real world judgments, whereas negative 

agenda shows the conditions under which intuitive judgments are likely to depart from 
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the rules of probability (Gilovich, et al., 2002). Several aspects of this approach led to 

a comparison between the rules of logic and statistics and the heuristics. As pointed 

out by Gigerenzer and Gaissmaier, the former has been linked to rational reasoning, 

whereas the latter to error-prone intuitions or even irrationality (Gigerenzer & 

Gaissmaier, 2011). 

However, Simon, who is the father of bounded rationality, emphasized a different 

point of view, asking: “How do human beings reason when the conditions for 

rationality postulated by the model of neoclassical economics are not met?” (Simon, 

1989). According to Gigerenzer and Gaissmaier, the research formalized recently that 

in a number of large worlds (i.e. “situations in which some relevant information is 

unknown or must be estimated from samples, and the future is uncertain, violating the 

conditions for rational decision theory” (Gigerenzer & Gaissmaier, 2011)), simple 

heuristics were more accurate than standard statistical methods that have the same or 

more information, placing heuristics at the same importance level than standard 

statistical models of rational cognition (Gigerenzer & Gaissmaier, 2011).Therefore, as 

summarized by Angner (Angner, 2012), heuristics are rules of thumb that can be used 

when forming judgments under uncertainty to reduce the time and effort required to 

solve everyday problems, but they are not assumed to be perfect, thus they can lead to 

answers that are systematically and predictably wrong, that is, they can lead to bias. 

The awareness of the conditions under which this may happen might limit the 

likelihood that they do. 

2.2.3 Kahneman and Tversky’s heuristics and biases approach 

As we have seen in the above introduction about heuristics and biases, various 

definitions and approaches have been developed during history. We think that the most 

important contribution is the work of Kahneman and Tversky, and consequently we 

have decided to focus on their heuristics and biases approach, which challenged the 

dominance of strictly rational models and therefore it is clearly relevant for the aims 

of our research. 

Kahneman and Tversky revolutionized the academic research on human judgment 

in the early 1970s (Kahneman & Tversky, 1972) (Kahneman & Tversky, 1973) 

(Tversky & Kahneman, 1974). The main innovation lies in the analysis of the 



37 

 

descriptive adequacy of ideal models of judgment and in the proposal of a cognitive 

alternative that explained human error without invoking motivated irrationality. 

Evidence displays that people’s assessments of likelihood and risk do not conform to 

the laws of probability. Additionally, this approach has demonstrated a large number 

of cognitive biases, i.e. systematic errors in human judgment and decision-making. In 

the following, we present the state of art about the main heuristics presented by them 

in 1974, in their paper titled “Judgment under Uncertainty: Heuristics and Biases” 

(Tversky & Kahneman, 1974), as well as the decision theory based on these irrational 

behaviours that they introduced in 1979, i.e. the Prospect Theory (Kahneman & 

Tversky, 1979). 

2.2.3.1 Representativeness 

Representativeness is commonly used to describe the level of how well or how 

accurately something reflects upon a sample. Citing Kahneman and Tversky  

(Kahneman & Tversky, 1972), an individual who follows the representativeness 

heuristic “evaluates the probability of an uncertain event, or a sample, by the degree 

to which it is: (i) similar in essential properties to its parent population; and (ii) 

reflects the salient features of the process by which it is generated”. This means that, 

a hypothesis, or event A, is judged more probable than a hypothesis, or event B, 

whenever A appears more representative than B: in other words, the ordering of events 

by their subjective probabilities (i.e. any estimate of the probability of an event, which 

is given by a subject, or inferred from his behavior, without demanding to satisfy any 

axioms or consistency requirements) coincides with their ordering by 

representativeness. 

To illustrate such heuristic, Kahneman and Tversky presented an intuitive example 

(Tversky & Kahneman, 1974), in which people had to assess the probability of Steve’s 

employment from a list of possibilities (e.g. farmer, salesman, airline pilot, librarian 

or physician), simply considering Steve’s description provided by a former neighbour. 

Such description went as follows (Tversky & Kahneman, 1974): “Steve is very shy and 

withdrawn, invariably helpful, but with little interest in people, or in the world of 

reality. A meek and tidy soul, he has a need for order and structure, and a passion for 

detail.” The representativeness heuristic leads to assess the probability that Steve is a 
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librarian, for example, by the degree to which he is representative of the stereotype of 

a librarian. Therefore, to be representative an uncertain event should not only be 

similar to its parent population, but it should also reflect the properties of the uncertain 

process by which it is generated, i.e. it should reflect the idea of randomness. In 

summary, events are ranked according to their representativeness; people consistently 

judge the more representative event to be the more likely, whether it is or not. In 

addition, representativeness is not affected by several factors that affect rational 

judgments instead and this leads to relevant biases, such as: insensitivity to prior 

probability, insensitivity to sample size, misconceptions of chance, insensitivity to 

predictability, illusion of validity and misconceptions of regression. 

This heuristic has been widely analysed in the literature from a descriptive point of 

view, principally with empirical research based on experiments, with application to 

many different fields such as cognitive sciences, social sciences, behavioural 

economics, finance, health care, psychology and gambling. For instance, Johnson 

(Johnson, 1983) demonstrated the representativeness behaviour when assessing risk of 

bankruptcy; Brannon and Carson (Brannon & Carson, 2003) showed how this heuristic 

affects health care; Luo (Luo, 2013) investigated the effect of representativeness in 

financial markets data; Woodland and Woodland (Woodland & Woodland, 2015) 

showed the impact of this heuristic in sport gambling. As regards the impact of 

representativeness on decision-making and its context, an extensive recent literature 

review can be found in Bilek et al. (Bilek, et al., 2018). 

However, if we wish to investigate this heuristic as regards the engineering cases 

of our interests, the work of the above-mentioned authors is not sufficient because they 

do not propose mathematical models that allow us to reproduce such behaviour. In the 

literature, there are only a few models attempting to explain this heuristic from a 

mathematical perspective, see for instance Edward (Edward, 1968), Grether (Grether, 

1992) (Grether, 1980), Gigerenzer (Gigerenzer, 1995), Barberis et al. (Barberis, et al., 

1998), Tenenbaum and Griffiths (Tenenbaum & Griffiths, 2001), Bordalo et al. 

(Bordalo, et al., 2016). These models will be studied in detail in the paper presented in 

chapter 3. 

Based on our studies about this heuristic, we think that this behaviour can affect our 

engineering applications: for instance, it perfectly describes the cognitive bias 
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frequently observed in bridge management about the confusion between condition 

state and bridge safety, as reported in (Zonta, et al., 2007). Consequently, in chapter 3, 

we develop a mathematical framework that allows us to reproduce this biased 

behaviour, based on the literature review about representativeness presented in this 

section, and we validate it with an application to a real-life case study concerning the 

structural safety of a bridge. 

2.2.3.2 Adjustment or anchoring 

The anchoring heuristic was first proposed by Slovic and Lichtenstein in 1971 

(Slovic & Lichtenstein, 1971), and later developed by Kahneman and Tversky in 1974 

(Tversky & Kahneman, 1974). According to Kahneman and Tversky, people make 

estimates by starting from an initial value (which may be suggested by the formulation 

of the problem, or it may be the results of a partial computation), that is adjusted to 

yield the definitive answer. However, adjustments are typically insufficient, that is, 

different starting points yield different estimates, which are biased toward the initial 

values, and this phenomenon is called anchoring. In addition, this heuristic leads to the 

biases in the evaluation of conjunctive and disjunctive events and also in the 

assessment of subjective probability distribution (Tversky & Kahneman, 1974). 

The anchoring heuristic has been investigated in the literature, an extensive recent 

literature review about the anchoring effect in decision-making processes can be found 

in Furnham and Boo (Furnham & Boo, 2011). Moreover, there are many papers where 

this bias is observed and analysed, principally based on experiments: for instance, 

Wegener et al. (Wegener, et al., 2010) investigated the anchoring effect in judgment 

and decision-making; Welsh et al. (Welsh, et al., 2014) examined anchoring in 

simulated poker-like card games; Mochon and Frederick (Mochon & Frederick, 2013) 

studied the influence of this heuristic in sequential judgments; Meub and Proeger 

(Meub & Proeger, 2015) showed how anchoring can be present in social context; Jetter 

and Walker (Jetter & Walker, 2017) demonstrated the substantial role that can be 

played by this bias in financial decision-making; De Wilde et al. (De Wilde, et al., 

2018) investigated the anchoring effect when decision-making is developed in groups. 

Other examples can be found in Cohen et al. (Cohen, et al., 1972), Epley and Gilovich 

(Epley & Gilovich, 2001) (Epley & Gilovich, 2005), Russo (Russo, 2010). 
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As in the previous case of the representativeness heuristic, also for the anchoring it 

is not easy to find in the literature mathematical models that allow the reproduction of 

this behaviour: some authors proposed mathematical equations to describe it, see 

Hogarth and Einhorn (Hogarth & Einhorn, 1992), Birnbaum and Zimmermann 

(Birnbaum & Zimmermann, 1998), and Kusev et al. (Kusev, et al., 2018); other authors 

suggested instead that this bias can be reproduced with existing models, e.g. cognitive 

process model based on Metropolis-Hastings algorithm  (Lieder, 2012), Selective 

Accessibility model (Mussweiler, et al., 2000), Bidirectional Associative Memory 

network (Bhatia & Chaudhry, 2013). The most interesting work for our research is the 

one of Turner and Schley (Turner & Schley, 2016), because they proposed a model 

that has a clear analogy with Bayes’ theorem: the model, called Anchor Integration 

Model, is a descriptive tool for the measurements and quantification of this bias, and 

is based on three components, i.e. the prior representation, the influence of the anchor 

and the posterior representation. It is then evident that in this model the anchoring 

effect replaces mathematically the function of the likelihood of Bayes’ theorem. 

As regards the application to our research, the anchoring effect is probably the most 

influential bias in elicitation processes: for instance, an expert making a series of 

assessments provides an initial assessment for the first quantity of interest and all 

subsequent assessments may be adjustments; consequently, it is important to check for 

trends in order to understand if there is any indicators of the anchoring bias. 

Consequently, in the paper presented in chapter 4, while proposing a structured 

methodology for eliciting engineering expert knowledge, we develop each stage of the 

process in a way that the effect of this bias is minimized. 

2.2.3.3 Availability 

The last heuristic investigated by Kahneman and Tversky is the availability: an 

individual evaluates the frequency of classes or the probability of events by 

availability, i.e. by the ease with which relevant instances come to mind (Kahneman 

& Tversky, 1973) (Tversky & Kahneman, 1974). Thus, a person could estimate the 

numerosity of a class, the likelihood of an event or the frequency of co-occurrences by 

assessing the ease with which the relevant mental operation of retrieval, construction 

or association can be conducted. This heuristic leads to predictable biases, e.g.: biases 
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due to the retrievability of instances, biases due to the effectiveness of a search set, 

biases of imaginability and bias in the judgment of the frequency with which two 

events co-occur, i.e. illusory correlation  (Tversky & Kahneman, 1974). 

The effect of the availability heuristic in judgment and decision-making has been 

investigated in the literature, see for instance Taylor and Thompson (Taylor & 

Thompson, 1982), Jacoby et al. (Jacoby, et al., 1989), Watkins and LeCompte 

(Watkins & LeCompte, 1991), Betsch and Pohl (Betsch & Pohl, 2002), Oppenheimer 

(Oppenheimer, 2004). Moreover, many papers examined the presence of this bias in 

different fields based on experiments: for instance, Maniset et al. (Manis, et al., 1993) 

analysed the role of availability in judgments of category size and frequency of 

occurrence; Geurten et al. (Geurten, et al., 2015) investigated the presence of this bias 

in early childhood; Chen et al. (Chen, et al., 2017) studied the role of availability in 

investor behaviour; Kudryavtsev (Kudryavtsev, 2018) showed its effect on large daily 

stock price changes. Other examples can be found in McKelvie and Drumheller 

(McKelvie & Drumheller, 2001) and Pachur et al. (Pachur, et al., 2012). Conversely, 

how to reproduce mathematically this behaviour is not studied in the literature: we can 

just find few papers, such as Shrum and O’Guinn (Shrum & O'Guinn, 1993) and Shrum 

(Shrum, 1996), where a descriptive model is proposed but without using mathematical 

equations. 

As regards our research, the availability is one of the biases that can adversely 

influence elicitation processes, therefore, in the same way as for the anchoring, in the 

development of the methodology presented in chapter 4 we pay close attention to it in 

order to minimize the risk of biased judgments. 

2.2.3.4 Prospect theory 

Kahneman and Tversky developed an alternative model as regards the decision 

step, i.e. the second step of the process presented in section 2.1, which takes into 

account irrational behaviours and heuristic biases: the prospect theory (PT), which was 

first introduced in 1979 (Kahneman & Tversky, 1979) and later further developed in 

1992 (Kahneman & Tversky, 1992). 

PT is an alternative account of individual decision-making under risk and it is 

developed for simple prospects with monetary outcomes and stated probabilities, but 
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it can be extended to more involved choices. This theory is mainly based on two 

effects: the certainty effect and the isolation effect. The first means that people 

underestimate the utility of uncertain scenarios compared to outcomes obtained with 

certainty, in other words it supports risk aversion in choices involving sure gains and 

risk seeking in choices involving sure losses. The second is instead based on the fact 

that people generally discard components that are shared by all prospects under 

consideration and this leads to inconsistent preferences when the same choice is 

presented in different forms. 

While in EUT utilities of outcomes are weighted by their probabilities, PT suggests 

an alternative approach, in which the analysis of outcomes should be applied to gains 

and losses rather than to final assets, and in which probabilities are replaced by 

decision weights. In particular, risk aversion and risk seeking are determined solely by 

the utility function when considering EUT. In the PT instead, risk aversion and risk 

seeking are determined jointly by the utility function and by the capacities, which can 

be called cumulative weighting functions, or weighting functions for short. 

In the original PT introduced in 1979 (Kahneman & Tversky, 1979), the authors 

proposed the utility function U as a two-part function, in formula: 

 
 U(z) = { 

    zα                 if  z ≥ 0

-λ(-z)β              if  z < 0
 , (2.10) 

where α and 𝛽 are subjective decision parameters, whereas 𝜆 is a coefficient that 

represents the different slope of the utility function for losses in comparison with the 

one for gains, i.e. it indicates the degree of loss aversion. Figure 2.3 shows a 

hypothetical utility function, that can be compared to the one presented in Figure 2.2 

about EUT. 
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Figure 2.3. Prospect theory: a hypothetical utility function. 

Subsequently, the advanced PT (Kahneman & Tversky, 1992) relates the observed 

nonlinearity of preferences to the shape of the weighting function. In particular, it 

transforms cumulative rather than individual probabilities and extends the theory to 

uncertain as well to risky prospects with any number of outcomes. It allows also 

different weighting functions for gains and for losses and it provides a unified 

treatment of both risk and uncertainty. The authors derived from different experiments 

that the cumulative weighting function w is concave near the origin. In addition, the 

conjunction of the above inequalities implies that, in accord with diminishing 

sensitivity, w has an inverted S-shape: it is steepest near the endpoints and shallower 

in the middle of the range. Figure 2.4 plots w, while Eq. (2.11) shows its functional 

form for gains (+) and losses (-), respectively: 

 
w+(p) = 

pγ

(pγ + (1 - p)
γ
)
1

γ⁄
,       w-(p) = 

pδ

(pδ + (1 - p)
δ
)
1

δ⁄
, (2.11a,b) 

where 𝛾 and 𝛿 are subjective decision parameters, while p is the probability.  
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Figure 2.4. Weighting function based on subjective parameters 𝛾 and 𝛿. 

Following the ideas introduced by the PT, other theories have been proposed, for 

instance the support theory (ST) (Tversky & Koehler, 1994), introduced by Tversky 

and Koehler in 1994. This is a theory of subjective probability that proves how various 

descriptions of the same event may lead to different judgments, due to heuristic 

behaviours, e.g. the unpacking principle. Unlike the PT, which focuses on the decision, 

the ST focuses on the judgment. 

In conclusion, these theories model the behaviour of decision makers when they are 

biased by some heuristics and cognitive biases. In the literature, it is possible to find a 

few papers where a comparison between rational EUT and irrational PT is developed 

as regards engineering case studies: see for instance our paper (Bolognani, et al., 2017) 

and also the one of Gong and Frangopol (Gong & Frangopol, 2020), where the 

behaviour of a bridge manager is in both cases investigated. 

2.3 Value of Information of SHM 

In this section, we present the state of the art concerning one of the studies that we 

have developed in our research, i.e. how to evaluate the benefit of SHM. The 

framework used for the achievement of this aim, called Value of Information (VoI), is 

very interesting for our research since it can be seen precisely as an application of EUT 

based on a preposterior analysis. 
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The utility of SHM has rarely been questioned in our community, however only 

recently a few published papers (Thons & Faber, 2013) (Zonta, et al., 2014) have 

clarified how to evaluate it. The benefit of information is formally quantified by the 

so-called Value of Information (VoI), a concept anything but new: it was first 

introduced by Lindley (Lindley, 1956) in 1956, as a measure of the information 

provided by an experiment, and later formalized by Raiffa and Schlaifer (Raiffa & 

Schlaifer, 1961) and DeGroot (DeGroot, 1984). Since its introduction, it has been 

continuously applied in manifold fields, including statistics, reliability  (Goulet, et al., 

2015), and operational research (Wagner, 1969) (Sahin & Robinson, 2002) 

(Ketzenberg, et al., 2007) (Quigley, et al., 2017). Its first appearance in the SHM 

community was implicitly in the 1980s (Thoft-Christensen & Sorensen, 1987), while 

explicitly it is much more recent and dates back, in our best knowledge, to a paper 

published in 2005 by Straub and Faber (Straub & Faber, 2005), where it is applied to 

risk based inspection planning for engineering system. Subsequently, many papers 

studied the VoI for SHM: Bernal et al. proposed a VoI framework based on Bayesian 

decision-making with application to damage detection (Bernal, et al., 2009); Pozzi et 

al. provided a framework to evaluate the impact of SHM in bridge management based 

on VoI (Pozzi, et al., 2010); Pozzi and Der Kiureghian proposed a framework to 

evaluate the VoI for long-term SHM systems based on Monte Carlo simulations (Pozzi 

& Der Kiureghian, 2011); Thöns & Faber evaluated the VoI for SHM based on a life-

cycle cost analysis (Thons & Faber, 2013); Zonta et al. suggested a SHM framework 

for quantifying the benefit of SHM in bridge management (Zonta, et al., 2014); 

Limongelli et al. proposed a framework based on the concept of VoI for the case of 

emergency management of road bridges subjected to seismic risk (Limongelli, et al., 

2017); Giordano et al. proposed a framework for assessing the VoI for SHM of scoured 

bridges (Giordano, et al., 2020). A recent state of the art can be found in Straub et al. 

(Straub, et al., 2017) and Thöns (Thons, 2017). 

In the last few years, quantifying the value of SHM has known a renewed popularity 

thanks to the activity of the EU-funded COST action TU1402 (Thons, et al., 2017). In 

addition, special sessions about VoI have been recently organized in International 

Conferences, e.g. IWSHM and ICASP. In the following, the most recent contributions 

are summarized: Iannacone et al. proposed a framework for the evaluation of VoI of 
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selected inspection procedures based on the information from a SHM system 

(Iannacone, et al., 2019); Cantero-Chinchilla et al. used the concept of VoI as a rational 

index to provide optimal ultrasonic sensor configuration (Cantero-Chinchilla, et al., 

2019); Zhang et al. applied the concept of VoI to understand the optimal SHM strategy 

decision as concerns risk-based inspection planning (Zhang, et al., 2019); Honfi 

applied the concept of VoI for SHM to rational decision-making in bridge management 

(Honfi, 2019); Valkonen et al. analysed the VoI of individual risk preference for 

decision-making in SHM (Valkonen & Glisic, 2019); Geroulas et al. proposed a 

process for SHI in the context of maintenance strategy and investment decisions based 

on VoI (Geroulas, et al., 2019). 

We introduce in the following the concept of VoI as regards the topic of our 

research. According to (Zonta, et al., 2014), the value of a SHM system can be simply 

defined as the difference between the benefit, or expected utility u*, of operating the 

structure with the monitoring system and the benefit, or expect utility u, of operating 

the structure without the system. In formula: 

 VoI = u* −  u. (2.12) 

Both u* and u are expected utilities calculated a priori, i.e. before actually receiving 

any information from the monitoring system. While in u it is assumed that the 

knowledge of the manager is his a priori knowledge, u* is calculated assuming the 

decision maker has access to the monitoring information and is sometimes referred as 

to preposterior utility. The difference between these values measures the value of the 

information to the decision maker. Clearly, if the monitoring does not provide any 

useful information, the preposterior u* is equal to the prior u, and the value of 

monitoring information is zero.  

In the case of a structure not equipped with a monitoring system, the decision maker 

decides without accessing any SHM data. In this case, the manager’s prior expected 

utility u(aj) of a particular action aj, depends on their prior probabilistic knowledge 

P(Si) of each possible state Si: 

 

 u(aj) = ∑ U (z(aj, Si))

N

i=1

P(Si). (2.13) 
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Consistent with EUT, the rational manager will then choose that actions aopt which 

carries the maximum expected utility payoff u:  

  u= max
j

u(𝑎𝑗),          aopt = arg max
j

 u(𝑎𝑗). (2.14a,b) 

Conversely, if a monitoring system is installed, and data are accessible by the agent, 

the monitoring observation y affects the state knowledge, and therefore indirectly their 

decision. This time, the posterior expected utility u(aj,y) of actions aj depends on the 

posterior probabilities P(Si|y), which are now functions of the observation y: 

 

 u(aj, y) = ∑ U (z(aj, Si)) P(Si|y).

N

i=1

 (2.15) 

Since the posterior probability depends on the particular observation y, in the posterior 

situation the expected utility is a function of y as well, and so are the maximum 

expected utility and the optimal choice:  

   u(y) = max
j

u(𝑎𝑗 , y),         aopt = arg max
j

 u(𝑎𝑗, y). (2.16a,b) 

Eq. (2.14a) and (2.16a) are the utilities calculates before and after a monitoring system 

is interrogated. Note that, in order to evaluate the posterior utility of an action u(aj,y), 

it is required to know the particular realization of observation y, so it is not possible to 

evaluate the posterior utility until the monitoring system is installed and its readings 

are available. How does the utility change if we have decided to install a monitoring 

system, but we have still to observe the sensors’ readings? Technically, what we 

should do is to evaluate a priori (i.e. now that the system is not installed yet) the 

expected value of the utility a posteriori (i.e. at the time when the system will be 

installed and operating). This quantity is called preposterior utility, u*, to separate it 

both from the prior and posterior utilities introduced above. The preposterior utility u* 

is independent on the particular realization and can be derived from the posterior 

expected utility u(y) by marginalizing out the variable y, (Zonta, et al., 2014) 

(Cappello, et al., 2016): 
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 u* = E𝐲 [max

j
u(aj,y)] = ∫ max

j
u(aj,y) ∙ p(y) 

Dy

dy, (2.17) 

where distribution p(y) is the same evidence defined by Eq. (2.2). The preposterior 

expected utility encodes the total expected utility of a decision process, based on the 

information provided by the monitoring system, but evaluated before the monitoring 

system is actually installed.  

In conclusion, the Value of Information of the monitoring system is calculated as 

follows (Zonta, et al., 2014):  

 
 VoI = u* −  u = ∫ max

j
u(aj,y) ∙ p(y) 

Dy

dy − max
j

u(𝑎𝑗). (2.18) 

In other words, the VoI is the difference between the expected maximum utility and the 

maximum expected utility. It is easily mathematically verified that u* is always greater 

or equal than u, and therefore the VoI as formulated above can only be positive. This 

is to say that under the assumption above SHM is always useful, consistently with the 

principle that “information can’t hurt” (Cover & Thomas, 2006) (Pozzi, et al., 2017).  

It is worth reminding that these assumptions are performed before acquiring the data. 

That means that the value of those data is anticipated by the decision maker, even if 

the realized value, once the decision is made, may be quite different. As well, it may 

be that the cost of data exceeds its value, but this would be reflected in the calculation 

as we assess the utility associated with the cost of obtaining the data. 

In addition, this process of deciding on the monitoring system installation can be 

graphically represented as a two-stage decision tree, as shown in Figure 2.5. At the 

first stage the agent decides on whether to go or not with the SHM system, while at 

the second stage he decides on the action a1, …, aj to undertake on the structure. The 

realization of the state occurs at the following chance node and the outcome z depends 

on the action and the state. On the ‘without SHM’ branch of the tree, the state is 

determined by the prior information and the expected utility corresponds to u in Eq. 

(2.13). On the ‘with SHM’ branch of the tree instead, the second stage action is decided 

based on the information y from the monitoring system and the final outcome includes 

the cost zSHM of the monitoring system. The best choice of stage one is the one that 

provides maximum utility, and this can be calculated by solving the two-stage tree by 
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backward induction (Parmigiani & Inoue, 2009). 

 

Figure 2.5. Graphical representation of the decision problem of whether or not to 

install a monitoring system (SHM) (Bolognani, et al., 2018). 

In the classical literature, i.e. the formulation presented above, it is assumed that the 

decision is taken at any stage by the same rational individual. However, we must 

recognize that in the real world the process whereby a decision maker makes decision 

is typically more complex, with more individuals involved in the decision chain. Even 

oversimplifying, we always have at least two different decision stages. Consequently, 

in chapter 5 and chapter 6, we propose and demonstrate an innovative rational method 

for the quantification of the VoI in the case where two different individuals are 

involved in the decision process. This framework allows one to investigate how 

decisions may be distorted due to the difference appetite for risk of decision makers, 

for instance leading to a negative VoI, which is not consistent with the principle that 

“information can’t hurt” (Cover & Thomas, 2006) (Pozzi, et al., 2017) introduced 

above. 

2.4 Elicitation process 

In this section, we introduce the state of art as concerns another study of our 

research, i.e. the elicitation process. Elicitation processes are fundamental in order to 

use expert engineering knowledge as an accurate and reliable data source, and then to 

support rational decision-making. Expert judgments are useful not only when observed 



50 

 

data are not sufficient, but also when they are abundant since the significance of the 

past to the future can be evaluated also with expertise (Hora, 2007) (Quigley & Walls, 

2018). Nowadays, in the research community there is a general agreement about the 

role of expert knowledge as a useful data source: some researchers even think that 

observed data are history while expert judgement is the future (Quigley & Walls, 

2020).  

For the purpose of this contribution, we are interested in eliciting expert judgment 

in the form of subjective probabilities: it is a socio-technical activity and requires a 

structured and facilitated process to extract meaningful judgments because people, 

even experts, are unable to provide accurate and reliable data simply on request 

(Ferrell, 1994) (Vick, 2002). Indeed, simply asking a person for their best estimate 

results in poor data due to the plethora of biases in human judgment, such as the ones 

introduced in section 2.2. Elicitation processes are then designed to minimize the 

influence of these biases (Quigley & Walls, 2020).Textbooks such as (Cooke, 1991), 

(Meyer & Booker, 1991) and (Dias, et al., 2018) are extensive references for general 

aspects of elicitation. For instance, Cooke introduced some generic principles that 

should be followed by expert judgment processes (Cooke, 1991): accountability, i.e. 

all data should be available and the results reproducible; empirical control of expert 

assessments; neutrality, i.e. the elicitation should lead the experts to provide their true 

beliefs; fairness, i.e. before the process all experts should be considered at the same 

level. 

Even if there is not a protocol for probability elicitation that is universally accepted, 

the most used protocols that we can find in the literature are three: the Stanford 

Research Institute (SRI) protocol (Ferrell, 1985) (Spetzler & Stael Von Holstein, 1985) 

(Merkhofer, 1987), the Morgan and Henrion’s protocol and the Wallsten/EPA protocol 

(Morgan, et al., 1990). They are similar and based on them it is possible to follow 

seven stages: 

- Motivating, i.e. to motivate the experts by explaining the aims of the elicitation 

process and why their expertise is fundamental. In the development of this 

stage it is important to identify and address motivational biases, such as: 

management bias, i.e. when experts provide goals rather than judgments, e.g. “the 

dam will not fail”; expert bias, i.e. when experts become overly confident because 
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they have been labelled as “experts”. 

