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Abstract 

 

Intensity modulated radiation treatment aims to achieve accurate treatment of cancer 

without introducing damage and side effects to organs at risk (OAR). Development of 

medical imaging technique enables molecular study of cancer to provide quantitative 

analysis and three-dimensional visualisation to oncologists and radiotherapists for 

better radiation treatment planning (RTP). Conventional radiation treatment process 

of head and neck cancer (HNC) requires the manual delineation of gross tumour 

volume (GTV), abnormal (cancerous) lymph nodes (ALNs), and organs at risk. While 

the manual delineation subjects to inter- and intra- observer variabilities. Novel image 

processing and deep learning method for head and neck cancer delineation from MRI 

data are presented. Firstly, a head and neck ALNs segmentation pipeline including 

pre-processing of MRI data, knowledge-based detection, and extraction of 3D volume 

of ALNs is presented. Secondly, a 3D HNC delineation via improving detection and 

segmentation modules is presented.  In these methods, T1 axial MRI slices were firstly 

pre-processed using contrast enhancement (CE), background noise removal, and bias 

field correction to improve image quality. 2D slices were then interpolated vertically 

to reconstruct 3D MRI volume. A knowledge based ALNs detection algorithm was 

proposed to use throat as key spatial landmark and use fuzzy c-mean (FCM) to classify 

tissues in intensity, so that find the ALNs on each slice. The 2D detection results were 

ensembled by a proposed majority voting scheme to give the 3D location of ALN in 

MRI volume. The 3D volume was finally extracted by 3D level set method (LSM) 

starting from the detected centre of ALN. The knowledge-based detection method 

achieved localisation of ALNs by transferring clinical knowledge to automatic 

algorithm, and by ensemble of results of multiple slices to improve confidence level 

of detection. This method provided objective 3D segmentation, visualisation, and 

quantification of ALNs from MRI data, the delineated ALN volumes were comparable 

(70% in DSC) to conventional manual delineation but with a lower time cost.  

Furthermore, a knowledge-based method for segmentation of 3D volume of HNC 

from MRI data was proposed. This method also has pre-processing, detection, and 
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segmentation steps. In pre-processing stage, the raw MRI data went through CE, bias 

field correction, intensity standardisation (IS), and vertical interpolation to generate 

3D reconstructed MRI volume with better quality. The target HNC was found by 

knowledge-based detection on central slice in MRI volume. Detection used FCM to 

classify tissues, used throat to guide spatial searching, and used localized LSM to 

refine the region of 2D detection. The detection gave location of 3D volume of HNC 

and kept spatial information in central slice. A modified 3D LSM was started from 

detected volume centre to extract the 3D volume of HNC. The extracted volume was 

smoothed by morphological filtering. The interpolation and 3D segmentation method 

extracted uniform smooth 3D HNC volume from 2D T1-axial MRI slices. The 

modified 3D LSM improved the accuracy of volume segmentation via combining 

spatial information to supress the false positive (FP), i.e., overestimation in 

segmentation. The proposed automatic 3D segmentation method achieved comparable 

(70% in DSC) 3D volume of HNC with manual segmentation but lower time cost. 

Algorithm was further developed to window-based software as useful RTP tool.  

Thirdly, a new DCNN for pixel-wise end-to-end segmentation of HNC from 2D T1 

axial MRI slices is presented, this architecture was trained and tested on manual 

consensus outlined from clinicians. The network took similar structure from classical 

network U-Net, which included an encoder part to extract features and reduce 

resolution, then a decoder part to recover resolution, fuse features, and classify pixels. 

The proposed new DCNN improved feature extraction by using a two-pathway 

encoder with classical and dilated convolutional kernels to combine local and non-

local information. To design this DCNN using limited HNC MRI data, data 

augmentation was used to help the training, depth-separable convolution was used to 

reduce number of parameters, cross-validation was used to avoid overfitting. The 

proposed DCNN improved accuracy of HNC segmentation from real MRI data by 5% 

compared to classical U-Net. 
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Chapter 1 Introduction  

1.1. Preface 

Head and Neck Cancer (HNC) refers to several types of cancer normally located in 

the head and neck body regions, it includes tongue cancer, throat cancer, salivary gland 

cancer, laryngeal cancer and so on [1]. According to American Cancer Society [2], in 

2020 there were 1,806,590 new cancer cases and 606,520 cancer deaths occurring in 

the United States. Oral cavity and pharynx cancer occurs more among male patients, 

which accounted for 4% of new cases in 2020. Furthermore the death rate of HNC has 

increased in the past decade in the USA [2]. Data from Cancer Research UK show that, 

from 2015 to 2017 there were more than 12,000 HNC cases in UK each year, leading 

to 3989 deaths every year. In 2017, HNC is the 8th most common cancer in the UK, 

accounting for 3% for all new cancer cases [1]. The incidence rates of HNC in UK 

increased by 20% in the past decade. Major risk factors of HNC are from alcohol and 

smoking [3]. 

Early-stage HNC is treated by surgery or radiation therapy (RT), and concurrently 

chemoradiotherapy will be locally applied to cancerous tumours [3]. RT can be applied 

to both the primary site and to the lymph nodes. As an alternative approach to surgery, 

RT can achieve similar oncological outcomes but conserve the organs at risk (OAR) 

instead of resecting it [4]. Advanced diagnostic medical imaging techniques provide 

essential tools for curative surgery and RT, it enables cellular levels visualisation and 

quantification of cancer regions. However, manually determination and segmentation 

of tumours from medical imaging relies on clinical expertise and available facilities, 

also it is time consuming and suffering from subjective variabilities. Thus, 

development of automatic tumour delineation methods can decrease subjective 

variabilities, and provide objective and consistent assistance to oncologists to reduce 

their work and improve RT.   

This research aims to design advanced computer vision techniques to improve the 

understanding of magnetic resonance (MR) images for HNC analysis. The results of 

this research will lead to automatic systems for 3D segmentation of base of tongue 
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(BoT) and throat tumour from MR images. This system will provide powerful tools to 

clinicians for efficient cancer treatment, and finally improve patients’ quality of life. 

1.2. Research motivation 

Along with surgery and chemotherapy, radiotherapy plays a vital role in the treatment 

of HNC. The radiation treatment planning (RTP) refers to the procedure of planning 

the precise dose of radiation on the target areas of patients. The aim of planning is to 

apply enough RT to cancerous area avoiding damage to organs at risk. To achieve the 

goal of accurate RTP, precise delineations of targets such as cancerous tumour should 

be provided to radiotherapist to guide the process. In the classical practice, the outlines 

of targets are manually delineated by clinicians. However, the manual delineation 

suffer from significant inter- and intra- subjectiveness [5, 6]. It also results in a large 

time cost and relies on expertise of clinicians [7, 8]. Thus, it would be beneficial to 

introduce computer algorithms to assist RTP to build a platform for the automatic 

delineations of cancerous tumours and abnormal lymph nodes. The motivation of work 

in this thesis is to develop novel image processing, machine learning, and deep 

learning algorithms for the automatic 3D segmentation of head and neck tumour, and 

abnormal lymph nodes from real MRI data. The proposed auto-segmentation 

algorithms will improve the RTP in several aspects including providing accurate 

objective contours, saving time cost, and reduce workload for clinicians.  

1.3. Research objectives  

The research objectives of this thesis include: 

1) Pre-processing of MRI data to get well-prepared images as well as volumes for 

head and neck cancer analysis. 

2) Detection of abnormal lymph nodes from head and neck MRI data 

3) Detection of cancerous tumour from head and neck MRI data 

4) Segmentation, and visualisation of 3D volume of lymph nodes from head and neck 

MRI data 

5) Segmentation, and visualisation of 3D volume of cancerous lymph nodes from 

head and neck MRI data 

6) Semantic segmentation of cancerous tumour area from head and neck MRI data. 
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1.4. Summary of original contributions 

The original contributions presented in this thesis are: 

1) A novel pre-processing workflow to prepare the raw 2D MRI data into 3D volume 

with enhanced quality is proposed. The 3D reconstruction involves Fourier 

interpolation. The image quality enhancements include noise removal, bias field 

correction, contrast enhancement for each image, also the intensity variation 

standardisation between images of each patient. The proposed pre-processing 

work adjusts the distribution range of intensities of MRI images so that improve 

the efficiency of intensity-based detection and segmentation work. 

2)  A novel knowledge-based algorithm for the detection and localization of 

cancerous tumours and abnormal lymph nodes is developed. The detection scheme 

utilizes image processing techniques of fuzzy c-mean, watershed, morphological 

filtering, a proposed probability map together with the anatomical knowledge of 

head and neck region from clinical experts, to build a detection pipeline based on 

intensity and spatial information of targets. The detection pipeline starts from an 

MRI slice as input and gives course localization of cancerous tumour as well as 

lymph nodes which are in binary mask form as output. With the success detection 

from complex environment of head and neck area on single slice, 2D interactive 

segmentation methods such as level set methods can be triggered and guided.  

3) The third contribution combines 2D detection and a proposed majority voting 

process to fuse 2D detections on single slices. This process considers inter-slices 

spatial relationship of 2D detections so that firstly refine the 2D results to remove 

false positive then providing 3D rough location of cancerous tumours and 

abnormal lymph nodes, which indicates the centre of target and can be used as 

seed of interactive 3D segmentation.  

4) The fourth contribution proposes a spatial-constrained 3D level set method for the 

segmentation of cancerous tumours. The proposed modified level set method uses 

spatial-constrained level set function, which locates and tracks the surface of 

tumour’s volume automatically under the penalty of spatial information obtained 

from anatomical knowledge and previous detection. The proposed novel level set 
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method supresses the false positive in segmentation so that improve the accuracy 

of segmentation results. 

5) The fifth contribution proposes a novel two pathway dilated deep convolutional 

neural network which is a modified version of classical U-Net. The proposed 

DCNN introduces two pathway structures and dilated convolution scheme to 

improve the multi-resolution feature fusion without adding heavy computation 

cost. The proposed DCNN achieves end-to-end 2D segmentation of cancerous 

tumours with improved accuracy compared to original U-Net structure.  
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1.5.  Thesis organisation 

The rest of this thesis is organized as following:  

Chapter 2 provides a review of biomedical imaging techniques and treatment 

of head and neck cancer. Specifically, the principle of the magnetic resonance imaging 

and its application on radiation treatment planning of head and neck cancer is covered. 

The fundamental physics of MRI and characteristics of MRI image data are reviewed. 

The anatomical knowledge of head and neck region will be introduced, as well as the 

major cancers originated in this area. Then the regular treatment approaches for HNC 

is introduced through the RTP workflow. Several shortcomings that exist in current 

RT of HNC are specified that reveal the motivation of developing automatic software 

tools for contouring of head and neck cancerous tumour.  

Chapter 3 presents a review of image processing techniques for enhanced RTP. 

These include image processing techniques which can be applied for pre-processing 

of medical images such as image enhancement and de-noising. This chapter introduces 

image processing techniques which can interpret and analyse sophisticated patterns in 

images, so that they can be used for detection and segmentation of targets such as 

tumours from medical images. This chapter also reviews both conventional image 

processing methods and machine learning approaches as both will be explored for the 

development of automatic contouring work in this Thesis.  

In Chapter 4 the specific real MRI data sets that are used for development and 

testing of automatic algorithms are presented. Specific metrics which are used for the 

evaluation of automatic algorithms are shown. These will help the understanding of 

the work procedure and results in this thesis.  

Chapter 5 presents the knowledge-based 3D segmentation algorithm for 

abnormal lymph nodes. The proposed knowledge-based algorithms include a pre-

processing, knowledge-based detection, level set method (LSM) segmentation, and 

post-processing pipeline. The pre-processing pipeline enhances quality of raw MRI 

data and constructs 3D volume from 2D slices. The detection uses anatomical 

knowledge to search the ALNs on each slice and fuse all results to get the 3D location, 

so that start the 3D LSM segmentation phase from detected ALN centre. The post-
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processing step uses 3D morphological filtering to smooth the surface of obtained 3D 

ALN volume and remove outliers. The results of proposed algorithms on real MRI 

data will demonstrated and analyses in these chapters. 

Chapter 6 presents the knowledge-based 3D segmentation algorithm for HNC. 

The proposed knowledge-based algorithms include a pre-processing, knowledge-

based detection, level set method (LSM) segmentation, and post-processing pipeline. 

Compared to ALN detection in Chapter 5, this Chapter focusses on a central slice for 

the detection of HNC, and watershed transform is additionally introduced in the 

pipeline. The segmentation part uses a modified 3D LSM to tackle the challenge in 

HNC segmentation such as arbitrary shapes and complex texture.  The results of 

proposed algorithms on real MRI data will demonstrated and analyses in these 

chapters.  

Chapter 7 will present the deep learning-based segmentation network for HNC. 

The proposed network modified the classical U-Net by introducing two-pathway 

structure and dilated convolution to improve the segmentation accuracy. The main 

sub-modules of the proposed network and training settings will be introduced in this 

chapter. The results on real MRI data measured with cross-validation will be 

demonstrated and analysed.  

 Chapter 8 will conclude the thesis and present some potential work that can be 

further explored in the future.  
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Chapter 2 Biomedical Imaging for Head and Neck 

Cancer (HNC) 

2.1. Introduction 

The majority of malignant neoplasms of the head and neck region starts in the upper 

aerodigestive tract, arising from mucosa lining the oral cavity, oropharynx, 

hypopharynx, larynx, sinonasal tract, and nasophynx. Squamous cell carcinomas 

(SCCs) comprise 95% of all HNCs [4], and human papillomavirus (HPV) has been 

recognized as a cause of a subset of HNSCCs. Smoking and drinking alcohol take up 

an estimated 75% of HNC cases, but HPV-related HNC is biologically and clinically 

different from tobacco related HNC [9]. Symptoms and signs of head and neck cancer 

includes swelling anywhere in the HN or a sore that does not heal, red or white patch 

in the mouth, frequent nose bleeding, painful swallowing, dysphagia, loss of weight, 

difficulty breathing, and double vision [4, 9]. 

Radiotherapy, surgery and chemotherapy are general options for head and neck 

treatment [10]. Because of the complicated anatomy of the head and neck, 

conventional open surgical approaches can lead to significant functional impairment. 

The difficulties of HNC surgery appears in preserving cervical spine functional 

structure such as great vessels, nerves and muscle during neck dissection [4]. 

Alternatively to surgery, radiotherapy provides organ-preserving therapy rather than 

resecting it [11]. RT has significant advantages in laryngeal and pharyngeal tumours 

as the organ-preserving therapy makes it possible to retain speech and swallowing 

function. However, RT can result in significant toxicities to tissues surrounding the 

tumour, thus causing side effects such as dermatitis, myelitis, and hearing loss. Thus, 

the very key requirement of radiotherapy is to deliver accurate and appropriate dose 

to tumour and surrounding body tissues. Chemotherapy can be used as monotherapy 

for early-stage cancers or be concurrently applied with RT or surgery for advanced-

stage cancers in HNC treatment. Monotherapy is more preferred in HNC treatment as 

it leads to fewer side effects. But systemic treatment is necessary for advanced-stage 

cancers, to eliminate tumours, and also prevent distant metastasis or recurrent disease 

[4].  
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Medical imaging uses non-invasive techniques and instruments to reveal and record 

internal body structure of humans or animals, which cannot be viewed using visually  

observed or physically examined from exterior of the body [12, 13]. Medical imaging 

techniques create 2D/3D representations of bone, soft tissues, body fat, muscle, air, 

and different organs [14], it plays an import part in diagnosis, prognosis, screening, 

staging, treatment evaluation, and image-guided intervention [15, 16]. Analysis of 

medical images helps medical experts locate, quantify, and extract features of target 

organs, tissues or diseases [15]. However, the manual understanding of medical 

images introduces subjective bias. Even the images are analysed by very experienced 

clinicians, the interpretation of information in images varies across individuals.  

In this chapter, the head and neck anatomical knowledges and HNC treatment 

procedure will be reviewed in section 2.2 to help explain the research target. Then a 

widely used medical imaging technique called MRI will be introduced in section 2.3, 

including its principles and how it is related to HNC treatment. Also, the difficulties 

of manual interpretation of MRI data in HNC treatment will be discussed in section 

2.4. 

2.2 Head and Neck cancer and its treatment 

2.2.1 Head and neck region 

The head and neck regions have several main sites, including the nose and paranasal 

sinuses, oral cavity, neck, larynx, pharynx, salivary glands, thyroid and parathyroid 

glands [17]. Before describing the HN region, the idea of anatomical planes is now 

described. As illustrated in Fig 2.1 there are three main orthogonal anatomical planes 

(also generally used as main imaging planes), axial (also known as transverse, or 

horizontal), sagittal (also known as median) or coronal (also known as frontal) planes.  
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(a) 

 
(b) 

Fig. 2.1 Anatomical planes. Left, a demonstration of orthogonal planes around a 

human body model. Right, a 3 dimensional coordinates [18]. 

 

 As shown in right of Fig. 2.1(b), the three major planes around the human body 

represent the directions. Top to bottom represent the axial (transverse) plane; front to 

back, represent the coronal (frontal) plane and side to side represent the sagittal 

(median) plane. It can be also represented in 3 dimensional coordinates: assuming 

body orients to positive x axis, then x-axis means front to back, y-axis represents side, 

and z-axis represents top to bottom. Thus, the axial plane is xy plane, coronal plane is 

yz plane, and sagittal plane is xz plane as illustrated in Fig 2.1(b)  

Taking the basic plane knowledge, Fig. 2.2 shows the demonstrating sites and sub-

sites of head and neck regions. 
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(a) 

 
(b) 

Fig. 2.2 Anatomic sites and sub-sites of the head and neck region. (a) the sagittal 

display of head and neck sites and sub sites [19]. (b) a real axial MRI slice with 

marked sites. 
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Fig. 2.2(a) displays the main anatomic sites of head and neck region. From top of head, 

the nose is the first part of the respiratory system. It has external part and internal part. 

The external part is covered by skin. The internal part is formed by nasal cavity [17]. 

The external part is horizontally between the eyes, and vertically between eyes and 

mouth. The internal nasal cavity locates at the start of the upper airway and is divided 

in the midline by the nasal septum [20].  

Oral cavity is the most anterior part of digestive system. Outside the oral cavity it is 

enclosed by upper and lower lips.  Inside the cavity, the borders are mylohyoid 

muscles, gingivobuccal regions, hard palate, anterior tonsillar pillar, and circumvallate 

papillae [20]. The tongue lies on the floor of the mouth, fill in most of space of oral 

cavity [17]. 

The pharynx is a 12-14 cm long musculomembranous tube [17]. It is divided into three 

parts: nasopharynx, oropharynx, and laryngopharynx [21]. The nasopharynx is behind 

the nasal cavity; the oropharynx is behind oral cavity; and the laryngopharynx is at the 

lower level of cricoid bone, behind the larynx [20].  

 

Fig. 2.3 An illustration of sagittal view of the pharynx [17]. 
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Fig. 2.3 shows the illustration of sub-sites of pharynx. Vertically the pharynx region 

ends at the larynx. The larynx is continuous with the pharynx superiorly and with the 

trachea inferiorly [17]. The larynx is supported by laryngeal skeleton, covered by a 

mucosal surface. Between the surface and supporting skeleton, there is a soft tissue 

layer containing fat, ligaments and muscular structures [20].  

The major head and neck region of interest (ROI) of this thesis are the pharynx and 

larynx regions. Fig. 2.2(b) shows an axial MRI slice of pharynx region (base of tongue). 

Some key regions are marked with text box, they are normal tongue tissues, normal 

muscle, tongue base tumour, cancerous lymph nodes, fatty tissues, salivary glands, 

and throat.  

2.2.2 Head and neck cancer 

This subsection will review the head and neck cancer. Among all anatomical sites of 

head and neck region, more than 95% of all malignant neoplasms are SCCs [17, 19, 

20]. The most frequent are the epithelial malignancies of the mucous membranes of 

the upper aerodigestive tract, which is shorted as HNSCC (head and neck squamous 

cell carcinoma). The second most abundant head and neck cancers are glandular 

neoplasms, which are mainly arising from thyroid, and also minorly from salivary 

glands [20]. 

According to Cancer Research UK, each year there are 12,238 new HNC cases 

between 2015 to 2017 in UK, that lead to an average of 4077 deaths every year [1]. 

Table 2.1 lists statistics of HNC in UK in terms incidence, mortality rates, and survival 

rates over factors such as gender and ages. Based on the data acquired from 2009-2013 

in England, between 19%-59% of patients diagnosed with HNC survive their disease 

for ten years or more; between 28%-67% of patients survive five years or more; 

between 61%-86% of patient survive one year or more. Among subtypes (at different 

sites) of HNC, the salivary glands cancer has highest survival rate, and hypopharynx 

has lowest survival rate. In terms of genders, HNC 10-years survival rate in England 

is generally similar in men and women (data also from 2009-2013). In terms of ages, 

the patient aged 15-49 generally has higher survival rate compared to other age groups. 

And the data shows that the survival of salivary glands cancer is mostly influenced by 

age, 90% of 15-49 age group can survive 5 years or more, while only 50% of patients 
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aged 70-89 survive 5 years or more. In conclusion, the HNC is the 8th most common 

cancer in the UK, accounting for 3% of all new cancer cases (data in 2017); the HNC 

is the 16th most common cause of cancer death in the UK, accounting for 2% of all 

cancer deaths (data in 2018) [1]. 

Table 2.1 UK HNC statistics [1] 

 Over Gender  Over Age Additional Information 

Incidence 

(2016-

2018) 

8600, 3900 new 

cases per year in 

males, females 

Highest on 70 to 74 

years old 

Most found at tongue. 

Around 2300 cases each 

year are linked with 

deprivation 

Mortality 

(2016-

2018) 

2900, 1200 new 

deaths in 2018 in 

males, females 

Highest in 90+, 

More than 36% in 

aged 75+ years old 

Since 1970s the 

mortality rates are 

decreasing but the rates 

increased 17% in last 

decade 

Survival 

(2009 -

2013) 

Similar in males 

and females, 19-

59% for ten years 

survival 

Highest (34%) in 15-

49 years old 

Hypopharyngeal cancer 

has lowest 5-year 

survival rate at 27% 

 

According to American Cancer Society [2], in 2020 there are 1,806,590 new cancer 

cases and 606,520 cancer deaths occurred in the United States. Oral cavity and 

pharynx cancer occurs more among male patients, which accounts for 4% of new cases 

in 2020. And the death rate of HNC is increasing in past decade in USA [2]. In 2021, 

there are 54,010 new oral cavity and pharynx cancer cases in USA that resulted in 

10,850 deaths. The number of new cases and deaths of male are over 2 times of female 

[22]. The death rates of oral cavity and pharynx cancer in America has increased by 

0.5% per year from 2009 to 2018.   
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From Global Cancer Statistics 2020 [23], new cases of lip and oral cavity, larynx, 

oropharynx, hypopharynx, and salivary glands take about 4.2% out of all cancer types, 

and lead to 3.9% deaths out of all cancer types. In terms of regions, the lip and oral 

cavity cancers are highly frequent in South Central Asia (e.g., India and Sri Lanka) as 

well as Melanesia. The incidence of head and neck cancer is increasing with age [19]. 

In terms of gender, the HNC is more frequent in men.  

Based on decades of research [24], the chronic use of tobacco is the most prevalent 

and most correlated risk factors of HNSCC. Alcohol is another powerful risk factors 

for incidence of pharyngeal and laryngeal tumours. It shows that the combination 

usage of tobacco and alcohol induces multiplicative risks on incidence of HNSCC [19].  

Another type of risk factors is poor dietary habits, the nutrition deficiencies, 

nitrosamines consumption, betel quid chewing, picked vegetables and very hot food 

and beverages are additional suspected risk factors for HNSCC [23]. Chronic sunlight 

or radiation exposure is also an important risk factor of HNSCC. Viral infections are 

also correlated to the carcinogenesis of HNSCC [20]. 

The prevalent symptoms of HNC include mucus problem, mouth and throat sores, 

taste problem, dysphagia, xerostomia, pain and fatigue [25]. The signs and symptoms 

also include globus sensation, hoarseness, a change of speech ability, nose bleeding 

(epistaxis), epiphora, haemoptysis, stuffiness of the ears, and trismus [19]. 

2.2.3 Head and neck cancer treatment 

In the last section, many aspects of HNC were reviewed such as risk factors, incidence, 

and symptoms. In this section the general treatment pipeline of HNC will be reviewed. 

The review will include diagnosis and treatment. 

There are multiple approaches for screening and examination of HNC. The physical 

examination is the best way for detecting lesion of the upper aerodigestive tract. The 

examination should follow a systematic approach, and here some examples are 

concluded in the following Table 2.2 [19], 
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Table 2.2 The systematic physical examination of HNC [19] 

Site Examination 

Skin/scalp Search of ulcers, nodules, and pigmented or other 

suspicious lesions 

Cranial nerves Assessing eye motion, testing face sensation, 

examining functionalities of facial muscle, testing 

hearing and so on 

Eyes/ears/nose Evaluation of sign of mass effect, abnormal drainage, 

bleeding, or effusion 

Oral cavity Inspection of teeth, gingivae, and entire mucosal 

surface and lymphoid tissue of tonsillar pillars. 

Evaluation of Halitosis and tongue mobility. 

Neck Systematic examination of any mass 

 

The physical examination can be conducted by Endoscopy. The indirect laryngoscopy 

(mirrors) is used for vocal cords check so that inspecting mobility and asymmetry, 

which may indicate a hidden tumour [19]. The direct laryngoscopy 

(nasopharyngoscopy) enables the thorough inspection of upper aerodigestive. Other 

endoscopies include esophagoscopy and bronchoscopy are also widely used with 

laryngoscopy to inspect hidden or known primary HN tumours.   

Another category of examination is biopsy, such as punch or cup forceps biopsy, fine-

needle aspiration (FNA), core biopsy, and open biopsy. These approaches can be used 

for examination of mucosal lesions, distinguishing a metastatic SCC from other 

malignant histologist, inspection of neck mass.  

Medical imaging techniques are also widely used in the diagnosis of cancer. The 

imaging techniques use non-invasive methods visualise interior body structures and 

tumour sites. Medical imaging provide important clues to diagnosis when biopsies are 

difficult to obtain in deeply located lesions or when located in close relation to vital 

structures [17]. Also, medical imaging is capable of accurate localization of malignant 

tumour and metastatic lymph nodes, this makes medical imaging play important roles 
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not only in diagnosis but also treatment planning as well as prognosis. Much more 

details of medical imaging techniques will be introduced in the next section. 

The pathological analysis is also important for diagnosis of HNSCC, which includes 

analysing the histologic grade and morphologic growth patterns of lesions. Based on 

knowledge of spectrum of malignancies seen in the head and neck, the pathologists 

classify specimens from head and neck into mundane benign specimens and SCC [17]. 

Pathologists also guide treatment decisions by providing specific data elements such 

as virally driven malignancy, margin status, and the precise depth to which tumour 

invades [26]. Analysis and usage of histopathology features requires nuanced 

interpretation by well-informed pathologists, and the collaboration of 

multidisciplinary treatment team. 

As mentioned previously, the HNC can start from many sites of head and neck region 

(Fig. 2.2). It is essential to be aware of the cancer can grow and spread from primary 

sites to adjacent lymph nodes in head and neck region, which is called lymph node 

metastases, and it plays import role for prognostic [19]. Here the TNM staging system 

should be introduced.  

The TNM is short for tumour-node-metastasis staging system, which is firstly reported 

in 1940s [27]. Currently, the TNM staging system of the American Joint Committee 

on Cancer (AJCC) and International Union Against Cancer (UICC) is widely used for 

staging of head and neck tumours. The TNM staging system evaluate the extent of 

cancer through three aspects: size of main tumour (T), involvement of nearby lymph 

node (N), and extent of distant metastases (M) [28]. The stages of the extent of cancer 

can be represented by T, N, M separately as shown in Table 2.3, 

 

 

 

 

 

 



17 

 

Table 2.3 Staging of cancer through T, N, M aspects separately 

T N M 

TX: Primary tumour 

cannot be measured  

NX: Regional lymph 

nodes cannot be assessed. 

M0: No distant metastases  

T0: No evidence of main 

tumour 

N0: No metastases in 

regional lymph nodes.  

M1: Evidence of distant 

metastases  

T1, T2, T3, T4: The 

higher the number of T, 

the larger the tumour is, 

and more significant local 

extension is. 

N1, N2, N3: The higher 

the number of N, the 

higher number of regional 

lymph nodes have cancer 

 

TNM measurements can be combined to give five brief stages, which is more 

generally used by doctors for describing the extent of cancer. The five stages are in 

following Table 2.4, 

Table 2.4 Staging based on combination of all T, N, M aspects 

Stage Interpretation 

Stage 0 Abnormal cells are present but have not 

spread to neighbouring tissue. These 

cells could become cancer but not yet. 

Stage Ⅰ, Stage Ⅱ, and Stage Ⅲ Cancer is present. The number of the 

stages stands for the extent of the cancer 

spread into neigh tissues, the higher the 

more spread. 

Stage Ⅳ Metastases present to distant (from 

primary site) parts of body  
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Radiotherapy, surgery, and chemotherapy are general options for head and neck 

treatment. As previously mentioned, each option has its limitation. In practical 

treatment planning of HNC, the early stage (Ⅰ, Ⅱ) cancer can be effectively finished by 

single modality such as surgery or radiotherapy, while for stage Ⅲ or Stage Ⅳ caner, 

multiple treatment options are combined [17].  

The surgery may be definitive as the standard care of salivary glands, thyroid, or oral 

cavity cancers [17, 26]. But in many cases, the surgical and nonsurgical therapies have 

equivalent effectiveness, such as some oropharyngeal and laryngeal cancers. As open 

surgical resection these tumours may result in functional impairment, such as 

dysphagia and aspiration. Thus, nonsurgical therapies such as radiotherapy are more 

preferred when they can perform as well as surgery. Recently, many advanced surgical 

techniques are introduced to modify traditional surgical approaches. For example, 

minimally invasive surgical techniques such as transoral laser microsurgery (LTM) 

[29], transoral robotic surgery (TORS) [30] are developed which can access to tumour 

site and avoid disruption of the surrounding anatomical structures [4].  

