
University of Strathclyde

Department of Mathematics and Statistics

Computational Tools for Complex Networks

Alan J. Taylor

A thesis presented in fulfilment of the requirements

for the degree of Doctor of Philosophy.

December 2009



The copyright of this thesis belongs to the author under the terms of the

United Kingdom Copyright Acts as qualified by University of Strathclyde

Regulation 3.50. Due acknowledgement must always be made of the use of any

material contained in, or derived from, this thesis.



Dedication

This thesis is dedicated to my mum, Irene Mary Taylor (1949-2004), for all her

love and support, and for being the greatest role model I ever had.

i



Acknowledgements

I would like to thank my supervisor Professor Desmond J. Higham for his pa-

tience and support over the duration of my studies. As well as being a wonderful

mentor, he has been a constant source of encouragement. Without his guidance,

writing this thesis would have been a far more intimidating prospect. I would

also like to thank my colleagues Jonathan, Keith and Ernesto, whose invaluable

contributions, advice and encouragement were a great help to me.

My family have been wonderfully supportive of me and I would like to thank

my dad for letting me stay in Kilmarnock during the last year of my studies and

not complaining too much about the subsequent electricity bills. To my flatmates

Pete and Louise I’d like to offer my sincere thanks and heartfelt apologies. They

had to tolerate some hairy moments of angst and frustration but were always

there when I needed someone to talk to (or drink with).

During my time in the department I’ve had a great many officemates and I’d

like to thank them all for making the department a happy place to be. Special

mention must go to the longest suffering officemates; Gavin for his invaluable

help in getting over the LaTeX learning curve and Adam for his refreshing

optimism. Thanks also to Maxim for passing on his wisdom on many occasions

and for introducing me to the music of Tom Waits and Nick Cave. Aside from

my officemates I would like to thank all the friends I made during my stay in

the department for making it such a happy working environment.

Finally I would like to thank Ann for making the last three years the most

ii



enjoyable of my life. She gave me confidence in my abilities and was always able

to cheer me up and take my mind off work. I hope that some day I’ll be able to

repay all of her patience and support.

iii



Abstract

The field of network science has experienced increased interest in the past decade

due to a combination of new analytical insights, improved computational per-

formance and the availability of datasets from a broad spectrum of applications.

Many tasks involving networks lend themselves to interpretation as problems in

linear algebra. One such area of study is the systematic decomposition of large

networks into smaller substructures, analysis of which may aid the understand-

ing of the global properties of the network.

The aims of this thesis are twofold. Firstly, we provide two tools to aid in the

formulation and testing of applications for processing complex networks. The

first of these is a MATLAB toolbox for generating and processing instances of

various random graph models for use as sparse test matrices. The second is a

network repository that provides an accessible set of networks from a variety

of real world application areas. Secondly, we propose and discuss two proce-

dures designed to identify a particular pattern of connectivity within directed

networks; approximate bipartivity. The first of these is based on the singular

value decomposition of the adjacency matrix. The second is a mapping that pro-

duces a symmetric real-valued matrix where the entries give a measure of the

similarity of nodes. Both methods are tested extensively and applied to directed

networks from biology and sociology. Finally, we make a comparison of the two

methods before summarizing our findings and suggesting possible directions for

future work.
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Chapter 1

Introduction

1.1 Outline of Thesis

The field of complex networks is currently an area of intensive research due in

part to its applicability to data from a variety of sources. Complex networks

are found for example in biology [55, 85, 92], finance [9, 16], sociology [56, 71, 74]

and technology [1,33]. A convenient representation of complex networks is as an

adjacency matrix and this allows the application of concepts from linear algebra

to problems arising in these particular fields of study. The aim of this thesis is

to provide some computational tools to aid the testing of methods for complex

networks and to develop and explore in detail two approaches to a particular

problem - that of identifying approximately directed bipartite substructures.

In Chapter 2 we introduce the topic of network science and briefly discuss the

key ideas that gave impetus to the study of complex networks in the past decade.

We outline the measurements that are commonly calculated on networks to

attempt to describe or classify them. A description of the notation and pictorial

representations of networks used throughout this thesis is also given.

Much of the early work in the topic of network science was concerned with

1
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various probabilistic models for producing networks and the classical models by

Erdös and Rényi and Gilbert are discussed in Chapter 3. More recently, there

has been interest in probabilistic models that aim to capture key properties of

real life networks and these are also discussed here.

One area in which random graph models are employed is as test matrices for

numerical algorithms. To this end, the MATLAB toolbox CONTEST (CON-

trollable TEST matrices) was developed. The models and utilities implemented

in CONTEST are described in Chapter 4 and results of numerical tests carried

out on the models are also presented.

As part of the Institute of Advanced Studies’ programme in network sci-

ence, a repository of datasets from real-world applications was created with a

view to becoming a set of test networks for participants’ ideas and algorithms.

In Chapter 5 each of the twelve networks in NESSIE (Network Example Source

Supporting Innovative Experimentation) is described and plots of standard mea-

sures on networks are given.

The remainder of the original work in this thesis is concerned with methods

for the discovery of approximate directed bipartite subgroups within networks.

Our first approach to this problem involves the singular value decomposition

(SVD) of the adjacency matrix and is presented in Chapter 6. This work is an

extension to the directed case of the lock-and key algorithm described in [66].

The procedure is applied to test data before being used to investigate a network

of genes relating to the oncogene p53.

In order to test a second procedure for identifying directed bipartite sub-

structure, we first present a random graph model in Chapter 7 which aims to

produce directed networks that match a given target distribution of in and out

degrees. Two additional extensions of this model are presented and these are

also used in the testing.

The second procedure for discovering directed bipartite subgraphs concerns
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counts of alternating walks on a network. In Chapter 8 we introduce the con-

cept of an alternating walk and argue that by assuming a directed bipartite

substructure and considering counts of even and odd length alternating walks,

we can obtain a measure of ‘similarity’ for two nodes and hence a real-valued

symmetric matrix. We show that clustering algorithms applied to this mapped

matrix can reveal directed bipartite substructures within the original network.

This procedure is tested on synthetic networks before being applied to a dataset

from neuroscience.

In Chapter 9 we present a brief comparison of the two algorithms for detect-

ing approximate bipartite substructures, based on the genetic and neuroscience

networks. Finally we summarise the findings of this work and identify areas of

future interest in Chapter 10.

1.2 Publications and Presentations

Much of the material presented in Chapters 3 and 4 has appeared in the article

• CONTEST: A controllable test matrix toolbox for MATLAB, A. Taylor

and D. J. Higham, ACM Tran. Math. Software, 39, 2009, 26:1–26:17.

The material presented in Chapter 5 will appear as an invited chapter co-

authored with D. J. Higham in the Springer publication Network Science: Com-

plexity in Nature and Technology.

The material presented in Chapter 6 has been written as a technical report

and was first presented as a poster entitled “Discovering directed bipartite sub-

graphs” at NetSci 08, Norwich Biosciences Institutes, June 2008. It has been

submitted for publication as a paper co-authored with D. J. Higham and J. K.

Vass.
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The material presented in Chapters 7 and 8 has also been written as a tech-

nical report and was first given as a presentation entitled “Mapping directed

networks” at the 23rd Biennial Conference on Numerical Analysis, University

of Strathclyde, June 2009. It has been submitted for publication as a paper

co-authored with J. J. Crofts, E. Estrada and D. J. Higham.



Chapter 2

Background Material

2.1 Complex Networks

In the past decade, the study of complex networks has undergone a period of

renewed interest due largely to the seminal papers by Watts and Strogatz [90]

and Barabási and Albert [4]. Network science has its roots in graph theory, a

subject thought to have originated in Euler’s seminal paper of 1736 [31] where

the nonexistence of an Eulerian circuit in the system of bridges in Königsberg

was proven. In the late 1950s, the fields of graph theory and probability theory

were combined in the works by Erdös and Rényi [25] and Gilbert [35].

Taking inspiration from the psychologist Stanley Milgram’s work on chains

of acquaintances [63], Watts and Strogatz proposed a pseudo-random graph

model which lay between a regular lattice and a random graph that more closely

matched qualitative properties of real world networks than either extreme case

[90]. Their work on the so-called “small world” phenomenon prompted further

research into complex networks, most notably Barabási and Albert’s paper on

scale-free degree distributions [4]. As a direct result of these two influential

papers, coupled with improved computer processing power and the volume of

5
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readily available datasets, the field of network science has undergone a period

of intense research.

Put simply, a network is a collection of objects (called nodes or vertices) and

relationships between these objects (called edges). Networks may be directed

(there is a direction associated with each edge, i.e. the existence of an edge from

node i to node j does not guarantee the existence of an edge from node j to node

i) or undirected (i.e. edges can be thought of as bidirectional). The network of

scientific collaborations, for instance, is undirected since a collaboration between

X and Y is equivalent to a collaboration between Y and X. In contrast, the world

wide web is a directed network since a hyperlink from page A to page B may

not have a reciprocal hyperlink from page B to page A.

Similarly, networks can be classified into weighted and unweighted categories.

In a weighted network, some quantity is associated with each edge whereas in

an unweighted network connections are binary: an edge is either present or

absent. An example of a weighted network is given by distances between cities,

where the cities are nodes and the shortest distance between cities by road are

the edges. An unweighted example is the network of co-starring actors. If two

actors have appeared in a film together, they are linked by an edge; if they have

not appeared together, there is no edge.

Some examples of real world complex networks are given below1. Figure 2.1

shows a high school dating network [8] where nodes are students and an edge

exists between two nodes if they have been romantically involved. Figure 2.2

shows a network of protein-protein interactions in yeast [61], where each node is

a protein and there is an edge between two nodes if they are observed to interact

with each other. Finally, Figure 2.3 shows a network drawn from the novel Les

Miserables [68] where each node is a character and two characters are linked by

an edge if they appear in a scene together.

1Figures taken from http://www-personal.umich.edu/~mejn/networks/



Background Material 7

Figure 2.1: High school dating network. Blue and pink nodes represent male

and female students respectively.

Figure 2.2: Protein-protein interaction network in yeast.
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Figure 2.3: Social network of characters in the novel Les Miserables.

2.2 Notation

Many operations or processes on networks reduce to problems in linear algebra

and as such it is convenient to write a network in terms of its adjacency matrix.

For a graph G(V, E) where V is the set of vertices and E a list of edges, the

adjacency matrix A is a square matrix consisting of one row/column per vertex

in V with a 1 in the i, j position if there is an edge between vertices i and j in

the set E and 0 otherwise. An undirected network must then correspond to a

symmetric adjacency matrix since an edge from i to j can be thought to have

a reciprocal edge from j to i, therefore A(i, j) = A(j, i) = 1. In the case of a

weighted network, we think of a real valued matrix W where the W (i, j) entry

corresponds to the weight on the edge from i to j.

In certain cases it may be appropriate to permit networks with self links,

that is to say nodes that are connected to themselves. One instance where

such structures may occur is in food webs, where species are nodes and an edge

represents a predator-prey relationship between species. A self-link in a food
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web is indicative of cannibalism within a species. Self links are represented

by nonzeros in the main diagonal of an adjacency matrix. In this work we

exclusively consider networks without self-links.

Figure 2.4 shows a simple network which will yield the adjacency matrix


















0 1 1 0 0 1

1 0 0 1 1 0

1 0 0 1 0 0

0 1 1 0 0 1

0 1 0 0 0 1

1 0 0 1 1 0



















Throughout this thesis we will use matrix notation when referring to the

edges in a network. The nature of much of the work is such that it is more

convenient to represent results pictorially in the form of a matrix spy-plot re-

ordering than to list nodes and edges. The techniques we will use to present

such results are described in the next section.

Figure 2.4: An undirected network.
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2.3 Visualisation of Networks

It is often necessary to present results in complex networks pictorially, partic-

ularly in applications such as clustering or reordering algorithms. Rather than

attempting to find an optimal two dimensional placement of nodes in a network,

we will adopt the convention of using MATLAB’s spy function to produce a spy-

plot of an adjacency matrix. This is a pictorial representation of a matrix where

nonzeros are represented by dots. Since we deal mainly with binary matrices,

no information is lost in such a representation. This form of representation is

particularly useful when we attempt to qualify the success of a given reordering

on an adjacency matrix. By applying a permutation to the rows and columns,

we can see whether a particular node reordering reveals any patterns of con-

nectivity or cliques. In Figure 2.5 a spy-plot of an adjacency matrix is shown

next to the spyplot of the same adjacency matrix after the rows and columns

have been reordered according to the first eigenvector. We see that the reorder-

ing has revealed structures that were hidden by the arbitrary initial ordering.

Developing reordering strategies is a major theme in this thesis.
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Figure 2.5: Spyplot of an adjacency matrix before and after reordering.

In the instances where we deal with a real valued or weighted network, we

will use a heat map as a visualisation tool, where matrix entries are assigned a
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point on a colour scale according to their value, for instance a large positive entry

may be red whereas a large negative entry may be blue. For such matrices there

may be few or no zero-entries, so a spy-plot will not be a helpful representation

of the data.
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Figure 2.6: Heat map of a weighted adjacency matrix before and after reordering.

2.4 Measures on Networks

2.4.1 Degree Distribution

The degree of a node is defined as the number of edges incident with it. In the

case of unweighted graphs where repeated edges or self links are disallowed, the

degree of a node is equal to the number of neighbours it has, that is, the number

of nodes that can be reached by traversing a single edge. In the case of directed

networks, we consider two quantities per node, the in-degree and out-degree. In

this instance, an edge from node i to node j contributes to the out-degree of i

and the in-degree of j. Degree distributions are easily computable by considering

an adjacency matrix A. The in-degree of node i simply corresponds to the sum

of entries in the ith column. Similarly, the out-degree of node i may be computed

by summing entries in the ith row of A. In the case of an undirected network,
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the in-degree and out-degree are necessarily equal so either the row or column

sum of the adjacency matrix may be used. Figure 2.7 shows a spy-plot of an

adjacency matrix corresponding to an undirected network together with a log-

log plot of the degree distribution. For a given degree k, P (k) is defined as the

number of nodes having degree k.
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Figure 2.7: Geometric random network and degree distribution.

2.4.1.1 Scale-free Degree Distributions

Degree distributions are of interest when considering real world networks as

nodes of high degree may correspond to some kind of hub through which many

paths in the network must flow [5]. A network is said to be scale free if its degree

distribution is fat-tailed, that is to say that for a given degree k, the number of

nodes with degree equal to k is given by p(k) ≈ k−γ for some positive γ. In [4],

Barabási and Albert showed that scale free degree distributions can be found

in networks as diverse as actor collaboration data, the world wide web and the

electrical power grid of the western United States. Figure 2.8 shows a spy-plot of

a synthetic network together with a log-log plot of its degree distribution. From

the spy-plot, it is clear that the first few nodes have many connections compared

to the remainder of the nodes. This is mirrored in the log-log plot, where we

see that many nodes have a few connections whereas comparatively few nodes
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have many connections. The points on this plot also appear to fall roughly in a

straight line with negative gradient, i.e. they follow an inverse power law.
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Figure 2.8: Scale-free network and degree distribution.

There has been considerable debate in the literature over scale-free networks,

specifically whether networks in nature tend to be scale free or whether this

observed phenomenon is an artefact of the processes by which data is sampled

[43, 81]. Owing to their structure and the existence of “hub” nodes, scale-free

networks tend to be resilient to failures which are random in nature, such as

node or edge removal, but are vulnerable to targeted attacks, i.e. the removal

of hubs. This property allows meaningful questions to be posed concerning

real world networks where a scale-free structure is present. Protein regulatory

networks, the network of internet routers and sexual contact networks have been

observed to have scale-free degree distributions [4,5], allowing investigation into

processes such as transmission of disease or the cascade effects of power failure.

2.4.2 Clustering Coefficient

The clustering coefficient (or curvature) of a node is a measure of the connec-

tivity of its neighbours. Put simply, it is the ratio of the number of existing

closed walks of length 3 from a node to itself to the number of such walks that
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could potentially exist. By a walk we mean an alternating sequence of nodes

and edges such that each node is incident to the edges that preceed and follow

it in the sequence. If the first and last nodes in the sequence are the same, we

refer to this as a closed walk. Similarly, when we refer to a path, we are speaking

about an open walk. The clustering coefficient ci of a vertex vi is given by

ci =
2|∑j 6=k∈Ni

ajk|
ki(ki − 1)

where Ni is the set of neighbours of i, ki is the degree of i and

ajk =







1 if there is an edge connecting i and j

0 otherwise

Hence, a node whose neighbours are completely connected will have a clustering

coefficient of 1. In real world networks, the clustering coefficient is often seen as

an indication of how well a network is organised into cliques. This is particularly

apparent in social networks where an individual’s acquaintances are likely to be

acquaintances of each other. Figure 2.9 shows a spy-plot of an adjacency matrix

together with a plot of the clustering coefficient of each node. The clustering

coefficients have been reordered so that their distribution is more apparent.
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Figure 2.9: Network spy-plot and clustering coefficients.

An alternative (and non-equivalent) measure has been proposed for the global
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clustering coefficient of a network; this is defined as three times the number of

triangles in the network divided by the number of connected triples of vertices.

2.4.3 Pathlength

A quantity that gives insight into the connectivity of a network yet is straightfor-

ward to compute is the shortest pathlength between pairs of nodes. The shortest

pathlength between nodes i and j is the fewest number of edges that need to

be traversed in a path from i to j. If j is a neighbour of i, then the shortest

pathlength between i and j is 1. Longer paths may exist but the shortest path

is typically the most useful to compute. Pathlengths have an intuitive analog

in terms of adjacency matrices. The unweighted adjacency matrix A counts

all the paths of length 1 while A2 counts all paths of length 2. In general the

nth power of the adjacency matrix An counts all walks of length n. By using

Dijkstra’s algorithm [22] or by raising the adjacency matrix to higher powers, a

matrix of shortest pathlengths may be computed. Having computed this matrix,

it is often of interest to compute the average pathlength of a network. Short

pathlengths may be desirable in instances such as communications networks.

The small-world property defined by Watts and Strogatz [90] and discussed in

Section 3.2 is characterised by short average pathlengths and high clustering

coefficients. Figure 2.10 shows the spyplot of an adjacency matrix together with

a plot of the average pathlength for each node.
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Figure 2.10: Network spy-plot and average pathlengths.



Chapter 3

Random Graph Models

Typical data mining and visualisation tasks reduce to linear system or eigen-

value computations with the large, sparse adjacency matrices that define the

interactions. Several random graph models, that is, formulas for probabilisti-

cally inserting connections, have been derived that attempt to capture the key

topological properties of real-life networks. In this chapter, we give brief intro-

ductions to some popular models. Pictures illustrating instances of these graphs

can be found in Chapter 4.

3.1 Classical

Random graph theory began in the late 1950s with the two classical models

in [35] and [25]. These models are usually referred to as G(n, p) and G(n, m),

but to help distinguish between them we will use the names Gilbert and Erdös-

Rényi respectively.

In Gilbert’s model [35] a fixed probability p is specified, and then pairs of

nodes are connected independently at random with probability p. In the Erdös-

Rényi model [25] the number of edges in the network, m, is specified. We then

17
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select uniformly at random from the set of all graphs containing n nodes and m

edges. In this case, m must be no more than the maximum possible number of

edges, n(n − 1)/2.

Statistical properties of these random graphs have been well studied [2, 11]

although in terms of currently adopted measures, such as pathlengths, clustering

coefficients and graphlet frequencies, they cannot be regarded as accurate models

of realistic networks [20, 75, 90].

3.2 Small World

Motivated by the “small-world” concept of the experimental psychologist Stanley

Milgram [63], Watts and Strogatz [90] proposed a random graph model that can

be regarded as interpolating between a regular, periodic lattice and a classical

random graph. We begin with a k-nearest neighbour ring (nodes i and j are

connected if and only if |i − j| ≤ k or |n − |i − j|| ≤ k). Then, each edge is

considered independently in turn. With fixed probability p that edge is rewired

so that it has one new end point, a node chosen uniformly at random from the

network (with self-links being disallowed).

Figure 3.1: Small world network with p = 0, 0.2 and 0.5.
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3.3 Geometric

A two-dimensional, non-periodic, geometric random graph may be defined as

follows. First, each of the n nodes is placed at random in the unit square –

more precisely, the ith node is given coordinates (xi, yi) where {xi, yi}n
i=1 are

independent and identically distributed with uniform (0,1) distribution. Next,

for some specified radius r, nodes i and j are connected if and only if (xi−xj)
2 +

(yi − yj)
2 ≤ r2. In words, an edge denotes that two nodes were placed no more

than Euclidean distance r apart.

We emphasise that the resulting graph is simply the usual list of nodes and

edges. Information about the precise node locations {xi, yi}n
i=1 is not part of the

final mathematical object. Natural generalizations are possible.

Dimension: the nodes can be randomly assigned to locations in the unit cube

in R
m, for some m > 2.

Periodicity: distance can be measured in a wrap-around fashion, so that, for

example, in the unit square, (xi − xj)
2 + (yi − yj)

2 is replaced by

(min(|xi − xj|, 1 − |xi − xj|))2 + (min(|yi − yj|, 1 − |yi − yj|))2.

Norm: the Euclidean norm can be replaced by any other vector norm.

Much theory is available concerning properties of geometric random graphs

[73]. It was shown in [75] that two and three dimensional non-periodic versions,

using the Euclidean norm, give surprisingly accurate reproductions of many

features of real biological networks and an algorithm that tests for geometric

structure is developed in [51].
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Figure 3.2: Geometric random graph with nodes distributed in the unit square.

3.4 Preferential Attachment

Barabási and Albert [4] used the concept of preferential attachment to develop

random graphs with scale-free degree distributions. In this model, the network

grows – new nodes are added and connected to the existing network – until n

nodes have been created. For some fixed integer d ≥ 1, each new node is given

d edges on arrival. These new connections are not chosen uniformly; the new

node links to an existing node with a probability that is proportional to the

current degree of that node. In this way, well-connected nodes tend to become

even better connected (the rich get richer) as the network evolves.

3.5 Range Dependent

3.5.1 RENGA

Yeast two hybrid protein-protein interaction (PPI) networks have proteins as

nodes. Two nodes share an undirected edge if they have been experimentally

observed to interact [94]. Motivated by the structure of PPI networks, Grindrod
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[40] proposed and analysed a random graph model that, in a sense, generalizes

Watts-Strogatz. In this model, the nodes have a natural linear ordering, i =

1, 2, · · · , n. Independently over all pairs of nodes, we then insert a link between

nodes i and j with probability αλ|j−i|−1, where α ∈ (0, 1] and λ ∈ (0, 1) are

fixed parameters. The choice α = 1 ensures that adjacently ordered nodes are

always connected. The geometric factor λ|j−i|−1 causes long-range edges to be

less common than short range edges. Figure 3.3 shows an example of such a

network with α = 1.

Figure 3.3: RENGA random graph with nodes arranged in a linear ordering.

Further analysis and generalizations of this model, sometimes referred to as

RENGA, appear in [41, 45, 47]. Closely related models have also been used in

percolation theory [39].

3.5.2 Kleinberg

Kleinberg [57] defined a variation of the Watts-Strogatz model, and used it to

examine which types of navigation algorithm can exploit the existence of short

cuts. Kleinberg’s model is based on a periodic, two-dimensional lattice: the

n = m2 nodes can be thought of as being equally spaced throughout a square,

with each node having a location of the form (i, j) ∈ R
2, where the integers i and

j run from 1 to m. Every node is given short range connections to its neighbours

that are a lattice (Manhattan) distance of at most p away. Then each node is

given q further ‘long-range’ connections. For a given node, u, the recipient, v,

of each such long-range connection is chosen independently at random, with
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probability proportional to r−α. Here, r is the lattice distance between u and v

and α ≥ 0 is a fixed parameter. Figure 3.4 shows an instance of the Kleinberg

model, with nodes arranged in a lattice with nearest neighbours (Manhattan

distance = 1) connected and shortcuts added.

Figure 3.4: Kleinberg random graph.

3.6 Lock and Key

Using some basic biological insights, Thomas et al. [83] proposed a class of

random graphs that model PPI networks. This class of models was further

analysed in [66], where it was used to extract new biological information from

real PPI data sets. The underlying modelling idea is that two proteins interact

because they share physically matching parts, which, following [66], we refer to

as locks and keys. There will be several different types of key, which we can

think of as labeled by colours (red, green, blue, etc.) and for each type of key,

there is a matching lock (red, green, blue, etc.). In the model, each protein

has the same chance of possessing each colour of lock and each colour of key.
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More precisely, for a given number of colours, m, we take each node in turn and

independently assign it each possible lock and key with some fixed probability

p. The graph is then generated according to the rule that two nodes share an

edge if and only if one possesses a key and the other possesses a lock of the same

colour. Self links are removed. We remark that the lock and key concept will

be revisited in Chapter 6.

3.7 Stickiness

The stickiness model was introduced in [76] to model PPI networks. It was

motivated as a simplified version of the lock and key framework in which pa-

rameters could be fitted to real data. Here, a nonnegative vector d̂ ∈ R
n is

given, representing the scaled degree distribution of some target network; more

precisely, d̂i = degi/
√∑n

j=1 degj, where degi is the degree of the ith node in

the target. Then a new random network is produced by connecting nodes i and

j with probability d̂id̂j. In this way the expected degrees in the random model

match the target degrees. (A generalization of this model to the case of directed

edges will be given in Chapter 7.) This model was found to be more accurate

than previously proposed models at reproducing topological properties of PPI

networks.



Chapter 4

CONTEST

4.1 Motivation

From a numerical analysis perspective, the random graph models described in

Chapter 3 provide an extremely useful source of realistic, controllable test ma-

trices for linear algebra software. This provides the motivation for the MATLAB

toolbox CONTEST (CONtrollable TEST matrices) developed here, which im-

plements nine popular random graph models along with various utility functions

for post-processing the networks. The codes were developed and tested under

MATLAB Version 7.4.0.287 (R2007a).

A call to one of the random network functions in the toolbox will generate

an A ∈ R
n×n as an independent instance drawn from a random network model.

MATLAB’s built in pseudo-random number generators rand and randn provide

the randomness in each model, and our codes do not alter their states. This

means that it is possible to reproduce an adjacency matrix by resetting the

states of the random number generators. Although certain parameter values

may result in the creation of a dense or even full adjacency matrix, we adopt the

convention of generating adjacency matrices with the sparse attribute, since the

24
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applications for which these codes may produce suitable test matrices typically

work with sparse datasets.

Similarly, we adopt the convention of producing only symmetric adjacency

matrices, although it is straightforward to create unsymmetric versions, corre-

sponding to directed networks, simply by combining the upper and lower trian-

gles from two independent samples from the same model. For instance, calling

A = erdrey(n,m) and B = erdrey(n,m) then C = triu(A) + tril(B) would

create an unsymmetric version of the Erdös-Rényi model as described in Section

4.2.1. For some models however, such as preferential attachment, it is unclear

whether this is the best method of producing a directed network whilst preserv-

ing the key topological features of that model.

A recent and rapid expansion in theoretical and empirical research activity

has produced several models for computing networks in a controlled manner

that are “close” to real life networks in a well-defined sense. It is our tenet that

these computable networks are therefore excellent candidates for test matrices.

Although well established sparse matrix test sets exist [10,19,23], they have

been built around fixed instances arising in particular application areas. Ran-

domness is typically incorporated very simplistically. For example, Matrix Mar-

ket [10] with website URL http://math.nist.gov/MatrixMarket/ makes avail-

able the random generators DLATMR/ZLATMR from LAPACK [3], which indepen-

dently assign random samples from a given distribution across the entries of an

array and then randomly reset elements to zero in order to achieve a given level

of sparsity. In [19], Davis argues that “random sparse matrices” are not ap-

propriate for testing sparse matrix algorithms; however, these comments would

appear to be aimed at different classes of matrices to those considered here. The

models implemented in CONTEST use randomness to capture properties that

are commonly observed in complex interaction networks.

The code in CONTEST was written to exploit vectorization and to use
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matrix-vector level operations where possible, but ultimately our priority was

to allow sparse matrices of the largest possible dimension to be computed. A

secondary aim was to produce short, readable and maintainable programs. The

importance of memory allocation and usage when generating sparse matrices in

MATLAB is discussed in [36] and in NA DIGEST at

http://www.netlib.org/na-digest-html/07/v07n28.html1. Our justifica-

tion for not focusing on execution time is that the tasks that will typically be per-

formed with the matrices–eigensolves, linear systems solves, factorizations–will

usually be more computationally expensive than the matrix generation phase.

4.2 Models

In this section we briefly show how to use the MATLAB functions corresponding

to each of the nine models described in Chapter 3. In each case, the output

argument, A, is a sparse, symmetric zero-diagonal matrix of dimension n with

n being the first of the input arguments. The remaining input arguments take

default values if not specified in the function call. Default parameters have

been chosen to ensure that A corresponds to a connected (irreducible) graph

with high probability, with the exception of sticky in Section 4.2.8, which, by

construction, may produce many small disconnected subgraphs. Throughout

this chapter we show spy-plots of the nine models using n=100; this dimension

was chosen to make the visualisation clearer - in practice values of n of the order

104 or higher would be more realistic.

4.2.1 Classical Codes: gilbert and erdrey

The function gilbert(n,p) returns an instance from the Gilbert class described

in Section 3.1. The optional second input argument defaults to log(n)/n, so
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A = gilbert(n) is equivalent to A = gilbert(n,log(n)/n). Similarly, A =

erdrey(n,m) produces an Erdös-Rényi random graph, with m defaulting to the

smallest integer bigger than n log(n)/2. Figures 4.1 and 4.2 show spy-plots of

instances of gilbert and erdrey for varying values of p and m.
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Figure 4.1: Gilbert random graphs with p taking values 0.1, 0.2 and 0.3.
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Figure 4.2: Erdös-Rényi random graphs with m taking values 50, 300 and 1000.

4.2.2 Small World Code: smallw

The function smallw returns an instance of the Watts-Strogatz model described

in Section 3.2, with syntax according to A = smallw(n,k,p). The optional

input arguments k and p default to 2 and 0.1, respectively. From a linear algebra

perspective, the adjacency matrix has a symmetric, banded Toeplitz structure,

with extra nonzeros added uniformly and symmetrically at random. We note

that smallw makes use of the utility function short that is described in Section

4.3.2. Figure 4.3 shows spy-plots of instances of smallw for varying values of k

and p.
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Figure 4.3: Small-world random graphs with k taking values 1 and 2 in rows 1 and 2,

and p taking values 0, 0.2 and 0.5 in columns 1, 2 and 3 respectively.

4.2.3 Geometric Code: geo

The call A = geo(n,r,m,per,pnorm) returns an instance of a geometric random

graph as described in Section 3.3. There are four optional input arguments:

• r specifies the radius, defaulting to
√

1.44/n, which is motivated by the

asymptotic (n → ∞) level that guarantees connectivity in two dimensions [73].

• m specifies the dimension, defaulting to 2.

• per is a logical variable specifying whether periodic distance is to be used,

defaulting to per = 0; not periodic.

• pnorm specifies the Lp-norm to be used, defaulting to 2.

Figure 4.4 shows spy-plots of instances of geo for varying values of per and

r.
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Figure 4.4: Geometric random graphs with per taking values 0 and 1 in rows 1 and

2, and r taking values 0.1, 0.2 and 0.3 in columns 1, 2 and 3 respectively. m and pnorm

both take the default value 2.

4.2.4 Preferential Attachment Code: pref

The call A = pref(n,d) returns an instance of a preferential attachment graph

as described in Section 3.4, using a single node as the initial network. The degree

parameter d defaults to 2. Our precise model is a translation into MATLAB

of [7, Algorithm 5] which uses the specification in [12]. Figure 4.5 shows spy-plots

of instances of pref for varying values of d.
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Figure 4.5: Preferential attachment graphs with d taking values 1, 5 and 10.
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4.2.5 RENGA Code: renga

The call A = renga(n,lambda,alpha) returns an instance of a RENGA as de-

scribed in Section 3.5.1, with lambda defaulting to 0.5 and alpha defaulting to

1. Figure 4.6 shows spy-plots of instances of renga for varying values of lambda

and alpha.
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Figure 4.6: RENGA random graphs with lambda taking values 0.5, 0.7 and 0.9 in rows

1, 2 and 3, and alpha taking values 0.5, 0.7 and 0.9 in columns 1, 2 and 3 respectively.

4.2.6 Kleinberg Code: kleinberg

The call A = kleinberg(n,p,q,alpha) generates an instance of the Kleinberg

model described in Section 3.5.2. If the input dimension, n, is not a perfect
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square then the output matrix has dimension (round(sqrt(n))). Default values

are p = 1, q = 1 and alpha = 2. Figure 4.7 shows spy-plots of instances of

klein for varying values of p, q and alpha.
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Figure 4.7: Kleinberg random graphs with p taking values 1 and 2 in rows 1 and 2

respectively. q takes the value 1 in column 1 and 3 in columns 2 and 3, and alpha takes

the value 2 in columns 1 and 2 and 0.5 in column 3.