- Structuring, i.e. to structure the uncertain quantities of the problem in an 

unambiguous way. This stage aims also to manage cognitive biases, for 

instance by disaggregating the quantity of interest into more elemental 

variables. 

- Conditioning, i.e. to discuss relevant information in order to condition the 

expert’s judgement to avoid cognitive biases, such as: anchoring bias, i.e. when 

the evaluation is conditioned by an initial assessment; availability bias, i.e. 

when the evaluation is based on the ease with which relevant instances come 

to mind. 

- Encoding, i.e. to encode the probability distributions of the uncertain quantities 

using one of the available procedures, such as: direct assessment of 

probabilities, fractile method, graphical techniques. 

- Verifying, i.e. to verify the consistency of the elicited distributions by checking 

that the experts have provided a reflection of their true beliefs and that the 

elicited probabilities have no indicator of the possible biases. 

- Aggregating, i.e. in the case of multiple experts, to aggregate the elicited 

probabilities from different experts to obtain one single final result. 

- Discretizing, i.e. in the case of continuous variables, to discretize the 

continuous probability distributions. 

The Wallesten/EPA protocol suggests, in addition, to write a document about the aims 

of the process, the possible heuristics and biases that can influence the process, and 

other pertinent issues. 

To conduct an elicitation process at least two characters are necessary: 

- A subject, i.e. the expert, that is who provides expertise, in other words “a 

person with substantive knowledge about the events whose uncertainty is to be 

assessed” (Ferrell, 1985). 

- An analyst, i.e. the interviewer, that is who takes responsibility for designing, 

developing and executing the process as well as evaluating the procedures. 

They are also called facilitators, and it is common to have at least one person 

who is very knowledgeable in elicitation practice and can manage the process, 
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and another one with wide expertise in the area of the design project. 

Recent studies about elicitation processes have introduced other characteristics 

required to achieve reliable and accurate data from expert knowledge (Quigley & 

Walls, 2020). For instance, fundamental is the pre-elicitation phase, i.e. a phase of the 

process before the seven stages introduced above, when the experts have to be 

carefully selected. In particular, the analysts should identify the essential and desired 

characteristic of experts and build up profiles of experts who may be able to answer 

questions concerning the quantities of interest. Constructing a profile matrix can be 

useful (Bolger, 2018), which matches the knowledge requirements with the expert 

roles: it supports the identification of expertise needed as well as justification for the 

choice of experts. The number of required experts depends then on the variability of 

expertise per domain. Adding as many experts as possible seems beneficial, however, 

practically it may be difficult to manage many experts and there will be a diminishing 

return on adding more experts. In addition, it is important to be aware that in real-

world it is not so easy to have the availability of many experts. 

Elicitation processes have been applied to different fields such as health economic 

and medicine, ecology, aerospace, nuclear safety, investment banking, business 

planning and environmental sciences. As regards our engineering field, in the literature 

it is possible to find only few existing processes for eliciting expert knowledge with 

engineering applications. For instance, Bubniz et al. (Bubniz, et al., 1998) proposed a 

process of multiple-expert elicitation and aggregation for a probabilistic seismic 

hazard analysis. Hodge et al. (Hodge, et al., 2001) suggested an elicitation process 

where engineering knowledge is used to understand and estimate the reliability 

performance of complex system. Astfalck et al. (Astfalck, et al., 2018) used 

engineering expert knowledge to design and operational decision-making in offshore 

engineering. In summary, while expert knowledge is widely recognized as an 

important data source in many other fields, in engineering its potential has not yet been 

fully understood. In addition, it is evident that each specific situation requires a 

particular elicitation process. 

As regards our research, in chapter 4 we have to deal with an engineering 

application based on a Bayesian network (BN). Eliciting expert knowledge as concerns 
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a BN is particularly challenging, since BNs have a lot of interdependency between the 

variables and require multiple subsequent assessments. A deep analysis of the state of 

art shows that very little has been reported about elicitation processes based on BN, 

especially for civil engineering applications. An example is the paper of Norrington et 

al. (Norrington, et al., 2008), where an elicitation process aimed specifically to develop 

the qualitative aspect of a BN is proposed in order to model the reliability of Search 

and Rescue (SAR) operations in UK. Papers which introduced the possibility to use 

the elicitation process in order to elicit the conditional probabilities of a BN are 

(Sigurdsson, et al., 2001) and (Christophersen, et al., 2018). Nevertheless, a structured 

methodology for eliciting expert knowledge to support the collection of valid and 

reliable data in order to quantify a BN does not exist, so in chapter 4 we propose a 

four-stage structured elicitation process with this specific aim, based on the literature 

review and on the specific requirements of the case study.   
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Summary of the paper 

This paper investigates how heuristic behaviours may affect human judgment and 

decision-making in civil engineering. In particular, we identify Kahneman and 

Tversky’s representativeness (introduced in section 2.2.3.1), as a heuristic for which 

SHM-based decision-making is particularly susceptible, where simplified rules for 

updating probabilities can distort the decision maker’s perception of risk. In this 

contribution, we describe mathematically this specific heuristic in order to understand 

how it affects the interpretation of data, providing a deeper understanding of the 

differences between a heuristic method affected by cognitive biases and the classical 

rational approach (introduced in section 2.1). Our study is conducted both theoretically 

through comparison with formal Bayesian methods as well as empirically through the 

application to a real-life case study about the evaluation of the safety of a bridge. 

3.1 Introduction 

Structural health monitoring (SHM) is commonly recognized as a powerful tool that 

allows bridge managers to make decisions on maintenance, reconstruction and repair 
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of their assets. The logic of making decision based on SHM is formally stated in 

Cappello et al. (Cappello, et al., 2016), under the assumption that the decision maker 

is an ideal rational agent, who judges using Bayes’ theorem (Bolstad, 2010) and 

decides consistently with Neumann-Morgenstern’s Expected Utility Theory (EUT) 

(Neumann & Morgenstern, 1944). Not that surprisingly, we often observe real-life 

decision makers departing from this ideal model of rationality, judging and deciding 

using common sense and privileging fast and frugal heuristics to rational analytic 

thinking. Hence, if we wish to describe mathematically and to predict the choices of 

real-world bridge managers, we have to accept that their behaviour may not be 

necessarily fully rational. Biased judgement and decision-making have been widely 

reported and systematically investigated starting the 1970s in the fields of cognitive 

sciences, social sciences and behavioural economics: key papers include the 

fundamental works by Kahneman and Tversky (Kahneman & Tversky, 1973) 

(Tversky & Kahneman, 1974) (Tversky & Kahneman, 1983) (Kahneman & Tversky, 

1979); Kahneman’s famous textbook (Gilovich, et al., 2002) is an extensive reference 

for those approaching the topic for the first time. 

As regards SHM-based bridge management, apparent irrational behaviours are 

reported in (Zonta, et al., 2014) (Bolognani, et al., 2018) (Bolognani, et al., 2017), and 

also suggested in (Cappello, et al., 2016). In particular, a typical example of cognitive 

bias frequently observed in bridge management is the confusion between condition 

state and safety of a bridge, as reported for instance in (Zonta, et al., 2007). We remind 

here for clarity that safety is about the capacity of a bridge to withstand the traffic loads 

and the other external actions without collapsing, while the condition state expresses 

the degree of deterioration of a bridge, or bridge element, respect to its design state. 

The condition state is usually apprised through a combination of routing visual 

inspections, non-destructive evaluation and SHM. It is expressed in the form of a 

condition index that depends on the particular management system. For example, 

bridge management systems based on AASHTO (American Ass. State Highway and 

Transportation Off, 1997) Commonly Recognized (CoRe) Standard Element System, 

such as PONTIS, BRIDGIT and the APT-BMS reported in (Zonta, et al., 2007), 

classify the state of an element on a scale from 1 to 5, where 1 means ‘as per design’ 

and 5 corresponds to the most severe observable deterioration state. On the contrary, 
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the safety of a bridge is typically encoded in its probability of failure PF, reliability 

index , or safety factor , evaluated through formal structural analysis. Condition state 

and safety are obviously correlated (logically, the load-carrying capacity of a 

deteriorated bridge is equal or lower than that of the same bridge in undamaged 

condition) but are not the same thing. For example, an old bridge can be unsafe, 

regardless its preservation state, simply because it was designed to an old code, which 

does not comply with the current load demand. As a counterexample, we may have the 

case of bridge, severely deteriorated, but still with enough capacity to safely withstand 

all the external loads, either because overdesigned or simply because its deterioration 

does not affect its load-carrying capacity. In principle, rational bridge management 

should target the safety of the bridge stock, and therefore prioritize retrofit of unsafe 

bridges, regardless of their degree of deterioration. In practice, we frequently observe 

that bridge managers tend to delay retrofit of substandard bridges which do not show 

sign of deterioration, while repair promptly deteriorated bridges as soon as the damage 

is observed, regardless of the actual residual load-carrying capacity. The biased 

rationale behind this apparent behaviour is that undamaged bridges ‘look’ safe, while 

damaged bridges ‘look’ unsafe, simply because, generally speaking, we know that 

deterioration negatively affects safety. 

The aim of this paper is to describe mathematically this observed biased judgement, 

a condition that, we will show, is broadly described by Kahneman and Tversky’s 

representativeness heuristic (Kahneman & Tversky, 1972). We clarify that it is not 

objective of this paper to suggest that it is correct to use representativeness to judge 

the state of a bridge, and we reiterate that the only rational way to judge in presence of 

uncertainties is to use Bayesian logic. We just wish to verify whether the irrational 

judgment sometimes observed in bridge managers’ behavior could be described and 

possibly predicted using Kahneman and Tversky’s representativeness heuristic. Being 

able to predict the behavior of an irrational manager is necessary when we set a general 

policy for bridge maintenance and we know that someone else who is going to enact 

the policy may behave irrationally. As an example, Gong and Frangopol (Gong & 

Frangopol, 2020) discuss a case where modelling the irrational behavior of a manager 

is instrumental to an optimization process in bridge maintenance. 
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We begin reminding, in section 3.2, the formal framework of rational decision 

based on SHM information. We discuss in section 3.3 various classical judgmental 

heuristics and the consequential biases, while, in section 3.4, the mathematical model 

of representativeness is developed to appropriately reproduce the heuristic behaviour. 

Then, in section 3.5, we develop a classical representativeness problem to assess the 

model. Finally, section 3.6 presents the engineering application where the model is 

used to reproduce the biased evaluation about the safety of a bridge, based on the 

condition state apprised through visual inspections. Some concluding remarks are 

presented at the end of the paper. 

3.2 SHM-based decision-making rational framework 

We refer to the problem of optimal decision based on data provided by SHM. As 

shown in Figure 3.1, SHM-based decision-making is properly a two-step process, 

which includes the judgement of the state of the structure h based on the observations 

y, and the decision of the optimal action aopt based on the uncertain knowledge of the 

state. Within the scope of this paper, we define observation to be any information 

acquired on site which is suitable to infer the state of the structure. Sources of 

observation, in the broad sense, could be visual inspections, site tests, sensors 

temporarily or permanently installed on the structure. 

 

Figure 3.1. The rational process of SHM-based decision-making. 
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Assume that the safety state of the bridge is described by one of n mutually 

exclusive and exhaustive state hypothesis ℋ = {h1,h2,…,hj, … , hn} (e.g.: h1 = ’safe’, 

…, hn = ’failure’). Further assume that observing the bridge, or bridge element, either 

through visual inspection or SHM, ultimately consists of assessing its condition out of 

a number of m possible classes  C1,C2,…,Ci,…,Cm which express its degree of damage 

or deterioration (e.g.: C1 = ’not damaged’, C2 = ’moderately damaged’, C3 = ’severely 

damaged’, …). Therefore, the value of an observation y
i
 is one of the possible 

condition classes: y
i
∈{C1,C2,C3,C4,C5}. Multiple independent observations on the 

same bridge may occur because of repeated inspections by different inspectors, or 

redundant independent measurements by the monitoring system. We indicate with 

vector y the full set of observations y = { y
1
,y

2
,…,y

k
…,y

N
}. The likelihood of condition 

Ci for a bridge, or bridge element, in state hj is then encoded in the probabilistic 

distribution P(Ci|hj). 

If we restrict the problem to a single-observation case, the first step of the process 

consists of judging the state of a structure hj based on the i-th class observed Ci. In the 

presence of uncertainty, the state of the structure after observing the class Ci is 

probabilistically described by the posterior probability P(hj|Ci), and the inference 

process followed by a rational agent is mathematically developed in Bayes’ rule (Sivia 

& Skilling, 2006) (Bolstad, 2010): 

 
P(hj|Ci) = 

P(Ci|hj) P(hj)

P(Ci)
, (3.1) 

where P(hj|Ci) is the posterior knowledge of the structural state and represents the best 

estimation after the acquisition of SHM observation. It depends on the likelihood 

P(Ci|hj) and the prior knowledge P(hj), which is our estimate of the structural state hj 

before the acquisition of the observation. P(Ci) is simply a normalization constant, 

referred to as evidence, calculated as: 

 
P(Ci) = ∑ P(Ci|hj) P(hj)

𝑛

𝑗=1

. (3.2) 
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The second step of the process starts after the assessment of the posterior probability 

of the structure, and concerns choosing the ‘best’ action. The decision maker can 

choose between a set of M alternative actions a1, a2, …, aM (e.g.: a1 = ‘do nothing’, a2 

= ‘limit traffic’, a3 = ‘close the bridge to traffic’, …). Taking an action produces 

measurable consequences (e.g.: a monetary gain or loss, a temporary downtime of the 

structure, in some case causalities) and the consequences of an action can be 

mathematically described by several parameters (e.g.: the amount of money lost, the 

number of days of downtime, the number of casualties), encoded in an outcome vector 

z. The outcome z of an action depends on the state of the structure; thus, it is a function 

of both action a and state hj, i.e. z(a, hj). When the state is certain the consequence of 

an action is also deterministically known; therefore, the only uncertainty in the 

decision process is the state of the structure hj. The rational decision maker ranks 

actions based on the consequences z through a utility function U(z), which can vary 

among different individuals with different behaviors. According to the different risk 

appetite of the decision maker, the utility function can be risk neutral, risk adverse or 

risk seeking. Expected utility theory (EUT) describes the analysis of decision-making 

under risk and is considered as a normative model of rational choice (Parmigiani & 

Inoue, 2009). EUT was introduced by von Neumann and Morgenstern in 1944 

(Neumann & Morgenstern, 1944) and later developed in the form that we currently 

know by Raiffa and Schlaifer in 1961 (Raiffa & Schlaifer, 1961). Its axioms state that 

the decision maker ranks their preferences based on the expected utility u, defined as: 

  u(a) = Ehj
[U (z(a, hj))], (3.3) 

where Ehj
 is the expected value operator of the random variable hj, while U indicates 

the utility function. The latter is very important and represents the evaluation of a 

decision maker’s beliefs about the outcome z. The decision maker then chooses the 

action that maximizes the expected utility. 

In summary, the rational way to decide based on observation in presence of 

uncertainties goes through a judgment based on Bayes’ theorem and a proper decision 

based on EUT. 
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3.3 Heuristics and biases 

It is possible to demonstrate that Bayes’ theorem and EUT provide the only 

consistent way to judge and make decision under uncertainties, respectively, while any 

alternative inference or decision model may produce a logical inconsistency. 

Nevertheless, it is frequently observed that most people in everyday life favor heuristic 

approaches (Gilovich, et al., 2002) (Kahneman & Tversky, 1979) to this rational 

framework in order to judge or make decisions. 

The concept of heuristic has been defined in different ways in the scientific 

literature, depending on the discipline and the scope of application, see for instance 

(Tonge, 1960) (Feigenbaum & Feldman, 1963) (Romanycia & Pelletier, 1985) 

(Gigerenzer & Gaissmaier, 2011). For the purpose of this paper, we define a heuristic, 

together with Feigenbaum and Feldman (Feigenbaum & Feldman, 1963), as any 

approach to judgement or decision based on rules of thumb, logical simplifications or 

shortcuts rather that the proper rational process, as described in section 3.2. Possibly, 

the most important contribution to the formal characterization of the heuristic behavior 

is the work that Kahneman and Tversky carried out in the early 1970s (Kahneman & 

Tversky, 1972) (Kahneman & Tversky, 1973) (Tversky & Kahneman, 1974), which 

had a significant impact to the understanding and description of the human behavior 

and represents the basis of a discipline we currently refer to as behavioral economics. 

They developed the so-called heuristics and biases approach, challenging the 

dominance of strictly rational models. The main innovation lays in the analysis of the 

descriptive adequacy of ideal models of judgment and in the proposal of a cognitive 

alternative that explained human error without invoking motivated irrationality. 

Evidence displays that people’s assessments of likelihood and risk do not conform to 

the laws of probability. They offer in (Tversky & Kahneman, 1974) a list of frequently 

observed heuristics which include: 

(1) Representativeness. Events are ranked according to their representativeness; 

people consistently judge the more representative event to be the more likely, 

whether it is or not (Kahneman & Tversky, 1972). Representativeness is not 

affected by several factors that affect rational judgments instead and this leads 

to relevant biases, such as: insensitivity to prior probability, insensitivity to 
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sample size, misconceptions of chance, insensitivity to predictability, illusion 

of validity and misconceptions of regression (Tversky & Kahneman, 1974).  

(2) Availability. An individual evaluates the frequency of classes or the probability 

of events by availability, i.e. by the ease with which relevant instances come to 

mind (Kahneman & Tversky, 1973) (Tversky & Kahneman, 1974). Thus, a 

person could estimate the numerosity of a class, the likelihood of an event or 

the frequency of co-occurrences by assessing the ease with which the relevant 

mental operation of retrieval, construction or association can be conducted. It 

leads to predictable biases, e.g.: biases due to the retrievability of instances, 

biases due to the effectiveness of a search set, biases of imaginability and biases 

in the judgment of the frequency with which two events co-occur, i.e. illusory 

correlation. 

(3) Adjustment or anchoring. People make estimates by starting from an initial 

value (which may be suggested by the formulation of the problem, or it may be 

the results of a partial computation), that is adjusted to yield the definitive 

answer. However, adjustments are typically insufficient, that is, different 

starting points yield different estimates, which are biased toward the initial 

values, and this phenomenon is called anchoring (Tversky & Kahneman, 

1974). 

Depending on their nature, a heuristic can affect the process outlined in section 3.2 in 

the inference step, in the decision step, or in both cases. In the rest of the paper we will 

focus on the representativeness, that seems the heuristic that better reproduces the 

irrational behaviour introduced in section 3.1. This specific heuristic affects the 

inference step of the process, i.e. the judgment.  

3.4 The representativeness heuristic 

Representativeness is commonly intended as the level of how well or how 

accurately something reflects upon a sample. A judgment is biased by the 

representativeness heuristic when the ordering of hypotheses hj by subjective 

perceived probabilities coincides with their ordering by representativeness, rather than 

by Bayes’ posterior probability (Kahneman & Tversky, 1972). In other words, a 
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hypothesis, or event A, is judged more probable than a hypothesis, or event B, 

whenever A appears more representative than B. Citing Kahneman and Tversky 

(Kahneman & Tversky, 1972), an individual who follows the representativeness 

heuristic “evaluates the probability of an uncertain event, or a sample, by the degree 

to which it is: (i) similar in essential properties to its parent population; and (ii) 

reflects the salient features of the process by which it is generated”.  

The literature illustrates numerous cases of behavioral experiments where 

representativeness bias is observed. For example, in a classic experiment reported in 

(Tversky & Kahneman, 1974), the interviewee is asked to assess the probability of 

Steve’s employment from a list of possibilities (e.g. farmer, salesman, airline pilot, 

librarian or physician), simply based on this description: “Steve is very shy and 

withdrawn, invariably helpful, but with little interest in people, or in the world of 

reality. A meek and tidy soul, he has a need for order and structure, and a passion for 

detail.” It is observed that most interviewees tend to judge highly likely that Steve is a 

librarian, simply because the description provided is representative of the stereotype 

of a librarian, and with complete disregard for the proportion of the population that are 

librarians compared with the other employments. This example also clarifies that to be 

representative an uncertain event should not only be similar to its parent population, 

but it should also reflect the properties of the uncertain process by which it is 

generated. This agreement on the representativeness formulation is in line with the 

definition in (Tversky & Kahneman, 1983); they write that: “an attribute is 

representative of a class if it is very diagnostic; that is, the relative frequency of this 

attribute is much higher in that class than in the relevant reference class.” 

While representativeness heuristic has been widely analysed from a descriptive 

point of view, in the literature there are only few models attempting to describe this 

heuristic from a mathematical perspective, see for instance Edward (Edward, 1968), 

Grether (Grether, 1992) (Grether, 1980), Gigerenzer (Gigerenzer, 1995), Barberis et 

al. (Barberis, et al., 1998), Tenenbaum and Griffiths (Tenenbaum & Griffiths, 2001), 

Bordalo et al. (Bordalo, et al., 2016). While introducing these models, we want to point 

and analyse, case by case, two main aspects regarding the definition of 

representativeness and its application, which are: 
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(1) What is the mathematical formulation of representativeness proposed by the 

different authors? 

(2) To what extent and how does the representativeness bias the final judgment in 

comparison to Bayes’ rule? 

3.4.1 Formulation of Representativeness 

In the literature mentioned above there is a general agreement whereby the degree 

of representativeness of an observable class Ci for a reference hypothesis hj is in some 

way related to odds of observable Ci, which are the ratio between its likelihood 

P(Ci|hj) and the likelihood of its negation P(Ci|−hj), where −hj denotes the set of 

alternative hypotheses. 

Edward (Edward, 1968), Gigerenzer (Gigerenzer, 1995) and Bordalo et al. 

(Bordalo, et al., 2016) all define the quantity representativeness R(Ci, hj) of a class Ci 

for the reference hypothesis hj, exactly as the odds of class Ci:  

 
 R(Ci, hj) =

P(Ci|hj) 

P(Ci|−hj) 
. (3.4) 

Therefore, they assume that a class Ci is representative for a hypothesis hj, relative to 

an alternative hypothesis −hj, if it scores high on the likelihood ratio described by Eq. 

(3.4).  

Similarly, Tenenbaum and Griffiths (Tenenbaum & Griffiths, 2001) define 

representativeness with the likelihood ratio described by Eq. (3.4), but using a 

logarithm scale, apparently to provide a more natural measure of how good a class Ci 

is in representing a hypothesis hj: 

 
 R(Ci, hj) =  log

P(Ci|hj) 

P(Ci|−hj) 
. (3.5) 

Grether (Grether, 1980) (Grether, 1992) agrees on Eq. (3.5) for a problem with two 

possible hypotheses. In the case of more alternative hypotheses, Tenenbaum and 

Griffiths (Tenenbaum & Griffiths, 2001) suggest the following expression: 
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 R(Ci, hj) =  log

P(Ci|hj) 

∑ P(Ci|hk) P(hk|−hj)hk, k≠j  
, (3.6) 

where P(hk|−hj) is the prior probability of the k-th hypothesis, given that the reference 

hypothesis hj is not the true explanation of Ci: 0 when j = k and P(hk)/(1−P(hj)) 

otherwise. Eq. (3.6) effectively says that Ci is representative of hj to the extent that its 

likelihood under hj exceeds its average likelihood under alternative hypotheses.  

3.4.2 Representativeness in judgment 

Before revising the mathematical models proposed to reproduce the 

representativeness bias in judgment, we remind, for maximum clarity, that the rational 

way to judge the probability of a hypothesis hj based on an observation class Ci is to 

calculate its posterior probability P(hj|Ci) in Bayesian sense, using Eq. (3.1). When 

judging using representativeness heuristic, an individual ranks the hypothesis hj by a 

subjective perceived probability which departs from standard Bayesian posterior. In 

analogy with Bordalo et al. (Bordalo, et al., 2016), we define this subjective perceived 

probability as distorted posterior P(hj|Ci)
st. While all authors agree on that 

representativeness distorts judgment, there is not a general agreement on the cognitive 

mechanism whereby representativeness affects the distorted posterior probability, i.e. 

how the standard Bayes’ rule, which reflects the judgment of a rational thinker, must 

be adjusted to consider representativeness instead. Most authors do not provide an 

explicit expression for the distorted posterior, but understand the vanilla statement that 

ordering hypotheses by perceived probability follows representativeness rather than 

Bayesian posterior. From a strict mathematical standpoint, we can define different 

models of distorted posterior that satisfy this statement. The simpler is assuming that 

(i) representativeness is used instead of likelihood and (ii) the prior information is 

neglected. In this case, judgment by representativeness should be consistent with the 

following expression: 

 
 P(hj|Ci)

st
=  

R(Ci, hj)

R(Ci, hj) + R(Ci, − hj)
. (3.7) 
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Some of the authors introduced above provide more refined models. Bordalo et al. 

(Bordalo, et al., 2016) suggest that representativeness R(Ci, hj) distorts Bayesian 

likelihood P(Ci, hj) as follows: 

  P(Ci|hj)
st

 = P(Ci|hj)∙(R(Ci, hj))
θ
, (3.8) 

where θ ≥ 0 is a subjective parameter that describes how heavily representativeness 

biases the likelihood. According to the same authors, this parameter should be 

calibrated with cognitive tests and could vary considerably among different people. A 

biased posterior is therefore inferred, using this distorted likelihood into Bayes’ 

theorem: 

 
 P(hj|Ci)

st
  = 

P(Ci|hj)
st

 P(hj)

P(Ci)
st , (3.9) 

where P(Ci)
st

 is the distorted evidence, calculated as: 

 
 P(Ci)

st
 = ∑ P(Ci|hj)

st
 P(hj)

𝑛

𝑗=1

. (3.10) 

It is easily noticed that Eq. (3.9) is exactly Bayes’ theorem when θ = 0, while it 

collapses to Eq. (3.7) when θ tends to infinity. 

A different approach is provided by Grether (Grether, 1980) (Grether, 1992). The 

author suggests a model that provides the final judgment of hj, by considering the 

representativeness heuristic: 

 log O(hj|Ci) = 𝛼 + 𝛽1∙R(Ci, hj) + 𝛽2∙logO(hj), (3.11) 

where O(hj|Ci) is the posterior odds, R(Ci, hj) is the representativeness calculated as 

in Eq. (3.5), O(hj) is the prior odds, while 𝛼, 𝛽1 and 𝛽2 are subjective parameters that 

must be calibrated. Thus, the interpretation of Kahneman and Tversky’s 

representativeness heuristic suggested by the author is that individuals place greater 

weight on the likelihood ratio than on the prior odds. Consequently, the author 

proposed β
1
 > β

2
≥ 0 for this inference model, in contrast with α = 0, β

1
 = β

2
 > 0 of 
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Bayes’ rule. 

With the aim to compare these last two judgement models, we express Bordalo et 

al.’s model, stated in Eq. (3.8), in its logarithmic posterior odds: 

  log O(hj|Ci) = (2𝜃 + 1)∙R(Ci, hj) + logO(hj), (3.12) 

where R(Ci, hj) is, in the same way as in Eq. (3.11), the representativeness calculated 

as in Eq. (3.5). It is possible to notice that this final equation agrees with the one 

proposed by Grether, i.e. Eq. (3.11), if we assume α = 0, β1 = (2θ + 1) and β2 = 1. This 

means that the two models are based on the same mathematical formulation, they only 

differ in the representation of the subjective parameters. 

In summary, while there is a general agreement on the definition and the 

mathematical formulation of the representativeness, different inference models are 

proposed or understood to describe the biased judgment. Moreover, some of these 

models account for a number of subjective parameters that have to be properly 

calibrated on the individual who judges.  

3.5 A classical representativeness problem 

Before developing the bridge engineering problem that is motivating our research, 

we discuss in this section how the models introduced in section 3.4 apply to a classical 

representativeness problem, reported in different forms in (Tversky & Kahneman, 

1974) (Griffin & Tversky, 1992) (Tenenbaum & Griffiths, 2001) (Griffiths & 

Tenenbaum, 2007). 

