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Abstract

A continuum model incorporating flow is developed as an extension to the work

of Stewart and Momoniat who considered a mechanical soliton travelling through

a sample of smectic C∗ liquid crystal. Here we study a wave front propagating

through an infinite sample of ferroelectric liquid crystal in a planar geometry,

under the influence of an inclined electric field of constant magnitude. We use

the dynamic theory for smectic C liquid crystals of Leslie, Stewart and Naka-

gawa, appropriately extended to include the spontaneous polarisation and elastic

energy terms encountered in smectic C∗ materials. We incorporate flow terms

into our model giving a total of five dynamic equations. The resulting dynamic

equations have infinitesimal perturbations imposed upon them. The perturba-

tion equations are linearised and, by exploiting an exact solution in the case

where the field is co-planar with the sample, a set of linear perturbation equa-

tions are developed. Simplifying assumptions lead to a pair of equations which,

when suitable time decaying, spatially dependent perturbations are applied yield

an eigenvalue problem. By employing a suitable numerical scheme we examine

the resulting stability problem and use the results to identify critical electric field

strengths below which we conjecture, travelling waves are not initiated. We also

present a novel method for determining wave front profiles for a mechanical

soliton in a planar sample of ferroelectric smectic C liquid crystal. We end by

looking at numerical method for determining wave speeds in ferroelectric smectic

C liquid crystals which employs discretised nonlinear Volterra integral equations
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of the second kind. The method is completely general in scope, and may in fact

be used to tackle wave speed problems for any appropriate reaction-diffusion

equation which admits travelling wave solutions.
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Chapter 1

Introducing Liquid Crystals

1.1 Introduction

Since their discovery in 1888 by the Austrian botanist Reinitzer liquid crystals

have assumed huge importance in our modern technological world. From the

display screen on a desk in an office to the shampoo people use to wash their

hair liquid crystals have been crucial in the development of many branches of

science and engineering. An extraordinary list of objects which incorporate

liquid crystals in some form has been compiled by Peter Palffy-Muhoray [1] and

makes for entertaining reading

Liquid crystals are all around us: in high-strength plastics, snail

slime, laundry detergent, textile fibres such as silk and Kevlar, crude

oil, insect wings, mineral slurries, lipstick, Bose-Einstein conden-

sates, and the mantles of neutron stars. We eat them as aligned

molecules in gluten and drink them as phospholipids in milk, where

they stabilize fat globules. In our bodies they transport fats, make

up cell membranes and affect the functioning of hair cells in the inner

ear, and even DNA.

Needless to say the list is not exhaustive! Probably the most important use of

liquid crystals has been in the application to LCD display technology. Liquid
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crystal displays are found in mobile phones, calculators, watches, hand-held

games devices, touch screens and televisions. Electronics manufacturers use

them as steerable waveguides in antennas, switches in opto-electronic devices

and doped with dye they can be pumped with an external light source and used

as lasers. The range of applications of liquid crystals is quite simply vast.

Our interest so far as this thesis is concerned centres around a class of liquid

crystals known as ferroelectrics. Ferroelectric liquid crystalline materials have

been actively researched for many years. Of particular importance is the appli-

cation of ferroelectric liquid crystals to fast switching display devices. Current

display technologies employ approaches such as in-plane switching [2] or twisted

nematic cells [3, p.101-109] to guide light. Both in-plane switched and twisted

nematic devices are well understood and are relatively straightforward and cheap

to manufacture. Each uses nematic liquid crystals as the fundamental building

blocks on which they are constructed.

The big drawback with devices based on nematic technology is the slow

switching speed of the order of 10 ms [4, p.317]. This is adequate for the

most applications but can be a problem in LCD televisions for example when

reproducing fast moving objects such as balls in say a game of football. The

individual pixels which make up the display must be switched quickly, and with a

switching time of 10 ms, most display devices struggle to reproduce fast moving

picture facets without the addition of very expensive buffering circuitry.

Ferroelectric devices offer the promise of displays which can in theory switch

many times faster than their nematic counterparts. Experimental work on

electro-optic switching in ferroelectric smectic C liquid crystals, in particular

the work by Clark and Lagerwall [5], indicates microsecond to submicrosecond

switching times are achievable. In addition theoretical calculations have also

predicted microsecond switching times, see for instance calculations performed
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by Stewart [4, p.317]. Achieving switching speeds of even microsecond order

would signal a huge leap forwards in display technology and would open up new

areas of application in the opto-electronics industry.

A great deal of effort is being devoted to the study of smectic C∗ liquid crys-

tals. However the continuum modelling of smectic C∗ liquid crystals is perhaps

not as well developed as other areas of theoretical liquid crystals research such as

nematics [6]. Our aim in this thesis is to investigate some less well explored ar-

eas relating to theoretical aspects of ferroelectric smectic C modelling. Broadly

speaking the work is split into three main parts.

In this chapter we cover a little of the history of liquid crystals, attempt to

offer a definition of what a liquid crystal is and how they are categorised and

then go on to explore some of the principle ideas behind the continuum models

we shall be considering in later chapters.

Chapter 2 introduces the hydrodynamic flow model that forms a large part

of this study. In it we shall introduce the travelling wave equation for a wave

front propagating in a thin film of smectic C∗ liquid crystal about which much

of the work is centred, along with conditions which are necessary in order to

extract an exact solution for the propagating wave front. Then we go on to

consider the continuum model used to generate the wave equation but augment

it by introducing infinitesimal flow in the form of perturbations. Ultimately this

will yield a total of five nonlinear perturbation equations which form the focus

of study in the two chapters which follow.

In Chapter 3 we linearise the perturbation equations and use the exact solu-

tion for the front propagation equation to derive linear perturbation equations

expressed in terms of hyperbolic functions.

In the following chapter, Chapter 4, we introduce time decaying spatial per-

turbations and demonstrate how the linearised perturbation equations may be
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reduced in form to give a constant coefficient non-self-adjoint eigenvalue problem

and a non-constant coefficient non-self-adjoint eigenvalue problem. We go on to

solve the eigenvalue problems using an extended Galerkin method, and then go

on to investigate system stability using numerical methods to determine critical

electric field strengths. We then present some power law results derived using

the data collected.

In Chapter 5 we present a novel method for understanding the shape of

propagating wave front by adapting a technique used by Stewart and Wigham

[7] to investigate wave front propagation in circular domain walls in smectic C

liquid crystals. Instead of considering circular wave fronts under the influence

of a concentric magnetic field we consider planar waves under the influence of

an linear electric field which may or may not lie in the plane of the sample.

In Chapter 6 we present work by Seddon and Stewart that is already in

print [8]. This chapter details a novel method for determining wave speeds for

front propagation in smectic C∗ liquid crystals under the influence of an inclined

electric field. We present a solution method using integral equations and discuss

some results of the work. So we begin in the next section, as promised, with a

short tour of the history of liquid crystal research.

1.2 A brief history of liquid crystals

Liquid crystals were first discovered in 1888 by the Austrian botanist Fred-

erich Reinitzer as a result of work he had conducted at the Charles University

of Prague. In his paper of 3rd May 1888 entitled Beiträge zur Kenntniss des

Cholesterins [9] Reinitzer reported the existence of two melting points for the

compound C27H45 · C7H5O2 or cholesteryl benzoate. He noticed that on heating

cholesteryl benzoate from a solid at room temperature the compound appeared to

melt at 145.5◦C to form a cloudy liquid and on further heating the liquid cleared
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at 178.5◦C. Although cholesteryl benzoate had been investigated by other re-

searchers who observed similar behaviour at the same temperatures, Reinitzer

alone recognized the significance of the two melting points. He had infact de-

scribed the phase characteristics of the first naturally occurring cholesteric liquid

crystalline material to be formally identified.

Reinitzer had in essence discovered a new form of matter. Prior to 1888 all

forms of matter were thought to exist in one of three phases: solid, liquid and

gas. At standard atmospheric pressure (1 atmosphere) a substance in solid form

on heating would reach a prescribed melting point where it would undergo a

phase change to a liquid. Further heating would take the liquid to its boiling

point and continued heating would result in the liquid vapourising to a gaseous

phase. In some cases compounds, like for example frozen carbon dioxide, were

known to sublimate directly from the solid to the gas phase at 1 atmosphere

without undergoing a phase change to liquid form.

The phase discovered by Reinitzer, what we now call a cholesteric phase,

represented science’s first encounter with a new class of materials known today

as liquid crystals. Reinitzer sent samples of the material to his collaborator,

Physicist Otto Lehmann. Lehmann, then a Professor in Aachen set about the

task of characterising the material Reinitzer had sent him. In time Lehmann

came to form the opinion that the substance was chemically uniform in nature

[10]. Then in 1889 Gatterman and Ritschke observed the liquid crystalline phase

of p-azoxyanisole also known as PAA, and further work by Lehmann led to PAA

being described in 1890. In 1922 Friedel [11] coined the terminology commonly

used today to describe liquid crystal phases these being nematic, smectic and

cholesteric.

Serious attempts at describing liquid crystals theoretically began in the

1900’s. In 1907, Vörlander discovered that a crucial requirement in order for



6

a material to posses two melting points was the existence of rod like molecules

[4]. This in turn opened up the field of theoretical liquid crystal research. In par-

ticular it allowed molecules in liquid crystals to be modeled as rod like structures

and would proves to be of critical importance in attempting to model liquid crys-

tal phenomena. In the early years however and at about the time of Vörlander

discovery theoretical descriptions centred on the work by Bose [12] using the

recently introduced idea of statistical physics of Boltzmann. Bose developed a

theoretical framework known as swarm theory and this idea came to dominate

mathematical research into liquid crystal phenomena for many decades.

The first essentially correct isothermal (fixed temperature) mathematical

description of liquid crystalline phases was due to Oseen who reported his work

in a series of articles dating back to 1925 [13, 14], followed by Zocher in 1927 [15].

Ossen’s work on the static theory of the nematic phase was further developed by

Frank in 1958 [16] and incorporates the notion of a director n and its possible

distortions, giving us what is now known as the Frank-Ossen elastic energy.

In 1961 Eriksen [17] generalised the static theory of nematics to propose

balance laws which were needed to introduce dynamical behaviour. Leslie in

two papers [18, 19] published between 1966 and 1968 formulated constitutive

equations which allowed him to complete a dynamic theory for nematic liquid

crystals. In so doing he placed the capstone on what has come to be known as

the Eriksen-Leslie theory of nematic liquid crystals. General acceptance of this

theory came when Fisher and Frederikson [20] compared experimental observa-

tions for an unusual scaling law for Poiseuille flow which confirmed theoretical

predictions made by Atkin [21] in 1970. From this point the Eriksen-Leslie

theory became established as the generally accepted dynamic theory for liquid

crystals.

Over the next 20 years theoretical modeling of liquid crystal phases con-
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tinued culminating in the dynamical continuum theory of non-chiral smectic C

introduced by Leslie, Stewart and Nakagawa [22] in 1991. This theory together

with extensions required to model ferroelectric materials forms the backbone

around which the bulk of this thesis is based.

1.3 Liquid Crystals

In the work The Physics of Liquid Crystals de Gennes and Prost [23] remark that

liquid crystals are phases of matter whose mechanical and symmetry properties

lie somewhere between those of liquids and solids. Furthermore they provide

a somewhat more specific definition when they state that a liquid crystal is a

system ”in which a liquid like order exists at least in one direction of space and

in which some degree of anisotropy is present”.

To push the point further de Gennes and Prost employ notions from con-

densed matter theory to realise a description of a liquid crystal phase. Con-

densed matter theory typically employs the notion of three-dimensional lattices

on which the centres of gravity of the elements of a crystal (molecules or groups

of molecules) are regularly stacked. The centres of gravity of the elements of a

liquid are not ordered in this sense.

Furthermore de Gennes and Prost define liquid crystal in the following way.

If a primitive pattern or basis is located at point x0 the probability of finding an

equivalent pattern at the point x = x0 + n1a1 + n2a2 + n3a3 (ni = integer and

i ∈ 1, 2, 3) and basis vectors ai stays finite when |x − x0| → ∞. In otherwords

lim
|x−x0|→∞

〈ρ(x)ρ(x′)〉 = F (x − x′), (1.1)

where 〈ρ(x)ρ(x′)〉 is the density-density correlation function and F (x − x′) is a

periodic function of basis vectors ai and ρ(x) and ρ(x′) are the particle densities

at x and x′ respectively.
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Isotropic liquids are defined using density-density correlation functions in a

similar way. If one can find a molecule or group of molecules at some point x0

there is no way to express the probability of finding a similar one at a point x

far from x0, except through the average particle density ρ̄. We may express this

in the following way

lim
|x−x0|→∞

〈ρ(x)ρ(x′)〉 ≃ ρ̄2, (1.2)

So, we have from de Gennes and Prost a definition of a liquid crystal (also

known as a mesomorphic phase) and two contrasting definitions of crystals and

liquids. They follow this by observing that the density-density correlation func-

tion does not depend solely on the modulus |x−x′|, but also on the orientation

of x−x′ with respect to macroscopically defined axes and this encapsulates the

notion that liquid crystals possess some degree of anisotropy. These remarks

allow de Gennes and Prost to make the case for mesophases being obtained in

two different ways.

Firstly, a mesophase may be obtained by imposing no positional order, or

imposing positional order in one or two rather than three dimensions leading to

the following conclusions.

• The first case represents a liquid but if the correlation function is anisotropic

it is not an isotropic liquid it is a nematic.

• The second case describes one-dimensional order in three-dimensions. Here

the system is viewed as a set of two-dimensional liquid layers stacked one

on top of the other with well defined spacing giving us a mesophase known

as smectic.

• The third case corresponds to two-dimensionally ordered systems in three

dimensions. They may be described as a two-dimensional array of tubes

and are called hexatic smectic phases.
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The second way of obtaining a mesophase involves introducing degrees of free-

dom that are distinct from the localisation of the centres of gravity.

Nematic, smectic and columnar mesophases are in fact the only known forms

of liquid crystal. The type of liquid crystal that may be observed depends on the

structure of the of the constituent molecules. Nematics and smectics are often

constructed from elongated objects while some nematics and most columnar

phases are often made up of disk-like molecules.

To generate a liquid crystal we must use anisotropic objects which are elon-

gated or disk-like. There are a number of ways in which such liquid crystals may

be constructed. The first is to use small elongated organic molecules such as p-

azoxyanisole (PAA) which has a rigid rod length of ∼ 20 Å and a width of ∼ 5 Å.

Another example is N -(p-methoxybenzylidene)-p-butylaniline (MBBA). Both

PAA and MBBA are nematogens meaning that they give rise to the nematic

type of mesophase. However PAA is a nematic state only at high temperatures

between 116◦ C and 135◦ C at atmospheric pressure whereas MBBA is nematic

from ∼ 20◦ C to 47◦ C but is chemically unstable. The simplest way to induce

phase transitions in these types of materials (MBBA, PAA, cholesterol etc.) is

to vary the temperature. For this reason these nematogens are commonly called

thermotropic.

Small discoid organic molecules may also be employed, the simplest examples

of which are materials composed of hexasubstituted phenylesters, which can give

rise to columnar phases and thermotropic disk-like nematogens.

Another way of generating liquid crystals is to use long helical rods. For in-

stance synthetic polypeptides in a suitable solvent have a rod-like structure with

rod lengths of the order of 300 Å and widths of 20 Å. In concentrated solutions

these systems give rise to mesophases. Similar phases are found with deoxyri-

bonucleic acids (DNA) and certain viruses for example the tobacco mosaic virus
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(TMV) with length 3000 Å and width ∼ 200 Å. Mesophases such as these are

often called lyotropic because the mesophase manifests itself in response to a

change in concentration of a solvent [4].

Rigid polymers in a suitable solvent can give rise to mesophases because they

behave as rigid rods. These materials offer a greater degree of flexibility in terms

of the type of mesogenic groups that can be synthesised. Typically the two main

classes are of interest are main-chain polymers and side-group polymers. In both

cases thermotropic mesomorphism is obtained, the resulting phases are stable

and exhibit large mesomorphic ranges [23].

Associated structures represent another mechanism by which liquid crystal

mesophases may be generated. Examples of these structures may be found in

soap and water systems. Here we have what is known as an aliphatic anion

CH3 − (CH2)n−2 −CO−
2 (with n in the range 12− 20) plus a positive ion (Na+,

K+, NH+
4 or others). The polar head of the acid (the −CO−

2 group) tends to

be in close contact with water molecules while the apolar aliphatic chain avoids

water. These two opposite requirements define an amphiphile. A single molecule

in solution cannot satisfy both, but a cluster of molecules can. Other examples

of amphiphilic chains organised in similar geometries are block copolymers [23].

Building blocks such as these may give rise to nematic, smectic and columnar

phases and so are much more flexible than the simpler molecular structures dis-

cussed earlier. Amphiphilic compounds may be either lyotropic or thermotropic.

Our principal interest throughout this thesis is the smectic C∗ mesophase.

We shall discuss it in more detail later in this chapter but first we stop to survey

some of the other mesophases discussed here starting with the nematic phase.
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1.4 Nematic liquid crystal

Our description of the nematic phase is based on that given by Stewart in [4,

p.3-4]. The word nematic comes from the Greek word νηµα meaning thread. In

the nematic mesophase the long axis of the constituent molecules tend to align

parallel to each other along some common preferred direction. The diagram

presented in Figure 1.1 shows a basic representation of the molecular ordering

expected in a nematic mesophase with molecules represented by elongated rods.

The preferred direction along which the director is defined is commonly known

as the anisotropic axis. There is no long range correlation between the centres of

mass of the molecules. They can translate freely whilst being aligned on average

parallel to one another. Rotational symmetry about the anisotropic axis means

that the nematic phase is generally uniaxial. The axis of uniaxial symmetry is

non-polar. The unit vector n, known as the director, describes the local direction

Figure 1.1: A basic representation of a nematogen mesophase. The molecules
in this case represented by coloured rods have no overall positional order but
they do possess orientational order. The average molecular orientation which
we denote with a vector n called the director points in a direction parallel to
the average orientation of the long axes of the molecules.

of the average molecular alignment of the liquid crystal. The notion of a director
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is ubiquitous in liquid crystal continuum theory and occurs in all areas of study

in nematics, smectics and columnar mesophase research. Since nematogens are

non-polar the quantities n and −n are indistinguishable.

We note here that the first nematic liquid crystal phase was PAA discussed

earlier. The material PAA was first synthesised by the chemists Gattermann

and Ritschke [24] which they reported in 1890. It is important in the field of

liquid crystals for another reason, it was the first liquid crystal not based on a

naturally occurring substance. The first room temperature liquid crystal was

MBBA synthesised by Kelker and Scheurle [25].

1.5 Smectic liquid crystals

From the Greek word σµηγµα meaning soap comes the word smectic. Smectic

liquid crystals possess mechanical properties akin to those of soaps and occur

in many substances. As we discussed earlier, smectics are layered structures.

A smectic substance posses the general characteristic of positional order of the

centres of mass of its constituent molecules. On average these molecular centres

of mass arrange in layers with the projection of the centres of mass onto the

smectic layers showing isotropic orientation as discussed in Dierking [26, p.9].

Characteristically, smectic mesophases being possessed of more structural or-

der than nematics generally occur at lower temperatures than nematic mesophases.

We shall give some basic qualitative information about smectic A, C and C∗

phases in the sections below. Further information regarding other smectic phases

may be found in de Gennes and Prost [23] and Sackmann [27] provides a his-

torical perspective on some of the key developments in the understanding of

smectics.
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1.6 Smectic A liquid crystals

When a smectic A phase occurs the molecules arrange in layers and the director

n is on average aligned perpendicular to the layers and is parallel to the layer

normal as shown in Figure 1.2. In thermotropic liquid crystals the smectic layer

Figure 1.2: Basic schematic of the planar layer structure of a smectic A liquid
crystalline material. The molecules indicated by coloured rods have an average
local alignment indicated by the director n. The straight horizontal lines indicate
the smectic planes.

thickness may be anything from the length of the molecules in extent up to

twice their length so of the order 20 ∼ 80 Å. In lamella phases the interlayer

separation may be several thousand angstrom (see Section 1.3). Once again

the director n represents the average molecular orientation of the molecules and

satisfies the symmetry condition that n and −n are physically indistinguishable.

A full dynamic theory for smectic A liquid crystals recently became available

due to Stewart [28].
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1.7 Smectic C liquid crystals

Smectic C liquid crystals occur at generally lower temperatures than smectic A

or nematic phases. The planar layer structure of the smectic C phase is shown

in Figure 1.3. Typical of such phases is the presence of a temperature dependent

cone angle denoted by θ. The cone angle represents the angle the director makes

with the smectic layer normal here denoted by a. As the temperature within

the smectic C phase increases the cone angle gets smaller until finally at the

smectic C-smectic A transition temperature the cone angle vanishes as we enter

the smectic A phase. Once again the director n indicates the average molecular

Figure 1.3: Basic schematic of the planar layer structure of a smectic C liquid
crystalline material. The molecules indicated by coloured rods have an average
local alignment indicated by the director n. The straight horizontal lines indicate
the smectic planes. A layer normal a is oriented perpendicular to the smectic
planes. The material possess a characteristic cone angle θ which is temperature
dependent.

alignment and n and −n are once again indistinguishable. Smectic C liquid

crystal are non-chiral in nature and in the absence of external influences the

director is uniformly aligned.
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It is common to model the director n in smectic C liquid crystals by consid-

ering two other unit vectors a which represents the normal to the smectic planes

and c which represents the projection of the unit vector n onto the smectic

planes. Then we have

n = a cos θ + c sin θ. (1.3)

It proves convenient when we go on to discuss smectic C∗ liquid crystals to

introduce a unit vector b which is define as

b = a × c. (1.4)

Clearly b is perpendicular to both a and c and in smectic C∗ lies in the direction

of the spontaneous polarisation.

1.8 Smectic C∗ liquid crystals

Smectic C∗ liquid crystals were first discovered in 1975 by Meyer, Liébert, Strz-

elecki and Keller [29] who used symmetry arguments to conclude that chiral

tilted smectic phases posses a spontaneous polarisation [26]. When the sponta-

neous polarisation can be reoriented between two stable states by application of

an electric field we call the resulting arrangement ferroelectric. In fact this ferro-

electric property lies behind the Surface Stabilized Ferroelectric Liquid Crystal

(SSFLC) device which we shall discuss briefly later in this section.

In the bulk smectic C∗ phase, in a field free state, the spontaneous polari-

sation is supressed due to the presence of a helical superstructure. In this case

the chiral smectic C phase is better refered to as helielectric [26]. The field free

helical superstructure of the chiral smectic C∗ phase is illustrated in Figure 1.4.

These chiral smectic C materials have a planar layer structure much like their

smectic C counterparts along with a characteristic temperature dependent cone

angle θ. However unlike smectic C, smectic C∗ materials possess a chiral property
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where the director n rotates about a twist axis oriented in the direction of the

normal to the smectic planes. The figure shows the director rotating about the

Figure 1.4: The helical superstructure of the chiral bulk smectic C* phase. The
helicity of the liquid crystal manifests itself as we follow the planar layer normal
a. The distance p represents the pitch of the material. Over a distance p the
director n rotates around the smectic cone and undergoes one complete rotation
of 2π radians. By assuming a liquid depth d≪ p we can suppress the chirality of
the material sufficiently for it to play no significant role in the systems we shall
be investigating. The spontaneous polarisation P is positive in this instance,
the polarisation vector rotates in a clockwise sense as we move parallel to the
layer normal a.

smectic cone as we travel along the twist axis in the direction of the layer normal

a. Smectic C∗ liquid crystals have what is known as a spontaneous polarisation

which is a property of the material and is commonly denoted by the vector P

where the polarisation may be expressed as either P = P0b or P = −P0b with

P0 = |P| depending on whether the spontaneous polarisation P is positive or

negative respectively, for details we refer the reader to [4, p.307] and [23, 30].
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The director in a ferroelectric exhibits a helical structure with a characteristic

pitch length p as shown in the figure. A typical pitch length might be of the

order of 1 ∼ 10 µm and might contain 103 smectic layers.

In the figure the director rotates in a clockwise sense. The symbol ⊗ indicates

that the polarisation is directed into the page whilst the symbol ⊙ indicates

that the polarisation is directed out of the page. In the figure the polarisation is

assumed to be positive. The sense of the helix is right handed but as Lagerwall

[30] points out there is currently no known correspondence between the sense of

P and the sense of the helix.

Typical values for the magnitude of the polarisation P0 are of the order of

10 ∼ 103 µC m−2. In fact some smectic C∗ materials are known to exhibit

polarisation strengths of 2200 µC m−2 [30]. Worth noting is the fact that

when an electric field is applied across a sample of smectic C∗ liquid crystal

the polarisation P has a preference to align itself parallel to, and in the same

direction as, the applied electric field.

Throughout this work we shall be exploring various aspects of chiral smec-

tic C∗ materials. Probably the most important application is in the field of

fast switching devices first proposed by Clark and Lagerwall in 1980 [5]. They

consider a thin sample of bookshelf aligned smectic C∗ confined between two

subtstrates separated by a gap smaller than the pitch of the helical superstruc-

ture in the bulk. The effect of this is to suppresses the helical structure of the

material. Then with the application of appropriate boundary conditions at the

substrate surfaces, the molecules in the bulk may be switched by exploiting the

linear coupling of the polarisation with a d.c. electric field. If we force the

director to lie in two stable positions on the surfaces of the substrates, with

the polarisation vector pointing down into the bulk of the sample at the up-

per substrate surface, whilst at the lower substrate the polarisation points up
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into the bulk [26], the resultant device may be switched in a bistable fashion

by applying a suitable controlling voltage. This in effect is the SSFLC device

mentioned above. SSFLC devices have the potential to switch very much faster

than standard devices based on nematic technology [23, p.401].

However, before SSFLC devices see widespread use a number of technical

challenges need to be overcome. In particular the switching processes involved

in these devices is complicated. Physical phenomena such as pumping where a

sample of bookshelf aligned ferroelectric material is placed between two glass

plates and a field reversal takes place results in mechanical vibrations of the top

plate. This has been recently investigated again by Stewart in [31].

Not all theoretical studies in the field of ferroelectrics are aimed at the de-

velopment of fast devices. Among the more exotic applications of ferroelectrics

is the work by Das and Schwarz [32] where they consider a smectic C∗ model in

electrical solitary wave propagation along a biomolecular structure such as the

cell membrane of a nerve axon.

Our focus will be on smectic C∗ liquid crystals in this thesis. We begin by

exploring the connection between smectic C and smectic C∗ liquid crystals with

a brief study of elastic energies in smectic C mesophases after we review some

important material regarding the treatment of electric and magnetic fields which

follows below.

1.9 Electric fields and electric energy

If we apply an electric field E across a sample of liquid crystal, a dipole moment

per unit volume is induced. We call this dipole moment the polarisation and we

denote it by Pi. We note that the induced polarisation Pi is not the same as

the spontaneous polarisation P we encounter in ferroelectric materials.

Anisotropy generally forces the electric field E and the induced polarisation
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Pi to lie in different directions. We relate Pi to E via the electric susceptibility

tensor χe via the equation

Pi = ǫ0χeE, χe =





χe⊥ 0 0
0 χe⊥ 0
0 0 χe‖



 . (1.5)

Here ǫ0 is the permittivity of free space. Note that χe⊥ and χe‖ denote the

electric susceptibilities parallel and perpendicular to the director respectively.

The electric displacement D induced by E and Pi is defined in SI units by

D = ǫ0E + Pi, (1.6)

and so by considering equation (1.5)

D = ǫ0ǫE, ǫ = I + χe, (1.7)

where I is the identity tensor and ǫ is called the dielectric tensor which we may

write as

ǫ =





ǫ⊥ 0 0
0 ǫ⊥ 0
0 0 ǫ‖



 , ǫ‖ = 1 + χe‖ , ǫ⊥ = 1 + χe⊥. (1.8)

The coefficients ǫ‖ and ǫ⊥ denote the (relative) dielectric permittivities also

called dielectric constants of the liquid crystal when the field and director are

parallel and perpendicular respectively.

For a director n we have that in general the electric displacement is given by

D = ǫ0ǫ⊥E + ǫ0ǫa(n · E)n, (1.9)

where ǫa = ǫ‖ − ǫ⊥. We call ǫa the dielectric anisotropy of the liquid crystal.

Note that the dielectric constants ǫ‖ and ǫ⊥ and ǫa are unitless since they are

measured relative to ǫ0. Note also that ǫa = χe‖ − χe⊥ sometimes written as

∆χe. Values of ǫa can be negative or positive depending on the type of liquid

crystal under investigation.
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Throughout this thesis we only consider models where the electric field is

uniform and d.c. in nature. However it must be noted that in the presence of an

a.c. field the dielectric anisotropy has a frequency dependence and this must be

taken into account when considering, for example, the electro-optic performance

of devices with a smectic C∗ component [33].

We note that when ǫa > 0 the director is attracted to be parallel to the field

and when ǫa < 0 its preferred orientation is perpendicular to the field.

