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Abstract

The advancements of modern technology have motivated researchers, business and gov-

ernmental stakeholders to envision the idea of a unified network-based platform, known

as the Internet of Things, that can interconnect devices and allow the bi-directional

communication between relevant parties. The information exchanged through the

Internet of Things can originate from a variety of fields, namely healthcare, environmen-

tal and infrastructure monitoring, transportation and logistics, smart grid and smart

houses, which can produce a vast amount of diverse data in real time. One of the most

important challenges, emerging from the implementation of the Internet of things, is

the acquisition of meaningful information using the data derived from the various smart

devices and sensors. Therefore, it is essential to identify suitable data processing and

analysis approaches, able to adapt depending on the application-specific requirements,

and consequently transform the available data into useful information that can be

utilised by any various stakeholders.

The main focus of this research thesis was in the field of Non-Intrusive Load

Monitoring (NILM) in order to provide solutions suitable for low resolution smart

metering data, similar to the specifications of the smart meters selected for deployment

from most utilities and governmental stakeholders. Through an extensive and up-to-

date review of the NILM field presented in this thesis, it has been identified that only

recently, researchers have focused on disaggregating using only active power aggregate

data for feature extraction at low sampling rates. Therefore three unsupervised NILM

methods were proposed as an outcome of this research, one using solely Dynamic

Time Warping (DTW), a signal processing-based method, while the other two methods

propose a combination of DTW and k-means, namely DTW+kM and kDTW, in order

to address the computation complexity observed using the DTW-based method. The

DTW+kM approach performs DTW for creating a library of appliance signatures and

classification via clustering using k-means, and the kDTW is incorporating a DTW

refinement post processing step in order to optimise the performance of the initial

implementation. The proposed methods were evaluated and benchmarked against
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various state-of-the-art NILM methods using the publicly available REDD [1] and

REFIT [2, 3] datasets, and reported good performance.

Furthermore, the research presented in this thesis has investigated two other het-

erogeneous applications of the Internet of Things with respect to the emerging data

challenge, and have proposed customised monitoring systems, and a variety of signal

processing and machine learning approaches for analysing the corresponding data. More

specifically, a prototype monitoring system was proposed for monitoring earthwork

assets and preliminary findings reported in this thesis. In the context of visual content

interaction using a video based eye tracking device, applicable in healthcare, computing,

and even advertisement, the user’s attention was evaluating using various statistical and

signal processing methods, with the wavelet-based analysis being the best contestant

for identifying features for extraction using pupil dilation and gaze fixation.
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Chapter 1

Introduction

1.1 Introduction

The concept of Internet of Things (IoT) and its potentials have been the focus of

both researchers, governments and companies in recent years. IoT can be described

as a network, that can interconnect and create a unified platform for physical devices,

vehicles, household appliances and items that are equipped with electronics, sensors, etc

[7–10]. This interconnection will allow the exchange and eventually smart utilisation

of data from all involved parties such as consumers, industry, utilities etc.

Smart meters in households can provide information about power consumption,

that can potentially allow better billing plans for customers, information about the

condition of the appliances, and even maintenance notifications for utilities. Smart

appliances equipped with sensors could interconnect to the IoT through smart meters,

and establish a fully automated household appliance network. Smart meters and in

extension Smart Grid represent one of the most promising applications of IoT [11].

Furthermore, monitoring of large infrastructures, such as bridges, canals, embank-

ments, can provide information about the condition of the asset and early notifications

for potential failures, that can be costly and dangerous [12]. Similarly, data from mon-

itoring different environmental parameters, such as temperature, humidity, and even

livestock health monitoring can assist to the advancement of all sectors of agricultural

industry. This information can lead to better management and automation of the

farming processes, minimise risk and therefore ensure increased production [13–15].

Eye-tracking devices and sensors have numerous applications in healthcare, auto-

mobile, aviation, psychology, computer science, advertisement and many more (see in

[16–19]). The use of eye-tracking devices in vehicles, together with car cameras, could

provide information about the driver’s attention during driving and even recognise

1
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fatigue (see in [18, 19]) and potential use of alcohol [20]. Furthermore, if used in

laptops, computers and even smart phones, software and advertising companies could

evaluate customers attention through visual content interaction [16]. Although these

applications and their existence in the IoT could raise more questions about the ethical

use of these data and would require lawmakers to propose laws that would ensure the

safety and privacy of all members involved, they could still provide solutions to existing

problems.

All the above applications of IoT represent only a small amount of sectors that

will be part of this cloud-like network. Each entity in the IoT has its own features

and measurements that can be monitored, thus the variability of the data leads to

different approaches for data analysis in order to acquire useful information. For

this reason, it is highly important to investigate both traditional signal processing

methods, machine learning algorithms, and in general data mining processes that could

be suitable for processing these smart data, finding patterns and eventually provide

solutions for problems and concerns linked to each discipline.

1.2 Data Science in IoT

Data Science, according to [21], can be explained as a “concept to unify statistics, data

analysis and their related methods, but also comprises its results” and includes three

phases: “design for data”, data collection and data analysis.

“Design for data” means the understanding of the problem and investigation behind

which experiments or surveys are required. Data collection includes the databases,

devices and sensors required for the measurements defined through the“design for data”

phase, and the understanding of the properties of the collected data. Data analysis

incorporates machine learning, statistical and signal processing, that can assist in the

classification and identification of patterns using various data. This phase allows the

acquisition of expert knowledge through the efficient interpretation of data [21].

All phases can be clearly implemented in the IoT concept, and especially the

derivation of appropriate data analytics and signal processing tools for the extraction

of useful information, which is mainly the focus of the research work presented in this

thesis.
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1.3 Non-Intrusive Load Monitoring

One interesting application of IoT is the field of Smart Grid and smart metering. The

roll-out of smart meters in households has been on the agenda of many governments

worldwide. The deployment of smart meters will provide a variety of energy data that

can potentially be used in order to benefit both users and utilities, for itemised billing,

competitive pricing plans and maintenance information. It is really important for the

successful deployment of the smart metering technology to minimise both the cost and

the disturbance of the household [22].

Disaggregating individual appliance usage from the total, aggregated energy con-

sumption captured at the smart meter, is referred to as Non-Intrusive Load Monitoring

(NILM) and was first proposed by Hart in [23]. Load disaggregation [24] is beneficial to

customers to determine which appliances are the most energy consuming ones, which

are faulty, and when it is time to replace or service an old appliance, characterised by a

changing energy signature. Furthermore, it will provide a better forecasting of demand

for suppliers, more efficient monitoring of smart grid from the network operator’s side,

and useful information for both appliance manufacturers and policy makers that can be

applied to the manufacturing of smarter and more efficient appliances and the proposal

and implementation of the appropriate policies. Since [23], many NILM algorithms

have been proposed, using different measurements and sampling rates depending of the

available sensor technology, but more frequently using sampling rates in the order of

kHz [22, 25–29].

Both utilities and providers require to maintain a low cost for the smart meter

deployment and in addition low computational and storage cost [22]. For this purpose,

low sampling smart meters are both more affordable and the volume of data produced

and requiring storage are less compared to higher sampling rates. Even with the

advancements of NILM algorithms and methods, there are still algorithms and methods

that could be investigated in order to increase the efficiency of the disaggregation for

low sampling rates [30, 31].
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1.4 Research Motivation and Aim

The motivation behind this research was driven by the fascination of the concept of IoT

and in general the challenges that would arise from the volume and variability of data

produced. The attempt to answer questions about how diverse data can be monitored,

can be analysed and what useful information can be derived from these data, triggered

the involvement in terms of research in three different and challenging fields.

While technology is ready for smart meter deployment, in order to maximise the

gain from smart metering, NILM methods can provide disaggregation of energy usage

for the purposes of itemised billing and improved or competitive pricing plans. Due

to the cost of sensing technology, computational and storage cost, low sampling smart

meters are the most important candidates for deployment [22], which motivated this

research to investigate efficient NILM methods, suitable for sampling rates under 1Hz.

Furthermore, an embankment and similar types of earthworks require extensive

monitoring and maintenance, which is normally done using expensive equipment and

complex geological surveys performed by experts. A failure of such infrastructure can

be catastrophic, as many of such assets are located near roads, railways and other

public infrastructures. For this purpose, affordable and accurate monitoring solutions

are of great importance, in addition to a better understanding of which features should

be monitored, and how this information can be further processed.

Eye movements and changes in pupil dilation are known to provide information

about viewer’s attention and interaction with visual content. Through IoT, this in-

formation could be readily available and utilised in various applications and therefore

provide further advancements in multiple disciplines, such as healthcare, psychology,

automotive, software and in general computer interaction. These exciting possibilities

were the foundation of the involvement in the research field of human interaction with

visual content.

Therefore, the main aims of this research can be presented in the form of the

following research questions:

R.Q.1 What are the advancements and limitations of the available NILM methods,

and how they can address successfully the IoT smart metering problem?
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R.Q.2 How can DTW be applied in the context of NILM and load disaggregation and

how it can address the problem of low sampling rates available in commercial

smart meters; what are the advantages and limitations, compared to other

state-of-the-art NILM methods?

R.Q.3 Which approaches would be suitable foroptimising for complexity and perfor-

mance accuracy with a view to address practical deployments in the field?

R.Q.4 What are the challenges of earthworks monitoring and how they can be ad-

dressed by the use of low-cost IoT-enabled devices; which are the most impor-

tant features worth monitoring and what useful information can be inferred for

the condition of an earthworks asset?

R.Q.5 Which features should be monitored for assessing user’s attention when inter-

acting with visual contents, and which signal processing techniques would be

suitable for identifying patterns and obtaining meaningful information?

Chapter 2 elaborates in answering question R.Q.1, as it introduces the concept of

NILM, an extensive review of its background, a plethora of proposed NILM methods

for performing load disaggregation/appliance classification, their limitations and com-

parison with the proposed methods of this thesis. R.Q.2 is answered in Chapter 3,

where a NILM approach performing load disaggregation solely using DTW has been

presented. This method is unsupervised, as it does not require any previous knowledge

of the appliances and their specifications, in order to disaggregate the load. A library of

appliance signatures is created using unlabelled historical aggregate load data in order

to classify the obtained disaggregation results. The performance of the proposed DTW-

based approach is evaluated in Chapter 4, using a variety of state-of-the-art NILM

methods for benchmarking purposes, that will be defined further on this thesis.

R.Q.3 is answered in Chapter 5, where two methods are proposed, that use a

combination of k-means and the DTW-based approach, proposed in Chapter 4, in

order to reduce the cost limitations of the original proposed method. The first method,

defined as DTW+kM is using DTW for obtaining the library of appliance signatures,

by optimising the original event detection, and in order to initialise the clusters, that

will be used by k-means, which is used for classification. The second method, kDTW,
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is performing event detection in the same way as the DTW+kM method, performs

initial classification using k-means, and finally uses DTW as a refinement method in

order to increase the performance of the method in terms of accuracy. These methods

are also unsupervised and they only require an initialisation k-means clusters, using

information regarding the number of appliances, and average power consumption, which

are obtained using the library of appliance signatures. Similarly to Chapter 3, the

library of appliance signatures for the two proposed NILM approaches is created using

unlabelled historical aggregate load data.

Chapter 6 will provide the answers for both questions R.Q.4 and R.Q.5 by pre-

senting two case studies from different IoT application domains. The first case study

investigates earthworks monitoring, using a prototype monitoring system and perform-

ing initial assessment of the obtained results, and the second one focuses on evaluating

the users’ attention, when interacting with visual content, using an eye tracker device.

1.5 Novel Contributions

This research is based in concept of IoT and provides an understanding of the variety

of information that would be present in IoT and methods of processing and utilising

this information.

In summary, the main contributions of this thesis are the following:

• A novel unsupervised NILM method using Dynamic Time Warping for low sam-

pling rate disaggregation, described in Chapter 4.

• Proposal of two unsupervised methods that combine k-Means and DTW, for

reducing the computation complexity and for improving the performance accuracy

of the original method, described in 5. The DTW+kM method uses DTW for

creating the library of appliance signatures, in order to initialise the k-means

clustering used for classification, and the kDTW method incorporates a DTW

post-processing refinement for improving the disaggregation process.

Furthermore, this thesis presents supplementary contributions and preliminary find-

ings regarding two other IoT applications. These contributions can be summarised, as

follows:
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• Prototype a low-cost platform with a variety of sensors located on one sensor

node for gathering real-time data for resistivity, ground movement and pressure,

that can enable prediction of earthworks failure, in the specific application a canal

embankment. This contribution is described in Chapter 6.

• Evaluation of data science techniques for analysing pupil dilation and gaze fix-

ation data for assessing human attention on visual content interaction. This

contribution is described in Chapter 6.

• An implementation of a wavelet-based signal processing method and an evaluation

of its suitability for extracting useful information on visual content interaction,

described in Chapter 6.

1.6 Structure of the Thesis

This thesis consists of seven chapters and three appendices and is organised as follows:

Chapter 2 provides a detailed and up-to-date background for Non-Intrusive Load

Monitoring. Chapter 4 introduces a novel Dynamic Time Warping NILM approach

for power disaggregation using low sampling rates. This method is implemented for

disaggregation purposes on three US houses from REDD dataset [1] and two UK

houses from REFIT dataset [2, 3] and is evaluated using a variety of state-of-the-art

NILM algorithms, namely DT (Decision Tree) [32], supervised GSP (Graphical Signal

Processing), [33], unsupervised GSP [4], FHMM (Factorial Hidden Markov Model)

available in NILMTK toolbox [34] and HMM (Hidden Markov Model)[35].

Chapter 5 proposes two unsupervised NILM methods, that combine k-means and

the DTW NILM method, in order to reduce the complexity of the proposed method

in Chapter 4. The performance evaluation of the proposed methods in 5 is performed

using the same houses, as in the case of Chapter 4, with benchmarks the DTW-based

proposed in the same chapter.

Chapter 6 presents two case studies based on different IoT applications, and data

processing techniques that can be used for inferring useful information. The first

case study aims to propose a prototype monitoring solution for embankments and

similar earthworks and initial analysis of the monitored features. The second case
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study investigates signal processing methods for attention assessment in virtual content

interaction. For both case studies the potential use of DTW algorithm is discussed.

Chapter 7 consolidates the main findings of this thesis, discusses any limitations of

the presented work and consequently proposes research approaches for future work.

Appendix A provides the categorisation of the different appliance types used in

residential households. Appendix B includes detailed results with benchmarks all the

NILM methods used in Chapter 4 for the methods presented in Chapter 5 in the form

of tables and graphs. Finally, Appendix C provides a detailed background for IoT, as a

supplementary material for easing the understanding of IoT for any interested reader.



Chapter 2

Non Intrusive Load Monitoring

Background

2.1 Introduction

Disaggregation of individual appliance usage from the total, aggregated energy con-

sumption captured at the energy monitor, is referred to as Non-Intrusive Load Monitor-

ing (NILM) and was first proposed by Hart in [23]. Load disaggregation [24] is beneficial

to customers to determine which appliances are the most energy consuming ones, and

which are faulty. It could also be beneficial to system operators to monitor the effect

of smart grid fluctuations on the residential communities, and to suppliers to better

forecast demand, although and thus it is an important aspect of smart homes, smart

buildings and smart grids. Although the use of personal energy data from suppliers

could raise privacy concerns, policy makers could develop appropriate policies in order

to ensure privacy and anonymity of any residential data used. Since [23], many NILM

algorithms have been proposed to adapt to advances in smart metering technology

capturing energy measurements at a range of sampling rates.

The block diagram in Figure 2.1 shows a graphical representation of the different

steps that researchers need to take into account when developing a NILM method.

This chapter has been structured as per Figure 2.1 to explain each of the building

blocks involved in NILM. Note that not all the building blocks presented in Figure 2.1

are necessarily present in all NILM implementations, due to differing quality of raw

input data, algorithm used, appliances being disaggregated, accuracy and complexity

constraints.

The NILM process typically consists of data acquisition and data pre-processing,

event detection and feature extraction followed by a classification method, that allows

9
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the disaggregation. After data acquisition (Section 2.2), data pre-processing (Section

2.3) can be done in the form of interpolation and data filling for replacing missing

measurements and can be extended to power normalisation of the signal, filtering (for

signal smoothing and getting rid of sudden peaks), and thresholding to remove small

power loads that would appear as noise as well as so-called base-load, from appliances

that are always running.

Figure 2.1: Explanation of the various steps of a NILM Process.

Load Monitoring
Data Pre-
processing

Event Detection

Feature
Extraction

Classification
Method

Data Post-
Processing

Load
Disaggregation

Performance
Evaluation

Next, event detection (Section 2.4) is done to identify events of appliances switching

on and off or appliance state changes. Event detection is followed by feature extraction

(Section 2.5), where various features are extracted from the identified event windows.

Classification (Section 2.6) is then used to group sets of extracted windows which

have similar characteristics, such as power levels, time profile, reactive components etc.

Some approaches, have proposed an additional step that performs data post-processing
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(Section 2.7), commonly know as active learning or model tuning, which allows the

refinement and optimisation of the classification methods, as seen in [5]. The final

output of each NILM method is the disaggregated load, as seen in Figure 2.1. This

output can be evaluated in terms of performance, using various metrics that will be

discussed in Section 2.8, in order to identify the effectiveness of a NILM method. This

step is essential for evaluation of a NILM algorithm at research stage or validation of a

NILM algorithm during real world field trials.

2.2 Load Monitoring and Data Acquisition

According to Figure 2.1, the first step of a NILM method is load monitoring, which

essentially means monitoring of the power consumption using a smart meter or relevant

sensors. Makonin in [36] has listed the different aspects that NILM researchers need to

take into account during this step, and these can be summarised in the measurement

types, sensing types and sampling rate.

The measurement types refer to the load parameters that can be measured and can

affect directly which features can be extracted from the data. The appliance features

can be found in Section 2.5, where a range of different measurement types and features,

that have been used in previous NILM works, are briefly presented, such as active

power, reactive power, voltage, current, Electromagnetic Interference (EMI) spectrum

analysis.

By sensing types, Makonin [36] refers to the monitoring techniques with regards

to the number of sensors and points required during load monitoring, which can be

categorised in in single-point sensing and multi-point sensing techniques [36, 37]. Single-

point sensing uses only one point for monitoring power consumption, while multi-point

sensing use multiple locations by using sensors either at each appliance, known as

Individual Appliance Monitors (IAMs), or by using circuit breakers. More details

regarding the above monitoring techniques, and any advantages and disadvantages can

be found in the works of [36, 37].

Sampling rate is the rate in which the load data are measured. It is highly important

in NILM, as it can affect the type of features that can be extracted and the cost of the

equipment used for monitoring and data storage purposes. Sampling rates in the field of
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NILM can be found in Section 2.2.1. Finally, the result of every load monitoring NILM

process is the data acquisition of a variety of measurement types. A plethora of NILM

datasets, such as AMPds [38], REDD [1] and REFIT [2, 3] with different measurement

types and sampling rates are currently publicly available for NILM researchers and

can be used for testing NILM algorithms and also as a ground truth comparison (see

[3, 39, 40] for more details).

2.2.1 Sampling Rates

The data acquired through different smart meters, sensors, etc. vary in terms of

sampling rate, and thus the NILM algorithms analysing them can be classified into

two categories: high sampling rate and low sampling rate-based.

• High sampling rate-based NILM methods are algorithmic methods that have used

sensor technology with sampling rates > 60Hz. Generally, higher sampling rates

can provide higher accuracy, but both the cost of the sensing technology and the

computational and storage cost is higher [22]. For example, Patel et al. [25] have

used 100kHz, Laughman et al. [26] 8kHz, Berges et al. [27] 10kHz and Chang

et al. [28, 29] 15kHz.

• Low sampling rate-based NILM methods are the methods that use sampling rates

≤ 60Hz, which are currently the focus of NILM research, as these rates can be

achieved using cost-effective equipment, that is readily available [30]. For example

Hart in [23] has used both 1Hz and a higher frequency at 7680Hz for capturing

current and voltage waveforms and Ruzzelli et al. [41] have used 1 sample per

min.

For example, low-rate NILM approaches can use mainly steady-state parameters,

such as active or real power [35], reactive power using 1Hz [23], power factor [41],

and additionally voltage or current waveforms [26, 42], but without receiving higher

harmonics. At high sampling rates, it is possible to detect transient voltage noise

[25] and transient parameters [30, 37] including higher harmonics current and voltage

signatures [26, 42, 43]. Feature extraction parameters will be further described in

Section 2.5.
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2.3 Data Pre-processing

NILM datasets and generally smart metering data, similarly with other data-driven

research fields, can suffer from measurement noise, corruption and missing data. There-

fore, many researchers have focused on developing effective data pre-processing tech-

niques, such as interpolation, forward filling, and filtering, that could resolve this issue,

as seen in [5]. Generally, these techniques originate from the field of statistics and signal

processing, and can be adapted for the case of load data.

Data pre-processing is an important step for developing a NILM method during

research, but it can lead to higher accuracies due to the cleaning process, thus it

is important to clearly define any pre-processing process, as Makonin and Popowich

suggested in [44]. Furthermore, a NILM algorithm should be robust and able to

perform online disaggregation using the real-time measurements, which are susceptible

to measurement noise and corruption.

2.3.1 Data Imputation Methods

Imputation refers to the process of filling missing data, and could be applied for the

case of corrupted data, when identified and removed from a dataset [45]. According

to Peppanen et al. [45], multiple variations of interpolation can present a simple and

suitable solution for performing imputation in smart metering.

The simplest version of interpolation is the nearest neighbour approach, where

missing data are replaced with the value of the closest available data, either using

forward or backward filling, or an average of the closest values [45]. This method is

suitable for short intervals of missing data and has been used for pre-processing REFIT

dataset in [3], in NILMTK [34] and UK-DALE [46].

Furthermore, Linear Interpolation (LI), is suitable for slightly longer intervals of

missing data, as it performs data imputation using two samples. LI can offer both

fast and low complexity processing [45], but the estimation accuracy is reduced as the

intervals are increased. Other variations of interpolation include polynomial and splined

interpolation, but they are generally computationally expensive.

Peppanen et al. [45] suggested, for extended periods of missing data, the use of

samples of historical data, from previous hour, day or month. A historical average (HA)



14 Non Intrusive Load Monitoring Background

imputation approach was proposed, which can perform better than LI imputation, but

depends on the characteristics of the data and frequent patterns in the historic data [45].

This idea has been extended to a combined LI and HA imputation approach, named

optimal weighted average (OWA) imputation, which estimates missing data samples, as

the weighted average of the LI and the HA imputed values [45].

2.3.2 De-noising using Signal Processing Techniques

Smart metering data and data from IAMs can be expressed as time-series signals, as

they obtain continuous measurements of electrical quantities (e.g. power consumption,

current, voltage), depending on the sampling rate available in each device. They can

be susceptible to noise due to the monitoring devices, in addition to unknown load

noise, transient spikes and fluctuations [5]. In order to address this problem, signal

processing techniques, such as total variation reguralisation, filtering and smoothing

can be applied in the context of NILM.

Kolter and Jaakkola et al. [47] have proposed the use of 1-D Total Variation

Regularisation, a technique commonly used for image processing, in order to remove any

outliers and reduce the effect of rarely used appliances. Furthermore, median filtering

is commonly used in NILM research for noise and spike removal and signal smoothing

[48–55]. While it is efficient at removing noise and outliers by usually preserving the

edges, it has shown difficulty in addressing periodic curves (e.g. sine, triangle, etc.) [55].

In [51], a two stage median filtering process was applied for preparing the data, which

first reduces the noise and then smoothens the signal. Pattem et al. [52] have proposed

a pre-processing method, which employs quantisation, calculation of the quantisation

error waveform, median filtering and down-sample/window-wise constant smoothing.

According to Weiss et al. [55], a mean filter has low computational cost, but it has

a difficulty in removing large outliers and could potentially erase edges that correspond

to an on/off event of an appliance. A kernel-weighted average filter (Nadaraya-Watson

filter with Gaussian kernel) was proposed in [55], which allows attenuation of the signal

fluctuation, while preserving the edges [55], but it can increase the computational

complexity. For this purpose, the authors selected the use of a combined median

and mean filter, which performs close to the optimal solution compared to the kernel-

weighted average filter [55].
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An adaptive Cumulative Sum (CUSUM) filter was proposed in [56] for noise removal

and data smoothing. Furthermore, in [57], the authors have introduced the use of de-

noising auto-encoders (dAE) for dimensionality reduction.

In [58], a pre-processing step was proposed for heuristically estimating and removing

the base load before disaggregation using a Graphical Signal Processing (GSP)-based

disaggregation. Zhao et al. [5] have designed two types of GSP filters for, based on

total variation regularisation and bilateral filtering (BF), which follows an initial median

filter. BF can provide a smoother signal, but can split the sharp edges into multiple

segments, thus filtering out edges that could potentially correspond to actual appliance

events [5].

2.4 Event Detection

After data pre-processing, NILM methods require to develop methods for detecting the

operation of an appliance (event), commonly known as event detection. Event detection

methods can be categorised in: edge detection and probabilistic event detection. Edge

detection uses the rising and falling edges of power consumption. Probabilistic event

detection treats edges as a probability distribution.

Event detection can be affected by the different types of consumer appliances present

in a household. These appliances can be classified in four categories: ON/OFF appli-

ances (eg. toaster), Finite State Machines (FSM) (eg. washing machine), continuously

variable consumer devices (eg. dimmable lights) and permanent consumer devices (eg.

smoke alarms). For more details the reader can refer to Appendix Section A.

2.4.1 Edge Detection

A household’s power consumption constantly changes, depending on the operation

of different appliances. Each appliance operation can create rising edges, when the

appliance is turned on, and falling edges when the appliance is turned off, or during the

state change of an appliance, which correspond to the transient part of the signal. When

these edges are high enough the operation of the specific appliance can be identified as

an event. This method of event detection, known as edge detection or expert heuristics

[59, 60], is commonly used in NILM algorithms.
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Many researchers have used predefined thresholds in order to detect the relevant

events, such as Norford and Leeb in [61] (3kW and 5kW for commercial buildings),

Baranski and Voss [62] (80W ), and Tsai and Lin [63] (∆Iitensity ≥ 0.03A).

In [32], which is a published work based partly on the research work of this thesis,

the rising and falling edges of active power have been used, using an adaptive threshold

W , which is based to the minimum state transition that needs to be detected and

the maximum variation of the active power within one appliance. This edge detection

method will be explained in Chapter 3.

Three-dimensional clustering, based on real power, reactive power and harmonics,

has been used in [26] for identifying the edges corresponding to appliance operations,

while Leeb et al. in [64] have used a complex multi-scalar edge detector. Some re-

searchers have further categorised the last techniques as matched filters event detection,

as they use a known or template signal and correlate it with an unknown signal, in

order to identify the existence of the template signal in the unknown signal [59, 60].

2.4.2 Probabilistic Event Detection

Probabilistic event detection, as in [36, 59, 60], is an event detection method that a

probability distribution is used for the edges, instead of normal edge detection, as

discussed in Section 2.4.1. Generalised likelihood ratio (GLR) has been used for event

detection in [27, 59, 65, 66], while Jin et al. [67] have used a robust adaptive goodness-

of-fit (GOF) χ2 test event detector. Furthermore, Nguyen et al. [68] have proposed

an online event detection using the CUSUM adaptive filter, while Pereira in [60, 69]

have proposed the use of a Log Likelihood Ratio Detector with Maxima (LLD-Max)

event detection algorithm. Details regarding the specific probabilistic event detection

methods can be found in the relevant bibliography, as this research was focused on the

use of a simple edge detection method, as described in section 2.4.1.
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2.5 Feature Extraction

Following event detection, NILM methodology requires a feature extraction step before

a classification method is performed. During this step, different appliance features are

build using the measured data, commonly referred in NILM bibliography as appliance

signatures. The extracted features can be classified as: steady-state features, transient

features and non-traditional features, as seen in [31, 70]. This classification can be seen

graphically in Figure 2.2.

2.5.1 Steady-State Features

Steady-State features refer to the features extracted from signals that either do not

change or change insignificantly over time. In terms of signal processing, steady-state

signals can be expressed as a finite number of sinusoids or a fixed sum of sinusoids [71].

• Power Change: Real or active power (P ) and reactive power (Q), are commonly

used features in NILM research [35, 61, 72–77]. Real power is power consumed

during the ON state of an appliance, while reactive power is the power that

is stored in components and then released again back to the source through

each cycle, caused by the inductive and capacitive components of the appliances.

Clustering in P −Q space has been used in [24, 78], while power factor (pf) has

been incorporated in [79]. pf is the ratio between real and apparent power (S)

(|S| =
√
P 2 + Q2) and it usually varies between 0 and 1, depending if the load is

more reactive or more resistive [79].

• V-I Features: Raw waveforms have been used for appliance identification in

[80], while a variety of V-I features, such as peak current (Ipeak), root mean square

(RMS) current (Irms), peak voltage (Vpeak) and RMS voltage (Vrms), have been

included in [41, 42, 81, 82]. Fourier series analysis has been used in order to

determine input current harmonics in [26, 42, 83–86].

• V-I Trajectory: A 2-dimensional (2-D) Voltage-Current (V-I) trajectory can be

used for appliance classification, and wave shape features can be extracted, such

as asymmetry, looping direction, area, curvature of mean line, etc. [43, 87, 88].
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• Voltage Noise: Steady-state electrical noise (also known as Electromagnetic

Interference (EMI)) present on the power lines, can be used for identification of

the switching of appliances and also for devices that do not generate transients,

such as appliances equipped with Switch Mode Power Supply (SMPS) [25, 89].

2.5.2 Transient Features

A signal, according to [71], has a transient state when its Fourier expansion requires an

infinite number of sinusoids. Transient features are difficult to detect and require higher

sampling frequency, which increases the implementation cost. Appliances with identi-

cal or similar power consumption can potentially be distinguished by using transient

features, such as start-up current [24], which can increase the performance of NILM

algorithms.

• Transient Power: Spectral envelopes have been used for transient event clas-

sification in [64, 90]. Furthermore, Laughman et al. [26] have investigated the

use of both active and reactive power in steady and transient state together with

higher harmonics. Harmonic content features have been included for appliance

classification in [91], harmonic energy of the current harmonics in [92], and the

transient energy and response time in [29, 84].

• Start-up Current Transients: Start-up transients have been used in [61],

while power spikes that occur during transition state of an appliance have been

considered in [93]. Furthermore, energising and de-energising transient features

for each appliance, derived by the current waveform, have been investigated in

[63].

• Transient Voltage Noise: Transient voltage noise is the noise that occurs

during the transient events, such switching on/off, changing state in multi-state

appliances and has been used as a feature in [25].
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2.5.3 Non-Traditional Features

In addition to the traditional steady-state and transient features, many researchers have

considered some features that cannot be included in any of the above categories, which

can be referred as non-traditional features [31, 70].

Wang and Zheng in [94] have suggested the representation of fast switching appli-

ance events as Triangles and steady working events, as Rectangles (for more details

see [94]). Liang et al. [42], have included additional features such as instantaneous

admittance waveform (IAW), and eigenvalues (EIG).

Berges et al. [95] have investigated the use of data from environmental sensors

(such as light intensity, sound level, etc.), in order to increase disaggregation accuracy,

while electromagnetic field -sensors (EMF) have been used in [96] for appliance usage

detection by monitoring changes in both magnetic and electric field. The control/status

signal provided by the Building Management System (BMS) have been included in [97],

while audio signals features, such as Mel-frequency cepstral coefficients (MFCCs), have

been used for appliance detection in Tiny Energy Accounting and Reporting System

(TinyEARS) [98].

Behavioural features, such as on/off duration, date and time, dependency between

appliances (e.g microwave, kettle and toaster use during lunch time), and daily schedule

of the occupants, have been considered in [47, 75, 77]. In [22], weather, location and

demographics have been considered as additional features.

2.6 NILM Learning and Classification Methods

After feature extraction, NILM learning and classification methods are required in order

to group sets of extracted features which similar characteristics.

Figure 2.3 provides a graphical representation of the categorisation of the NILM

classification methods, and can allow a better understanding of he structure of this

section. Based on the employed classification method, all NILM algorithms can be

classified as supervised and unsupervised.

Supervised NILM methods use labeled appliance events to train classifiers, which

means that they are highly dependent on user intervention and “a-priori” knowledge of

all system parameters, such as individual appliance data [31, 70, 99].
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Unsupervised methods, on the other hand, do not require labeled sets or individual

appliance data, minimising user intervention [31, 70, 99]. According to [99] and [70],

unsupervised NILM methods should be able to train and disaggregate online, and

continuously adapt to any changes that occur on the power system, such as addition,

removal or substitution of an appliance.

2.6.1 Supervised Methods

Supervised NILM methods can be distinguished in optimisation methods and pattern

recognition methods [31, 70, 99]. As the pattern recognition methods represent the

majority of the NILM methods available in NILM literature, it has been decided to

categorise them according to the algorithms used for classification, as found in Figure

2.3.

Hart [24] has performed simple clustering in the two-dimensional active-reactive

power space, that is, for each window, active and reactive power readings are collected

and input to a cluster analysis algorithm; clustering is followed by building an appliance

model as a finite-state machine, tracking behaviour using the Generalised Viterbi

algorithm and finally identifying appliances.

Following Hart’s work in [24], researchers have experimented with a range of pattern

recognition methods for load disaggregation, which can be summarised in the follow-

ing: Bayesian methods, k-Nearest Neighbour (k-NN), Support Vector Machines (SVM),

Decision Tree (DT), Artificial Neural Networks (ANN), Deep Neural Networks (DNN)

and Graphical Signal Processing (GSP) methods.

2.6.1.1 Optimisation Methods

Optimisation methods are the NILM methods that approach load disaggregation as

an optimisation problem. According to [31], an optimisation method compares the

extracted features of an unknown load with known loads available in an appliance

signature library, and tries to identify the closest match by minimising the error between

the known and unknown extracted features. Mathematically, this can be represented

by the following equation:
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class = argmin
i

∥ŷi − yi∥ (2.1)

, where ŷi is the appliance feature available in the signature library and the yi is the

new feature extracted during the new unknown event [31].

Liang et al. [42] have incorporated both optimisation and pattern recognition

algorithms for load disaggregation (namely least residue (LR) algorithm and ANN),

using a variety of features, such as current waveform, active/reactive power, harmonics,

IAW, EIG, etc. The authors have proposed the use Committee Decision Mechanisms

(CDM) in order to identify the best possible answer in the disaggregation problem

utilising both single features and single algorithm disaggregation. The CDMs used in

their work were most common occurrence (MCO), least unified residue (LUS) and

maximum-likelihood estimation (MLE). The authors have used both high and low

sampling rate data (12kHz and 1Hz respectively), while the proposed methods of

this thesis focused on disaggregation using only low sampling rate. Furthermore, the

methods in this thesis have only used active power as a feature, while the methods

in [42] provide both single and multiple features disaggregation and have included a

combined PQ feature, rather than only active power.

Suzuki et al. [80] have proposed a NILM method that uses integer programming on

current waveforms, while this thesis offers NILM solutions using only active power. As

some appliances have similar waveforms, the authors have used a unification method

to overcome this problem, which depends on “heuristic maneuver”, but did not investi-

gate appliances, whose current waveform change continuously. According to [80], the

proposed method does not require relearning when a new appliance is installed in a

household, as the signature of each appliance can be obtained by using only one period

of current waveform per appliance. Similarly, the proposed methods in this thesis do

not require relearning of the whole household when a new appliance is added. The

signature of the new appliance can be obtained through the aggregate data and then

compared to the existing signatures in the library and if the signature does not present

any similarity to the library signatures, the library will be updated.

Furthermore, Baranski and Voss in [100] have used an Iterative Self-Organizing Data

Analysis Technique (ISODATA) algorithm, in order to cluster the different appliances
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that have been monitored using optical sensors on Ferrari meters. The method of

[62] does not require training and instead builds a histogram of historical data and

uses a sub-optimal genetic algorithm to match a large set of on-off events to appliance

presences in time and refined further with the Viterbi algorithm [24]. The algorithm

shows good efficiency for large loads, but suffers from high computational complexity

and requires the use of fuzzy sets in order to overcome overlapping events. Event

detection was performed using low pass filtering and rule-based pre-conditioning of

the data, whereas the proposed approaches of this thesis use an simple edge detection

approach, as described in 2.4.1.

According to [31], the optimisation problem is more complex in the case of aggre-

gated data, as the algorithm needs to perform both individual matching and appliance

combination matching, in order to identify appliances that work simultaneously. In

general, through the work of the researches in [42, 62, 80, 100], it has been apparent

that these methods have high complexity and, especially when unknown loads occur

in the aggregated load data. Furthermore, as already mentioned above, it is difficult

to distinguish individual loads with similar features when the occurrence of different

appliances overlap.

More recently, researchers, such as in [101], [48] and [102], have tried to combine

Particle Filtering (PF) with Hidden Markov-Models (HMM). Though these techniques

are unsupervised, it has been decided to include them here as an example of the progress

of techniques that use optimisation methods. In [101], an appliance estimation approach

of on/off appliances modelled by HMM, was proposed using PF. Their experimental

results showed that a higher number of particles is required.

In [48], the authors have proposed Particle Filter-Based Load Disaggregation (PALDi)

based on the work published in [101]. The authors noticed that higher number of

particles improved the algorithm’s performance, and on the other hand higher number

of appliances with constant number of particles resulted to lower accuracy. For this

purpose, the number of particles was selected according to the number of appliances.

The authors have generated the aggregate data from known appliances using the data

available for the specific appliances for House 1 in REDD dataset [1], while the proposed

methods of this thesis have used the actual aggregate data available for the same test

house, where all appliance operations are present (known or unknown). Furthermore,
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the authors in [48] have performed smoothing and de-noising of the data, while the

only pre-processing step used in this thesis was forward-filling for any missing values

and downsampling of the REDD dataset from 1Hz to 1min (see Chapter 4 for more

details).

Wong et al. [102] have proposed a particle-based distribution truncation (PDT)

method with a duration-dependent (DD) state transition model. According to the

authors, their results have indicated an efficient disaggregation performance with less

complexity compared to Viterbi algorithm and conventional PF methods. The authors

have used for testing purposes the last third of the data available from House 2 in REDD

dataset [1], presumably using the original sampling rate available, namely 1Hz, as there

is no mention about any downsampling. The PDT method was able to disaggregate

lighting, while the proposed methods in this thesis were not successful in disaggregating

it. The method proposed in [102] was not able to successfully disaggregate washing

machine, which was also the case for the methods used in this thesis. In terms of

performance evaluation, even thought the authors in [102] have used similar metrics,

namely precision and recall, there cannot be a direct comparison between the PDT

method and the DTW-based methods of this thesis, due to the different testing period

and sampling rate.

Kong et al. [103] have proposed a hybrid NILM method based on segmented

integer quadratic programming (SIQP) and constraint programming (CP), in order to

increase computation efficiency and reduce the search space. The authors were able

to significantly increase computation efficiency compared to PF, and still obtained

comparable accuracy compared to PF-based techniques.

The authors in [103] have tested their method using House 1 from REDD dataset

[103], and were able to disaggregate bathroom GFI, electric heat, lighting and oven,

while the proposed methods of this thesis were unable to do so, which will be discussed

further in Chapters 4 and 5. It is important here to note that the method in [103]

performed the testing using three scenarios, with very limited parts of the dataset,

namely 6hrs, 24hrs and 48hrs, whereas the proposed methods of this thesis have used

16 days for testing, that do not match the time periods used in [103]. Therefore, there

can not be a direct comparison of the obtained accuracy for the commonly disaggregated

appliances among the methods in [103] and this thesis.
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2.6.1.2 Bayesian-based Methods

Marchiori et al. [76] have proposed a Bayesian approach for disaggregation using only

active power and state change information and a heuristic approach using P−Q space as

features. A Naive Bayes classifier has been used for recognising appliance states given

the aggregate active power and the detected state change. Their Bayesian approach was

able to perform better compared to the proposed heuristic approach, if the appliances

have stable power, but the appliances included in their experiment were limited. Addi-

tionally, it has been assumed that each appliance’s state is independent from the states

of other appliances. This assumption, though accurate for most appliances, would not

be accurate for appliances that often have correlated operation, such as TVs and DVD

players. In terms of comparison, the Bayesian approach in [76] offer a probabilistic

disaggregation approach, whereas the methods proposed in this thesis approach the

disaggregation using edge detection.

Sanquer et al. [104] have introduced a Hierarchical Bayesian-based method, where

both feature extraction and class learning can be performed together using a database

of electrical transients. The proposed hierarchical Bayesian learning method is based on

the smooth transition regression and a Markov-chain Monte Carlo (MCMC) algorithm

is used for sampling the posterior distributions of the features and to “learn the class-

specific parameters”. The authors have assessed the performance of their method

using a very limited database of real-world electrical transients for only two classes

of appliances (vacuum cleaner and refrigerator), there for the efficiency of this method

has not been tested using multiple classes of appliances. The proposed methods of this

thesis were able to obtain good disaggregation performance using a variety of larger

datasets (REDD [1] and REFIT [2, 3]) and a bigger variety of appliances.

In [105], a NILM method was proposed that uses a Dynamic Bayesian Network

(DBN) to incorporate user behaviour and a Bayes filter to perform online inference.

The input data in this method are both observation sequences and label sequences.

The observation sequences are constructed using a range of features from the energy

data measured at circuit-level, while the label sequences are the operating states of

all appliances at any “time slice”, manually labelled whenever there is a state change.

The authors have constructed the observation model using two different methods, one
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using Gaussian Mixture Model (GMM) and the other using Discretisation, which was

able to acquire the best performance. The proposed method can be classified as a

temporal method and was compared with some well known non-temporal methods such

as k-NN, Naive Bayes and SVM, and the obtained results shown that Bayes filter with

GMM or discretisation were able to outperform these methods. Additionally, when

compared to Viterbi algorithm, the proposed method obtained better or comparable

results. According to the authors, taking into account user behaviour can essentially

improve performance and can provide more accurate states. It is important here to state,

that the proposed methods of this thesis were focused on obtaining disaggregation using

only the power consumption available in the aggregate data measured at a smart meter

(single-point) and did not take into account any user behaviour information, that would

potentially increase the performance, according to the authors claim in [105].

2.6.1.3 k-NN Methods

Some researchers have investigated the use of k-Nearest Neighbour (k-NN) as classifica-

tion method, as seen in [66, 79, 89, 106–108]. More specifically, in [79, 106], the authors

have proposed two Steady-States (StS) Recognition approaches in order to obtain the

appliance signatures, which use the step-changes in active and reactive powers and

power factor. The approach presented in [79] uses the ratios between the rectangular

areas between successive state values, while the approach in [106] uses a MinMaxSteady-

State algorithm. In both works, the authors have used as classification methods both

k-NN (k = 5) and variations of SVM, and they obtained on average higher accuracy

when using the 5-NN method. Furthermore, it is apparent that the works presented in

[79, 106] performed disaggregation using multiple features, while this thesis investigates

disaggregation using only one feature, the active power obtained through the aggregate

power consumption measured at the smart meter.

Gupta et al. [89] have used k-NN classifier with k = 1 and an Euclidean distance

metric with inverse weighting, and claimed 100% accuracy, but have not provided more

details about the obtained performance results. In terms of features, the authors in [89]

have used frequency domain features using Fast Fourier Transform (FFT), while the

features used in this thesis are obtained from the time series aggregate active power.

Berges et al. [66], as already mentioned in 2.4.2, have implemented a probabilistic
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event detection based using GLR and have investigated the use of both active and

reactive features, and Fourier regression coefficients. In order to perform classification,

the authors in [66], have employed various classifiers, such as 1-NN, Gaussian Naive

Bayes (GNB), DT and Multi-class AdaBoost (MultiBoost), but favoured the use of

1-NN, as this methods was able to obtain the highest accuracy when using Fourier

regression coefficients. Furthermore, Berges et al. [27] have improved their 1-NN based

method using Euclidean distance measurements and were able to obtain accuracy ∼

85%. The authors in [27, 66] have used both active and reactive power, while this thesis

obtains only active power as a feature. Furthermore, the features used in [27, 66] were

obtained using higher sampling rate (20Hz) compared to the sampling rates used in

this thesis, namely downsampled REDD [1] at 1min and REFIT [2, 3] ∼ 8sec.

Tsai and Lin et al. [63] have proposed an Adaptive Non-Intrusive Appliance Load

Monitoring (ANIALM) system using energising and de-energising transient features for

each appliance, derived by the current waveform. They have used as classifiers both k-

Nearest Neighbour Rule (k-NNR) and Back-Propagation Artificial Neural Network (BP-

ANN), together with an Artificial Immune Algorithm (AIA) with the Fisher criterion

in order to improve identification performance, by adaptively adjusting the feature

parameters, when new appliance types are added in the monitoring system. They

favoured the k-NNR method, due to its computation and implementation simplicity,

as only parameter k requires optimisation using an exhaustive search, and does not

require any training or re-training. The features used in the ANIALM system are

extracted using the current waveform, which is filtered using a low-pass filter (LPF) at

500Hz, while this thesis uses low resolution data, as already discussed, and obtains the

appliance signatures using the active power time series signal.

More recently, Azaza and Wallin [107] have proposed a supervised NILM method

based on dynamic fuzzy c-means clustering (dFCM) and k-NN for label matching and

pattern recognition. Data filtering has been performed using four different filters,

namely median filter, mean filter, median mean and a variant of total variation de-

noising, with the latter being selected for implementation, as according to the authors, it

was able to outperform the rest of the filters. The dynamic fuzzy c-means clustering was

used to create appliance signatures library using active and reactive power together with

the time of day usage. This dynamic approach does not require an a priori definition of
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the number of clusters, as in the case of the regular fuzzy c-means method. Both Akaike

information criterion (AIC) and Bayesian information criterion (BIC) are computed

iteratively, and the final number of clusters is selected when a low value is achieved for

both criterions. Finally, k-NN algorithm is used for matching the events to the most

similar signature, using the distance norm.