Consider two coin-flip sequences, C1 = HHHHH and C2 = HTTHT, where H is for 

Head and T for Tail. To start, we would like to clarify the difference between 

representativeness and likelihood. The first question we ask ourselves is: which of the 

two sequences is more representative for a fair coin? We presume that most of the 

readers would answer sequence C2. Actually, we expect that a fair coin would 

generally produce a random sequence of H and T, as in C2, while a sequence of H only, 

as in C1, looks intuitively peculiar from a genuinely fair coin. Intuitively, we conclude 

that the representativeness of sequence C2 is greater than the representativeness of 

sequence C1 in the case of a fair coin hFC. In formula: 
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  R(C2, hFC) > R(C1, hFC). (3.13) 

However, which of the two sequences is more likely to occur for a fair coin? In this 

case we can simply calculate the likelihood of a sequence, i.e. the probability of 

obtaining that particular sequence Ci conditional to the assumption of fair coin 

P(C𝑖 |hFC
), by computing the possible combinations. If our coin is fair, for each toss we 

have equal probability of p = 1/2 of H or T. Therefore, the particular sequence C2, 

which is the result of 5-coin tosses, has the following likelihood:  

 
 P(C2=HTTHT|h

FC
) = ( 

1

2
 )

5

 = 0.0313. (3.14) 

Notice now that even sequence C1 is a possible output of 5-coin tosses, and therefore 

its likelihood is exactly the same as C2: 

 
 P(C1=HHHHH|h

FC
) = ( 

1

2
 )

5

 = 0.0313. (3.15) 

Let’s now ask to the layman the following question: a coin has produced sequence 

C1; based on this sequence, do you believe this coin is most likely fair or has a 

prevalence of H? Most of the interviewees, and possibly even the reader, answer that 

the coin is most likely unfair, i.e. with a prevalence of H. Let’s tackle the problem in 

logical terms using Bayes’ theorem. As regards the coin with a prevalence of H, we 

refer to a coin that mostly comes up heads with the term hMH. In essence, we have to 

calculate the following posterior probability: 

 
 P(hFC|C1) = 

P(C1|hFC) P(hFC)

P(C1|hFC) P(hFC) + P(C1|hMH) P(hMH)
. (3.16) 

The condition whereby it is more probable that the coin is fair is that the posterior 

probability of hFC is greater than 0.5, or: 

 
 

P(hFC)

P(hMH)
 > 

P(C1|hMH)

P(C1|hFC)
, (3.17) 

which means that the ratio between the priors has to be greater than the ratio between 
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the opposite likelihoods. If p is the probability of occurrence of H in a toss, n the 

number of coin tosses and k the number of H achieved in a sequence Ci, the likelihood 

of this sequence can be calculated as follows: 

  P(C𝑖 | hFC) = pk (1 - p)
n - k. (3.18) 

In the case of a fair coin we have already observed that p = 1/2 and therefore P(C1| hFC) 

= P(C2| hFC) = 0.0313. On the other hand, coin hMH is the one that mostly comes up 

heads, and therefore, since C1 is a sequence with a prevalence of H, the only thing that 

we can conclude is that: 

  P(C1| hMH) > P(C1| hFC). (3.19) 

Therefore, the only logical conclusion we can draw is that the ratio between the two 

likelihood, useful to solve Eq. (3.17), is strictly greater than 1. In any case, it states 

nothing about the posterior because it depends also on the prior rate, i.e. how likely is 

a priori, before observing the sequence, that the coin is fair. There is always a value of 

prior P(hFC) whereby it is more probable that, given the sequence C1, the coin is fair: 

  P(hFC| C1) > P(hMH| C1). (3.20) 

In conclusion, from a strict logical standpoint, the coin could be fair or nor fair 

depending on the prior information. 

Let’s make a numerical example: we suppose to have a fair coin hFC, and a coin 

that mostly comes up heads hMH, assuming that the probability of occurrence of H with 

this coin is p = 0.85. For concreteness, we choose the following prior probabilities for 

the two hypotheses: P(hFC) = 0.95 and P(hMH) = 0.05. First of all, we have to calculate 

all the likelihood and the representativeness values. Using respectively Eq. (3.18) and 

Eq. (3.4), we obtain: 

  P(C1|h
FC

)  = 0.0313,                 P(C2|h
FC

)  = 0.0313. (3.21a,b) 
 

  P(C1|h
MH

)  = 0.4437,                P(C2|h
MH

)  = 0.0024. (3.22a,b) 
 

  R(C1|h
FC

)  = 0.07,                    R(C2|h
FC

)  = 13.04. (3.23a,b) 
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  R(C1|h
MH

)  = 14.18,                 R(C2|h
MH

)  = 0.08. (3.24a,b) 

These results confirm what we were presuming and clearly show the difference 

between representativeness and likelihood: while sequences HTTHT and HHHHH are 

equally likely for a fair coin, i.e. P(C1|hFC) = P(C2|hFC), the representativeness model 

shows that sequence HTTHT is clearly more representative for a fair coin than 

sequence HHHHH, i.e. R(C2, hFC) > R(C1, hFC). This outcome reflects the effect of 

such heuristic bias, because most people judge the sequence HTTHT to be more likely 

for a fair coin than sequence HHHHH, which does not appear random, even if the two 

sequences have the same probability of occurrence. The second column of Table 3.1 

presents the achieved results. 

Let’s now calculate the Bayesian posterior probabilities that, given sequence C1, 

the coin is fair, or it is the one that mostly comes up heads. Using Bayes’ theorem, as 

in Eq. (3.16), we achieve: 

  P(hFC|C1)
 
 = 57.27%  >  P(hMH|C1)

 
= 42.73%. (3.25) 

Notice that, with the prior assumptions made, the rational conclusion is that the coin 

is most probably fair, even if it has yielded a sequence of 5 heads in a row. This result 

may sound counterintuitive to the layman, unfamiliar with formal logic, who tends to 

judge heuristically driven by the representativeness of the observed result.  

We can reproduce this heuristic behaviour using, for instance, the vanilla inference 

model of Eq. (3.7), which indeed yields the following distorted posterior judgments: 

  P(hFC|C1)
𝑠𝑡 

 = 0.49%  <  P(hMH|C1)
𝑠𝑡 

= 99.51%, (3.26) 

which is to say that to the individual biased by representativeness the coin looks most 

likely the one that mostly comes up heads. We find a similar result using the other 

inference model of Bordalo et al., as in Eq. (3.9). With a subjective parameter θ = 0.8, 

we obtain: 

  P(hFC|C1)
𝑠𝑡 

 = 1.88%  <  P(hMH|C1)
𝑠𝑡 

= 98.12%, (3.27) 

which again shows that a sequence of five heads heuristically (but mistakenly) 

suggests that the coin is the one that mostly comes up heads. Clearly, in this case the 
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perceived posterior probability depends on the parameter θ, as will be discussed in 

detail in section 3.6.3.  

Table 3.1 presents the outcomes from all the inference models reviewed in section 

3.4, including Grether’s, i.e. Eq. (3.11), evaluated with α = 0, β1 = 0.8 and β2 = 0.2. It 

is evident that all the heuristic inference models agree on judging most likely that the 

coin is the one that mostly comes up heads hMH, in contrast to the rational conclusion 

inferred through Bayes’ theorem. 

In conclusion, with this numerical example we have clarified the substantial 

difference between likelihood and representativeness. We have also shown how the 

representativeness bias may alter the posterior judgment to the point of suggesting 

conclusions opposite to those consistent with rational inference. 

Table 3.1. Achieved results for each model. 

 Likelihood P(C𝑖|h𝑗) 

or Representativeness 

R(C𝑖|h𝑗) 

Posterior probability 

P(h𝑗 |C𝑖) 

Posterior odds 

P(h𝑗 |C𝑖)/P(-h𝑗|C𝑖) 

Bayes 

P(C1|hFC) = 0.0313 

P(C2|hFC)  = 0.0313 

P(C1|hMH) = 0.4437 

P(C2|hMH) = 0.0024 

P(hFC|C1) = 57.27% 

P(hMH|C1) = 42.73% 

P(hFC|C1)

P(hMH|C1)
 = 1.34 

Vanilla 

model (Eq. 

(3.4) and 

Eq. (3.7)) 

R(C1|hFC) = 0.07 

R(C2|hFC) = 13.04 

R(C1|hMH) = 14.18 

R(C2|hMH) = 0.08 

P(hFC|C1)
𝑠𝑡 

= 0.49% 

P(hMH|C1)
𝑠𝑡 

= 99.51% 

P(hFC|C1)
𝑠𝑡

  

P(hMH|C1)
𝑠𝑡

 
 = 0.01 

Bordalo et 

al. (θ=0.8) 

R(C1|hFC) = 0.07 

R(C2|hFC) = 13.04 

R(C1|hMH) = 14.18 

R(C2|hMH) = 0.08 

P(hFC|C1)
𝑠𝑡 

= 1.88% 

P(hMH|C1)
𝑠𝑡 

= 98.12% 

P(hFC|C1)
𝑠𝑡

  

P(hMH|C1)
𝑠𝑡

 
 = 0.02 

Grether 

(α=0; 

β1=0.8; 

β2=0.2) 

R(C1|hFC) = -2.65 

R(C2|hFC) = 2.57 

R(C1|hMH) = 2.65 

R(C2|hMH) = -2.57 

P(hFC|C1)
𝑠𝑡 

= 18.05% 

P(hMH|C1)
𝑠𝑡 

= 81.95% 

P(hFC|C1)
𝑠𝑡

  

P(hMH|C1)
𝑠𝑡

 
 = 0.22 
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3.6 Case study 

In this section we wish to verify whether the judgment models reviewed in section 

3.4 are suitable to describe the typical confusion between condition state and safety of 

a bridge frequently observed in bridge management. As described in section 3.1, 

bridge managers often tend to delay retrofit of substandard bridges which do not show 

sign of deterioration, while repair promptly deteriorated bridges as soon as the damage 

is observed, regardless their actual residual load-carrying capacity. We have already 

observed that the biased rationale behind this apparent behaviour is that undamaged 

bridges ‘look’ safe, while damaged bridges ‘look’ unsafe, simply because, generally 

speaking, we know that deterioration negatively affects safety.  

We discuss this bias with reference to one of the case studies reported in (Zonta, et 

al., 2007), i.e. the SP65 bridge on the Maso River, which is operated by the 

Autonomous Province of Trento (APT). The bridge, shown in Figure 3.2(a), is a 

common type of bridge in the APT stock. The structure has two simple spans of 19.0 

m and 22.0 m, and a total length of 43.0 m. Each span has four girders spaced at 2.1 

m, 2.4 m and 2.1 m respectively. The cross-section of the girders is shown in Figure 

3.2(b). The deck slab consists of 22–27 cm of reinforced concrete and a 15 cm surface 

layer of asphalt. The roadway width is 7 m with 0.70 m pedestrian pavements and hand 

railing on each side. 

 

Figure 3.2. SP65 bridge on Maso River: (a) overview; (b) plan view, elevation and 

cross section of the deck (Zonta, et al., 2007). 
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Managing its bridges, APT uses an inventory model and condition state appraisal 

system consistent with the AASHTO (1997) Commonly Recognized (CoRe) Standard 

Element System (American Ass. State Highway and Transportation Off, 1997). The 

CoRe element standard has been adopted since 1995 by FHWA and AASHTO as 

broadly accepted way to represent bridges condition on a uniform scale (American 

Ass. State Highway and Transportation Off, 1997). The CoRe element standard 

inventories a bridge into a set of Standard Elements (SE), each specified in term of 

quantity (surface, length or number). For example, the bridge deck of the SP65 bridge 

includes the following SE: slab, beam, pavement, sidewalk, guard rail and railing. 

The state of deterioration of each element is appraised through routine visual 

inspections. The inspector classifies the state of deterioration of an element choosing 

among five possible deterioration levels, called Condition States (CS), specified, for 

each element type, in the inspector manual. Table 3.2 reports, as an example, the 

definition of the five CS of a concrete slab, or CoRe standard element #12, as reported 

in APT inspection manual available from the website of the APT (Autonomous 

Province of Trento , 2018). As a general rule, Condition State 1 (CS1) always means 

‘as per design’, or ‘no deterioration’, while CS5 corresponds to the most severe 

observable deterioration state. 

Table 3.2. SE #12 concrete slab: state description for each Condition State (CS). 

CS State description of the slab surface 

1 No delamination, spalling or water infiltration. 

2 
Possible delamination, spalling or water infiltration. Possible segregation 

and consequently reinforcement exposure. 

3 

Previously repaired or subjected to delamination or spalling. 

Segregation and consequently reinforcement exposure. Limited water 

infiltration. 

4 

Extended parts previously repaired or subject to delamination or 

spalling; deep segregation phenomena with extended exposure of 

reinforcement. Extended water infiltration. 

5 

Deep deterioration or anomalies. Reinforcement corrosion and cross-

section loss require a deep analysis to verify the structural safety of the 

element. 
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While the deterioration condition is apprised through visual inspection, its safety 

level is evaluated separately, through a five-step formal assessment procedure (Zonta, 

et al., 2007), whose ultimate objective is to calculate the bridge reliability index . We 

have already observed in the Introduction that condition state and safety are obviously 

correlated, but not the same thing, and that we can well have a severely deteriorated 

bridge which is perfectly safe or an intact bridge which is not safe. We have also 

noticed that a rational bridge manager should address safety above all, while in practice 

the intervention priority is often biased by the apparent state of deterioration of the 

bridges, regardless their actual residual load-carrying capacity. 

In this section, we want to numerically analyse and describe the following case: 

• As far as its safety is considered, the bridge could be in two possible states: 

SAFE (hS) or FAIL (hF). SAFE means that, following to a formal safety 

assessment carried out by an expert structural engineer, the bridge load-

carrying capacity is judged sufficient for the bridge to operate without 

restrictions. On the other hand, FAIL means that the bridge is not found to have 

sufficient load-carrying capacity and should be closed to traffic. 

• Based on a frequentist analysis of the load-carrying capacity formally assessed 

for similar bridges of the same type and age, it is estimated that only one bridge 

out of one thousand is found to be in the FAIL state. We formalize this 

information assuming prior base rates P(hF) = 0.001 for the state hypothesis 

FAIL, and therefore P(hS) = 0.999 for the state hypothesis SAFE. 

• Based on the last visual inspection, the bridge exhibits no or minimal 

deterioration, except for the concrete slab, which is classified in the most severe 

condition state, or CS5. 

• Based on the condition state assessed via visual inspection, the bridge manager 

judges the bridge in FAIL state. 

This case study effectively describes a prototypical situation where the bridge manager 

judges the state of safety of the bridge based on the condition state of one of its 

elements, and disregarding any information on its actual residual load-carrying 

capacity. The manager implicitly assumes that a severe deterioration of an element 
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automatically implies that the bridge load-carrying capacity is insufficient, simply 

because deterioration is representative for a reduced capacity. We hypothesize this 

situation could be described as a case of the representativeness bias, where the safety 

is improperly judged based on how much deterioration is representative of loss in 

capacity. 

In order to verify this conjecture, we will answer quantitatively to the following 

questions:  

(1) What is the likelihood P(CS5|hF) of an unsafe bridge to be in CS5? 

(2) How much CS5 is representative of a bridge in FAIL state? 

(3) What is the proper posterior probability of this bridge to be in FAIL state? 

(4) How does representativeness bias distort the manager judgment as to the bridge 

safety? 

3.6.1 Likelihood and representativeness 

To start, we have to define a proper likelihood distribution for each hypothesis, i.e. 

P(CSi|hF) and P(CSi|ℎS). In the following, the procedure used for the definition of the 

likelihood is the same as in (Zonta, et al., 2007). 

According to (Melchers, 1999), we employ II level probabilistic methods, which 

allows to calculate the reliability index β = -Φ-1(PhF
), where Φ is the cumulative 

normal distribution function. Two stochastic variables are considered: the loads effect 

S and the starting resistance R0 of the bridge, both supposed to be Normal distributions 

(Norm), with their mean μ and coefficient of variation CoV. In formula: 

   f
𝑅0

(r) = Norm(r, μ
𝑅0

,CoV𝑅0
),           f

𝑆
(s) = Norm(s, μ

𝑆
,CoV𝑆). (3.28a,b) 

Because of the prioritization approach, we assume that the structure will not maintain 

its mechanical characteristics in the years, i.e. we have to take into accounts the 

deterioration of construction material through the following probabilistic degradation 

model (Zonta, et al., 2007): 

  R = R0(1 - δ(CSi)), (3.29) 
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where δ(CSi) is a probabilistic capacity degradation function, depending only on the 

CSi of the SE that controls the capacity of the structural unit at the limit state. Its 

density function δ𝑖 is the probability density function of the loss in capacity when the 

element is in the i-th CS. Reminding that the elements are rated based on visual 

inspections, δ𝑖 represents the likelihood of a certain loss in capacity when the element 

has been rated into the i-th reference state. Typically, low values of CS, i.e. CS1 CS2 

and CS3, are not associated with any loss of capacity: in this case δ𝑖 coincides with a 

Dirac delta function and therefore R = R0. On the other hand, higher CSi are associated 

with distributions that reflect the uncertainty of the system in correlating the actual 

loss in capacity, with the verbal description of the reference state proposed by the 

inspection manual. CS4 is associated with a uniform distribution δ4 of loss in capacity, 

for values of δ included in [0, 5%]. In the same way, the system associates the reference 

state 5 with a triangular distribution, for values of δ included in [5%, 70%], as Figure 

3.3 shows. 

 

Figure 3.3. Capacity degradation function δ(CSi). 

Because most of the information required to define the distribution of capacity R and 

actions S are not explicitly contained in the system database, therefore a simplified 

approach must be adopted. It is convenient to define a normalized capacity r = R/µS, 

with mean value µr = μ
R0

/µS, equal to the central safety factor γ
0
, associated with the 

limit state Z, and a normalized demand s = S/µS with mean value µS = 1. The 

coefficients of variations of the normalized variables 𝛾 and s are equal to those of R 

and S. The Normal distribution of the capacity and actions become: 
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   f
γ
0
(r) = Norm(r, γ

0
, CoV𝑅),              f

S
(s) = Norm(s, 1, CoV𝑆), (3.30a,b) 

where the reliability index is related to the central safety factor γ
0
 through the 

expression: 

 
 β = 

γ
0

− 1

√CoVR
2 ∙ γ

0
2 + CoVS

2

 . 
(3.31) 

Finally, the normalized limit state function is z = r - s, and the probability of failure 

PhF
 associated with the limit state Z coincides with that of z: 

  PhF
(CS𝑖) = P(Z < 0) = P(z < 0). (3.32) 

According to Eurocode 0, if we employ II level probabilistic methods, the target 

reliability index β for Class RC2 structural member in the Ultimate Limit State and 

with a reference time of 1 year is equal to β = 4.75. Assuming VR = 0.05 and VS = 0.10, 

from Eq. (3.31) we can obtain γ
0
 = 1.96. Once we know γ

0
, the probability of failure 

PhF
(CS𝑖) is then calculated through Monte Carlo by computing the cumulative-time 

failure probability of the normalized limit state z, by using a normalized Gaussian 

distribution for the demand  f
S
(r) and a normalized non-Gaussian distribution for the 

reduced capacity r = γ
0
(1- f

δ
), which depends on CS𝑖: 

   f
r
(r, CSi) =  f

γ
0
(r)(1 -  f

δ
). (3.33) 

Consequently, we obtain the following failure probabilities for each CS𝑖: 

  [PhF
(CS1); PhF

(CS2); PhF
(CS3); PhF

(CS4); PhF
(CS5)] = 

[6.12 ∙ 10−5;  2.68 ∙ 10−6;  6.47 ∙ 10−6;  6.61 ∙ 10−4;  2.04 ∙ 10−1]. 
(3.34) 

Assuming the following a priori distributions for CS, i.e. P(CS) = 

[50%, 20%, 15%, 10%, 5%], we can calculate the probability for each hypothesis, i.e. 

“FAIL = ℎF” and “SAFE = ℎS” respectively: 
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 PhF

= ∑ PhF
(CS𝑖)∙P(CS𝑖)

CS𝑚𝑎𝑥=5

𝑖=1
= 0.0103, (3.35) 

 

  PhS
= 1 − PhF

= 0.9897. (3.36) 

Then, according to Bayes’ rule, for both hypothesis “S = SAFE” and “F = FAIL” we 

can evaluate the relative likelihood distributions for each Condition State CS𝑖, as 

follows: 

 
 P(CS𝑖|hF) =

PhF
(CS𝑖) ∙ P(CS𝑖)

PhF

,  

P(CS𝑖|hS) =
(1 − PhF

(CS𝑖)) ∙ P(CS𝑖)

PhS

. 

(3.37a,b) 

Figure 3.4 shows the results for each CS𝑖.  

 

Figure 3.4. Likelihood distributions for each state hypothesis. 

To be consistent with the outcomes of Figure 3.4, we choose the following likelihood 

distributions: 

  P(CSi|hS) = [50%, 20%, 15%, 10%, 5%], 

P(CSi|hF) = [0, 0, 0, 2%, 98%]. 
(3.38a,b) 
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After the evaluation of the likelihoods, we are interested in understanding how 

much CS5 is representative of the bridge in FAIL state. We can calculate it according 

to Eq. (3.4): 

  R(CS5|h
F
)  = 19.6,                      R(CS5|h

S
)  = 0.05. (3.39a,b) 

These outcomes show that, as expected, CS5 is very representative of the failure state 

of the bridge, with an enormous difference in comparison to the safe state of the bridge, 

i.e. R(CS5|hF) ≫ R(CS5|hS): this is very important because we have learnt that this can 

be the reason of a distorted final judgment.  

3.6.2 Posterior judgment 

Let’s now evaluate the posterior judgment of the manager, in the case that the bridge 

is classified in CS5. The proper posterior probabilities, computed using the rational 

framework provided by Bayes’ theorem, results: 

  P(hF|CS5)
 
 = 1.92%  <  P(hS|CS5)

 
= 98.08%. (3.40) 

This means that rational managers, in line with Bayes’ rule and after observing CS5, 

would judge the possibility that the bridge could be in the FAIL state as very unlikely. 

However, we have introduced before that, based on the condition state assessed via 

visual inspection, the bridge manager has judged the bridge in FAIL state. It is possible 

to explain this judgment by evaluating the distorted posterior probability. Using the 

vanilla inference model of Eq. (3.7), we achieve: 

  P(hF|CS5)
𝑠𝑡 

 = 99.75%  >  P(hS|CS5)
𝑠𝑡 

= 0.25%. (3.41) 

Similarly, accepting the inference model of Bordalo et al., the distorted posterior 

probability is: 

  P(hF|CS5)
𝑠𝑡 

 = 69.97%  >  P(hS|CS5)
𝑠𝑡 

= 30.03%. (3.42) 

In both cases the failure state turns out to be the most likely, and this outcome allows 

to explain the judgment of the manager, which is biased since CS5 is very 

representative of a fault bridge.  
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Table 3.3 reports all the achieved results; the last row of the table presents again the 

results that come from the inference model of Grether, which agree with those obtained 

with the other biased models, i.e. the FAIL state is the most likely, in contrast to the 

rational conclusion inferred through Bayes’ theorem. 

In summary, we have demonstrated that when an inspector judges the safety state 

of a bridge by only accounting for the observed condition state CS, they are biased by 

representativeness: in their posterior judgments they tend to neglect the prior 

probability of the failure condition, which is typically very low, P(hF) = 0.001 in this 

specific case study, and to weight too much the ratio between the likelihood of the 

observations, which actually is the representativeness itself. Therefore, their final 

judgment results distorted in comparison to the one achieved by rational managers who 

follow Bayes’ theorem. 

Table 3.3. Achieved results for each model. 

 Likelihood P(C𝑖|h𝑗) 

or Representativeness 

R(C𝑖|h𝑗) 

Posterior probability 

P(h𝑗 |C𝑖) 

Posterior odds 

P(h𝑗 |C𝑖)/P(-h𝑗|C𝑖) 

Bayes 
P(CS5|hF) = 0.98 

P(CS5|hS) = 0.05 
P(hF|CS5) = 1.92% 

P(hS|CS5) = 98.08%  

P(hF|CS5)

P(hS|CS5)
 = 0.02 

Vanilla 

model (Eq. 

(3.4) and 

Eq. (3.7)) 

R(CS5|hF) = 19.6 

R(CS5|hS) = 0.05 
P(hF|CS5)

𝑠𝑡 
 = 99.75% 

P(hS|CS5)
𝑠𝑡 

= 0.25%  

P(hF|CS5)
𝑠𝑡

P(hS|CS5)
𝑠𝑡

 
 = 399 

Bordalo et 

al. (θ=0.8) 

R(CS5|hF) = 19.6 

R(CS5|hS) = 0.05 
P(hF|CS5)

𝑠𝑡 
 = 69.97% 

P(hS|CS5)
𝑠𝑡 

= 30.03%  

P(hF|CS5)
𝑠𝑡

P(hS|CS5)
𝑠𝑡

 
 = 2.33 

Grether 

(α=0; 

β1=0.8; 

β2=0.2) 

R(CS5|hF) = 2.98 

R(CS5|hS) = -2.98 
P(hF|CS5)

𝑠𝑡 
 = 73.19% 

P(hS|CS5)
𝑠𝑡 

=26.81% 

P(hF|CS5)
𝑠𝑡

P(hS|CS5)
𝑠𝑡

 
 = 2.73  
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3.6.3 Discussion about inference models 

To develop the numerical calculations in the previous sections, we had to suppose 

some specific values for the subjective parameters of the inference models introduced 

in section 3.4.2, i.e. θ = 0.8, α = 0, β1 = 0.8, β2 = 0.2: these values correspond to a high 

level of the representativeness heuristic since they maximize the importance of R and 

minimise the contribute of the prior information. Since these parameters depend on the 

different behaviour of the people and could vary considerably, it is interesting to 

develop a sensitivity analysis in order to understand how they affect the model and 

then the final results. 

Let’s take for instance the model of Bordalo et al.: as we can see from Eq. (3.8), it 

depends only on one subjective parameter, i.e. θ ≥ 0. Figure (3.5) shows how the 

posterior failure probability of the bridge, after observing CS5, varies according to θ: 

even if θ can be also bigger than 1, we study just the interval 0 ≤ θ ≤ 1 since this is 

sufficient to understand how the results change. While with our previous assumption 

of θ = 0.8 the result is P(hF|CS5) = 69.97%, we can notice that the outcome is highly 

sensitive to the choice of θ: it changes from P(hF|CS5) = 1.92% if θ = 0, i.e. in line 

with a rational manager who follows Bayes’ rule, to P(hF|CS5) = 88.49% if θ = 1, i.e. 

in line with an irrational manager biased with a high level of the representativeness 

heuristic. Furthermore, we can observe that the posterior failure probability P(hF|CS5) 

is bigger than the posterior safe probability P(hS|CS5) when θ > 0.67. These results 

allow to demonstrate the truthfulness of this inference model, and explain the 

importance to calibrate properly the subjective parameters according to the specific 

inspector. The same generic conclusions can be extended to the model of Grether, 

since we have demonstrated that it is based on the same mathematical formulation. 
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Figure 3.5. How the distorted posterior probability P(hF|CS5)st varies according to the 

subjective parameter θ. 

Conversely, the vanilla model introduced in Eq. (3.7) is less sophisticated because 

it does not depend on a subjective parameter. Even if this may seem like a shortcoming, 

the results obtained in both section 3.5 and section 3.6 demonstrate the correctness of 

the vanilla model in reproducing the distorted judgment based on the 

representativeness bias. In detail, it is evident that its outcomes are very similar to 

those that can be obtained assuming the maximum level of representativeness in the 

subjective parameters of the other inference models, meaning that the vanilla model 

reproduces the behaviour of an inspector completely biased by this heuristic. This 

conclusion is consistent with the mathematical formulation of the model itself, since it 

overlooks the contribution of the prior and it completely replaces the likelihood with 

the representativeness. 