The total electric energy welec arising when a fixed voltage is maintained and

applied on external conductors (see de Gennes and Prost [23, p.134]) is given by

the expression

welec = −
∫ E

0

D · dE, (1.10)

and hence we find that

welec = −1

2
D ·E = −1

2
ǫ0ǫ⊥E

2 − 1

2
ǫ0ǫa(n · E)2, (1.11)

where E = |E|. The term −1
2
ǫ0ǫ⊥E

2 is independent of the orientation of n

and is therefore usually omitted. When ǫa > 0 the last term in the above

electric energy is minimised when n and E are parallel. For ǫa < 0 the energy

is minimized when n is perpendicular to E. The most commonly adopted form

of the electrical energy is therefore

welec = −1

2
ǫ0ǫa(n · E)2. (1.12)

1.10 Magnetic fields and magnetic energy

In this section we follow the discussion in [4]. When a magnetic field H is applied

across a liquid crystal sample a magnetisation M is induced in the liquid crystal

due to weak dipole moments imposed upon the molecular alignment by the

magnetic field. We know that the magnetisation induced by H satisfies

M = χm‖
H, if H is parallel to n,
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M = χm⊥
H, if H is perpendicular to n,

where the coefficients χm‖
and χm⊥

denote the diamagnetic (negative) suscep-

tibilities when the field and the director are parallel and perpendicular respec-

tively.

Relative to the orientation of the director n we can write from simple geo-

metric considerations H = H‖ + H⊥ with

H‖ = (n.H)n,

H⊥ = H − H‖ = H − (n ·H)n.

Assuming a linear dependence on the field and taking into account the invariance

with respect to the sign of n, when H makes an arbitrary angle with n the

magnetisation defined by M = χm⊥
H⊥ + χm‖

H‖ becomes

M = χm⊥
H + (χm‖

− χm⊥
)(n · H)n. (1.13)

This is the generally accepted form for the magnetisation and discussions re-

garding it may be found in Ericksen [34].

Just as the electric displacement D is used in the construction of the electric

energy density, the magnetic induction plays a similar part in the construction

of the magnetic energy density, which in SI units is given by

B = µ0(H + M), (1.14)

where µ0 = 4π × 10−7 Hm−1 is the permeability of free space. Inserting the

magnetisation into (1.14) means that we may write

B = µ0µ⊥H + µ0∆χ(n · H)n, (1.15)

where

µ⊥ = 1 + χm⊥
, µ‖ = 1 + χm‖

, ∆χ = µ‖ − µ⊥ = χm‖
− χm⊥

. (1.16)
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We call the unitless quantity ∆χ = µ‖ − µ⊥ = χm‖
− χm⊥

the magnetic

anisotropy.

As with the electric field case, when ∆χ > 0 the director prefers to be

parallel to the magnetic field and when ∆χ < 0 its preferred orientation lies

perpendicular to the field.

In a completely analogous way to that used for obtaining the electric energy

density welec we have that the magnetic energy density wmag is given by

wmag = −
∫ H

0

B · dH. (1.17)

From this we find that

wmag = −1

2
B · H = −1

2
µ0µ⊥H

2 − 1

2
µ0∆χ(n · H)2, (1.18)

where H = |H|. The contribution −1
2
µ0µ⊥H

2 is independent of the orientation

of n and H and is therefore often omitted.

When ∆χ > 0 the last term in the magnetic energy is minimised when n

and H are parallel. Similarly, when ∆χ < 0 the last term is minimised when n

and H are perpendicular. Typically then the most generally employed form of

the magnetic density is

wmag = −1

2
µ0∆χ(n · H)2. (1.19)

An alternative form of the magnetic energy density appropriate for non-ferromagnetic

materials was given by de Jeu [35] and may be derived in terms of the magnetic

induction B and is written as

wmag = −1

2
µ−1

0 µ⊥B
2 − 1

2
µ−1

0 ∆χ(n · B)2, (1.20)

where B = |B|. As before when the term independent of the orientation of the

director is neglected we arrive at the expression

wmag = −1

2
µ−1

0 ∆χ(n · B)2. (1.21)
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Once again the results quoted here for wmag are valid provided the magnetic

susceptibilities χm‖
and χm⊥

are smaller.

1.11 Energies for Smectic C liquid crystals

We shall follow the treatment given by Stewart [4] as we discuss smectic C and

C∗ energies. We begin by pointing out that the difference in energies between

non-chiral and chiral smectic C liquid crystals arises is essentially given by the

difference between the associated elastic energies and electric and ferroelecric

energies. We shall outline briefly below the energies for smectic C below the

constituent energies for smectic C both elastic and electric. In addition we shall

introduce extensions which are needed to model fully the ferroelectric smectic

C phase.

1.11.1 Smectic C elastic energy

We begin by assuming a free energy density associated with the distortions of

the director n. This in turn may be related to distortions of the a and c vectors

in smectic C. We shall state some results for the energy and give a brief physical

interpretation of the elastic terms. We take the energy density to be of the form

w = w(a, c,∇a,∇c). (1.22)

Then the total free energy is given by

W =

∫

V

w(a, c,∇a,∇c) dV, (1.23)

where V is the sample volume. We assume that the energy density w is quadratic

in the gradients of a and c. In addition the energy density must be invariant to

arbitrary superposed rigid body rotations. Then we require that

w(a, c,∇a,∇c) = w(Qa, Qc, Q∇aQT , Q∇cQT ), (1.24)
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where Q is any proper orthogonal matrix detQ = 1 and QT is its transpose.

These requirements must be met by smectic C∗ materials also. In addition for

smectic C the requirement must also hold for any orthogonal matrix Q (detQ =

±1) we expect the energy to be invariant to simultaneous changes in sign

a → −a, c → −c. (1.25)

This invariance arises from a consideration of the symmetry invariance required

when

n → −n. (1.26)

The resulting elastic energy density w for non-chiral smectic C then takes the

form stated by Leslie, Stewart, Carlsson and Nakagawa [36]

w =
1

2
K1(∇ · a)2 +

1

2
K2(∇ · c)2 +

1

2
K3(a · ∇ × c)2

+
1

2
K4(c · ∇ × c)2 +

1

2
K5(b · ∇ × c)2

+K6(∇ · a)(b · ∇ × c) +K7(a · ∇ × c)(c · ∇ × c)

+K8(∇ · c)(b · ∇ × c) +K9(∇ · a)(∇ · c), (1.27)

where we have omitted surface terms. The Ki, i = 1, 2, . . . , 9 represent elastic

constants. Also we recall that b = a×c. In addition we suppose that the elastic

energy density is such that

w(a, c,∇a,∇c) ≥ 0. (1.28)

We may also write the elastic energy density in the equivalent Cartesian form

when surface terms which can be written as a divergence are neglected. This

form can be expressed as

w =
1

2
K1(ai,i)

2 +
1

2
(K2 −K4)(ci,i)

2 +
1

2
(K3 −K4)ci,jcjci,kck

+
1

2
K4ci,jci,j +

1

2
(K5 −K3)(ciai,jcj)

2

+K6ai,i(cjaj,kck) −K7ci,jcjci,kak

+K9ai,icj,j + (K8 −K7)ci,i(cjaj,kck). (1.29)
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We note that the constraint ∇× a = 0 is equivalent to the condition ai,j = aj,i

in Cartesian component form. Other equivalent forms of the energy in terms of

any two of the vectors a, b and c are available in [36] and may be compared

to results developed by other workers in particular the Orsay group [37], Rapini

[38] and Nakagawa [39].

Notice that three surface terms have been identified for the smectic C phase

namely [36]

S1 ≡ ∇ · [c(∇ · c) − (c · ∇)c] = (cicj,j − cjci,j),i (1.30)

S2 ≡ ∇ · [a(∇ · c) − (a · ∇)c] = (aicj,j − ajci,j),i (1.31)

S3 ≡ ∇ · [(∇ · a)a] = (ai,i)
2 − ai,jai,j

= −2(b · ∇ × c)(c · ∇ × b) − 2[1
2
(c · ∇ × c − b · ∇ × b)]2. (1.32)

The equality that arises in (1.32) shall be of use when we come to discuss the

elastic properties of smectic C∗ materials. To derive (1.32) requires detailed

manipulations of the identities contained in references [40, 36] and we shall not

pursue this further here.

Instead we once again follow the discussion given by Stewart [4] regarding

the study of small perturbative effects on the smectic C elastic energy. For small

perturbations to planar aligned layers of smectic C liquid crystal the nonlinear

energy coincides with the approximate energy introduced by the Orsay Group

[37]. This treatment allows us to gain a physical insight into the interpretation

of the elastic constants. We review these interpretations briefly here.

The Orsay Group consider small deformations to planar aligned smectic lay-

ers which initially have the Cartesian z-axis parallel to the layer normal a with

the c-director parallel to the x-axis. We define the elastic deformations to be

a = â + Ω × â, b = b̂ + Ω × b̂, c = ĉ + Ω × ĉ, (1.33)
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where

â = (0, 0, 1), b̂ = (0, 1, 0), c = (0, 0, 1) and Ω = (Ωx,Ωy,Ωz), (1.34)

with Ω being an arbitrary small rotation of the smectic layers. Note that

a = (Ωy,−Ωx, 1), b = (−Ωz , 1,Ωx), c = (1,Ωz,−Ωy). (1.35)

The constraint ∇× a = 0 forces the requirements

Ωx,z = Ωy,z = 0, Ωx,x + Ωy,y = 0. (1.36)

Inserting (1.35) and (1.36) into the energy given by (1.27) and using the con-

straints

a · a = 1, c · c = 1, a · c = 0, ∇ · a = 0, (1.37)

and ignoring quantities that enter through the surface terms S1, S2 and S3 gives

the Orsay version of the energy

w =
1

2
A12(Ωy,x)

2 +
1

2
A21(Ωx,y)

2 − A11(Ωx,x)
2 +

1

2
B1(Ωz,x)

2

+
1

2
B2(Ωz,y)

2 +
1

2
B3(Ωz,z)

2 +B13Ωz,xΩz,z

− C1Ωx,xΩz,x + C2Ωx,yΩz,y, (1.38)

provided we set

K1 = A21, K2 = B2, K3 = B1,
K4 = B3, K5 = 2A11 + A12 + A21 +B3, K6 = −(A11 + A21 + 1

2
B3),

K7 = −B13, K8 = C1 + C2 − B13, K9 = −C2.
(1.39)

The above elastic constants are those used by the Orsay Group, except that for

notational convenience we have set A11 = −1
2
AOrsay11 and C1 = −COrsay

1 . The

constants A12, A21 and A11 are related to bending of the smectic layers. The

constants B1, B2, B3 and B13 from Saupe [41] are related to the re-orientation

of the c-director within or across layers. The constants C1 and C2 are related
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to various couplings of these deformations. It has been identified by Carlsson,

Stewart and Leslie in [42] and Leslie, Stewart, Carlsson and Nakagawa [36] that

the smectic C elastic energy expressed in (1.27) may be written in terms of the

vectors b and c, then

w =
1

2
A12(b · ∇ × c)2 +

1

2
A21(c · ∇ × b)2 + A11(b · ∇ × c)(c · ∇ × b)

+
1

2
B1(∇ · b)2 +

1

2
B2(∇ · c)2 +

1

2
B3[

1

2
(b · ∇ × b + c · ∇ × c)]2

+B13(∇ · b)[
1

2
(b · ∇ × b + c · ∇ × c)]

+ C1(∇ · c)(b · ∇ × c) + C2(∇ · c)(c · ∇ × b). (1.40)

The elastic energy density given in (1.40) may be related to the energy density

given by the Orsay group formulation (1.38). Then using the b and c formu-

lation it is possible to visualise the basic deformations A12, A21, B1, B2 and

B3 and we illustrate these in Figure 1.5. The model we shall be studying in

later chapters incorporates only two elastic constants B2 and B1 using the Or-

say Group notation (K2 and K3 respectively using the Leslie, Stewart, Carlsson

and Nakagawa formulation). Full details on the physical interpretation of all

nine smectic C elastic deformations may be found in [4, 42]. For brevity we

highlight only the two most relevant to the current investigation, the B1 and B2

distortions, and briefly explain the significance of each.

The physical interpretation of B1 and B2 assumes that the smectic layers

may remain planar while the c-director undergoes a rotation. Specifically, in

Figure 1.5(d) the c-director rotates as we move parallel to the original local

alignment of the c-director. This in turn means that the y-component of the

c-director must change with respect to x and since c = (1,Ωz,−Ωy) we conclude

that the Ωz component of the rotation Ω changes with respect to x as the mate-

rial undergoes this particular type of distortion. In other words this distortion

occurs when Ωz,x 6= 0 or comparing the coefficients of (1.40) to those of (1.38)
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Figure 1.5: The five principal elastic deformations for smectic C liquid crystals
reproduced from Stewart [4, p.253]. The bold lines parallel to the smectic planes
indicate the c-director. Each one of figures (b)-(e) relates an elastic constant
to the b and c vector functions and the Orsay deformations. Figure (a) rep-
resents the undistorted state. Four coupling terms may be constructed from
combinations of these five basic deformations.

this is equivalent to the condition ∇ · b 6= 0.

In Figure 1.5(e) the c-director rotates as we move in a direction perpendicular

to the original local alignment of the c-director. Here the y component of the

c-director changes with respect to y and since c = (1,Ωz,−Ωy) we conclude

that the Ωz component of the rotation Ω changes with respect to y as the

material undergoes this particular type of distortion. That means that this type

of distortion corresponds to Ωz,y 6= 0, and once again comparing coefficients in

(1.40) and (1.38) we find that this deformation corresponds to ∇ · c 6= 0.

1.11.2 Smectic C magnetic and electric energy

It is common to assume that the magnetic and electric energy densities for smec-

tic C liquid crystals are generally of the same form as the expressions developed

in Sections 1.9 and 1.10. Here the discussion on the influence of electric and
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magnetic fields remains valid except that smectic C materials may have differ-

ent magnitudes of dielectric or magnetic anisotropy.

Recalling from Section 1.10 that the expression for the magnetic energy den-

sity is given by wmag = −1
2
µ0∆χ(n ·H)2, we simply replace the nematic director

n with the equivalent form used in smectic theory namely n = a cos θ + c sin θ.

Inserting this into the expression for the magnetic energy we find the expression

for the magnetic energy density in SI units is given by

wmag = −1

2
µ0∆χ(a · H cos θ + c · H sin θ)2, (1.41)

where H is the magnetic field µ0 is the permeability of free space and ∆χ once

again represents the unitless magnetic anisotropy.

It is also possible to specify a magnetic energy in terms of the magnetic

induction where we define wmag as

wmag = −1

2
µ−1

0 ∆χ(a · B cos θ + c · B sin θ)2. (1.42)

where B is the magnetic induction. Generally, throughout this thesis we shall

be concerned with the interaction of liquid crystal samples under the influence

of electric fields, so the two forms of the magnetic energy density given here are

stated purely for reference.

For the smectic C electric energy density, if the contribution independent

of the orientation of a and c is neglected, then the electric energy density may

be constructed using the expression welec = −1
2
ǫ0ǫa(n · E)2 and the smectic C

director expression to give

welec = −1

2
ǫ0ǫa(a · E cos θ + c · E sin θ)2, (1.43)

where E is the electric field ǫ0 the permittivity of free space and ǫa is the unit-

less dielectric anisotropy which may be positive or negative. Generally (1.43)

is regarded as a suitable approximation for the electric energy density of the
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smectic C phase when its dielectric biaxiality is considered small as discussed

by Lagerwall [30, p.212-213].

1.12 Tilt angle dependence of the elastic con-

stants

As the smectic cone angle θ tends toward zero the elastic energy should converge

to that for the smectic A phase, given by [23, p.258] as

wAelast =
1

2
K1(∇ · a)2, (1.44)

where K1 ≥ 0 is the splay elastic constant from nematic theory. Carlsson et al

[42] employed the symmetry of the smectic C phase and utilised work conducted

by Dahl and Lagerwall [43] in order to construct the tilt angle dependence of

the smectic C elastic constants for small θ. Their results showed that

A12 = K1 + Ā12θ
2, A21 = K1 + Ā21θ

2, A11 = −K1 + Ā11θ
2,

B1 = B̄1θ
2, B2 = B̄θ2, B3 = B̄3θ

2,
B13 = B̄13θ

3, C1 = C̄1θ, C2 = C̄2θ,
(1.45)

where the elastic constants K1, Āi, B̄i and C̄i are assumed to be only weakly

dependent on temperature. We shall make use of the tilt angle dependent form

for the elastic constants in later chapters.

1.13 Energies for smectic C∗ liquid crystals

Smectic C∗ liquid crystals vary from their non-ferroelectric counterparts primar-

ily in terms of the formulation of the elastic and electric energy density terms.

For a full description of the elastic and electric energies for smectic C∗ materials

a number of extra terms must be added to the elastic and electric energy densi-

ties of smectic C in order to model smectic C∗ accurately. We shall see that the

new electric energy density for ferroelectrics incorporates a spontaneous polari-

sation term which we must incorporate in order to adequately reflect the linear
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coupling of the field with the polarisation. On the other hand the additional

terms required in the elastic energy are less important certainly so far as the

models considered in this thesis are concerned. We shall discuss both the elastic

and energy contributions in the sections below and we shall give reasons why

the elastic ferroelectric terms may be neglected.

1.13.1 Smectic C∗ elastic energy

Once again following Stewart [4] we shall explore the additional energy contri-

butions required to model ferroelectric materials and consider whether or not to

incorporate these additional terms in the models we shall be constructing. In

the smectic C∗ phase we extend the elastic energy density given by any of the

energy density expressions (1.40), (1.29) or (1.27) of the smectic C phase with

two additional energy terms

w∗
1 = A11δ(c · ∇ × c − b · ∇ × b)

= 2A11δbicj,iaj

= 2A11δǫipkapckcj,iaj , (1.46)

w∗
2 =

1

2
B3q(c · ∇ × c + b · ∇ × b)

= −B3qbici,jaj

= −B3qǫipkapckci,jaj. (1.47)

Here the wave vector q satisfies

q = 2π/p, (1.48)

where p represents the helical pitch. In de Gennes and Prost [23, p.110] equiv-

alent energy terms are given as D2 and −D3 respectively. The authors also

discuss additional terms. The first of these D1(c · ∇c · b) = −D1(∇ · b) (see

also Carlsson et al [40] and Alexander [44]) is a divergence term which may



32

be converted to a surface term via the divergence theorem. Since we are only

considering the bulk energy we may discard this contribution. The next term is

D4(b · ∇γ), where γ is related to the dilation in the smectic layers. Since we

are assuming an incompressible liquid with constant interlayer distance we may

discard the D4 contribution.

As for the two principle energy terms given above the term −w∗
2 corresponds

to the c-director rotating in a positive sense as an observer moves along the

direction of the layer normal a and is responsible for the helical ordering of the

c-director that appears in the smectic C∗ phase.

The elastic energy we adopt for the ferroelectric phase typically includes

contributions from w∗
1 and w∗

2 and we may choose to use any of the equivalent

elastic energy definitions for the smectic C phase given by w which we outlined

earlier. Then we may write the smectic C∗ elastic energy contribution as

wf = w + w∗
1 + w∗

2. (1.49)

For instance if we choose to ignore surface terms entering via divergence terms

we may express the bulk elastic energy wf in terms of b and c. Using the

expressions (1.32), (1.40), (1.46) and (1.47) we find that the ferroelectric elastic

energy wf may be written [4, 40] as

wf =
1

2
A12(b · ∇ × c)2 +

1

2
A21(c · ∇ × b)2

− A11

[

1

2
(c · ∇ × c− b · ∇ × b) − δ

]2

+
1

2
B1(∇ · b)2 +

1

2
B2(∇ · c)2 +

1

2
B3

[

1

2
(b · ∇ × b + c · ∇ × c) + q

]2

+B13(∇ · b)

[

1

2
(b · ∇ × b + c · ∇ × c)

]

+ C1(∇ · c)(b · ∇ × c) + C2(∇ · c)(c · ∇ × b), (1.50)

In practice throughout the work which follows we shall disregard the helical pitch

brought about by considering the term w∗
2. We shall be studying planar samples
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of ferroelectric material and specifically studying the hydrodynamic stability of

solitonic waves travelling in the plane of the sample. For this reason since the

helical structure lies along the normal to the smectic planes along the vector

a we may suppress this component of the ferroelectric energy by assuming the

layer is sufficiently thin that the helicity may be safely ignored.

The term w∗
1 models the non-uniformity of the smectic layer normal in space

[44, p.28]. Since we assume that the layers maintain a constant layer separation

and the fluid is incompressible we may also disregard this term and set δ = 0

to a first approximation. It is worth noting that Gill and Leslie [45] found

that the contribution introduced into the simple models of shear flow which

they investigated played no significant rôle. Because of these assumptions and

omissions we may base the elastic energy of the ferroelectric systems under

investigation on the elastic energy density for smectic C materials.

1.13.2 Smectic C∗ electric energy

The chief difference between the electric energy density found in non-chiral smec-

tic C and chiral smectic C∗ lies in the addition of an electric energy density term

−P · E to the dielectric energy density welec which takes account of the linear

interaction of the spontaneous polarisation P with the electric field E via

wpol = −P · E. (1.51)

We remark here that the polarisation P referred to in (1.51) refers to the spon-

taneous polarisation which is a persistent feature of ferroelectrics as opposed

to the concept of induced polarisation introduced earlier in this chapter during

the discussion on electric fields and denoted by Pi. The energy given here is

clearly minimised when P and E are co-parallel to each other. In other words

this means that P has a preference to align in the same direction parallel to the

electric field. The total electric energy density for smectic C∗ materials in the
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presence of an applied electric field is

welec + wpol = −1

2
ǫ0ǫa(a · E cos θ + c · E sin θ)2 −P · E. (1.52)

Typically the unitless dielectric anisotropy ǫa is of similar order to that of smectic

C materials and may be positive or negative depending on the smectic C∗ liquid

crystal under consideration.

Notice that the dielectric biaxiality ∂ǫ of liquid crystals is very small, typi-

cally of the order of 10−3 as noted by Dierking in [26]. Consequently the dielectric

biaxiality of the smectic C∗ liquid crystals studied here may be neglected. In

fact throughout this thesis we consider only the uniaxial case. However, in some

cases it does play an important and dominant rôle in models of cell switching

and examples of these models may be found in Maltese, Piccolo and Ferrara [46]

and Brown, Dunn and Jones [47].

1.14 The total energy for smectic C∗ liquid crys-

tals

The total energy density for the smectic C∗ liquid crystal phase in the presence

of an applied electric field E is given by

w∗ = wf + welec + wpol, (1.53)

where wf is given by the appropriate elastic energy density for ferroelectrics, for

instance the expression given in (1.50) with the electric and polarisation energy

densities given by (1.52). Additional energy contributions, for instance a layer

compression energy wcomp, may be incorporated via the expression

wcomp =
1

2
B̄

(

∂u

∂z

)2

, (1.54)

an early form of which was proposed by de Gennes 1969 [48] and reported also

in de Gennes and Prost [23, p.345-346]. The form given above is reproduced
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from Stewart [4], where u = u(x, y, z) is the vertical displacement of the layers

relative to their original state and B̄ is the associated layer compression constant.

However in the models we shall tackle the total energy density for the energy in

the bulk in the smectic C∗ phase shall be represented by

w∗ = w + welec + wpol, (1.55)

where w may be any one of the smectic C elastic energy representations given

previously at (1.40), (1.27), (1.29) or indeed any other suitable representation.

The energy expression (1.55) is of the form we shall employ throughout the

chapters which follow.

1.15 The dynamic equations for smectic C

We defer a full discussion on the dynamic equations for smectic C until Chapter 2

when we summarise the dynamic equations required including a description of

the viscous stress tensor and it components, the balance of linear momentum

equations and the balance of angular momentum equations. We make note for

reference that the dynamic theory for incompressible smectic C liquid crystals

was introduced by Leslie, Stewart and Nakagawa [22]. Instead at this point we

take a brief detour to investigate the smectic viscosity coefficients which appear

in smectic C theory. We note here that the smectic C∗ viscosities are identical

to those present in smectic C theory.

1.16 The Smectic C viscosities

We present here some detail on smectic viscosities. A fuller exposition is given

in Stewart [4]. Here we focus on listing and characterising the viscosities and

draw attention to the tilt angle dependence of the viscous coefficients.

In total the dynamic theory of smectic C liquid crystals introduced twenty



36

viscous coefficients. The viscous coefficients can be classified into one of four

groups and we list these here.

isotropic: µ0

smectic A-like: µ1, µ2, λ1, λ4

nematic-like: µ3, µ4, λ2, λ5

ac-coupling: µ5, λ3, λ6, κ1, κ2, κ3, τ1, τ2, τ3, τ4, τ5

The first viscous term µ0 is associated with a term in the viscous stress which

is independent of the vectors a and c and corresponds to the usual isotropic

contribution to the viscous stress.

The second group of viscosity coefficients consists of viscosities which are

connected to terms which are independent of the vector c and only depend on

a. These viscous terms include µ1, µ2, λ1 and λ4. We suppose they should be

present in the smectic A phase when θ = 0. We expect the five viscosities µ0,

µ1, µ2, λ1 and λ4 are therefore anticipated to be connected to the dynamical

properties of smectic A liquid crystals.

The group µ3, µ4, λ2 and λ5 have been designated nematic like and depend

only on the vector c. The term nematic-like arises as a result of the fact that the

contributions to the viscous stress associated with these four viscous coefficients

resemble those for nematics. However, the similarity with nematics must be

treated with care as noted in [49]. Whereas the viscous stress in nematics is

described in terms of n the viscous stress in smectic C is described in terms of

c so a like for like comparison would be inappropriate.

The remaining viscous terms µ5, λ3, λ6, κ1, κ2, κ3, τ1, τ2, τ3, τ4 and τ5 are

regarded as coupling terms since they depend on a and c and have no counterpart

in nematic theory.

The smectic viscosity tilt angle dependence was investigated by Carlsson et

al in [49] using ideas introduced by Dahl and Lagerwall [43]. For temperatures

close to the smectic A-smectic C phase transition temperature TAC the smectic
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tilt angle may be assumed to be relatively small. If the smectic layer normal a is

unchanged while the changes θ to −θ and c to −c are carried out simultaneously

the smectic C description of the material should remain intact and the viscous

stress must be invariant to such changes.

Then terms in the viscous stress tensor which are odd in c must have cor-

responding viscosity coefficients which are odd in θ. Similarly, terms even in

c must have corresponding coefficients which are even in c. In particular the

smectic A-like viscosities µ1, µ2, λ1, λ4 remain in the smectic A phase when

θ ≡ 0. We list these viscosities and their tilt angle dependence below

µ3 = µ̄3θ
4, µ4 = µ̄4θ

2, µ5 = µ̄5θ
2,

λ2 = λ̄2θ
2, λ3 = λ̄3θ

2, λ5 = λ̄5θ
2, λ6 = λ̄6θ

2,

κ1 = κ̄1θ, κ2 = κ̄2θ, κ3 = κ̄3θ
3,

τ1 = τ̄1θ, τ2 = τ̄2θ, τ3 = τ̄3θ, τ4 = τ̄4θ
3, τ5 = τ̄5θ.

Note that all of the coefficients µ̄i, λ̄i, κ̄i and τ̄i are only weakly temperature

dependent. Osipov, Sluckin and Terentjev [50] note that four of the viscous

coefficients which appear exclusively in the skew-symmetric contribution of the

viscous stress, may be considered as rotational viscosities these being λ4, λ5, λ6

and τ5. Here λ4 is related to the rotation of the local smectic layer normal a.

The most prominent rotational viscosity in smectic C is λ5, whilst λ6 and τ5 are

ac-coupling viscosities.

This completes the survey of prerequisites regarding smectic C and smectic

C∗ continuum theory. The continuum equations we shall be using will be dis-

cussed in full in Chapter 2 when we begin to construct a model we shall use to

investigate hydrodynamic flow in ferroelectric smectic C materials.



Chapter 2

Modelling Hydrodynamic Flow

in an Infinite Sample of Smectic

C∗

2.1 Introduction

In this chapter we focus our attention on developing a continuum model which

accounts for the effects of hydrodynamic flow within a sample of ferroelectric

SmC liquid crystal under the influence of an applied electric field. In partic-

ular we focus our attention on a wave front travelling under the influence of

an electric field in the ferroelectric material and study the hydrodynamic phe-

nomena that result when the wave front propagates in the ferroelectric. Front

propagation is a heavily researched field in ferroelectric liquid crystal theory

and numerous authors have published in the area. For instance van Saarloos

et al [51] investigated front propagation into unstable and metastable states in

smectic C∗ liquid crystals using linear and nonlinear marginal stability analysis.

In [52] Maclennan et al study wave fronts in infinite samples of liquid crystal of

the kind we shall be investigating here but do not study flow effects. Das and

Schwarz used models of ferroelectrics which result in dynamic equations giving

rise to wave fronts while studying solitons in cell membranes [32]. Experimental

work, for instance the work of Stannarius and Langer [53] has investigated front

38
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propagation in freely suspended smectic C∗ films.

The starting point for our investigation is the work of Stewart and Momoniat

[54]. In this paper the orientation φ(x, t) of the unit orthogonal projection c

of the molecular director n in an infinite sample of ferroelectric smectic C is

modelled in the presence of an inclined electric field E. The electric field E rests

at an angle α with respect to the smectic layers. If α = 0, the problem yields

an exactly solvable nonlinear partial differential equation, with a soliton like

solution. If α 6= 0 the resulting differential equation cannot be solved exactly

and numerical techniques must be employed. Crucially, throughout the analysis

presented in [54] hydrodynamic flow is assumed to be negligible.

Following a brief review of the main points discussed in [54], we shall extended

the model to incorporate an infinitesimal flow. By taking advantage of the

fact that the original problem may be solved exactly for α = 0, we go on to

construct a set of dynamical equations which govern the motion of the director,

and in addition describe the flow profile. Consequently we find that five coupled

nonlinear partial differential equations provide a complete description of the

system, accounting for both the director re-orientation and flow.

Once the flow equations have been derived we shall show how the dynamical

equation found in [54] may be recovered by setting all of the flow velocities to

zero.