The authors were able to obtain good accuracy for high consumption appliances and

cold appliances (e.g. fridge, freezer, stove, dishwasher), which was also similar for the

methods of this thesis (see Chapters 4 and 5 for more details), but much lower accuracy

for the case of low consumption appliances. Although both the method in [107] and

the methods in this thesis were focused on low resolution disaggregation, the authors

in [107] obtained active and reactive power and the time of the day usage, while this

thesis presents disaggregation approaches using only active power.

In [108], a approximation Probabilistic K-Nearest Neighbour (PKNN) method was

proposed using as features sensor data, such as temperature and humidity, together with

power features (steady state) event detection data equal to the number of appliances,

all sampled at 1Hz. Generally, PKNN is a classification method which calculates

the nearest neighbour by its probability, but as a traditional PKNN is computational

expensive, as it calculates the probability from the total sample, the proposed ap-

proximation PKNN in [108] uses only part of the total sample. The authors have

presented a comparison of traditional PKNN method (with and without sensor data)

to some well known classification methods, such as SVM, Naive Bayes and J48 (a java

implementation of the C4.5 decision tree algorithm). PKNN with sensor data was able

to outperform the other classification methods, when the number of appliances was

more than four.

Furthermore, the proposed approximation PKNN method, when compared to the

full traditional combination method (with and without sensor data) and the indepen-

dently factorised method with sensor data, was able to obtain accuracy almost at

100%. During the optimisation attempt for the parameter k, it has been noted that

the accuracy for the proposed approximation PKNN method was on average > 99%,

but for all experiments the authors decided to use k = 7. In terms of comparison with

the methods presented in this thesis, all methods have performed disaggregation using

low sampling rate, but as the approximation PKNN method in [108] uses a variety of
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measures, it would be difficult to compare it with the work in this thesis, where only

active power has been used for disaggregation purposes.

2.6.1.4 SVM Methods

Other researchers have adopted Support Vector Machines (SVM) as classification ap-

proaches, as in [81, 109–120]. In [109], three different types of SVM have been imple-

mented using different kernel, namely polynomial kernels, Radial Basis function (RBF)

and sigmoid kernels. All proposed methods were able to achieve almost the same error

rates for “handwritten digit recognition”, but different error rates for the case of state

estimation. According to the authors, when the complexity of data is high, RBF is

more useful that the other proposed methods. Regarding the features extracted during

this work, the authors have obtained various odd-order current signal harmonics and

the corresponding phase angles, whereas this thesis as already discussed have selected

to obtain features using the aggregate active power in the time domain.

Lin and Tsai [110] have proposed a Hierarchical SVM (HSVM) for load classification

using transient features of the current waveform. SVMs are nonlinear classifiers and can

optimise decision hyper-plane, but they are binary classifiers, thus can only deal with a

two-class problem. The proposed HSVM method was able to overcome this problem by

decomposing the problem into a series of two-class sub-problems by arranging multiple

binary SVMs into a hierarchical tree. They were able to successfully identify both single

and multi-state appliances with identification rates higher than 93%. The authors in

[110] have extracting energising and de-energising transient features using the current

waveform at 500Hz sampling rated due to LPF, much higher that the 1min and ∼ 8sec

resolution used for aggregate active power in this thesis.

A NILM method using Multiple class-SVM (M-SVM) using Gaussian kernel func-

tion has been proposed in [111]. A harmonic feature analysis of the current signal

is initially performed and the obtained data are used in the proposed M-SVM for

appliance identification. According to the authors, the classification complexity is

not affected by the dimension of the feature space and the number of data points,

thus it can provide a scalable solution for a larger set of patterns. The authors were

able to obtain classification accuracy rates higher than 90%, both when using the

unprocessed current data and the relevant harmonics, with the latter being able to
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show the highest accuracy rates. As the features, used in [111], were derived from

the current waveform, unprocessed or harmonics, it would be difficult to compare this

method with the methods proposed in this thesis, which were developed in order to

disaggregate using active power.

Kato et al. [81] have proposed the use of SVM for appliance classification and

one-class SVM for detection. They have compared the proposed method with the

results obtained using 100 original dimensional vectors or 5 typical features, such as

average value of the electric current, peak to average ratio, etc., and were able to

obtain 99.9% accuracy for 16 appliances, and 95.8% for 25 appliances, much higher

compared to the typical features performance and equivalent performance to the 100

original dimensional vectors. Detection of unregistered appliances was also investigated

by using 24 appliances to train a one-class SVM, and the remaining one to perform as

an unregistered appliance. The Receiver Operating Characteristic (ROC) was used

for assessing the detection accuracy, and the authors have claimed accuracy > 97.7%.

The method proposed in [81] offers a NILM solution using multiple features, either the

dimensional vectors or the 5 typical features, whereas this thesis presents approaches

based on only one feature for disaggregation, namely active power. Multiple features,

in general, can provide more parameters in order to classify appliances with similar

power consumption.

Similarly, Zoha et al. [114] have investigated the use of SVM with two kernel func-

tions using different combinations of features and also correlation of acoustic activity

within the test environment with device activity. They have used SVM with polynomial

kernel with exponential value 2 and RBF with Gamma value 0.01 and compared their

results with 1-NN and 10-NN classifiers. In terms of device recognition, SVM with

polynomial kernel was able to outperform SVM with RBF for all feature combinations

and k-NN classifiers for feature combinations 2 and 3, whereas for feature combination

1, the performance was comparable. The authors have tested the SVM for higher cost

functions and though the classification has improved, a lower cost function is generally

desirable. Similarly, for acoustic detection, three sets of features have been used for

classification, and SVM and GMM have been implemented for classification and it has

been shown that SVM performed better for all feature sets. In terms of traditional

energy features, the authors have obtained six steady-state load signatures, such as P ,
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Q, frequency, Vrms, Irms and phase angle, and have used, as already discussed, three

combinations of them, with the most successful being the last one where all features

but frequency have been incorporated. As this thesis focuses on disaggregation using

only P , it is difficult of fairly evaluate the method in [114], which uses various features,

with the proposed methods in Chapters 4 and 5.

In [115], a hybrid Support Vector Machine/Gaussian Mixture Model (SVM/GMM)

was proposed for load disaggregation, where GMMs were used to describe the wave

distribution and SVM for classification using the power features. The obtained results

have shown that polynomial SVM was able to achieve higher accuracy 90.72% com-

pared to the linear, RBF and sigmoid implementations, and furthermore, the hybrid

SVM/GMM was able to obtain the best performance compared to SVM without GMM

and Vector Quantisation (VQ). As the SVM/GMM method in [115] uses a variety of

features in order to obtain the final appliance recognition, while the methods of this

thesis, even at the case of the combined DTW and k-means method, it only requires

the active power in order to disaggregate the load.

Duarte et al. [116] have investigated the use of continuous wavelet transform (CWT)

based on complex Morlet wavelet, in order to obtain the switching voltage transients

of appliances, and compared it with the short-time Fourier transform (STFT) using

RBF SVM. They have shown that the use of CWT improves the classification and can

reduce the vector size by 20x times. The main difference of this method, compared to

other SVM based methods, was the use of CWT in order obtain appliance features, in

the specific scenario from three low-current appliances, such as desk fan. The difference

between the features used in [116] and this thesis, does not allow a direct comparison of

those methods as the active power feature is an important part of how the DTW-based

methods work.

Altrabalsi et al. [117, 118] have proposed a hybrid NILM method based on a

combination of SVM and k-means. k-means is used in order to perform supervised

clustering using minimum distance classification, and essentially it reduces the SVM

training size, which is used for classification, while k-means in the combined DTW and

k-means methods, is used in order to preform the appliance classification. According to

the authors, the proposed hybrid-method was able to achieve comparable classification

accuracy to that of the HMM method proposed in [35] over REDD, REFIT and
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GREEND datasets.

In [119], a NILM method based on SVM for Air Conditioning (AC) load monitoring

was proposed. This method consists of an initial recognition in order to perform event

detection and extract the features that can assist to the correct classification of AC

and other appliances. Four features have been proposed: duration of possible event,

average value of the waveform, variance of the waveform and maximum value of the

waveform and have been used as inputs to an SVM classifier for a final load classification.

According to the authors, their proposed method was able to identify successfully the

switching off the different statuses of AC. Moreover, this method was focused on the

classification of only one appliance and have not provided any information regarding

its applicability on different appliances, while the methods of this thesis were able to

disaggregate a much wider range of appliances.

Rao et al. [120] have considered a variety of methods for both classification and time-

series forecasting, such as SVM, DT, Multi-layer Perceptron and Autoregressive Moving

Average Model (ARMA), to name a few. According to the authors, SVM with linear

kernel was able to outperform the comparable classification methods with accuracy

of ∼ 30%. In order to improve performance, they have incorporated timestamps as

an additional parameter and the performance of the SVM algorithm has increased

significantly ∼ 70%. In terms of current and future prediction, the ARMA method

performed significantly better compared to the other methods, and it has obtained

accuracy of 90%. For both device identification and consumption prediction, the

authors have incorporated demographic data, such as time of day, or day of week,

and household information (number of occupants, age, etc.), together with aggregate

active power, with the latter being the only feature type used in the methods of this

thesis.

Furthermore, in [121], a Particle Swarm Optimisation (PSO) Algorithm with Sup-

port Vector Machines (PSO-SVM) method has been proposed for load classification.

PSO has been used in order to optimise the parameters of SVM and the optimised

SVM was then used appliance identification and the identification rate obtained using

this method was higher than 95%The authors have extracted features using time and

frequency domain analysis of the current waveform, which were obtained by filtering

using an LPF with cut-off of 500Hz over the original sampling frequency of 5kHz,
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which is still much higher than the sampling rates used in this thesis were only active

power in the time domain was obtained.

More recently, Chui et al. [122] have proposed a hybrid genetic algorithm support

vector machine multiple kernel learning NILM approach (GA-SVM-MKL) for load

disaggregation. The genetic algorithm is used in order to find the optimal kernel func-

tion, using a variety of traditional kernel function, and therefore provide an optimised

classifier that can be used load classification. According to the authors, the proposed

GA-SVM-MKL method was able to disaggregate 20 commonly used appliances, and

obtained overall accuracy > 91%, outperforming traditional SVM methods, that use

only one kernel function. Furthermore, the proposed method in [122] uses seven features

obtained from the current and voltage waveform:Ipeak, Irms, average current Iavg, P , S,

Q, and pf , as according to the authors all of these features are in general essential for

identification of the different appliances, while this thesis supports the idea that only

P could be used for efficient appliance identification.

2.6.1.5 DT Methods

Another classification method, that has been used for load disaggregation, is the use

of Decision Tree (DT) classifiers. The use of a decision-tree classifier for pattern

matching have been investigated in [66], together with a variety of other classification

methods (see Section 2.6.1.3), but according to the authors 1-NN with the Fourier

regression coefficients was able to achieve the best performance. Furthermore, Liao et

al. [32] have proposed a low complexity DT-based method and evaluated classification

performance using three houses from REDD dataset and three from REFIT dataset.

This method requires a very small dataset of aggregate active power and thus requires

the least storage and computational resources compared to HMM [35] and the DTW-

based method, which is used in this thesis. DT was able to obtain higher accuracy,

but both DT and proposed DTW-based method of this thesis were able to outperform

HMM.

Alshareef and Morsi [123] have implemented a NILM method that uses the Discrete

Wavelet Transform (DWT) of the changes of the current during transient state and

an ensemble decision tree classifier for load classification. Their proposed method

is a combination of DT induction algorithm and AdaBoost algorithm. Their DT
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implementation uses Gini index for measuring impurities in order to identify the best

split between the attributes. The predictions obtained by the multiple DT classifiers

is then used as input to AdaBoost, which assigns weights to the predictions of each

of the DT classifiers using the error of the classifier. The authors have investigated

the use of different order Daubechies (DB) and they showed that DB3 had the best

performance with classification accuracy of 95.83% and 93.06% for training and testing

respectively. They have also shown that a higher number of trees can improve accuracy,

but will increase the computational cost. As the NILM approach in [123] uses wavelet

decomposition in order to obtain the relevant features, it is difficult to compare it with

the methods presented in this thesis, which use the time series active power signal

measured at the smart meter in order to obtain the relevant appliance signatures.

In [124], a multi-class DT classification method was proposed, that uses the greedy

Hunt’s algorithm, similarly with the DT implemented in [123]. The authors have

investigated the use of both actual power (active, reactive and apparent) and changes

in power using Discrete Fourier Transform (DFT), and have concluded the use of

change in power feature can increase classification accuracy by an absolute difference

of 26.26%. The change in the power represent the actual transients/edges which occur

while switching on/off appliances or when the appliances change cycles. Even though

the proposed methods of this thesis use edge detection to obtain the changes in power,

the whole consumption during the duration of each cycle is required in order to obtain

an event that could be classified as a specific appliance.

In [125], the authors have proposed a new wavelet design and have performed

load classification using DT. Procrustes Analysis was used in order to determine the

wavelet coefficients of length-6 filter, which were used in order to construct the new

wavelets. According to the authors, the proposed wavelet design was able to improve

the classification accuracy compared DB3. Similar to what have been discussed for the

method in [123], the proposed method in [125] uses as features the wavelet coefficients

in order to perform classification using DT, while this thesis performs feature extraction

using the active power.
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2.6.1.6 ANN Methods

Many researchers have investigated the usage of Artificial Neural Networks (ANN) and

as an extension Deep Neural Networks (DNN), as classification methods for NILM.

DNN-based methods have gained a lot of interest in recent years, therefore they will

be discussed separately in the following section.

In [112], the authors have proposed the use of harmonic current signatures using

a variety of Neural Networks methods and SVM, which is different from the approach

used in this thesis, that requires low resolution active power for feature extraction.

They have investigated the Multilayer Perceptron (MLP), RBF based network and

SVM using linear, polynomial and RBF kernel functions. All the proposed methods

were able to perform sufficiently enough in the experimental tests, though the MLP

based method seemed to perform slightly better compared to the rest.

Tsai and Lin et al. [63], as already discussed in Section 2.6.1.3, have investigated

the use of both BP-ANN and k-NRR, with the latter being selected as more appropriate

due to low computational complexity. According to the authors, their BP-ANN method

was able to obtain classification accuracy > 95%, but constructing the network is more

complicated, as it requires a range of factors, the optimal network has to be found

through trial and error and training is required at the initial stage and re-training

whenever a new appliance is added. It is important here to note that the methods

proposed in this thesis are not affected by the introduction of a new appliance, as any

new signature can be compared with the signatures available in the library, and if it

does not match to any of the existing signatures, it can be added in the library.

In [41], the Real Time Recognition and Profiling of Appliances (RECAP) system has

been proposed for monitoring and power disaggregation. The authors have used ANN

and were able to obtain accuracy higher than 84% for all experiments in a prototype

kitchen scenario. According to the authors, ANN can provide easy extensibility, does

not require understanding of appliance behaviour before the implementation, it can be

reinforced by using a user feedback input, can handle multiple simultaneous appliance

states and the learning process can be automated. The main drawback of their proposed

ANN approach was the computational time required for the training process, especially

when there are more than 15 appliances, or for the case of appliances with “long
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signatures”, e.g a washing machine. Although the RECAP system have used low

resolution data (1 sample per minute), which is comparable to the sampling rates used

in this thesis, the authors were able to extract a variety of features, namely P , pf , Ipeak,

Irms, Vpeak, and Vrms, which allows a better classification of the appliances, especially

those that may present similarities in some of the features. This was not the case for the

methods in this thesis, as only active power was used for classification, which resulted

in misclassification of some appliances, that exhibit similar power consumption (see

Chapters 4 and 5 for more details).

Chang [28] has investigated the use of the turn-on transient energy UT for feature

extraction and genetic programming (GP) for obtaining the optimal features. This

approach has been implemented using a range of classifiers for ANNs, such as BP,

Probabilistic Neural Network (PNN), and Learning Vector Quantisation (LVQ) classi-

fiers. Both BP and PNN have outperformed LVQ in terms of accuracy (training and

testing) and computational time. Although, PNN was the fastest classifier compared

to BP, the authors favoured the use of BP, which demonstrated higher accuracy and

smaller number of weights and biases for the BP network. With regards to the extracted

features, the author claimed 100% recognition accuracy when using the UT , while the

relevant accuracy when using PQ features was much lower.

In [29, 84], the authors have expanded the work published in [28] and proposed

a NILM method based on a BP classifier for multi-layer feedforward neural network

(MFNN). The authors claimed 100% accuracy during both training and testing when

real power, reactive power and startup transient (PQUT ) were used for all their case

studies, whereas when only real and reactive power was used (PQ), the training and

testing accuracy for multiple operations ranged from 51.28%−100% and 39.47%−100%

respectively. All the different methods proposed in [28, 29, 84] are supervised, while the

methods proposed in this thesis provide an unsupervised solution, as it will be discussed

further in Chapters 3 and 5. Furthermore, this thesis reports the performance of the

proposed methods using low resolution data and only active power, while the methods

in [28, 29, 84] used sampling rate of 15kHz and PQ and UT or a combination of them

as features.

In [126, 127], a NILM method based on BP-ANN and PSO has been proposed.

PSO is used in order to minimise training time and improve recognition, which ac-
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cording to the authors performed better compared to GP and simple BP-ANN. Fur-

thermore, Chang et al. [128] have presented a NILM algorithm which uses Wavelet

Multi-resolutional Analysis (WMRA) technique, Parseval’s Theorem and BP-ANN.

The authors have used the Wavelet Transform Coefficients (WTC) of the transient

signals in order to obtain their energy spectra, which they claimed have shown better

accuracy and lower computational complexity compared to the use of PQ and PQUT .

The methods proposed in both [126, 127] and [128] have used a variety of features

obtained using sampling rate of 6Hz and of 15kHz, respectively, therefore it would be

difficult to compare them with the method proposed in this thesis, where only active

power was used obtained from datasets with much lower sampling rate.

In [129], the authors have used BP-ANN in embedded NILM system measuring low

sampling rate (1Hz) P and Q, while the research work presented in this thesis was

focused on providing a NILM method using only P. They have used four appliances:

TV, refrigerator, air conditioner and rice cooker, and were able to obtain accuracy 98%

during the simulation test and 95% during the installation test.

2.6.1.7 DNN based methods

In [57], the authors have presented three deep neural networks architectures for load

disaggregation, a form of Recurrent Neural Network (RNN) called “long short term

memory” (LSTM), dAEs and a regression network that can estimate the start time,

the end time and mean power demand of the first appliance activation (“rectangles”

architecture). They have compared their work with the combinatorial optimisation

(CO) algorithm [24] and the Factorial Hidden Markov Model (FHMM) [1, 75] as in [34].

According to the authors, dAE and the “rectangles” architecture were able to perform

well especially for “unseen” houses, and in the majority of the accuracy measurements

were able to outperform CO and FHMM. LSTM was able to outperform CO and FHMM

on two-state appliances, but did not perform well on multi-state appliances.

Bonfigli et al. [130] have extended the work presented in [57], by improving it both

in terms of architecture and algorithm, and performed an “exhaustive” performance

evaluation with the Additive Factorial Approximate Maximum A-Posteriori Probabil-

ity (AFAMAP) method proposed in [47] (see Section 2.6.2.2 for more details for the

AFAMAP method). dAE was improved by conducting a detailed study of the topology
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of the network, using “pooling” and “upsampling” hidden layers and the rectifier linear

unit (ReLU) activation function [131] in the output layer and combining the network

output by using a median filter. They have used two scenarios for all methods, a

denoised scenario, where the aggregated signal is the sum of the power of the appliances

used for disaggregation, and a noised scenario, where the aggregated signal includes also

measurement noise and any contributions of unknown appliances. All algorithms were

tested using UK-DALE [46], AMPds [132], and REDD [1]. According to the authors,

their proposed approach was able to outperform both AFAMAP and dAE from [57],

for both scenarios.

Garcia et al. [133] have proposed a NILM approach based on Stacked de-noising

autoencoders (sdAE), where the aggregate power was decomposed in order to obtain

power consumption signals for all individual appliances. The proposed model was

evaluated using data from four appliances, and the authors claim that they were able

to receive promising results in terms of mean absolute error and proportion of energy

correctly classified.

Le et al. [134] have proposed a NILM approach based on RNN using Gated

Recurrent Unit (GRU) and compared their proposed method (GRU RNN) with the

original RNN approach using UK-DALE dataset [46]. Additionally, they compared

their method to previous research works that used the same dataset (Bayes, SVM

[81], HMM [47, 75], FHMM [135], FHMM variants [75], FHMM using Maximum a

posteriori probability (MAP) Algorithm [47]). The proposed GRU RNN approach was

able to outperform all previous works and original RNN, and accuracy and F-Measure

for energy disaggregation were at ranges [89% − 98%] and [81% − 98%] respectively.

In [136], a supervised NILM method using deep RNN and LSTM was proposed, and

according to the authors, it can estimate the power signal of an appliance or any sub-

circuit from the aggregated data, disaggregating both on-off and multi-state appliances.

The same authors have proposed, in [137], a combined method using HMM and DNN

that does not require event detection and can disaggregate multiple and variable loads

from the same aggregate signal. The authors claim that their method performed better

than FHMM, as it only requires the knowledge of the target load, whereas FHMM

needs a priori knowledge of loads still present in the aggregate load.

Furthermore, Nascimento in [138] has investigated the use of RNNs and Convolu-
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tional Neural Networks (CNNs) for disaggregation purposes. Similarly, He and Chai

[139] have proposed two different deep learning approaches, one using a multi-layer

feed forward network with convolutional layer and one using RNN with LSTM, which

according to the authors was able to obtain good performance. Another approach

using RNN was presented in [140], where a LSTM based RNN was proposed for power

disaggregation together with a novel signature which obtains variants of the original

signal, which is suitable for multi state appliances, and according to the authors have

improved the performance of their proposed LSTM-RNN for those appliances.

In [141], a sequence-to-point learning was proposed, which uses a window from the

aggregate signal and obtains a single point of the appliance of interest. The proposed

method is using CNN that is able to learn the appliance signatures of a given appliance

inherently, which increases the performance of the method in terms of identification.

More recently, Murray et al. [142] have proposed two types of deep learning networks,

one being a GRU architecture and the other a CNN, by using a two-branch layout for

both cases. The secondary branch is related to the state estimation and is used for

helping the main branch with the consumption estimation. According to the authors,

both methods were able to obtain similar performance, with the GRU method being

less complex.

Additionally, Barsim et al. [143] have proposed a semi-supervised NILM approach,

namely UniversalNILM, that utilises modelling appliances using a number of training

houses, which obtains detailed at appliance level information and then performs disag-

gregation to unknown houses, using the obtained training knowledge.

One common factor between the NILM methods using DNN is that they are su-

pervised methods, as they require training of the neural network using known/seen

appliances or houses, whereas the DTW-based method proposed in this thesis can

be categorised as unsupervised, at it will be further explained in Chapters 3 and 5.

Furthermore, the majority of the DNN methods discussed above have demonstrated

the ability to use the trained network on “unseen”/unknown houses, which allows the

generalisation of the methods and therefore the potential suitability of those methods for

an online implementation. The proposed DTW-methods obtain appliance signatures for

each house and have not been tested in “unseen” houses in order to assess the potential

of the methods in a more generalised scenario.
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2.6.1.8 GSP-based Methods

Another approach that have recently been investigated for both supervised and un-

supervised NILM is the use of GSP, which actually represents any obtained features

using graph signals. Stankovic et al. [144] have proposed a supervised event-based

GSP method, that uses regularisation on graph approach by maximising smoothness

of the graph signal. According to the authors, the obtained results showed GSP can

be potentially used to solve the NILM problem, as the proposed method improved the

performance compared to the state-of-the-art HMM-based method in the majority of

REDD dataset appliances. In [4], the authors have extended the use of GSP for both

robust event detection, clustering and feature matching, using a train-less unsupervised

approach, see 2.6.2.1 for more details.

He et al. [33] have proposed two GSP-based NILM approaches, one based on “total

graph variation minimisation” and one based on a combination of total graph variation

minimisation and simulated annealing for further refinement. The proposed methods

were able to demonstrate comparable performance compared to the DT-based approach

in [32] and HMM-based approach in [35]. In terms of computational cost, the proposed

methods were able to outperform HMM-based method.

The GSP-based methods presented in this section will be used for benchmarking

purposes of the DTW-based methods proposed in this thesis, therefore a performance

comparison will be discussed in details in Chapter 4.

.

2.6.2 Unsupervised Methods

Unsupervised NILM methods, according to [99], can be distinguished in load classi-

fication methods and source separation methods. HMM-based methods are a part of

the load classification methods, but as these methods have been widely used in NILM

research, they will be presented on a separate section, while the rest will be included in

the load classification methods section. This categorisation can be seen in Figure 2.3.
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2.6.2.1 Load Classification Methods

This section presents unsupervised techniques that are not HMM-based or source

separation related.

Zhao et al. [4] have proposed an unsupervised disaggregation method of the aggre-

gated active power signal using Graph Signal Processing (GSP). The proposed GSP-

based method does not require training and has been used initially for robust event

detection, clustering and finally for feature matching. The authors have used both

REDD and REFIT datasets and compared their methods with HMM-based methods

presented in [53] and [145], with comparable performance. An important advantage of

this approach is the low complexity, simple operation and minimal intervention, as it

does not require any labelling or training.

More recently, Zhao et al. [5] have proposed GSP filters for pre-processing data

(see Section 2.3.2), and a NILM refinement method, discussed in Section 2.7, that can

be applied to any event-based NILM methods, and can increase their disaggregation

performance. The methods in [4] and [5] have been used for benchmarking purposes and

a performance comparison between the proposed DTW-based methods can be found in

Chapter 4.

The proposed Dynamic Time Warping-based method, that is presented in this

thesis, has been published in [146], [147] and [32], where, as it will be explained in

the following chapters, appliance signatures were acquired using only aggregate power

consumption. DTW performs non-linear mapping between already acquired events and

unknown events, and can classify the events by finding the minimum distance between

them via dynamic programming.

2.6.2.2 Hidden Markov Model Based Methods

Recently, Hidden Markov Model (HMM) and its variations have become popular for

(low-rate) NILM, because they are good at modelling the combination of stationary

processes, with continuous value data over discrete time (e.g [31, 47, 53, 75, 148]). HMM

can probabilistically model sequential data incorporating, in the learning process, the

time-dependency in running appliances as well as the transition of the appliance through

different states during its operation. According to [31], state-of-the-art HMM-based
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methods [47, 53, 75] achieve accuracy of 75 − 95%, work offline, can be supervised or

unsupervised, and are not scalable. Furthermore, the complexity of HMM exponentially

increases with the number of appliances modelled and the whole model needs to be

retrained whenever a new appliance is added [31].

Kim et al. [75] have proposed four different methods for low-rate power disag-

gregation using (conditional) factorial HMM and Hidden semi-Markov models. Using

active power measurements collected every 3sec together with duration and time of

use of appliances, accuracy ranging from 72% to 99% was obtained for seven different

houses with up to 10 appliances with an average accuracy of 83%. This method cannot

disaggregate base load, such as, for example, refrigerator, and is prone to converge

to a local minimum. Similar with the other NILM methods discussed throughout this

chapter, the use of multiple features provide better information regarding the appliance

usage, allowing the extraction of more distinctive characteristics. Therefore a method

like that could not compare with methods, such as the methods of this thesis, that use

only one feature (active power).

In [35], a factorial HMM is used for disaggregation of active power load. Although

it is presented as an unsupervised NILM method that uses expert knowledge to set

initial models for states of known appliances, the models’ operation for reliable results

strongly depends on correctly setting the a priori-values for each state for each appliance,

which in turn is strongly dependent on the particular aggregate dataset on which NILM

is being performed. Indeed, a similar factorial HMM-based approach is tested in [1],

where it is shown that the disaggregation accuracy drops for up to 25% when different

houses are used to set the initial models compared to the case when the same house is

used for building the models and testing. Results are reported for REDD dataset [1]

with sampling rates of 1min and 3sec.

This implies that the training of the model is carried out on a labelled dataset

with unique active power values for each state and each appliance. FHMM is also

unnecessarily complex by allowing multiple states per appliance when usually most of

the times an on-off state transition is all that is needed for accurate detection. The

accuracy with the sampling rate of 1min is 53% for microwave and 69% for tumble

dryer. The HMM method proposed in [35] will be used for benchmarking purposes in

this thesis, therefore a performance comparison can be found in Chapter 4.
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More recently, in [53], Hierarchical Dirichlet Process Hidden Semi-Markov Model

(HDP-HSMM) factorial structure is used for unsupervised NILM removing some down-

sides of previous approaches, such as the need for training and modelling different power

modes per device (as in [75]) instead of binary values only. The results are reported

for five devices using 20sec resolution with 18 24-hour segments across four houses

from the REDD dataset [1] obtaining disaggregation accuracy of 81% outperforming

the EM-based method of [1].

In [47], an unsupervised AFAMAP inference algorithm is proposed using differential

FHMMs. First, all snippets of active power data are extracted using a threshold and

modelled by an HMM; next the k-NN graph is used to build nine motifs that are treated

as HMMs over which AFAMAP is run. The results show average accuracy of 87.2%

using 7 appliances and sampling rate of 60Hz.

Guo et al. [149] have proposed a model named Explicit-Duration Hidden Markov

Model with differential observations (EDHMM-diff), in order to detect and estimate

individual appliance loads using aggregated data, together with a specialised forward-

backward algorithm. The proposed model was able to model the state durations and to

overcome overlaps on aggregated data, when multiple appliances are on simultaneously.

Aiad and Lee [145] have proposed an FHMM that uses device interactions in order

to enhance load disaggregation. The authors have compared their proposed method

with FHMM method without device interactions and they were able to acquire better

or comparable disaggregation accuracy in all cases.

In [150], the authors have presented a disaggregation algorithm using super-state

HMM and a new Viterbi algorithm with sparse transitions, which was able to compute

efficiently sparse matrices with large number of super-states. For testing purposes,

AMPds [132] and REDD [1] datasets have been used and the proposed algorithm was

able to obtain significantly higher accuracy compared to the methods proposed in [1]

and [53]. This method can be applied for real-time disaggregation using low sampling

rates, while the DTW-based methods proposed in this thesis would not be appropriate

solutions for this scenario due to their computational complexity, which will be further

discussed in Chapter 5.

Cominola et al. [151] have proposed a novel Hybrid Signature-based Iterative Disag-

gregation (HSID) algorithm that combines FHMMs and Iterative Subsequence Dynamic
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Time Warping (ISDTW). The FHMM module performs initial disaggregation of the

aggregated data into “2-state single-appliance piece-wise constant trajectories”. ISDTW

is applied to this initial disaggregation in order to reshape according to typical consump-

tion pattern together with appliance power range and usage duration. The authors have

presented both a supervised version, which requires appliance-level measurements and

a semi-supervised version, which uses aggregate data in order to retrieve appliance-

level measurements. This work will be further discussed in Chapter 3, for comparison

purposes with the proposed DTW-based methods used throughout this thesis.

In [152], a NILM approach was proposed using a bivariate Hidden Markov Model for

appliance modelling, which uses joint active-reactive power signals, and an alternative

formulation of the AFAMAP algorithm used in [47] for disaggregation. The authors

have used the AMPds dataset (in noised and de-noised condition) and compared their

proposed NILM method with the AFAMAP [47], Hart’s algorithm [24] and Hart’s

algorithm using Maximum A Posteriori (MAP) techniques. The proposed method was

able to outperform the above methods by +14.9%, +21.8%, and +2.5% (respectively)

for de-noised conditions and by +25.5%, +51.1%, and +6.7% for noised conditions. As

the proposed method in [152] use both active and reactive power in order to disaggregate

the load, it would be difficult to compare it with the work in this thesis, where all

methods utilise only active power.

One common factor between the majority of the HMM-based methods, discussed in

this section, is that they offer an unsupervised NILM solution, similar to the methods

proposed in this thesis (see Chapters 3 and 5 for more details). Furthermore, most of

these methods focused on low resolution disaggregation, as were the proposed DTW-

based methods. HMM generally approaches the NILM problem as a probabilistic

problem, while the DTW-based methods provide a solution based on time series signal

processing.
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2.6.2.3 Source Separation Based Methods

Source Separation based methods solve the load disaggregation problem by either

using unsupervised or “blind” source separation techniques, where there is no a-priori

information about the sources, or try to solve a convex optimisation problem using

appropriate basis functions. In both cases, the aim is to use aggregate data in order to

reconstruct all source signal and specify each appliance [99, 153].

Figueiredo et al. [50] have examined energy disaggregation as a single-channel

source separation based on Non-negative Matrix Factorisation (NMF). For further

performance improvement, the authors have incorporated additional information about

dependencies between appliance usage, and have created a technique called Source

Separation Via Tensor and Matrix Factorisations (STMF). This method assumes linear

mixing of the source power signal, and uses a tensor representation and PARAFAC

factorisation in order to extract any dependencies between the sources. A comparison

between the proposed STMF method and the DDSC method proposed in [74] have

shown a much smaller disaggregation error for the case of the STMF method.

Wytock and Kolter [153] have proposed a single-channel source separation approach

for load disaggregation using convex optimisation methods in order to identify the

correlation between the input features of each source signal and the “unobserved signal

decomposition”. The authors have used a representation of each individual signal as a

linear function of some component bases, a contextually supervised method based on

temperature time series and the non-linear dependence represented with radial-basis

functions (RBFs), is defined as basis for the energy consumption. The theoretical

analysis has shown that accurate separation can only occur when the features are linear

independent for different signals.

Gonçalves et al. [154] have proposed a linear Blind Source Separation (BSS) ap-

proach in order to disaggregate each appliance from the aggregated data, using steady

state real and reactive power features. The authors have investigated both Genetic

k-means and Hierarchical Agglomerative clustering methods, in order to obtain auto-

matically all representative appliance clusters. Following the clustering process, the

matching pursuit (MP) is employed for source reconstruction, where iterations are

performed by the MP algorithm in order to minimise the distance between unknown
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events and possible clusters. The study’s output has shown that the genetic k-means

approach had better performance compared to the agglomerative based clustering

method. According to the authors, source reconstruction was successful for large

appliances, as they were able to form clusters on their own, whereas small appliances,

or appliances with very similar consumption were wrongly grouped in the same cluster.

Additionally, multi-states appliances have been grouped in different clusters depending

on the state that was active, something that can be avoided by modelling the appliances

as a set of two-states appliances [31, 99].

One of the main difference between the DTW-based methods of this thesis and the

NILM methods that use source separation is that the former treat the load disaggrega-

tion as a classification problem, while the latter as a source separation problem. Source

separation methods provide unsupervised solution for the the NILM problem, similarly

with the DTW-based method, as it will be discussed further in Chapters 3 and 5.

2.7 Data Post-processing

More recently, many researchers have proposed various post-processing techniques for

further refining the NILM classification results, in order to improve their performance,

as seen in [5, 33, 47, 52, 58]. According to [58], a refinement process could be applied by

iterating over the disaggregation algorithm and using previous knowledge in order to

identify operational sequences, such as a washer dryer is following the washing machine

operation.

Kolter et al. [47] have refined their NILM results, using inference approximation

by incorporating AFAMAP in their proposed FHMM-based NILM method, a method

that was able to outperfom alternative inference methods, such as structured mean

field (SMF). Furthermore, a residual analysis has been employed in [52], using the

quantisation error waveform, which is calculated during the pre-processing stage, as

already mention in Section 2.3.2. The residual analysis can provide an indication of

cases of inaccurate disaggregation, allowing repetition of the previous steps.

Simulated Annealing (SA) has been incorporated in the GSP-based method pro-

posed in [33, 155], in order to further refine two-state appliance identification, by

optimising the difference between actual power and initial power estimation. Zhao
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et al. [5] have presented a graph-based refinement approach, that can address the

misclassification of events from appliances with similar operational range. This method

is generic and can be applied to any event-based NILM methods, similarly with the

proposed pre-processing techniques, as seen in Section 2.3.2. Based on the reported

results in [5], the proposed method both pre-processing and refinement, was able to

improve the performance of several NILM algorithms, such as DT [32], supervised GSP

[33], unsupervised GSP [4] and FHMM (Factorial Hidden Markov Model) [34].

2.8 Performance Evaluation

As with every new research field, evaluation of the performance of the different NILM

methods is critical and can provide the basis for the further development and bench-

marking. According to Kim et al. in [75], Zeifman and Roth [30] and Makonin in [156],

evaluation metrics are not consistent through NILM related bibliography. Makonin

and Popowich in [44] presented a unified solution for this problem by summarising

all the different performance evaluation methods that have been used in the past,

proposing some additional methods and research guidelines that can assist to more

accurate assessment of NILM-related projects. More recently, Pereira et al. [40] have

reviewed the most recent performance evaluation metrics, and their work can provide a

good reference for NILM researchers in order to decide how to evaluate their proposed

methods.

The different methods that can be used for accuracy evaluation of a NILM method

can be summarised in the following: basic accuracy, classification accuracy, estimation

accuracy, data noise and ground truth and bias, as found in [44]. Basic accuracy has

been used in [29, 63, 132], but according to Kim et al. in [75], the accuracy results were

affected by appliances that the on-event or specific state is a rare event. Classification

accuracy and estimation accuracy will be discussed in Sections 2.8.1 and 2.8.2, with

a focus on the metrics that will be used for performance evaluation through out this

thesis.

Makonin and Popowich in [44] proposed the use of a Data noise measure in order

to evaluate the performance of a load disaggregation algorithm. In terms of ground

truth and bias, Makonin and Popowich in [44] suggested detailed description of the
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data used (eg. publicly available datasets, such as REDD [1]), description of the data

cleaning process used, explanation of whether the data were de-noised or not, and a

10-fold cross validation as in [157], which is commonly used in data mining community

(see [44] for more details). Furthermore, the authors have proposed the percent-noisy

measure (% − NM), as seen in [44], while Zhao et al. [5] have extended the concept

of NM by proposing the Disaggregation Error Measure (DEM), which can provide a

better understanding of the performance of a NILM method in correlation to the levels

of noise present in the used dataset.

2.8.1 Classification Accuracy

Classification accuracy measures, such as F-Measure (a.k.a. F-score or F1-score),

confusion matrix, have been applied into NILM research, as in Figueiredo et al. [106];

Berges et al. [27]; Kim et al. [75], in order to assess how accurately NILM algorithms

can correctly identify appliances ON/OFF states and multiple states. Thus F-Measure,

often used in information retrieval and text/document classification ([158]), is currently

being used as one of the main evaluation measures in recent NILM publications, as seen

in [40, 44, 159].

Confusion matrix is a common classification method in machine learning and is

regarded as a suitable measure for the NILM problem [34]. Figure 2.4 explains graphi-

cally the four categories generated when using a confusion matrix. True positive (TP)

presents the correct claim that an appliance was used, false positive (FP) represents an

incorrect claim that an appliance was used, and false negative (FN) indicates that the

appliance used was not identified.

The evaluation measures, commonly used in NILM, are derived from the confusion

matrix found in Figure 2.4 and include Precision (PR), Recall (RE) and F-Measure

(FM ). Precision is the positive predictive values as in 2.2 and recall or sensitivity is the

true positive rate as in 2.3. F-Measure is the harmonic mean of precision and recall

and can be found in equation 2.4:

PR =
TP

TP + FP
(2.2)

RE =
TP

TP + FN
(2.3)
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Figure 2.4: Confusion Matrix.
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Normally, these metrics are applied for evaluation of the classification accuracy per

appliance. Furthermore, FM can also be expressed directly as a function of TP, FP,

FN, as seen in equation 2.5:

FM =
2 ∗ TP

2 ∗ TP + FP + FN
(2.5)

A revised method of FM with variants has been proposed in [75], where TP is

divided into the accurate true positive (ATP) and the inaccurate true positive (ITP),

which has beed adapted in [4, 5, 44]. Further details can be found in [4, 5, 40, 44, 75].

Another variation of FM is the use of either the micro-average or macro-average

F-Measure, F1micro and F1macro, respectively, which provide a measure of the overall

classification performance. Micro-average FM , as found in equation 2.6, is calculated

using the summation of all TP, FP and FN values, and macro-average FM is calculated

by averaging across the FM per appliance (see equation 2.7) [40].

F1micro = F1

( M∑
i=1

TPi,
M∑
i=1

FPi,
M∑
i=1

FNi

)
(2.6)

F1macro =
1

M

M∑
i=1

F1(TPi, FPi, FNi) (2.7)

, where i represents the appliance i from a set of appliances M, and M is the total
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number of appliances in the set.

F1micro has been used as an overall classification accuracy in [32, 146, 147], in order

to evaluate the performance of DTW-based methods, presented in both Chapter 4 and

5, a DT-based [32, 160] method and HMM from [35].

Batra et al. [34] have proposed Hamming Loss as a classification measure, which

measures the total information lost, when the appliances are incorrectly classified over

the dataset used for disaggregation. Details about this measure can be found in [34, 40].

2.8.2 Estimation Accuracy

Another important method for the evaluation of a NILM algorithm are accuracies based

on power estimation, which can assess the algorithm in terms of how accurately it can

estimate the consumed power when compared to the actual consumption. Root mean

square error (RMSE) is one of the proposed estimation accuracy measures and has

been used in [34, 35, 161, 162]. Furthermore, a normalised measure of the difference

between the estimated and actual power consumed from the ith appliance, known as

normalised disaggregation error (NDE), has been used in [35, 47, 163].

Estimation Accuracy or Total Energy Correctly Assigned (TECA) has been first

introduced by Kolter and Johnson in [1], and used by Johnson and Willsky in [53],

Kelly and Knottenbelt in [57] and Makonin and Popowich in [44]. Acc can be described

mathematically as follows:

Acc = 1 −
∑N

t=1

∑M
i=1|p̂it − pit|

2
∑N

t=1

∑M
i=1 p

i
t

(2.8)

, where p̂it represents the algorithm’s prediction of power consumption for the ith

appliance at time instance t, pit is the power consumed at time instance t from the i th

appliance, M is the number of appliances in the set of appliances M and N the number

of samples.The factor 2 in the denominator, according to [47], comes from the fact that

the absolute value in the numerator will“double count errors”, since
∑N

t=1 p
i
t =

∑M
i=1 p̂

i
t.

The total estimation accuracy, as defined in equation 2.8, can be adapted in order

to evaluate the performance at appliance level, as proposed in [44]:

Acci = 1 −
∑N

t=1|p̂it − pit|
2
∑N

t=1 p
i
t

(2.9)
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, which represents the estimation accuracy of appliance i. This measure has been used

in most recent works, found in [4, 5, 33, 155].

Furthermore, Zhao et al. [5] have proposed a new metric in order to assess the

disaggregation performance of their proposed algorithms which shows the error rate of

the estimated total consumption per appliance with regards to the ground truth total

consumption per appliance. The error rate of the total power consumption (TER) can

be expressed mathematically using the equation 2.10:

TER =

∣∣∣∑N
t pit −

∑N
t p̂it

∣∣∣∑N
t pit

(2.10)

, where similarly p̂it is the estimated power consumed at time instance t from appliance

i, pit is the ground truth power consumed at time instance t from appliance i and N

the number of samples.

Piga et al. [164] have introduced the measure of estimated energy fraction index

(EEFI), which provides the fraction of the energy assigned to the ith appliance and

actual energy fraction index (AEFI),which provides the fraction of the actual energy

consumed by the ith appliance [40, 159]. More details regarding the specific metrics

can be found in [40, 159, 164].

2.9 Summary

The aim of this chapter was to provide to the reader an extensive background for

NILM and a better understanding of both the problem statement and the different

building blocks relevant to the NILM process. Sampling rate affects both the monitoring

techniques and sensors that can be used for data acquisition and the features that can

be acquired and used for appliance classification. NILM researchers have used a wide

range of sampling rates from Hz to MHz, but more recently, there is a focus on low

sampling rates, as the vast majority of “off-the-shelf” smart meters can acquire data

using low sampling rates.

Furthermore, common pre-processing techniques (e.g. interpolation, data filling,

and filtering) and their NILM applications have been reviewed, as NILM data often

require cleaning, smoothing and de-noising. Following the pre-processing stage, every
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NILM method performs event detection, either in the form of edge detection or prob-

abilistic edge detection. Edge detection represents the most simplified form of event

detection, as it can detect occurring events by using the rising and falling edges in the

power data. The edge detection method used for the implementation of the proposed

NILM-methods in this thesis is based on this simplified version and will be further

analysed in Chapter 3.

Feature extraction, as already discussed, can be affected by the granularity of

the acquired data. Data acquired using low sampling rates, can provide researchers

with features that are based on the steady-state of each appliance, e.g. active-reactive

power, and V-I and lower harmonics, while those acquired using higher sampling rates

can provide transient features, such as start-up current, higher harmonics, etc. The

research contributions of this thesis focus on real/active power features, acquired from

aggregated data with low granularity.

An extended review of the different classification methods that have been used

in recent bibliography has been presented throughout this chapter, in order to show

the different approaches taken by researchers, eg. machine learning based or signal

processing based, supervised or unsupervised. A basic categorisation of NILM classifi-

cation methods has been presented, in addition to information about methods based on

optimisation and pattern recognition, such as SVM, Neural Networks, etc., and methods

based on HMM and source separation. Post-processing has also been discussed, as more

recent research works have proposed various methods for refining the disaggregation

results, in order to increase the overall performance of a NILM method.