3.7 Conclusions 

Judging the state of a bridge based on SHM observations is an inference process 

which should be rationally carried out using Bayesian logic. However, we often 

observe that real-life decision makers depart from this ideal model of rationality, judge 
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and decide using common sense, and privilege fast and frugal heuristics to rational 

analytic thinking.  For instance, confusion between condition state and safety of a 

bridge is one of the most frequently observed examples in bridge management. In this 

contribution, we have demonstrated that this bias can be described by Kahneman and 

Tversky's representativeness heuristic. 

A review of the technical literature shows that representativeness heuristic has been 

widely analysed from a descriptive point of view, while only few models have been 

proposed to describe this bias from a mathematical perspective. In the literature there 

is a general agreement on that the degree of representativeness of an observable class 

for a reference hypothesis is in some way related to odds of observable quantities. 

Instead, there is not a general agreement on how the standard Bayes’ rule, which 

reflects the judgment of a rational thinker, should be adjusted to consider 

representativeness. Most authors do not provide an explicit expression for the distorted 

posterior, but understand the statement that ordering hypotheses by perceived 

probabilities follows representativeness rather than Bayesian posterior. This is 

consistent with a distorted judgement model, here referred to as ‘vanilla’, whereby (i) 

representativeness is used instead of likelihood and (ii) the prior information is 

neglected. Bordalo et al. and Grether provide more refined models for reproducing the 

subjective distorted judgement, which allow to blend more flexibly likelihood, 

representativeness and prior information, through a number of subjective parameters, 

in order to better reproduce the distorted perception of a particular subject. 

We have first applied these mathematical models to a classical literature 

representativeness problem, to better appreciate the difference among the various 

formulations of representativeness and heuristic judgement models. Next, we have 

applied the same models to the case of a transportation manager who wrongly judges 

a particular bridge unsafe simply because deteriorated, regardless its actual residual 

load-carrying capacity. Their judgment is biased due to the apparent behaviour that 

damaged bridges ‘look’ unsafe, in contrast with undamaged bridges which ‘look’ safe. 

In the particular case study, we have demonstrated that Bayes’ theorem correctly 

identifies the bridge as safe, while application of the three judgment models analysed 

(vanilla, Bordalo et al.’s and Grether’s) all predict the manager will mistakenly judge 

the bridge as unsafe based on the observed condition state. Given the simplicity of the 
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case study, which is essentially a two hypotheses inference problem where the 

individual distorted behaviour is characterized by the ordering of the two hypotheses 

by subjective probabilities, the three models are equivalent in this particular instance, 

as they reproduce equally well the observed distorted perception. The main difference 

between these three inference models is that ‘vanilla’ model reproduces the behaviour 

of an individual whose judgement is blatantly driven by representativeness, while the 

other two models allow to describe more subtle forms of distorted judgment, whose 

limit cases are rational Bayesian inference on one side and the vanilla 

representativeness bias on the other. The three models may not be equivalent in a more 

complex setting, where the vanilla inference model may fail to reproduce the observed 

representativeness bias. Bordalo et al.’s and Grether’s model are clearly more flexible, 

but at the same time very sensitive to a number of subjective parameters, which have 

to be accurately calibrated, typically with cognitive tests, on the particular individual 

whose distorted judgment is to be described. 

To conclude, to clear the Reader’s mind from any possible equivocal interpretation, 

we reiterate once again that the only rational way to judge under uncertainties is to use 

Bayesian logic, and here we are not suggesting in any way that representativeness 

should be used instead of Bayes’ theorem. At the same time, predicting the actual 

behavior of managers is required when setting a general policy for bridge maintenance, 

acknowledging that the managers who are going to enact the policy may behave 

irrationally. 
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Summary of the paper 

This paper proposes a process to elicit engineering expert knowledge with the 

specific aim of quantifying a Bayesian Network, while minimizing the adverse impact 

of biases to which judgment is commonly subjected. In the development of the 

methodology, each stage of the process is proposed by highlighting all the potential 

biases that may influence the process, such as anchoring and availability (introduced 

respectively in section 2.2.3.2 and 2.2.3.3), as well as by proposing appropriate actions 

in order to minimize the risk of biased judgments. The developed elicitation process is 

applied to a real-life case study regarding the safety of the Mountain Chute Dam and 

Generating Station (Ontario, Canada). This contribution provides a demonstration of 

the usefulness of eliciting engineering expertise with regard to system reliability 

analysis. 
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4.1 Introduction 

Dams fail due to a combination of more frequent load and reduced resistance to the 

load exceeding the facility’s capacity, design problems, unexpected flood events or 

inappropriate decisions in managing dams. Such failures, including breaches, may lead 

to catastrophic events which affect both properties and lives of people. Maintaining 

dams is challenging, as resources are limited, facilities are remote and usage profiles 

are uncertain. Global weather patterns have been changing, causing periods of 

flooding, which have resulted in an increase in operating the dams. Understanding and 

anticipating the environment in which the dams will operate is vital for maintaining 

the availability of the asset. Effectively maintaining the asset requires a mathematical 

model to explicate the relationship between environment, usage, hazards and 

management decisions, and to support the optimal long-term productivity of the asset. 

While several examples of mathematical and probabilistic approaches used to 

evaluate the safety of dams can be found in the literature (Yanmaz & Gunindi, 2008) 

(Li, et al., 2011) (Goodarzi, et al., 2012) (Su, et al., 2015), in this contribution we 

decide to use the Bayesian Network (BN) since it has many advantages and it is an 

increasingly popular method for reasoning under uncertainty and modelling uncertain 

domains. For instance, in comparison with two most commonly used approaches, i.e. 

the Event Tree Analysis (ETA) and the Fault Tree Analysis (FTA), BNs can more 

succinctly represent the dependency relationship between a large number of variables, 

permit variables to be described in multiple states not just binary, i.e. true or false, 

describe and represent multiple initiating events, and explicitly integrate different 

types of data, e.g. technical, environmental and social, in a single unified 

representation. Comparisons between BN and ETA or FTA in safety analysis can be 

found in (Khakzad, et al., 2011) (Jong & Leu, 2013) (Zerrouki & Tamrabet, 2015a) 

(Zerruki & Tamrabet, 2015b). 

BNs provide a powerful framework for reasoning under uncertainty, and 

consequently have been recently applied to various engineering problems, e.g. 

earthquake risk management (Bayraktarli, et al., 2005) (Bensi, et al., 2011) (Liu & 

Nadim, 2013), avalanche risk assessment (Gret-Regamey & Straub, 2006), landslide 

hazard mitigation (Medina-Cetina & Nadim, 2008), reliability analysis (Langsetha & 
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Portinaleb, 2007), climate change assessment (Peter, et al., 2009), risk assessment in 

maritime engineering (Kelangath, et al., 2011), environmental modelling and 

management (Aguilera, et al., 2011), risk assessment for fatigue damage 

(Sankararaman, et al., 2011) (Ling & Mahadevan, 2012), scour management (Maroni, 

et al., 2019). In addition, as regards the topic of this paper, in the literature we can find 

many papers in which BNs are used to develop dam safety analysis, among the many 

we recommend (Smith, 2006) (Xu, et al., 2011) (Zhang, et al., 2011) (Miroslaw-

Swiatek, et al., 2012) (Peng & Zhang, 2013) (Ahmadi, et al., 2015) (Gang, et al., 2016) 

(Eldosouky, et al., 2017) (Liu, et al., 2017) (Briseno-Ramiro, et al., 2019) 

(Dassanavake & Mousa, 2020). 

Specifically, BNs are probabilistic graphical models that use directed acyclic graph 

to represent a set of uncertain variables and their conditional dependencies (Charniak, 

1991) (Ben Gal, 2007) (Jensen & Nielsen, 2007). In detail, nodes represent the 

collection of random variables, while edges represent the interrelationship between 

these variables. While the topology of the BN provides the causal structuring of the 

problem under study, the quantitative strength of the interrelationships among 

variables is measured using conditional probability distributions, which can be updated 

when new data become available. Typically, the quantification of the probabilities may 

be obtained from statistical and historical data, existing physical or empirical models 

and logic inference. However, these quantification sources and methodologies are 

often not easy to be conducted and not sufficient to quantify the entire BN, due to the 

lack of sufficient models that interpret the interrelationships among system variables 

and due to the lack of data and information. Consequently, we decide to rely on expert 

judgments to quantify these dependencies: engineering knowledge and experience can 

be an important data source for estimating these probabilities (Dias, et al., 2018). 

Eliciting expert judgment in the form of subjective probabilities is a socio-technical 

activity. As such it requires a structured and facilitated process to extract meaningful 

judgments because people, even experts, are unable to provide accurate and reliable 

data simply on request  (Ferrell, 1994) (Vick, 2002). An example about discrepancies 

between experts in risk assessment can be found in (Rizak & Hrudey, 2005). In 

addition, since the work of Tversky and Kahneman in the early 1970s (Tversky & 

Kahneman, 1974), there has been awareness of the biases and heuristics people apply 
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in decision-making under uncertainty that can result in poor probability assessments. 

Elicitation processes are designed to minimize the influence of these biases (Quigley 

& Walls, 2020). In the literature, there are a variety of existing processes for eliciting 

expert knowledge with engineering applications, see for instance (Bubniz, et al., 1998), 

(Hodge, et al., 2001) and (Astfalck, et al., 2018). Textbooks such as (Cooke, 1991), 

(Meyer & Booker, 1991) and (Dias, et al., 2018) are references for general aspects of 

elicitation. However, very little has been reported about elicitation processes aimed 

specifically at quantifying BNs using expert judgment (Sigurdsson, et al., 2001) 

(Norrington, et al., 2008) (Christophersen, et al., 2018), especially for civil engineering 

applications, where we require experts to assess a variety of dependent variables, each 

of which is in one of several possible states. 

In this paper, the aim is to develop a methodology for eliciting expert knowledge in 

the specific case where the model is described by a BN. We start with an introduction 

of the fundamentals of BNs in section 4.2. In section 4.3, a four-stage structured 

elicitation process is developed generically so that it can be applied to many civil 

engineering structures, e.g. dams and bridges. Section 4.4 presents an implementation 

of this methodology, with its application to a real-life case study regarding the safety 

of the Mountain Chute Dam and Generating Station, which is situated on the 

Madawaska River in Ontario, Canada. Concluding remarks, along with the explanation 

of the lessons learnt from the application, are presented at the end of the paper. 

4.2 Bayesian network 

Bayesian Networks (BNs), also known as Bayes networks, belief networks or 

decision networks, are probabilistic graphical models used to represent knowledge 

about an uncertain domain using a combination of principles from graph theory, 

probability theory, computer science, and statistics (Charniak, 1991) (Ben Gal, 2007) 

(Jensen & Nielsen, 2007). In the graph, nodes represent the collection of random 

variables, while edges represent the interrelationship between these variables. In 

addition, each node is associated with conditional probability values that model the 

uncertain relationship between the node and its parents. BNs can model the 

quantitative strength of the interrelationships among variables, i.e. the nodes, allowing 

their probabilities to be updated using any new available data and information. They 
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are mathematically rigorous, understandable, and efficient in computing joint 

probability distribution over a set of random variables, and consequently very useful 

in supporting risk analysis of complex systems. 

BNs are probabilistic graphical models that use directed acyclic graph (DAG): this 

means that a set of directed edges are used to connect the set of nodes, where these 

edges represent direct statistical dependencies among variables, with the constraint of 

not having any directed cycles. Let X = (X1, …, Xi, …, Xn) represent the set of nodes, 

i.e. the uncertain variables. A node Xj is called parent of a child node Xi if there is a 

directed edge from node Xj to node Xi, meaning that Xi depends on Xj. Each node can 

have many parents nodes, while nodes with no parent are called root nodes and nodes 

with no child are called leaf nodes. In addition, each root node is associated with a 

basic probability table (BPT), while each child node with a conditional probability 

table (CPT). The joint probability function of random variables in a BN can be 

expressed as follows: 

 
 P(X) = ∏ P[Xᵢ | Pa(Xᵢ)]

n

i = 1

, (4.1) 

where P(X) is the joint probability and Pa(Xi) is the parent set of node Xi. If Xi has no 

parents, i.e. it is a root node, then the function reduces to the unconditional probability 

of P(Xi). A simple example of BN with three variables as regards dam safety analysis 

is shown in Figure 4.1: both the severity of the flood and a high-water pressure can 

cause the presence of seepage in the dam; in addition, the flood severity has a direct 

effect on the level of water pressure. The table related to the flood severity, that is a 

root node, represent an example of BPT, while the tables of the other two child nodes 

are examples of CPT. 

Generically, in BNs there are two main types of reasoning: predictive reasoning, 

i.e. top-down or forward reasoning, in which evidence nodes are connected through 

parent nodes (cause to effect), and diagnostic reasoning, i.e. bottom-up or backward 

reasoning, in which evidence nodes are connected through child nodes (effect to 

cause). 
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Figure 4.1. An example of BN with three variables. 

Finally, we can summarize how to build and use a BN with three steps: structuring 

the problem, defining the conditional probabilities, and making the final inference. The 

first step aims to define the topology of the BN: first, the relevant variables of the 

problem are identified and expressed as statistical variables, discrete or continuous; 

then, the network is created by joining the variables according to their dependency. 

The second step is about quantifying the interrelationship among connected nodes, i.e. 

defining the CPTs, as well as the BPTs in the case of root nodes. They may be obtained 

from statistical and historical data, existing physical or empirical models, logic 

inference or they may be elicited from experts. Lastly, the inference step concerns 

entering the evidence in the BN, updating the probabilities, and interpreting the final 

results. 

4.3 Elicitation Process for Bayesian networks 

In this paper, the aim is to support the collection of valid and reliable data in order 

to quantify a BN, by developing a methodology for the specific case where the 

topology of the BN has already been defined, i.e. with the problem already structured. 
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In this case, the elicitation process is then required to extract and quantify the 

subjective judgments about the uncertain quantities, which are the conditional 

probabilities that represent the interrelationships among connected nodes. 

There are various protocols for probability elicitation (Morgan, et al., 1990), for a 

recent review see (Quigley & Walls, 2020). The methodology proposed in this 

contribution is adapted from the Stanford Research Institute (SRI) model (Ferrell, 

1985) (Spetzler & Stael Von Holstein, 1985) (Merkhofer, 1987). Accordingly, the 

process for eliciting expert judgment is based on seven possible stages: motivating the 

experts with the aims of the elicitation process, structuring the uncertain quantities in 

an unambiguous way, conditioning the expert’s judgement to avoid cognitive biases, 

encoding the probability distributions, verifying the consistency of the elicited 

distributions, aggregating probabilities from different experts and discretizing 

continuous probability distributions. Moreover, to conduct an elicitation process at 

least two characters are necessary: a subject, i.e. the expert, and an analyst, i.e. the 

interviewer. The first one provides expertise, i.e. he/she is “a person with substantive 

knowledge about the events whose uncertainty is to be assessed” (Ferrell, 1985), while 

the second one has responsibility for designing, developing and executing the process 

as well as evaluating the procedures. For the rule of analyst, also called facilitator, it 

is common to have at least one person who is very knowledgeable in elicitation 

practice and can manage the process, and another one with wide expertise in the area 

of the design project. 

Starting from the SRI protocol and according to the specific requirements of a BN, 

we develop a four-stage structured methodology to support the elicitation 

meaningfully. In the next subsection each stage is extensively presented by defining 

each phase of the process, presenting the roles of the key personnel and highlighting 

all the potential biases that may influence the process, while proposing appropriate 

actions in order to minimize the risk of a biased judgment. 

4.3.1 The four-stage structured elicitation process 

In the following, each stage of the process is presented in detail; the flowchart in 

Figure 4.2 shows the proposed elicitation process. 



91 

 

Stage 1: Selecting. To start, the analysts have to study carefully the project and the 

proposed BN, to understand which kind of expertise is required: it is fundamental to 

ensure coverage of all the different aspects of the problem, so more than one expert is 

usually necessary. This is even more important in civil engineering applications, 

because in this field experts are usually very specialized. Therefore, the analysts should 

identify the essential and desired characteristic of experts and build up profiles of 

experts who may be able to answer questions concerning the quantities of interest, i.e. 

the values required to be quantified in the BN. Constructing a profile matrix can be 

useful (Bolger, 2018), which matches the knowledge requirements with the expert 

roles: it supports the identification of expertise needed as well as justification for the 

choice of experts. The number of required experts depends then on the variability of 

expertise per domain. Adding as many experts as possible seems beneficial, however, 

practically it may be difficult to manage many experts and there will be a diminishing 

return on adding more experts. In addition, we have to be aware that in real-world it is 

not so easy to have the availability of many experts. Once the experts have been 

selected, the analysts have to arrange meetings to conduct interviews. Prior to the 

meetings, it is recommended to give to the experts an outline about the project and 

where their knowledge will be useful, so that they have the opportunity to reflect upon 

the events. 

Stage 2: Structuring. Individual interviews between the analysts and the selected 

experts are conducted. The initial part of the interview has two purposes: to introduce 

the expert to the encoding task as well as identifying and addressing motivational 

biases (Fischhoff, 1989), such as management bias and expert bias. Management bias 

occurs when experts provide goals rather than judgments, e.g. “the dam will not fail”, 

while expert bias comes when experts become overly confident because they have 

been labelled as “experts”. During this initial part of the interview, the BN should be 

explained, indicating the uncertainty variables that will be elicited and explaining how 

this process can be useful as regards the resolution of the overall problem. The second 

part of this stage is concerned with structuring the variables: each quantity of interest 

that will be quantified needs to be specified so that a measurement scale can be 

determined. Even if the topology of the BN has already been defined, it is fundamental 

to review with the experts the definitions of the variables and their states, in order to 
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structure the uncertain quantities in an unambiguous and meaningful way, before 

starting with the encoding phase. Each variable must have a clear definition that will 

be understood without any possibility of misunderstanding by the expert. In addition, 

the states of every variable have to be determined in order to make unambiguous the 

final estimation of the expert. It is common for a BN to represent the nodes with 

discrete states: we suggest keeping them binary if possible, to minimize the number of 

variables to quantify. Depending on the experience and mental models of the experts, 

it may be appropriate to disaggregate the variable into more elemental variables. This 

can be very useful in the case of the BN, because each node might depend on several 

aspects and it can be easier for the experts to evaluate these secondary probabilities. 

This technique also allows the analysts to combat the motivational biases introduced 

at the beginning of this stage, i.e. the so-called management bias and expert bias, and 

also some cognitive biases, e.g. the conjunctive bias, by increasing the level of detail. 

The conjunctive bias is one of the biases associated to the anchoring heuristic (Tversky 

& Kahneman, 1974), which states that the overall probability is overestimated in 

conjunctive problems and underestimated in disjunctive problems. 

Stage 3: Encoding. This stage is concerned with encoding the expert’s uncertainty 

on the quantity of interest as a probability. Prior to eliciting these quantities training 

experts on probability and providing relevant information for discussion should be 

conducted to minimize the presence of potential biases (Tversky & Kahneman, 1974) 

(Armstrong, et al., 1975). In particular, this can address biases such as anchoring 

(Tversky & Kahneman, 1974), i.e. when the evaluation is conditioned by an initial 

assessment, and availability (Kahneman & Tversky, 1973), i.e. when the evaluation is 

based on the ease with which relevant instances come to mind. Probability training 

should be provided to calibrate the experts: a brief review of basic probability concepts 

may be helpful, along with some training questions which can help the experts to 

become familiar with the elicitation process itself. Experts should be trained on 

problems relevant to the questions on which they will be providing judgement. When 

the training is completed, the encoding stage commences. There are many available 

approaches to elicit probabilities, including direct assessments of probabilities; for a 

review of methods see (O'Hagan, et al., 2006). A popular encoding procedure for 

distributions is the fractile method (Cooke 1991), where the expert assesses the median 
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value of their subjective probability distribution along with the (25th,75th) and the (5th, 

95th) percentiles. Once the initial values have been elicited a parametric distribution can 

be investigated and assessed for fit with the elicited values. The order in which these 

quantities are elicited should start with the extreme values first and progress towards the 

central values, in order to avoid the so-called central bias, i.e. the tendency to give an 

answer that is closer to the centre of opinions, and to not give an extreme answer. If the 

expert is uncomfortable with percentiles, questions can be rephrased using qualitative 

bands, such as “highly likely” or “highly unlikely”, but the percentiles associated with 

these qualitative terms must be discussed and understood by both expert and analysts. 

Alternately, graphical techniques (Chaloner, et al., 1993) may be useful to improve the 

quality of the results. We recommend using the technique which makes the expert 

more comfortable. In the case that there are a lot of probabilities to be elicited for the 

same node, we suggest that the expert first ranks the factors from the most to the least 

influential and subsequently quantifying the relationship, for instance following the 

swing weight method to elicitation used with multi-attribute decision analysis (Belton 

& Steward, 2001). Moreover, sometimes it is not possible to elicit data for all the BN 

components, especially when it is composed by a huge number of nodes or due to a 

limited time available. In this case, we recommend identifying the quantities of interest 

that make the most significant contribution to the assessment of the structure, for 

example through a sensitivity analysis (Li & Mahadevan, 2018). Finally, during the 

encoding phase, asking the same question in several ways can be a useful way of 

identifying potential inconsistencies with expert assessments. If this occur the expert 

should be confronted and encouraged to reflect and respond on the assessments. 

Stage 4: Verifying. This final stage starts by verifying the consistency of the elicited 

probabilities. First of all, the analysts should verify that each expert has provided a 

reflection of their true beliefs. Moreover, it is important to check for trends across the 

elicited probabilities to determine if there are any indicators of anchoring bias or 

availability bias. If the results are not satisfactory or biased, the previous stage should 

be repeated. In the case that the same conditional probabilities have been elicited from 

different experts, the analysts should then develop an aggregation technique to obtain 

one single final result: see (Quigley, et al., 2018) for a performance-based approach 

or, if a consensus amongst experts is desired, see (Gosling, 2018) for a behavioural 



94 

 

based approach. Since the proposed methodology is based on discrete states, the final 

stage of the SRI model, i.e. discretizing continuous probability distributions, is not 

needed. Once each elicited probability has been verified and, if necessary, aggregated, 

the analysts should solve the overall BN to achieve the final results. We suggest 

discussing with the experts also these final outcomes in order to have a further 

validation of the developed process. After that, the interview ends and the process can 

be considered concluded.  

 

Figure 4.2. Flowchart of the proposed elicitation process. 

4.4 The Mountain Chute Dam and GS case study 

The case study motivating our research is the Mountain Chute Dam and Generating 

Station (GS), which is operated by Ontario Power Generation (OPG). Mountain Chute 

Dam and GS, presented in Figure 4.3, is located in Greater Madawaska Township in 

Renfrew County (Ontario, Canada): it has an electric power generation capacity of 170 

megawatts of clean, renewable electricity. It is situated on the Madawaska River, 64 
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km upstream from its confluence with the Ottawa River, and it is in the upstream of 

four other hydroelectric facilities on the Madawaska River: Barrett Chute GS, 

Calabogie GS, Stewartville GS and Arnprior GS. The construction started in 1965 and 

was completed in December 1967. Three dams are located at the Mountain Chute GS: 

one main concrete dam and two earthen block dams, i.e. the north block dam and the 

whitefish draw dam. The main dam, shown in Figure 4.3(a), consists of the north and 

the south concrete gravity walls, the sluiceway and the headworks. It is 436 m long 

and 55 m above the rock foundations at the deepest section; the elevation of the top of 

the concrete structure is 249.9 m. The north block dam, which is an embankment 

structure constructed across a shallow depression about 300 m north east of the north 

abutment of the main dam north, is about 125 m long and has a maximum height of 12 

m. Finally, the whitefish draw dam is a block dam preventing the reservoir from 

flowing out via a side valley, it is located about 2.5 km north of the main dam, it is 204 

m long and it has a maximum height of 18 m. More details about Mountain Chute GS 

and its case study are provided in (El-Awady, et al., 2019) and (Verzobio, et al., 2019). 

 

Figure 4.3. Mountain Chute Dam and GS: a) the main dam and the sluice gates; b) the 

downstream of the dam; c) the upstream of the dam with the reservoir. 

The main scope of this project is about the general safety of Mountain Chute, with 

the final aim to estimate the probability of failure of the dams, intended as failure to 

perform at least one of the required operations, according to the interrelated dam 

components. In the next subsections, we describe the developed BN and successively 

the application of the proposed elicitation process, which allows for improving the 

estimation of the failure probability of the dams, thanks to the acquisition of valid and 

reliable data from expert knowledge. 

https://www.opg.com/generating-power/hydro/ottawa-st-lawrence/Pages/barrett-chute-station.aspx
https://www.opg.com/generating-power/hydro/ottawa-st-lawrence/Pages/calabogie-station.aspx
https://www.opg.com/generating-power/hydro/ottawa-st-lawrence/Pages/stewartville-station.aspx
https://www.opg.com/generating-power/hydro/ottawa-st-lawrence/Pages/arnprior-station.aspx
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4.4.1 Bayesian Network of Mountain Chute Dam and GS 

Mountain Chute station includes different kinds of system components. For the 

purpose of analyzing the failure of this system, all system components should be 

defined, explained and analyzed. Specifically, components such as rain precipitation, 

ice loading, earthquake and seismic actions, water pressure, geology and rock type, 

flood severity, adequacy of discharge capacity, sluice gate, drainage, vegetation 

control and other secondary components have to be considered. A BN was constructed 

based on these components and based on the factors that can lead to the failure of the 

dams, e.g. overtopping, seepage, sliding, stability issues and any operational failure, 

such as problems related to the head gates or to the electromechanical equipment. The 

resultant BN is presented in Figure 4.4. 

 

Figure 4.4. Bayesian Network of Mountain Chute Dam and GS showing all the 

primary variables. 

The main purpose of the developed BN, which is represented by 24 different nodes, 

i.e. the yellow ovals in Figure 4.4, is predicting the probability of failure of the main 

dam from overtopping, seepage, sliding or any operational failures. Moreover, it 

estimates the probability of failure of the earthen block dams resulting from the threats 

of seepage and sliding. In the following, we analyze in detail the BN. 

The basic events are rain precipitation, ice loading limits, earthquakes, geological 

and rock stability, vegetation control and control of animal burrows. It can be seen 

from the BN that the amount of rain affects the inflow to Mountain Chute dam; this 
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inflow is considered a flood if it exceeds a certain limit. If a flood takes place, it may 

be normal or severe. Flood severity is also affected by seismic actions and earthquakes. 

The inflow rate and the severity level of the flood are controlled by the Mackie Creek 

weir. Controlling the inflow is about preventing severe floods from reaching the dam 

reservoir. The weir may be efficient or not, depending on the flood severity. After 

passing the weir, the water in the reservoir, blocked by two earthen block dams and 

the main concrete dam, is ready to be controlled by the dam head gates; this means 

that there is water pressure behind the dams that may affect their stability. The 

geological and rock stability for the structure of the three dams have been considered 

as it affects the sliding of the dam; sliding is one of the causes of dam breach failure. 

In addition, ice loading, water pressure and flood severity are connected to the 

electromechanical equipment, including turbines; for instance, ice loading affects the 

failure of the mechanical equipment and at the time of a severe flood and high-water 

pressure could result in dam failure from maloperations of gates. As regards the 

electric power generation, the head gates are opened to let the water flow through the 

penstock to generate electricity from hydropower turbines. If the head gates fail to 

open, this is considered a failure of the main dam, especially if the water pressure is 

high in the upstream side of the dam; this may affect the dam stability and also the 

amount of power generated by the turbines. 

Moreover, the flood severity, the weir efficiency in controlling the inflow to the 

reservoir and the water pressure are all affecting the probability to have spill in the 

main dam; the spill is the amount of water that exceeds the reservoir maximum 

capacity limit after considering various controlled outflows. This amount should be 

released from the upstream side to the downstream side through the spillway 

(sluiceway) gates or an overtopping failure could take place. The amount of water spill 

is also related to the capacity of sluiceway, which may not be adequate for that amount 

of water to be discharged, and to the condition of the sluice gate, i.e. open or failed to 

open due to electromechanical failure. If the water spill is not released from behind the 

main dam because of the inadequate capacity of the sluiceway, or because the sluice 

gate fails to open, there is an increasing probability, i.e. risk, of overtopping failure. 