2.2 Director re-orientation when flow is negli-

gible

Following [54], imagine a sample of ferroelectric SmC confined by the geometry

shown in Figure (2.1(a)). The normal to the smectic planes a is oriented along

the z-axis. The director n is oriented at an angle θ to the layer normal a. The

unit orthogonal projection of the director n onto the smectic planes is given by
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Figure 2.1: (a) The planar layer arrangement of the liquid crystal sample being

considered. The molecules are tilted at a fixed angle θ to the layer normal a which

is aligned with the z-axis. (b) The average molecular alignment is denoted by the

unit vector n, called the director. The vector c is the unit orthogonal projection

of n onto the smectic planes. The orientation angle of the c-director is φ. Note

also that smectic C* has a spontaneous polarisation which lies along the vector

b and is denoted by P = P0b where b = a × c. (c) The electric field E at an

angle of incline α ≥ 0 with respect to the smectic layers in the xy-plane.

c so that

n = a cos θ + c sin θ. (2.1)

Both a and c are mutually perpendicular to the polarisation vector P = P0b

where the vector b is defined by

b = a × c. (2.2)

Therefore the polarisation vector P is constrained always to lie in the same plane

as the smectic layers. The model is described vectorially as follows

a = (0, 0, 1), (2.3)

c = (cos(φ(x, t)), sin(φ(x, t)), 0), (2.4)

b = (− sin(φ(x, t)), cos(φ(x, t)), 0), (2.5)

P = P0b, (2.6)
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E = E (cosα, 0, sinα). (2.7)

Solving the continuum equations for the system above yields one dynamical

equation for φ(x, t), which in the special case where α = 0 leads to an exactly

solvable PDE. The governing dynamical equation from [54] for the system is

2λ5
∂φ

∂t
= B

∂2φ

∂x2
− P0E cosα cosφ

−ǫ0ǫaE2
(

1
4
sin 2α sin 2θ sinφ+ 1

2
cos2 α sin2 θ sin 2φ

)

. (2.8)

When α = 0 (2.8) reduces to

2λ5
∂φ

∂t
= B

∂2φ

∂x2
− P0E cos φ− ǫ0ǫaE

2 sin2 θ sinφ cosφ, (2.9)

and noting that ǫa = − |ǫa| when ǫa < 0, it may be shown that (2.9) possess the

exact solution

φ(x, t) =
π

2
− 2 arctan

[

exp

{

√

β

B
(x± ct)

}]

, (2.10)

where

β = ǫ0 |ǫa|E2 sin2 θ, (2.11)

and the wavespeed c is given by

c =
|P0E|
2λ5

√

B

β
. (2.12)

The solution (2.10) represents a soliton. We note here that the term x + ct in

(2.10) corresponds to P0E > 0, whilst the term x − ct in (2.10) corresponds to

P0E < 0. Moreover, for P0E > 0, φ → +π/2 as t → −∞ and φ → −π/2 as

t→ +∞. In other words when P0E > 0 the favoured state is −π/2. Conversely,

if P0E < 0 we find that φ→ −π/2 as t → −∞ and φ→ +π/2 as t → +∞. So

when P0E < 0 the favoured state is +π/2.

If we apply the transformation φ(x, t) = π
2
− u(x, t) and substitute this into

(2.9) we recover the equation given in [4, p.317]

2λ5
∂u

∂t
= B

∂2u

∂x2
+ a sin u− b sin u cosu, (2.13)
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where

a = P0E and b = ǫ0 |ǫa|E2 sin2 θ, (2.14)

having the solution

u(x, t) = 2 arctan

[

exp

{

√

b

B
(x± ct)

}]

, (2.15)

provided
∣

∣

∣

a

b

∣

∣

∣
< 1. (2.16)

2.3 Director re-orientation in the presence of

flow

We shall now consider the problem of modelling hydrodynamic flow in a sample

of smectic C∗ liquid crystal. Our aim here is to extend the model described

in [54] so as to include flow effects. Retaining the geometry of the original

problem, we augment the model by assuming the presence of an infinitesimal

flow velocity v(x, t). Stewart and Momoniat assumed negligible flow resulting in

only one dynamical equation, a consequence of considering angular momentum

conservation. By introducing flow we encounter four additional equations, one

to take account of mass conservation, the remaining three are to take care of the

need for the system to conserve linear momentum. We shall show how, when

v = 0, we recover the dynamical equation for the non-flow problem. We will

describe a model in which we assume that flow occurs in three spatial directions

where we regard the components of the velocity u, v and w to be infinitesimally

small so that |u(x, t)| ≪ 1, |v(x, t)| ≪ 1 and |w(x, t)| ≪ 1.

We shall appeal to a number of results from [4] as we develop our model. The

dynamical equations for smectic C∗ are identical to the equations for smectic C

with w∗ replacing w. We summarise the main results below following [4, p.295].
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The vectors a and c satisfy the constraints

a · a = 1, c · c = 1, a · c = 0, ∇× a = 0, (2.17)

whilst the velocity vector must satisfy

vi,i = 0. (2.18)

The expression (2.18) is a consequence of the fact that we choose to model

the liquid crystal sample as an incompressible fluid with constant mass density

throughout the sample. A compressible hydrodynamic theory for smectic C∗ is

presented in [55, 56]. Conservation of linear momentum results in the following

balance equation

ρv̇i = ρFi − p̃,i +Ga
kak,i +Gc

kck,i + g̃akak,i + g̃ckck,i + t̃ij,j, (2.19)

with

p̃ = p+ w. (2.20)

The balance of angular momentum yields two coupled sets of equations

(

∂w∗

∂ai,j

)

,j

− ∂w∗

∂ai
+Ga

i + g̃ai + γai + µci + ǫijkβk,j = 0, (2.21)

(

∂w∗

∂ci,j

)

,j

− ∂w∗

∂ci
+Gc

i + g̃ci + τci + µai = 0, (2.22)

where γ, µ, τ and the vector function β are Lagrange multipliers. In equation

(2.19) the vector F represents the external body force per unit mass, whilst Ga

and Gc are generalised body forces per unit volume related to a and c, p is the

pressure, w∗ is the energy density defined by (2.45). Following [4, p.294], the

quantities g̃ai and g̃ci are defined by

g̃ai = −2(λ1D
a
i + λ3cicjD

a
j + λ4Ai + λ6cicjAj

+τ2D
c
i + τ3ciajD

a
j + τ4cicjD

c
j + τ5Ci), (2.23)

g̃ci = −2 (λ2D
c
i + λ5Ci + τ1D

a
i + τ5Ai) . (2.24)
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Here the quantities Da
i and Dc

i are given by the expressions

Da
i = Dijaj, (2.25)

Dc
i = Dijcj. (2.26)

The vectors Ai and Ci are defined by

Ai = ȧi −Wijaj, (2.27)

Ci = ċi −Wijcj , (2.28)

and we note that the superposed dot represents the material time derivative,

which from [57, p.4] is

D

Dt
=

∂

∂t
+ v · ∇. (2.29)

For instance, the material time derivative of the vector c is, in co-ordinate free

form

ċ =

(

∂

∂t
+ v · ∇

)

c, (2.30)

and here the vector v represents the flow velocity. We define the rate of strain

tensor Dij and the vorticity tensor Wij to be

Dij = 1
2
(vi,j + vj,i), (2.31)

Wij = 1
2
(vi,j − vj,i). (2.32)

The vectors A and C represent the co-rotational time fluxes of the vectors a

and c respectively. It is worth mentioning at this point that the vectors A and

C have an analogue in the theory of nematics as described in [4, p.134-5], where

the vector N defined by

N = ω × n, (2.33)

measures the rotation of the nematic director n relative to the surrounding

fluid. Here the vector ω is known as the relative angular velocity. It measures
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the difference between the local angular velocity w of the nematic director and

the regional angular velocity ŵ given by

ŵ = 1
2
∇ × v, (2.34)

where v is the velocity of the fluid, so that

ω = w − ŵ = w − 1
2
∇ × v. (2.35)

The A and C vectors are defined in an identical manner to the vector N. That

is we define A and C to be

A = ω × a, C = ω × c. (2.36)

Taking the first of these expressions (the argument is identical for both A and

C), it is straightforward to show that the vector A in (2.36) is equivalent to

(2.27). We have that

Ai = ǫijkωjak

= ǫijk
(

wj − 1
2
ǫjpqvq,p

)

ak

= ǫijkwjak − 1
2
ǫijkǫjpqvq,pak

= ǫijkwjak + 1
2
ǫjikǫjpqvq,pak

= ǫijkwjak + 1
2
(δipδkq − δiqδkp) vq,pak

= ǫijkwjak + 1
2
(vk,i − vi,k) ak, (2.37)

whereupon relabelling the k’s in the second term on the right hand side with j’s

we have that

Ai = ǫijkwjak − 1
2
(vi,j − vj,i)aj, (2.38)

and, since w represents the angular velocity of a, and a is a unit vector such

that

a · a = 1, (2.39)
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we may write the material time derivative of a as

ȧ = w × a. (2.40)

Then we find that

A = ȧ − Wa, (2.41)

where W represents the vorticity tensor, which corresponds to (2.27). As an

aside, the justification for (2.40) may be found in Chisolm [58]. The proof is

given in (A.1) for convenience.

Finally from equation (2.19) we define the viscous stress t̃ij to be the sum of

the symmetric and skew-symmetric tensors t̃sij and t̃ssij thus

t̃ij = t̃sij + t̃ssij . (2.42)

We define the symmetric part t̃sij to be given by

t̃sij = µ0Dij + µ1apD
a
paiaj + µ2(D

a
i aj +Da

j ai) + µ3cpD
c
pcicj

+µ4(D
c
i cj +Dc

jci) + µ5cpD
a
p(aicj + ajci)

+λ1(Aiaj + Ajai) + λ2(Cicj + Cjci) + λ3cpAp(aicj + ajci)

+κ1(D
a
i cj +Da

j ci +Dc
iaj +Dc

jai)

+κ2(apD
a
p(aicj + ajci) + 2apD

c
paiaj)

+κ3(cpD
c
p(aicj + ajci) + 2apD

c
pcicj)

+τ1(Ciaj + Cjai) + τ2(Aicj + Ajci)

+2τ3cpApaiaj + 2τ4cpApcicj, (2.43)

whilst the skew-symmetric part t̃ssij is given by

t̃ssij = λ1(D
a
j ai −Da

i aj) + λ2(D
c
jci −Dc

i cj) + λ3cpD
a
p(aicj − ajci)

+λ4(Ajai −Aiaj) + λ5(Cjci − Cicj) + λ6cpAp(aicj − ajci)

+τ1(D
a
j ci −Da

i cj) + τ2(D
c
jai −Dc

iaj) + τ3apD
a
p(aicj − ajci)

+τ4cpD
c
p(aicj − ajci) + τ5(Ajci −Aicj + Cjai − Ciaj). (2.44)
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2.4 Elastic, electric and polarisation energies

The energy density for a sample of smectic C* liquid crystal under the influence

of an electric field E is from [4, p.311]

w∗ = welas + welec + wpol. (2.45)

The elastic energy density welas described by Leslie, Stewart, Carlsson and Nak-

agawa [36] is given by the expression

welas = 1
2
K1(∇ · a)2 + 1

2
K2(∇ · c)2 + 1

2
K3(a · ∇ × c)2 + 1

2
K4(c · ∇ × c)2

+1
2
K5(b · ∇ × c)2 +K6(∇ · a)(b · ∇ × c) +K7(a · ∇ × c)(c · ∇ × c)

+K8(∇ · c)(b · ∇c) +K9(∇ · a)(∇ · c). (2.46)

The electric energy contribution welec from [4, p.258] is given by

welec = −1
2
ǫ0ǫa (a · E cos θ + c · E sin θ)2 , (2.47)

whilst the polarisation energy from [4, p.310] is given simply by

wpol = −P · E. (2.48)

For convenience we define the following expressions

Πa
i =

(

∂w∗

∂ai,j

)

,j

− ∂w∗

∂ai
, (2.49)

Πc
i =

(

∂w∗

∂ci,j

)

,j

− ∂w∗

∂ci
, (2.50)

The contribution to Πc and Πa due to the polarisation term wpol shall be dealt

with first. The polarisation vector (2.6) allows us to write

wpol = −P0b · E = −P0E · (a× c). (2.51)
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And from this we find that

(

∂wpol
∂ci,j

)

,j

− ∂wpol
∂ci

= − ∂

∂ci
(−P0Epǫpqraqcr)

= P0Epǫpqraq
∂cr
∂ci

= P0Epǫpqraqδri

= P0Epǫpqiaq

= P0ǫipqEpaq (2.52)

So the contribution from wpol to Πc which we shall denote by Πc
pol is

Πc
pol = P0E × a. (2.53)

A similar argument yields the contribution from wpol to Πa and in this case the

contribution is

Πa
pol = −P0E × c. (2.54)

Next, we quote the contributions to Πa and Πc resulting from the elastic (2.46)

and electric (2.47) energy density expressions. First the contributions made to

Πa and Πc due to welas

Πa
elas = K1∇(∇ · a) −K3(a · ∇ × c)(∇× c) −K5(b · ∇ × c)(c×∇× c)

+K6 {∇(b · ∇ × c) − (∇ · a)(c ×∇× c)}

−K7(c · ∇ × c)(∇× c) −K8(∇ · c)(c ×∇× c)

+K9∇(∇ · c), (2.55)

Πc
elas = K2∇(∇ · c) −K3∇× {(a · ∇ × c)a}

−K4{∇ × {(c · ∇ × c)c} + (c · ∇ × c)(∇× c)}

+K5{(b · ∇ × c)(a×∇× c) −∇× {(b · ∇ × c)b}}

+K6{(∇ · a)(a ×∇× c) −∇× {(∇ · a)b}}
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−K7{∇ × {(a · ∇ × c)c + (c · ∇ × c)a} + (a · ∇ × c)(∇× c)}

+K8{∇(b · ∇ × c) −∇× {(∇ · c)b} + (∇ · c)(a×∇× c)}

+K9∇(∇ · a). (2.56)

Next, the contributions made to Πa and Πc due to welec

Πa
elec = ǫ0ǫa cos θ{(a · E) cos θ + (c ·E) sin θ}E, (2.57)

Πc
elec = ǫ0ǫa sin θ{(a · E) cos θ + (c · E) sin θ}E. (2.58)

The contributions made by (2.53),(2.56) and (2.58) to Πc are then

Πc = Πc
elas + Πc

elec + Πc
pol, (2.59)

In a similar fashion we identify the contributions made to the vector Πa by

(2.54), (2.55) and (2.57) as

Πa = Πa
elas + Πa

elec + Πa
pol. (2.60)

We show in Appendix B how one of the terms in the vector identities given

by (2.49) and (2.50) is derived. All of the equations identified above will be of

help as we construct the continuum equations governing the model we described

vectorially from (2.3) to (2.7) along with the definitions (2.68) and (2.17). We

shall begin our analysis by making clear what it is we aim to achieve. We have

the framework for a model which we have outlined above. In the simple no-flow

case we can construct a dynamical equation (2.8) which governs the orientation

of the projection of the director n onto the smectic planes. For the special case

noted above where the angle of inclination α of the electric field E is zero, the

dynamical equation reduces to (2.9) and yields an exact solution (2.10) which

represents a travelling wave solution (TWS) of wavefront type [59, p.235]. In

other words for (2.9) we may express the solution (2.10) in the form

φ0(τ) = φ(x, t), where τ = x− ct, (2.61)
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where c is a positive constant. Next, we imagine perturbing our TWS and

we suppose that this perturbation is brought about by the imposition of some

infinitesimal flow. We then have the task of showing that the perturbation is

asymptotically stable. That is, as t → ∞, the perturbation decays to zero and

our system returns to it’s original state. We analyse this problem in a moving

co-ordinate frame using the transformations

φ̄(τ, t) = φ(x, t), t = t, τ = x− ct. (2.62)

Then the space and time derivatives of φ(x, t) after the change of variables in

the moving co-ordinate frame are given by

∂φ

∂x
=

∂φ̄

∂τ
, (2.63)

∂2φ

∂x2
=

∂2φ̄

∂τ 2
, (2.64)

∂φ

∂t
=

∂φ̄

∂t
− c

∂φ̄

∂τ
. (2.65)

For convenience, in all further work we shall rename φ̄ → φ. Using this trans-

formation the projection of the director onto the smectic planes given by c in

(2.4) and the associated vector b given by (2.5) are now dependent on τ and t

so that

c = (cos(φ(τ, t)), sin(φ(τ, t)), 0), (2.66)

b = (− sin(φ(τ, t)), cos(φ(τ, t)), 0). (2.67)

We shall be considering flow effects in the moving co-ordinate frame. The flow

velocity defined in the moving co-ordinate frame is given by

v(τ, t) = (u(τ, t), v(τ, t), w(τ, t)). (2.68)

In addition we regard the components of the flow velocity u, v and w to be

infinitesimally small so that |u(τ, t)| ≪ 1, |v(τ, t)| ≪ 1 and |w(τ, t)| ≪ 1. With
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the velocity vector defined, we shall set about the task of constructing the con-

tinuum equations for our model. We start by using (2.63), (2.64) and (2.56)

along with the definitions (2.3), (2.5) and (2.4), all transformed appropriately

with (2.62), to construct the vector Πc. We shall comment on Πa at a later

stage. First then the expression for the vector Πc in component form is

Πc
1 = ǫ0ǫa sin θE2(sinα cosα cos θ + cos2 α sin θ cosφ)

−K2(φ,ττ sinφ+ φ2
,τ cos φ), (2.69)

Πc
2 = K3(φ,ττ cos φ− φ2

,τ sin φ) − P0E cosα, (2.70)

Πc
3 = K8(φ,ττ sin φ cosφ+ φ2

,τ cos 2φ)

−K7(φ,ττ sinφ cosφ+ φ2
,τ(cos 2φ+ cos2 φ))

+ ǫ0ǫa sin θE2(sin2 α cos θ + sinα cosα sin θ cos φ). (2.71)

Next, we construct the rate of strain tensor using (2.31) and find that the only

non-zero components of D are

D11 = u,τ , D12 = D21 = 1
2
v,τ , D13 = D31 = 1

2
w,τ . (2.72)

Similarly, the vorticity tensor W has the following non-zero components

W12 = −1
2
v,τ , W13 = −1

2
w,τ , W21 = 1

2
v,τ , W31 = 1

2
w,τ . (2.73)

The co-rotational time fluxes A and C are given in component form below. We

illustrate the derivation of these vectors by considering the calculation of C1 in

detail, the remaining terms are computed in a similar manner. For C1 then we

have that

C1 = ċ1 − (W11c1 +W12c2 +W13c3). (2.74)

Now

ċ1 =

(

∂

∂t
+ v1

∂

∂τ

)

cosφ,

= −
(

∂φ

∂t
− c

∂φ

∂τ

)

sinφ− u
∂φ

∂τ
sin φ, (2.75)
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where v1 = u from (2.68) and

W11c1 +W12c2 +W13c3 = −1
2
v,τ sinφ. (2.76)

Which means that the C1 component of the co-rotational time flux C (along

with C2 and C3) is given by

C1 = ((c− u)φ,τ − φ,t) sinφ+ 1
2
v,τ sin φ.

C2 = ((u− c)φ,τ + φ,t) cosφ− 1
2
v,τ cosφ,

C3 = −1
2
w,τ cosφ. (2.77)

The co-rotational time flux A is found to have only one non-zero component

A1 = 1
2
w,τ . (2.78)

Using (2.72) we have that the vectors Da and Dc are determined by (2.25) and

(2.26) respectively. The only non-zero component of Da is found to be

Da
1 = 1

2
w,τ , (2.79)

whilst the vector Dc has components given by

Dc
1 = u,τ cosφ+ 1

2
v,τ sinφ,

Dc
2 = 1

2
v,τ cosφ,

Dc
3 = 1

2
w,τ cosφ. (2.80)

Next we compute the vector g̃c using (2.24) and (2.77), (2.78), (2.79) and (2.80)

g̃c1 = −2(λ2(u,τ cos φ+ 1
2
v,τ sin φ) + λ5[((c− u)φ,τ − φ,t) sinφ+ 1

2
v,τ sinφ]

+ 1
2
(τ1 + τ5)w,τ ), (2.81)

g̃c2 = −2(1
2
λ2v,τ cos φ+ λ5[((u− c)φ,τ + φ,t) cosφ− 1

2
v,τ cos φ]), (2.82)

g̃c3 = −2(1
2
(λ2 − λ5)w,τ cosφ+ 1

2
(τ1 + τ5)w,τ). (2.83)
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Now, returning to the balance of angular momentum and considering (2.22) and

the identity (2.50) we may re-write (2.22) as follows

Πc
i +Gc

i + g̃ci + τci + µai = 0. (2.84)

If we consider generalised external body forces to be zero, so that Gc
i = 0, we

find on taking the scalar product of (2.84) with ci and ai respectively we get

ciΠ
c
i + cig̃

c
i + τcici = 0

aiΠ
c
i + aig̃

c
i + µaiai = 0. (2.85)

Consequently the Lagrange multiplier µ(τ, t) is found from (2.85) to be

µ(τ, t) = −Πc
3 − g̃c3. (2.86)

Whereas for the Lagrange multiplier τ(τ, t) we have that

τ(τ, t) = −Πc
1 cosφ− g̃c1 cos φ− Πc

2 sin φ− g̃c2 sinφ (2.87)

Now, equation (2.84) yields the following expressions

Πc
1 + g̃c1 + τ cosφ = 0, (2.88)

Πc
2 + g̃c2 + τ sin φ = 0. (2.89)

Multiplying (2.88) by sinφ and (2.89) by cosφ and subtracting we find that we

are left with the following dynamical equation

Πc
1 sinφ− Πc

2 cosφ+ g̃c1 sinφ− g̃c2 cosφ = 0, (2.90)

which is valid so long as we can find the Lagrange multipliers γ and β that allow

the a-equations to be satisfied.

2.5 The Lagrange multipliers γ and β

In order to determine the Lagrange multipliers γ and β, we follow the procedure

outlined by Stewart [4, p.266-7]. Substituting (2.49) into (2.21) and assuming
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that external body forces are absent so that Ga
i = 0, we write (2.21) as

Πa
i + g̃ai + γai + µci + ǫijkβk,j = 0. (2.91)

Taking the divergence of (2.91), noting that ∇ · (∇ × β) = 0 and substituting

for µ from (2.86), the expression (2.91) reduces to

∂γ

∂z
+

∂

∂τ
[Πa

1 + g̃a1 − (Πc
3 + g̃c3) cosφ] = 0. (2.92)

Then integrating (2.92) with respect to z gives the following expression for γ

γ(τ, y, z, t) = −z ∂
∂τ

[Πa
1 + g̃a1 − (Πc

3 + g̃c3) cosφ] + f(τ, y, t), (2.93)

where f(τ, y, t) is taken to be an arbitrary function of τ , y and t. The solution for

γ guarantees the existence of the vector β. Then β is calculated from β = −G,

where G is given by

G =

(
∫ z

z0

F2(τ, y, z̃, t) dz̃ −
∫ y

y0

F3(τ, ỹ, z0, t) dỹ,−
∫ z

z0

F1(τ, y, z̃, t) dz̃, 0

)

.

(2.94)

and F is given by

F = Πa + g̃a + γa + µc, (2.95)

meaning that F1, F2 and F3 may be expressed as follows

F1(τ, y, z, t) = Πa
1(τ, t) + g̃a1(τ, t) − (Πc

3(τ, t) + g̃c3(τ, t)) cosφ(τ, t),

F2(τ, y, z, t) = Πa
2(τ, t) + g̃a2(τ, t) − (Πc

3(τ, t) + g̃c3(τ, t)) sinφ(τ, t),

F3(τ, y, z, t) = Πa
3(τ, t) + g̃a3(τ, t) − z

∂

∂τ
[Πa

1 + g̃a1 − (Πc
3 + g̃c3) cosφ]

+f(τ, y, t).

Finally, letting y0 = z0 = 0 we find that

β1 =

∫ y

0

f(τ, ỹ, t) dỹ + y (Πa
3(τ, t) + g̃a3(τ, t))

−z (Πa
2(τ, t) + g̃a2(τ, t) − (Πc

3(τ, t) + g̃c3(τ, t)) sinφ(τ, t)) ,

β2 = z (Πa
1(τ, t) + g̃a1(τ, t) − (Πc

3(τ, t) + g̃c3(τ, t)) cosφ(τ, t)) ,

β3 = 0.
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At this point it is possible to construct the components of Πa explicitly using

(2.55) and appropriate values for a and c.

2.6 The Fully Nonlinear Problem

Now we are in a position to construct the full nonlinear problem. We start by

noting that the divergence of the flow velocity v must be zero, a consequence

of (2.18). Since all of the components of v are functions of t and τ only we can

immediately write down a constraint on the u component of flow

∂u

∂τ
= 0. (2.96)

Then, substituting (2.69), (2.70), (2.81) and (2.82) into (2.90), we arrive at

the final expression for the conserved angular momentum, which were we to

disregard the velocity field of the infinitesimal flow, would reduce to (2.8)

2λ5((u− c)φ,τ + φ,t) − 2λ2u,τ sinφ cosφ− (τ1 + τ5)w,τ sinφ

+ (λ2 cos 2φ− λ5)v,τ

= (K2 sin2 φ+K3 cos2 φ)φ,ττ + (K2 −K3)φ
2
,τ sinφ cosφ

− ǫ0ǫaE
2 sin θ cosα(cos θ sinα sin φ+ sin θ cosα sin φ cosφ)

− P0E cosα cos φ. (2.97)

Turning our attention to the equations governing the conservation of linear mo-

mentum (2.19) we assume that

Fi = 0, (2.98)

Ga
k = Gc

k = 0, (2.99)

where Fi represents the external body force per unit mass whilst Ga
k and Gc

k

represent the generalised external body forces per unit volume related to a and
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c. Then with our definitions of a and c given by (2.3) and (2.4) we find that

g̃akak,i = 0, ∀ k, i, (2.100)

g̃ckck,2 = g̃ckck,3 = 0, ∀ k. (2.101)

and we are left to consider the following equations

ρv̇1 = −p̃,1 + g̃c1c1,1 + g̃c2c2,1 + t̃11,1, (2.102)

ρv̇2 = t̃21,1, (2.103)

ρv̇3 = t̃31,1. (2.104)

where the superposed dot represents the usual material time derivative. The

viscous stress tensor given by (2.42) is decomposed into symmetric t̃sij and skew-

symmetric parts t̃ssij defined respectively by (2.43) and (2.44). Since our model is

spatially dependent on τ but not y or z, we need only compute the components

t̃si1,1 and t̃ssi1,1. With this in mind we find that the symmetric components of the

viscous stress tensor are given by

t̃s11 = µ0u,τ + µ3(u,τ cosφ+ v,τ sin φ) cos3 φ

+ 2µ4(u,τ cosφ+ 1
2
v,τ sinφ) cosφ

+ 2λ2[((c− u)φ,τ − φ,t) sinφ+ 1
2
v,τ sinφ] cosφ

+ κ1w,τ cosφ+ κ3w,τ cos3 φ+ τ2w,τ cos φ+ τ4w,τ cos3 φ, (2.105)

t̃s21 = 1
2
µ0v,τ + µ3(u,τ cosφ+ v,τ sin φ) sinφ cos2 φ

+ µ4(v,τ + u,τ cosφ sinφ) + λ2((u− c)φ,τ + φ,t) − 1
2
v,τ ) cos 2φ

+ 1
2
κ1w,τ sin φ+ κ3w,τ cos2 φ sinφ

+ 1
2
τ2w,τ sinφ+ τ4w,τ cos2 φ sinφ, (2.106)

t̃s31 = 1
2
µ0w,τ + 1

2
µ4w,τ cos2 φ+ 1

2
µ5w,τ cos2 φ

+ 1
2
λ1w,τ − 1

2
λ2w,τ cos2 φ+ 1

2
λ3w,τ cos2 φ

+ κ1(u,τ cosφ+ 1
2
v,τ sinφ)
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+ κ3(u,τ cosφ+ v,τ sinφ) cos2 φ

+ τ1[((c− u)φ,τ − φ,t) + 1
2
v,τ ] sinφ. (2.107)

Whereas the components of the skew-symmetric part of the viscous stress tensor

are found to be

t̃ss11 = 0, (2.108)

t̃ss21 = λ2(u,τ sinφ cosφ− 1
2
v,τ cos 2φ)

+ λ5((c− u)φ,τ − φ,t +
1
2
v,τ )

+ 1
2
(τ1w,τ + 1

2
τ5w,τ) sinφ, (2.109)

t̃ss31 = 1
2
λ1w,τ − 1

2
λ2w,τ cos2 φ+ 1

2
λ3w,τ cos2 φ+ 1

2
λ4w,τ

+ 1
2
λ5w,τ cos2 φ+ 1

2
λ6w,τ cos2 φ

+ τ2(u,τ cosφ+ 1
2
v,τ sin φ)

+ τ4(u,τ cosφ+ v,τ sin φ) cos2 φ

+ τ5[((c− u)φ,τ − φ,t) + 1
2
v,τ ] sinφ. (2.110)

Then, using (2.3), (2.66), (2.81), (2.82), (2.105) and (2.108) in (2.102) we find

that

ρ(u,t + uu,τ) = − p̃,τ + φ,τ [λ2(u,τ sin 2φ− v,τ cos 2φ) + (τ1 + τ5)w,τ sin φ

+ λ5(v,τ + 2((c− u)φ,τ − φ,t))]

+
∂

∂τ

[

µ0u,τ + µ3(u,τ cosφ+ v,τ sinφ) cos3 φ

+ 2µ4(u,τ cos φ+ 1
2
v,τ ) cosφ

+ λ2(((c− u)φ,τ − φ,t) + 1
2
v,τ ) sin 2φ

+ (κ1 + τ2 + (κ3 + τ4) cos2 φ)w,τ cosφ

]

, (2.111)

ρ(v,t + uv,τ ) =
∂

∂τ

[

1
2
µ0v,τ + µ3(u,τ cosφ+ v,τ sin φ) sinφ cos2 φ

+ µ4(u,τ sinφ cosφ+ 1
2
v,τ)

+ λ2(u,τ sinφ cosφ+ [((u− c)φ,τ + φ,t) − v,τ ] cos 2φ)
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− λ5[((u− c)φ,τ + φ,t) − 1
2
v,τ ]

+ 1
2
(κ1 + τ1 + τ2 + τ5 + 2(κ3 + τ4) cos2 φ)w,τ sinφ

]

,(2.112)

ρ(w,t + uw,τ) =
∂

∂τ

[

1
2
(µ0 + µ2 + 2λ1 + λ4 + (µ4 + µ5

− 2λ2 + 2λ3 + λ5 + λ6) cos2 φ)w,τ

+ (κ1 + τ2)(u,τ cosφ+ 1
2
v,τ sinφ)

+ (κ3 + τ4)(u,τ cosφ+ v,τ sin φ) cos2 φ

+ (τ1 + τ5)[((c− u)φ,τ − φ,t) + 1
2
v,τ ] sinφ

]

. (2.113)

The equations (2.96), (2.97), (2.111), (2.112) and (2.113) constitute the fully

non-linear system of equations in five unknowns φ, u, v, w and p.