Like surgery, radiotherapy can also be used as single modality for treatment of primary 

cancer site as well cancerous lymph nodes. Because radiotherapy is nonsurgical, it can 

preserve the organs compared to surgery. However radiotherapy can cause toxicities 

to tissues nearby the target tumour, and lead to acute side effects such as mucositis 

and dermatitis [4]. The radiotherapy techniques have been used for decades, and 

steadily keeps improving through years. Nowadays, the intensity-modulated radiation 

therapy (IMRT) is the standard radiation treatment technique for HNC. IMRT can 

deliver varying radiation distribution, so that minimize the radiation doses to 

neighbour normal tissues [26]. The radiation treatment planning will be more 

specifically described in the following sections.  

Different from surgery and radiotherapy, chemotherapy is generally not solely used in 

HNC treatment, instead it is combined with other treatment modalities to give 

systematic treatments. The chemotherapy can be used to enhance local effects of 

radiation treatment, or as preoperative therapy before surgery or radiation, or as 

adjuvant concurrently used with radiotherapy. Chemotherapy is only singly used in 

cases with distant metastasis or recurrent disease, which are not suitable for surgical 



19 

 

resection nor radiotherapy [4]. However, the systematic therapies with chemotherapy 

and radiotherapy can also cause side effects, such as mucositis, acneiform rashes, and 

hydro electrolytic disorders. 

2.3. Medical imaging and Magnetic resonance imaging (MRI) 

data 

2.3.1 Medical imaging techniques 

Medical imaging is a set of techniques used to visualise the internal structures of 

humans and animals. The purpose of the medical imaging is to non-invasively record 

the interior anatomical structure and functional state of the body, which cannot be 

completed through exterior visual inspection or physical examination [12, 13]. In [31], 

it is suggested that this medical imaging and biomedical informatics can be  regarded 

as two revolutions which have changed the nature of medicine and related research. 

In modern medicine, medical imaging is crucially and widely used for diagnosis, 

prognosis, and treatment assessment of diseases including but not limited to cancers. 

This section reviews some commonly used imaging techniques such as Computed 

Tomography (CT) [15], Positron Emission Tomography (PET) [32], X-ray [32, 33], 

and Ultrasound [34]. Some developing approaches, such as infrared thermography 

(IRT) are under development [12, 35]. As the Magnetic Resonance Imaging (MRI) is 

the main topic of the thesis, it will be covered in detail in the following sections. 

2.3.2 MRI Fundamentals 

The research of medical imaging analysis in this thesis is based on the imaging 

techniques called Magnetic Resonance Imaging (MRI). MRI can provide high-quality 

images comparable to CT without using harmful radiation [13], but the cost is 

relatively high.  

During MRI scanning, patients are placed in strong uniform and static magnetic field 

B0. Due to the vertical magnetic field B0, hydrogen atoms in patients’ body are aligned 

uniformly by the strong magnetic field. The strength of B0 is mostly 1.5 T or 3.0 T, the 

higher strength the better SNR of images can be acquired in theory, at a higher cost. 

The recovery of the atoms state is governed by two major types of relaxation time. 
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The first is the spin-lattice (T1) relaxation time, which is the time from the process of 

recovery of atoms to vertical magnetization, when the protons emit energy to the 

environment. On the other hand, the decrease of transverse magnetization is called 

free induction decay (FID). is affected by the additional (compared to vertical) 

mechanisms called T2 and T2* decay. T2 is the ‘true’ decay time for tissue, while T2* 

is the observed value. Due to influence of inhomogeneity in B0, T2* is generally shorter 

than T2 The different body tissues will have different T1, T2 and protons density, thus 

this physical information will be recorded by the scanner and generates the contrast of 

MRI image [36]. For example, fat has shorter T1 and T2 than water, and both fat and 

water have relatively long T1, T2 (compared to T2*), and T2* decay occurs very 

quickly [37]. 

The repetition time (TR) and echo time (TE) can be adjusted to emphasize a particular 

type of contrast, there are multiple modalities of MRI data, such as T1-weighting and 

T2-weighting  [37]. Table 2.5 explains the differences between the two modalities, 
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Table 2.5 Difference between T1- and T2-weighting MR images 

 T1-weighting T2-weighting 

Tissue intensity-Bright Fat, blood products, slow-

flowing blood, radiation 

change, paramagnetic 

contrast agents 

Fat, proteinaceous tissue, 

fatty bone marrow, high 

free water tissue, blood 

products 

Tissue intensity-

Intermediate 

Proteinaceous tissue Fat, fatty bone marrow, 

high bound water tissues 

Tissue intensity-Low High free water tissue, 

high bound water tissue, 

collagenous tissue 

high bound water tissues, 

collagenous tissue, bone 

islands 

Tissue intensity-Dark Air, mineral rich tissue, 

fast-flowing blood 

Air, mineral rich tissue, 

fast-flowing blood 

TR Short Long 

TE Short Long 

 

As shown in Table 2.5, the different MRI modalities (T1-weighting and T2-weighting) 

provide different contrast for tissues and body structures in images. Some tissues are 

subtle to view in one modality but significant to view in another modality, thus 

combination usage of available MRI modalities can help the medical image analysis, 

such as in brain tumour segmentation [38]. Further  fundamentals of MRI are 

described in [14]. 
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Fig. 2.4 Schematic and corresponding MR images show the characteristics 

determined by data at the periphery of k-space (ie, spatial resolution, or definition of 

edges) and those determined by data at the center of k-space (ie, gross form and 

image contrast) [37]. 

The encoded frequency and phase information are stored in k-space. K-space is a 

matrix of voxels whose x-axis usually corresponds to the frequency, and y-axis usually 

corresponds to the phase. As shown in Fig.2.4, the centre of k-space records contrast 

information of tissues, and the periphery of k-space contains the details and fine 

structures of scanned body region. The information in k-space is then decoded through 

Fourier transformation so that final image is acquired [37].  

There are several factors which affect the SNR of obtained MRI image, such as value 

of Bo, values of the sequence TE and TR, and sensitivity of the receiving RF coil [37]. 

The spatial resolution is decided by k-space. The CNR (contrast-to-noise ratio) is 

primarily affected by the difference in relaxation times and the proton density and the 

values of the TR and TE parameters used in the imaging sequence [32]. MRI contrast 

agents can be used to increase the CNR between healthy and pathological tissue. The 

most commonly used clinical paramagnetic contrast agent is gadolinium 

diethylenetriaminepentaacetic acid (Gd-DTPA). The contrast agents are introduced 

into patients’ body during scanning, and accumulate in certain tissue, T1 of the tissue 

will be shorten, thus the contrast will be more significant between tissues.  

The MRI technique has multiplane capacity (also available in multiline CT scanners), 

but it introduces zero ionizing radiation compared to CT imaging. The first 

disadvantage of MRI scanner is the higher cost. MRI scanner takes longer (compare 

to Ultrasound Imaging for example) processing time to generate images. Another 
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problem is that it cannot scan patients who have ferromagnetic material such as 

shrapnel [14]. The MRI techniques have been used in brain, liver and the 

reticuloendothelial system, musculoskeletal system, cardiac system, and digestive 

system [32]. 

2.3.3 MRI artefacts 

MRI artefacts can be from MRI system hardware alone or through the interaction of 

the patient with the hardware [39]. The hardware related artefacts can arise from RF 

pulse discrepancies, fluctuating power supply, and inhomogeneity in the magnetic 

field. The patient related artefacts can arise from patients’ moving, breathing of body, 

blood flow, tissues with different magnetic susceptibilities, and fat/water interface in 

tissues. Table 2.6 summarizes the main MRI artefacts. Several artefacts will be 

introduced in this section, which can deteriorate medical image analysis if not be 

tackled.  

Table 2.6 Summary of MRI artifacts 

Hardware-related Artifacts Patient-related Artifacts 

Zipper artifacts Motion Artifacts 

Shading artifacts Metal artifacts 

Spike artifact Aliasing artifacts (Wrap around) 

External magnetic field (B0) 

inhomogeneity 

Partial volume effect (PVE) 

RF (B1) inhomogeneity Chemical shift artifact 

… … 

 

2.3.3.1 Poor contrast  

In both single channel images (grayscale) and multi-channel images (HSV, RGB, etc.), 

the pixels are numerically quantized with discrete values (scalar or vector) to show 

their luminance (or colour). The higher luminance stands for higher power, which 
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should give more significant visual acuity. While in practice, an object’s saliency more 

relies on the relationship between its own luminance and the luminance of adjacent 

background, instead of its absolute luminance [40]. The human vision system is more 

sensitive to changes of luminance.  

Therefore, the concept of Luminance Contrast is introduced, which describe the 

degree of how distinguishable regions with different luminance (or colour) in an image 

are. And statistically a classic formula of Luminance Contrast called Weber Contrast 

is given as, 

𝐶𝑤𝑒𝑏𝑒𝑟 = 
𝐼 − 𝐼𝑏
𝐼𝑏

 
 (2.1) 

where I represents the luminance of the features (edge, region, or object), and Ib stands 

for the background. The Weber Contrast is generally used in the circumstance that 

features are small then background are large and uniform, such as letter stimuli [41].  

Other common formulas Michelson contrast and RMS contrast are  

𝐶𝑀𝑖𝑐ℎ𝑒𝑙𝑠𝑜𝑛 = 
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛

  
(2.2) 

𝐶𝑅𝑀𝑆 = =  √
1

𝑀𝑁
∑ ∑(𝐼𝑖𝑗 − 𝐼)̅2

𝑀−1

𝑗=0

𝑁−1

𝑖=0

 

 

In the Michelson Contrast, Imax and Imin represent maximum and minimum luminance. 

Michelson contrast is preferred for gratings [41]. The RMS contrast is for natural 

stimuli and efficiency calculations [42, 43]. In RMS contrast, 𝐼 ̅is the mean intensity 

value in image, and Iij is the intensity of pixel at ith row and jth column. The calculation 

of RMS contrast is same as the standard deviations of pixels in image.  

In this thesis, when the term ‘Contrast’ is mentioned, visually it refers to the level of 

distinguishing different regions, and statistically the standard deviations of pixels 

(narrowly or widely distributed). Thus, here several examples are given to show the 

good contrast and poor contrast in visually and statistically way, 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

𝐶𝑅𝑀𝑆 = 0.1504  𝐶𝑅𝑀𝑆 =  0.0697 𝐶𝑅𝑀𝑆 =  0.1008 

Fig. 2.5 (a)(b)(c): three MRI slices with different contrast. (d)(e)(f), their histogram 

of pixel intensities. Last row, their RMS contrast values. 

As shown in Fig. 2.5 (b), the tissues in MRI data will be harder to distinguish when 

the slice has lower 𝐶𝑅𝑀𝑆. And in this case, the histogram of this slice will be more 

crowded distributed. This is the artefacts called poor contrast, and a slice with 

relatively better contrast should be as shown Fig. 2.5 (a)(c). The poor contrast will 

cause problem for clinicians to find target tissues, and it will also misleading 

computer-based algorithms to generate more errors. 

2.3.3.2 Noise 

The main noise in MRI data is generated from motion artefacts and the MR imaging 

system [44]. The motion artefacts can lead to diffuse image noise. The motion can be 

caused by patients’ breathing and other non-periodic movement (an example Fig. 2.). 

The MR system can cause noise in many ways, such as eddy currents produced from 

changing magnetic fields, stray RF signals, bad electronic, loose connections to 

surface coils, or any RF pollution from Faraday cage etc. 
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Fig. 2.6 Motion artefacts (marked with black arrows) in T1 coronal study of lumbar 

vertebrae [44]. 

Compared to the errors contributed from the system, the major noise is thermal noise 

caused from thermal motion of patients’ body as shown  in Fig. 2.6. 

  
(a) 

 
(b) 

Fig. 2.7 An MRI slice with noise (marked with arrow and text box). (a), a slice, (b), 

zoomed region of left slice, and converted to parula colour space to make it more 

visible.  

Fig. 2.7 shows an example of noise in MRI data. The arrow-pointed regions should be 

dark visually and has zero values because they are background and nothing is scanned, 

while there are non-zero values in these regions, which is noise may be caused by 

thermal motion. Thermal noise can be represented in additive way as, 

Noise 



27 

 

𝐼(𝑥, 𝑦) = 𝑂(𝑥, 𝑦) + 𝜂(𝑥, 𝑦) (2.3) 

where I represents an obtained and reconstructed raw MRI image, O stands for the 

original signal, and N stands for the noise parts in I. The methods of reducing noise 

will be introduced in next chapter. 

2.3.3.3 Partial volume effect 

The partial volume effect (PVE) is caused by limitation of spatial resolutions of 

medical imaging modalities [44, 45].  The definition of PVE is that, in medical image 

one voxel contains multiple tissue types, so that the voxel will not be correctly 

reconstructed. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig 2.8 Partial volume effect in a T1 parameter map. (a) a brain simulation with 

standard T1 spatial resolution. (c) the zoomed region in black box of (a) in top. (b) 

image same as (a) but with lower resolution. (d), zoomed region of lower resolution 

[45]. 



28 

 

Fig. 2.8 shows an example of PVE. The left column is a stimulated brain T1 parameter 

map. And right column has four times bigger voxel size, where the partial volume 

voxels cannot be correctly reconstructed. If the PVE existed, quantitative analysis of 

target boundaries or volume would be severely affected. As shown in Fig. 2.8 (d), the 

boundaries are blurred, and the intensity difference between different tissues are 

decreased, which will cause errors for classification. 

2.3.3.4 Gibbs ringing artefact 

Gibbs ringing artefacts refers to the phenomenon that, multiple fine parallel lines occur 

adjacent to high-contrast interfaces. This artefact arises from the MRI reconstruction 

process, and the ringing is generated by inverse Fourier Transform (FT). Due to 

limitation of Signal to Noise Ratio (SNR) and scan time, the outer parts of the k-space 

that contain the high frequency information of the image, are generally not recorded 

[46]. 

 
(a) 

 
(b) 

Fig. 2.9 The Gibb’s ring effect. (a) an MRI slice. (b) zoomed region of left slice (a) 

(marked with box in left image). 

As shown in Fig. 2.9 (b), the edges of foreground, i.e., high-frequency information, 

are repeated as parallel lines (ringing) nearby. 

2.3.3.4 Intensity variations inside single slice: Bias field  

Another artefact called intensity homogeneity (IIH, or bias field) can badly deteriorate 

the computer-aided diagnosis. The bias field can possibly arise from non-uniform RF-
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field, irregular main magnetic field, susceptibility effects of normal tissue and receiver 

coil sensitivity profile [47].  The bias field causes the intensity distortions [44]. 

Normally intensity of a tissue class is assumed constant over the range of the MRI 

image, the distortion caused by inhomogeneity introduces a shading artefact, so that 

intensities of tissues are mis-mapped [48]. Previously, the addition of noise on original 

signal is shown in Eq. 2.3, the influence of intensity inhomogeneity can be modelled 

in multiplication with original signal, the so the Eq. 2.3 can be updated as, 

𝐼(𝑥, 𝑦) = 𝑂(𝑥, 𝑦) ∗ 𝐵(𝑥, 𝑦) + 𝑁(𝑥, 𝑦) (2.4) 

where the O(x,y) is original signal, B(x,y) is bias field existed at (x,y), and N(x,y) is 

noise, I(x,y) represents the actually obtained and reconstructed MR image. An 

example is shown in Fig. 2.14.  

 
(a) 

 
(b) 

Fig. 2.10 An example of intensity inhomogeneity. Left, slice with inhomogeneity 

(some shown in white dash boxes), Right, slice after bias field correction. 

The example in Fig. 2.10 (a) shows that slice with bias field will have non-uniform 

appearance (shown in dash boxes) on similar type of tissues, which needs to be 

corrected first before applying intensity-based analysis. Fig.2.10 (b) shows the bias 

field corrected version of Fig.2.10 (a), where the intensity distributions of same types 

of tissues are more uniform. The methods of correction will be described Chapter 3.  
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2.3.3.5 Inter Intensity variations among MRI images 

Apart from the intensity inhomogeneity (bias field) in single MRI image, there are 

also intensity variations between different MRI slices. These refers to the artefacts that 

the tissues should have similar intensity range in different MRI slices but in practical 

distribution of intensity range of same tissue type varies across different MRI slice. 

There are variations of intensity profile for same tissue type in inter-scanner, intra-

scanner, inter-patient, intra-patient circumstances [49]. The possible reasons of the 

intensity variations include different scanner technologies, different acquisition 

settings, different illuminations, and different post-processing algorithms [50, 51]. If 

the intensity variations are significant, it will be hard to set good parameters for 

intensity-based diagnosis algorithm, and this will be even worse for 3D work. An 

example of the existence of inter intensity variations is shown as Fig. 2.11,  

 
(a) 

 
(b) 

Fig. 2.11 Original slices from three studies acquired as per the same FSE Pd protocol 

before standardization displayed at a fixed window that was actually set up for the 

first image (first row), and after standardization displayed at a fixed ‘standard’ 

window (second row) [52]. 

As shown in Fig. 2.11 (a), before the standardization of intensity, three slices from the 

same scanning protocol have different intensity ranges from the same type of tissues 
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(e.g., cortex). And after the standardization (shown in Fig. 2.11 (b)), the intensity 

ranges are uniform for same tissues across three slices, which is helpful for potential 

intensity-based analysis.  

2.4 Radiation therapy 

2.4.1 Radiation treatment planning (RTP) 

Apart from the diagnosis, the medical imaging has also been widely applied in 

radiation treatment planning (RTP) of cancer. Radiation therapy (RT) has been used 

for treatment of HNC for decades [17],  and it is arguably the most challenging and 

sophisticated radiation treatment among all RT delivered to any anatomical subsite 

[26]. The advances in computer technologies have significantly improved the ability 

of accurate RTP, which maximize tumour dose and minimizing the dose to adjacent 

normal tissues and structures (also mentioned as organ at risk, OAR). Nowadays, the 

intensity-modulated radiation therapy (IMRT, an example is shown in Fig. 2.17) is 

regarded as the standard RT technique for HNC. In IMRT, multi leaf collimator (MLC) 

is used for sculpting the radiation beam to conforms tightly to the shape of target. And 

outside the target, a steep dose gradient is created to protect the adjacent normal tissues 

[17]. The IMRT outperforms conventional radiotherapy techniques, improves the dose 

distribution, and introduces fewer side effect. On the other hand, IMRT does require 

slightly longer daily treatment times and additional planning, quality assurance, and 

safety checks before the patient can start the treatment [17]. 

2.4.2 Definition of GTV, CTV, PTV in radiotherapy treatment planning 

RTP aims to maximize the dose to target and minimize dose to adjacent healthy tissues, 

thus a good design of RT relies on specialists with expertise in the management of 

HNC [53], because they have abilities to delineate highly acceptable targets for RTP.  

To design an appropriate RTP, the first step is to form a three-dimensional map of the 

patient’s anatomy in the exact position for everyday treatment. The map normally 

using CT scans. Then, on the map, the radiation oncologist defines the targets and 

critical normal structures.  

In the definition process, the first step is to define gross tumour volume (GTV) at both 

the primary site and any regional lymph nodes. The GTV is defined by drawing the 
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primary tumour itself based on single or multiple imaging studies registered to the CT 

map, such as MRI, and PET [26]. 

The definition of targets and critical normal structures is implemented by delineation 

of GTV, CTV, and PTV, as illustrated in Fig.2.12, 

 

Fig. 2.12 Diagram to illustrate the main radiotherapy planning volumes [54]. 

In the definition process, the first step is to define gross tumour volume (GTV) at both 

the primary site and any regional lymph nodes. The GTV is defined by drawing the 

primary tumour itself based on single or multiple imaging studies registered to the CT 

simulation, such as MRI, and PET [26].  

Then, the clinical target volume (CTV) is defined as GTV plus margin for subclinical 

microscopic spread and affected lymph nodes. Finally, planning target volume (PTV) 

is defined as an isotropic margin around the CTVs to account for small changes in 

patient positioning each day [7, 26]. This margin is generally 3-5 mm, and the PTV 

will be used for ultimate radiation dose prescribing. The amount (dose) of radiation 

applied is measured by unit called Gray (Gy), and an example of definition of RTP is 

shown in Fig 2.13.  
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Fig. 2.13 An example of IMRT. The GTV is shown in pink. The PTV70 (70 Gy) is 

marked with red outline. Inner and outer orange lines represent CTV60 and PTV60, 

respectively, and the inner and outer cyan lines represent the CTV54 and PTV54, 

respectively. All coloured regions will be delivered radiation, and the dose is 

represented by the colour bar on left top side [26]. 

2.4.3 Inter- and intra- variabilities 

The high quality RTP relies on the accurate definition of PTV. The definition of PTV 

is a still a challenging and time-consuming problem. In a typical RTP process, firstly 

the definition of GTV and CTV relies on available facilities and radiation oncologists’ 

expertise. Then the CTVs are given to dosimetrist or physicist specifications for target 

covering and normal tissue constrains. Following dosimetrist or physicist determines 

the optimal profile such as orientation, shape, and intensity of each radiation beam to 

match the PTV. The definition and delivery of RTP can take weeks and numerous 

iterations, including the adjustments and confirmation between clinicians and planners 

to decide the final plan [26]. 

Furthermore, the manual delineations (by radiation oncologists) of tumour primary 

site and adjacent healthy can take from 45 minutes to 3 hours per patient [7]. Also, 

GTV 

70 
PTV70 

PTV60 

PTV54

4 
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based on the aim of better RT, the adaptive radiation therapy (ART) is introduced. The 

Adaptive radiation therapy is a closed-loop radiation treatment process where the 

treatment plan can be modified using a systematic feedback of measurements [8]. To 

improve RT, in ART clinicians monitor the variations of patients during the treatment 

and incorporate this information to re-optimal the RTP. Thus, ART requires radiation 

oncologists define GTV and CTV at each time of the re-optimal RTP process, which 

involves much more time cost.  

Apart from the time consumption problem, other challenges of RTP are inter- and 

intra- variabilities during the delineation of GTV and CTV. The presence of tumour 

often changes the adjacent anatomy, the shape of HNC tumour could be arbitrary, the 

appearance of tumour is generally complex, and the uncertainty in mucosal spread is 

existed, all these factors make the delineation task more sophisticated. The challenges 

of delineations lead to inter- and intra- variabilities in manual contouring, the inter- 

variabilities mean that given a same scan to two clinicians, the drawn GTVs can be 

different; the intra- variabilities mean that given a same scan to one same clinician 

before and after a duration, the opinion about the GTV can also be different. 

 

Fig. 2.14 (a) Delineation by two clinicians and the intra- variability  (b)Delineation 

by one clinician before and after a period of time and the  inter-variabilities (white 

and black contours) in GTV of base of tongue (BoT) and larynx tumour from MRI 

(provided by Beatson Cancer Centre) [55]. 

In Fig. 2.14, the intra- and inter-variabilities in manual delineations of GTV are 

displayed. The manual contours are drawn by two clinical oncologists (COs) from 

Beatson West Scotland Cancer Centre, Glasgow; and the delineation process is 

following the guidelines in [56, 57]. As claimed in [6], there were averagely 13% intra-
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observer error of 13% for a pharyngeal cancer. From [5], there  were 12.9% inter-

variation for an oropharyngeal tumours and 13.8% for a laryngeal tumours 

respectively in manual contouring of GTV from MRI. In recent trials [58], there were 

mean 6% inter-variation for delineations of GTV of OAR at oral cavity, mean 27% at 

glottic larynx, and mean 13.7% at supraglottic larynx. From the current clinical 

practice (in Beatson West Scotland Centre, Glasgow), the gold standard delineations 

are determined by weekly meeting of clinical oncologists, radiologists, surgeons, and 

radiation oncologists, where consensus manual outline is decided and considered as 

gold standard for RTP. In this thesis, when the computer algorithms-based auto-

segmentation results are measured by ground truth, it also refers to the consensus gold 

standards. 

2.4.4 Auto-contouring software 

As manual segmentation of tumours is challenging due to both time cost and subjective 

variations, computer vision techniques were introduced into medical imaging 

processing to develop auto-contouring algorithms and software, so that improve the 

efficiency of tumour volume contouring. The auto-contouring algorithms have 

advantages in many aspects, including time saving, objective results, acceptable 

accuracy, and abilities of visualisation as well as quantification of 3D structure.  

In Table 2.7, several image processing algorithms for auto-contouring of HNC from 

medical data are summarized. The algorithms for auto-contouring include classical 

approaches such as deformable model [59], machine learning method such as SVM 

[60], and also deep learning methods such as convolutional neural network  [61-63]. 

The computer-based auto-segmentation algorithm can achieve Dice similarity score 

up to 76%. Methods in Table 2.7 have not provided their time cost. In [64], ten studies 

of auto-segmentation methods of OAR in head and neck were reviewed, six of them 

saved time compared to manual contouring, and the largest time saving was 59%; three 

of them were almost the same as manual; and the last one took 15.7 % longer than 

manual delineation. In [58], the automatic delineation was 33% shorter than manual 

contouring (34 minutes). 
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Table 2.7 Auto-segmentation algorithm of HNC from medical data 

Auto-segmentation 

Algorithm 

Data Used Accuracy 

Convolutional neural network  

[65] 

7channel 

multiparametric MRI, 72 

patients with HNC 

0.65 Dice Similarity 

Score 

Support Vector Machine [60] 120 Dynamic Contrast 

Enhanced MRI datasets 

with HNC 

0.76 Area Overlap 

Measure 

Convolutional neural network 

and deformable model [66] 

254 patients of CT PET 

scans with HNC 

0.75 Dice similarity 

score 

Deformable model 

(Level set method) [59] 

CT scans of 23 patients 

with HNC  

0.78 Intersection Ratio 

Deep learning models [61-63] HECKTOR (HEad and 

eeCK TumOR) 

Challenge, 254 PET/CT 

data from patients with 

HNC 

Best among 18 teams 

has 0.76 Dice 

similarity score 

 

In Table 2.8, some auto-contouring software are shown. Some of them [67] [68] [69] 

are commercially used. From the experiments [70], these commercial software tools 

have saved time cost around 30% to 40%. There are also some open-sourced free 

software  [71] [72] [73] [74] for auto-contouring, review in [75] shows that they can 
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save time compared to manual segmentation. The auto-contouring software have 

functions in 3D segmentation, 3D visualisation, registration, and other image 

processing methods.    

Table 2.8 Software for auto-contouring of tumours from medical images 

Software Platform  Expense Methods 

SPICE9.8  

[67] 

Philips Commercial Atlas-based 

model-based 

Smart 

Segmentation 

[68] 

Varian Commercial Atlas-based  

ABAS2.01 

[69] 

Elekta Commercial Atlas-based 

model-based 

3D slicer [71] Open-sourced 

 

Free Model-based 

ImageJ  [72] Open-sourced 

 

Free Model-based 

Machine learning 

MIPAV [76] Open-sourced 

 

Free Model-based 

ITK-SNAP  

[73] 

Open-sourced 

 

Free Model-based 

DeepImageJ 

[74] 

Open-sourced  Free Deep learning 

 

As shown in Table 2.8, most segmentation methods used in these software are based 

on interactive segmentation such as level set method which requires manual 

initialization, some software also use atlas-based methos to involve abundant pre-

marked atlas images and apply registration between the atlas and input images, [74] 
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introduces deep learning into auto-segmentation software . In current clinical practice, 

the auto-contouring results need to be reviewed and further modified by clinical 

experts before used in RTP.   

2.5 Conclusion 

In this chapter, the background of head and neck cancer and its treatment was reviewed. 

The medical imaging techniques specially MRI were described and the procedure and 

particular challenges of RTP were explained. 

It can be concluded that, advances of medical imaging techniques enabled high quality 

diagnosis and treatment of cancers. However, challenges such as subjectiveness and 

high time consumption still exist in current RTP. These challenges as well as the 

development of computer vision techniques motivate the research and development of 

computer-based auto-segmentation algorithms and software, which aims to minimize 

the inter-observer variations and reduce clinician’s workload, so that improve the 

treatment of cancers and life qualities of patients. In the next chapter, algorithms for 

auto-segmentation of head and neck cancer will be reviewed, which will help explain 

the applications of image processing techniques for improvement of HNC contouring. 
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Chapter 3 Image Processing Solutions for HNC based 

on MRI Data  

3.1 Introduction 

Developing medical imaging technologies not only provide powerful tools to medical 

experts, but also enabled research of computer algorithm aided medical image 

processing. Computer-aided diagnosis (CAD) evolved from imaging techniques and 

computer vision algorithms, that aimed at modifying accuracy and consistency of 

medical image understanding, and provides radiologist with computer driven results 

as a ‘second opinion’, which helps radiologists make overall decision [77, 78].  

A broad range of technologies and research topics have applications in medical 

imaging, such as picture archiving and communications system (PACS), low-level 

image processing, and high-level interpretation of medical images [79]. The 

applications of medical imaging informatics include but not limited to cloud-based 

medical image archiving [80], medical images retrieval [81-83], lung nodules 

detection and classification [84-88], brain glioma segmentation [89-93],  detection of 

interval change of bone [94, 95]. Different types of imaging data are used in different 

scenes. Photographs of retina are used for retina vessel segmentation to diagnose 

disease such as diabetes and hypertension [96, 97]. Optical coherence tomography 

(OCT) images are also used in classification of retinal diseases, typically in macular 

edema [98-100]. CT data has wide applications in CAD, such as lung nodules 

detection [101-103], liver tumour segmentation and classification [104-106], and 

segmentation of organ at risk in HNC region [107, 108]. Also, CT images play 

important roles in COVID-19 diagnosis and management [109-111].As introduced in 

previous chapter, MRI has advantages in application of most brain and spline disorders 

[13], thus enables lots of research in brain tumour classifications and segmentations 

[89, 91, 112, 113]. MRI data is also utilised in ventricular tracking, classification and 

volume segmentation [114-118], and pelvic tissue classification [119, 120]. 

This chapter will focus on reviewing image processing techniques applied on medical 

images especially on the segmentation of HNC from MRI data. The general 
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segmentation workflows for medical images can be categorized as three types, which 

are interactive segmentation, machine learning, and deep learning methods. In Fig. 3.1 

these three types of workflows are shown. 

 
(a) 

 
(b) 

 
(c) 

Fig. 3.1 Graphs of medical image segmentation workflow. Workflow for (a) 

Interactive segmentation, (b) Conventional machine learning segmentation, (c) Deep 

learning segmentation.  