4.2.7 Lock and Key Code: lockandkey

The call A = lockandkey(n,m,p) returns an instance of a lock and key graph

as described in Section 3.6, where there are m different lock and key colours and

each type of lock and key is handed out independently with fixed probability

p. Default values are m = ceil(n*log(n)) and p = 1/n. Figure 4.8 shows

spy-plots of instances of lockandkey for varying values of m and p.
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Figure 4.8: Lock and key graphs with m taking values 1 and 2 in rows 1 and 2, and p

taking values 0.1, 0.2 and 0.4 in columns 1, 2 and 3 respectively.

4.2.8 Stickiness Code: sticky

The call A = sticky(deg) generates an instance of a stickiness graph as de-

scribed in Section 3.7, with expected degree distribution given by the one-

dimensional array deg. To be consistent with our general philosophy that all

models can be called with a single input argument, n, representing the dimen-

sion, we allow an exception where sticky is called as A = sticky(n), with n

a positive integer. In this case A will be an instance of a stickiness graph of

dimension n with a scale-free expected degree distribution of the form

Number of nodes of degree k

n
≈ k−γ (4.1)

with γ = 2.5. It is also possible to specify two input parameters; a call A =

sticky(n,gamma) specifies the value of γ to be used in 4.1. Figure 4.9 shows

spy-plots of instances of sticky for varying values of gamma.
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Figure 4.9: Stickiness graphs with gamma taking values 2, 1 and 0.5.

4.3 Utility Functions

4.3.1 Rewiring Code: rewire

The Watts-Strogatz model [90] added randomness to a ring network by rewiring

some edges. For a general undirected network, we define a rewiring process as

follows, in terms of a fixed parameter p. Each entry in the lower triangle of the

original adjacency matrix is examined in turn. If aij 6= 0 then, independently

with probability p, we reset aij = aji = 0, choose a node k uniformly at random

from all non-neighbours of node i, and set aik = aki = 1.

The call R = rewire(A,p) takes an adjacency matrix A and returns a rewired

adjacency matrix R. The rewiring probability p defaults to p = log(n)/n. Fig-

ure 4.10 shows the results of rewiring a Gilbert random graph when the rewiring

probability is 0.5 and 1.
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Figure 4.10: Gilbert random graph and rewired graphs with p taking values 0.1, 0.5

and 1.
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4.3.2 Shortcut Code: short

Rewiring has the theoretical drawback that it may cause a connected network to

become disconnected. Adding shortcuts is an alternative procedure that gives

very similar topological effects [69] but does not degrade connectivity. In this

case the parameter p is a fixed probability that is used independently over all

nodes. For each node, with probability p we add a new link from that node to a

node chosen uniformly at random across the whole network. Self links are then

removed and repeated links treated as single links.

The call S = short(A,p) takes an adjacency matrix A, adds shortcuts and

returns the new adjacency matrix S. The shortcut probability p defaults to

log(n)/n. Figure 4.11 shows a Gilbert random graph together with plots of the

same graph once shortcuts have been added, with p taking values 0.5 and 1.
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Figure 4.11: Gilbert random graph and graphs with shortcuts added, with p taking

values 0.5 and 1.

4.3.3 Subsampling Codes: unisample and baitsample

Information is often missing from real life connectivity data sets [21]. These

omissions may be caused, for example, by errors in experimental observations

(false negatives) or by an inherent restriction on the number or type of obser-

vations that can be made. In the case of yeast two hybrid PPI networks, it

is widely accepted that the reported network is merely a noisy subset of the
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underlying “true” network, and we can think of the given network as being gen-

erated from a “subsampling” operation on the larger version [84]. Interestingly,

it has been discovered that the subsampling operation may dramatically alter

the topological properties of a network [21, 43, 79].

We have implemented two subsampling algorithms. Given a set of nodes

and edges, they return the adjacency matrix for a network consisting of a subset

of those nodes and edges. The first algorithm does an unbiased, uniform node

removal involving a fixed parameter p. Each node is considered in turn, and with

independent probability 1−p we remove that node and all edges that involve it,

that is, we delete that row and column from the adjacency matrix. The second

algorithm uses a bait and prey approach, along the lines of [43], which models

the generation of certain PPI data sets. Here, we use two fixed parameters, bait

and prey. A proportion bait of the nodes are chosen as baits. Then, for each

bait, a proportion prey of its edges are recorded, along with the prey nodes that

are linked to the bait by those edges. The final subsampled network consists of

the bait-prey edges and all the nodes that they involve.

The call U = unisample(A,p) takes an adjacency matrix A and returns a

subnetwork U formed from an unbiased, uniform node removal. The proba-

bility p defaults to 0.5. The bait and prey algorithm can be called as B =

baitsample(A,bait,prey) with defaults bait = 0.5 and prey = 0.5.

Figure 4.12 shows an instance of a Gilbert random graph and two subgraphs

sampled using unisample with p taking the values 0.5 and 0.2. Figure 4.13 shows

the same graph, this time sampled using baitsample with input arguments bait

= 0.5, prey = 0.5 and bait = 0.2, prey = 0.9. The degree distribution of

each network is plotted underneath the corresponding spy-plot.

Figures 4.14 and 4.15 show an instance of a preferential attachment graph

sampled under the same conditions described above. Again, the degree distribu-

tions for each network are plotted directly under their spy-plot. In this instance
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we can clearly see that sampling methodology has a large effect on the preser-

vation of topological features, as a scale free degree distribution is observable in

Figure 4.15 but not in Figure 4.14.
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Figure 4.12: Spyplots and degree distributions for an instance of a Gilbert random

graph and subgraphs sampled using unisample, with p taking values 0.5 and 1.

4.3.4 Laplacian Matrix Code: lap

An undirected network can be characterised by its adjacency matrix, and basic

linear algebra tells us that the eigenvectors and eigenvalues of this matrix carry

relevant information. However, spectral graph theory [15] has shown that it is

generally more useful to look at the spectrum of the so-called Laplacian. There

are two different matrices that take this name in the literature. We distinguish

between them as follows.

• The graph Laplacian has the form D − A.

• The normalised graph Laplacian has the form D̂− 1

2 (D − A)D̂− 1

2 .
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Figure 4.13: Spyplots and degree distributions for an instance of a Gilbert random

graph and subgraphs sampled using baitsample, with bait taking values 0.5 and 0.2,

and prey taking vales 0.5 and 0.9.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 710

B = pref(100,0.4)

0 10 20 30 40

0

5

10

15

20

25

30

35

40

45

nz = 123

unisample(B,0.5)

0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

nz = 52

unisample(B,0.2)

0 10 20 30 40 50 60 70
0

5

10

15

20

25
Degree distribution

Degree k

N
o.

 n
od

es
 w

ith
 d

eg
re

e 
k

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12
Degree distribution

Degree k

N
o.

 n
od

es
 w

ith
 d

eg
re

e 
k

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Degree distribution

Degree k

N
o.

 n
od

es
 w

ith
 d

eg
re

e 
k

Figure 4.14: Spyplots and degree distributions for an instance of a preferential attach-

ment graph subgraphs sampled using unisample, with p taking values 0.5 and 0.2.
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Figure 4.15: Spyplots and degree distributions for an instance of a preferential attach-

ment graph subgraphs sampled using baitsample, with bait taking values 0.5 and 0.2

and prey taking values 0.5 and 0.9.

Here D = diag(degi) and D̂ = D with the exception that we take D̂ii = 1 in

the case where degi = 0.

In the case of a connected graph, the eigenvalues of the Laplacian are non-

negative, with smallest eigenvalue λ1 = 0 corresponding to the eigenvector 1.

Similarly, the normalised Laplacian has smallest eigenvalue µ1 = 0 corresponding

to the eigenvector D
1

2 1 and it can further be shown that the eigenvalues are

bounded by 0 ≤ µi ≤ 2 [88].

Clustering and partitioning tasks can be tackled by computing eigenvectors

corresponding to small eigenvalues of these matrices. In particular the Fiedler

vector and normalised Fiedler vector of a connected network are defined to be

the eigenvectors corresponding to the second smallest eigenvalues of the Lapla-

cian and normalised Laplacian, respectively [49]. Specific software exists for

computing this type of information [17, 44, 53].

The call L = lap(A,nl) takes a symmetric adjacency matrix A and returns
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a Laplacian; nl=0 for unnormalised and nl=1 for normalised. The default is

nl=1.

4.3.5 PageRank Code: pagerank

The PageRank algorithm returns a vector whose ith entry indicates the “im-

portance” of the ith node in a network. The algorithm was invented by Page

and Brin and forms the heart of the search engine Google [58, 72]. PageRank

was originally designed for the directed network where nodes are web pages and

edges are hyperlinks, but it has also been used on networks in biology [65]. Given

an adjacency matrix A, the PageRank vector x solves the linear system

Px = 1 where P = I − dAT D̂−1.

Here, d ∈ (0, 1) is a scalar parameter, the diagonal degree matrix D̂ is de-

fined in Section 4.3.4 and 1 denotes the vector of 1s. More precisely, when

A is unsymmetric we consider the out degree, so D = diag(
∑N

j=1 aij) and

D̂ = diag(max(Dii, 1)).

The call P = pagerank(A,d) takes an adjacency matrix A and returns the

PageRank matrix P, with d defaulting to 0.15. The matrix A is not assumed to

be symmetric - directed edges are allowed.

4.3.6 Mean Hitting Time Code: mht

In many applications it is useful to consider the discrete time, finite state space,

Markov chain that arises naturally from a network [60]. Here, if we are currently

at node i then at the next time level we move to a node chosen uniformly among

the neighbours of node i. The transition matrix for this Markov chain thus has

the form D−1A. Fixing a node, i, the mean hitting time for node j is defined to

be the average number of steps required for the Markov chain to reach state j,
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given that it starts at state i. The vector of mean hitting times can be found by

solving the linear system Mx = 1 where M ∈ R
n−1×n−1 is the transition matrix

with its ith row and column removed [70].

The call M = mht(A,i) takes an adjacency matrix A with nonzero out degrees

and returns the mean hitting time matrix M for a chain that starts at node i,

with i defaulting to 1. The matrix A is not required to be symmetric.

4.3.7 Pathlength Code: pathlength

The pathlength between nodes i and j is the smallest number of edges that must

be crossed to reach j starting from i. In terms of the adjacency matrix, A, the

pathlength between nodes i and j can be characterised as the smallest integer

k ≥ 1 such that (Ak)ij 6= 0. If (Ak)ij = 0 for all 1 ≤ k ≤ n − 1 then there is no

suitable path and the pathlength may be regarded as infinite.

The call Path = pathlength(A) returns an array Path of the same dimen-

sion as the adjacency matrix A, such that Path(i,j) is the pathlength from

node i to node j. We always set Path(i,i)=0 and we use Path(i,j)=inf to

denote that no path exists.

4.3.8 Curvature Code: curvature

The curvature, or clustering coefficient, of a node was defined in Section 2.4.2.

In MATLAB notation, the vector of clustering coefficients may be computed as

diag(A^3)/(sum(A).*(sum(A) - 1)).

The call curv = curvature(A) takes an adjacency matrix A of dimension n and

returns a one-dimensional array curv of length n, such that curv(i) records

the curvature of node i. A second input argument is allowed. The call curv =

curvature(A,ind) returns the maximum curvature if ind is the string ‘max’,
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the average curvature if ind is the string ‘ave’ and the curvature for the ith

node if ind is the integer i. Undefined curvature evaluates to NaN.

4.4 Numerical Testing

For a brief illustration of the toolbox in use, we follow Davis [19] by examining

the complexity of the minimum degree ordering algorithm as implemented in

MATLAB’s amd. Let L denote the Cholesky factor of the appropriate permuted

version of A and |L| be the operation count for computing L. We calculate

the run time (scaled by |L|) and plot against |L| on a log-log scale. Davis

[19] distinguished between matrices from a deterministic test set coming from

problems with and without inherent geometry. To mirror this, Figure 4.16 shows

results for matrices arising from the Gilbert class, using gilbert, where there is

no inherent structure, and Figure 4.17 shows results arising from the Kleinberg

class, using klein, where there is an underlying lattice. A best-fit line has been

superimposed onto each plot using the method of least-squares. In each case, the

matrix dimension n was varied between 50 and 10,000. The figures are consistent

with the rule of thumb mentioned in [19] that the run time is typically below

O(|L|). The figures for the remaining seven models implemented in CONTEST

may be found in Appendix B.1.

For each of the random graph models implemented in CONTEST, the fol-

lowing testing procedure was carried out. We generated one hundred instances

of a random graph with dimension n = 10, 000 and any other input arguments

taking default values. Each adjacency matrix was then supplied as input to

the function pagerank, with the default value d=0.15. The linear system of

equations Ax = 1 was then solved, where A is the PageRank matrix and 1 is

a vector of ones. Each system was solved by nine different numerical solvers in

MATLAB with no preconditioning, with the LU preconditioner and with the
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Figure 4.16: amd run times for Gilbert model.
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Figure 4.17: amd run times for Kleinberg model.
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Cholesky preconditioner. In each case the running time, relative residual and

iteration count were recorded.

We present here the results for the function smallw. Each entry in a table

represents the mean over 100 test runs with the standard error given in paren-

theses. Note that the figures in the tables represent the mean over those test

cases where the system converged to a solution, with a tolerance of 1e− 10 and

a maximum of 100 iterations. Results are presented for both symmetric ma-

trices and unsymmetric matrices obtained in the manner described in Section

4.1. The results for the remaining eight random graph models can be found in

Appendix B.2. Tests were run on a 2 GHz AMD OpteronTM Processor 252 with

11 gigabytes of memory.

Footnotes indicate the state under which a computation was ended and we

explain these here. State 0 indicates that the process coverged to the specified

tolerance within the maximum number of iterations. State 1 indicates that the

maximum number of iterations was reached without convergence to a solution.

State 2 indicates that the preconditioner was ill-conditioned. State 3 indicates

that the process stagnated, i.e. successive iterations were the same. State 4

indicates that a scalar quantity in the computation became too large or too

small for MATLAB to process. If no footnote is present, this indicates that all

processes finished in state 0, i.e. they converged to the required tolerance within

the maximum number of iterations.

4.4.1 Small World Symmetric

245% of cases finished in state 0, 50% in state 1 and 5% in state 4
3All cases finished in state 1
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Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 2.8571 e − 2 (1.1 e − 4) 6.1093 e − 2 (2.5 e − 4) 1.2558 e − 1 (4.1 e − 4)

qmr 4.5762 e − 2 (1.9 e − 4) 1.4697 e − 1 (2.6 e − 4) 1.6393 e − 1 (1.1 e − 3)

symmlq 2.3310 e − 2 (8.7 e − 5) 7.1339 e − 2 (2.5 e − 4) N/A3

lsqr 7.5776 e − 2 (2.9 e − 4) 1.9750 e − 1 (5.1 e − 4) 1.7368 e − 1 (4.4 e − 4)

minres 2.3502 e − 2 (8.6 e − 5) 7.5534 e − 2 (2.3 e − 4) N/A3

cgs 5.0228 e − 2 (7.2 e − 3)2 5.6789 e − 2 (1.9 e − 4) 7.3794 e − 2 (5.6 e − 4)

gmres 9.2971 e − 2 (1.0 e − 4) 1.3237 e − 1 (2.3 e − 4) 1.4325 e − 1 (2.4 e − 4)

bicg 3.7511 e − 2 (1.1 e − 4) 1.2683 e − 1 (3.1 e − 4) 1.4439 e − 1 (9.3 e − 4)

bicgstab 3.2351 e − 2 (6.0 e − 4) 6.2634 e − 2 (1.9 e − 4) 7.2459 e − 2 (4.8 e − 4)

Table 4.1: Mean running times and standard errors for smallw.

Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 8 e + 0 (0) 4 e + 0 (0) 15 e + 0 (0)

qmr 8 e + 0 (0) 4 e + 0 (0) 8.4200 e + 0 (5.4 e − 2)

symmlq 7 e + 0 (0) 3 e + 0 (0) N/A3

lsqr 10 e + 0 (0) 5 e + 0 (0) 8 e + 0 (0)

minres 7 e + 0 (0) 3 e + 0 (0) N/A3

cgs 1.0667 e + 1 (1.6 e + 0)2 2 e + 0 (0) 4.9300 e + 0 (3.6 e − 2)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 8 e + 0 (0) 4 e + 0 (0) 8.3900 e + 0 (5.1 e − 2)

bicgstab 4.6000 e + 0 (8.4 e − 2) 2 e + 0 (0) 4.1450 e + 0 (2.3 e − 2)

Table 4.2: Mean iteration counts and standard errors for smallw.
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Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 4.6274 e − 11 (1.3 e − 13) 1.8375 e − 12 (4.4 e − 14) 8.0102 e − 11 (3.7 e − 13)

qmr 4.6382 e − 11 (5.1 e − 13) 1.8233 e − 12 (4.4 e − 14) 4.0765 e − 11 (3.0 e − 12)

symmlq 4.6399 e − 11 (1.3 e − 13) 1.8375 e − 12 (4.4 e − 14) N/A3

lsqr 7.1549 e − 11 (1.5 e − 13) 4.5037 e − 12 (5.5 e − 14) 3.1691 e − 11 (1.5 e − 13)

minres 4.6298 e − 11 (1.3 e − 13) 1.8375 e − 12 (4.4 e − 14) N/A3

cgs 3.1761 e − 11 (3.9 e − 12)2 4.4617 e − 12 (4.5 e − 14) 1.1838 e − 11 (2.8 e − 12)

gmres 2.6102 e − 11 (4.3 e − 14) 1.8786 e − 12 (4.5 e − 14) 3.1784 e − 11 (3.2 e − 14)

bicg 4.1428 e − 11 (3.3 e − 13) 1.8235 e − 12 (4.4 e − 14) 4.3715 e − 11 (3.0 e − 12)

bicgstab 4.8405 e − 11 (2.9 e − 12) 3.2096 e − 12 (9.2 e − 14) 4.2227 e − 11 (2.7 e − 12)

Table 4.3: Mean relative residuals and standard errors for smallw.

4.4.2 Small World Unsymmetric

Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 3.7663 e − 2 (2.3 e − 3) 6.8470 e − 2 (1.7 e − 4) 1.4327 e − 1 (3.3 e − 4)

qmr 5.4876 e − 2 (6.1 e − 4) 1.5599 e − 1 (3.1 e − 4) 1.7486 e − 1 (9.4 e − 4)

symmlq 2.8257 e − 2 (3.5 e − 4) 7.8491 e − 2 (3.1 e − 4) N/A5

lsqr 9.0077 e − 2 (6.6 e − 4) 2.1509 e − 1 (3.2 e − 4) 1.9354 e − 1 (3.2 e − 4)

minres 2.9211 e − 2 (3.5 e − 4) 8.2459 e − 2 (3.5 e − 4) N/A5

cgs 6.4824 e − 2 (9.4 e − 3)4 6.2438 e − 2 (1.8 e − 4) 8.1249 e − 2 (7.7 e − 4)

gmres 1.0034 e − 1 (2.3 e − 3) 1.3870 e − 1 (3.2 e − 4) 1.5171 e − 1 (3.4 e − 4)

bicg 4.5039 e − 2 (3.1 e − 4) 1.3716 e − 1 (2.3 e − 4) 1.6204 e − 1 (9.8 e − 4)

bicgstab 4.1794 e − 2 (8.5 e − 4) 6.8753 e − 2 (1.9 e − 4) 8.2370 e − 2 (4.7 e − 4)

Table 4.4: Mean running times and standard errors for unsymmetric smallw.

For both classes of network, we see that run times, iteration counts and

relative residuals are typically lowest for all methods when LU preconditioning

is used. Additionally, all runs terminated under normal conditions (i.e. in state

0). For both symmetric and unsymmetric instances of the small world model, all

447% of cases finished in state 0, 48% in state 1 and 5% in state 4
5All cases finished in state 1
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Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 8 e + 0 (0) 4 e + 0 (0) 15 e + 0 (0)

qmr 8 e + 0 (0) 4 e + 0 (0) 8.3100 e + 0 (4.6 e − 2)

symmlq 7 e + 0 (0) 3 e + 0 (0) N/A5

lsqr 10 e + 0 (0) 5 e + 0 (0) 8 e + 0 (0)

minres 7 e + 0 (0) 3 e + 0 (0) N/A5

cgs 1.1255 e + 1 (1.7 e + 0)4 2 e + 0 (0) 4.7600 e + 0 (4.5 e − 2)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 8 e + 0 (0) 4 e + 0 (0) 8.3800 e + 0 (5.3 e − 2)

bicgstab 4.7800 e + 0 (9.9 e − 2) 2 e + 0 (0) 4.1200 e + 0 (2.3 e − 2)

Table 4.5: Mean iteration counts and standard errors for unsymmetric smallw.

Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 2.8630 e − 11 (3.7 e − 14) 1.3941 e − 12 (2.0 e − 14) 6.6990 e − 11 (3.5 e − 13)

qmr 2.6090 e − 11 (6.6 e − 14) 1.3968 e − 12 (2.0 e − 14) 4.5115 e − 11 (2.9 e − 12)

symmlq 2.8646 e − 11 (3.7 e − 14) 1.3940 e − 12 (2.0 e − 14) N/A5

lsqr 4.1215 e − 11 (5.6 e − 14) 1.3843 e − 12 (1.3 e − 14) 1.9829 e − 11 (3.0 e − 14)

minres 2.8594 e − 11 (3.7 e − 14) 1.3940 e − 12 (2.0 e − 14) N/A5

cgs 3.8478 e − 11 (4.5 e − 12)4 2.3002 e − 12 (2.8 e − 14) 2.6326 e − 11 (3.9 e − 12)

gmres 1.8578 e − 11 (2.2 e − 14) 1.4386 e − 12 (2.0 e − 14) 2.5916 e − 11 (2.1 e − 14)

bicg 2.6052 e − 11 (4.3 e − 14) 1.3970 e − 12 (2.0 e − 14) 4.1125 e − 11 (2.9 e − 12)

bicgstab 4.5101 e − 11 (3.0 e − 12) 2.4079 e − 12 (2.5 e − 14) 4.0653 e − 11 (2.5 e − 12)

Table 4.6: Mean relative residuals and standard errors for unsymmetric smallw.



CONTEST 47

runs terminated normally except the cgs scheme when no preconditioner was

used and the symmlq and minres schemes when the Cholesky preconditioner

was used.



Chapter 5

NESSIE

5.1 Motivation

NESSIE (Network Example Source Supporting Innovative Experimentation) is

a web-based facility that makes available 12 realistic examples of complex net-

works. The motivation for this collection is to provide a test set of example

networks, taken from a variety of application areas, that may be useful for

testing and comparing algorithms in network science. The networks are made

available as adjacency matrices in MATLAB’s .mat format. Some of the net-

works are derived by calculating correlation coefficients on non-square matrices,

and in these cases both the original data and a sample adjacency matrix are

provided. The NESSIE network collection is available from the URL

http://fox.maths.strath.ac.uk/~aap05145/Nessie/nessie.html.

Although we are unaware of any directly comparable resource, we mention some

related projects here.

48
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CONTEST [82] is a MATLAB toolbox that allows generation of networks

as instances of various random graph models. The models and utilities imple-

mented in CONTEST are described in Chapter 4.

GraphCrunch [62] is a network comparison tool. Global and local prop-

erties of an input network are calculated and compared with those of random

network models. The model networks are calibrated to have a number of nodes

and edges within 1% of those in the target network.

The University of Florida Sparse Matrix Collection [19] is a collec-

tion of instances of sparse matrices from a variety of areas. Like CONTEST,

the collection is intended for the testing and development of sparse matrix al-

gorithms. Although the matrices arise from several application areas in science

and engineering, including fluid dynamics, electromagnetics, computer graphics

and robotics, some represent network connectivity patters. This differs from

CONTEST in that it is a set of static matrices, whereas CONTEST affords the

user parameterized control over matrix dimension and features such as sparsity

and degree distribution. Some of the test sets included in the University of

Florida collection can also be found in Matrix Market [10], a similar web-based

facility.

UCINET IV Datasets, available from

http://vlado.fmf.uni-lj.so/pub/networks/data/Ucinet/UciData.htm

provides a set of small networks (between 10 and 58 nodes each) from sociology

that describe interactions between individuals.

Pajek is a tool for analysis and visualization of large networks. As an

addition it includes a set of around 50 examples of networks, primarily related

to text mining applications. Pajek is available from



Nessie 50

http://vlado.fmf.uni-lj.so/pub/networks/pajek.

5.2 Philosophy

Our aim is that NESSIE provides an uncluttered, accessible and informative

network repository. The networks are made available as .txt files and .mat

files. In the case of MATLAB files, the adjacency matrices have the sparse

attribute [36, 48]. MATLAB utilities for computing the Pearson correlation

coefficient and for Estrada’s classification system [27] are included. In the next

section we provide basic information about each network and show plots of

various measures, such as degree distributions and clustering coefficients.

5.3 The Networks

We now describe the 12 networks comprising the example set. In each case we

illustrate the adjacency matrix in a MATLAB spy-plot and show plots of some

basic network measures: degree distributions, clustering coefficients, eigenvalues

and the components of the Fiedler vector (as well as a spy-plot of the adjacency

matrix reordered according to the Fiedler vector). When considering degree, we

plot a cumulative degree distribution (as well as a degree histogram) for each

network, as this allows more straightforward comparison of networks of different

sizes. We also show the spectral scaling property of the network as described

in [27]; here we plot log10
SCodd(i) against log10γ1(i), where

• γ1 is a dominant eigenvector of the adjacency matrix, and

• SCodd(i) is the odd subgraph centrality of node i. This is defined by summing

over all possible walks of length k, the number of odd-length closed walks
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starting and finishing at node i, scaled by 1/(k!). On the same axes, we plot

the straight line defined by y = 0.5x− 0.5log10(λ1) where λ1 is the eigenvalue

corresponding to γ1.

In [27] Estrada distinguishes four topological classes based on such plots.

Class I : the points (log10
SCodd(i), log10γ1(i)) lie close to the straight line.

Class II : the points (log10
SCodd(i), log10γ1(i)) lie below the straight line.

Class III : the points (log10
SCodd(i), log10γ1(i)) lie above the straight line.

Class IV : the points (log10
SCodd(i), log10γ1(i)) are scattered above and below

the straight line.

Estrada further argues that Class II is typified by networks with central ‘holes’

and that Class III is typified by networks with central ‘cores’.

5.3.1 Network 1: European Economic Regions

European countries may be broken down into smaller territories [34]. An undi-

rected network consisting of 255 nodes and 580 undirected edges is established

by connecting territories that are physically contiguous, i.e. they share a border,

therefore a node in the network represents a territory and an edge between two

nodes means that they are physically adjacent. For such a network, it may be

useful to establish optimal paths between two territories e.g. routes that pass

through a minimal number of foreign countries. Similarly, measures of central-

ity may be of interest to establish which territories are best connected in some

sense. Figures 5.1 and 5.2 show plots of some simple measures on the network

of contiguous European economic regions.
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Figure 5.1: Spy-plot, curvature, cumulative degree distribution and degree histogram

for the network of European economic regions.
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Figure 5.2: Network classification, eigenvalue distribution, normalised Fiedler vector

and reordered adjacency matrix for the network of European economic regions.
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5.3.2 Network 2: Guppy Social Interactions

This dataset consists of social interactions in a population of guppys [18]. Each

node represents a free-ranging guppy and each edge an observed social interac-

tion. The network consists of 99 nodes and 726 undirected edges. Recurring

social interactions result in weighted edges and these may be of interest in iden-

tifying close-knit communities within the population. Figures 5.3 and 5.4 show

plots of some simple measures on the network of guppy social interactions.
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Figure 5.3: Spy-plot, curvature, cumulative degree distribution and degree histogram

for the network of guppy social interactions.
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Figure 5.4: Network classification, eigenvalue distribution, normalised Fiedler vector

and reordered adjacency matrix for the network of guppy social interactions.
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5.3.3 Network 3: Reactor Core Modelling

The function hexgrid generates a graph representing the connections between

graphite blocks used to encase fuel rods in nuclear reactors [91]. The blocks are

modelled as a set of hexagonal tiles arranged in concentric rings, with each node

in the network representing an hexagonal block and each edge representing a

“keyed connection” between two blocks. The primary aim is to discover how

removal of keyed connections influences the modes of movement available to the

blocks. Another question is that of symmetry in the network: is it possible, given

a pattern of keyed connections to be removed, to eliminate all the analagous

cases (i.e. sets of connections whose removal will result in the same modes of

movement). Figures 5.5 and 5.6 show plots of some simple measures on network

obtained by running the program hexgrid with input argument 5 (meaning 5

layers of hexagonal tiles). This results in a network comprising 61 nodes and

192 undirected edges.

5.3.4 Network 4: Classification of Whiskies

86 malt whiskies are scored between 0-4 for 12 different taste categories including

sweetness, smoky, nutty etc [93]. Additionally, coordinates of distilleries allow us

to obtain pairwise distance information. Using a combination of these datasets

it is possible to look for correlations between particular attributes of taste and

physical location, for example does a shared local resource have a significant

effect on nearby whiskies. By using correlation data it may be possible to provide

whisky recommendations based upon an individual’s particular preferences. By

computing the Pearson correlation coefficient and specifying a threshold value

between 0 and 1, we can establish an adjacency matrix where each node is a
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Figure 5.5: Spy-plot, curvature, cumulative degree distribution and degree histogram

for the network of reactor components.
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Figure 5.6: Network classification, eigenvalue distribution, normalised Fiedler vector

and reordered adjacency matrix for the network of reactor components.
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malt whisky and an edge represents a level of similarity above the threshold.

By varying the threshold value, the density of nonzeros in the adjacency matrix

will change. For instance a high threshold will result in a more sparse adjacency

matrix since a higher level of similarity between two whiskies is required to

“earn” a nonzero. Figures 5.7 and 5.8 show plots of some simple measures on

the network obtained by computing the Pearson correlation coefficient of pairs

of whiskies and taking a threshold level of 0.7. This particular network contains

493 undirected connections between 86 nodes.
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Figure 5.7: Spy-plot, curvature, cumulative degree distribution and degree histogram

for the network of malt whisky similarity.
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Figure 5.8: Network classification, eigenvalue distribution, normalised Fiedler vector

and reordered adjacency matrix for the network of malt whisky similarity.



Nessie 61

5.3.5 Network 5: Scottish Football Transfers

Twice annually, Scottish football clubs have an opportunity to transfer players.

A list of these transfers is available from

http://en.wikipedia.org/wiki/Seasons_in_Scottish_football.

The movement of players between clubs forms a directed graph where each

vertex is a football club and each edge represents a transfer in a particular

direction. Additionally, this graph may be weighted since multiple players may

transfer between two clubs. The transfer fee exchanged could be considered as

the weight on each edge although this is complicated by a number of factors. Out

of contract players may move between clubs for free, players may be transfered

on short-term loan deals and very often transfer fees are not disclosed to the

public. This dataset, which lists the transfers to and from Scottish clubs for three

consecutive transfer periods, considers only the movement of players between

clubs and does not take into account any money involved. Figures 5.9 and

5.10 show plots of some simple measures on the network of Scottish football

transfers in the season 08-09. The network has been symmetrized to allow

better visualisation. The unsymmetric network for the season 08-09 consists of

242 directed edges and 128 nodes.

5.3.6 Network 6: Scottish Transport Networks

Data regarding journey times between Scottish towns is readily available. This

particular dataset comes from

http://www.transportscotland.gov.uk/.

Two matrices list typical travel times between Scottish towns, by train or

by car. The matrices are non-square, that is to say the data is incomplete. For
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Figure 5.9: Spy-plot, curvature, cumulative degree distribution and degree histogram

for the undirected network of Scottish football transfers in the season 08-09.
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Figure 5.10: Network classification, eigenvalue distribution, normalised Fiedler vector

and reordered adjacency matrix for the undirected network of Scottish football transfers

in the season 08-09.
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instance the travel times from Wick and Tain to Stirling are included but the

travel time from Wick to Tain is not. The dataset lends itself to graph-layout

problems. Given this limited data, can we find a two dimensional distribution of

the towns in question such that the distance between them respects the average

travel times? By following the same procedure outlined in Section 5.3.4 we may

obtain an undirected adjacency matrix for a given threshold level of “similarity”.

In this case, a node represents a town or city and an edge represents a given

level of similarity (or inverse-distance) between two towns. Figures 5.11 and

5.12 show plots of some simple measures on the network obtained by computing

the Pearson coefficient of pairs of car journey times and taking a threshold level

of 0.9. This value yields a network of 25 nodes and 77 undirected edges.

5.3.7 Network 7: Metabolite Network

The nodes are potential chemical formulae obtained by searching databases for

formulae with mass with 10ppm of peaks measured in a sample derived from

the Trypanosome parasite [78]. Connections are made between two formulae if

they differ by one of 80 known transforms. For example, a difference of two

Hydrogen atoms suggests the possibility of (de-)hydrogenisation ±H2. Figures

5.13 and 5.14 show plots of some simple measures on the metabolite network

which consists of 376 nodes and 343 edges.