2.7 Discussion

The principal aim of this chapter was to construct a set of fully nonlinear contin-

uum equations incorporating flow for the type of problem discussed by Stewart

and Momoniat in [54], namely an infinite sample of ferroelectric smectic C liquid

crystal in a planar layer geometry of depth less than the pitch length of the sam-

ple so that chirality of the sample is suppressed. We note from [53] that in thick

samples of ferroelectric the rotation of the spontaneous polarisation P across

the domain wall can modify the local electric field within the material a great

deal. A fully featured model should take this field augmentation into account.

However in choosing to model the sample as a thin film we are accepting the

position that the polarisation plays a rôle in linearly interacting with the exter-

nal electric field but it is assumed not to modify the local electric field strength

within the material bulk. The travelling wave equation discussed by Stewart and

Momoniat in [54] and incorporated into the model we have constructed assumes

thin films and is perfectly adequate for the problem we are addressing.

We have generated the continuum equations by analysing our problem in
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a moving co-ordinate frame using the transformations given at (2.62). Then

by making the appropriate substitutions we were able to derive the continuum

equations at (2.96), (2.97), (2.111), (2.112) and (2.113) for the unknowns φ,

u, v, w and p. Needless to say the fully nonlinear problem cannot be solved

analytically. The main thrust of the analysis in this chapter has been to derive

equations which may then be subjected to infinitesimal perturbations. Typically

this means taking a solution φ0(τ) and in our case we do have a known exact

solution in the case of an in plane electric field and assuming that there is no

flow. Then by introducing a small perturbation to all five of the unknowns we

can go on to derive a full system of linear perturbation equations which we go

on to do in Chapter 3.

The known solution is critical to the success of the subsequent analysis we

shall be performing. Without it the perturbation equations once formulated

would have to be expressed in terms of some unknown function φ0(τ). Because

exact solutions are not available for the travelling wave problem when the field E

is inclined, that is when α 6= 0 we cannot reasonably use the equations we have

developed here to study perturbations for systems with inclined fields. However

useful work can be done when the electric field lies in the plane and the exact

travelling wave solution will be of great value in helping to establish usable

perturbation equations which we go on to develop in the next chapter.



Chapter 3

The Linearised Continuum

Model

3.1 Introduction

In this chapter we shall be developing a system of linearised perturbation equa-

tions. By applying infinitesimal perturbations to the system of PDE’s given

by equations (2.111), (2.112), (2.113), (2.97) and (2.96), we shall reduce the

PDE’s to linear form. Once in this form we may begin the task of analysing

the behaviour of the perturbed system and we shall examine an appropriate

perturbation scheme in chapter 4.

Before proceeding it will prove helpful in the subsequent analysis to establish

conventions for the naming of elastic constants and to make a number of sim-

plifying assumptions. When dealing with elastic constants we shall adopt the

convention used by Saupe [41]. Hence, from now onwards the elastic constants

K2 and K3 appearing in (2.97) may be re-written as B2 and B1 respectively.

With regards to simplifying assumptions our first shall be that the elastic

constants are taken to be equal, the so called one constant approximation. That

is we shall assume B1 = B2 = B following Stewart et al. [54].

Our second assumption is that the angle of incidence α of the electric field

E is taken to be 0. This forces the electric field to lie parallel to the x-axis
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and consequently the electric field vector is given by E = (E, 0, 0). Then if we

suppose that φ = φ0(τ) solves (2.9) and assume that P0E < 0, forcing us to take

the negative sign for (2.10) as remarked upon by Stewart et al. [54], we have

that

2λ5
∂φ0

∂t
= B

∂2φ0

∂x2
− P0E cosφ0 − ǫ0ǫaE

2 sin2 θ sin φ0 cos φ0, (3.1)

where

φ0(τ) =
π

2
− 2 arctan

[

exp

{

√

β

B
τ

}]

, (3.2)

and

τ = x− ct. (3.3)

This is a key assumption. We are going to suppose that (3.2) represents the solu-

tion about which we shall perform our perturbation analysis. In the unperturbed

state we say that the system experiences no flow and we may approximate the

director profile via (3.1).

Our third assumption is that there is no transverse flow. This means that for

the moment we shall choose the y-component of the flow vector to be v(τ, t) = 0.

This means that we do not need to consider equation (2.112) for the remainder

of this analysis.

3.2 Applying a perturbation to the non-linear

system

With due regard to the assumptions outlined above, equations (2.96), (2.97),

(2.111) and (2.113) reduce to the following system of PDE’s.

Bφ,ττ = 2λ5((u− c)φ,τ + φ,t) − 2λ2u,τ sin φ cosφ− (τ1 + τ5)w,τ sin φ

+ ǫ0ǫaE
2 sin2 θ cos2 α sin φ cosφ+ P0E cosα cosφ, (3.4)

ρ(u,t + uu,τ) = −p̃,τ + φ,τ [λ2u,τ sin 2φ+ (τ1 + τ5)w,τ sinφ

+ 2λ5((c− u)φ,τ − φ,t))]
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+
∂

∂τ

[

(

µ0 +
(

2µ4 + µ3 cos2 φ
)

cos2 φ
)

u,τ

+ λ2((c− u)φ,τ − φ,t) sin 2φ

+ (κ1 + τ2 + (κ3 + τ4) cos2 φ)w,τ cosφ

]

, (3.5)

ρ(w,t + uw,τ) =
∂

∂τ

[

1
2
(µ0 + µ2 + 2λ1 + λ4 + (µ4 + µ5

− 2λ2 + 2λ3 + λ5 + λ6) cos2 φ)w,τ

+
(

κ1 + τ2 + (κ3 + τ4) cos2 φ
)

u,τ cosφ

+ (τ1 + τ5)((c− u)φ,τ − φ,t) sinφ

]

. (3.6)

u,τ = 0. (3.7)

Our task now is to develop the linearised equations we shall use in subsequent

stability analysis problems using (3.4), (3.5), (3.6) and (3.7). We begin by

introducing perturbations of the following form

φ(τ, t) = φ0(τ) + ǫφ̄(τ, t), (3.8)

u(τ, t) = u0(τ, t) + ǫū(τ, t), (3.9)

w(τ, t) = w0(τ, t) + ǫw̄(τ, t), (3.10)

p(τ, t) = p0 + ǫp̄(τ, t). (3.11)

Here we note that the parameter ǫ is chosen so that ǫ ≪ 1. Note also that

u0(τ, t) = w0(τ, t) = 0, the unperturbed pressure p0 is a constant and φ0(τ) is

the solution given in (3.2). Essentially what we are doing is the following. We

are supposing that without flow, setting v = 0 is equivalent to setting ǫ = 0.

Then (3.8), (3.9), (3.10) and (3.11) reduce to

φ(τ, t) = φ0(τ), (3.12)

u(τ, t) = 0, (3.13)

w(τ, t) = 0, (3.14)

p(τ, t) = p0. (3.15)
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By making 0 < ǫ ≪ 1 we are perturbing about a known state φ0(τ). From

this we suppose that, however hydrodynamic flow is initially induced in the

modelled system, the result is that the system is perturbed from its initial state

(3.12)-(3.15) to its perturbed state (3.8)-(3.11). Our linearised equations will be

functions of the perturbation terms φ̄(τ, t), ū(τ, t), w̄(τ, t) and p̄(τ, t) the initial

state φ0(τ), and their derivatives.

Substituting (3.8), (3.9), (3.10) and (3.11) into our system of PDE’s given by

(3.4), (3.5), (3.6) and (3.7), discarding terms of O(ǫ2) and higher and handling

the O(ǫ0) terms as discussed earlier by assuming they are approximately zero

we arrive at the following expressions for the linearised perturbation equations.

Firstly, the conserved angular momentum equation (3.4) yields

2λ5

(

φ̄,t − cφ̄,τ
)

= Bφ̄,ττ + λ2ū,τ sin 2φ0 + (τ1 + τ5)w̄,τ sinφ0 − 2λ5ūφ0,τ

−
(

ǫ0ǫaE
2 sin2 θ cos 2φ0 − P0E sin φ0

)

φ̄. (3.16)

As expected all of the perturbation terms appear to first order only. Next the

conserved linear momentum equation (3.5) results in the following perturbation

equation

p̄,τ + ρū,t − µ0ū,ττ − 2λ2cφ0,τ φ̄,τ cos2 φ0

+ 2λ2

[

c sin 2φ0φ0,τ φ̄− (cφ̄,τ − φ0,τ ū− φ̄,t) cos2 φ0

]

φ0,τ

− 2λ2 sinφ0 cosφ0ū,τφ0,τ

+ 2λ2c sin2 φ0φ0,τ φ̄,τ

+ 2λ2c sin2 φ0φ̄φ0,ττ

− 2λ2

[

c cosφ0φ̄φ0,ττ +
(

cφ̄,ττ − φ̄,τ t − φ0,τ ū,τ − ūφ0,ττ

)

sinφ0

]

cos φ0

− 2λ5cφ0,τ φ̄,τ

+ 2λ5

[

φ0,τ ū+ φ̄,t − cφ̄,τ
]

φ0,τ

+ 2µ3φ0,τ ū,τ cos3 φ0 sin φ0
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−
[

2µ4 + µ3 cos2 φ0

] [

ū,τφ0,τ sin 2φ0 − ū,ττ cos2 φ0

]

+ 2 (κ3 + τ4)φ0,τ w̄,τ cos2 φ0 sinφ0

+
[

κ1 + τ2 + (κ3 + τ4) cos2 φ0

]

sin φ0φ0,τ w̄,τ

− (τ1 + τ5) sin φ0w̄,τφ0,τ

−
[

κ1 + τ2 + (κ3 + τ4) cos2 φ0

]

cosφ0w̄,ττ = 0, (3.17)

whilst equation (3.6) reduces to

ρw̄,t − (τ1 + τ5) cφ̄φ0,ττ cos φ0

− (τ1 + τ5)
[

cφ̄,ττ − φ0,τ ū,τ − φ̄,τ t − φ0,ττ ū
]

sinφ0

− (τ1 + τ5) cφ0,τ φ̄,τ cosφ0

− (τ1 + τ5)
[(

cφ̄,τ − φ0,τ ū− φ̄,t
)

cosφ0 − cφ0,τ φ̄ sinφ0

]

φ0,τ

+ 2 (κ3 + τ4)φ0,τ ū,τ cos2 φ0 sinφ0

− 1
2
w̄,ττ [µ0 + µ2 + 2λ1 + λ4 + (µ4 + µ5 − 2λ2 + 2λ3 + λ6 + λ5) cos2 φ0]

+ w̄,τ [µ4 + µ5 − 2λ2 + 2λ3 + λ6 + λ5] cosφ0 sinφ0φ0,τ

+
[

κ1 + τ2 + (κ3 + τ4) cos2 φ0

]

ū,τφ0,τ sinφ0

−
[

κ1 + τ2 + (κ3 + τ4) cos2 φ0

]

ū,ττ cosφ0 = 0. (3.18)

Finally the linearised conserved mass equation maybe specified by

ū,τ = 0. (3.19)

3.3 Expressing the linearised system in terms

of hyperbolic functions

Note that with the exception of (3.19) all of the equations contain terms of the

form φ0,τ , φ0,ττ , sin φ0, cosφ0, sin 2φ0 and cos 2φ0. Then using (3.2) we may

write

dφ0

dτ
= −ζsech(ζτ), (3.20)
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d2φ0

dτ 2
= ζ2sech(ζτ) tanh(ζτ), (3.21)

sinφ0 = − tanh(ζτ), (3.22)

cosφ0 = sech(ζτ), (3.23)

sin 2φ0 = −2 tanh(ζτ)sech(ζτ), (3.24)

cos 2φ0 = sech2(ζτ) − tanh2(ζτ). (3.25)

where

ζ =

√

β

B
. (3.26)

Consequently equations (3.16), (3.17), (3.18) and (3.19) may be expressed in

terms of hyperbolic functions as follows

2λ5

(

φ̄,t − cφ̄,τ
)

= Bφ̄,ττ − 2λ2 tanh(ζτ)sech(ζτ)ū,τ

− (τ1 + τ5) tanh(ζτ)w̄,τ + 2λ5ζsech(ζτ)ū

− (ǫ0ǫaE
2 sin2 θ

(

sech2(ζτ) − tanh2(ζτ)
)

+ P0E tanh(ζτ))φ̄, (3.27)

p̄,τ + ρū,t + 2λ2cζsech
3(ζτ)φ̄,τ

+ 2λ2ζ [4c tanh(ζτ)sech(ζτ)φ̄

+ (cφ̄,τ + ζsech(ζτ)ū− φ̄,t)(sech
2(ζτ) − tanh2(ζτ))]sech(ζτ)

− 2λ2ζ tanh(ζτ)sech2(ζτ)ū,τ

+ 2λ2cζ
2 tanh3(ζτ)sech(ζτ)φ̄

− 2λ2[cζ
2sech2(ζτ) tanh(ζτ)φ̄

−
(

cφ̄,ττ − φ̄,τ t + ζsech(ζτ)ū,τ − ζ2sech(ζτ) tanh(ζτ)ū
)

tanh(ζτ)]sech(ζτ)

+ 2λ5cζsech(ζτ)φ̄,τ

− 2λ5ζ
[

φ̄,t − cφ̄,τ − ζsech(ζτ)ū
]

sech(τζ)

+ 2µ3ζsech
4(ζτ) tanh(ζτ)ū,τ
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−
[

2µ4 + µ3sech
2(ζτ)

]

[2ζ tanh(ζτ)ū,τ − ū,ττ ] sech
2(ζτ)

+ 2 (κ3 + τ4) ζsech
3(ζτ) tanh(ζτ)w̄,τ

+
[

κ1 + τ2 + (κ3 + τ4) sech2(ζτ)
]

ζsech(ζτ) tanh(ζτ)w̄,τ

− (τ1 + τ5) ζsech(ζτ) tanh(ζτ)w̄,τ

−
[

κ1 + τ2 + (κ3 + τ4)sech
2(ζτ)

]

sech(ζτ)w̄,ττ

− µ0ū,ττ = 0, (3.28)

ρw̄,t

− (τ1 + τ5) cζ
2sech2(ζτ) tanh(ζτ)φ̄

+ (τ1 + τ5)
[

cφ̄,ττ + ζsech(ζτ)ū,τ − φ̄,τ t − ζ2sech(ζτ) tanh(ζτ)ū
]

tanh(ζτ)

+ (τ1 + τ5) cζ sech2(ζτ)φ̄,τ

+ (τ1 + τ5) ζ
[(

cφ̄,τ + ζsech(ζτ)ū− φ̄,t
)

sech2(ζτ) − cζsech2(ζτ) tanh(ζτ)φ̄
]

+ 2 (κ3 + τ4) ζsech
3(ζτ) tanh(ζτ)ū,τ

− 1
2
w̄,ττ

[

µ0 + µ2 + 2λ1 + λ4 + (µ4 + µ5 − 2λ2 + 2λ3 + λ6 + λ5) sech2(ζτ)
]

+ w̄,τ [µ4 + µ5 − 2λ2 + 2λ3 + λ6 + λ5] ζsech
2(ζτ) tanh(ζτ)

+
[

κ1 + τ2 + (κ3 + τ4) sech2(ζτ)
]

ζsech(ζτ) tanh(ζτ)ū,τ

−
(

κ1 + τ2 + (κ3 + τ4) sech2(ζτ)
)

sech(ζτ)ū,ττ = 0. (3.29)

3.4 Discussion

So, the problem we began with at (2.96), (2.97), (2.111), (2.112) and (2.113) for

the unknowns φ, u, v, w and p has been linearised to give four perturbation equa-

tions. One of the key assumptions we made in this chapter was to assume the

absence of transverse flow. Intuitively this is plausible since we have a travelling

planar domain wall which we assume does not experience flow effects along the

length of the wall itself. Consequently we only have four equations to concern

ourselves with, a conserved mass perturbation equation (3.19), two perturba-
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tion equations relating to the conserved linear momentum equation for flow in

the x and z directions (3.28) and (3.29) and finally a perturbation equation for

conserved angular momentum effects (3.27).

By imposing a one constant approximation we chose not to study anisotropic

effects in the elastic constants, but since anisotropic effects are generally con-

sidered to be reasonably small we regard this as appropriate for an initial in-

vestigation [60]. We draw the readers attention once again to the decision to

model a system where the electric field lies in the plane. The importance of this

is drawn out where we are able to fully express the non-constant coefficients in

our model in terms of the hyperbolic functions.

Notice also that the transformation to the co-moving frame employed in

Chapter 2 implies that P0E < 0. All further analysis will be performed with

this in mind so that the polarisation P0 and electric field E will be taken to be

either E < 0 and P0 > 0 or E > 0 and P0 < 0. Note also the pressure in our

model is initially taken to be a constant p0 this is appropriate in a thin film

model of an incompressible fluid.

We shall develop in the analysis that follows techniques for determining prop-

erties of the system through the use of Fourier mode analysis. This will allow

us by the application of suitable perturbation forms, to construct differential

eigenvalue problems which may be discretized and solved algebraically using

standard linear algebra techniques. We shall begin investigating these methods

in Chapter 4.



Chapter 4

Perturbation Analysis

4.1 Introduction

We turn now to the problem of perturbation analysis. In Chapter 3 we applied

infinitesimal perturbations to the fully nonlinear system which left us with a

series of linear perturbation equations. This linearised system forms the basis for

the work which follows as we study the effect of perturbations on our continuum

model.

In Chapter 3 we concentrated on developing a set of perturbation equations

which briefly consist of five equations in total, one which captures the linear dy-

namics of the conserved angular momentum equation, three which describe the

linear dynamics of the linear momentum equations and a perturbation equation

modelling the linear response of the mass conservation equation.

With the linear equations developed the problem then boils down to choosing

an appropriate ansatz for the form of the perturbation we wish to study. In [28]

Stewart studies linearised continuum models of Smectic A materials subject to

spatially periodic perturbations of the form u ∼ eωt+iq·x. In principle we can

perform a similar type of perturbation analysis. However in the analysis which

follows we shall focus our efforts on analysing the perturbation models using

perturbations of the form u ∼ û(x)e−ωt.

68
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4.2 Non-Sinusoidal Perturbation on a Finite In-

terval

By treating the problem as a perturbation on some finite region in the scaled x

direction called τ such that |τ | ≤ δ where δ ≪ 1 we may apply perturbations of

the form proposed by Logan [59, p.240] and we seek solutions such that

φ̄(τ, t) = φ̂(τ)e−ωt (4.1)

w̄(τ, t) = ŵ(τ)e−ωt (4.2)

ū(τ, t) = û(τ)e−ωt (4.3)

p̄(τ, t) = p̂(τ)e−ωt. (4.4)

When we apply the ansatz (4.1)-(4.4) to the equations given at (3.19), (3.27),

(3.28) and (3.29) we arrive at the following system of linear perturbation equa-

tions, the first being the perturbed conserved mass equation

û,τ = 0, (4.5)

along with the perturbation equation associated with the conservation of angular

momentum equation

Bφ̂,ττ+2λ5cφ̂,τ − 2λ2 tanh(ζτ)sech(ζτ)û,τ

−(τ1 + τ5) tanh(ζτ)ŵ,τ + 2λ5ζsech(ζτ)û

−(P0E tanh(ζτ) − ǫ0ǫaE
2 sin2 θ(1 − 2 sech 2(ζτ)) − 2λ5ω) φ̂ = 0, (4.6)

and a perturbation equation associated with the third conserved linear momen-

tum equation

− ρωŵ − (τ1 + τ5)
[

cζ2sech2(ζτ) tanh(ζτ)φ̂− cζsech2(ζτ)φ̂,τ

]

+ (τ1 + τ5)
[

cφ̂,ττ + ζsech(ζτ)û,τ + ωφ̂,τ − ζ2sech(ζτ) tanh(ζτ)û
]

tanh(ζτ)

+ (τ1 + τ5)ζ
[

cφ̂,τ + ζsech(ζτ)û+ ωφ̂,τ − cζ tanh(ζτ)φ̂
]

sech2(ζτ)
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+ 2(κ3 + τ4)ζsech
3(ζτ) tanh(ζτ)û,τ

− 1
2

[

µ0 + µ2 + 2λ1 + λ4 + (µ4 + µ5 − 2λ2 + 2λ3 + λ6 + λ5)sech
2(ζτ)

]

ŵ,ττ

+ [µ4 + µ5 − 2λ2 + 2λ3 + λ6 + λ5] ζsech
2(ζτ) tanh(ζτ)ŵ,τ

+
[

κ1 + τ2 + (κ3 + τ4)sech
2(ζτ)

]

ζsech(ζτ) tanh(ζτ)û,τ

−
[

κ1 + τ2 + (κ3 + τ4)sech
2(ζτ)

]

sech(ζτ)û,ττ = 0. (4.7)

Integrating the first of these equations gives

û(τ) = κ, (4.8)

where κ is a constant, which along with û,τ = 0 and û,ττ = 0 means that

equations (4.6) and (4.7) maybe written as

Bφ̂,ττ+2λ5cφ̂,τ

−(τ1 + τ5) tanh(ζτ)ŵ,τ + 2λ5ζκsech(ζτ)

−(P0E tanh(ζτ) − ǫ0ǫaE
2 sin2 θ(1 − 2 sech 2(ζτ)) − 2λ5ω) φ̂ = 0, (4.9)

and

− ρωŵ − (τ1 + τ5)
[

cζ2sech2(ζτ) tanh(ζτ)φ̂− cζsech2(ζτ)φ̂,τ

]

+ (τ1 + τ5)
[

cφ̂,ττ + ωφ̂,τ − κζ2sech(ζτ) tanh(ζτ)
]

tanh(ζτ)

+ (τ1 + τ5)ζ
[

cφ̂,τ + ζκsech(ζτ) + ωφ̂,τ − cζ tanh(ζτ)φ̂
]

sech2(ζτ)

− 1
2

[

µ0 + µ2 + 2λ1 + λ4 + (µ4 + µ5 − 2λ2 + 2λ3 + λ6 + λ5)sech
2(ζτ)

]

ŵ,ττ

+ [µ4 + µ5 − 2λ2 + 2λ3 + λ6 + λ5] ζsech
2(ζτ) tanh(ζτ)ŵ,τ = 0. (4.10)

For convenience we shall assume that the only non-zero viscosities in the model

are µ0, λ2, λ5, τ1 and τ5. Furthermore we shall let κ = 0 so that the flow

velocity û(τ) = 0. Taking this into account we find that the system collapses to

two coupled linear second order ODE’s

B
d2φ̂

dτ 2
+2λ5c

dφ̂

dτ
− (τ1 + τ5) tanh(ζτ)

dŵ

dτ
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−(P0E tanh(ζτ) − ǫ0ǫaE
2 sin2 θ(1 − 2 sech 2(ζτ)) − 2λ5ω) φ̂ = 0,

(4.11)

c(τ1 + τ5) tanh(ζτ)
d2φ̂

dτ 2
+

1

2

(

(2λ2 − λ5) sech 2(ζτ) − µ0

) d2ŵ

dτ 2

+ (τ1 + τ5)
(

2cζ sech2 (ζτ) + ω tanh(ζτ)
) dφ̂

dτ

− (2λ2 − λ5) ζ sech2 (ζτ) tanh(ζτ)
dŵ

dτ

+ (τ1 + τ5)
(

ωζ − 2cζ2 tanh(ζτ)
)

sech 2(ζτ)φ̂− ρωŵ = 0, (4.12)

with boundary conditions

φ̂(−δ) = φ̂(δ) = 0 and ŵ(−δ) = ŵ(δ) = 0, (4.13)

where

ζ =

√

β

B
, (4.14)

and

β = ǫ0|ǫa|E2 sin2 θ. (4.15)

4.2.1 The constant coefficient differential eigenvalue prob-

lem

The problem posed at (4.11), (4.12) and (4.13) is a coupled linear eigenvalue

problem with non-constant coefficients. Needless to say the system is highly

complex and as we shall see non-self-adjoint in nature. Inevitably we shall be

forced to resort to approximation methods since closed form solutions do not

exist. However the techniques we would normally apply in determining solutions

are unavailable in this case because of the non-self-adjoint nature of the problem.

With this in mind we shall in this section establish some of the mathematical

machinery we shall use in later sections.

We start by simplifying (4.11), (4.12) and (4.13) and make a first attempt

at analysing the problem. Suppose we are interested in the behaviour of the
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perturbed system in the vicinity of the centre of the domain wall. Consider the

coefficients in (4.11) and (4.12). We shall for convenience replace the coefficients

tanh(ζτ) and sech(ζτ) with their values at τ = 0. Furthermore, using the

transformation

ẑ(τ) = ρŵ(τ) − ζ(τ1 + τ5)φ̂(τ), (4.16)

and substituting for ŵ(τ) using (4.16) in (4.11) and (4.12), the problem reduces

to the following system of equations

− B

2λ5

d2φ̂

dτ 2
− c

dφ̂

dτ
− ǫ0|ǫa|E2 sin2 θ

2λ5

φ̂ = ωφ̂, (4.17)

1

2ρ
(2λ2 − λ5 − µ0)

{

d2ẑ

dτ 2
+ ζ(τ1 + τ5)

d2φ̂

dτ 2

}

+ 2cζ(τ1 + τ5)
dφ̂

dτ
= ωẑ.

(4.18)

Now with the equations in this form we have what is essentially an eigenvalue

problem for ω. We proceed by defining the following constants

ã =
B

2λ5
, b̃ = c, c̃ =

ǫ0|ǫa|E2 sin2 θ

2λ5
, (4.19)

d̃ = − 1

2ρ
(2λ2 − λ5 − µ0), ẽ =

ζ

2ρ
(2λ2 − λ5 − µ0)(τ1 + τ5). (4.20)

f̃ = 2cζ(τ1 + τ5). (4.21)

Note that in the definition for d̃ we are assuming that 2λ2 − λ5 − µ0 < 0. We

justify this assumption by observing that as we approach the phase boundary

between smectic and nematic, the viscosities λ2 and λ5 which are both temper-

ature dependent approach zero since they are only present in the smectic phase.

The Newtonian viscosity µ0 is however always present and so at lower tempera-

tures we expect d̃ to be positive. This allows us to re-write (4.17) and (4.18) as

follows

−ãd
2φ̂

dτ 2
− b̃

dφ̂

dτ
− c̃φ̂ = ωφ̂, (4.22)

−d̃ d
2ẑ

dτ 2
+ ẽ

d2φ̂

dτ 2
+ f̃

dφ̂

dτ
= ωẑ. (4.23)



73

Next we re-write (4.22) and (4.23) in operator form

Lx = ω x, (4.24)

where the linear differential operator L and vector x are given by

L =

[

L11 L12

L21 L22

]

, x =

[

φ̂
ẑ

]

, (4.25)

so that the operator elements Lij are defined to be

L11 = −ã d
2

dτ 2
− b̃

d

dτ
− c̃,

L12 = 0,

L21 = ẽ
d2

dτ 2
+ f̃

d

dτ
,

L22 = −d̃ d
2

dτ 2
, (4.26)

along with the following homogeneous boundary conditions

x(−δ) = x(δ) = 0. (4.27)

We shall return to the constant coefficient operator problem later in this

chapter. Next however we shall explore the full perturbation problem as given

in (4.11) and (4.12) and show how it too may be posed as an operator problem.

4.2.2 The generalised differential eigenvalue problem

The full system of perturbation equations is given in (4.11) and (4.12) along

with boundary conditions given by (4.13) and parameters (4.14) and (4.15).