As concerns the main dam, severe floods with increased water pressure increases 

the possibility to have seepage in the body of the main dam. If the seepage is not 
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completely controlled and monitored through a drain system which may include drain 

inspection tunnel, this would result in an increasing risk that reduces the remaining 

lifetime of the dam. Finally, as regards the earthen dams in Mountain Chute GS, 

seepage may take place because of uncontrolled vegetation and due to animal burrows 

and holes in the vicinity of the dams. Seepage in the earthen block dams is then an 

increasing risk for seepage piping and dam breach failure. 

After the development of the topology of the BN, the corresponding states have 

been defined. It was clear that defining more than two states for every component of 

the BN would have turned the system into a more complex network. On the other hand, 

more states would have allowed to get more accurate results. Following the proposed 

methodology of the elicitation process, due to the considerable number of nodes, it has 

been decided to keep the states of the nodes binary, e.g. fail/no fail, safe/not safe, 

controlled/not controlled, efficient/not efficient. Table 4.1 presents the defined states 

for each node. In addition, each state has been associated with a detailed definition or 

a numerical value, so as to make them quantifiable. As an example, according to the 

available data, the threshold according to which the rain precipitation passes from the 

state low to the state high is when the rain depth reaches 60 mm. 

Once the BN structure is completely defined, the conditional probability 

distributions were determined based on logical inference and limited historical data; 

these probabilities are defined to represent 100 years of operation for the Mountain 

Chute Dam and GS. Nevertheless, the available data were not enough, and they did 

not allow to cover all the nodes of the BN. Then, it was necessary to rely on expert 

judgment to provide subjective probabilities in order to populate completely the model. 

 

  



99 

 

Table 4.1. States of the BN variables. 

Variable States 

Rain precipitation Low High 

Earthquakes seismic events Normal Severe 

Ice loading limit Safe Not safe 

Geology & rock type Stable Unstable 

Discharge capacity adequacy Adequate Not adequate 

Head gates main dam Open Close/Fail to open 

Holes and animal burrows Controlled Not controlled 

Vegetation control Controlled Not controlled 

Inflow flood Low High 

Flood severity Normal Severe 

Mackie Creek weir efficiency Efficient Not efficient 

Water pressure Normal High 

Spill Yes No 

Electromechanical equipment main dam Efficient Not efficient 

Sluice gates main dam Open Close/Fail to open 

Electric generation output Low High 

Overtopping Yes No 

Drainage main dam seepage Leakage No leakage 

Main dam stability sliding Stable Unstable 

Main dam failure Fail No fail 

North dam stability Stable Unstable 

White fish drawn dam stability Stable Unstable 

Seepage Exist Not exist 

Earthen dams failure Fail No fail 

 

4.4.2 Elicitation Process 

By following the methodology proposed in section 4.3, we implemented each stage 

of the process as follows. 
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Stage 1: Selecting. There were two analysts: one with knowledge in elicitation 

practice and another with experience in the specific engineering area of failure 

analysis. After studying the project and the defined model, we identified three areas of 

expertise from which we sought to elicit expert judgment: structural stability expertise, 

environmental expertise and system design expertise. While finding one expert per 

each area was desirable, due to availability constraints we were given access to only 

one expert, who had a reasonable expertise in all the three areas: he was an engineer 

of the Ontario Power Generation who was responsible for monitoring the operations 

of this specific GS. We were aware about the possible difficulty in finding available 

experts, but managed to satisfy an essential coverage of expertise in all relevant area. 

A meeting was then arranged at the site of the dam, in order to develop the interview. 

In preparation, the expert was informed by email about the project and the specific 

aims of the interview. 

Stage 2: Structuring. At the beginning of the interview the expert was motivated by 

explaining the importance of the project, his fundamental rule and how the results will 

be used. Moreover, the possible presence of motivational biases was investigated, 

especially the expert bias: it was carefully pointed out to the expert that the goal is not 

to measure his personal expertise, but to measure his knowledge about the events. 

Successively, we moved to the second part of this stage: we reviewed the topology of 

the BN and the states of the variables together with the expert, to ensure that there was 

no misunderstanding about their definition before moving to the encoding phase. The 

expert therefore had the opportunity to review the topology of the BN but he decided 

not to modify it, probably because we arrived at the meeting with a too refined model; 

he also agreed with the proposed variables, refusing the possibility to disaggregate 

some nodes too. In addition, we spent more time explaining meticulously to the expert 

the meaning of each variable and the corresponding states: after this discussion, and 

based on his opinions, we agreed to change the definition as well as the threshold of 

some states. 

Stage 3: Encoding. The encoding phase started by conditioning the expert’s 

judgment in order to avoid the possible presence of some cognitive biases. In 

particular, we focused mainly on the anchoring, which is of particular concern with 

BNs given the large number of variables being quantified: after the first assessment, 
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the expert must avoid linking the subsequent assessments with the previous one, as it 

would result in a biased adjustment. Following this discussion, a probability training 

was carried out: we reviewed some probability concepts and trained the expert with 

some specific questions similar to those that we would be asked in the encoding phase, 

trying for instance to clarify the difference between a frequent event and a very rare 

event. In addition, the probability scale presented in Figure 4.5 was introduced, that 

we had established in order to help the expert during this stage of the process. This led 

to the encoding phase, which was the most important and the longest, i.e. around 1 

hour. It was developed by asking questions in several ways, e.g. direct assessment of 

probabilities but also rephrasing the questions using qualitative bands, to find potential 

inconsistencies in the answers and also to reduce the influence of the explained biases. 

We chose these types of questions because we had noticed that the expert was not 

completely comfortable using the percentiles. For example, we asked the following 

questions: “What is the probability of a high inflow if the state of the rain precipitation 

is low?”; “How frequently does it occur that the head gates of the main dam fail to 

open?”; “How many days per year is it highly likely to have an inadequate capacity of 

sluiceway?” During this phase it is important that the questions are very clear: for 

instance, we had to pay attention to the reference time of each question in order to 

avoid misunderstanding with interpreting the expert data, for example caused by the 

difference between the design time of a dam and the real-life time of the dam. 

 

Figure 4.5. Probability scale used during the elicitation process. 

Stage 4: Verifying. Finally, a verification of the individual elicited probabilities was 

developed: the results were satisfactory because the numerical outcomes seemed to 

coincide appropriately with the true beliefs of the expert. Since we had the availability 

of just one expert, no aggregation technique was necessary. Due to a limited time 

available the interview ended without the time to solve the overall BN and to discuss 
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the resulting outcomes, which would have been useful also as an additional 

verification. In the end the interview lasted approximately two hours. 

4.4.3 Case study results 

In conclusion, after updating the probability distributions with data inferred from 

expert engineering judgment as presented in the previous subsection, the overall BN 

was solved in order to estimate the failure probabilities, which we remember are 

intended as failure to perform at least one of the required operations. Figure 4.6 shows 

the results, achieved using the software Hugin (http://hugin.sourceforge.net/): the 

Bayesian inference results in a failure probability pF = 0.0135 for the main dam and pF 

= 0.0133 for the earthen block dams, both evaluated over the lifetime of the dams, i.e. 

100 years. It is evident that adding expert engineering judgments helps in reducing the 

uncertainties in the network, and gives better estimates for the operation of the dam in 

comparison with those obtained using only the limited available data and logical 

inference (El-Awady, et al., 2019): Table 4.2 shows the improvement achieved in the 

results using engineering expert knowledge. These final results about the failure 

probability are satisfactory as they are close to those expected when considering these 

kind of systems design components: it provides approximately a failure of 1 in 10000 

at any year or equivalent to designing a dam for failure due to the so-called ten 

thousand years flood. 

Table 4.2. Comparison of results. 

 
pF  

main dam 

pF  

earthen block dams 

Our results using engineering expert 

knowledge 
1.35% 1.33% 

Results without engineering expert 

knowledge (El-Awady, et al., 2019) 
77.15% 68.77% 

In addition, a BN is useful because explicates the cause-effect relationship, that is 

essential for a better understanding of the dam safety. For instance, it is possible to 

understand the main contributors to the failure of the main dam. Figure 4.7 shows the 

http://hugin.sourceforge.net/
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conditional probabilities of each node given the main dam has failed. The most 

influential variables and the associated probabilities are: seepage, i.e. 0.46 leakage, 

electromechanical equipment, i.e. 0.25 fail, sliding stability, i.e. 0.24 unstable, head 

gates, i.e. 0.23 failed to open. On the other hand, overtopping has just a probability of 

the 0.08.  

 

Figure 4.6. The quantified BN of Mountain Chute Dam and GS (note that the 

numerical values are percentage). 

 

Figure 4.7. BN of Mountain Chute Dam and GS given the evidence that the main dam 

fails (note that the numerical values are percentage). 
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4.4.4 Evaluation of the process 

After discussing the implementation of the planned elicitation process to this 

specific engineering case study and the consequent results, in this section we propose 

a critical discussion about the main steps of the process, based on what happened 

during its application, in order to understand how to improve the process and to give 

practical guidelines that can be used for similar applications in the future.  

- The selection of the experts is fundamental and should not be underestimated. 

In particular, working in a field where experts have narrow areas of expertise 

rather than generalists requires more experts to be involved in the elicitation to 

ensure sufficient coverage of the relevant issues. It is worthwhile reflecting on 

expertise that is desirable for the study or essential. In our case, even if we had 

the availability of only one expert, we managed to satisfy an essential coverage 

of expertise in all relevant area. For larger projects, expert profile matrices can 

be useful at structuring this reflection (European Food Safety Authority, 2014) 

(Bolger, 2018). 

- As regards the number of interviewers, the choice of two analysts with different 

competences seemed appropriate: it is essential to have at least one facilitator 

with the expertise in the elicitation practice that have to lead all the process, 

and at least another one with engineering knowledge that have to make his 

contribution regarding the technical aspects of the specific design project. 

- The interview was conducted at the dam site: this choice has proved to be 

suitable because it allowed us also to understand better some practical aspects 

of the dam operation. As regards the available time for the interview, we had 

scheduled a two-hour meeting but in the end we realised that it was not enough 

to properly complete all the planned elicitation process. During the scheduling 

phase we had probably underestimated some aspects of the interview that can 

lead to a delay, so we suggest detailed planning of the interview to identify an 

appropriate time. 

- As concerns the structuring phase, we started with a very refined model, which 

can have some disadvantages, as it was evident that the expert did not propose 

many changes to the structure and agreed almost completely with our proposal; 
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if the model had been less refined then the expert would have been more 

empowered to create a different model. Since this phase is fundamental in order 

to achieve accurate results during the encoding, we recommend involving the 

experts in the creation of the model and its variables. 

- The training phase is fundamental to get accurate and reliable data from the 

experts. Unfortunately, the time that we spent on training was too little, both 

because of the limited available time and because the expert did not seem too 

convinced about the importance of this phase. Consequently, we suggest 

adding a motivational phase at the beginning of this stage, i.e. encoding, in the 

same way as in the structuring stage, with the aim to explain to the expert why 

it is necessary its development in order to calibrate him before encoding. 

- There is a trade-off between the level of detail in a model and the time required 

to populate with probabilities. The model structure needs to be flexible and 

adapt during the encoding, as experts may not be comfortable expressing 

uncertainties on variables and require an elaboration of the node.  

- As concerns the encoding techniques, the choice to ask the questions with 

direct assessment of probabilities and rephrasing the question using qualitative 

bands was made according to the specific features of our expert: it was clear to 

us for instance that he was not comfortable with the use of the percentiles. A 

good idea is then to prepare the questions in different ways before the meeting, 

and to choose which ones to use only during the interview, so as to make the 

expert as comfortable as possible. 

- As regards the verifying stage, the limited available time did not let us to carry 

out it completely. This is a problem that we have already highlighted and 

should be considered properly during the scheduling phase. In particular, it 

would have been important to have more time available in order to verify with 

the expert also the final resolution of the BN, based on the elicited variables. 

- Finally, during the implementation of all the stages we have paid close attention 

to the possible presence of heuristics and biases, by following the appropriate 

actions suggested in the methodology in order to minimize the risk of biased 

judgments. The achieved results allow us to confirm the suitability of our four-

stage elicitation process. 
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4.5 Conclusions 

BNs allow for analysing complex systems like dams in order to develop a safety 

analysis based on probabilistic estimates of failure. Due to the lack of data, in this 

paper we proposed a methodology for an elicitation process aimed specifically at 

quantifying BNs, with the final goal of collecting reliable data from engineering 

knowledge. The elicitation exercise we carried out for this specific case study 

regarding the safety of the Mountain Chute Dam and GS, even if developed in a 

simplified way, demonstrated the potential and the usefulness of the engineering 

expertise, and allowed us to learn many lessons that are useful for improving the 

methodology, which we intend to address in future for similar applications. In 

summary, we can conclude as follows: 

- While the elicitation process has been applied in many fields, in civil 

engineering there is little experience of applying formal elicitation processes to 

quantify models. This paper demonstrates that engineering knowledge and 

experience can be very useful to solve appropriately also this type of analysis. 

- It is undeniable that the elicitation requires a structured and facilitated process 

in order to achieve accurate and reliable data, by avoiding the adverse impact 

of biases. However, there is no perfect elicitation process: it has to be planned 

according to the particular context and to the specific aims. Consequently, we 

proposed a detailed methodology for the precise aim to quantify a BN. 

- Our four-stage structured elicitation process works properly according to the 

results achieved in the case study. However, this has been just our first 

experience in implementing an elicitation process and indeed, during the 

application, we have noticed some aspects that need to be improved in order to 

make the process even more successful and reliable. 

- As regards to future work, we aim to improve this structured methodology 

based on what we have learnt from this first application, and to apply it to other 

civil engineering structures, e.g. bridges. 
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Summary of the paper 

This paper investigates how decision-making can be distorted when multiple 

rational decision makers are involved in the decision chain. In particular, we focus on 

the quantification of the benefit of Structural Health Monitoring (SHM), using the 

concept of Value of Information (VoI) (introduced in section 2.3): we formalize a 

rational method for quantifying the VoI when two different actors are involved in the 

decision chain, i.e. the owner and the manager of the structure. The two decision 

makers, even if both rational and exposed to the same background information, may 

still act differently because of their different appetites for risk (discussed in section 

2.1.2). To illustrate how this framework works, we evaluate a hypothetical VoI for the 

Streicker Bridge, a pedestrian bridge in Princeton University campus equipped with a 

fiber optic sensing system. This contribution demonstrates that, with the developed 
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methodology, decision-making is distorted and the VoI results different, in comparison 

to the case where all the decisions are made by the same individual. 

5.1 Introduction 

Although the utility of structural health monitoring (SHM) has rarely been 

questioned in our community, very recently a few published papers (Thons & Faber, 

2013) (Zonta, et al., 2014) have clarified the way that the benefit of monitoring can be 

properly quantified. Indeed, seen from a mere structural engineering perspective, the 

utility of monitoring may not be immediately evident. Wear for a minute the hat of the 

manager of a Department of Transportation (DoT), responsible for the safety of a 

bridge: would you invest your limited budget on a reinforcing work or on a monitoring 

system? A retrofit work will increase the bridge load-carrying capacity and therefore 

its safety. On the contrary, sensors do not change the bridge capacity, nor reduce the 

external loads. So how can monitoring affect the safety of the bridge? The answer to 

this legitimate question goes roughly along these lines: monitoring does not provide 

structural capacity, rather better information on the state of a structure; based on this 

information, the manager can make better decisions on the management of the 

structure, minimizing the chances of wrong choices, and eventually increasing the 

safety of the bridge over its lifespan. Therefore, to appreciate the benefit of SHM, we 

need to account for how the structure is expected to be operated and eventually recast 

the monitoring problem into a formal economic decision framework. 

The basis of the rational decision-making is encoded in axiomatic Expected Utility 

Theory (EUT), first introduced by Von Neumann and Morgenstern (Neumann & 

Morgenstern, 1944) in 1944, and later developed in the form that we currently know 

by Raiffa and Schlaifer (Raiffa & Schlaifer, 1961) in 1961. EUT is largely covered by 

a number of modern textbooks (among the many, we recommend Parmigiani and 

Inoue (Parmigiani & Inoue, 2009) to the Reader of SHM who is approaching the topic 

for the first time). Within the framework of EUT, the benefit of information, such as 

that coming from a monitoring system, is formally quantified by the so-called Value 

of Information (VoI). For the state of art about the VoI see section 2.3. 

Broadly speaking, the value of a SHM system can be simply defined as the 

difference between the benefit, or expected utility u*, of operating the structure with 
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the monitoring system and the benefit, or expect utility u, of operating the structure 

without the system. Both u* and u are expected utilities calculated a priori, i.e. before 

actually receiving any information from the monitoring system. While in u we assume 

the knowledge of the manager is his a priori knowledge, u* is calculated assuming the 

decision maker has access to the monitoring information and is sometimes referred as 

to preposterior utility. The difference between these values measures the value of the 

information to the decision maker. Clearly, if the monitoring does not provide any 

useful information, the preposterior u* is equal to the prior u, and the value of 

monitoring information is zero.  

Typically, it is assumed that there is one decision maker for all decisions, i.e. 

deciding on both investments as well as operations. This individual could be for 

example an idealized manager of a DoT, as the fictitious character ‘Tom’ who appears 

in (Zonta, et al., 2014). We must recognize that in the real world the process whereby 

a DoT makes decision over its stock is typically more complex, with more individuals 

involved in the decision chain. Even oversimplifying, we always have at least two 

different decision stages. First a decision is made on whether or not to buy and install 

the monitoring system on the structure; this is a problem of long-term planning and 

investment of financial resources. This decision is typically carried out by a high-level 

manager, that in this paper we will conventionally refer to as owner, whose key 

performance measure is return on investment. The second stage concerns the day-to-

day operation of the structure which includes for example maintenance, repair, retrofit 

or enforcing traffic limitations, once the monitoring system is installed; if installed 

these decisions may be informed by the monitoring system. Most of the time, the 

manager and the owner of the structure are different individuals. Both decision makers 

are motivated to maintain a high level of long-term availability for the structure, which 

is challenging as the state of the structure is never known precisely while in operation. 

Operators balance two types of errors, either removing a structure from operation 

prematurely for maintenance or operating too long resulting in a failure; both of which 

are based on imperfect information concerning the state of the structure. Decision 

makers will differ in their choices under uncertainty even when they have access to the 

same information if they have different appetites for risk. As such, the owner needs to 

consider the operators appetite for risk when deciding whether to install a monitoring 
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system, as this will indicate how the system will inference the operators decision-

making and as such the value of this information.  

The aim of this work is to formalize a rational method for quantifying the Value of 

Information when two different actors are involved in the decision chain: the manager, 

who makes decisions regarding the structure, based on monitoring data; and the owner, 

who chooses whether to install the monitoring system or not, before having access to 

these data. We start explaining why and how two different individuals, both rational 

and provided with the same background information, can end up with different 

decisions. Next, we review the basis of the VoI, which illustrates a method for 

evaluating the VoI in SHM-based decision-problems, and revise the framework of 

Zonta et al. (Zonta, et al., 2014), to include the difference between the manager and 

the owner. To illustrate how this framework works we apply it to the same decision 

problem reported in (Zonta, et al., 2014): the Streicker Bridge case study. This is a 

pedestrian bridge at Princeton University campus, which is equipped with a continuous 

monitoring system. Some concluding remarks are reported at the end of the paper. 

5.2 SHM-based decision 

This section has already been presented in the literature review of chapter 2: the 

assumptions and the framework of a rational SHM-based decision process are 

presented in section 2.1; the rational judgment, i.e. using Bayesian inference, is 

illustrated in section 2.1.1; the rational decision, i.e. using EUT, is presented in section 

2.1.2; the consequent calculation of the VoI is formulated in section 2.3. 

5.3 Two individuals, two decisions 

In the classical formulation of the VoI stated above, we have implicitly assumed 

that the decision is taken at any stage by the same rational individual, characterized by 

a defined background information and utility function. We address now the problem 

of quantifying the VoI when two separate individuals are involved in the decision 

chain. We conventionally denote manager (M), the one who makes decisions on the 

day-to-day operation of the structure, and owner (O), the one who is in charge of the 

strategic investments on the asset and decide on whether to install the monitoring 

system or not. Referring to Figure 2.5, the manager is the one who takes decisions at 
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stage two, while the owner decides at stage one. We will refer to the classical 

formulation of VoI, as stated in the previous section, as to unconditional - in contrast 

with the conditional VoI which we are about to introduce. 

A common misunderstanding, not only in our community, is that two individuals, 

if both rational and exposed to the same observation, should always end up with the 

same decision. In the real world, there are a number of components in the SHM-based 

decision process that are inherently subjective, so different decisions by different 

individuals should not be necessarily be seen as an inconsistency. This concept needs 

a deeper explanation: with reference to Figure 2.1, the reasons whereby two 

individuals, both rational, can take a different decision based on the same observation 

include the following: 

a) The two have a different prior knowledge of the problem – i.e. they use 

different priors P(S). 

b) They interpret differently the observation – i.e. they use different interpretation 

models, which are encoded in the likelihood function P(y|S). 

c) They have a different expectation or knowledge of the possible outcome of an 

action – i.e. they assume different outcome vectors z. 

d) They weight differently the importance of an outcome - i.e. they use different 

utility functions U(z). 

Differences in (a) (b) and (c) are merely about background knowledge and may 

actually occur in the real world; however, we expect that two individuals with similar 

experience and education should generally agree on any of that. For example, two 

structural engineers with common background will probably agree on the limited 

importance of a bending crack visible on an unprestressed reinforced concrete beam, 

while a non-expert could be over-concerned. In this paper, we will assume that the two 

agents fully agree on (a), (b) and (c), while they only differ in the way how they weight 

outcomes (d), through their utility function. The utility function is not a matter of 

background knowledge, rather it reflects the value of the individual as to the 

consequence of an action. Therefore, there is no logical argument to judge one utility 

function better than another one, as long as it does not violate the axioms of the 

expected utility theory.  
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Even limiting our discussion to the case where the outcome z is just a monetary loss 

or gain, the utility function adopted by different people can be very different based on 

their particular individual risk aversion (Bernoulli, 1954) (Kahneman & Twersky, 

1984). For instance, an agent is risk neutral if his or her utility function U is linear with 

the loss or gain z, as shown in Figure 2.2. Since the expected utility is proportional to 

the probability of realization, as shown in Eq. (2.8), risk neutrality implies indifference 

to a gamble with an expected value of zero. So, for example, to a risk neutral agent a 

1% probability of losing $100 is equivalent to a certain loss of $1. 

In practice it is commonly observed that individuals tend to reject gambles with a 

neutral expected payoff: in the example above individuals often prefer to pay $1 off 

the pocket rather than taking the risk of losing $100. This condition is referred to as 

risk aversion and can be graphically represented with a concave (i.e., with negative 

second derivative) utility function, as shown in Figure 2.2. The condition of risk 

aversion is consistent with the observation that the marginal utility of most goods, 

including money, diminish with the amount of goods, or the wealth of the decision 

maker, as observed since Bernoulli (Bernoulli, 1954). 

Dealing with losses, risk aversion respect to a loss depends on the amount of the 

loss with respect to the decision maker’s own wealth or the extent of his or her own 

asset: when the loss is much smaller than the whole value of the asset, the agent tends 

to be risk neutral, while they became risk averse when the loss is a significant fraction 

of their asset. In our situation, the owner, who is in charge of the strategic development 

of the agency, typically manages a large stock of structures, and the loss corresponding 

to an individual structure is a much smaller than the overall asset value. In this case, it 

is likely that the owner is risk neutral with respect to the loss compared to the value of 

a single structure. In contrast, the manager is responsible for the safety of a single 

structure: in this case the value of the structure corresponds to the value of the asset, 

and their behaviour is likely to be risk adverse respect to the loss of that particular 

structure. 

To proceed with the mathematical formulation, we have to acknowledge that the 

two agents involved in the decision chain, the owner and the manager, may have 

different utility functions. We are going to use indices (M) or (O) to indicate that a 
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quantity is intended from one or the other perspective. The expected utility of the 

manager is calculated as:  

 

𝑢
(M)

(𝑎𝑗) = ∑ 𝑈
(M)

(𝐳(𝑎𝑗 , 𝑆𝑖)) P(𝑆𝑖)

N

𝑖=1

, (5.1) 

and we may calculate the optimal action and the maximum utility from the manager 

perspective as in the following: 

 u
(M)

= max
j

u(aj)
(M)

, a
(M)

opt
= arg max

j
u(aj).

(M)
 (5.2a,b) 

If the owner was in charge of the entire decision chain, we would end up with 

analogous expressions of optimal action a
(O)

opt
 and maximum expected utility u

(O)

max
, 

this time from the owner perspective. Observe that the optimal choice of the owner 

does not necessarily coincide with that of the manager, meaning that if the owner was 

in charge of the full decision chain, they would behave differently from the manager. 

Continuing on this rationale, we can reformulate the expression of posterior utilities, 

preposterior utilities and VoI from the owner or the manager perspective. 

However, the situation we are discussing is different: the owner is the one who 

decides on the monitoring system installation, but the manager is the one who decides 

which is the optimal action at the second stage. Therefore, all utilities are from the 

owner perspective, but should be evaluated accounting for the action that the manager, 

not the owner, is expected to choose. In other words, the utility of the owner is 

conditional to the action chosen by the manager a
(M)

opt
. For example, the prior utility 

of the owner conditional to the decision expected by the manager reads:  

 
u

(O|M)
 = u

(O)
( a

(M)

opt
) = u

(O)
{arg max

j
u(aj)

(M)
}, (5.3) 

where the index (O|M) on the utility u
(O|M)

 indicates that this utility is conditional to the 

manager’s choice, in opposition to the unconditional utility u
(O)

 calculated assuming 

the owner in charge of the full decision chain. We can proceed accordingly to 
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formulate the posterior conditional utility (the utility of the owner after the manager 

has observed the monitoring response): 

 
u

(O|M)
 = u

(O)
( a

(M)

opt
( y)) = u

(O)
{arg max

j
u(aj,y)

(M)
}, (5.4) 

and similarly the preposterior conditional utility (the utility of the owner in the 

expectation of what the manager would decide if a monitoring system was installed):  

 
u* 

(O|M)
= ∫ u

(O)
{arg max

j
u(aj,y)

(M)
} ∙ p(y) dy

Dy

. (5.5) 

Eventually, the conditional VoI is the difference between the preposterior and the prior 

conditional utilities: 

  VoI = u*
(O|M)

−  u 
(O|M)

 =

= ∫ u
(O)

{arg max
j

u(aj,y)
(M)

} ∙ p(y) dy
Dy

− u
(O)

{arg max
j

u(aj)
(M)

}. 

(5.6) 

The unconditional and conditional formulations are summarized and compared in 

Table 5.1. At this point, it is interesting to compare the unconditional and the 

conditional utilities, and also the value of information. The unconditional utility, prior 

or preposterior, is basically the owner’s utility of their favourite choice, while the 

conditional utility is the owner’s utility of the choice of someone else. If the two 

choices coincide, the conditional utility is equal to the unconditional prior utility. If 

they do not coincide, the manager’s choice can only be suboptimal from the owner’s 

perspective, and therefore the conditional utility must be equal or lower than the 

unconditional. Therefore, the following relationships must hold: 

 𝑢
(O|M)

≤ 𝑢
(O)

,           𝑢∗(O|M)
≤ 𝑢∗(O)

. (5.7a,b) 

In a situation with one decision maker the VoI cannot be negative; if the decision 

maker anticipated misleading data it would be optimal to discard it resulting in a VoI 

of 0. However, we consider a situation of two decision makers and demonstrate that 
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the VoI can be negative to one, i.e. the owner, as the new information is resulting in 

the other, i.e. the manager, making decisions that are less preferred by the owner than 

with no information.   

Table 5.1. Value of Information of a monitoring system in the unconditional and 

conditional formulation. 