5.3.8 Network 8: p53 Network

A directed network of genes related to the oncogene p53 is obtained by consider-

ing pairwise expression levels. An edge is inserted from gene i to j if i expresses

significantly above its usual level while j expresses significantly below its usual
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Figure 5.11: Spy-plot, curvature, cumulative degree distribution and degree histogram

for the transportation network derived from journey times by car.
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Figure 5.12: Network classification, eigenvalue distribution, normalised Fiedler vector

and reordered adjacency matrix for the transportation network derived from journey

times by car.



Nessie 67

0 100 200 300

0

50

100

150

200

250

300

350

nz = 686

Adjacency matrix

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

node

cu
rv

at
ur

e

Curvature

1 2 3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree k

P
ro

ba
bi

lit
y 

a 
no

de
 h

as
 d

eg
re

e 
k 

or
 h

ig
he

r

Cumulative degree distribution

0 2 4 6 8 10
0

50

100

150
Degree distribution

k

N
o.

 n
od

es
 w

ith
 d

eg
re

e 
k

Figure 5.13: Spy-plot, curvature, cumulative degree distribution and degree histogram

for metabolite network.
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Figure 5.14: Network classification, eigenvalue distribution, normalised Fiedler vector

and reordered adjacency matrix for the metabolite network.
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level. The resulting ‘plus-minus’ network is a directed network consisting of

133 nodes (genes) and 558 edges (changes in expression level with opposite po-

larity) [89]. Figures 5.15 and 5.16 show plots of some simple measures on the

directed gene co-expression network. As with the network of football transfers,

the data has been symmetrized to allow better visualization.
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Figure 5.15: Spy-plot, curvature, cumulative degree distribution and degree histogram

for the p53 network.

5.3.9 Network 9: Gene Network

Gene expression is typically recorded in a matrix of size N×M where expression

levels of N genes are recorded over M samples [13]. By computing correlation

coefficients on such a matrix, we can obtain a square matrix of samples (patients)
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Figure 5.16: Network classification, eigenvalue distribution, normalised Fiedler vector

and reordered adjacency matrix for the p53 network.
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or genes. For the gene network presented here, we have computed a matrix

where each node is a patient and an edge exists between two patients if their

gene expression levels yield a correlation coefficient above a threshold value of

0.65. This results in a network of 38 nodes and 180 undirected edges. Applying

clustering to such a dataset may allow classification of a new sample into an

existing group of patients. In Figures 5.17 and 5.18 we show plots of measures

on the gene network.
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Figure 5.17: Spy-plot, curvature, cumulative degree distribution and degree histogram

for the gene network.
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Figure 5.18: Network classification, eigenvalue distribution, normalised Fiedler vector

and reordered adjacency matrix for the gene network.
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5.3.10 Network 10: Protein-protein Interaction Network

Protein-protein interaction networks consist of observed physical interactions

between proteins [54, 86]. Each edge represents a protein and an edge exists

between two proteins if they have been observed to interact. Interactions be-

tween proteins are bidirectional so the set of interactions between proteins in an

organism forms an undirected unweighted network. Protein-protein interaction

networks are widely available from repositories such as

http://www.thebiogrid.org

and we include here an example of a network taken from yeast consisting of

4388 nodes and 38102 edges (915 of which are self-links). Plots of measures on

this network are shown in Figures 5.19 and 5.20.

5.3.11 Network 11: Benguela Marine Ecosystem

A network can be obtained by observing trophic interactions between species.

One such network is that of the Benguela ecosystem consisting of species found

off the southwest coast of South Africa [95]. In this instance each node rep-

resents a particular species, and two species are linked if they interact at the

trophic level, i.e. one population impacts upon the size of another. The network

considered here consists of 29 nodes and 191 undirected edges. Such networks

may be useful if we wish to assess the importance of longer paths in a food-web,

i.e. to find out how two species affect each other despite a lack of a direct path

between them. We show plots of measures on the Benguela marine ecosystem

network in Figures 5.21 and 5.22.
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Figure 5.19: Spy-plot, curvature, cumulative degree distribution and degree histogram

for the protein-protein interaction network.
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Figure 5.20: Network classification, eigenvalue distribution, normalised Fiedler vector

and reordered adjacency matrix for the protein-protein interaction network.
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Figure 5.21: Spy-plot, curvature, cumulative degree distribution and degree histogram

for the Benguela marine ecosystem network.
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Figure 5.22: Network classification, eigenvalue distribution, normalised Fiedler vector

and reordered adjacency matrix for the Benguela marine ecosystem network.
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5.3.12 Network 12: US Marine Ecosystem

Similarly we can consider the marine ecosystem of the Northeast US shelf [59].

Once again, nodes represent species and an edge represents an interaction at

the approximate trophic level of each species. The network obtained from this

ecosystem contains 81 nodes and 1451 undirected edges. In Figures 5.23 and

5.24 we show plots of measures on the US marine ecosystem network.
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Figure 5.23: Spy-plot, curvature, cumulative degree distribution and degree histogram

for the US marine ecosystem network.
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Figure 5.24: Network classification, eigenvalue distribution, normalised Fiedler vector

and reordered adjacency matrix for the US marine ecosystem network.



Chapter 6

Discovering Directed Lock and

Key Structure

6.1 Motivation

A network, or subnetwork, is said to be bipartite if it can be split into two disjoint

groups of nodes such that connections only occur across, but not within, the two

groups. Such a structure is obvious in some networks because they consist of

objects that naturally fall into two sets. For instance a movie network from

a source such as the Internet Movie Database [67] may be constructed where

nodes are actors or movies and an edge indicates that an actor appeared in a

particular movie. In such a network nodes of one type (e.g. actors) are only

connected to other nodes of the same type by walks of even length.

If, however, nodes in a network cannot be easily separated into two such

categories, bipartite structure might not be immediately apparent. There has

been interest in quantifying the overall level of bipartivity for a network, node

or edge [26, 30, 52] but we seek to take a more practical approach of identifying

80
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hidden biparite substructures. In reality, perfectly bipartite structures are un-

likely to occur in several types of network, since datasets are often contaminated

with missing or spurious edges, so we will concern ourselves with attempting to

identify approximately bipartite subnetworks.

Existing work in this area has been concerned with protein-protein interac-

tion (PPI) networks where nodes represent proteins and edges denote an ob-

served physical interaction between a pair of proteins [20]. It has been observed

that some types of protein-protein interaction occur as a result of complemen-

tary binding domains. That is to say that all proteins that possess a particular

binding domain should interact with all proteins that possess the complemen-

tary domain [83]. In [66], Morrison et al developed an algorithm that aimed

to find bipartite substructure in PPI networks relying only on interaction data,

i.e. network topology, by taking a spectral approach which was shown to be

robust in the presence of noise. A related approach was taken in [29] where the

negative matrix exponential was interpreted as a count of odd and even length

walks. This approach has the advantage that it allows the whole network to be

partitioned into quasi-bipartite communities.

This work differs from previous studies by considering networks with directed

edges - a connection from node i to node j may not necessarily have a reciprocal

connection from node j to node i. Our aim is to develop an approach for

identifying directed bipartite substructure, that is, groups of nodes S1 and S2

such that edges point from nodes in S1 to nodes in S2 but not in the opposite

direction. We will show that spectral information is still relevant if we generalize

from eigenvalues and eigenvectors to singular values and singular vectors. We

develop our theoretical arguments in Section 6.2, present meaningful test cases

in Sections 6.3 and 6.4 and finally apply the approach to a larger network arising
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from cancer microarray data in Section 6.5 as well as a smaller one from sociology

in Section 6.6.

6.2 Theory

Using standard notation, we denote a directed network with N nodes by the

unsymmetric adjacency matrix A ∈ R
N×N , where aij = 1 if there is a link

from node i to node j and aij = 0 otherwise. To characterize directed bipartite

subnetworks, we find it useful to borrow the lock and key analogy that was intro-

duced in [66]. We suppose that locks and keys are distributed among the nodes

in a network. We further suppose that each lock and key has a particular colour

(red, blue, green, ...) and that lock-key matches, corresponding to connections

in the network, take place only when the colours agree. Suppose now that two

sets of nodes, S1 and S2, form a directed bipartite subnetwork so that edges

between these nodes only point from nodes in S1 to nodes in S2. We may relate

this to the lock and key analogy by imagining that S1 consists of all the nodes

that possess a key of a particular colour, say red, and that S2 consists of all the

nodes that possess the corresponding red lock.

We note that the reference [66] dealt only with undirected edges, whereas

this work is concerned with the directed case. The concept of locks and keys here

is slightly different, and perhaps more natural, and we find that the arguments

in support of a spectral algorithm are stronger.

We focus for now on this particular red lock-key subnetwork. We may intro-

duce a pair of indicator vectors ured,vred ∈ R
N such that
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(ured)i =







1 if node i has the red key,

0 otherwise,
(6.1)

and

(vred)i =







1 if node i has the red lock,

0 otherwise.
(6.2)

It follows immediately that the edges arising from red lock-key interactions

may be characterized through the outer product ured(vred)T . If we let

keyred := ||ured||22

and

lockred := ||vred||22

denote the total number of red keys and red locks, respectively, then this outer

product may be written

√
keyred × lockred ûred(v̂red)T ,

where ûred := ured/||ured||2 and v̂red := vred/||vred||2 are unit vectors. More gen-

erally, when all edges arise through key-lock interactions, the adjacency matrix

for the network may be expanded as
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A = sign
(√

keyred × lockred ûred(v̂red)T

+
√

keyblue × lockblue ûblue(v̂blue)T

+
√

keygreen × lockgreen ûgreen(v̂green)T + · · ·
)

,

(6.3)

where the sign function deals with the possibility of multiple key-lock matches;

node i may have both a red and blue key whilst node j has both a red and blue

lock.

The sign function in 6.3 is not needed if we make the following assumption.

Assumption A: each node has at most one key and one lock.

Note that this assumption permits a node to possess a key of one colour

and a lock of another colour, or a lock and key of the same colour. A sec-

ond important consequence of assumption A is that the key indicator vectors

{ured,ublue,ugreen, · · · } form an orthogonal set and the lock indicator vectors

{vred,vblue,vgreen, · · · } form an orthogonal set. In this case, we see that the

expansion 6.3 has the same form as the singular value decomposition (SVD) [38]

A =
N∑

k=1

σku
[k]v[k]T , (6.4)

where σ1 ≥ σ2 ≥ · · ·σN ≥ 0 are the singular values of A and {u[k]}N
k=1 and

{v[k]}N
k=1 are the corresponding left and right singular vectors, respectively. We

conclude that under Assumption A the SVD can be used to discover directed

bipartite subgraphs - the square of the singular value, σ2
k, indicates the product

of the number of locks and keys of the kth colour, the nonzero entries of u[k]
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give the key locations and the nonzero entries of v[k] give the lock locations.

We show now that there is a complementary way to motivate the use of

the SVD. This approach, which is based on the ideas in [66] that were used for

undirected networks, also goes some way towards allowing for false negatives

among the edges. Under Assumption A, suppose that node i does not possess

the red key. Then multiplying the ith row of the adjacency matrix into the red

lock indicator vector will give a value zero; there will be no matches in the inner

product. On the other hand, if node i possesses the red key then multiplying

the ith row of the adjacency matrix into the red lock indicator vector will count

the number of red locks in existence - each red lock will take part in one nonzero

term. Suppose now that there are some ‘errors’ in the network in the form of

missing edges. More precisely, suppose that only a fixed proportion θ ∈ (0, 1) of

the red key-lock matches are recorded as edges. Then generalizing the argument

above we have

(Av[k])i =

N∑

j=1

aijv
[k]
j =







θlockred if node i has the red key,

0 otherwise,

which may be written

Av̂red = θ
√

lockred × keyred ûred. (6.5)

Similarly, we find that
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AT ûred = θ
√

lockred × keyred v̂red. (6.6)

The relations 6.5 and 6.6 show that ûred and v̂red correspond to left and right

singular vectors of A, respectively, with singular value θ
√

lockred × keyred. Of

course, when θ = 1, we recover the singular value expression
√

lockred × keyred

that we derived earlier via the argument involving rank one outer products.

However, it is worth noting that 6.5 and 6.6 require assumption A to hold only

for nodes with red locks or keys. The other nodes in the network could be

connected in any way. So the SVD will reveal isolated substructure of this type

hidden within any complex network.

In summary, we have shown that if a directed network can be broken down

into isolated or non-overlapping bipartite subnetworks, even when a fixed pro-

portion of edges are missing, then the left and right singular vectors of A will

reveal which nodes take part in which subnetwork, and the singular values tell

us how many nodes are involved.

Eigenvectors and, more generally, singular vectors, enjoy important varia-

tional properties, and hence the information they convey tends to be robust to

the presence of noise. This has been confirmed experimentally [6, 28, 42, 80]. In

particular, for the case of undirected edges, it was shown in [66] that the SVD

can find approximate bipartite subgraphs in both synthetic and real networks.

In the next section, we test the robustness of the SVD in the directed network

setting.
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6.3 Testing

6.3.1 Detailed Example

We begin with a detailed investigation of the synthetic network shown in Figure

6.1. By design this network does not completely satisfy Assumption A from

Section 6.2. The colour coding of the arrows emphasizes the distribution of

keys and locks. Nodes 1-5 have the red key and nodes 6, 11-15 and 17 the

corresponding red lock. Nodes 4 and 6-10 have the blue key and nodes 16-

20 the corresponding blue lock. Finally, nodes 19 and 20 have the green key,

while nodes 9 and 10 have the green lock. We note that this node ordering was

chosen simply to make the output easier to interpret - results from the SVD are

invariant under symmetric row and column permutations.

Figure 6.1: Synthetic network with three types of key-lock pairings.

The nontrivial singular values are, to two digits, 6.5, 4.7, 2.0 and 0.7, which
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is consistent with our expectation that the first, second and third pair of singular

vectors should correspond to the red, blue and green groups. We now consider

pairs of singular vectors to determine how effectively they reveal the underlying

key-lock distribution.

6.3.2 First Left and Right Singular Vectors

Figure 6.2 shows the components of the first left and right singular vectors of the

adjacency matrix in increasing order. On the horizontal axis are the indices, so,

for example, the most negative left and right singular vector entries correspond

to nodes 4 and 17 respectively.

For the first left singular vector, u[1], there are two main groups of nodes

with components away from zero; one with values around −0.34 and another

with values around −0.23. There is also an outlying vertex at around −0.5. The

group at height −0.34 involves nodes 1, 2, 3 and 5, which, as we see from Figure

6.1, share the red key. The outlier is node 4. This is the only other red key

node, but it also has the blue key.

The first right singular vector, v[1], splits up the network in a similar fashion.

Nodes 6, 11, 12, 13 and 14 form a clear group and we see from Figure 6.1 that

they share the red lock. The outlier is node 17. This is the only other red

lock node, but it also has the blue lock. We note that node 6 differs from its

neighbours in Figure 6.2 in that it also has a blue key, but the left singular

vector has not been affected by this - node 6 is placed at the same height as the

purely red lock nodes. This is consistent with the theory in Section 6.2, where

Assumption A does not rule out the case of a node having a key and lock of

different colours.
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Figure 6.2: First left and right singular vectors for network in Figure 6.1.

In Figure 6.3 we show the adjacency matrix for the subgraph created by

nodes 4, 1, 2, 3, 5, 6, taken from the left hand end of u[1] up to the cut-off

from −0.34 to −0.23, and nodes 17, 6, 11, 12, 13, 14, 15, taken from the left

hand end of v[1] up to the corresponding cut-off. We see that there is a clear

two-by-two block checkerboard structure, corresponding to a directed bipartite

subgraph, with node 6 having an extra link to its red lock colleague (arising

from the separate blue lock-key connection).
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Figure 6.3: Subgraph showing red lock-key interactions arising from nodes 4, 1, 2, 3,

5 and 17, 6, 11, 12, 13, 14, 15 taken from u
[1] and v

[1] in Figure 6.2.
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Similarly, Figure 6.4 reveals the blue lock-key interactions by plotting the

adjacency matrix arising from nodes 6, 7, 8, 9, 10 and 16, 18, 19, 20 that were

grouped together above the main cut-offs in Figure 6.2. Here, node 17 is missing

from the blue lock group; this makes sense because it is also a lock member of

the larger red lock-key group. In Figure 6.4 we also see that the green lock-key

group of 9, 10 and 19, 20 appears as a block in the adjacency matrix. However,

from Figure 6.2 this appears to be a coincidental feature caused by the fact that

these nodes are also part of the blue subgraph - the components of nodes 9, 10

in u[1] and 19, 20 in v[1] are not visually distinguishable from their blue key and

lock neighbours, 6, 7, 8 and 16, 18 respectively.

6 7 8 9 10 16 18 19 20
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Submatrix

Figure 6.4: Subgraph showing red lock-key interactions arising from nodes 4, 1, 2, 3,

5 and 17, 6, 11, 12, 13, 14, 15 taken from u
[1] and v

[1] in Figure 6.2.

Overall, the first left and right singular vectors have done an excellent job

of sorting out the key and lock nodes, respectively, for the red group. They

also made a reasonable delineation of the blue group, but the ambiguous nodes

that shared red and blue characteristics were placed next to their red colleagues,

which form the dominant group.
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6.3.3 Second Left and Right Singular Vectors

Figure 6.5 shows the second left and right singular vectors. In u[2] we see that

nodes 1, 2, 3, 5 are grouped together. These are four out of the five red key

nodes. Node 4, which also has the blue key, has been given a positive value, in

line with the positivity of nodes 6, 7, 8, 9, 10, which complete the blue key group

and are classified together. In v[2] we see nodes 6, 11, 12, 13, 14, 15 grouped

together. These are all red lock nodes, with the exception of node 17 which has

been given a positive value in line with the other blue lock nodes 16, 18, 19, 20

that are classified together. Figures 6.6 and 6.7 show the subgraphs obtained

from the negative and positive extreme values of the second singular vectors,

respectively.

So, overall, the second singular vectors also give information about both red

and blue groups, but they favour the second-largest, blue group.
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Figure 6.5: Second left and right singular vectors for network in Figure 6.1.
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Figure 6.6: Subgraph showing red lock-key interactions arising from nodes 3, 5, 1, 2

and 6, 11, 12, 13, 14, 15 taken from u
[2] and v

[2] in Figure 6.5.
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Figure 6.7: Subgraph showing blue lock-key interactions arising from nodes

16, 17, 18, 19, 20 and 6, 7, 8, 9, 10, 4 taken from u
[2] and v

[2] in Figure 6.5.
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6.3.4 Third Left and Right Singular Vectors

Figure 6.8 shows the third left and right singular vectors. In this case we see

that the green keys, 19, 20 and the green locks, 9, 10 have been picked out

unambiguously. The resulting subgraph is shown in Figure 6.9. Although this

subgraph is clearly symmetric, we note that reciprocal links belong to a different

‘colour’ of key-lock interaction.
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Figure 6.8: Third left and right singular vectors for network in Figure 6.1.
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Figure 6.9: Subgraph showing green lock-key interactions arising from nodes 19, 20

and 9, 10 taken from u
[3] and v

[3] in Figure 6.8.
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6.3.5 Parameterized Examples

Our second experiment tests the robustness of the SVD approach when spuri-

ous and missing edges contaminate the directed bipartivity. We constructed a

network of 50 nodes with nodes 1-10 forming group S1 and nodes 11-25 forming

group S2. We formed links independently at random such that the probability

of a link from node i to node j is given by 0.6 if i ∈ S1 and j ∈ S2, and p2

otherwise.

To the left in Figure 6.10 we show the adjacency matrix that arose for p2 =

0.1. We see that the S1 → S2 block forms a dense patch, but there is a significant

amount of non-bipartite ‘noise’. In fact there are 96 S1 → S2 edges and 214

others. In the centre and right of Figure 6.10 we show the first left and right

singular vectors. It is clear that the key group, S1, is picked out by u[1] and the

lock group, S2, is picked out by v[1]; in each case, the group members appear

sequentially, taking the extreme values in the vector.

In Figure 6.11, we increase p2 to 0.3. Now there are 691 edges outwith the

S1 → S2 block. In this case we are at the extremes of the noise level that the

SVD can tolerate. In u[1], the 10 nodes in group S1 appear in positions 1, 2, 3,

4, 5, 6, 7, 8, 18, 26 as we search through the components with largest to smallest

absolute value. Similarly, in v[1], the 15 nodes in group S2 appear in positions 1,

2, 3, 4, 8, 9, 10, 11, 12, 16, 17, 22, 24, 28, 48. So the dominant singular vectors

do not reproduce perfectly the key and lock groups; although at this high level

of noise it may be argued that the groups are not clearly defined.
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Figure 6.10: Left: adjacency matrix. Middle: first left singular vector. Right: first

right singular vector. Here p2 = 0.1 for the non-bipartite connectivity probability.
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Figure 6.11: Left: adjacency matrix. Middle: first left singular vector. Right: first

right singular vector. Here p2 = 0.3 for the non-bipartite connectivity probability.
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6.4 Statistical Testing

Having established that the left and right singular vectors may be useful in

identifying members of directed bipartite communities, we would like to try and

assess the success with which nodes are classified into subgroups. To this end

we construct the following synthetic test. We construct an adjacency matrix

consisting of 100 nodes with sets S1 and S2 comprising nodes 1-10 and 11-20

respectively. We connect pairs of nodes i and j independently at random with

probability p1 if i ∈ S1 and j ∈ S2 and with probability p2 otherwise.

With an adjacency matrix set up in this fashion, we may compute the SVD

and examine the components of the first left and right singular vectors. If the

SVD perfectly organises nodes into the appropriate subgroups, then nodes 1-

10 should correspond to the ten components with highest absolute value in u1

and nodes 11-20 should correspond to the ten components with highest absolute

value in v1. We fix p1 and vary p2 from 0 to p1, generating several instances of

the synthetic network described above for each value of p2. The SVD of each

adjacency matrix is calculated and the proportion of correctly identified nodes in

the first ten positions of the relevant singular vector is recorded in each instance.

In Figure 6.12 we show a plot of the mean proportion of correctly identified

nodes for p1 = 0.9 and p2 varying from 0 to 0.9 in increments of 0.01. The blue

line shows the mean proportion of “key” nodes correctly identified and the red

line corresponds to the mean proportion of “lock” nodes correctly identified. In

this case the probability of false negatives in the region of bipartite connectivity

is 0.1, and the SVD is reasonably tolerant of false positives elsewhere in the

adjacency matrix. The singular vectors correctly identify more than half of the

correct nodes until the probability of a false positive in a given position in the
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adjacency matrix reaches around 0.3.

Figure 6.13 shows a plot of the same type with p1 = 0.6. In this case, the

singular vectors successfully identify more than half of the corect nodes until

the probability of a false positive in a given position in the adjacency matrix

reaches around 0.15.
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Figure 6.12: Proportion of ‘key’ nodes (red) and ‘lock’ nodes (blue) correctly identified

by first singular vectors for p1 = 0.9 with varying levels of ‘noise’.

By varying p1 from 0 to 1 and carrying out the procedure described above,

we can obtain three dimensional plots of the proportions of locks and keys cor-

rectly recovered by the SVD for varying probabilities of false negatives and false

positives. The procedure carried out for each value of p1 is identical to the one

described above, with the addition of a random row and column permutation

of the adjacency matrix at the beginning of each run. This ensures that the

‘keys’ do not simply correspond to the first ten nodes and that the ‘locks’ do

not correspond to the next ten.
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Figure 6.13: Proportion of ‘key’ nodes (red) and ‘lock’ nodes (blue) correctly identified

by first singular vectors for p1 = 0.6 with varying levels of ‘noise’.

Figure 6.14 shows the proportion of ‘key’ nodes correctly recovered for vary-

ing values of p1 and p2. The data is also plotted as a heat map in Figure 6.15.

Similarly, Figures 6.16 and 6.17 show the proportion of ‘lock’ nodes correctly re-

covered as a surface plot and a heat map respectively. By inspection we see that

the left and right singular vectors perform very similarly in their identification

of ‘lock’ and ‘key’ nodes. Approximately half the correct nodes are identified

if the probability of a false positive is around a third of the probability of a

‘true positive’, and all the correct nodes are identified if every true connection

is present and the probability of a false positive is less than 0.2.

It is important to stress that the success of the SVD in identifying members

of directed bipartite subgroups is dependent upon a number of factors, including

the proportion of ‘noise’ in the data (i.e. the frequency of false positives and

false negatives), the number of lock-and-key pairs (including overlapping group
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membership) and the size of a directed bipartite community relative to the

dataset as a whole.

Having attempted to quantify the success of the SVD in a number of test

cases, we now apply our method to a dataset from genomics and attempt to

uncover meaningful communities.

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

p
1

Proportion of ‘keys’ correctly identified

p
2

Figure 6.14: Proportion of ‘key’ nodes correctly identified by first left singular vector

for varying levels of ‘noise’.

6.5 Application to Cancer Microarray Data

In this section we consider a network arising through gene expression. Cancer

microarray data from [87] was treated with the classification method developed

in [89]. More precisely, we selected 133 genes related to the oncogene p53,

and computed the ‘plus-minus’ network. Here, an edge between nodes i and j

indicates that when gene i expresses significantly above its usual level, gene j
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Figure 6.15: Proportion of ‘key’ nodes correctly identified as a heat map.
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Figure 6.16: Proportion of ‘lock’ nodes correctly identified by first right singular vector

for varying levels of ‘noise’.
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Figure 6.17: Proportion of ‘lock’ nodes correctly identified as a heat map.

generally expresses significantly below its usual level. This produced a directed

network with 133 nodes and 558 edges, whose adjacency matrix is shown in

Figure 6.18. Discovering directed bipartite subgraphs in this setting is of major

biological interest, as it reveals a pair of gene groups such that over-expression

in one group is associated with under-expression in the other.

The singular values for this adjacency matrix are plotted in Figure 6.19.

We see that the largest singular values are around 8. The first left and right

singular vectors were found to produce an approximately bipartite subnetwork

where edges crossed between groups in both directions; a feature that suggests

there is a significant element of symmetry in the network. Since we are interested

here in directional information, we focus on the second left and right singular

vectors, which are shown in Figure 6.20.

Keeping in mind the typical network size suggested by the singular values
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Figure 6.18: Adjacency matrix for a ‘plus-minus’ network of genes relating to the

oncogene p53.
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Figure 6.19: Singular values of the adjacency matrix in Figure 6.18.
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Figure 6.20: Second left and right singular vectors of the adjacency matrix in Figure 6.18.

and considering the natural break-points in the singular vector components,

we chose the indices from four extreme components of u[2] and seven extreme

components of v[2]. This produced the subnetwork shown in Figure 6.21. We

see that there is a high degree of directed bipartivity. Denoting the first four

nodes in this subnetwork as group S1 and the remaining seven nodes as group

S2, twenty-five out of the possible twenty-eight S1 → S2 connections are present,

but none of the other S1 → S1, S2 → S2 or S2 → S1 connections.

The subnetwork in Figure 6.21 was produced using only the network data.

Because of the high level of interest in p53, there is extra biological information

available, which can be used to justify the relevance of the subnetwork. Details

of the genes are given in Table 6.1. Looking at these genes, BTG2, CCNG2

and FHL1 all appear to have inhibitory effects on growth or cell-division, while

the role of HLA-F with respect to growth is unclear. KIF15, CDC20, PRC1,

CCNB2, KIF20A and NEK2 all seem to be involved in the cell-division pro-

cess and, in most cases, inhibiting the genes seems to prevent growth. So it

appears that we have identified two groups of genes whose products have op-

posite functions. Whilst we make no detailed biological interpretation here it
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Figure 6.21: Adjacency matrix for the subgraph of 11 nodes discovered via the second

left and right singular vectors.

seems reasonable that their mutually exclusive expression patterns are consis-

tent with growth promotion and inhibition being correlated, with one of these

groups being switched on while the other is off.

6.6 Application to Other Networks

In the upper left of Figure 6.22 we show the adjacency matrix for a directed net-

work constructed from the RDHLP interactions in the WIRING data set of UCINET

IV at

http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm

This data comes from a study in [77] of workers in a bank wiring room.

In the network displayed there are nine nodes, corresponding to wiremen or
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Probe Set ID Gene ID Description

201235 s at BTG2 BTG family, member 2

202769 at CCNG2 Cyclin G2

201540 at FHL1 four and a half LIM domains 1

221978 at HLA-F major histocompatibility complex, class I, F

219306 at KIF15 kinesin family member 15

202870 s at CDC20 CDC20 cell division cycle 20 homolog (S. cerevisiae)

218009 s at PRC1 protein regulator of cytokinesis 1

204822 at TTK TTK protein kinase

202705 at CCNB2 cyclin B2

218755 at KIF20A kinesin family member 20A

204641 at NEK2 NIMA (never in mitosis gene a)-related kinase 2

Table 6.1: Details of genes corresponding to the groups in Figure 6.20. The two groups

are separated by a double horizontal line.
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assemblers. A link from node i to node j indicates that person i was observed

to help person j in the course of their work. The dominant singular value of

the adjacency matrix is σ1 = 2.8; the next is σ2 = 1.5. The first left and right

singular vectors, u[1] and v[1], are shown as the upper and lower right pictures in

Figure 6.22. Taking the two extreme components of u[1] and the three extreme

components of v[1], we arrive at the subnetwork shown in the lower left of the

figure. We see that there is an almost complete directed bipartite structure;

with S1 = {6, 1} and S2 = {3, 9, 7} we have one missing link and no spurious

links. In this context S1 represents a group of workers who gave unreciprocated

help to the workers in S2.
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Figure 6.22: Upper left: adjacency matrix for a small social interaction network.

Upper and lower right: first left and right singular vectors. Lower left: subnetwork using

extremal nodes {6,1} from u
[1] and {3,9,7} from v

[1].
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6.7 Conclusions

Overall, we believe that these results show a proof of principle for the SVD as a

tool for discovering directed bipartite communities. In the context of analysing

high-throughput expression data its main utility, of course, will lie in the case

where directed bipartite patterns are found that involve gene groups for which

annotational information is missing or only partially known. In this way, the al-

gorithm could suggest putative functional and cause-and-effect relationships that

may direct more specific experiments. More generally, for any set of unsymmet-

ric interaction data this new method for detecting directed bipartite community

structure offers a useful tool for highlighting meaningful information.



Chapter 7

Directed Stickiness Model

7.1 Motivation

Although random graph models such as the Erdös-Rényi or Gilbert models can

be easily extended to produce directed networks, it has been argued that they

are unsuitable for use as test matrices or for comparison with real world net-

works. Looking ahead to Chapter 8, we wish a means of generating realistic

random graphs such that their expected degrees match those of the graph we

are investigating. This will allow us to conduct more meaningful tests of the sta-

tistical significance of our results than would be possible relying on Erdös-Rényi

random graphs. The work by Prz̆ulj and Higham [76] established a procedure

for generating such graphs in the undirected case and showed that properties

of real protein-protein interaction networks can be recovered successfully. We

now seek to extend this idea to the directed setting. Our aim is to match two

quantities for each node in the graph, the in-degree and out-degree.

108
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7.2 Model

For each node i we define two quantities, θout(i) and θin(i), such that these are

a measure of the likelihood of that node having a connection to/from another

node in a particular direction. We define the probability of a connection from

node i to node j as the product

θout(i)θin(j).

Our aim is that the expected out-degree of node i in the model matches the

out-degree of node i in the given data. This requires

n∑

j=1

aij = E(out-degree(i))

=

n∑

j=1

θout(i)θin(j)

= θout(i)

n∑

j=1

θin(j).

(7.1)

But since

n∑

j=1

θin(j) does not depend on i, this shows that

θout(i) ∝
n∑

j=1

aij.

So let

θout(i) =
1

K1

n∑

j=1

aij. (7.2)
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Similarly we wish the expected in-degree of node i in the model to match the

in-degree of node i in the data, giving

n∑

j=1

aji = E(in-degree(i))

=

n∑

j=1

θout(j)θin(i)

= θin(i)

n∑

j=1

θout(j).

Since

n∑

j=1

θout(j) does not depend on i, we have

θin(i) ∝
n∑

j=1

aji,

so we let

θin(i) =
1

K2

n∑

j=1

aji. (7.3)

Having determined their general form, we now wish to find appropriate con-

stants of proportionality, K1 and K2, such that the expected in and out-degrees

in the model match those of the initial data. Returning to the out-degree of

node i, using Equations 7.1, 7.2 and 7.3, we require

n∑

j=1

aij =

(

1

K1

n∑

j=1

aij

)(

1

K2

n∑

j=1

n∑

k=1

akj

)

,

which leads to

1

K1K2

n∑

j=1

n∑

k=1

akj = 1. (7.4)
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Likewise, considering the in-degree of node i we require

n∑

j=1

aji =

(

1

K2

n∑

j=1

aji

)(

1

K1

n∑

j=1

n∑

k=1

ajk

)

,

which becomes

1

K1K2

n∑

j=1

n∑

k=1

ajk = 1. (7.5)

From Equations 7.2, 7.3, 7.4 and 7.5 we have

n∑

j=1

θin(j) = K1

and
n∑

j=1

θout(j) = K2.