We shall begin by showing how the system may be written in the form of a

generalised eigenvalue problem. As a start we shall assume we are at or near

a phase transition, for example in the vicinity of a smectic C*-smectic A phase

transition with a transition temperature TAC . We assume that near the transi-

tion temperature the smectic cone angle is regarded as small and temperature
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sensitive θ = θ(T ). As we increase the temperature the cone angle decreases,

until finally, at the transition temperature TAC , we find θ(TAC) = 0. This small

cone angle assumption is reasonable and has been exploited to investigate the

behaviour of ferroelectrics materials near transition temperatures by for exam-

ple Lagerwall [30, p.177]. Then we may make the approximation sin θ ≈ θ. This

means that the viscosities λ2, λ5, τ2 and τ5 may be replaced with the equivalent

tilt angle expressions [4, 49]. We may treat the elastic constant B in the same

manner replacing it with the equivalent tilt angle expression [49, 42]. For the

viscosities we have that the tilt angle equivalents are given by

τ1 = τ̄1θ, τ5 = τ̄5θ, λ2 = λ̄2θ
2, λ5 = λ̄5θ

2. (4.28)

Similarly the elastic constant B was chosen in Chapter 2 to conform to the one

constant approximation B = B1 = B2. This is the notation introduced by Saupe

[41]. The tilt angle equivalent expressions for B1 and B2 are given by

B1 = B̄1θ
2, B2 = B̄2θ

2. (4.29)

With this in mind we shall use the following tilt angle equivalent expression

B = B̄θ2, (4.30)

where we make the association B̄ = B̄1 = B̄2. Then we may re-write equations

(4.11) and (4.12) as

B̄θ2d
2φ̂

dτ 2
+2λ̄5θ

2c
dφ̂

dτ
− (τ̄1 + τ̄5)θ tanh(ζτ)

dŵ

dτ

−(P0E tanh(ζτ) − ǫ0ǫaE
2θ2(1 − 2 sech 2(ζτ)) − 2λ̄5θ

2ω) φ̂ = 0,

(4.31)

c(τ̄1 + τ̄5)θ tanh(ζτ)
d2φ̂

dτ 2
+

1

2

((

2λ̄2 − λ̄5

)

θ2 sech 2(ζτ) − µ0

) d2ŵ

dτ 2

+ (τ̄1 + τ̄5) θ
(

2cζ sech2 (ζτ) + ω tanh(ζτ)
) dφ̂

dτ
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−
(

2λ̄2 − λ̄5

)

θ2ζ sech2 (ζτ) tanh(ζτ)
dŵ

dτ

+ (τ̄1 + τ̄5) θ
(

ωζ − 2cζ2 tanh(ζτ)
)

sech 2(ζτ)φ̂− ρωŵ = 0, (4.32)

with the same parameters (4.14) and (4.15) and boundary conditions (4.13) as

before. The problem posed at (4.31) and (4.32) is essentially a linear operator

problem and we may write it as follows

Ax = ωBx, (4.33)

where we define the operators A and B and the vector x to be

A =

[

A11 A12

A21 A22

]

, B =

[

B11 B12

B21 B22

]

, x =

[

φ̂
ẑ

]

. (4.34)

As before the boundary conditions for this problem are

x(−δ) = x(δ) = 0. (4.35)

Now the operator elements A and B may be written in the form

A11 = B̄θ2 d
2

dτ 2
+ 2λ̄5θ

2c
d

dτ
− (P0E tanh(ζτ) − ǫ0ǫaE

2θ2(1 − 2sech2(ζτ))),

A12 = −(τ̄1 + τ̄5)θ
d

dτ
,

A21 = (τ̄1 + τ̄5)θ(c tanh(ζτ)
d2

dτ 2
+ 2cζsech2(ζτ)

d

dτ
− 2ζ2 tanh(ζτ)sech2(ζτ)),

A22 =
1

2
((2λ̄2 − λ̄5)θ

2sech2(ζτ) − µ0)
d2

dτ 2
− (2λ̄2 − λ̄5)θ

2ζsech2(ζτ) tanh(ζτ)
d

dτ
,

(4.36)

and

B11 = 2λ̄5θ
2,

B12 = 0,

B21 = (τ̄1 + τ̄5)θ(tanh(ζτ)
d

dτ
+ ζsech2(ζτ)),

B22 = −ρ. (4.37)
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And this allow us to write (4.33) in the form

(A− ωB)x = 0. (4.38)

Compare (4.38) with the constant coefficient differential eigenvalue problem

(4.24) where the operator B is replaced with the identity operator. The equation

(4.38) represents what is known as a generalised differential eigenvalue problem.

4.3 Stability analysis by weighted residual meth-

ods

In Appendix F we consider the conditions required to make an operator L ∈ R2×2

self-adjoint. We can show using these conditions that the generalised differen-

tial eigenvalue problem (4.38) and the simplified differential eigenvalue problem

(4.24) are both non-self-adjoint. In fact in order to ensure self-adjointness in the

generalised differential eigenvalue problem given at (4.33) requires [61]

∫ b

a

(uAv − vAu) dx = 0, and

∫ b

a

(uBv − vBu) dx = 0, u, v ∈ uTF , (4.39)

where uTF represents the set of admissible trial functions. Analysing the prop-

erties of non-self-adjoint operators [62] is notoriously difficult. In order to ap-

preciate the problems involved in studying non-self-adjoint systems it pays to

consider briefly the relative ease with which the spectral properties of a self-

adjoint system may be determined.

Self-adjoint linear operators enjoy the distinct advantage of having an exten-

sive and well researched canon of solution techniques provided by the spectral

theory. Operator problems which are self-adjoint in character [63] are often ap-

proached using a variational method such as the Rayleigh-Ritz method or the

assumed modes method [64].

Numerical techniques such as the Rayleigh-Ritz method are available for the

determination the spectral properties of the eigenvalues of self-adjoint operator
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problems. In a self-adjoint system, by exploiting the orthogonality of the basis

functions which constrains the sum of the squares of the Fourier coefficients to

be equal to one, and then establishing criteria which ensure that the operator

is positive definite the eigenvalues of the operator are then guaranteed to be

non-negative.

By applying the Ritz method, numerically computed approximations to the

first eigenvalue provide an upper bound on the exact value of the first eigenvalue

whose accuracy improves as the number of orthogonal functions satisfying the

orthogonality condition is increased. This method is illustrated in [63]. Certainly

in the case of [63] the value of the Rayleigh-Ritz scheme lies in the ability

of the technique to determine perturbation response times since the dominant

behaviour of the decaying perturbation is controlled by the first eigenvalue.

In order to tackle either of the non-self-adjoint problems discussed earlier in

this chapter we are forced to use numerical approximations. The nature of the

equations at (4.38) and (4.24) suggests the use of weighted residual methods as

a method of solution. Broadly speaking weighted residual methods discussed in

Appendix E utilise a weighting function which when applied to a residual gives

an expression which when integrated should vanish identically, the so called

orthogonality condition.

Schemes which fall under the scope of weighted residuals include among

others [65, 64, 66, 67] the Galerkin method, the collocation method, the least

squares method and the method of subdomains. The solution method we shall

study here will be the method of Galerkin and we shall encounter the collocation

method later in this chapter. We begin our analysis by considering the constant

coefficient problem (4.24) and (4.25) along with the boundary conditions (4.27)
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4.3.1 Analysis of the constant coefficient differential eigen-

value problem

In this section we shall concern ourselves with the analysis of (4.24) and (4.25)

along with boundary conditions (4.27). As was demonstrated in sub-section

(4.2.1) we may reduce the full differential eigenvalue problem to one which in-

volves constant coefficients. Whilst this is not an accurate representation of the

full differential eigenvalue problem, it is nonetheless accessible and it is possible

to demonstrate in broad terms how the method of weighted residuals may be

applied to a non-self-adjoint differential eigenvalue problem.

We shall concern ourselves with studying the Galerkin method as described

in Appendix E. To begin with consider the problem as initially posed at (4.22)

and (4.23). We begin by defining the vector xn ∈ C2×1 along with elements φ̂n

and ẑn thus

xn =

[

φ̂n

ẑn

]

, φ̂n =

n
∑

j=1

ajφj , ẑ
n =

2n
∑

j=n+1

ajφj. (4.40)

We assume here that φj ∈ C2[−δ, δ] are trial functions chosen to satisfy the

boundary conditions at τ = −δ and τ = δ. We form the residuals R1(x
n, τ) and

R2(x
n, τ) and write these as follows

R1(x
n, τ) = L11φ̂

n + L12ẑ
n − ωφ̂n

= − ã

n
∑

j=1

ajφ
′′
j − b̃

n
∑

j=1

ajφ
′
j − c̃

n
∑

j=1

ajφj − ω

n
∑

j=1

ajφj, (4.41)

R2(x
n, τ) = L21φ̂

n + L22ẑ
n − ωẑn

= − d̃
2n
∑

j=n+1

ajφ
′′
j + ẽ

n
∑

j=1

ajφ
′′
j + f̃

n
∑

j=1

ajφ
′
j − ω

2n
∑

j=n+1

ajφj .

. (4.42)

Next we multiply (4.41) by φi, i = 1, 2, . . . , n and (4.42) by φi, i = n + 1, n +

2, . . . , 2n giving

−ã
n
∑

j=1

ajφ
′′
jφi−b̃

n
∑

j=1

ajφ
′
jφi−c̃

n
∑

j=1

ajφjφi=ω

n
∑

j=1

ajφjφi, i = 1, 2, . . . , n, (4.43)
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and

−d̃
2n
∑

j=n+1

ajφ
′′
jφi+ ẽ

n
∑

j=1

ajφ
′′
jφi+ f̃

n
∑

j=1

ajφ
′
jφi=ω

2n
∑

j=n+1

ajφjφi, i = n+1, . . . , 2n..

(4.44)

This step effectively discretizes the problem. Then integrating (4.43) and (4.44)

with respect to τ over the interval τ ∈ [−δ, δ] we find that the problem reduces

to one of the form

2n
∑

j=1

(pijaj + qijaj + rijaj − ωsijaj) = 0, i = 1, . . . , 2n. (4.45)

Now if we let

Aij = pij + qij + rij , (4.46)

and

Bij = sij , (4.47)

along with

a = (a1, a2, . . . , a2n)
T , (4.48)

we may write (4.45) as the generalised eigenvalue problem

Aa = ωBa. (4.49)

The differential eigenvalue problem has at this point been reduced to the form

of an algebraic eigenvalue problem. The system represents 2n homogeneous

linear simultaneous equations in 2n unknowns. The task now is to determine

the discrete eigenvalue spectrum and we tackle this in the next section.

4.3.2 Derivation of the algebraic eigenvalue problem

We shall employ linear algebra solution techniques in order to determine the

discrete eigenvalue spectrum. Referring to the algebraic problem posed at (4.45)
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the matrix elements pij, qij, rij and sij may be written as follows. First of all

the elements represented by pij

pij = −ã
∫ δ

−δ
φ′′
jφidτ = ã

∫ δ

−δ
φ′
jφ

′
idτ = pji, i, j = 1, 2, . . . , n, (4.50)

pij = pji = 0, i = 1, 2, . . . , n; j = n + 1, n+ 2, . . . , 2n, (4.51)

pij = −ẽ
∫ δ

−δ
φ′′
jφidτ = ẽ

∫ δ

−δ
φ′
jφ

′
idτ = pji, i = n + 1, . . . , 2n; j = 1, . . . , n

(4.52)

pij = −d̃
∫ δ

−δ
φ′′
jφidτ = d̃

∫ δ

−δ
φ′
jφ

′
idτ = pji, i, j = n+ 1, . . . , 2n. (4.53)

Similarly for qij we find the following expressions

qij = −b̃
∫ δ

−δ
φ′
jφidτ, i, j = 1, 2, . . . , n, (4.54)

qij = qji = 0, i = 1, 2, . . . , n; j = n+ 1, n+ 2, . . . , 2n, (4.55)

qij = f̃

∫ δ

−δ
φ′
jφidτ, i = n + 1, . . . , 2n; j = 1, . . . , n, (4.56)

qij = qji = 0, i, j = n+ 1, . . . , 2n. (4.57)

In addition we find that rij maybe written in the form

rij = −c̃
∫ δ

−δ
φjφidτ = rji, i, j = 1, 2 . . . , n, (4.58)

rij = rji = 0, i = 1, 2, . . . , n; j = n + 1, n+ 2, . . . , 2n, (4.59)

rij = rji = 0, i = n+ 1, n+ 2, . . . , 2n; j = 1, 2, . . . , n, (4.60)

rij = rji = 0, i, j = n+ 1, n+ 2, . . . , 2n. (4.61)

And finally, the matrix elements sij maybe written

sij =

∫ δ

−δ
φiφjdτ = sji, i, j = 1, 2, . . . , n, (4.62)

sij = sji = 0, i = 1, 2, . . . , n; j = n+ 1, n + 2, . . . , 2n, (4.63)

sij = sji = 0, i = n+ 1, n+ 2, . . . , 2n; j = 1, 2, . . . , n, (4.64)

sij =

∫ δ

−δ
φiφjdτ = sji, i, j = n+ 1, n+ 2, . . . , 2n. (4.65)
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It is worth noting a number of points at this stage. The first is that the ma-

trices A and B which form our eigenvalue problem as posed at (4.49), are non-

hermitian. This is to be expected given that the differential eigenvalue problem

we began with was found to be non-self-adjoint. Of course this means that the

eigenvalues for the system are generally complex so we expect that ω ∈ C.

Solving an algebraic eigenvalue problem such as this involves solving for the

eigenvalue ω and the Fourier coefficients, the aj’s of the problem. This typically

requires resorting to solution techniques such as those presented in [65, p.120-

124]. Our principal aim here shall be to analyse the eigenvalue spectrum for

this system and so we shall not pursue a more general study of the Fourier

coefficients at this time.

The next point relates to the selection of trial functions, the φj ’s and zj ’s in

the problem. We need to select trial functions which satisfy the boundary con-

ditions of our problem. In order to ensure rapid convergence of the eigenvalues,

we would normally seek trial functions which represented good approximations

to the actual eigenfunctions of the system under consideration.

Here, however for convenience we shall choose our trial functions so that they

simply satisfy the boundary conditions specified by the problem. Although the

rate of convergence is important our main concern is to demonstrate the method

working.

So for our trial functions we may in principle use trigonometric or polynomial

forms so long as they satisfy our boundary conditions. With this in mind we

shall use polynomial trial functions of the following form

φj(τ) = (τ − δ)j(τ + δ). (4.66)

Then we may approximate our perturbation solutions in the form

φ̂n(τ) =

n
∑

j=1

aj(τ − δ)j(τ + δ), ẑn(τ) =

2n
∑

j=n+1

aj(τ − δ)j(τ + δ). (4.67)
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Now, having specified the trial functions so that they exactly match the bound-

ary conditions we investigate the eigenvalues of (4.49). We shall restrict our

initial investigation to the case where n = 2. This gives an algebraic eigenvalue

problem consisting of four homogeneous linear simultaneous equations in four

unknowns. We write (4.49) in the form

(A − ωB)a = 0. (4.68)

Then letting

M = A − ωB, (4.69)

we are left to solve the following system of equations

Ma = 0. (4.70)

The elements of M which we denote as mij may be determined straightforwardly

using (4.69) and (4.50)-(4.62). The elements of M are given then by

m11 =
8

3
ãδ3 − 16

15
c̃δ5 − 16

15
ωδ5,

m12 =
16

15
c̃δ6 +

16

15
ωδ6 − 8

15
b̃δ5 − 8

3
ãδ4,

m13 = 0,

m14 = 0,

m21 =
16

15
c̃δ6 +

16

15
ωδ6 +

8

15
b̃δ5 − 8

3
ãδ4,

m22 =
64

15
ãδ5 − 128

105
c̃δ7 − 128

105
ωδ7,

m23 = 0,

m24 = 0,

m31 =
16

15
f̃ δ6 − 16

5
ẽδ5,

m32 =
32

5
ẽδ6 − 64

105
f̃ δ7,

m33 =
384

35
d̃δ7 − 128

63
ωδ9,
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m34 =
128

45
ωδ10 − 128

7
d̃δ8,

m41 =
64

15
ẽδ6 − 64

35
f̃δ7,

m42 =
32

21
f̃ δ8 − 1024

105
ẽδ7,

m43 =
128

45
ωδ10 − 128

7
d̃δ8,

m44 =
2048

63
d̃δ9 − 2048

495
ωδ11. (4.71)

Now in order to solve (4.70) we first must determine values of ω for which (4.70)

has non-trivial solutions. In other words, borrowing notation from [68] and

recalling (4.69), we seek a set of eigenvalues σ(A,B) such that

σ(A,B) = {ω ∈ C : det(A − ωB) = 0}. (4.72)

We may calculate det(A − ωB) = 0 using a symbolic mathematics package such

as MAPLE and we find that the set of eigenvalues σ(A,B) satisfying (4.70) is

given by

σ(A,B) =
(

247
21

± 8
√

466
21

)

d̃
δ2
, 1

2δ2

(

13ã− 2δ2c̃±
√

64ã2 − 7δ2b̃2
)

. (4.73)

Note that the first two eigenvalues are always real and positive since

247
21

− 8
√

466
21

≈ 3.538 > 0 and d̃
δ2
> 0. (4.74)

because as we noted earlier d̃ > 0. Note also that the remaining roots are real if

64ã2 − 7δ2b̃2 = 0, (4.75)

imaginary if

64ã2 − 7δ2b̃2 < 0 and 13ã− 2δ2c̃ = 0, (4.76)

and complex if

64ã2 − 7δ2b̃2 < 0 and 13ã− 2δ2c̃ 6= 0, (4.77)

In order to get a quantitative feel for how the Galerkin method behaves when

applied to the model problem we have been considering we shall perform a
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numerical analysis using appropriate physical parameters. First of all referring

to Carlsson et. al. and Stewart [49, 4] we may construct a table of values

which reflect typical values for viscosity, elastic constants, material density and

dielectric and polarisation terms. We must be mindful however of the fact that

the matrix M is structured in such a way that terms containing τ1 and τ5 do not

generally appear in the characteristic equation and consequently play no role in

determining the eigenvalue response of this particular system.

We begin by defining the viscous terms we shall be employing. Recalling

that the viscous terms λ5 and λ2 are temperature dependent whereas µ0 is not

we list in Table 4.1 the values µ0, λ̄5 and λ̄2. Referring to [4] we determine the

Parameter Symbol Value

Isotropic viscosity µ0 0.2 Pa s
Nematic-like viscosities λ̄2 −0.12 Pa s

λ̄5 0.1 Pa s

Table 4.1: Isotropic and nematic-like viscosities

value of θ for this problem by supposing that the relationship between λ5 and

λ2 is given by the expression

λ5 − λ2 =
(

λ̄5 − λ̄2

)

θ2 =
13

400
. (4.78)

Then we may express the smectic cone angle θ as

θ = ±
√

13

20

{

λ̄5 − λ̄2

}− 1

2 . (4.79)

Now with B expressed in its θ dependent form as given at (4.30) we define the

remaining physical parameters in Table 4.2. We note here that the soliton model

adopted throughout this analysis assumes a negative dielectric anisotropy. This

is regarded as a reasonable assumption since many smectic C∗ materials possess

negative dielectric anisotropy. For instance Müller and Jayaraman [69] studied
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the dielectric properties of ferroelectric compounds 80SI and FeC8 and found

the dielectric anisotropy to be negative over large temperature ranges in both

materials. Other smectic C∗ materials reported as having negative dielectric

anisotropy include SCE3 [4, p. 313] which at 15◦C has a dielectric anisotropy of

ǫa = −1.94 as reported by MacGregor [70]. The manufacturer Merck remarks

in its handbook on liquid crystal mixtures [71] that it is desirable for ferroelec-

tric materials to possess negative dielectric anisotropy specifically in order to

obtain dielectric stabilization during the switching process in SSFLC devices.

Stabilization via an a.c. field is explored in detail by Gouda et. al. [33]. Using

Parameter Symbol Value

Smectic cone angle θ 0.384 rad
Elastic constant B̄ 1 × 10−11 N
Polarisation constant P0 −100µC m−2

Electric field E 0.1 V µm−1

Permittivity of free space ǫ0 8.854 × 10−12 F m−1

Dielectric anisotropy ǫa −2
Density ρ 1000 kg m−3

Table 4.2: Smectic cone angle, elastic, dielectric and material density parameters

the parameter values tabulated in Tables 4.1 and 4.2 we choose values of n such

that n ∈ [2, 6]. Then starting at n = 2 we form the characteristic equation

corresponding to the set of eigenvalues specified at (4.72), and form successively

higher order approximations by considering larger values of n. As we increase the

number of terms we use in the perturbation expansions we refine the eigenvalue

approximations.

For n = 2 with the parameters given above we find that there are four

eigenvalues in total, two real and two complex conjugate. When n = 4 we find

that there are eight eigenvalues four real and four complex. By selecting the

first pair of real roots generated when n = 2 and tracking these eigenvalues

for successively larger values of n we may show numerically that in the case
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of the first eigenmodes the eigenvalues demonstrate convergent behaviour. We

track the first two real positive eigenvalues for our algebraic eigenvalue problem

and plot the results in Figure 4.1. We plot the eigenvalues up to n = 12 so that
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Figure 4.1: Plots of the first two real eigenvalues λ1 and λ2 versus the total
number of trial functions N used in the approximations. The interval width
used to compute these values was 200µm. The time taken to generate the data
for N = 24 was of the order of four days.

N = 2n = 24 in the figures. Fundamentally what this means is that we are using

at most 12 summed trial functions for each of the perturbation terms giving 24

in total. As noted in the figure, the time taken to compute the eigenmodes

when N = 24 (that is when n = 12) was approximately four days using the

symbolic mathematics package MAPLE. In order to resolve all 24 roots 120

digits of precision were required. This may seem excessive but the precision had

to be set high in order that the root finding function could successfully identify

the roots. Setting the number of digits of precision lower introduced numerical
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errors and resulted in the Newton solver becoming unstable.

The graphs shown in Figure 4.1 indicate that the first two eigenvalues appear

to be converging to finite values as expected. This does not of course consti-

tute a proof. However it strongly suggests that the Galerkin method is finding

appropriate eigenvalues given the trial functions we are assuming. In order to

back this up we show in Figure 4.2 the absolute error between consecutive cal-

culations of the first and second real eigenvalues λ1 and λ2. We shall extend the
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method we have outlined here to examine the very much more complex problem

represented by (4.38), (4.37), (4.36) and (4.35) in the next section where we

study the operator problem in full.
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4.3.3 Analysis of the generalised differential eigenvalue

problem

We shall in this section investigate the full differential eigenvalue problem using

the ideas we developed in the previous section. In particular we aim to develop a

physical understanding of the behaviour of the system specified at (4.38), (4.37),

(4.36) and (4.35) and we shall rely heavily on numerical techniques as we do so.

Because of the general complexity of the full non-self-adjoint problem we

shall not be delving too deeply into the mathematical details of the weighted

residual method used to investigate the system. The techniques employed are

much the same as those used for the constant coefficient eigenvalue problem and

the general method of implementation has already been discussed.

Of principal concern shall be the investigation of the stability properties

of the system. Throughout this section we shall concentrate on a relatively

simple model where each of the perturbation terms is approximated by two trial

functions. Whilst two terms per approximation does not represent the height of

accuracy, it does give quantitatively useful results.

We shall later in this study, make use of the notion of marginal stability. It is

clear from numerical work that frequently, in the models we intend to investigate,

the first four eigenvalues tend to occur in the form of two real positive eigenvalues

and two complex conjugate eigenvalues all of which are nonlinearly dependent

on the electric field strength E.

Typically we might expect these eigenvalues to represent the dominant eigen-

modes in the spectrum for the problem in hand. In particular so far as stability

is concerned, given the form we have assumed for exponential decay any eigen-

value with ℜ(ω) > 0 represents a stable perturbation. Of course the eigenvalue

ω is strongly E field dependent so that generally ω = ω(E). Then as we vary

E the eigenvalue can in principle cross from positive to negative or negative
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to positive. As an example consider the graphs in Figure 4.3. Note first that
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Figure 4.3: Plot of the first four eigenvalues for the problem as described at
(4.38), (4.37), (4.36) and (4.35) with varying E field. The data presented in
Table’s 4.1 and 4.2 were used along with τ̄5 = 0.01. Then τ̄1 is determined from
τ̄1 = τ̄5 − 0.0273 θ−1. To plot the figures we set n = 2 and used 20 significant
digits to perform the calculations. The interval width used to compute these
values was taken to be 200µm wide, so δ = 100µm.

there are four eigenvalues ω1, ω2, ω3 and ω4. Two of the eigenvalues ω3 and ω4

are generally real and positive. The other eigenvalues ω1 and ω2 are generally

complex conjugate up to a field strength of E ≈ 1 × 106V m−1. Beyond this

value of E we find that ω1 and ω2 become generally real and this is indicated

by the bifurcation point beyond which ℜ(ω1) 6= ℜ(ω2). When the electric field

strength is of the order of 1× 10−5V m−1 we notice that the real parts of ω1 and

ω2 change sign and we denote the value of E at which this takes place by Ec.

When E < Ec we find that ℜ(ω1) < 0 and ℜ(ω2) < 0. Similarly when E > Ec

we find that ℜ(ω1) > 0 and ℜ(ω2) > 0. The point at which the real parts of ω1,2
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cross the E axis represent a transition from an unstable to a stable state.

We choose to interpret this stability transition in the following way. Consider

equation (2.9). We know that this equation has an exact solution given by (2.10)

along with (2.11) and (2.12). This solution predicts the existence of a travelling

wave for all values of the electric field E. However it is known from experiment

that travelling wave phenomena do not occur at all field strengths from E > 0.

In fact it is generally the case that fields of the order of 1× 105 − 1× 107 Vm−1

are required in order to initiate propagating soliton-like behaviour.

Remember however that equation (2.9) represents an approximation. In

order to fully determine the physical behaviour of the system under investigation

we must consider the conserved linear momentum and mass equations. The

resultant perturbation problem which we are in the process of analysing breaks

down for values of E much less than approximately 1×105 Vm−1, but in the field

regime we are studying the eigenvalue data may be expected to offer a reasonable

representation of what the physical system is doing at physically plausible field

strengths. At the critical field strength Ec our hypothesis is that the field is

sufficiently energetic that a travelling wave might be expected to manifest itself

in a material sample subject to the same physical conditions as the model.

In principle and in fact applying the Galerkin method to the linear differ-

ential operator problem we constructed at (4.36), (4.37) and (4.38) involves a

straightforward extension of the weighted residual method presented at (4.40),

(4.41) and (4.42). The graphs at Figure 4.3 were both constructed using this

method. We construct the residuals as before and incorporate the differential

operator B, then

R1(x
n, τ) = A11φ̂

n + A12ẑ
n − ω

(

B11φ̂
n + B12ẑ

n
)

= A11

n
∑

j=1

ajφj + A12

2n
∑

j=n+1

ajφj − ω

(

B11

n
∑

j=1

ajφj + B12

2n
∑

j=n+1

ajφj

)

,
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(4.80)

and

R2(x
n, τ) = A21φ̂

n + A22ẑ
n − ω

(

B21φ̂
n + B22ẑ

n
)

= A21

n
∑

j=1

ajφj + A22

2n
∑

j=n+1

ajφj − ω

(

B21

n
∑

j=1

ajφj + B22

2n
∑

j=n+1

ajφj

)

.

(4.81)

Now we multiply (4.80) by φi, i = 1, 2, · · · , n and (4.81) by φi, i = n + 1, n +

2, · · · , 2n and integrate with respect to τ over the τ ∈ [−δ, δ] to get

∫ δ

−δ
φiR1 dτ =

∫ δ

−δ

n
∑

j=1

ajφiA11φj dτ +

∫ δ

−δ

2n
∑

j=n+1

ajφiA12φj dτ

− ω

(

∫ δ

−δ

n
∑

j=1

ajφiB11φj dτ +

∫ δ

−δ

2n
∑

j=n+1

ajφiB12φj

)

dτ.

i = 1, 2, . . . , n, (4.82)

and

∫ δ

−δ
φiR2 dτ =

∫ δ

−δ

n
∑

j=1

ajφiA21φj dτ +

∫ δ

−δ

2n
∑

j=n+1

ajφiA22φj dτ

− ω

(

∫ δ

−δ

n
∑

j=1

ajφiB21φj dτ +

∫ δ

−δ

2n
∑

j=n+1

ajφiB22φj

)

dτ.

i = n+ 1, n+ 2, . . . , 2n. (4.83)

Now both (4.82) and (4.83) may be expressed as

∫ δ

−δ
φiR1 dτ =

n
∑

j=1

aj(φi,A11φj) +
2n
∑

j=n+1

aj(φi,A12φj)

− ω

(

n
∑

j=1

aj(φi,B11φj) +

2n
∑

j=n+1

aj(φi,B12φj)

)

i = 1, 2, . . . , n, (4.84)

and

∫ δ

−δ
φiR2 dτ =

n
∑

j=1

aj(φi,A21φj) +

2n
∑

j=n+1

aj(φi,A22φj)
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− ω

(

n
∑

j=1

aj(φi,B21φj) +

2n
∑

j=n+1

aj(φi,B22φj)

)

i = n+ 1, n+ 2, . . . , 2n, (4.85)

where we define the inner products

(φi,Arsφj) =

∫ δ

−δ
φiArsφj dτ, (4.86)

and

(φi,Brsφj) =

∫ δ

−δ
φiBrsφj dτ. (4.87)

This allows us to express the problem in terms of block matrices as follows

A =

[

A11 A12

A21 A22

]

and B =

[

B11 B12

B21 B22

]

, (4.88)

where we define the block matrix elements as

A11 = (φi,A11φj), i, j = 1, 2, . . . , n, (4.89)

A12 = (φi,A12φj), i = 1, 2, . . . , n; j = n+ 1, n+ 2, . . . , 2n, (4.90)

A21 = (φi,A21φj), i = n + 1, n+ 2, . . . , 2n; j = 1, 2, . . . , 2n, (4.91)

A22 = (φi,A22φj), i, j = n+ 1, n+ 2, . . . , 2n, (4.92)

and

B11 = (φi,B11φj), i, j = 1, 2, . . . , n, (4.93)

B12 = (φi,B12φj), i = 1, 2, . . . , n; j = n + 1, n+ 2, . . . , 2n, (4.94)

B21 = (φi,B21φj), i = n+ 1, n+ 2, . . . , 2n; j = 1, 2, . . . , 2n, (4.95)

B22 = (φi,B22φj), i, j = n + 1, n+ 2, . . . , 2n, (4.96)

with the Fourier coefficients expressed as a vector

a =
[

a1 a2 · · · an an+1 an+2 · · · a2n

]T
. (4.97)
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Finally we may write our system in the form of an algebraic eigenvalue problem,

so that

(A − ωB)a = 0. (4.98)

Once in the form (4.98), we proceed to investigate the eigenvalue properties of

this system. Using as before the method of Galerkin as a solution technique, we

explore the behaviour of the system by choosing appropriate trial and weight-

ing functions, in the discussion above these are the φj’s and φi’s respectively.