Finally, this chapter has provided a review of the different measures used for per-

formance evaluation among NILM researchers, with a focus on the metrics used in

this thesis. In terms of evaluation measures, it has been decided to use Precision

(PR), Recall (RE), F-Measure (FM ) and F1micro for classification performance and,

in terms of estimation accuracy, the estimation accuracy per appliance Acci and the

newly proposed TER measure, as found in [5]. The classification accuracy measures

will be able to provide information regarding the correct/incorrect classification of the

events and the estimation accuracy Acci will be able to assess the performance of the

proposed NILM method in terms of how accurately it can estimate the consumed power

per appliance, when compared to the actual consumption.
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Chapter 3 will present the algorithmic background for the proposed DTW-based

method, and comparison of the proposed technique with similar DTW-based works in

the NILM field.

.



Chapter 3

Disaggregation using Dynamic

Time Warping

3.1 Introduction

Dynamic Time Warping (DTW) is a time-series based approach that uses dynamic

programming (DP) in order to find best alignment between two time series or sequences.

By minimising the distance between them, the algorithm finds the optimal mapping

path and the sequences are “warped” non-linearly to match each other [165]. For this

purpose, DTW is an ideal algorithm for comparing vectors of different lengths and

non-identical values.

Let p and q be two time series with length n and m respectively. The time series

can be represented by the following vectors:

p = p(1), p(2), . . . , p(n) (3.1)

q = q(1), q(2), . . . , q(m) (3.2)

The DTW algorithm finds the best mapping path using the following constraints

and formulas, as found in [165] and [166]

• For all i, j > 0, D(i, 0) = D(0, j) = inf and D(0, 0) = 0.

• For any given node (i, j) in the mapping path, the possible fan-in nodes are

restricted to (i− 1, j), (i, j − 1), (i− 1, j − 1).

• As a boundary constraint, the mapping path starts at (1, 1) and ends at (n,m).

55
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• d(i, j) =
√

(p(i) − q(j))2 is the distance between points p(i) and q(j), where

(1 ≤ i ≤ n) and (1 ≤ j ≤ m).

• D(i, j) is the accumulated DTW distance between points p(1) to p(i) and points

q(1) to q(j) and D(n,m) is the final accumulated distance between the two

vectors.

D(i, j) = d(i, j) + min{D(i− 1, j), D(i− 1, j − 1), D(i, j − 1)} (3.3)

Originally, DTW has been used in speech recognition in order to compare different

speech patterns, see [167] and [168]. More recently, DTW has been successfully applied

in data mining, information retrieval and pattern recognition [165]. In [169] and [166],

DTW has been used in a hybrid algorithm combined with HMM in order to categorise

residential water end use events, which is highly relatable with the potential use of

DTW as a tool for NILM disaggregation, where the different appliance usage events

can be classified. During the specific implementation, DTW was used after HMM

only to detect the so-called mechanical end-use categories (clothes washer and dish

washer), which were not detected by HMM. According to Nguyen et al. [169] and [166],

DTW requires longer processing time but was able to classify unclassified events, and

eventually increased the overall accuracy of their disaggregation.

The aim of this chapter is to propose an unsupervised NILM method that is based

on DTW algorithm. First, a formulation of the NILM problem will be defined, together

with the motivation behind the use of DTW and its potential suitability for solving the

NILM problem. A short review and comparison of the proposed method to other DTW-

based NILM works will be able to assist in a better understanding of any differences

in terms of approach and implementation of the algorithm and furthermore to clearly

present the novel contribution of the proposed method. This proposed DTW-based

method will be explained based on the NILM steps, that have been described already

in Figure 1.3, describing data pre-processing, event detection, feature extraction and

finally classification using pattern matching.
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3.2 NILM Problem Formulation

NILM methods are focused on recognising the operation of individual appliances and

estimating the power contribution of these appliances using the measured aggregate

load. Let pt be the measured aggregate active power at time instance t. Without

loss of generality, this measured aggregate power pt can be expressed by the following

formula:

pt =

M∑
i=1

pit + nt (3.4)

, where pit is the estimated power consumption of appliance i at time instance t and

nt is the noise at time instance t, where t = 1, . . . , N . The noise term includes the

measurement noise due to acquisition or communications errors, the base load and the

consumption of all unknown appliances at time instance t. Note that equation 3.4 can

be generalised for other power signals, such as reactive power, etc.

The operation of an appliance i, either during the ON state for ON/OFF appliances,

or during the different states for multi-state appliances, can vary in terms of duration

and power consumption, depending on the user’s specifications and appliance settings.

This operation can be expressed as a time series, found in equation 3.5:

pi = pi1, p
i
2, . . . , p

i
T (3.5)

, where each element represents the active power consumed by the appliance i at any

given time instance of the duration of the current appliance operation. T corresponds

to the number of samples that the appliance was operating either at the ON state, or

at a specific state of a multi-state appliance. For different operations of the appliance

i both the power consumed and the T can be different, as already discussed.

The different duration and non-identical values of appliance operations motivated

the investigation of DTW for addressing the NILM problem, as the algorithm is very

efficient into comparing time series of different lengths and non-identical values, as

described in 3.1. Therefore, any two appliance operations could be compared and

by minimising the distance between them, DTW would be able able to find the best

alignment and consequently classify any operation to the relevant appliance.
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3.3 DTW in the NILM Problem

DTW has been proven an effective method for pattern matching, as already mentioned

in Section 3.1, in speech recognition, data mining, information retrieval and even for

the case of residential water disaggregation [166, 169]. It is an efficient approach for

comparing data sequences with different length, thus it can be easily adapted for the

case of load disaggregation, where there is a variety of appliances, with different oper-

ational times and power consumption, thus time-dependent sequences, with different

lengths and non-identical values.

In the context of smart grids, it has been used in [170] for clustering load profiles

of electricity customers. The authors have implemented DTW as a distance measure

and performed clustering using k-means and a simple top-down partition algorithm (TS-

Part). The obtained results have been compared with the use of the Euclidean distance,

as distance measure, using the same clustering algorithms. According to the authors,

DTW outperformed Euclidean distance and provided better clustering solutions, with

the best performance when used in combination with the TS-Part algorithm.

The potential application of DTW for disaggregation has been shown in [171], where

the authors have used energy consumption, rising edge count and DFT as diagnostic

features calculated over a time window. They were able to show that DFT is not

required for load disaggregation, as the load variations within a window are very

small, compared to similar variations of features used for speech related applications.

The algorithm has been tested using one-day’s data with sampling rate of 10sec in a

laboratory environment, which makes it difficult to evaluate the actual performance

using only these limited results. Similarly, Zaidi et al. [172] have investigated the

performance of DTW and HMM algorithms, using as features, the average consumption,

edge count and the percentage energy consumption. Both algorithms were tested using

a limited experimental dataset obtained in a laboratory environment similarly to [171].

According to the authors, in contrast to HMM, DTW tends to be affected by the usage

behaviour of the appliance.

More recently, Basu et al. [173] proposed a time series distance-based approach for

power disaggregations. DTW was only incorporated as a distance metric, similarly to

[170], along with other distance measures, such as Euclidean distance and temporal
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correlation (TC). For classification purposes, a k-NN classifier was used and the perfor-

mance for all measures was compared to the results obtained using HMM. Time series

distance-based k-NN was able to outperform in the majority of the cases HMM, and the

best performance was obtained when k-NN was combined with DTW. The DTW-based

method, proposed in this chapter, is using DTW for classification via pattern matching

and not solely as a distance measure. More recently, Teeraratkul et al. [174] have

proposed a shape-based clustering approach using DTW, in order to identify energy

consumption patterns with regards to the regular consumer behaviour.

Cominola et al. [151] proposed a Hybrid Signature-based Iterative Disaggregation

(HSID) method, which combines the use of FHMM and Iterative Subsequence Dynamic

Time Warping (ISDTW). FHMM is used for the initial approximation of the end-use

trajectories and ISDTW then processes the initial results, in order to perform appli-

ance classification by matching using the typical power consumption pattern of each

appliance. The authors have implemented a supervised and a semi-supervised version

of the proposed HSID method. The supervised HSID method requires appliance-level

measurements for calibration purposes and the semi-supervised version is retrieving

appliance-level information using the aggregate signal obtained from the smart meters.

According to the authors, the supervised HSID was able to disaggregate multiple

appliance operating simultaneously and to outperform the state-of-the-art FHMM in

[34], without increasing computational complexity. In terms of accuracy, the supervised

method was able to accurately reproduce the consumption trajectory. For the case of

the semi-supervised HSID, the authors claim that a further research is required, as the

algorithm had difficulty identifying appliances with variable signatures, such as washing

machine (different programs can create different signatures), using only a singe-event

signature extraction.

As already mentioned above, the proposed DTW-based method is based on the

concept of using solely DTW for disaggregation purposes, whereas Cominola et al.

[151] have used an ISDTW combined with FHMM.

Another interesting implementation of DTW for Non-Intrusive Appliance Monitor-

ing was proposed in [175], where the authors proposed a DTW-based non-intrusive load

transient identification. DTW was used in order to measure the similarity between the

Transient Power Waveform (TPW) signatures and combined with k-NN identifier, the
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method was able to obtain improved accuracy. Three DTW-based integrated distances

were used, combining both active and reactive TPW signatures, which were fed to

the k-NN algorithm. The authors were able to better identify different operating

states of appliances. The DTW-method proposed in this thesis focuses on performing

disaggregation for low sampling rates using only active power consumption, which does

not allow the use of transient. For this purpose, it would be impossible to compare it

with the method proposed in [175], where the authors use transient signatures, both

active and reactive, and additionally incorporate k-NN for classification.

3.4 Proposed Unsupervised DTW-based NILM Method

As with every NILM method, it is important to discuss and explain the different

steps that are required for the implementation and evaluation of the proposed DTW-

based method. Therefore, we next discuss data pre-processing, event detection, feature

extraction, classification via pattern matching and performance evaluation, in the order

they occur as presented in the block diagram in Figure 2.1.

3.4.1 Data Pre-processing

Data pre-processing is instrumental for removing noisy and corrupted data from any

datasets and generally for preparing them for any further processing in order to extract

meaningful information. There are various techniques that can be used for this purpose,

and it is up to the researcher to identify and apply the most suitable approach for

implementing their research, as seen in Section 2.3.

As already mentioned, the NILM datasets used for disaggregation purposes in the

presented research work is the REDD dataset [1], that includes smart metering data

from US households and the REFIT dataset [2, 3], that includes data obtained from

UK households. For the case of the REDD dataset, the data have been downsampled

to 1min resolution, but there was no further processing for removing noise or base

load. For the UK households, there was no pre-processing, as Murray et al. [2, 3] have

published a clean version of the dataset. More details with regards to the pre-processing

of both datasets can be found in the following Chapter in Section 4.2.
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3.4.2 Event Detection

Following data acquisition and data pre-processing, according to Figure 2.1, a NILM

approach requires an event detection step. Event detection refers to the detection of

any changes in the aggregate power consumption time series, that occur during the

operation of one or multiple appliances.

In terms of mathematically formulating event detection, we can state that if

|pit − pit−1| ≥ W, (3.6)

, we say that the appliance i has changed state at time instant t, where W is an

adaptive threshold. For single-state (On-Off) appliances, this means that the appliance

was switched on if

pit − pit−1 ≥ W (3.7)

or off if

pit−1 − pit ≥ W. (3.8)

For multi-state appliances, such as washing machine,

|pit − pit−1| ≥ W (3.9)

indicates that the appliance has transited from one state to another.

Threshold W depends on the appliance set M and must be set low enough so that

for all i, if |pit − pit−1| ≤ W , Appliance i did not change its state and, otherwise, it did

change its state. All appliances that operate below threshold W will not be detected.

W is set based on the minimum state transition that needs to be detected and the

maximum variation of the active power within one appliance state across all appliances’

states; that is

W = max{min
i∈M

pi,max
i∈M

|max(pi) − min(pi)|}, (3.10)

, where pi is a vector of readings of appliance i. Note that the value of W depends on

the set of available appliances, and since the disaggregation process works iteratively

by detecting one appliance at a time and removing it from M, W will be adaptively

changed whenever one appliance is detected and removed. W is automatically obtained
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using edges in each iteration. It is important here to state that for each W , appliances

with similar consumption (rising and falling edges) can be obtained during the same

iteration and therefore those appliances estimated consumption will be removed from

the aggregate load before the next iteration.

An event occurs whenever an appliance changes its state. Edge detection is used to

detect events by comparing |pt − pt−1| with W . An event started at time ls and ended

at le if an appliance changed its state at ls and le, and

|[pt=ls − pt=ls−1] + [pt=le − pt=le−1]| ≤ C, (3.11)

, where C is a parameter that is upper limited by maxi∈M|max(pi) − min(pi)| and

hence is always smaller or equal to W .

For t = 2, . . . , N , let

∆pt = pt − pt−1 (3.12)

The event detection process is summarised in Algorithm 3.1.

Algorithm 3.1 Event Detection: For any aggregate sample window p return a matrix
of detected events EVENT where each event is defined by the starting and ending
time.

function Event Detection(p(StartT ime : EndTime), W )
k = 1
for ls = StartT ime : EndTime do

if |∆p| ≥ W then
i = ls
C = |∆p(ls)|
repeat

i + +
until |∆pt| ≥ W ∧ (3.11) ∨ t == EndTime
if i == EndTime then

exit(‘No end of the event found’)
end if

else
C = W

end if
EV ENT (k, 1) = ls, EV ENT (k, 2) = t, k + +

end for
return EVENT

end function

Note that parameter C is set as 20% or 5% of the detected rising edge. The selection

between the two options depends on the value of the detected edge |∆pt|. If |∆pt| ≤
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300, thus the possibility of a lower consuming appliance operation, parameter C is set

C = 0.2|∆pt|, in order to capture the variations of this appliance in the aggregate

data. Else if |∆pt| ≥ 300, is set C = 0.05|∆pt|, because if C is set higher, the starting

and closing edges of higher consuming appliances will create inaccurate events. It is

important here to explain that the edge detection step can identify as separate events,

events that occur for one instance.

The function returns a R× 2 matrix of events, EVENT, where row i contains the

i-th detected event characterised by its starting time EV ENT (i, 1) and ending time

EV ENT (i, 2).

After obtaining the available events, extracting the features, as described in the

following section, and removing the relevant power loads from the aggregate data, the

algorithm repeats the edge detection step by allowing the incorporation of the closest

instants le ± 1 and if |∆p(le − 1)| + |∆p(le)| ≤ C or |∆p(le)| + |∆p(le + 1)| ≤ C allow

the closure of the event either at le or at le + 1 respectively.

Figure 3.1 shows an example of rising and falling edges, that are used during event

detection. The specific edges correspond to operations of microwave and kettle, that

occur simultaneously. The rising edges, are represented with blue, and the falling edges

with red. The circle on the two first edges, explains graphically the search and inclusion

of the previous instances of a rising edge, in order to identify the corresponding start

and end event. This operation closes using the falling edge, that occurs exactly after

the rising edge of the kettle at around 3000 watt.

3.4.3 Feature Extraction

After detecting all events, it is necessary to extract features from each event for further

processing. The proposed DTW-based method uses as features the entire active power

time-series signature of each event/appliance operation, which is stored into a database.

Let R be the number of rows in the matrix EVENT returned by Algorithm 3.1.

Then, feature extraction for the proposed DTW-based method is summarised in Algo-

rithm 3.2. The algorithm takes the matrix of detected events as inputs and performs

feature extraction, and returns a matrix of extracted features E, which contains R

rows. As the actual length of each extracted feature varies depending on the number

of power samples in each detected event, in every iteration the length of the rows is set
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Figure 3.1: Example of the rising and falling edges used during edge detection.

equal to the length of the largest event, and all empty fields are replaced with 0 . In

order to recover the intermediate points between the start and end time of an event,

the algorithm uses the aggregate data and the variations that occur between the two

points, as long as there are |∆pt| < C, where i = ls + 1, . . . , le − 1. This could also be

performed by averaging the power consumption between the start and end time of the

event.

Algorithm 3.2 Feature Extraction: For a given set of events and proposed DTW-based
method, return extracted features.

function Feature Extraction(EVENT, p)
for k = 1 : R do

E(k, :) = |∆p(EV ENT (k, 1) : EV ENT (k, 2))|
end for
return E

end function
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3.4.4 Disaggregation using DTW

The proposed DTW-based method performs disaggregation into two different phases:

appliance library creation and pattern matching of the disaggregated load, which will be

described in the following sections.

3.4.4.1 Appliance Signatures Library

During appliance library creation, a set of unique features E(k, :), called signatures, is

stored in the library. That is, when a new event is detected, it is checked against all

signatures currently present in the library and if a match is found, the new signature is

not included. Therefore, a library of unique signatures (class representatives) is formed.

Comparison between different signatures is performed using DTW pattern matching

explained which was explained in Section 3.1. Note that the library of signatures

is obtained using historical unlabelled aggregate load measurements. Algorithm 3.4

summarises the appliance library creation phase of the proposed DTW-based method.

Algorithm 3.3 shows how DTW performs pattern matching between two vectors,

based on the constraints and formulas introduced in Section 3.1.

Algorithm 3.3 DTW pattern matching: Find a distance between two vectors of
possibly unequal lengths.

function DTW(p,q)
n = length(p), m = length(q)
for i = 1, . . . , n do

for j = 1, . . . ,m do
d(i, j) = |p(i) − q(j)|
D(i, j) = d(i, j) + min{D(i− 1, j), D(i− 1, j − 1),

D(i, j − 1)}
end for

end for
Output D(n,m)

end function

Algorithm 3.4 returns DTWLIB as a library of signatures, where each row in

DTWLIB contains one unique signature. Let Q be the total number of rows (signa-

tures) in DTWLIB. Using expert knowledge (daily diary entries and IAMs data), each

library signature is mapped to one appliance. Let tag be a Q-length vector containing

an appliance list associated to the library signatures.
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Algorithm 3.4 Appliance Library Creation: Using the extracted features E create the
library of appliance signatures.

function LibraryCreation(E) ▷ Where E found in Algorithm 3.2
DTWLIB = []
for k = 1 : R do

i = 0
for l = 0 : |DTWLIB| do

if DTW (E(k, :), DTWLIB(i, :)) ≥ DTWThr then
i + +

end if
end for
if i == |DTWLIB| then

DTWLIB = DTWLIB ∪ E(k, :)
end if

end for
return DTWLIB

end function

DTWThr is a threshold used to remove similar signatures that come from the same

appliance. It trades off performance and complexity: larger DTWThr would allow for

more signatures (i.e., multiple signatures for the same appliance due to variations in

operation) to be kept. For this purpose, this threshold is set DTWThr < C.

3.4.4.2 Pattern matching of the Disaggregated Load

The proposed DTW-based method is performing pattern matching in order classify any

operating appliances. That is, each identified event is compared to each signature in

the library using Algorithm 3.3, and the best match is found in terms of minimising

D(n,m) distance measure over all library entries. Note that the output of the DTW

classification is a soft value - D(n,m) - the minimum distance between the testing event

and the best matching signature from the library. The DTW classification via pattern

matching is summarised in Algorithm 3.5, where the new event q is matched to the m-

th signature in DTWLIB, which represents the signature with the minimum distance

from the new event q. Therefore, the new event q is classified as appliance tag(m).

During this phase, the collected measurements p(TestStart : TestEnd) are first

input to the Edge Detection function which returns detected events that are then

passed to Feature Extraction. For each extracted event, the proposed DTW-based

method compares the extracted events one by one with all library signatures available

in DTWLIB.
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Algorithm 3.5 DTW classification via pattern matching: Compare the new event q
with all signatures in the library.

function DTWClass(T ,DTWLIB)
D = DTW (q,DTWLIB(1, :)), m = 1
for i = 2 : Q do

if DTW (q,DTWLIB(i, :)) ≤ D then
m = i

end if
end for
return m

end function

Disaggregation is performed iteratively, where in each iteration the threshold W

is changed starting from the highest value detected. This way, in each iteration one

appliance, starting from the highest consumers, are detected and removed. Set of

appliances is updated, and W is recalculated using (3.10). Decreasing W in each

iteration facilitates detecting small loads after high loads are detected and removed.

Note that W is detected from the aggregate load in every iteration and appliances with

similar power consumption in the aggregate load will be detected and therefore removed

in the same iteration.

Suppose that set M = {1, . . . ,M} is ordered such that p1 ≥ p2 ≥ · · · ≥ pM .

DTW-based algorithm performs pattern of any aggregate load measurements using

Algorithm 3.6, where the output is stored in a vector classified that contains all

detected appliances. The threshold is adaptably changed based on the remaining

appliances in the test dataset using (3.10), as described above.

Algorithm 3.6 Test: Perform pattern matching on the new collected aggregate active
power measurements p.

function Test(p(TestStart:TestEnd),DTWLIB, M))
Mk = []
for i = 1 : M do

Mk = [Mki]
Calculate W (i) with (3.10) using Mk
EventTest=EventDetection(p(TestStart : TestEnd),W (i))
ETest=FeatureExtraction(EventTest, p(TestStart : TestEnd))
for k = 1 : NumberOfRowsInETest do

D = tag(DTWClass(ETest(k, :),DTWLIB))
classified(k) = D

end for
Output classified and remove events of Appliance i from testing dataset

p(TestStart : TestEnd)
end for

end function
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A correction step is applied for separating appliances that might have not been

distinguished correctly through the DTW pattern matching. This step performs a

check on the feature values at the instant before and after the detected event window.

The distance between these values and the relevant start and end values of the window

are compared and the minimum distance is compared to the thresholds defined for each

used appliance. The final corrected identified appliances, together with the associated

time-stamps of the start and end of each event are the final output of the algorithm.

The proposed DTW-based method is an unsupervised NILM approach, as it per-

forms pattern matching using unlabelled aggregate load measurements. The database

of appliance signatures, known as library of appliance signatures is populated using

unlabelled historical aggregate load measurements and post labelling is performed using

the data from the IAMs. The proposed NILM method performs pattern matching using

DTW against the database of signatures via a greedy search (full database).

Figure 3.2 shows an example of DTW pattern matching for the main appliances dis-

aggregated during the implementation of the proposed method using house 2 from RE-

FIT dataset [2, 3]. The blue signatures represent signatures available in the DTWLIB

after the initial creation of the appliance library and the red signatures represent

the classified events for each appliance. Note that dishwasher and washing machine

have very similar signatures, which may result in misclassification between the two

appliances, which will be discussed further in Section 4.4.1, where the disaggregation

case study for the specific house is presented.

3.4.5 Performance Evaluation

Using the output vector classified, that contains all detected appliances, which is

obtained using Algorithm 3.6, the accuracy of the proposed DTW-based method can be

evaluated using both classification accuracy as defined in 2.8.1 and estimation accuracy

as defined in 2.8.2.

For classification accuracy, we formally define TP, FN, and FP in the following

way. Let pit and p̂it be the ground-truth value of the active power for Appliance i at

time instance t and the disaggregation result, respectively, where the ground-truth is

obtained either from the activity log and/or from the IAMs. Then, for each identified

event starting at time instance ts and ending at time instance te:
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Figure 3.2: Classification using the proposed method of the main appliances
disaggregated in House 2 from REFIT dataset [2, 3], where blue are the signatures
available in the DTWlib and red the classified appliances.
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• If for all t ∈ [ts, . . . , te], pt = p̂t = 0, then the disaggregation is true negative (TN).

• If there exists t ∈ [ts, . . . , te], such that pt = 0 and p̂t > 0, then the disaggregation

is false positive (FP).

• If there exists t ∈ [ts, . . . , te], such that pt > 0 and p̂t = 0, then the disaggregation

is false negative (FN).

• If there exists t ∈ [ts, . . . , te], such that pt > 0 and p̂t > 0, and for all t ∈

[ts − 1, . . . , te + 1], |pt − p̂t| ≤ C, then the disaggregation is true positive (TP).

Note that as the DTW-based method is event based, the algorithm allocates one TN,

FN, FP or TP with respect to the whole event duration [ts, . . . , te], thus the algorithm

was allowed to search both ts±1 and te±1, in order to address any shifting between the

aggregate and IAMs data due to synchronisation issues. If for any of these instances

pt > 0 or p̂t > 0 and for the rest of the time instances both pt > 0 and p̂t > 0 and

|pt − p̂t| ≤ C, the total event is classified as TP.

Therefore, Precision, Recall and F-measure can be calculated using equations 2.2,

2.3 and 2.4, respectively. Furthermore, for estimation accuracy, it has been decided to

use the estimation accuracy Acci per appliance i and TER per appliance, as discussed

in Chapter 2, by using the formulas 2.9 and 2.10. The selection of the specific metrics

will facilitate to the better comparison of the proposed DTW-based NILM method with

the methods presented in [4, 5, 33] for benchmarking purposes.

3.5 Summary

The aim of this chapter was to present a novel unsupervised NILM classification method

using Dynamic Time Warping, that can potentially provide an efficient NILM solution.

DTW algorithm has been defined using the relevant formulas and constraints. While

DTW originates from speech recognition, its use has been expanded to data mining

and information retrieval. A short review of successful applications of the algorithm
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in different research fields has been included, in order to show the diverse use of DTW

algorithm.

Furthermore, a formulation of the NILM problem regarding appliance disaggre-

gation has been defined, together with the motivation behind the use of the DTW

algorithm and its suitability for the NILM problem. More recently, some researchers

have considered the use of DTW either as a standalone algorithm or combined with

other methods for load disaggregation. These research works have been discussed in

more detail, in order to outline the differences and thus the novelty of the proposed

DTW-based method.

The proposed method follows the steps as defined in [24], namely pre-processing,

event detection, feature extraction and classification. The implementation of each

step has been described in detail using the relevant mathematical formulation and

algorithmic representation, that allows the reader to better understand the proposed

NILM method.

Chapter 4 will report the disaggregation performance of the proposed method for

three US houses from REDD dataset [1] and two UK houses from REFIT dataset [2, 3].

This performance will be evaluated using a variety of classification and estimation

accuracy metrics with benchmarks the performance of four NILM approaches: DT [32],

supervised GSP, [33], unsupervised GSP [4] and their variations and FHMM available

in NILMTK toolbox [34], as presented in [5].





Chapter 4

Analysis of proposed DTW-based

Methodology

4.1 Introduction

In order to provide a rigorous analysis of the proposed DTW-based NILM methodology

of Chapter 3, two public and commonly used electrical measurements datasets in the

NILM literature are used for understanding the performance for a range of appliances

and households with different appliance patterns of use. Metrics, described in Chapter

2 are used for evaluation and discussed in relation to understanding appliance detection

and disaggregation.

For benchmarking purposes, the performance of the proposed DTW-based method

will be compared to a variety of state-of-the-art NILM methods, such as HMM algorithm

[35], DT [32], supervised GSP [33], unsupervised GSP [4] and FHMM available in

NILMTK toolbox [34], and their variations, as found in [5, 33].

4.2 Data Pre-Processing and Experimental Setup

This section provides the relevant details regarding the implementation of the proposed

DTW-based method with respect to the pre-processing of the datasets and the experi-

mental setup.

73
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4.2.1 REDD Data Pre-Processing Method

The sampling rates, as already discussed in Section 2.2.1, can vary from Hz to MHz

and although they provide higher granularity, and more features that can be extracted

(see Section 2.5), occasionally downsampling can be beneficial as it can reduce the

size/length of the extracted features.

Batra et al. [34] have included a downsample preprocessor in NILMTK, which allows

downsampling of any dataset to a specified frequency using aggregation function, such

as mean, mode and median. Furthermore, downsampling has been performed in various

NILM works, see [4–6, 32, 33, 35, 117, 118, 146, 160], where the authors downsampled

REDD dataset to 1min resolution and [58] to 10sec. Similarly with these works, it has

been decided to downsample REDD dataset to 1min for the implementation of all the

proposed methods.

This implementation can provide an understanding of how the proposed algorithm

performs in lower resolution, as many appliances may operate for small durations, such

as microwave, which can be set to work only for couple of minutes or so, depending

on the resident’s needs. Consequently, for the case of 1min resolution data, there will

be on/off events that may occur for only one sample, which the proposed algorithm

can separate and use them as appliance signatures, thus disaggregate and classify them

during testing.

Furthermore, all Not-a-Number (NaN) values have been removed and forward filled.

Any gaps of less than 2min have been forward filled with previous values or filled with

zeros, for any gaps larger than 2min, as proposed in [3]. This technique has been

used previously for pre-processing UK-DALE in [46], where the authors identified the

2min threshold, by assuming the gaps longer for more than 2min are the result of the

appliance (and the monitor) being switched off from the mains.
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4.2.2 REFIT Data Pre-Processing Method

Throughout this thesis the REFIT dataset used for implementation was the cleaned

version (labelled as CLEAN REFIT), which have been pre-processed by the authors in

[3]. Murray et al. [3] have implemented a corrective step in order to adapt time/date

for the case of British Summer Time (BST). Any values greater than 4, 000W present

in the IAMs data-streams have been removed and replaced with zeros, as these values

are above the maximum possible power draw. Furthermore, if an appliance had been

switched between plugs, the data streams have been moved, in order to provide contin-

uous record for each appliance. Any NaN values have been removed and forward filled

by the authors in [3], using the method already described in Section 4.2.1.

4.2.3 Dataset Description

From the available houses in REDD dataset, the houses selected for disaggregation were

House 1, 2 and 6, as they have been used in various NILM research woks, and more

specifically in [4, 5, 32, 33, 33–35], which will be used as benchmarks for the evaluation

of the proposed algorithm. Table 4.1 provides the details of the time periods from each

dataset, that have been selected for creating the library of appliance signatures and

for disaggregation, including start and end data, and duration (number of days) of the

dataset used.

Similarly, it has been decided to use House 2 and 17 from the REFIT dataset for

the time period of 01/10/2014 - 31/10/2014. This selection was based on the decision

to evaluate the performance of the proposed DTW-based method towards the works

presented in [4, 5, 33, 33], where the authors have implemented their disaggregation

approach using the specific houses for the same time period. For both houses, the time

periods used for creating the library of appliance signatures and testing, can be found

in more details in Table 4.1.
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Table 4.1: REDD and REFIT Datasets Time Periods used for creation of the Appliance Library and Disaggregation.

Houses Library Start Date Library End Date Duration Testing Start Date Testing End Date Duration

House 1 REDD 18/04/2011 24/04/2011 7 days 25/04/2011 24/05/2011 16 days

House 2 REDD 18/04/2011 21/04/2011 4 days 22/04/2011 22/05/2011 12 days

House 6 REDD 22/05/2011 27/05/2011 7 days 28/05/2011 14/06/2011 11 days

House 2 REFIT 01/10/2014 06/10/2014 6 days 07/10/2014 31/10/2014 25 days

House 17 REFIT 01/10/2014 06/10/2014 6 days 07/10/2014 31/10/2014 25 days
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4.3 Down-sampled REDD Dataset Disaggregation

This section presents the disaggregation cases studies using the proposed DTW-based

algorithm for houses 1, 2 and 6 from the downsampled REDD dataset.

4.3.1 REDD House 1 Disaggregation Case Study

According to the relevant information obtained from REDD dataset [1], the appli-

ances/devices monitored in house 1 were: dishwasher, bathroom GFI, electric heat,

fridge, various kitchen outlets, lighting, microwave, oven and washer dryer. Note that

the proposed algorithm was not able to detect the events for bathroom GFI, electric

heat, lighting and oven, although all the appliances were present in the aggregate

load. For this reason, no appliance signatures have been extracted as features, and

the proposed method was not able to disaggregate and classify these appliances.

The obtained classification results, in the form of TP , FP , FN , PR, RE and FM ,

for house 1 are presented in Table 4.2.

Table 4.2: Classification Accuracy for REDD House 1.

Apps TP FP FN PR RE FM

Dishwasher 6 0 26 1 0.19 0.32

Fridge 159 24 53 0.87 0.75 0.80

Kitchen Outlet 65 9 11 0.88 0.85 0.86

Microwave 61 13 21 0.82 0.74 0.78

Washer Dryer 46 2 22 0.96 0.67 0.79

Note: Apps=Appliances. TP=True Positive, FP=False Positive, FN= False Negative,
PR=Precision, RE=Recall, FM=F-Measure.

The proposed method was able to obtain high precision > 80% for all the disaggre-

gated appliances, which means that the classification did not suffer from high numbers

of false positives that an appliance was operating. On the other hand, dishwasher and

washer dryer have shown an increased number of not identified appliance operations FN ,

which resulted to 19% and 67% of recall, respectively, but the algorithm was still able

to obtain > 70% recall for the rest of the appliances. For both dishwasher and washer
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Figure 4.1: Performance evaluation using FM for the proposed DTW-based NILM
method (Table 4.3) with benchmarks UGSP [4], SGSP [33], DT [32], BR [58], P [5] and
FHMM [34] for REDD House 1, as presented in [5].

dryer, the DTW-based method can disaggregate the washing state of each appliance,

therefore the rest of the states were evaluated as FN , thus not identified. In terms of

FM , the classification accuracy was on average > 78% for most of the disaggregated

appliances, with the exemption of dishwasher, were the algorithm performed poorly at

32%.

In order to further analyse the obtained results, Tables 4.3-4.4 present the obtained

classification accuracy FM and estimation accuracy Acci per appliance in comparison

to the algorithms presented in [5]. In addition to the tables, a graphical representation

of the obtained results can be found in Figures 4.1-4.2.

Although the proposed algorithm, as already discussed, obtained low classification

accuracy for the dishwasher, compared to the rest of the disaggregated appliances, it

was able to outperform the majority of the methods presented in [5] by at least 15%. All

the methods using the pre-processing and refinement method P [5] were able to surpass

the DTW-based approach, with best FM reported by the P-SGSP method (0.63) [5, 33].
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Table 4.3: Classification Accuracy using FM for the proposed DTW-based NILM method, with benchmarks UGSP [4], SGSP [33], DT
[32], BR [58], P [5] and FHMM [34], for REDD House 1, as presented in [5].

UGSP[4] SGSP[33] DT[32]

Apps DTW UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

DW 0.32 0.12 0.10 0.52 0.10 0.16 0.63 0.05 0.05 0.57 0.14

F 0.80 0.52 0.51 0.63 0.08 0.13 0.58 0.42 0.43 0.63 0.51

KO 0.86 0.10 0.17 0.47 0.04 0.14 0.55 0.02 0.03 0.47 0.68

MW 0.78 0.39 0.21 0.40 0.32 0.27 0.57 0.21 0.24 0.43 0.19

WD 0.79 0.44 0.49 0.61 0.53 0.52 0.71 0.46 0.42 0.65 0

Note: Apps=Appliances, DW=Dishwasher, F=Fridge, KO=Kitchen Outlet, MW=Microwave, WD=Washer Dryer. Bold values
represent the method/methods with the highest obtained classification accuracy per appliance. BR is the base load removal method,
proposed in [58] and P is the GSP based pre-processing and refinement method proposed in [5].
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Table 4.4: Estimation Accuracy using Acci for the proposed DTW-based NILM method, with benchmarks UGSP [4], SGSP [33], DT
[32], BR [58], P [5] and FHMM [34], for REDD House 1, as presented in [5].

UGSP[4] SGSP[33] DT[32]

Apps DTW UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

DW 0.64 0.23 0.21 0.66 0.16 0.24 0.72 0.55 0.51 0.58 0.21

F 0.80 0.68 0.65 0.91 0.48 0.51 0.93 0.47 0.47 0.88 0.59

KO 0.74 0.16 0.25 0.83 0.09 0.11 0.84 0.24 0.27 0.80 0.92

MW 0.63 0.40 0.26 0.66 0.37 0.46 0.69 0.58 0.61 0.62 0.40

WD 0.52 0.58 0.61 0.95 0.64 0.61 0.96 0.76 0.73 0.89 −1.99

Note: Apps=Appliances, DW=Dishwasher, F=Fridge, KO=Kitchen Outlet, MW=Microwave, WD=Washer Dryer. Bold values
represent the method/methods with the highest obtained estimation accuracy per appliance. BR is the base load removal method,
proposed in [58] and P is the GSP based pre-processing and refinement method proposed in [5].
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Furthermore, the proposed algorithm was able to obtain the best classification

performance for the fridge with FM of 0.8, outperforming the algorithms in [5] by

as high as 72% and as low as 17%. Similarly, the proposed method has shown the

best classification accuracy for both kitchen outlet, microwave and washer dryer with

0.86, 0.78 and 0.79 respectively. For the case of the kitchen outlet, the proposed

method was able to obtain better classification accuracy FM ranging from 18 − 84%,

compared to the methods presented in [5]. For both microwave and washer dryer, the

highest classification accuracy in [5] was shown for P-SGSP [5, 33] with 0.57 and 0.71

respectively, which is less than 21% and 8% compared to the accuracy acquired using

the proposed method.

In summary, the proposed method was able to classify more accurately the majority

of the disaggregated appliances, with the exception of the dishwasher, compared to the

methods presented in [5]. Although classification accuracy is an important measure for

assessing the performance of a NILM method, it is not enough for claiming that a NILM

method has successfully disaggregated the appliance consumption from the aggregate

load. Therefore, the proposed method is going to be evaluated using the estimation

accuracy Acci per appliance, in order to identify how accurate is the estimation of the

power consumption compared to the actual consumed power, which is available through

individual monitors.

In terms of estimation accuracy, the best performing method, according to [5],

was the P-SGSP [5, 33], with the exception of the kitchen outlet, where FHMM [34]

obtained the highest accuracy of 0.92, which is 18% better than the performance of the

proposed method. For the case of the dishwasher, the proposed method was able to

outperform the majority of the presented NILM methods by 6−48%, but P-UGSP [4, 5]

and P-SGSP [5, 33] obtained better estimation accuracy by 2% and 8% respectively.

Furthermore, the NILM approaches using the P method from [5] were able to estimate

more accurately the power consumed by the fridge by 8 − 13%, whereas the proposed

method obtained better estimation by 12 − 33% compared to the rest of the methods.

The algorithms using the P method from [5] were able to outperform the proposed

method for the kitchen outlet by 6−10%, but the DTW-based method performed better

by 47 − 65% compared to the rest of the methods. For the case of the microwave, the

proposed method obtained higher estimation accuracy (0.62) than the majority of the
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Figure 4.2: Performance evaluation using Acci for the proposed DTW-based NILM
method (Table 4.4) with benchmarks UGSP [4], SGSP [33], DT [32], BR [58], P [5] and
FHMM [34] for REDD House 1, as presented in [5].

methods presented in [5] by 1 − 37%, and its performance was comparable to the best

performing methods, using the P method.

Furthermore, the proposed method obtained the poorest estimation accuracy for

the washer dryer with an Acci of 0.52 and was only able to perform better than FHMM

[34], which obtained a negative estimation accuracy of 1.99. The rest of the methods

presented in [5] were able to outperform the DTW-based method by as low as 6%

for UGSP [5] and as high as 44% for P-SGSP [5, 33]. One of the reasons that could

have potentially caused this performance is the fact the proposed algorithm seems to

overestimate the consumption of the washer dryer.

In addition to classification and estimation accuracy, it has been decided to eval-

uate the performance of the proposed algorithm using the normalised total power

consumption estimation error (TER), which has been proposed in [5]. According to

the results presented in Table 4.5, it is apparent the P-UGSP [4, 5] had obtained the

best performance for most appliances in terms of the TER error, as it was able to
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show on average an error of ∼ 0.1, with the highest identified error for the dishwasher

and the smallest for the microwave. The proposed method was able to outperform

both methods for the washer dryer, where the proposed method was able to obtain

error of 0.07. Furthermore, the proposed method was able to outperform UGSP [4] for

microwave, but obtained higher error for the rest of the appliances, with the highest at

0.72 for dishwasher.

Table 4.5: Normalised total power consumption estimation error (TER) for the
proposed DTW-based NILM method, with benchmarks UGSP [4] and P-UGSP [5]
for REDD House 1, as presented in [5].

Apps DW F KO MW WD

DTW 0.72 0.39 0.50 0.42 0.07

UGSP 0.53 0.26 0.41 0.53 0.29

P-UGSP 0.22 0.10 0.15 0.03 0.11

Note: Apps=Appliances, B=Bathroom GFI, DW=Dishwasher, F=Fridge,
KO=Kitchen Outlet, L=Light, MW=Microwave, O=Oven, WM=Washing Machine.
BR is the base load removal method, proposed in [58] and P is the GSP based
pre-processing and refinement method proposed in [5].

Figure 4.3 present the disaggregation results using the proposed DTW-based NILM

method as percentage of load contribution per appliance with regards to the aggregate

load and Figure 4.4, the relevant ground truth consumption per appliances, using

the data from the individual monitors available in the REDD dataset [1]. The load

contribution to the aggregate load of any appliances, that have not been disaggregated

using the proposed DTW-based method, has been included as“unknown”in both Figure

4.3 and 4.4. Note that the “unknown” includes also the base load and measurement

noise, similarly to the noise term in equation 3.4.

It is apparent that for the washer dryer, the proposed method overestimated the

consumption, especially when taking into account the fact that the algorithm was only

able to disaggregate the washing state of the appliance. Furthermore, the proposed

method was only able to disaggregated 8% of the fridge consumption, whereas the

actual consumption was 14%, and underestimated the dishwasher consumption by 5%,

as similarly with the washer dryer, the DTW-based method was only able to obtain

the washing cycle of the appliance.
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Figure 4.3: Disaggregation load contribution using proposed DTW-based NILM
method, as percentage of load contribution per appliance relative to the aggregate
load, for House 1 from REDD dataset.

For both kitchen outlet and microwave, the obtained consumption results were

closer to the ground truth consumption with 2% instead of 4% and < 1% instead of

1%, respectively. Finally, the load classified as unknown for the disaggregated results

was 75%, more than 10% from the actual unknown load, which is mainly the result of

non-identified appliance operations and standby states.

In general, it has been apparent from the obtained results that the proposed method

was able to obtain better classification accuracy in the context of FM for the majority of

the appliances, with the exception of dishwasher, compared to the methods presented

in [5]. Furthermore, the estimation accuracy of the proposed method was more than 0.6

for all appliances, apart from the washer dryer, where it had the lowest accuracy only

surpassing FHMM [34]. The DTW method was mainly outperformed by the methods

using the pre-processing and refinement method P [5] and for the case of the kitchen

outlet, FHMM, which obtained the highest accuracy.
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Figure 4.4: Ground truth load contribution, as percentage of load contribution per
appliance relative to the aggregate load, for House 1 from REDD dataset.

4.3.2 REDD House 2 Disaggregation Case Study

For the case of house 2 from REDD dataset [1], the monitored appliances/devices apart

from the mains, are: dishwasher, fridge, two kitchen outlets, lighting, microwave, stove

and washer dryer. The proposed algorithm was not able to extract appliance signatures

for the washer dryer and lighting, and therefor disaggregate the appliances from the

aggregate load. Therefore the presented results include only the appliances disaggre-

gated using the proposed DTW-based method for both classification and estimation

accuracy, with benchmarks the various methods presented in [5]. TER error was not

used for performance evaluation, as the authors in [5] have not presented the relevant

results for the specific house.

Table 4.6 presents the classification accuracy obtained using confusion matrix TP ,

FP and FN , together with the resulting PR, RE and FM .

Similarly with the results presented for house 1, the proposed algorithm was able

to obtain high precision for the majority of the disaggregated appliances on average
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Table 4.6: Classification Accuracy for REDD House 2.

Apps TP FP FN PR RE FM

Dishwasher 2 0 7 1 0.22 0.36

Fridge 213 58 36 0.79 0.85 0.82

Kitchen Outlet 1 13 0 5 1 0.72 0.84

Kitchen Outlet 2 56 9 20 0.86 0.74 0.79

Microwave 31 0 7 1 0.82 0.90

Stove 10 18 0 0.36 1 0.53

Note: Apps=Appliances. TP=True Positive, FP=False Positive, FN= False Negative,
PR=Precision, RE=Recall, FM=F-Measure.

> 80%, with the exception of the stove, where the algorithm wrongly identified as stove

an increased number of events resulting to a precision of 36%. In terms of recall, the

proposed method was able to obtain on average more than 70% for most appliances,

except for dishwasher, where the reported recall was 33%. As already discussed, the

algorithm can only disaggregate successfully the high consuming state of a multi state

appliance such as dishwasher, therefore the reported non-identified operations represent

the other states. When evaluating the performance using FM , the proposed method

was able to report on average > 80% for most appliances. Both dishwasher and stove

obtained lower FM of <∼ 50%, which was caused by the increased number of missing

operations and wrongly positively identified operations for each appliance respectively.

Tables 4.7 and 4.8 present the obtained classification and estimation accuracy per

appliance using FM and Acci, with respect to the reported accuracies, as presented in

[5]. Figures 4.5 and 4.6 show a graphical representation of results.

The proposed method was able to outperform the majority of algorithms presented

in [5] for most disaggregated appliances, with the exception of dishwasher and kitchen

outlet 1. For dishwasher, the proposed method was outperformed by the approaches

using the P method by more than 40%, but was able surpass the rest of the methods

on average by > 15%, with FM of 0.36. The best performing method with FM of 0.82

was the P-UGSP [5].



4
.3
.

D
o
w
n
-sa

m
p
le
d

R
E
D
D

D
a
ta

se
t
D
isa

g
g
re

g
a
tio

n
8
7

Table 4.7: Classification Accuracy using FM for the proposed DTW-based NILM method, with benchmarks UGSP [4], SGSP [33], DT
[32], BR [58], P [5] and FHMM [34], for REDD House 2, as presented in [5].