Unconditional formulation 

Manager (M) = Owner (O) 

Conditional formulation 

Manager (M) ≠ Owner (O) 

Prior utility without monitoring 

u
(O)

 = max
j

u(aj)
(O)

 

u
(O|M)

 = u
(O)

( a
(M)

opt
) = u

(O)
{arg max

j
u(aj)

(M)
} 

a
(O)

opt
 = arg max

j
u(aj)

(O)
 

Posterior utility with monitoring 

u
(O) (y) = max

j
u(aj,y)

(O)
 u

(O|M)
(y) = u

(O)
( a

(M)

opt
(y)) 

u
(O|M)

(y) = u
(O)

{arg max
j

u(aj,y)
(M)

} a
(O)

opt
(y) = arg max

j
u(aj,y)

(O)
 

Preposterior utility with monitoring 

u* 
(O)

= ∫ max
j

u(aj,y)
(O)

∙ p(y) dy
Dy

 u*
(O|M)

 = ∫ u
(O)

{arg max
j

u(aj,y)
(M)

} ∙ p(y) dy
Dy

 

Value of information of the monitoring system 

VoI = u*
(O)

 – u
(O)

 VoI = u*
(O|M)

 – u
(O|M)

 

 

5.4 The Streicker Bridge case study 

To illustrate how the presence of two different decision makers in the decision chain 

affects the way how the VoI is evaluated, we consider the case of Malcolm, the 

fictitious manager of an imaginary Office of Design and Construction at Princeton 

University, protagonist in (Zonta, et al., 2014) and (Cappello, et al., 2016). Malcolm 

is responsible for the Streicker Bridge, a pedestrian bridge located on Princeton 

University campus. The bridge and its monitoring system are illustrated in much detail 
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in a number of past publications (Glisic & Adriaenssens, 2010) (Glisic & Inaudi, 2012) 

(Glisic, et al., 2011), we summarise the main structural features, for clarity. The deck 

of the bridge is a continuous thin concrete posttensioned deck featuring a characteristic 

X-shape connecting four different sectors of Princeton Campus. From the structural 

point of view, it consists of a thin post-tensioned supported by a high resistance steel 

lattice. The main span of the bridge overpasses Washington road, a busy public road 

the campus (see Figure 5.1(a) and Figure 5.1(b)).  

The SHM-lab of Princeton University instrumented the bridge with two SHM 

systems: (i) global structural monitoring using discrete long-gauge strain Fiber Optic 

Sensors (FOS), based on fiber Bragg-grating (FBG) (Kang, et al., 2007), and (ii) 

integrity monitoring, using truly distributed FOS based on Brillouin Optical Time 

Domain Analysis (BOTDA) (Nikles, et al., 1996). These two approaches are 

complementary: discrete sensors monitor an average strain at discrete points, while the 

distributed sensors monitor one-dimensional strain field. Discrete FOS embedded in 

the bridge deck have gauge length 60 cm and feature excellent measurement properties 

with error limits of ±4 με. Thus, they are excellent for assessment of global structural 

behaviour and for structural identification. Instead, distributed FOS have accuracy an 

order of magnitude lower than discrete sensors and so cannot be used for accurate 

structural identification; they are used for damage detection and localization. Figure 

5.1(c) shows the sensors map in the main span, while Figure 5.1(d) its cross section. 
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Figure 5.1. The Streicker bridge: view of the bridge (a)(b), location of sensors in the 

main span (c), main cross section (d). 

5.4.1 Agents 

To make the case study easier to understand, we imagine the bridge managed by 

two agents with distinct roles: 

a)

b)

c)

d)
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- Ophelia (O) is the owner responsible for Princeton’s estate; she is Malcolm’s 

supervisor and decides on whether to install the monitoring system or not. 

- Malcolm (M) is the manager responsible for the bridge operation and 

maintenance, graduated in civil engineering and registered as a professional 

engineer, who has to take decisions on the state of the bridge based on 

monitoring data, exactly as in Zonta et al. (Zonta, et al., 2014). 

We assume that Ophelia and Malcolm are both rational individuals and that have 

the same knowledge background as for possible damage scenarios S of the bridge, 

prior information, and they have the same knowledge of the consequence of a bridge 

failure. They only differ in the way how to weight the seriousness of the consequences 

of a failure. It is probably unnecessary to remind that, while the Streicker Bridge is a 

real structure, the two characters, Ophelia and Malcolm, are merely fictitious and do 

not reflect in any instance the way how asset maintenance and operation is performed 

at Princeton University.  

5.4.2 States and likelihoods 

As part of this fictitious story, we suppose that both Ophelia and Malcolm are 

concerned by a single specific scenario: a truck, maneuvering or driving along 

Washington road, could collide with the steel arch supporting the concrete deck of the 

bridge. In this oversimplified example, we will assume that after an incident the bridge 

will be in one of the following two states: 

- No Damage (U): the structure has either no damage or some minor damage, 

with negligible loss of structural capacity. 

- Damage (D): the bridge is still standing but has suffered major damage; 

consequently, Malcolm estimates that there is a chance of collapse of the entire 

bridge. 

Similar to the assumptions in (Thons & Faber, 2013), we assume Malcolm (and 

similarly Ophelia) focuses on the sensor installed at the bottom of the middle cross-

section between P6 and P7 (called Sensor P6-7d, see Figure 5.1(c)). 
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We understand that for both Ophelia and Malcolm the two states represent a set of 

mutually exclusive and exhaustive possibilities, which is to say that P(D) + P(U) = 1. 

On the basis of their experience, they both agree that scenario U is more likely than 

scenario D, with prior probabilities P(D) = 30% and P(U) = 70%, respectively.  

We can also assume that both use the same interpretation model, i.e. they interpret 

identically the data from the monitoring system. As Malcolm will pay attention only 

to the changes at the midspan sensor (labelled P6-7d in Figure 5.1(c)), we presume, in 

the same way as in (Zonta, et al., 2014), that he expects the bridge to be undamaged if 

the change in strain will be close to zero. However, he is also aware of the natural 

fluctuation of the strain, due to thermal effects, and to a certain extent due to creep and 

shrinkage: he estimates this fluctuation to be in the order of ±300 με (Zonta, et al., 

2014). We can represent this quantity with a probability density function pdf(ε|U), with 

zero mean value and standard deviation σ = 300 με, which describes Malcolm’s 

expectation of the system response in the undamaged (U) state, i.e. this is the likelihood 

of no damage. On the other hand, if the bridge is heavily damaged (D) but still 

standing. Malcolm expects a significant change in strain; we can model the likelihood 

of damage pdf(ε|D) as a distribution with mean value 1000 με and standard deviation 

of σ = 600 με, which reflects Malcolm’s uncertainty of expectation (Zonta, et al., 

2014). Before the data are available, he can also predict the distribution of ε, which is 

practically the so-called evidence in classical Bayesian theory, through the following 

formula:  

 pdf(ε) = pdf(ε|D)∙P(D) + pdf(ε|U)∙P(U). (5.8) 

When the measurement  is available, both update their estimation of the probability 

of damage consistently with Bayes’ theorem: 

 
pdf(D|ε) = 

pdf(ε|D)∙P(D)

pdf(ε)
, (5.9) 

where pdf(D|ε) is the posterior probability of damage. Figure 5.2(a) shows the two 

unnormalized posterior distributions along with the evidence. Note that the posterior 

probability of damage starts exceeding the posterior of no-damage when the 

measurement  exceeds the threshold ε̅p = 569 με. 
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Figure 5.2. Representation of Malcolm’s estimation of the state of the bridge a priori 

(a), Malcolm’s decision model with monitoring data (b), Ophelia’s decision model 

with monitoring data (c), Ophelia’s decision model based on Malcolm’s own (d).  

5.4.3 Decision model 

After he assesses the state of the bridge, we assume that Malcolm can decide 

between the two following actions: 
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- Do nothing (DN): no special restriction is applied to the pedestrian traffic over 

the bridge or to road traffic under the bridge. 

- Close Bridge (CB): both Streicker Bridge and Washington Road are closed to 

pedestrians and road traffic, respectively; access to the nearby area is restricted 

for the time needed for a thorough inspection, which both Ophelia and Malcolm 

estimates to be 1 month. 

Ophelia and Malcolm agree that the costs related to each action, for each scenario, 

are the same as estimated in Glisic and Adriaenssens (Glisic & Adriaenssens, 2010), 

and reported in Table 5.2. 

Table 5.2. Costs per action and state (Glisic & Adriaenssens, 2010). 

 Scenario U (no damage) Scenario D (bridge fails) 

Action DN (do 

nothing) 

nothing happens                 

you pay nothing 

failure cost                                    

𝑧F = $881,600 

Action CB (close 

bridge) 

1-month downtime cost                

𝑧DT = $139,800 

1-month downtime cost                 

𝑧DT = $139,800 

 

However, Ophelia and Malcolm differ in their utility functions, which is the weight 

they apply to the possible economic losses. Ophelia is risk neutral, meaning that 

according to her a negative utility is linear with the incurred loss, as illustrated in 

Figure 5.3. Strictly speaking, a utility function is defined except for a multiplicative 

factor, therefore it should be expressed in an arbitrary unit sometime referred to as util 

(McConnell, 1966). Since Ophelia’s utility is linear with loss, for the sake of clarity 

we will deliberately confuse negative utility with loss, and therefore we will measure 

Ophelia’s utility in k$.  

Unlike Ophelia, Malcolm is likely to behave risk adversely, i.e. his negative utility 

increases more than proportionally with the loss. We can describe mathematically the 

risk aversion classically defined in Arrow-Pratt theory (Pratt, 1964) (Arrow, 1965), 

where the level of risk aversion of an agent is encoded in the coefficient of Absolute 

Risk Aversion (ARA), defined as the rate of the second derivative (curvature) to the 

fist derivative (slope): 
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 A(z) = 

U"(z)

U'(z)
. (5.10) 

To state Malcolm’s utility function, we can make the following assumptions: 

- Malcolm’s and Ophelia’s reaction are virtually identical for a small amount of 

loss, while their way of weighting the losses departs for bigger losses. 

- For small losses, therefore, the two-utility function may be confused, and we 

will adopt for Malcolm’s the same conventional unit (call it equivalent k$) for 

measuring utility. Malcolm’s utility function derivative for zero loss is equal to 

1. 

- We assume that Malcolm’s utility has constant ARA; it is easily demonstrated 

that a function with constant ARA and unitary derivative at zero (Wakker, 

2008) takes the form of an exponential: 

 
𝑈

(M) (𝑧) =
1 − 𝑒−𝑧∙𝜃

𝜃
, (5.11) 

where θ is the constant ARA coefficient: A(z) =  

- To calibrate , we assume that for a loss equal to the failure cost, Malcolm’s 

negative utility is twice that of Ophelia’s. This results in a constant ARA 

coefficient θ = -1.425 M$-1. 

Using these assumptions, the resulting Malcolm’s utility function is plotted in Figure 

5.3. 

We wish now to verify how the different utility functions affect the decision of the 

two a priori and a posteriori. 
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Figure 5.3. Representation of Ophelia’s and Malcolm’s utility functions. 

5.4.4 Prior utility 

Consider the case where Malcolm has no monitoring information. Based on his 

utility, Malcolm estimates the utilities involved in each action. Action CB depends 

only on the downtime cost zDT, while action DN depends also on his estimate of the 

state of the bridge: 

 u
(M)

DN
 = 𝑈

(M) (zF)∙P(D) = -528.883 k$,  u
(M)

CB
 = 𝑈

(M) (zDT) = -154.940 k$. (5.12) 

Since the utility of action CB is clearly less negative than the utility of action DN, 

Malcolm would always choose to close the bridge after an incident if he has no better 

information from the monitoring system. Therefore, Malcolm’s maximum expected 

utility without the monitoring system is u
(M)

= u
(M)

CB
 = -154.940 k$. 

Now imagine Ophelia in charge of the decision; her prior utilities are different from 

Malcolm’s and their values are somewhat closer: 
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 u
(O)

DN
 = 𝑈

(O) (zF) ∙P(D) = -264.480 k$,   u
(O)

CB
 = 𝑈

(O) (zDT) = -139.800 k$, (5.13) 

but in the end, in this particular case, her optimal action would be again ‘close the 

bridge’.  

5.4.5 Posterior utility 

Now imagine that the monitoring system is installed and let us go back to Malcolm. 

Since now Malcolm can rely on the monitoring reading, in this case the expected utility 

of an action is calculated using the posterior probability of damage pdf(D|ε) rather 

than the prior: 

  𝑢𝐶𝐵|𝜀
(M)

 = u(z
DT

),          𝑢
(M)

DN|ε = u(zF)∙ pdf(D|ε). (5.14a,b) 

Note that since the cost of closing the bridge is independent on the bridge state, the 

monitoring observation  does not affect the posterior utility of closing the bridge 

(CB), which is always equal to -154.940 k$ as in the prior case. On the contrary, the 

expected utility of doing nothing (DN) does depend on the probability of having the 

bridge damaged, and this probability, in turn, depends on the monitoring observation 

through Eq. (5.14b). Malcolm’s posterior expected utilities (i.e. after observing data 

from the monitoring system) for actions DN and CB are plotted in the graph of Figure 

5.2(b) as functions of the observation . As a rational agent, Malcolm will always take 

the decision that maximizes his utility. For very small values of , suggesting a small 

probability of collapse, Malcolm’s utility of DN is bigger than the utility of CB, and 

therefore Malcolm will keep the bridge open. Malcolm’s utility of closing the bridge 

starts exceeding the utility of doing nothing above a threshold of strain of  ε̅u
(M)

 

= 170 με, and therefore Malcolm will always close the bridge above this threshold. 

Note that this threshold is much smaller than the threshold ε̅p whereby Malcolm 

would judge the damage more likely, so there is a range of values whereby Malcolm, 

in consideration of the possible consequences, will still prefer to close the bridge even 

if it is more likely the bridge is not damaged. Malcolm’s maximum expected utility is 

plotted in bold in the graph of Figure 5.2(b). 
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Assume now that Ophelia is in charge of the decision. Since she weights the losses 

differently, her utility curves as functions of  are different from Malcolm’s, and are 

plotted in the graph of Figure 5.2(c). For the same reason, the threshold above which 

she would close the bridge,  ε̅u
(O)

 = 310 με, is different and much higher than 

Malcolm’s, reflecting Ophelia’s risk neutrality in contrast to Malcolm’s risk aversion. 

Therefore, there is a range of values of measurements, from 170  to 310 , where 

the two decision makers, both rational, behave differently under the same information, 

simply because of their different level of risk aversion. 

5.4.6 Posterior utility and Value of Information 

In this scenario, Ophelia and Malcolm are both involved in the decision chain.  

Malcolm is the operational manager who decides whether or not to close the bridge in 

the occurrence of an incident. Ophelia is the owner who decides on the purchase of the 

monitoring system. This is illustrated as a decision tree in Figure 5.4. We seek the VoI 

as anticipated by Ophelia (she has to decide), which explicitly accounts from Malcolm 

reacting to the signals from the monitoring system.  

 

Figure 5.4. Decision tree for the Streicker Bridge case study. 

Before attacking this problem, let us first see what happens if the decision chain 

was in the hands of a single individual. We start, for example, with Malcolm. His 
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preposterior utility (i.e., the prior utility of operating the bridge with the monitoring 

system) can be calculated with the equation: 

 
u

(M) *

 = ∫ u {argmax
j

u(aj,ε)
(M) } ∙ p(ε) dε

(M)

 = -
Dε

88.504 k$, (5.15) 

where the index (M) indicates that all the utilities are calculated from Malcolm’s 

perspective. Malcolm’s VoI is simply the difference between the preposterior utility 

(i.e. the prior utility of operating the bridge with the monitoring system) and the prior 

utility (i.e. the utility of operating the bridge without the monitoring system): 

  VoI =  u
(M) ∗

  - u
(M)

 = -88.505 k$ +154.940 k$ = 66.435 k$. (5.16) 

Note that the VoI is a utility, not an actual amount of money, and is measured in 

Malcolm’s utility unit, which in our case is Malcolm’s dollar-equivalent as defined 

above. 

Now we can calculate the VoI from Ophelia’s perspective, assuming that she takes 

decisions at any stage of the decision chain. In this case being Ophelia less risk adverse 

than Malcolm, her utilities will be u
(O) ∗

 = -84.600 k$ and u
(O)

 = -139.800 k$, so 

eventually Ophelia’s VoI would be: 

  VoI =  u
(O) ∗

  - u
(O)

 =  -84,600 k$ + 139,800 k$ = 55.200 k$.  (5.17) 

This practically means that, if Ophelia was in charge of all the decisions, she would be 

willing to spend up to 55.200 k$ for the information from the monitoring system.  

In reality, Ophelia is only in charge of the purchase of the monitoring system, while 

the one who is going to use it is her colleague Malcolm. So, in taking her decision, 

Ophelia has to figure out how Malcolm is going to behave both with and without the 

monitoring system. In other words, we have to calculate the prior and preposterior 

utility from Ophelia’s perspective, but conditional to the action that Malcolm will 

undertake.  

For example, to calculate the prior (i.e. the utility of Ophelia of operating the bridge 

without the monitoring system, conditioned to Malcolm’s actions) conditional utility, 

Ophelia thinks: what will Malcolm do after an accident if no monitoring system is 
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installed? I know Malcolm, and I know he will close the bridge right away (I would do 

the same, but that’s irrelevant). My utility, if he closes the bridge, is: 

 
u

(O|M)
 = u {argmax

j
u(aj)

(M)
}

(O)
= u

(O)

CB
 = -139.800 k$, (5.18) 

which in this case is the same as the unconditional. And what – Ophelia continues to 

think – would Malcolm do if a monitoring system was installed. I know that he would 

look at the strain ε and he would close the bridge if ε >170  and keep the bridge 

open otherwise. I personally would NOT do the same, but that’s it, I have to live with 

Malcolm’s decision! 

The way Ophelia evaluates the utility on Malcolm’s decisions is explained in Figure 

5.2(d): her utilities for each possible Malcolm’s choice are calculated using her utility 

function, hence all individual curves are identical to those of Figure 5.2(c), However, 

the threshold whereby she expects the bridge is closed is Malcolm’s threshold, i.e. the 

same as in Figure 5.2(d). Ophelia’s utility of Malcolm’s choice is, for any value of ε:  

 
a

(O)

opt
= u

(O)
{argmax

j
u(aj,ε)

(M) } = -154.94 k$, (5.19) 

and therefore the preposterior utility conditional to Malcolm is: 

 
u

(O|M) *

 = ∫ u {argmax
j

u(aj,ε)
(M) } ∙ p(ε) dε

(O)

 =
Dε

-88.504 k$. (5.20) 

Eventually, Ophelia’s VoI, conditional on Malcolm’s decision, is: 

 
VoI 

(O|M)
= u

(O|M) *

- u
(O|M)

  =  -88.505 k$ + 139.800 k$ = 51.295 k$. (5.21) 

Again, this quantity is the money Ophelia believe is worth spending on a monitoring 

system, having accepted that Malcolm, not her, is going to use it. The conditional 

VoI = 51.495 k$  
(O|M)

 is slightly lower than the unconditional VoI = 55.200 k$ 
(O)

. 

Generally, it is clear from Ophelia perspective, that when Malcolm’s decision is 

different from hers it is always suboptimal. Therefore, the conditional prior and pre-

posteriors are always smaller than the corresponding unconditional: u
(O|M)

≤ u
(O)

, 



129 

 

u*
(O|M)

≤ u*
(O)

. In the present example, Ophelia and Malcolm agree on what to do a 

priori u
(O|M)

= u
(O)

, the conditional VoI 
(O|M)

 is necessarily smaller than the 

conditional VoI 
(O)

. In simple words, Ophelia’s rationale goes along these lines: I can 

exploit the monitoring system better than Malcolm, therefore the benefit of the 

monitoring system would be greater if I was using the monitoring system rather than 

Malcolm. 

However, this is not the most general case. Assume for example the prior 

probability of damage P(D) is 10%: Ophelia’s prior utility of action DN u
(O)

DN
= -

88.160 k$, small enough for Ophelia to keep the bridge open; on the contrary 

Malcolm’s prior utility u
(M)

DN
 = -176.294 k$, is still big enough for Malcolm to close 

it. In this case the unconditional prior is much bigger than the conditional one, since 

Ophelia doesn’t agree with Malcolm’s choice, and the conditional VoI
(O|M)

 = 103.670 

k$ is much bigger than the unconditional VoI 
(O)

= 53.217 k$, meaning that monitoring 

is much more useful in this case. We can almost hear Ophelia commenting: This 

Malcolm can’t make the right decision alone, hopefully some monitoring will help him! 

For sure a monitoring system is more useful to him rather than me! 

5.4.7 Negative Value of Information? 

We noted above that in the unconditional case (i.e. when Ophelia is both owner and 

manager), the preposterior utility u* is always greater or equal than the prior u, hence 

the VoI cannot be negative. In simpler words, if a monitoring system if offered to 

Ophelia at no cost, she has no reason not to accept it. Of course, if at any time Ophelia 

realizes that the monitoring system yields junk data, she can always decide to disregard 

this information, but she has no economic reason to refuse a priori to see the data 

(‘Take each man’s censure, but reserve thy judgment’). 

We also noted that in the unconditional case (i.e. when Ophelia is the owner but 

someone else, Malcolm, is the manager who decide based on the SHM data) there is 

no logical necessity whereby Ophelia’s preposterior utility must be greater than her 

prior. So in principle we can always find a combination of prior probabilities and utility 
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functions which ultimately yield a negative conditional VoI. We illustrate this concept 

with an example. 

Imagine that Malcolm, instead of being risk adverse, is risk seeking. This is to say 

that his utility function is convex (i.e., with positive second derivative), as shown in 

Figure 5.5: for this exercise we can again assume an Arrow-Pratt’s utility model, as in 

Eq. (5.11), but this time with a positive ARA coefficient  = 5.234 M$-1. Also, assume, 

both for Ophelia and Malcolm, a high prior probability of damage, say P(D) = 55%.  

Using these assumptions, Ophelia’s prior utilities for doing nothing (DN) and 

closing the bridge (CB) are u
(O)

DN
= -484.88 k$ and u

(O)

CB
= -139.800 k$ respectively, 

while Malcolm’s are u
(M)

DN
 = -108.660 k$ and u

(M)

CB
 = -100.680 k$. For both, closing 

the bridge (CB) is the action that yields the maximum expected utility a priori: so they 

both agree that, without a monitoring system, the best thing to do is to close the bridge. 

Their decisions start departing after receiving data from the monitoring system. 

Figure 5.6 shows how Ophelia’s and Malcolm’s decision models change based on the 

new assumptions. We note that: 

- Because of the high prior risk of collapse, risk-neutral Ophelia is very 

conservative and thinks it is a good idea to close the bridge as soon as the 

elongation recorded is greater than  ε̅u
(O)

 = 70 με; 

- Risk-seeking Malcolm does not take a collapse so seriously and he would rather 

keep the bridge open unless the sensor reads an elongation greater than  ε̅u
(M)

 

= 423 με.  

So, there is a very wide range of values, from 70 με to 423 με, whereby Malcolm would 

keep the bridge open in disagreement with Ophelia, who believes this is a dangerous 

practice which can potentially result in a big loss. Based on these premises, Ophelia’s 

conditional preposterior (i.e. Ophelia expected utility conditional to Malcolm’s 

decision) is calculated, using Eq. (5.20), in u
(O|M) *

= –150.362 k$, and eventually her 

conditional value of information is: 

 VoI 
(O|M)

=  u
(O|M) *– u

(O|M)
  = – 150.362 k$ + 139.800 k$ = – 10.562 k$. (5.22) 
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Contrary to the example above, now the conditional value of information is 

negative, meaning that Ophelia’s perceives the monitoring information as damaging: 

Ophelia thinks that, in observing the monitoring data, Malcolm may wrongly decide 

to keep the bridge open even when, in her opinion, it should be closed; she concludes 

that, after all, it is better not to install the monitoring system at all. In Ophelia’s own 

words: Malcolm is an irresponsible and should not use the monitoring system! I would 

rather pay money than letting him use the system! Indeed, the negative value of 

information is exactly the amount of money Ophelia is willing to pay to prevent 

Malcolm using the monitoring system. 

 

Figure 5.5. Representation of Ophelia’s and risk-seeking Malcolm’s utility functions. 
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Figure 5.6. Representation of risk-seeking Malcolm’s estimation of the state of the 

bridge a priori (a), risk-seeking Malcolm’s decision model with monitoring data (b), 

Ophelia’s decision model with monitoring data (c), Ophelia’s decision model based 

on risk-seeking Malcolm’s own (d).  

5.5 Concluding remarks 

The benefit of SHM can be quantified using the concept of Value of Information. 

This is the difference between the anticipated utilities of operating the structure with 
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the monitoring system (the preposterior utility) and without the monitoring system 

(the prior utility). Preposterior utility, Prior utility and Value of Information are all 

subjective quantities: they depend on the particular background information and risk 

appetite of the individual in charge of the decision. In calculating the VoI, a commonly 

understood assumption is that the individual who decide on the installation of the 

monitoring system is the same rational agent who will later use it.  

In the real world, these could be two separate subjects. We labelled conventionally 

owner the individual who decides on buying a monitoring system and manager the 

one who is going to use it, once the system has been installed. The two decision 

makers, even if both rational and exposed to the same background information, may 

still act differently because of their different appetites for risk. 

We developed a formulation to properly evaluate the VoI from the owner 

perspective, when the manager is a different individual. The rationale of the 

formulation is that the owner, in evaluating the benefit of the monitoring system, must 

anticipate the way how the manager will actually react to the monitoring information. 

The calculation requires the definition of the owner’s prior and preposterior utilities 

conditional to the manager anticipated behaviour. For convenience, we defined the VoI 

conditional in the case when the manager is not the owner, and unconditional when 

manager and owner coincide. 

To illustrate how this framework works, we have evaluated a hypothetical VoI for 

the Streicker Bridge, a pedestrian bridge in Princeton University campus equipped 

with a fiber optic sensing system, assuming that two fictional characters, Ophelia the 

owner and Malcolm the manager, are involved in the decision chain. In the example, 

Malcolm is the manager who decide whether to keep the bridge open or close it, 

following to an incident that could potentially jeopardize its safety. Ophelia is the 

owner who decide whether to purchase a monitoring system to help Malcolm making 

the right decision in that event. We noted that: 

- Seen from the owner’s perspective, the choices of the manager are always 

suboptimal: Malcolm’s decisions do not necessarily coincide with what 

Ophelia would have made in the same situation. 
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- In the prior situation (i.e. without SHM), the conditional utility (i.e. when the 

manager is not the owner) is always equal or lower than the unconditional one 

(i.e. when manager and owner coincide).  

- The conditional (i.e. manager is not owner) VoI could be bigger or smaller than 

the unconditional (i.e. manager is owner); if Ophelia agree on how Malcolm 

makes decision without the monitoring system, the conditional value of 

monitoring is always lower than the unconditional. 

- If Ophelia does not agree with Malcolm, the conditional value of information 

may be bigger than the unconditional: Ophelia would strongly support the 

purchase of the monitoring system in the hope it will help Malcolm to make 

the right decision. 

- While the unconditional VoI is never negative, we demonstrate that under 

appropriate combination of prior information and utility functions, the 

conditional value of information could be negative: this can happen when 

Ophelia believe than the monitoring system can seriously mislead Malcolm’s 

decision. 

Acknowledgments 

The case study reported in this paper is based on the Streicker Bridge monitoring 

project, developed with the kind help and collaboration of several professionals and 

companies. We would like to thank S. Hancock and his construction team, Turner 

Construction Company; R. Woodward and T. Zoli, HNTB Corporation; D. Lee and 

his team, A. G. Construction Corporation; S. Mancini and T. R. Wintermute, Vollers 

Excavating & Construction, Inc.; SMARTEC SA; and Micron Optics, Inc. In addition, 

the following personnel from Princeton University supported and helped the 

realization of the project: G. Gettelfinger, J. P. Wallace, M. Hersey, S. Weber, P. 

Prucnal, Y. Deng, M. Fok; faculty and staff of CEE; Princeton University students: D. 