We again choose trial and weighting functions which satisfy our boundary con-

ditions. With this in mind we use the polynomial form employed previously

at (4.66). Since we are implementing a Galerkin type method the weighting

functions exactly coincide with the trial functions.

The Galerkin method as described here was infact used to generate the graphs

in Figure 4.3. By setting n = 2 and varying the electric field E we generated

four eigenvalues using two trial functions per perturbation.

4.3.4 Parameter variation and electric field strength

An obvious question to ask is how parameter variation affects the critical electric

field strength Ec. We can investigate this quite straightforwardly by using the

numerical scheme we discussed in the previous section and adapting it slightly.

For instance we may want to investigate the critical field response to variation

of the smectic cone angle θ. To do this we need to track the position of the

critical field, that is the point at which the real part of the complex eigenvalues

change sign, as we vary θ.

We set out to explore this and did so by setting the problem so that n = 2,

giving again a total of four eigenvalues two of which are generally real and

positive and two of which are generally complex conjugate. The method involves

choosing a parameter to vary, selecting upper and lower limits for the parameter,
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determining a step size and looping from the low value to the high value using

the chosen step size. Then at each parameter value we look for the critical

electric field that is characteristic for the model. The electric field is swept from

a minimum value Emin = 0.1 V µm−1 to maximum value Emax = 0.6 V µm−1

using a step size of 0.01 V µm−1.

Over this range we expect to see the real part of the complex conjugate roots

pass through zero indicating a sign change. To detect the sign change in the

array of real eigenvalue data we simply scan through a list of eigenvalue/electric

field strength pairs until we locate a transition from negative to positive as the

field strength increases. Then at the point where we detect a zero we select three

points either side for a total of six data points.

To determine the critical field strength we use the six data points clustered

around the zero to construct a polynomial interpolant using the MAPLE func-

tion PolynomialInterpolant(Z,x) which takes a list of N data points in Z

and from this constructs a polynomial interpolant of order N − 1. We could

improve the accuracy by increasing the number of data points chosen for the

interpolant either side of the field axis but settled for six because it yields a

perfectly acceptable approximation.

Then employing a suitable root solver (see Appendix H) and using the two

closest electric field strengths either side of the location of the zero we refine

the field strength up to a predetermined level of accuracy. Collecting the field

strengths as we vary our parameter we then plot the parameter as it varies

against critical field strength. Consider for example Figures 4.4 and 4.5.

In Figure 4.4 we chart the relationship between the electric field strength

Ec and the rotational viscosity λ5. The range of values of λ5 varies from a

minimum of λmin5 = 0.015 Pa s to a maximum value of λmax5 = 0.023 Pa s.

Similarly Figure 4.5 relates the critical field strength Ec to the viscosity λ2. In
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Figure 4.4: Rotational viscosity λ5 versus critical electric field strength Ec. The
interval size is 200µm, giving a value of δ = 100µm. Note the nonlinear nature
of the field response to increasing viscosity
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Figure 4.5: Rotational viscosity λ2 versus critical electric field strength Ec. The
interval size is 200µm, giving a value of δ = 100µm.
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this case the graph was plotted between a minimum value of λmin2 = −0.018 Pa s

and a maximum value of λmax2 = −0.009 Pa s.

Notice in particular the nonlinear relationship between λ5 and the critical

field strength Ec. As the rotational viscosity λ5 is increased the energy we need

to impart into the system via the electric field increases at a nonlinear rate.

We might expect this to be the case since we are studying a non-Newtonian

fluid. The results suggest that as we lower the temperature (which is equivalent

to increasing the smectic cone angle and therefore increasing the viscosity) the

electric field strength required to drive a soliton increases in response. In other-

words, the electric field must do more work on the liquid crystal sample in order

to overcome viscous effects and initiate a travelling wave.

Next we study the effect of τ1 and τ5 in the model. In Figure 4.6 we demon-

strate the relationship between one of the ac-coupling coefficients τ5 and the crit-

ical field Ec. In this case the range of values of τ5 used to construct the graph var-

ied from a minimum of τmin5 = 0.028 Pa s to a maximum of τmax5 = 0.038 Pa s.

For the graph depicted in Figure 4.7 we measure the critical field response to an-

other of the ac-coupling coefficients and note that the minimum and maximum

values of τ1 are given by τmin1 = 0.001 Pa s and τmax1 = 0.011 Pa s. This time

the field strength dependency Ec appears to vary inversely with increasing cou-

pling viscosity for both τ1 and τ5. This behaviour is somewhat counter-intuitive.

We noted above for λ5 that as we increase the viscosity, we increase the electric

field threshold at which we observe travelling waves. With the τ1 and τ5 graphs

the opposite appears to be the case. Quite why this is remains unclear.

The linearised model we are studying has been adapted to use a restricted

number of viscosities namely µ0, λ2, λ5, τ1 and τ5. For a fuller picture we could

have incorporated other viscous coefficients but due to limited experimental data

chose to restrict the choice to the 5 viscosity coefficients previously mentioned.
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Figure 4.6: Coupling viscosity τ5 versus critical electric field strength Ec. The
interval size is 200µm, giving a value of δ = 100µm. Once again notice the
nonlinear nature of the field response to increasing viscosity.
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Figure 4.7: Coupling viscosity τ1 versus critical electric field strength Ec. The
interval size is 200µm, giving a value of δ = 100µm. Once again notice the
nonlinear nature of the field response to increasing viscosity.
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4.3.5 Best fit curves

We can of course extend the techniques we have been discussing to study material

parameter effects on different interval widths. Throughout the previous section

we set δ = 100µm. Consider now Figure 4.8 The curves in Figure 4.8 were gener-
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Figure 4.8: Critical electric field strength Ec versus rotational viscosity λ5 for
δ = 200 µm and δ = 300 µm.

ated using different interval widths of δ = 200µm and δ = 300µm corresponding

to intervals of 400 µm and 600 µm respectively. Both curves are non-linear in

nature. Note in particular the fact that the lower curve (dashed line) represents

the field response against viscosity for an interval width of δ = 300µm. The

upper curve (solid line) represents the smaller interval width of δ = 200 µm.

Interpreting these curves we note that each identifies a boundary analogous to

a Freedericksz transition. At each point on the curves we are identifying thresh-

olds at which travelling waves are initiated in response to an applied electric

field. The data suggests that for a larger interval the field strength Ec required

to shift the system from an unstable to a stable state is generally lower given
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the parameters we have chosen than would be the case in a smaller interval.

We conclude that the field required to initiate travelling waves in the system

in the smaller region is greater than that for the larger interval. We suggest that

this comes about as a result of the fact that in a thinner sample the molecules in

the bulk experience a greater degree of influence from molecules at the boundary

than do molecules in a sample with a larger interval width. The electric field

has to do more work to overcome elastic and viscous effects in a thinner sample

than in a thicker sample.

To get a quantitative understanding of the nonlinear behaviour of the two

curves given in Figure 4.8 we conducted a simple curve fitting exercise using

the graphing software package Origin. We use the best fit exponential decay

function ExpDec1 which determines a best fit of the form

y(x) = A1e
− x
t1 + y0. (4.99)

The model data is arranged so that the best fit exponential curve is actually

modelling E as a function of λ5 then the exponential best fit really represents

the function

E(λ5) = E1e
−λ5

λ + E0. (4.100)

A straightforward comparison establishes the fact that E1 corresponds to A1, λ

corresponds to t1 and E0 corresponds to y0. We set out to establish values for the

constants A1, t1 and y0 in the cases where δ = 200 µm and δ = 300 µm. We used

Origin to determine the best exponential fit for the coefficients corresponding to

the δ = 200 µm case and the results are given in Table 4.3. We note here that

using Table 4.3 we may determine the approximate values of the electric field

strength Ec at the extremal points using the exact values for λ5. We list extremal

values for δ = 200 µm in Table 4.4. Note that we determine the percentage error
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Constant Value

y0 131 kVm−1

A1 9.17 kVm−1

t1 −9.32 mPa−1s−1

Table 4.3: Best fit data for δ = 200 µm.

λ5 (Pa s) Eexact
c (kVm−1) Eapprox

c (kVm−1) ∆err (%)

0.01477 175.4 175.9 0.29
0.02321 242.0 241.7 0.12

Table 4.4: Extremal values for δ = 200 µm using the data given in Table 4.3.

∆err using the formula given in (4.101)

∆err =
|Eexact

c − Eapprox
c |

|Eexact
c | × 100. (4.101)

Next, in Table 4.5, we list the best fit data determined once again using

Origin, in the case where δ = 300 µm. We list extremal values for δ = 300 µm

Constant Value

y0 120 kVm−1

A1 7.73 kVm−1

t1 −9.11 mPa−1s−1

Table 4.5: Best fit data for δ = 300 µm.

in Table 4.6. The percentage error ∆err indicates that in both the δ = 200 µm

λ5 (Pa s) Eexact
c (kVm−1) Eapprox

c (kVm−1) ∆err (%)

0.01477 159.2 159.5 0.19
0.02321 219.6 219.2 0.18

Table 4.6: Extremal values for δ = 300 µm using the data given in Table 4.5.

case and the δ = 300 µm the exponential fit at the extremal values deviates from

the numerically computed value by no more than about ±400 Vm−1 so the best
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fit curve is a reasonable measure of the quantitative behaviour of the numerical

data generated via the Galerkin scheme.

4.3.6 Determination of power law relationships

A question of great importance concerns the existence of power law relationships.

For example we might ask the question if we vary the physical parameter B

say, how does the critical field Ec strength vary in response? Previously we

attempted to find best fit curves to match the data. Now we shall attempt to

establish whether or not there are specific power law relationships governing the

response of the critical field strength to varying parameters. We shall follow the

approach adopted by Stewart and Stewart [72] as they investigated shear flow

in smectic A liquid crystals.

We start by exploring the variation of the critical field strength Ec with

respect to the elastic constant B. It is generally easier to control the properties

of the material with regard to the elastic constants and so qualitatively the data

and graphs presented here are perhaps the most pertinent in terms of physically

measurable quantities. Our aim here is to establish power law relationships,

if indeed such relationships exist, between B and Ec. Consider the graph in

Figure 4.9. It is clear from this figure that by increasing the interval width we

lower the threshold at which the stable region is encountered. Note also the

non-linear dependency on δ. Let us focus in on the the curve corresponding

to an interval width of δ = 100 µm. We show the curve in Figure 4.10. The

curve of the raw data is clearly non-linear. However, in the inset graph we have

plotted the curve of log10 B against log10 Ec. This suggests a linear relationship

of the form

log10Ec = log10 κ +m log10B. (4.102)

Once again using the package Origin we computed a linear best fit curve for the
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Figure 4.9: Critical electric field strength Ec versus elastic constant B for three
different interval widths. Notice the distinctly non-linear dependence on δ.
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Figure 4.10: Critical electric field strength Ec versus elastic constant B for
δ = 100 µm. Notice the distinctly non-linear dependence of Ec against B. Note
however that when we plot log10Ec against log10B we find a relationship which
is generally linear in nature.
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data used to generate the log-log graph. We found using this best fit method

that the slope m and intercept log10 κ were given approximately by the data

in Table 4.7. Using (4.102) the critical field and elastic constant may then be

Constant Value

log10 κ −0.5509
κ 0.2813
m −0.4946

Table 4.7: Linear best fit data for log10Ec = log10 κ + m log10B, with δ =
100 µm.

related by a power law of the form

Ec = κBm (4.103)

The values tabulated mean that in this case for δ = 100 µm the relationship

between the critical field Ec and B is approximately of the form

Ec ∝
1√
B

(4.104)

Now consider the graph in Figure 4.11. Here we find that a linear response is

obtained by plotting the parameter τ1 against lnEc. By considering a linear fit

of the form

lnEc = c+mτ1, (4.105)

we have that the power law relationship in this case may be written as

Ec = ec+mτ1 = κemτ1 (4.106)

Then by constructing a linear fit using Origin, we may determine values for c,

m and we list these in Table 4.8. Then we find that the value of κ is given

straightforwardly as κ = 276.9 kVm−1. It should be noted that a log-log fit of

τ1 against Ec yields a nonlinear curve hence the decision to plot a linear-log fit

for τ1 and Ec.
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Figure 4.11: Critical electric field strength Ec versus elastic constant τ1 for
δ = 100 µm. The inset graph is the linear response found by plotting τ1 against
lnEc.

Constant Value

c 12.5315
m −30.335

Table 4.8: Linear best fit data for lnEc = c +mτ1, with δ = 100 µm.

The parameter λ5 is plotted against Ec in Figure 4.12. This yields a nonlinear

curve and we again plot a log-log graph as an inset. Plotting λ5 against log10Ec

also yields a non-linear curve. This leads us to speculate that the power law

governing the response of the electric field to variations in λ5 is non-linear in

nature. As yet we have not determined the form of this more complicated

interaction.

Moving on from here we investigated the power law form governing field

response involving the parameter τ5. Once again we graph the critical field

response Ec against τ5 and display the result in Figure 4.13. Note that the inset

log-log graph indicates that an appropriate fit for this data is a linear fit, as
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Figure 4.12: Critical electric field strength Ec versus elastic constant λ5 for
δ = 100 µm. The inset graph is the linear response found by plotting λ5 against
lnEc. Note the log-log response is non-linear.

was the case with B against Ec in (4.102). Performing a linear best fit on the
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Figure 4.13: Critical electric field strength Ec versus elastic constant τ5 for
δ = 100 µm. The inset graph is the linear response found by plotting log10 τ5
against log10Ec.
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log-log graph yields the best fit data given in Table 4.9. Notice that the slope on

Constant Value

log10 κ 3.9
κ 7.944 × 103

m −0.9891

Table 4.9: Linear best fit data for log10Ec = log10 κ + m log10 τ5, with δ =
100 µm.

this curve indicates that the relationship between Ec and τ5 appears to follow a

reciprocal law so that

Ec ∝
1

τ5
. (4.107)

4.4 Discussion

We started this chapter with a set of four linear perturbation equations. By as-

suming time decaying spatially dependent perturbation solutions we constructed

a pair of perturbation equations. We achieved this by determining that the flow

in the x direction was constant. This meant we were in a position to concen-

trate solely on the perturbation equations for the conserved angular momentum

equation and the third conserved linear momentum equation.

Then by deciding to limit the number of viscosity terms to five, these be-

ing µ0, λ2, λ5, τ1 and τ5, assuming that the non-constant coefficients may be

assumed to be constant in the vicinity of τ = 0 and that by making a suitable

transformation we could reduce the problem to a non-self-adjoint differential

eigenvalue problem. In a similar manner we constructed a generalised non-self-

adjoint differential eigenvalue problem using the full equations but again limiting

the number of viscosity terms to five as listed above.

By applying a suitable weighted residual method namely the method of

Galerkin we were able to demonstrate for a suitable choice of parameters that in
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the constant coefficient system the first two real eigenvalues could be computed

to an arbitrary degree of accuracy by choosing an appropriate number of terms

in the polynomial expansions. Although computational limitations meant that

the number of Fourier terms we considered had to be truncated at approximately

twelve per function we were able to demonstrate that by increasing the number

of terms we were able to achieve a degree of convergence which we corrobo-

rated by plotting the difference between successive approximations of the two

eigenvalues.

When we came to consider the full system our goal then was to determine

critical field strengths once again using a Galerkin type method. This time

calculating four eigenvalues at a time for suitable material parameters over a

range of plausible electric field strengths we were able to determine numerically

the point at which the system went from an unstable to a stable steady state

and by tracking and recording the field strengths at which the transitions took

place we were in a position to determine critical field strengths versus parameter

values from which we made a first attempt at analysis using power law methods.

Whilst the results we have generated rely on approximations, the critical field

strengths we have determined are of the order of 100 ∼ 200 kV m−1 and these

seem to be roughly in agreement with the field strengths at which travelling

waves appear. For instance Stannarius and Langer [53], report the existence

of propagating wave fronts in thin film ferroelectric smectic C∗ samples at field

strengths of approximately 120 kV m−1 so the numerically determined results

are broadly in agreement.

Its worth noting at this point that our starting assumption, of director reori-

entation in a ferroelectric sample under the influence of a non-inclined electric

field without flow, gives rise to an exact solution which exists for all electric field

strengths E. The result of the linear perturbation analysis presented above how-
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ever demonstrates that there exists a physical regime, which is bounded above

by an electric field of magnitude Ec, where travelling waves are not observed. In

other words the results given here establish the minimum field strength required

in order that the travelling waves (2.10) predicted by (2.9) exist. Then solution

(2.10) must be re-written as

φ(x, t) =











π
2
− 2 arctan

[

exp

{

√

β

B
(x− ct)

}]

, for E > Ec,

−π
2
, for E ≤ Ec.

(4.108)

Once again β and c are given by (2.11) and (2.12) respectively.

No doubt the polynomial forms we chose to match the boundary condition

of our problem could be improved on. The polynomials used here were very

simple forms. Other researchers for instance Hill and Straughan [73] have used

a Legendre spectral element method for eigenvalues in hydrodynamic stability

problems. Seeking faster convergence and greater accuracy using a more so-

phisticated approximation method such as [73] is one possible avenue for future

research.

From here we proceed in Chapter 5 to examine a problem inspired by work

conducted by Stewart and Wigham [72] on the analysis of cylindrical wave fronts

in smectic C liquid crystals. We shall construct a method using ideas from

[72] to construct solutions to approximate wave front domain wall profiles for

ferroelectric samples in inclined electric fields.



Chapter 5

Travelling Domain Walls

5.1 Introduction

In this chapter we shall investigate a method for approximating the wavefront

profile of a travelling plane wave in a sample of smectic C∗ under the influence

of an inclined electric field of the kind described by Stewart and Momoniat [54].

The governing equations for this problem were given at (2.8) and (2.9) along

with the exact solution to (2.9) which we presented at (2.10). Inspiration for

this work comes principally from the paper by Stewart and Wigham [7], which

itself had its roots in the work of Stelzer and Arodź [74] and Arodź and Larsen

[75]. In all three papers the authors discuss the time and space evolution of a

cylindrical domain wall.

In [7, 74] the problems relate to domain wall evolution in samples of smectic

C and nematic materials respectively. By contrast Arodź and Larsen [75] looked

at the problem of domain wall evolution and growth in relation to cosmological

expansion problems. It is thought that phase transitions in the early universe

gave rise to topologically stable defects including vacuum domain walls, cosmo-

logical strings and walls bounded by strings [76]. Arodź and Larsens work was

motivated by a desire to investigate the physical behaviour of these cosmological

walls.

Regardless of the problem being studied, circular domain wall evolution is

109
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tackled in all three cases by transforming to a co-moving frame of reference whose

origin lies at the centre of the moving domain wall. Performing a transformation

to a co-moving frame permits closer study of the problems. In particular, insofar

as liquid crystals are concerned, such a transformation yields information about

the radial propagation of the domain wall, the evolution of the domain wall

width and an approximate solution for the director orientation.

Here we shall attempt to apply the techniques used to study circular domain

wall problems to a problem with a planar geometry. The exact solution (2.10)

to (2.9) is a soliton. One of its key features is the presence of a domain wall

connecting two constant states. The domain wall has finite width and is persis-

tent, that is to say the theoretical solution maintains a constant wave profile at

all times.

5.2 A review of the dynamics of cylindrical do-

main walls

Briefly, in [7] Stewart and Wigham consider a sample of smectic C liquid crystal

under the influence of a circular magnetic field. An electrical current flows

through a long thin wire of circular cross section passing through the sample, as

shown in Figure 5.1 where the current carrying wire is represented by the dark

region at the centre of the diagram. This current induces a concentric magnetic

field B about the wire given by

B =
µ0

2π

I

ρ(t) + ξ
α̂, (5.1)

which in turn gives rise to a travelling circular domain wall of finite width

concentric about the wire.

Either side of the domain wall the projection c of the smectic director n

onto the planar layers reorients through an angle |φ1 − φ0|. This means that in

the radial direction between the wire and the trailing edge (inner edge) of the
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Figure 5.1: Schematic representation of the travelling domain wall discussed in
[7]. A current carrying wire (grey circle) generates a concentric magnetic field
B. The projection c of the smectic director n in the smectic planes re-orients
through an angle φ between the trailing and leading edges of the domain wall.
The centre of the domain wall is time varying and has position ρ(t) relative to
the origin of the cartesian co-ordinate system. The wall width is given by ξ0+ξ1,
and the angular orientation of the the projection c at the centre of the domain
wall it is assumed to be 1

2
(φ0 + φ1).

domain wall, the angular orientation of c is fixed at φ = φ1. Beyond the leading

edge (outer edge) of the domain wall to infinity the angular orientation is fixed

at φ = φ0. In this model the orientation of the projection of the director onto

the smectic planes is given by c = ξ̂ sinφ(ξ, t) + α̂ cosφ(ξ, t). By describing the

problem in a co-moving coordinate frame, Stewart and Wigham were able to

develop a dynamic equation for the reorientation of φ.
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5.3 The geometry of the planar domain wall

We begin our analysis by considering Figure 5.2. We assume that when looking

along the z-axis towards the origin, the travelling wave may be represented by a

moving domain wall of finite width. Beyond the leading and trailing edges of the

domain wall we assume that the director c is fixed. This means that to the left of

the trailing edge of the domain wall the projection of c onto the smectic planes

is oriented at the constant angle φ0. Similarly to the right of the leading edge

the director c is oriented at the constant angle φ1. These competing boundary

conditions give rise to a domain wall. Throughout the full depth of the domain

wall the director reorients from one fixed state to another.

Half way between the leading and trailing edges at the centre of the domain

wall, indicated by the dotted line in Figure 5.2, the director c is assumed to

Figure 5.2: The geometry of the planar wave problem and associated co-moving
coordinate system
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have undergone a rotation of 1
2
(φ1 + φ0). Across the domain wall as a whole the

director reorients itself through an angle of |φ1 − φ0|.

The position of the centre of the domain wall from the origin of the untrans-

formed Cartesian system is measured by the time dependent variable ρ(t). The

coordinate ξ measures the outwards linear distance in the transformed system

from ρ(t). At anytime t the leading and trailing edges of the domain wall are

at positions ρ(t) + ξ1(t) and ρ(t) − ξ0(t) respectively. Note that ξ0(t) and ξ1(t)

are time dependent and denote the distance from the wall core at position ρ(t)

to the leading and trailing edges of the domain wall.

Then following Stelzer and Arodź [74] and Stewart and Wigham [7] we trans-

form the problem to a co-moving frame of reference with coordinates ξ, y and z

and basis vectors given by ξ̂ , ŷ, ẑ. That is we transform to a frame of reference

coincident with the centre of the domain wall as shown in Figure 5.2. These

basis vectors are related to their Cartesian counterparts via the expressions

x = ρ(t) + ξ, y = y, z = z. (5.2)

Consequently we find that the scale factors are straightforwardly written

h1 = 1, h2 = 1, h3 = 1. (5.3)

and in terms of the new basis vectors we find that the expressions for the smectic

C∗ layer normal a and the projection of the director onto the smectic plane c

become

a = ẑ, c = ξ̂ cosφ+ ŷ sin φ, where φ = φ(ξ, t). (5.4)

In addition the polarisation P is given by the expression P = P0b where b is

given by

b = −ξ̂ sinφ+ ŷ cos φ. (5.5)

Similarly the electric field is defined in the new coordinate system to be

E = E(ξ̂ cosα + ẑ sinα), (5.6)
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and we assume that the angle of incidence of the field with the sample α is

constrained by the condition 0 ≤ α < π
2
.

Using standard results [77] the gradient operator ∇ in the transformed frame

of reference is given by the expression

∇ = ξ̂
∂

∂ξ
+ ŷ

∂

∂y
+ ẑ

∂

∂z
, (5.7)

whilst the material time derivative with respect to the co-moving frame in terms

of the co-moving coordinates [7] is given by the expression

D

Dt
=

∂

∂t
+ v · ∇ − dr

dt
· ∇. (5.8)

Here the vector r(t) is taken to be the position vector of the origin of the co-

moving frame at time t relative to the fixed Cartesian frame. The vector v

represents the velocity of a material element. Both r(t) and v are expressed

in terms of co-moving coordinates. In this model we shall assume that there is

negligible hydrodynamic flow so we may write v = 0, whereas the position of

the origin in co-moving coordinates is given by r(t) = ρ(t)ξ̂.

Applying these definitions to the expression for the material time derivative

we find that (5.8) reduces to

D

Dt
=

∂

∂t
− dρ

dt

∂

∂ξ
. (5.9)

With these definitions in place we shall now look at the continuum theory re-

quired to further analyse the planar domain wall problem

5.4 Smectic C* continuum theory for the pla-

nar domain wall

In order to proceed with the analysis of the problem we must construct a contin-

uum model to describe the dynamic evolution of the director in time and space.

To achieve this we shall appeal to many of the equations and expressions used
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in Chapter 2. We shall recap the relevant parts of the theory where necessary.

However, the intention here is to keep details to a minimum where it is clear

that the material has already been covered elsewhere in the text.

