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Abstract

The contamination of water recourses by heavy metals is a serious worldwide
environmental problem. Industrial activities, mining and coal combustion are typical
contamination sources. Removal of these metals from wastewater effluents is crucial
as this contamination is non-biodegradable and highly toxic.

Extensive research has been carried out to introduce new materials which alleviate
these metals from wastewater effluents before their discharge into water bodies such
as rivers and lakes. Conventional methods to remove heavy metals from wastewater

include chemical precipitation, ion-exchange and chelation-adsorption.

Adsorption is an important and developing research area because of the new material
types available according to the application. Furthermore, it is standard process to
place the adsorbent in a column and pump the wastewater through in a continuous
system. It is also a cost-effective process. Chelating adsorbents are typically
characterised by functional groups containing O, N, S, and P donor atoms which
coordinate to different heavy metal ions. It is necessary that the adsorbent has a high
capacity and that the kinetics of adsorption is sufficiently fast.

Polyaminepolycarboxylic (PAPC) acids are strong chelating agents and form stable
chelates with different types of metals: transition, lanthanides and actinides. In spite

of 1ts exceptional chelating power, many of the PAPC compounds — such as DTPA

(8-coordinations), CDTA (6-coordinations) and NTA (4-coordinations) — have not
been thoroughly studied for use as active sites in adsorbent materials for heavy metal
remediation from contaminated water effluents. Furthermore, the effect of the
number of coordination groups on the adsorption behaviour has not been
investigated. Use of these strong chelating agents (PAPC) for heavy metal removal
by a polymeric adsorbent is presented in this study, with discussion of the chelation

mechanism and affinity. The PAPC chelating agents were anchored on melamine-
formaldehyde (MF) gel.

Although MF gel has suitable chemical and physical properties allowing the
production of an adsorbent for heavy metal removal, it has not been studied. MF gel
is porous and its matrix has a suitable platform to functionalize with some chelating
compounds. PAPC-modified melamine-formaldehyde matrix is easy to produce
compared to conventional chelating resins based on styrene/divinylbenzene.

In this work, melamine-formaldehyde-polyaminepolycarboxylic acid (MF-PAPC)
chelating adsorbents were synthesised by anchoring polyaminepolycarboxylic acids
(PAPC) to melamine by the reaction of the carboxylic group of PAPC with a primary
amine group of melamine forming a covalent amide bond during MF matnix
formation. A series of samples of these adsorbents were prepared by varying water
content, acidity of water and temperature as parameters to control the properties of
the product.
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Samples of MF-DTPA, MF-NTA and MF-CDTA were chemically characterized
using IR, elemental analysis, TPD-MS, “C-NMR and "N-NMR. Physical

characterisation was carried out using BET, FE-SEM, and XRD techniques.
Elemental analysis and BET results were used to select optimum samples for
adsorption experiments.

Selected MF-PAPC adsorbent samples are hydrophilic, amorphous and rigid. The

content of PAPC 1n the dry adsorbent samples ranges from 1.08 to 2.28 mmole g
The MF-PAPC adsorbents have reasonable surface areas (ranges from 159 to 179 m’

g”') and a mesoporous structure (average pore diameter: 19 — 130 A).

The adsorption performance of MF-PAPC adsorbents was investigated against
environmentally problematic divalent metal ions, namely, Cu(Il), Co(II), Cd(II) and
Zn(II). The adsorption behaviour of these adsorbents was characterised using mixture
solutions of these four ions.

The effects of different controlling parameters (solution initial pH, temperature,
metal 1ons initial concentration and contact time) on adsorption were considered.
Experimental data was fitted to the selected kinetic and isotherm models to suggest
the best models to represent the adsorption process on MF-PAPC adsorbents. The
thermodynamic parameters (adsorption free energy, enthalpy and entropy) were also
calculated and a mechanism of adsorption is suggested according to the evaluation of

the results.

It was found that MF-PAPC adsorbents follow reversible first order and pseudo
second order models to represent the adsorption kinetics. The Langmuir 1sotherm
model gives the best representation of the adsorption processes. These findings
indicate the chemical and reversible nature of the adsorption process.

Thermodynamically, the adsorption was found to be spontaneous and exothermic.
The entropy change shows that adsorption is not favourable. The results indicate that
chelation and ion exchange are the mechanisms of adsorption with chelation the
dominant type especially at lower temperatures and higher initial pH values. The
PAPC type controls the affinity order of the four heavy metals.