UGSP[4] SGSP[33] DT[32]

Apps DTW UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

DW 0.36 0 0.21 0.82 0.12 0.21 0.8 0.08 0.16 0.77 0

F 0.82 0.12 0.11 0.24 0.17 0.16 0.31 0.30 0.28 0.29 0.82

KO1 0.84 0.07 0.13 0.82 0.01 0.09 0.90 0.18 0.23 0.85 0.52

KO2 0.79 0.33 0.37 0.60 0.45 0.51 0.53 0.24 0.33 0.43 0.38

MW 0.90 0.31 0.34 0.69 0 0.01 0.83 0 0.05 0.78 0.24

S 0.53 0 0 0.26 0 0 0.23 0.01 0.01 0.33 0.01

Note: Apps=Appliances, DW=Dishwasher, F=Fridge, KO=Kitchen Outlet, MW=Microwave, S=Stove. Bold values represent the
method/methods with the highest obtained classification accuracy per appliance. BR is the base load removal method, proposed in [58]
and P is the GSP based pre-processing and refinement method proposed in [5].
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Table 4.8: Estimation Accuracy using Acci for the proposed DTW-based NILM method, with benchmarks UGSP [4], SGSP [33], DT
[32], BR [58], P [5] and FHMM [34], for REDD House 2, as presented in [5].

UGSP[4] SGSP[33] DT[32]

Apps DTW UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

DW 0.61 0.50 0.52 0.78 0.32 0.33 0.77 0.15 0.13 0.64 −2.13

F 0.69 0.04 0.01 0.55 0.07 0.07 0.64 0.09 0.07 0.72 0.69

KO1 0.41 0.17 0.24 0.89 0.09 0.15 0.86 0.32 0.34 0.86 −0.40

KO2 0.81 0.58 0.06 0.72 0.55 0.49 0.73 0.59 0.54 0.66 0.12

MW 0.64 0.54 0.56 0.82 0.40 0.21 0.85 0.65 0.63 0.76 0.11

S 0.75 0.02 0 0.45 0.02 0.04 0.44 0.24 0.19 0.43 −4.49

Note: Apps=Appliances, DW=Dishwasher, F=Fridge, KO=Kitchen Outlet, MW=Microwave, S=Stove. Bold values represent the
method/methods with the highest obtained estimation accuracy per appliance. BR is the base load removal method, proposed in [58]
and P is the GSP based pre-processing and refinement method proposed in [5].
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Figure 4.5: Performance evaluation using FM for the proposed DTW-based NILM
method (Table 4.7) with benchmarks UGSP [4], SGSP [33], DT [32], BR [58], P [5] and
FHMM [34] for REDD House 2, as presented in [5].

For the case of the fridge, the proposed method obtained the same result with

FHMM, accuracy of 0.82, which is more than 50% better that the rest of the methods

presented in [5]. P-SGSP obtained the highest classification accuracy for kitchen outlet

1 at 0.9, according to the authors in [5]. The proposed method was able to obtain an

accuracy of 0.84, which is comparable to the accuracy reported by rest of the P refined

method in [5], and outperformed the other methods.

Furthermore, the proposed method was able to outperform all methods from [5]

for kitchen outlet 2, by at least 19%. Similarly, the obtained accuracy for microwave

was 0.9, which is higher than the best performing P-SGSP as seen in [5], where the

accuracy was 0.83. Finally, in terms of the stove, although the accuracy acquired using

the proposed DTW method was only 0.53, this is still higher by 30%, compared to the

reported accuracies in [5].

In terms of estimation accuracy per disaggregated appliance, as shown in Table 4.8

and Figure 4.6, the proposed method was able to outperform all methods presented in
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Figure 4.6: Performance evaluation using Acci for the proposed DTW-based NILM
method (Table 4.8) with benchmarks UGSP [4], SGSP [33], DT [32], BR [58], P [5] and
FHMM [34] for REDD House 2, as presented in [5].

[5] for the case of kitchen outlet 2, by acquiring an estimation accuracy of 0.81 and for

stove, where the obtained accuracy was 0.75, which is at least ∼ 30% higher compared

to the accuracies shown in [5].

Furthermore for dishwasher, the proposed method obtained accuracy of 0.61, which

is higher than most of the methods in [5] with the exception of the P refined approaches.

For the case of fridge, the proposed method reported the same estimation accuracy

as FHMM, namely 0.69, and was only outperformed by P-DT, which obtained a

comparable accuracy of 0.72. Kitchen outlet 2 reported the best estimation accuracy

at 0.81 for the proposed method, which was higher than the accuracies presented in [5].

Finally, for microwave, the proposed method was able to obtain estimation accuracy

of 0.64, which was comparable or better from the majority of the NILM methods, apart

from the case fo the P refined methods, which reported the best performance with 0.85

for P-SGSP [5].
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Figure 4.7: Disaggregation load contribution using proposed DTW-based NILM
method, as percentage load contribution per appliance relative to the aggregate load,
for House 2 from REDD dataset.

Similarly with the results presented for house 1, Figure 4.7 shows the disaggregation

results of the proposed DTW-based NILM method as percentage of load contribution

per appliance with regards to the aggregate load and Figure 4.8, the relevant ground

truth consumption per appliances, using the data from the IAMs as presented in the

REDD dataset [1]. The load contribution to the aggregate load of any appliances, that

have not been disaggregated using the proposed DTW-based method, has been included

as “unknown” in both Figure 4.7 and 4.8.

The dishwasher was underestimated by more than 2%, which is mainly caused by

the inability of the proposed method to disaggregate other than the washing cycle of

the dishwasher. Fridge reports disaggregated results of ≤ 3% compared to the ground

truth, as according to the results presented in Table 4.6, the proposed method was not

able to recognise and therefore estimate ∼ 15% of the the actual fridge operations.
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Figure 4.8: Ground truth load contribution, as percentage load contribution per
appliance relative to the aggregate load, for House 2 from REDD dataset.

Furthermore, kitchen outlet 1 contribution according to the disaggregation obtained

using the proposed method was less than 1%, compared to the actual consumption

contribution of 4%, which is the result of the missing operations that account for almost

40% of the total operation of the kitchen outlet 1 during the disaggregation period. In

the same context, kitchen outlet 2 have shown 3% contribution to the total aggregate

load, whereas the actual contribution based on the individual monitors was 5%. This

difference is the outcome of the not identified use of kitchen outlet 2 during classification,

which was ∼ 25% of the actual appliance use. The contribution of stove was similar

in both disaggregated and ground truth data as it only accounts for < 1%. Finally,

microwave reported the highest contribution difference of 5% compared to the actual

contribution, which can be explained using the results presented in Table 4.6, where

it is apparent that ∼ 20% of the microwave’s operations were not classified during

disaggregation. Therefore, the reported unknown load for the disaggregation results is

16% higher than the ground truth contribution of the unknown load.
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In summary, the proposed method has shown better classification accuracy for most

appliances compared to the methods in [5] and the same classification accuracy with

FHMM for fridge. For the case of kitchen outlet 1, the obtained FM was comparable to

the relevant accuracy reported in [5] using the P refined methods. As with dishwasher,

the proposed method was only outperformed by the NILM approaches in [5], when

using the P refinement. In terms of estimation accuracy, the DTW-based method, was

able on average to obtain better accuracy for most appliances, but was outperformed

by the same algorithms when using the P method. The proposed method was proven

more accurate from all methods available in [5] for estimating the use of kitchen outlet

2 and stove.

4.3.3 REDD House 6 Disaggregation Case Study

The published data for house 6, available in REDD dataset [1], include data for the

mains, air conditioning (AC), bathroom GFI (B), dishwasher, electric heater, electron-

ics, fridge, various kitchen outlets, lighting, stove and washer dryer. The performance

of the proposed DTW-based method for house 6 will be evaluated using the results

reported in both [4] and [33]. He et al. [33] have reported disaggregation of the AC,

electronics, fridge, kitchen outlet and stove, whereas the authors in [5] were able to

further classify electric heater and lighting. During the implementation of the proposed

method for house 6 both dishwasher and washer dryer were ignored, as there is no

operation of those appliances. Furthermore, the microwave operation reported in [4, 33]

is found in the kitchen outlet 1 from the REDD dataset, therefore the reported accuracy

in this thesis will be stated as KO1. The proposed algorithm was able to disaggregate

the bathroom GFI, whereas was not able to obtain signatures and therefore classify

electronics, electric heater, lighting and the reported kitchen outlet in [4, 33], which

were all present in the aggregate load.

Table 4.9 presents the obtained classification accuracy, in the form of confusion

matrix TP , FP , FN , precision, recall and FM , and the estimation accuracy per

appliance Acci. In terms of classification accuracy, the proposed algorithm, similarly

with the results presented for house 1 and 2 from REDD dataset, was able to obtain

high precision, more than 80% for most appliances, except for the bathroom GFI, where

the reported precision was 50%.
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Table 4.9: Classification and Estimation Accuracy per appliance for REDD House 6.

Apps TP FP FN PR RE FM Acci

Air Conditioning 27 0 4 1 0.87 0.93 0.92

Bathroom GFI 3 3 0 0.50 1 0.67 0.57

Fridge 127 19 48 0.87 0.79 0.73 0.83

Kitchen Outlet 1 2 0 0 1 1 1 0.54

Stove 5 1 0 0.83 1 0.91 0.75

Note: Apps=Appliances. TP=True Positive, FP=False Positive, FN= False Negative,
PR=Precision, RE=Recall, FM=F-Measure.

For recall, the proposed method acquired more than 70% for all appliances and

achieved 100% for air conditioning, bathroom GFI, stove and kitchen outlet 1, which

means that the proposed method did not suffer from increased number of missing

appliance operations. The obtained F-measure was the lowest for bathroom GFI and

fridge, which was at 67% and 79% respectively, while for the rest of the appliances,

the proposed method obtained FM higher than 90%. Furthermore, the DTW-based

method obtained estimation accuracy of ≥ 75% for most appliances, with the exception

of bathroom GFI and kitchen outlet 1, where the estimation accuracy was 57% and

54% respectively. Both appliances, according to the REDD dataset individual monitors,

have continuous measurements of their standby state, which the proposed method is

not able to estimate, but is still taken into account when calculating the estimation

accuracy.

The performance of the proposed method was evaluated using FM as a classification

accuracy metric, with benchmarks GSP [144], GSP+FS [33],GSP+SA [33], SGSP [33],

UGSP [4], DT [32], HMM [35], for REDD House 6, as presented in [4, 33]. The obtained

results are presented numerically in Table 4.10 and graphically, for better understanding,

in Figure 4.9. By reviewing the results, it is apparent that the performance of the

proposed method was on average more than 0.8 for most appliances and comparable

to the accuracies reported in [4, 33].
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Table 4.10: Classification Accuracy using FM for the proposed DTW-based NILM method, with benchmarks GSP [144], GSP+FS
[33],GSP+SA [33], SGSP [33], UGSP [4], DT [32], HMM [35], for REDD House 6, as presented in [4, 33].

GSP

Apps DTW GSP GSP+FS GSP+SA SGSP UGSP DT HMM

AC 0.93 0.49 0.74 0.73 0.89 0.88 0.89 0.12

F 0.79 0.54 0.77 0.77 0.77 0.82 0.99 0.88

KO1 1 0.92 0.77 0.77 0.91 0.87 0 0

S 0.91 1 0.75 0.75 0.92 0.54 0.67 0

Note: Apps=Appliances, AC= Air Conditioning, F=Fridge, KO1=Kitchen Outlet 1, S=Stove. Bold values represent the
method/methods with the highest obtained classification accuracy per appliance. The KO1, as found in REDD dataset [1], represents
the microwave appliance presented in [4, 33].
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Figure 4.9: Performance evaluation using FM for the proposed DTW-based
NILM method, as presented in Table 4.10, with benchmarks GSP [144], GSP+FS
[33],GSP+SA [33], SGSP [33], UGSP [4], DT [32], HMM [35], for REDD House 6,
as presented in [4, 33].

More specifically, the proposed method was able to outperform all methods pre-

sented in [4, 33] for both air conditioning and kitchen outlet 1, where the reported

accuracy of the proposed method was 0.93 and 1 respectively. For fridge, the best

performance was reported for DT [32], with classification accuracy at 0.99, while HMM

[35] achieved FM of 0.88. The proposed algorithm was able to obtain 0.79, which is

comparable or higher than the rest of the methods.

Similarly, regarding the disaggregation of the stove, the DTW-based method was

able to achieve higher or comparable classification accuracy than most of the methods

presented in [4, 33], with FM of 0.91. The best performance was reported for GSP+FS

[33], which obtained perfect classification with FM equal to 1.

Figure 4.10 presents the disaggregation results of the proposed DTW-based NILM

method as percentage of load contribution per appliance with regards to the aggregate

load and Figure 4.11, the relevant ground truth consumption per appliances, using the
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Figure 4.10: Disaggregation load contribution using the proposed DTW-based NILM
method, as percentage load contribution per appliance relative to the aggregate load,
for House 6 from REDD dataset.

data from the IAMs as presented in the REDD dataset [1]. The load contribution to the

aggregate load of any appliances, that have not been disaggregated using the proposed

DTW-based method, has been included as “unknown” in both Figure 4.10 and 4.11.

It is apparent, that the proposed method overestimated the consumption of the

air conditioning by 3% compared to the actual AC consumption. As the base load

is not removed from the mains aggregate data, it is possible that the reported power

consumption of the AC and furthermore other appliances, may be estimated higher

than the ground truth.

Although, both bathroom GFI, kitchen outlet 1 and stove contribute ≤ 1% to the

total disaggregation and ground truth consumption, Figure 4.10 shows that the actual

contribution of these appliances, is slightly higher than the one estimated using the

proposed method. Furthermore, fridge, for the proposed method, seems to contribute

10% to the total consumption, whereas the actual contribution according to the IAMs
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Figure 4.11: Ground truth load contribution, as percentage load contribution per
appliance relative to the aggregate load, for House 6 from REDD dataset.

was 15%, which could be caused by the fridge operations that were not classified using

the DTW-based method. Finally, the unknown load for the disaggregation results using

DTW contributes 53% to the total load, which is only 4% higher than the ground truth.

In conclusion, the proposed method was able to obtain classification accuracy with

respect to F-Measure of more than 0.9 for most appliances, with the exception of

bathroom GFI and fridge, where the obtained accuracy was 0.67 and 0.79 respectively.

Estimation accuracy was more than 0.75 in most cases, apart from kitchen outlet 1 and

bathroom GFI, which obtained on average an accuracy of ∼ 0.55. When evaluating the

performance of the proposed method with benchmarks the methods presented in [4, 33],

the DTW-based algorithm was able to achieve either comparable or better classification

accuracies for most appliances, besides fridge, where HMM [35] and DT [32] reported

higher accuracy by 10% and 30% respectively.
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4.4 REFIT Dataset Disaggregation

This sections provides the performance analysis of the proposed DTW-based method

using houses 2 and 17 from the REFIT dataset [2, 3].

4.4.1 REFIT House 2 Disaggregation Case Study

The focus of the disaggregation for the case of house 2 from the REFIT dataset [2, 3],

similarly with the work presented in [5], was to attempt to disaggregate the appliances

that are responsible for most of the power consumption present in the aggregate data,

that were monitored using IAMs. These appliances include dishwasher, fridge-freezer,

kettle, microwave, toaster and washing machine, which actually represent some of the

most commonly used appliances in a UK household.

Table 4.11 shows the obtained classification accuracy with regards to TP , FP , FN

from confusion matrix, precision PR, recall RE and F-measure FM . The proposed

method was able to achieve high precision during classification of more than 85% for

most appliances, with the exception of microwave, dishwasher and washing machine.

Microwave reported precision of 79%, as there were events caused by another appliance

with similar signature that were falsely identified as microwave. Dishwasher and wash-

ing machine in the specific household have a similar signature in terms of consumption

and duration during the washing cycle, which is the state that can be identified using

the proposed method, thus in both cases many operations of one were misclassified as

the other and vice versa. This can be seen clearly through Figure 3.2 in Section 3.4.4,

where various examples of classification were presented. Therefore the obtained PR for

dishwasher and washing machine was 41% and 59% respectively. The best performance

was obtained during the classification of kettle with 99%, followed by fridge-freezer with

98%.

By assessing the performance of the proposed method using recall, which is a

measure of understanding the amount of appliance operations that were not classified

during the disaggregation, it is apparent that the proposed method was able to acquire

recall more than 80% for most appliances, besides dishwasher and fridge-freezer. The

best performances were reported for the kettle with 94% and the microwave with 93%.

Dishwasher, as it was falsely identified in many cases as washing machine, was only
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Table 4.11: Classification Accuracy for REFIT House 2.

Apps TP FP FN PR RE FM

Dishwasher 9 5 35 0.41 0.20 0.27

Fridge-Freezer 209 4 270 0.98 0.44 0.61

Kettle 255 2 17 0.99 0.94 0.96

Microwave 239 65 19 0.79 0.93 0.85

Toaster 56 10 12 0.85 0.82 0.83

Washing Machine 64 45 12 0.59 0.84 0.69

Note: Apps=Appliances. TP=True Positive, FP=False Positive, FN= False Negative,
PR=Precision, RE=Recall, FM=F-Measure.

able to obtain 20% recall. Although the classification of the fridge-freezer, was accurate

in terms of precision, it suffered from increased number of missing operations, which

resulted to a recall of 44%.

With regards to FM , the proposed method obtained classification accuracy of more

than 80% for most appliances, but reported the lowest accuracy of 27% for the dish-

washer. Fridge-freezer and washing machine reported classification accuracy of 61%

and 69% respectively, while kettle obtained the best results with F-measure at 96%.

Similarly with the disaggregation of the REDD dataset, the performance evaluation

of the proposed DTW-based method will be performed using for classification accuracy,

FM , for estimation accuracy, the Acci per appliance, and the normalised total power

consumption estimation error (TER), as proposed in [5]. Tables 4.12 and 4.13 show

the comparison between the FM and Acci accuracies obtained using the proposed

method with benchmarks the algorithms presented in [5]. Figures 4.12 and 4.13 capture

graphically the same results, for visual comparison.

The proposed method was able to outperform all methods for all appliances, except

for dishwasher, where it obtained the lowest classification accuracy 0.27, comparable

only to UGSP and FHMM, where the authors in [5] reported accuracies of 0.32 and

0.23 respectively. The proposed method acquired FM of 0.61 for fridge-freezer, which

was on average 10% more than most of the methods in [5].
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Table 4.12: Classification Accuracy using FM for the proposed DTW-based NILM method, with benchmarks UGSP [4], SGSP [33],
DT [32], BR [58], P [5] and FHMM [34], for REFIT House 2, as presented in [5].

UGSP[4] SGSP[33] DT[32]

Apps DTW UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

DW 0.27 0.32 0.41 0.79 0.54 0.52 0.73 0.64 0.66 0.73 0.23

FFZ 0.61 0.47 0.52 0.42 0.32 0.33 0.59 0.30 0.54 0.33 0.50

K 0.96 0.66 0.68 0.88 0.77 0.67 0.90 0.45 0.42 0.76 0.06

MW 0.85 0.42 0.48 0.73 0.35 0.44 0.84 0.32 0.31 0.80 0.09

T 0.83 0.40 0.25 0.54 0.52 0.53 0.64 0.60 0.54 0.55 −

WM 0.69 0.24 0.21 0.23 0.32 0.29 0.43 0.37 0.32 0.48 0.09

Note: Apps=Appliances, DW=Dishwasher, FFZ=Fridge-Freezer, K=Kettle, MW=Microwave, T=Toaster, WM=Washing Machine.
Bold values represent the method/methods with the highest obtained classification accuracy per appliance. BR is the base load removal
method, proposed in [58] and P is the GSP based pre-processing and refinement method proposed in [5].
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Table 4.13: Estimation Accuracy using Acci for the proposed DTW-based NILM method, with benchmarks UGSP [4], SGSP [33], DT
[32], BR [58], P [5] and FHMM [34], for REFIT House 2, as presented in [5].

UGSP[4] SGSP[33] DT[32]

Apps DTW UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

DW 0.34 0.33 0.40 0.42 0.40 0.43 0.67 0.28 0.31 0.61 0.30

FFZ 0.69 0.42 0.34 0.77 0.58 0.56 0.80 0.37 0.32 0.73 0.24

K 0.91 0.49 0.68 0.83 0.51 0.51 0.85 0.41 0.39 0.76 −0.34

MW 0.79 0.51 0.48 0.64 0.55 0.53 0.65 0.33 0.42 0.64 −3.17

T 0.85 0.37 0.48 0.62 0.31 0.36 0.66 0.26 0.22 0.58 −

WM 0.73 0.46 −1.59 0.43 0.47 0.19 0.48 0.44 0.17 0.35 −1.84

Note:Apps=Appliances, DW=Dishwasher, FFZ=Fridge-Freezer, K=Kettle, MW=Microwave, T=Toaster, WM=Washing Machine.
Bold values represent the method/methods with the highest obtained estimation accuracy per appliance. BR is the base load removal
method, proposed in [58] and P is the GSP based pre-processing and refinement method proposed in [5].
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Figure 4.12: Performance evaluation using FM for the proposed DTW-based NILM
method (Tables 4.12) with benchmarks UGSP [4], SGSP [33], DT [32], BR [58], P [5]
and FHMM [34] for REFIT House 2, as presented in [5].

For the case of the kettle, the proposed method outperformed all method presented

in [5], by more than 20% for most cases and as much as 90% for FHMM. Similarly,

microwave reported the best classification accuracy at 0.85 for the proposed method,

outperforming the methods in [5], by 12% − 76% in most cases.

Furthermore, the proposed method was able to obtain higher classification accuracy

for the toaster compared to the methods in [5], by on average more than 20%. Similarly,

for the washing machine, even though there was a misclassification between the washing

machine and the dishwasher, the proposed method was able to report FM of 0.69, higher

by more than 20% from the NILM methods in [5].

Similarly with the classification accuracy, the proposed method achieved higher

values of estimation accuracy for most appliances, compared to the methods used in

[5], as seen in Table 4.13 and Figure 4.13. Estimation accuracy for kettle, was higher

using the proposed method by at least 15% compared with the methods in [5].
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Figure 4.13: Performance evaluation using Acci for the proposed DTW-based NILM
method (Table 4.13) with benchmarks UGSP [4], SGSP [33], DT [32], BR [58], P [5]
and FHMM [34] for REFIT House 2, as presented in [5].

Furthermore, microwave consumption was estimated more accurately using the

proposed method, with Acci at 0.79, which was higher by more than 10% compared

to NILM methods presented in [5]. The proposed method was able to outperform all

methods for the toaster case by obtaining an estimation accuracy of 0.85, which is more

than ∼ 20% than the methods used for disaggregation presented in [5]. Similarly, the

best estimation accuracy for the washing machine, reported at 0.73, was obtained using

the DTW-based method, which was better by more than 25% compared to the methods

in [5].

The appliances that the proposed method acquired lower Acci and was outperformed

by a variety of the methods implemented in [5], were the dishwasher and the fridge-

freezer. For the dishwasher, the obtained Acci was 0.34, mainly caused by the missing

dishwasher operations and the inability of the proposed method to identify the other

states of the dishwasher. Although, this accuracy is one of the lowest compared to

the methods in [5], the proposed method was able to report comparable results with
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most of the methods used for benchmarking, with less than 10% difference from those

methods, that reported lowest estimation accuracy but were more successful than the

proposed method. The best Acci was achieved using P-SGSP [5, 33] at 0.67, followed

by P-DT [5, 32] at 0.61.

Finally, for fridge-freezer, the proposed method obtained estimation accuracy of

0.69 and was able to outperform by at least 10% most of the methods in [5], with the

exception of the methods using the P pre-processing and refinement method.

For further evaluating the performance of the proposed method, Table 4.14 presents

the TER estimation error. The proposed method was able to obtain the smallest

estimation error for the toaster case, where the obtained TER was 0.31, more than 40%

less than most of the methods in [5], with the exception of P-DT, which reported a

TER error of 0.42. For the dishwasher, the DTW-based method was able to outperform,

with an error of 0.44, the majority of the methods in [5], apart from the approaches

using the BR methods and P-SGSP [5, 33].

The proposed method obtained the highest TER error at 0.7, while estimating the

consumption of the fridge-freezer, only comparable to the 0.67 received using DT with

BR. The smallest error in [5] was obtained using UGSP, with only 0.1, more than 60%

lower than the TER reported for the proposed method. The estimation error for kettle

was 0.019 using the proposed method, which was the lowest error compared to the

methods proposed in [5].

For microwave, the proposed method was able to obtain the lowest TER error at

0.09 compared to the methods in [5]. For the toaster, the proposed method reported

TER error of 0.21, which was the lowest compared to the methods in [5] by at least 20%.

The proposed method reported one of the highest errors for the washing machine at 0.42

and was only able to outperform SGSP+BR and FHMM. Finally, for the dishwasher the

proposed method obtained total estimation error of 0.43, only higher than the methods

using the BR method and P-SGSP.
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Table 4.14: Normalised total power consumption estimation error (TER) for the proposed DTW-based NILM method, with benchmarks
UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34], for REFIT House 2, as presented in [5].

UGSP[4] SGSP[33] DT[32]

Apps DTW UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

DW 0.43 0.73 0.08 0.66 0.47 0.13 0.33 0.64 0.35 0.49 0.75

FFZ 0.7 0.10 0.53 0.31 0.19 0.42 0.27 0.47 0.67 0.31 0.38

K 0.019 0.34 0.06 0.05 0.27 0.11 0.04 0.31 0.25 0.15 0.41

MW 0.09 0.43 0.17 0.34 0.52 0.16 0.28 0.66 0.59 0.63 13.63

T 0.21 0.83 0.81 0.82 0.90 0.88 0.73 0.78 0.71 0.42 7.53

WM 0.42 0.17 0.40 0.09 0.32 0.52 0.10 0.28 0.33 0.22 3

Note: Apps=Appliances, DW=Dishwasher, FFZ=Fridge-Freezer, K=Kettle, MW=Microwave, T=Toaster, WM=Washing Machine.
Bold values represent the method/methods with the lowest TER error per appliance. BR is the base load removal method, proposed in
[58] and P is the GSP based pre-processing and refinement method proposed in [5].
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Figure 4.14: Disaggregation load contribution using the proposed DTW-based NILM
method, as percentage load contribution per appliance relative to the aggregate load,
for House 2 from REFIT dataset.

Figure 4.14 shows the disaggregation results of the proposed DTW-based NILM

method as percentage of load contribution per appliance with regards to the aggregate

load and Figure 4.15, the relevant ground truth consumption per appliances, available

from the IAMs of the REFIT dataset [2, 3]. The term “unknown” corresponds to any

appliances that were present in the aggregate load but were not disaggregated using

the DTW-based method.

As expected, due to the missing operations of dishwasher during classification,

the proposed method only estimated 7% contribution of the dishwasher to the total

consumption, whereas the actual contribution was 12%. Similarly, for fridge-freezer, the

contribution was estimated at 2%, while the contribution using the IAMs information

was accounted for 7%, which again is the result of the increased number of not identified

fridge-freezer operations, as seen in Table 4.11.
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Figure 4.15: Ground truth load contribution, as percentage load contribution per
appliance relative to the aggregate load, for House 2 from REFIT dataset.

The proposed method accurately estimated the contribution for the case of the

kettle, the microwave and the toaster and underestimated the contribution of the

washing machine by 2%, as expected due to both the missing operations of the washing

cycle and the fact that the proposed method is not able to recognise the other states

of the washing machine.

In conclusion, the proposed method was able to obtained the best performance

for classification and estimation accuracy for the kettle, the microwave, the toaster,

the washing machine and the fridge-freezer, with the exception of the latter for the

case of estimation accuracy, where it was only outperformed by the P refined methods,

as presented in [5]. During classification, the proposed method had a difficulty to

separate the operation of the dishwasher and the washing machine, which resulted to

missing and wrongly identified events corresponding to the operation of those appliances.

Therefore the performance of the DTW-based method for dishwasher was among the

lowest compared to the methods in [5] used for benchmarking purposes. The normalised
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total consumption estimation error was either lower or comparable for most cases, with

the exception of fridge-freezer, where the proposed algorithm obtained the highest error.

4.4.2 REFIT House 17 Disaggregation Case Study

The final case study, presented in this chapter, is for house 17 from the REFIT dataset

[2, 3], for which the authors in [5] have investigated the performance of the presented

methods for the following appliances: fridge-freezer, freezer, kettle, microwave, toaster

and washing machine. The proposed DTW-method will be evaluated using the obtained

disaggregation results for freezer, kettle, microwave and toaster, with benchmarks the

methods proposed in [5]. Similarly with the previous case studies, the disaggregation

was obtained using the aggregate load, where all appliances were present.

Unfortunately, the proposed method was not able to obtain a signature for the

washing machine, as during the data used for the creation of the library there was only

one operation of the appliance, which consequently means that the appliance was not

able to be classified during the testing period. Similarly, for the case of the fridge-

freezer, the DTW-based was not able to obtain appliance signatures successfully, even

though it is an appliance that was visible multiple times during each day. The main

reason for that was that according to the IAMs the fridge-freezer consumes on average

less than 80 watt, which in the aggregate data it was estimated with much smaller

start and end edges, which created a challenge for the proposed method for obtaining

signatures and disaggregate during the testing period.

Table 4.15 presents the classification accuracy results for the proposed method, using

TP , FP , FN from confusion matrix, PR, RE and more importantly F-measure FM .

The DTW-based method was able to obtain precision accuracy of more than 70% for

freezer, kettle, and toaster, with the highest at 99% occurring during the disaggregation

of freezer, which only reported two wrongly positively identified freezer operations. For

the microwave, the reported precision was only 58%, due the increased number of FP ,

as there was an appliance operation with similar consumption and duration, with the

microwave signature.

In terms of recall, the proposed method obtained accuracy of more than 80% for

most disaggregated appliances, with the exception of freezer, where the algorithm

reported a high number of not identified operations, which account for almost 65%
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of the total number of freezer operations, resulting to a recall of only 35%. With

regards to FM , the proposed method reported accuracy of more than 80% for both

kettle and toaster, and 52% and 68% for freezer and microwave, respectively, due to

the low precision and recall observed in each case.

Table 4.15: Classification Accuracy for REFIT House 17.

Apps TP FP FN PR RE FM

Freezer 183 2 339 0.99 0.35 0.52

Kettle 209 80 12 0.72 0.95 0.82

Microwave 73 52 15 0.58 0.83 0.68

Toaster 92 14 9 0.87 0.91 0.88

Note: Apps=Appliances. TP=True Positive, FP=False Positive, FN= False Negative,
PR=Precision, RE=Recall, FM=F-Measure.

Similarly with the case study for the house 2 from REFIT dataset, the performance

evaluation of the proposed DTW-based method will be performed using for classification

accuracy FM and for estimation accuracy, the Acci per appliance, with benchmarks the

algorithms presented in [5]. Tables 4.16 and 4.17 show the FM and Acci accuracies

obtained using the proposed method versus those obtained using the benchmarking

algorithms from [5]. Figures 4.16 and 4.17 show a graphical representation of those

results, for better understanding.

The best classification accuracy for the proposed method, according to Table 4.16,

was obtained for the toaster, which was reported at 0.88, outperforming all the methods

presented in [5] by more than 10% for most cases. For the freezer, the proposed method

reported 0.52, and was outperformed by all implementations of DT [32], FHMM [34]

and the rest of the P refined methods [5].

For the kettle, P-SGSP [4, 33] and P-DT [5, 32] obtained the highest classification

accuracy, at 0.96 and 0.95, whereas the proposed method was able to achieve an

accuracy of 0.82. The reported accuracy was comparable or higher to the rest of the

approaches in [5].
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Figure 4.16: Performance evaluation using FM for the proposed DTW-based NILM
method (Tables 4.16) with benchmarks UGSP [4], SGSP [33], DT [32], BR [58], P [5]
and FHMM [34] for REFIT House 17, as presented in [5].

Finally, the proposed method reported F-measure 0.68 for the microwave disag-

gregation and was able to obtain better accuracy, compared to most of the methods

implemented in [5], by more than 30%, with the exception the P implementations of

DT and SGSP which obtained 0.79 and 0.77, respectively.

Furthermore, according to Table 4.17 and Figure 4.17, the DTW-based method was

able to achieve the highest estimation accuracy Acci for most appliances, besides freezer,

where P-DT [5, 32] and FHMM [34] reported 0.68 and 0.71 respectively, outperforming

the proposed algorithm, which obtained estimation accuracy of 0.65. The proposed

method was able to outperform the rest of the methods by more than 20%.
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Table 4.16: Classification Accuracy using FM for the proposed DTW-based NILM method, with benchmarks UGSP [4], SGSP [33],
DT [32], BR [58], P [5] and FHMM [34], for REFIT House 17, as presented in [5].

UGSP[4] SGSP[33] DT[32]

Apps DTW UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

FZ 0.52 0.39 0.40 0.6 0.47 0.42 0.78 0.56 0.53 0.80 0.74

K 0.82 0.79 0.61 0.84 0.81 0.77 0.96 0.62 0.63 0.95 0.37

MW 0.68 0.15 0.24 0.55 0.28 0.31 0.77 0.11 0.13 0.79 −

T 0.88 0.23 0.07 0.81 0.35 0.36 0.76 0.39 0.33 0.46 −

Note: Apps=Appliances, FZ=Freezer, K=Kettle, MW=Microwave, T=Toaster, WM=Washing Machine. Bold values represent the
method/methods with the highest obtained classification accuracy per appliance. BR is the base load removal method, proposed in [58]
and P is the pre-processing and refinement NILM method proposed in [5].
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Table 4.17: Estimation Accuracy using Acci for the proposed DTW-based NILM method, with benchmarks UGSP [4], SGSP [33], DT
[32], BR [58], P [5] and FHMM [34], for REFIT House 17, as presented in [5].

UGSP[4] SGSP[33] DT[32]

Apps DTW UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

FZ 0.65 0.04 0.43 0.64 0.21 0.26 0.63 0.26 0.21 0.68 0.71

K 0.90 0.12 0.66 0.79 0.32 0.31 0.80 0.43 0.43 0.77 0.20

MW 0.68 0.47 0.23 0.55 0.47 0.54 0.55 0.59 0.57 0.61 −

T 0.88 0.37 0.23 0.80 0.42 0.39 0.81 0.54 0.50 0.71 −

Note: Apps=Appliances, FZ=Freezer, K=Kettle, MW=Microwave, T=Toaster. Bold values represent the method/methods with the
highest obtained estimation accuracy per appliance. BR is the base load removal method, proposed in [58] and P is the GSP based
pre-processing and refinement method proposed in [5].
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Figure 4.17: Performance evaluation and Acci for the proposed DTW-based NILM
method (Table 4.17) with benchmarks UGSP [4], SGSP [33], DT [32], BR [58], P [5]
and FHMM [34] for REFIT House 17, as presented in [5].

For estimating the kettle operation, the proposed method was able to obtain ac-

curacy of 0.9, which is more than 10% higher compared to the Acci reported in [5].

Similarly, accuracy of 0.68 was reported for the proposed method for the case of the

microwave, higher than all the methods presented in [5], but only by a small percentage.

Finally, the proposed method was able to outperform all methods in [5] for estimating

the toaster’s consumption, as it was able to achieve Acci of 0.88, which was more than

30% compared to most of the presented methods in [5].

Figure 4.18 presents the disaggregation results as a percentage of contribution to

the total aggregate load and Figure 4.19 shows the ground truth load contribution,

obtained using the data from the individual monitors, available in the REFIT dataset

[2, 3]. Similarly, with what has been discussed in the previous case studies, for any

appliances that have not been disaggregated, their contribution to the aggregate load

has been included in the “unknown”.
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Figure 4.18: Disaggregation load contribution using the proposed DTW-based NILM
method, as percentage load contribution per appliance relative to the aggregate load,
for House 17 from REFIT dataset.

Both fridge-freezer and washing machine, that were not disaggregated using the

proposed method, are included in Figure 4.19, in order to show the actual contribution

of the specific appliances with respect to the total consumption, which accounts for 7%

and 2% respectively. The DTW disaggregation classified those appliances contribution

under the unknown appliances, which can explain partially the 20% difference between

the reported unknown contribution using the proposed method and the actual unknown

contribution. Another reason, that contributed significantly, was that the freezer

contribution was only estimated at 6%, while the actual freezer contribution was 14%.

For both kettle and toaster, it was in line with the actual consumption contribution

reported from the IAMs, while microwave was estimated at < 1%, compared to the

ground truth 1%.
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Figure 4.19: Ground truth load contribution, as percentage load contribution per
appliance relative to the aggregate load, for House 17 from REFIT dataset.

To conclude the case study for the specific house, the proposed method was able

to obtain higher or at least comparable classification and estimation accuracy for most

appliances, and was able to outperform most of the methods in [5] for those appliances.

In terms of load contribution, the DTW-based method was able to estimate accurately

the majority of the appliances, with the exception of the freezer, where the algorithm

underestimated the contribution, due to the increased non-classified freezer operations.

With respect to the fridge-freezer and washing machine, as already discussed, the

proposed algorithm was not able to extract appliance signatures, therefore disaggregate

the appliances from the aggregate load.



4.5. Overall Performance Evaluation 117

4.5 Overall Performance Evaluation

This section focuses on evaluating the overall performance of the proposed unsupervised

DTW-based method with benchmarks using the methods presented in [5] and any

advantages and limitations that were observed during the disaggregation process with

the proposed method. Firstly, Table 4.18, presents the overall classification accuracy

using F1micro, as defined in equation 2.6, which calculates the micro-average using the

total values of TP , FP and FN for all classified appliances.

Table 4.18: Overall Classification Accuracy using F1micro, as defined in equation 2.6,
with benchmarks P-SGSP [5, 33], P-UGSP [4, 5] and P-DT [5, 32], as presented in
[5]. DTW presents the overall accuracy for only the disaggregated appliances, whereas
m-DTW is accounting for the missing operations of the appliances that where not
disaggregated using DTW, but were present in the disaggregation using the methods
in [5].

Datasets REDD REFIT

NILM Methods House 1 House 2 House 2 House 17

DTW 0.79 0.80 0.77 0.68

m-DTW 0.49 0.80 0.77 0.51

P-SGSP 0.69 0.73 0.61 0.62

P-UGSP 0.67 0.72 0.59 0.59

P-DT 0.70 0.68 0.59 0.60

The proposed algorithm was able to disaggregate the same appliances with the

benchmark methods for both house 2 in REDD and REFIT, but, as already discussed,

was not able to obtain signatures and therefore classify bathroom GFI, lighting and

oven for house 1 in REDD and fridge-freezer and washing machine for the case of house

17 in REFIT. Therefore, in addition to the reported overall classification accuracy

obtained by the disaggregated appliances using DTW, Table 4.18 and Figure 4.20,

which represents graphically the results presented in the table, include the m-DTW,

which shows the accuracy by taking into account all the missing operations of the

non-disaggregated appliances, that were successfully classified in [5].



118 Analysis of proposed DTW-based Methodology

REDD H1 REDD H2 REFIT H2 REFIT H17

Houses

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
1

m
ic

ro
DTW

m-DTW

P-SGSP

P-UGSP

P-DT

Figure 4.20: Overall classification performance evaluation using F1micro for the
proposed DTW-based NILM method, as presented in Table 4.18, with benchmarks
P-SGSP [5, 33], P-UGSP [4, 5], P-DT [5, 32], HMM [35], for Houses 1 and 2 from
REDD dataset [1] and Houses 2 and 17 from REFIT [2, 3], as presented in [4, 33]. m-
DTW presents the overall performance by taking into account the FN of the appliances
that were disaggregated in [5] but not using the proposed DTW.

In general, the proposed method was able to obtain the highest overall classification

accuracy for house 2 in both REDD and REFIT dataset, with 0.8 and 0.77 respectively.

For house 1 from the REDD dataset, when reporting only the classified appliances,

DTW was able to outperform the methods in [5], but for the fair comparison, when

taking into account the m-DTW results, it only obtained 0.49, which is on average less

than 20% compared to the other methods. For the case of bathroom GFI, the proposed

method was “confusing” the events as microwave. Note that the signatures that were

corresponding to the bathroom GFI operation, were removed during the automated

labelling using the IAMs data.

For house 17 from the REFIT dataset, the proposed unsupervised DTW-method,

obtained accuracy of 0.68 and 0.51, when taking into account the missing fridge-freezer

and washing machine. The m-DTW accuracy is lower compared to the performance of
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the methods presented in [5], but only by on average 10%.

Furthermore, the proposed method reported high classification and estimation ac-

curacy for the kitchen appliances, namely kettle, toaster and microwave, for most of

the houses in REDD and REFIT dataset. Only the high consuming washing state of

both dishwasher and washing machine was obtained using the proposed method, which

resulted in higher recall values, affecting the reported FM accuracy and underestimation

of the consumed power. Specifically, for house 2 in the REFIT dataset, the DTW-based

method had a difficulty in separating the dishwasher and washing machine operation,

as the washing state of both reported similar average consumption and duration.

For the majority of the houses, the proposed method has shown classification

accuracy for fridge/fridge-freezer more than 0.65, with the exception of the house 17

in REFIT, were fridge-freezer was not disaggregated and the reported accuracy for the

freezer was 0.52, which was still comparable to most of the methods in [5], as discussed

in detail throughout Section 4.4.2.

Although the overall performance of the proposed DTW-based method was sat-

isfactory compared to the methods presented in [5], it has been observed that the

proposed methods had shown increased computational complexity. This limitation is

partly caused by the iterative removal of the recognised load from the aggregated data,

in order to perform classification of the lower consuming appliances. Furthermore,

the DTW classification performs a point to point comparison in order to minimise the

distance, and find the optimal solution. During the testing phase, the proposed method

was comparing each of the obtained events with all the available appliance signatures

available in the library. On average for the REDD dataset, the algorithm required 3

hours in order to create the library of appliance signatures and testing more than 10

hours, which was higher for the case of the REFIT data, where the data are reported

on average every 8sec. Therefore, it is important to investigate ways of addressing the

computational complexity and optimise the disaggregation process.
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4.6 Summary

The aim of this chapter was to implement the DTW-based algorithm, proposed in

Chapter 3, and evaluate its performance with benchmarks to various state-of-the-

art NILM algorithms. The algorithm was implemented and tested using REDD [1],

downsampled to 1min, and REFIT [2, 3] datasets, and the obtained results were

compared to various state-of-the-art NILM methods, namely DT [32], supervised GSP,

[33], unsupervised GSP [4], HMM [35] and FHMM available in NILMTK toolbox [34],

as presented in the works of [4, 5, 33].

The performance of the proposed method was evaluated in terms of classification

accuracy using F-measure (FM ) and estimation accuracy using Acci per appliance.

The normalised total power consumption estimation error (TER), proposed in [5], was

reported for house 1 from REDD and house 2 from REFIT, in order to compare with the

error obtained by the methods used in [5]. Furthermore, the consumption contribution

of the obtained disaggregation were presented with regards to the actual appliance

contribution, as obtained using the individual monitors.

The proposed method was able to achieve high classification and estimation accuracy

for most houses and appliances, with similar or better performance than most of the

proposed methods in [5]. For the appliances, where it obtained lower accuracy, the

proposed method was in general outperformed by the methods implemented in [5],

using the pre-processing and refinement method P proposed by the authors of the same

work.

By evaluating the overall classification accuracy, the proposed NILM method was

able to obtain better results in two houses (house 2 in both REDD and REFIT), but

the reported accuracy was lower for the rest, as the proposed method was not able to

disaggregate all the appliances presented in [5].

Furthermore, the proposed algorithm has shown high computational complexity,

which for the case of online and real time disaggregation is a great limitation. Therefore,

it is essential to identify methods that would optimise the original proposed method in

terms of complexity, event detection and classification. For this purpose, Chapter 5 will

present a scheme using a variation of the DTW-based method for creating the library

of appliance signatures combined with k-means for classification and will evaluate the



4.6. Summary 121

performance of the original and the optimised approach in terms of both accuracy and

computational complexity.





Chapter 5

Optimised DTW Disaggregation

5.1 Introduction

In Chapter 4, an unsupervised method has been proposed for load disaggregation using

solely DTW for classification, after the creation of the appliance signatures library using

the same algorithm. The method was able to obtain on average good performance in

terms of classification and estimation accuracy, comparable to most of the methods

used for benchmarking, but inevitably incurred high computational complexity due to

the exhaustive distance comparison between the library signatures and the acquired

appliance events. DTW distance comparison is employed to perform classification and

the step-by-step removal of the already classified load from the aggregate data, in order

to continue disaggregating the remaining load.

For this purpose it has been decided to investigate methods, could be used in

conjunction with DTW, to leverage the performance of DTW-based algorithm but

reduce its complexity, in particular the classification step. k-means and its variations

are one of the most commonly used methods of clustering and has applications in

various fields and, as already discussed in Chapter 2, has been successfully used in

different NILM approaches for either training or disaggregation. As a method, it offers

fast performance and can be used for unsupervised learning.

5.1.1 k-means Background

k-means is commonly used for clustering and classification for various research problems,

as it provides both semi-supervised and unsupervised learning. Throughout the NILM

background, as seen in Chapter 2, many researchers have incorporating k-means and its

variations for various purposes. Hassan et al. [87] have applied k-means to the obtained

features in order to cluster the features and label the events. In both [117, 118], the

123
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authors have implemented k-means in the form of supervised clustering in order to

reduce the training size of the SVM method used for classification. Gonçalves et al.

[154] have used a genetic k-means in order to acquire the representative appliance

clusters automatically.

More recently, Kong et al. [176] have applied an iterative k-means for identifying

the hidden states of HMM and have performed disaggregation of the household load

using segmented integer quadratic constraint programming. In the context of DTW,

as already mentioned in 3.3, DTW was combined with k-means as a distance measure

in [170], instead of the use of the Euclidean distance, for clustering load profiles of

electricity customers.

5.2 Unsupervised Combined DTW and k-means Method

The proposed combined DTW and k-means method, referred as DTW+kM is following

the same steps as discussed in Chapter 4, namely data pre-processing, event detection,

classification via clustering and performance evaluation. During data pre-processing

the same approach, as discussed in Section 3.4.1, has been used. The following steps of

event detection, feature extraction and classification via clustering and any differences

in their approaches will be presented in more detail in the following sections.