The vectors a and c are subject to the constraints detailed at (2.17). We

have already assumed no hydrodynamic flow is present so the dynamic equations

arising from the balance of linear momentum may be disregarded. Instead the

governing dynamic equations for this system are those that arise whilst consid-

ering the balance of angular momentum. The two equations which form the

backbone of subsequent analysis were introduced at (2.21) and (2.22). We re-

state them here in a slightly different form in order to emphasise the role of the

generalised body forces Ga and Gc

(

∂w

∂ai,j

)

,j

− ∂w

∂ai
+Ga

i + g̃ai + γai + µci + ǫijkβk,j = 0, (5.10)

(

∂w

∂ci,j

)

,j

− ∂w

∂ci
+Gc

i + g̃ci + τci + µai = 0, (5.11)

Whereas previously in (2.21) and (2.22) we posed the problem in terms of the

total energy density w∗, here we shall take the dielectric and polarisation energy

densities and treat them separately from the elastic energy in the bulk. We shall

consider an electric energy density wE defined to be the sum of the polarisation

and dielectric energy densities so that

wE = welec + wpol. (5.12)

Then using the definition of the electric energy density from [4, p.28] we write

welec = −1
2
ǫ0ǫa (n · E)2 , (5.13)

and

wpol = −P · E, (5.14)

so that the electric energy density is given by

wE = −1
2
ǫ0ǫa (n · E)2 − P · E. (5.15)
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Now from [4, p.28] the electric energy potential ψE is the negative of the electric

energy density so that

ψE = 1
2
ǫ0ǫa (n · E)2 + P ·E. (5.16)

Then recalling the definition for the director n at (2.1) and the expression for

the polarisation P = P0E · b with b given by the expression at (2.2) we may

write (5.16) in terms of a, c and E as follows

ψE = 1
2
ǫ0ǫa (a ·E cos θ + c · E sin θ)2 + P0E · (a × c) . (5.17)

This means the electric energy potential for a sample of ferroelectric smectic C

may be written in Cartesians as

ψE = 1
2
ǫ0ǫa (aiEi cos θ + ciEi sin θ)

2 + P0Epǫpqraqcr. (5.18)

Then referring to [4, p.263], the generalised body forces are written

Ga
i =

∂ψE
∂ai

, Gc
i =

∂ψE
∂ci

. (5.19)

This in turn allows us to express the vector components Ga
i and Gc

i as

Ga
i = ǫ0ǫa(n · E)Ei cos θ − P0[E × c]i, (5.20)

Gc
i = ǫ0ǫa(n ·E)Ei sin θ + P0[E × a]i. (5.21)

Time dependent effects are introduced through the quantities g̃ai and g̃ci . Whereas

at (2.23) and (2.24) we were modelling the effects of flow, now we are assuming

negligible flow so g̃ai and g̃ci assume the form

g̃ai = −2(λ4ȧi + λ6cicpȧp + τ5ċi), (5.22)

g̃ci = −2(λ5ċi + τ5ȧi). (5.23)

where λ4, λ6, λ5 and τ5 are dynamic viscosity coefficients whilst the superposed

dot represents the material time derivative. In addition the notation adopted
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in [7] and employed in Chapter 2 is used here so that we define for convenience

the expressions

Πa
i =

(

∂w

∂ai,j

)

,j

− ∂w

∂ai
, (5.24)

Πc
i =

(

∂w

∂ci,j

)

,j

− ∂w

∂ci
. (5.25)

The elastic energy density is given by the expression at (2.46)and we make the

following assignment

w = welas. (5.26)

5.5 Governing dynamic equation for the planar

problem

The previous section encapsulates the theory needed to construct the dynamic

equations we shall be concerned with. We start by noting the following identities

∇ · a = 0, (5.27)

∇ · c = −∂φ
∂ξ

sinφ, (5.28)

∇× c =
∂φ

∂ξ
cosφ ẑ, (5.29)

a · ∇ × c =
∂φ

∂ξ
cos φ, (5.30)

c · ∇ × c = 0, (5.31)

b · ∇ × c = 0. (5.32)

We find after taking account of expressions (5.27) to (5.32) and applying (5.24)

and (5.25) to (5.26) that the vectors Πa and Πc take essentially the same form

as the equivalent expressions in [7]

Πa = −K3(a · ∇ × c)(∇× c) −K8(∇ · c)(c ×∇× c)

+K9∇(∇ · c), (5.33)

Πc = K2∇(∇ · c) −K3∇× {(a · ∇ × c)a}
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−K7[∇× {(a · ∇ × c)c} + (a · ∇ × c)(∇× c)]

−K8∇× {(∇ · c)b}. (5.34)

We note here that the vector identities in (5.34) may be written as follows

∇(∇ · c) = −
[

∂2φ

∂ξ2
sin φ+

(

∂φ

∂ξ

)2

cosφ

]

ξ̂, (5.35)

∇× {(a · ∇ × c)a} = −
[

∂2φ

∂ξ2
cosφ−

(

∂φ

∂ξ

)2

sin φ

]

ŷ, (5.36)

∇× (a · ∇ × c) c =
∂

∂ξ

[

∂φ

∂ξ
sin φ cosφ

]

ẑ, (5.37)

(a · ∇ × c) (∇× c) =

(

∂φ

∂ξ

)2

cos2 φ ẑ, (5.38)

∇× {(∇ · c)b} =
∂

∂ξ

[

∂φ

∂ξ
sin φ cosφ

]

ẑ. (5.39)

This means that the vector contributions relating to K7 and K8 contain compo-

nents in the ẑ direction only. The expressions (5.35)-(5.36) mean that we may

write Πc as

Πc
1 = −K2

[

∂2φ

∂ξ2
sinφ+

(

∂φ

∂ξ

)2

cosφ

]

, (5.40)

Πc
2 = K3

[

∂2φ

∂ξ2
cosφ−

(

∂φ

∂ξ

)2

sinφ

]

, (5.41)

Πc
3 = − (K7 +K8)

∂

∂ξ

[

∂φ

∂ξ
sinφ cosφ

]

−K7

(

∂φ

∂ξ

)2

cos2 φ. (5.42)

Next, using equations (5.4) and (5.6) we may write Ga
i in the following form

Ga
1 = D(ξ, t) cosα cos θ − P0E sinα sinφ, (5.43)

Ga
2 = P0E sinα cosφ, (5.44)

Ga
3 = D(ξ, t) sinα cos θ − P0E cosα sinφ, (5.45)

whilst Gc
i may be written as

Gc
1 = D(ξ, t) cosα sin θ, (5.46)

Gc
2 = −P0E cosα, (5.47)

Gc
3 = D(ξ, t) sinα sin θ, (5.48)
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and we define D(ξ, t) to be

D(ξ, t) = ǫ0ǫaE
2(cosφ sin θ cosα+ cos θ sinα). (5.49)

Then finally using the expression for the material time derivative at (5.8) we

may express (5.22) and (5.23) as

g̃a = −2τ5ċ, (5.50)

g̃c = −2λ5ċ, (5.51)

where

ċ1 = − sin φ

(

∂φ

∂t
− dρ

dt

∂φ

∂ξ

)

, (5.52)

ċ2 = cos φ

(

∂φ

∂t
− dρ

dt

∂φ

∂ξ

)

, (5.53)

ċ3 = 0. (5.54)

5.6 The c-equations

As Stewart and Wigham showed in [7, eq 2.40], once the geometry of the problem

has been established, a suitable frame of reference chosen and the appropriate

portions of the continuum theory relating to ferroelectric liquid crystals chosen

we may then construct a governing equation which models the director dynamics.

We begin by considering the c-equation. Using (5.25) we may rewrite (5.11)

as

Πc
i +Gc

i + g̃ci + τci + µai = 0. (5.55)

Then taking the scalar product of (5.55) with ci and ai respectively we find that

ciΠ
c
i + ciG

c
i + cig̃

c
i + τcici = 0, (5.56)

aiΠ
c
i + aiG

c
i + aig̃

c
i + µaiai = 0. (5.57)

Then from (5.57) we find that the Lagrange multiplier µ(ξ, t) may be expressed

as

µ(ξ, t) = −Πc
3 −Gc

3 − g̃c3. (5.58)
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Conversely, the Lagrange multiplier τ(ξ, t) is expressed as follows

τ(ξ, t) = −Πc
1 cosφ−Gc

1 cosφ− g̃c1 cos φ− Πc
2 sin φ−Gc

2 sinφ− g̃c2 sinφ. (5.59)

Then from (5.55) we have that

Πc
1 +Gc

1 + g̃c1 + τ cos φ = 0, (5.60)

Πc
2 +Gc

2 + g̃c2 + τ sin φ = 0. (5.61)

Multiplying (5.60) by sin φ and (5.61) by cosφ and subtracting we find that

Πc
1 sinφ− Πc

2 cosφ+Gc
1 sinφ−Gc

2 cosφ+ g̃c1 sin φ− g̃c2 cosφ = 0. (5.62)

Then substituting (5.46), (5.47), (5.40), (5.41) along with (5.51), (5.52), (5.53)

into (5.62) we get the following dynamic equation

2λ5

(

∂φ

∂t
− dρ

dt

∂φ

∂ξ

)

=
(

K2 sin2 φ+K3 cos2 φ
) ∂2φ

∂ξ2
+ (K2 −K3)

(

∂φ

∂ξ

)2

sin φ cosφ

−D(ξ, t) cosα sin θ sin φ− P0E cosα cosφ. (5.63)

We note briefly that the elastic constants K2 and K3 correspond to the Orsay

constants B2 and B1 respectively and are positive as described in [37, 4]. Also

λ5 > 0 as noted in [22]. The equation (5.63) forms the basis for subsequent

work on this problem. Compared to its equivalent in [7, eq. 2.40], (5.63) possess

similar features and is certainly non-linear in nature. The polynomial approx-

imation method as described in [7] may be employed to develop a solution for

the wavefront described by φ(ξ, t).

5.7 Using polynomial approximations to solve

the nonlinear system

The equation at (5.63) cannot be solved exactly. Instead, following the method

of polynomial expansions presented in [7], we shall derive a pair of coupled
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nonlinear equations. Our goal is to use the solutions to these equations to

construct an approximating polynomial which captures the behaviour of the

planar wavefront as it travels. As a bonus the half wall width information can

also be used to approximate the wall width of the domain wall.

As discussed by Stewart and Wigham [7] the aim is to construct a Taylor-

expansion with respect to the wall distance. The expansion is performed about

the wall core value at ξ = 0. Then referring to Figure 5.2 we see that at the

wall core when ξ = 0 we have that

φ(0, t) = 1
2
(φ0 + φ1) for all t ≥ 0. (5.64)

Taylor expanding about ξ = 0 to third order in ξ with time dependent coefficients

allows us to express φ(ξ, t) as a polynomial approximation

φ(ξ, t) = 1
2
(φ0 + φ1) + a(t)ξ + 1

2
b(t)ξ2 + 1

6
c(t)ξ3. (5.65)

Then referring to Figure 5.2 once more we define the boundary conditions of our

problem in the following manner

φ(ξ0, t) = φ0, φ(−ξ1, t) = φ1, (5.66)

∂

∂ξ
φ(ξ0, t) = 0,

∂

∂ξ
φ(−ξ1, t) = 0. (5.67)

With the boundary conditions stated above we find on substituting (5.65) into

(5.66) and (5.67) the following system of four simultaneous linear equations in

three unknowns a(t), b(t) and c(t)

a(t)ξ0 + 1
2
b(t)ξ2

0 + 1
6
c(t)ξ3

0 = 1
2
(φ0 − φ1) , (5.68)

a(t)ξ1 − 1
2
b(t)ξ2

1 + 1
6
c(t)ξ3

1 = 1
2
(φ0 − φ1) , (5.69)

a(t) + b(t)ξ0 + 1
2
c(t)ξ2

0 = 0, (5.70)

a(t) − b(t)ξ1 + 1
2
c(t)ξ2

1 = 0. (5.71)



122

This system of equations may be solved using Gaussian elimination and full

details are given in Appendix (D). For now we simply state that on solving

(5.68)-(5.71) we are lead to conclude that ξ0(t) = ξ1(t) and b(t) = 0. Further-

more we find that a(t) and c(t) are related to the half wall width ξ0(t) via the

following expressions

a(t) = −ξ
2
0(t)

2
c(t) =

3

4

(φ0 − φ1)

ξ0(t)
, (5.72)

c(t) = −3

2

(φ0 − φ1)

ξ3
0

. (5.73)

In addition we may express c(t) in terms of a(t) via (5.72) and (5.73) where we

find

c(t) = −32

9

1

(φ0 − φ1)
2a

3(t). (5.74)

We note that we may express the solution φ(ξ, t) in terms of a(t), ξ, φ0 and φ1

as follows

φ(ξ, t) =















φ1, for ξ ≤ −ξ0(t),
1
2
(φ0 + φ1) + a(t)ξ − 16

27
1

(φ0−φ1)
2a

3(t)ξ3, for −ξ0(t) < ξ < ξ0(t),

φ0, for ξ ≥ ξ0(t).

(5.75)

Now with (5.7) we proceed to develop a pair of coupled nonlinear differen-

tial equations in terms of a(t) and ρ(t). In order to achieve this we begin by

expanding the trigonometric terms in (5.63) up to third order in ξ so that the

cosine terms take the form

cosφ = cos
(

1
2
(φ0 + φ1)

)

− sin
(

1
2
(φ0 + φ1)

)

a(t)ξ − 1

2
cos
(

1
2
(φ0 + φ1)

)

a2(t)ξ2

+ sin
(

1
2
(φ0 + φ1)

)

(

16
27

1
(φ0−φ1)2

+ 1
6

)

a3(t)ξ3 +O(ξ4), (5.76)

and the sine terms are expressed as

sin φ = sin
(

1
2
(φ0 + φ1)

)

+ cos
(

1
2
(φ0 + φ1)

)

a(t)ξ − 1

2
sin
(

1
2
(φ0 + φ1)

)

a2(t)ξ2

− cos
(

1
2
(φ0 + φ1)

)

(

16
27

1
(φ0−φ1)2

+ 1
6

)

a3(t)ξ3 +O(ξ4). (5.77)
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Then using (5.76) and (5.77) and defining

Φ− = φ0 − φ1, (5.78)

Φ+ = φ0 + φ1. (5.79)

we find that the differential equation given at (5.63) may be expressed up to

third order in ξ by the following

2λ5

(

da

dt

[

ξ − 16

9

1

Φ2
−
a2ξ2

]

− dρ

dt

[

a− 16

9

1

Φ2
−
a3ξ2

])

=

− 32

9
K2

(

sin2 Φ+

2

1

Φ2
−
a3ξ + sin Φ+

1

Φ2
−
a4ξ2 + cos Φ+

1

Φ2
−
a5ξ3

)

− 32

9
K3

(

cos2 Φ+

2

1

Φ2
−
a3ξ − sin Φ+

1

Φ2
−
a4ξ2 − cos Φ+

1

Φ2
−
a5ξ3

)

+ (K2 −K3)

(

1

2
sin Φ+a

2 +

(

cos Φ+ − 16

9
sin Φ+

1

Φ2
−

)

a3ξ − sin Φ+a
4ξ2

)

− (K2 −K3)

(

cos Φ+

(

16

27

1

Φ2
−

+
1

6

)

a5 +
1

2
cos Φ+a

5 +
32

9
cos Φ+

1

Φ2
−
a4

)

ξ3

− A(θ, α)

(

sin
Φ+

2
+ cos

Φ+

2
aξ − 1

2
sin

Φ+

2
a2ξ2 − cos

Φ+

2

(

16

27

1

Φ2
−

+
1

6

)

a3ξ3

)

− B(θ, α)

(

1

2
sin Φ+ + cos Φ+aξ − sin Φ+a

2ξ2 −
(

2

3
+

16

27

1

Φ2
−

)

cos Φ+a
3ξ3

)

− C(α)

(

cos
Φ+

2
− sin

Φ+

2
aξ − 1

2
cos

Φ+

2
a2ξ2 + sin

Φ+

2

(

16

27

1

Φ2
−

+
1

6

)

a3ξ3

)

+O(ξ4), (5.80)

where we define A(θ, α), B(θ, α) and C(α) to be

A(θ, α) = ǫ0ǫaE
2 sin θ cosα sinα cos θ, (5.81)

B(θ, α) = ǫ0ǫaE
2 sin2 θ cos2 α, (5.82)

C(α) = P0E cosα. (5.83)

Finally by setting the coefficients of the zeroth and first order powers of ξ to

zero we are left with a pair of coupled nonlinear differential equations. The first

equation results from considering the coefficient of the zeroth order power of ξ

−2λ5a
dρ

dt
=

1

2
(K2 −K3) sin Φ+a

2 −A(θ, α) sin
Φ+

2
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−B(θ, α) sin Φ+ − C(α) cos
Φ+

2
. (5.84)

The second equation is derived by considering the coefficient of the first order

power of ξ

2λ5
da

dt
= −32

9

(

K2 sin2 Φ+

2
+K3 cos2 Φ+

2

)

1

Φ2
−
a3

+ (K2 −K3)

(

cos Φ+ − 16

9
sin Φ+

1

Φ2
−

)

a3

−
(

A(θ, α) cos
Φ+

2
+B(θ, α) cosΦ+ − C(α) sin

Φ+

2

)

a. (5.85)

Taken together (5.84) and (5.85) along with boundary conditions which we as-

sume to be ρ(0) = ρ0 and a(0) = a0 may be studied for different values of φ0, φ1,

ρ0 and a0. In the case of the π-wall which comes about as a result of studying

the planar geometry of the problem with an in plane electric field (that is one

where the field angle α is zero), we may solve (5.84) and (5.85) exactly. Using

the solution to (5.85) we may construct a solution for φ(ξ, t) and we shall explore

this in the next section.

5.8 The π-wall

In this section we shall explore the solutions of (5.84) and (5.85) when confronted

with an electric field inclined at an angle α = 0. We saw in Chapter 2 that the

reaction-diffusion equation (2.9) corresponding to the problem we are investi-

gating here does have an exact solution (2.10) and the resulting wave travels

with a speed given by (2.12). The intention here is to use the known solution to

the exactly solvable problem as a yardstick against which we can compare the

approximate solution φ(ξ, t).

As we have already established, the travelling wave (2.9) travels between two

known states φ0 and φ1 at a constant speed. As a matter of convenience we shall

plot the negative of the known solution. If we plot the negative wave at time
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t = 1 and assume the negative sign in the solution at (2.10) with the remaining

constants set to 1 we see the graph displayed in Figure 5.3. Examining the
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Figure 5.3: Travelling wave at t = 1 with negative addition of νt

travelling wave we see that the −π
2

region is growing at the expense of the π
2

region. In the model we have just constructed we shall assume that the region

denoted by φ1 corresponds to the −π
2

state so that φ1 = −π
2
. Similarly we

assume that the region denoted by φ0 corresponds to the π
2

state so that we

choose φ0 = π
2
.

Now choosing these values for φ0 and φ1 and additionally assuming that

K2 = K3 ≡ B and ǫa = −|ǫa|, we may re-write (5.84) and (5.85) in the following

forms

2λ5
dρ

dt
=
P0E

a
, (5.86)

2λ5
da

dt
= −32B

9π2
a3 + ǫ0|ǫa|E2 sin2 θa. (5.87)

Equation (5.87) is a Bernouilli equation which we can solve. We follow [7] and
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begin by making the following definitions

β0 =
ǫ0|ǫa|E2 sin2 θ

2λ5
, β1 =

16B

9λ5π2
, (5.88)

which means that (5.87) may be written more succinctly as follows

da

dt
= β0a− β1a

3. (5.89)

We then make the substitution

a(t) =
1

√

v(t)
= v−

1

2 (t), (5.90)

which means that the derivative in (5.89) may be written in the form

da

dt
= −1

2
v−

3

2

dv

dt
. (5.91)

This in turn allows us to express (5.89) in terms of v(t)

−1

2
v−

3

2

dv

dt
= β0v

− 1

2 − β1v
− 3

2 , (5.92)

giving the following equation

dv

dt
+ 2β0v = 2β1. (5.93)

An integrating factor for this is e2β0t which leads to

d

dt

[

e2β0tv
]

= 2β1e
2β0t. (5.94)

Integrating we find

e2β0tv(t) = 2β

∫

e2β0tdt+ C,

⇒ v(t) =
β1

β0

+ Ce−2β0t. (5.95)

Letting v(0) = v0 we find that at t = 0

C = v0 −
β1

β0

. (5.96)



127

So we arrive at the final expression for v(t) which is

v(t) =
β1

β0

(

1 − e−2β0t
)

+ v0e
−2β0t (5.97)

Then using the expression for a(t) given at (5.90) we see immediately that

a(t) =

{

β1

β0

(

1 − e−2β0t
)

+
1

a2
0

e−2β0t

}− 1

2

, (5.98)

where we have used the fact that a(0) = a0 so that

a(0) =
1

√

v(0)
=

1√
v0

= a0, (5.99)

meaning that v0 = 1
a2
0

. Now we established in (5.72) that a(t) and ξ0(t) were

related via

ξ0(t) =
3 (φ0 − φ1)

4a(t)
, (5.100)

which together with our choices of φ0 = π
2

and φ1 = −π
2

lead to the following

expression for the half-wall width

ξ0(t) =
3π

4a(t)
. (5.101)

Then when t = 0 we find that the initial value of ξ0(t) is

ξ0(0) =
3π

4a(0)
=

3π

4a0
. (5.102)

Now, using the relationship at (5.101) the expression for a(t) given at (5.98) and

the initial condition (5.102) we may write down the half-wall width as a function

of t as follows

ξ0(t) =
3π

4

{

β1

β0

(

1 − e−2β0t
)

+
16ξ2

0(0)

9π2
e−2β0t

}
1

2

, (5.103)

Pausing briefly we consider the long term behaviour of the half-wall width which

is

lim
t→∞

ξ0(t) =
3π

4

√

β1

β0
(5.104)
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Finally, returning to the differential equation for the position of the wall core at

time t given by (5.86) and using the expression for a(t) we found at (5.90), we

see that the time rate of change of the wall core is given by

dρ

dt
=
P0E

2λ5

{

β1

β0

(

1 − e−2β0t
)

+
1

a2
0

e−2β0t

}
1

2

. (5.105)

The time rate of change of the wall core represents the speed or velocity of the

travelling wave. Recall from Chapter 2 that the wave speed ν for a travelling

wave under the influence of an in plane electric field given by (2.12) is

ν =
|P0E|
2λ5

√

B

β
, (5.106)

where β is given by (2.11). At time t = 0 and assuming P0E > 0 the time rate

of change of the core of the domain wall is given by

dρ

dt
=
P0E

2λ5

1

a0

. (5.107)

Equating (5.107) to (5.106) and solving for a0 we find that the initial condition

for a0 may be written as

a0 =

√

β

B
, (5.108)

and this in turn can be used to establish an approximate condition for the initial

half-wall width from (5.102)

ξ0(0) =
3π

4

√

B

β
. (5.109)

Then using (5.109) we find that the expression for the half-wall width (5.103)

reduces to the following

ξ0(t) =
3π

4

√

B

β

{

32

9π2
+

(

1 − 32

9π2
e−2β0t

)}
1

2

. (5.110)

Then using the final result (5.110) we may find an approximate solution for the

negative of the wavefront at time t = 0 given the expression for φ(ξ, t) at (5.7)
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and the expression for a(t) at (5.98). We shall employ physical parameters for

a well known material specifically SCE13 taken from ([4, p.312]). We tabulate

the relevant quantities in Table 5.1. The rotational viscosity and permittivity

Parameter Symbol Value

Smectic cone angle θ 25.5◦

Spontaneous polarisation P0 135 µC m−2

Dielectric constant ǫa −0.72
Elastic constant B 1.41 × 10−12 N

Ancillary data

Rotational viscosity λ5 0.025 Pa s
Permittivity of free space ǫ0 ǫ0 = 8.854−12 Fm−1

Table 5.1: Material parameters and ancillary data for SCE13 at 52.5◦C

values given here are taken from ([4, p.317 and p.329]).We have chosen a field

strength of E = 1 × 108 V m−1. A plot of the exact solution against the

approximate solution is given in Figure 5.4. As Figure 5.4 shows the domain

wall is of the order of 40nm in width. Features this size are needless to say too

small to be detected optically. The approximate solution at t = 0 represents a

very close approximation to the known exact solution calculated with the same

physical parameters and field strength values. In particular the approximate

wavefront solution is a very close approximation to the exact solution over a

range of approximately 20nm. At longer timescales the wavefront settles to

a width of approximately 30nm so at large times the approximate solution is

qualitatively less accurate.

5.9 Discussion

The work presented in this chapter was as we remarked upon earlier an attempt

to adapt an existing method namely that of Stewart and Wigham [7] for ap-

proximating the wave front of a travelling domain wall in a sample of smectic
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Figure 5.4: Approximate solution and the exact solution for comparison plotted
at t = 0 with a field strength of E = 1 × 108 V m−1 and physical parameters
taken from Table 5.1.

C liquid crystal. In our case the domain wall is planar and the material ferro-

electric. The planar nature of the problem makes the problem slightly easier to

pose than in the cylindrical case, but nonetheless we were able to derive a wave

profile which is in good agreement with the wave profile for the π-wall.

We can in principal extend this technique to determine wave shapes for

domain wall where the boundary conditions are not exact multiples of π and

this would be a relatively straightforward procedure. We simply identify the

boundary conditions from the nonlinear reaction term in the dynamic equation

and use these as boundary conditions instead of ±π
2

as in the exact case.

Another benefit of employing the technique is that it provides an insight into

the development of the wave front in terms of speed and position although the

positional information is perhaps not as useful as the wavespeed information. In

addition it is possible to analytically derive an approximation for wall width.
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From here we proceed in the final chapter to present a numerical algorithm

which may be used to determine wavespeeds in travelling domain walls with

a particular focus on the domain walls we have been investigating throughout

this thesis. In fact the method is quite general and may be applied to any

reaction-diffusion system with an appropriate nonlinear kinetic term.



Chapter 6

Computing the wave speed of

soliton-like solutions in Smectic

C∗ liquid crystals

6.1 Introduction

In this chapter we consider the problem of determining the wave speed of trav-

elling wave solutions satisfying parabolic PDE’s of the form

∂φ

∂t
=
∂2φ

∂x2
− i (φ) , (6.1)

where i(φ) represents a nonlinear reaction term. Nonlinear parabolic PDE’s of

the form (6.1), known commonly as reaction-diffusion or evolution equations, oc-

cur often in many branches of mathematics, engineering, chemistry and biology.

Examples of nonlinear reaction diffusion equations include the Fisher model [59,

p.234-5] modeling species diffusion, the Nagumo model of the propogation of

nerve signals through a nerve axon [59, p.242] and in electronic engineering the

study of bistable transmission lines [78] leads to nonlinear reaction diffusion type

problems. Nonlinear parabolic PDE’s of the type we shall be concerning our-

selves with typically yield solitary wave solutions which typically travel between

two states. For example in earlier chapters we studied the effect of perturbing

132
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solutions to equation (6.2) in the special case where α = 0

2λ5
∂φ

∂t
= B

∂2φ

∂x2
− P0E cosα cosφ

−ǫ0ǫaE2

(

1

4
sin 2α sin 2θ sinφ+

1

2
cos2 α sin2 θ sin 2φ

)

. (6.2)

Equation (6.2) which appears in [54], governs the temporal and spatial develop-

ment of the usual c-director orientation angle φ(x, t) in a sample of smectic C∗

in the planar layer arrangement of Fig. 6.1(a), under the influence of an external

electric field E at an angle of α to the plane of the sample, as shown in Fig. 6.1(c).

To recap, we note that P0 represents the polarisation, B is an elastic constant,

E the magnitude of the electric field, λ5 is a rotational viscosity, ǫ0 is the per-

mittivity of free space, ǫa is the (unitless) measure of the dielectric anisotropy

and θ is the (fixed) angle the director n makes with the layer normal a. In [54]

Figure 6.1: (a) The planar layer arrangement of the liquid crystal sample being

considered. The molecules are tilted at a fixed angle θ to the layer normal a which

is aligned with the z-axis. (b) The average molecular alignment is denoted by the

unit vector n, called the director. The vector c is the unit orthogonal projection

of n onto the smectic planes. The orientation angle of the c-director is φ. Note

also that smectic C∗ has a spontaneous polarisation which lies along the vector

b and is denoted by P = P0b where b = a × c. (c) The electric field E at an

angle of incline α ≥ 0 with respect to the smectic layers in the xy-plane [8].

Stewart and Momoniat examine in some detail the characteristic features of the

electric energy density used to construct (6.2). In this case the electric energy
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density defines the energy states between which travelling wave solutions sat-

isfying (6.2) propagate. By non-dimensionalising and rescaling they study the

effect of varying the angle of the field E on the electric energy density. We shall

briefly review the energy density function and the associated equilibrium states

before going on to consider the wave speed problem in detail.

6.2 Electric Energy Density

We shall follow [54] as we explore the electric energy density and its connection

to equilibrium states. We begin by considering equation (6.2). This has a non-

linear kinetic term given by

i(φ) = P0E cosα cosφ+ ǫ0ǫaE
2

(

1

4
sin 2α sin 2θ sinφ+

1

2
cos2 α sin2 θ sin 2φ

)

.

(6.3)

Here the function i(φ) is actually the derivative of the electric energy density

which we denote by welec. This means we may re-write (6.2) as

2λ5
∂φ

∂t
= B

∂2φ

∂x2
− ∂welec

∂φ
, (6.4)

and we make the association

i(φ) =
∂welec
∂φ

. (6.5)

Then, on integrating (6.5) we recover the total electric energy density welec,

which is given by the expression

welec = P0E cosα sin φ− 1

2
ǫ0ǫaE

2 (sinα cos θ + cosα sin θ cosφ)2 . (6.6)

By introducing suitable dimensionless parameters χ and σ defined by

χ = 2P0(ǫ0ǫaE cosα sin2 θ)−1, (6.7)

σ = tanα cot θ, (6.8)
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we may write the electric energy density (6.6) as

welec =
1

2
ǫ0ǫaE

2 cos2 α sin2 θ w̄elec, (6.9)

where w̄elec is the dimensionless quantity given by

w̄elec = χ sinφ− (σ + cosφ)2 . (6.10)

The behaviour of the electric energy density welec may be described completely

by considering the expression (6.10). If we reverse the sign of the electric field we

change the sign of χ. In addition changing the signs of the dielectric anisotropy

ǫa and electric field E simultaneously corresponds to changing the sign of welec.

This means that we can characterise all possibilities by considering w̄elec only.

Notice that the parameter σ is a measure of the tilt of the electric field with

respect to the plane in which the sample lies. If the electric field lies in the

plane of the sample α = 0 and σ = 0. Since we choose to make 0 < θ < π
2

and 0 ≤ α < π
2

we need only consider cases where σ ≥ 0. The parameter χ

is a measure of the ratio of the spontaneous polarisation P0 to the magnitude

of the electric field E. Note that since χ ∝ 1
E

we expect |χ| to decrease as |E|

increases. In the presence of smaller magnitude fields and small electric field

inclination angles α we generally expect σ < |χ| [54].

Consider the graphs shown in Figure 6.2. The graph in Figure 6.2(a) charts

the number of equilibrium states and the position of those equilibrium states as

we vary the parameter χ. In this figure σ is fixed and has a value of σ = 0.001.

As χ increases, that is as E decreases in magnitude, the number of equilibria

goes from four to two as we pass through some critical value χc. In the case

of Figure 6.2 the critical value of χ is given approximately by χc ≈ 1.9. When

χ < χc four equilibria become available. Above this critical value when χ > χc

only two equilibria are available. In otherwords at fixed σ and with χ = χ(E)

where χ is a function only of the field strength E, we find that as we lower the
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field E we eventually pass through a critical point on the χ − φ plane into a

region where only two equilibria are available.
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Figure 6.2: For fixed σ = 0.001 the graphs show (a) the equilibrium states as χ
varies with unstable equilibria (red lines) and stable equilibria (black lines), and
(b) the electric energy density at fixed σ = 0.001 corresponding to the dotted
line through χ = 1.3 in (a).

The equilibrium states are determined for each value of χ by considering

the positions of the local minima and local maxima given by the electric energy

density function w̄elec. Consider now the dotted horizontal line corresponding

to χ = 1.3 in Figure 6.2(a). With σ fixed at σ = 0.001 it is a straightforward

exercise to plot the dimensionless energy w̄elec and the result is shown in Fig-

ure 6.2(b). Notice that for χ = 1.3 when σ = 0.001 there are 4 equilibria, and

furthermore notice that two of the equilibria are asymptotically stable (black

lines) whilst two are unstable (red lines). In terms of the dimensionless energy

density, asymptotically stable and unstable equilibria occur at local minima and

local maxima respectively.