The general process of interactive segmentation methods is shown in Fig. 3.1 (a). With 

medical images as input, the methods firstly improve image quality and minimize 

artefacts through pre-processing techniques. The ‘interactive’ segmentation means 

that the algorithms require manual interaction to initial the position of foreground of 

target (tumours/lesions/organs), this operation can be replaced by automatic detection 

algorithms. Following, the segmentation models will evolve start from manual or 
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automatic initialisations and finally converge at boundary of targe objects. The 

machine learning (Fig. 3.1 (b)) and deep learning (Fig. 3.1 (c)) methods combines 

detection and segmentation into pixel-wise classification of clinical targets in medical 

images. Both machine learning and deep learning relies on labels drawn by experts. 

The labels are used in testing phase to train the models, a trained model will then be 

used in testing phase to evaluate the performance of model.  

The remainder of this chapter will review classic methodologies for medical image 

processing, many of which are also used in the contribution of this thesis. Also, 

classical and state-of-the-art algorithm for HNC tumour segmentation will be 

reviewed. The review will be organised and categorized by interactive segmentation 

(section 3.2), conventional machine learning segmentation (section 3.3), and deep 

learning segmentation methods (section 3.4) for medical images.  

3.2 Interactive methods for medical image segmentation  

This section will introduce interactive segmentation methods including the general 

steps and their applications on medical image segmentation. The common workflow 

of interactive segmentation is shown in Fig. 3.1 (a). In section 3.2.1, pre-processing 

techniques for enhancing medical images and reducing artefacts will be introduced. In 

section 3.2.2, manual and automatic localization of target’s foreground will be 

reviewed. In 3.2.3, three widely used interactive segmentation methods will be 

introduced, they are Region Growing [121], GrabCut [122], and Deformable Models 

[123].  In 3.2.4, the level set method will be reviewed with more details because this 

technique will link to the work in Chapter 5 and Chapter 6.  

3.2.1 Pre-processing of medical image  

Due to the artefacts occurred during medical imaging signal acquisition and 

reconstruction, there are noise and low-quality problems in some medical data, thus 

image processing task including de-noising and contrast enhancement can help 

improve data quality to make it acceptable for further usage. This section will cover 

the solution for several artefacts linked to segmentation work in Chapter 5 and 6, a 

summary figure is given as following Fig. 3.2.  
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Fig. 3.2 Pre-processing techniques for medical images  

As shown in Fig. 3.2, four types of pre-processing will be described namely: 1) 

contrast enhancement through spatial domain and frequency domain; 2) de-nosing 

using linear filter, nonlinear filter, and morphological filter; 3) Correct the intensity 

variation including the variations on single slice and across multiple slices; 4) 

Interpolation of medical images to improve their spatial resolutions.  

3.2.1.1 Contrast Enhancement 

As the majority of medical data are grayscale images, thus the intensity values are the 

most essential factor for medical image analysis. While poor contrast medical images 

will cause difficulties for clinicians to distinguish different tissues and recognise 

important targets in images.  

In medical image processing, the CE techniques improve the quality or clarity of 

images to increase the interpretability in images. The most common contrast 

enhancement method is histogram equalization [124]. Call the cumulative density 

function (CDF) of histogram of input image 𝐼𝑖𝑛 as 𝑐ℎ0(𝐼𝑖𝑛), CDF of output (contrast 

enhanced) image y as 𝑐ℎ1(𝐼𝑜𝑢𝑡). The HE aims find a spatial transformation 𝑇𝑐(𝐼𝑖𝑛) to 

map input image 𝐼𝑖𝑛 to output image 𝐼𝑜𝑢𝑡 , so that minimize the |𝑐ℎ1(𝑇𝑐(𝐼𝑖𝑛)) −
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 𝑐ℎ0(𝐼𝑖𝑛)|. And there are constrains to form of  𝑇𝑐 as introduced in [52]. The obtained 

transformation 𝑇𝑐 is then applied on input image to enhance the contrast. It should be 

noted that HE changes the brightness of an image, limits its direct application in 

consumer electronics [125].  

There are advanced CE techniques proposed after HE. These techniques can be 

categorised as global and local methods [126]. Global techniques take only global 

histogram information over the whole image; thus, it is fast and simple. Global 

methods limit the contrast ratio in some parts of image such as background and other 

small regions. Examples of Global techniques include Brightness Preserving Bi-

Histogram Equalization (BBHE) [125] and Dualistic Subimage Equalization (DSIHE) 

[127].   Local methods use small window that slide through each pixel in image and 

enhance the pixels only inside the window each time. Local methods make good use 

of local information, but it can lead to over-enhancement of some parts of the image 

and enhance noise effect in image. Also, local methods have relatively high 

computational costs compared to global methods. Examples of local methods include 

Adaptive Histogram Equalization (AHE) [128] and Contrast Limited Adaptive 

Histogram Equalization (CLAHE) [129]. Recently many research work on reducing 

over-enhancing problems in CE, improving image sharpening and peak signal to noise 

ratio (PSNR). These research introduce gamma correction [130], homographic filters 

[131], genetic algorithms [132] into classical CE methods. Additional, in [133] the 

generative adversarial network (GAN) is proposed as a new tool for medical image 

enhancement. Majority of CE methods demonstrated their applications on medical 

images across CT, MRI, and colour images such as fundus images. An example of CE 

on medical images are shown in Fig. 3.3. 
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(a) 

 
(b) 

Fig. 3.3 Examples of contrast enhancement on medical images. (a) A chest X-ray-

Vandy image. (b) After contrast enhance [131].  

After the CE, different components in medical images are more distinguishable. It can 

be seen in Fig. 3.3 (a) that before CE intensities of two sides of lungs are whiten, make 

them hard to separate from white backgrounds such as bones. In Fig. 3.3 (b) the chest 

image after CE provides better contrast between lungs and backgrounds so that 

distinguish them better.   

3.2.1.2 De-noising for medical images  

Apart from poor contrast, another general challenge in medical images is noise. The 

noise in medical images is reduced by image filtering techniques. The filters can be 

designed and applied in the spatial or frequency domain. Image filtering techniques 

can be classified into two categories: linear and non-linear. Linear filters are those 

filters whose output values are linear combinations of the pixels in the original image 

[134], such as an Average Filter [135]. The non-linear are those filters whose output 

is not a linear function of its input. Some non-linear filters work directly on spatial 

domain, such as Median Filter [136], Non-local Mean Filter[137] and Anisotropic 

Diffusion Filter [138]. There are also non-linear filters work on transformed domain, 

such as Wavelet Image De-noising Filter [139]. Block-matching and 3D filtering 

(BM3D) combines non-local filter on spatial domain and 3D Wiener filtering on 

transformed (wavelet) domain, and achieved big success in de-nosing tasks [140], 

although it takes more complex computation. 
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The major noise in MRI image is from thermal motion (body motion, cardiac pulsation, 

or respiratory motion.), and most commonly under Rician distribution. As discussed 

in [134], the application of different image filters on MRI image has pros and cons. 

Linear filters including Average Filter and are generally poor in maintaining the edges 

after smoothing the image. Median Filters can effectively remove salt and pepper noise 

and preserving the edges, while it produces blur images. The Anisotropic Diffusion 

Filter outperformed isotropic filters (such as Gaussian Filter) in preserving edges and 

lines in image. The Non-local Mean filter can work well for Rician noise removal and 

preserve edges well, while it requires expensive computation. The Wavelet De-

Noising Filter performs better to additive noise but sometimes it introduces 

characteristic artifacts. Nowadays, many methods also use deep learning for de-nosing 

of MRI [141, 142], although it takes much more computation power. An example of 

noise removal in medical images is shown as Fig. 3.4. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3.4 (a) Noisy MRI image. (b) After noisy removal [143]. (c) Cropped noisy 

image (red region in (a)). (d) Cropped de-noised image after (red region in (b)). The 

noisy points are marked with dashed yellow boxes in (c). 
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Fig. 3.4 shows the removal of salt and pepper noise in MRI image of human spline 

using the proposed median filter approaches in [143]. As seen in Fig. 3.4 (a)(c), this 

MRI image has salt and pepper noise marked with yellow arrows and dashed boxes. 

After the de-noising, there are no significant pepper noise in Fig. 3.4 (b)(d). This will 

help further intensity-based processing such as thresholding and segmentation. 

3.2.1.3 Morphological filtering for medical image processing 

Mathematical morphological operations can be used in several low-level image 

processing tasks such as background noise removal, object separation, and remove 

imperfections introduced during image segmentation. The basics of mathematical 

morphology is set theory [144]. Given two or more sets, there are several well-known 

elementary operations among sets such as subset, union, intersection, and complement.  

Dilation and Erosion are basic morphological processing operations, which are 

defined by multiple elementary set operations. The dilation is given as  𝐼𝑜𝑢𝑡 =  𝐼 ⊕ se, 

where 𝐼  represents image, and s  is a structuring element. Dilation produces 

output image 𝐼𝑜𝑢𝑡(𝑥, 𝑦) =  1  if at (x, y) the origin of s hits 𝐼 (i.e., the centre of s 

intersects 𝐼). Dilation can be used for repairing breaks inside target [144]. The 

erosion is given as 𝐼𝑜𝑢𝑡 =  𝐼 ⊖ se, erosion produces output image 𝐼𝑜𝑢𝑡(𝑥, 𝑦) =  1  

if at (x, y) the origin of s fits 𝐼 (i.e., se is subset of 𝐼). Erosion can be used for splitting 

apart joined objects and can strip away extrusions [144]. Dilation and erosion are dual 

operations in that they have opposite effects. 

Combination use of dilation and erosion are termed as Opening and Closing. The 

opening is given as 𝐼𝑜𝑢𝑡 = 𝐼 ∘ se = (𝐼 ⊖ se)⊕ se, which is an erosion on 𝐼 followed 

by a dilation using same s . On the contrary, the closing is given as 𝐼 ⋅ se =

(𝐼 ⊕ serot ) ⊖ serot , where serot  is se rotated by 180 degree, while it is same as s𝑒 if 

s𝑒 is symmetrical with respect to rotation [145]. The opening operation smooths the 

contour object, breaks narrow isthmuses, and eliminates thin protrusions. Closing 

operation generally fuses narrow breaks and long thin gulfs, eliminates small holes, 

and fills gaps in the contour.  

There are more applications of morphological operations. The hit-or-miss 

transformation is a basic tool for shape detection. Convex hull combines segments 
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together. The morphological filter can also be used in edge detection of MRI image 

[146], image fusion of MRI image [147], contrast enhancement of X-ray image [148]. 

More mathematical morphological operations’ applications on image processing can 

be found in [131].  

 
(a) 

 
(b) 

Fig. 3.5 Morphological filtering for X-ray hand image enhancement. (a) Original 

image. (b) After enhancement.  

 

Fig. 3.5 gives an example of medical image enhancement by using morphological 

operation. The input image (Fig. 3.5 (a)) is a hand image taken by X-ray, this image 

is processed by an edge-detect morphological filter method from [148]. The enhanced 

image (Fig. 3.5 (b)) has better contrast between bones and background, as well as 

sharpened edge of bones. 

3.2.1.4 Bias field correction for medical images 

The bias field signal is a low-frequency, smooth, and undesirable signal that corrupts 

MRI images. The bias field is produced by the inhomogeneities in the magnetic fields 

of the MRI machine [149]. This artefact can be characterized as a smooth variation of 

intensities across the image [150]. An example is shown in Fig. 3.6. 
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Fig. 3.6 An example of bias field artefacts. (a) a HN MRI slice corrupted with bias 

field. (b) Estimated bias field in (a). (c) Uncorrupted (corrected) slice. 

The MRI slice in Fig. 3.6 (a) is corrupted by bias field. This bias field is visualized in 

Fig. .3.6 (b) where the top part of slice exists a background signal with higher intensity 

than other parts of the slice, this varying background intensity signal is so called bias 

field. Fig. 3.6 (c) shows the slice whose bias field has been corrected. This low-level 

intensity variation will not badly influent the clinical diagnosis, while it degrades the 

image processing algorithm including classification, segmentation, and any other 

intensity information-based image processing algorithms.  

Many research work on minimizing the adverse influence of bias field in medical 

image processing, a summary is shown in Fig. 3.7. 

 

Fig. 3.7 Summary of bias field correction methods. 
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As, shown in Fig.3.7, the correction methods of bias fields in medical images can be 

categorized into prospective and retrospective approaches [133]. Prospective 

approaches aim at reducing the bias field caused by imperfect acquisition process, 

such as adjustments of hardware and acquisition devices. Retrospective approaches 

correct the bias field generated by some specific properties of the image object, such 

as the shape, position, orientation of the object. These methods are based only on 

image intensities and prior knowledge about image objects. This section will only 

review image processing level bias correction. 

The bias field is commonly modelled as low-frequency artifact and smoothly varying 

function changes the image intensities [151]. The main correction methods are based 

on the following three different models  [151]: 

Model 1:                𝑆(𝑥, 𝑦) = 𝐼(𝑥, 𝑦)𝐵(𝑥, 𝑦) + 𝜂(𝑥, 𝑦) (3.3) 

Model 2:                𝑆(𝑥, 𝑦) = (𝐼(𝑥, 𝑦) + 𝜂(𝑥, 𝑦))𝐵(𝑥, 𝑦) (3.4) 

Model 3:         log 𝑆(𝑥, 𝑦) = log 𝐼(𝑥, 𝑦) + log 𝐵(𝑥, 𝑦) + 𝜂(𝑥, 𝑦) (3.5) 

 where 𝑆 is the bias corrupted image, 𝐼 is bias-free image, 𝐵 is the bias field, 𝜂 is the 

noise, (x, y) is index of pixels in image. Based on these assumptions, a range of 

algorithms were proposed to reduce the bias field artefacts.   

As shown in Fig. 3.7, the retrospective approaches can be further classified into 

filtering-based methods, surface fitting based, segmentation based, and histogram-

based methods. The brief introduction of these sub-categories is in Table 3.1. 
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Table 3.1 Retrospective Method for bias field correction of medical images 

Retrospective 

Method 

Description Examples  

Filtering 

Based 

Use low-pass filter (LPF) to 

remove low-frequency 

artefacts from high-frequency 

components of obtained 

images 

homomorphic filtering [152] 

homomorphic unsharp masking 

[153] 

Surface Fitting 

Based 

Model the bias field as a 

parametric surface which is 

usually a polynomial or spline 

function. 

Intensity based [154] 

Gradient based [150] 

Segmentation 

Based 

Introduce bias field related 

factors into segmentation 

methods, accurate 

segmentation makes the bias 

correction insignificant. 

Bias field considered 

Expectation Maximization [155] 

Adaptive Fuzzy C-mean (FCM) 

[156] 

Histogram 

Based 

Exploit the image histogram 

(intensity or gradient) to 

automatically correct for the 

bias field in medical images 

nonparametric nonuniform 

normalization (N3) [157] 

local entropy minimization with 

a bicubic spline model (LEMS) 

[158] 

 

3.2.1.5 Intensity Standardisation  

As mentioned in Fig.3.2 and section 3.2.1.4, there are intensity variations contained in 

the same type of tissues inside single MRI slice, i.e., bias field, the intensity variations 

also exist between different MRI slices, which refers to that same types of tissues have 

different range of intensities in different MRI slices. This kind of intensity variations 

will also influence intensity-based segmentation of medical images, especially 3D 
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segmentation. To solve this, the histogram of a single slice can be adjusted, and 

subsequently the histograms between slices can also be standardized to make them 

similarly distributed. The common intensity standardisation (IS) procedure is to use 

one MRI slice or one series of MRI slice with same intensity distribution as reference 

images, to train a target distribution then mapping new input images to the target 

intensity distribution. The HE introduced in 3.2.1.1 can be also used for the intensity 

standardisation, however more research on this is shown in Table 3.2. 

Table 3.2 Review of different types of intensity standardisation methods 

Papers Methods Description 

[159-163] Histogram 

Matching 

Use histogram landmark (percentile widely used) 

points from training set to build transformation 

(linearly or use spline) function between images  

[164-166] Joint 

Histogram 

Registration 

Build joint histograms (in 2D image format) of 

reference slices and current slices, then apply 

nonrigid registration between them  

[167] Mixture 

Mapping 

Use Gaussian Mixture Model to estimate mean 

intensities of major tissues in reference image 

and source image, and mapping them according 

to the tissues’ mean  

[168] Generative 

Adversarial 

Network 

(GAN) 

Use a modified CycleGAN [169] to generate 

another version of source image with different 

intensity distribution but same in other features  

 

Table 3.2 summaries the different types of methods for intensity standardisation, a 

figure illustration of the influence of intensity standardisation is shown in following 

Fig. 3.8.   
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 3.8 Sample images from GE, Siemens and Phillips scanners (left to right) before 

(a-c) and after (d-f) intensity standardisation [49]. 

 

Before IS, the MRI slices from different scanners (shown in Fig. 3.8 (a-c)) are all taken 

from brain but have serious intensity variations among them. Same tissue (such as 

white matter) in Fig. 3.8 (b) is significantly darker than (a) and (b), this will influence 

intensity-based image analysis unless discard this series of data. After IS, slices (d-f) 

have similar intensity distribution among same type of tissues (cerebrospinal fluid, 

white matter, gray matter) in MRI slices from different scanners. In this way following 

intensity-based processing will be improved and data from all scanners can be utilized. 

3.2.1.6 Interpolation for 3D construction of data 

There is known that different MRI facilities/protocols will generate MRI data with 

different slice thickness and distances. Each MRI slice has its thickness, thus ‘pixels’ 

in MRI image are actually 3D voxels with 3 dimensions of size. If the slice distances 

are small enough compared to voxel size, the obtained MRI image sequence can be 

processed as 3D data volume. Some scanners can only produce MRI slices with 

limited spatial resolutions and slice distances, thus leading to need for the slices to be 

processed as 2D images rather than 3D volume. For the sake of better quantization and 

visualisation of tumours, 3D segmentations are generally preferred. Thus, a pre-
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processing technique called interpolation should be introduced, which can reconstruct 

3D MRI volume from separate 2D slices.  

Interpolation means that resample the original images horizontally or vertically so that 

change the resolution of images, the key is to define the way of calculating values of 

pixels/voxels in resampled images based on known values from original images. The 

following Table 3.3 provides a review of some commonly used spatial interpolation 

algorithms and recent updates in this topic. 

Table3.3 Review of image interpolation methods 

Methods  Description 

Filter interpolation(Mean 

Filter, Gaussian filter [170], 

Lanczos filtering[171], 

Bilinear interpolation 

[172]) 

Use spatial filter approach (sliding windows/kernels) 

to calculate the values of interpolated points  

Non-filter interpolation 

(Nearest neighbour [173], 

B-spline, Cubic spline 

[174]) 

Deduce the values of interpolated points based on 

weighted sum of previous and subsequent points, the 

weights are from nearest neighbour or spline 

Fast Fourier Transform 

(FFT) interpolation [175] 

Interpolate image in spatial domain via appending 

zeros in FFT domain and recover to spatial domain  

Deep Learning 

interpolation [176, 177] 

Resample images use traditional way such as bilinear 

interpolation, then use features learned by DL to 

refine the resampled images 

 

The filter methods and non-filter interpolation methods reviewed in Table 3.3 are 

commonly used in medical image processing as introduced in [171, 178, 179]. Nearest 

neighbour interpolation leads to jagged artefacts, spline techniques involve inherent 

blurring and distorted edges [180]. The deep learning methods take expensive 

computation power and are majorly used in super resolution applications rather than 
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3D reconstruction. In the previous work of our group [181], the FFT interpolation of 

2D MRI slices to reconstruct 3D HN MRI volume has been proposed. The 

reconstructed volume has been used for further image analysis task, which is 3D 

segmentation of throat. An example of FFT interpolation of HNC slices is given in 

Fig. 3.9. 

 

 
(a) 

   

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Fig. 3.9 (a)(b) two consecutive MRI slice before interpolation. (c-g) are two slices 

after interpolation and three synthetic slices generated in interpolation. Red dash 

boxes mark the rough tumour position. (h-l) The zoomed tumour region after 

interpolation.  

Fig. 3.9 gives an example of interpolating MRI slices ((a) and (b)) so that generate 

synthetic interpolated slices ((c-g)) between consecutive MRI slices, from the zoomed 

view (h-l) it can be seen the information of HNC between two original slices changes 

smoothly among the interpolated slices, so that a 3D MRI volume is constructed for 

further 3D operation without losing or changing structural information in original 

images. 
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3.2.2 Initialization of interactive segmentation  

As shown in Fig. 3.1 (a), the interactive medical image segmentation workflow solves 

the segmentation tasks by diving them into two phases. First phase is detection to 

locate the Region of Interest (ROI) of this segmentation, i.e., initialization. Second 

phase is to evolve the area of foreground (ROI) to fit it with the clinical target in 

medical images, i.e., interactive segmentation. Conventional way for detection 

(initialization) is manually drawing the initial point, line, or contour on the target, this 

can be replaced by automatic algorithms in some applications. Different types of 

initialization methods are summarized in Table 3.4. 

Table 3.4 Summary of initialization methods for interactive segmentation 

Method  Description 

Seed-based Manually [182-184] Manually define accurate seed points 

around the target of segmentation 

Region Seed-based Manually [185, 186] Use seed points roughly mark 

foreground and background in 

segmentation 

ROI-based Manually [122, 187] Draw ROI around the target object, the 

foreground and background will be 

decided from pixels inside and outside 

ROI 

Machine Learning [188-192] Use unsupervised/weakly supervised 

machine learning or deep learning 

methods to detect the target object 

Knowledge Based [193-196] Transfer expert knowledge into rules in 

computer algorithm to detect target 

object  

 

Table 3.4 shows different categories of initialization methods for interactive 

segmentation include manually and automatically. The automatic methods [191, 192] 
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use weak supervision (points/lines weak label rather than accurate pixel-wise label) to 

train deep neural network for segmentation, which can be called as deep interactive 

segmentation. The knowledge-based methods [193-196] utilize prior domain 

knowledge from expert to design detection algorithm for domain-specific task. There 

are many unsupervised image segmentation methods [188-190], which can be solely 

used for end-to-end segmentation, while they can also be used as initialisation methods 

to draw an initial segmentation for following interactive segmentation methods. There 

are different ways of delineation of manual initialization as shown in Table 3.4, the 

figure illustration of manual initialization is shown in Fig. 3.10.  

 
(a) 

 
(b) 

 
(c) 

Fig. 3.10 Different ways of manual initialization of interactive segmentation. (a) 

Seeds-based, contour of target is drawn by red circles. (b) Region seeds based, white 

lines mark foreground, red lines mark background. (c) ROI based [122], red dashed 

box mark the ROI. 

Fig. 3.10 demonstrates the manual initialization of interactive segmentation. The 

seeds-based methods (Fig. 3.10 (a)) must draw closely to the boundary of target, which 

is expensive in time and highly subjective to human interaction, so they are not 

commonly used nowadays. The region seeds (in (b)) based methods provide a more 

convenient way than seeds based (in (a)), but still depend much on good manual 

initialization (see the several short white lines on giraffe head in (b)) to guide 

interactive segmentation well, they are used in many weakly supervised segmentation 

also [191, 192]. The ROI based method (in (c)) gives easiest way to users for 

initialisation, the major requirement is to conclude the target in the drawn ROI. The 

ROI based methods are efficient in time, and less affected by subjectiveness from 
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human, thus they are used as common initialisation ways for interactive segmentation 

nowadays.  

3.2.3 Interactive segmentation algorithms for medical image 

segmentation 

With the course location of the target in an image, there are different interactive 

segmentation algorithms that can start iterating from the initial detection to converge 

at the condition that the segmentation best fit the target.  

Table 3.5 summarized three common types of interactive segmentation methods, 

including graph-cut based methods, seeded region growing, and deformable models. 

Graph-based approaches treat each pixel in an image as a node in a graph. By defining 

and optimizing the cost function among nodes, the graph-cut can generate superpixel 

segmentations [197-200] for image, which is similar to clustering methods  [200]. if 

prior-knowledge (manual or automatic initialization) is given, many graph-cut based 

segmentation methods [122, 186, 201, 202] can extract regions/volumes for target 

object in image. The applications of graph-cut based segmentation on medical images 

have also been reviewed in Table 3.5, across different imaging modalities and body 

parts.  

The Seed Region Growing (SRG) was firstly  proposed in [203], which uses user-

initialized seeds to achieve segmentation of target object. There are three main aspects 

need to care for SRG also for many other interactive segmentation methods, which are, 

1) initialisation, 2) Growing rule, 3) Stop criterion. The initialisation can be from 

manual or automatic. The growing rule is decided by similarity measure such as the 

difference between intensity of pixels to of seeds. The process will stop at no 

neighbour pixels fit the similarity measure. The applications of SRG and its variants 

[204] on medical images are reviewed in Table 3.5, across different imaging 

modalities and body parts. 
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Table 3.5 Summary of common interactive segmentation algorithms 

Method  Description  Applications (target/data) 

Graph Cut 

(GC) based 

[122, 186, 201, 

202] 

Solve image as a graph, where the 

pixels in image are nodes (vertices) 

in graph, the nodes are connected 

by edges. Segmentation is done by 

disconnecting edges between 

nodes at lowest energy cost, where 

energy is defined by image 

features. 

Lung Cancer, Liver, Bones, 

HNC / CT [205-208] 

Cardiac, Brain tumour, 

Prostate / MRI [209-211] 

Liver, Lymph nodes/ 

Ultrasound [212, 213] 

Seeded Region 

growing  and 

variants 

(SRG)[203, 

204] 

Given initial seed region or points, 

the SRG search pixels around seeds 

to grow (enlarge) the initial seed 

region via absorbing pixels who fit 

the similarity measure, the 

similarity is from the comparison 

between features of pixels in seed 

region and pixels around. 

Abdomen, Teeth, Cardiac, 

lungs /CT [214-217] 

Brain, Abdomen, breast 

/MRI [218, 219] 

Breast, liver tumour 

/Ultrasound [220] [221] 

Deformable 

model [182, 

222-224] 

Given initial seed region or seed 

contour, the contour evolves under 

the force of deformable model. The 

contour will converge at high 

gradient place and maintain the 

regular shape under the constrain 

of curvature.  

Tooth, Liver tumour, 

Vertebra /CT [225-227] 

Brain tumour, heart, HNC / 

MRI [228-231] 

Breast, prostate/Ultrasound 

[232, 233] 

 

3.2.3.1 Deformable models family  

Finally, another class of interactive segmentation methods reviewed in Table 3.5 is 

deformable model. Given a 2D image or 3D tensor image, deformable models use 2D 

contours or 3D surfaces to separate image into sub-images by minimizing pre-defined 
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energy, so that segment objects and targets in given image. The deformable models 

can be categorized as parametric (explicit contours) and geometric (implicit contours) 

methods. Snake [182] model is a representative parametric method, Level Set Method 

(LSM) and Chan-Vese (CV) model are  representative geometric methods.  

 

Fig. 3.11 A brief history of development of deformable models 

Fig. 3.11 demonstrates three important developments of deformable models. The first 

stage of deformable model history is the invention of Active Contours (AC).  In 1988 

[182], Snakes (also known as active contour model) was introduced as a framework 

for interpreting high-level knowledge of images. The active contour model partitions 

image into sub images by using energy-minimizing spline. The position of a snake is 

parametrically represented as V(s) = (𝑥(𝑠), 𝑦(𝑠)). The spline in snake model can be 

parametrically initialised by user interface or automatic pre-process. Then spline will 

be updated along the minimization of following functional Eq. 3.12 and Eq. 3.13,  

𝐸𝑠𝑛𝑎𝑘𝑒 = ∫ 𝐸𝑠𝑛𝑎𝑘𝑒(𝑣(𝑠))𝑑𝑠
1

0

 

𝐸snake = 𝐸internal + 𝐸external  

(3.12) 

 (3.13) 
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The initialized contour evolves based on Eq. (3.12) and Eq. (3.13) then stops until pre-

defined number of iterations or the Snake energy is minimized.  

The classical Snake method requires initialization sufficiently close to edges, because 

it only uses local information along the contour [234].  Some researchers have made 

efforts to the modification of parametric deformable models. Such as methods in [235, 

236]. A well-known Gradient Vector Flow (GVF) method was proposed in [237]. This 

method introduced a novel gradient vector flow as an external force 𝐸external to involve 

region-based features, which significantly increases the capture range.  

While the snake model is parametrically constructed by series of markers, which 

means during the evolution certain regriding mechanisms are required to avoid overlap 

of control points [238]. Also, using fixed number of points to represent a deformable 

model is inconvenient for handling topological changes during the curve/surface 

evolution, such as merging and splitting.  

To solve limitations in parametric deformable models, geometric level set methods 

(LSM) are introduced to move contours implicitly as a particular level of a function 

[234]. This refers to the second phase of deformable model development in Fig. 3.11. 

The concept of implicit contours is to define a high dimension surface with a 

constructed function as Eq. 3.14. 

𝑧𝜙 = 𝜙(𝑥, 𝑦, 𝑡 = 0) (3.14) 

 The point with coordinate(𝑥, 𝑦, 𝑧)  lies on the surface, this surface evolves with 

time(iteration)  𝑡 . In each time step, the 𝜙 = 0  represents the evolving contour, 

𝜙(𝑥, 𝑦, 𝑡) > 0  means point is outside contour, and  𝜙(𝑥, 𝑦, 𝑡) < 0  means inside 

contour. In part of the open literature 𝜙(𝑥, 𝑦, 𝑡) > 0 means point is inside contour and 

vice versa.  

Then the curve or surface is propagated by evolving a function ∅(x, t) according to 

pre-defined speed F along the curve/surface normal. The variable x is time-dependent, 

and the curve/surface C(t) is always defined as zero level of level sets as Eq. 3.15. 

∅(C(t), t) = 0 (3.15) 
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where ∅(𝑡) is level set surface at time 𝑡, and C(t) is the contour at time 𝑡, each time 

the contour is at zero level of ∅. This definition releases the limitation of fix number 

of contour points in parametric methods. Now the problem is how to update implicit 

surface with time, the level set function ∅(x, t) is iteratively updated with time as,  

𝜕∅

𝜕𝑡
=  −∇∅

∇∅

|∇∅|
𝐹 

𝜕∅

𝜕𝑡
=  −|∇∅|𝐹 

(3.16) 

(3.17) 

where 𝐹 is speed function to guide the evolution, 𝑛 =  
∇∅

|∇∅|
 is the normal of the surface 

show the direction of evolving, ∇∅ is the gradient of ∅ at position ∅(𝑥, 𝑦).  