5.2.1 Event Detection and Feature Extraction for the Combined DTW+

kM Method

Event detection follows the same procedure as defined in Algorithm 3.1 during the

implementation of the original proposed DTW method in Chapter 4. For optimisation

of the computational complexity, it has been decided to obtain the rising ls and falling

edges le of the possible appliance events, without iterative change of threshold W ,

defined in equation 3.10, and removal of the already detected events from the aggregate

load. Parameter C was set at 20% of the detected rising edge, similarly with Chapter

4, for detected load of ≤ 300 watt, which represents lower consuming appliances, and

5% of the rising edge for the rest of the detected load.

Similarly, feature extraction is performed using the steps presented in Algorithm

5.1, in order to obtain the matrix of extracted features E. The algorithm uses the
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aggregate data and the variations that occur between the two points, as long as there

are |∆pt| < C, where t = ls + 1, . . . , le − 1. As the events are not obtained through the

iterative removal of the load, when this condition is not satisfied, the algorithm forward

fills the missing event values by interpolating between the last obtained power value

and the value of the closing edge. For every feature extracted the algorithm can obtain

the average power of each extracted event, in the form of a vector average, which will

be used during the disaggregation using the k-means clustering method.

Algorithm 5.1 Feature Extraction: For a given set of events and proposed DTW-based
method, return extracted features.

function Feature Extraction(DTWmethod, Event, p)
for k = 1 : P do

E(k, :) = ∆p(Event(k, 1) : Event(k, 2))
average(k) = average(E(k, :))

end for
return E, average

end function

5.2.2 Disaggregation using the Combined DTW+kM Method

The proposed DTW+kM method creates the appliance signatures library using the

same process as the DTW method using the E features extracted as found in 5.1.

Accordingly, DTW pattern matching is following the same process as described in

Chapter 3, shown algorithmically in 3.3. In addition to the DTWLIB, which represents

the library of the appliance signatures, the algorithm returns the number of signatures

available in the final library numcluster and the mean of each signature in the form

of a vector centroid, which will be used to initialise k-means during disaggregation of

the test aggregate load data in terms of number of clusters and centroids.

DTW is able to obtain a library of signatures, without the previous knowledge of

both the number and type of appliances present in the aggregate load and therefore it

can automatically provide the number of clusters, that can be used in k-means. Other-

wise the user would have to select them manually, based on the number of appliances,

obtained through the IAMs or house surveys, resulting in a supervised implementation

of k-means, which was not the desired outcome of this thesis. Furthermore, the process

of creating the library using DTW method can be found in Algorithm 5.2.
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Algorithm 5.2 Appliance Library Creation: Using the extracted features E create the
library of appliance signatures.

function LibraryCreation(E) ▷ Where E found in Algorithm 3.2
DTWLIB = []
centroid = []
for k = 1 : R do

i = 0
for l = 0 : |DTWLIB| do

if DTW (E(k, :), DTWLIB(i, :)) ≥ DTWThr then
i + +

end if
end for
if i == |DTWLIB| then

DTWLIB = DTWLIB ∪ E(k, :)
centroid(i)=average(DTWLIB(i))

end if
end for
return DTWLIB, numcluster = numrows(DTWLIB), centroid

end function

k-means is performing clustering by using the average power consumption average(i)

per event i, and is initialised using the centroids centroid obtained through DTW

method for creating the DTWLIB, as seen in Algorithm 5.2. The number of clusters

is defined by the number of unique signatures available in each library numcluster.

Algorithm 5.3 shows the inputs and outputs during the k-means clustering. KMEANS

function performs clustering and returns clusters which are the cluster indices of each

event, the new centroids newcentroid and the distance matrix Distance which shows

the distance between each event and the relevant centroid.

Algorithm 5.3 k-means clustering.

function kmeans(average,numclusters,centroid)
return clusters,newcentroid, Distance

end function

Algorithm 5.4 shows the classification of the disaggregated aggregate load via clus-

tering using the DTW+kM method. As already discussed, after event detection and

feature extraction, k-means is initialised using the centroids from DTWLIB and the

number of signatures, and performs clustering for the average value of each identified fea-

tures. After the clustering is performed, the algorithm compares the distance between

of each clustered observation and if the distance Distance(k) ≤ W (i), the algorithm

returns the classified event as then it outputs the event classified as cluster(k). If this
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is not true for any of the clusters the event is labeled not classified. The distance check

is performed in order to ensure that even though we use the average consumption of

its event, the distance of the clustered events and the relevant centroid is still less than

the threshold C.

Algorithm 5.4 Disaggregation: Perform clustering on the new collected aggregate
load measurements p using the DTW+kM method.

function Disaggregation(p(TestStart:TestEnd),centroid,numclusters, M))
Mk = []
for i = 1 : M do

Mk = [Mki]
Calculate W (i) with (3.10) using Mk
EventDisaggregation=EventDetection(p(TestStart : TestEnd),W (i))
[EDisaggregation, averageDisaggregation]=FeatureExtraction(EventDisaggregation, p(TestStart :

TestEnd))
[clusters,newcentroid,Distance]=kmeans(averageDisaggregation,numclusters,centroid)
for k = 1 : numclusters do

if Distance(k) ≤ W (i) then
classified(k) = cluster(k)

else
notclassified

end if
end for
Output classified and notclassified

end for
end function

DTW+kM method is an unsupervised NILM approach, as it performs clustering

of unlabelled aggregate load measurements. The library of appliance signatures is

obtained using historical unlabelled aggregate load measurements, as in Chapter 3. The

number of clusters and the centroids used in order to initialise k-means, are obtained

through the library, and not through a priori knowledge of the appliances operating in

each house. Post-labelling is used in order to match the disaggregation results to the

relevant appliance using the IAMs data.

5.3 Unsupervised Combined DTW and k-means Method

using DTW Refinement

The combined scheme using the DTW and k-means with DTW refinement, performs

classification following the procedure presented in Algorithm 5.5. After k-means per-

forms the initial clustering and classification, the DTW refinement is performing pattern
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matching for all the events that were not classified, due to the distance condition. The

pattern matching using the refinement method is performed in a similar manner as the

process explained in Chapter 3 for the original DTW method, with the exception that

it does not remove the classified event operation from the aggregate load.

Algorithm 5.5 Disaggregation: Perform pattern matching using DTW on the non-
classified classified aggregate load measurements p.

function Disaggregation(p(TestStart:TestEnd), DTWLIB, M))
Mk = []
for i = 1 : M do

Mk = [Mki]
Calculate W (i) with (3.10) using Mk
EventDisaggregation=EventDetection(p(TestStart : TestEnd),W (i))
[EDisaggregation, averagetest]=FeatureExtraction(Method,
EventDisaggregation, p(TestStart :

TestEnd))
[clusters,newcentroid,Distance]=kmeans(averageDisaggregation,numclusters,centroid)
for k = 1 : numclusters do

if Distance(k) ≤ W (i) then
classified(k) = cluster(k)

else
notclassified
for j = 1 : NumberOfRowsInEDisaggregation do

D = tag(DTWClass(EDisaggregation(j, :),DTWLIB))
classified1(j) = D

end for
end if

end for
Output classified and classified1

end for
end function

It is important here to note that the DTW refinement can be performed for the case

of the events that were falsely identified as an appliance, after the initial comparison of

the classified events to the ground truth operations of the IAMs.

Similarly to the DTW+kM method, kDTW method is an unsupervised NILM ap-

proach, as it performs disaggregation by only using unlabelled aggregate measurements

and it creates the relevant library of appliance signatures using historical unlabelled

aggregate load measurements. Pattern matching is performs via an optimised search

of the library of appliance signatures, where it only compares new event the signa-

tures with similar average consumption. Post-labelling is used to match the obtained

appliance activity to the corresponding appliance using the IAMs data.
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5.4 Performance Evaluation of the Proposed Methods

5.4.1 Experimental Setup

The experiments were run on a Toshiba Satellite Intel(R) Core(TM) i3-3110M CPU

@2.40GHz with 4GB RAM. Matlab 2016b was used for the implementation and the

execution of the proposed algorithm.

Similarly with Chapter 4, houses 1, 2 and 6 from REDD dataset [1] and houses 2 and

17 from REFIT [2, 3] have been used for the evaluation of the methods proposed in the

current chapter. The periods used for creating the library of the appliance signatures

for each house were the same, as discussed in Section 4.1.

The same performance evaluation metrics have been used with regards to classifi-

cation and estimation accuracy, in line with those applied in Chapter 4. Furthermore,

the obtained performance of the proposed DTW+kM and kDTW methods have been

compared to that of the DTW-based method, proposed in Chapter 4.

5.4.2 Performance Evaluation using REDD Dataset

For the implementation of the proposed methods of this chapter, the same downsampled

version (1min) of the REDD dataset has been used, in order to avoid any bias.

5.4.2.1 Disaggregation Case Study using House 1 from REDD Dataset

The disaggregation of house 1 from REDD dataset [1] includes the same appliances

presented in Chapter 4, namely dishwasher, fridge, kitchen outlet, microwave, washer

dryer, as the two methods presented in this chapter were not able to obtain signatures

for bathroom GFI, electric heat, lighting and oven, which were reported in [5].

Table 5.1 shows the obtained TP , FP and FN values of the confusion matrix during

the disaggregation of house 1 from the REDD dataset [1] using the two combined k-

means and DTW methods, namely DTW+kM and kDTW.
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Table 5.1: Confusion Matrix for REDD House 1 using DTW+kM and kDTW.

TP FP FN

Apps DTW+kM kDTW DTW+kM kDTW DTW+kM kDTW

DW 0 6 0 0 32 26

F 156 156 24 24 56 56

KO 65 65 9 15 11 11

MW 61 61 13 13 21 21

Washer Dryer 46 46 2 2 22 22

Note: Apps=Appliances, DW=Dishwasher, F=Fridge, KO=Kitchen Outlet,
MW=Microwave. TP=True Positive, FP=False Positive, FN=False Negative.

Figures 5.1(a)-(b) and 5.2 show the comparison of classification accuracy using TP ,

FP , FN for the two proposed unsupervised NILM methods, DTW with k-means for

classification (DTW+kM) and the DTW combined with k-means and post-processing

refinement using DTW (kDTW), with respect to the original DTW-based method

during the disaggregation of house 1 from REDD dataset [1], based on the results

available in Tables 4.2 and 5.1.

According to the obtained results, the DTW+kM method was not able to classify

correctly any of the dishwasher operations, even the high consuming washing cycle, as

the average consumption value estimated from the algorithm was similar to the average

power of the appliance present in the kitchen outlet monitor. This has resulted in higher

FP values for kitchen outlet, as some of the missing dishwasher activity was misclassified

as kitchen outlet. The DTW refinement was able to correct the misclassification of

dishwasher, but was only able to identify the same operations as in the DTW-based

method.

For the rest of the appliances both DTW+kM and the implementation with the

DTW refinement were able to obtain the same classification results with the DTW-

based method, presented in Chapter 4, which means that the DTW refinement was not

able to further increase the classification accuracy.
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Figure 5.1: Classification accuracy using TP and FP for the proposed DTW+kM and kDTW methods, with respect the DTW-based
method from Chapter 4, during the disaggregation for House 1 from REDD dataset [1], as reported in Table 4.2 and 5.1.
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Figure 5.2: Classification accuracy using FN for the proposed DTW+kM and
kDTW methods, with respect the DTW-based method from Chapter 4, during the
disaggregation for House 1 from REDD dataset [1], as reported in Tables 4.2 and 5.1.

Table 5.2 shows the obtained classification accuracy for the two methods in terms

of precision, recall and FM . As the two methods were able to obtain the same disag-

gregation for most appliances as with the case of the DTW-based method, the average

precision was more than 80% and the relevant recall was more than 70%. Even for

the case of the kitchen outlet, where the DTW+kM method misclassified dishwasher

operations as kitchen outlet, the obtained precision was 81% compared to the 88%

obtained using the DTW method and the kDTW method, which is still more than 80%.

Furthermore, the two proposed methods were not able to increase the recall accuracy

reported during the DTW-based implementation, thus the obtained recall was more

than 70% for most appliances, with the exception of dishwasher, which was either not

disaggregated, for DTW+kM, or obtained the same recall as DTW, for the kDTW

refinement. Similarly, washer dryer reported the same recall 67% for all three methods.
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Table 5.2: Classification Accuracy using Precision, Recall and FM for REDD House
1 using the proposed DTW+kM and kDTW methods.

PR RE FM

Apps DTW+kM kDTW DTW+kM kDTW DTW+kM kDTW

DW − 1 − 0.19 − 0.32

F 0.87 0.87 0.74 0.74 0.80 0.80

KO 0.81 0.88 0.85 0.85 0.83 0.86

MW 0.82 0.82 0.74 0.74 0.78 0.78

WD 0.96 0.96 0.67 0.67 0.79 0.79

Note: Apps=Appliances, DW=Dishwasher, F=Fridge, KO=Kitchen Outlet,
MW=Microwave, WD=Washer Dryer. PR=Precision, RE=Recall, FM=F-Measure.

Table 5.3 shows the obtained classification accuracy using FM and estimation ac-

curacy using Acci of the DTW+kM and kDTW methods, with benchmarks the DTW-

based method proposed in Chapter 4. Figures 5.3(a)-(b) show the same results graphi-

cally, for visual comparison.

For FM , kitchen outlet reported 0.83 for DTW+kM method, which is only 3%

less compared to the 0.86 obtained using both original DTW-based and the kDTW

method, while for the rest of the appliances the corresponding FM was the same, besides

dishwasher for DTW+kM, where no classification was obtained.

In terms of estimation accuracy, Figure 5.3(b) shows that the performance of the

three proposed methods is the same for most appliances, while dishwasher, as already

discussed, was not disaggregated using DTW+kM, therefore no estimation accuracy

was obtained. Although in terms of classification, the proposed methods were overall

successful for most appliances, by observing the estimation accuracy, it is apparent

that the proposed methods were less accurate for estimating the consumed power per

appliance. In most cases this is the result of either overestimation or underestimation

of the power and the fact that the proposed methods can not estimate standby load or

the low consuming cycles for dishwasher and washer dryer.
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Table 5.3: Classification Accuracy using FM and Estimation Accuracy using Acci of
the proposed DTW+kM and kDTW methods, with benchmarks the proposed DTW-
based method in Chapter 4, for REDD House 1.

FM Acci

Apps DTW DTW+kM DTW DTW DTW+kM kDTW

DW 0.32 − 0.32 0.64 − 0.64

F 0.80 0.80 0.80 0.80 0.80 0.80

KO 0.86 0.83 0.86 0.74 0.74 0.74

MW 0.78 0.78 0.78 0.63 0.63 0.63

WD 0.79 0.79 0.79 0.52 0.52 0.52

Note: Apps=Appliances, DW=Dishwasher, F=Fridge, KO=Kitchen Outlet,
MW=Microwave, WD=Washer Dryer.

In Chapter 4, the normalised total power consumption estimation error (TER),

which has been proposed in [5], has been included, but, as it is apparent from the

obtained estimation accuracy presented in Figure 5.3(b), the TER error for most

appliances would be the exact same compared to the one obtain using the DTW-based

method, as reported in Table 4.5, with the exception of the DTW+kM method that

was not able to classify dishwasher, and therefore estimate its power consumption.

Figures 5.4(a)-(b) show the disaggregation results using the three methods proposed

in this thesis, as a percentage of consumption contribution with respect to the actual

consumption contribution of the operating appliances (Figure 5.5), using the individual

monitors available for house 1 in the REDD dataset [1]. Note that both DTW-based

method and the proposed method using the combined k-means and DTW scheme, with

the inclusion of the DTW refinement process, achieved almost identical disaggregation

results, which results to the same disaggregation contribution as a percentage of the ac-

tual load. The DTW+kM, as already discussed, was not able to identify any dishwasher

operations, as it was misclassified as kitchen outlet, due to the similarity of the average

washing cycle power consumption and the average consumption of the kitchen outlet.

Therefore the reported unknown consumption for the DTW+kM method was higher

by 2% and 25% compared to the unknown load obtained by the other two methods,

and the ground truth unknown consumption contribution, respectively.
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Figure 5.3: Performance evaluation using FM and Acci for the proposed DTW+kM and kDTW (Table 5.3) with benchmarks the
DTW-based method proposed in Chapter 4 for REDD House 1.
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Figure 5.5: Ground truth load contribution, as percentage of load contribution per
appliance relative to the aggregate load, for House 1 from REDD dataset.

To summarise, the methods proposed in this chapter were able to show similar

performance to the original DTW-based method in Chapter 4 for most appliances, apart

from dishwasher, where the DTW+kM method was not able to classify any dishwasher

operation, which was successfully addressed when implementing the method using the

DTW refinement. In general, as reported in both this chapter and Chapter 4, the

proposed methods were able to report good performance in terms of classification for

most of the appliance minus the dishwasher.

5.4.2.2 Disaggregation Case Study using House 2 from REDD Dataset

For the case of house 2 from REDD dataset [1], similarly with Chapter 4, the appliances

that the proposed methods were able to disaggregate were the following: dishwasher,

fridge, two kitchen outlets and microwave. The proposed methods were not able to

disaggregate washer dryer, as the original proposed method in Chapter 4, therefore the

presented results include only the appliances disaggregated using the proposed DTW-
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based method for both classification and estimation accuracy.

Table 5.4 shows the obtained TP , FP and FN values of the confusion matrix during

the disaggregation of house 2 from the REDD dataset [1] using the two combined k-

means and DTW methods, namely DTW+kM and kDTW.

Table 5.4: Confusion Matrix for REDD House 2 using DTW+kM and kDTW.

TP FP FN

Apps DTW+kM kDTW DTW+kM kDTW DTW+kM kDTW

DW 1 2 0 0 8 7

F 182 213 53 53 67 36

KO1 12 13 2 0 6 5

KO2 56 56 4 4 20 20

MW 30 31 1 0 8 7

S 9 10 15 15 1 0

Note: Apps=Appliances, DW=Dishwasher, F=Fridge, KO=Kitchen Outlet,
MW=Microwave, S=Stove. TP=True Positive, FP=False Positive, FN=False Nega-
tive.

Figures 5.6(a)-(b) and 5.7 present the classification results obtained using TP ,

FP , FN for the two proposed unsupervised NILM methods, DTW with k-means

for classification (DTW+kM) and the DTW combined with k-means post-processing

refinement using DTW (kDTW) during the disaggregation of house 2 from REDD

dataset [1], based on the results available in Tables 4.6 and 5.4.

In terms of correctly identified appliances, the best performance was obtained using

kDTW, which includes the DTW refinement, and the original DTW-based method.

During the classification of the fridge, the DTW+kM method was able to correctly

identify ∼ 15% less true operations compared to those identified using the DTW-based

method. kDTW was able to improve the performance in terms of correctly classified

events, and was equivalent to the performance of the DTW-based method presented in

Chapter 4. Both DTW+kM and kDTW were able to report lower FP values for fridge,

kitchen outlet 2 and stove.
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Figure 5.6: Classification accuracy using TP and FP for the proposed DTW+kM and kDTW methods, with respect the DTW-based
method from Chapter 4, during the disaggregation for House 2 from REDD dataset [1], as reported in Table 4.6 and 5.4.
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Figure 5.7: Classification accuracy using FN for the proposed DTW+kM and
kDTW methods, with respect the DTW-based method from Chapter 4, during the
disaggregation for House 2 from REDD dataset [1], as reported in Table 4.6 and 5.4.

Table 5.5 shows the obtained classification accuracy for the DTW+kM and kDTW

methods, in terms of precision, recall and FM . In terms of precision, the two proposed

methods were able to report on average more than 80%, with the exception of the

stove, were DTW+kM obtained 37% and kDTW 40%, which is slightly better than

36%, which was reported for the proposed DTW-based method in Chapter 4, as shown

in Table 4.6. The proposed methods of this chapter have shown higher precision for

kitchen outlet 2 at 93% compared to the 86% for the original proposed method in

Chapter 4.

Table 5.6 shows the obtained classification accuracy using FM and estimation ac-

curacy using Acci of the DTW+kM and kDTW methods, with benchmarks the DTW-

based method proposed in Chapter 4. Figures 5.8(a)-(b) present the obtained results

graphically, for visual comparison.
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Table 5.5: Classification Accuracy using Precision, Recall and FM for REDD House
2 using the proposed DTW+kM and kDTW methods

PR RE FM

Apps DTW+kM kDTW DTW+kM kDTW DTW+kM kDTW

DW 1 1 0.11 0.22 0.20 0.36

F 0.77 0.80 0.73 0.85 0.75 0.82

KO1 0.86 1 0.67 0.72 0.75 0.84

KO2 0.93 0.93 0.74 0.74 0.82 0.82

MW 0.97 1 0.79 0.82 0.87 0.90

S 0.37 0.40 0.90 1 0.52 0.57

Note: Apps=Appliances, DW=Dishwasher, F=Fridge, KO=Kitchen Outlet,
MW=Microwave, S=Stove. PR=Precision, RE=Recall, FM = F −Measure.

The DTW+kM method reported the lowest classification accuracy compared to

the other two methods, with the exception of the kitchen outlet 2, where it was able

to outperform the original DTW-based method, obtaining FM of 0.82. In general,

the kDTW method, which uses the DTW refinement, was able to improve the FM

obtained using the DTW+kM method for most appliances, with the exception of the

kitchen outlet 2, where it reported the same accuracy.

The refinement method has shown similar or slightly better performance compared

to the original method. More specifically, the refinement method was able to increase

F-measure, for both kitchen outlet 2 and stove, by 3% and 4% respectively, compared

to the method proposed in Chapter 4.

In terms of estimation accuracy Acci, as seen in Figure 5.8(b), the DTW+kM

method was able to obtain the same accuracy reported from the DTW-based method

in Chapter 4, for most appliances, with the exception of the dishwasher and the stove.

For these appliances, this approach reported 0.56 and 0.73 respective, 5% and 2% less

compared to kDTW and the original DTW-based method. The DTW refinement was

able to improve this performance and obtained the same estimation accuracy as the

DTW-based method. In general, it is apparent, that the kDTW method, was not able

to further improve the performance of the DTW+kM method, and outperform the

estimation accuracy reported by the method presented in Chapter 4.
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Table 5.6: Classification Accuracy using FM and Estimation Accuracy using Acci of
the proposed DTW+kM and kDTW methods, with benchmarks the proposed DTW-
based method in Chapter 4, for REDD House 2.

FM Acci

Apps DTW DTW+kM DTW DTW DTW+kM kDTW

DW 0.36 0.20 0.36 0.61 0.56 0.61

F 0.82 0.75 0.82 0.69 0.69 0.69

KO1 0.84 0.75 0.84 0.41 0.41 0.41

KO2 0.79 0.82 0.82 0.81 0.81 0.81

MW 0.90 0.87 0.90 0.64 0.64 0.64

S 0.53 0.52 0.57 0.75 0.73 0.75

Note: Apps=Appliances, DW=Dishwasher, F=Fridge, KO=Kitchen Outlet,
MW=Microwave, S=Stove.

Figures 5.9(a)-(b) show the disaggregation results using the three proposed meth-

ods as a percentage of consumption contribution in comparison to the ground truth

consumption contribution of the disaggregated appliance, shown in Figure 5.10.

Note that both DTW-based method and kDTW method, which combines k-means

and DTW scheme, and performs a DTW refinement process, achieved the same dis-

aggregation results. The performance of the proposed DTW+kM is similar to the

proposed DTW-based method and the kDTW approach, in terms of the estimation

of the consumption contribution per appliance. Although, the DTW+kM method

reported higher number of missing fridge operations, the estimated contribution was

only ∼ 1% less compared to the corresponding contribution of the other two methods.

The contribution of the unknown load was higher at 59%, only 2% more than the other

methods, whereas the ground truth consumption of the unknown was 42%.

In summary, the DTW refinement was able to improve the classification performance

of the DTW+kM method for most appliances, and reported equivalent accuracy to

the proposed DTW-based method in Chapter 4. In terms of estimation accuracy, all

methods reported similar performance for most appliances. The kDTW method have

proven effective only for the case of the dishwasher and the stove, where it was able to

improve the performance of the DTW+kM approach.
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Figure 5.8: Performance evaluation using FM and Acci for the proposed DTW+kM and kDTW (Table 5.6) with benchmarks the
DTW-based method proposed in Chapter 4 for REDD House 2.
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Figure 5.9: Disaggregation results, as percentage of load contribution per appliance relative to the aggregate load, for House 2 from
REDD dataset using the DTW based method, proposed in Chapter 4, and the DTW+kM and kDTW methods.
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Figure 5.10: Ground truth load contribution, as percentage of load contribution per
appliance relative to the aggregate load, for House 2 from REDD dataset.

5.4.2.3 Disaggregation Case Study using House 6 from REDD Dataset

For the case of house 6 from REDD dataset [1], similarly with Chapter 4, the appliances

that the proposed methods were able to disaggregate were the following: air condition-

ing, bathroom GFI, fridge, kitchen outlet and stove. The methods proposed in this

chapter, similarly to the original DTW-based method in Chapter 4, were not able to

obtain signatures and therefore classify electronics, electric heater and the reported

kitchen outlet in [4, 33].

Table 5.7 shows the obtained TP , FP and FN values of the confusion matrix during

the disaggregation of house 6 from the REDD dataset [1] using the two combined k-

means and DTW based, namely DTW+kM and kDTW.
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Table 5.7: Confusion Matrix for REDD House 6 using DTW+kM and kDTW.

TP FP FN

Apps DTW+kM kDTW DTW+kM kDTW DTW+kM kDTW

AC 16 27 0 0 15 4

B 1 3 2 2 2 0

F 124 129 53 18 51 46

KO1 0 2 0 0 2 0

S 4 5 2 0 1 0

Note: Apps=Appliances, AC= Air Conditioning, B=Bathroom GFI, F=Fridge,
KO=Kitchen Outlet, S=Stove. TP=True Positive, FP=False Positive, FN=False
Negative.

Figures 5.11(a)-(b) and 5.12 show the classification results obtained using TP ,

FP , FN for the two proposed unsupervised NILM methods, DTW with k-means

for classification (DTW+kM) and the DTW combined with k-means post-processing

refinement using DTW (kDTW) during the disaggregation of house 6 from REDD

dataset [1], based on the results available in Tables 4.9 and 5.7.

In terms of correctly identified appliances, the best performance was obtained using

kDTW, which includes the DTW refinement, and the original DTW-based method.

During the classification of the AC, the DTW+kM method was able to correctly

identify ∼ 40% less true operations compared to those identified using the DTW-based

method. kDTW was able to improve the performance of the DTW+kM method for

all disaggregated appliances in terms of true positive values, and generally performed

equivalently to the original DTW-proposed method, with the exception of fridge, where

it was able to obtain higher TP values from the original DTW method. The DTW+kM

method reported higher falsely classified events for the case of the fridge, compared to

the other methods and it was not able to correctly identify any operation for the kitchen

outlet 1.
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Figure 5.11: Classification accuracy using TP and FP for the proposed DTW+kM and kDTW methods, with respect the DTW-based
method from Chapter 4, during the disaggregation for House 6 from REDD dataset [1], as reported in Table 4.9 and 5.7.
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Figure 5.12: Classification accuracy using FN for the proposed DTW+kM and
kDTW methods, with respect the DTW-based method from Chapter 4, during the
disaggregation for House 6 from REDD dataset [1], as reported in Table 4.9 and 5.7.

Table 5.8 shows the obtained classification accuracy for the DTW+kM and kDTW

methods, in terms of precision, recall and FM .

In terms of precision, the kDTW method was able to obtain on average more than

90%, with the exception of the bathroom GFI, where the reported precision accuracy

was 60%, while the DTW+kM method was only able to obtain 33% for the same

appliance. For the rest of the appliances, DTW+kM obtained more than ∼ 70%

for most appliances. Similarly, the kDTW has shown an improved performance with

regards to recall accuracy compared to the implementation without the refinement, and

was able to acquire more than 80% for most appliances, with the lowest recall being at

0.74 for the fridge.
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Table 5.8: Classification Accuracy using Precision, Recall and FM for REDD House
6 using the proposed DTW+kM and kDTW methods.

PR RE FM

Apps DTW+kM kDTW DTW+kM kDTW DTW+kM kDTW

AC 1 1 0.51 0.87 0.67 0.93

B 0.33 0.60 0.33 1 0.33 0.75

F 0.70 0.88 0.71 0.74 0.70 0.80

KO1 − 1 − 1 − 1

S 0.67 1 0.80 1 0.73 1

Note: Apps=Appliances, AC= Air Conditioning, B=Bathroom GFI, F=Fridge,
KO=Kitchen Outlet, S=Stove. PR=Precision, RE=Recall, FM=F-Measure.

Table 5.9 shows the obtained classification accuracy using FM and estimation ac-

curacy using Acci of the DTW+kM and kDTW methods, with benchmarks the DTW-

based method proposed in Chapter 4. Figures 5.13(a)-(b) present the obtained results

graphically, for visual comparison.

In general, the refinement method was able to improve the FM for all the disag-

gregated appliances, compared to the combined DTW and k-means method. Both the

original DTW-based and the kDTW methods were able to obtain on average classifi-

cation accuracy of more than 0.8, with the exception of the bathroom GFI, where the

kDTW obtained 0.75, outperforming both the DTW-based and the DTW+kM method,

which reported 0.67 and 0.33 respectively. Furthermore, the refinement method was

able to obtain better classification accuracy, compared to the original DTW-based

approach, for both fridge and stove, where it reported FM of 0.8 and 1 respectively.

For the same appliances, the method, proposed in Chapter 4, was able to obtain 0.79

and 0.91 respectively, which is lower by 1% and 9%.

Figure 5.13(b) shows the obtained estimation accuracy per appliance of the proposed

DTW+kM and kDTW methods in comparison to those results reported for the DTW-

based method in Chapter 4. It is apparent that the original DTW-based method and

the kDTW method were able to outperform the implementation of the combined DTW

and k-means scheme for all appliances, and they both reported the same estimation

accuracy.
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Table 5.9: Classification Accuracy using FM and Estimation Accuracy using Acci of
the proposed DTW+kM and kDTW methods, with benchmarks the proposed DTW-
based method in Chapter 4, for REDD House 6.

FM Acci

Apps DTW DTW+kM DTW DTW DTW+kM kDTW

AC 0.93 0.67 0.93 0.94 0.76 0.94

B 0.67 0.33 0.75 0.57 0.52 0.57

F 0.79 0.70 0.80 0.83 0.82 0.83

KO1 1 − 1 0.54 − 0.54

S 0.91 0.73 1 0.75 0.70 0.75

Note: Apps=Appliances, AC= Air Conditioning, B=Bathroom GFI, F=Fridge,
KO=Kitchen Outlet, S=Stove.

The DTW refinement method was able to improve the performance of the DTW+kM

method by almost 20% for the air conditioning and by less than 5% for the other

appliances. For kitchen outlet 1, both kDTW and the original DTW-based method

were able to estimate the consumption of the appliance.

Figures 5.14(a)-(b) present the disaggregation results of the proposed DTW+kM

and kDTW methods, as percentage of load contribution per appliance with regards to

the aggregate load, the corresponding result obtained using the DTW-based method

from Chapter 4 and the relevant ground truth consumption per appliances (Figure 5.15),

using the data from the IAMs as presented in the REDD dataset [1]. Both kDTW and

the original DTW-based method obtained the same results in terms of percentage load

contribution and thus Figure 5.14(b) is used for both cases.

According to Figure 5.14(a), the DTW+kM method shows only 21% consumption

contribution for air conditioning, which is more than 10% less than the actual contri-

bution, which is reported at 33%. The other methods overestimated the consumption

of air conditioning by by 3%. Furthermore, DTW+kM estimated the contribution of

the unknown load at 69%, which is more than 15% from the consumption estimation

obtained using the other methods, and 20% higher than the ground truth contribution

of the unknown appliances.
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Figure 5.13: Performance evaluation using FM and Acci for the proposed DTW+kM and kDTW (Table 5.9) with benchmarks the
DTW-based method proposed in Chapter 4 for REDD House 6.
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Figure 5.14: Disaggregation results, as percentage of load contribution per appliance relative to the aggregate load, for House 6 from
REDD dataset using the DTW based method, proposed in Chapter 4, and the DTW+kM and kDTW methods.
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Figure 5.15: Ground truth load contribution, as percentage of load contribution per
appliance relative to the aggregate load, for House 6 from REDD dataset.

In general, during the disaggregation of house 6 from REDD dataset [1], it was

observed that the DTW refinement method was able to improve for most appliances

both classification and estimation accuracy, performing on average better or at least

equivalent to the proposed method presented in Chapter 4.

5.4.3 Performance Evaluation using REFIT Dataset

The proposed DTW+kM and kDTW methods have been used for disaggregation of

houses 2 and 17 from the same clean version of the REFIT dataset [2, 3], without

removal of base load or noise, similarly with Chapter 4.
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5.4.3.1 Disaggregation Case Study using House 2 from REFIT Dataset

Similarly with Chapter 4, the same appliances were disaggregated using the proposed

DTW+kM and kDTW methods, namely dishwasher, fridge-freezer, kettle, microwave,

toaster and washing machine.

Table 5.10 shows the obtained TP , FP and FN values of the confusion matrix

during the disaggregation of house 2 from the REFIT dataset [2, 3] using the two

k-means and DTW methods, namely DTW+kM and kDTW.

Table 5.10: Confusion Matrix for REFIT House 2 using DTW+kM and kDTW.

TP FP FN

Apps DTW+kM kDTW DTW+kM kDTW DTW+kM kDTW

DW 0 9 0 5 44 35

FFZ 193 193 750 253 286 286

K 198 255 2 2 74 17

MW 168 239 65 65 80 19

T 35 56 10 10 33 12

WM 64 64 54 45 12 12

Note: Apps=Appliances, DW=Dishwasher, FFZ=Fridge-Freezer, K=Kettle,
MW=Microwave, T=Toaster, WM=Washing Machine. TP=True Positive, FP=False
Positive, FN=False Negative.

Figures 5.16(a)-(b) and 5.17 show the obtained classification accuracy with regards

to TP , FP , FN from the confusion matrix, based on the results presented in Tables

4.11 and 5.10. First and foremost, it can be observed that the DTW+kM method was

not able to classify correctly any dishwasher operation, while the kDTW method was

able to obtain equivalent results with the DTW-based method, as found in 4.11.

As already discussed in Chapter 4, dishwasher and washing machine have a similar

average power consumption for their washing cycle and as the k-means clustering was

implemented for clustering the average power of each detected event, for acquiring low

computational cost, it is no surprise that the method failed to distinguish the two

appliances. With the incorporation of the DTW refinement, the method was able to

obtain the same true events as in the case of the DTW-based method.
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Figure 5.16: Classification accuracy using TP and FP for the proposed DTW+kM and kDTW methods, with respect the DTW-based
method from Chapter 4, during the disaggregation House 2 from REFIT dataset [2, 3], as reported in Table 4.11 and 5.10.
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Figure 5.17: Classification accuracy using FN for the proposed DTW+kM and
kDTW methods, with respect the DTW-based method from Chapter 4, during the
disaggregation for House 2 from REFIT dataset [2, 3], as reported in Table 4.11 and
5.10.

In general, the refinement method was able to improve the correctly identified

operations for most appliance, and performed comparable to the original DTW method.

False positive values were similar for most appliances across the three methods, with

the exception of fridge-freezer, where both DTW+kM and kDTW reported high val-

ues. As the two proposed methods did not perform iterative removal of the already

detected appliance events during event detection, it has been observed that there was a

plethora of rising and falling edges that were occurring during the operation of higher

consuming appliances, that were falsely identified as fridge-freezer. During the original

implementation those instances were absorbed as a load variation of those appliances,

and removed from the load. The refinement method was able to reduce significantly

the number of FP values, but the reported number was still much higher compared to

the DTW-based method, found in Table 4.11.
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Table 5.11: Classification Accuracy using Precision, Recall and FM for REFIT House
2 using the proposed DTW+kM and kDTW methods.

PR RE FM

Apps DTW+kM kDTW DTW+kM kDTW DTW+kM kDTW

DW − 0.41 − 0.2 − 0.27

FFZ 0.2 0.43 0.4 0.4 0.27 0.41

K 0.99 0.99 0.73 0.94 0.84 0.96

MW 0.72 0.79 0.71 0.93 0.71 0.85

T 0.78 0.85 0.51 0.82 0.62 0.83

WM 0.54 0.59 0.84 0.84 0.66 0.69

Note: Apps=Appliances, DW=Dishwasher, FFZ=Fridge-Freezer, K=Kettle,
MW=Microwave, T=Toaster, WM=Washing Machine. PR=Precision, RE=Recall,
FM=F-Measure.

As a result, both methods obtained low precision accuracy for fridge-freezer, as

reported in Table 5.11, which presents the classification results for the two methods

with respect to precision, recall and FM . The refinement method was able to increase

precision by 20%, but still poor compared to the 98% obtained using the DTW-based

method. The overall precision for the rest of the appliances was comparable between

the methods, and dishwasher did not report any classification accuracy results for the

DTW+kM method, as it was not classified.

In terms of recall accuracy, both kDTW and DTW-based methods were able to

report more than 80% for most appliances, but as expected much lower values for

the dishwasher and fridge-freezer, where a substantial number of operations were not

classified correctly.

Table 5.12 shows the classification accuracy using FM , estimation accuracy using

Acci and TER (normalised total power consumption estimation error) of the proposed

DTW+kM and kDTW methods, with benchmarks the proposed DTW-based method

in Chapter 4. Figures 5.18(a)-(b) show graphically the classification and estimation

accuracy, using FM and Acci respectively.
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Table 5.12: Classification Accuracy using FM , Estimation Accuracy using Acci and TER of the proposed DTW+kM and kDTW
methods, with benchmarks the proposed DTW-based method in Chapter 4, for REFIT House 2.

FM Acci TER

Apps DTW DTW+kM DTW DTW DTW+kM kDTW DTW DTW+kM kDTW

DW 0.27 − 0.27 0.34 − 0.34 0.43 − 0.43

FFZ 0.61 0.27 0.41 0.69 0.63 0.63 0.70 0.73 0.73

K 0.96 0.84 0.96 0.91 0.88 0.91 0.019 0.031 0.019

MW 0.85 0.71 0.85 0.79 0.76 0.79 0.09 0.09 0.09

T 0.83 0.62 0.83 0.85 0.80 0.85 0.21 0.33 0.21

WM 0.69 0.66 0.69 0.73 0.73 0.73 0.42 0.42 0.42

Note: Apps=Appliances, DW=Dishwasher, FFZ=Fridge-Freezer, K=Kettle, MW=Microwave, T=Toaster, WM=Washing Machine.
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Figure 5.18: Performance evaluation using FM and Acci for the proposed DTW+kM and kDTW (Table 5.12) with benchmarks the
DTW-based method proposed in Chapter 4 for REFIT House 2.
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With respect to the classification accuracy FM , the DTW+kM approach reported

overall the lowest accuracy for all appliances and was not able to disaggregate the

dishwasher, as already discussed. The DTW refinement method was able improve the

performance, and reported the same classification accuracy as the original DTW-based

method for most appliances. The kDTW approach was outperformed by the DTW-

based method for the case of the fridge-freezer, where the former obtained 0.41 and the

latter 0.61.

Similarly with the classification accuracy, the DTW+kM method reported the

lowest estimation accuracy for most appliances, as seen in Figure 5.18(b), with the

exception of the washing machine, where it reported Acci of 0.73, the same as the

other two methods. The kDTW method was able to improve the performance reported

by the DTW+kM approach for most appliances, apart from the fridge-freezer and the

washing machine, where they reported the same accuracy. While the DTW refinement

was able to report higher estimation accuracy compared to the DTW+kM method, it

was not able to outperform the original DTW-based method. For the majority of the

appliances, both approaches obtained the same accuracy, while for the fridge-freezer

the DTW-based method outperformed the refinement approach by 6%.

Furthermore, Figure 5.19 reports the evaluation of the proposed method of this chap-

ter with benchmarks the DTW-based method proposed in Chapter 4, using normalised

total power consumption estimation error (TER), proposed in [5]. The proposed kDTW

and DTW methods from Chapter 4, reported the lowest TER estimation error for the

kettle, microwave and toaster, where the methods have shown high estimation accuracy

per appliance.

The kDTW approach was able to reduce the TER error for most appliances com-

pared to the DTW+kM method, with the exception of the fridge-freezer and the

washing machine, where both methods reported error of 0.73 and 0.42 respectively.

In general, the DTW refinement reported either the same or higher estimation error

compared to the DTW-based method, therefore it was not able to increase the overall

performance, which has been apparent through out this case study.
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Figure 5.19: Performance evaluation using TER for the proposed DTW+kM and
kDTW, with benchmarks the DTW-based method proposed in Chapter 4 for REFIT
House 2.

Figures 5.20(a)-(b) show the disaggregation results of the proposed DTW+kM and

kDTW NILM methods as percentage of load contribution per appliance with regards to

the aggregate load and the relevant ground truth consumption per appliances (Figure

5.21), available from the IAMs of the REFIT dataset [2, 3].

The kDTW method obtained equivalent disaggregation results with the original

DTW-based method, thus both are presented using Figure 5.20(b). As DTW+kM was

not able to classify and therefore estimate the consumption contribution of dishwasher,

it has reported unknown load contribution of 89%, which is 8% and 20% higher than

the estimated contribution for the other methods and the ground truth contribution.
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Figure 5.20: Disaggregation results, as percentage of load contribution per appliance relative to the aggregate load, for House 2 from
REFIT dataset using the DTW based method, proposed in Chapter 4, and the DTW+kM and kDTW methods.
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Figure 5.21: Ground truth load contribution, as percentage of load contribution per
appliance relative to the aggregate load, for House 2 from REFIT dataset.

In conclusion, the proposed DTW refinement was able to improve the performance

of the DTW+kM method, in terms of classification and estimation accuracy, and reduce

the normalised total estimation error for most appliances, and reported equivalent

results with the proposed method in Chapter 4. In general, lower performance was

reported for dishwasher and washing machine, where, due to the similarity of the

appliance signatures and their average consumption power, there were misclassifications

between the appliances and for the case of DTW+kM no classification of dishwasher.

Similarly, fridge-freezer disaggregation reported high falsely identified operations while

using the k-means based DTW methods, which can be explained by the acquisition of

similar events in terms of average consumption, which during the original implemen-

tation were treated as part of the higher consuming appliances operating at the same

time.
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5.4.3.2 Disaggregation Case Study using House 17 from REFIT Dataset

The final case study, as in Chapter 4, is focused on the disaggregation of house 17

from the REFIT dataset [2, 3]. The combined DTW and k-means methods will be

evaluated using the same appliances, as in the previous chapter, for reference, freezer,

kettle, microwave and toaster, as none of the methods was able to obtain signatures for

both washing machine and fridge-freezer, as discussed in Chapter 4.

Table 5.13 shows the obtained TP , FP and FN values of the confusion matrix

during the disaggregation of house 17 from the REFIT dataset [2, 3] using the two

k-means and DTW methods, namely DTW+kM and kDTW.

Table 5.13: Confusion Matrix for REFIT House 17 using DTW+kM and kDTW.

TP FP FN

Apps DTW+kM kDTW DTW+kM kDTW DTW+kM kDTW

FZ 169 169 2 2 353 353

K 209 209 80 80 12 12

MW 73 73 52 52 15 15

T 92 92 14 14 9 9

Note: Apps=Appliances, FZ=Freezer, K=Kettle, MW=Microwave, T=Toaster.
TP=True Positive, FP=False Positive, FN=False Negative.

Figures 5.22(a)-(b) and 5.23 show the obtained classification accuracy with regards

to TP , FP , FN from the confusion matrix, based on the results presented in Tables 4.15

and 5.13. It can be easily observed that all the DTW based methods show a very similar

performance in terms of TP , FP and FN . DTW+kM and kDTW were able to classify

∼ 10% less freezer operations compared to the original DTW-based method. Those

freezer events were not detected during edge detection as the corresponding rising edge

was “covered” by higher events that seemed to last only for one sample, that during the

original implementation were iteratively removed by the aggregate load, “uncovering”

the hidden start event of the freezer.
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Figure 5.22: Classification accuracy using TP and FP for the proposed DTW+kM and kDTW methods, with respect the DTW-based
method from Chapter 4, during the disaggregation House 17 from REFIT dataset [2, 3], as reported in Table 4.15 and 5.13.
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Figure 5.23: Classification accuracy using FN for the proposed DTW+kM and
kDTW methods, with respect the DTW-based method from Chapter 4, during the
disaggregation for House 17 from REFIT dataset [2, 3], as reported in Table 4.15 and
5.13.

Table 5.14 presents the classification accuracy of the proposed DTW+kM and

kDTW methods with regards to the obtained precision, recall and FM for house 17

from REFIT dataset [2, 3].

At a glance, it can be observed, that the DTW refinement did not provide any

improvement for the specific case study, therefore the classification accuracy using

all the metrics is the same for both DTW+kM and kDTW methods. Both methods

reported the same precision and recall with the original DTW-based method, proposed

in Chapter 4, for most of the appliances. The only exception was the freezer, where

the combined k-means and DTW methods reported recall equal to 0.32, while the

DTW-based method reported 0.35. This was the result of the higher number of false

negatives reported during the disaggregation of house 17 using the DTW+kM and

kDTW methods.
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Table 5.14: Classification Accuracy using Precision, Recall and FM for REFIT House
17 using the proposed DTW+kM and kDTW methods.