MF-PAPC adsorbents are distinguished by chelation-adsorption. The adsorption can
be universal, or selective according to the PAPC type. Moreover, the selectivity order
is different and depends on the PAPC type. MF-PAPC adsorbents can be used for
metal-separation applications due to the higher affinity towards transition elements,
lanthanides and actinides with respect to alkali and alkaline earth metals. The elution
of the adsorbed metal ions was successfully accomplished using a solution of EDTA
due to its high chelation power.

The MF-DTPA adsorbent was used in a packed column for removal of the Cu(Il) 1on
in a continuous up-flow system. The parameters of the study were: Bed height, flow
rate and initial concentration. The Thomas model was used to fit the kinetic data. The

BDST model was used to examine the possibility of scaling-up the laboratory set-up
to industrial scale.

1X



The capacity of adsorption was found to be sensitive to bed height (positive: due to
mass transfer), initial concentration (positive: due to concentration driving force) and
flow rate (negative: due to contact time). It was found that the adsorption zone moves
up the column at a constant speed for different bed heights. Hence, the process can
be scaled-up for practical use using a BDST model.
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Figure 10.24: Plots of equation (18) at different imitial pH values
(25°C) for the determination of film diffusion
coefficients (D) of M(1I) with MF-CDTA.

Figure 10.25: Plots of equation (18) at different imitial pH values
(35°C) for the determination of film diffusion
coefficients (D;) of M(II) with MF-CDTA.
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Figure 10.27: Plots of equation (19) at different initial pH values

(25°C) for the determination of pore diffusion
Coefficients (D,) of M(II) with MF-CDTA.

Figure 10.28: Plots of equation (19) at different initial pH values
(35°C) for the determination of pore diffusion

coefficients (D) of M(1I) with MF-CDTA.
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Chapter 1 Wastewater and contamination by heavy metals

1.1  Water contamination by heavy metals
The total amount of water present on the earth has been estimated to be 10° km’, of

which 97% i1s oceanic and 3% is fresh water. About 75% of this fresh water 1s locked

up as ice in the polar regions and about 14% as deep ground-water. About 0.06 % of

the fresh water 1s readily available as lakes and rivers. These water resources receive

the majority of the wastes in the form of sewage, trade and industrial effluents [1].

Water 1s an essential reactant in biological systems and necessary for metabolism. It
carries and distributes nutrients and other important chemicals in the living bodies.
Furthermore, water is the natural habitat of many forms of life. Mankind’s need for

water 1s crucial and therefore it is of paramount importance to guarantee supplies of

pure water [2].

Many water resources are polluted to different extents due to one or more of the
many polluting activities. The definition of water pollution is relative, but generally

water 1s considered polluted if it is no longer suitable for the purpose to which it is

needed. Some 1mportant manufacturing processes (e.g. medicine and electronic
chips) require water of high purity, where the need for the removal of minute traces

of organic and 1norganic materials is essential [2].

Pollution can be classified by eight attributes: colour, turbidity, temperature,
suspended solids, floating materials, biological effects, organic materials and

inorganic substances [1].

Metals are inorganic substances that occur naturally in geological formation. Trace
amounts of metals are common in water, and these are normally not harmful to
health. In fact, some metals such as calcium, magnesium, potassium, and sodium are

essential to sustain life and must be present for normal biological functions.

Although considered toxic, low levels of cobalt, copper, 1ron, manganese,

molybdenum, selenium, and zinc are needed as well as catalysts for enzyme

activities but water containing high levels of these essential metals — or highly toxic
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metals such as aluminium, arsenic, barium, cadmium, chromium, lead, mercury,

selenium, and silver — may be hazardous to health {3].

As heavy metals are natural constituents of the earth's crust and are present In
varying concentrations in all ecosystems, trace amounts of metals naturally enter
water sources as rain percolates through rock and soil material dissolving minute
quantities. These amounts are natural and useful to the system and do not cause
pollution. The pollution originates from extra amounts entering the system due to
mankind activities. The major contributors to water pollution are industrial sectors
(paint, electroplating, textile, coal combustion, battery, fertilizer and tanneres, etc.)
mining and agriculture [4]. Another source of water contamination by metals 1s

corrosion of pipes and leakage from waste disposal sites [5].