Based on the Eq. (3.14) - (3.17), the level set ∅ updates with time. Compared to AC, 

the geometric based methods also have advantages to handle topological changes 

during interactive segmentation, so that naturally find and delineate multiple objects. 

The geometric based methods significantly improved the efficiency of deformable 

model, and solved many limitations existed in parametric methods. Nowadays, the 

majority of deformable models use level sets to represent contours.  

Apart from the way of representation of contours, there have been many other 

modifications proposed on deformable models. In [223, 239, 240], modifications were 

proposed to reduce the computation cost of LSM and speed up the converge. In [238], 

approaches which combine statistical information with level set segmentation are 

reviewed, such as integrating colour, texture, and shape prior. Another important 

development (in Fig. 3.11) to level set is introducing region-based fitting energy to 

level set in [224], the fitting energy 𝐹 is modified as, 

𝐹1(𝐶) + 𝐹2(𝐶) = ∑ |∅(𝑥, 𝑦) − μ𝑖𝑛|
2

(𝑥,𝑦)∈inside(C)

+ ∑ |∅(𝑥, 𝑦) − μ𝑜𝑢𝑡|
2

(𝑥,𝑦)∈inside(C)

 

(3.18) 

where 𝐶  is the evolving curve (contour), 𝐹1 , 𝐹2  represents energy inside and 

outside current curve. The ∅(𝑥, 𝑦) is intensity of a pixel at (𝑥, 𝑦) , μ𝑖𝑛  is mean 

intensity inside curve, μ𝑜𝑢𝑡 is mean intensity outside curve. The values of 𝐹1, 𝐹2 
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depend on the relative position between 𝐶 and target object, the fitting energy will 

be minimized when the segmenting curve is right at boundaries of target object. The 

region-based fitting energy gives many advantages to LSM segmentation. Firstly, it 

allows more inaccurate initialization of starting contour, the initialization does not 

have to be close to target’s edge. Then, it is not sensitive to noise and no need for 

smooth of initial image before segmentation. In addition, the region-based methods 

can segment object with no sharp boundaries compared to edge-based methods.  

Deformable model can keep the smoothness of curve and use it as a regulation in 

image segmentation. This introduces benefits to medical image segmentation. The 

deformable models are widely used in many areas include medical applications[241-

244]. In Table 3.5, applications of deformable models on medical image segmentation 

across different body sites and imaging modality are reviewed. 

The impact of computer-based interactive segmentation methods on RTP are 

presented and reviewed in many research work. In [245], the work of automatic 

segmentation aiding RTP of cervical cancer are reviewed, it shows the segmentation 

of structures such as bladder, uterus, and cervix in MRI and PET/CT data help the 

RTP of cervical cancer. In [246], the automatic segmentation methods of prostate 

cancer from MR images are validated, the results show that automatic segmentation 

methods most likely reduce the overall contouring time and introduce minor deviation 

compares to clinicians and radiotherapy oncologists. Many other work [33, 247, 248] 

also present the benefits of interactive segmentation methods on RTP across GC-based, 

SRG, and deformable models. In section 2.4.4, many auto-contouring software are 

introduced, majority of them integrate the interactive segmentation methods.  

The methods reviewed so far can perform well with limited levels of features and 

requires relative low computation cost. While these methods cannot automatically 

match semantic labels to segmentations. Also, the performance of interactive 

segmentation methods relies on the initializations, this involves additional human 

effort, also introduces subjectiveness. In following sections, techniques of 

automatically detecting and segmenting targets from medical data will be reviewed.  
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3.4 Conventional Machine learning for medical image 

processing  

Apart from interactive medical image segmentation, another category of solution is 

using machine learning to tackle both detection and segmentation challenges in 

medical images. As shown in Fig.3.1 (b)(c), the general workflow of supervised image 

processing includes training and testing phases. In training steps, the trainset data and 

its labels are used in pairs to optimize a discriminator. In the test phase, the well-

trained discriminator is used to generate predictions for test data, such as predict 

classes and output segmentations. As shown in Fig. 3.1 (b), in both unsupervised and 

supervised methods, the feature extraction is a vital step. Although some methods only 

rely on intensity and gradient features, many high-level patterns require more 

sophisticated feature extraction methods to obtain, so that to complete complex visual 

processing tasks. In the rest of this section, the commonly used feature extraction 

methods for medical images will be introduced in 3.4.1, the general conventional 

classifiers for medical image segmentation will be reviewed in 3.4.2.  

3.4.1 Feature extraction 

In original image domain, the hidden patterns of information inside medical images 

are hard to obtain by solely analysing simple features such as intensities. Also, it is 

hard to distinguish regions or objects inside an image straightforward in image domain. 

Thus, it is necessary to introduce feature mining to find hidden patterns of an image 

thus projecting data into feature space, where target foreground objects/ regions can 

be discriminated from background. A summary of common feature extraction methods 

of medical image processing is in Table 3.6. 

As shown in Table 3.6, there are various types of features can be used in medical 

image processing. Some methods such as SCC [249, 250] capture the low-level 

features such as edges, similar approaches include Canny [251], SUSAN (Smallest 

Univalue Segment Assimilating Nucleus) [252], and Sobel Detector [121]. Methods 

such as LBP and GLCM extract local and global texture features to find more complex 

patterns inside images. Other methods such as HOG and SIFT finds high-level features 

to represent objects in classification and segmentation of clinical targets. The PCA 
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[253] can select more relevant features to achieve tasks if there are much redundancy 

in images or features. 

Table 3.6 Summary of feature extraction methods of medical image processing 

Method Description Application 

Principle 

Component 

Analysis (PCA) 

[253] [254] [255] 

The PCA projects high-

dimensional data onto reduced 

number of dimensions to capture 

the important pattern and 

ignoring redundant information 

Medical image fusion and 

registration [256, 257] 

Feature extraction for 

medical image 

segmentation [258-261] 

Slope Chain Code 

(SCC) [249, 250] 

Use changes of slope to represent 

boundaries in image, such as 

tortuosity 

Diagnosis of eye disease 

from retinal images [249, 

250] 

Local Binary 

Pattern (LBP)  

[262] 

Encode local texture feature 

around a pixel using binary 

digits, e.g., higher than central 

pixel is TRUE, lower is FALSE 

Blood vessel 

segmentation [263] 

Uterus segmentation 

[264] Breast Cancer 

Detection [265] 

Gray Level Co-

occurrence Matrix 

(GLCM) [266] 

Encode texture feature through 

summarize the occurrence of 

intensity patterns of adjacent 

pixels 

Lung cancer segmentation 

[267], breast cancer 

detection [268], 

pathological area [269] 

Histogram of 

Oriented Gradients 

(HOG) [265] 

Extract features in image via 

calculating gradients of pixels 

and summarize then by 

histogram 

Ventricle landmark 

detection[270], liver 

cancer detection [271] 

Scale-Invariant 

Feature Transform 

(SIFT) [272] 

Find key feature points of images 

which are invariant to scale, 

noise, illumination, and rotation.  

3D liver segmentation, 

prostate segmentation 

[273, 274] 
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3.4.2 Classifier 

As shown in Fig. 3.1. (b), the acquired features can be used in 

classifiers/discriminators to achieve high-level pattern recognition tasks, such as 

medical image segmentation. This section will majorly review the classifiers which 

can be used for medical image segmentation, a summary is shown in Table 3.7.  

Table 3.7 Review of common classifiers for medical image segmentation 

Method  Description  Application  

Decision Tree 

(DT) [275] 

Use hierarchy tree model to build a 

discriminator. Nodes are output classes 

of input, which are decided by selected 

features at branches. 

Brain Segmentation 

[276, 277] 

Random Forests 

(RF) [278] 

Ensembles multiple binary decision 

trees, introduce internal feature 

selection and majority voting.  

Liver, Kidney, Bone 

Segmentation [279], 

Cardiac [280] 

Support Vector 

Machine 

(SVM) [281]  

Learning a hyperplane from training 

samples to best separate input into 

classes 

Lung 

segmentation[282] 

Brain tumour 

segmentation [283] 

Artificial 

Neural Network 

(ANN) [284] 

An artificial uses the multiple input 

unit and weight between connections to 

simulate the signal transmission from 

dendrites to neuron nucleus, so that 

classify input 

Bladder, Chest, Brain 

Segmentation [285, 

286] 

 

 

As shown in Table 3.7, There are different types of classifiers can utilize extracted 

features (described in Table 3.6) to discriminate different regions and objects in 

medical images so that achieve segmentation. The DT [275] algorithm can select 

attribute (features) to split the data correctly, using techniques such as Information 
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Gain and Gini Index [287]. On the other hand, another way to improve the robustness 

and classification accuracy of DT is RF [278]. The RF starts from initial multiple 

binary DTs with random selected features from entire feature pool, the output of RF 

takes majority voting of DT’s’ output. The RF is an ensemble learning method based 

on DT, this ensemble learning idea is also used in other machine learning approaches 

such as ensemble of multiple neural networks. The SVM [281] is looking for a 

hyperplane in high-dimensional features spaces to best divide data samples from 

different classes. The ANN [284] uses large numbers of neuron-like units to 

theoretically learn any nonlinear transforming function, so that map input data into 

different classes. The medical image segmentation applications are also given in Table 

3.7, across different body sites and image modalities.  

3.5 Deep convolutional neural network for medical image 

segmentation 

The last section introduced the classical machine learning algorithms and some of their 

applications in medical image segmentation. As shown Fig. 3.1 (c), the development 

of deep learning (DL) has replaced many traditional machine learning approaches 

through end-to-end learning, which combines feature extraction and classification in 

an entire structure and is trained together. Also, the DL will save the subjectiveness of 

hand-crafted features from conventional feature extraction methods.  

3.5.1 History from ANN to DCNN for medical image segmentation 

The DL has a very broad subtypes, such as deep recurrent neural network, deep 

convolutional neural network, and autoencoder. This section will only review how the 

deep convolutional neural network (DCNN) has been developed to perfectly match 

the demanding of solve sophisticated pattern recognition problems in computer vision 

field, especially the medical image processing. In Fig. 3.12, a brief history of the ANN 

technique developing to DCNN so that capable of medical image segmentation task is 

shown.  
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Fig. 3.12 Brief history of DCNN development on computer vision and medical 

image processing 

 

As shown Fig. 3.12, at first stage, ANN [284] was proposed to simulate the highly 

parallel computing structure and imprecise information-processing capability of real 

neural networks, so that develop the artificial intelligence methods. ANN are 

constructed by multiple layers of fully connected neurons, thus also called as fully 

connected layers. The ANN can be used in regression and classification tasks, but it 

does not act as feature extractor, neither works much on images. While there are some 

applications on medical image segmentations such as in [285, 286] 

The second stage of Fig. 3.12 is from [288], a convolutional neural network (CNN) 

architecture is proposed for hand-writing recognition. In this neural network, the 

feature maps of input images are extracted by convolutional layers. The convolutional 

layers use windows-like filters rather than fully connected filters to extract features so 

that keep the spatial information of images. The obtained features are classified by 

cascade of fully connected layers to get the correct recognition of hand-writing 
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characters. Compared to conventional machine learning methods, the CNN combines 

feature extraction and classification together into an end-to-end algorithm.  

The third stage in Fig. 3.12 began in 2010s, based on several technical breakthroughs 

on DL [289], many DCNN models with large numbers of parameters significantly 

improved accuracy for many image classification tasks of large datasets, such as works 

from VGG [290], Alex-Net [291], and [292]. These models used multiple or dozens 

of convolutional modules in  [288] to extract abundant deep features from images for 

better analysis. While these methods were only on classification of entire images. 

There were some DCNN based image segmentation method which transfer the 

segmentation into the classification of a central pixel inside an enclosing object or 

region, which was called patch-wise segmentation. The patch-wise training involves 

additional efforts to define and prepare the patches for segmentation, it could be equal 

windows, super-pixels, or region proposals. The patch-wise solutions lacked 

efficiency of fully convolutional training. There were some patch-wise DCNN used in 

medical image segmentation such as in brain segmentation [89, 113, 293] and bone 

structure segmentation [294]. 

To solve the challenge of DCNN working on image segmentation, the third stage 

comes in [295], a fully convolutional network (FCN) is proposed for end-to-end pixel-

wise prediction of natural images. The FCN can be globally trained and generate dense 

prediction of each pixel’s class, this means assigning all pixels in image with semantic 

label, which is a pixelwise classification but from image level the segmentation is 

achieved. This kind of work is called semantic segmentation. Here are many 

researches inspired by FCN to further improve the semantic segmentation, such as U-

Net [296], and SegNet [297].  The U-Net was proposed for the segmentation of cells 

from microscopy images, and nowadays it has been widely applied in many types of 

medical image segmentation. Due to U-Net is highly related to this thesis, more 

introduction of it will be arranged in section 3.5.2. 

Recently, there are other updates on DCNN to improve computer vision as well as 

medical image segmentation performance. The development of visual attention 

scheme [298] and vision Transformer [299] can suppress irrelevant information in 

DCNN and focus on salient features for the specific task to further improve the 
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performance in many DCNN for medical image segmentation tasks, such as pancreas 

segmentation [300], liver segmentation [301], and skin cancer segmentation [302]. 

3.5.2 U-Net: an encoder-decoder structure DCNN for semantic medical 

image segmentation 

As introduced section 3.5.1, the invention of FCN [295] and U-Net [296] developed 

image segmentation problem from patch-wise classification into pixel-wise 

classification, which is so called as semantic image segmentation.  

 

Fig. 3.13 U-Net architecture [296] 

Like FCN, the U-Net has two major parts, downsampling stage and upsampling stage. 

As shown Fig. 3.13, the downsampling stage is cascade of convolutional layers, which 

downsamples the size of input image, but increase the depth of feature maps after each 

convolution, which is like typical architecture of DCNN. To achieve the pixel-wise 

dense prediction, the size of feature maps will be recovered in the upsampling stage, 

and depth of feature maps will be decreased. In the end of upsampling stage, a 1 x 1 

convolutional layer is used, which uses 1 x 1 size filters, the number of filters is the 

number of possible output classes, so that plays a role of classifier.  
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The combination of downsampling feature extraction and upsampling dimension 

reconstruction can produce dense pixel-to-pixel classification results, but the 

predictions are quite coarse. Thus, another important novelty from FCN is combining 

‘what and where’ to obtain good segmentation. This is achieved by the skip connection 

scheme shown with grey arrow in Fig. 3.13. Feature maps from downsampling stage 

are skip connected to upsampling stage and fused by concatenation with feature maps 

same size there, the fused feature maps are then upsampled and fuse another skipped 

feature maps from downsampling stage. The fuse of feature maps sufficiently used the 

low layer fine information which contains the details of image, also the deep layer 

coarse information which contains the spatial information of image, so that improve 

the detection and segmentation accuracy simultaneously. The FCN uses addition for 

feature fusion, while the U-Net uses concatenation for feature fusion which will 

increase depth of feature maps, it is proven that concatenation is a better way for 

feature fusion [296]. 

Another essential part in U-Net is data augmentation. The data augmentation generate 

lots of randomly transformed versions of training samples, such as shift, rotation, and 

random crop, to teach network the desired invariance and robustness properties [296]. 

The data augmentation can help the training of networks, especially the only limited 

numbers of annotated images are available. This will be even important for medical 

images because the size of datasets of medical images are very limited compared to 

natural images. 

U-Net also modified the form of training loss for better segmentation. A weighted map 

is calculated and added to cross entropy to train the U-Net for cell segmentation, the 

modified CE loss will better separate borders of cell. Involving other additional loss 

to CE loss is also used in many image segmentation CNN models, such as Focal Loss 

[303] and Dice Loss [304]. 

The U-Net and its variants has been broadly used in medical image segmentation. A 

review of several applications is shown in Table 3.8.  
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Table 3.8 Summary of U-Net and its variants on medical image segmentation 

Method  Application  Description 

U-Net  [296] Neuronal structures in 

electron microscopic 

stacks 

Introduce multi-stage 

feature fusion via 

concatenation 

V-net [305, 306] Prostate from MRI, HNC 

from PET/CT 

3D version U-Net 

Multi-view U-Net [307] Hippocampal from MRI Ensemble results from 

multi-view U-Nets 

Deep Dilated U-Net[308] Rectal cancer and OARs 

from CT 

Introduce dilated 

convolution modules in 

deep layers 

Two-stage Cascades U-

Net [309]  

Brain glioma from MRI Cascade two U-Nets use 

output of first as input of 

second 

Attention U-Net [300] Pancreas segmentation 

from CT 

Introduce attention 

modules into U-Net 

U-Net with GAN branch 

[310] 

Vessel segmentation from 

retinal image 

Use a GAN branch to 

introduce additional loss 

to U-Net training 

Transformer U-Net [311] Organ segmentation from 

CT 

Introduce multi-head 

transformer into U-Net 

 

From the review in Table 3.8, the U-Net and its variants have wide applications in 

medical image segmentation tasks, across sites from rectal to brain cancer, from CT 

scans to MRI. There are also many other applications thoroughly reviewed in [312, 

313]. 
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3.6 Conclusion 

This chapter reviewed the applications of computer-based algorithms on the medical 

image processing. Firstly, many image processing techniques can enhance the quality 

of raw medical images to reduce the visual challenges of analysing medical images. 

Furthermore, the computer vision algorithms can provide different types of machine 

intelligence to automatically recognize the desired patterns from medical images, 

includes low-level features such as corner and edges, also high-level patterns such as 

locations. These will all be helpful to reduce workload of clinicians. 

In terms of segmentation a target from medical image, there are different solutions. 

One way is to unsupervised segmentation of an image into pieces and involve manual 

interaction to guide algorithm to the target. Another way is to produce annotations for 

medical images and use them to train supervised classifiers. The supervised methods 

can be extended to two categories: one is the traditional machine learning using hand 

craft features and classifiers; another one is deep learning use end-to-end models. 

From the interactive unsupervised segmentation to traditional machine learning, and 

deep learning, the subjectiveness of segmentation is reducing, the requirements of 

annotated data and computation power are increasing. An optimum solution for a 

practical medical image analysis task should be based what resources are available, 

such as data and facilities.  
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Chapter 4 Real MRI data and measure metric 

4.1 Introduction 

 Chapter 3 suggested the importance of the quality of data used in algorithm 

development. Furthermore, it reviewed many image processing techniques aim to 

enhance the data quality from different aspects.  

Data is also a key factor of computer-aided medical image processing. Firstly, there 

are many causes that can deteriorate the medical image’s quality (as covered in 

Chapter 2 and Chapter 3). Moreover, the collection of medical data for image 

processing purpose is challenging. The acquirement of medical data demands 

available facilities, many of them are high cost, such as MRI and PET devices. Unlike 

natural images, manual delineation of target object’s labels in medical images requires 

expertise of clinicians 

This chapter will introduce the available HNC MRI data, which is processed and 

evaluated in this thesis. Then, some common metrics for measurement of 

segmentation algorithms are introduced, which will be frequently used in following 

chapters.  

4.2 Real MRI data  

The data of this thesis is provided by Beatson West Scotland Centre, at Glasgow. The 

provided data is axial T1 + Gd (Gadolinium Enhanced T1-Weighted) MRI slices, 

obtained from three different 1.5Tesla MRI scanners namely Magnetom Avanto from 

Siemens, Intera Neuro coils from Philips Medical Systems, and Signa HDxt from GE 

Medical Systems. 

T1 + Gd MRI scans were acquired after 15–20 min of intra-venous injection of 0.1 

ml/kg, with typical 3–5 mm slice thickness. The range of other imaging parameters 

were, 3.3–6 mm spacing in between slices, 9.06–20 ms echo time, 542–1066 ms 

repetition time, 90◦–150◦flip angle, 0.43 × 0.43–0.94 × 0.94 in-plane resolution, 256 

× 256–512 × 512 acquisition matrix and 97.65–221 Hz/pixel bandwidth [193].  
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As introduced in Section 2.2, the axial MRI slices are images taken by scanning from 

top-down direction, the images are parallel to the ground. In T1 images, the tissues 

contain fat or water has light intensity, regions such as air, fast-flowing blood. The 

patients are injected Gadolinium before scanning to get contrast enhanced MRI data. 

Each slice contains non-isotropic voxels with size of 0.43 X 0.43 – 0.94 X 0.94 mm 

in xy plane, 3–5 mm slice thickness, but the distances between slices are 3.3 – 6 mm, 

thus our data is naturally 2D separate slices, additional processing is required to 

reconstruct the data to 3D form (introduced in Chapter 3). There were MRI data of 17 

patients in total received for this thesis, firstly 10 patients were available, then another 

7 patients were also collected. In all 17 patients, the head and neck tumours were 

delineated by clinicians, only 5 patients’ cancerous lymph nodes were delineated. The 

tumours in slices are mainly located among larynx (throat) and tongue of base, some 

figure examples will be given in next section. The manual delineations are used as 

‘ground truth’ for training and evaluation of computer-aided segmentation models, 

while actually the ground truth of the tumour position and contour is nearly impossible 

to be certain. In this work, the so called ‘ground truth’ are the consensus manual 

delineations (or gold standard contours) from clinicians to help the development and 

testing of segmentation algorithms. The procedure to obtain the consensus manual 

delineations are detailed introduced in [55, 193]. The MRI data is saved in DICOM 

(Digital Imaging and Communications in Medicine) format. A List of the dataset used 

in this thesis is given in following Table 4.1. 

 

 

 

 

 

 

 



75 

 

Table 4.1 List of MRI dataset used in thesis 

Dataset ID Number 

of slices 

 Scanner Modality 

MR01052013  8 'Philips Medical Systems' T1 

MR02092014 11 'GE MEDICAL SYSTEMS' T1 

MR06192012 8 'SIEMENS' T1 

MR09082010 13 'Philips Medical Systems' T1 

MR09092010 8 'Philips Medical Systems' T1 

MR10062011 7 'Philips Medical Systems' T1 

MR10062013 11 'GE MEDICAL SYSTEMS' T1 

MR11092012 7 'SIEMENS' T1 

MR12082013 12 'GE MEDICAL SYSTEMS' T1 

MR14012013 8 'GE MEDICAL SYSTEMS' T1 

MR15052014 7 'Philips Healthcare' T1 

MR17102013 12 'SIEMENS' T1 

MR24082012 12 'SIEMENS' T1 

MR27082012 8 'GE MEDICAL SYSTEMS' T1 

MR28082014 18 'Philips Healthcare' T1 

MR29072011 7 'GE MEDICAL SYSTEMS' T1 

MR30052012 9 'SIEMENS' T1 

 

4.3 Illustration of HNC MRI dataset 

This section will give several examples of the MRI data used in this thesis, to visualize 

the problems and challenges to tackle in this work. The illustration will follow the 

arrangements  1) MRI slices whose horizontal positions are at throat or base of tongue 
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(Fig. 4.1 - 4.2), 2) MRI slices those are vertically at centre or side of a tumour (Fig. 

4.3), 3) MRI slices with the existence of lymph nodes inside (Fig. 4.4).  

 

 
(a) (b) 

 
(c) (d) 

 
(e) 

 
(f) (g) (h) 

 
(i) 

 
(j) 

 
(k) (l) 

Fig. 4.1 Illustration of figure examples of MRI slices scanned near throat with 

tumours marked with yellow contours. Each column shows three consecutive slices 

from one patient, such as (a)(e)(i), in total four patients are shown ((a)(e)(i) from MR 

10062011, (b)(f)(j) from MR09092010, (c)(g)(k) from MR06192012, (d)(h)(l) from 

MR27082012). The example slices show the larynx subarea of head and neck region 

with existence of head and neck tumour. The yellow contours indicate the larynx 

tumour regions drawn by experts, which are around throat (black hole inside yellow 

contours).    
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Fig. 4.1 gives examples of MRI scans from 4 patients, the slices are around throat area, 

the tumours here (consensus manual delineations) are marked. The HNCs in this area 

are majorly around throat, means it can be above, below, left, and right sides of the 

throat. Call the body of patients as foreground, others are background; the throat 

tumours are close to the top of the foreground.   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Fig. 4.2 Illustration of figure examples of MRI slices scanned near base of tongue 

with tumours marked with yellow contours. Each column shows three consecutive 

slices from one patient, such as (a)(e)(i), in total four patients (a-d) from 

MR12082013, MR09082010, MR10062013, MR14012013 are shown. The examples 

show the slices horizontally at base of tongue with presence of HNC marked with 

yellow contours. The HNCs at base of tongue usually adjacent to one side of throat 

which is black holes in slices.  

Fig. 4.2 gives examples of MRI scans from 4 patients, the slices are around base of 

tongue area, the tumours here (consensus manual delineations) are marked. The HNCs 
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here are majorly at one side of throat, mostly adjacent and above the throat. The base 

of tongue tumours are at the middle region of the foreground in image, where tongues 

and teeth are at above. There are some neighbour tissues having similar intensities 

with tumours, such as cancerous lymph nodes (in Fig. 4.2 (d)(h)(l)), and salivary 

glands (in Fig. 4.2 (c)(g)(k)). Sometimes the enlarged tumour can infiltrate into 

neighbour tissues, such as in Fig. 4.2 (a)(e)(i). Bias field can be seen in Fig. 4.2 

(a)(b)(d)(f)(h)(j)(l). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 4.3 The illustration of MRI scans from four patients (MR14012013, 

MR12082013, MR06192012, MR27082012), with tumours marked with yellow 

contours. Each column is scans of same patient, such as (a)(e). The first row (a-d) are 

slices taken form middle of tumour volume; the second row (e-h) are taken from side 

(end) of tumour volume. 

Fig. 4.3 shows the MRI scans of four patients, with tumours (consensus manual 

delineations) marked. The tumours have large radius in their centres (middle), but 

small radius at their ends. Also, from the given four examples, the tumours’ shapes 

are not regular.  

In summary, the given examples of HNC slices from Fig. 4.1 to Fig. 4.3 show that the 

HNCs have some common features on locations, majorly adjacent the throat, and 

throat tumours can be fully around the throat. The intensities of the tumours are bright, 
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but there are non-uniform intensities inside tumours. The boundaries of tumours are 

fuzzy, and there are some neighbour tissues having similar appearance with tumours. 

The shapes of tumours can be arbitrary.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 4.4 Illustrations of MRI scans from two patients (MR30052012, MR10062013), 

with cancerous lymph nodes marked with yellow. Each row is a patient’s scan such 

as (a-c). 

Fig. 4.4 gives the examples of MRI scans with cancerous HN lymph nodes (abnormal 

lymph nodes). The ALNs are at two side of throat but not adjacent. The intensities of 

ALNs are also bright like tumours. Compared to tumours, ALNs have more clear 

boundaries such as in Fig. 4.4 (d), unless they enlarged too much and infiltrate to 

neighbour tissues such as Fig. 4.4 (a-c). The ALNs are mostly in balloon and ellipse 

shapes. More examples of MRI data used in this project will be shown in Appendix B. 

4.4 Metrics to measure the segmentation: Dice FP, distance  

This thesis is about the auto-segmentation of HNC tumours and abnormal lymph nodes 

from MRI slices. The algorithm is developed and tested with the guidance of 

clinician’s opinions and consensus manual delineations (labels). Given MRI data and 
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corresponding labels, the performance of an auto-segmentation algorithm should be 

measured via the comparison between algorithm output and consensus manual 

contours. The comparisons between two contours (segmentations) can be 

quantitatively measured by several metrics, this section will introduce some of them, 

include confusion matrix, dice score, Jaccard score, and Hausdorff distance. 

 

Fig. 4.5 Demonstration of comparison between auto-segmentation and consensus 

manual contour. 

Fig. 4.5 gives an illustration of overlapping algorithm prediction (Red contour) on 

gold standard label (dark green contour). Several metrics for quantitative 

measurements of segmentation performance can be explained by this illustration.  

The first metrics to introduce is confusion matrix, the confusion matrix can be obtained 

from the comparison between prediction and label, and in comparison, four 

circumstances can be concluded by confusion matrix given as the following table, 
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Table 4.2 Confusion matrix 

  Predicted Class 

 Total cases 

= P + N 

Positive (PP) Negative (PN) 

Actual 

Class 

Positive (P) True positive (TP) False negative (FN) 

Negative (N) False positive (FP) True negative (TN) 

 

As shown in Table 4.2, the actual classes are divided into positive and negative group, 

the positive corresponds the ground truth of foreground of target in segmentation or 

detection problem, the negative corresponds to ground truth of background in 

segmentation and detection. When a part of predicted positive (foreground) fits the 

actual classes, this part is called as true positive (TP). When a part of predicted positive 

is negative (background) in actual classes, this part is called as false positive. When a 

part of predicted negative (background) fits the actual classes, this part is called as true 

negative. When a part of predicted negative is positive (foreground) in actual classes, 

this part is called as false negative. So back to Fig. 4.5, given an algorithm output 

contour (box in red boundary) and consensus manual contour (box in dark green 

boundary), the TP is the intersection (shown with blue area) between the two predicted 

area of foreground; the FP is the algorithm mistaking background as foreground 

(shown with orange are); the FN is the algorithm missing the foreground part in 

delineation (shown with green area); the TN is the algorithm correctly distinguish the 

background (shown with Gray in Table 4.1).  

The following metrics can be computed from the confusion matrix:  

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

(4.1) 
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Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 −  score =
2

1
 Precision 

+
1

 Recall 

 

(4.2) 

(4.3) 

(4.4) 

 

where Accuracy is the rate that how algorithm correctly find true positive as well as 

true negative among entire data, this works well when the sizes of classes (foreground 

and background in binary case) are symmetric. The Precision is the rate how precisely 

the algorithm prediction fit true positive, the key to improve precision is to decrease 

FP. The Recall is the rate how many percent of the foreground object is correctly 

predicted. The F1-score can be rewritten as, 

𝐹1 −  score =
2

1
 Precision 

+
1

 Recall 

 

=
2

1

 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃  
+

1

 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁  

 

 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

    

(4.5) 

 

The F1-score has same form as another important metrics called Dice Similarity 

Coefficients (DSCs) [314] or Dice Score, which is given as, 

𝐷𝑖𝑐𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 (4.6) 

 

The Dice Score and F1-score consider both true positive and true negative, but 

compared to Accuracy, the Dice score can handle uneven classes better, here an 

extreme example is given as,  
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Fig. 4.6 Illustration of a segmentation results on a 9 X 9 image.  