PR RE FM

Apps DTW+kM kDTW DTW+kM kDTW DTW+kM kDTW

FZ 0.99 0.99 0.32 0.32 0.48 0.48

K 0.72 0.72 0.95 0.95 0.82 0.82

MW 0.58 0.58 0.83 0.83 0.68 0.68

T 0.87 0.87 0.91 0.91 0.88 0.88

Note: Apps=Appliances, FZ=Freezer, K=Kettle, MW=Microwave, T=Toaster.
PR=Precision, RE=Recall, FM=F-Measure.

Table 5.15 shows the classification and estimation accuracy, using FM and Acci

respectively, between the proposed methods of this chapter, the DTW-based method

from Chapter 4, while Figures 5.24(a)-(b) present those results graphically, for visual

comparison.

Table 5.15: Classification Accuracy using FM and Estimation Accuracy using Acci of
the proposed DTW+kM and kDTW methods, with benchmarks the proposed DTW-
based method in Chapter 4, for REFIT House 17.

FM Acci

Apps DTW DTW+kM DTW DTW DTW+kM kDTW

FZ 0.52 0.48 0.48 0.65 0.64 0.64

K 0.82 0.82 0.82 0.90 0.90 0.90

MW 0.68 0.68 0.68 0.68 0.68 0.68

T 0.88 0.88 0.88 0.88 0.88 0.88

Note: Apps=Appliances, FZ=Freezer, K=Kettle, MW=Microwave, T=Toaster.

Similarly with what has been already discussed earlier in this case study, the

combined k-means and DTW methods reported the same classification accuracy with

the DTW-based method for most appliance. For the case of the freezer, where the

DTW+kM and kDTW methods reported higher number of false negatives, FM was

0.48, which is 4% less compared to the accuracy reported by the original DTW-based

method.
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Figure 5.24: Performance evaluation using FM and Acci for the proposed DTW+kM and kDTW (Table 5.15) with benchmarks the
DTW-based method proposed in Chapter 4 for REFIT House 17.
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Figure 5.25: Disaggregation results, as percentage of load contribution per appliance relative to the aggregate load, for House 17 from
REFIT dataset using the DTW based method, proposed in Chapter 4, and the DTW+kM and kDTW methods.
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Figure 5.26: Ground truth load contribution, as percentage of load contribution per
appliance relative to the aggregate load, for House 17 from REFIT dataset [2, 3].

Furthermore, in terms of estimation accuracy per appliance, the DTW+kM and

kDTW methods reported the same accuracy for most appliance, which the exception

of the freezer. They obtained comparable accuracy at 0.64, only 1% lower than the

estimation accuracy reported by the DTW-based method.

Figures 5.25(a)-(b) show the disaggregation results of the proposed DTW+kM,

kDTW NILM and original DTW-based methods as percentage of load contribution per

appliance with regards to the aggregate load and the relevant ground truth consumption

per appliances (Figure 5.26), available from the IAMs of the REFIT dataset [2, 3]. Both

DTW+kM and kDTW obtained equivalent disaggregation results, therefore 5.25(a)

represents the consumption contribution of both. The only difference between those

methods and the DTW-based method from Chapter 4 is the estimated consumption

contribution of the freezer, which is 1% more for the latter. Overall the other appliances,

both known and unknown reported similar contribution.
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In summary, during the disaggregation of house 17 from the REFIT dataset, it has

been identified that the DTW refinement method was not able to improve the perfor-

mance of the DTW+kM method and both methods reported equivalent classification

and estimation accuracy, comparable to the DTW-based NILM method proposed in

Chapter 4.

5.5 Overall Performance Evaluation

Similarly with Chapter 4, this section will evaluate the overall performance of the

unsupervised methods presented in this chapter, with benchmarks the unsupervised

DTW-based method proposed in Chapter 4 and the methods presented in [5], together

with any observations regarding the advantages and drawbacks of the proposed methods.

Table 5.16 presents the overall classification accuracy using F1micro, as defined in

equation 2.6, which calculates the micro-average using the total values of TP , FP

and FN for all classified appliances.

All the proposed unsupervised methods were able to perform disaggregation for

house 2 in both REDD and REFIT for the same appliances as presented in [5]. Similarly

with Chapter 4, the DTW+kM and kDTW methods were not able to train and classify

bathroom GFI, lighting and oven for house 1 in REDD and fridge-freezer and washing

machine for house 17 in REFIT. For this purpose, the m- results for each proposed

method are introduced, in order to account for the total number of relevant appliance

operations and include them as false negative values, in order to perform a better

comparison with the methods in [5]. Figure 5.27 shows the graphical representation of

the overall performance reported in Table 5.16.

For house 2 from REDD dataset [1], the proposed combined methods of this chapter,

together with the original DTW-based method, were able to obtain the highest overall

classification accuracy, with best obtained when using the DTW+kM together with the

DTW refinement, which reported 0.81, slightly better than the 0.8 obtained using the

original method. Even when obtaining disaggregation solely by using the DTW+kM

method, the reported results have shown an accuracy of 0.76, better but comparable

to that obtained by the P refined methods in [5].
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Table 5.16: Overall Classification Accuracy using F1micro, as defined in equation
2.6, with benchmarks P-SGSP [5, 33], P-UGSP [4, 5] and P-DT [5, 32], as presented in
[5].DTW, DTW+kM and kDTW present the overall accuracy for only the disaggregated
appliances, whereas m- is accounting for the missing operations of the appliances that
where not disaggregated using DTW, but were present in the disaggregation using the
methods in [5].

Datasets REDD REFIT

NILM Methods House 1 House 2 House 2 House 17

DTW 0.79 0.80 0.77 0.68

m-DTW 0.49 0.80 0.77 0.51

DTW+kM 0.77 0.76 0.48 0.67

m-DTW+kM 0.48 0.76 0.48 0.50

kDTW 0.78 0.81 0.68 0.67

m-kDTW 0.49 0.81 0.68 0.50

P-SGSP 0.69 0.73 0.61 0.62

P-UGSP 0.67 0.72 0.59 0.59

P-DT 0.70 0.68 0.59 0.60

Furthermore, when reporting only the classified appliances, the DTW-based method

from Chapter 4 was able to outperform both the proposed method and the methods

presented in [5] for house 1 from REDD dataset, while the remaining proposed methods

obtained the comparable classification accuracy of 0.77 and 0.78, which is higher than

the methods used for benchmarking. When taking into account the appliances, that

were not classified using the proposed methods of this thesis, the best performance

is reported with 0.7 for P-DT [5, 32], with the other P refined methods claiming a

comparable overall classification accuracy. The reported accuracy for the proposed

methods was for most cases ∼ 0.49, which is ∼ 20% less than the P refined methods.

As already explained in Chapter 4, the DTW algorithm had difficulty in separating

the bathroom GFI events from microwave operations, which was not resolved with the

implementation of the combined DTW and k-means schemes.
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Figure 5.27: Overall classification performance evaluation using F1micro for the
proposed DTW-based NILM method, as presented in Table 5.16, with benchmarks
P-SGSP [5, 33], P-UGSP [4, 5], P-DT [5, 32], HMM [35], for Houses 1 and 2 from
REDD dataset [1] and Houses 2 and 17 from REFIT [2, 3], as presented in [4, 33]. m-
DTW presents the overall performance by taking into account the FN of the appliances
that were disaggregated in [5] but not using the proposed DTW methods.

For house 2 from the REFIT dataset [2, 3], the DTW-based method from Chapter

4 reported the highest overall classification by more than ∼ 10% from all the other

methods. The DTW+kM method obtained the lowest results at 0.48 and the DTW

refinement was able to improve it by 20%. This was the result of the increased number

of events wrongly identified as fridge-freezer, due to the selection of not performing

iterative disaggregation and removal of the detected load. For house 17 from the REFIT

dataset, the proposed unsupervised methods, obtained accuracy of ∼ 0.67 and ∼ 0.5,

when taking into account the missing fridge-freezer and washing machine, which is

∼ 10% less than the methods presented in [5].

Furthermore, the DTW refinement was able to improve the performance of the

DTW+kM method for most houses with the exception of house 17 from REFIT, where

all methods obtained the same classification accuracy. Similarly, all the proposed
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methods seemed to perform with high classification and estimation accuracy, when

disaggregating kitchen appliances for most houses in REDD and REFIT datasets. The

reported normalised total power consumption estimation error (TER) for the proposed

methods as a whole was the lowest for the kitchen appliances of house 2 from REFIT

dataset compared to the methods presented in [5]. The difficulty of the original method

to distinguish the washing cycle of the dishwasher and washing machine during the

disaggregation of house 2 from REFIT dataset was not resolved, and the DTW+kM

method was not able to classify any dishwasher operations, similarly with house 1 from

the REDD dataset, where the dishwasher was misclassified as kitchen outlet. k-means

seemed to “merge” the clusters with similar average power, even though they started

from different centroids. The refinement method in both cases was able to obtain the

equivalent events as with the original method, without being able to further increase

the accuracy.

Another interesting observation was the increased number of misclassified events

as fridge-freezer operation when using the DTW+kM method with and without the

DTW refinement. As it has already been explained, this is the result of events with

similar average power consumption, that during the disaggregation were “absorbed” by

the higher consuming appliances depending on the parameter C.

5.6 Execution Time Evaluation

This section is focused on evaluating the performance of the three proposed methods

in terms of their execution time for both creating the library of appliance signatures

and disaggregation of a given aggregate load. The performance will be presented using

house 2 from the REFIT dataset, but the performance of the methods was equivalent

for the rest of the houses in both REDD and REFIT dataset.

Figure 5.28(a) shows the relevant execution time versus the number of aggregate

load samples used for the case of house 2 in REFIT dataset, when creating the library of

appliance signatures. These aggregate data correspond to the dates used for creating

the library, as found in Table 4.1. Note that for each method, the algorithms were

executed for a variety of number of samples, eg. 1000, 10000, 20000, etc., starting from

the beginning of the dataset that corresponds to the dates in Table 4.1.
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Figure 5.28: Execution time during library creation and disaggregation for REFIT House 2.
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According to Figure 5.28(a), it is apparent that both DTW+kM and kDTW ap-

proaches perform the same during this step, as they create the library in exactly the

same way, as already discussed earlier in this chapter. Furthermore, the methods

proposed in this chapter were able to obtain significantly the execution time when

creating the library, compared to the DTW-based method.

Figure 5.28(b) shows the processing time while performing disaggregation versus

the number of aggregate load samples for house 2 in REFIT dataset. These aggregate

data correspond to the dates used for disaggregation, as found in Table 4.1. Note that

for each method, the algorithms were executed for a variety of number of samples, eg.

1000, 10000, 20000, etc., starting from the beginning of the dataset that corresponds

to the dates in Table 4.1.

The original DTW-based method is the most computational complex, while the

DTW+kM method reported the lower execution time, as the classification is performed

using k-means clustering on the average power consumed per appliance operation. Fur-

thermore, the kDTW method, was more efficient in terms of execution time compared

to the DTW-based method, but was outperformed by the less complex DTW+kM

approach, as seen in Figure 5.28(b).

5.7 Summary

The aim of this chapter, was to propose an optimised method using the concept of

the DTW-based method, proposed in Chapter 4, in order to improve the overall

performance and reduce the computational complexity of the method, but without

sacrificing the unsupervised learning, which is the main focus of this thesis. k-means

is a commonly used clustering method with low computational cost and the capability

to support both semi-supervised and unsupervised learning.

Furthermore, k-means has been used in various NILM works, especially for cluster-

ing features, as a standalone method or combined with other methods, such as SVM

and more combined with DTW, by using DTW as a distance measure for k-means

[87, 117, 118, 170]. The proposed combined DTW and k-means method, uses DTW for

the creation of a library of appliance signatures and the initialisation of the number of

clusters and the centroids, using unlabelled historical aggregate load data. Classification
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through clustering of the average power consumption of each detected event.

In addition, a refinement method has been proposed, that allows the use of DTW

for further refining the events that were either misclassified or not classified at all,

as it has been observed by using as a feature the average power of each event it

can lead to misclassification between appliances with similar average consumption.

Any differences in terms of pre-processing, event detection, feature extraction and

classification, similarly with the method proposed in Chapter 4, have been discussed

and the relevant algorithmic representation was included.

For evaluation purposes, the same datasets have been used as in Chapter 4, for ref-

erence REDD [1], downsampled at 1min, and REFIT [2, 3] datasets, with benchmarks

to the DTW-based method of Chapter 4. Appendix B provides tables and graphs with

the obtained performance with benchmarks the same state-of-the-art NILM algorithms,

as in Chapter 4, for any interested party.

Furthermore, both methods were able to reduce the complexity of the original DTW-

based method, in terms of execution time, with the DTW+kM method showing the

lowest processing time, compared to the other two methods. The DTW+kM method

was able in most cases to report equivalent performance for most appliance across

houses, in terms of classification and estimation accuracy, but failed to distinguish

appliances with similar average power consumption, such as dishwasher and washing

machine. Moreover the kDTW method was able to improve the performance of the

DTW+kM in most houses, while the method was able to obtain comparable perfor-

mance to the original DTW-base method without the overhead of iterative removal of

disaggregated loads.





Chapter 6

Data Analysis for other IoT

Applications

6.1 Introduction

Advancements in monitoring and sensor technology together with software development

for interfacing and managing sensors and databases make the concept of IoT a realistic

but challenging scenario. Proposing methods for handling and analysing data from

various disciplines is of great importance, thus this chapter attempts to investigate

such methods for two scenarios, one for earthworks monitoring, and one for user’s

attention assessment using eye-tracking devices. These scenarios are presented in the

format of two different case studies, with related background, data analysis techniques

and outcome discussion.

The first case study, published in [177], proposes a prototype low-cost platform with

a variety of sensors located on one sensor node for gathering real-time data for resistivity,

ground movement and pressure, that can assist to predictive maintenance by monitoring

and analysing moisture (via resistivity sensors) and pressure in the embankment. This

application falls in the smart environment realm of IoT (see Appendix C).

Eye-tracking devices can be used for monitoring both pupil dilation and gaze fixa-

tion, features that can be used in order to extract useful information regarding user’s

attention and interaction with visual content. In the context of IoT, this information

could be applied for advertisement and personalised services, when using devices with

enabled eye-tracking properties through cameras and in the healthcare domain, for

psychological assessment and patient assistance, similarly with the system proposed in

[17], which has been discussed in Section C.2.2.2. Furthermore, this could be applied in

driving assistance systems by identifying patterns in the driver’s behaviour, through a

179
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correlation of outdoor camera data and vehicle implemented eye tracking devices. Thus,

the purpose of the second case study, published in [178], is to evaluate signal processing

techniques, that could be incorporated for assessing user’s attention when interacting

with various contents.

Those case studies show the variability in terms of measurements and features

extracted, in addition with various sampling rates, depending on the sensors/equipment

used, which represents the most challenging problem in IoT.

6.2 Embankment Monitoring

Asset monitoring of canal structures, embankments, bridges and a number of other

critical assets will deliver sustainability through the reduction of human intervention

for assessing the health of the asset and promote enhanced data quality and accessibility

for best practice in environmental management, as required by environmental regulators

and other government departments.

6.2.1 Background

A key component of management of water resources lies in asset monitoring of the

structures that contain water, e.g., dams and embankments. Earthworks failures can

lead to disastrous consequences, including flooding, and can be very expensive to

remediate. Early intervention and prevention requires identification of the incremental

development of internal conditions that ultimately trigger failure. Spatially continuous

data can achieve a level of sub-surface resolution significantly closer to the scale of

true heterogeneity than currently achieved using conventional intrusive point sensing

approaches alone.

While current automated procedures, sensors and SCADA systems provide infor-

mation regarding the health of the assets, they have a number of limitations: (a) the

cost of deploying/maintaining these solutions; (b) the level of intrusiveness; (c) the

need for engineers validating measurements by visual inspection; (d) low temporal

resolution with limited scope for predictive approaches to asset failure; (e) limited

support for strategic decision-making. For this purpose, there are currently available

different solutions in order to monitor the health of an earthwork. According to Sellers
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et al. [179], one of the most commonly used methods is soil resistivity surveys and a

2D or 3D mapping of the ground using these results, known as Electrical Resistivity

Tomography (ERT), as it can provide information about the moisture content of the

earthwork in a non intrusive way. An example of this method is the ALERTme

system, which maps 3D the resistivity of a railway embankment using a kit designed

for this purpose (specifications of 500V/up to 500mA), as it can be seen in Gunn et

al. [180]. Similarly, there are available many ready to use solutions, but similarly with

the ALERTme project, they use high voltage and current, which requires expensive

voltage transformers, and cabling in order to mitigate health and safety risks during

the experiments.

As the purpose of the work presented in this thesis was not to perform ERT analysis,

a detailed overview of ERT related research can be found in [181], where the authors

reviewed various 2D and 3D methods. According to the authors, the systems can

be categorised as static and dynamic. Static systems, are the systems that require a

high number of electrodes interconnected through cabling, that remain in the ground

during the survey, whereas dynamic systems use a much smaller number of sensors,

that have to be moved during the survey, in order to map the asset in question [181].

The prototype presented in this case study can be classified as a static system, due to

its specifications.

Together with the resistivity and moisture content, which can be also measured

using dedicated pore pressure sensors, the field experts suggested that the movement

of the ground (vibration, acceleration) can be a very informative measurand, as this

could provide early notification about the possibility of earthworks failure. With the

available solutions, a survey like that will require a high budget and additionally the

usage of many different sensors, that generally do not allow the measurements using

one and only interface.

This case study presents a solution to assess the physical integrity of vulnerable

earth structures (dams, embankments and cuttings) - thereby facilitating the shift

from more costly responsive remediation of earthwork failures to early intervention. A

unique, customised and cost-effective platform for automated monitoring of earthworks

through prototyping a novel hardware/firmware solution in consultation with various

stakeholders: (i) integration of analogue and digital sensors for measuring pressure and
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motion, (ii) resistivity sensor (board) that is controlled by main hardware (board) and

requires low voltage compared to the off-the-shelf resistivity solutions, (iii) variable

and on-demand sampling rates that can be dynamically controlled, (iv) a prototype

mechanical waterproof design for housing main hardware, resistivity sensor-board and

relevant sensors.

6.2.2 System Set-up

The proposed monitoring platform could integrate a range of sensors for monitoring the

condition of earthworks assets (embankments, canal infrastructures etc) with minimised

cost and high accuracy. This project has delivered proof-of-concept by deployment

of a 12V network of five integrated-sensor nodes, appropriately cased and connected

for power and communications under the ground surface. Measurements of resistivity,

ground movement and pressure from the sensor network are communicated periodically

and autonomously to a gateway and then onto a data collection hub. The outcome of

this research underpins deployment of a network of these sensor nodes, application

of monitoring techniques, intelligent data mining and data analytics to derive models

concerning the condition of the assets and will assist in assessing infrastructures and

informing management decisions.

6.2.3 Sensor Network

The deployment of the sensor network has been mainly affected by the measurement of

soil resistivity, where a grid network of electrical resistivity electrode arrays is formed

over the area of interest. The distance between the sensors is a direct function of

the accuracy of the 3D mapping of the earthwork. For the above purposes, the

sensors were deployed in a line of subsurface sensors, which could be extended in the

future to multiple lines, in order to create the array that is usually used for resistivity

measurements (Figure 6.1). In relation to Figure 6.1, the top row of sensor nodes has

been deployed for proof-of-concept.

The deployed sensor network comprises the following:

• Sensor Nodes deployed in arrays: each node is a customised reprogrammable

board that was designed and prototyped and is connected with three sensors and
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Figure 6.1: Embankment Deployment (Lateral View).

resistivity circuitry, and can be enabled for the usage of more sensors.

• Sensor Communication Module: Interfacing the sensor nodes to the gateway node

using a Controlled Area Network (CAN).

• CAN network : The CAN cable consists of 6 pins. One pin is used to power the

sensor nodes from the power supply, another is ground and the other two are used

for CAN high and CAN low. The fifth pin is used as a ground sense, in order to

have a reference for the resistivity measurement.

• Hub for data collection: For the deployment, the data were collected through

a Raspberry Pi, but an interfacing of the Gateway with the Cloud could be

performed through near white space communication (∼ 433 MHz).

6.2.4 Prototype Sensor

The prototype sensor node consists of the following on and off-board sensors:

1. Resistivity board for injecting current, sensing voltage, sinking current, sensing

voltage.

2. A Digital Accelerometer. This on-board sensor will be able to sense acceleration

or vibrations (±2g/±4g/±8g dynamically selectable full-scale) in the soil.
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3. An Analogue Pressure Sensor that can measure absolute pressure (0- 200kPa) us-

ing a single port, which was in contact with the soil (off board). Through a future

calibration, the absolute pressure measurements can be potentially translated in

terms of pore pressure. Currently, for measuring pore pressure, specialised and

expensive sensors are required.

All the hardware has been integrated in PVC (Polyvinyl Chloride) tube, that

provides both endurance and waterproof protection. The casing allows the removal of

the hardware for for reprogramming or debugging should the need arise. At the bottom

of the node, there is a short copper probe, that is used for the resistivity measurements

and is safely connected to the resistivity board. While the voltage supply used for

both for the sensor network was an enclosed 12 VDC, 1.3A Switch Mode Power Supply

(SMPS).

A summary of the sensors and their sampling rates can be found in Table 6.1. These

sampling rates can be adapted easily depending the circumstances and the defined

requirements.

Table 6.1: Sensors Summary and Sampling Rates.

Sensor Types Sampling Rate

Accelerometer 12.5Hz

Analogue Pressure 1sec

Resistivity Injection for measurement (Resistivity Board) 5sec

6.2.5 Resistivity Measurements Specifications

According to Wenner [182] and the IEEE standards in [183, 184], soil resistivity is

measured using the 4-pin Wenner method. The first probe, as seen in Figure 6.2,

injects current according to the system’s specifications, the two intermediate probes

sense the voltage in relation to a common ground and the last probe sinks the current.

The voltage measured at each probe provides the voltage drop required to calculate

the Wenner resistance and consequently the apparent resistivity using the formulas

found in equations 6.1 or 6.2. These calculations can be executed at the data collection

hub, which will receive all the relevant measurements.
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Figure 6.2: 4-pin Wenner Method.

The spacing between the probes for the deployment was selected to be 1m, and the

depth of the probes is 44.5cm, the height of the casing is 32.5 cm and the length of the

rod that is placed at the bottom of the tube is 12 cm.

ρw =
4πaRw

1 + 2a√
a2+4b2

− a√
a2+b2

(6.1)

where ρw is the apparent resistivity (Ωm), a is the spacing between the probes (m)

b is the depth of the probes (m) and Rw = V
I is the Wenner Resistance (Ω). If b is

small compared to a, as is the case of probes penetrating the ground only for a short

distance (as normally happens), the previous equation can be reduced to:

ρw = 2πaRw (6.2)

The resistivity sensor node can measure the voltage that is sensed at the two

intermediate nodes, namely V2 and V3, the current injected I, the Voltage supply Vs

and the sink current at the last node Ic. These measurements are critical for both

calculating Wenner Resistance Rw and respectively soil resistivity ρw, but also in order

to validate the measurements. For this purpose an additional measurement called

ground compensation is acquired by using one of the extra leads of the CAN cable,

which can compensate for power losses that occur due to the length of the CAN cable.
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Table 6.2: Typical Soil Resistivity based on [183–185].

Soil Type Average Resistivity (Ωm)

Well - graded gravel 600 − 1000

Poorly graded gravel 1000 − 2500

Clayey gravel 200 − 400

Silty sand 100 − 800

Clayey sands 50 − 200

Silty or clayey sand with slight plasticity 30 − 80

Fine sandy soil 80 − 300

Gravelly clays 20 − 60

Inorganic clays of high plasticity 10 − 55

Surface Soils 1 − 50

Clay 2 − 100

Sandy clay 100 − 150

Moist gravel 50 − 700

Dry gravel 700 − 1200

Limestone 5 − 10000

Porous limestone 30 − 100

Quartz, crystalline limestone 100 − 1000

Sandstone 20 − 2000

Granites 900 − 1100

Concrete 300 − 500
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In order to determine soil resistivity from the above measurements, the voltage drop

between the two nodes (V = V2−V1 ) is calculated and followed by Rw = V/I, where I

is the injected current. Finally, using equation 6.1, the soil resistivity measured values

can be determined. Table 6.2 provides average soil resistivity values for different soil

types.

Due to the voltage limitations, the global resistivity measurements will have to be

redefined, as the maximum distance between the nodes will not exceed 1 m. It is

important to mention here that commercial resistivity kits can use voltages up to 800V

and inject currents up to 2.5 A. The proposed resistivity circuit is able to inject much

lower currents, which was set for the deployed nodes up to 119 mA, and was selected

by taking into consideration the common values of resistivity (1-10000 Ωm) and an

average spacing of 1m. Every sensor board is connected to a solid copper probe, similar

to commercial resistivity kits and can work using both injection, sensing, or sinking

mode. The most common material for these rods is stainless steel, but solid copper

rods are also widely used and also due to the voltage limitations of the specific project

a solid copper rod would offer higher conductivity compared to stainless steel.

6.2.5.1 Deployment

Before the deployment, an in-house and residential field testing was performed in order

to ensure the system’s performance in terms of communication, readings especially for

the case of a field-testing and validate resistivity measurements using resistors (in-house

testing). During the residential test, it became apparent, that the resistivity readings

were affected by the mains ground, as both laptop and lab power supply were powered

by house mains. The voltages sensed when the power supply was injected and when it

did not, had a small deviation, which shows that there was increased noise due to the

residential appliances and ground.

For the above purpose, it was decided for the deployment to use the SMPS, which

provides a ground for the deployed system that is isolated from the mains ground, as

in Falkirk Wheel, the site is close to high voltage facilities, that will also provide supply

to the SMPS. Additionally, the power cable used to power the SMPS, does not use the

ground lead.

Deployment was carried out in Falkirk Wheel at Falkirk, Scotland at an embankment
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that is maintained by Scottish Canals during late February-beginning of March 2014.

During the test period the weather at area was close to the average temperatures of

the area with no extreme below zero temperatures.

6.2.6 Results and Discussion

All the collected data from each resistivity sensor were further processed in order to get

the resistivity, ground movement and pressure. Due to the current setup, the sensors

are sending directly their measurements to the gateway, where they receive a timestamp.

Due to the amount of the data and each sensor’s sampling rates, there have been cases

of dropped or wrong order packets. This synchronisation is more important for the

resistivity analysis, as in order to define one resistivity value, measurements from all

sensors are required.

During the pre-processing of the data, all resistivity data has been partitioned into

windows, with each window starting from the message that the source is open (current

will be injected), and finishing when the closing message was received. All remaining

windows were discarded as not useful. For the case of accelerometer and pressure data,

any missing or incomplete data have been replaced using linear interpolation between

the preceding and subsequent measurements.

Two different approaches have been used in order to calculate resistivity: (1) Assum-

ing that the data arrive at the gateway with the same order that each sensor receives

its measurements, and (2) assuming that the data can arrive with a different order but

still can be grouped per sensor.

Figure 6.3(a) shows the results from the first scenario and Figure 6.3(b) from the

second scenario. For both cases the average resistivity varies between 40-60 Ωm. In

both cases, there are some higher resistivity values that reach around 90 Ωm, which

can be either the result of missed data at the specific measuring window, though it

could still represent a normal resistivity value, which will be discussed further.

Figure 6.3(b) is clearly more settled, as all the data that do not follow the initial

assumption are discarded, thus the different number of measurements. This does not

affect marginally the average resistivity, due to the high sampling rate.
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According to Nwankwo et al. [186] and [183–185], the resistivity measurements

that are presented in Figures 6.3(a) and 6.3(b) can be categorised as clay, which is

one of the most common soil types in Scotland. During the set up period, there

were no extreme temperatures that would affect severely the measurements (extreme

cold/dryness). Pangonilo in [185] claims that clay resistivity can be between 2-100 Ωm.

The accelerometer sensor is able to capture 3-axis vibrations/movement. Figure 6.4

shows the accelerometer sensor readings. While readings do not exceed a sum of squares

of 200 to 250, there is a clear peak at 300. This occurred during an artificially induced

disturbance (jump) in the vicinity of the sensor node, which resulted in noticeable

ground movement. This indicates the need for destructive testing, further data analytics

and the potential to detect clear patterns of embankment failure.
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Figure 6.4: X2 + Y 2 + Z2 vs number of samples.

Figures 6.6(a)-(b) show the pressure readings and the conversion to kPa units,

respectively.
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The deployed pressure sensor is a differential pressure sensor and it provides as an

output the differential voltage, which is proportional to the differential pressure applied.

This voltage output can be found in Figure 6.6(a) and it has been amplified by a gain

of 62. Figure 6.6(b) shows the converted voltage output to pressure units by using the

sensitivity of the sensor (according to the specific application) S = 0.2mV/kPa and

by attenuating for the output gain. According to the figure, a variation of around 2

kPa is noticeable during the 2 hours sample timespan and the above results translate

to almost 0.5 atm.

In conclusion, the proposed prototype system incorporates heterogeneous sensors,

which represent one of the most important IoT-enabling technologies. These sensors

allow the monitoring of various parameters that could affect the integrity of the em-

bankment infrastructure. Data pre-processing included the partitioning of resistivity

data into windows, using the injection and sinking of current process and the linear

interpolation of adjacent measurements when data were missing from the accelerometer

and pressure datasets. The obtained data have been used in order to identify the

usefulness of features such as resistivity, 3-axis movement and pressure, which could

allow future implementation for full scale ERT and correlation of all features in order

to create predictive models using suitable data mining techniques.

6.3 Methods for Attention Assessment in Visual Content

Interaction

Eye movements and changes in pupil dilation are known to provide information about

viewer’s attention and interaction with visual content. The purpose of this case study

was to evaluate different statistical and signal processing methods for autonomously

analysing pupil dilation signals and extracting information about viewer’s attention

when perceiving visual information. In particular, using a commercial video-based

eye tracker to estimate pupil dilation and gaze fixation, this work demonstrates that

wavelet-based signal processing provides an effective tool for pupil dilation analysis

and discusses the effect that different image content has on pupil dilation and viewer’s

attention.
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6.3.1 Background

Objectively assessing users’ experience when interacting with visual content is gaining

increased research interest due to its relevance for numerous applications ranging from

video compression, Human Computer Interaction (HCI)-based decision support tools

design, web-site design, and Internet visual searches, to those related to marketing,

science and medicine. Eye trackers that use high-resolution, high-speed video cameras

to record eye movements and corneal reflections are cost-effective tools for high-precision

measurements of the size of the pupil, gaze locations and the time length of fixation.

They consist of a video camera and infrared illuminators, positioned in front of an

eye, used to track the movement of the eyes which are then mapped into real-world

coordinates by camera calibration.

The gaze location and the time length of fixation obviously show which features of

the image the user is looking at and can reveal, for example, which features attract

“the eye”, which features are missed, and identify the point of visual fixation. However,

since purely looking at an image feature does not necessarily mean that the feature

attracted attention and caused the desired cognitive reaction, relating pupil dilation to

cognition is a promising research direction.

Numerous studies in psychology have demonstrated that changes in pupil dilation

consistently occur during the cognition process, including reading, visual search, and

problem solving, as well as valence, arousal, pain, etc. (see [187–196]).

Extracting useful information from raw pupil dilation signals is not a trivial task

due to high measurement noise of the commercial camera-based eye trackers, distortion

due to gaze angle [187], frequent eye blinking, effects of illumination changes, irregular

time delays in pupil response to stimuli, as well as the fact that pupil reaction is caused

by different factors, which are hard to separate.

A set of simple experiments was designed based on a commercially available eye

tracker, and the generated data were used in order to evaluate several statistical and

signal processing tools for extracting useful information from pupil dilation signal

when a user is presented with a sequence of coloured images. The obtained results

show that mean, peak and variance are insufficient to capture the dynamics of pupil

dilation change and therefore frequency-based and wavelet-based analysis is proposed,
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for defining and extracting features that can be further used for clustering or pattern

matching.

Pupils respond to different stimuli, including pain, emotional reaction, mental

workload, and arousal with a very uneven reaction time delay and intensity that depends

on the intensity and type of stimuli. The reaction delay can range from 0.1sec (mainly

in the case of pain) to 2-7 seconds for emotional stimuli [187]. For example, [188]

investigated reaction to sound stimuli, and observed that only after 400ms the pupil

starts to sharply dilate, reaching a peak 2-3sec after the stimuli.

Beatty [192] concluded that pupil dilation is a good representation of the difficulty

and amount of mental workload across tested subjects and cognitive tasks. For example,

calculating 16× 23 causes 10% larger pupil dilation than 7× 8, or memorising a 3-digit

number and 7-digit number caused 0.1mm and 0.55mm of pupil dilation, respectively

(see [187]).

Different measures, such as mean dilation, peak dilation, variance, as in [189], and

response time, have been proposed to quantify pupil dilation as a response to cognitive

tasks (see [187] and references therein). However, these measures are not very robust

and often not informative enough.

The key challenge in extracting meaningful information from pupil dilation lies in

distinguishing the exact cause of pupil reaction. The pre-processing task needs to

remove distortion and camera noise as well as natural blinking and pupillary light

reflex. Indeed, as a reaction to brightness change, pupils naturally dilate, which can

significantly affect measurements. To mitigate this problem, in [190] and [191], principal

component analysis (PCA) is used on the pupil dilation data. Another approach can be

found in [193], where a Hilbert transform method was used in order to study cognitive

overload and cognitive dissonance. Though the initial results show potential, they are

not conclusive, according to the authors, requiring further studies.

[195] proposed a measure called Index of cognitive activity (ICA), that represents

the average number of “abrupt” changes in pupil size per second. This was estimated

using wavelet decomposition, a technique that proved capable of filtering out the change

of brightness effect.

Building on this work, Marshall in [196] compared pupil dilation with other measures

such as blink rates, fixation time, saccade distance and speed, during different tasks,
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such as driving a car and visual search, in order to identify the best combination of

measures for assessing the cognitive state of a subject. This research has proposed a

combination of seven “eye metrics”, left and right index, left and right blink, left and

right movement, and divergence.

All these methods are either limited in conclusions they can make due to a restricted

extracted feature space, or require additional measurands. Despite the fact that the

pupil dilation signal has been studied for long (see [187–196]), there are still many

unknowns w.r.t exploiting pupil dilation analysis for assessing multimedia experience,

and appropriate signal processing and machine learning tools are needed to make the

information extraction process fast and automated, to open the door for real-time visual

feedback design mechanisms.

6.3.2 Methodology

Experiments were designed to examine the gaze position and pupil responses to dif-

ferent, “neutral-content” images (indoors and outdoors) with and without searching

for a specific target. The “neutral-content” images were selected as the research’s aim

was to examine pupil activity that is not a product of emotional triggering (pleas-

ant/unpleasant), which is expected to create a more intense response. Through the

experiment, it would be also possible to assess the effect of “busy” indoor images versus

less busy outdoor images.

The eye tracker used during all experiments is the Tobii X2-60 Eye Tracker [197],

which provides pupil dilation and gaze fixation data with a 60Hz sampling rate. Data

collection and stimuli presentation were obtained using Ogama Version 4.5 [198].

6.3.2.1 Experimental Setup

Experiments were performed in a laboratory environment using moderate artificial light

conditions, which were kept constant for the duration of all trials. Ten subjects who

participated in the experiment ranged between 25 and 50 years old, both male and

female, either with normal or corrected-to normal vision. The subjects did not have

previous knowledge of the stimuli presentation and did not receive any training, before

the initial trial.

The subjects were sitting in front of a screen with a resolution of 1920x1080 pixels,
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at a ∼ 70 cm distance (35◦ angle from the eye tracker). Calibration was performed

using Ogama’s calibration process, where a coloured dot was moving in the corners and

centre of the screen and the subjects were asked to gaze at the dot. This process was

performed before each trial.

6.3.2.2 Stimuli

The stimuli for this experiment were four high quality images that were acquired from

Flickr under Creativity Commons Licences and are shown in Figure 6.7. Two of the

images represent the outside of residential properties and the other two are indoor

bedroom images [199–202].

Outdoor images did not resemble the architecture of the area where the test subjects

reside. Between each image, and at the beginning and end of the presentation, a whole

grey-coloured blank image of the same size was used to separate each different stimuli.

Each image (stimuli or grey) was shown for 10 sec.

For each subject, the experiment comprised three trials, which took place at the

same time and place, with a gap of less than a minute between the two trials. During

the first trial (Trial 1), the subjects were shown the stimuli presentation, and were asked

to watch the presentation with no further instructions. After the end of the trial, the

same stimuli was shown for the second time (Trial 2), with no further instructions. The

motivation for having two identical trials, one after another, is to see how the subjects

react when they are shown a stimuli that they have already familiarised themselves

with.

During the final trial (Trial 3), all subjects were requested verbally to locate the

flower(s) in the images at the beginning of the trial, without doing any task when this

occurred or without verbally suggesting that they had identified the target.

6.3.2.3 Pre-processing

During pre-processing stage, both pupil dilation and gaze data were cleaned by remov-

ing all eye blink artifacts, as in [189, 191]. Eye blink artifacts are usually represented

in the data either with missing or zero data, or with abnormal values, such as negative

pupil dilation values. All missing data were replaced using data interpolation from both

right and left pupil data using linear interpolation.
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(a) Content Image 1 [199] (b) Content Image 2 [200]

(c) Content Image 3 [201] (d) Content Image 4 [202]

Figure 6.7: Content images used as a stimuli during the experiments.

Three different types of signal processing analysis were performed on the processed

data: (1) statistical analysis using dilation mean, variance, and peak; (2) frequency

analysis; and (3) wavelet-based analysis.

6.3.2.4 Harmonic Analysis

Harmonic Analysis is performed by using the Welch Method [203], which is a commonly

used method for estimating the Power Spectral Density (PSD) of a signal in the presence

of noise. It splits the data into overlapping segments, computes modified periodograms

of the overlapping segments and then averages them in order to estimate the PSD and

mitigate effects of random noise. In the applied procedure, the signal is segmented into

eight sections of equal length, each with 50% overlap. All remaining signal parts that

cannot be included into these eight segments are discarded. Each segment is windowed

with a Hamming window of the same length as the segment. Hamming windows are

commonly used in digital signal processing and they provide good cancellation of the
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first side lobe [204].

6.3.2.5 Wavelet-based Analysis

After interpolation and prior to wavelet-based analysis, to mitigate the effect of random

measurement noise, the pupil dilation signal was filtered by a 5th order low-pass

Butterworth filter with a cutoff frequency of fc =4Hz, which was selected as in [189]

and [191], since the pupil servomechanism’s break frequency is roughly 2Hz (see [191]

and references therein).

After filtering, Discrete Wavelet Transform (DWT) decomposition of the signal and

wavelet de-noising using soft thresholding [205] is performed. This is done by passing

the signal through a low-pass and a high-pass filter, and then down-sampling the filtered

signals in order to remove the over-completeness of the transform coefficients.

Due to the properties of DWT, the energy of the transformed signal is concentrated

in only few DWT coefficients that have high magnitudes, and the energy of the noise is

spread across a large number of DWT coefficients that have low magnitudes. Wavelet

De-noising by Soft Thresholding [205] can be applied to remove the remaining noise in

the 0-4Hz band, by minimising mean square error (MSE) of the reconstructed signal

compared to the original signal under the constraint that with high probability the

reconstruction is at least as smooth as the original. This allows for the removal of

undesirable noise ripples or oscillations that would not be removed with a simple

MSE minimisation. The idea of wavelet de-noising by soft thresholding is to first

decompose the noisy signal into N levels using a pyramidal wavelet filter, and then

apply thresholding on the wavelet coefficients coordinate-wise with a specially selected

threshold.

All DWT coefficients whose absolute value is less than the predefined threshold are

set to zeros and all remaining coefficients will have magnitude reduced by the applied

threshold. In the proposed method, Minimax thresholding is used and the level of noise

is estimated based on the first level coefficients. Finally, the inverse transform is applied

to recover the original signal. A similar wavelet de-noising procedure was used in [195]

to evaluate the level of cognitive activity based on pupil dilation.
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6.4 Results and Discussion

The filtered pupil dilation signal was initially separated into image segments and then

all content image segments and all grey image segments were concentrated, forming

in this way two signals: a signal carrying four content images and a signal carrying

grey images. Figure 6.8 shows the filtered pupil dilation signal for Subject 5 and 10

during all three trials for the content images. Each vertical line represents the temporal

transition between images. These subjects were selected as a representative example of

all subjects.

The pupil dilation range was around 1mm for both subjects and it dynamically

changed during the experiments. By reviewing the Figures 6.8(a)-(b), it is apparent

that the dilation on average is higher during Trial 3, compared to the other two trials.

Figure 6.9(a)-(b) show the 3D gaze fixation (X,Y) versus time, i.e, the sample

number, for Subjects 5 and 10 during Trial 3, where the subjects were asked to locate

“flower(s)”in the images. Figures 6.10(a)-(b) and 6.11(a)-(b) illustrate the gaze position

for both subjects for each content image. It is apparent by looking at the original images

in Figures 6.7 that clusters of gaze points are located in the image areas with flowers.

Indeed, for Image 2, in Figure 6.10(b), it is apparent that Subject 5 was able to target

the living flowers. On the other hand, Subject 10 noticed many artificial flowers in the

image. Note that there was no specification about the type of flower(s) the subjects

should locate. Similarly, Images 1 and 3 have multiple flowers, hence the multiple

clusters of gaze fixation points. In Image 4, both subjects were able to locate the vase

on the table. The 3D graphs provide extra information of when the different targets

were identified, spread out across the period the image(s) were shown.

Tables 6.3 and 6.4 show the Mean values and Variance of pupil dilation when viewing

the Content Images, after filtering. From Table 6.3, we can see that predominately the

highest values (bold) of mean pupil dilation were during Trial 3, which is expected.

In general, though mean, variance and number of peaks rather irregularly change

across the images and subjects, failing to capture signal transients. Thus, time aver-

aging over the images does not, in this case, provide information that can be used to

assess user’s attention and experience, since the signal transition information is lost.
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Figure 6.8: Filtered Pupil Dilation for Subjects 5 and 10 respectively during all three trials.
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Figure 6.9: 3D Gaze Position for Subject 5 and 10 for all images during Trial 3.
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Figure 6.10: Gaze Position for Subject 5 and 10 for content images 1 and 2 during Trial 3.
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Figure 6.11: Gaze Position for Subject 5 and 10 for content images 3 and 4 during Trial 3.
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Table 6.3: Mean of the Filtered Pupil Dilation Signal of the Content Images [in mm]. S stands for Subject and Bold represents the
highest mean value per image.

Content Image 1 Content Image 2 Content Image 3 Content Image 4

S Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

1 2.180 2.193 2.123 2.215 2.236 2.213 2.135 2.227 2.315 2.111 2.258 2.246

2 2.576 2.500 2.546 2.606 2.751 2.795 2.479 2.583 2.745 2.458 2.481 2.417

3 3.104 3.241 3.215 3.312 3.103 3.429 3.091 2.991 3.097 3.038 2.849 2.958

4 3.109 2.631 2.749 3.157 2.823 2.843 2.779 2.699 2.808 2.642 2.644 2.703

5 2.550 2.520 2.771 2.528 2.442 2.765 2.477 2.428 2.640 2.275 2.270 2.530

6 2.578 2.689 2.673 2.645 2.665 2.833 2.609 2.683 2.781 2.499 2.608 2.586

7 2.614 2.544 2.657 3.023 2.653 2.872 2.680 2.627 2.668 2.830 2.612 2.542

8 3.402 3.204 3.374 3.481 3.185 3.500 3.209 3.050 3.350 3.265 3.139 3.221

9 3.131 3.059 3.134 3.186 3.159 3.032 2.929 3.029 3.163 2.804 2.829 2.707

10 2.757 2.873 2.925 2.639 2.739 2.828 2.770 2.743 2.828 2.546 2.690 2.653
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Table 6.4: Variance of the Filtered Pupil Dilation Signal of the Content Images [in mm2]. S stands for Subject and Bold represents
the highest variance per image.

Content Image 1 Content Image 2 Content Image 3 Content Image 4

S Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

1 0.119 0.131 0.109 0.129 0.118 0.121 0.118 0.130 0.131 0.111 0.131 0.133

2 0.183 0.169 0.177 0.182 0.200 0.179 0.148 0.164 0.165 0.162 0.147 0.141

3 0.237 0.284 0.266 0.285 0.237 0.292 0.229 0.260 0.244 0.238 0.199 0.207

4 0.255 0.168 0.182 0.238 0.191 0.193 0.194 0.179 0.192 0.168 0.170 0.173

5 0.169 0.160 0.185 0.176 0.147 0.186 0.155 0.150 0.175 0.124 0.151 0.152

6 0.156 0.173 0.182 0.165 0.164 0.207 0.165 0.173 0.180 0.160 0.165 0.165

7 0.173 0.165 0.182 0.241 0.179 0.200 0.177 0.177 0.254 0.426 0.176 0.155

8 0.298 0.243 0.331 0.318 0.250 0.331 0.246 0.225 0.295 0.261 0.243 0.259

9 0.286 0.305 0.252 0.267 0.314 0.260 0.237 0.268 0.292 0.190 0.206 0.178

10 0.212 0.214 0.228 0.193 0.225 0.214 0.229 0.198 0.187 0.170 0.216 0.190
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6.4.1 Harmonic Analysis

Next, harmonic analysis is performed by estimating the PSD of the signal in the range

of interest (0 − 2Hz) using the Welch method described above. PSD was separately

estimated for each grey image and each content image. The results for all content

images are shown in Table 6.5. Frequency analysis shows the distribution of the power

indicating in which frequency sub-band most of the signal’s energy is concentrated. It

could potentially indicate increased mental activity, if small enough time windows are

applied.