Since the sum of in-degrees and out-degrees in a network must be equal, it is

reasonable to assume that the sum of expected in-degrees and expected out-

degrees should be the same, and we arrive at

K1 = K2 =

√
√
√
√

n∑

j=1

n∑

k=1

ajk. (7.6)

We can now write down an algorithm to produce an instance of such a random

graph.

• Input degin and degout, vectors of in/out-degrees.

• Compute the scaling factor w =

√
∑

i

degin(i).

• Let θin = w−1degin and θout = w−1degout.

• For each pair of nodes i and j, connect i to j with independent probability
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θout(i) × θin(j).

We emphasize that this is a natural generalization of the original stickiness

model in [76] to the case of directed edges.

7.2.1 Constraints

It should be noted that for the model to be valid we require all probabilities to

be bounded above by one; that is,

θout(i)θin(j) ≤ 1 for i 6= j.

Using the expressions for θin(i) and θout(i) we can obtain constraints on the

structure of the target network that ensure this condition. We have

θout(i)θin(j) =
1

K1K2

n∑

k=1

aik

n∑

k=1

akj

=
degout(i)degin(j)

K1K2

=
degout(i)degin(j)
∑n

i=1

∑n

j=1 aij

=
degout(i)degin(j)

no. edges
.

This quantity is less than 1 for all i and j if the product of the largest in-

degree and the largest out-degree is less than the total number of edges in the

target network. This happens, for example, when all degrees are bounded by
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√
n. The datasets considered in this work are generally very sparse and conform

to this requirement.

7.3 Variations

As well as the algorithm outlined in Section 7.2, two variations of the stickiness

model may be suitable in certain situations. We may produce a ‘shuffled’ stick-

iness graph by randomly permuting the components of degin and degout so that

rather than trying to match the in and out-degree of each node, we only aim

to match the distribution of in and out-degrees as a whole. We may also wish

to produce a stickiness graph with a particular bias built in whereby we wish

to force nodes with high in-degree to also have high out-degree. This can be

accomplished by simply sorting the components of degin and degout. Both vari-

ations may be useful if we wish to destroy inherent bipartite substructure in the

data. Figure 7.1 shows the degree distributions of a synthetic network generated

by the directed stickiness method with a c. elegans neural network as input.

This particular network will be discussed in more detail in Section 8.6. Similarly

Figures 7.2 and 7.3 show the degree distributions of networks generated using

the shuffling and biased methods respectively. In each case, the blue circles rep-

resent degree counts for one sample from the random network model. In order

to quantify the success of the stickiness models at producing synthetic networks

with suitable degree distribution, we use ranksum, MATLAB’s implementation

of the Mann-Whitney U test. The test compares two samples and returns a

pvalue which is the probability of observing this result, or one more extreme,

given that a null-hypothesis is true. In this instance, the null hypothesis is that

the two samples (the degree distributions) came from distributions with equal
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medians. The results are given below in Table 7.1. The pvalues are sufficiently

high that we cannot reject the null-hypothesis at the 5% significance level.

Stickiness model in-degree pvalue out-degree pvalue

Directed stickiness 0.8337 0.7537

Shuffled stickiness 0.9414 0.5723

Biased stickiness 0.8000 0.6191

Table 7.1: Significance of subgraph in test case 1 for varying test matrix classes.
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Figure 7.1: Degree distributions of c. elegans neural network and one fitted directed

stickiness network.
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Figure 7.2: Degree distributions of c. elegans neural network and one shuffled stickiness

network.
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Figure 7.3: Degree distributions of c. elegans neural network and one biased stickiness

network.



Directed Stickiness Model 116

7.4 Monte Carlo Testing

In order to confirm the analytical result in Section 7.2 regarding the expected

degrees of nodes generated by the stickiness model, we construct many networks

using the degree distributions of the c. elegans neural network as input and com-

pute the sample average of the degree of each node. The results are sorted and

plotted in Figures 7.4 to 7.6 for 1, 10 and 1000 samples of stickiness networks

respectively. Although a single instance of a stickiness network closely approxi-

mates the overall degree distribution of the original network, it can be seen that

increasing the sample size improves the fit of the expected degree distribution

to the target distribution.
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Figure 7.4: In-degrees and out-degrees of nodes for a single stickiness network.

To show the convergence of the expected degree of a node to that in the

original distribution, we fix a node and plot the modulus of the difference be-

tween expected degree and ‘target’ degree as the sample size increases. These
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Figure 7.5: Expected in-degrees and out-degrees of nodes over 10 samples of stickiness

networks.
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Figure 7.6: Expected in-degrees and out-degrees of nodes over 1000 samples of sticki-

ness networks.
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results are shown in Figure 7.7, with sample size increasing to 100,000. The

figure clearly shows that the error, that is to say the difference between the tar-

get degree and sample average degree in the model, decays like the square root

of the sample size. The red line in the figure shows one over the square root

of the sample size. This is standard for the sampling error in a Monte Carlo

simulation [37]. The node chosen in this instance has in-degree and out-degree

close to the mean for the network and so this plot is an indicator of typical

behaviour rather than of exceptional circumstances such as high in-degree and

low out-degree.
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line superimposed.



Chapter 8

Mapping Directed Networks

8.1 Motivation

Although the algorithm presented in Chapter 6 was shown to be useful in iden-

tifying bipartite substructures within networks, the reliance on two separate

orderings of nodes (one for the ‘locks’ and one for the ‘keys’) meant that visu-

alisation could be confusing and results could be potentially misleading. There

is a wealth of literature on clustering in symmetric matrices (and therefore on

undirected networks) and it is our aim to develop a procedure that will allow us

to take advantage of these methods when attempting to identify bipartite com-

munities within directed networks. To this end we propose a matrix mapping

that translates an unsymmetric, binary adjacency matrix to a symmetric, real

valued matrix which is amenable to standard clustering algorithms.

119
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8.2 Theory

We begin by introducing the new concept of an alternating walk. An alternat-

ing walk is a traversal of a graph that successively respects then violates edge

direction.

Definition 1. An alternating walk of length k from node i1 to node ik+1 is a

sequence of (not necessarily distinct) nodes i1, i2, i3, . . . , ik+1 such that ais,is+1
6=

0 for s odd and ais+1,is 6= 0 for s even.

From the definition of a matrix product, it follows that

(AAT AAT . . .)ij (8.1)

with k factors counts the number of alternating walks of length k from node i

to node j.

Suppose now that a network contains subsets S1 and S2 that form an approx-

imate directed bipartite community as described in the previous section. Given

two nodes i and j drawn from these subsets, it is possible to make statements

about the likelihood of connections between these nodes based upon their loca-

tions. If both i and j are members of subset S1, it is unlikely that there will be

a link from i to j but it is likely that there will be many ways to traverse from

i to j via S2 by following one edge in the correct direction and then a different

edge in the wrong direction. In other words we expect there to be few alternat-

ing walks of length one from i to j but many alternating walks of length two.

Continuing this argument, for i and j both belonging to subset S1 we expect

many even-length alternating walks but few odd-length alternating walks from

i to j.
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On the other hand, if node i belongs to S1 and node j belongs to S2 then

it is likely that there will be a link between them, or that there will be ways

to traverse from i to j by following an edge in the correct direction, another

in the wrong direction and then a third in the correct direction. So for i and

j belonging to S1 and S2 respectively, we expect many odd length alternating

walks but few even length alternating walks from i to j.

Although taking into account information about longer walks may be an

effective way of compensating for noise within a network, short-length walks are

in general more informative and so it is reasonable to weight walks by a quantity

inversely proportional to their length. In previous work [28,29], walks of length

k are commonly scaled by a factor 1/k! and it is this weighting that we shall

use. Thus, a measure of similarity between nodes i and j may be defined as the

difference between the total number of even and odd length alternating walks

(appropriately scaled) and is expressed by the new matrix mapping

f(A) = I − A +
AAT

2!
− AAT A

3!
+

AAT AAT

4!
− . . . (8.2)

The identity matrix I is introduced here for convenience, although it has the

intuitive meaning that there is an alternating walk of length zero from a node

to itself. Expressing A in terms of its singular value decomposition A = UΣV T ,

where U, V ∈ R
N×N are orthogonal and Σ ∈ R

N×N is diagonal, we have

f(A) = I − UΣV T +
(UΣV T )(UΣV T )T

2!
− (UΣV T )(UΣV T )T (UΣV T )

3!
+ . . .

= I − UΣV T +
(UΣ2UT )

2!
− (UΣ3V T )

3!
+ . . . ,
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which may be written

f(A) = U cosh(Σ)UT − U sinh(Σ)V T . (8.3)

It should be noted that the matrix mapping may be expressed in terms of

traditional matrix functions and we now show this.

From Equation 8.2 we have

f(A) = I − A +
AAT

2!
− AAT A

3!
+

AAT AAT

4!
− . . .

=

(

I +
AAT

2!
+

AAT AAT

4!
+ . . .

)

−
(

A +
AAT A

3!
+

AAT AAT A

5!
+ . . .

)

.

Now letting B = AAT and observing that (B
1

2 )2 = AAT we have

f(A) =

(

I +
(B

1

2 )2

2!
+

(B
1

2 )4

4!
+ . . .

)

−
(

A +
(B

1

2 )2

3!
+

(B
1

2 )4

5!
+ . . .

)

A.

Rewriting I as B
1

2 B− 1

2 this gives

f(A) = cosh(B
1

2 ) −





[

B
1

2 B− 1

2

]

+
(B

1

2 )2
[

B
1

2 B− 1

2

]

3!
+ . . .





= cosh(B
1

2 ) −
(

B
1

2 +
(B

1

2 )3

3!
+

(B
1

2 )5

5!
+ . . .

)

B− 1

2 A

= cosh(B
1

2 ) − sinh(B
1

2 )B− 1

2 A.

Based on our motivating remarks, we would expect f(A)ij to take large

positive values when i, j ∈ S1. We illustrate this idea with an example.

A network of fifty nodes is generated by considering pairs of nodes, i and

j, and connecting them with independent probability pij. Nodes are artificially
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organised into subsets in such a way that nodes {1, 2, . . . , 10} point to nodes

{11, 12, . . . , 25} with independent probability 0.65, nodes {30, 31, . . . , 39} point

to nodes {41, 42, . . . , 50} with independent probability 0.8 and all other pairs of

nodes are connected with independent probability 0.05. The spy-plot of such a

network is shown in Figure 8.1, where the directed interaction between commu-

nities can be clearly seen. It is important to note that in practice community

structure may not be visible until some reordering of the nodes has been ap-

plied. A heat map of the mapped matrix f(A) is shown in Figure 8.2 where

‘hot’ regions are seen to correspond to S1 → S1 relationships and ‘cold’ regions

to S1 → S2 relationships.
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Figure 8.1: Spy-plot of an artificial network containing two directed bipartite subgraphs.

Analagously, we can argue that f(AT ) will have large positive entries for

S2 → S2 relationships and large negative entries for S2 → S1 relationships,

as shown in Figure 8.3. Therefore the sum f(A) + f(AT ) should be useful in

revealing inter-cluster relationships (S1 → S1 and S2 → S2) through positive

entries and extra-cluster relationships (S1 → S2 and S2 → S1) through negative
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Figure 8.2: Heat map of the mapped matrix f(A) in Equation 8.2 for the network in

Figure 8.1.

entries. The heat map in Figure 8.4 illustrates this effect.
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Figure 8.3: Heat map of the mapped adjacency matrix transpose f(AT )

We show now that summing f(A) + f(AT ) results in a symmetric matrix.

We have
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Figure 8.4: Heat map of the symmetric mapped matrix f(A) + f(AT ).

f(A) + f(AT ) = U cosh(Σ)UT − U sinh(Σ)V T

+V cosh(Σ)V T − V sinh(Σ)UT

(f(A) + f(AT ))T = U cosh(Σ)UT − V sinh(Σ)UT

+V cosh(Σ)V T − U sinh(Σ)V T

Subtracting gives

(f(A) + f(AT )) − (f(A) + f(AT ))T = 0

and so

(f(A) + f(AT )) ≡ (f(A) + f(AT ))T .

As f(A) + f(AT ) is a symmetric, real valued matrix, standard clustering ap-

proaches may be employed to identify the common parts of bipartite communi-

ties. We propose using the first eigenvector of f(A) + f(AT ) to obtain a useful

reordering of the nodes [50].
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8.3 Comparison with Matrix Exponential

The negative matrix exponential has been proposed as a method for identify-

ing bipartite communities within undirected networks [28, 29]. We consider a

synthetic example of a directed network comprised of three subsets forming two

directed bipartite structures in order to show that the matrix mapping described

above gives a more suggestive rendering of the structure within the network than

the negative matrix exponential or related functions.

Our synthetic network is comprised of three subsets, S1, S2 and S3, and is

generated in such a way that nodes in S1 tend to point to nodes in S2 while

nodes in S2 tend to point to nodes in S3. A spy-plot of the adjacency matrix

of this network is shown in Figure 8.5. We then compute the matrix exponen-

tial, negative matrix exponential and our matrix mapping for this network and

study the heat map and sign pattern of each. By considering how these repre-

sent counts of walks around a network, we can argue that the exponentials of A

and −A will have 3-by-3 block structure of the form

eA ≈









0 + +

0 0 +

0 0 0









and e−A ≈









0 − +

0 0 −

0 0 0









whereas f(A) + f(AT ) will take the form

f(A) + f(AT ) ≈









+ − 0

− + −

0 − +
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In Figure 8.6 we see that there is no significant correlation between hot or

cold regions of the negative matrix exponential and communities in the original

adjacency matrix, although inspection of the sign pattern in Figure 8.7 suggests

a correspondence between negative entries in e−A and communities in A.
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Figure 8.5: Spy-plot of A.

The matrix exponential is less revealing, as can be observed in Figure 8.8.

The hottest region of the matrix corresponds to the region of interaction between

the two communities with incoming links but fails to highlight membership of

any one community. As expected, the sign pattern of eA as seen in Figure 8.9,

reveals nothing significant about the network, since there are no negative entries

and very few take the value 0.

Finally we compute the matrix mapping f(A) + f(AT ) and consider the

heat map and sign pattern. Both clearly identify the three separate commu-

nities in the network. The hotter regions in Figure 8.10 indicate community

co-membership while the cold regions imply separation between nodes. Ob-

serving the sign pattern in Figure 8.11 we note that positive regions almost
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Figure 8.6: Heat map of e−A for A in Figure 8.5.
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Figure 8.7: Sign pattern of e−A for A in Figure 8.5.
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Figure 8.8: Heat map of eA for A in Figure 8.5.
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Figure 8.9: Sign pattern of eA for A in Figure 8.5.
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exclusively indicate community co-membership with a few exceptions caused by

the built in ‘noise’ in the matrix.
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Figure 8.10: Heat map of f(A) + f(AT ) for A in Figure 8.5.
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Figure 8.11: Sign pattern of f(A) + f(AT ) for A in Figure 8.5.
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8.4 Testing

In practice, nodes comprising directed bipartite communities will rarely be ar-

ranged contiguously in the adjacency matrix, so we will rely on a traditional

clustering approach to identify such structures. Having calculated the mapped

matrix f(A) + f(AT ), we will reorder it according to an appropriate eigenvec-

tor. Since the algorithm gives a positive value to pairs of nodes in the same

bipartite subgroup, and a negative value to pairs of nodes in different bipartite

subgroups, reordering by an appropriate eigenvector should force subgroups to

opposite ends of the mapped matrix. We can then extract the adjacency matrix

of the subgraph consisting of nodes that are members of bipartite subgroups.

By using the same node ordering obtained from the eigenvector of the mapped

matrix, the spy-plot of this subgraph should clearly show a directed bipartite

connectivity structure.

We consider four synthetic networks with particular connectivity structures.

For each example, we distribute nodes to subsets in a random fashion by applying

a permutation of the node indices 1 . . . n and assigning contiguous groups of

nodes to subsets. For example, if we wish to assign eight nodes to two subsets

of equal size, we produce a permutation of the numbers 1 to 8 and assign the

first four nodes to S1 and the remaining four to S2:

1, 2, 3, 4, 5, 6, 7, 8 → 8, 2, 7, 4
︸ ︷︷ ︸

S1

, 3, 6, 5, 1
︸ ︷︷ ︸

S2

.

From this node ordering we construct the adjacency matrix A. We then compute

the mapped matrix f(A)+ f(AT ) and reorder based on its first eigenvector. We

apply this same ordering to A and spy-plot the adjacency matrix to determine

whether bipartite communities have been clustered.
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8.4.1 Example 1

The first example we consider is a perfect directed bipartite structure, that is to

say every node in S1 is connected to every node in S2 as shown in Figure 8.12.

There are no reciprocal links and there are no inter-set links. Based on the

derivation, the matrix mapping should recover community structure perfectly

and the first eigenvector of the mapped matrix should yield a permutation which

clusters nodes 1-6 and nodes 7-12.
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Figure 8.12: Example 1: Directed bipartite network, adjacency matrix, mapped matrix

and reordered adjacency matrix.

We label the nodes via the arbitrary permutation

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 → 6, 3, 8, 12, 10, 2
︸ ︷︷ ︸

S1

, 4, 7, 11, 9, 5, 1
︸ ︷︷ ︸

S2

.

In Fig. 8.12, a spy-plot of the adjacency matrix for this network is shown together

with a pcolor plot of the mapped matrix f(A) + f(AT ) reordered by the first
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eigenvector. The ‘hot’ regions have been clustered in blocks along the diagonal,

and applying this same reordering to the adjacency matrix, we see that nodes

have indeed been clustered into the sets S1 and S2. When the node indices are

mapped back, the recovered ordering is 3, 2, 4, 5, 1, 6, 8, 12, 10, 7, 11, 9.

8.4.2 Example 2

The second example we consider is a network of three communities, S1, S2 and

S3 with directed bipartite connectivity from set S1 to S2 and from set S2 to

S3. This network is shown in Figure 8.13 and, as with the previous example,

since there is no inter-set connectivity and there are no reciprocal or missing

links, we expect the matrix mapping to distinguish perfectly between the three

communities.

We label the nodes via the arbitrary permutation

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 → 7, 2, 3, 5
︸ ︷︷ ︸

S1

, 1, 9, 6, 12
︸ ︷︷ ︸

S2

, 4, 8, 11, 10
︸ ︷︷ ︸

S3

and plot the resulting adjacency matrix in Figure 8.13. The mapped matrix is

calculated and reordered according to its first eigenvector. In the pcolor plot

of the resulting matrix, we see that the nodes have been separated into three

distinct groups and the spy-plot of the reordered adjacency matrix confirms that

these groups do comprise nodes of similar connectivity. In fact when the node

indices are mapped back, we find that the reordering is 5, 6, 8, 7, 2, 1, 4, 3, 9,

12, 11, 10, so we see that the nodes have been ordered into the three original

groupings.
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Figure 8.13: Example 2: Two overlapping directed bipartite communities, adjacency

matrix, mapped matrix and reordered adjacency matrix.
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8.4.3 Example 3

The third synthetic network we consider, shown in Figure 8.14, is comprised of

three communities S1, S2 and S3 where there is directed bipartite connectivity

from S1 to S2 and undirected bipartite connectivity between S1 and S3. Al-

though the matrix mapping is designed to reveal directed biparite community

structure, it would be beneficial if we can understand whether or not some sort

of separation between undirected bipartite subgroups can also be achieved. The

arguments used to derive the algorithm can also be used to justify the matrix

mapping in this case.
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Figure 8.14: Example 3: Communities with directed and undirected bipartite connec-

tivity, adjacency matrix, mapped matrix and reordered adjacency matrix.

We label the nodes via the arbitrary permutation
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1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 → 8, 12, 9, 7
︸ ︷︷ ︸

S1

, 1, 10, 4, 6
︸ ︷︷ ︸

S2

, 11, 5, 3, 2
︸ ︷︷ ︸

S3

and plot the resulting adjacency matrix in Figure 8.14. The mapped matrix

is calculated and reordered according to the first eigenvector. Once again, this

ordering is applied to the adjacency matrix and the resulting spy-plot shows

that the nodes have been succesfully separated into three distinct groups. To

confirm that these are the groups we wish to identify the node indices are mapped

back, revealing the ordering 12, 9, 10, 11, 7, 6, 5, 8, 1, 4, 3, 2. So despite the

undirected edges in the network, the matrix mapping has succesfully achieved

the separation of nodes that we desired.

8.4.4 Example 4

The final network we consider, as shown in Figure 8.15, consists of three com-

munities which form a cycle under our definition of an alternate walk, that is to

say, S1 points to S2, and S3 points to both S2 and S1. This means that there

are alternating walks of odd length from S1 to itself via S2 and S3, as well as

the trivial alternate walks of length 2. Under these conditions, we would expect

the matrix mapping to have difficulty achieving separation between the three

communities.

We label the nodes via the arbitrary permutation

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 → 3, 6, 11, 5
︸ ︷︷ ︸

S1

, 2, 8, 7, 4
︸ ︷︷ ︸

S2

, 9, 1, 12, 10
︸ ︷︷ ︸

S3

and plot the spy-plot of the adjacency matrix in Figure 8.15. In this instance,

reordering the mapped matrix and adjacency matrix by the first eigenvector of

f(A)+f(AT ) reveals a clear separation between groups S2 and S3, but the entries

pertaining to members of S1 are close to zero, meaning that they are not clearly

identified as taking part in any directed bipartite connections. The recovered
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Figure 8.15: Example 4: Three communities with an alternate-walk cycle, adjacency

matrix, mapped matrix and reordered adjacency matrix.
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node ordering (2, 4, 1, 3, 9, 12, 10, 11, 6, 5, 8, 7), however has separated the

nodes into the three original communities, so while the matrix mapping does

not identify all the bipartite interactions that are taking place, the subsequent

reordering of the adjacency matrix is more illuminating. We emphasise that

this network does not fit into the category of approximate directed bipartite

communities as defined in Section 6.2 for which our algorithm was designed.

8.5 Statistical Testing

Our aim is, of course, to apply the reordering algorithm to real data sets. In

this case there is no guarantee that an approximate directed bipartite community

substructure is present in the data. On one hand simply finding a pair of nodes,

i and j, such that i points to j but j does not point to i, would not be a

convincing result. On the other hand, seeking an equi-partition of all nodes into

sets S1 and S2, where all possible S1 → S2 links are present but no others, is

unreasonable. In practice, we may find a result lying somewhere between these

two extremes. In this case it makes sense to quantify the ‘significance’ of the

pattern. We will take the approach of asking how likely we are to observe the

same ‘level of bipartivity’ in an ‘arbitrary network of the same type’. We discuss

in this section how we chose to formalise this approach.

Consider a perfectly bipartite network consisting of two sets S1 and S2 con-

taining m1 and m2 nodes respectively. Such a network may be represented by

an adjacency matrix with a single off-diagonal nonzero block consisting of the

edges from S1 to S2. This is illustrated in Figure 8.16. To quantify bipartivity in

this subgraph we simply take the ratio of the density of nonzeros in the S1 → S2

block to the density of nonzeros in the remaining L-shaped block plus one (to
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avoid division by zero) i.e. using nnz to denote “number of nonzeros”,

bipartivity =

nnz(S1 → S2)

m1 × m2

nnz(S1 → S1 + S2 → S1 + S2 → S2)

m2
1 + m1m2 + m2

2

+ 1

.

Figure 8.16: Directed bipartite network: (a) edge structure (b) adjacency matrix.

In the case of perfect directed bipartivity, this measure yields a value of 1.

The value decreases as nonzeros are added to the L-shaped block or removed from

the S1 → S2 block. This is analagous to adding edges in the “wrong” direction

or edges within subsets. Figure 8.17 shows the value of the bipartivity measure

for varying densities of the two relevant regions of the adjacency matrix. As we

move to the right along the horizontal axis, the region of bipartite connectivity

in the adjacency matrix becomes more dense and the bipartivity value increases.

However as we move up the vertical axis, the remaining part of the adjacency

matrix becomes more densely packed and the bipartivity value decreases.
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Figure 8.17: Bipartivity measure for varying densities of adjacency matrix regions.

Having obtained a subgraph we wish to quantify the significance of its bi-

partivity measure. We carry out statistical testing by generating a suitable

sample of test matrices using either the Erdös-Rényi model or one of the mod-

els discussed in Section 7.3. To each of these we apply the matrix mapping

A → f(A) + f(AT ) and reorder the resulting matrix according to its first eigen-

vector. A subgraph of the appropriate size is taken and its bipartivity measure is

calculated. The proportion of times that the bipartivity value in the randomized

data exceeds the bipartivity value for the real data gives us a pvalue [32]. In

words, this pvalue answers the question ‘How likely are we to observe this level

of bipartivity or higher in an arbitrary network of the same type?’ In addition

to a raw proportion, we also compute a second pvalue by fitting a log-normal

distribution to the randomized bipartivity values.

We note that, traditionally, a pvalue below 0.05 is regarded as ‘significant’ in
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the sense that values exceeding those on the given network would be observed less

than 5% of the time. It is important to note that the pvalue obtained for a given

subgraph is dependent upon the class of networks from which the test matrices

are drawn. For instance, testing with Erdös-Rényi graphs will often result in a

lower pvalue for a particular subgraph (i.e. a higher level of significance) than

would directed stickiness graphs. This is because the Erdös-Rényi class tends

not to admit large bipartite communities.

Before we apply these ideas to real data, we first test them on synthetic

examples where the results can be judged.

8.5.1 Test Case 1

We consider a synthetic network consisting of 100 nodes where a connection

between node i and node j occurs with independent probability 0.9 if i ∈ [1, 20]

and j ∈ [21, 40] and with probability 0.3 elsewhere. This ensures a high level of

directed bipartite connectivity from nodes 1 − 20 to nodes 21 − 40 with large

proportions of false-negatives in this region and of false-positives elsewhere. We

then calculate the mapped matrix f(A) + f(AT ) and reorder according to its

first eigenvector. This matrix is plotted, together with the adjacency matrix in

Figure 8.18. We extract a subgraph consisting of the first and last 20 nodes

in the reordering and plot this in Figure 8.19. The bipartivity score for this

particular subgraph is calculated to be 0.6138. Upon inspection of the nodes

included in the subgraph, we find that 85% of nodes in S1 were among those we

expected to find (1 − 20) and in set S2, 85% of nodes were those we expected

(21 − 40).

We then conduct statistical testing by generating 1000 instances of directed
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Figure 8.18: Test case 1: Adjacency matrix and mapped matrix.
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Figure 8.19: Test case 1: Subgraph.
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stickiness graphs using our synthetic network as input. Subgraphs of the appro-

priate size are extracted from each instance according to the procedure described

above and a bipartivity score is calculated in each case. The bipartivity values

for this sample are plotted in Figure 8.20 with the score for the synthetic network

denoted by a green circle. Analysis shows that the distribution of bipartivity

scores closely matches a log-normal probability distribution shown in Figure

8.21 together with a quantile-quantile plot [46] of the bipartivity scores together

with normalized theoretical quantiles. From this sample we obtain a pvalue of

2.33 × 10−15. Using the same synthetic network, we carry out testing using all

three variants of the directed stickiness model as well as Erdös-Rényi graphs and

list the results in Table 8.1. Two measures are listed, pvalue1 which is calculated

using a log-normal fit and pvalue2 which is simply the fraction of samples with

bipartivity score greater than the original network. For all randomized samples,

the low pvalues suggest a significant level of bipartivity in the original network.
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Figure 8.20: Test case 1: Histogram of bipartivity scores.
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Figure 8.21: Test case 1: Probability distribution and quantile-quantile plot.

pvalue 1 pvalue 2

Erdös-Rényi 0 0/1000

Directed stickiness 2.33 × 10−15 0/1000

Shuffled stickiness 5.05 × 10−15 0/1000

Biased stickiness 0 0/1000

Table 8.1: Significance of subgraph in test case 1 for varying test matrix classes.
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8.5.2 Test Case 2

We consider now a synthetic network set up in the same fashion and increase the

proportion of false-positive and false-negative connections. In this instance the

probability of a connection from i to j is 0.8 for i ∈ [1, 20] and j ∈ [21, 40], and

0.4 if i and j are elsewhere. We construct the adjacency matrix and calculate

the reordered mapped matrix as shown in Figure 8.22. We take the subgraph

consisting of the first and last 20 nodes of the reordering, shown in Figure 8.23,

and consider the members of S1 and S2. We find that 60% of nodes contained

in S1 and 60% of nodes in S2 come from the sets we would expect (nodes 1− 20

and 21 − 40 respectively) so the matrix mapping has recovered a reasonable

proportion of the target nodes despite the high levels of noise.
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Figure 8.22: Test case 2: Adjacency matrix and mapped matrix.

We conduct statistical tests in the same manner as the previous example. The

bipartivity measures for a sample of 1000 directed stickiness networks are plotted

in the histogram in Figure 8.24 with the green circle denoting the bipartivity

score for the synthetic network. Once again, it was observed that the bipartivity

scores appear to follow a log-normal probability distribution, and this is plotted

in Figure 8.25 together with a quantile-quantile plot of the bipartivity scores.
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Figure 8.23: Test case 2: Subgraph.

The same procedure was repeated for the variants of the stickiness model and

for Erdös-Rényi graphs, with the pvalues for each case listed in Table 8.2. The

pvalues are larger (meaning the level of directed bipartivity in the subgraph is

less significant) than those in the previous example due to the increased levels of

noise in the network, although it should be noted that 60% of correct nodes were

recovered. Although the pvalues for the directed stickiness and shuffled stickiness

models are much larger than those in the previous example, the pvalues obtained

when using the biased stickiness model or Erdös-Rényi model are still reasonably

low. In the case of Erdös-Rényi, this may be attributed to the fact that any

coherent structure such as directed bipartivity is unlikely to arise by chance, so

the synthetic network will most likely have a higher bipartivity score despite

the higher level of noise. The biased stickiness model works by assigning high

out-degrees to nodes which also have high in-degrees, effectively destroying any

structure present in the original network while attempting to preserve the degree

distributions. As a result, directed bipartite structures are not preserved as in

the stickiness and shuffled stickiness models, and so a lower pvalue is obtained.
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Figure 8.24: Test case 2: Histogram of bipartivity scores.
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Figure 8.25: Test case 2: Probability distribution and quantile-quantile plot.
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pvalue 1 pvalue 2

Erdös-Rényi 5.91 × 10−2 55/1000

Directed stickiness 8.46 × 10−1 844/1000

Shuffled stickiness 9.03 × 10−1 896/1000

Biased stickiness 7.00 × 10−2 57/1000

Table 8.2: Significance of subgraph in test case 2 for varying test matrix classes.

8.6 C. elegans Neural Data

In order to assess the practical usefulness of the matrix mapping, we consider

real world data associated with the nematode (roundworm) Caenorhabditis ele-

gans. This organism is well studied and is a popular choice of test subject for

applications in the field of network science. We will consider two networks of

neural data: (i) the global neuronal network of the c. elegans, and (ii) a local

subnetwork of 131 frontal neurons of the same organism. Our hope is that the

matrix mapping will reveal patterns of directed bipartite connectivity known to

exist between neurons without relying upon known biological information, i.e.

using only the connectivity data.

In order to obtain a purely directed network, it was necessary to remove gap

junctions from the dataset, since experimental techniques used to reconstruct

the nervous system of c. elegans are unable to infer the directionality of such

connections. After non-neuronal cells are removed, this results in a global net-

work of 191 neurons and 1904 chemical synapses, and a local network of 131
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neurons and 964 chemical synapses.

Our motivation is work by Durbin [24, Figure 8.1] in which an ad hoc com-

binatoric algorithm is used to search for the type of directed bipartite structure

we consider. We aim to show that this matrix mapping gives an efficient and

systematic way of identifying such types of structure.

8.6.1 Global Network

The adjacency matrix and mapped matrix for the global c. elegans network are

shown in Figure 8.26. In Figure 8.27 we show a heat map of the mapped matrix

reordered according to its first eigenvector. We can see that under the reordering,

the hot and cold regions of the mapped matrix become tightly clustered at the

extremities of the matrix. Based on the dimensions of these regions we make a

decision on what size of subgraph to extract.

As we are considering only the network topology and not taking into account

any existing biological information, we must consider the spectrum of bipartivity

values over a variety of subgraph sizes. This is done by reordering the adjacency

matrix based on the first eigenvector of the mapped matrix. Increasingly larger

subgraphs are then considered by adding members to S1 and S2 until all sizes of

subgraphs based on this ordering have been considered. The bipartivity scores

are then considered while also taking into account subgraph size. That is to say

a larger subgraph may be preferable to a smaller one even though it may have

a smaller bipartivity score.

In this instance, the subgraph shown in Figure 8.28 was selected, with S1

and S2 having 15 and 8 members respectively. For this subgraph, the S1 → S2

submatrix is respectively 3, 80 and 27 times more dense than the S1 → S1,
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Figure 8.26: C. elegans global network: Adjacency matrix.

Figure 8.27: C. elegans global network: Mapped matrix.
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S2 → S1 and S2 → S2 submatrices.
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Figure 8.28: C. elegans global network: Subgraph.