Sigurdardottir, Y. Yao, M. Wachter, J. Hsu, G. Lederman, J. Chen, K. Liew, C. Chen, 

A. Halpern, D. Hubbell, M. Neal, D. Reynolds and D. Schiffner. 

  



135 

 

6. Quantifying the benefit of 

Structural Health Monitoring: 

can the Value of Information be 

negative? 

Submitted for publication to Structure and Infrastructure Engineering 

(Under revision) 

Andrea Verzobioa, Denise Bolognanib, John Quigleyc, Daniele Zontad 

Position and affiliation: 
aPhD Student, Department of Civil and Environmental Engineering, University of Strathclyde, UK 
bPostdoc, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy 
cProfessor, Department Management Science, University of Strathclyde, UK 
dProfessor, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy 

Summary of the paper 

This paper is the continuation of the paper presented in chapter 5, where a rational 

method for quantifying the VoI when two different actors are involved in the decision 

chain is proposed. Since one of the conclusions of chapter 5 is that the VoI may become 

negative using this innovative method, in this contribution we propose a mathematical 

formulation which allows to assess when and under which circumstances it is possible 

to achieve a negative VoI, which is a clear proof of the relevance of the consequences 

that can be caused by distorted decisions. In the same way as in chapter 5, in order to 

verify the developed formulation, we apply it to the Streicker Bridge case study. 

6.1 Introduction 

Structural Health Monitoring (SHM) is a powerful tool for bridge management that 

support decisions concerning maintenance, reconstruction and repairs of assets 

through reducing uncertainties on the state of the structure. Uncertainty increases the 
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likelihood of unwelcome outcomes such as neglecting necessary repairs while 

engaging in unnecessary ones. Such decision-making is challenging as it requires the 

decision maker to trade-off between anticipated risk and benefits to prioritize 

activities. The prioritization of activities will be determined in part by uncertainty and 

in part by the appetite for risk of the decision maker, which varies across individuals 

such that, given the same alternatives with the same state of uncertainty, two rational 

decision makers may take a different course of action. Through reduction in 

uncertainty such decision makers become more aligned in their choices. However, 

monitoring systems are costly and with limited budgets the anticipated value of the 

information provided towards the safety of the structure must be considered.   

Although the utility of SHM has rarely been questioned in our community, very 

recently a few published papers (Thons & Faber, 2013) (Zonta, et al., 2014) have 

clarified how to evaluate it. The benefit of information is formally quantified by the 

so-called Value of Information (VoI), for its state of art see section 2.3. 

In summary, the value of a SHM system can be simply defined as the difference 

between the benefit, or expected utility upp, of operating the structure with the 

monitoring system and the benefit, or expect utility u0, of operating the structure 

without the system. Both upp and u0 are expected utilities calculated a priori, i.e. before 

actually receiving any information from the monitoring system. While in u0 we assume 

the knowledge of the manager is his/her a priori knowledge, upp is calculated assuming 

the decision maker has access to the monitoring information and is sometimes referred 

as to preposterior utility. In classical decision theory, one of the main assumptions is 

that all decisions concerning system installation and operation are taken by the same 

rational agent. In this case, it is easily proved that the VoI can only be positive, 

consistently with the principle that “information can’t hurt”, as first introduced by 

Cover and Thomas (Cover & Thomas, 2012) and later by Pozzi (Pozzi, et al., 2017). 

However, there are several cases in the literature where a negative VoI is observed: 

we think that these cases, regardless of the field of application, can be classified in 

three different classes. The first one relates to non-cooperative games and decisions 

against nature: in summary, when agents compete against each other, an information 

can produce a negative value to some of them, precisely because we are in the area of 

competitive decisions. In the literature, we can find some examples principally in the 
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field of financial markets, see for instance (Baiman, 1975) (Schredelseker, 2001) 

(Pfeifer, et al., 2009). The second case is instead about the presence of constraints in 

the decision process, which can lead the decision maker to take irrational decisions. A 

clear example is reported in (Pozzi, et al., 2017) (Pozzi, et al., 2020), where a system’s 

maintenance agent has to blindly follow the prescriptions of codes and regulations, 

regardless their inherent rationality: in this case, the decision maker, in order to bypass 

these society’s constraints, may find it convenient to avoid information. As 

demonstrated in the papers, the constraint extremely affects the VoI, which may 

consequently result negative. Finally, the last case relates to the presence of multiple 

rational decision makers that have to take decisions at different levels, which are 

somehow connected. This case is presented for instance in (Bolognani, et al., 2018), 

where two individuals are involved in the decision chain as regards a SHM-based 

decision process. In the paper it is proved that, because of the different appetite for risk 

of the two rational agents, the VoI may become negative. While in the literature it is 

easily demonstrated the reason why in the first two cases introduced above it is 

possible to find a negative VoI, respectively because of competitive decisions and 

because of irrational constrains, it is not so immediate to understand why it may happen 

in the third case, which is based only on rational behaviours. Consequently, in this 

contribution we will focus on this specific third case, which is also the one that mainly 

affects the field of our interest, i.e. SHM. 

The case we analyse has been then introduced in (Bolognani, et al., 2018); we 

summarize the main assumptions in the following. Two decision makers are involved 

in the decision chain, and they have to take decisions at two different decision stages. 

Firstly, a decision is made on whether or not to buy and install the monitoring system 

on the structure; typically, this decision is carried out by a high-level manager, who 

we conventionally refer to as owner. The second stage concerns the day-to-day 

operation of the structure, which includes for example maintenance, repair, retrofit or 

enforcing traffic limitations, once the monitoring system is installed; if installed these 

decisions may be informed by the monitoring system. Typically, this decision is 

carried out by an engineer, who we will refer to as manager. The two agents are both 

rational and with the same background knowledge, they only differ in the weight they 

apply to the possible economic losses, meaning that they have different utility 
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functions. Therefore, the two decision makers may differ in their choices under 

uncertainty: for instance, the owner needs to consider the operator’s appetite for risk 

when deciding whether to install a monitoring system, as this will indicate how the 

system will influence the operator’s decision-making and as such the value of this 

information. As proved in (Bolognani, et al., 2018), these assumptions can lead to a 

negative VoI because, even if the two agents have the same prior knowledge of the 

problem, their optimal actions can diverge after the installation of the monitoring 

system, due to their different attitudes towards risk. While in the paper it is showed 

that the VoI can become negative, it is not proved under which generic mathematical 

conditions this is true. 

The aim of this contribution is to demonstrate under which conditions, e.g. 

appropriate combination of prior information and utility functions, it is possible to find 

a negative VoI in this specific case, by developing a mathematical formulation. In 

section 6.2 we start reviewing the formulation for the quantification of the VoI in a 

SHM-based decision process, both in the classical case of a singular rational agent and 

in the case of two different individuals, needed for a better understanding of how it is 

possible to achieve a negative VoI only in the second case. Next, in section 6.3, we 

introduce a prototype decision problem and we develop a mathematical formulation to 

investigate under which circumstances the VoI becomes negative. Finally, in section 

6.4, to illustrate how this framework works, we apply it to the same decision problem 

reported in (Zonta, et al., 2014) and (Bolognani, et al., 2018), i.e. the Streicker Bridge 

case study: it is a pedestrian bridge at Princeton University campus equipped with a 

continuous monitoring system. Some concluding remarks are presented at the end of 

the article. 

6.2 Value of information for SHM-based decision 

In this section, we review the concept of VoI for SHM-based decision problems, 

following a similar path as in (Zonta, et al., 2014) and (Bolognani, et al., 2018). The 

assumptions and the framework of a rational SHM-based decision process have 

already been presented in section 2.1, we summarize in the following the formulation 

of the VoI (using a different notation that is necessary for the development of this 

chapter). 
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In the classical formulation of VoI (Zonta, et al., 2014), which we will refer to as 

unconditional, i.e. assuming all decisions concerning system installation and operation 

taken by the same rational agent, the VoI of a monitoring system is simply the 

difference between the expected utility with the monitoring system upp, and the 

corresponding utility without the monitoring system u0: 

 VoI = upp −  u0. (6.1) 

In the case of a structure not equipped with a monitoring system, the rational manager 

decides without accessing any SHM data, and they will choose the action a that 

maximize the expected utility u0. Consequently, the utility without monitoring, also 

called prior utility, is calculated as follows: 

  u0 = max
i

u(ai),           aopt = arg max
i

u(ai), (6.2a,b) 

where aopt is the action which carries the maximum expected utility u. Conversely, if 

a monitoring system is installed and the data are available for the agent, the monitoring 

observation y affects the state knowledge, and therefore indirectly their decisions. In 

this case, the expected utility upp, also called preposterior utility, can be derived from 

the posterior expected utility u(y) by marginalizing out the variable y (Zonta, et al., 

2014) (Cappello, et al., 2016): 

 
 upp = E𝐲 [max

i
u(ai,y)] = ∫ max

i
u(ai,y) ∙ p(y) 

Dy

dy, (6.3) 

where Ey is the expected value operator of y, while distribution p(y) is the so-called 

evidence in classical Bayesian theory (Sivia & Skilling, 2006). In conclusion, the 

unconditional VoI of a monitoring system is calculated as follows: 

 
 VoI = upp − u0 = ∫ max

i
u(ai,y) ∙ p(y) 

Dy

dy − max
i

u(ai). (6.4) 

In other words, the VoI is the difference between the expected maximum utility and 

the maximum expected utility. It is easily mathematically verified that upp is always 

greater than or equal to u0, and therefore the VoI as formulated above can only be 
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positive. This is to say that under these assumptions we would never prefer not to have 

the data if they were available, which is consistent with the principle “information 

can’t hurt” (Cover & Thomas, 2012).  

Bolognani et al. (Bolognani, et al., 2018) have investigated a variant of the decision 

problem above where two different rational individuals, rather than one, are involved 

in the decision chain. In particular, there is an owner who decides whether or not to 

install a monitoring system, and a manager who decides which is the optimal action 

once the monitoring system is installed or not. Therefore, all utilities are from the 

owner perspective, but should be evaluated accounting for the action that the manager, 

not the owner, is expected to choose. The prior expected utility of Eq. (6.2), in the case 

of a structure without the monitoring system, changes to: 

  u0 = u(𝑎opt
∗ ) = u {arg max

i
𝑢∗(ai)}, (6.5) 

where the star * indicates the optimal action or the utility from the manager 

perspective. Similarly, the expected utility of the owner in the expectation of what the 

manager would decide if a monitoring system was installed turns into:  

 
  upp = ∫ u {arg max

i
𝑢∗(ai,y)} ∙ p(y) dy

Dy

. (6.6) 

The VoI of a monitoring system calculated under these assumptions is labelled 

conditional, to remind that the utility of the owner is conditional to the action chosen 

upstream by the manager, and reads (Bolognani, et al., 2018): 

  VoI = upp − u0

= ∫ u {arg max
i

𝑢∗(ai,y)} ∙ p(y) dy
Dy

− u {arg max
i

𝑢∗(ai)}. 

(6.7) 

Table 6.1 summarizes the unconditional and conditional formulations. As observed in 

(Bolognani, et al., 2018), in the conditional case it is no longer automatically verified 

that the owner’s preposterior utility upp is always greater than or equal to the prior 

utility u0. Therefore, unlike the unconditional case, we could find a combination of 
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prior probabilities, likelihood and utility functions which yield a negative conditional 

VoI. The aim of this contribution is then to demonstrate under which mathematical 

conditions it is possible to find a negative VoI.  

Table 6.1. Formulation of VoI for SHM in the unconditional and conditional case. 

 Unconditional formulation 

Manager = Owner 

Conditional formulation 

Manager ≠ Owner 

Prior utility without 

monitoring u0 
max

i
u(ai) u{arg max

i
𝑢∗(ai)} 

Preposterior utility 

with monitoring upp 
∫ max

i
u(ai,y) ∙ p(y) 

Dy

dy ∫ u {arg max
i

𝑢∗(ai,y)} ∙ p(y) dy
Dy

 

 

6.3 When does the VoI become negative? 

In the previous section, we have introduced the concept of conditional value of 

information and we have noticed that, ‘under certain conditions’, it could become 

negative. In this section, we wish to clarify which exactly are the conditions whereby 

the conditional VoI becomes negative. To do so, we will focus our analysis on a 2-

state 2-action prototype decision problem, graphically illustrated in the decision tree 

of Figure 6.1, which is representative of a number of binary decision setting that can 

be found in the literature (Raiffa & Schlaifer, 1961) (Parmigiani & Inoue, 2009). 

Particularly, we make the following assumptions: 

• The structure can be in one of two mutually exclusive and exhaustive states S1 

and S2 (e.g.: S1 = the bridge is damaged; S2 = the bridge is not damaged). 

• The decision maker can choose between two alternative decisions a1 and a2 

(e.g.: a1 = do nothing; a2 = close the bridge). 

• Both actions may have consequences, depending on the (uncertain) state: we 

indicate with z(ai, Sj) the set of consequences of action ai on the realization of 

state Sj. Both manager and owner are equally aware of these consequences. 
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• We indicate with U(z) the utility function of the owner, where the argument z 

is a particular set of consequences. To simplify the notation, we label                  

Uij = U(z(ai, Sj)) the utility of the consequences of action ai on the realization 

of state Sj.  

• Regardless the complexity of the monitoring system, its ultimate output is 

represented by a single parameter y, defined in the domain [0, ymax]. Parameter 

y could be, for instance, a compensated measurement, or a synthetic damage 

index calculated using the full dataset recorded to date. The manager makes 

decision solely based on parameter y. 

• The two agents, owner and manager, have the same prior knowledge of the 

problem, i.e. their prior probability P(Sj) of being in one of the two states is 

identical. They also interpret the data from the SHM system using the same 

interpretation model, which is encoded in the two likelihood functions p(y|Sj). 

They are both rational and judge consistently with Bayes’ rule: therefore, their 

judgement on the state of the structure, prior or posterior, is always identical. 

• Similarly, the two agents decide rationally consistently with EUT. However, 

their utility functions are generally different, thus their decisions, in the same 

situation, could differ. 

• Parameter y is defined in such a way that the values of y whereby the owner 

chooses an action rather than the other are separated by a single threshold y̅. 

Without losing generality, we can assume here that when y < y̅ the owner 

chooses action a1. The same applies to the manager, except that their threshold, 

labelled y̅∗, could be different.  
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Figure 6.1. Decision tree of the prototype decision problem. 

With the above assumptions, we will establish the conditions whereby the VoI 

becomes negative. Before tackling the problem in full, we start with the assumption 

that U12 = U21 = 0 and U11 < U22 < 0. This simplifying hypothesis makes the solution 

much more intuitive and easier to understand and will be released at the end of this 

section. To further help picturing the problem, imagine we are dealing with a bridge 

that may be in damaged, i.e. S1, or undamaged, i.e. S2, condition. The manager can 

decide to keep the bridge open or close it. If the bridge is left open and is damaged, the 

bridge fails producing a negative utility U11. If the bridge is unnecessarily closed when 

not damaged, the manager is sanctioned with a penalty U22. The loss for a failure is in 

absolute value much greater than the penalty for closing the bridge without necessity, 

i.e. |U11| > |U22| or U11 < U22, reminding that we are dealing with negative utilities. 

More generally, this is the prototype of any problem where an agent is faced with a 

binary decision, and each decision can be right or wrong depending on the unknown 

state. If the agent makes the right choice, nothing happens, otherwise they are 

sanctioned with a penalty. This situation is illustrated in the decision tree of Figure 6.2. 
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Figure 6.2. Decision tree of a simplified version of the prototype decision problem. 

6.3.1 Decision a priori 

We analyse the problem of decision a priori from the owner perspective. The owner 

will favour action a2 over a1 when the prior expected utility u2 is greater than the prior 

expected utility u1, i.e.: 

  u1 < u2. (6.8) 

Recall u1 = P(S1)U11, u2 = P(S2)U22, and both utilities are negative, we can rewrite the 

inequality of Eq. (6.8) as: 

 
 R =

P(S2)

P(S1)
 
U22

U11

< 1, (6.9) 

where R is a discriminant ratio which expresses the optimal action a priori from the 

owner perspective. We observe that, by definition, R = 1 corresponds to the 

indifference in the choice a priori between the two actions a1 and a2, i.e. u1 = u2, while 

it is preferred to choose action a1 if R > 1, i.e. u1 > u2, or action a2 if R < 1, i.e. u1 < u2. 

It is convenient to express the discriminant R as: 

  R =
r

q
, (6.10) 

where: 
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 q =

P(S1)

P(S2)
,                 r =

U22

U11

. (6.11a,b) 

Index q is the prior odds of state S1 respect to S2, while index r is an indicator of the 

subjective risk appetite of the decision maker: the more the agent is risk seeking, the 

bigger is index r. The risk seeking index r is subjective and changes with the actor. So, 

for the manager in general we may have a different value r∗ and therefore a different 

value of the discriminant ratio R∗ a priori. We assume in the following that manager 

and owner agree on that the optimal action a priori is, for example, a2, thus both ratios 

R and R∗ are smaller than one. 

6.3.2 Decision a posteriori 

We start the analysis a posteriori from the owner’s perspective. After observing a 

particular output y from the monitoring system, the owner updates their knowledge of 

the structural state from prior P(Sj) to posterior P(Sj|y). Similar to the prior case, the 

owner decides a posteriori by comparing the expected utilities of the two actions a 

posteriori, i.e. u1(y) = P(S1|y)U11 and u2(y) = P(S2|y)U22, as shown in Figure 6.3(d) in 

the example case of Gaussian likelihood distributions (Figure 6.3(a), 6.3(b), 6.3(c)). 

The threshold y̅ is the value of y for which a posteriori the expected utilities are the 

same, i.e. u1(y̅) = u2(y̅), which we express in the following: 

  y̅:  u1(y̅) = u2(y̅). (6.12) 

Recall we have assumed the owner’s choice a priori is action a2, and that y is defined 

in such a way that the optimal action a posteriori is a1 for y < y̅. Therefore, a posteriori 

the owner will change their decision when y < y̅ and confirm the prior decision 

otherwise. Using Bayes’ theorem, Eq. (6.12) can be rearranged in the form: 

 
 y̅ :  

p(y̅|S
1
)

p(y̅|S
2
)

=
P(S2)

P(S1)
 
U22

U11

. (6.13) 

We immediately recognize that the right-hand term of Eq. (6.13) is the same ratio R a 

priori introduced in Eq. (6.9). Further, we define the function g(y) as the ratio between 

the likelihoods of the two states: 
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 g(y) =

p(y|S
1
)

p(y|S
2
)

. (6.14) 

Therefore, the owner threshold y̅ is determined by the following simple equation: 

  y̅ :  g(y̅) = R. (6.15) 

As such function g, which depends only on the likelihood distributions, equals R when 

evaluated in the threshold, as shown in Figure 6.3(e). We observe that the threshold 

effectively depends on ratio R, which in turn depends on the risk apatite of the owner.  

In a similar manner, the manager threshold y̅∗ is such that g(y̅∗) = R∗, as illustrated 

again in Figure 6.3(e). The manager threshold y̅∗ can be bigger or smaller than the 

owner threshold y̅ depending on whether the manager is respectively more or less risk 

seeking than the owner. Because the two thresholds in general do not coincide, we can 

have essentially three situations a posteriori following to a monitoring observation y: 

• If observation y is smaller than the two thresholds, both manager and owner 

agree to change their decision to a1. 

• If observation y is bigger than the two threshold, manager and owner agree to 

keep the prior decision a2. 

• if observation y is included between the two thresholds, manager and owner 

disagree on the decision to be made. 

6.3.3 Preposterior analysis 

We define Δu(y) = u1(y) − u2(y) the utility gain resulting from changing decision 

a posteriori. Evidently, changing their mind is convenient to the owner when the 

monitoring system yield value smaller than their threshold. The conditional VoI, 

introduced in Eq. (6.7), based on the developed assumptions can be calculate as 

follows: 
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 VoI = ∫ Δu(y) ∙ p(y) dy

y̅∗

0

, (6.16) 

where Δu(y) ∙ p(y) can be seen as an expected utility density function (EUDF), plotted 

in Figure 6.3(f). The figure shows that the VoI is effectively the area under the expected 

utility function up to the threshold of the manager y̅∗. We also observe that: 

• Because the EUDF is greater than zero under the threshold of the owner y̅, 

evidently the VoI is maximum and always positive when the two thresholds 

coincide; this is the case of the unconditional value of information uVoI. 

• When the manager is less risk seeking than the owner, i.e. y̅∗ < y̅, the 

conditional VoI is smaller than the unconditional, but can never be negative – 

could be at least zero when y̅∗ = 0. 

• When the manager is more risk seeking than the owner, i.e. y̅∗ > y̅, the negative 

integral of the EUDF between the two thresholds can be interpreted as a Loss 

for Disagreement (LfD) of the two decision makers. If the LfD equals the uVoI, 

then the conditional VoI results negative.  

In order to better clarify the condition whereby the VoI is negative, note that in our 

particular case the EUDF can be written as: 

  Δu(y) ∙ p(y) = (P(S1|y)U11 − P(S2|y)U22) ∙ p(y) =  

= P(y|S
1
)P(S1)U11 − P(y|S

2
)P(S2)U22. 

(6.17) 

Therefore, the conditional VoI becomes: 

 
 VoI = ∫ p(y|S

1
)P(S1)U11 dy

y̅∗

0

− ∫ p(y|S
2
)P(S2)U22 dy

y̅∗

0

. (6.18) 

The VoI is equal to zero either if y̅∗ = 0 or:  

 

 y̅∗:    
∫ p(y|S

1
) dy

y̅∗

0

∫ p(y|S
2
) dy

y̅∗

0

=
P(S2)

P(S1)
 
U22

U11

. (6.19) 
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Notice that the format of Eq. (6.19) is strikingly similar to Eq. (6.13), with the only 

difference that the left-hand term is the ratio between the cumulative distributions of 

the two likelihoods, rather than the two mass density functions. Therefore, we define 

another function G(y), as the ratio between the cumulative distributions of the two 

likelihoods: 

 
 G(y) =

F(y|S
1
)

F(y|S
2
)

=
∫ p(y|S

1
) dy

𝑦

0

∫ p(y|S
2
) dy

𝑦̅

0

. (6.20) 

Consequently, the minimum manager threshold y̅∗ that makes the VoI negative is 

determined by the following simple equation: 

  y̅∗:   G(y̅∗) = R. (6.21) 

This outcome, together with Eq. (6.15), explicates how the threshold y̅ and the index 

R of the manager, i.e. y̅∗ and R∗, must be, in comparison to the ones of the owner, in 

order to achieve a null conditional VoI: 

  y̅∗ = G
 -1(g(y̅)), R∗ = g (G

 -1(R)). (6.22a,b) 

In other words, in order to have a null VoI, the ratio between the thresholds and 

between indexes r of the two agents are: 

 

 
r∗

r
=

R∗

R
=

g (G
 -1(R))

R
,               

y̅∗

y̅
=

G
 -1(R)

g -1(R)
. (6.23a,b) 

6.3.4 Generalization and summary 

We have derived these formulations under the very stringent assumption that U12 = 

U21 = 0. Now let us release this assumption: the condition whereby the owner will 

favour action a2 over a1, which was previously encoded into Eq. (6.9), now reads: 

 
 
P(S2)

P(S1)
 
U22 − U12

U11 − U21

< 1, (6.24) 

so it suffices to redefine the risk seeking factor r as: 
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  r =

U22 − U12

U11 − U21

, (6.25) 

and the rest of the formulation is completely identical. Index r, and consequently also 

R, is an indicator about the risk appetite of the decision maker based on the definition 

of the four utilities: even in this general case, the more the agent is risk seeking, the 

bigger is index r. 

In summary, the necessary and sufficient condition to have a negative VoI is: 

  R∗ > g (G
 -1(R)),            y̅∗ > G

 -1(g(y̅)), (6.26a,b) 

where the ratio R depends on the prior odds q and on the risk seeking ratio r, defined 

in Eq. (6.25). We can conclude that, in order to achieve a negative VoI, the manager 

has to be more risk seeking than the owner, i.e. r∗ > r, so that their threshold y̅∗ is 

bigger of an amount that only depends on the choice of the likelihood distributions. 
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Figure 6.3. Graphical representation of how the conditional VoI may become negative: 

likelihood distributions (a), joint probabilities and evidence (b), posterior probabilities 

(c), expected utilities (d), indexes g and G (e), EUDF (f). 
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6.3.5 Notable case 

Eq. (6.26a) shows that the ratio R∗ that produces a negative VoI depends only on 

the choice of the likelihood distributions and on the owner ratio R. In order to calculate 

R∗, we need to express the functions g(y) and G(y), and to calculate their inverse 

functions g -1(R) and G
 -1(R). Unfortunately, in most cases it is not easy, and sometime 

not even possible, to express the inverse functions in closed form. A notable exception 

is when we describe the likelihood distributions with polynomial functions, as follows: 

 
 p(y|S

1
) = (n + 1) yn,    p(y|S

2
) =

n + 1

n
(1 −  yn),    with y ∈[0, 1]. (6.27) 

These likelihoods are presented in Figure 6.4, as an example, for the polynomial degree 

n varying from 1 to 4. 

 

Figure 6.4. Likelihood distributions according to the polynomial degree n. 

In this case, functions g(y), G(y) and their inverse are: 
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 g(y) = n 
yn

1 −  yn
, g -1(R) = √

R

n + R

n

. (6.28a,b) 

 

 

 G(y) = n 
yn

(n + 1) −  yn
,         G -1(R) = √

R(n + 1)

n + R

n

. (6.29a,b) 

An interesting feature of this class of likelihood functions is that the rate between the 

manager and owner threshold is constant and equal to: 

 
 
y̅∗

y̅
= √n + 1

n
. (6.30) 

This means that, to achieve a null conditional VoI, the threshold of the manager has to 

be bigger than the one of the owner of a quantity that depends only on the polynomial 

degree n. For instance, in the linear case, i.e. n = 1, it results that y̅∗ has to be double 

of y̅. Table 6.2 reports the results for n from 1 to 4. 

Table 6.2. How the ratio between y̅∗  and y̅ varies according to n to achieve VoI = 0. 

n 1 2 3 4 

y̅∗

y̅
 2 √3 √3

4
 √4

5
 

 

It is evident that, as n increases, it decreases how much y̅∗ has to be bigger than y̅ in 

order to have (O|M)VoI = 0, and consequently a negative conditional VoI. We can easily 

understand the reason of this outcome by analysing it graphically: in the linear case, 

presented in Figure 6.5(a), the threshold of the manager has to be clearly double of the 

one of the owner, because uVoI and LfD are two triangles. Conversely, with n > 1, as 

for example Figure 6.5(b) shows for n = 2, it is evident that, in order to have the area 

of uVoI and the one of LfD equal, y̅∗ has to be bigger than y̅, but less than double. 
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Figure 6.5. Expected utility density function (EUDF) for n = 1 (a), and n = 2 (b). 

In addition, we have already anticipated that a bigger threshold corresponds to a 

bigger index R, meaning that the manager has to be more risk seeking than the owner 

in order to have a null conditional VoI, and consequently a negative one. We can verify 

this sentence by developing Eq. (6.23a), in this case of polynomial likelihood 

distributions: 

 

 
r∗

r
=

R∗

R
=

g (G
 -1(R))

R
=

n + 1

1 − R
=

n + 1

1 − r q⁄
 . (6.31) 

This means that, in order to have a null conditional VoI, the manager has to be more 

risk seeking than the owner, i.e. r∗ > r, by an amount that increases as the polynomial 

degree n rises, and which depends also on r itself. In conclusion, while it is clear that 

in real-life the likelihood distributions may have various different shapes, e.g. 

Gaussian as in the case study of section 6.4, defining them with polynomial functions 

allows us to achieve results in closed form, which is useful to understand better the 

practical meaning of the developed formulation. 
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6.4 The Streicker Bridge case study 

To illustrate how the developed framework works, we consider the same case study 

as in (Zonta, et al., 2014) (Bolognani, et al., 2018), i.e. the Streicker bridge, since it 

respects all the assumptions introduced in the previous sections. The bridge has already 

been introduced in section 5.4. 