This can be seen from Table 6.5, as on average Trial 3 shows increased power

values per image, when compared with other trials. For example, Subject 5 in Image

1 shows 564.4W, which is higher compared to 477.6W and 468.5W for Trials 1 and

2, respectively. This pattern is similar to the case of mean values in Table 6.3 and

generally power values are higher for Trial 3 when the subjects were asked to perform

a target search task. This is mostly pronounced for Image 3 where all subjects show

higher energy at Trial 3 (see bold values in Table 6.5). As frequency analysis loses time

information and makes it difficult to conclude which time stimuli caused the reaction,

therefore a wavelet-based analysis is proposed.

6.4.2 Wavelet-based Signal Processing

Figures 6.12(a)-(b), 6.13(a)-(b) and 6.14(a)-(b)show the wavelet-based analysis for

Subjects 5 and 10 for all each trial respectively. Similar results are obtained for other

subjects. Horizontal axis again shows the sample number with vertical lines pointing

to the image transition moments; vertical axis denotes the right eye pupil dilation in

mm.

A Daubechies-4 wavelet filter was used, as it is one of the most popular orthogonal

wavelet filter with fast wavelet transform. In contrast to the Fourier analysis, DWT

can tradeoff frequency and time resolution allowing for detection of time interval when

a specific frequency component occurred. A 4-level wavelet decomposition was used,

decomposing the signal into 4 frequency bands, to maintain high frequency resolution.
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Table 6.5: Signal Power in the 0-2Hz Band in [W] per content image. Bold represents the highest power per image.

Content Image 1 Content Image 2 Content Image 3 Content Image 4

S Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

1 348.8 355.4 335.1 362.2 367.7 359.5 336.4 365.5 392.2 329.8 373.2 373.2

2 490.2 461.8 506.9 502.6 557.4 520.4 451.1 490.2 491.1 447.0 451.9 428.9

3 707.9 772.9 763.1 802.5 708.6 863.1 701.6 663.8 703.2 677.3 596.9 642.6

4 710.8 510.2 554.5 731.0 585.7 592.4 567.6 538.0 580.0 512.7 516.2 538.9

5 477.6 468.5 564.4 470.0 436.5 559.0 451.8 432.9 512.6 379.1 379.8 470.9

6 490.2 530.6 523.5 513.5 521.3 585.3 500.6 529.3 567.0 458.0 498.6 491.9

7 502.2 476.9 523.2 672.6 516.4 602.9 528.8 507.2 531.7 620.3 502.1 474.5

8 855.8 756.3 852.0 891.8 749.3 910.0 757.0 687.1 823.2 782.6 721.4 771.4

9 726.8 695.3 722.2 746.2 742.2 676.3 636.3 678.7 736.3 579.8 590.6 540.5

10 561.0 605.3 624.4 517.0 551.2 588.4 567.6 554.4 587.6 477.4 539.6 519.6
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Figure 6.12: Wavelet Analysis of Content Images for Subject 5 and 10 for Trial 1.
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Figure 6.13: Wavelet Analysis of Content Images for Subject 5 and 10 for Trial 2.
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Figure 6.14: Wavelet Analysis of Content Images for Subject 5 and 10 for Trial 3.
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The areas around the image transitions should be ignored as they are caused by

signal stitching. An increased activity can be clearly observed in the band of interest.

Trial 3 is characterised by significant pupil dilation activity in the beginning (until the

task is solved, bearing in mind delayed reaction) and then reduction, while the other

two trials have more evenly spread activity. Trial 1 has evidently more activity than

Trial 2, since new content was presented in Trial 1. This activity has been marked for

both subjects in Figures 6.14(a) and (c) with red circles, where activity is more clear. In

Trial 3, the pupil dilation activity indicates that Image 2 was most challenging, which

is true since the flower position is not so obvious.

In general, video-based eye trackers can be incorporated in the IoT concept, similarly

with RFID tags and sensors, (see Appendix C). Gaze fixation and wavelet analysis

of pupil dilation, compared to other signal processing methods presented throughout

this case study, have been proven suitable for assessing user’s attention. Therefore,

they could be used as features for identifying patterns in the user’s content interaction

behaviour using data mining techniques. Data pre-processing included removal of eye

blink artifacts and replacing missing values using linear interpolation of both left and

right eye data.

6.5 Summary

The aim of this chapter was to investigate different data monitoring, data analytics

and signal processing tools, that can be implemented in different IoT applications with

diverse output data. For this purpose, two case studies related to different disciplines

have been presented.

The first case study proposed a cost-effective prototype sensor solution for monitor-

ing earthworks. The presented setup can measure soil resistivity, ground movement

and pressure, but allows the incorporation of other sensors. The obtained results

show expected resistivity values for the weather condition and soil material at the

deployment site. Ground movement sensor sensitivity was proven and can be used in a

future destructive test that could provide the profile of a healthy and failing earthwork.

Finally, a further calibration of the absolute pressure with a pore pressure sensor would

provide a cost-effecting alternative of the current methods of measuring pore pressure.
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The proof of concept of the proposed monitoring system and the inferred results could

allow a future implementation of sensors’ arrays in order to produce a full landscape

survey and therefore induce ERT applications.

The second case study discussed different signal processing methods for analysing

pupil dilation signals with applications to multimedia experience assessment. The main

goal was to review and test different methods, in order to evaluate their future use for

feature definition and extraction for autonomous pattern matching and event detection.

More specifically, mean, variance and number of peaks of the pupil dilation have been

proven to be inadequate to provide clear patterns that would help assessing user’s

attention. On the other hand, harmonic analysis obtained similar results with the case

of mean values, with higher power values on average during Trial 3, but it is difficult

to identify when this reaction occurred solely using frequency domain data.

As in [195], the presented findings show that clearly wavelets provide a clearer

view of activity on pupil dilation and can be essentially used as a helping tool for

extracting signatures from the pupil dilation signal in order to relate each segment to

image information/task for automated pattern matching. A possible combination of

the above methods could provide a more accurate activity recognition process.

Both case studies make apparent that although the main data analysis steps, such

as data pre-processing, are similar, the further analysis requires a more in depth

knowledge of the features monitored in each application. Additionally, depending on

the sampling rate, useful information can be extracted through signal processing and

pattern matching in both time and frequency domain.

Finally, in the following chapter, Chapter 7, the main findings of the research work

presented in this thesis will be presented, with respect the research questions defined in

Chapter 1. Furthermore, a further discussion will be included regarding any possible

limitations of the presented research and solutions will be presented in the context of

a further research.





Chapter 7

Summary and Implications

7.1 Introduction

The realisation of Internet of Things will provide various benefits in our communities

by automating processes and assisting even with the simplest everyday tasks, such

as driving a car, visiting a hospital or utilising the capabilities of a smart house.

Together with every positive effect, IoT will instigate various challenges for researchers,

companies and lawmakers, in the context of data security and privacy, data storing

and data utilisation and analysis. An enormous amount of data would be produced

simultaneously, originating from smart devices and sensors incorporated in various

and heterogeneous fields. One of the most interesting challenges, which was the main

motivation behind this research work, will be the extraction of meaningful information

from the available data and the application appropriate data analytics and signal

processing methods that can be applied for this purpose.

This chapter will provide a summary of the research outcomes with regards to the

stated motivation and the research questions, defined in Chapter 1. Any observations

and limitations of the proposed methods and solutions will be further analysed, in order

to lay the foundations for any future research that could optimise and advance further

the research work presented in this thesis.

7.2 Research Findings

The main findings of this research work are associated with the smart grid and smart me-

tering application of IoT from the perspective of Non-Intrusive Appliance Monitoring,

where an extended background research has been performed in order to identify both

the advancements and the limitations of the NILM research field. Three unsupervised

215
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methods were proposed as a potential solution of the NILM problem and a performance

evaluation has been presented with benchmarks state-of-the-art NILM methods using

publicly available datasets, namely REDD [1] and REFIT [2, 3].

Furthermore, two other IoT applications have been presented in Chapter 6 .The

first application includes the monitoring of large infrastructures, specifically a canal

embankment, where a prototype monitoring system was proposed and a proof of concept

has been reported. The second case relates to the assessment of human interaction with

visual content, where various statistical and signal processing techniques have been

investigated for extraction of useful information.

7.2.1 Low Resolution Non-Intrusive Load Monitoring

Through the extended NILM background review, available in Chapter 2, it has become

apparent that the vision of an online and real-time load disaggregation, require NILM

techniques, that can accurately identify appliance usage using solely aggregate power

data at low sampling rates, similar to the standards of the vast majority of the commer-

cial smart meters deployed by utilities and governments around the world. Therefore,

the main focus in both Chapters 3 and 5 was to propose unsupervised NILM techniques

for low resolution disaggregation, using as a feature only the information available from

the smart meter and without having a priori knowledge of the appliance operations

through individual monitors. Throughout this thesis, the IAMs data have been only

incorporated for naming the already obtained appliance signatures and to evaluate the

accuracy of the proposed methods with regards to the ground truth operation of each

appliance.

In Chapter 3, an unsupervised method, using solely Dynamic Time Warping (DTW),

has been proposed. The proposed method obtains offline a library of appliance signa-

tures for each operating appliance using the aggregate load. These signatures are used

during disaggregation in order to classify the obtained disaggregation result. One of

the main advantages of this method is that allows the incorporation of new appliances,

by only learning for the new appliance, to obtain the relevant signature and compare it

to the available appliance signatures library. Thus, it does not require relearning of the

appliances already present in the household. In Chapter 4, the proposed DTW-based

method was evaluated using five houses from publicly available NILM datasets, three
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from the US-based REDD dataset [1], downsampled to 1min resolution, and 2 from the

UK-based REFIT dataset [2, 3], with benchmarks the state-of-the-art NILM methods,

as presented in the works of Zhao et al. [4, 5] and He et al. [33], which include a variety

of supervised and unsupervised Graphical Signal Processing based methods, Decision

Tree [32], HMM [35] and FHMM [34].

The proposed method was able to obtain, in most houses, higher or comparable

performance in comparison to most of the methods used for benchmarking. It has

been proven more successful for disaggregating on/off appliances, especially with high

consumption, e.g. kettle toaster, and found more challenging the classification of

multi-state appliances, such as dishwasher, and washing machine, but was still able

to identify the high consuming washing cycle with comparable accuracy in most cases.

Although, the proposed DTW-method obtained overall good performance, an increased

computational cost has been reported.

In Chapter 5, two methods have been proposed for reducing the computational

complexity of the original DTW-based method, with both performing unsupervised

learning, similar to the method proposed in Chapter 4. The first method, referred

as DTW+kM, creates the library of appliance signatures using DTW similarly with

the original implementation and initialises the cluster centroids that will be used by

k-means in order to perform clustering and classification of the detected aggregate load.

k-means increased significantly the classification speed, and was able to report in most

cases similar performance with the original DTW-based method, for most houses, with

the exception of some appliances, such as dishwasher and washing machine, where it has

merged the original clusters into one due to similarity of the average consumption of the

appliances. Overall the DTW+kM method has shown sufficiently good performance,

and it was the method with the lowest execution time.

The second method, namely kDTW, was introduced in order to provide a further

refinement of the proposed DTW+kM method. The refinement method is using the

DTW method for the non-identified and the falsely identified operations, by selectively

comparing the corresponding events to the appliance signatures with the closest average

consumption. The implementation increased the computational complexity of the

DTW+kM method, but still was significantly faster than the proposed DTW-based

method in Chapter 4. Overall the refinement has been proven successful, and it was
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able to obtain the same accuracy in most houses with the original method, therefore

comparable to most of the state-of-the-art NILM, presented in [4, 4, 33].

7.2.1.1 Large Infrastructures Monitoring

Earthworks infrastructures require regular monitoring and maintenance, as a potential

failure could affect the smooth operation of railways, and canals, to name the least, and

could even lead to fatal accidents. This monitoring process usually involves expensive

monitoring systems and human involvement for operating the monitoring systems. In

Chapter 6, a prototype and cost-effective solution has been proposed for automated

monitoring of a canal embankment, and generally earthwork assets, for assisting in

proactive maintenance of the asset. Through background research and expert knowl-

edge from the stakeholders, the suitable monitoring parameters have been identified,

namely soil resistivity, pressure and ground movement and a customisable sensor node,

with prototype casing, has been designed and deployed for monitoring the allocated

site in Falkirk Wheel.

Data pre-processing has been performed in order to synchronise the data using the

injection and sinking of the current process, and data imputation was performed using

linear interpolation. The obtained resistivity was in line with the expected values of

the soil type present in the testing site, and due to the normal weather conditions,

there were not any extreme variations. An artificially induced disturbance has shown

that the ground movement/vibration could provide a potential feature for capturing

the failure of an embankment. Pressure has reported only small variation of ∼ 2kPa,

therefore in order to obtain useful information from the pressure, a further calibration

using a moisture content sensor is required. In general, we were able to show the

potential of monitoring resistivity, 3-axis movement and pressure, all in one prototype

and customisable sensor node, compared to the off-the-shelf solutions, that require

the use of multiple and expensive monitoring systems, in order to obtain the different

parameters.
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7.2.1.2 Attention Assessment in Visual Content Interactions

The assessment of the user’s attention when interacting with visual content, can be

useful in various IoT applications, from healthcare to even personalised advertisement

based on the visual interaction of the user when using a computer embedded with an

eye tracking device. In Chapter 6, a three-stage experiment has been designed and

executed in order to assess the attention of the test subjects with respect to the visual

content presented, in the specific case “neutral-content” images (indoors and outdoors),

with and without the search of a target. Data pre-processing has been performed for

removing eye blink artifacts and linear interpolation was implemented for recovering

any missing data. Three different signal processing approaches have been investigated,

namely statistical analysis using pupil dilation mean, variance, and peak, frequency

analysis and wavelet-based analysis, in order to evaluate their suitability for extracting

useful information from the pupil dilation and gaze position data.

The obtained results have shown that mean, variance and number of peaks did not

provide useful information and were not able to depict the signal’s transient. Harmonic

analysis has reported increased power for most of the subjects during the third trial,

where the subjects were asked to search for a target, but it does not allow the correlation

of the increased power to the time stimuli that triggered this reaction. For this

purpose, a wavelet-based method has been proposed using a Daubechies-4 wavelet

filter, to decompose the signal into 4 frequency bands, but still maintain high frequency

resolution. The reported results have shown an increased activity in terms of pupil

dilation during the trial, where the subjects were performing the requested task, for

reference trial 3. Therefore, this wavelet approach together with the gaze position

information have been proven successful in identifying activity that could be potentially

used as an extracted feature, in order to further analyse and classify the human

attention behaviour and maybe correlate this behaviour to emotions that the visual

content could create towards the user.
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7.3 Research Limitations

Even though this research work has achieved the original research aims and objectives, it

is important to identify and discuss any limitations that have been observed throughout

this thesis. These limitations can be summarised as follows:

• The proposed DTW-based method, as already discussed, has shown high compu-

tational cost, thus it is not a suitable candidate for online and real-time disag-

gregation. This has been addressed with the use of the combined k-means and

DTW scheme, which was able to reduce significantly the processing time of the

classification.

• The proposed DTW-based method was not able to obtain signatures for all appli-

ances, especially low consuming ones, and various states of multi-state appliances,

therefore the reported disaggregation results in some of the test houses included

less appliances compared to the benchmark methods.

• All proposed methods have a difficulty in successfully separating the washing

machine and dishwasher in House 2 from REFIT dataset, which consume similar

average power during their washing cycle, which is the state that the proposed

methods can disaggregate.

• The event detection method, using the “rising and falling edges”, does not allow

the extraction of all the appliance operation events present in the aggregate data,

that could be potentially classified using the proposed methods.

• The DTW refinement was not able to further increase the performance of the

original DTW-based method.

• The resistivity measurements obtained, using the prototype monitoring system in

Chapter 6, have reported synchronisation issues, which was challenging in terms

of pre-processing the data.

• The deployed monitoring system included only four nodes, in order to prove the

concept of resistivity and the rest measured parameters, which although successful

it terms of understanding the usefulness of the monitored measurands, is not
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sufficient for understanding in full extent the behaviour of the embankment. This

would require the implementation of a full array of sensors and a destructive test,

which was not the purpose of this research.

• The use of “neutral-content” visual content, although it was specifically selected

to serve the objectives of this thesis, makes it difficult to identify intense pupil

dilation variations, which would be more evident when using content that could

trigger emotional reactions.

7.4 Further Research

The potential future research, as an extension of this thesis, would include the following:

• Investigation of alternative edge/event detection methods in order to overcome

the limitations of the “rising and falling” edge detection method, used throughout

this thesis, increase the quality of the detected events, acquire the complete

signature of multi-state appliances, such as dishwasher and washing machine, and

overcome more successfully the overlapping events. Evaluation of the complexity

and performance of the proposed DTW-based, DTW+kM and kDTW methods.

• Implementation of the proposed DTW refinement, as a post-processing tool, using

other state-of the-art NILM methods, for evaluating the potential application for

improving the disaggregation process for other event based NILM methods.

• Implementation of a firmware that will allow the precise synchronisation of the

resistivity measurements, in order to overcome the synchronisation issues observed

during the original deployment.

• Performance of a destructive testing in order to acquire the “profile”, in terms

of measurements, of a failing earthwork asset, and perform data analysis and

predictive modelling. Investigation of the potential use of DTW for classification

of the obtained features.

• Deployment of the prototype monitoring system in a large-scale array, in order to

monitor the resistivity for performing 2D or 3D mapping of the earthwork asset

through ERT.
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• The research and development of a more compact casing design, that would allow

easier and less intrusive deployment of the sensor nodes.

• Performance of a more visually challenging experiment, in order to acquire distinct

features using the proposed wavelet-based signal processing approach and evaluate

appropriate signal processing and machine techniques for classification of the

user’s attention behaviour. Investigation of the potential use of DTW for the

classification purpose.
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Appendix A

Appliance Types

According to Hart in [24] and Baranski and Voss in [100], consumer appliances can be

classified in four classes depending on their operational states. These four classes are

as follows:

• On/Off appliances

This class includes most of the common household appliances, such as a toaster,

kettle or a light bulb. These appliances usually can be switched on using simple

two-point control. During their ON state, they produce a specific amount of

power, which can be detected in the mains with the increased consumed power,

but the duration of the ON state can vary depending on user’s specifications. As

an example, a toaster’s ON state can be affected by the toasting settings and

function selected (e.g. defrosting), while a kettle’s ON state by the volume of the

water that requires boiling.

• Finite State Machines (FSM)

These are multi-state appliances with a finite number of operating states and

according to Hart in [24] can be represented using Finite State Machines (FSM)

model, thus their name. The switching pattern of these appliances is repeatable,

and each state has a specific power consumption. This class includes appliances

such as washing machine or tumble dryer. For example, a washing machine’s

operation has three states/cycles, washing, rinsing and spinning, which are re-

peating every time a household user operates the appliance (daily or weekly).

The duration of each cycle and the total duration of washing machine’s operation

can vary depending on the programme and temperature selected.
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• Continuously Variable Consumer Devices

These are appliances with variable power consumption and no periodic pattern

of changing states or power. For this reason, their detection and therefore disag-

gregation using a NILM algorithm is almost impossible. Examples of devices in

this class include dimmable lights and power tools.

• Permanent Consumer Devices

According to Baranski and Voss in [100], these are devices that remain on for 24

hours a day, 7 days a week, and they have approximately constant active and

reactive power consumption. Examples of devices in this class include hard-wired

smoke alarms and gas alarms.



Appendix B

Supplementary Results for

Chapter 5

This appendix provides the results presented in Chapter 5 with benchmarks the state-

of-the-art NILM methods used in Chapter 4.

B.1 Disaggregation Results for House 1 from REDDDataset

Table B.1 shows the classification accuracy obtained using FM for the proposed DTW+kM

and kDTW methods, proposed in Chapter 5, with benchmarks the proposed DTW-

based method in Chapter 4, UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM

[34], for REDD House 1, as presented in [5]. Table B.2 shows the estimation accuracy

per appliance using Acci for the proposed DTW+kM and kDTW methods, proposed in

Chapter 5, with benchmarks the proposed DTW-based method in Chapter 4, UGSP [4],

SGSP [33], DT [32], BR [58], P [5] and FHMM [34], for REDD House 1, as presented

in [5].
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Table B.1: Classification Accuracy using FM of the proposed DTW+kM and kDTW methods, with benchmarks the proposed DTW-
based method in Chapter 4, UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34], for REDD House 1, as presented in
[5].

DTW UGSP[4] SGSP[33] DT[32]

Apps (1) (2) (3) UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

DW 0.32 − 0.32 0.12 0.10 0.52 0.10 0.16 0.63 0.05 0.05 0.57 0.14

F 0.80 0.80 0.80 0.52 0.51 0.63 0.08 0.13 0.58 0.42 0.43 0.63 0.51

KO 0.86 0.83 0.86 0.10 0.17 0.47 0.04 0.14 0.55 0.02 0.03 0.47 0.68

MW 0.78 0.78 0.78 0.39 0.21 0.40 0.32 0.27 0.57 0.21 0.24 0.43 0.19

WD 0.79 0.79 0.79 0.44 0.49 0.61 0.53 0.52 0.71 0.46 0.42 0.65 0

Note: Apps=Appliances, DW=Dishwasher, F=Fridge, KO=Kitchen Outlet, MW=Microwave, WD=Washer Dryer. (1) represents the
original DTW-based method in Chapter 4, (2) the DTW+kM, and (3) the kDTW, that uses DTW as a final refinement step. Bold
values represent the method/methods with the highest obtained classification accuracy per appliance. BR is the base load removal
method, proposed in [58] and P is the GSP based pre-processing and refinement method proposed in [5].
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Table B.2: Estimation Accuracy using Acci of the proposed DTW+kM and kDTW methods, with benchmarks the proposed DTW-
based method in Chapter 4, UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34], for REDD House 1, as presented in
[5].

DTW UGSP[4] SGSP[33] DT[32]

Apps (1) (2) (3) UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

DW 0.64 − 0.64 0.23 0.21 0.66 0.16 0.24 0.72 0.55 0.51 0.58 0.21

F 0.80 0.80 0.80 0.68 0.65 0.91 0.48 0.51 0.93 0.47 0.47 0.88 0.59

KO 0.74 0.74 0.74 0.16 0.25 0.83 0.09 0.11 0.84 0.24 0.27 0.80 0.92

MW 0.63 0.63 0.63 0.40 0.26 0.66 0.37 0.46 0.69 0.58 0.61 0.62 0.40

WD 0.52 0.52 0.52 0.58 0.61 0.95 0.64 0.61 0.96 0.76 0.73 0.89 −1.99

Note: Apps=Appliances, DW=Dishwasher, F=Fridge, KO=Kitchen Outlet, MW=Microwave, WD=Washer Dryer. (1) represents the
original DTW-based method in Chapter 4, (2) the DTW+kM, and (3) the kDTW, that uses DTW as a final refinement step. Bold
values represent the method/methods with the highest obtained estimation accuracy per appliance. BR is the base load removal method,
proposed in [58] and P is the GSP based pre-processing and refinement method proposed in [5].
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Figure B.1 shows the comparative results, as found in Table B.1, in terms of

classification accuracy, using FM , between the proposed methods of this chapter, the

DTW-based method from Chapter 4 and the UGSP [4], SGSP [33], DT [32], with and

without BR [58] and P [5], and FHMM [34], as presented in [5].
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Figure B.1: Performance evaluation using FM for the proposed DTW+kM and kDTW
(Table B.1) with benchmarks the DTW-based method proposed in Chapter 4, UGSP
[4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34] for REDD House 1, as presented
in [5].

Figure B.2 shows the comparative results, as found in Table B.2, in terms of

estimation accuracy using Acci, between the proposed methods of this chapter, the

DTW-based method from Chapter 4 and the UGSP [4], SGSP [33], DT [32], with and

without BR [58] and P [5], and FHMM [34], as presented in [5].
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Figure B.2: Performance evaluation Acci for the proposed DTW+kM and kDTW
(Table B.2) with benchmarks the DTW-based method proposed in Chapter 4, UGSP
[4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34] for REDD House 1, as presented
in [5].
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B.2 Disaggregation Results for House 2 from REDDDataset

Table B.3 shows the classification accuracy obtained using FM for the proposed DTW+kM

and kDTW methods, proposed in Chapter 5, with benchmarks the proposed DTW-

based method in Chapter 4, UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM

[34], for house 2 from REDD [1] , as presented in [5]. Table B.4 shows the estimation

accuracy per appliance using Acci for the proposed DTW+kM and kDTW methods,

proposed in Chapter 5, with benchmarks the proposed DTW-based method in Chapter

4, UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34], for house 2 from

REDD dataset [1], as presented in [5].
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Table B.3: Classification Accuracy using FM of the proposed DTW+kM and kDTW methods, with benchmarks the proposed DTW-
based method in Chapter 4, UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34], for REDD House 2, as presented in
[5].

DTW UGSP[4] SGSP[33] DT[32]

Apps (1) (2) (3) UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

DW 0.36 0.20 0.36 0 0.21 0.82 0.12 0.21 0.80 0.08 0.16 0.77 0

F 0.82 0.75 0.82 0.12 0.11 0.24 0.17 0.16 0.31 0.30 0.28 0.29 0.82

KO1 0.84 0.75 0.84 0.07 0.13 0.82 0.01 0.09 0.90 0.18 0.23 0.85 0.52

KO2 0.79 0.82 0.82 0.33 0.37 0.60 0.45 0.51 0.53 0.24 0.33 0.43 0.38

MW 0.90 0.87 0.90 0.31 0.34 0.69 0 0.01 0.83 0 0.05 0.78 0.24

S 0.53 0.52 0.57 0 0 0.26 0 0 0.23 0.01 0.01 0.33 0.01

Note: Apps=Appliances, DW=Dishwasher, F=Fridge, KO=Kitchen Outlet, MW=Microwave, S=Stove. (1) represents the original
DTW-based method in Chapter 4, (2) the DTW+kM, and (3) the kDTW, that uses DTW as a final refinement step. Bold values
represent the method/methods with the highest obtained classification accuracy per appliance. BR is the base load removal method,
proposed in [58] and P is the GSP based pre-processing and refinement method proposed in [5].
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Table B.4: Estimation Accuracy using Acci of the proposed DTW+kM and kDTW methods, with benchmarks the proposed DTW-
based method in Chapter 4, UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34], for REDD House 2, as presented in
[5].

DTW UGSP[4] SGSP[33] DT[32]

Apps (1) (2) (3) UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

DW 0.61 0.56 0.61 0.50 0.52 0.78 0.32 0.33 0.77 0.15 0.13 0.64 −2.13

F 0.69 0.69 0.69 0.04 0.01 0.55 0.07 0.07 0.64 0.09 0.07 0.72 0.69

KO1 0.41 0.41 0.41 0.17 0.24 0.89 0.09 0.15 0.86 0.32 0.34 0.86 −0.4

KO2 0.81 0.81 0.81 0.58 0.06 0.72 0.55 0.49 0.73 0.59 0.54 0.66 0.12

MW 0.64 0.64 0.64 0.54 0.56 0.82 0.4 0.21 0.85 0.65 0.63 0.76 0.11

S 0.75 0.73 0.75 0.02 0 0.45 0.02 0.04 0.44 0.24 0.19 0.43 −4.49

Note: Apps=Appliances, DW=Dishwasher, F=Fridge, KO=Kitchen Outlet, MW=Microwave, S=Stove. (1) represents the original
DTW-based method in Chapter 4, (2) the DTW+kM, and (3) the kDTW, that uses DTW as a final refinement step. Bold values
represent the method/methods with the highest obtained estimation accuracy per appliance. BR is the base load removal method,
proposed in [58] and P is the GSP based pre-processing and refinement method proposed in [5].
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Figure B.3 shows the comparative results, as found in Table B.3, in terms of

classification accuracy, using FM , between the proposed methods of this chapter, the

DTW-based method from Chapter 4 and the UGSP [4], SGSP [33], DT [32], with and

without BR [58] and P [5], and FHMM [34], as presented in [5].
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Figure B.3: Performance evaluation using FM for the proposed DTW+kM and kDTW
(Table B.3) with benchmarks the DTW-based method proposed in Chapter 4, UGSP
[4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34] for REDD House 2, as presented
in [5].

Figure B.4 shows the comparative results, as found in Table B.4, in terms of

estimation accuracy using Acci, between the proposed methods of this chapter, the

DTW-based method from Chapter 4 and the UGSP [4], SGSP [33], DT [32], with and

without BR [58] and P [5], and FHMM [34], as presented in [5].
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Figure B.4: Performance evaluation using Acci for the proposed DTW+kM and
kDTW (Table B.4) with benchmarks the DTW-based method proposed in Chapter 4,
UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34] for REDD House 2, as
presented in [5].

B.3 Disaggregation Results for House 6 from REDDDataset

Table B.5 shows the classification accuracy obtained using FM for the proposed DTW+kM

and kDTW methods, proposed in Chapter 5, with benchmarks the proposed DTW-

based method in Chapter 4, GSP [144], GSP+FS [33],GSP+SA [33], SGSP [33], UGSP

[4], DT [32], HMM [35], for REDD House 6, as presented in [4, 33].
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Table B.5: Classification Accuracy using FM for the proposed DTW+kM and kDTW methods, with benchmarks the proposed DTW-
based method in Chapter 4, GSP [144], GSP+FS [33],GSP+SA [33], SGSP [33], UGSP [4], DT [32], HMM [35], for REDD House 6, as
presented in [4, 33].

DTW GSP

Apps DTW DTW+kM kDTW GSP GSP+FS GSP+SA SGSP UGSP DT HMM

AC 0.93 0.67 0.93 0.49 0.74 0.73 0.89 0.88 0.89 0.12

B 0.67 0.33 0.75 − − − − − − −

F 0.79 0.70 0.8 0.54 0.77 0.77 0.77 0.82 0.99 0.88

KO1 1 − 1 0.92 0.77 0.77 0.91 0.87 0 0

S 0.91 0.73 1 1 0.75 0.75 0.92 0.54 0.67 0

Note: Apps=Appliances, AC= Air Conditioning, B=Bathroom GFI, F=Fridge, KO=Kitchen Outlet, S=Stove. Bold values represent
the method/methods with the highest obtained classification accuracy per appliance. The KO1, as found in REDD dataset [1], represents
the microwave appliance presented in [4, 33].
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Figure B.5 shows the comparative results, as found in Table B.5, in terms of clas-

sification accuracy, using FM , between the proposed DTW+kM and kDTW methods,

the DTW-based method from Chapter 4 and GSP [144], GSP+FS [33],GSP+SA [33],

SGSP [33], UGSP [4], DT [32], HMM [35], for REDD House 6, as presented in [4, 33].
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Figure B.5: Performance evaluation using FM for the proposed DTW+kM and kDTW
methods, with benchmarks the proposed DTW-based method in Chapter 4, GSP [144],
GSP+FS [33],GSP+SA [33], SGSP [33], UGSP [4], DT [32], HMM [35], as presented
in [4, 33], for the proposed DTW+kM and kDTW methods, with benchmarks the
proposed DTW-based method presented in Chapter 4, for REDD House 6.
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B.4 Disaggregation Results for House 2 from REFIT Dataset

Table B.6 shows the classification accuracy obtained using FM for the proposed DTW+kM

and kDTW methods, proposed in Chapter 5, with benchmarks the proposed DTW-

based method in Chapter 4, UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM

[34], for house 2 from REFIT dataset [2, 3], as presented in [5]. Table B.7 shows the

estimation accuracy per appliance using Acci for the proposed DTW+kM and kDTW

methods, proposed in Chapter 5, with benchmarks the proposed DTW-based method

in Chapter 4, UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34], for house

2 from REFIT dataset [2, 3], as presented in [5].
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Table B.6: Classification Accuracy using FM of the proposed DTW+kM and kDTW methods, with benchmarks the proposed DTW-
based method in Chapter 4, UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34], for REFIT House 2, as presented in
[5].

DTW UGSP[4] SGSP[33] DT[32]

Apps (1) (2) (3) UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

DW 0.27 − 0.27 0.32 0.41 0.79 0.54 0.52 0.73 0.64 0.66 0.73 0.23

FFZ 0.61 0.27 0.41 0.47 0.52 0.42 0.32 0.33 0.59 0.30 0.54 0.33 0.50

K 0.96 0.84 0.96 0.66 0.68 0.88 0.77 0.67 0.90 0.45 0.42 0.76 0.06

MW 0.85 0.71 0.85 0.42 0.48 0.73 0.35 0.44 0.84 0.32 0.31 0.80 0.09

T 0.83 0.62 0.83 0.40 0.25 0.54 0.52 0.53 0.64 0.6 0.54 0.55 −

WM 0.69 0.66 0.69 0.24 0.21 0.23 0.32 0.29 0.43 0.37 0.32 0.48 0.09

Note: Apps=Appliances, DW=Dishwasher, FFZ=Fridge-Freezer, K=Kettle, MW=Microwave, T=Toaster, WM=Washing Machine. (1)
represents the original DTW-based method in Chapter 4, (2) the DTW+kM, and (3) the kDTW, that uses DTW as a final refinement
step. Bold values represent the method/methods with the highest obtained classification accuracy per appliance. BR is the base load
removal method, proposed in [58] and P is the GSP based pre-processing and refinement method proposed in [5].
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Table B.7: Estimation Accuracy using Acci of the proposed DTW+kM and kDTW methods, with benchmarks the proposed DTW-
based method in Chapter 4, UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34], for REFIT House 2, as presented in
[5].

DTW UGSP[4] SGSP[33] DT[32]

Apps (1) (2) (3) UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

DW 0.34 − 0.34 0.33 0.40 0.42 0.40 0.43 0.67 0.28 0.31 0.61 0.30

FFZ 0.69 0.63 0.63 0.42 0.34 0.77 0.58 0.56 0.80 0.37 0.32 0.73 0.24

K 0.91 0.88 0.91 0.49 0.68 0.83 0.51 0.51 0.85 0.41 0.39 0.76 −0.34

MW 0.79 0.76 0.79 0.51 0.48 0.64 0.55 0.53 0.65 0.33 0.42 0.64 −3.17

T 0.85 0.80 0.85 0.37 0.48 0.62 0.31 0.36 0.66 0.26 0.22 0.58 −

WM 0.73 0.73 0.73 0.46 −1.59 0.43 0.47 0.19 0.48 0.44 0.17 0.35 −1.84

Note: Apps=Appliances, DW=Dishwasher, FFZ=Fridge-Freezer, K=Kettle, MW=Microwave, T=Toaster, WM=Washing Machine. (1)
represents the original DTW-based method in Chapter 4, (2) the DTW+kM, and (3) the kDTW, that uses DTW as a final refinement
step. Bold values represent the method/methods with the highest obtained estimation accuracy per appliance. BR is the base load
removal method, proposed in [58] and P is the GSP based pre-processing and refinement method proposed in [5].
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Figure B.6 shows the comparative results, as found in Table B.6, in terms of

classification accuracy, using FM , between the proposed methods of this chapter, the

DTW-based method from Chapter 4 and the UGSP [4], SGSP [33], DT [32], with and

without BR [58] and P [5], and FHMM [34], as presented in [5].
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Figure B.6: Performance evaluation using FM for the proposed DTW+kM and kDTW
(Table B.6) with benchmarks the DTW-based method proposed in Chapter 4, UGSP
[4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34] for REFIT House 2, as presented
in [5].

Figure B.7 shows the comparative results, as found in Table B.7, in terms of

estimation accuracy using Acci, between the proposed methods of this chapter, the

DTW-based method from Chapter 4 and the UGSP [4], SGSP [33], DT [32], with and

without BR [58] and P [5], and FHMM [34], as presented in [5].
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Figure B.7: Performance evaluation using Acci for the proposed DTW+kM and
kDTW (Table B.7) with benchmarks the DTW-based method proposed in Chapter 4,
UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34] for REFIT House 2, as
presented in [5].

Table B.8 shows the normalised total power consumption estimation error (TER) for

the proposed DTW+kM and kDTW methods, proposed in Chapter 5, with benchmarks

the proposed DTW-based method in Chapter 4, UGSP [4], SGSP [33], DT [32], BR

[58], P [5] and FHMM [34], for house 2 from REFIT dataset [2, 3], as presented in [5].
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Table B.8: Normalised total power consumption estimation error (TER) for the proposed DTW+kM and kDTW methods, with
benchmarks the proposed DTW-based method in Chapter 4, UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34], for REFIT
House 2, as presented in [5].

DTW UGSP[4] SGSP[33] DT[32]

Apps (1) (2) (3) UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

DW 0.43 − 0.43 0.73 0.08 0.66 0.47 0.13 0.33 0.64 0.35 0.49 0.75

FFZ 0.70 0.73 0.73 0.10 0.53 0.31 0.19 0.42 0.27 0.47 0.67 0.31 0.38

K 0.019 0.031 0.019 0.34 0.06 0.05 0.27 0.11 0.04 0.31 0.25 0.15 0.41

MW 0.09 0.09 0.09 0.43 0.17 0.34 0.52 0.16 0.28 0.66 0.59 0.63 13.63

T 0.21 0.33 0.21 0.83 0.81 0.82 0.9 0.88 0.73 0.78 0.71 0.42 7.53

WM 0.42 0.42 0.42 0.17 0.40 0.09 0.32 0.52 0.10 0.28 0.33 0.22 3

Note: Apps=Appliances, DW=Dishwasher, FFZ=Fridge-Freezer, K=Kettle, MW=Microwave, T=Toaster, WM=Washing Machine. (1)
represents the original DTW-based method in Chapter 4, (2) the DTW+kM, and (3) the kDTW, that uses DTW as a final refinement
step.Bold values represent the method/methods with the lowest TER error per appliance. BR is the base load removal method, proposed
in [58] and P is the GSP based pre-processing and refinement method proposed in [5].
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Figure B.8: Performance evaluation using TER for the proposed DTW-based NILM
method, based on Table B.8, for the proposed DTW+kM and kDTW, with benchmarks
the DTW-based method proposed in Chapter 4, UGSP [4], SGSP [33], DT [32], BR
[58], P [5] and FHMM [34] for REFIT House 2, as presented in [5].

Figure B.8 provides a graphical representation of the normalised total power con-

sumption estimation error (TER) for the proposed DTW+kM and kDTW methods,

proposed in Chapter 5, with benchmarks the proposed DTW-based method in Chapter

4, UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34], for house 2 from

REFIT dataset [2, 3], as presented in [5].
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B.5 Disaggregation Results for House 17 from REFIT Dataset

Table B.9 shows the classification accuracy obtained using FM for the proposed DTW+kM

and kDTW methods, proposed in Chapter 5, with benchmarks the proposed DTW-

based method in Chapter 4, UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM

[34], for house 17 from REFIT dataset [2, 3], as presented in [5]. Table B.10 shows the

estimation accuracy per appliance using Acci for the proposed DTW+kM and kDTW

methods, proposed in Chapter 5, with benchmarks the proposed DTW-based method

in Chapter 4, UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34], for for

house 17 from REFIT dataset [2, 3], as presented in [5].
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Table B.9: Classification Accuracy using FM of the proposed DTW+kM and kDTW methods, with benchmarks the proposed DTW-
based method in Chapter 4, UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34], for REFIT House 17, as presented in
[5].

DTW UGSP[4] SGSP[33] DT[32]

Apps (1) (2) (3) UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

FZ 0.52 0.48 0.48 0.39 0.40 0.60 0.47 0.42 0.78 0.56 0.53 0.80 0.74

K 0.82 0.82 0.82 0.79 0.61 0.84 0.81 0.77 0.96 0.62 0.63 0.95 0.37

MW 0.68 0.68 0.68 0.15 0.24 0.55 0.28 0.31 0.77 0.11 0.13 0.79 −

T 0.88 0.88 0.88 0.23 0.07 0.81 0.35 0.36 0.76 0.39 0.33 0.46 −

Note: Apps=Appliances, FZ=Freezer, K=Kettle, MW=Microwave, T=Toaster, WM=Washing Machine. (1) represents the original
DTW-based method in Chapter 4, (2) the DTW+kM, and (3) the kDTW, that uses DTW as a final refinement step. Bold values
represent the method/methods with the highest obtained classification accuracy per appliance. BR is the base load removal method,
proposed in [58] and P is the GSP based pre-processing and refinement method proposed in [5].
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Table B.10: Estimation Accuracy using Acci of the proposed DTW+kM and kDTW methods, with benchmarks the proposed DTW-
based method in Chapter 4, UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34], for REFIT House 17, as presented in
[5].

DTW UGSP[4] SGSP[33] DT[32]

Apps (1) (2) (3) UGSP UGSP+BR P-UGSP SGSP SGSP+BR P-SGSP DT DT+BR P-DT FHMM[34]

FZ 0.65 0.64 0.64 0.04 0.43 0.64 0.21 0.26 0.63 0.26 0.21 0.68 0.71

K 0.90 0.90 0.90 0.12 0.66 0.79 0.32 0.31 0.80 0.43 0.43 0.77 0.2

MW 0.68 0.68 0.68 0.47 0.23 0.55 0.47 0.54 0.55 0.59 0.57 0.61 −

T 0.88 0.88 0.88 0.37 0.23 0.80 0.42 0.39 0.81 0.54 0.50 0.71 −

Note: Apps=Appliances, FZ=Freezer, K=Kettle, MW=Microwave, T=Toaster. (1) represents the original DTW-based method in
Chapter 4, (2) the DTW+kM, and (3) the kDTW, that uses DTW as a final refinement step. Bold values represent the method/methods
with the highest obtained estimation accuracy per appliance. BR is the base load removal method, proposed in [58] and P is the GSP
based pre-processing and refinement method proposed in [5].
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Figure B.9 shows the comparative results, as found in Table B.9, in terms of

classification accuracy, using FM , between the proposed methods of this chapter, the

DTW-based method from Chapter 4 and the UGSP [4], SGSP [33], DT [32], with and

without BR [58] and P [5], and FHMM [34], as presented in [5].
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Figure B.9: Performance evaluation using FM for the proposed DTW+kM and kDTW
(Table B.9) with benchmarks the DTW-based method proposed in Chapter 4, UGSP [4],
SGSP [33], DT [32], BR [58], P [5] and FHMM [34] for REFIT House 17, as presented
in [5].

Figure ?? shows the comparative results, as found in Table B.7, in terms of esti-

mation accuracy using Acci, between the proposed methods of this chapter, the DTW-

based method from Chapter 4 and the UGSP [4], SGSP [33], DT [32], with and without

BR [58] and P [5], and FHMM [34], as presented in [5].
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Figure B.10: Performance evaluation using Acci for the proposed DTW+kM and
kDTW (Table B.10) with benchmarks the DTW-based method proposed in Chapter 4,
UGSP [4], SGSP [33], DT [32], BR [58], P [5] and FHMM [34] for REFIT House 17, as
presented in [5].



Appendix C

Supplementary IoT Background

C.1 Introduction

The advancement of various technologies, such as sensors, software, data storage and

data analysis, have led researchers to conceive the idea of Internet of Things (IoT),

which could potentially create a link between all technologies and fields. A further

explanation of the concept behind IoT, its structure, applications and challenges can

be found in Section C.2.

C.2 Internet of Things

Internet of Things (IoT) represents one of the most trending concepts in current

technology and research community. IoT is a global “cloud-like” network, that could

interconnect various industries through the utilisation of smart sensors, Radio Frequency

Identification (RFID), actuators, and other enabling technologies that are currently

used in each industry[7–10]. A graphical example of IoT can be found in Figure C.1.

The applications of IoT are numerous and according to Atzori et al. [7], they can

be classified in four domains: (a) transportation and logistics, (b) healthcare, (c) smart

environment and (d) personal and social domain. Although these applications will

be highly beneficial to all parties involved (namely individuals, industries, etc), many

challenges arise in terms of: (a) how the data will be stored (b) how the data will be

processed and (c) how secure this network will be in order to maintain privacy [7–10].

283
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Figure C.1: The Internet of Things [206].

C.2.1 IoT Enabling Technologies

The technologies that can enable the actualisation of IoT can be summarised in the

following, as seen in [7–10]: (a) Radio Frequency Indentification (RFID), (b) Wireless

Sensor Networks (WSN), (c) Middleware, (d) Data Storage and analytics and (e) Data

Visualisation.

C.2.1.1 Radio Frequency Identification

Radio Frequency Identification (RFID) is the technology that allows the identification

and tracking of objects using tags with embedded microchips. The RFID process

requires a sensor that uses radio waves in order to “read” the tags [207].

RFID technology has been applied successfully in various sectors, such as logistics

and supply chain management, pharmaceutical industry, agriculture, retail, healthcare

etc. RFID is used in retail industry for inventory and replenishment purposes, in

addition to loss prevention purposes with RFID enabled security tags. In agriculture,

RFID can be used in order to identify and track livestock in farms and increase efficiency

and production of precision agriculture [208]. Another interesting application is the

implementation of RFID technology in biometric passports, which allows the access of

ID, biometric and travelling data, without physically accessing the passport. Libraries

are using RFID systems in order to have an accurate management system, that allows
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book tracking, and therefore reduce theft and losses [207].

Essentially, all the above examples represent some of the objects that can be

monitored through the incorporation of RFID technology in the IoT.

C.2.1.2 Wireless Sensor Networks

Wireless sensor networks (WSN) consist of a variety of sensor nodes distributed in

a wide area that form a wireless network with the purpose of monitoring different

environmental and application-specific parameters [7–10, 209]. According to Zhang et

al. [209], WSNs applications can be separated into monitoring and tracking related

applications, depending on whether they are used for monitoring various features, or

tracking objects, animals, etc, through cooperation with RFID systems.

WSNs can be used for monitoring different assets, such as earthworks, bridges,

embankments, by monitoring various environmental parameters and essentially provide

predictive and early notification methods through data mining for avoiding future

failures due to floods, seismic activities and other natural extreme phenomena. En-

vironmental monitoring can also lead to agricultural advancements, such as increased

and better production and assist in the field of precision agriculture. Furthermore, by

monitoring soil, water and atmospheric parameters, climate changes and pollution can

be studied, and therefore useful information can be inferred [209].