We obtain a measure of statistical significance for this subgraph by consid-

ering the distribution of bipartivity scores for a sample of each type of random

graph model described in Section 8.5. A histogram of bipartivity scores for a

sample of directed stickiness matrices is shown in Figure 8.29. The bipartivity

scores again were found to closely follow a log-normal probability distribution

shown in Figure 8.30 together with a quantile-quantile plot confirming the sim-

ilarity. The subgraph taken from the global network has a bipartivity score of

0.6415 and this level of bipartivity is unlikely to arise by chance in any of the

network types considered. The pvalues for each class of synthetic network are

listed in Table 8.3.

The subgraph we consider can be deemed significant for all variants of the

stickiness model as well as for the Erdös-Rényi model, although the in and

out degree distributions of the c. elegans neural network are known to differ

dramatically from the Poissonian distribution of Erdös-Rényi random graphs,

so significance in this test may be less meaningful.
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Figure 8.29: C. elegans global network: Histogram of bipartivity scores for a sample

of directed stickiness networks.
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Figure 8.30: C. elegans global network: Probability distribution and quantile-quantile

plot.
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pvalue 1 pvalue 2

Erdös-Rényi 8.41 × 10−12 0/1000

Directed stickiness 8.79 × 10−5 0/1000

Shuffled stickiness 5.95 × 10−5 0/1000

Biased stickiness 3.82 × 10−6 0/1000

Table 8.3: Significance of subgraph in c. elegans global network for varying test matrix

classes.

In Table 8.4 we list the neuronal classes of the members of the subgraph.

We see that S1 consists of sensory neurons and nerve ring interneurons while S2

consists entirely of command interneurons. This is in good agreement with the

hierarchical ordering presented by Durbin.

8.6.2 Local Network

We consider now a local network consisting of 131 neurons and seek to identify

a directed bipartite subgraph. The adjacency matrix of this network and the

reordered mapped matrix are shown in Figures 8.31 and 8.32. Once again, the

hot and cold regions have been clustered in the corners of the mapped matrix

and we select nodes from these to form S1 and S2. In this instance, a subgraph

consisting of 32 nodes (16 in S1 and 16 in S2) has been selected and its adjacency

matrix is displayed in Figure 8.33.

In this instance, we note that the although the S1 → S2 submatrix is respec-

tively 5, 35 and 9 times more dense than the S1 → S1, S2 → S1 and S2 → S2
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Neuronal Class Description

S1 DVA Interneuron

FLP Sensory neuron

DVC Ring interneuron

PVP Interneuron

ADL Amphids; sensory neuron

AIM Ring interneuron

ADE Anterior deirid; sensory neuron

ASH Amphids; sensory neuron

AQR Sensory neuron

ADA Ring interneuron

S2 AVA Command interneuron

AVB Command interneuron

AVD Command interneuron

AVE Command interneuron

Table 8.4: Neuronal class and type for bipartite subgraph found in the global network

of 191 neurons of the C. elegan.
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Figure 8.31: C. elegans local network: Adjacency matrix.
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Figure 8.32: C. elegans local network: Mapped matrix.
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Figure 8.33: C. elegans local network: Subgraph.

submatrices, this region is nevertheless relatively sparse and thus the subgraph

has a low bipartivity score of 0.2645. As with previous tests, we obtain a mea-

sure of statistical significance by plotting the bipartivity scores of a sample of

synthetic networks in a histogram, as seen in Figure 8.34 and attempting to

match a probability distribution to the distribution of bipartivity scores. A log-

normal distribution was again found to be a good fit to the sampled data, and

this is plotted in Figure 8.35 together with a quantile-quantile plot confirming

that the probability distribution fits the data well.

This procedure was repeated for the variants of the directed stickiness model

and for Erdös-Rényi random graphs. The pvalues found in each case are listed

in Table 8.5. Unlike the results for the global c. elegans network, the subgraph

found in this case was only deemed significant when comparisons were made

with Erdös-Rényi random graphs and with the biased stickiness model. Despite

the low score under our measure of bipartivity, the neurons contained within

the subgraph are again of biological interest. The neuronal classes found within

S1 and S2 are listed in Table 8.6. Approximately 65% of neurons found in S1
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Figure 8.34: C. elegans local network: Histogram of bipartivity scores for a sample of

directed stickiness networks.
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Figure 8.35: C. elegans local network: Probability distribution and quantile-quantile plot.
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are involved in sensory processes while S2 is comprised of a mixture of motor

neurons and command interneurons. Once again, this is in good agreement

with the work by Durbin where an attempt is made to hierarchically display the

neurons in such a way that as many synapses as possible point downwards. In

this ordering, sensory neurons were placed near the top, motor neurons at the

bottom and the remaining interneurons in between.

pvalue 1 pvalue 2

Erdös-Rényi 9.02 × 10−5 0/1000

Directed stickiness 9.48 × 10−1 935/1000

Shuffled stickiness 9.69 × 10−1 966/1000

Biased stickiness 5.04 × 10−2 40/1000

Table 8.5: Significance of subgraph in c. elegans local network for varying test matrix

classes.

On closer inspection of both the local and global c. elegans networks, it was

found that an important set of neurons were identified in both cases. Around

60% of neurons belonging to S2 in the local network, and all neurons belonging

to S2 in the global network were found to be members of a group of neurons

known as the lateral ganglion which are known to be highly interconnected with

both sensory and motor neurons. It has been suggested that the lateral ganglion

is in fact the principal pathway between sensory and motor components of the

nematode c. elegans [14].

In addition, the neuronal classes AVA, AVB, AVD and AVE were picked
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Neuronal Class Description

S1 OLL Head sensory neuron

URY Head sensory neuron

IL2 Head sensory neuron

RIH Ring interneuron

ASH Amphids; sensory neuron

RIM Ring motor neuron

RIV Ring motor/interneuron

CEP Head sensory neuron

AVH Interneuron

ADL Amphids; sensory neuron

S2 SMD Ring motor neuron

RME Ring motor neuron

RMD Ring motor neuron

AVB Command interneuron

AVA Command interneuron

AVE Command interneuron

AVD Command interneuron

Table 8.6: Neuronal class and type for bipartite subgraph found in the local network

of 131 frontal neurons of the C. elegan.
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out both in the local and global networks. These have been identified as ‘hub’

neurons that are crucial to normal biological function. For instance, it is well

known that both AVA and AVB neurons are necessary for normal coordinated

movement [64].

8.7 Application to Other Networks

In addition to the c. elegans neural network, the matrix mapping was applied to

the networks of Scottish football transfers from NESSIE as described in Section

5.3.5. In each of these networks, each node represents either a Scottish football

club or a club involved in a transfer with one, and an edge from node i to node

j indicates that a player was transferred from club i to club j in a particular

season. The network is directed but has been made unweighted (so that edges

represent only the existence of transfers between two clubs, rather than counting

the number of transfers between them) and may also be incomplete since only

edges involving at least one Scottish club are included. So, for instance, transfers

from Parma or Coventry City to Kilmarnock F.C. are included but any transfers

between Parma and Coventry City are not.

8.7.1 Scottish Football Transfers 2008-2009

We first consider the network obtained by recording transfers to and from Scot-

tish football clubs in the summer transfer period of the 2008-2009 season. Figure

8.36 shows a spy-plot of this network, together with a heat map of the mapped

matrix f(A) + f(AT ). The adjacency matrix itself is very sparse and as a result

we do not expect to find a single large bipartite structure but perhaps many

small ones. The mapped matrix has been reordered according to its first eigen-
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vector and small ‘hot’ regions appear to be clustered on the leading diagonal. By

taking the first and last three nodes of this reordering we obtain the subgraph

shown in Figure 8.37 which has a bipartivity score of 0.7500.
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Figure 8.36: Network of Scottish football transfers in the 2008-2009 pre-season and

heat map of mapped matrix.
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Figure 8.37: Subgraph obtained from the first and last 3 nodes in the heat map in

Figure 8.36.

This shows a small directed bipartite structure comprised of movements of

unattached players and players from SPL clubs to First Division teams. A

common career pattern in players for top-division teams involves loan-spells at
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lower division clubs, and on further investigation of the players involved, we find

that all but one of the players in the subgraph moving from SPL sides did so

on loan deals. In Table 8.7 we show the pvalues given by applying the form of

testing described in Section 8.5. The results are qualitatively similar in the sense

that the subgraph scores well when compared with subgraphs drawn from Erdös-

Rényi graphs or the biased stickiness model but less well when compared with

the stickiness or shuffled stickiness models. However, in a network of this type

we expect few reciprocal links (since it is unusual for transfers in both directions

between two clubs) and so there is an underlying ‘flow’ in the network and we

expect the stickiness model to replicate this. We now consider the networks of

both transfer periods in the 2007-2008 season and attempt to discover a similar

pattern.

pvalue 1 pvalue 2

Erdös-Rényi 6.70 × 10−2 22/1000

Directed stickiness 1.57 × 10−1 95/1000

Shuffled stickiness 3.92 × 10−1 444/1000

Biased stickiness 9.77 × 10−2 31/1000

Table 8.7: Significance of subgraph in Figure 8.37 for varying test matrix classes.
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8.7.2 Scottish Football Transfers 2007-2008

In addition to the network of transfers in the summer before the 2008-2009

football season, we have the corresponding network for the previous year as well

as the network of transfers made during the mid-season transfer window. We

expect to find a similar subgraph to the one obtained in the previous section

for the summer transfer window. Mid-season transfers, however, tend to follow

different patterns as clubs typically attempt to sign players that will improve

their current standing in their respective league (i.e. a short-term fix rather

than a long-term investment). We first consider the transfers made during the

summer. Figure 8.38 shows the network of transfers made during the pre-season

window, as well as a heat map of the mapped matrix. Taking the first and last

three nodes of the reordered mapped matrix, we obtain the subgraph shown in

Figure 8.39 which has a bipartivity score of 0.6667.
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Figure 8.38: Network of Scottish football transfers in the 2007-2008 pre-season and

heat map of mapped matrix.

This subgraph consists of transfers from three Premier League clubs to three

clubs in various divisions. Three of the transfers were free (players arriving at

the end of their contracts), three were loan deals and one involved a transfer
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Figure 8.39: Subgraph obtained from the first and last 3 nodes in the heat map in

Figure 8.38.

fee. (Although there are only six edges in the subgraph, one edge represents the

transfer of two players.) The pvalues given by comparing the bipartivity score

of this subgraph with the scores of subgraphs drawn from varying classes of test

network are shown in Table 8.8.

pvalue 1 pvalue 2

Erdös-Rényi 1.37 × 10−1 33/1000

Directed stickiness 3.74 × 10−1 387/1000

Shuffled stickiness 6.33 × 10−1 611/1000

Biased stickiness 1.84 × 10−1 135/1000

Table 8.8: Significance of subgraph in Figure 8.39 for varying test matrix classes.

Finally we consider the mid-season transfers in 2007-2008. As contracts tend
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to terminate at the end of a season and clubs have other financial concerns, fewer

transfers tend to take place in this period. Figure 8.40 shows the network of

transfers during this period together with a heat map of the reordered, mapped

matrix. Note that there are fewer nodes than in previous examples. By taking

the first two and last three nodes of the reordering, we obtain the subgraph

shown in Figure 8.41.
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Figure 8.40: Network of Scottish football transfers in the 2007-2008 mid-season and

heat map of mapped matrix.
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Figure 8.41: Subgraph obtained from the first 2 and last 3 nodes in the heat map in

Figure 8.40.
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In this instance we find an approximate directed bipartite subgraph consist-

ing of transfers from several clubs to Dundee United (with an additional transfer

from Dundee United to Celtic) and one transfer to Hibernian. In contrast to

previous examples, two transfers involved fees, two were free transfers and one

was a loan deal. Additionally, the reciprocal link between Celtic and Dundee

United is of interest: a player was released from one club to the other on loan

as part of the agreement to secure the transfer of another player in the opposite

direction. This network is smaller than other examples (since fewer transfers

take place in the mid-season window) and is very sparse. This is reflected in

Table 8.9 where for each test model, many of the random matrices contained

subgraphs with higher bipartivity scores.

pvalue 1 pvalue 2

Erdös-Rényi 3.07 × 10−1 383/1000

Directed stickiness 4.17 × 10−1 475/1000

Shuffled stickiness 6.40 × 10−1 746/1000

Biased stickiness 4.24 × 10−1 415/1000

Table 8.9: Significance of subgraph in Figure 8.41 for varying test matrix classes.

Although we have identified small approximately bipartite subgraphs for

each of the football networks, we must conclude that none of the patterns of

connectivity are statistically significant when compared with Erdös-Rényi graphs

or the directed stickiness model. In each instance we have a pvalue greater
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than 0.05, suggesting that directed bipartite structures of this size occur too

frequently within random directed networks to be deemed significant. A possible

direction further investigations could take would be to consider the evolving

network where both clubs and players are nodes, and a player and club are

connected if the player is currently under contract with the club. It might also

be possible that a significant ‘directed partite’ structure exists if we consider

weighted edges that reflect financial transactions.

8.8 Conclusions

We have addressed the problem of discovering directed bipartite structures

within complex networks via a new matrix mapping. Initial tests on networks

from neuroscience show that the new mapping can be used to infer biologically

relevant information using only network topology. Investigation of a set of net-

works consisting of players transferring between football clubs provided a novel

example where the patterns in a subgraph could be explained in part by con-

sidering additional information about the network. We have emphasised the

impact of the choice of random graph model by comparing statistics for several

such models. In particular, we see that the ‘significance’ or ‘non-significance’ of

the determined connectivity patterns can be extremely sensitive to the class of

random matrices chosen.



Chapter 9

Comparison Between SVD and

Mapping Approaches

Having established in Chapters 6 and 8 two procedures for identifying directed

bipartite structures within complex networks, we wish to make a brief compar-

ison of their performances under synthetic conditions. Although the SVD algo-

rithm and the matrix mapping both attempt to highlight members of directed

bipartite communities, we stress that they are applicable in different general

circumstances. The SVD algorithm focuses more on the ‘lock and key’ interpre-

tation of connectivity, with each pair of singular vectors potentially containing

information about the distribution of a different type (or ‘colour’) of lock and

key. The matrix mapping, on the other hand, provides a useful reordering of the

entire adjacency matrix, and the weighted entries, as interpreted as a measure

of ‘similarity’ of nodes in terms of bipartite community membership, may be

useful in showing overlapping community structure, particularly when plotted

as a heat map.

168
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9.1 Resilience to Noise

We compare the methods’ resilience to increasing levels of ‘noise’ in a synthetic

matrix by applying the same sort of testing used in Section 6.4. We construct a

synthetic matrix consisting of 100 nodes, where there is an underlying bipartite

structure involving sets S1 and S2, both consisting of 10 nodes. Adjacency

matrices are generated randomly such that the independent probability of a

connection between a node in S1 to a node in S2 is p1 and the independent

probability of a connection elsewhere is p2.

We fix p1 and allow p2 to vary from 0 to p1. For each value of p2, we compute

the proportion of nodes correctly identified by the SVD and the matrix mapping,

and average over ten random graph instances. Figures 9.1 and 9.2 show the

proportion of nodes correctly identified by the SVD and the matrix mapping as

‘keys’ and ‘locks’ respectively for p1 fixed at 0.3. We observe that both methods

have qualitatively and quantatively similar performances. Similarly, Figures 9.3

and 9.4 show the proportions of ‘keys’ and ‘locks’ correctly identified for p1 fixed

at 0.8. Again, both methods have comparable levels of accuracy.

9.2 Run-times

We consider the processing times for the SVD compared with our matrix map-

ping by computing random matrices of increasing size with a fixed level of spar-

sity. Figure 9.5 shows a log-log plot of the processing times for the SVD (blue

asterisks) and the matrix mapping (red asterisks) together with the matrix gen-

eration times (green asterisks). The sparsity for each matrix is fixed at 0.01. By

inspection, we see that the processing times follow a power law (with positive
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Figure 9.1: Proportion of key nodes correctly identified by first left singular vector of

the adjacency matrix and first eigenvector of the mapped matrix for p1 = 0.3.
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Figure 9.2: Proportion of lock nodes correctly identified by first left singular vector of

the adjacency matrix and first eigenvector of the mapped matrix for p1 = 0.3.
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Figure 9.3: Proportion of key nodes correctly identified by first left singular vector of

the adjacency matrix and first eigenvector of the mapped matrix for p1 = 0.8.
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Figure 9.4: Proportion of lock nodes correctly identified by first right singular vector

of the adjacency matrix and first eigenvector of the mapped matrix for p1 = 0.8.
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exponent) and that the matrix mapping has a consistently longer run-time than

the SVD. Such a result is predictable since each matrix mapping involves the

computation of two singular value decompositions, one for the adjacency matrix

A and one for AT . Increasing the sparsity to 0.5, we observe in Figure 9.6 that

the results are both quantatively and qualitatively similar.
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Figure 9.5: Matrix processing times with sparsity = 0.01.

9.3 Application to Real Data

Although both methods perform comparably in the test described in Section 9.1,

the SVD takes typically half the time needed to compute the matrix mapping.

The post-processing for both methods may differ, however. Having computed

the matrix mapping, we obtain a symmetric, real valued matrix which may be

used as input for a clustering method selected by the user. The values in the

mapped matrix represent a measure of similarity of a sort between two nodes,

and as such conventional clustering algorithms may be exploited to search for
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Figure 9.6: Matrix processing times with sparsity = 0.5.

bipartite structures within the data. For instance computing the first eigenvector

of the mapped matrix may provide a reordering of the nodes that reveals an

underlying bipartite structure.

The SVD algorithm, on the other hand, is more applicable if we believe

there to be a number of different (possibly overlapping) bipartite communities.

In this case, several singular vector pairs may contain useful information and

a more exhaustive search may be required. There are however visualization

issues when using the SVD to investigate bipartite communities. Since the

left and right singular vectors may contain information about ‘keys’ and ‘locks’

respectively, separate row and column reorderings may be the clearest way to

show bipartite communities via a spy-plot, although this raises questions about

the relative positions of individual nodes in both reorderings. Several spy-plots

or subgraphs may have to be investigated to discover all patterns of bipartite

connectivity within a given network. In this respect, the matrix mapping has the

advantage of producing a single, symmetric matrix which may then be clustered
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conventionally.



Chapter 10

Conclusions and Future Work

In this thesis we have presented two main topics concerning the search for a

specific form of substructure within complex networks, i.e. directed bipartite

connectivity. Additionally we have presented two packages to aid in the analysis

of complex networks: CONTEST, a controllable test matrix toolbox for MAT-

LAB, and NESSIE, a repository of real world network data. We summarize each

of these topics, discuss the conclusions we can draw in each case and discuss the

directions in which each topic could be extended in the future.

10.1 CONTEST: A Controllable Test Matrix

Toolbox for MATLAB

In recognition of the fact that recent random network models make excellent can-

didates for sparse test matrices, we have implemented a number of these models

in MATLAB. The CONTEST toolbox allows the generation of large sparse ma-

trices as instances of random graphs drawn from one of nine models. The models

are controlled by a number of parameters allowing matrices of varying size and

175
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sparsity to be tailored to the end-user’s particular application. Additionally,

since the implementation of each model uses MATLAB’s own random number

generators rand and randn, a particular test matrix may be exactly reproduced

by re-setting their states. Naturally occuring computational tasks in network

science present challenging problems for general (symmetric and unsymmetric)

linear systems solvers and symmetric eigenvalue routines.

As an example of the application of these models, a directed version of the

Erdös-Rényi code and an extension of the stickiness model have been used exten-

sively in Chapters 6 and 8 this work as test matrices for the statistical analysis

of the success of two methods for discovering directed bipartite substructure.

There are a number of ways in which the MATLAB codes in the toolbox may

be extended. As previously stated, we focussed on the challenge of generating

instances of large matrices than optimizing the speed or efficiency of the algo-

rithms. A potential improvement to the models would be to implement multiple

algorithms within a single code and to select the appropriate one based upon

the dimension n of matrix to be generated, or to allow the user to select the

appropriate algorithm. There are also a number of measures on networks that

could potentially be added as utilities in CONTEST, including various measures

of centrality or graphlet frequencies.

The models in CONTEST generate adjacency matrices corresponding to

undirected networks. We have stated that in some cases a directed variation

can be produced by simply combining the upper and lower triangles of separate

instances, though in some modelling scenarios this may be inappropriate (as well

as inefficient). A potential improvement could be to include an input parameter

that allows the user to toggle between directed and undirected versions of the

model. In Chapter 7, for instance, we showed how the stickiness model can be



Conclusions 177

extended to the directed case (subject to certain constraints).

A final and perhaps more challenging improvement to the codes in CON-

TEST would be their implementation using MATLAB’s parallel processing ca-

pabilities. Applications in network science typically involve lengthy computa-

tional processes, and harnessing the potential of parallel processing could allow

for faster and more thorough testing. Similarly, the processing time taken to

generate large instances of random matrices in CONTEST could be greatly im-

proved by these methods.

10.2 NESSIE: Network Example Source Sup-

porting Innovative Experimentation

We have presented a repository of network data from a variety of sources that

may prove useful as a test set for algorithms in network science. The datasets

span a variety of application areas, and include directed, undirected, weighted

and unweighted networks. At the moment NESSIE consists of 12 networks but

this could easily be extended. Network data is available from a variety of sources

and may be easily converted into adjacency matrix format. For instance, the

website

http://www.trafficscotland.org

currently contains regularly updated tables of journey times on particular roads

in Scotland. This represents a frequently evolving network that is both weighted

and directed and as such may form a particularly interesting dataset. This

would allow investigation of a variety of interesting problems, for instance can
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we predict the effect a delay on a particular road will have on journey times

using other nearby roads?

10.3 Discovering Directed Lock and Key Struc-

ture

In Chapter 6 we showed that if a network has an underlying directed bipartite

structure, the left and right singular vectors of the adjacency matrix A give useful

information when interpreted as the distribution of ‘locks’ and ‘keys’ among

the nodes. Furthermore, we observed that if there are overlapping patterns

of directed bipartite connectivity (which we interpreted as different ‘colours’

of locks and keys), then additional singular vector pairs may give information

corresponding to these.

We tested the effectiveness of subgraph reorderings based on components of

the singular vectors by applying the SVD to a variety of synthetic test cases in

which multiple lock and key structures were embedded. We also investigated the

effectiveness of the SVD at identifying nodes belonging to bipartite communities

under varying levels of artificial ‘noise’ (false negatives and false positives in the

adjacency matrix), and found the SVD to be tolerant up to modest levels of

noise.

Finally we applied the SVD to two directed networks from real world sources;

a network relating to co-expression levels of genes related to p53 and another

representing a sociological study of coworkers giving and receiving help in an

office environment. In the case of the p53 dataset, we identified an approximate

directed bipartite subgroup consisting of two sets of genes. The first set was
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found to be mainly comprised of genes that have an inhibitory effect on cell

growth and the second was found to comprise genes related to cell division and

cell growth. Discovering this subgroup from the connectivity information alone

supports the idea that the concept of directed bipartivity is relevant for gene co-

expression networks. In this instance, a nonzero in position Ai,j means that when

gene i is expressing above the normal level, gene j is simultaneously expressing

below the normal level. In terms of the specific subgroup we have identified,

this means that when the set of genes inhibiting cell growth are expressing

more than usual, the set of genes concerned with promoting cell growth and cell

division are expressing less than usual. Biologically, this adds useful information

as the subgroup consists largely of genes where such a pattern of connectivity

is expected and can be easily explained, but we also pulled out a small number

of genes who’s role is currently unclear. We are therefore able to assign likely

functional roles to these genes, and highlight them as candidates for experimental

studies.

We believe that further improvements to the method of identifying approx-

imate directed bipartite subgraphs using the SVD will be algorithmic rather

than mathematical. As has been stated, multiple singular vector pairs may

provide information about connectivity that can be interpreted as overlapping

substructures. An exhaustive search of all potential reorderings of the adjacency

matrix based on the components of the singular vectors is unfeasable for net-

works of even modest size. A possible direction for future development would

be to produce a program that examines the subgraphs obtained by extracting

nodes based on their corresponding components in several left and right singu-

lar vectors, perhaps applying a qualitative measure of bipartivity such as the

one described in Section 8.5. By examining several such sugraphs, the ‘most
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bipartite’ ones could be output.

When testing the SVD algorithm, we also found that on some occasions,

linear combinations of singular vectors provided more insightful reorderings of

the adjacency matrix, particularly in synthetic examples consisting of a number

of different lock and key pairs. A possible direction of future research could be

to attempt to justify the ‘refinement’ of information in a single reordering vector

by updating based on the entries of several singular vectors. This could poten-

tially allow reorderings of the entire adjacency matrix (rather than focussing on

subgraphs) that highlight multiple approximate directed bipartite structures.

10.4 Mapping Directed Networks

In Chapter 8, we introduced the concept of an alternating walk as a means of

assessing the ‘similarity’ of a pair of nodes if an approximate directed bipartite

connectivity structure is assumed. By counting alternating walks of increasing

length and scaling appropriately to give less weight to longer walks, we arrived

at an expression for the similarity of two nodes as the difference between the

total number of even and odd length alternating walks. Furthermore, we showed

that such a count of alternating walks on the transpose of the adjacency matrix

gives information of a similar type, and that the sum of these two expressions

results in a mapping from an unsymmetric binary matrix to a symmetric real-

valued matrix where each entry expresses the similarity of two nodes in terms

of a count of alternating walks.

We tested this matrix mapping by applying it to a number of synthetic

matrices with varying degrees of bipartite connectivity built in and observed

that the mapped matrix was effective in identifying members of directed bipartite
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communities and could form the basis for a process that aims to uncover this

type of structure in a network. We also showed that the matrix mapping was

more effective than the matrix exponential or negative matrix exponential at

highlighting patterns of directed bipartite connectivity within a network.

The matrix mapping was applied to networks from two sources; neural net-

works of the c. elegans organism and networks of transfers between football

clubs taken from NESSIE. Taking as our motivation the work by Durbin [24]

in which a combinatoric algorithm is used to reorder neurons hierarchically, we

attempted to find approximate directed bipartite subgraphs which could be ver-

ified by existing knowledge of the connectivity of neurons in c. elegans. The

results were encouraging. They involved neurons belonging to the lateral gan-

glion which is thought to be the principal pathway between sensory and motor

neurons in c. elegans. We conducted statistical tests of the subgraphs iden-

tified by formulating a simple measure of bipartivity and comparing with the

bipartivity of subgraphs drawn from Erdös-Rényi graphs and variations of a di-

rected extension of the stickiness model in [76]. We found in the majority of cases

that subgraphs of comparable bipartivity as those extracted from the neuronal

networks were significantly unlikely to appear in random networks. We also con-

sidered as an additional example three networks consisting of player transfers

between football clubs. These networks were particularly sparse and only small

approximately bipartite subgraphs could be extracted. Although these subnet-

works could be interpreted as picking out sensible patterns, the results were not

found to be statistically significant.

As with the SVD algorithm, the work on the matrix mapping could be im-

proved by further automating the process. As it stands, a significant level of

‘eyeballing’ must take place when selecting an appropriate number of nodes



Conclusions 182

from the mapped matrix. We have experimented with programs which compute

many potential subgraphs, assess their level of bipartivity and select the largest

of them. Such a method, however, is computationally expensive and may re-

sult in lengthy processing times even though a significantly bipartite subgraph

may not exist within the network. A method that approximates the change in

bipartivity of a subgraph by the addition or removal of a particular node would

be a useful extension of this work.

Both the SVD and matrix mapping approaches have been applied primarily

in the search for bipartite substructures with non-overlapping communities. A

problem that often occurs in practice is that such partitions in networks are

not necessarily disjoint. This is analagous to a group of nodes having multiple

“locks” or “keys” in the definition in Chapter 6. One of the most important ex-

tensions to this work would be the further consideration of methods for detecting

overlapping community structure within directed networks.



Appendix A

CONTEST Code

We present here the MATLAB codes for each random graph model and utility

implemented in CONTEST. An introductory section in each code describes the

input arguments and the default values they take, the format of the output and

a typical call of each program.

A.1 baitsample.m

function B = baitsample(A,bait,prey)

%BAITSAMPLE bait and prey subsampling

%

% Input A: n by n adjacency matrix

% bait: proportion of nodes to sample. Defaults to 0.5.

% prey: proportion of edges to retain from each "bait" node.

% Defaults to 0.5.

%

% Output B: adjacency matrix with the attribute sparse.

% Dimension of B cannot be predicted.

%

% Description: The adjacency matrix A is considered, and a

% proportion, bait, of its rows/columns are retained.

% Of these, a proportion, prey, of the outgoing edges

% are retained. All other entries are set to zero.

% Disconnected nodes are then removed.

%

% Reference: J. Han, D. Dupuy, N. Bertin, M. Cusick, M. Vidal,

% Effect of sampling on topology predictions of

% protein-protein interaction networks,

% Nature Biotechnology 23 (2005), pp. 839-844.

%

% Example: B = baitsample(A,0.1,0.4);

183
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if nargin <= 2

prey = 0.5;

if nargin == 1

bait = 0.5;

end

end

n = length(A);

B = sparse(n,n);

rp = randperm(n);

ibait = rp(1:ceil(bait*n)); % bait rows/columns to be retained

for i = 1:length(ibait)

B(ibait(i),:) = A(ibait(i),:);

B(:,ibait(i)) = A(:,ibait(i));

iprey = find(B(ibait(i),:));

psum = ceil(prey*length(iprey)); % number of prey nodes for ith bait

if length(iprey) ~= 0

dist = (1/length(iprey)) : (1/length(iprey)) : 1;

while length(find(B(ibait(i),:))) > psum

r = rand;

pos = min(find(r<=dist));

B(ibait(i),iprey(pos))=0;

B(iprey(pos),ibait(i))=0;

end

end

end

for i = 1 : n % trim isolated nodes

if ~any(B(:,(n-i+1)))

B(:,(n-i+1)) = [];

B((n-i+1),:) = [];

end

end

A.2 curvature.m

function C = curvature(A,ind)

%CURVATURE Compute the curvatures (clustering coefficients) for a given

% adjacency matrix.

%

% Input A: n by n adjacency matrix.

% ind: node index (optional). Can also take string values

% ’max’ for maximum and ’ave’ for average, ignoring those

% that are undefined.

%

% Output C: n by 1 vector of curvatures (scalar if ind is provided).

% Undefined values are returned as NaN.
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%

% Description: Calculates the curvatures of the nodes in a graph.

% Defined for each node by the frequency with which

% its neighbours are themselves connected.

%

% Examples: C = curvature(A) vector of curvatures

% C = curvature(A,4) curvature of 4th node

% C = curvature(A,’max’) largest curvature

% C = curvature(A,’ave’) average curvature

n = length(A);

v = sum(A);

b = diag(A^3);

d = v.*(v-1);

ccoefs = zeros(1,n);

for i = 1:n

if d(i) <= 1

ccoefs(i) = NaN;

else

ccoefs(i) = b(i)/d(i);

end

end

if nargin==1

C = ccoefs;

else

if strcmp(ind,’max’)

C = max(ccoefs);

else

if strcmp(ind,’ave’)

C = mean(ccoefs(find(~isnan(ccoefs))));

else

C = ccoefs(ind);

end

end

end

A.3 erdrey.m

function A = erdrey(n,m)

%ERDREY Generate adjacency matrix for a G(n,m) type random graph.

%

% Input n: dimension of matrix (number of nodes in graph).

% m: 2*m is the number of 1’s in matrix (number of edges in graph).

% Defaults to the smallest integer larger than n*log(n)/2.

%

% Output A: n by n symmetric matrix with the attribute sparse.

%

%

% Description: An undirected graph is chosen uniformly at random from

% the set of all symmetric graphs with n nodes and m



Appendix A 186

% edges.

%

% Reference: P. Erdos, A. Renyi,

% On Random Graphs,

% Publ. Math. Debrecen, 6 1959, pp. 290-297.

%

% Example: A = erdrey(100,10);

if nargin == 1

m = ceil(n*log(n)/2);

end

nonzeros = ceil(0.5*n*(n-1)*rand(m,1));

v = zeros(n,1);

for count = 1:n

v(count) = count*(count-1)/2;

end

I = zeros(m,1);

J = zeros(m,1);

S = ones(m,1);

for count = 1:m

i = min(find(v >= nonzeros(count)));

j = nonzeros(count) - (i-1)*(i-2)/2;

I(count) = i;

J(count) = j;

end

A = sign(sparse([I;J],[J;I],[S;S],n,n));

while nnz(A) ~= 2*m

difference = m-nnz(A)/2;

Inew = zeros(difference,1);

Jnew = zeros(difference,1);

for count = 1:difference

index = ceil(0.5*n*(n-1)*rand);

Inew(count) = min(find(v>=index));

Jnew(count) = index - (Inew(count)-1)*(Inew(count)-2)/2;

end

I = cat(1,I,Inew);

J = cat(1,J,Jnew);

S = ones(length(I),1);

A = sign(sparse([I;J],[J;I],[S;S],n,n));

end

A.4 geo.m

function A = geo(n,r,m,per,pnorm)

%GEO Generate adjacency matrix for a geometric random graph.

%

% Input n: dimension of matrix (number of nodes in graph)

% r: radius used to defined entries (edges). Defaults to the

% square root of 1.44/n.