Although heavy metals are conventionally known as water pollutants, they are
transported from place to place through the air as species adsorbed on suspended

particulate matter [5].

The most important characteristic of these metals is that they are non-degradable and

therefore persistent in water [6]. If the wastewater is discharged directly into natural

water bodies, it will constitute a great risk to aquatic ecosystems and public heath.
Alternatively, if directly discharged into the sewerage system, it may have an adverse

affect on the biological treatment process [7].

This study is concerned with the removal of well known toxic metals — cadmium (II),

cobalt(Il), zinc(II) and copper(Il) — by new synthesised polymeric adsorbent,
melamine-formaldehyde-polyaminecarboxylic acids (MF-PAPC). Cadmium(lI) 1s
one of the most toxic metals. It can be introduced to the environment by the

wastewaters of the following sectors: mining, metallurgy, cadmium electroplating,

phosphate fertilizers, Cd-Ni batteries, stabilizers, alloys, pigments and ceramics
[8,9]. Contamination by zinc(Il) arises from many industries such as acrylic fibre,
rayon, cellophane and special synthetic rubber [9]. The presence of copper(1l) ions in

water originates from several industrial activities such as dyeing, paper,



Chapter 1 Wastewater and contamination by heavy metals

copper/brass-plating and copper/ammomum rayon. The Cu(ll) ion concentration

typically approaches 100-120 mg I"' in the wastewater effluents of copper-cleaning,

copper plating and metal-processing industries and this concentration should 1deally
be reduced to a value of 1.0-1.5 mg 1" [10]. Cobalt(II) and its salts are used in

different industries and applications: nuclear medicine, enamels and semiconductors,
grinding wheels, painting on glass and porcelain, hygrometers and electroplating, as
a foam stabilizer in beer, manufacture of vitamin B12, as a drier for lacquers,

varnishes and paints and as a catalyst for organic chemical reactions. The permissible

limits of cobalt in irrigation water and livestock watering are 0.05 and 1.0 mg I

[11].

The destinations of most contaminated waters are large water bodies (rivers, lakes,
seas and oceans) which are used as drinking (and irrigation) water sources. Heavy

metals are highly soluble in aquatic systems and can be absorbed by living organisms

before entering the human food chain. Ingestion of these toxic metals beyond
threshold concentration can cause serious health problems [12]. Mammals, as well as

humans, are subjected to these metals either by drinking contaminated water or
through the food chain [3].

Because of their undesired effects on human physiological systems, heavy metals
should be removed from the wastewater effluents prior to discharge. In the treatment
of industrial wastewaters, copper, silver, zinc, cadmium, mercury, lead, chromium,
cobalt, aluminium, iron and nickel are of particular concem. Most heavy metals
present in wastewater are in the inorganic form but in some industries, for example
dyeing and textile, heavy metals are present in the effluent wastewater in the organic

form (complexes and/or organometallic compounds) [13].

Toxic metals may exist in high concentrations in wastewater (even up to 500 mg I

and if discharged into a water body, this will be a major threat to aquatic life [7].
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The contamination of the aquatic environment by these toxic metals is a major
worldwide problem and developing countries, specifically, face the problem of trying

to afford high-cost remediation technologies [14].

1.2 Health Effects

Entrance of heavy metal 1ons into human beings causes various diseases due to
binding with vital cellular components of living organisms like proteins, enzymes
and nucleic acids. For example, the toxicity of many heavy metals is because of the
binding with sulfhydryl (-SH) groups on proteins. This binding alters the functions

of these components and gives rise to toxicity.

The syndromes of toxicity are observed when the amount (or concentration) of the
heavy metal 10n(s) exceeds a certain threshold value. Toxicity can occur, as well, by

consuming low-level contaminated water over longer periods of time.

Also, the morganic form of heavy metals can bio-accumulate in specific tissues [15]
and this accumulation can lead to organ failure. Research is still being conducted on
the toxicity of many elements. The Environmental Protection Agencies (EPA) has set
a maximum contaminant level (MCL) for each metal which means that public water

supplies must be monitored for these metals on a regular basis (for example MCL

values for cadmium, copper and zinc are 0.01, 1.0 and 5.0 mg 1™ respectively [16)).
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Increasingly stringent regulations on effluent discharge mandate efficient heavy
metal removal techniques from wastewater. The commonly used techniques for
removing metal ions (heavy metals) from aqueous effluents include chemical
precipitation, metal 1on reduction, ion exchange, reverse osmosis, solvent extraction
and adsorption [17]. Other techniques which incorporate electrochemical aspects
(based on electric current-driving force) used for wastewater treatment are
clectrodialysis (ED), electrochemical ion exchange (EIX) and electrowinning
[18,19]. The use of a certain technique is dictated by several factors: waste type,

other constituents, concentration, level of clean-up required and cost-effectiveness
[19].