Moreover, in healthcare, WSNs can assist in more efficient and real-time monitoring

of patients and therefore better medical services [209]. At home monitoring through a

sensor and actuator network implemented in various areas of the residence can be useful,

especially for elderly patients and patients with serious heart or breathing conditions,

or mobility issues. Through this network, readings from medical devices available in the

patient’s residence could be obtained and through motion sensors a daily activity could

be recorded. This data could provide notification of unusual events, such as unusual

measurements obtained from the medical devices and extended lack of motion presence,

which could mean, for example, a serious fall/injury [210, 211].

Similarly, WSNs can be incorporated in the concept of smart homes and Smart Grid.

For the case of smart homes, the application is very similar with the at home patient

monitoring, as similar features can be monitored, namely motion, temperature, etc

[212] using various sensors and actuators. Another application is in the monitoring of
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renewable energy installations, such as wind and solar farms, monitoring of power qual-

ity, transmission line and cabling, residential energy management, building automation,

and many more [213, 214].

C.2.1.3 Middleware

Middleware is a software layer between different software applications, that allows the

integration of different technologies and development of services. For the case of IoT

and with the variety of objects/devices connected, middleware can assist in the smooth

application-specific development [7, 10].

According to Atzori et al. [7] and Lee et al. [10], the middleware architecture for

the IoT can be described as a Service Oriented Architecture (SOA) approach. SOA is a

flexible architecture that allows services to be provided through a network. Its flexibility

is mainly based on the easy and fast adaptation when changes occur, software and

hardware reuse, as each service, both new and old, do not require a specific technology

[7]. These advantages make SOA an optimal solution for IoT, where heterogenous

objects/devices, applications and services are required to exist in the same network.

C.2.1.4 Data Storage

Data storage is a very important part of the IoT, as an enormous amount of diverse data

will be produced. Therefore data storage requires massive capacity and fast processing

speed for real-time data analysis and notifications [8, 10].

C.2.1.5 Data Analytics

Data mining and machine learning algorithms are required for a further understanding

of the collected data and the deduction of useful information [8, 10]. More recently,

the idea of Cloud based data storage and data analytics seemed a more appropriate

solution especially for the case of real-time data processing and analysis [8, 10].
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C.2.1.6 Data Visualisation

Data Visualisation is an essential part of IoT applications, at it allows the representation

of data in a more interactive way, that could be accessible to end-users and third parties,

such as utilities and policy makers [8, 10].

C.2.2 IoT Applications

As IoT has a plethora of applications, therefore it is important to present an overview

of these applications, in order to enable the understanding of the importance of IoT

implementation. The applications will be presented under the main categories proposed

in [7], as already discussed in Section C.2.

C.2.2.1 Transportation and Logistics Domain

The incorporation of smart systems in both vehicles and transport infrastructure allows

the implementation of the IoT concept in both transportation and logistics industries

and can be highly beneficial for our society. These applications can be categorised in

those related to transportation and logistics and supply chain management, as found

in [7].

• Transportation

WSNs for monitoring transport infrastructure, namely railways, roads and canals,

could provide live information about traffic congestion, accidents and even infras-

tructure failures, that can affect the smooth operation of the transport network

[7–9]. Navigation systems could be automatically updated using both network

and vehicle tracking information and thus provide the most convenient routes

to network users, which can positively affect both duration, safety and cost

of transportation [7, 8]. Apart from the economical and social impact, this

application could have environmental benefits, as it could reduce both emissions

and traffic noise by minimising traffic congestion [8].

Vehicle tracking could also assist in the allocation of the most suitable parking

space and the mobile billing for any services related with use of the transport

network (parking and toll fees) [7, 9]. Furthermore, the use of smart cameras
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in vehicles, which is already used for parking assistance, could be able to detect

vehicles or other “motion-based objects” and recognise pedestrians, which would

reduce collisions and fatalities [9, 215]. Keller et al. have proposed in [215] a

prototype system for object/human detection and “automatic braking and evasive

steering” when the object/human is in proximity.

Autonomous vehicles (AV) or self-driving vehicles represent a further expansion

of the above applications, as they incorporate a variety of sensors and advanced

control systems, in order to assist (as in [9, 215]) or even replace the driver

in the fully automated AVs, with companies such as Waymo (Google), Uber,

Tesla, Cruise Automation and Navya already leading the AV field [216–222].

AVs could potentially reduce traffic congestion and traffic accidents, as according

to researches both are often related to human error, especially for the case of

accidents, more than 90% occur due to the driver’s error [223–225]. Despite the

potential of AVs, there have been a number of mainly minor incidents/accidents

involving material damage and minor injuries, and two fatal incidents [226, 227],

thus new legislations are required to ensure the safety and smooth operation

of AVs in coordination with the existing non-automated vehicles and current

transport infrastructure, privacy and cybersecurity [225, 228–230].

• Logistics and Supply Chain Management

Similarly, IoT could be applied in the field of logistics and supply chain man-

agement, which is closely related to transportation. The increased use of RFID

tags and Near Field Communications (NFC) allows real-time monitoring of all

individual parts of the supply chain, such as raw materials, production, packaging

and inventory, transportation, storage, distribution, sales and returns of products

[7, 9].

Product and transportation information could be obtained in real-time, which

will allow all involved parties (manufacturing and transportation companies) to

react faster to changes related to the products or the transportation process [7].

In terms of transportation, the dynamic updates of transport network and any

traffic problems would allow companies to optimise both transportation of goods

and delivery schedule, by adapting to any changes fed by the transport network
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[7–9]. Furthermore, Enterprise Resource Planning (ERP) systems will be able

to provide real-time information to companies and retail staff, which will lead to

better customer service and product replenishment [7].

Another important application of IoT is in the field of Food Supply Chain (FSC),

which involves production, distribution and consumption of food products, espe-

cially those that can degrade easily, when the correct conservation standards are

not met, sensors can be used for monitoring parameters, such as temperature and

humidity, to ensure the quality of the products throughout the FSC [7, 9, 10, 231].

Furthermore, precision agriculture has gained a lot of interest in the research

community, with various smart agriculture systems being proposed in recent

works, such as [13–15], for monitoring various environmental parameters and

smart solutions for performing agricultural tasks, such as weeding, spraying,

moisture sensing.

C.2.2.2 Healthcare Domain

Healthcare domain represents one of the most challenging and “sensitive” domains,

as any malfunctions and delays in the healthcare system could affect both patients

and healthcare personnel. According to [7–10], the implementation and usage of IoT

in healthcare could provide an improvement in the services and can lead to a more

personalised healthcare system for patients.

Atzori et al. [7] have categorised the IoT applications in healthcare into the following

four categories: tracking of objects and people, identification and authentication of

people, data collection and sensing.

• Tracking : Tracking can provide real-time information about the location of both

people and objects, in order to improve the operation of healthcare facilities and

assist with access identification to designated and restricted areas [7]. Inventory

and equipment tracking can provide information about maintenance of equipment,

availability and monitoring of equipment and medical products [7, 232].

• Identification and authentication: According to Atzori et al. [7], patient identi-

fication can minimise the mistakes regarding wrong drugs/doses/operations etc,

and can provide an up-to-date electronic medical record and furthermore can
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prevent mother-infant mismatching incidents. For the case of healthcare assets,

such as instruments, equipments, materials, and medical products, identification

and authentication can be used for security purposes, in order to avoid thefts or

losses of the assets [7].

• Data collection: Data can be obtained automatically, through the integration of

RFID and WSN technologies with existing health information systems and clinical

application technologies, in order to obtain a more efficient healthcare system, and

could be potentially applied for disease spread modelling and containment [7–9].

• Sensing : The application of sensors in healthcare, as discussed in [7], can facilitate

in a more accurate diagnosis and real-time monitoring of patient’s health indica-

tors, such as heart rate, temperature, and could be applied even for In-Home

Healthcare (IHH) services [233, 234].

Another interesting sensor approach has been proposed in [17], where the authors

have developed an “intelligent patient bed” for disabled patients. A contactless

eye tracker has been implemented for the communication between the patient

and the smart bed. The proposed system senses the gaze position and through a

GUI system, the patient’s intention is recognised and the specific action/service

is performed automatically. For example, the system allows a call to the nurse

and even controls the position of the bed.

In general the incorporation of various sensors in healthcare for both hospitals and

in-home care, can allow a more automated, intelligent, personalised and efficient health-

care system, which can be fulfilled with the interconnection of those smart systems

through IoT.

C.2.2.3 Smart Environment Domain

Smart environment domain is one of the most extended application domains in IoT,

and can be categorised in smart cities, smart industry, smart grid and smart leisure

environment.
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• Smart Cities

Smart cities represent the cities of the future, where information and communica-

tions technology (ICT) will be used in order to interconnect urban infrastructures

and services and therefore improve the quality of life in an urban environment

[235]. The IoT framework and the related technologies are essential for the

development of smart cities, as they will achieve the interconnection of all devices

and services of the city in “a cloud-like” network, making accessible services and

data to all parties involved [235].

The implementation of sensors and WSNs in houses and buildings could provide

automated adjustment of the room temperature depending on the weather con-

ditions and predefined user preferences [7, 8]. Remote control of home or office

appliances, such as air conditioners, fridge, and washing machine could increase

energy saving and reduce accidents caused by appliances that have been left

switched on due to user’s error [7, 8, 236]. According to Patel et al. [236], smart

fridges could allow an inventory check, that would notify users about products

that are expired or close to expire and provide a to buy list depending on user’s

specifications. Smartphone applications could be used to remotely adjust oven

temperature and monitor washing machine cycles [236]. Security systems, such

as cameras, alarms and motion sensors integrated in doors and windows, could

provide real-time notifications to both owners and police/security services, in

order to prevent intrusions [7, 236].

The interconnection of different surveillance systems in the context of smart cities,

such as CCTVs and traffic cameras, would increase public safety and even assist

in the creation of a unified smart emergency system in case of an accident, natural

disaster, crime or even disease outbreak [235–237]. Although the advantages of

such a system are important, many concerns could arise regarding the protection

of people’s privacy and their sensitive information. These IoT challenges will be

further discussed in Section C.2.3.

Monitoring of the structural health of various infrastructures, such as bridges,

buildings, embankments, is possible with the use of sensors and WSNs in IoT and

can improve security and safety and predict catastrophic failures. For example,
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in [238], a system was proposed for monitoring the pressure of a building using

piezoelectric transducers (PZT) and predict catastrophic damage. The authors

have used Butterworth for cleaning the noise of the PZT signals, Cross Correlation

for detecting damage and a mathematical model for identifying the location and

size of the damage, which were all validated successfully in a lab environment

[238].

Another IoT application in a smart city will be the implementation of smart traffic

management systems, that will provide real-time information to users allowing

their secure and efficient transportation around the city, by incorporating all

the smart attributes of IoT based transportation, as discussed in Section C.2.2.1

[237, 239, 240]. Smart traffic management system will receive traffic information

from moving vehicles through GPS systems and smartphone monitoring appli-

cations, and will be able to use inductive loop detectors, audio detectors and

video detectors [237, 240]. Inductive loop detectors are detecting moving vehicles,

when they are passing through the loop’s magnetic area and audio detectors can

estimate traffic and traffic congestion by analysing audio signals produced by the

vehicles in the area of interest [237, 240]. Similarly, video detectors are using the

feed of cameras attached to various spots on the motorways/roads [237]. Traffic

lights will be able to communicate with sensors that can detect vehicles, cyclists

and pedestrians and therefore automatically altering the cycle of the traffic lights

by assessing the speed of approaching vehicles, and generally the traffic condition,

in order to minimise traffic congestion and accidents [239].

Water management is an essential part of a smart city infrastructure, and it

requires the efficient monitoring of the water supply network and the quality of

drinking water, which can be achieved through IoT technologies [8]. Sensors

can be deployed in all parts of the water network and can monitor water levels,

water infrastructures and sewage system, providing real-time information about

consumption, quality, flow and pressure and reporting the condition of the water

infrastructures and identify future failures [8, 235]. Wastage of water will be

reduced, as with the sensors’ assistance, pipeline leakages would be identified and

fixed, customers would be notified for excessive use, which could be the result of
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a forgotten tab, and water theft would be prevented [241].

Another important everyday problem in our cities is waste managment, where in

many cases the waste and recycling bins are overflowing due to the current waste

managements systems, that normally allow collection either at specific times or

specific days per area. Introduction of intelligent waste and recycling containers

could provide real-time information about the level of waste and through this

information the waste collection services could optimise their everyday collection

routes, prioritising on the “almost full” containers and “ignoring” the containers

that are not in full capacity [236, 240]. This smart waste management system

could reduce the cost of waste collection and improve the quality of recycling, as

consumers tend to dispose recycling packages in normal waste bins, when recycling

bins are full [240].

• Smart Industry

Deployment of RFID tags and WSNs in an industrial environment could increase

the automation in production, and therefore its efficiency [7]. RFID readers

could identify the production stage, and, through WSNs, automated machines

could receive notifications to collect the parts for the next production stage [7].

Wireless networks incorporated into the machines could monitor their workload,

and could generate emergency shutdown, if this exceeds the predefined thresholds.

ERP systems will receive real-time updates, and will have access to information

about the production process [7].

Furthermore, these sensors, by monitoring the equipment’s condition, could poten-

tially provide predictions of possible malfunctions and maintenance notifications,

before any critical failure occurs [236]. Environmental parameters monitoring,

such as temperature, toxic and oxygen levels, could ensure the safety inside the

industrial plants and minimise occupational accidents, especially for industries

that manufacture or use hazardous materials [236].

• Smart Grid

Smart Grid is the concept of an intelligent electricity network, that will be able

to integrate both existing and future transmission infrastructures and incorporate
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multiple renewable resources [242]. According to Li et al. [242], smart grid will

use a digital platform, that will allow monitoring of several elements of the energy

network, such as power plants, transmission lines, transmission towers, distribu-

tion centres and consumers’ premises and therefore could be easily integrated in

the IoT framework [243]. Intelligent monitoring devices provide a self-healing

attribute to smart grid, as they allow detection and recovery from faults, and

pre-failure maintenance through early notifications [8, 11, 236, 242–246].

Additionally, smart meters allow a real-time bi-directional communication be-

tween customers and power distributors, providing important information about

consumption, pricing, maintenance works scheduled in the customers’ area, etc

[8, 11, 236, 242–246]. Power generation is more efficient, as the network uses

distributed energy resources, that can be allocated accordingly depending on the

energy demand at any given time, through real-time updates from the customers’

premises [8, 11, 236, 242–246]. In case of a local power generation failure, smart

grid can provide alternative power supply through the distributed system.

Furthermore, the NILM concept represents one of the most interesting aspects of

smart grid deployment, as it utilises data acquired from Advanced Metering Infras-

tructure (AMI) meters and smart sensors, in order to obtain useful information

about the energy consumption of appliances for residential and office buildings.

As already discussed in Section 1.3, NILM methods aim to disaggregate power

consumption, identify and predict appliance use and even build an activity profile

for households. The majority of proposed NILM methods, as it will be discussed

in more details in Chapter 2, are focused on offline disaggregation, but with the

advancement in IoT technologies and the processing capabilities of both smart

meters and database servers, a real-time disaggregation either performed at the

smart meters level or at the database/cloud level could present a better fit for an

IoT based smart grid framework, as found in [129, 247–249].

• Smart Leisure Environment

Leisure activities are an important part of individual lives and therefore an im-

provement of people’s experiences through these activities is deemed as necessary.

IoT technology could change the way people experience simple activities, such as
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visiting a museum, a theme park or exercising in a gym.

According to Atzori et al. [7], a smart museum could potentially allow the

local adjustment of the environmental conditions, in order to represent different

historical periods, such Egyptian period, Ancient Greek or even ice age, and

thus provide a unique experience for all visitors. Another interesting approach

has been published in [250], where the authors have proposed a wearable device,

that will be able to track the visitors throughout the museum using Bluetooth

Low Energy transmitters, that are placed in different locations of the museum.

Using image processing, they were able to identify the visitors’ position and any

observed exhibit, which allows their cloud processing centre to provide automat-

ically relevant information and provide a personalised experience depending on

the visitor’s age [250].

Similarly, the incorporation of IoT technology into theme parks has an increased

interest in recent years, as it could potentially provide a more personalised and

enjoyable experience for visitors, through wearable devices or smart phone applica-

tions [251]. Disney, for example, has launched MagicBand, which is a wristband

that uses RFID and long-range radio technology, which has the functionality

of hotel keys, credit cards, tickets, etc [10, 252]. Through sensors that are

implemented throughout the amusement park, MagicBand transmits real-time

data about the location of the visitors, the chosen activities etc., which, for

example, can allow the company to allocate more staff if overcrowded. According

to Marr [252], Disney has applied for a patent regarding a system, that could

recognise visitors through their shoe soles, using various sensors and cameras,

which could assist further to a more personalised experience.

Furthermore, in a gym environment, personalised exercise routines could be up-

loaded to the smart training machines, which could identify each individual user

through an RFID tag incorporated either in a wearable or a smart gym card [7].

The machines would be able to monitor the user’s health indicators throughout

the training session, which would allow the trainers to identify overtraining, or

even cases where the user does not seem to put substantial effort through the

session [7]. Through the historical monitoring of these data, this system could
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create a personalised health profile and therefore allow the identification of any

irregularities, that could potentially indicate a health problem.

C.2.2.4 Personal and Social Domain

The applications of IoT in the personal and social domain, according to Atzori et al.

[7], allow the user to connect with other users through social networks and can be

categorised into: social networking, historical queries, losses and thefts.

• Social Networking

IoT in social networking could allow an automated update of the users’ social net-

working applications and website through their social activities. The users could

be able to predefine who will have access to their updates, and which events and

activities will be automatically uploaded [7, 253]. This concept already exists in

many social networking interfaces, but requires the users to update manually their

events and activities. Through the advancement in smart devices, sensors and

software applications, the user’s devices could automate this procedure, without

any involvement from the user’s side.

Smith et al. [253] have discussed the possibility of the incorporation of wearables,

that can update social network status and interconnect with other users, which

with the evolution of smart watches, such Apple Watch, could be accomplished

in the near future. Currently some smart watches allow the use of applications

such as Facebook Messenger and LinkedIn Pulse, but without providing the full

capabilities of these networking applications.

• Historical Queries

Queries of historical data of objects and events could allow users to study their

past activities and behaviour [7, 253]. This could be beneficial, as users could

identify how they use their time, and therefore change behaviours that are deemed

unnecessary and reallocate more efficiently their everyday tasks, especially work

related ones. This type of idea is already available through companies, such as

Google, where search data can be used for personalised recommendations and

advertisements, but the individual users do not have access to their data [7, 253].
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A GUI interface could allow the users to access historical data through graphical

representation, which is generally a more comprehensive format of reviewing data,

especially for everyday users [7, 253].

• Losses

This application would allow the user to locate devices and objects that are

equipped with a form of RFID or sensor technology, such as locating a lost

smartphone, laptop and even wallets and car keys [7, 253]. The user might have

the option to define conditions about the location of their objects, and receive

updates accordingly [7].

Since [7], a variety of applications and devices offer the ability of tracking and

locating lost items, such as Tile, Find My iPhone (Apple) and Find My Device

(Google) [253–256]. Tile offers a variety of trackers that can be attached to

everyday objects, such as keys, phones, laptops, wallets and luggages, and can

locate the position of the object. They use Bluetooth technology, which has a

limited range from 30m to 90m, depending on the tracker’s model, thus they do

not provide an overall tracking service that a GPS based-tracking system can

provide [254].

On the other hand, both Find My iPhone and Find My Device applications, pro-

vide the capability of locating the registered devices, such as smart phones, smart

watches and tablets, as long as the devices are switched on and are connected to

mobile data or Wi-Fi [255, 256]. Additionally, the user has the option of locking

and even erasing any of the registered devices, in case of loss or theft [255, 256].

Apple provides the Find My Mac service which can locate, lock and erase any

registered Mac computer, that connects to the internet through Wi-Fi [255].

• Thefts

As already discussed in the above section, both for the case of loss and theft of

an object, a tracking feature is required to monitor the object’s location. This

application can be enhanced to provide real-time notifications to the registered

owner or security guards, when the object is removed without authorisation from

a restricted area, that can be predefined by the user [7, 253].
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C.2.3 IoT Challenges

Although the applications of IoT and its advantages are numerous, as already presented

in Section C.2.2, there are some challenges that have arisen from both the architecture

of IoT and the outcome data. These challenges can be summarised in the following cate-

gories: (a) Data Management and storage, (b) data mining, (c) security and (d) privacy,

which will be further discussed in the following sections.

C.2.3.1 Data Management and Storage

As already mentioned through out this chapter, IoT, through the interconnected sensors

and devices, will create a tremendous amount of data, that require enormous storage

capacity. The question that arises is whether the current data storage systems and

centres can facilitate this data collection process. According to Lee et al. [10], the

cost of an IoT data storage system will result to limited company investments, thus

data collection process should be prioritised depending on the needs that emerge.

Additionally, the authors claim that more distributed data centres will be able to process

data with higher efficiency and less processing time.

C.2.3.2 Data mining

Collecting and storing the IoT data might be treated as one of the most challenging

aspects of IoT, but unfortunately the data themselves do not provide any useful infor-

mation, especially for individuals without the relevant technical and scientific expertise.

Inferring this useful information is a task that requires data mining techniques. Identify-

ing events through event detection and signal processing methods, together with pattern

matching/recognition and machine learning techniques, would be able to resolve this.

It is essential though to find algorithmic solutions that fit each unique application and

provide increased performance and low complexity implementation [8, 10].
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C.2.3.3 Security

IoT, as already defined, is a network that interconnects various devices and sensors,

and similarly with every other network, it is prone to security threats, even hackers’

and cyber criminals’ attacks. The IoT devices are distributed in various locations and

due to their number makes it impossible to physically monitor and ensure the safety

of each of them at all times, thus they can be possibly “attacked” and destroyed [7].

Furthermore, the IoT network is mainly a wireless network, and this makes it prone to

eavesdropping and other types of attacks, such as Denial of service (DoS), Distributed

Denial of Service (DDos), and malicious code injection [10, 257].

The majority of the devices do not have the capability for the implementation of

complex data encryption schemes, which would fortify them in the case of a malicious

attack. This make them vulnerable to attacks, and therefore endanger the IoT network

as a whole [7, 10, 257].

According to Atzori et al. [7] and Xu et al. [258], another important security aspect

in IoT is authentication and data integrity. Authentication requires the exchange of

predefined messages between IoT nodes, which needs infrastructures and servers that

would facilitate that. An example of devices, that cannot support this authentication

process, are the passive RFID tags, which can only exchange a limited number of

messages with the relevant servers or nodes [7, 258].

Another important question in terms of IoT security is how data integrity can be

ensured, which essentially means, how the involved technology-oriented parties can keep

the data safe from modifications from adversaries, and how they can assure the system

will be able to detect such attacks [7]. Sensors in IoT, and especially RFID systems

when connected to the internet, can present an “easy target” for data modification

adversaries, as they are normally “unattended” [7].
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C.2.3.4 Privacy

In Section C.2.2, a variety of applications have been presented, that aim to monitor

personal information and activities, in addition to sensitive corporate and government-

oriented data. Due to the nature of these data, many concerns have arisen regarding the

maintenance of privacy for both individuals and companies. Individuals will not have

a total control of what is monitored in IoT, even when they do not use actively any IoT

service [7, 10]. For this purpose, it is important to introduce legislation, that will allow

people to have knowledge and control of what can be monitored, who is performing

the monitoring process and when and who can have access to this information. The

collected data should only be collected from authorised parties, and should not be

stored indefinitely in the data centres [7].

On the other hand, sensor networks, that monitor buildings, assets and transporta-

tion, collect information about every object/individual entering the network coverage

area. This is a case where individuals do not have control over the personal data that

can be possibly collected. Similarly with what have been discussed above, policy makers

need to ensure that the data are “anonymised” in order to protect people’s privacy, and

can only be used through official legal processes, when required [7].

Another interesting way for ensuring privacy and reducing the storage cost is the

process of data revocation or else known data forgetting [7, 8, 258], were data are

periodically deleted, as seen in [259, 260], where by discarding encryption keys that are

not required anymore, the data encrypted using this key are essentially “forgotten” and

could potentially provide a secure overwrite. This method can be used in cases where

and encryption key is created per file, which no data are shared between files [260].

After reviewing all aspects of IoT in terms of architecture, applications and chal-

lenges, it is important to present an overview of data processing, data analysis, signal

processing and machine learning techniques, that could be used for processing IoT

information.
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C.3 IoT Data Analytics

IoT, as already discussed in Section C.2, allows the incorporation of smart sensors

implemented for different applications, and produces a large amount of diverse data.

Thus, it is essential to investigate ways of processing these data through data mining

techniques and propose models suitable for IoT [237, 261–270].

C.3.1 Data Mining Models in IoT

According to [261–263], data mining models for IoT can be categorised in: multi-layer

model, distributed model, grid-based model and Big Data model.

C.3.1.1 Multi-layer Model

The Multi-layer data mining model for IoT, according to [261–263], consists of four

layers: data collection layer, data management layer, event processing layer and data

mining service layer. Data collection layer is responsible for collecting the smart data

obtained by the different IoT-enabled devices, such as RFID, sensors, etc. Each type of

data, due to their diversity, require different data collection approach. Throughout this

layer, various issues need to be addressed, such as energy conservation, data filtering,

missing and repeated readings and communication [261–263].

The following layer is the data management layer, where the collected data are

stored and managed in distributed or centralised databases and data warehouses. The

data are saved there, after identification, data abstraction and compression and can

be used and further analysed in the next layer called event processing layer [261–263].

This layer is responsible for analysing events that occur in the different data obtained

through IoT devices. According to [261–263], after event filtering, the data can be

organised, and analysed according to the occurring events.

The final layer of this model is the data mining service layer, that utilises the

information extracted through the data management and event processing layers [261–

263]. Various data mining techniques, such as classification, clustering and patterns

mining, are used in order to obtain useful information that can be used in different IoT

applications, such as supply chain management, inventory and optimisation [261].
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C.3.1.2 Distributed Model

IoT-enabled devices produce a massive amount of data, that are distributed around

the IoT network, and they are both time and position sensitive, thus the adoption of

a centralised data mining model would be very challenging [261–263]. Those massive

datasets are stored in various distributed databases and require real-time pre-processing,

which could be highly expensive for the case of the centralised architecture, due to the

hardware requirements [261–263]. Furthermore, the concentration of the data in central

nodes could create concerns about data security and privacy, fault-tolerance, business

competition and about the correct enforcement of laws and regulations regarding data

and privacy [261–263]. The resources of the distributed nodes are limited, thus it is

important to allocate these resources more efficiently, which does not happen when used

only for energy-costly transmissions of data to the central nodes [261–263]. Estimates of

parameters would be sufficient for the central nodes, therefore data pre-processing and

data mining could be performed in the distributed nodes, which would then forward

only the necessary information [261–263].

As discussed in [261–263], the distributed data mining model will consist of a global

control node, that will identify the suitable data mining algorithms and datasets that

require mining. The distributed nodes will receive these “guidelines” and will collect

the relevant data and perform data pre-processing using filtering, data abstraction

and data compression. The processed data are saved in local databases, and will be

further analysed using event filtering, event detection and data mining, creating local

models using the “guidelines” defined by the global node [261–263]. Bi-directional

communication will be established between the local nodes, which will allow data and

knowledge exchange. The global node will be able to control the processes in the

local nodes and acquire useful information through the local model, when required

[261–263]. The distributed model requires less storage capacity, due to the distributed

data storage, and less computational power, as the data pre-processing and mining

are performed locally in a smaller scale compared to the case of the centralised model

[261–263].
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C.3.1.3 Grid-based Model

Grid computing utilises distributed resources, such as computing resources, data re-

sources and various devices, in order to perform heterogeneous, large-scale and high

performance tasks [261, 262]. The IoT framework consists of various distributed IoT-

enabled devices, that could be used as resources similarly to the grid computing concept

and therefore allow data mining process in a grid-based model [261, 262].

Brezany et al. [271] proposed a grid-based infrastructure called GridMiner, that

allows online analytical processing and data mining using distributed resources. An-

other interesting approach was proposed in [272], where the authors designed and

implemented a Web Services Resource Framework (WSRF)-based grid, which treats

the various grid applications, such as data mining, as web services.

Furthermore, Stankovski et al. [273], developed the DataMiningGrid, which can

incorporate various programs and applications in a single but flexible and scalable

framework. It has a service-oriented architecture (SOA) and can support both Open

Grid Service Architecture (OGSA) and WRSF. Based on this model, Bin et al. [261]

proposed a DataMiningGrid-based data mining model suitable for IoT, that can incor-

porate the various hardware resources of IoT, such as RFID tags and readers, WSNs,

etc., and can support a plethora of IoT software applications, such as event processing

algorithms, and data mining applications.

C.3.1.4 Big Data Model

Big Data represent the data that are either too large or complex to be analysed using

traditional data processing methods, which is the case for IoT data. In recent years,

many companies, such as IBM, Microsoft, Tera data and Amazon, have designed and

implemented big data systems, and have released their products in order to enhance

their services [266]. MapReduce, Apache Hadoop and Apache Stark are some of the

main methods that are currently used for big data analytics [266].

MapReduce can process large-scale data in the form of ‘n’ number of clusters, and

uses two kernel elements -namely mappers and reducers in the programming model

[266]. Map function creates a set of key/value pairs and reduce function merges all

the intermediate values of the key. Every node of both map and reduce is independent
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from the other parallel nodes, that use different data and key [266]. Similarly, Apache

Hadoop is also designed to process large-scale data, by combining a Hadoop Distributed

File System (HDFS) and the MapReduce programming framework [266]. HDFS file

system splits the large data in a cluster node by creating small blocks, that are then

distributed to the other nodes. MapReduce is then used for the smaller blocks, which

reduces the complexity of data processing for big data [266].

Furthermore, Apache Spark is an extension of the Apache Hadoop and allows the use

of general purpose programming language for processing big data on cluster nodes [266].

Various machine learning algorithms and interactive data analysis tools can be used

through this framework. Apache Spark has introduced the use of resilient distributed

datasets (RDD), parallel operation for data, shared variables and spark context [266].

Driven by the concept of big data in the IoT and in order to ensure the security

of the framework, Singh et al. [262] proposed a 5-layer big data mining model. The

first layer represents the devices present in IoT, such as sensors, RFID, and cameras,

that create and collect data in real-time. The following layer integrates the raw data,

in the form of structured, semistructured and unstructured data. This is followed by

the data gathering layer, where real-time data are parsed, analysed and merged. Data

processing is performed using various big data open source solutions, such as Hadoop

and HDFS. The service layer provides as services various data mining methods, such as

classification, clustering and association analysis. All layers have an enhanced security,

in order to ensure privacy and minimise illegal data access [262].

C.3.2 Data Collection in IoT

Data collection is one of the most important aspects in IoT, as all the smart IoT-enabled

devices will produce a plethora of data. According to Wlodarczak et al. [264], data

collection in IoT is performed at the device level, as the majority of the devices will

have the capability of collecting their corresponding data and transmitting them for

storage to distributed databases and data warehouses. In order to reduce the amount

of data transmission and optimise the use of the available resources, techniques, such

as data aggregation, can be implemented for the devices that produce a large amount

of data [261, 262, 264].
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C.3.3 Data Pre-processing in IoT

The obtained IoT data, similarly with all types of data, may exhibit inaccuracies and

repetitions, that may be caused by a failure during the data collection process or even

by malicious attacks, as already discussed in Section C.2.3.3. The pre-processing steps

for IoT would include removal of noisy, inconsistent and incomplete data and filtering

of duplicate data [262, 268]. Furthermore, data reduction techniques are required in

order to achieve more efficient event detection and data mining processes, as handling

massive data is extremely complex, as seen in Section C.3.1. Data reduction can be

performed by using techniques to remove redundant data or even data aggregation,

when required [261, 262, 265, 268].

C.3.4 Event Detection and Filtering in IoT

Event detection and filtering are essential for processing IoT data, as they can extract

useful information from them. Event detection allows the categorisation of activi-

ties/events occurring in the data, such as the operation of a smart home appliance

and the change of the RFID status of a material/product. These events can be further

filtered using event filtering, in order to obtain the valuable events, that can be used

as features in the data mining process [261, 262]. A more detailed explanation of event

detection for the case of NILM applications can be found in Chapter 2.

C.3.5 Data Mining Algorithms for IoT applications

Data Mining is the process, that allows the extraction of useful information from raw

datasets using intelligent methods/algorithms to identify patterns and trends [237].

Data mining process has to be customised, in order to accommodate the variability

of IoT data, which can be achieved by techniques ranging from traditional signal

processing methods to machine learning. Although the range of available data mining

techniques is quite vast, this section is focused on introducing clustering, classification

and association rules, which are the most common methods used for data mining and

could be suitable for the case of IoT, as seen in [237, 239, 265, 266, 268, 269, 274].
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C.3.5.1 Clustering

Clustering separates data into different groups and does not require prior knowledge

of the data characteristics, thus it can be categorised as unsupervised learning method

[239, 268, 274]. Members of the same cluster exhibit similar patterns, whereas their

patterns are different in the same sense when compared to the rest of the clusters

[239, 268, 274].

According to Chen et al. [274], the most common categories in clustering are the

hierarchical clustering and the partitioning clustering. Hierarchical clustering combines

objects into clusters, which are further grouped into larger clusters, in order to create

a hierarchy tree [268, 274]. This clustering method can be performed either using an

agglomerative (bottom-up) or divisive (top-bottom) approach. Agglomerative clustering

starts with one object clusters and after each iteration it combines clusters with similar

patterns into larger clusters, until all objects are members of one of the larger clusters

[274]. Variations of hierarchical agglomerative clustering have been used for NILM

applications in both [154] and [88]. Divisive clustering, on the other hand, starts with

one cluster containing all data, and continues by splitting this cluster into smaller

clusters, depending on the similarity of patterns [274].

Clustering Using Representatives (CURE) [275, 276] and Singular Value Decomposi-

tion (SVD) [277] are some of the most commonly used hierarchical clustering algorithms

[274]. According to Bangui et al. [278], CURE could be a suitable clustering method

for IoT, as it can be efficiently used for clustering large data, as seen in [275, 276, 279].

SVD is generally used in signal processing, image processing [280] and big data analytics

[281], thus it could be applied for clustering IoT data [274]. More recently, Garcia et

al. [282] have applied SVD-based initialisation in order to perform NILM using Non-

negative matrix factorisation (NMF).

Partitioning clustering algorithms, as defined in [274],“ discover clusters either by

relocating points between subsets or by identifying areas heavily populated with data”.

One of the most commonly used partitioning clustering method is k-means, which can

be used for big data analytics [237, 239, 266] and have been applied in various NILM

methods [87, 117, 154]. K-means clustering aims to group data points into clusters,

normally by using the distance between data points, in order to identify similarity in
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the clusters [269].

Another interesting clustering approach is the Density Based Spatial Clustering of

Applications with Noise (DBSCAN), where clusters are areas with high object density,

and the areas with low density (small number of objects) are treated as outliers [269,

283, 284]. In the context of IoT, DBSCAN has been used in [285] as a part of a

NILM application. More specifically, Zheng et al. [285] have performed event detection

using a windowed DBSCAN-based clustering method, where both active power and

fundamental current RMS curve were used in the format of a predefined “window”.

C.3.5.2 Classification

Classification is using different classifier models in order to predict the future patterns

by categorising them in predefined classes [268, 274]. The identification of the pre-

defined classes, normally occurs through training or a priori knowledge, and due to

this attribute, classification is generally categorised as a supervised learning technique

[268, 274]. Some of the most common classification methods include decision tree, k-

Nearest Neighbour, Support Vector Machine and Bayesian Networks.

• Decision Tree

A decision tree (DT) is a tree-like structure, that consists of nodes and branches

connecting the nodes and uses a top-down approach, where the top node, also

known as root, contains the training data/attributes that are going to be used for

classification [265, 274, 283, 284, 286, 287]. The final nodes in a DT architecture

are called leaves and they represent the different classes created using the already

defined attributes [283, 284, 287]. The remaining nodes throughout the tree

are known as decision nodes and are used for testing the different attributes

[265, 274, 283, 284, 287]. Each branch represents the different outcomes possible

from each node and every path in the DT represents different classification rules.

Iterative Dichotomiser 3 (ID3) is a simple DT algorithm originally developed

by Quinlan in [288], that allows classification using different attributes. This

algorithm can only check one attribute at a time, which can result in large and

incomprehensible trees [274, 283, 284]. Quinlan proposed C4.5 in [289], which is

an improved version of ID3 and allows the use of both numerical and categorical
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attributes, handling of missing/incomplete values and can support pruning [274,

283, 284]. Pruning is the process of discarding subtrees, that do not assist in the

classification process, which can reduce complexity and increase the classification

accuracy by reducing the predicted error rate [283, 284]. Both ID3 and C4.5 are

selecting the attributes that increase the information gain [283, 284].

Chi-squared automatic interaction detector (CHAID) is a DT method that splits

the data in exclusive and exhaustive subsets depending on the dependent variable,

using a number of independent variables, known as predictors [274, 290, 291].

CHAID uses the predictors in order to identify the best way the categories can

be merged using Bonferroni testing [274, 290, 291]. Another interesting DT

algorithm is the Classification and Regression Trees (CART), which can build

both classification and regression trees, depending on the type of the attributes,

categorical or continuous [274]. CART uses the Gini diversity index as a spitting

criterion, instead of information gain, as it can be computed much faster [284].

Gini index is calculated for all possible features, and the feature with the minimum

value is the point where the DT splits [284]. It can support both multi-class

problems and pruning by using twoing splitting criterion and a method called

minimal cost complexity pruning respectively [284]. Furthermore, CART can

identify and remove outliers and noisy data and handle missing and incomplete

data [284].

Variations of the above DT algorithms can be used for classification purposes

in IoT applications, such as NILM. Berges et al. [66] have used a DT classifier

for pattern matching using both transient and steady state features, whereas

the authors in [32] have proposed a low complexity DT-based NILM method with

high disaggregation accuracy. A combined DT induction and AdaBoost algorithm

scheme was implemented in [123] and a similar DT method, using greedy Hunt’s

algorithm was proposed in [124]. Mei et al. [292] have used a Random forest-

based NILM technique for load identification. Random forests combine the idea

of bagging (Bootstrap Aggregating) and CART algorithm, and allow the creation

of random DT in every iteration of the bagging algorithm [287]. More details

regarding the NILM methods using DTs, can be found in Section 2.6.1.5.
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• k-Nearest Neighbour

The k-Nearest Neighbour (k-NN) algorithm is used for both classification and

regression purposes, by searching the k-nearest points of the observed data. The

metrics normally used in order to identify the closest neighbours is the euclidean

distance for continuous data and Hamming distance for discrete data [274, 283,

286]. There is a plethora of variations of the traditional k-NN algorithm, but as

the purpose of this thesis is not to investigate those improved k-NN methods, the

reader can refer to [274] for more details. Furthermore, k-NN can be combined

with different machine learning and classification techniques, such as C4.5, Bayes

classifiers, support vector machine, fuzzy logic, artificial neural networks (ANN)

and Hidden Markov-Models (HMM) [47, 107, 293].

K-NN-based algorithms can be applied for classification using big data, as seen

in [237, 239, 269], and therefore could be a potential solution for classifying

IoT data. Moreover, many NILM methods are using k-NN either as the only

classifier or as a part of combined scheme for load classification. 1-NN-based

NILM methods have been proposed in [27, 63, 66, 89, 114], 5-NN in [79, 106],

a 10-NN in [114] and a k-NN-based approach in [98]. Kolter et al. [47] have

implemented a combined scheme using both k-NN and HMM and Azaza et al.

[107] have used a combination of dynamic fuzzy c-means clustering (dFCM) and

k-NN. Furthermore, a Probabilistic K-Nearest Neighbour (PKNN) method was

proposed in [108], which identifies the nearest neighbour through its probability.

A more in depth review of the above NILM methods can be found in Section

2.6.1.3.

• Support Vector Machine

Support Vector Machine (SVM) is a supervised learning algorithm, that uses la-

beled training data for learning purposes and can be applied for both classification

and regression [274, 284, 286]. SVMs use decision planes for classification, where

the decision boundaries define the different classes of data samples [284].

Similarly with k-NN, SVMs can be applied successfully in the field of big data

analytics and IoT applications, such as NILM [237, 239, 269]. A plethora of

SVM NILM methods have been implemented using different kernels such as
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linear, radial-basis functions (RBF), polynomial and Gaussian for classification

and comparison purposes [25, 79, 81, 87, 98, 106, 108, 109, 112, 114, 116, 119, 120].

A Hierarchical SVM (HSVM) was proposed in [110] and a Multiple class-SVM

(M-SVM) using Gaussian kernel function in [111]. Lai et al. [115] have proposed

a hybrid Support Vector Machine/Gaussian Mixture Model (SVM/GMM) and

Altrabalsi et al. [117, 118] have used a hybrid NILM method based on a combi-

nation of SVM and k-means. A further discussion of the different SVM NILM

methods can be found in 2.6.1.4.

• Bayesian Networks and Classifiers

Bayesian networks are directed acyclic networks, where each node represents a

random variable with probabilistic distribution, that is defined through Bayes

Theorem [274, 284, 286]. The edges of the network show the conditional depen-

dencies, whereas non connected nodes are conditionally independent [274, 284,

286]. The Bayes classifiers can be applied for classification purposes in order to

accommodate complex data, such as big data and consequently data derived from

various IoT applications [237, 239, 269, 274].

More specifically, in the NILM research, which will be discussed in 2.6.1.2, Bayes

classifiers, such as Naive Bayes classifiers have been used for load identification

and classification performance comparison, such as in [76, 88, 113, 120]. Berges

et al. [66] have implemented a Gaussian Naive Bayesian (GNB) classification

approach, whereas the authors in [104] have used a hierarchical Bayesian ap-

proach. Another interesting Bayesian-based method is the method proposed in

[105], which incorporates Dynamic Bayesian Networks (DBN) and a Bayes filter

with GMM for NILM purposes.

C.3.5.3 Association Rules

Association rule mining is an unsupervised data mining technique and focuses on

identifying associations, such as relationships and dependencies, in large data [237, 265,

266, 274, 283, 284]. It is commonly used in market basket analysis and transaction

data analysis, as seen in [274, 283, 284]. Apriori algorithm is using a bottom-up

approach in order to identify frequent items in a dataset. Apriori algorithm assumes



C.3. IoT Data Analytics 311

that all subsets of frequent itemsets are frequent and for every infrequent itemset, its

supersets are also infrequent [283]. Support and confidence are employed as measures,

in order to select appropriate association rules [283, 284]. Improvements of the apriori

algorithm include hashing, transaction removal, data set partitioning, sampling and

mining frequent itemsets without generation of candidate itemsets, which can be found

in [283].

If the items of the dataset follow a hierarchical topology, the association rules will

have stronger support on the top and weaker closer to the bottom of the hierarchy [284].

Multilevel association rules (MAR) are suitable for these cases, as they follow a top-

bottom approach, and can be separated into the methods using uniform support and

those using reduced support [284]. Uniform support methods use the same minimum

support threshold for all levels of the hierarchy, whereas reduced support methods

use level-specific minimum support thresholds [284]. Normally, lower levels will have

smaller thresholds [284]. Multidimensional and quantitative association rules can also

be employed for cases of multidimensional datasets and non-Boolean data [284].

Frequent pattern growth (FP-growth) algorithm is another common algorithm for

performing association rules data mining, which compresses the sets of frequent items

into a tree structure, known as frequent pattern tree (FP-tree) [283, 284]. It is a more

scalable, efficient and faster solution for mining frequent items than apriori algorithm,

as it searches the compressed FP-tree for identifying the frequent items, instead the

whole dataset [283]. Furthermore, FP-growth has the ability to remove infrequent items,

which is not the case of the original apriori algorithm [283].

Both apriori and FP-growth based data mining methods have been already im-

plemented for mining big data, such as FiDoop using MapReduce, FIM on Hadoop

and R-Apriori [266]. Similarly with the market-basket and transaction applications,

association rules mining could be used for IoT applications, such as identifying customer

behaviour using RFID data and providing personalised services [265].
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C.4 Summary

The focus of this chapter was to provide a brief overview of the IoT concept, the tech-

nologies that enable its implementation, the applications and challenges that emerge,

and the data mining and data processing techniques, that can be applied for extracting

meaningful information from the IoT obtained data.

IoT interconnects various fields and technologies in the form of a distributed network.

RFID technology is one of the IoT enabling technologies, as it is widely used for

identification and tracking of objects and even people in a plethora of industries,

such as transportation, logistics, healthcare and agriculture, to name a few. Similarly,

WSNs and their distributed nature are suitable for IoT, as they allow the continuous

monitoring of various parameters depending on the application and do not require

manual intervention for acquiring the measured data. Furthermore, a middleware

based on a SOA approach would be able to support the diversity of IoT objects,

devices, applications and services. Distributed and cloud-based data storage systems,

appropriate data mining methods and data visualisation are an integral part of the IoT,

due to the quantity and variability of the data.

IoT applications can generally be categorised in: (a) transportation and logistics,

(b) healthcare, (c) smart environment and (d) personal and social domain, as defined

in [7]. Examples of applications in all different domains have been discussed through-

out this chapter, and allow the reader to understand both the usefulness of an IoT

implementation and the challenges that arise with that. IoT challenges include data

management and storage, data mining, security and privacy. Due to the nature of

the IoT data, sensitive and important information will be exchanged throughout the

network, from both private and commercial users, thus it is important to fortify the

security of the IoT from various malicious attacks and users’ privacy.
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