Fig. 4.6 shows an example of segmentation on a 9 X 9 image. The predicted contour 

(red boundary) totally misses the actual object (dark green contour), but by using 

different metrics it may give different quantitively results. The Accuracy and Dice 

score can be computed from (4.1) and (4.3) as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑃 +𝑁
=  
0 + 9 𝑋 9 − 2

9 𝑋 9
= 0.975 

𝐷𝑖𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑋 0

2𝑋0 + 1 + 1
= 0 

(4.7) 

 

From the Eq. 4.7, a totally missed segmentation (Fig. 4.6) can reach 0.975 accuracy. 

This is because the target image has imbalance classes, where the foreground is only 

1 of 81 pixels, other 80 pixels are all background. However, Eq. 4.7 shows that the 

Dice Score correctly measured the real results of this auto-segmentation. Due to fact 

that in many segmentation tasks the target (TP) is small compares to entire image, the 

Dice score is widely used in image segmentation evaluation for quantitatively study 

of algorithm performance. This thesis also works on reduce the overestimation of 

tumour segmentation (in Chapter 6), thus FP will be another important measurement. 

Apart from metrics that measuring area overlapping rate, another useful metrics for 

image segmentation is Modified Hausdroff Distance (MHD) [315] which is based on 

distance measure. The MHD can be used to effectively measure the topological 
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similarity of two objects. Given two sets of contours 𝐶𝐴 = {𝑎1,𝑎2,𝑎3} of length M and 

𝐶𝐵 = {𝑏1, 𝑏2, 𝑏3} of length N shown as following figure, 

 

Fig. 4.7 Two contours with three points each. 

 

 Fig. 4.7 shows the contours 𝐶𝐴 and 𝐶𝐵, so the distance from 𝐶𝐴 to 𝐶𝐵 is,  

𝐷(𝐶𝐴, 𝐶𝐵) =
1

𝑀
∑  

𝑐𝑎∈𝐴

𝑑(𝑐𝑎, 𝐶𝐵) 
(4.8) 

 

where 𝑑(𝑐𝑎, 𝐶𝐵) is the is minimum distance between point 𝑎 in set 𝐶𝐴 to all points in 

𝐶𝐵. 𝑀 is the number of points in 𝐶𝐴, which is 3 in Fig. 4.7. So similarly, 𝐷(𝐶𝐵, 𝐶𝐴) 

can be given as, 

𝐷(𝐶𝐵, 𝐶𝐴) =
1

𝑁
∑  

𝑐𝑏∈𝐵

𝑑(𝑐𝑏, 𝐶𝐴) 
(4.9) 

 

where 𝑁 is the number of points in 𝐶𝐵, and it is 3 in Fig. 4.7. Thus, based on Eq. 4.8 

– 4.9, the MHD between 𝐶𝐴 and 𝐶𝐵 is given as, 

𝑀𝐻𝐷(𝐷(𝐶𝐴, 𝐶𝐵), 𝐷(𝐶𝐵, 𝐶𝐴)) = 𝑚𝑎𝑥(𝐷(𝐶𝐴, 𝐶𝐵), 𝐷(𝐶𝐵, 𝐶𝐴)) (4.10) 

 

A good segmentation corresponds to higher dice score, and shorter MH distance.  
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4.5 Conclusion 

This chapter described the MRI dataset used in this thesis and highlighted the frequent 

challenges of the segmentation of HNCs and ALNs from MRI dataset. The numbers 

of the MRI slices are limited, and the raw data is in 2D form. The HNCs have no 

regular shapes, no clear boundaries, and in many cases no uniform intensity 

distributions. The ALNs have more regular shapes and more clear boundaries 

compared to HNC, but it can enlarge and infiltrate to neighbour tissue. The 

development of automatic segmentation algorithms is under the guidance of clinicians’ 

opinions and manual consensus delineations. The following chapters will introduce 

the developed novel algorithms for auto-segmentation of ALNs and HNCs from real 

MRI dataset, and the performance of these algorithms will be validated via metrics 

such as Dice score introduced in this chapter. 
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Chapter 5 Novel 3D Segmentation Methods for head 

and neck abnormal lymph nodes from MRI Data 

5.1 Introduction 

Radiotherapy planning is a complicated and lengthy process requiring detailed 

defining of complex cancer regions (GTV as prementioned in Section 2.4) as well as 

affected cancerous lymph nodes, so that decide the PTV to guide RTP. This chapter 

will present the proposed novel 3D segmentation algorithm for abnormal lymph nodes 

(ALNs) from MRI data, which will help solve several challenges (subjectiveness  [5], 

time expense) in RTP prementioned in Chapter 2. The challenges of this work also 

include segmenting tumour as well as abnormal lymph nodes regions with fuzzy 

boundaries, irregular shapes, non-uniform intensities, and avoiding adjacent 

anatomical structures. It is essential to determine the intensity range of the target area. 

also, the size of the initialisation cube for 3D LSM can also impact the result. The 

proposed work aims to achieve 3D segmentation, quantification, and visualisation of 

ALN using knowledge-based detection followed by LSM boundary tracking, so that 

detect accurate location and extract smooth 3D volume of ALNs.  

In chapter 3, varieties of algorithms for medical image segmentation have been 

reviewed. As discussed in Chapter 3, the solution of cancer segmentation should be 

designed consider available data, computing power, and clinical purpose. Regarding 

limited numbers of labelled ALN data (introduced in Chapter 4) and the purpose of 

3D results, a conventional knowledge-based 3D segmentation algorithm is proposed 

to extract the volume of ALNs from T1-weighted Gadolinium-enhanced MRI data 

provided by Beatson West of Scotland Cancer Centre, in Glasgow.  

The rest of this chapter will be organized as following: the section 5.2 will review the 

overall pipeline of the ALN segmentation algorithm; section 5.3 will be the pre-

processing steps of input MRI data; section 5.4 will introduce the proposed 

knowledge-based detection system; section 5.5 will introduce the LSM for volume 

extraction and post-processing for surface refinement; visual results and conclusion 

will be in section 5.6 and 5.7.  
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5.2 System overview 

The high-level workflow of the proposed automatic segmentation algorithm is shown 

in Fig. 5.1.  

 

Fig. 5.1 Flow chart of automatic cancerous lymph nodes segmentation [316]. 

As shown in Fig. 5.1, the proposed ALNs segmentation algorithm consists of two 

major parts, which is detection (localization) and segmentation (volume extraction). 

As the conventional image processing methods used in the proposed algorithms 

majorly use image-level feature, a pre-processing pipeline is designed to improve 

input MRI data first before later analysis. The details from flowchart in Fig. 5.1 will be 

described in the following sections.  

5.3 Pre-processing of T1 Gd-enhanced head and neck MRI data 

As described in section 2.3, a variety of MRI artefacts occur during data acquisition 

and signal reconstruction. The artefacts in MRI data lead to difficulties for manual and 
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automatic segmentation, which includes but not limited to poor image quality, noise, 

and intensity inhomogeneity 

5.3.1 Image enhancement 

The first step for image pre-processing in our work is image enhancement. This 

contains contrast enhancement. Contrast enhancement stretches images’ histogram so 

that intensities of different tissues are more significantly different visually and 

numerically. The methods of contrast enhancement were introduced Section 3.2.1.1, 

which is histogram equalization (HE). here CE is applied on our data to improve the 

quality of images. 

As introduced in Section 3.2.1.1, the HE can change the contrast of input image 𝐼𝑖𝑛 by 

mapping its CDF of histogram 𝑐ℎ0(𝐼𝑖𝑛)  to 𝑐ℎ1(𝑇𝑐(𝐼𝑖𝑛)) , where 𝑇𝑐(𝐼𝑖𝑛)  is the 

transformed image and 𝑐ℎ1(𝑇𝑐(𝐼𝑖𝑛)) refers to the CDF of transformed histogram, the 

𝑇𝑐  can be obtained by minimize |𝑐ℎ1(𝑇𝑐(𝐼𝑖𝑛)) − 𝑐ℎ0(𝐼𝑖𝑛)|  where 𝑐ℎ0(𝐼𝑖𝑛)  and 

𝑐ℎ1(𝑇𝑐(𝐼𝑖𝑛)) are known. In addition to that, the transformation must follow several 

rules: 1) 𝑇𝑐 must be monotonic for each pixel in original image, 2) The order of the 

input intensities is maintained in the output images [52]. Also, when the HE is for 

improve contrast of image 𝐼𝑖𝑛 itself rather than make it has similar histogram with 

another image, a flat histogram (𝑐ℎ1(𝑇(𝑥))) used as the target image’s histogram. The 

flat histogram means that all the range is used, and all levels are represented by the 

same amount of pixels [125]. A visual comparison of HNC slices from one patient 

before and after HE will be given in Fig. 5.2 
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(a) 

 
(b) 

Fig. 5.2 (a) Raw MRI slices from a patient (MR10062011). (b) Contrast enhanced 

MRI slices from (a). 

In Fig. 5.2, we show slices of one patient in (a) and show contrast enhanced slices in 

(b). After contrast enhancement via HE with flat histogram as target, firstly the overall 

luminance of slices is improved; then the contrast is more significant so that the 

different tissues are more visually distinguished.  
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Fig. 5.3 displays the MRI slices and their histograms of intensity, before and after 

contrast enhancement, respectively.  

 
(a) 

 
(b) 
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(j) 

 
0.1580 

(k) 

 
0.2795 

(l) 

Fig. 5.3 Image (a)(e)(i) shows three slices of MRI data (MR10062011), (b)(f)(j) after 

contrast enhancement, (c)(g)(k) are histograms of the slices, and (d)(h)(k) histograms 

after contrast enhancement. The y axis represents numbers of pixels, the x axis 

represents the intensity value (normalized to [0,1]). The Bold number under each 

histogram is the 𝐶𝑅𝑀𝑆 describe the contrast which has been introduced in Eq. 2.2.  

 

It can be seen from Fig. 5.3 (a)(e)(i) that before the contrast enhancement the slices 

have poor luminance across all tissues. From  Fig. 5.3 (c)(g)(k) the histograms prove 

that before CE the intensity of different tissues is mostly in the lower half. Fig. 5.3 

(b)(f)(j) shows that after CE the slices get better luminance, then the histograms in Fig. 

5.3 (d)(h)(l) prove that the distribution of intensity are transformed from lower half to 

wider ranges. The given 𝐶𝑅𝑀𝑆 also quantitatively shows the improvement of contrast. 

No. of Pixels No. of Pixels 

No. of Pixels 
No. of Pixels 

No. of Pixels No. of Pixels 

Intensity Value Intensity Value 

Intensity Value Intensity Value 

Intensity Value 
Intensity Value 



91 

 

From changes of intensity distribution shown in slices, histograms, and 𝐶𝑅𝑀𝑆, the CE 

modified the contrast between tissues to make them easier to distinguish. However, 

this CE processing only works on discrete values and cumulative histogram 

distribution, it will enhance noise effect in image in some circumstances. 

5.3.2 Bias field in magnetic resonance imaging 

As introduced in Section 2.3.3.4, bias field is the background intensity not 

homogenously distributed in medical images. In this section, it specifically refers to 

that, in one single slide the same tissue in MR slices has different range of intensity 

values. The methods for bias field correction have been reviewed in Section 3.2.1.4, 

the method used in this work is from [193]. Concisely, the initial bias field is estimated 

by polynomial function with least square approximation. Then the estimated bias field 

is further refined using bicubic spline model. The parameter of spline model 

(spline/knot distance) is determined via technique in [317]. The MRI slices before and 

after bias field correction are shown in Fig. 5.4, corresponding with the estimated bias 

field. 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

Fig. 5.4 Images (a)-(d) show four raw MRI HNC slices (from MR09082010), 

(e)(f)(g)(h) after bias field correction, and (i)(j)(k)(l) are estimated bias fields. 

 

Fig. 5.4 (i-l), shows the bias fields (intensity inhomogeneity) in raw MRI HNC slices, 

the illuminance in left and right top regions inside images (Fig. 5.4 (a-d)) are more 

significant than other regions inside same images. After the correction of bias fields, 

the images (Fig. 5.4 (e-h)) have more homogenous intensity across regions in one same 

image. The bias fields are corrected by methods described in [193]. After the 

correction of bias fields, the images (Fig. 5.4 (e-h)) have more homogenous intensity 

across regions in one same image. 

5.3.3 Fourier interpolation 

After pre-processing, the quality of each raw HNC MRI slices is improved. On the 

other hand, the data we used has anisotropic voxels whose resolution are 0.47x 

0.47x3.5mm3, and here are about 4 mm distance between slices. To apply voxel-based 

3D segmentation algorithm on MRI data, the anisotropic voxels should be converted 

to isotropic voxels first, thus we could obtain reconstructed 3D MRI volume from 
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separate 2D MRI slices. As introduced in 3.2.1.6, the Fourier interpolation is 

computational economical, besides does not involve inherent blurring and distorted 

edges. This section demonstrates the Fourier interpolation (FI) of pre-processed T1 

MRI slices, the method is from [181]. Briefly, the interpolation on image domain is 

done by append zeros in the centre of spatial domain.  
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(a)  

 
(b)  

Fig. 5.5 Images (a) shows the raw HNC MRI slices and counts of slices from two 

patients (MR14012013), (b) shows interpolated slices. 
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As shown in Fig. 5.5 (a)(c), the two sets of original obtained MRI data have 9 and 8 

slices, then as shown in Fig. 5.5 (b)(d) here are more than 70 slices after interpolation, 

the interpolated slices has isotropic voxels around 0.5x0.5x0.5 mm3 and thus MRI 

volumes are built for potential 3D work. 

5.4 Knowledge based 2D detection of throat, tumour, and 

abnormal lymph nodes 

After the pre-processing module, the raw 2D MRI data is reconstructed as a 3D HN 

volume with improved image quality. The workflow is shown in  Fig. 5.1, based on the 

reconstructed 3D volume data, we proposed and implemented methods for detection 

and segmentation of throat and abnormal lymph nodes. In this section the algorithm 

of detecting abnormal lymph nodes will be introduced. Apart from pre-processing of 

HNC MRI data, this section will display the steps of throat detection, clustering of HN 

tissues, and finally the detection of abnormal LN. 

5.4.1 Throat detection using fuzzy probability map 

As prementioned, the HNC is mostly around throat region. This anatomical 

information is very helpful for clinicians to quickly find HNC among complex 

anatomical structures in HN MRI scans. Thus, motivated by this idea, our algorithm 

also takes throat region as important landmark for locating of region of interest. In this 

work, throat regions are detected using fuzzy rule based methods from [193], which 

has been mentioned in Section in 3.2. This section will remind the details of the 

detection process. 

The fuzzy rules for detection of throat region are built on intensity and spatial 

information. In terms of intensity, the throat regions have dark appearance (low 

intensity value around 0). In terms of spatial location, throat regions are mostly 

horizontally in the middle of one MRI slice, and vertically in the top half of slice.  
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Fig. 5.6 Workflow of fuzzy rule-based throat region detection from pre-processed 

MRI slice 

As shown in the workflow in Fig 5.6, firstly the dark regions which include throat 

regions are roughly picked using the  Otsu’s thresholding method [318]. Briefly, given 

an intensity threshold 𝑇 to globally categorize pixels in an image into foreground 𝐼𝑓 

and background 𝐼𝑏 , the Otsu’s method is to find a 𝑇 that maximize the inter-class 

variance between 𝐼𝑓  and 𝐼𝑏. 

Then, by defining signatures of a binary object as distances from pixels on an object’s 

boundary to object’s centre, large objects (with biggest signature over 30 based on an 

empirical setting) are removed from the top half of the image. Then, as the throat is 

located around only horizontally middle part of image, the binary objects outside 

middle area are also removed, and the middle is defined by weighted centre of image. 
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This is termed the refined binary regions BI. Finally, the fuzzy rules are horizontally 

and vertically designed and applied on BI.  

To detect throat region, first spatial fuzzy rule is that if pixels are closer to mid 

(horizontally), they have higher possibilities to be throat region. Thus, given centre 

column 𝑐𝑦, around this vertical line fuzzy rules are built as,  

𝐹𝑉𝐿 = {(𝑖, 𝑗), 𝜇𝑉𝐿(𝑖, 𝑗)}             𝑖 = 1…𝑟𝑛, 𝑗 = 1… 𝑐𝑛                     (5.1) 

with 

𝜇𝑉𝐿(𝑖, 𝑗) = 𝑓𝑉𝐿(𝑗) =

{
 
 

 
      1, |𝑐𝑦 − 𝑗| ≤ 𝑎

1 −
|(𝑐𝑦 − 𝑗) − 𝑎|

𝑏 − 𝑎
, |𝑐𝑦 − 𝑗| > 𝑎𝛿𝛿|𝑐𝑦 − 𝑗| ≤ 𝑏

   0,       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(5.2) 

 

where 𝑟𝑛 represents number of rows, 𝑐𝑛 represents number of columns, 𝑎 and 𝑏 are 

parameters we empirically set to 5 and 20 respectively in practice. The Eq. (5.2) 

indicates that throat is highest likely in the region (with ±𝑎 columns at sides) around 

centre column  𝑐𝑦, and not likely in the region two far away from 𝑐𝑦 (further than ±𝑏 

columns at two sides).  The pixels close (less than 𝑎) to 𝑐𝑦  has highest membership 

value 1; then the membership values of pixels are decreasing by the distance (between 

a and b) from pixels to 𝑐𝑦 ; if distances between pixels and 𝑐𝑦  are over b, the 

membership values will be zero. 

Another spatial fuzzy rule is that, if some pixels are closer to first row, they are more 

likely to be in throat region. Thus, the second rule can be described as: 

𝐹𝐻 = {(𝑖, 𝑗), 𝜇𝐻(𝑖, 𝑗)}        𝑖 = 1… 𝑟𝑛, 𝑗 = 1… 𝑐𝑛  (5.3) 

with  

𝜇ℎ(𝑖, 𝑗) =  𝑓𝐻(𝑖) =  {

1,        𝑖 == 𝑐
|𝑑 − 𝑖|

|𝑑 − 𝑐|
, 𝑖 > 𝑐𝛿𝛿𝑖 ≤ 𝑑

           0,             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(5.4) 



98 

 

where c is the first nonzero row of BI, and membership values are set to 1 for those 

pixels at row c, and then keep decreasing from row c to row d until 0. Here d is set as 

𝑟𝑛. 

Two fuzzy rules are combined by ‘min’ operator, so that only regions have high 

membership value in horizontal and vertical rules are selected, the combination given 

as, 

𝐹𝑉𝐿𝐻 = 𝐹𝑉𝐿 ∩ 𝐹𝐻 (5.5) 

𝜇𝐹𝑉𝐿𝐻 = min(𝑤1 ∗ 𝜇𝑉𝐿(𝑖, 𝑗), (1 − 𝑤1) ∗ 𝜇𝐻(𝑖, 𝑗)) (5.6) 

    𝑖 = 1…𝑟𝑛, 𝑗 = 1… 𝑐𝑛 

where w1 and w2 controls the importance of horizontal and vertical fuzzy rules. And 

they are set as 0.3 and 0.7 in this work. So finally, candidate pixels for the throat region 

in BI are detected as,  

𝐹𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡= FVLH ∩ BI (5.7) 

with  

𝜇𝐹𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑖, 𝑗) = min (𝜇𝑉𝐿𝐻(𝑖, 𝑗), 𝐵𝐼(𝑖, 𝑗)) (5.8) 

𝑖 = 1…𝑟𝑛, 𝑗 =  1… 𝑐𝑛 

 

𝐹𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 gives the rules of throat detection, and so that pixels in BI will be assigned 

membership values which represent their possibilities of locating in throat region. The 

detection will be region-wised rather than pixel-wised, so that inside each region, 

pixels’ membership values are taken max operation so that a value is obtained to 

represent the possibility of a region to be throat. 
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(a) 

 
(b) 

 
(c) 

  
(d) (e) 

Fig. 5.7 (a)(b) shows an original and pre-processed MRI slice (from MR28082014), 

(c) is the selected binary image BI, (d) is the possibilities of each region in BI to be 

throat region, and (e) shows the detected throat region on slice which is marked as 

red. 

Fig. 5.7 shows the  workflow in Fig. 5.6 is applied on an MRI slice, throat region of 

an MRI slice Fig. 5.7 (a) is detected and shown in Fig. 5.7 (d). 

The throat detection and segmentation yield 0.87 mean Dice score, with minimum of 

0.81 and maximum of 0.94, which makes it reliable for further usage [55, 181]. More 

examples of the throat detection are given in Fig. 5.8 
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Fig. 5.8 Throat detection examples. (a-d) Input MRI slices (MR09112012, 

MR19062012, MR27082012 MR09082010) (e-h) Input MRI slices with detected 

throats marked with red. 

5.4.2 Modified fuzzy c-mean head and neck tissue classification 

As described in Section 2.2.2, the head and neck tissues can be classified into four 

categories: fatty tissues, cancer tissues, normal tissue, and normal muscle tissue. This 

section introduces the application of modified fuzzy c-mean (MFCM) on HNC MRI 

data for rough tumour detection. As T1 MRI data is grayscale, a standard fuzzy c-

mean can define an objective function based on pixels’ intensity value, then each pixel 

will be assigned a membership value and updated along with the optimization of 

objective function. The objective function is given as, 

𝐽𝑇 = ∑∑𝜇
𝑖𝑘

𝑚𝑓

𝑁

𝑘=1

𝑁𝑐

𝑖=1

𝑑2(𝑣𝑖, 𝐼𝑘) 

(5.9) 

where 𝑣𝑖 is the cluster centre of centre of cluster 𝑖, and 𝑁𝑐 represents total numbers of 

clusters.𝐼𝑘  represents the intensity of 𝑘𝑡ℎ  pixel in image 𝐼. Then, 𝜇𝑖𝑘 ∈ [0,1] is the 

membership degree of 𝑘𝑡ℎ pixel belonging to 𝑖𝑡ℎ cluster. The value 𝑚𝑓 (larger than 1, 

which is 2 in this work) controls the fuzziness of membership function 𝜇
𝑖𝑘

𝑚𝑓  𝑑2(𝑣𝑖, 𝐼𝑘), 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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(g) 

 
(h) 
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which is calculated as the Euclidean distance from value of cluster centre 𝑣𝑖 to pixel 

intensity 𝐼𝑘. The membership functions are constrained by following rules: 

∑𝜇𝑖𝑘 > 0 ∀𝑖 ∈ {1,… ,𝑁𝑐};

𝑁

𝑘=1

∑𝜇𝑖𝑘 = 1 

𝑁𝑐

𝑖=1

∀𝑘 ∈ {1,… ,𝑁} 

(5.10) 

Then based on the throat information we have acquired in last step, a spatial 

membership function can be added into objective function for modification, given 

Euclidean distance of between pixels in a region to throat centre as,  

𝑑𝑠
2(𝑖, 𝑗) =  ∑∑((𝑖 − 𝑡𝑟)

2 + (𝑗 − 𝑡𝑐
2))

𝑟𝑛

𝑖=1

𝑐𝑛

𝑗=1

 

(5.11) 

where 𝑖 is 𝑖𝑡ℎ  row out of 𝑟𝑛 rows, and 𝑗 is 𝑗𝑡ℎ  column out of 𝑐𝑛  columns, 𝑡𝑟  and 𝑡𝑐 

represents the row number and column number of throat centre. Then 𝑑𝑠
2(𝑖, 𝑗) of all 

pixels are normalized and so that a spatial-based feature vector is constructed for 

clustering. Then, the spatial membership function is, 

In Eq. (5.12) 𝑖 represents the 𝑖𝑡ℎ  cluster out of C clusters, and 𝑘 represents spatial 

feature of the 𝑘𝑡ℎ  pixel in image. Then, 𝜇𝑖𝑘
𝑚𝑑𝑠

2(𝑖, 𝑘)  is calculated as the sum of 

Euclidean distances between pixels’ spatial feature to cluster centres. 𝐽𝑆  is also 

constrained by (5.10). Which means after clustering, no cluster will be empty, and 

membership value of a pixel to all clusters will be summed as 1. Finally, the objective 

function of the modified fuzzy c-mean is, 

𝐽𝑆𝑇 =   ∑∑𝜇
𝑖𝑘

𝑚𝑓

𝑁

𝑘=1

𝑁𝑐

𝑖=1

𝑑𝑠
2(𝑣𝑖, 𝐼𝑘) + ∑∑𝜇

𝑖𝑘

𝑚𝑓

𝑁

𝑘=1

𝑁𝑐

𝑖=1

𝑑𝑠
2(𝑖, 𝑘) 

(5.13) 

The pixels are clustered by minimizing the objective function in Eq. (5.13). The 

optimization is by iteratively updating membership function 𝜇𝑖𝑘 and cluster centres 𝑣𝑖 

as follows: 

𝐽𝑆 = ∑∑𝜇
𝑖𝑘

𝑚𝑓

𝑁

𝑘=1

𝑁𝑐

𝑖=1

𝑑𝑠
2(𝑖, 𝑘) 

 (5.12) 



102 

 

𝜇𝑖𝑘 =
(𝑑(𝑣𝑖,𝐼𝑘)+𝑑𝑠(𝑖,𝑘))

−2/(𝑚𝑓−1)

∑ (𝑑(𝑣𝑖,𝐼𝑘)+𝑑𝑠(𝑖,𝑘))
−2/(𝑚𝑓−1)𝑁𝑐

𝑗=1

 and 𝑣𝑖 =
∑ 𝜇

𝑖𝑘

𝑚𝑓
𝐼𝑘

𝑁
𝑘=1

∑ 𝜇
𝑖𝑘

𝑚𝑓𝑁
𝑘=1

 
(5.14) 

through the MFCM, the pre-processed MRI images will be divided into five classes 

as shown,  

 

Fig. 5.9 Modified fuzzy c-mean clusters pixels in an MRI slice (first slice of 

MR28082014) into five categories, left top image show the slice, and rest five 

images show five clusters with their cluster centres (mean intensity value of each 

cluster, in this case around 235, 190, 156, 119, and 81 in the range of [0, 255]). 

 

As shown in Fig. 5.9, low intensity regions such as throat and bones are clustered into 

the same class with lowest cluster centre (Fig. 5.9 (f)), and high intensity regions such 

as Edema and body fat are clustered into another same class with highest cluster centre 

(Fig. 5.9 (b)). The tumours and Edema are mostly distributed in clusters with first and 

second highest cluster centre, these two clusters will be taken as ROI for further 

processing. Thus, classification of head and neck tissues are done, this step helps us 

obtain rough ROI and get rid of non-related regions for HNC segmentation. The next 

section will introduce the further operations of segmentation. 
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5.4.3 Knowledge-based identification of abnormal lymph nodes in 2D 

MRI slice 

After the previous MFCM, we obtain an image with rough binary ROI (denoted as 

𝐼𝐵 =  {𝑅𝑖 | 𝑖 =  1, … ,𝑁}) where the tumour and abnormal lymph nodes exist. In 

order to get accurate segmentation, more refinements required for identifying location 

of tumour and abnormal lymph nodes. This section will introduce the knowledge-

based method for refinement of rough ROI, the knowledges are from clinical experts’ 

experience, which includes some general rules about localization of HNC cancer in 

medical scans. 

This section we will also present the new localization method of abnormal lymph 

nodes.  Considering the intensity distribution, ALNs have similar or higher intensity 

values compared to tumours. Based on the classification from Fig 5.9, the pixels of 

ALNs belong to clusters of pixels with first and second highest cluster centres in 

intensity values. So, firstly, related clusters are merged as shown in following Fig. 

5.10, 

 

 

 

 

 

 



104 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.10 (a) are clustered regions with highest centre (out of 5), (b) are regions with 

second highest centre, (c) are (a) and (b) merged (d) is the original image used for 

clustering (MR28082014). 

where Fig. 5.10 (a) are regions with highest clustering centre (intensity value around 

235, also shown in Fig. 5.9 (b)), Fig. 5.10 (b) are regions with second highest 

clustering centre (intensity value around 190, also shown in Fig. 5.9 (c)), and Fig. 5.10 

(c) are merged from Fig. 5.10  (a) and Fig. 5.10  (b). The merging is finished by bitwise 

OR operation. 

Based on the selected regions in Fig. 5.10 (c), we propose a knowledge-based 

probability map for region refinements and ALN detection. The map is given as, 

𝑊 =  𝛼𝑊𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 +  𝛽𝑊𝑠𝑖𝑧𝑒 + 𝜃𝑊𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 (5.15) 
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where W is the probability map for ALN detection, ALNs will have highest W values 

in this map. The map comprises 𝑊𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (probability deduced by region location), 

𝑊𝑠𝑖𝑧𝑒 (probability deduced by region size), and 𝑊𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 (probability deduced by 

eccentricity, i.e., shapes). Parameters  𝛼, 𝛽, and 𝜃 control the weights between each 

probability, and they fit the condition that 𝛼 + 𝛽 + 𝜃 = 1. 

The value of  𝑊𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is set according to the prior knowledge that the head and neck 

lymph nodes are located at two sides of the throat region but not closely adjacent to 

the throat. The construction of 𝑊𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 maybe written as: 

 

𝑊𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑤𝑐 ∩ 𝑤𝑟 (5.16) 

𝑤𝑐  =  

{
  
 

  
 

                  0,                               |𝐶𝑛 − 𝑦| < 𝑎

|𝐶𝑛 − 𝑦 − 𝑎|

|𝑎 − 𝑏|
,                    𝑎 < |𝐶𝑛 − 𝑦| < 𝑏

1 −
|𝐶𝑛 − 𝑦 − 𝑏|

|𝑐 − 𝑏|
,               𝑏 < |𝐶𝑛 − 𝑦| < 𝑐

0,                               𝑒𝑙𝑠𝑒

            

 

(5.17) 

𝑤𝑟 = 

{
 
 

 
 1 − 𝑚

𝑅𝑛 − 𝑥

𝑔
,               |𝑅𝑛 − 𝑥| < 𝑔

(1 − 𝑚) −
|𝑅𝑛 − 𝑥 − 𝑔|

|ℎ − 𝑔|
,      𝑔 < |𝑅𝑛 − 𝑥| < ℎ

0,                          𝑒𝑙𝑠𝑒

 

 

(5.18) 

where 𝑅𝑛 and 𝐶𝑛 are row and column coordinates of pixels in probability map. The 

𝑊𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛  consists of spatial information from columns (𝑤𝑐 ) and rows (𝑤𝑟 ). The 

parameters x and y are coordinates of the throat centre (shown in Fig. 5.7 (d)). 