% m: dimension of coordinate system. Defaults to 2.
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% per: periodicity of coordinate system. Periodic if per == 1,

% not periodic if per == 0. Defaults to 0.

% pnorm: norm to measure distance between nodes. Defaults to 2.

%

% Output A: n by n symmetric matrix with the attribute sparse

%

%

% Description: nodes are placed randomly in the unit m-cube.

% An edge is created if two nodes are within distance r.

% Reference: M. Penrose, Geometric Random Graphs,

% Oxford Univeristy Press, 2003.

%

% Example: A = geo(100,0.01,3,1,2);

if nargin <= 4

pnorm = 2;

if nargin <= 3

per = 0;

if nargin <= 2

m = 2;

if nargin == 1

r = sqrt(1.44/n);

end

end

end

end

coords = rand(n,m);

I = [];

J = [];

if per == 0

for i = 2:n

for j = 1:(i-1)

diff = abs(coords(i,:) - coords(j,:));

if norm(diff,pnorm)<=r

J = cat(1,J,j);

I = cat(1,I,i);

end

end

end

end

if per == 1

for i = 2:n

for j = 1:(i-1)

diff = min( abs( coords(i,:) - coords(j,:) ), abs( 1 - abs( coords(i,:) - coords(j,:) ) ) );

if norm(diff,pnorm)<=r

J = cat(1,J,j);

I = cat(1,I,i);

end

end

end

end

S = ones(length(I),1);

A = sparse([I;J],[J;I],[S;S],n,n);
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A.5 gilbert.m

function A = gilbert(n,p);

%GILBERT Generate adjacency matrix for a G(n,p) type random graph.

%

% Input n: dimension of matrix (number of nodes in graph).

% p: probability that any two nodes are neighbours. Defaults to

% log(n)/n.

%

% Output A: n by n symmetric matrix with the attribute sparse.

%

%

% Description: An undirected graph is created by considering pairs of

% nodes and connecting them with independent probability p.

%

% Reference: E.N. Gilbert,

% Random Graphs,

% Ann. Math. Statist.,30, (1959) pp. 1141-1144.

%

% This code is a direct translation of Algorithm 1 in

% V. Batagelj, U. Brandes,

% Efficient generation of large random networks,

% Phys. Rev. E, 71 (2005).

% This algorithm uses a geometric method to skip over potential edges,

% and has optimal complexity.

%

% Example: A = gilbert(100,0.1);

if nargin == 1

p = log(n)/n;

end

v = zeros(n,1); % Think of lower triangle of n-by-n array ordered

for k = 1:n, % lexographically, row-wise. So v(k) is the biggest

v(k) = k*(k-1)/2; % index appearing in row k.

end

I = zeros(ceil(0.5*p*n^2),1); % We don’t know exact length

J = zeros(ceil(0.5*p*n^2),1); % Expected length is 0.5*p*n(n-1)

count = 0;

w = 0;

w = w + 1 + floor(log(1-rand)/log(1-p)); %Lexographical index of next nonzero

while w < n*(n-1)/2;

i = min(find(v >= w)); % Recover i and j from

j = w - (i-1)*(i-2)/2; % lexographical index w

I(count+1) = i;

J(count+1) = j;

count = count + 1;

w = w + 1 + floor(log(1-rand)/log(1-p)); %Lexographical index of next nonzero

end

Ifind = find(I>0); % trim any left-over zeros

I = I(Ifind); % from I and J

Jfind = find(J>0);

J = J(Jfind);

S = ones(length(I),1);

A = sparse([I;J],[J;I],[S;S],n,n);
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A.6 kleinberg.m

function A = kleinberg(n,p,q,alpha)

%KLEINBERG Generate adjacency matrix for a range dependent graph.

%

% Input n: dimension of matrix (number of nodes in lattice)

% p: maximum distance of short-range connections. Defaults to 1.

% q: number of random connections to add per node. Defaults to 1.

% alpha: clustering exponent. Defaults to 2.

%

% Output A: n by n symmetric matrix with the attribute sparse

%

%

% Description: An alternative small world graph is created by

% taking a toroidal lattice that connects nodes within

% Manhattan distance p of each other and adding q long

% range short cuts to each node. The probability of

% a short cut between two nodes is inversely proportional

% to their Manhattan distance.

%

% Reference: J. Kleinberg

% Navigation in a small world

% Nature 406 (2000), p.845.

%

% Example: A = kleinberg(100,2,3,1.5);

m = round(sqrt(n));

n = m^2;

if nargin <= 3

alpha = 2;

if nargin <= 2

q = 1;

if nargin ==1

p = 1;

end

end

end

%First create the toroidal lattice

%Create A1, the diagonal repeating block

I1 = zeros(m*2*p,1);

J1 = zeros(m*2*p,1);

S1 = ones(m*2*p,1);

for i = 1:m

I1((i-1)*2*p+1:i*2*p) = i*ones(2*p,1);

J1((i-1)*2*p+1:i*2*p) = mod([i-p:i-1 i+1:i+p],m);

end

J1(find(J1==0)) = m;

%Create A2:A(p+1), the off diagonal blocks

I2 = zeros(m*p^2,1);

J2 = []; J3 = [];

S2 = ones(m*p^2,1);

for i=1:m

I2((i-1)*p^2+1:i*p^2) = i*ones(p^2,1);

for j=1:p

Jnew = mod([i-(p-j):i+(p-j)],m);

Jnew(find(Jnew==0)) = m;
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Jnew = Jnew + j*m;

J3new = Jnew+m*(m-2*j);

J2 = cat(2,J2,Jnew);

J3 = cat(2,J3,J3new);

end

end

J2 = J2’; J3 = J3’;

%Construct block Toeplitz matrix using first m rows

Ifirst = cat(1,I1,I2,I2);

Jfirst = cat(1,J1,J2,J3);

Sfirst = cat(1,S1,S2,S2);

Irest = [];

Jrest = [];

for i = 1:m-1

Irest = cat(1,Irest,i*m+Ifirst);

Jrest = cat(1,Jrest,mod(Jfirst+i*m,n));

Jrest(find(Jrest==0)) = n;

end

Srest = ones(length(Irest),1);

%Add shortcuts

pdist = [1:n].^(-alpha);

pdist = cumsum(pdist./sum(pdist));

Ihat = zeros(q*n,1);

Jhat = zeros(q*n,1);

Shat = ones(q*n,1);

for i = 1:n

Ihat((i-1)*q+1:i*q) = i*ones(q,1);

for j = 1:q

r = rand;

index = 1;

while r >pdist(index)

index = index+1;

end

r = index;

rowdist = [ones(1,r) 0.5];

rowdist = cumsum(rowdist./sum(rowdist));

dist = rand;

index = 1;

while dist > rowdist(index)

index = index + 1;

end

dist = index;

Jhat((i-1)*q+j) = mod(i + ((-1)^floor(rand*2))*dist*m + ((-1)^floor(rand*2))*(r-dist),n)+1;

end

end

A = sparse([Ifirst;Irest;Ihat;Jhat],[Jfirst;Jrest;Jhat;Ihat],[Sfirst;Srest;Shat;Shat],n,n);

A = sign(A);
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A.7 lap.m

function L = lap(A,nl)

%LAP Calculate the Laplacian of an adjacency matrix.

%

% Input A: n by n adjacency matrix (symmetric).

% nl: flag for normalization.

% nl = 0 means unnormalized, nl = 1 means normalized.

% Defaults to nl = 1.

%

% Output L: n by n Laplacian of A.

%

%

% Description: Calculates the normalized or unnormalized Laplacian

% of a symmetric matrix.

% Unnormalized form is diag(sum(A)) - A.

% Normalized form has a row/column scaling applied.

if nargin == 1

nl = 1;

end

L = sparse(diag(sum(A))) - A; % unnormalized

if nl == 1

deg = max(sum(A),1);

Dhf = sparse(diag(deg.^(-1/2)));

L = Dhf*L*Dhf; % normalized

end

A.8 lockandkey.m

function A = lockandkey(n,m,p)

%LOCKANDKEY Generate adjacency matrix for a lock & key random graph

%

% Input n: dimension of matrix

% m: number of domains (lock/key pairs). Defaults to the smallest

% integer bigger than n*log(n).

% p: probability that a node is assigned each domain type.

% Defaults to 1/n.

%

% Output A: n by n symmetric matrix with attribute sparse

%

% Description: Locks and keys are distributed randomly amongst nodes.

% Interactions (edges) occur between nodes that share

% lock/key pairs. Although a node may be assigned both a

% particular lock and the corresponding key, self links

% are disallowed.

%

% Reference: J.L. Morrison, R. Breitling, D.J. Higham, D.R. Gilbert,

% A Lock-and-key model for protein-protein interactions,

% Bioinformatics, 22 (2006), pp. 2012-2019.

%

% Example: A = lockandkey(100,5,0.4);

if nargin <= 2
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p = 1/n;

if nargin == 1

m = ceil(n*log(n));

end

end

I = [];

J = [];

for domains = 1:m

locks = find(rand(n,1)<p);

keys = find(rand(n,1)<p);

if length(locks)>=1 && length(keys)>=1

khat = keys*ones(1,length(locks));

I = cat(1,I,sort(khat(:)));

lhat = repmat(locks,length(keys),1);

J = cat(1,J,lhat);

end

end

S = ones(length(I),1);

A = sign(sparse([I;J],[J;I],[S;S],n,n));

A = A - diag(diag(A));

A.9 mht.m

function M = mht(A,i)

%MHT Mean hitting times

%

% Input A: n by n adjacency matrix

% i: integer representing starting state.

% Defaults to i = 1.

%

% Output M: n-1 by n-1 matrix for the mean hitting time system

% corresponding to a random walk on the graph A starting

% at node i.

%

% Description: Computes the mean hitting time matrix, M, given by

% forming I - D^(-1)*A, where D=diag(sum(A)) is the

% diagonal degree matrix (required to be nonsingular) and

% then removing the ith row and column.

% Solving M*x = ones(n-1,1) then gives the hitting time

% vector, x.

%

% Example: M = mht(A,2) mean hitting time matrix for state 2

if nargin == 1

i = 1;

end

M = sparse(diag(1./sum(A))*A);
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M(i,:) = [];

M(:,i) = [];

m = length(M);

M = speye(m,m) - M;

A.10 pagerank.m

function P = pagerank(A,d)

%PAGERANK Calculate the PageRank matrix corresponding to a given

% adjacency matrix.

%

% Input A: n by n adjacency matrix.

% d: multiplicative constant. Defaults to 0.15.

%

% Output P: n by n PageRank matrix.

%

% Description: Calculates the matrix P, defined as

% P = I - d*(A’/max(deg(A),1)).

%

% Reference: L. Page, S. Brin,

% The anatomy of a large-scale hypertextual web search engine

% Proceedings of the Seventh International Web Conference,

% (1998).

%

% Example: P = pagerank(A,0.3);

if nargin == 1

d = 0.85;

end

n = length(A);

if any(find(A-A’))

P = sparse(speye(n) - d*(A’*diag(1./max(sum(A,2),1))));

else

P = sparse(speye(n) - d*(A’*diag(1./max(sum(A),1))));

end

A.11 pathlength.m

function Plength = pathlength(A)

% PATHLENGTH Calculate minimum pathlengths for a given adjacency

% matrix.

%

% Input A: n by n adjacency matrix (symmetric).
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%

% Output Plength: n by n matrix of pathlengths. Element in

% position (i,j) is pathlength from node i to node j.

% If no path exists, inf is returned.

%

% Description: Powers up the adjacency matrix until either there are

% no elements equal to zero or the (n-1)st power has been

% reached. Records the first power at which (i,j) element

% became nonzero.

%

% Example: Plength = pathlength(A);

Anew = A;

n = length(A);

power = 1;

Plength = sign(A + eye(n,n)); % record all paths of length one, including diagonal

while any(any(Anew==0)) && power <= (n-1)

power = power + 1;

Anew = Anew*A;

Plength = Plength + ( (Plength == 0) & (Anew > 0) )*power;

end

pzero = find(Plength == 0);

Plength(pzero) = inf; % reset zeros to inf

Plength = Plength - diag(diag(Plength)); % reset diagonal to zero

A.12 pref.m

function A = pref(n,d)

%PREF Generate adjacency matrix for a scale free random graph.

%

% Input n: dimension of matrix (number of nodes in graph).

% d: minimum row sum (minimum node degree). Defaults to 2.

%

% Output A: n by n symmetric matrix with the attribute sparse

%

%

% Description: Nodes are added successively. For each node, d edges

% are generated. The endpoints are selected from the

% nodes whose edges have already been created, with bias

% towards high degree nodes. This is a MATLAB

% implementation of Algorithm 5 in [2].

%

% References: [1] A.L. Barabasi, R. Albert,

% Emergence of scaling in random networks,

% Science Vol. 286, 15 (1999).

%

% [2] V. Batagelj, U. Brandes,

% Efficient generation of large random networks,

% Phys. Rev. E, 71 (2005).

%

% Example: A = pref(100,2);

if nargin == 1

d = 2;
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end

I = [];

J = [];

for v = 1:n

for i = 1:d

M(2*((v-1)*d+i)-1) = v;

I = cat(1,I,v);

r = ceil(rand*(2*((v-1)*d+i)-1));

M(2*((v-1)*d+i))=M(r);

J = cat(1,J,M(r));

end

end

S = ones(length(I),1);

A = sign(sparse([I;J],[J;I],[S;S],n,n));

A.13 renga.m

function A = renga(n,lambda,alpha)

%RENGA Generate adjacency matrix for a range dependent random

% graph.

%

% Input n: dimension of matrix (number of nodes in graph).

% lambda: fixed base for the edge probability. Defaults to 0.9.

% alpha: multiplicative constant for the edge probability.

% Defaults to 1.

%

% Output A: n by n symmetric matrix with the attribute sparse

%

% Description: nodes are considered to lie at unit intervals on a

% line. The probability of connecting two nodes is given

% by the function p = alpha*lambda^(d-1) where d is the

% distance between the nodes.

%

% Reference: P. Grindrod,

% Range-dependent random graphs and their application to

% modelling large small-world proteome datasets,

% Phys. Rev E. 66, 066702 (2002).

%

% Example: A = renga(100,0.9,0.3);

if nargin <= 2

alpha = 1;

if nargin == 1

lambda = 0.9;

end

end

I = zeros(ceil(1.25*alpha*n/(1-lambda)),1);

J = zeros(ceil(1.25*alpha*n/(1-lambda)),1);

count = 1;

for i = 2:n

for j = 1:i-1
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if rand <= alpha*lambda^abs(i-j-1)

I(count) = i;

J(count) = j;

count = count+1;

end

end

end

I(find(I==0)) = [];

J(find(J==0)) = [];

A = sparse([I;J],[J;I],ones(2*length(I),1));

A.14 rewire.m

function R = rewire(A,p)

%REWIRE Watts-Strogatz rewiring

%

% Input A: n by n adjacency matrix

% p: probability of rewiring a given edge. Defaults to log(n)/n.

%

% Output R: rewired n by n adjacency matrix

%

% Description: Takes an adjacency matrix A and redirects each edge with

% probability p. Rewiring to an existing neighbour (i.e.

% overlapping edges) is not allowed. Rewiring is done in a

% symmetric fashion.

%

% Reference: D.J. Watts, S. H. Strogatz,

% Collective Dynamics of Small World Networks,

% Nature 393 (1998), pp. 440-442.

%

% Example: R = rewire(A,0.1);

n = length(A);

[I,J] = find(tril(A));

edges = length(I);

for i = 1:edges

if rand <= p

newneighbour = ceil(rand*n);

while A(I(i),newneighbour) ~= 0 | newneighbour == I(i)

newneighbour = ceil(rand*n);

end

A(I(i),J(i)) = 0;

A(J(i),I(i)) = 0;

A(I(i),newneighbour) = 1;

A(newneighbour,I(i)) = 1;

end

end

R = A;
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A.15 short.m

function S = short(A,p)

%SHORT Randomly add entries (shortcuts) to a matrix

%

% Input A: n by n adjacency matrix

% p: probability that an entry is added to a given row

%

% Output S: n by n adjacency matrix with the attribute sparse.

%

% Description: A symmetric matrix of shortcuts is created which has

% an entry in each row with independent probability p.

% This is added to the matrix A.

%

% Example: S = short(A,0.3);

n = length(A);

if nargin == 1

p = log(n)/n;

end

Ihat = find(rand(n,1)<=p);

Jhat = ceil(n*rand(size(Ihat)));

Ehat = ones(size(Ihat));

self = find(Ihat==Jhat);

Ihat(self) = [];

Jhat(self) = [];

Ehat(self) = [];

[I,J,E] = find(A);

S = sparse([I;Ihat;Jhat],[J;Jhat;Ihat],[E;Ehat;Ehat],n,n);

S = sign(S);

A.16 smallw.m

function A = smallw(n,k,p)

%SMALLW Generate adjacency matrix for a small world network.

%

% Input n: dimension of matrix (number of nodes in graph).

% k: number of nearest-neighbours to connect. Defaults to 1.

% p: probability of adding a shortcut in a given row. Defaults to

% 0.1.

%

% Output A: n by n symmetric matrix with the attribute sparse.

%

% Description: Shortcuts are added to a kth nearest neighbour ring

% network with n nodes by calling the utility function

% short.m.

%

% Reference: D.J. Watts, S. H. Strogatz,

% Collective Dynamics of Small World Networks,

% Nature 393 (1998), pp. 440-442.
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%

% Example: A = smallw(100,1,0.2);

if nargin <= 2

p = 0.1;

if nargin == 1

k = 2;

end

end

twok = 2*k;

I = zeros(2*k*n,1);

J = zeros(2*k*n,1);

S = zeros(2*k*n,1);

for count = 1:n

I( (count-1)*twok+1 : count*twok ) = count.*ones(twok,1);

J( (count-1)*twok+1 : count*twok ) = mod([count:count+k-1 n-k+count-1:n+count-2],n)+1;

S( (count-1)*twok+1 : count*twok ) = ones(twok,1);

end

A = sparse(I,J,S,n,n);

A = short(A,p);

A.17 sticky.m

function A = sticky(n,gamma)

%STICKY Stickiness model random graph

%

% Input n: dimension of matrix.

% gamma: exponent in scale-free target degree distribution. Probability

% of a node having degree i is proportional to i^(-gamma).

% Defaults to 2.5.

%

% *Exception* A = sticky(deg), where deg is a 1D array with length(deg) > 1.

% Here deg has integer entries between 0 and n and deg(i) is the degree

% for node i in the target network.

%

% Output A: n by n symmetric matrix with the attribute sparse.

%

% Description: A graph is chosen uniformly from a class of random graphs

% whose expected degrees match the given target distribution.

%

% Reference: N. Przulj, D.J. Higham,

% Modelling protein-protein interaction networks via a

% stickiness index

% J. Royal Society Interface, 3 (2006), pp 711-716.

%

% Example: A = sticky(100,2); 100 nodes, scale-free with exponent -2

% A = sticky(100); 100 nodes, scale-free with default exponent -2.5

% A = sticky(sum(gilbert(100,0.02))); 100 nodes, expected degrees from gilbert(100,0.02))

if nargin == 1 && length(n) > 1

% user has specified target degrees
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deg = n(:);

n = length(deg);

else

% scale-free case

if nargin == 1

% user wants scale-free with default gamma

gamma = 2.5;

end

%% compute target degrees from a scale-free distribution with exponent -gamma %%

d = cumsum([1:n].^(-gamma));

d = d’/d(end);

d = [0;d(1:end-1)];

deg = zeros(n,1);

for i = 1:n

deg(i) = max(find(rand>d)); %degree of node i

end

end

%Now compute sticky graph using these degrees

I = [];

J = [];

S = [];

root = sqrt(sum(deg));

for i = 1:n

for j = 1:i-1

if rand < deg(i)*deg(j)/(root^2)

I = cat(1,I,i);

J = cat(1,J,j);

S = cat(1,S,1);

end

end

end

diagonal = find(I==J);

I(diagonal) = [];

J(diagonal) = [];

S(diagonal) = [];

A = sparse([I;J],[J;I],[S;S],n,n);

A.18 unisample.m

function U = unisample(A,p)

%UNISAMPLE subsampling a graph

%

% Input A: n by n adjacency matrix

% p: probability of retaining each node. Defaults to 0.5.

%

% Output U: adjacency matrix with the attribute sparse.

% Dimension of U cannot be predicted.

%

% Description: Nodes in a graph are retained with independent

% probability p. Nodes that are "discarded" are removed

% from the adjacency matrix.

%
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% Example: U = unisample(A,0.25);

if nargin == 1

p = 0.5;

end

U=A;

remove = find(rand(length(A),1) > p); % remove these rows/columns

U(remove,:) = [];

U(:,remove) = [];
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CONTEST Testing

Here we present the bulk of the results for the testing procedures described

in Section 4.4. The amd run times for each random graph model are plotted

and we list the iteration counts, relative residuals and run-times for a variety

of numerical schemes on test matrices drawn from both symmetric and unsym-

metric instances of the random graph models. We note that these tests were

performed on an earlier version of the codes in CONTEST and acknowledge that

the current version of the codes may produce slightly different results.

B.1 amd Tests

We display the figures generated by the amd testing described in Section 4.4

for the remaining seven models implemented in CONTEST. A best-fit line has

been added to the plots and, as before, the run times are typically below O(|L|).

There are some outlying data points in all figures, but most notably in Figures

B.1, B.4 and B.6 where they form straight lines.

201
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Figure B.1: amd run times for Erdös-Rényi model.
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Figure B.2: amd run times for geometric model.
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Figure B.3: amd run times for lock and key model.
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Figure B.4: amd run times for preferential attachment model.
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Figure B.5: amd run times for renga model.
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Figure B.6: amd run times for small world model.
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Figure B.7: amd run times for stickiness model.

B.2 Linear System Tests

We present here tables of running times, iteration counts and relative residu-

als for symmetric and unsymmetric matrices generated by the remaining eight

models in CONTEST applied to the testing described in Section 4.4. Footnotes

indicate what percentage of cases ended in a given state. We describe the mean-

ings of each state for reference.

State 0 : the process coverged to the specified tolerance within the maximum

number of iterations.

State 1 : the maximum number of iterations was reached without convergence

to a solution.

State 2 : the preconditioner was ill-conditioned.

State 3 : the process stagnated, i.e. successive iterations were the same.

State 4 : a scalar quantity in the computation became too large or too small
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for MATLAB to process.

We observe that for several of the models, using the Cholesky preconditioner

resulted in all cases finishing in state 1 when running symmlq or minres. We

also emphasise that this testing does not comprise the main part of the work in

Chapter 4 and that these tests are designed to show that the models implemented

in CONTEST can produce adjacency matrices which can be seen as challenging

test problems for general linear system solvers.

B.2.1 Erdös Rényi Symmetric

Matrices generated by erdrey(10000).

Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 7.3985 e − 2 (1.2 e − 3) 1.2112 e − 1 (5.1 e − 4) 5.2146 e − 1 (2.9 e − 3)

qmr 7.9524 e − 2 (6.4 e − 4) 2.3985 e − 1 (4.4 e − 4) 2.2148 e − 1 (8.4 e − 4)

symmlq 5.3171 e − 2 (4.9 e − 4) 1.3050 e − 1 (5.5 e − 4) 1.0508 e + 0 (4.2 e − 3) 6

lsqr 1.9053 e − 1 (7.3 e − 4) 3.5934 e − 1 (7.5 e − 4) 3.7559 e − 1 (1.1 e − 3)

minres 5.2023 e − 2 (6.2 e − 4) 1.4226 e − 1 (5.1 e − 4) 1.2865 e + 0 (6.3 e − 3) 6

cgs 7.1681 e − 2 (6.9 e − 3) 1.2984 e − 1 (4.0 e − 4) 9.0465 e − 2 (5.3 e − 4)

gmres 1.1054 e − 1 (1.5 e − 3) 1.7561 e − 1 (4.2 e − 4) 1.5740 e − 1 (5.2 e − 4)

bicg 7.1005 e − 2 (4.3 e − 4) 2.1146 e − 1 (4.2 e − 4) 2.0481 e − 1 (8.1 e − 4)

bicgstab 6.0545 e − 2 (7.4 e − 4) 1.0107 e − 1 (3.8 e − 4) 9.5148 e − 2 (5.2 e − 4)

Table B.1: Mean running times and standard errors for erdrey.

B.2.2 Erdös Rényi Unsymmetric

Matrices generated by erdrey(10000).

6All cases finished in state 1
732% of cases finished in state 0, 66% in state 1 and 2% in state 4
8All cases finished in state 1
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Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 1.1010 e + 1 (1.0e − 4) 5 e + 0 (0) 4.2290 e + 1 (9.1 e − 2)

qmr 8.0300 e + 0 (1.7e − 2) 4 e + 0 (0) 7.0200 e + 0 (1.4 e − 2)

symmlq 10 e + 0 (0) 4 e + 0 (0) 14 e + 0 (0) 6

lsqr 1.0030 e + 1 (1.7e − 2) 5 e + 0 (0) 9.0300 e + 0 (1.7 e − 2)

minres 10 e + 0 (0) 4 e + 0 (0) 3.2680 e + 1 (3.1 e − 1) 6

cgs 8.9375 e + 0 (8.8 e − 1) 3 e + 0 (0) 4 e + 0 (0)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 8 e + 0 (0) 4 e + 0 (0) 7.0200 e + 0 (1.4 e − 2)

bicgstab 4.4950 e + 0 (3.7 e − 2) 2 e + 0 (0) 3.500 e + 0 (0)

Table B.2: Mean iteration counts and standard errors for erdrey.

Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 7.4049 e − 11 (1.0 e − 12) 8.6882 e − 13 (4.6 e − 15) 9.4770 e − 11 (2.8 e − 13)

qmr 3.6701 e − 11 (1.1 e − 12) 1.8703 e − 11 (7.0 e − 14) 1.4977 e − 11 (1.5 e − 12)

symmlq 6.4903 e − 11 (7.9 e − 13) 8.6838 e − 13 (4.5 e − 15) 3.3252 e − 6 (2.9 e − 8) 6

lsqr 6.6793 e − 11 (1.3 e − 12) 8.1383 e − 12 (3.6 e − 13) 4.0550 e − 11 (1.4 e − 12)

minres 6.3164 e − 11 (7.7 e − 13) 8.6829 e − 13 (4.5 e − 15) 1.6429 e − 7 (1.1 e − 9) 6

cgs 3.3615 e − 11 (4.6 e − 12) 6.8250 e − 16 (4.9 e − 18) 5.6089 e − 12 (5.4 e − 13)

gmres 3.1022 e − 11 (1.1 e − 13) 1.7518 e − 11 (5.7 e − 14) 6.4137 e − 12 (2.6 e − 14)

bicg 3.4861 e − 11 (2.4 e − 13) 1.8713 e − 11 (7.0 e − 14) 1.5054 e − 11 (1.5 e − 12)

bicgstab 4.3697 e − 11 (3.0 e − 12) 3.4251 e − 11 (9.5 e − 14) 1.1100 e − 11 (4.0 e − 13)

Table B.3: Mean relative residuals and standard errors for erdrey.
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Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 1.1326 e − 1 (6.0 e − 3) 1.4865 e − 1 (2.2 e − 4) 6.1355 e − 1 (9.3 e − 4)

qmr 1.1928 e − 1 (4.0 e − 3) 3.5846 e − 1 (4.1 e − 4) 3.3815 e − 1 (5.8 e − 4)

symmlq 7.7118 e − 2 (6.5 e − 4) 1.5973 e − 1 (3.6 e − 4) N/A8

lsqr 3.3258 e − 1 (5.4 e − 4) 5.4199 e − 1 (4.4 e − 3) 5.1392 e − 1 (1.6 e − 3)

minres 7.3983 e − 2 (3.9 e − 4) 1.7285 e − 1 (4.0 e − 4) N/A8

cgs 2.7740 e − 1 (4.9 e − 2)7 1.3264 e − 1 (2.2 e − 4) 1.4312 e − 1 (2.2 e − 4)

gmres 1.2925 e − 1 (2.4 e − 3) 2.2439 e − 1 (3.4 e − 4) 2.0660 e − 1 (2.9 e − 4)

bicg 1.0927 e − 1 (5.0 e − 4) 3.207 e − 1 (3.4 e − 4) 3.2287 e − 1 (6.7 e − 4)

bicgstab 9.8519 e − 2 (7.6 e − 4) 1.4883 e − 1 (2.3 e − 4) 1.5133 e − 1 (2.5 e − 4)

Table B.4: Mean running times and standard errors for unsymmetric erdrey.

Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 9 e + 0 (0) 4 e + 0 (0) 3.2110 e + 1 (3.1 e − 2)

qmr 7.0100 e + 0 (1.0 e − 4) 4 e + 0 (0) 7.0100 e + 0 (1.0 e − 2)

symmlq 8 e + 0 (0) 3 e + 0 (0) N/A8

lsqr 9 e + 0 (0) 4.6400 e + 0 (4.8 e − 2) 7.0600 e + 0 (2.4 e − 2)

minres 8 e + 0 (0) 3 e + 0 (0) N/A8

cgs 1.7438 e + 1 (3.2 e + 0)7 2 e + 0 (0) 4 e + 0 (0)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 7.0800 e + 0 (3.1 e − 2) 4 e + 0 (0) 7.0200 e + 0 (1.4 e − 2)

bicgstab 4.0850 e + 0 (3.2 e − 2) 2 e + 0 (0) 3.5000 e + 0 (0)

Table B.5: Mean iteration counts and standard errors for unsymmetric erdrey.
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Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 8.0513 e − 11 (4.2 e − 13) 5.9831 e − 11 (1.5 e − 13) 9.1233 e − 11 (4.2 e − 13)

qmr 6.9670 e − 11 (6.8 e − 13) 2.8533 e − 12 (5.9 e − 15) 6.3255 e − 12 (1.1 e − 12)

symmlq 7.0229 e − 11 (3.7 e − 13) 5.9540 e − 11 (1.5 e − 13) N/A8

lsqr 2.0231 e − 11 (6.1 e − 14) 3.5707 e − 11 (4.8 e − 12) 6.3266 e − 11 (1.5 e − 12)

minres 6.9613 e − 11 (3.6 e − 13) 5.9540 e − 11 (1.5 e − 13) N/A8

cgs 4.4752 e − 11 (4.8 e − 12)7 4.3145 e − 11 (8.1 e − 14) 1.4285 e − 12 (3.2 e − 14)

gmres 6.4559 e − 11 (1.1 e − 13) 2.7688 e − 12 (5.6 e − 15) 1.4240 e − 12 (4.3 e − 15)

bicg 6.6245 e − 11 (1.6 e − 12) 2.8538 e − 12 (5.9 e − 15) 6.8636 e − 12 (1.3 e − 12)

bicgstab 2.0113 e − 11 (1.8 e − 12) 9.8870 e − 12 (2.4 e − 14) 2.1076 e − 12 (2.4 e − 14)

Table B.6: Mean relative residuals and standard errors for unsymmetric erdrey.

B.2.3 Gilbert Symmetric

Matrices generated by gilbert(10000).

Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 7.4577 e − 2 (5.3 e − 4) 1.2325 e − 1 (2.4 e − 4) 5.3552 e − 1 (2.9 e − 3)

qmr 8.0914 e − 2 (4.6 e − 4) 2.4058 e − 1 (2.1 e − 4) 2.2521 e − 1 (8.0 e − 4)

symmlq 5.3318 e − 2 (3.3 e − 4) 1.3225 e − 1 (2.0 e − 4) N/A10

lsqr 1.9258 e − 1 (5.8 e − 4) 3.6162 e − 1 (4.1 e − 4) 3.8004 e − 1 (1.0 e − 5)

minres 5.2439 e − 2 (3.2 e − 4) 1.4335 e − 1 (2.0 e − 4) N/A10

cgs 1.6591 e − 1 (4.0 e − 2)9 1.3110 e − 1 (1.8 e − 4) 9.3332 e − 2 (4.3 e − 4)

gmres 1.1007 e − 1 (2.6 e − 4) 1.7652 e − 1 (1.8 e − 4) 1.6073 e − 1 (3.7 e − 4)

bicg 7.1842 e − 2 (4.3 e − 4) 2.1292 e − 1 (2.2 e − 4) 2.1079 e − 1 (9.1 e − 4)

bicgstab 6.2060 e − 2 (6.5 e − 4) 1.0217 e − 1 (1.6 e − 4) 9.7965 e − 2 (4.6 e − 4)

Table B.7: Mean running times and standard errors for gilbert.

924% of cases finished in state 0, 73% in state 1 and 3% in state 4
10All cases finished in state 1
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Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 11 e + 0 (0) 5 e + 0 (0) 4.2310 e + 1 (9.4 e − 2)

qmr 8.0900 e + 0 (2.9 e − 2) 4 e + 0 (0) 7.0600 e + 0 (2.4 e − 2)

symmlq 10 e + 0 (0) 4 e + 0 (0) N/A10

lsqr 1.0020 e + 1 (1.4 e − 2) 5 e + 0 (0) 9.0300 e + 0 (1.7 e − 2)

minres 10 e + 0 (0) 4 e + 0 (0) N/A10

cgs 1.8208 e + 1 (4.6 e + 0)9 3 e + 0 (0) 4 e + 0 (0)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 8.0100 e + 0 (1.0 e − 4) 4 e + 0 (0) 7.0700 e + 0 (2.6 e − 2)

bicgstab 4.5500 e + 0 (4.7 e − 2) 2 e + 0 (0) 3.500 e + 0 (0)

Table B.8: Mean iteration counts and standard errors for gilbert.

Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 7.4024 e − 11 (9.8 e − 13) 8.6697 e − 13 (4.9 e − 15) 9.5492 e − 11 (3.0 e − 13)

qmr 3.7143 e − 11 (1.6 e − 12) 1.8632 e − 11 (7.7 e − 14) 1.1500 e − 11 (1.2 e − 12)

symmlq 6.4040 e − 11 (8.6 e − 13) 8.6656 e − 13 (4.9 e − 15) N/A10

lsqr 6.7935 e − 11 (1.4 e − 12) 8.4239 e − 12 (5.8 e − 13) 4.0903 e − 11 (1.5 e − 12)

minres 6.2327 e − 11 (8.3 e − 13) 8.6648 e − 13 (4.9 e − 15) N/A10

cgs 5.2562 e − 11 (5.8 e − 12)9 6.7930 e − 16 (3.5 e − 18) 4.7020 e − 12 (3.1 e − 13)

gmres 3.1000 e − 11 (1.4 e − 13) 1.7439 e − 11 (5.9 e − 14) 6.3347 e − 12 (2.4 e − 14)

bicg 3.5904 e − 11 (7.1 e − 13) 1.8642 e − 11 (7.7 e − 14) 1.0752 e − 11 (9.4 e − 13)

bicgstab 3.8618 e − 11 (2.7 e − 12) 3.4163 e − 11 (1.1 e − 13) 1.0373 e − 11 (2.2 e − 13)

Table B.9: Mean relative residuals and standard errors for gilbert.
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B.2.4 Gilbert Unsymmetric

Matrices generated by gilbert(10000).

Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 1.0683 e − 1 (9.1 e − 5) 1.4764 e − 1 (1.1 e − 4) 6.1187 e − 1 (9.4 e − 4)

qmr 1.1504 e − 1 (1.7 e − 4) 3.5680 e − 1 (2.4 e − 4) 3.3692 e − 1 (6.6 e − 4)

symmlq 7.5867 e − 2 (6.4 e − 5) 1.5890 e − 1 (1.2 e − 4) N/A12

lsqr 3.2993 e − 1 (2.2 e − 4) 5.3909 e − 1 (4.3 e − 3) 5.1542 e − 1 (2.0 e − 3)

minres 7.3323 e − 2 (5.7 e − 5) 1.7122 e − 1 (1.2 e − 4) N/A12

cgs 1.9742 e − 1 (3.8 e − 2)11 1.3185 e − 1 (1.3 e − 4) 1.4264 e − 1 (1.0 e − 4)

gmres 1.2624 e − 1 (9.6 e − 5) 2.2336 e − 1 (1.6 e − 4) 2.0545 e − 1 (1.6 e − 4)

bicg 1.0849 e − 1 (4.7 e − 4) 3.2006 e − 1 (2.3 e − 4) 3.2172 e − 1 (6.4 e − 4)

bicgstab 9.8232 e − 2 (5.6 e − 4) 1.4776 e − 1 (1.1 e − 4) 1.5091 e − 1 (1.1 e − 4)

Table B.10: Mean running times and standard errors for unsymmetric gilbert.

Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 9 e + 0 (0) 4 e + 0 (0) 3.2120 e + 1 (4.1 e − 2)

qmr 7.0100 e + 0 (1.0 e − 2) 4 e + 0 (0) 7.0200 e + 0 (1.4 e − 2)

symmlq 8 e + 0 (0) 3 e + 0 (0) N/A12

lsqr 9 e + 0 (0) 4.6300 e + 0 (4.9 e − 2) 7.1300 e + 0 (3.4 e − 2)

minres 8 e + 0 (0) 3 e + 0 (0) N/A12

cgs 1.2333 e + 1 (2.5 e + 0)11 2 e + 0 (0) 4 e + 0 (0)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 7.0800 e + 0 (3.4 e − 2) 4 e + 0 (0) 7.0200 e + 0 (1.4 e − 2)

bicgstab 4.1000 e + 0 (2.7 e − 2) 2 e + 0 (0) 3.5000 e + 0 (0)

Table B.11: Mean iteration counts and standard errors for unsymmetric gilbert.

1127% of cases finished in state 0, 67% in state 1 and 6% in state 4
12All cases finished in state 1
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Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 8.0662 e − 11 (5.1 e − 13) 6.0111 e − 11 (1.6 e − 13) 9.2411 e − 11 (4.7 e − 13)

qmr 6.7310 e − 11 (5.3 e − 13) 2.8746 e − 12 (6.9 e − 15) 5.7592 e − 12 (1.2 e − 12)

symmlq 7.0394 e − 11 (4.4 e − 13) 5.9819 e − 11 (1.6 e − 13) N/A12

lsqr 2.0339 e − 11 (6.0 e − 14) 3.6598 e − 11 (4.8 e − 12) 5.8596 e − 11 (2.2 e − 12)

minres 6.9776 e − 11 (4.4 e − 13) 5.9819 e − 11 (1.6 e − 13) N/A12

cgs 4.4497 e − 11 (5.2 e − 12)11 4.3260 e − 11 (8.0 e − 14) 1.4064 e − 12 (2.9 e − 14)

gmres 6.4798 e − 11 (1.5 e − 13) 2.7882 e − 12 (6.7 e − 15) 1.4220 e − 12 (4.8 e − 15)

bicg 6.6694 e − 11 (1.6 e − 12) 2.8752 e − 12 (6.9 e − 15) 6.0888 e − 12 (1.2 e − 12)

bicgstab 1.6545 e − 11 (1.6 e − 12) 9.9392 e − 12 (2.6 e − 14) 2.0799 e − 12 (2.2 e − 14)

Table B.12: Mean relative residuals and standard errors for unsymmetric gilbert.

B.2.5 Geometric Symmetric

Matrices generated by geo(10000).

Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 4.3740 e − 2 (4.4 e − 3) 8.6341 e − 2 (3.0 e − 4) N/A14

qmr 6.0915 e − 2 (9.5 e − 4) 2.0542 e − 1 (5.4 e − 4) 1.6041 e − 1 (1.0 e − 3)

symmlq 3.1671 e − 2 (5.5 e − 4) 9.8814 e − 2 (4.2 e − 4) N/A14

lsqr 1.0478 e − 1 (5.7 e − 4) 3.0237 e − 1 (5.7 e − 4) 2.6450 e − 1 (5.5 e − 4)

minres 3.2485 e − 2 (4.0 e − 4) 1.0391 e − 1 (4.2 e − 4) N/A14

cgs 6.2964 e − 2 (1.0 e − 2)13 9.6193 e − 2 (2.6 e − 4) 6.3851 e − 2 (4.1 e − 4)

gmres 1.0328 e − 1 (2.6 e − 3) 1.6319 e − 1 (4.0 e − 4) 1.3193 e − 1 (3.4 e − 4)

bicg 4.8899 e − 2 (3.4 e − 4) 1.8049 e − 1 (4.5 e − 4) 1.4516 e − 1 (9.7 e − 4)

bicgstab 3.7670 e − 2 (4.5 e − 4) 8.7979 e − 2 (2.8 e − 4) 6.6107 e − 2 (5.1 e − 4)

Table B.13: Mean running times and standard errors for geo.

1333% of cases finished in state 0, 65% in state 1 and 2% in state 4
14All cases finished in state 1
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Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 11 e + 0 (0) 5 e + 0 (0) N/A14

qmr 10 e + 0 (1.4 e − 2) 5.0100 e + 0 (1.0 e − 2) 7.2800 e + 0 (4.5 e − 2)

symmlq 10 e + 0 (0) 4 e + 0 (0) N/A14

lsqr 13 e + 0 (0) 7 e + 0 (0) 11 e + 0 (0)

minres 10 e + 0 (0) 4 e + 0 (0) N/A14

cgs 1.2818 e + 1 (2.2 e + 0)13 3 e + 0 (0) 4.0500 e + 0 (2.2 e − 2)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 10 e + 0 (1.4 e − 2) 5.0100 e + 0 (1.0 e − 2) 7.2700 e + 0 (4.5 e − 2)

bicgstab 5.1500 e + 0 (3.9 e − 2) 2.500 e + 0 (0) 3.6250 e + 0 (2.4 e − 2)

Table B.14: Mean iteration counts and standard errors for geo.

Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 3.5124 e − 11 (5.2 e − 13) 3.2081 e − 12 (6.8 e − 14) N/A14

qmr 1.5894 e − 11 (1.4 e − 12) 8.2311 e − 12 (9.7 e − 13) 3.8360 e − 11 (2.8 e − 12)

symmlq 3.5617 e − 11 (5.5 e − 13) 3.2080 e − 12 (6.8 e − 14) N/A14

lsqr 2.9559 e − 11 (4.4 e − 13) 2.5582 e − 12 (5.3 e − 15) 3.056 e − 11 (1.4 e − 12)

minres 3.4893 e − 11 (5.4 e − 13) 3.2080 e − 12 (6.8 e − 14) N/A14

cgs 3.1643 e − 11 (4.8 e − 12)13 2.0820 e − 13 (3.3 e − 15) 6.2571 e − 12 (1.1 e − 12)

gmres 5.0387 e − 11 (7.0 e − 14) 3.2201 e − 12 (6.7 e − 14) 2.2494 e − 11 (5.5 e − 13)

bicg 9.8877 e − 12 (9.7 e − 13) 8.2022 e − 12 (9.5 e − 13) 3.9295 e − 11 (2.8 e − 12)

bicgstab 3.2706 e − 11 (2.1 e − 12) 7.3500 e − 12 (1.4 e − 13) 4.8303 e − 11 (2.8 e − 12)

Table B.15: Mean relative residuals and standard errors for geo.



Appendix B 214

B.2.6 Geometric Unsymmetric

Matrices generated by geo(10000).

Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg N/A15 1.1326 e − 1 (2.3 e − 4) N/A15

qmr 6.4551 e − 2 (3.4 e − 4) 1.9922 e − 1 (1.6 e − 3) 1.9357 e − 1 (1.2 e − 3)

symmlq N/A15 1.2353 e − 1 (2.4 e − 4) N/A15

lsqr 1.4364 e − 1 (6.3 e − 4) 2.8366 e − 1 (7.8 e − 4) 3.9641 e − 1 (1.6 e − 3)

minres N/A15 1.2973 e − 1 (2.6 e − 4) N/A15

cgs 3.0932 e − 2 (2.7 e − 4) 9.1098 e − 2 (5.7 e − 4) 7.6955 e − 2 (6.1 e − 4)

gmres 1.1676 e − 1 (3.3 e − 4) 1.5685 e − 1 (3.3 e − 4) 1.5448 e − 1 (4.3 e − 4)

bicg 5.4134 e − 2 (3.0 e − 4) 1.7646 e − 1 (1.6 e − 3) 1.7912 e − 1 (1.2 e − 3)

bicgstab 4.0522 e − 2 (2.4 e − 4) 8.4300 e − 2 (5.9 e − 4) 8.1445 e − 2 (4.8 e − 4)

Table B.16: Mean running times and standard errors for unsymmetric geo.

Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg N/A15 7 e + 0 (0) N/A15

qmr 1.1130 e + 1 (3.4 e − 2) 5.3100 e + 0 (4.6 e − 2) 9.5100 e + 0 (5.4 e − 2)

symmlq N/A15 6 e + 0 (0) N/A15

lsqr 1.9210 e + 1 (4.6 e − 2) 7.0200 e + 0 (1.4 e − 2) 1.7890 e + 1 (6.8 e − 2)

minres N/A15 6 e + 0 (0) N/A15

cgs 6.3200 e + 0 (4.7 e − 2) 3.0400 e + 0 (2.0 e − 2) 5.1600 e + 0 (3.9 e − 2)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 1.1160 e + 1 (3.7 e − 2) 5.3100 e + 0 (4.6 e − 2) 9.5200 e + 0 (5.6 e − 2)

bicgstab 5.6400 e + 0 (2.4 e − 2) 2.5800 e + 0 (1.8 e − 2) 4.7100 e + 0 (2.5 e − 2)

Table B.17: Mean iteration counts and standard errors for unsymmetric geo.

B.2.7 Preferential Attachment Symmetric

Matrices generated by pref(10000).
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Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg N/A15 1.6565 e − 11 (1.8 e − 13) N/A15

qmr 4.3560 e − 11 (2.3 e − 12) 3.4265 e − 11 (2.6557 e − 12) 3.7655 e − 11 (3.0 e − 12)

symmlq N/A15 1.6593 e − 11 (1.8 e − 13) N/A15

lsqr 5.4887 e − 11 (2.0 e − 12) 3.6318 e − 11 (1.6 e − 12) 5.4997 e − 11 (2.1 e − 12)

minres N/A15 1.6502 e − 11 (1.8 e − 13) N/A15

cgs 1.4298 e − 11 (1.9 e − 12) 4.2325 e − 12 (1.2 e − 12) 1.5813 e − 11 (2.2 e − 12)

gmres 1.6764 e − 11 (1.5 e − 13) 3.0156 e − 11 (4.0 e − 13) 3.0733 e − 11 (1.8 e − 12)

bicg 4.3494 e − 11 (2.5 e − 12) 3.4313 e − 11 (2.7 e − 12) 3.6610 e − 11 (3.0 e − 12)

bicgstab 3.8476 e − 11 (2.1 e − 12) 3.6928 e − 11 (2.1 e − 12) 3.5322 e − 11 (2.8 e − 12)

Table B.18: Mean relative residuals and standard errors for unsymmetric geo.

Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg N/A16 8.6264 e − 2 (1.5 e − 3) 9.5785 e − 2 (1.9 e − 4)

qmr 5.5683 e − 2 (3.1 e − 4) 2.0013 e − 1 (5.0 e − 4) 1.5002 e − 1 (4.8 e − 4)

symmlq N/A16 9.5891 e − 2 (1.2 e − 4) 9.5970 e − 2 (2.0 e − 4)

lsqr 1.8629 e − 1 (8.6 e − 4) 2.6616 e − 1 (5.5 e − 4) 2.0207 e − 1 (3.8 e − 4)

minres N/A16 1.0082 e − 1 (1.4 e − 4) 1.0725 e − 1 (1.8 e − 4)

cgs 2.3920 e − 1 (1.1 e − 1)17 9.2846 e − 2 (1.1 e − 4) 6.1941 e − 2 (4.1 e − 4)

gmres 1.0191 e − 1 (3.3 e − 4) 1.6041 e − 1 (2.1 e − 4) 1.2940 e − 1 (1.9 e − 4)

bicg 4.6707 e − 2 (2.0 e − 4) 1.7616 e − 1 (3.2 e − 4) 1.3847 e − 1 (5.2 e − 4)

bicgstab 4.1833 e − 2 (7.2 e − 4) 8.4533 e − 2 (1.1 e − 4) 6.2706 e − 2 (2.1 e − 4)

Table B.19: Mean running times and standard errors for pref.
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Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg N/A16 5 e + 0 (0) 11 e + 0 (0)

qmr 9.1400 e + 0 (3.5 e − 2) 5 e + 0 (0) 7.0400 e + 0 (2.0 e − 2)

symmlq N/A16 4 e + 0 (0) 10 e + 0 (0)

lsqr 2.2770 e + 1 (9.2 e − 2) 6 e + 0 (0) 8 e + 0 (0)

minres N/A16 4 e + 0 (0) 10 e + 0 (0)

cgs 48 e + 0 (8.6 e − 4)17 3 e + 0 (0) 4.0900 e + 0 (2.9 e − 2)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 9.1100 e + 0 (3.1 e − 2) 5 e + 0 (0) 7.0600 e + 0 (2.4 e − 2)

bicgstab 5.5100 e + 0 (10.0 e − 2) 2.5000 e + 0 (0) 3.5300 e + 0 (1.2 e − 2)

Table B.20: Mean iteration counts and standard errors for pref.

Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg N/A16 9.0607 e − 13 (2.1 e − 15) 5.6163 e − 11 (4.0 e − 13)

qmr 3.7483 e − 11 (2.1 e − 12) 4.4731 e − 13 (2.0 e − 15) 1.4312 e − 11 (1.4 e − 12)

symmlq N/A16 9.0664 e − 13 (2.1 e − 15) 7.4791 e − 11 (5.7 e − 13)

lsqr 5.4649 e − 11 (2.0 e − 12) 1.1988 e − 11 (6.5 e − 13) 3.5166 e − 11 (2.8 e − 13)

minres N/A16 9.0654 e − 13 (2.1 e − 15) 6.7365 e − 11 (5.0 e − 13)

cgs 9.6777 e − 11 (2.2 e − 12)17 8.2037 e − 15 (3.8 e − 17) 1.9262 e − 12 (5.3 e − 13)

gmres 1.8557 e − 11 (3.1 e − 14) 4.4280 e − 13 (2.0 e − 15) 5.4697 e − 12 (1.3 e − 13)

bicg 4.0678 e − 11 (2.1 e − 12) 4.4757 e − 13 (2.0 e − 15) 1.3659 e − 11 (1.4 e − 12)

bicgstab 3.6298 e − 11 (2.6 e − 12) 9.6333 e − 13 (3.8 e − 15) 1.2567 e − 11 (1.5 e − 12)

Table B.21: Mean relative residuals and standard errors for pref.
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B.2.8 Preferential Attachment Unsymmetric

Matrices generated by pref(10000).

Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg N/A18 9.1802 e − 2 (2.7 e − 4) 1.7464 e − 1 (7.2 e − 4)

qmr 6.7300 e − 2 (4.1 e − 4) 2.1340 e − 1 (4.0 e − 4) 1.8468 e − 1 (5.5 e − 4)

symmlq N/A18 1.0309 e − 1 (3.8 e − 4) N/A18

lsqr 2.0732 e − 1 (1.2 e − 3) 3.2337 e − 1 (7.7 e − 4) 3.7287 e − 1 (2.6 e − 3)

minres N/A18 1.0823 e − 1 (4.0 e − 4) N/A18

cgs 3.2758 e − 2 (4.2 e − 4) 1.0065 e − 1 (4.0 e − 4) 7.1948 e − 2 (7.7 e − 4)

gmres 1.1257 e − 1 (5.3 e − 4) 1.6700 e − 1 (4.2 e − 4) 1.4721 e − 1 (4.1 e − 4)

bicg 5.6565 e − 2 (3.6 e − 4) 1.8892 e − 1 (3.8056 e − 4) 1.7117 e − 1 (5.1 e − 4)

bicgstab 4.3494 e − 2 (3.7 e − 4) 9.2052 e − 2 (2.8 e − 4) 7.7681 e − 2 (3.1 e − 4)

Table B.22: Mean running times and standard errors for unsymmetric geo.

Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg N/A18 5 e + 0 (0) 1.8860 e + 1 (4.9 e − 2)

qmr 1.0080 e + 1 (2.7 e − 2) 5 e + 0 (0) 8.0400 e + 0 (2.0 e − 2)

symmlq N/A18 4 e + 0 (0) N/A18

lsqr 2.2820 e + 1 (9.3 e − 2) 7.0200 e + 0 (1.4 e − 2) 1.4530 e + 1 (1.0 e − 1)

minres N/A18 4 e + 0 (0) N/A18

cgs 5.4400 e + 0 (5.4 e − 2) 3.0100 e + 0 (1.0 e − 2) 4.3000 e + 0 (4.6 e − 2)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 1.0100 e + 1 (3.0 e − 2) 5 e + 0 (0) 8.0300 e + 0 (1.7 e − 2)

bicgstab 5.0350 e + 0 (1.3 e − 2) 2.5000 e + 0 (0) 4.0100 e + 0 (7.0 e − 3)

Table B.23: Mean iteration counts and standard errors for unsymmetric geo.

15All cases finished in state 1
16All cases finished in state 1
172% of cases finished in state 0 and 98% in state 1
18All cases finished in state 1
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Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg N/A18 3.6012 e − 11 (2.7 e − 13) 8.1532 e − 11 (1.1 e − 12)

qmr 3.1354 e − 11 (2.1 e − 12) 3.5730 e − 12 (8.7 e − 13) 1.5556 e − 11 (1.5 e − 12)

symmlq N/A18 3.6031 e − 11 (2.7 e − 13) N/A18

lsqr 5.9152 e − 11 (2.1 e − 12) 2.5528 e − 11 (1.6 e − 12) 4.5799 e − 11 (2.3 e − 12)

minres N/A18 3.5993 e − 11 (2.7 e − 13) N/A18

cgs 3.2534 e − 11 (3.1 e − 12) 3.8497 e − 13 (1.7 e − 13) 2.3528 e − 11 (2.3 e − 12)

gmres 8.6661 e − 12 (2.7 e − 14) 5.8626 e − 13 (2.6 e − 15) 6.0549 e − 12 (9.2 e − 13)

bicg 3.0334 e − 11 (2.0 e − 12) 3.4408 e − 12 (7.8823 e − 13) 1.6454 e − 11 (1.6 e − 12)

bicgstab 1.7061 e − 11 (1.5 e − 12) 2.8621 e − 12 (9.4 e − 13) 1.2058 e − 11 (1.3 e − 12)

Table B.24: Mean relative residuals and standard errors for unsymmetric geo.

B.2.9 RENGA Symmetric

Matrices generated by renga(10000).

Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 3.5206 e − 2 (1.2 e − 4) 6.3828 e − 2 (2.3 e − 4) 1.5354 e − 1 (5.9 e − 4)

qmr 5.5414 e − 2 (2.2 e − 4) 1.4965 e − 1 (1.6 e − 4) 1.7255 e − 1 (9.4 e − 4)

symmlq 2.8239 e − 2 (1.1 e − 4) 7.4301 e − 2 (1.7 e − 4) N/A21

lsqr 9.0222 e − 2 (2.2 e − 4) 2.0396 e − 1 (4.2 e − 4) 1.9746 e − 1 (5.0 e − 4)

minres 2.9621 e − 2 (1.4 e − 4) 7.7905 e − 2 (1.6 e − 4) N/A21

cgs 5.2388 e − 2 (4.1 e − 3)19 5.9017 e − 2 (1.4 e − 4) 7.5688 e − 2 (7.2 e − 4)

gmres 1.0171 e − 1 (1.2 e − 4) 1.3495 e − 1 (1.7 e − 4) 1.4641 e − 1 (2.0 e − 4)

bicg 4.2842 e − 2 (1.8 e − 4) 1.3065 e − 1 (1.8 e − 4) 1.5663 e − 1 (8.5 e − 4)

bicgstab 3.8749 e − 2 (6.1 e − 4)20 6.4782 e − 2 (1.5 e − 4) 7.5767 e − 2 (4.5 e − 4)

Table B.25: Mean running times and standard errors for renga.

1931% of cases finished in state 0, 35% in state 1 and 34% in state 4
2098% of cases finished in state 0 and 2% in state 1
21All cases finished in state 1
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Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 10 e + 0 (0) 4 e + 0 (0) 18 e + 0 (0)

qmr 9.0700 e + 0 (2.6 e − 2) 4 e + 0 (0) 8.6600 e + 0 (4.8 e − 2)

symmlq 9 e + 0 (0) 3 e + 0 (0) N/A21

lsqr 12 e + 0 (0) 5 e + 0 (0) 9 e − +0 (0)

minres 9 e + 0 (0) 3 e + 0 (0) N/A21

cgs 1.0581 e + 1 (7.8 e − 1)29 2 e + 0 (0) 4.7900 e + 0 (4.6 e − 2)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 9.0700 e + 0 (2.6 e − 2) 4 e + 0 (0) 8.6800 e + 0 (4.7 e − 2)

bicgstab 5.3418 e + 0 (8.3 e − 2)20 2 e + 0 (0) 4.1200 e + 0 (2.1 e − 2)

Table B.26: Mean iteration counts and standard errors for renga.

Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 8.3666 e − 11 (6.2 e − 13) 8.6564 e − 12 (1.2 e − 13) 6.9782 e − 11 (4.2 e − 13)

qmr 3.0748 e − 11 (1.9 e − 12) 8.6606 e − 12 (1.2 e − 13) 3.3599 e − 11 (3.4 e − 12)

symmlq 7.8617 e − 11 (5.9 e − 13) 8.6562 e − 12 (1.2 e − 13) N/A21

lsqr 2.2933 e − 11 (1.7 e − 13) 3.2218 e − 11 (8.9 e − 13) 3.8355 e − 11 (1.3 e − 12)

minres 7.7324 e − 11 (5.8 e − 13) 8.6561 e − 12 (1.2 e − 13) N/A21

cgs 3.5382 e − 11 (4.2 e − 12)19 2.0660 e − 11 (1.1 e − 13) 2.4845 e − 11 (3.7 e − 12)

gmres 1.7666 e − 11 (8.3 e − 14) 8.7993 e − 12 (1.2 e − 13) 4.6801 e − 11 (1.1 e − 13)

bicg 3.0687 e − 11 (1.6 e − 12) 8.6624 e − 12 (1.2 e − 13) 3.2067 e − 11 (3.3 e − 12)

bicgstab 3.1871 e − 11 (2.8 e − 12)20 1.5507 e − 11 (1.9 e − 13) 4.8527 e − 11 (2.6 e − 12)

Table B.27: Mean relative residuals and standard errors for renga.
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B.2.10 RENGA Unsymmetric

Matrices generated by renga(10000).

Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 4.5053 e − 2 (6.3 e − 3) 7.0716 e − 2 (2.9 e − 4) 1.4525 e − 1 (8.1 e − 4)

qmr 6.2019 e − 2 (1.7 e − 3) 1.6209 e − 1 (4.2 e − 4) 1.7778 e − 1 (1.2 e − 3)

symmlq 3.3113 e − 2 (2.8 e − 3) 8.0637 e − 2 (4.3 e − 4) N/A23

lsqr 1.0981 e − 1 (8.3 e − 3) 2.2576 e − 1 (5.4 e − 4) 2.2338 e − 1 (8.2 e − 4)

minres 3.0833 e − 2 (4.4 e − 4) 8.5137 e − 2 (4.4 e − 4) 1.7774 e − 1 (1.0 e − 3)

cgs 5.2967 e − 2 (2.7 e − 3)22 6.4268 e − 2 (2.7 e − 4) 7.7839 e − 2 (8.6 e − 4)

gmres 1.0858 e − 1 (5.2 e − 3) 1.4035 e − 1 (3.8 e − 4) 1.5149 e − 1 (4.4 e − 4)

bicg 5.0834 e − 2 (4.0 e − 4) 1.4203 e − 1 (3.7 e − 4) 1.6352 e − 1 (1.1 e − 3)

bicgstab 4.1765 e − 2 (6.7 e − 4) 7.0935 e − 2 (2.9 e − 4) 8.2060 e − 2 (5.2 e − 4)

Table B.28: Mean running times and standard errors for unsymmetric renga.

Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 9 e + 0 (0) 4 e + 0 (0) 1.4940 e + 1 (2.4 e − 2)

qmr 9.0700 e + 0 (2.6 e − 2) 4 e + 0 (0) 8.2900 e + 0 (4.8 e − 2)

symmlq 8 e + 0 (0) 3 e + 0 (0) N/A23

lsqr 11 e + 0 (0) 5 e + 0 (0) 9 e + 0 (0)

minres 8 e + 0 (0) 3 e + 0 (0) 1.5780 e + 1 (4.2 e − 2)

cgs 9.2059 e + 0 (4.7 e − 1)22 2 e + 0 (0) 4.5100 e + 0 (5.2 e − 2)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 9.1000 e + 0 (3.0 e − 2) 4 e + 0 (0) 8.3000 e + 0 (5.0 e − 2)

bicgstab 4.8850 e + 0 (6.0 e − 2) 2 e + 0 (0) 4.0700 e + 0 (1.7 e − 2)

Table B.29: Mean iteration counts and standard errors for unsymmetric renga.

2234% of cases finished in state 0, 46% in state 1 and 20% in state 4
23All cases finished in state 1



Appendix B 221

Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 5.7732 e − 11 (3.4 e − 13) 1.8171 e − 12 (2.6 e − 14) 5.7950 e − 11 (1.1 e − 12)

qmr 1.7848 e − 11 (1.5 e − 12) 1.8203 e − 12 (2.6 e − 14) 4.0832 e − 11 (2.7 e − 12)

symmlq 5.9544 e − 11 (3.9 e − 13) 1.8170 e − 12 (2.6 e − 14) N/A23

lsqr 5.0959 e − 11 (6.1 e − 13) 8.7265 e − 12 (3.4 e − 13) 1.3503 e − 11 (6.4 e − 13)

minres 5.9055 e − 11 (3.8 e − 13) 1.8170 e − 12 (2.6 e − 14) 6.2905 e − 11 (1.8 e − 12)

cgs 3.5944 e − 11 (5.3 e − 12)22 3.7667 e − 12 (2.5 e − 14) 3.0046 e − 11 (3.0 e − 12)

gmres 2.1076 e − 11 (3.2 e − 12) 1.8709 e − 12 (2.7 e − 14) 2.2693 e − 11 (4.3 e − 14)

bicg 2.4720 e − 11 (1.9 e − 12) 1.8204 e − 12 (2.6 e − 14) 4.0882 e − 11 (2.8 e − 12)

bicgstab 3.7027 e − 11 (2.5 e − 12) 3.2768 e − 12 (3.7 e − 14) 3.1679 e − 11 (2.0 e − 12)

Table B.30: Mean relative residuals and standard errors for unsymmetric renga.

B.2.11 Kleinberg Symmetric

Matrices generated by klein(10000).

Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 3.9441 e − 2 (1.7 e − 4) 7.8759 e − 2 (2.6 e − 4) 1.3515 e − 1 (7.7 e − 4)

qmr 6.1598 e − 2 (3.1 e − 4) 1.8285 e − 1 (2.8 e − 4) 2.0338 e − 1 (1.2 e − 3)

symmlq 3.0901 e − 2 (1.2 e − 4) 8.9166 e − 2 (2.1 e − 4) 1.4343 e − 1 (6.2 e − 4)

lsqr 1.1220 e − 1 (3.1 e − 4) 2.5660 e − 1 (5.3 e − 4) 2.2953 e − 1 (6.7 e − 4)

minres 3.0734 e − 2 (1.4 e − 4) 9.4872 e − 2 (2.1 e − 4) 1.5814 e − 1 (6.4 e − 4)

cgs 7.4085 e − 2 (9.3 e − 3)24 7.2069 e − 2 (1.9 e − 4) 9.0449 e − 2 (1.1 e − 3)

gmres 1.0156 e − 1 (1.9 e − 4) 1.5084 e − 1 (2.4 e − 4) 1.6140 e − 1 (3.8 e − 4)

bicg 5.2336 e − 2 (1.9 e − 4) 1.6183 e − 1 (3.0 e − 4) 1.8379 e − 1 (1.2 e − 3)

bicgstab 4.6270 e − 2 (9.0 e − 4) 7.9901 e − 2 (1.8 e − 4) 9.3411 e − 2 (6.3 e − 4)

Table B.31: Mean running times and standard errors for klein.

B.2.12 Kleinberg Unsymmetric

Matrices generated by klein(10000).

2441% of cases finished in state 0, 37% in state 1 and 22% in state 4
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Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 8 e + 0 (0) 4 e + 0 (0) 1.3515 e − 1 (7.7 e − 4)

qmr 8 e + 0 (0) 4 e + 0 (0) 8.3300 e + 0 (4.7 e − 2)

symmlq 7 e + 0 (0) 3 e + 0 (0) 1.2980 e + 1 (1.4 e − 2)

lsqr 10 e + 0 (0) 5 e + 0 (0) 8 e + 0 (0)

minres 7 e + 0 (0) 3 e + 0 (0) 12 e + 0 (0)

cgs 1.1415 e + 1 (1.5 e + 0)24 2 e + 0 (0) 4.6700 e + 0 (5.5 e − 2)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 8 e + 0 (0) 4 e + 0 (0) 8.3100 e + 0 (4.6 e − 2)

bicgstab 4.7850 e + 0 (9.3 e − 2) 2 e + 0 (0) 4.1100 e + 0 (2.1 e − 2)

Table B.32: Mean iteration counts and standard errors for klein.

Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 7.5934 e − 11 (2.9 e − 13) 3.4481 e − 12 (1.9 e − 14) 5.8430 e − 11 (2.3 e − 12)

qmr 3.2371 e − 11 (7.6 e − 13) 3.4722 e − 12 (1.9 e − 14) 3.5048 e − 11 (2.7 e − 12)

symmlq 7.7355 e − 11 (3.0 e − 13) 3.4481 e − 12 (1.9 e − 14) 7.6157 e − 11 (7.0 e − 13)

lsqr 5.3618 e − 11 (4.1 e − 13) 2.8592 e − 12 (3.9 e − 14) 2.8131 e − 11 (1.7 e − 13)

minres 7.7078 e − 11 (3.0 e − 13) 3.4480 e − 12 (1.9 e − 14) 7.8038 e − 11 (5.5 e − 13)

cgs 3.8435 e − 11 (4.6 e − 12)24 7.8089 e − 12 (3.1 e − 14) 2.2142 e − 11 (2.9 e − 12)

gmres 2.4697 e − 11 (1.2 e − 13) 3.5381 e − 12 (2.0 e − 14) 1.7728 e − 11 (2.4 e − 14)

bicg 3.6201 e − 11 (3.8 e − 13) 3.4730 e − 12 (1.9 e − 14) 3.7416 e − 11 (2.9 e − 12)

bicgstab 4.3083 e − 11 (2.7 e − 12) 7.4837 e − 12 (4.4 e − 14) 3.0859 e − 11 (2.3 e − 12)

Table B.33: Mean relative residuals and standard errors for klein.
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Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 5.1116 e − 2 (3.2 e − 3) 8.3815 e − 2 (2.4 e − 4) 1.4347 e − 1 (4.8 e − 4)

qmr 7.0876 e − 2 (6.7 e − 4) 1.9205 e − 1 (4.0 e − 4) 2.1039 e − 1 (8.6 e − 4)

symmlq 3.6659 e − 2 (4.4 e − 4) 9.3765 e − 2 (3.8 e − 4) 1.4650 e − 1 (5.2 e − 4)

lsqr 1.3227 e − 1 (6.0 e − 4) 2.7425 e − 1 (4.9 e − 4) 2.5428 e − 1 (5.7 e − 4)

minres 3.6184 e − 2 (4.5 e − 4) 9.9940 e − 2 (4.0 e − 4) 1.6645 e − 1 (8.4 e − 4)

cgs 7.1681 e − 2 (6.9 e − 3)25 7.6144 e − 2 (2.4 e − 4) 9.9876 e − 2 (1.1 e − 3)

gmres 1.0313 e − 1 (7.3 e − 4) 1.5212 e − 1 (4.3 e − 4) 1.6531 e − 1 (4.3 e − 4)

bicg 6.1074 e − 2 (4.9 e − 4) 1.7082 e − 1 (3.6 e − 4) 1.9659 e − 1 (9.7 e − 4)

bicgstab 5.4624 e − 2 (1.0 e − 3) 8.4428 e − 2 (2.7 e − 4) 1.0192 e − 1 (5.5 e − 4)

Table B.34: Mean running times and standard errors for unsymmetric klein.

Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 8 e + 0 (0) 4 e + 0 (0) 12 e + 0 (0)

qmr 8 e + 0 (0) 4 e + 0 (0) 8.1000 e + 0 (3.0 e − 2)

symmlq 7 e + 0 (0) 3 e + 0 (0) 12 e + 0 (0)

lsqr 10 e + 0 (0) 5 e + 0 (0) 8 e + 0 (0)

minres 7 e + 0 (0) 3 e + 0 (0) 1.1600 e + 1 (4.9 e − 2)

cgs 8.9375 e + 0 (8.8 e − 1)25 2 e + 0 (0) 4.7300 e + 0 (5.1 e − 2)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 8 e + 0 (0) 4 e + 0 (0) 8.1300 e + 0 (3.4 e − 2)

bicgstab 4.6650 e + 0 (8.2 e − 2) 2 e + 0 (0) 4.0950 e + 0 (2.0 e − 2)

Table B.35: Mean iteration counts and standard errors for unsymmetric klein.
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Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 2.9904 e − 11 (1.1 e − 13) 1.8986 e − 12 (8.8 e − 15) 6.6673 e − 11 (3.5 e − 13)

qmr 2.0123 e − 11 (8.3 e − 13) 1.9045 e − 12 (8.8 e − 15) 3.6976 e − 11 (2.0 e − 12)

symmlq 3.0227 e − 11 (1.1 e − 13) 1.8986 e − 12 (8.8 e − 15) 7.5671 e − 11 (5.1 e − 13)

lsqr 2.8162 e − 11 (2.1 e − 13) 1.4876 e − 12 (3.0 e − 14) 1.6050 e − 11 (8.7 e − 14)

minres 3.0151 e − 11 (1.1 e − 13) 1.8986 e − 12 (8.8 e − 15) 6.9545 e − 11 (2.2 e − 12)

cgs 3.3615 e − 11 (4.6 e − 12)25 4.6135 e − 12 (1.9 e − 14) 2.3129 e − 11 (3.6 e − 12)

gmres 1.5069 e − 11 (6.9 e − 14) 1.9547 e − 12 (9.4 e − 15) 1.3894 e − 11 (1.4 e − 14)

bicg 2.2096 e − 11 (2.4 e − 13) 1.9047 e − 12 (8.9 e − 15) 3.4938 e − 11 (1.9 e − 12)

bicgstab 4.4629 e − 11 (2.7 e − 12) 4.5373 e − 12 (2.2 e − 14) 3.2330 e − 11 (2.3 e − 12)

Table B.36: Mean relative residuals and standard errors for unsymmetric klein.

B.2.13 Lock and Key Symmetric

Matrices generated by lockandkey(10000).

Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 7.1575 e − 3 (1.4 e − 3)26 9.6912 e − 3 (8.1 e − 4) 1.6911 e − 2 (2.3 e − 3)

qmr 8.2473 e − 3 (8.9 e − 4)27 2.2802 e − 2 (2.0 e − 3) 1.7201 e − 2 (1.6 e − 3)

symmlq 2.0523 e − 2 (3.6 e − 3)26 1.8572 e − 2 (1.3 e − 3) 1.9948 e − 2 (2.2 e − 3)31

lsqr 8.6489 e − 3 (3.6 e − 4) N/A30 5.3995 e − 2 (2.2 e − 3)32

minres 9.9927 e − 3 (1.1 e − 3)26 1.9658 e − 2 (1.3 e − 3) 2.1526 e − 2 (2.3 e − 3)31

cgs 7.3400 e − 3 (2.1 e − 3)28 1.5684 e − 2 (1.4 e − 3) 1.2531 e − 2 (1.3 e − 3)

gmres 4.9444 e − 2 (1.5 e − 3) 6.0070 e − 2 (1.6 e − 3) 5.4937 e − 2 (1.3 e − 3)

bicg 5.1370 e − 3 (5.1 e − 4)29 1.7215 e − 2 (1.5 e − 3) 1.3601 e − 2 (1.3 e − 3)

bicgstab 4.6786 e − 3 (4.0 e − 4) 1.1585 e − 2 (1.2 e − 3) 1.0971 e − 2 (1.2 e − 3)

Table B.37: Mean running times and standard errors for lockandkey.

2532% of cases finished in state 0, 37% in state 1 and 31% in state 4
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Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 2.8723 e + 0 (3.9 e − 1)26 1.1700 e + 0 (4.0 e − 2) 2.8800 e + 0 (3.4 e − 1)

qmr 1.8586 e + 0 (2.0 e − 1)27 1.1700 e + 0 (4.0 e − 2) 1.4800 e + 0 (8.0 e − 2)

symmlq 1.0053 e + 1 (2.1 e + 0)26 1.0100 e + 0 (1.0 e − 2) 2.3367 e + 0 (2.6 e − 1)31

lsqr 1.5600 e + 0 (8.4 e − 2) N/A30 3.1515 e + 0 (1.5 e − 1)32

minres 3.1064 e + 0 (4.7 e − 1)26 1.0100 e + 0 (1.0 e − 2) 2.3061 e + 0 (2.5 e − 1)31

cgs 2.6322 e + 0 (7.6 e − 1)28 1.1600 e + 0 (3.7 e − 2) 1.4700 e + 0 (7.6 e − 2)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 1.7021 e + 0 (1.8 e − 1)29 1.1700 e + 0 (4.0 e − 2) 1.4800 e + 0 (8.0 e − 2)

bicgstab 9.4500 e − 1 (6.5 e − 2) 6.6500 e − 1 (3.8 e − 2) 9.6000 e − 1 (7.3 e − 2)

Table B.38: Mean iteration counts and standard errors for lockandkey.

Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 6.8889 e − 12 (1.5 e − 12)26 4.8725 e − 13 (4.4 e − 13) 1.1774 e − 11 (2.4 e − 12)

qmr 1.7728 e − 12 (7.4 e − 13)27 5.1727 e − 17 (1.0 e − 17) 1.9500 e − 16 (4.3 e − 17)

symmlq 1.4739 e − 11 (3.3 e − 12)26 5.7671 e − 13 (4.4 e − 13) 1.1230 e − 11 (2.5 e − 12)31

lsqr 2.4556 e − 16 (4.3 e − 17) N/A30 1.8553 e − 16 (3.1 e − 17)32

minres 6.6745 e − 12 (1.5 e − 12)26 5.7684 e − 13 (4.4 e − 13) 1.1720 e − 11 (2.6 e − 12)31

cgs 4.0576 e − 12 (1.7 e − 12)28 7.3252 e − 15 (7.3 e − 15) 1.2098 e − 16 (1.2 e − 16)

gmres 2.1409 e − 13 (3.8 e − 15) 3.0917 e − 13 (1.2 e − 14) 2.6325 e − 13 (8.6 e − 15)

bicg 1.5577 e − 12 (8.4 e − 13)29 4.9720 e − 18 (1.2 e − 18) 1.7983 e − 16 (4.4 e − 17)

bicgstab 2.8427 e − 18 (7.9 e − 19) 1.9780 e − 16 (2.0 e − 16) 1.1301 e − 12 (8.4 e − 13)

Table B.39: Mean relative residuals and standard errors for lockandkey.
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B.2.14 Lock and Key Unsymmetric

Matrices generated by lockandkey(10000).

Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 6.4131 e − 3 (6.2 e − 4)33 7.5186 e − 3 (3.0 e − 4) 1.1582 e − 2 (1.0 e − 3)37

qmr 7.8478 e − 3 (7.3 e − 4) 1.6445 e − 2 (6.8 e − 4) 1.9801 e − 2 (1.7 e − 3)

symmlq 6.6345 e − 3 (3.6 e − 4)34 1.7777 e − 2 (8.5 e − 4) 1.5498 e − 2 (1.1 e − 3)37

lsqr 1.1477 e − 2 (6.6 e − 4) 2.9073 e − 2 (1.1 e − 3)36 3.9667 e − 2 (2.4 e − 3)38

minres 7.6789 e − 3 (4.5 e − 4)35 1.8869 e − 2 (8.5 e − 4) 1.7390 e − 2 (1.1 e − 3)37

cgs 5.2284 e − 3 (3.5 e − 4) 1.1571 e − 2 (5.4 e − 4) 1.2455 e − 2 (9.7 e − 4)

gmres 4.9074 e − 2 (2.2 e − 3) 5.5348 e − 2 (8.2 e − 4) 5.5245 e − 2 (1.3 e − 3)

bicg 5.3762 e − 3 (4.3 e − 4) 1.2847 e − 2 (5.5 e − 4) 1.5715 e − 2 (1.4 e − 3)

bicgstab 5.9524 e − 3 (5.0 e − 4) 7.4673 e − 3 (2.9 e − 4) 1.2092 e − 2 (9.6 e − 4)

Table B.40: Mean running times and standard errors for unsymmetric lockandkey.

Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 3.0864 e + 0 (3.3 e − 1)33 1 e + 0 (0) 2.5222 e + 0 (2.0 e − 1)37

qmr 1.8400 e + 0 (9.2 e − 2) 1 e + 0 (0) 1.9600 e + 0 (1.0 e − 1)

symmlq 2.2564 e + 0 (2.1 e − 1)34 1 e + 0 (0) 2.0333 e + 0 (1.8 e − 1)37

lsqr 2.5700 e + 0 (1.6 e − 1) 1 e + 0 (0)36 3.3571 e + 0 (1.4 e − 1)38

minres 2.3797 e + 0 (2.4 e − 1)35 1 e + 0 (0) 2.0222 e + 0 (1.7 e − 1)37

cgs 1.8100 e + 0 (8.4 e − 2) 1 e + 0 (0) 1.7500 e + 0 (7.8 e − 2)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 1.8400 e + 0 (9.2 e − 2) 1 e + 0 (0) 1.9600 e + 0 (1.0 e − 1)

bicgstab 1.3200 e + 0 (8.7 e − 2) 5.0000 e − 1 (0) 1.2950 e + 0 (8.2 e − 2)

Table B.41: Mean iteration counts and standard errors for unsymmetric lockandkey.

2694% of cases finished in state 0 and 6% in state 1
2799% of cases finished in state 0 and 1% in state 1
2887% of cases finished in state 0, 2% in state 1, 5% in state 3 and 6% in state 4
2994% of cases finished in state 0, 4% in state 1 and 5% in state 3
3067% of cases finished in state 1, 21% in state 3 and 12% in state 4
3198% of cases finished in state 0 and 2% in state 1
3233% of cases finished in state 0 and 67% in state 2
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Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg 1.4613 e − 11 (3.1 e − 12)33 1.0158 e − 18 (1.0 e − 19) 1.1091 e − 11 (2.4 e − 12)37

qmr 2.8011 e − 16 (5.0 e − 17) 3.7417 e − 17 (8.8 e − 18) 9.5981 e − 13 (9.6 e − 13)

symmlq 1.2422 e − 11 (2.8 e − 12)34 9.4417 e − 14 (3.4 e − 15) 1.1252 e − 11 (2.5 e − 12)37

lsqr 8.8768 e − 13 (7.0 e − 13) 2.0205 e − 18 (7.8 e − 20)36 3.6997 e − 13 (3.7 e − 13)38

minres 1.2823 e − 11 (2.8 e − 12)35 9.4512 e − 14 (3.4 e − 15) 1.1083 e − 11 (2.4 e − 12)37

cgs 2.3158 e − 13 (2.3 e − 13) 8.0436 e − 19 (8.9 e − 20) 1.5717 e − 12 (5.0 e − 13)

gmres 1.9012 e − 13 (4.5 e − 15) 3.3794 e − 13 (1.2 e − 14) 4.6716 e − 13 (2.2 e − 13)

bicg 9.9566 e − 17 (1.7 e − 17) 3.1843 e − 17 (8.3 e − 18) 9.5978 e − 13 (9.6 e − 13)

bicgstab 9.4871 e − 13 (8.8 e − 13) 1.0158 e − 18 (1.0 e − 19) 2.9658 e − 12 (1.2 e − 12)

Table B.42: Mean relative residuals and standard errors for unsymmetric lockandkey.

B.2.15 Stickiness Symmetric

Matrices generated by sticky(10000).

Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg N/A39 1.6812 e − 1 (1.2 e − 2)41 N/A39

qmr 7.7313 e − 2 (2.8 e − 3) 2.6850 e − 1 (8.8 e − 3) 1.3832 e − 1 (9.9 e − 4)

symmlq N/A39 1.3090 e − 1 (2.7 e − 3)42 N/A39

lsqr 1.7698 e − 1 (2.4 e − 3) 2.6442 e − 1 (1.9 e − 3) 4.3903 e − 1 (5.5 e − 3)

minres N/A39 1.3306 e − 1 (2.5 e − 3)41 N/A39

cgs 5.7569 e − 2 (1.1 e − 2)40 8.8294 e − 2 (8.7 e − 4) 5.9194 e − 2 (6.1 e − 4)

gmres 1.8550 e − 1 (9.0 e − 3) 1.6779 e − 1 (2.0 e − 3) 1.3474 e − 1 (9.9 e − 4)

bicg 5.2281 e − 2 (1.3 e − 3) 1.6642 e − 1 (2.0 e − 3) 1.3502 e − 1 (2.0 e − 3)

bicgstab 4.5792 e − 2 (1.5 e − 3) 9.2890 e − 2 (2.3 e − 3) 6.1175 e − 2 (5.8 e − 4)

Table B.43: Mean running times and standard errors for sticky.

3381% of cases finished in state 0 and 19% in state 1
3478% of cases finished in state 0 and 22% in state 1
3579% of cases finished in state 0 and 21% in state 1
3629% of cases finished in state 0 and 71% in state 1
3790% of cases finished in state 0 and 10% in state 1
3856% of cases finished in state 0 and 44% in state 2
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Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg N/A39 6.7551 e + 0 (1.1 e − 1)41 N/A39

qmr 9.9700 e + 0 (3.3 e − 2) 5 e + 0 (0) 7.1000 e + 0 (3.0 e − 2)

symmlq N/A39 5.6907 e + 0 (9.4 e − 2)42 N/A39

lsqr 2.9510 e + 1 (3.8 e − 1) 7.0600 e + 0 (2.4 e − 2) 2.3180 e + 1 (3.0 e − 1)

minres N/A39 5.7653 e + 0 (1.2 e − 1)41 N/A39

cgs 1.2409 e + 1 (2.5 e + 0)40 3.0100 e + 0 (1.0 e − 4) 4.0800 e + 0 (2.7 e − 2)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 1.0090 e + 1 (3.8 e − 2) 5 e + 0 (0) 7.1000 e + 0 (3.0 e − 2)

bicgstab 5.3700 e + 0 (4.5 e − 2) 2.5050 e + 0 (5.0 e − 3) 3.6700 e + 0 (2.4 e − 2)

Table B.44: Mean iteration counts and standard errors for sticky.

Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg N/A39 2.7876 e − 11 (2.5 e − 12)41 N/A39

qmr 2.5271 e − 11 (2.4 e − 12) 1.2495 e − 11 (3.5 e − 13) 2.6456 e − 11 (1.4 e − 12)

symmlq N/A39 2.9181 e − 11 (2.7 e − 12)42 N/A39

lsqr 6.3856 e − 11 (2.0 e − 12) 1.4328 e − 11 (1.5 e − 12) 5.5635 e − 11 (2.0 e − 12)

minres N/A39 2.9271 e − 11 (2.7 e − 12)41 N/A39

cgs 3.4865 e − 11 (5.6 e − 12)40 2.1172 e − 12 (4.4 e − 13) 1.0306 e − 11 (1.8 e − 12)

gmres 7.1471 e − 11 (2.0 e − 13) 4.6139 e − 12 (8.2 e − 14) 1.8572 e − 11 (5.6 e − 13)

bicg 2.2073 e − 11 (2.1 e − 12) 1.2579 e − 11 (3.6 e − 13) 2.6503 e − 11 (1.4 e − 12)

bicgstab 4.2499 e − 11 (2.7 e − 12) 1.3102 e − 11 (7.0 e − 13) 3.6414 e − 11 (2.6 e − 12)

Table B.45: Mean relative residuals and standard errors for sticky.
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B.2.16 Stickiness Unsymmetric

Matrices generated by sticky(10000).

Running time

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg N/A43 1.6490 e − 1 (4.7 e − 3)45 N/A43

qmr 9.6474 e − 2 (3.2 e − 3) 2.4333 e − 1 (3.9 e − 3) 1.7531 e − 1 (1.9 e − 3)

symmlq N/A43 1.5478 e − 1 (2.8 e − 3)46 N/A43

lsqr 2.3375 e − 1 (3.0 e − 3) 3.3121 e − 1 (2.4 e − 3) 5.1011 e − 1 (5.5 e − 3)

minres N/A43 1.6193 e − 1 (4.1 e − 3)47 N/A43

cgs 1.0168 e − 1 (1.5 e − 2)44 1.0680 e − 1 (1.3 e − 3) 7.2610 e − 2 (8.6566 e − 4)

gmres 4.3444 e − 1 (2.2 e − 1) 1.9061 e − 1 (2.6 e − 3) 1.4373 e − 1 (9.3 e − 4)

bicg 6.8821 e − 2 (1.9 e − 3) 1.9737 e − 1 (1.3 e − 3) 1.5328 e − 1 (9.1 e − 4)

bicgstab 4.9196 e − 2 (9.9 e − 4) 9.4918 e − 2 (6.3 e − 4) 7.3379 e − 2 (6.6 e − 4)

Table B.46: Mean running times and standard errors for unsymmetric sticky.

Iteration Count

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg N/A43 7.3636 e + 0 (1.9 e − 1)45 N/A43

qmr 9.7400 e + 0 (5.0 e − 2) 5 e + 0 (0) 7.1400 e + 0 (3.5 e − 2)

symmlq N/A43 6.1042 e + 0 (9.4 e − 2)46 N/A43

lsqr 2.5640 e + 1 (2.7 e − 1) 6.9800 e + 0 (2.0 e − 2) 2.0410 e + 1 (2.1 e − 1)

minres N/A43 6.1753 e + 0 (1.2 e − 1)47 N/A43

cgs 1.4545 e + 1 (2.6 e + 0)44 3.0100 e + 0 (1.0 e − 2) 4.0300 e + 0 (1.7 e − 2)

gmres 1 e + 0 (0) 1 e + 0 (0) 1 e + 0 (0)

bicg 9.8500 e + 0 (4.8 e − 2) 5 e + 0 (0) 7.1600 e + 0 (3.7 e − 2)

bicgstab 5.1400 e + 0 (2.8 e − 2) 2.5000 e + 0 (0) 3.5550 e + 0 (1.6 e − 2)

Table B.47: Mean iteration counts and standard errors for unsymmetric sticky.

39All cases finished in state 1
4022% of cases finished in state 0 and 78% in state 1
4198% of cases finished in state 0 and 2% in state 1
4297% of cases finished in state 0 and 3% in state 1
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Residual

Function No preconditioning LU preconditioner Cholesky preconditioner

pcg N/A43 3.6480 e − 11 (2.6 e − 12)45 N/A43

qmr 3.9131 e − 11 (3.3 e − 12) 5.3275 e − 12 (2.0 e − 13) 3.5138 e − 11 (2.3 e − 12)

symmlq N/A43 3.6728 e − 11 (2.7 e − 12)46 N/A43

lsqr 6.0827 e − 11 (2.0 e − 12) 1.2183 e − 11 (2.1 e − 12) 5.3349 e − 11 (2.2 e − 12)

minres N/A43 3.7040 e − 11 (2.7 e − 12)47 N/A43

cgs 5.4190 e − 11 (5.8 e − 12)44 1.7899 e − 12 (8.3 e − 13) 7.1965 e − 12 (9.6 e − 13)

gmres 6.3033 e − 11 (3.4 e − 13) 1.7253 e − 12 (4.8 e − 14) 2.3459 e − 11 (6.1 e − 13)

bicg 3.8281 e − 11 (3.1 e − 12) 5.3558 e − 12 (2.0 e − 13) 3.3177 e − 11 (2.1 e − 12)

bicgstab 4.5445 e − 11 (2.6 e − 12) 6.0998 e − 12 (1.0 e − 12) 5.6031 e − 11 (2.2 e − 12)

Table B.48: Mean relative residuals and standard errors for unsymmetric sticky.

43All cases finished in state 1
4433% of cases finished in state 0 and 67% in state 1
4599% of cases finished in state 0 and 1% in state 1
4696% of cases finished in state 0 and 4% in state 1
4797% of cases finished in state 0 and 3% in state 1
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SVD Algorithm Code

We present here a MATLAB code that demonstrates the algorithm described

in Chapter 6. In practice the code may be extended to produce numerous

subgraphs corresponding to different singular vector pairs for a single run.

function [Akeep, Anew] = svdsort(A,Anames)

%%%%%%%%%%%%%%%%%%%%%%% Verify correct input %%%%%%%%%%%%%%%%%%%%%%%%%%%%

if nargin == 0

disp(’Input an n by n matrix and a list of n names’);

end

if nargin > 2

disp(’Too many input arguments’);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SVD on A %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[U,S,V] = svd(A);

sortvec = input(’Singular vector to sort on: ’);

[usort,uind] = sort(U(:,sortvec));

[vsort,vind] = sort(V(:,sortvec));

% Plot original adjacency matrix, reordered matrix and sorted singular

% vectors.

spy(A(uind,vind));

title(’A reordered’);

figure;

plot(usort,’r*’);

title(’u sorted’);

set(gca,’XTick’,1:1:length(uind))

set(gca,’XTickLabel’,uind)
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figure;

plot(vsort,’r*’);

title(’v sorted’);

set(gca,’XTick’,1:1:length(vind))

set(gca,’XTickLabel’,vind)

%%%%%%%%%%%%%%%%%%%%% Get cutoff values for vectors %%%%%%%%%%%%%%%%%%%%%

utop = input(’Upper bound for u’);

ubottom = input(’Lower bound for u’);

vtop = input(’Upper bound for v’);

vbottom = input(’Lower bound for v’);

ukeep1 = uind(find(usort>=ubottom));

vkeep1 = vind(find(vsort>=vbottom));

ukeep2 = uind(find(usort<=utop));

vkeep2 = vind(find(vsort<=vtop));

ukeep = intersect(ukeep1,ukeep2);

vkeep = intersect(vkeep1,vkeep2);

%%%%%%%%%% Get list of nodes to retain and eliminate duplicates %%%%%%%%%

Akeep = sort(cat(1,ukeep,vkeep));

for i = 2:length(Akeep)

if Akeep(i) == Akeep(i-1)

Akeep(i) = -1;

end

end

%%%%%%%% Form submatrix by retaining only nodes listed in Akeep %%%%%%%%%

remove = find(Akeep==-1);

Akeep(remove) = [];

remove = [1:length(A)]’;

remove(Akeep) = [];

Anew = A;

Anew(remove,:) = [];

Anew(:,remove) = [];

figure;

spy(Anew);

%%%%%%%%%%%%%%%%% Perform SVD on submatrix and sort %%%%%%%%%%%%%%%%%%%%%

[Usub,Ssub,Vsub] = svd(Anew);

[usubsort,usubind] = sort(Usub(:,1));

Akeep = Akeep(usubind);

if nargin == 2

names = Anames(Akeep);

figure;

spy(Anew(usubind,usubind));

set(gca,’XTick’,1:1:length(Akeep))

set(gca,’XTickLabel’,names)

set(gca,’YTick’,1:1:length(Akeep))

set(gca,’YTickLabel’,names)

else

figure;

spy(Anew(usubind,usubind));

set(gca,’XTick’,1:1:length(Akeep))

set(gca,’XTickLabel’,Akeep)

set(gca,’YTick’,1:1:length(Akeep))
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set(gca,’YTickLabel’,Akeep)

end

title(’Submatrix’);



Appendix D

Matrix Mapping Code

We present here MATLAB code that performs the matrix mapping described in

Chapter 8 for a given input adjacency matrix A. Embedded in the code are a

number of smaller programs that are called to compute f(A) + f(AT ), reorder

the mapped matrix, produce an improved heat map and compute the bipartivity

measure from Section 8.5.

function bptest(A)

F = biweight(A);

k = input(’Eigenvector to sort on? ’);

[F,a] = specord(F,k);

% pcolor plot of F(A)

figure(1)

spy(A);

title(’Adjacency matrix’);

figure(2)

mypcolor(F);

title(’Mapped matrix’);

n = length(A);

group1 = input(’How many nodes in first group? ’);

%i.e. take nodes 1-group1 as first set

group2 = input(’How many nodes in second group? ’);

%i.e. take the last ’group2’ nodes as second set

aind = [a(1:group1);a(end-group2+1:end)];

figure(3)

spy(A(aind,aind));

title(’Subgraph’);

Abip = bicount(A(aind,aind),group1,group2)

%--------------------------------------------------------------------------
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% Calculates f(A) + f(A’)

function F = biweight(A);

[U,S,V] = svd(A);

B = U*diag(diag(cosh(S)))*U’ - U*diag(diag(sinh(S)))*V’;

[U,S,V] = svd(A’);

BT = U*diag(diag(cosh(S)))*U’ - U*diag(diag(sinh(S)))*V’;

F = B + BT;

%--------------------------------------------------------------------------

% Reorders A based on the k’th eigenvector

function [S,b] = specord(A,k);

[V,D] = eig(A);

[a,b] = sort(V(:,k));

S = A(b,b);

%--------------------------------------------------------------------------

% pcolor that doesn’t discard a row and column

function B = mypcolor(A);

n = length(A);

B = zeros(n+1,n+1);

for i = 1:n

B(i,1:n) = A(n-i+1,:);

end

pcolor(B);

%--------------------------------------------------------------------------

function count = bicount(A,front,back);

% Weigh number of nonzeros in top right against number in bottom left

n = length(A);

topright = (nnz(A(1:front,front+1:n)))/(front*back);

bottomleft = (nnz(A(front+1:n,1:front)))/(front*back);

if bottomleft > topright

A = A’;

end

topright = (nnz(A(1:front,front+1:n)))/(front*back);

rest = (nnz(A(1:front,1:front)) + nnz(A(front+1:n,front+1:n))

+ nnz(A(front+1:n,1:front)))/(n^2 - front*back)+1;

if rest == 0

rest = 1/2*(n^2 - front*back); %avoids division by zero

end

count = topright/rest;

%--------------------------------------------------------------------------
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[30] E. Estrada and J. Rodŕıguez-Velázquez, Spectral measures of bi-

partivity in complex networks, Physical Review E, 72 (2005).

[31] L. Euler, Solutio problematis ad geometriam situs pertinentis, Commen-

tarii academiae scientiarum imperialis Petropolitanae, 8 (1740), pp. 128–

140.

[32] W. J. Ewens and G. R. Grant, Statistical Methods in Bioinformatics:

An Introduction, Springer, Berlin, 2001.



Bibliography 240

[33] M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law re-

lationships of the internet topology, Computer Communications Review, 29

(1999), pp. 251–262.

[34] B. Fingleton and M. Fischer, Neoclassical theory versus new economic

geography. competing explanations of cross-regional variation in economic

development, Annals of Regional Science, (2010). to appear.

[35] E. N. Gilbert, Random graphs, Ann. Math. Statist., 30 (1959), pp. 1141–

1144.

[36] J. R. Gilbert, C. Moler, and R. Schreiber, Sparse matrices in

matlab: design and implementation, SIAM J. Matrix Analysis Applications,

13 (1992), pp. 333–356.

[37] P. Glasserman, Monte Carlo Methods in Financial Engineering,

Springer, Berlin, 2004.

[38] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hop-

kins University Press, Baltimore, third ed., 1996.

[39] G. Grimmett, Percolation, Springer, second ed., 1999.

[40] P. Grindrod, Range-dependent random graphs and their application to

modelling large small-world proteome datasets, Physical Review E, 66

(2002).

[41] P. Grindrod, D. J. Higham, and G. Kalna, Periodic reordering, IMA

J. Numer. Anal. To appear.



Bibliography 241

[42] P. Grindrod and M. Kibble, Review of uses of network and graph

theory concepts within proteomics, Expert Review of Proteomics, 1 (2004),

pp. 229–238.

[43] J. D. H. Han, D. Dupuy, N. Bertin, M. E. Cusick, and M. Vidal,

Effect of sampling on topology predictions of protein-protein interaction net-

works, Nature Biotechnology, 23 (2005), pp. 839–844.

[44] B. Hendrickson and R. Leland, The chaco user’s guide: Version 2.0,

Tech. Rep. SAND94-2692, (1994).

[45] D. J. Higham, Unravelling small world networks, J. Comp. Appl. Maths.,

158 (2003), pp. 61–74.

[46] , An Introduction to Financial Option Valuation: Mathematics,

Stochastics and Computation, Cambridge University Press, 2004.

[47] , Spectral reordering of a range-dependent weighted random graph, IMA

J. Numer. Anal., 25 (2005), pp. 443–457.

[48] D. J. Higham and N. J. Higham, MATLAB Guide, Society for Industrial

and Applied Mathematics, Philadelphia, 2000.

[49] D. J. Higham, G. Kalna, and M. Kibble, Spectral clustering and its

use in bioinformatics, J. Computational and Applied Math., 204 (2007),

pp. 25–37.

[50] D. J. Higham, G. Kalna, and J. K. Vass, Spectral analysis of two-

signed microarray expression data, IMA Mathematical Medicine and Biol-

ogy, 24 (2007), pp. 131–148.



Bibliography 242

[51] D. J. Higham, N. Przulj, and M. Rasajski, Fitting a geometric

graph to a protein-protein interaction network, Bioinformatics, 24 (2008),

pp. 1093–1099.

[52] P. Holme, F. Liljeros, C. R. Edling, and B. J. Kim, Network bi-

partivity, Physical Review E, 68 (2003).

[53] Y. Hu and J. A. Scott, HSL MC73: A fast multilevel Fiedler and profile

reduction code, RAL-TR-2003-36, (2003).

[54] T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and

Y. Sakaki, A comprehensive two-hybrid analysis to explore the yeast pro-

tein interaction interactome, Proc. Natl. Acad. Sci., 98(8) (2001), pp. 4569–

4574.

[55] S. A. Kauffman, Metabolic stability and epigenesis in randomly con-

structed genetic nets, J. of Theor. Biol., 22 (1969), pp. 437–467.

[56] I. Z. Kiss, D. M. Green, and R. R. Kao, The network of sheep move-

ments within great britain: network properties and their implications for

infectious disease spread, J. Roy. Soc. Interface, 3 (2006), pp. 669–677.

[57] J. M. Kleinberg, Navigation in a small world, Nature, 406 (2000), p. 845.

[58] A. N. Langville and C. D. Meyer, Google’s PageRank and Beyond:

The Science of Search Engine Rankings, Princeton University Press, Prince-

ton, 2006.

[59] J. Link, Does food web theory work for marine ecosystems?, Marine Ecol-

ogy Press Series, 230 (2002), pp. 1–9.



Bibliography 243

[60] L. Lovász, Random walks on graphs, in Paul Erdös is Eighty, D. Miklós,
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