Chapter 2 gives a brief presentation of the theory of each method, its advantages,

applications and limitations.

2.1  Chemical precipitation

Precipitation of metals has been the primary method for wastewater treatment. It 1s
used primarily to remove or reduce the hardness in water caused by excessive salts of
calcium and magnesium and this process is called softening [20]. Subsequently, the
produced precipitates can be removed from treated water by physical methods which
include settling, filtration (mechanical separation of two phases), coagulation
(agglomeration of the primary particles into particles up to 1 mm in size), and
flocculation (fine particles to form stable aggregates of interconnected agglomerates

up to 1 cm 1n size) [20,21].

Precipitation of soluble metals has traditionally been achieved by the addition of
hydroxide to form the corresponding insoluble metal hydroxide sludge. The most
conventional widely used chemical precipitants are hydroxides, sulphides,
carbonates, phosphate and thiocarbamates [21]. Theoretically, this technique can be
used for heavy metal removal which depends on concentration level. If the

concentration 1s sufficiently high, the process is performed.
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2.1.1 Hydroxide precipitation

In hydroxide precipitation, the metal ion forms an insoluble metal-hydroxide
precipitate. The agents belonging to this category are caustic soda [NaOH], lime
[CaO], hydrated lime [Ca(OH);] and magnesium hydroxide [Mg(OH),;] [22].
Generally, the process is simple and consists of the addition and mixing of

precipitant with wastewater. The precipitation reaction is as follows [23]:
M?** + 2NaOH S M(OH); sy + 2 Na'

This process 1s usually used for wastewater of high concentration. There are some

drawbacks when using this technique:

1. The precipitation of mixed metal systems does not permit the efficient removal of
all metals due to minimum solubility of individual metal hydroxides occurring at

different pH values [22].

2. The precipitation reaction is of an equilibrium type, i.e. some of the formed metal
hydroxide will disassociate resulting in metal ions going back into solution.

3. The increasing use of chelating agents in industry, such as EDTA, citrates, etc.
(e.g. in electro-plating processes) poses significant or often impossible
precipitation using pH adjustment techniques due to formation of stable soluble
metal complexes.

4. Metal-hydroxide sludge is inherently susceptible to leaching by acid which in
turn can result in metal transport into ground water when sludge is disposed of in
landfills.

5. Metal-hydroxide sludge is heavily hydrated. This characteristic transfers to costly
sludge disposal.

2.1.2 Sulphide precipitation

Sulphide precipitation has been the most widely used method after hydroxide
precipitation. Soluble metals can be removed by precipitating them as metal
sulphides by the addition of sodium sulphide to the waste solution which have very

low solubility values throughout the pH range [22]. This method yields more
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complete metal removal than hydroxide precipitation. However, it is not as widely

used as hydroxide precipitation because of residues of toxic sulphides in solution

22].

2.1.3 Carbonate precipitation

Precipitation of dissolved heavy metals from wastewaters can be achieved by using

a carbonate precipitating agent, such as soda ash [Na,CO,], sodium bicarbonate
[NaHCO,], or calcium carbonate [CaCO,]. In some particular cases metal carbonates

are less soluble than their corresponding hydroxides, hence carbonate precipitation is
an effective treatment alternative to hydroxide precipitation. Some metals
precipitation using calcium carbonate, e.g. lead and nickel, gives lower final residual

metals concentrations than those of hydroxide. Generally, the solubility values of

metal-carbonates are intermediate between those of metal-hydroxide and metal-
sulphide. The solubility values of metal-carbonates depend on the specific metal ion

precipitated and the pH of the wastewater.