Intersection symbol in Eq. (5.16) denotes fuzzy AND operator. Parameters 𝑎 − 𝑐, 𝑔 

and ℎ  are adaptive thresholds based on distance away from throat centre. The 

parameter 𝑚 is a control coefficient which ranges from 0 to 1. Two examples of the 

probability maps are given as,  
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(a) (b) 

Fig. 5.11 Probability maps with spatial thresholds. Red lines with texts show the 

horizontal thresholds a-c, and blue lines with texts show the vertical thresholds g-h. 

Red regions in (a) (b) indicates the throat regions. Here only display one side of a-h 

on single slice, a-h are symmetry on the other side of same slice [319]. 

 

As shown in Fig. 5.11, the spatial thresholds 𝑎 − ℎ define the slices into several sub-

areas, and in sub-areas the probabilities of existence of ALNs are given in Eq. 5.19. 

The values of 𝑎 − ℎ,𝑚 are adaptively set based on throat region’s size. For example, 

if on an MRI slice the throat height is less than 0.1 of image height, a will be set as 0.8 

of throat height; of throat height is over 0.2 of image height, a will be set as 0.5 of 

throat height. The selected empirical setting is given as, 
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𝑎 =  { 

𝑐𝑡_𝑥 ±  0.8 ∗ 𝑤𝑡, 𝑖𝑓 𝑤𝑡 ∈ [0,0.1 ∗ 𝑐𝑛) 

𝑐𝑡_𝑥 ± 0.6 ∗ 𝑤𝑡,   𝑖𝑓 𝑤𝑡 ∈ [0.1 ∗ 𝑐𝑛, 0.2 ∗ 𝑐𝑛)

𝑐𝑡_𝑥 ± 0.5 ∗ 𝑤𝑡, 𝑖𝑓 𝑤𝑡 ∈ [0.2 ∗ 𝑐𝑛, 𝑐𝑛)
 

 

𝑏 =  {

𝑐𝑡𝑥 ± 1.5 ∗ 𝑤𝑡, 𝑖𝑓 𝑤𝑡 ∈ [0,0.1 ∗ 𝑐𝑛)  

𝑐𝑡_𝑥 ± 1.5 ∗ 𝑤𝑡, 𝑖𝑓 𝑤𝑡 ∈ [0.1 ∗ 𝑐𝑛, 0.2 ∗ 𝑐𝑛) 

𝑐𝑡𝑡_𝑥 ± 1.5 ∗ 𝑤𝑡,             𝑖𝑓 𝑤𝑡 ∈ [0.2 ∗ 𝑐𝑛, 𝑐𝑛)
 

 

𝑐 = {

0.6 ∗ 𝑤𝑡 ∥   𝑐𝑛 −  0.6 ∗ 𝑤𝑡, 𝑖𝑓 𝑤𝑡 ∈ [0,0.1 ∗ 𝑐𝑛)   
0.4 ∗ 𝑤𝑡 ∥   𝑐𝑛 −  0.4 ∗ 𝑤𝑡, 𝑖𝑓 𝑤𝑡 ∈ [0.1 ∗ 𝑐𝑛, 0.2 ∗ 𝑐𝑛)
0.3 ∗ 𝑤𝑡 ∥   𝑐𝑛 −  0.3 ∗ 𝑤𝑡, 𝑖𝑓 𝑤𝑡 ∈ [0.2 ∗ 𝑐𝑛, 𝑐𝑛)

 

(5.19) 

𝑔 =  {

𝑐𝑡_𝑦 ± 0.8 ∗ ℎ𝑡 , 𝑖𝑓 ℎ𝑡 ∈ [0, 0.1 ∗ 𝑟𝑛)

𝑐𝑡_𝑦 ± 0.6 ∗ ℎ𝑡,     𝑖𝑓 ℎ𝑡 ∈ [0.1 ∗ 𝑟𝑛, 0.2 ∗ 𝑟𝑛)

𝑐𝑡_𝑦 ± 0.4 ∗ ℎ𝑡,                𝑖𝑓 ℎ𝑡 ∈ [0.2 ∗ 𝑟𝑛, 𝑟𝑛)

 

 

ℎ = 𝑐𝑡_𝑦 ± 0.4 ∗ 𝑟𝑛  

where 𝑐𝑛 and 𝑟𝑛 represent total number of columns and rows of an MRI slice, 𝑐𝑡_𝑥 and 

𝑐𝑡_𝑦 represents centre x and y coordinates of detected throat region on this slice, and 

𝑤𝑡 and ℎ𝑡 are width and height of throat region. The throat region’s height and width 

compared to an entire scan can be seen as a marker of the pattern, such as the scan is 

from near throat, or near tongue base. The ALNs have different spatial relationships 

to throat in these different patterns. 

The second component 𝑊𝑠𝑖𝑧𝑒 is accurately decreasing the probability value obtained 

by large object/regions in detection. If a candidate region/object is not ALN but very 

large, it can accumulate large probabilities when it is overlapped with probability map 

𝑤𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 only. Here a probability map component is given as, 

𝑤𝑠𝑖𝑧𝑒 = ∑
1

√(𝑥𝑖 − 𝑥𝑐) + (𝑦𝑖 − 𝑦𝑐) + 𝑒𝑝𝑠

𝑛

𝑖=1

 
(5.20) 

where (𝑥𝑖, 𝑦𝑖) is location of 𝑖𝑡ℎ  point in a binary region 𝑅𝑖 , (𝑥𝑐, 𝑦𝑐) are location of 

centre point of 𝑅𝑖 and 𝑒𝑝𝑠 is a small positive number (e.g., machine epsilon) to ensure 

non-division by zero. This makes 𝑅𝑖’s 𝑤𝑠𝑖𝑧𝑒 mostly depend on its centre point, and 

points away from centre of Ri will have smaller 𝑤𝑠𝑖𝑧𝑒. In this way, large false positives 

will be less likely occurred in the detection process. 
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The Eccentricity is calculated as, 

𝑊𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = 
𝐶𝑒
𝐴𝑒

 
(5.21) 

where 𝐶𝑒 is the distance from the region centre to the focus along the major axis of 

ellipse, and 𝐴𝑒 is the length of major axis. If 𝑅𝑖  has 𝑊𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 close to 0, it is likely 

to be a circle; if it is close to 1, the region is likely to be elongated.  

The Construction of probability map from Eq. (5.15) to Eq. (5.21) are also shown in 

Fig. 5.12.  

 

Fig. 5.12 Construction of Probability map. (a) Input MRI slice (MR28082014) (b) 

Rough ROIs on IB (c) Probability map distribution deduced from 𝑊𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (d) 

Probability map distribution deduced from 𝑊𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (e) Probability map distribution 

deduced from 𝑊𝑠𝑖𝑧𝑒 (f) Probability map distribution deduced from 𝑊𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 (f) 

Final probability map combines all factors. The colour bar on right side of each map 

represents the probability values. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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In Fig. 5.12, the construction of probability map for an input MRI slice (Fig. 5.12 (a)) 

is demonstrated. Given the rough ROI image IB (Fig. 5.12 (b)), probability map W for 

detection of ALN is built according to 𝑊𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (Fig. 5.12 (c)), 𝑊𝑠𝑖𝑧𝑒  (Fig. 5.12 (d)), 

and𝑊𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 (Fig. 5.12 (e)). 

Then, the detection of ALNs is done by accumulating the probability values inside 

each candidate ROI in IB, and results can be gained as indicated in Fig. 5.13. 

 

Fig. 5.13 Detection of abnormal lymph nodes using probability map W. (a) An 

original MRI slice (MR28082014). (b) Rough ROIs in IB. (c) Map W applied on IB. 

(d) Binary regions in IB with detected ALN (marked with red point). 

As shown in Fig. 5.13 (c), the probability map W gives probability values to each point 

of ROIs. By accumulating the probabilities of each ROI, a region who has the highest 

sum probabilities should be the target ALN, which is marked red in Fig. 5.13 (d).  

 

(a) 

 

(b) 

 

(c) 
 

(d) 
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5.4.4 3D localization of ALNs from 2D detections  

The detection of ALNs is applied on single MRI slice. This section will introduce 

further localization for 3D detection and segmentation. An algorithm is proposed to 

remove false positives from 2D detection, so that keep reliable 2D detection 

considering the inter-slice information. From these remained multiple 2D detections, 

3D coordinates of ALN can be calculated. This algorithm is illustrated in Fig. 5.14. 

 

 

 

 

 

 

 

 

 

Fig. 5.14 Workflow for grouping 2D detections 

As shown in Fig. 5.14, firstly the 2D detections ((Fig. 5.13 (d))) are sorted based on 

their radii 𝑅𝑎𝑑 . Then, the region with largest radii 𝑅𝑎𝑑𝑖  and centre (𝑋𝑐_𝑖, 𝑌𝑐_𝑖) is 

selected; other regions whose centres is inside (𝑋𝑐_𝑖 + 𝑅𝑎𝑑𝑖𝑐𝑜𝑠𝜃, 𝑌𝑐_𝑖 + 𝑅𝑎𝑑𝑖𝑠𝑖𝑛𝜃) 

are assigned to the same group i. Then process is repeated on the rest of regions (i.e., 

ungrouped regions), until all regions are grouped. The sorting and searching are 

performed slice by slice. By completing this process, all 2D detections are clustered 

into groups. Group Gi with majority of 𝑁 regions R is kept, and regions in other groups 

are discarded. And The lymph node centre can be calculated by taking the average of 

the regions’ coordinates in the persevered group. Thus, 2D ALN detections are refined 

and located in 3D space. The calculation of horizontal centre of ALN is described as, 

𝐶𝑔_𝑖 =   𝑚𝑒𝑎𝑛(∑(𝐶𝑗(𝑥), 𝐶𝑗(𝑦))

𝑁

𝑗=1

) 

(5.22) 

 

Find largest region with radius 

Rardi 

and centre (Xi, Yi) Other regions whose centres inside (Xi+ Radicosθ, Yi+ 

Radisinθ) are put into group i 

All regions are grouped  

Yes 
End 

No 

Ungrouped regions 



111 

 

where, 

𝐶𝑗 ∈ 𝐺𝑖 , 𝑗 = 1…… .𝑁 

 

 

An example of the 3D localization is shown in Fig. 5.15. 

 

Fig. 5.15 Two examples of grouping of 2D detections. (a)(d) All 2D ALNs (red 

parts) detections shown in 3D space. (b)(e) Refined (grouped) 2D ALNs (c)(f) 

Located position of ALN (red part) in interpolated 3D space. 

  

(a) (d) 

  

(b) (e) 

  

(c) (f) 
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In Fig. 5.15 (a) the 2D detections are displayed in 3D axis, and among them false 

detections are existed. Through the majority voting grouping process in Fig. 5.15, the 

false detections are eliminated, thus the correct 2D detections of ALN are determined 

as shown in Fig. 5.15 (b). Then an initial seed (Fig. 5.15 (c)) for 3D LSM is built based 

on 2D ALNs. The horizontal centre of this seed is from average of centres of 2D ALNs, 

and the height of this seed equals to the height of interpolated MRI volume.  

After the refinement of 2D detections (Fig. 5.15 (a)), a 3D location (Fig. 5.15 (b)) of 

ALN volume is obtained for starting a segmentation process.  

5.5 Automatic lymph nodes contouring using active contours 

5.5.1 Automatic definition of 3D LSM function  

Taking the previously determined 3D location of ALN, this section will use 3D LSM 

to segment 3D volume of ALN. As introduced in Chapter 3, the LSM function required 

several settings to evolve, generally including start seed, speed function, and stop 

criterion.  

The start seed has been given in last section and shown in Fig. 5.15 (b). The start seed 

is a 3D cube. The cube’s horizontal centre is calculated from Eq. (5.22), its length and 

width are 5% of length and width of entire MRI volume, and its height equals to MRI 

volume’s height. This setting ensure that the cube (start seed) is horizontally small 

enough to be inside the target (ALN), and vertically go through the MRI volume to 

ensure all slices be considered for 3D reconstruction. 

In this work, the speed function F is from [320], 

𝐹 =  𝜆(𝜀𝐿𝑁 − |𝐼(𝑥, 𝑦, 𝑧) − 𝜇𝐿𝑁|) + (1 − 𝜆)∇.
∇∅

|∇∅|
 

= 𝐹𝑒𝑥𝑡 + 𝐹𝑖𝑛𝑡 

 

(5.23) 

 

where ∇.
∇∅

|∇∅|
 is the average curvature of evolving curve; 𝜇𝐿𝑁  is mean intensity of 

detected lymph nodes regions;𝜀𝐿𝑁 is standard deviation of all pixels inside the detected 

lymph nodes region, and 𝜆 is a weighting factor 0< 𝜆 < 1. The right-hand side of    Eq. 
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(5.23) comprises and external force 𝐹𝑒𝑥𝑡 which drives the curve to the boundary and 

an internal force 𝐹𝑖𝑛𝑡 that keeps segmentation result smooth. This level set function is 

based on intensities of pixels, and curvature of evolving curve. 

Here the defined evolution of level set function will stop in two cases: first, after it 

evolves more than certain times; or second, the changes of curve are smaller than 

certain numbers of voxels. 
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Fig. 5.16 The evolution of LS function in MRI volume. (a)(e)(i) are three 

interpolated MRI slices at top, middle and bottom of same MRI volume 

(MR28082014). (b-d) are sliced volume ALN segmentation of top position changed 

following iterations. (f-h) at middle, and (j-l) at bottom. (m) is MRI slice from other 

interpolated MRI volume (MR14012013), (n-p) show their evolution.  

 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

    

(i) (j) (k) (l) 

    

(m) (n) (o) (p) 
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Fig. 5.17  (a-d) Evolution from initial seed to final 3D volume of ALN from 

MR09082010. (e-h) Another example (MR11062013) of this process. 

 

As shown in  

 
(a) 

 
(e) 

 
(b) 

 
(f) 

 
(c) 

 
(g) 

 
(d) 

 
(h) 
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Fig. 5.17 (a-d) and (e-i), the 3D start seed evolves by iterations in 3D space, and finally 

got a volume for 3D ALN. From the left to right perspective in Fig. 5.16 (a-l), the 3D 

ALN volume is evolving in horizontal direction; and from top to bottom perspective, 

the 3D volume is also evolving vertically. Thus, it shows that the defined LSM 

function has ability to track boundary and surface of 3D object in MRI volume, so that 

with good detection as start seed, 3D volume of ALN is segmented. 

 
(a) 

 
(e) 

 
(b) 

 
(f) 

 
(c) 

 
(g) 

 
(d) 

 
(h) 
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5.5.2 Post processing of extracted 3D ALN volume 

The post processing steps are necessary in this work due to two main reasons: 1) As 

introduced in chapter 3, the level set method based curve evolution may have boundary 

leakage at weak boundaries, where intensity changes (gradient) are subtle; 2) In HN 

MRI data, there are still some tissues having similar intensities with ALN (as shown 

in Fig. 5.10 (c)), such as tumours, body fat, and salivary glands. So, this section will 

introduce the morphological operation as post processing for refining 3D volume 

obtained by 3D LSM. 

We design a post processing procedure with several steps. Firstly, a 3D erosion 

operation (with a sphere structure element of radius in 8 pixels) separates the obtained 

3D ALN ( 

 
(a) 

 
(e) 

 
(b) 

 
(f) 

 
(c) 

 
(g) 
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Fig. 5.17 (d)(i)) into smaller objects, which means some narrow connections are cut; 

then, all separated 3D objects are sorted and only the largest one is kept. Finally, a 

dilation operation (a same sphere structure element of radius in 8 pixels) is applied on 

the kept object, so that its volume is recovered to the size before erosion, and at the 

same time all neighbour small objects are removed. 

 

 

 

 

 

 

 
(a) 

 
(b) 

 
(d) 

 
(h) 
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(c) 

 
(d) 

 
(e) 

Fig. 5.18 Post processing of 3D LSM segmentation of MR14012013. (a) ALN 

volume obtained by 3D LSM (Red), (b) Circular 3D structure element used (radius is 

8 pixels), (c) Erosion applied, (d) Only largest object preserved, (e) Dilation applied, 

final segmentation obtained. 

As introduced in Section 3.2.1.3, the morphological operations are capable to 

topologically separate 2D connected objects or merge discrete objects. When extended 

to 3D, Fig. 5.18 (c) shows that 3D erosion breaks weak connections inside 3D objects 

so that separates them. Then, we pick the largest object among separated objects (Fig. 

5.18 (d)), so that the major component of 3D LSM is preserved, and leakage parts of 

LSM evolution are eliminated. Finally, a 3D dilation is applied on preserved part, so 

that the size of this part is recovered (Fig. 5.18 (e)). The recovered 3D object is the 

final 3D segmentation result of ALNs in HN MRI data. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Fig. 5.19 The improvement of post processing of LSM segmentation. (a)(d)(g) are 

three HN MRI slices at top, middle, bottom position of MRI volume (all from 

MR28082014), (b)(e)(h) are sliced LSM segmentation output. (c)(f)(i) are 

segmentations after post processing. 

 

Fig. 5.19 gives the 2D view of the post processing. In 2D perspective, (e)(h) are hard 

to be distinguished which part is the main target for segmentation. But they are well 

solved by 3D post processing, and a 2D as well as 3D topologically complete ALN is 

segmented. 
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5.6 Results 

To quantitatively measure the segmentation results, we use previously introduced 

metrics called Dice similarity coefficient and F-measure to validate our algorithm. As 

prementioned in Chapter 4, the validation was on HN datasets provided by Beatson, 

West Scotland Centre, and on the datasets the gold standard ground truth contours of 

abnormal lymph nodes are delineated by clinicians from Beatson. The DSC and F-

measure are calculated by comparing algorithm output with manual segmentation. 

 

 

 

 

 

 

 

 

 

 

 
(a) 
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(b) 

Fig. 5.20 ALN segmentation validation (a)Dice similarity coefficient on 5 head and 

neck MRI datasets, (b) F-measure on 5 head and neck MRI datasets. Both in order: 

MR30502012, MR17102013, MR14012013, MR10062013, MR09082010 

 

Fig. 5.20 shows the DSC and F-measure plots of segmentation results. The mean DSC 

through 5 datasets is 70%. The average false negative rate is 0.0025, and the average 

false positive rate is 0.2023. Based on the FN and FP rate, the fuzzy boundaries of 

ALNs are likely to lead to over estimation in the LSM segmentation. On the other side, 

the start and end (vertically) of ALNs are smaller than middle (vertically) part of ALNs, 

which make them hard to be found (both in localization and delineation) on those 

slices and might lead to lower Dice score there. The proposed majority voting 

algorithm of 2D detections (Fig. 5.14) can compensate information from high 

confidence detections (such as large significant ALNs) to low confidence detections 

(such as small ALNs at two ends), so that help the localisation. The average F-measure 

is 0.7. All datasets have above 60% DSC, the highest can reach 90%, and the lowest 

is around 60%.  
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(a) (b) (c) (e) 

    
(f) (g) (h) (i) 

    
(j) (k) (l) (m) 

Fig. 5.21 Visualisation of segmentation results. (e)(i)(m) are 3D volume of 3D 

ALNs. Each row in (a-c) (MR30052012), (f-h) (MR14012013), (j-l) (MR10062013) 

red contours are 2D sliced 3D output at top, middle and bottom of MRI volume, 

yellow contours are corresponding gold standard contours. 

 

The algorithm was implemented with Matlab on 16G RAM Desktop. Each dataset has 

8-10 MRI slices; the average processing time of proposed algorithm on each data set 

is 250 seconds, and time cost on each slice is seconds. 

5.7 Conclusion 

This chapter presented a new algorithm for 3D automatic detection and segmentation 

of abnormal lymph nodes in head and neck MRI data. The results show that the 
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proposed algorithm can yield 70 % Dice score, which is comparable to manual 

segmentation. 

The proposed algorithm is based on knowledge-based localisation and intensity-based 

level set method segmentation. There are several advantages of this method. The 

whole process is automatic, which can greatly reduce user’s workload. The result of 

segmentation is a 3D model, which can help clinicians visualise and quantify 3D 

volume from 2D scans. Each step in the proposed algorithm is interpretable, which 

makes it explainable for clinicians to make final treatment plan so that avoid bad cases 

created by computer algorithm. Furthermore, it enables clinicians to participate in 

some steps of the algorithm to get create certain modifications.  The algorithm does 

not require supervised training, so that it can works on small amount of data, wherein 

the data acquisition and labelling is always a major difficulty in medical image 

processing area. The hardware requirement is not significant as no GPU is required 

for this method. 

There are certain drawbacks with the proposed algorithm. As this method is a chain of 

many steps, there are many parameters that need to be set. The segmentation is 

currently only on the most obvious ALN and does not capture all ALNs in the MRI 

volume. The ALN has relevant regular shape and appearance, however head and neck 

tumours can be arbitrary shape and has more complicate texture.  

In the next chapter we will introduce the modified algorithm which can be used to 

automatically delineate the tongue base and throat tumours. 
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Chapter 6 Novel 3D Segmentation Methods for head 

and neck tumours from MRI Data 

6.1 Introduction 

The last chapter presented the 3D detection and segmentation of abnormal lymph 

nodes in head and neck. Similar to abnormal lymph nodes, the larynx and pharynx 

tumours are also around the throat, which can be roughly located using throat as 

landmark. Compared to the abnormal lymph nodes, the larynx and pharynx tumours 

can have arbitrary shapes, fuzzy boundaries, and complex textures, which cause 

additional challenges for effective segmentation. 

 
(a) 

 
(b) 

Figure 6.1 Two example MRI slices with tumour drawn by yellow contours. (a) from 

MR10062011, (b) from MR27082012. In Both slices, the tumour areas have non-

uniform intensity. Shape of two tumours varies. In (b) it can be seen that the bottom 

and top part of tumour boundaries are fuzzy. 

 This chapter will present the novel algorithm for 3D segmentation of head and neck 

tumours from MRI data, which includes a further improved knowledge-based 

detection procedure, and a spatial-weighted level set function. 
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Fig. 6.2 Workflow of proposed 3D automatic segmentation of head and neck cancer 

from MRI data 

 

The steps of the proposed 3D auto-segmentation framework are shown in Fig 6.2, the 

rest sections of this chapter will be organised as, 1) pre-processing of MRI data for 

HNC segmentation, 2) locating of HNC position, 3) segmentation of HNC using 

modified LSM. 

6.2 Pre-processing of MRI data for 3D auto-segmentation of 

HNC 

Similar to the method described in Section 5.3, the raw MRI data needs to be pre-

processed (shown in Fig. 6.2) before applying detection and segmentation steps. The 

pre-processing steps follow the same workflow as the 3D segmentation of abnormal 

lymph nodes. Firstly, the raw MR images’ contrast are enhanced by adjusting the 

histograms. Then, the background noise is removed by chains of morphological 
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operations. The intensity inhomogeneity in each slice is removed by method 

introduced in [193], which has been mentioned in Section 5.3.2. 

Before the pre-processed images are interpolated into 3D volume for 3D segmentation, 

one more pre-processing is introduced for the purpose of reducing inter-slice intensity 

variations. As aforementioned in Section 2.3.5, the inter-slice intensity variations 

means that in a series of MRI slices, the same tissue has different intensity ranges 

across all slices. To improve 3D segmentation of HNC, the slices’ histograms of a 

patient are standardised before interpolation and the subsequent segmentation steps.  

In this work, the standardisation of the histogram is achieved by mapping histograms 

of all slices to central slice, so that to ensure same types of tissues in each slice have 

similar range of intensities. The mapping is using histogram equalisation (HE) [124], 

which has been introduced in Section 5.3.1, where it is used for contrast enhancement 

with a flat histogram as target of mapping. To standardise the histogram, the HE is 

using HE with histogram of reference (central slice) image as target of mapping.   The 

typical result of the HE processes is illustrated as Fig. 6.3. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Fig. 6.3 Intensity standardisation by histogram equalization. (a) (from MR14012013) 

(g) (from MR09112012) are reference MRI slices and (d)(j) are their histograms. 

(b)(h) are pre-processed MRI slices and (e)(k) are their histograms. (c)(i) are 

intensity standardized version of (b)(h) and (f)(l) are equalised histograms.  
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 Fig. 6.3 (c)(i) show intensity standardized version of (a)(g), under the reference of 

(b)(h) respectively. From the images and the histograms, the standardized images have 

closer intensity distribution to reference images before standardization. 

6.3 2D detection of tumours at the central slice  

As shown in Fig. 6.2, before the 3D segmentation of tumours, 2D detection is 

necessary to locate the tumour in MRI volume. The localization of tumours has 

similarities with the localization of ALN (introduced in Chapter 4). The similarities 

include: 1) using throat as landmarked to guide the detection process, 2) using fuzzy 

c-means to cluster tissues based on their intensities 3) refine the clustering results to 

select binary candidate regions IB which possible are targets (ALN or tumours here). 

About the further processing of IB, last chapter the probability maps methods are 

applied for detection of ALNs. However, the detection algorithms of tumours are 

differently designed due to several reasons. Firstly, compared to ALNs, head and neck 

tumours can have arbitrary shapes, which make them cannot be distinguished through 

shape features. Then, the tumours can have non-uniform intensities. In addition, the 

tumours’ intensities and locations are close to many adjacent tissues such as lymph 

nodes and salivary glands, which can likely lead to segmentation errors.  

These features of HNC appearance will influence the development and 

implementation of auto-segmentation algorithms (3D LSM here). As introduced in 

Chapter 3, the accurate evolution of 3D LSM for segmentation of a target needs a good 

initial seed, and a well-defined speed function. Considering these factors, a 2D 

segmentation of HNC on central slice is involved first to locate and guide the evolution 

of 3D LSM. The process of detection and segmentation of head and neck tumours on 

central slices is illustrated in Fig. 6.4. 
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Fig. 6.4 Workflow of 2D detection and segmentation of head and neck tumour on 

central slices of MR12082013.  

 

 Fig. 6.4 shows the workflow of segmentation on central slices. The first step is throat 

detection, which described in Fig. 5.6. Then the modified fuzzy c-mean described in 

Section 5.3.2 [321] is applied to classify all pixels into five clusters (based on the 

knowledge of existence of fatty tissues, cancer tissues, normal tissue, normal muscle 

tissue, and background pixels in MRI slices). The clusters with the first and second 

highest mean intensity values are taken (name the combined clustering results as 𝐶𝐼), 

where the tumours are mostly among these regions. The clustering and combination 

of clusters were described in Fig. 5.10, the process of refining the 𝐶𝐼   to get the refined 

Binary region 𝐵𝐼 is illustrated in Fig. 6.5.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 6.5 Illustration of processing from clustering results CI to refined binary regions 

BI. (a) Clusters with first and second highest mean intensities combined by bitwise 

AND (i.e., CI). (b) Holes and small gaps in CI filled by morphological operation. (c) 

Only regions around throat are persevered, the blue circle is the search area around 

throat. (d) The edge information used for further separations. (e) The refined regions 

BI. (f) The left half part of BI flip to right side. (g) The right half part of 𝐵𝐼 (h) The 

overlay of left (white) and right (yellow) part. 

As shown in the (b) to (c) of Fig. 6.5, the small regions in clustering results are 

removed, only the large regions around throat are kept (called 𝐵𝐼). In this refinement 

stage, firstly the small holes and gaps in Fig. 6.5 (a) are filled, thus a better binary 

image is obtained as shown in Fig. 6.5 (b). Then the binary regions away from throat 

are removed (as shown in Fig. 6.5 (c)), this is implemented by applying a circular 

mask (the blue one in Fig. 6.5 (c)) around throat centre on binary regions. The regions 

around throat are further examined, edge information on original grayscale MRI image 

is used to separate the regions. The edges are extracted by SUSAN [252] detector 

which mentioned in Section 3.4.1. Briefly, SUSAN algorithm builds a circular 

detector (like a window) with a nucleus in centre, the SUSAN detector slides through 

the MRI image and compare pixels inside detector with pixel at nucleus, so that 
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classify these pixels into two classes. In this way, edges and corners can be found, then 

used in separation of regions. 

Separated regions away from throat are removed again (as shown in Fig. 6.5 (d), but 

in this case no regions are further removed). Then the algorithm checks the remain 

regions on both sides (left start, right start)  and remove regions with high symmetricity, 

because they are very likely to be salivary glands [319]. The symmetry information is 

measure by following equation, 

𝑆𝑦𝑚𝑆𝑐𝑜𝑟𝑒(𝐵𝐼) =   
𝑅(𝐵𝐼) ∩ 𝐹𝑙𝑖𝑝(𝐿(𝐵𝐼))

max (𝑅(𝐵𝐼), 𝐹𝑙𝑖𝑝(𝐿(𝐵𝐼))
 

(6.1) 

 

The left side of Eq. 6.1 stands for the symmetry score of binary images 𝐵𝐼, which 

measure the symmetry information in this image. On the right side, firstly the split the 

clustering results 𝐶𝐼 into left and right part, the mirror line is the centre column of 

throat. A comparison is applied between two parts, this comparison takes left part 

(shown in Fig. 6.5 (f)) to flip (horizontal mirroring) to right part (shown in Fig. 6.5 

(g)), and the regions in left part will overlay (shown in Fig. 6.5 (h)) with regions in 

right part, thus based on the Eq. (6.1), the symmetry score of each region is calculated. 

This score will be used later. 

After the refinement process shown in Fig. 6.5, candidate regions BI for tumours 

detection are obtained. The tumours are expected inside BI, but more accurate 

localization is required to achieve the detection of tumour. A watershed algorithm [322] 

is applied to further separate BI, which is shown in the right bottom of Fig. 6.4. The 

process of watershed region separation is pictorial illustrated in Fig. 6.6.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6.6 Watershed transform for splitting entire region into small objects. (a) The 

binary image 𝐵𝐼 (b) Complement of 𝐵𝐼. (c) Distance map generated. (d) Small 

regions obtained by applying watershed (𝑊𝐼). 

 

As shown in Fig. 6.6, the binary regions 𝐵𝐼 (Fig. 6.6 (a)) are split into small segmented 

sub-regions (Fig. 6.6 (d), call them 𝑊𝐼) by using watershed. The watershed algorithm 

generates sub-regions in an image by finding ‘watershed ridge lines’ and ‘catchment 

basins (valleys)’. In this process, the high intensity pixels are regarded as high 

elevations and dark pixels are regarded as low elevations. Firstly, the binary regions 

BI are taken its complement (as shown in Fig. 6.6 (b)). Following, the geodesic 

distance map is calculated by each pixel to its nearest nonzero pixel in Fig. 6.6 (b). 