6.4.1 Introduction of the SHM-decision problem 

The SHM-based decision problem, the main assumptions and the individuals 

involved are the same as in (Bolognani, et al., 2018). The bridge is managed by two 

fictitious agents with distinct roles: 

• Ophelia (O) is the owner responsible for Princeton’s estate, who has to decide 

on whether or not to install the monitoring system; she is Malcolm’s supervisor. 

• Malcom (M) is the manager responsible for the bridge operation and 

maintenance, who has to take decisions on the state of the bridge based on 

monitoring data. 

They are both rational individuals and they have the same background knowledge, 

they only differ in the way how to weight the seriousness of the consequences of a 

failure. They are concerned by a single specific scenario: a truck, driving along 

Washington road, could collide with the steel arch of the bridge. After the incident, the 

bridge will be in one of the following two states: 

• S1 = damaged (D), i.e. the bridge is still standing but has suffered major 

damage, and there is a change of collapse of the entire bridge. 

• S2 = undamaged (U), i.e. the structure has either no damage or some minor 

damage. 

According to Malcolm and Ophelia, the two states are mutually exclusive and 

exhaustive, i.e. P(D) + P(U) = 1. We assume that they focus on the sensor installed at 

the bottom of the middle cross-section between P6 and P7 (called Sensor P6-7d, see 

Figure 5.1(c)). The output of the monitoring system is then represented by the strain ε 

of this specific fiber optic sensor. We can also assume that the two agents use the same 
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interpretation model, i.e. they interpret identically the data from the monitoring 

system, as we will present in section 6.4.2. 

After Malcolm the manager estimates the state of the bridge, he may decide between 

two alternative actions: 

• a1 = do nothing (DN), i.e. no special restrictions to traffic under and over the 

bridge. 

• a2 = close bridge (CB), i.e. both Streicker Bridge and Washington Road are 

closed to traffic for the time needed for a thorough inspection, estimated to be 

1 month. 

Finally, Ophelia and Malcolm agree that the costs, denoted by z, related to each action, 

for each state, are the same as estimated in (Glisic & Adriaenssens, 2010) and reported 

in Table 6.3. The resultant decision tree of this case study is illustrated in Figure 6.6. 

 

Figure 6.6. Decision tree for the Streicker bridge case study. 

 



156 

 

Table 6.3. Costs per action and state (Glisic & Adriaenssens, 2010). 

 
State S1 = D State S2 = U 

Action 

a1 = DN 
z11 = zF = 881.60 k$ z12 = 0.00 k$ 

Action 

a2 = CB 
z21 = zDT = 139.80 k$ z22 = zDT = 139.80 k$ 

In order to apply the formulation about the negative VoI introduced in section 6.3, 

we need to analyse indexes g(ε) and G(ε), which depend only on the likelihood 

distributions, and index R, which instead depends on the appetite for risk of the 

decision maker and on the choice of prior probabilities. 

6.4.2 Analysis of likelihood distributions 

In this subsection, firstly we introduce the likelihood distributions of the case study, 

then we evaluate the resultant indexes g(ε) and G(ε). 

Similar to (Zonta, et al., 2014), and in the same way of chapter 5, the likelihoods of 

the two states are described by Gaussian distributions: p(ε|U) is the likelihood of no 

damage, defined with mean value µ = 0 με and standard deviation σ = 300 με, since 

Malcolm and Ophelia expect the bridge to be undamaged if the change in strain will 

be close to zero, along with a natural fluctuation of the strain due to thermal effects 

and to a certain extent due to creep and shrinkage; p(ε|D) is instead the likelihood of 

damage, defined with mean value µ =  1000 με and standard deviation σ = 600 με, 

since in this case they expect a significant change in strain. 

Before the data are available, Malcolm and Ophelia can predict the distribution of 

ε, which is practically the so-called evidence in classical Bayesian theory, through the 

formula: 

  p(ε) = p(ε|D)∙P(D) + p(ε|U)∙P(U). (6.32) 

When the measurement ε is instead available, both the agents update their estimation 

of the probability of damage consistently with Bayes’ theorem: 
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 p(D|ε) = 

p(ε|D)∙P(D)

p(ε)
, (6.33) 

where p(D|ε) is the posterior probability of damage. 

The defined likelihood distributions, illustrated in Figure 6.7(a), allow us to 

calculate the resulting indexes g(ε) and G(ε), which are presented in Figure 6.7(b). 

Note that the plot of g(ε) has been cut at g(ε) = 2, since for ε > 500 µε g(ε) tends to 

infinity. 

 

Figure 6.7. Analysis of the likelihood distributions: likelihoods (a), index g(ε) and G(ε) 

(b). 

6.4.3 Analysis of appetite for risk of decision makers 

The index R varies according to the appetite for risk of the decision maker, i.e. index 

r, and to the choice of prior probabilities, i.e. index q. While we will analyse the prior 

probabilities later, we introduce here the different utility functions of the two agents. 

As introduced before, Ophelia and Malcolm differ in their utility functions, which 

is the weight they apply to the possible economic losses. In the following, we use the 

indices (M) and (O) to indicate that a quantity is intended respectively from Malcom 

the manager’s perspective and Ophelia the owner’s perspective. According to 
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(Bolognani, et al., 2018), we define Ophelia the owner risk neutral with respect to the 

loss compared to the value of a single structure, since she is in charge of a large stock 

of structures. This means that, according to her behaviour, a negative utility is linear 

with the incurred loss. Strictly speaking, a utility function is defined except for a 

multiplicative factor, therefore it should be expressed in an arbitrary unit sometime 

referred to as util (McConnell, 1966). Since Ophelia’s utility is linear with loss, for the 

sake of clarity we will deliberately confuse negative utility with loss, and therefore we 

will measure Ophelia’s utility in k$.  

Unlike Ophelia, in order to demonstrate the formulation introduced in section 6.3 

about the negative VoI, we suppose that the behaviour of Malcolm the manager can be 

risk adverse or risk seeking: in this way, since we assume the owner to be always risk 

neutral, we can analyse both the situations of a manager more risk seeking and more 

risk adverse than the owner. It is possible to describe mathematically these behaviours 

using the Arrow-Pratt’s utility model (Pratt, 1964) (Arrow, 1965), where the different 

aptitude of an agent is encoded in the coefficient of Absolute Risk Aversion (ARA) θ. 

Similarly to (Bolognani, et al., 2018), we assume that the manager’s utility has 

constant ARA, and then the utility function takes the form of an exponential: 

 
 U(z)(M)

>
1 − e - z∙θ

θ
, (6.34) 

where θ is the constant ARA coefficient. Figure 6.8 shows the linear utility function 

of Ophelia’s behaviour and both Malcom’s utility functions, which depend on his 

particular behaviour:  

• Risk adverse, i.e. his negative utility increases more than proportionally with 

the loss, using θ = -1.423 M$-1. 

• Risk seeking, i.e. his negative utility increases less than proportionally with the 

loss, using θ = 3.034 M$-1. 

Based on these utility functions, we may calculate the utilities U of the costs related to 

each action, for each state, and consequently the index r, which in this case turns into: 
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  r =

U(zDT)

U(zF) − U(zDT)
. (6.35) 

All the outcomes are reported in Table 6.4. As expected, we can notice that the more 

the decision maker is risk seeking, the bigger is the index r: (O)r = 0.189 > (M)r = 0.096 

if the manager is risk adverse and then he is less risk seeking than the owner, (M)r = 

0.590 > (O)r = 0.189 if the manager is risk seeking and then he is more risk seeking 

than the owner, who we remember to be considered always risk neutral. 

In summary, we have fixed index r, while R will depend on the choice of the prior 

probabilities. In the next subsections, to understand how the VoI varies depending on 

the different appetite for risk of the two agents, and when it may consequently become 

negative, we evaluate it both in the case of the manager risk adverse and risk seeking. 

Table 6.4. Ophelia’s and Malcolm’s loss perception. 

Ophelia the owner RISK NEUTRAL 

 State D State U (O)r 

Action DN U(zF)
(O)

 = -881.60 k$ U(z)
(O)

 = 0.00 k$ 
0.189 

Action CB U(zDT)
(O)

 = -139.80 k$ U(zDT)
(O)

 = -139.80 k$ 

Malcolm the manager RISK ADVERSE 

 State D State U (M)r 

Action DN U(zF)
(M)

 = -1762.94 k$ U(z)(M)
 = 0.00 k$ 

0.096 
Action CB U(zDT)

(M)
 = -154.94 k$ U(zDT)

(M)
 = -154.94 k$ 

Malcolm the manager RISK SEEKING 

 State D State U (M)r 

Action DN U(zF)
(M)

 = -306.88 k$ U(z)
(M)

 = 0.00 k$ 
0.590 

Action CB U(zDT)
(M)

 = -113.93 k$ U(zDT)
(M)

 = -113.93 k$ 
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Figure 6.8. Representation of the utility functions for Malcolm the manager and 

Ophelia the owner. 

6.4.4 Case 1: Malcolm the manager risk adverse 

In this first case, Ophelia is risk neutral while Malcolm is risk adverse, meaning 

that the manager is less risk seeking than the owner. According to the formulation 

introduced in section 6.3, we want to verify that in this case it is impossible to find a 

negative conditional VoI. Since we have defined all the indexes about the formulation 

except q, in the following we analyse everything in term of P(D), i.e. in term of q. 

To start, we evaluate the expected utilities u0 a priori, i.e. if the monitoring system 

is not installed. We know that a decision maker would always choose to close the 

bridge when their utility related to the action CB is less negative than the utility of DN: 

  uCB ≥ uDN,            U(zDT) ≥ U(zF) ∙ P(D). (6.36a,b) 

Consequently, we achieve that for Ophelia it is always convenient a priori to close the 

bridge if P(D) > 0.16, while for Malcolm if P(D) > 0.09, that is smaller because of his 

risk adverse behaviour. The outcomes are presented in Figure 6.9(a), along with the 

conditional expected utility (O|M)u0 calculated as in Eq. (6.5), which is what we really 

need in order to evaluate the conditional VoI. Note that (O|M)u0 has a discontinuity for 

P(D) = 0.09, since this is the value of P(D) for which a priori the manager changes the 
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decision from action DN to action CB. In addition, we remind that the formulation 

introduced in section 6.3 is based on the assumption that a priori it is always convenient 

to choose action a2, i.e. CB for this case study: this corresponds to having P(D) > 0.16, 

since in this way both the agents agree on choosing action CB a priori, i.e. their index 

R is < 1. 

Consider the case of the monitoring system installed. In this case the decision maker 

can rely on the monitoring data ε, and then we can evaluate the preposterior expected 

utilities, in formula: 

  uCB|ε = u(zDT),            uDN|ε = u(zF) ∙ p(D|ε). (6.37a,b) 

Note that the preposterior expected utilities of action DN depends on the posterior 

probability of having the bridge damaged p(D|ε), that can be calculate as in Eq. (6.33). 

The resultant preposterior expected utilities upp are presented in Figure 6.9(b), in term 

of P(D), both in the unconditional and conditional form. It is possible to notice that the 

conditional outcome, i.e. (O|M)upp, has again a discontinuity, this time for P(D) = 0.53, 

which corresponds to the value of P(D) for which a posteriori the manager changes his 

decision from action DN to action CB. 

Finally, the VoI is simply the difference between the preposterior expected utility 

and the prior expected utility. We can then calculate both the unconditional and 

conditional VoI, according respectively to Eq. (6.4) and Eq. (6.7). Figure 6.9(c) shows 

the results, always in term of P(D). As regards the unconditional VoI, i.e. (O)uVoI and 

(M)uVoI, we can observe that they are maximum exactly at the value of P(D) for which 

it becomes convenient a priori to close the bridge, i.e. if P(D) = 0.16 for the owner and 

P(D) = 0.09 for the manager; we remind that these are the values which corresponds 

to having R = 1. In addition, it is possible to verify that it is never possible to find a 

negative unconditional VoI, according to the principle introduced in section 6.2 that 

“information can’t hurt”. In addition, we can notice that, as expected since in this case 

the manager is less risk seeking than the owner, we cannot find any value of P(D) for 

which the conditional VoI, i.e. (O|M)VoI, becomes negative. This happens because, due 

to Malcolm’s risk adverse behaviour, he would always choose to close the bridge a 

posteriori sooner than Ophelia, i.e. (M) ε̅ < (O) ε̅, and then we may obtain a smaller 

positive uVoI, but we can’t achieve what we have defined as Loss for Disagreement 

(LfD): consequently, it is impossible to get a negative VoI, as expected. 
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Figure 6.9. Prior expected utilities u0 (a), preposterior expected utilities upp (b), VoI 

(c). 
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6.4.5 Case 2: Malcolm the manager risk seeking 

In this second case, we consider Ophelia the owner still risk neutral, while Malcolm 

the manager is now risk seeking. This corresponds to the case where, according to the 

developed formulation of section 6.3, it should be possible to find a negative 

conditional VoI. We want then to find out for which values of P(D), and consequently 

of the term q, this happens. The procedure followed is the same as in section 6.4.4. 

We evaluate the expected utilities u0 a priori, i.e. in the case of a monitoring system 

not installed. In this case, as shown in Figure 6.10(a), for Ophelia is again convenient 

a priori to close the bridge if P(D) > 0.16, since she is still risk neutral, while for 

Malcolm it becomes P(D) > 0.37, that is clearly higher because of his risk seeking 

behaviour. As a consequence, the two agents agree on choosing a priori action CB if 

P(D) > 0.37. 

Figure 6.10(b) presents the unconditional and conditional preposterior expected 

utilities, needed in order to evaluate the VoI, which is instead illustrated in Figure 

6.10(c). As regards the unconditional VoI, i.e. (O)uVoI and (M)uVoI, we can again 

observe that they are maximum exactly at the value of P(D) for which it becomes 

convenient a priori to close the bridge, i.e. if P(D) = 0.16 for the owner and P(D) = 

0.37 for the manager, and that it is never possible to find a negative unconditional VoI. 

Conversely, it is clearly possible to find some values of P(D) for which the conditional 

VoI, i.e. (O|M)VoI, becomes negative: 0.58 < P(D) < 0.87. This happens because, due to 

his risk seeking behaviour, Malcolm would always choose to close the bridge a 

posteriori later than Ophelia, i.e. (M) ε̅ > (O) ε̅, and therefore we achieve what we have 

defined LfD. Since there are some values of P(D), i.e. 0.58 < P(D) < 0.87, for which 

this the LfD is bigger than the uVoI, the consequence is that we achieve a negative 

conditional VoI. 
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Figure 6.10. Prior expected utilities u0 (a), preposterior expected utilities upp (b), VoI 

(c). 
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6.4.6 Discussion about negative conditional VoI 

In the previous subsections we have demonstrated that, as expected, it is possible 

to achieve a negative conditional VoI only when the manager is more risk seeking than 

the owner, which agrees with the conclusions obtained theoretically in section 6.3. In 

this specific case study, it happens when 0.58 < P(D) < 0.87, which corresponds to 

1.38 < q < 6.69. 

We analyse one specific case in this range: we choose for instance P(D) = 0.65, i.e. 

q = 1.86. In this case, indexes R and the thresholds for the two agents are:  

  R
(M)

= 0.32 > R
(O)

= 0.10. (6.38) 
 

  ε̅
(M)

= 247 με > ε̅
(O)

= −84 με. (6.39) 

As expected, the threshold of Malcolm the manager is bigger than the one of Ophelia 

the owner, since Malcolm is more risk seeking than Ophelia. Consequently, there is a 

very wide range of values, from -84 με to 247 με, whereby Malcolm would keep the 

bridge open in disagreement with Ophelia, who instead believes this is a dangerous 

practice which can potentially result in a big loss. She is then forced to keep the bridge 

open for ε = [-84 με ÷ 247 με], even if it would be more convenient for her to close it: 

this causes a LfD, as shown in Figure 6.11(b). Since this negative area is bigger than 

the one of uVoI, the resultant conditional VoI is negative: 

  VoI
(O|M)

= −11.61 𝑘$. (6.40) 

This means that in this case Ophelia perceives the monitoring information as 

damaging: in summary, a negative VoI corresponds exactly to the amount of money 

Ophelia the owner is willing to pay to prevent Malcolm the manager using the 

monitoring system. 

In conclusion, we have proved that, for the prototype decision problem analysed in 

this contribution, the achievement of a negative conditional VoI depends on a 

combination between how much more seeking is the manager in comparison to the 

owner, and the choice of prior probabilities. While the development of our case study 

has been conditioned by the choice of specific risk appetites of the agents, i.e. fixed θ, 
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in order to have a final verification of our conclusions, it is interesting to investigate 

how the conditional VoI varies according to both the prior damage probability P(D), 

i.e. in term of index q, and the ARA coefficient θ of the manager, i.e. in term of his 

appetite for risk. Figure 6.12 shows graphically the results, with both a top view and a 

3D view: it is clear that we achieve a negative conditional VoI, i.e. the dark blue area, 

only for some specific combinations of high P(D) and positive θ, which indeed 

corresponds to a manager who is more risk seeking in comparison to the owner, who 

instead we remind to be defined as risk neutral (θ = 0). In the top view of Figure 

6.12(a), we have highlighted the specific case analysed in this section, i.e. θ =3.034 

M$-1 for the manager and P(D) = 0.65: it allows us to verify that, as calculated in Eq. 

(6.40), this case falls into the area where we achieve a negative conditional VoI. 

 

Figure 6.11. Analysis of the conditional VoI: density function of the two expected 

utilities (a); EUDF, zoom in the values of interest (b).  
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Figure 6.12. Graphical representation of the conditional VoI in function of both the 

prior damage probability P(D) and the ARA coefficient θ: top view(a) and 3D view 

(b). 

6.5 Conclusions 

The benefit of SHM can be quantified using the concept of the VoI. In its 

calculation, a commonly understood assumption is that the individual who decide on 

the installation of the monitoring system, i.e. the owner, is the same rational agent who 

will later use it, i.e. the manager. With this assumption, the so-called unconditional 
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VoI is never negative, according to the assumption that “information can’t hurt”. On 

the other hand, we must recognize that in the real word these two agents involved in 

the decision chain are usually different individuals. In this case, it has been 

demonstrated that the so-called conditional VoI may become negative, meaning that 

the monitoring information are perceived as damaging. The aim of this contribution 

has been to investigate, for a specific prototype decision problem, which are the 

conditions, necessary and/or sufficient, for which it is possible to obtain a negative 

conditional VoI. 

We have first summarized the two mathematical formulations for the evaluation of 

the VoI, i.e. in the unconditional and conditional case. Then, we have investigated 

theoretically how it is possible to achieve a negative conditional VoI based on the 

assumptions of our prototype decision problem: we have understood that the 

predominant factor is the different risk appetite of the two decision makers, in 

particular how much more risk seeking is the manager in comparison to the owner. 

Secondly, other influential factors are the shape of the likelihood distributions and the 

values of prior probabilities. We have proved these theoretical conclusions by 

describing the likelihood distributions with polynomial functions, which have allowed 

to get results in closed form. 

To verify the developed framework, we have applied it to a SHM-based decision 

problem regarding the Streicker Bridge, which is a pedestrian bridge at Princeton 

University campus equipped with a continuous monitoring system. The achieved 

results allow us to verify that it is never possible to find a negative unconditional VoI, 

while it is possible to find a negative conditional VoI in the case of a manager more 

risk seeking than the owner. Indeed, in this case the owner is forced to keep the bridge 

open even if it would be more convenient for her to close it: this Loss for Disagreement 

LfD between the manager and the owner, due to their different risk appetite, may 

ultimately lead to a negative conditional VoI. This outcome means that the owner 

perceives the monitoring information as damaging, because she believes that the 

monitoring system can seriously mislead the decision of the manager: a negative 

conditional VoI corresponds exactly to the amount of money the owner is willing to 

pay to prevent the manager using the monitoring system. 
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7. Conclusions 

In this final chapter, we present a summary and a discussion about the outcomes of 

the research presented in this thesis, along with its limitations and the related future 

works. 

The main goal of this contribution is to support the rational management of critical 

structures in civil engineering. We have concentrated especially on decision-making 

processes based on structural information, since their research interest has grown 

increasingly in the last decades. The analysis of the current state of art highlighted the 

necessity to analyse deeper these engineering decision-making processes, since in real-

life decision makers often distort the rational framework that can be found in the 

literature, presented in section 2.1. We remind that, being able to predict the behaviour 

of a real-word agent is fundamental in various real-life engineering situations, for 

instance when the management of the structure is based on a policy that depends on 

decisions of several decision makers that may behave differently, even irrationally. 

In the following, we discuss the achievement of the 4 aims introduced in section 

1.3. 

i) To investigate how heuristic behaviours affect human judgment and decision-

making. 

We have investigated this first aim in chapter 3. In general, people use heuristics as 

efficient rules to simplify complex problems and overcome the limits in rationality and 

computation of the human brain. Even though the results are typically satisfactory, 

they can differ from those derived from a rational process; psychologists call these 

differences cognitive biases. Many heuristic behaviours have been identified and 

investigated in the literature, with applications in various fields such as psychology, 

cognitive science, economics and finance, but rarely in SHM-based decision problems. 

In particular, we have identified Kahneman and Tversky’s representativeness as a 

heuristic for which SHM-based decision-making is particularly susceptible, where 

simplified rules for updating probabilities can distort the decision maker’s perception 
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of risk. This biased behaviour is frequently observed in bridge management as the 

confusion between condition state and safety of the bridge. Therefore, based on the 

available literature, we have proposed a mathematical framework in order to reproduce 

the impact of this biased behaviour, and to compare it with the rational one which is 

instead based on Bayesian methods. We have tested the developed framework on a 

classical representativeness problem. Then, we have applied it to a real-life case study 

concerning the evaluation of the safety of a bridge, based on visual inspection. The 

results of the case study demonstrate that, while rational Bayes’ theorem correctly 

identifies the bridge as safe, the application of the proposed representativeness 

framework predicts that the manager mistakenly judges the bridge as unsafe, based on 

the observed condition state. This outcome supports our hypothesis that this irrational 

judgment sometimes observed in bridge managers’ behaviour can be described using 

Kahneman and Tversky’s representativeness heuristic, and that our proposed 

mathematical framework reproduces it appropriately. In conclusion, this work opens a 

new research path in bridge management since it demonstrates the influence of 

heuristics in managers’ behaviour. As regards to future work, we think that real-life 

bridge managers may be biased by other heuristic behaviours, and as such it would be 

of interest to study these as we have done in this thesis with the representativeness. In 

particular, we aim to study the other two main heuristics of Kahneman and Tversky, 

i.e. availability and anchoring, which we have started to analyse in this thesis. 

ii) To develop a process to elicit engineering expert knowledge, by minimizing 

the risk of biased judgments. 

This second aim is developed in chapter 4. In general, eliciting expert judgment in 

the form of subjective probabilities is a socio-technical activity and requires a 

structured and facilitated process to extract meaningful judgments because people, 

even experts, are unable to provide accurate and reliable data simply on request: 

indeed, simply asking a person for their best estimate results in poor data due to the 

plethora of biases in human judgment. The case study motivating this part of our 

research concerned the system reliability of a dam in Ontario (Canada), with the final 

aim being to predict the probability of failure of the dam. We chose the Bayesian 

Network (BN) as the mathematical model to explicate the relationship between 
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environment, usage, hazard and management decisions, and to support the optimal 

long-term productivity of the asset. Due to the lack of data and information, we decided 

to rely on expert judgment to quantify the BN. Even if a variety of existing processes 

for eliciting expert knowledge with engineering applications are available in the 

literature, very little has been reported about elicitation processes aimed specifically at 

quantifying BNs. Consequently, we have developed a four-stage structured elicitation 

process to support the collection of valid and reliable data with the specific aim to 

quantify a BN. In the development of the methodology, each stage is proposed by 

highlighting all the potential biases that may influence the process as well as by 

proposing appropriate actions in order to minimize the risk of biased judgments. In 

particular, we have highlighted the following six biases: management, expert, 

conjunctive, anchoring, availability and central. Our process was applied in a case 

study where the numerical outcomes demonstrated the operationalizability of the four-

stage structured elicitation process. Upon reflection following the implementation of 

the process, we have identified aspects of the process for improvement in order to 

enhance the reliability of the results. For instance, a possible limitation of these 

processes in real-life is due to the difficulty in finding available experts, and therefore, 

we need to consider carefully which expertise is essential and which is desirable. In 

conclusion, this work demonstrates the validity and the usefulness of engineering 

expert knowledge as an accurate and reliable data source, if an appropriate 

methodology is developed in order to minimize the risk of biased judgments. As 

regards to future work, we aim to improve this structured methodology based on what 

we have learnt from this first application, such as about expert selection, and to apply 

it to other civil engineering structures, e.g. bridges. 

iii) To investigate how decision-making can be distorted when multiple decision 

makers are involved in the decision chain. 

This aim is investigated in chapter 5. In particular, we recognize that real world 

decision-making processes are based on the interactions between more individuals, 

that can take different decisions according to their appetites for risk. We chose to study 

this interaction between rational decision makers by analysing the benefit of SHM, 

using the concept of VoI. In classical decision theory, one of the main assumptions is 
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that all decisions concerning system installation and operation are taken by the same 

rational agent, so a methodology for evaluating the VoI in this case is available in the 

literature. However, nothing is available as regards more individuals involved in the 

decision chain. Therefore, we have developed an innovative rational method for 

quantifying the VoI when two different agents are involved in the decision chain: we 

have called them respectively manager, i.e. who makes decisions regarding the 

structure, and owner, i.e. who chooses whether to install the monitoring system or not. 

This new methodology, which takes into account the possibility that the two decision 

makers may act differently due to different appetites for risk, allows one to evaluate 

what we have called conditional VoI, i.e. the VoI achieved using the utility of the 

owner, but conditional to the action chosen by the manager. To illustrate how this 

framework works, we have evaluated a hypothetical VoI for a pedestrian bridge at 

Princeton campus, which is equipped with a monitoring system. The achieved results 

demonstrate how decisions may be distorted using this new formulation, in comparison 

to the classical one where all decisions are taken by the same rational agent, which we 

have referred to as unconditional. In conclusion, the benefit of monitoring in the 

conditional case could be greater or smaller in comparison to the unconditional case, 

according to the different risk appetites of decision makers. In addition, this work has 

allowed us to note that, in contrast with the unconditional formulation, it is possible to 

find a negative VoI with the conditional formulation. This is an unexpected outcome 

since it means that the monitoring information may be perceived as damaging. This 

final outcome has been the motivation for our last contribution of this thesis, presented 

in chapter 6. 

iv) To demonstrate that the value of information may be negative in the case of 

multiple rational decision makers with different appetites for risk. 

This final aim is discussed in chapter 6. In particular, starting from the conditional 

formulation of VoI that we proposed in the contribution of chapter 5, we have 

developed a mathematical formulation that aims to understand the circumstances for 

which, under specific assumptions, it is possible to find a negative conditional VoI. 

The formulation shows that the predominant factor is the different risk appetites of the 

two decision makers, since this may lead to a big disagreement between them, and 
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consequently in some cases even to a negative conditional VoI. After proving the 

outcomes achieved theoretically using specific likelihood functions, we have applied 

it to the same decision problem as in chapter 5. The outcomes of the case study 

demonstrate the validity and the usefulness of the developed methodology. In 

conclusion, we claim a negative conditional VoI corresponds exactly to the amount of 

money the owner is willing to pay to prevent the manager using the monitoring system. 

The possibility to achieve a negative conditional VoI is a further proof of the relevance 

of the consequences that can be caused by distorted decisions. As regards to future 

work, we aim to investigate the negative VoI in decision problems based on different 

assumptions, for instance as regards the number of decision makers involved, the level 

of uncertainty, the likelihood distributions. 

In conclusion, the four contributions presented in this thesis prove the relevance of 

investigating the consequences of distorted human judgments and decision-making in 

civil engineering applications, which was the main goal of this thesis. In particular, the 

outcomes achieved allow us to demonstrate the operationalizability of the methods 

developed in this thesis, and to prove their relevance in various civil engineering case 

studies.  
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