The main advantage of using carbonate precipitation is that it can operate at a low pH
range, typically between 7 and 9. Carbonate precipitation is price-competitive in
relation to hydroxide precipitation. The produced metal-carbonate sludges generally
have better dewatering characteristics than corresponding hydroxide sludges.
However, there are a few disadvantages:

1. The treatment chemicals tend to be abrasive to feed equipment.

2. Slower reacting carbonate-based chemistry causes longer retention times.

3. The sludge produced in this process is gelatinous and difficult to settle.

2.1.4 Phosphate precipitation

Toxic metals have low solubility values in the form of phosphate salts. Hence, heavy
metal can be precipitated and removed by reaction with a phosphatic agent [22]. The
removal of heavy metals benefiting from this precipitation reaction is now advanced

by using phosphatic sorbent where heavy metal ions are phosphate-micro-
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precipitated in this sorbent. These sorbents are mainly clays which include phosphate

in their structure.

2.1.5 Precipitation by thiocarbamates

The solubility of metal-thiocarbamate is not dependent on pH as with metal-
hydroxide. For this reason, metals can be precipitated in acidic or caustic media. For
mixtures of metal ions, the use of hydroxide precipitation may not achieve residual
metal levels for some of these ions that meet discharge limits. In this case,
thiocarbamates precipitation could be used as a subsequent step to precipitate the

remaining soluble metal to meet discharge limits.

Thiocarbamates are ligands and can precipitate metals when treated water contains

chelated metals. This is the case for some textile industry and electroplating process.

The metal-thiocarbamate precipitates are stable to leaching under acidic conditions.
The metal-thiocarbamate precipitate results in an anhydrous form and this allows for

more efficient disposal (less weight and volume leads to lesser transport costs).

An example of its use: soluble zinc, copper and iron traces can be removed from
nickel-plating effluent by mixing with nickel dimethyldithiocarbamate,
dibutyldithiocarbamate or diethyldithiocarbamate. These compounds form very low
soluble complexes with soluble metallic traces in the acidic nickel-plating solution.
The insoluble metal-complexes then are removed by filtration {24]. However,

thiocarbamates are toxic to water organisms and fish. Hence, its practical use 1s

limited.

2.2  Metal ions reduction
There are several reducing agents which have been used in heavy metal remediation

according to pH range and degree of reduction (i.e. to the elemental state).

10
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2.2.1 Sodium Borohydride (NaBH,)
Sodium borohydnde 1s an extremely strong reducing agent and can reduce both

chelated and non chelated metals. In wastewater treatment, the main application 1s

the recovery of valuable metals [25].

This process has the advantage of producing the least amount of sludge of any
process but it has a number of disadvantages that almost always preclude its use in an
efficient and cost effective system. A major disadvantage is that unless the liquid is
removed from the sludge immediately, metals tend to go back into solution with the
water. Another problem is that pH control is critical. Explosive hydrogen gas 1s
evolved at acidic pH values. High cost of this reagent has also been a problem, and

as a result, 1t has been very difficult to justify its use [22].

2.2.2 Ferrous sulphate

This reducing agent is widely used for wastewater containing Cr”* ion. The main
advantages are: safe to use, inexpensive and additional co-precipitation of toxic
metal 1ons [22]. Another significant advantage is that reduction can be achieved

under acidic conditions [25].

2.2.3 Hydrazine (N;H,)

Hydrazine can be used for the removal of heavy metals from wastewater due to its
powerful reducing properties [25]. Hydrazine can reduce nickel, cobalt, 1ron and
chromium to the elemental state [22]. The drawbacks are: (1) the residue of

hydrazine is polluting (carcinogenic) and (2) explosion under certain conditions 1s
probable [22,25].

2.3 Ion Exchange

In the ion exchange process, toxic cations or anions in the treated water are

exchanged with equivalent quantities (charges) of other, non harmful, cations or

11
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anions on a solid insoluble sorbent and charge neutrality is maintained in the system
(the liquid and the solid). The process 1s reversible which allows extended use of the
sorbent material before replacement and discharge [2,21]. The well known
application 1s water softening in which calcium and magnesium ions are removed
and replaced by sodium ions. This process is ideal when the total dissolved solids

(TDS) value of the influent wastewater is less than 700 ppm [2].

Many inorganic and organic materials have ion-exchange properties. Synthetic

organic 1on-exchange resins, natural and synthetic zeolites, silica gels, soils, clays,

ash and metal oxides are some examples.