The distance map is shown in Fig. 6.6 (c), by applying watershed on the distance map, 

the sub-objects WI are segmented as shown in Fig. 6.6 (d).  

The regions in Fig. 6.6 (d) are well divided, which enables more accurate refinement 

for the localization of tumour. This is referring to process from Fig.6.4 (d) to Fig. 6.4 
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(e). To make this clearer, as shown in Fig. 6.7 (a-f), the extracted BI and CI may have 

several symmetry binary regions, which includes small body fats, larynx tumours, and 

salivary glands. When only consider regions around throat, the larynx tumours and 

salivary glands are major existed symmetrical regions (marked with dash boxes in Fig. 

6.7). Then, cancerous regions can be symmetrical around throat (Fig. 6.7 (a)(b)) or 

majorly above throat (Fig. 6.4 (a)). According to these, several simple rules are 

designed which aims to eliminate salivary glands-like regions and initial the 2D 

segmentation start seeds based on the patterns we found, the steps are illustrated in 

Fig. 6.7.  
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(a) Larynx 

 
(b) Tongue base 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(d) 

 
(h) 

Fig. 6.7 Localize the tumour and initial the 2D segmentation algorithm. (a)(b) Two 

central slices from two patients (MR09112012, MR10062011). (c)(d) Clustering 

results (CI) of them. (e)(f) Refined binary regions (BI) and watershed transformed 

applied (WI). (d)(h) Localized tumour regions and initialized contours for LSM 

segmentation. 

The first refinement rule is that the HNC should be around throat. Then a rule is 

designed to eliminate salivary glands-like regions, the rule is given as: 1) The BI has 

Tumour 

Salivary 

Glands 
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high symmetry score (set as over 0.5); 2) The regions away from throat has symmetry 

score over 0.5. If the input BI fits the rule, then the regions on two side away (but not 

adjacent) of throat need to be removed, as there might be salivary glands or other 

regions not wanted. This step aims to preserve regions adjacent throat and find rough 

centre of tumour, so if regions not salivary glands (FN) are removed, it will not affect 

results. When the size of objects in WI are sorted, two patterns should be considered:  

1) The first pattern is that one object’s size is significantly larger than others, and 

basically the regions are not symmetrical distributed (such as Fig. 6.4 (a), and Fig. 6.6 

(d)). 

 2) The second pattern is that two or more objects have similar sizes, and some of the 

regions show symmetricity (such as Fig. 6.7 (e)(f)).  

In the first pattern, only the largest object is preserved as the initial seed for LSM 

segmentation. In second pattern, the symmetrical regions adjacent to throat are 

persevered, and a convex hull is used to combine them as initial seed for LSM 

segmentation. As shown in Fig. 6.7 (e-h), the initial seed (contour) are given based on 

these steps, the LSM will start from here to delineate the contours of HNC. 

The level set method used here is localized region-based level set method [323]. In 

this algorithm, the evolution function is given as, 

∂𝜙

∂𝑡
= −𝛿(𝜙(𝑥, 𝑦))∇𝐹 + 𝜆𝛿(𝜙(𝑥, 𝑦))div (

∇𝜙(𝑥, 𝑦)

|∇𝜙(𝑥, 𝑦)|
) 

(6.2) 

where the first term on the right-hand side of Eq. 6.2 is the external force (i.e., image 

force) which drives level set evolving to desired boundary and second term is internal 

force, term div (
∇𝜙(𝑥,𝑦)

|∇𝜙(𝑥,𝑦)|
) is the curvature of is the curvature of level set function 𝜙 

which keeps 𝜙 smooth. Here, external force is given as [323]: 
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∇𝐹 = ∑ 𝛿(𝜙(𝑥, 𝑦))

(𝑥,𝑦)∈𝐶

∑ (
(𝐼(𝑥, 𝑦) − 𝜇𝑖𝑛)

2

𝐴𝜇𝑖𝑛
)

(𝑥,𝑦)∈𝑀𝑙

− ∑ 𝛿(𝜙(𝑥, 𝑦))

(𝑥,𝑦)∈𝐶

∑ (
(𝐼(𝑥, 𝑦) − 𝜇𝑜𝑢𝑡)

2

𝐴𝜇𝑜𝑢𝑡
)

(𝑥,𝑦)∈𝑀𝑙

 

(6.3) 

where 𝜇𝑖𝑛  is the mean and 𝐴𝜇𝑖𝑛  is the area of interior and 𝜇𝑜𝑢𝑡  and 𝐴𝜇𝑜𝑢𝑡  of the 

exterior local region 𝑀𝑙(𝑥, 𝑦) of each point on the evolving curve (zero level of level 

sets, i.e., 𝜙 =0). (𝑥, 𝑦) ∈ 𝑀𝑙represent the points inside localized area 𝑀𝑙. (𝑥, 𝑦) ∈ 𝐶 

represent the points on evolving curve (shown in green contour in Fig. 6.8). The 

𝛿(𝜙(𝑥, 𝑦)) takes only point around 𝜙 = 0, which is 𝐶. Based on Eq. 6.2 and Eq. 6.3, 

the level set evolution will stop when foreground and background have maximally 

separate mean intensities. The illustration of the definition of level set function is also 

shown in, 

 

Fig. 6.8 Illustration of local region-based level set method. The evolving contour 

(i.e., 𝜙 =0) of level set is represented by green curve. The dark regions in (a) and (b) 

are targets to segment. In shaded areas in (a) and (b) represent interior (𝜙 <0) and 

exterior (𝜙 > 0) of evolving contour (𝜙 =0). The red circle denotes the localized 

region 𝑀𝑙 for deducing the evolving force of white point on the green curve [323]. 

 

𝑀𝑙 (x, y) 𝑀𝑙 (x, y) 
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As shown in Fig. 6.8, the white dot stands for point (𝑥, 𝑦),  its local region 𝑀𝑙  (𝑥, 𝑦) 

is in red circle. In (a), the local interior is the shaded part of the circle and in (b), the 

shaded part of the circle indicates the local exterior. Start at the initial contours given 

in Fig. 6.7, the level set function given in Eq. (6.2) evolves the contours to get the 2D 

segmentation results. Several examples of evolution of 2D contours are shown in Fig. 

6.9,  
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(a) 

 
(f) 

 
(k) 

 
(b) 

 
(g) 

 
(l) 

 
(c) 

 
(h) 

 
(m) 

 
(d) 

 
(i) 

 
(n) 

Fig. 6.9 Evolution of level set to segment 2D tumours. (a-d) 2D HN slices (from 

MR09092010, MR30502012, MR09112012, MR09112012) and initial contours (in 

red). (f-i) Images morphological closed and level set curve (𝜙 =0) evolves at halfway 

(in black). (k-n) The segmented 2D tumours (in red), name as Seg2D. 
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As shown in Fig. 6.9, the localized region-based level set method finally extracts the 

accurate contours Seg2D (Fig. 6.9 (l-o)) based on the initial seed (Fig. 6.9 (a-e)). It 

should be noted that before the starting of level set evolution, the MRI images are 

firstly processed by morphological close operation, in this way the images are 

converted to piece-wise constant style (as shown in Fig. 6.9 (f-j)), thus avoiding 

localized region-based LSM being affected by useless details or noise. In addition, if 

the initial contour is too small (Fig. 6.9 (b)), it will be taken as the 2D tumour contour 

(Fig. 6.9 (g)(l)), because the under LSM function the small contour might be vanished. 

The 2D segmentation results Seg2D will lead the localization of initial seed of 3D 

LSM and influence the setting of 3D LSM function and evolution.  

6.4 Definition of spatial constrained level set method 

Results of the level set evolution rely on the initialisation, which includes the position 

and size of initial volume. In this work, the position is set based on Seg2D, the 

proposed work takes central of Seg2D as horizontal position, and the vertical position 

is half of whole volume’s depth due to Seg2D is on the central slice. A symmetric 

pyramid is taken as initial volume (as shown in Fig. 6.10 (a)(d)(g)). The pyramid’s 

max length and width are 5 percent of MRI volume’s axial size; and the length and 

width will be 1 on the top and bottom of MRI volume. These chosen values guarantee 

that the initial pyramid is not distant from tumour region as discussed in Section 3.2.2. 

The level set method algorithm used for 3D HNC segmentation is modified based on 

[244]: 

𝐹 = 𝛼(𝐼 − 𝜇) + 𝛽div (𝑔𝑟𝑎𝑑∇𝜙) (6.4) 

 where the first term on right hand side of Eq. 6.4 is external force (i.e., image force), 

I is image data and 𝜇 is predefined lower bound of the gray-level of the target object. 

The external force drives the LSM surface evolving based on the intensity values. In 

this work lower bound of Seg2D is taken as 𝜇, which defines the expected intensity 

ranges of HNC. The second term is internal force, and div(𝑔𝑟𝑎𝑑𝛻𝜙) is curvature flow 

weighted by gradient feature map 𝑔𝑟𝑎𝑑. The internal force keeps the smoothness of 

3D LS surfaces and minimizes the leakage of boundaries. The gradient feature map is 

given as 𝑔𝑟𝑎𝑑 = exp (−|∇𝐼|2). The level set method (Eq. 6.4)   is capable of 2D and 
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3D tasks, and the gradient map 𝑔 provides additional boundary information to help 

LSM detect the edges.  However, this level set function is majorly sensitive to 

intensities and can produce many false positives if the background is complex. Thus, 

in this work, the speed function is modified as following: 

𝐹 = 𝛼(𝜔𝐿(𝐼) − 𝜇𝑠𝑒𝑔2𝐷) + 𝛽𝑑𝑖𝑣(𝑔𝑟𝑎𝑑∇𝜙) (6.5) 

where 𝜔𝐿(𝐼) is the location constrain of image force, which de-weights image force 

of regions far from throat and initial volume, but keep weights of Seg2D region. In 

this way, the occurrences of false positives are constrained. The de-weighting is based 

on two Gaussian distribution: 

𝑓𝑠([𝑥𝑝, 𝑦𝑝] ∣ [𝑥𝑠, 𝑦𝑠], 𝜎𝑠
2) =

1

√2𝜋𝜎𝑠2
𝑒
−
([𝑥𝑝,𝑦𝑝]−[𝑥𝑠,𝑦𝑠])

2

2𝜎𝑠
2

 

(6.6) 

𝑓𝑡([𝑥𝑝, 𝑦𝑝] ∣ [𝑥𝑡, 𝑦𝑡], 𝜎𝑡
2) =

1

√2𝜋𝜎𝑡
2
𝑒
−
([𝑥𝑝,𝑦𝑝]−[𝑥𝑡,𝑦𝑡])

2

2𝜎𝑡
2

 

(6.7) 

Eq. 6.6 shows the de-weighting rule for regions away from initial volume centre (i.e., 

centre of Seg2D). Eq. 6.7 shows the de-weighting rule for regions away from throat 

region centre. These two rules are same for each layer of MRI volume. [𝑥𝑝, 𝑦𝑝] is the 

coordinate of pixel P, [𝑥𝑠, 𝑦𝑠]  is coordinate of centre of Seg2D and [𝑥𝑡 , 𝑦𝑡]
2  is 

coordinate of centre of throat region. 𝜎𝑠
2 and 𝜎𝑡

2 are automatically and adaptively set 

according to radius of Seg2D and throat region. Based on these two distributions, and 

the rule that keeping weight of Seg2D region, the 𝜔𝐿(𝐼) is given as following: 

𝜔𝐿(𝐼) = 𝐼.∗ 𝑚𝑎𝑥(norm (𝑓𝑠.∗ 𝑓𝑡), Seg2𝐷) (6.8) 

where norm means normalise the product of 𝑓𝑠 and 𝑓𝑡, Seg2D is a binary map which 

also fits the range [0,1]. In this way image force of pixels away from both Seg2D and 

throat region will significantly decrease, while the weight of Seg2D will not be 

influenced. Using Eq. 6.8 to Eq. 6.5, a location-constrained level set function is 

acquired.  
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6.5 Evolution and post processing of 3D LSM segmentation 

Based on the Eq.6.5 and initialisation (Fig. 6.10 (a)) of level set, the 3D tumour volume 

can be segmented as illustrated in Fig. 6.10:  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Fig. 6.10 Evolution of 3D surface of HNC under the force of 3D LSM. (a) 

(MR09112012) (d) (MR14012013) (g) (MR10062011) are initial pyramid of 3D 

LSM. (b)(e)(h) are surface evolved halfway. (c)(f)(i) The finished evolution of 3D 

tumour surface. 

where the 3D LSM start to evolve at Fig. 6.10 (a)(d)(g), and tracks the surface of 3D 

HNC, from halfway (Fig. 6.10 (b)(e)(h)) to final segmentation ((Fig. 6.10 (c)(f)(i)). 

The surfaces are expanding in 3D direction, which can segment the tumours in central 

positions but also two ends. However, as introduced before, the 3D intensity-based 

level set method can be too sensitive to intensity value so that produce unsmooth 

segmentations. Thus, the post-processing is still required to refine the 3D LSM 

segmentation.  
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The post-processing is by cascading of 3D morphological operations. First step is 

using 3D structure elements (sphere with radius of 3 pixels) to dilate the segmented 

volume to fill small gaps and holes inside tumour volume. Then, 3D morphological 

erosion (sphere with radius of 8 pixels) is applied to separate weak connections 

between sub-objects inside segmented tumour. Among the separated sub-objects, only 

the largest 3D object is preserved. Finally, 3D morphological dilation (sphere structure 

element of 5 pixels) is applied on preserved object to recover (expand) its volume. In 

this way, the post-processing refined the segmentation from 3D SLM. An illustration 

of this procedure is shown in Fig. 6.11.   
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(a) 

 
(b) 

 
(c) 

  
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 6.11 Post processing of 3D LSM segmentation result of MR09112012. (a) 3D 

tumour volume obtained from 3D LSM. (b) Circular Structure element (radius 3 

pixels). (c) Volume dilated and holes filled. (d) Structure element (radius 8 pixels). 

(e) Volume eroded and separated.  (f) largest object preserved. (g) Structure element 

(radius 5 pixels). (h) Preserved objected dilated to recover volume. 
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Then in Fig. 6.12, the improvements of post-processing in terms of 2D masks and 3D 

volumes are demonstrated,  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Fig. 6.12 (a-c) Tumours’ volume (MR14012013, MR10062011, MR09112012) 

obtained from 3D LSM. (d-f) Sliced 2D masks of 3D LSM results. (j-l) Refined 3D 

tumour volume. (g-i) Sliced 2D masks of refined 3D volumes.  
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As displayed in Fig. 6.12, the comparisons between (a)(j), (b)(k), and (c)(l) show that 

the 3D tumour surfaces are smoother after post-processing refinement. The 

comparisons between (d)(g), (e)(h), and (f)(i) show that the post-processing not only 

smooth the 3D surface, but also improve the sliced 2D segmentations, such as holes 

inside (Fig. 6.12 (f)), small outliers (Fig. 6.12 (e)(f)), and unsmooth contours (Fig. 

6.12 (d)(e)(f)). The post-processing refined 2D and 3D results are taken as the final 

output of the proposed 3D HNC segmentation algorithm. 

6.6 Results  

The proposed new algorithm was implemented in MATLAB running on a PC with 

16G RAM, 3.2GHz Intel(R) Core (TM) i7-8700 CPU. Experiments were conducted 

on real MRI datasets from Beatson West of Scotland Cancer Centre to test the 

performance of the new algorithm. The data contains T1-weighted Gadolinium 

enhanced MR images of HNC. This section will demonstrate 2D and 3D results of 

proposed algorithm on real data, and also some quantitative study compared with 2D 

plus interpolation algorithm [193], and other 3D algorithm [324]. The comparison 

between results acquired from two methods (proposed and [193]) is shown in Fig. 6.13. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

 
(m) 

 
(n) 

 
(o) 

 
(p) 

 
(q) 

 
(r) 

Fig. 6.13 3D tumour volume segmented from real MRI data each row uses the same 

dataset. (a)(MR11092012) (g) (27082012) ((m) (MR10062013) are volumes 

obtained by proposed algorithm; (f)(l)(r) are volume acquired by 2D method; 

(b)(c)(d)(e), (h)(i)(j)(k) and (n)(o)(p)(q) are 2D contours on separate axial slices. 

Yellow contours are from gold standards (consensus manual outline), red contours 

are from proposed algorithm, and blue contours are from 2D approach [193]. 

 

In Fig. 6.13, each row shows the results on one MRI dataset, and the left parts of each 

line ((a)(g)(m)) are 3D volume from proposed algorithm, right parts ((f)(l)(r)) are from 

2D approach  [193]. In the middle of each row are comparisons of 2D contours among 

proposed algorithm, 2D method, and gold standards. The gold standards are consensus 

tumour outlines on 2D axial slices according to clinicians from Beatson West of 

Scotland Cancer Centre.  

From the given 2D contours comparison the proposed algorithm has similar 

segmentation compared with gold standards. Also, the visualisation of 3D tumour 

volumes in Fig. 6.13 (a)(g)(m) shows that the proposed 3D method can produce 

tumour volume with smooth surface and consistent structure. On the other hand, the 

volumes extracted by 2D approach have sharp edges (Fig. 6.13 (f)(l)(r)), and if there 
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is inaccuracy in 2D segmentation (Fig. 6.13 (q)), the structure of 3D volume will be 

inconsistent (Fig. 6.13 (r)). More visual results are in Appendix C. 

Apart from visual analysis, here are more quantitative measurements of proposed 

algorithm’s performance. The measurements include Dice measure, false negative, 

and false positive. The bar graph  which compares the Dice score between proposed 

algorithm and method [193] are shown in Fig. 6.14. 

 

 

Fig. 6.14 Comparison of DSC between 2D approach verses gold standards 

(consensus manual outlines), and proposed 3D method verses gold standards. The x 

axis represents dataset MR29072011, MR14012013, MR10062013, MR09082010, 

MR12082013, MR09112012, MR27082012, MR19062012, MR10062011, 

MR09092010.  

The bar graph shows that for 70%of the datasets the proposed method performs better. 

In cases 2, 4, and 9, the 2D+I method is only marginally better. More precise measures 

of performance among the 3 methods are shown in Table 6.1, 
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Table 6.1 DSCs, false positive, and false negative rate comparisons. 

Methods DSCs FP FN 

Proposed 0.6983 0.2401 0.0039 

2D+I [193] 0.6484 0.3187 0.0033 

3DLSM [324] 0.6302 0.4199 0.0020 

According to the bar graph Fig. 6.14 and Table 6.1, the proposed 3D HNC 

segmentation has better mean Dice similarity score compared to 3D level set method 

[324] and 2D plus Interpolation approach [193]. On the other hand, the significant 

reduction of false positive also proves that the idea of location-constrained level set 

method achieves the expected goals.  

 

Fig. 6.15 Time consumption of 2D and proposed 3D method, the x axis is the 

number of input slices, the y axis is the time cost in seconds 

The time cost of 3D and 2D+ I methods are shown in Fig. 6.15, it illustrates that the 

proposed 3D methods also save time consumption for HNC segmentation task. As the 

2D methods need to process each slice, when the slices number increase, the difference 

of time consumption between 3D and 2D approaches will be larger. 

6.7 Conclusion 

This chapter presented a novel 3D segmentation algorithm for HNC tumour volume 

extraction. The proposed method uses 2D localized region based LSM to segment the 

2D tumour region on central slices, so as to localize the rough position of tumour, and 

deduce key parameters of 3D segmentation. A location-constrained 3D LSM is 
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proposed to reduce the false positive generated during the segmentation of HNC from 

complex background. 3D morphological operations are applied for post-processing of 

segmentation to improve the smoothness of extracted 3D tumour volume. The 

proposed method was validated on real MRI data from Beatson west Scotland centre, 

Glasgow. The validations show that the proposed algorithm achieves Dice score 

around 70% when evaluated by consensus manual contours, the Dice score is higher 

than 2D + I  [193]  and 3D LSM [324] method. The location constrained LSM guided 

the evolve of tumour surface and reduced the false positive in segmentation, which is 

about 24%, also improved compared to [193] and [324]. And the proposed 3D 

algorithm does not lead to more time consumption compared to 2D approach, on the 

contrary, the time cost will be saved when the slices increase. 

The results and performance measure illustrate several advantages of the proposed 3D 

HNC segmentation algorithm. Firstly, the 3D segmentation is a more natural approach 

to extract 3D volume of a tumour, which has similarities to the growth of tumour 

volume in real cancer cases, and practically it can generate uniform volume and avoid 

unrealistic structure. Secondly, this method introduces 2D segmentation on central 

slice, which helps the locating of tumour in complex background, so that gives better 

initialisation of 3D LSM segmentation. Thirdly, the proposed location constrained 3D 

LSM introduces 2D segmentation results for improved parameters setting, which is 

able to minimize the false positive extracted HNC volumes.  

However, there are still limitations. Firstly, the locating process involves many 

empirical setting and parameters, which is expected to be improved by statistical 

approach such as machine learning or deep learning. The 3D LSM has a tendency to 

maintain balloon shape (the curvature factors in internal force), which means it can 

expand too much in middle slices but insufficient evolve at the start and end slices 

(two ends of tumour). The unsatisfactory segmentations can be subsequently manually 

modified via the software called RTP Aid Tool we developed, this software can 

modify 2D auto-segmentation contours and reconstruct modified 3D tumour volume. 

More details of the software are provided in Appendix A. In the next chapter, we will 

introduce our proposed deep learning methods for semantic segmentation of head and 

neck tumours from MRI data. 
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Chapter 7 Automated HNC Segmentation using Deep 

Learning 

7.1 Introduction  

The traditional approaches using classical methods (knowledge-based detection with 

LSM contour tracking) for HNC segmentation provide interpretability and 3D 

visualisation, does not require significant amount of annotated data or computation 

power (GPUs). However traditional approaches suffer from subjectiveness, and many 

parameters need to be empirically set. As introduced in Section 3.5, if more data and 

GPUs are available, deep learning should be considered for application on HNC 

segmentation because DL uses end-to-end structure to get rid of hand craft features 

and majority parameters setting. Also, the more data it uses the better performance DL 

model could have, this makes it have scalability and robustness to handle potential 

newcome large dataset. This section will introduce the work of DL on HNC 

segmentation from MRI data, which is a modified version of U-Net [296]. The 

remainder of this chapter is organised as follows.  Section 7.2describes the architecture 

of proposed segmentation network, while Section 7.3 describes details of techniques 

in the proposed work. Section 7.4 demonstrates the segmentation results, and a 

conclusion Is provided in Section 7.5.  

7.2 Proposed Modified U-Net for improving performance of 

head and neck cancer segmentation 

To eliminate the subjective knowledge and achieve end-to-end accurate segmentation 

of HNC from MRI data, a novel CNN architecture is proposed, whose idea is based 

on from classical U-Net [296].  Modifications are made to best suit the HNC 

segmentation problem.  Only 2D MRI slices with annotations were available for 

training. The 2D slices can be reconstructed to a synthetic 3D MRI volume as we 

described in Section 3.2.1.6. However, to train the deep learning U-Net we only use 

the annotated 2D MRI image data set. The proposed modified U-Net model is shown 

as Fig. 7.1. 
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Fig. 7.1 The architecture of modified U-Net. The horizontal numbers on the top of 

boxes show the depth (number of channels) of feature maps, the vertical numbers on 

the left show the xy size of image/feature maps. Other operations are marked with 

arrows in different colours. 

The modified U-Net has similar structure with classical U-Net. There are also two 

major paths inside DCNN architecture, one contracting path also is called as encoder 

(top row of the network in Fig. 7.1) and one expansive path is also called as decoder 

(bottom row of the network in Fig. 7.1), and several skip connections between 

contracting and expansive path. 

In the contracting path, the input image is passed through a series of CNN module to 

extract the features and patterns. The feature extraction by CNN module will cause the 

reduction of xy size, and the increase of depth of feature maps. There are four stages 

of downsampling of image xy size, which make the image size reduce to half. With an 

input image 256 X 256, the deepest feature maps have 1024 channels, and 16 X 16 xy 

size. The expansive path has four stages of upsampling of xy size, which double the 

image xy size, and reduce the number of channels of feature maps. The final output of 

network is a prediction map whose channels equals to the classes need to be 

distinguished, and xy size equals to input image’s, i.e., 256 X 256. The input size 256 

X 256 is close to size of Raw MRI slices, besides this size can be divided by two in 

multiple downsampling operations.  
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Similar to U-Net, there are skip connections between contracting path and expansive 

path. The connection is on each stage and via concatenation, thus each skip connection 

will cause double of the numbers of channels of feature maps. Apart from this, in 

contracting path, a two-pathway convolution scheme is introduced into U-Net for 

better feature extraction. The two-pathway scheme use same numbers of filters, but 

one pathway is regular convolution, another one is dilated convolution. The feature 

maps from two pathways will be fused together via concatenation. 

The major novelty of the modified U-Net comes from the two-pathway feature fusion 

of multi-resolution features. The two-pathway architecture come from the idea in [89], 

which aims to exploit both local features and global contextual features 

simultaneously. But different from the setting in [89], the proposed method uses 

dilated convolutions rather than classical convolutions, thus achieves larger receptive 

fields for global features but not involve additional computations. More details about 

the modified U-Net are in next section, includes several submodules of the network, 

and training setting.  

7.3 Details of proposed DCNN model  

This section includes the details of submodules in the proposed modified U-Net, these 

submodules are embedded into U-Net to improve the performance of segmentation of 

HNC from MRI data. These will include the two-pathway module, the dilated 

convolution, and the dice loss to build the model; also, the data augmentation and 

batch normalisation to improve the training process. 

7.3.1 Dilated convolution  

In deep convolutional neural network, the multi-stage feature extractions can find 

hierarchical representations of data, which have been introduced in Chapter 3. The 

shallow layers obtain the low-level features at local scale, while the deep layers 

acquire the high-level features at global scale of image. The determination of exact 

boundaries of target requires low-level features, while the detection and localization 

of target requires high-level non-local contexts. A classical way of accessing non-local 

context is to use larger convolution filter size so that get larger receptive field. As we 

introduced before, a 3 X 3 convolution filter has 3 X 3 receptive field. In [89], the two-
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pathway network uses a 7 X 7 filter in one path, and a 13 X 13 filter in another path, 

which are significantly larger than the general 3 X 3 setting. This will introduce 7 X 7 

and 13 X 13 receptive fields to extract non-local context.  

However, one 3 X 3 filter has 9 parameters to train, one 7 X 7 filter has 49 parameters 

to train, the difference will be larger considering there are lots of filters inside a 

network. The drawback of using large filters can be in two aspects: 1) additional 

computation from additional number of parameters. 2) The network cannot be 

sufficiently trained if the number of training samples is small, but the network has too 

many parameters. Thus, the classical method is to use deeper structure rather than 

larger filter size, for example, a cascade of two 3 X 3 filters can have same receptive 

field with one 5 X 5 filter (as seen in Fig. 7.2 (a), the red neuron in third layer can 

access the context of 5 X 5 neighbour neuron in first layer). 5 X 5 filter costs 25 

parameters to train, while two 3 X 3 only need 18 parameters in total, thus the 

combination of small size filters is a computational economic way to access the non-

local context. The pooling layers also help the DCNN to access the global context, but 

this comes with the decrease of resolution.  

In [325], a novel dilated convolution method was proposed to enlarge the receptive 

field but not at the expense of additional computation cost. The dilated convolution is 

also called atrous convolution. A seen in Fig. 7.2 (c), the classical 3 X 3 convolutional 

filter is like a 3 X 3 sliding window, the output value of the centre position of filtering 

is the weighted sum of all points inside window (red points), and the output is a data 

representation of the information inside receptive field (shown as blue region). The 

dilated convolution inserts gaps between convolutional kernels, as shown in Fig. 7.2 

(d), with dilation factor 3, there are 2 intervals between two kernels inside filter. The 

dilated 3 X 3 convolutional filter with dilation factor 3 still uses 9 points (in red) to 

calculate the filtering output, which does not increase the number of parameters. 

However, due to the dilation, the output is influenced by context of 7 X 7 neighbour, 

which contains non-local features. In addition, these non-local features can be 

obtained from early layers, which maintains the resolution and detailed low-level 

features. This is also illustrated in Fig. 7.2 (b), the red neuron in third layer connects 

to the black neurons in the first layer, which is 5 neighbour neurons’ away. With the 
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demonstrated advantages, the dilated convolution was introduced to aggregate multi-

scale contextual information without losing resolution or coverage, which are shown 

by the dashed black arrows in Fig. 7.1. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7.2 Demonstration of differences between classical and dilated convolutions. (a) 

is the illustration of classical 3 X 3 convolution through multiple layers. (b) is the 

dilated 3 X 3 convolution with factor 2 through multiple layers. (c) is the classical 3 

X 3 convolution on an image, the red points are the kernels of convolutional filter, 

the blue area is the receptive field. (d) is the dilated 3 X 3 convolution with factor 3 

on an image.  
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7.3.2 Two pathway module 

The classical U-Net aggregates low-level, local, high-resolution features in early 

layers and high-level, global, low-resolution feature in deep layers via the skip 

connections between encoder and decoder. This section will introduce the proposed 

novel DCNN, which involves a two-pathway module to aggregates more non-local 

features at early layers so that not lose the resolution. The whole network has been 

demonstrated in Fig. 7.1, here a two-pathway module example is illustrated as Fig. 7.3,  

 

Fig. 7.3 The proposed two-pathway module. Horizontal texts are the depth of feature 

maps. Vertical texts are the xy size of feature maps.  

As shown in the illustration in Fig. 7.3,  the proposed module uses two path 

convolutions to extract the features. One pathway is using classical convolutions, 

shown with the black arrows. At each stage, the classical convolution pathway uses a 

cascade of two convolution layers, with ReLU as activation function, and zero 

paddings to keep the xy size. Both convolution layers use 32 3 X 3 classical 

convolutional layers with ReLU, so that given a 256 X 256 input this pathway produce 

a feature map whose size is 32 X 256 X 256. Another pathway is using dilated 

convolutions, shown with the dashed black arrows. At each stage, the dilated 

convolution pathway uses a cascade of two convolution layers, with ReLU as 

activation function, and zero padding to keep the xy size. Both convolution layers use 
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32 3 X 3 dilated convolutional filters, so that produce a 32 X 256 X 256 feature map 

from a 256 X 256 input. As introduced in last section, the classical convolution 

pathway results to 3X3 receptive field which extracts the local context, the dilated 

convolution pathway results to 7 X 7 receptive field (as shown in Fig. 7.2 (d)) which 

extracts the global context. The feature maps from two pathways are then fused via 

concatenation, the concatenation is to stack two feature maps together along the 

direction of depth and not change the xy size. After the concatenation, the fused feature 

map is 64 X 256 X 256. Finally, the fused feature map is downsampled by 2 X 2 max 

pooling, which causes the half of xy size, but not change the depth of feature maps.  