Synthetic organic resins are of great importance for removal purposes due to
possibility for production according to certain application (introducing specific active
groups) and controllable chemical and physical characteristics. In 1944, d’Alelio
invented polystyrene sulphonic acid cation exchange resin by the copolymerization
of styrene and divinylbenzene, suspended as liquid droplets in water, to form
spherical beads. The produced beads were sulphonated giving a cation exchange of
great physical and chemical stability which possessed reasonably high exchange

capacity [2].

Before sulphonation, the produced beads were ion-exchange inert and hydrophobic.
After sulphonation, the material is hydrophilic and water permeable including some
of 50% by weight of water (even if apparently dry). The fixed sulphonic groups are
immovable; each group carries a negative charge, while the associated hydrogen 10n
is completely mobile moving freely throughout the embedded water. Another
important step was achieved during the years 1945-1950, when weakly acidic resins

were prepared containing phenolic and carboxylic groups [2].

Generally, synthetic organic ion exchange resins are polymeric structures containing
active groups fixed within the polymer matrix. Many different synthetic organic 1on
exchange resins are now available such as phenolic, acrylic and styrenic types in the

form of beads, membranes, papers, fibres, foams and liquid extractants. For beads, a

12
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particle size range of 0.3 — 1.2 mm 1n diameter provides a compromise between

acceptable kinetics and pressure drop [21].

Practically, synthetic 1on exchange resin are used repeatedly in a cyclic manner
(adsorption/desorption or removal/regeneration) over many years. The deterioration
of physical and chemical properties can be anticipated. Studying these properties
(particle size and shape, density, selectivity, kinetics, water content, swelling and
shrinking and hydraulic effects) is helpful to learn more about the adsorbent nature

and to understand the main cause of deterioration [21].

Inorganic ion exchange materials (e.g. zeolites, etc.) are being used in a number of
areas where synthetic organic ion exchange resins are difficult to apply (chemical or

radiation degradation, decomposition, heat, etc.) [21].

However, the 1on exchange mechanism is not effective for heavy metal removal in
some situations. For example, Fernandez et al [26] examined: four cationic exchange
resins (Amberlite 200, 252-C, IR-120 and Duolite C-464), one chelating resin
(Amberlite IRC 718) and one adsorbent resin for the removal of Cd and Zn present
in the leachate from an inorganic industrial waste landfill. The results indicated that
cationic resins achieve removal percentages of only 5-7% for Cd and 7-20% for Zn.
The adsorbent resin achieves removal percentage of only <5% for Cd and 13% for
Zn. Significantly, chelating resin shows removal of 50% for Cd and 93% for Zn. This
distinguishable behaviour of chelating resin (Amberlite IRC 718) originates from the
higher selectivity of chelating iminodiacetate towards heavy metals such as Cd and

Zn versus sodium, calcium and magnesium ions which is not the case for other types

of resins studied.

Kocaoba and Akcin [27] used Amberlite IR 120 (strong cation exchange resin) for
the removal of toxic chromium and cadmium present in wastewaters. Sodium and

hydrogen forms of the resin were used in this study. The results showed that the resin
performed well for the removal and recovery of chromium and cadmium. However,

the removal is pH dependent (optimum value is 5.5) which is not expected as the

13
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resin 1s of the strong acid type. The study did not cover the presence of alkali,
alkaline earth i1ons and/or complexing agents in wastewater which are common
characteristics of many effluents of certain activities mentioned in study:

electroplating, textile printing, chemical industries, leather tanning.

For inorganic adsorbent, Erdem et al [28] used clinoptilolite for the removal of Co*",
Cu®*, Zn** and Mn*" in order to consider its application to purify metal finishing
wastewaters. These results showed that this natural zeolite has great potential to
remove cationic heavy metal species from industrial wastewater. However,
adsorption capacity (according to Langmuir equation) is limited: 0.24, 0.14, 0.13 and
0.08 mmole/g for Co®*, Cu**, Zn** and Mn?" respectively. Zeolites are in general,
weakly acidic and the sodium form favours hydrogen which can cause an increase of
pH value when treated with dilute electrolyte solution. This makes metal hydroxide

precipitation feasible.

Generally, to apply the ion exchange mechanism for heavy metal removal, it is
important to consider the probable competitiveness of alkali and alkaline earth ions
for adsorption. Optimum pH value has to be determined. The increase of heavy metal
solubility 1in water solution, due to the presence of c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>