There are four stages of two-pathway module (Fig. 7.3) in proposed network (Fig. 7.1), 

all of them use 3 X 3 filters in one pathway and 3 X 3 filters with dilation factor 3 in 

another pathway. From first stage to fourth, the numbers of filters are 32, 64, 128, and 

256 respectively.  

The dilated convolution has advantages for accessing non-local context, but it has an 

inherent problem called ‘gridding’ effect. As shown in Fig. 7.2 (c)(d) , only locations 

with non-zero kernel values (red points) are considered, this can cause losing of some 

neighbouring information, this will be worse when dilation rate increases [326]. There 

are different methods to solve the ‘gridding’ effect in dilation convolution from [326-

328]. For example, in [326], a Hybrid Dilated Convolution (HDC) is proposed to use 

different dilation rates in subsequent layers rather than constant dilation rate, so that 

fully covers a square region without any holes or missing edges. In [327], a pyramid 

structure is used to concatenate feature maps extracted by dilated convolution with 

different dilation rates also image-level feature, so that combine multi-scale 

information without losing neighbour details. In this work, as shown in Fig. 7.3, the 

two-pathway module concatenate dilated feature maps with normal feature maps so 

that take the advantages of dilation convolutions but minimize the neighbour 

information lost in ‘gridding’ effect.  

7.3.3 Upsampling: interpolation and deconvolution 

The encoder part of the proposed network has four stages of two-pathway module, the 

decoder part (expansive path) correspondingly has four stages of skip-connections. 

The skip connection parts are shown as Fig. 7.4,  
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Fig. 7.4 Skip-connections, horizontal texts show channels of feature maps, vertical 

texts show xy size of feature maps. 

In each stage, the skip-connection combines the feature maps in encoder and decoder 

(shown in Fig. 7.4). The combination is via concatenation (yellow arrow), which is 

stacking feature maps through the direction of depth of feature maps. The feature maps 

from encoder are the output of two-pathway module (shown in Fig. 7.3). The feature 

maps from decoder are the upsampled deep features. For example, the feature maps in 

encoder have 64 X 256 X 256 size (concatenated from two 32 X 256 X 256 as shown 

in Fig. 7.3). Correspondingly, the feature maps from decoder for concatenation also 

have 64 X 256 X 256 size, this feature maps are from the upsampling of deeper stage, 

shown with the green arrow in Fig. 7.4. The feature maps from deeper stage for 

example have 128 X 128 X 128 size, the upsampling operation changes it to 64 X 256 
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X 256, then concatenates with feature maps from encoder, so that form a 128 X 256 

X 256 fused feature map.  

There are two major ways of upsampling the feature maps in a decoder structure, 

deconvolution or interpolation followed by convolution. The deconvolution is also 

called as transposed convolution, given an input matrix, a convolutional filter, and the 

matrix, the convolution can be regarded as matrix multiplication, where the input 

matrix can be stretched as a 1-D vector 𝑉𝑖𝑛, the sliding of convolution filter can be 

regarded as a sparse matrix 𝑀𝑐𝑜𝑛𝑣, and the output is then a 1-D vector 𝑉𝑜𝑢𝑡. So, the 

convolution of X is, 

𝑉𝑜𝑢𝑡 = 𝑀𝑐𝑜𝑛𝑣 ∗ 𝑉𝑖𝑛
𝑇 (7.1) 

where ∗ means the matrix multiplication, the Eq. 7.1 can be illustrated with Fig.7.5, 

 

Fig.7.5 Convolution of a 4 X 4 input using 3 X 3 filter The white blanks stand for 

zero values.  

The shows a convolution of filter size 3 X 3 on input size 4 X 4 with output size 2X2. 

The deconvolution is to apply the transposed matrix 𝑀𝑐𝑜𝑛𝑣on 𝑉𝑜𝑢𝑡  to recover the 

dimension of 𝑉𝑖𝑛, which is as, 
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𝑉𝑖𝑛 = 𝑀𝑐𝑜𝑛𝑣
𝑇 ∗ 𝑉𝑜𝑢𝑡 (7.2) 

And the Eq. 7.2 can be illustrated as Fig. 7.6, 

 

Fig. 7.6 Deconvolution (transposed convolution) of a 2 X 2 (stretched to 4 X 1) 

matrix to 16 X 1 vector and rearrange to 4 X 4. 

Fig. 7.6 shows the recovery of xy dimensions of feature maps via deconvolution. The 

deconvolution uses the form of transposed sparse matrix 𝑀𝑐𝑜𝑛𝑣 and inverse the 𝑉𝑖𝑛 

and 𝑉𝑜𝑢𝑡 , but it does not mean the values of input 𝑉𝑖𝑛  are exactly recovered, the 

deconvolution is only used for the upsampling of the feature maps’ size, the values of 

the filter are also trainable. However, the deconvolution can cause checkboard artifacts, 

which is shown as Fig. 7.8 (a). The artifacts are from the ‘uneven overlap’, which are 

in the upsampling putting more of the metaphorical paint in some places than others 

[329]. The uneven overlap occurs when size of deconvolutional filter cannot be 

divided by stride. An example is shown in Fig. 7.7,  
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Fig. 7.7 The uneven overlap in deconvolution, with filter size 5 X 5, stride 2 [330]. 

The upper row is the input vector, the lower row is the upsampled vector. 

It can be seen from Fig. 7.7 that when the filter size of deconvolution cannot be divided 

by the stride, the output vector has uneven overlaps in some upsampled places, some 

of the places have three times of overlaps during the deconvolution while some only 

have two or one, this is how the uneven occurs.  

The artifacts in upsampling via deconvolution can be minimized by using strides that 

can be divided by filter size, but nowadays generally the artifacts are solved via 

replacing the devolution by resizing of feature maps to increase resolutions and 

followed by normal convolution. The commonly used resizing methods include 

nearest-neighbour interpolation and bilinear interpolation, and in Fig. 7.8 (b) the 

resize-convolution upsampling results to no artifacts.  

 
(a) 

 
(b) 

Fig. 7.8 Last layers of Generative Adversarial Networks to visualise the checkboard 

artefacts. (a) Results from deconvolution. (b) Results from resize + convolution 

[330]. 
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Based on the principles and experimental examples, it can be concluded that the resize 

and convolution is more suitable for the upsampling of low-resolution feature maps in 

decoder stages. Thus, in the skip-connection modules of this work (shown in Fig. 7.4), 

the resize and convolution operations are used instead of deconvolution.  

7.3.4 1 X 1 convolution 

In image-level classification tasks, convolutional filters with RELU activation are 

used for extraction of features along with the reduction of xy image size, then the 

extracted features are flattened and processed by fully connected layers with Sigmoid 

activation to output the probabilities of classes (as shown in Fig. 7.9). While the 

proposed network (shown in Fig. 7.1) requires an encoder-decoder structure to 

maintain the xy size in output prediction, thus here a different kind of classifier is used, 

which is 1 X 1 convolution.  

The 1 X 1 convolution was proposed [331], and were widely used in many networks  

[332, 333] to manipulate the depth of feather maps. The 1 X 1 convolution uses 1 X 1 

filter size so that it is designed for fusion of feature maps between channel without 

change xy dimension. As shown in Fig. 7.9 (b), the multi-channel feature maps will 

be fused by a 1 X 1 convolution along the depth direction, this can be understood as a 

fully connection layer, but does not require the flatten of feature map so that keep the 

spatial relationships among xy direction. The 1 X 1 convolution is followed by 

Sigmoid activation to produce dense predictions with probability between 0 – 1, so 

that achieve the pixel-level segmentation of input image.  
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(a) 

 
(b) 

Fig. 7.9 Difference between classifier in normal CNN and proposed modified U-Net. 

(a) A classical CNN using fully connected layers to output classification. (b) The 

proposed network uses 1 X 1 convolution to output dense prediction.  

7.3.5 Batch normalisation 

Similar to many machine learning algorithms, the DCNN also is influenced by the 

initialization of weights in network, thus there were some researches on the 

initialization methods of DCNN such as HE, Xavier, and so on (see review in [334]). 

Also, with the increase of numbers of layers of DCNN, the network is harder to train, 

problems occur such gradient vanish and gradient explosion [335]. In [336], Internal 

Covariate Shift (ICS) as the change in the distribution of network activations due to 

the change in network parameters during training, which constrains the training speed. 

To solve the ICS, the batch normalisation (BN) is proposed to accelerate the DCNN 

training.  

The BN works along with mini-batch training, which is dividing train data into several 

mini-batches and update the parameters of DCNN by using the mean gradients inside 

the mini-batch. The BN is to add an additional process before the output of a layer be 

activated and fed into next layer. The BN is given as  
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BN𝛾𝐵,𝛽𝐵(𝑥𝑖) = 𝛾𝐵�̂�𝑖 + 𝛽𝐵 (7.3) 

where 𝛾𝐵and 𝛽𝐵  are trainable parameters to scale and shift the distribution of �̂�𝑖 , 

where �̂�𝑖 is normalization of values in the mini batch, given a mini-batch ℬ = {𝑥1…𝑚}, 

the �̂�𝑖 is calculated as, 
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1
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2
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√𝜎ℬ
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(7.4) 

Where 𝑚 is the number of data samples in the mini-batch ℬ, 𝜇ℬ is the mean of this 

mini-batch, 𝜎ℬ
2 is the variance, thus �̂�𝑖 is the normalized version original values 𝑥𝑖 in 

the mini-batch. The �̂�𝑖  is scaled and shifted via Eq. 7.3, finally the BN𝛾𝐵,𝛽𝐵(𝑥𝑖) is 

passed to activation function to next layer rather than 𝑥𝑖. 

The BN not only enables higher learning rates of DCNN, but also regularizes the 

model [336], this makes it can be an alternative approaches of Drop-Out. The U-Net 

[296] used Drop-out to minimize the overfitting, in the proposed network batch 

normalization is used which can also help regularization. The mini-batch size is set as 

2, as the data is limited, the BN will work better when data and model size increase 

but requires larger GPU memory.  

7.3.6 Definition of Dice loss 

As introduced in Chapter 3, the Cross Entropy (CE) is a general used Loss function to 

train a DCNN which aims to classification, this include image-level classification, and 

pixel-level classification, which is semantic segmentation. The cross entropy between 

two 𝑁 sized discrete distributions 𝐩 ∈ [0,1]𝑁 and 𝐪 ∈ [0,1]𝑁 is given as, 

𝐻(p, q) = −∑  

𝑁

𝑖=1

p𝑖log q𝑖 
(7.5) 

where 𝐩 is the classification target, 𝐪 is the predicted likelihood per class. The 𝐻(𝐩, 𝐪) 

can be translated as a loss function, where 𝑁 represents the number of classes, 𝐩𝑖 is 



165 

 

the ground truth (label) of 𝑖𝑡ℎ class, and 𝐪𝑖 is the model prediction of this class. CE 

loss of the HNC segmentation problems can be given as,  

𝐿𝑐𝑒 = −∑  

2

𝑖=1

p𝑖log q𝑖 

= −[𝑝log (𝑞) + (1 − 𝑝)log (1 − 𝑞)] 

 (7.6) 

Because here are 2 classes in this work: HNC and background. In the binary 

classification, CE loss 𝐿𝑐𝑒 treat the foreground and background in a symmetric way 

(shown in Eq. 7.6). However, in many medical segmentation problems include the 

HNC extraction from MRI data, the foreground (tumours, vessels and so on) and 

background are imbalance, normally the foreground targets are small compared to the 

background and whole image, which makes the CE loss cannot solely solve the 

segmentation well because the background can dominate the gradients in training.  

Some methods were proposed to solve the segmentation of imbalance data, such as 

Weighted Cross Entropy and Focal Loss [303]. In U-Net [296], an edge map is 

introduced to CE to improve the segmentation of cells. In this work, the Dice Loss 

from [305] is introduced to balance the weights between HNC and background in MRI 

slices. The Dice Loss comes from Dice coefficient, and in DCNN training, they are 

given as, 

𝐷 =
2∑  𝑁𝑖 𝑝𝑖𝑔𝑖

∑  𝑁𝑖 𝑝𝑖
2 + ∑  𝑁𝑖 𝑔𝑖

2 

𝐿𝑑𝑖𝑐𝑒 = 1 − 𝐷 

(7.7) 

Where 𝑝𝑖  is prediction (probability between [0,1]) of 𝑖𝑡ℎ  pixel and 𝑔𝑖  is its ground 

truth (binary digits). The definition Dice Loss 𝐿𝑑𝑖𝑐𝑒 mainly focus on the foreground, 

so that minimize the influence of large proportion of background. While in practical 

usage, the 𝐿𝑑𝑖𝑐𝑒  is not steady and sometimes not converge well, thus finally the 

proposed network uses combined loss given as, 

𝐿 = 𝐿𝑑𝑖𝑐𝑒 + 𝐿𝑐𝑒  (7.8) 

Which is the combination of 𝐿𝑐𝑒 to keep the training steady and 𝐿𝑑𝑖𝑐𝑒 to minimize the 

inter-classes imbalances existed in HNC MRI slices.  
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7.3.7 Data augmentation 

The convolution and pooling operation gives DCNN abilities of invariant to small shift 

and scale transformation [289]. While, there are still gaps to work on to improve 

invariant properties of feature extraction in DCNN, such as works in [337-340]. In U-

Net [296], the data augmentation is used to teach the network invariance and 

robustness properties, this will be more important when number of training samples 

are limited. Data augmentation is also introduced into this work, the setting of the 

augmentation is given as, 

Table 7.1 Setting of data augmentation of proposed network 

Rotation 

(Degree) 

Horizontal  

Shift  

Vertical  

Shift 

Shearing Zoom Horizontal  

Flip 

0.2 ±0.05 ±0.05 ±0.05 ±0.05 True 

 

As shown in Table 7.1, there are six types of augmentation in total. During the training, 

additional training samples will be generated (along with mask) to feed into the 

training network. The generated samples are the transform. The bar graph shows that 

in half above datasets the proposed method performs bettered versions of original train 

data, and the transformations are the random combination from Table 7.1. The 

numbers in Table 7.1 are smaller than 1, represent the fraction, for example, the 

horizontal shift is between [-0.05, +0.05] of total width of the image. In shift, shearing, 

and zoom (shrink), there will be spaces (non-value points) occurs, and they will be 

filled with values of nearest neighbour.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 7.10 Examples of data augmentation. (a-c) are original images. (d-f) are 

generated images. 

As shown in Fig. 7.10, the generated samples are transformed versions of original 

training samples. Some transformations can be clearly found in these examples, such 

as shift in Fig. 7.10 (a)(b), and horizontal flip in Fig. 7.10 (c). The data augmentation 

generates additional training samples along with the training epochs forwarding, 

hundreds of original samples run by dozens of epochs can generated thousands of 

augmentations, these additional data will improve the robustness and invariant 

properties of proposed segmentation network.  

7.4 Experimental results 

The proposed modified U-Net was implemented with Keras library of Python, running 

on PC with 16G RAM, 3.2GHz Intel(R) Core (TM) i7-8700 CPU, and a NVIDIA 

GTX 1070 GPU. Experiments were on real MRI data form Beatson west Scotland 

cancer centre. A total of 163 images (2D slices) from 17 patients were used in this 

work. The ground truth labels for training and validation are consensus manual 

delineation provided by clinicians from Beatson. Weights of proposed network are 



168 

 

optimized using Adam [341] with 1e-4 learning rate without weight decay, the Loss 

for optimization is given in Eq. 7.6 – Eq. 7.8. 

The limited numbers of data used in training of DCNN may lead to overfitting (see 

Chapter 3), data augmentation can partially reduce the occurrence of this problem. In 

this work, the cross validations are used to avoid the overfitting, and in some extent 

show the ability of generalization of the proposed deep neural network.  

The k-fold cross validation is to equally (or nearly equally) partition all data into k 

groups (folds), then conduct k times of training and validation. In data mining, ten-

folds cross validation is most common [342], while it also depends on how many data 

are available. In this work, 3-fold cross validation is used, an illustration is given as 

Fig. 7.11,  

 

Fig. 7.11 3-fold cross validation of HNC MRI slices. (a) shows the split of data into 

segments. (b-d) show three times of validations, where greens represent segments 

used for training, blues represents the segments used for testing.  

As shown in Fig. 7.11, the 163 HNC MRI slices are grouped into 3 segments S1, S2, 

and S3 with the proportions of 0.4, 0.3, 0.3, which are 65, 49, 49 slices respectively. 

The 3-fold cross validations are then finished by 3 times training and testing, first time 

S1, S2 for training, S3 for testing; second time S1, S3 for training, S2 for testing; third 

time S2, S3 for training, S1 for testing.  
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With this 3-fold cross validation setting, the proposed modified U-Net is evaluated by 

the performance compared to U-Net, the comparison between them measured by Dice 

Score [314] is given as,   

Table 7.2 HNC segmentation performance comparison 

Methods 
3-fold cross-validation 

Validation 1 Validation 2 Validation 3 

U-Net 0.6230 0.5576 0.5954 

Proposed 0.6735 0.6076 0.6510 

 

Table 7.2 shows that the proposed modified U-Net has 0.644 mean Dice Score across 

three times cross validations, which is about 0.05 higher than the Dice Score of 

classical U-Net through 3-fold cross validation. Here are more visualisation 

comparisons between two methods shown as Fig. 7.12,  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Fig. 7.12 Visualisation of segmentations of HNC from consensus manual 

delineations (yellow area), U-Net (red area), and proposed method (blue area). The 

images are from various patients. 

 

Fig. 7.12 demonstrates several examples of the comparison of segmentation results 

between original U-Net and proposed modified U-Net. From (b)(c)(e)(g), the proposed 

network has segmentations better overlapped with gold standard. In some slices, U-

Net or proposed network, or both have outliers’ segmentations. Such as in (d), the 

tumour area (yellow) is on the right side of throat, but here are ‘skipped’ segmentation 

(red and blue) on the left side of throat. This may disappear when the segmentation 

algorithm considers inter-slices information, but the network is segmenting targets 
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only based on single slice input. There are more visual examples of results in Appendix 

D. 

7.5. Conclusion 

This chapter introduced a novel deep learning based automatic segmentation algorithm 

for HNC extraction from MRI slices. The proposed algorithm is a modified version of 

classical DCNN called U-Net. The modification is based on the motivation of better 

feature fusion between low-level and high-level features, but also local and non-local 

features. The performances of the U-Net and proposed network are cross validated on 

real MRI data from Beatson West Scotland Centre. The data is 163 slices in 2D form 

collected from 17 patients. The cross validation shows the proposed network can have 

about 0.05 higher dice score compared to original U-Net.  

Through the development of the modified U-Net, several pros and cons of deep 

learning-based approach can be concluded. The first advantage of DL methods is that 

it is end-to-end structure combining feature extraction and classifier together and get 

rid of handcraft feature extractor designing. Another advantage of DL is that the 

algorithms can obtain robustness with the increase of data, rather than introducing 

significant modifications. While this reminds of first drawback of DL models, as they 

are data hungry, insufficient data cannot train a deep neural network well, but the 

deeper is better has been widely accepted in DL models’ design. Also, the training of 

DL models requires computation power and time cost. The proposed network is 2D 

based for two reasons: 1) The raw MRI data and labels are 2D, where the data can be 

interpolated but the label cannot be accurately reconstructed to 3D. 2) The training of 

3D models requires much higher memory of GPU, which is not available during the 

development the algorithm. Another challenge of DL is the difficulties of labelling 

medical data which highly relies on clinicians’ expertise. The results of DL model 

cannot be exactly interpreted, and cannot be interacted midway, which may add its 

difficulties to be used in practical applications shortly.  

The proposed network utilises single slices for prediction of tumour contours, the 

potential future work can be at the involving of 3D or inter-slices information. Also, 
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more data is awaiting to strengthen the model. Other methods such as transfer learning 

could be considered for the improvement of DL model performance with limited data.  
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Chapter 8 Conclusion and Future Work 

8.1 Conclusion 

This thesis explored various image processing approaches to tackle the several 

challenges accurate RTP. The major work of this thesis focuses on the automatic 

detection and segmentation of cancerous tumours and abnormal lymph nodes in head 

and neck region to provide objective contours to radiotherapist.  

In the RTP process, there are existing challenges in the manual delineations of GTV. 

The challenges include the inter- and intra- subjectiveness from manual segmentation 

of GTV, and the demands of clinical expertise and high time cost.  

In this thesis, firstly a novel knowledge-based abnormal lymph nodes detection and 

segmentation algorithm is presented.  With real 2D T1-weighted MRI slices as input, 

the proposed algorithm goes through a pipeline of pre-processing, detection, 

segmentation, and post-processing. In pre-processing stages, the contrast of image is 

enhanced, then bias field is removed, an intensity standardisation is applied between 

slices to adjust the histogram distribution, finally Fourier interpolation is used to 

reconstruct 2D slices into 3D head and neck MRI volume. The detection algorithm is 

built on the knowledge of anatomical structure of head and neck region on single slice, 

firstly throat is automatically detected to act as an important marker, then a modified 

fuzzy c-means is used to clustering pixels into groups based on intensities and distance 

to throat, a knowledge-based scheme is then proposed to refine the pixels to find the 

rough detection of abnormal lymph node. The detections on each slice are fused 

through a majority voting process, to finally determine the rough 3D localization of 

abnormal lymph node inside head and neck MRI volume. The segmentation uses 3D 

level set method algorithm which starts from automatic detected ALN and evolves 

under guidance of level set function to track the surface of ALN volume, finally the 

algorithm will converge so that get a segmentation of ALN. The segmentation results 

will be post processed using 3D morphological operation to remove outliers and 

smooth the segmented volume.  
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The second achievement in this thesis is developing a novel knowledge-based 

algorithm for the automatic 3D detection and segmentation of cancerous head and 

neck tumours. This proposed algorithm has similar pipeline with ALN work, the 

differences are in detection and segmentation phases. The detection is majorly 

conducted on central slices. Apart from the fuzzy c-mean, the watershed algorithms 

and localized region-based LSM are used to further supress the false positives in 

detection. In segmentation phase, a novel spatial-constrained 3D LSM is proposed to 

find the surface of tumour volumes, the constrains are from the spatial information 

deduced from detection phase.  

The both knowledge-based 3D segmentation algorithms achieved several goals of 

head and neck images analyse and tackled some difficulties in RTP. Firstly, the 

proposed algorithms can reconstruct 3D MRI with enhanced image quality based on 

input 2D MRI slices. This can produce extra 3D information to clinicians as well as 

engineers when the scanners can only provide limited spatial resolution. Secondly, the 

knowledge-based automated the process of clinicians identifying the ALNs and 

tumours from MRI slices and provided intermediate as well as final clinical targets to 

clinicians include locations, contours, and volumes of throat, abnormal lymph nodes, 

and tumours. In addition, the proposed algorithms can provide 3D visualisations of 

ALNs and tumours with clear and smooth boundaries, and thus combined with scanner 

parameters the quantifications of ALNs and tumours can be provided. 3D visualisation 

and quantifications of these clinical targets can help the planning of radiation treatment, 

also track the efficiency of treatment so that adjust the adaptive planning.  

This thesis also explored the deep learning methods for end-to-end supervised 

semantic segmentation of head and neck cancerous tumours from real MRI slices. A 

novel deep neural network which is modified on the classical U-Net structure. The 

modifications are majorly on introducing a two-pathway structure and dilated 

convolution to enlarge the view of context fusion. The novel achievement of this work 

is the HNC segmentation with improved accuracy compared to the original U-Net 

structure. This was completed with limited data and GPUs for training. The proposed 

deep learning approach releases the burden of designing handcraft features and 

subjective knowledges, also provide end-to-end structure to generate final pixel-wise 
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prediction with direct input. This deep learning method has challenges in data and 

computational power demanding, also it cannot be as well interpretated to clinicians 

as knowledge-based approaches. However, the deep learning method has potentials in 

coping with larger amounts of data and improving the performance rather than 

degrading, this will be an advantage compared to convention method. Also, this 

network will be easier to expand to multi-modality input and multi-class output 

applications compared to conventional methods. Thus, there are potential works and 

benefits to be expected in deep learning methods.  

8.2 Future work 

The possible future works of this thesis are listed as follows: 

1) Train networks with more data: the ability of prediction of a neural network will 

be improved by using deeper structures, which involves much more data and needs 

more data to train sufficiently. As shown in Chapter 7, currently less than 200 

images are used for training and testing, the future work can be conducted with 

more HNC MRI data to train a deeper network to improve the accuracy of tumour 

segmentation. 

2) Evaluate the proposed algorithms on larger dataset: currently the ALN 

segmentation algorithm is validated on 5 patients (Chapter 5), HNC segmentation 

algorithm is validated on 10 patients (Chapter 6), the DNN method uses 170 

images for cross-validation (Chapter 7). It would be beneficial if more HN MRI 

data in different TNM stages and modalities can be used to re-evaluate the 

proposed algorithms and test the algorithms in clinical environments. 

3) Improve the usage of inter-slices information: when clinicians meet challenging 

cases of contouring on one slice, a solution is to check former and latter slices to 

find clues. Currently, the proposed works (Chapter 5, 6) uses 2D detections and 

fuses them as a 3D detection. This concept could be used in Chapter 6 where more 

slices can be involved for detection rather than use central slice solely.  

4) Combine the deep learning and conventional approaches: the advantages in 

deep learning such as abilities of detection, feature extraction can be fused in the 

initial and evolution phases of deformable model to give more guidance to model, 
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and the deformable model has advantage in better boundary tracking, thus the 

combination should be helpful in future work.  
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Appendix 

A: Windows based software for automatic 3D segmentation 

of head and neck tumour 

As discussed in Section 6.7, we have further 3D automatic segmentation algorithm to 

the development of windows-based software for automatic 3D segmentation of HNC 

from T1 axial MRI data.  

The software has function in: 

1) Load and save MRI data as well as delineations 

2) Automatic and manually delineate HNC contours 

3) Modify unsatisfied delineations  

4) Reconstruction of 3D HNC volume 

5) Quantitative measure distance in image and volume of HNC 

6) Visualisation of 2D and 3D HNC 

These functions will be demonstrated with screenshots of the software. In Fig A.1, the 

main menu (Fig. A.1 (a)), data loading menu (Fig. A.1 (b)) and delineations loading 

menu (Fig. A.1 (c)) is shown. In main menu, the five red rectangular area represent 

Title (1), Collapse Menus (2), Toolbar Menu (3), Main Window (4), and Status Bar 

Window (5). The Collapse Menus include file management system (load and save), 

slices functions (View and Edit processed data), and compare 3D volumes.  The 

Toolbar Menu includes function of save project, open help window, go to home 

window. The Main Window display the being used window. The Status Bar gives 

information of the Main Window.   

Fig A.1 (b) shows the loading of data, where the black box in left window marks the 

selected folder and the files (DICOM MRI) in this folder is shown in right window. 

Fig A.1 (c) shows the loading of processed data, where the black box in left window 

marks the selected folder and the files (delineations) in this folder is shown in right 

window. 
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(a) 

 
(b) 

 
(c) 

Figure A.1 RTP Aid auto-segmentation software. (a) Home window of software. (b) 

Window of loading data. (c) Window of loading processed delineations.  

 

In Fig. A.2, the visualisation functions of this software are shown.  
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(a) 

 
(b) 

 
(c) 

Fig. A.2 Visualisation functions of RTP Aid tool. (a) View original slices. (b) View 

2D processed slices. (c) View 3D reconstruction from 2D slices. 
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Fig. A.2 shows the visualisation functions of RTP Aid Tool, where 2D slices before 

(Fig. A.2 (a)) and after (Fig. A.2) processing can be selected and viewed, and 3D 

volume (Fig. A.2 (c)) comparation of reconstructions from different 2D delineations 

can be visualised. 

 

Fig. A.3 Manual modification of existed delineations. (a) Existed contour. (b) 

Modifying by dragging. (c) Modified contour 

 

In Fig. A.3 the modification of existed delineation (thick red in Fig. A.3 (a)) by 

dragging of curve (in Fig. A.3 (b)) and achieve a modified delineation (thick blue in 

Fig. A.3 (c)).  

B: MRI dataset with head and neck cancer   

In Chapter 4, examples of MRI data and delineations from COs have been 

demonstrated, more examples will be given in this section. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Fig. A.4 Examples of T1 axial MRI slices with ALNs marked by yellow. (a-c) are 

slices from top to bottom order of first patient. (d-f) are from second patient. (g-i) are 

from third patient. 

 

Fig. A.4 shows examples of T1 axial MRI slices with labelled ALNs, Fig. A.5 displays 

MRI slices with labelled HNC.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Fig. A.5 Examples of T1 axial MRI slices with HNC marked by yellow. (a-c) are 

slices from top to bottom order of first patient. (d-f) are from second patient. (g-i) are 

from third patient. (j-l) are from fourth patient.  
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C: Automatic 3D segmentation results of ALNs and HNC 

The ALNs and HNC segmentation results have been visualized and quantitative 

analysed in Section 5.5 and Section 5.6. More examples of results are shown in Fig. 

A.6 and Fig. A.7. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. A.6 Examples of T1 axial MRI slices with ALNs drawn by manual (yellow) and 

automatic algorithm (red). (a-c) are from first patient. (d-f) are from second patient 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Fig. A.7 Examples of T1 axial MRI slices with HNC drawn by manual (yellow), 

methods in [193] (blue), and proposed automatic algorithm (red). (a-c) are from first 

patient. (d-f) are from second patient 

D: Modified U-Net segmentation results  

The quantitative analysis and some visual examples of proposed modified U-Net 

segmentation on HNC from MRI slice have been shown in Section 7.4, more visual 

examples are shown in  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(g) 

 
(k) 

 
(l) 

Fig. A.8 Visualisation of HNC segmentation. Yellow areas are from consensus 

manual outline, red areas are from U-Net, blue areas are from proposed DCNN. 
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