Consider now the graphs show in Figure 6.3. This time we have chosen a

value of σ = 0.217 in order to illustrate the qualitative differences in behaviour

of the electric energy density as we increase the field inclination. As was the

case in Figure 6.2 we have chosen to consider the electric energy density w̄elec

at the point where the χ = 1.3. We observe, by comparing Figure 6.2(a) and
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Figure 6.3: For fixed σ = 0.217 the graphs show (a) the equilibrium states as χ
varies with unstable equilibria (red lines) and stable equilibria (black lines), and
(b) the electric energy density at fixed σ = 0.217 corresponding to the dotted
line through χ = 1.3 in (a).

Figure 6.3(a), that at steeper inclinations of the electric field when we fix χ the

number of equilibria drops from four to two. In Figure 6.3 the critical value

of χ occurs at approximately χc ≈ 1.1. In effect there are two sets of critical

values, a critical value χc which determines the threshold between two equilibria

and four equilibria based on electric field strength E, and a critical value σc

which determines the threshold between two and four equilibria by electric field

inclination α.

Next we consider only values of χ < 0 and determine equilibria by studying

−w̄elec. First we present graphs corresponding to equilibrium states for σ = 0.001

and σ = 0.217 while we vary χ such that −2.5 ≤ χ < 0 and plot the results in

Figures 6.4 and 6.5. Once again we have chosen a fixed value for χ of χ = −1.3.

Notice that now we expect the number of equilibria to undergo a bifurcation from

four to two at some critical value of χ as we make χ more negative. Again fixing

σ allows us to determine approximate critical values. For instance in Figure 6.4

the critical value χc is given approximately by χc ≈ −1.9. In addition we make

the observation that by fixing χ and varying σ we can in principle record σc the

critical value of σ in a like manner.
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Figure 6.4: For fixed σ = 0.001 the graphs show (a) the equilibrium states as χ
varies with unstable equilibria (red lines) and stable equilibria (black lines), and
(b) the electric energy density at fixed σ = 0.001 corresponding to the dotted
line through χ = −1.3 in (a).
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Figure 6.5: For fixed σ = 0.217 the graphs show (a) the equilibrium states as χ
varies with unstable equilibria (red lines) and stable equilibria (black lines), and
(b) the electric energy density at fixed σ = 0.217 corresponding to the dotted
line through χ = −1.3 in (a).

Throughout the remainder of this chapter we shall be concerned with deter-

mining wave speeds of travelling waves connecting equilibrium states. For the

most part our principal aim shall be to determine wave speed magnitudes rather

than the relative direction of travel of the wave and we begin exploring these

topics in the next and following sections.
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6.3 Scaling the dynamical equation

Consider the scaled variables T and X

T =
1

4
t(2λ5)

−1ǫ0 |ǫa|E2 cos2 α sin2 θ, (6.11)

X =
1

2
xB

1

2

(

ǫ0 |ǫa|E2 cos2 α sin2 θ
)

1

2 . (6.12)

and the transformation

φ̂(X, T ) = 2φ(X, T ) − π. (6.13)

This permits (6.2) to be expressed as

∂φ̂

∂T
=

∂2φ̂

∂X2
− 4χ sin

φ̂

2
− 4 sin φ̂+ 8σ cos

φ̂

2
, (6.14)

and is typical of the type of equation we shall study in the remainder of this

chapter. If σ 6= 0 then no closed form solutions are known and therefore to solve

such an equation we must resort to numerical methods. If, on the other hand,

σ = 0, then (6.14) becomes

∂φ̂

∂T
=

∂2φ̂

∂X2
− 4χ sin

φ̂

2
− 4 sin φ̂ , (6.15)

which admits the travelling wave solution [4, 79, 80]

φ̂(X, T ) = 4 arctan {exp [∓2 (X + νT + c)]} , ν = ±χ , (6.16)

where c is an arbitrary constant. Note that for (6.15) the wave velocity is

exactly ν = ±χ and that φ̂ → 0 as X → ∞ while φ̂ → 2π as X → −∞. Given

this special solution for σ = 0, we conjecture that when σ 6= 0, (6.14) admits

travelling wave solutions of the form

ψ(z) = φ̂(X, T ), z = X + νT, (6.17)

where ν now represents a dimensionless wave speed. Justification for this stems

from experimental observations, for example the work of Abdulhalim et al. [81].
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By considering equation (6.1) we develop a simple numerical scheme which will,

assuming the equation admits travelling wave solutions, allow us to compute the

wave speed directly. We will demonstrate the technique by considering equation

(6.15) (where σ 6= 0) and exploit the fact that it has the well-known solution

and wave speed stated in equation (6.16) in order to demonstrate that the new

method converges numerically and finds the known exact solution. We will then

briefly examine the method applied to the full three term problem in (6.14) when

σ 6= 0.

6.4 Theory

We begin by considering (6.1). We shall employ a technique motivated by, but

distinct in nature from, iterative integral methods introduced by Chernyak [82].

Our aim is to express the PDE as an integral equation. Then we may apply

boundary conditions and treat the problem approximately using discrete rather

than continuous methods. The first step is to recast (6.1) using the transforma-

tion

ψ(z) = φ(x, t) , z = x+ νt , (6.18)

to obtain the equivalent expression

d2ψ

dz2
− ν

dψ

dz
− i (ψ) = 0 . (6.19)

By making the substitution

p(ψ) =
dψ

dz
, (6.20)

we can transform (6.19) to p− ψ phase space by noting that

d2ψ

dz2
=
dp

dz
=
dψ

dz

dp

dψ
= p

dp

dψ
. (6.21)

Then equation (6.19) becomes

p
dp

dψ
− νp− i (ψ) = 0. (6.22)
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Now, we seek solutions for ψ(z) connecting two constant states a and b say, such

that the solution satisfies the boundary conditions

lim
z→−∞

ψ(z) = a, lim
z→∞

ψ(z) = b. (6.23)

Since the solution ψ(z) approaches constant values for large |z| we expect

p(a) = lim
z→−∞

ψ′(z) = 0, p(b) = lim
z→∞

ψ′(z) = 0, (6.24)

where the prime denotes differentiation with respect to z. Integrating with

respect to ψ and noting that p(a) = 0 and p(b) = 0, we find that (6.22) may be

written in the form of an integral equation.

p2(ψ) − λ

∫ ψ

t=a

p(t)dt = f(ψ) , (6.25)

where λ = 2ν and

f(ψ) = 2

∫ ψ

t=a

i(t) dt . (6.26)

Equation (6.25) is known as an exceptional nonlinear Volterra-type equation of

the second kind [83]. Our aim is to use (6.25) to determine the wave speed ν of

the travelling wave connecting the steady states obtained by considering zeros

of the nonlinear term i(ψ). To solve (6.25) we assume that for ψ < a and ψ > b,

p(ψ) = 0, whereas we expect p(ψ) 6= 0 in the interval a ≤ ψ ≤ b. Based on

this assumption, and using the fact that p(a) = p(b) = 0, we shall construct a

numerical scheme for the solution p(ψ) using a simple trapezoidal quadrature

rule in place of the integral. This in turn will lead us to an iterative procedure

which we shall use to numerically calculate an accurate approximation to the

actual wave speed ν.
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6.5 Numerical method

We proceed as follows. Firstly, suppose that between ψ = a and ψ = b we divide

the interval into N − 1 equally spaced strips of width

h(N) =
b− a

N − 1
, (6.27)

where h(N) denotes the strip width for an interval with N node points. The

variable ψ is defined discretely as

ψi = a + ih(N), i = 0, . . . , N − 1. (6.28)

Then we can compute the discrete solution pi at N points giving the set of

solutions

pi = p(ψi), i = 0, . . . , N − 1. (6.29)

Denoting f(ψi) by fi and using (6.25) to generate our N solutions for pi at

equally spaced values of ψ between a and b via

p2(ψj) − λ

∫ ψj

t=a

p(t)dt = f(ψj), j = 0, . . . , N − 1, (6.30)

we obtain the following N equations

p2
0 = f0,

p2
1 − λ

[

1

2
p0 +

1

2
p1

]

h(N) = f1,

p2
2 − λ

[

1

2
p0 + p1 +

1

2
p2

]

h(N) = f2,

...

p2
N−2 − λ

[

1

2
p0 + p1 + . . .+

1

2
pN−2

]

h(N) = fN−2,

p2
N−1 − λ

[

1

2
p0 + p1 + p2 + . . .+

1

2
pN−1

]

h(N) = fN−1. (6.31)

Imposing the boundary conditions given by (6.24) implies p0 = pN−1 = 0, al-

lowing us to eliminate the first equation in (6.31). The last equation in (6.31)
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can be used to obtain an expression for λh(N), namely,

λh(N) = − fN−1

p1 + p2 + . . .+ pN−2
. (6.32)

Substituting this into the remaining equations and defining

α =
N−2
∑

i=1

pi, β =
N−3
∑

i=1

pi. (6.33)

we are left with N − 2 nonlinear simultaneous equations to solve for pi, i =

1, 2, . . . , N − 2

2p2
1α + fN−1p1 − 2f1α = 0,

2p2
2α + fN−1 (2p1 + p2) − 2f2α = 0,

2p2
3α + fN−1 (2(p1 + p2) + p3) − 2f3α = 0,

...

2p2
N−2α + fN−1 (α + β) − 2fN−2α = 0. (6.34)

Solving this system involves employing Newton’s iterative method [84] for N−2

nonlinear equations. At this stage we may compute an approximate value for

λ from (6.32). Alternatively, after refining the values of pi for some value of

N , we can pursue a better approximation by constructing linear interpolants

connecting the points pi. We increment the number of node points by one to

N + 1 and calculate new approximate values p̂i at new node values ψ̂i over the

interval with N + 1 node points and spacing

h(N+1) =
b− a

N
. (6.35)

The node points are calculated from

ψ̂i = a+ ih(N+1), i = 0, . . . , N, (6.36)

and the rule for computing new interpolated points becomes

p̂i+1 =

(

pi+1 − pi
ψi+1 − ψi

)

(

ψ̂i+1 − ψi

)

+ pi. (6.37)
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At the endpoints of the interval we make p̂0 = 0 and p̂N = 0. In addition

we compute f̂i = f(ψ̂i). The procedure is then repeated iteratively until a

sufficiently accurate approximation is achieved.

6.6 Zero angle of inclination

We demonstrate the method on the aforementioned PDE (6.15) with the known

solution and wave speed in (6.16). The numerical method was implemented

using MATLAB, but could in principle be coded using any suitable package or

programming language. Consider (6.15), which we recall is equivalent to (6.14)

with σ = 0. For clarity we drop the φ̂ notation and let φ̂ → φ, X → x and

T → t so that (6.15) becomes

∂φ

∂t
=
∂2φ

∂x2
− 4χ sin

φ

2
− 4 sinφ . (6.38)

Then, transforming according to equations (6.18) to (6.22) and setting

i(ψ) = 4χ sin
ψ

2
+ 4 sinψ, (6.39)

we arrive at the equation

4

[

χ sin
ψ

2
+ sinψ

]

+ p

(

ν − dp

dψ

)

= 0, (6.40)

which is an Abel equation of the second kind, with solution

p(ψ) = ∓4 sin
ψ

2
, ν = ±χ. (6.41)

We chose to select χ = −2.154 for our example problem, a choice motivated by

Stewart and Momoniat [54]. The fixed points of (6.39) for |χ| > 2, lie at even

multiples of π, so that ψ = 0,±2π,±4π, . . . are solutions of i(ψ) = 0 when χ =

−2.154. We chose the interval over which we integrated the problem to be ψ ∈

(a, b), where a = −2π and b = 0 and calculated approximate solutions for p(ψ)

over a range of values of N . Starting with five equally spaced points satisfying
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(6.23), we have plotted the relative error between the numerically computed

approximate values denoted by pa(ψ) and exact values of p(ψ) computed at the

same equally spaced points given by (6.41) in Fig. 6.6. The graph demonstrates

that as we increase the number of points N , the approximate solution pa(ψ)

converges to the true solution p(ψ). In other words, as N is increased the

quality of the approximation pa(ψ) improves. Of course, as the approximation
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Figure 6.6: Plot of the relative error |p(ψ) − pa(ψ)| against ψ for a number of

values of N with χ = −2.154 and σ = 0 [8].

pa(ψ) improves, so too does the quality of the approximated wave speed. The

computed wave speeds ν for the values of N shown in Fig. 6.6 are listed in

Table 6.1. Compared to the magnitude of the exact wave speed for the problem

which is |ν| = |χ| = 2.154, the computed wave speed for N = 11 is accurate

to within about 1%. In addition we note that as the number of points N is

increased the wave speed approximation does indeed converge to the exact value

as expected. This confirms the validity of our proposed numerical scheme for

σ = 0.
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data points N wave speed ν
11 2.17565
19 2.16249
27 2.15851
31 2.15750

Table 6.1: Table of computed wave speeds [8].

6.7 Nonzero angle of inclination

To demonstrate the applicability of the method, we adapted the procedure to

show how varying the angle α of inclination of the electric field affects the wave

speed ν for fixed χ = −2.154. It is important to bear in mind that although the

dimensionless quantity χ is dependent on α, we treat it as fixed by supposing that

E is allowed to vary to ensure χ remains constant. Recall that σ = tanα cot θ

and that θ is fixed and that σ is therefore dependent on α. When α 6= 0 we have

that σ 6= 0. This introduces a third term into the nonlinearity so that now

i(ψ) = 4χ sin
ψ

2
+ 4 sinψ − 8σ cos

ψ

2
. (6.42)

Note that the fixed points of (6.42) are no longer even multiples of π if σ 6= 0 for

χ = −2.154, and the fixed points change as α is varied. To take account of this

a simple root finding scheme was implemented to determine the fixed points of

(6.42) as α was slowly incremented. Initially the problem was solved for α = 0

on the interval ψ ∈ (a, b) with a = 2π and b = 4π. Then as α was varied, new

fixed points were computed and new values of a and b selected as appropriate

for use in the numerical scheme. The inclination of the electric field was allowed

to vary over the range 0 ≤ α ≤ 22◦. The result is shown in Fig. 6.7 below.

6.8 Discussion

The technique described in the preceding sections provides a systematic and

reliable method for the numerical determination of wave speeds for PDE’s of the
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Figure 6.7: Field angle α versus wave speed ν for χ = −2.154, θ =

0.384 rad (θ = 22◦). Note the rate of change in wave speed is greatest for

small inclinations of the applied field [8].

form (6.1), where a travelling wave solution may be assumed and i(φ) is taken

to be a general nonlinear term. We chose to represent the problem as an integral

equation and treated the equation discretely. We showed how, for a PDE with a

nonlinear term which gives rise to an exact solution and analytically determined

wave speed, it was possible to demonstrate convergence to the analytical wave

speed using the numerical scheme. Furthermore, we demonstrated how the

method may be extended to deal with problems where analytical solutions and

wave speeds are not known explicitly. By developing the method of solution to

the problem when α 6= 0, we were able to extend our numerical procedure to

construct a graph of wave speeds ν against the angle of inclination α for a range

of values of α, and for the first time revealed for σ 6= 0 the nonlinear dependence

of ν upon α. This was achieved despite there being no closed form solution to

(6.1) when i(φ) = 4χ sin φ

2
+ 4 sinφ− 8σ cos φ

2
.

Future work will improve the convergence rate and accuracy of the algo-

rithm by employing a more sophisticated quadrature scheme. Making direct

comparison of wave speeds observed in the laboratory with our numerical ap-
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proximations, and applying the method to other types of nonlinear problems,

will form the basis of further investigations.



Chapter 7

Conclusion

So, we finally come to the end of this work and we are now in a position to review

and consolidate the material presented. We began in Chapter 2 by considering

a perturbation to a travelling domain wall propagating through a sample of

ferroelectric liquid crystal in a planar layer geometry identical to that described

in [54]. The sample was under the influence of a constant electric field and the

model allowed the field to be inclined at some angle α. Making use of the fact

that in the case where the field is in the plane of the sample an exact solution

to the governing equation exists and where flow is assumed to be negligible,

we proceeded to construct a continuum model which assumed that the exact

solution was propagating in a medium where flow was not negligible.

We approached the problem of incorporating flow by locating the general

wave front in a co-moving frame of reference. Then, in that co-moving frame we

applied infinitesimal perturbations to the wave by imposing flow components of

infinitesimal magnitude in each of three spatial directions. Working through the

resulting algebra we arrived at a fully nonlinear system comprised of five sepa-

rate equations one for conserved mass, three to account for conserved angular

momentum in the system and a final equation, essentially a modification of the

original governing equation, to account for conserved angular momentum.

Moving on from here in Chapter 3 we began the process of linearising the

149
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perturbation equations by first making some remarks regarding the appropri-

ateness of assuming only one elastic constant in the model. We decided that

anisotropy in the model was not a significant factor and this lead us to adopt the

one constant approximation. Furthermore we assumed no transverse flow which

allowed us to disregard the v component of flow in our model which allowed a

certain amount of simplification. Further assumptions such as the decision to

model systems where P0E < 0, were guided by the need to conform to the re-

quirements of the exact solution from the governing equation in the case where

the field was at zero inclination and the linear transform to the co-moving frame

within which the system was being studied.

To apply the perturbations we assumed that in a quiescent state we had

simply a known solution φ0 and a constant pressure p0. The flow in the quiescent

state was assumed to be zero. Perturbing the system and then linearising the

result left us with four linear perturbation equations featuring terms which

involved the solution for the quiescent state φ0. By exploiting the fact that an

exact solution exists in the case where the electric field in not inclined, that

is when the field was at an angle α = 0 we were left with four perturbation

equations where the non-constant coefficients could be expressed exactly in terms

of our transformed spatial variable τ .

Moving on from here to Chapter 4 we made further simplifying assumptions.

We used the perturbation equation corresponding to the conserved mass to de-

termine that the flow in the transformed x direction is infact constant. This

allowed us to further reduce the system by disregarding the conserved linear

momentum equation for the component of velocity in the x direction. This left

us with just two equations a perturbation equation for conserved angular mo-

mentum and a perturbation equation for conserved linear momentum in the z

direction.
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At this point we decided to look at the problem in two different ways one

involved considering the coefficients in our differential equations as if they were

constant. By choosing a point in the middle of the domain wall, that is τ = 0

replacing the hyperbolic terms with their numerical values at τ = 0 and apply-

ing a suitable transformation we were able to construct a system of differential

equations which formed a differential eigenvalue problem. The differential oper-

ator in this problem was non-self-adjoint. We chose to employ a Galerkin type

method to study the eigenvalue problem and in the constant coefficient case our

principal interest lay in verifying the numerical scheme and satisfying ourselves

that the dominant eigenvalues were being reliably computed and were showing

signs of convergence. The numerical scheme worked as expected and given a set

of plausible physical values for the constants in the model we tracked two of the

eigenvalues by using polynomial approximations of increasing greater degrees

until computational limitations were reached.

For the full perturbation equations we were once again faced with a non-

self-adjoint system and numerical approximation was the only feasible solution

method. This time we chose a relatively low number of approximating polynomi-

als per function. We infact chose to model our perturbation solutions with two

polynomial test functions each. With a total of four Fourier coefficients this gave

us a discretisation which yielded an algebraic eigenvalue problem with a fourth

order characteristic equation. Using successively larger values for the magnitude

of the electric field and other appropriate physical parameters typically yielded

two real positive roots and two complex conjugate roots.

The time decaying components in the ansatz for the perturbation solutions

were chosen so that a positive real part for the eigenvalue would yield a per-

turbation which decays with time. While as we mentioned, the two real roots

were always found to be positive, the complex roots over the range of values
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of E which we chose to use, generally started off having a negative real part

as we cycled from a low magnitude field, became zero at some critical electric

field strength, and then remained positive thereafter up to the maximum field

strength. By recording the field strength Ec at the critical point as we varied

other physical parameters, we were able to get a picture of how the material pa-

rameters influence the threshold electric field strength either side of the system

was found to be in an asymptotically stable or unstable state.

So far as this analysis is concerned, the interpretation we chose to place on

the critical field strength was that below the critical strength Ec travelling waves

could not be initiated. Field strengths below the critical field cannot overcome

the viscous and elastic forces resisting the inclination of the electric dipoles to

align themselves in the field so no wave fronts appear. Above the critical field

the torque exerted by the field on the dipoles is enough to overcome the viscous

and elastic forces and a travelling wave is initiated. As we mentioned earlier

comparison with the literature shows that the field strengths we have computed

are in reasonable agreement with other researchers findings.

We could in principle improve the accuracy of the field strength calculations

by adding more terms to our approximating polynomials and refining the root

solving algorithm used to determine the exact point at which the real part of the

complex eigenvalues changes sign. Also, using better approximating polynomial

such as the Legendre polynomials would most likely increase the speed of con-

vergence of the eigenvalues. The weighted residual method used to tackle the

problems being investigated was the Galerkin method. Other weighted resid-

ual methods exist for instance the assumed modes method and the collocation

method, but they generally do not deliver the accuracy of the Galerkin method.

We carried out some preliminary power law analysis and this yielded some in-

teresting results including what appears to be a one over root B law relating the
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critical electric field to the elastic constant. Nevertheless the power law analysis

is still in its early stages and more work will need to be done in order to tease

out all of the available information.

The remaining two chapters focused on quantitative studies of travelling

wave phenomena. In Chapter 5 we adapted an existing technique for approxi-

mating domain wall profiles and were able to find good agreement between the

approximation method and a particular travelling wave problem with an exact

solution. In the final chapter, Chapter 6 we looked at the problem of comput-

ing wave speeds using a novel discretisation method and presented results for

a dimensionless model. The method can be straightforwardly adapted for use

in other travelling wave type problems of the kind discussed in Chapter 5. Im-

proved discretisation would no doubt improve the convergence properties of the

algorithm.



Appendix A

Vector Result

Theorem A.1 Suppose a vector v(u) has fixed modulus |v| = C where C ∈ R.

If the derivative of v(u) with respect to u is continuous, then

dv

du
= w × v,

where w may vary with with u.

Proof We begin by noting that v · v = |v|2. Then

d

du
(v · v) = 2v · v′ = 0.

This means that v · v′ = 0 and so v and v′ are orthogonal. Now let

v × v′ = |v| |v′|n,

for some vector n(u) perpendicular to v and v′, then

n × v =
1

|v| |v′| [(v × v′) × v]

=
1

|v| |v′| [(v · v)v′ − (v · v′)v]

=
|v|2

|v| |v′|v
′

=
|v|
|v′|v

′.

Now if we define

w =
|v′|
|v| n,
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then

v′ = w × v. �



Appendix B

Elastic Constant Vector

Identities

We shall now provide some justification for the identities given by (2.49) and

(2.50). For the sake of brevity we shall show how, using (2.50), we may derive

the K6 term in (2.56) by considering the K6 term in the energy density (2.46).

Other terms in (2.56) and (2.55) may be derived in a similar manner. So, we

start with (2.46) and consider only the vector expression for K6

w = K6(∇ · a)(b · ∇ × c), where b = a × c. (B.1)

Expressed in Cartesian form this is equivalent to

w = K6ap,pǫqrsarcsǫqmncn,m

= K6ap,pǫqrsǫqmnarcscn,m

= K6ap,p(δrmδsn − δrnδsm)arcscn,m

= K6ap,parcs(cs,r − cr,s). (B.2)

Next using (2.50) with w = w∗ and taking w to be equal to (B.2), we find that

the first term is computed as follows

∂w

∂ci,j
= K6ap,parcs

(

∂cs,r
∂ci,j

− ∂cr,s
∂ci,j

)

= K6ap,parcs(δ
sr
ij − δrsij )

= K6ap,p(ajci − aicj). (B.3)
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Where we have used the fact that

δa1a2...an

b1b2...bn
=

n
∏

i=1

δai,bi . (B.4)

From this we find that

(

∂w

∂ci,j

)

,j

= K6[ap,p(ajci − aicj)],j

= K6[(ap,p),j(ajci − aicj) + ap,p(ajci − aicj),j ]

= K6[(ap,p),j(ajci − aicj)

+ap,p(aj,jci + ajci,j − ai,jcj − aicj,j)]. (B.5)

The second term in (2.50) yields

∂w

∂ci
= K6ap,parδsi(cs,r − cr,s)

= K6ap,par(ci,r − cr,i), (B.6)

which, on combining (B.5) with (B.6) yields the expression

(

∂w

∂ci,j

)

,j

− ∂w

∂ci
= K6[(ap,p),j(ajci − aicj)

+ap,p(aj,jci + ajci,j − ai,jcj − aicj,j)

−ap,par(ci,r − cr,i)]. (B.7)

Now, the K6 term in Πc is

Πc
K6

= K6[(∇ · a)(a ×∇× c) −∇× {(∇ · a)b}]. (B.8)

Taking the first term in this expression and considering the cross product we

find that

[a ×∇× c]i = ǫijkajǫklmcm,l

= ǫkijǫklmajcm,l

= (δilδjm − δimδjl)ajcm,l

= aj(cj,i − ci,j). (B.9)



158

So that

(∇ · a)[a ×∇× c]i = ap,paj(cj,i − ci,j). (B.10)

The second term on the RHS of (B.8) has an i-th component given by

[∇× {(∇ · a)a × c}]i = ǫijk{(∇ · a)a × c}k,j. (B.11)

Now we wish to determine the k-th component of the term inside the brackets

on the RHS of (B.11)

{(∇ · a)a × c}k = ap,pǫklmalcm, (B.12)

and the j-th derivative of (B.12) is found to be

{(∇ · a)a × c}k,j = (ap,p),jǫklmalcm

+ap,pǫklmal,jcm

+ap,pǫklmalcm,j. (B.13)

Consequently we have that

[∇× {(∇ · a)a × c}]i = ǫijkǫklm[(ap,p),jalcm + ap,pal,jcm + ap,palcm,j]

= ǫkijǫklm[(ap,p),jalcm + ap,pal,jcm + ap,palcm,j]

= (δilδjm − δimδjl)[(ap,p),jalcm + ap,pal,jcm + ap,palcm,j ]

= (ap,p),j(aicj − ajci) + ap,p(ai,jcj − aj,jci)

+ap,p(aicj,j − ajci,j). (B.14)

Now, combining (B.10) and (B.14) we find that the i-th component of the K6

term is

K6[(∇ · a)[a ×∇× c] −∇× {(∇ · a)b}]i = K6[ap,paj(cj,i − ci,j)

+(ap,p),j(ajci − aicj)

+ap,p(aj,jci − ai,jcj)

+ap,p(ajci,j − aicj,j)].(B.15)
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Finally, comparing the RHS of (B.7) with the RHS of (B.15) we find that the

expressions are identical which lead us to conclude that, for the energy density

w defined by (B.1)

(

∂w

∂ci,j

)

,j

− ∂w

∂ci
= K6[(∇ · a)[a ×∇× c] −∇× {(∇ · a)b}]i. (B.16)



Appendix C

The Rayleigh-Ritz method for an

R
2×2 linear differential operator

We present here a scheme for implementing the Rayleigh-Ritz method to a 2×2

matrix differential operator. We assume that the functions φ̂ and ẑ are approx-

imated by a sequence of trial functions up to O(2). In other words we choose φ̂

and ẑ to be approximated by

φ̂ = a1φ1 + a2φ2,

ẑ = b1φ1 + b2φ2. (C.1)

Then our operator A and the vector x are defined to be

A =

[

A11 A12

A21 A22

]

, x =

[

φ̂
ẑ

]

. (C.2)

Our goal is to find values of λ which make the functional

F (x) =

∫

xT (A − λI)x dx (C.3)

a minimum with respect to the coefficients a1, a2, b1 and b2. We begin by com-

puting the quadratic form Q given by

Q = xTAx,

and we have that

xTAx = [a1φ1 + a2φ2 b1φ1 + b2φ2]

[

A11 A12

A21 A22

] [

a1φ1 + a2φ2

b1φ1 + b2φ2

]
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= a2
1φ1A11φ1 + a1a2φ1A11φ2 + a2a1φ2A11φ1 + a2

2φ2A11φ2

+ a1b1φ1A12φ1 + a1b2φ1A12φ2 + a2b1φ2A12φ1 + a2b2φ2A12φ2

+ b1a1φ1A21φ1 + b1a2φ1A21φ2 + b2a1φ2A21φ1 + b2a2φ2A21φ2

+ b21φ1A22φ1 + b1b2φ1A22φ2 + b2b1φ2A22φ1 + b22φ2A22φ2. (C.4)

Also we find that the inner product of x with itself is given by

xT Ix = [a1φ1 + a2φ2 b1φ1 + b2φ2]

[

1 0
0 1

] [

a1φ1 + a2φ2

b1φ1 + b2φ2

]

= a2
1φ

2
1 + a1a2φ1φ2 + a2a1φ2φ1 + a2

2φ
2
2

+ b21φ
2
1 + b1b2φ1φ2 + b2b1φ2φ1 + b22φ

2
2. (C.5)

Then integrating (C.4) and (C.5) we have that

∫

xTAx dτ = a2
1〈A11φ1, φ1〉 + a1a2〈A11φ2, φ1〉 + a2a1〈A11φ1, φ2〉

+ a2
2〈A11φ2, φ2〉 + a1b1〈A12φ1, φ1〉 + a1b2〈A12φ2, φ1〉

+ a2b1〈A12φ1, φ2〉 + a2b2〈A12φ2, φ2〉 + b1a1〈A21φ1, φ1〉

+ b1a2〈A21φ2, φ1〉 + b2a1〈A21φ1, φ2〉 + b2a2〈A21φ2, φ2〉

+ b21〈A22φ1, φ1〉 + b1b2〈A22φ2, φ1〉 + b2b1〈A22φ1, φ2〉

+ b22〈A22φ2, φ2〉, (C.6)

and

∫

xT Ix dτ = a2
1〈φ1, φ1〉 + a1a2〈φ1, φ2〉 + a2a1〈φ2, φ1〉

+ a2
2〈φ2, φ2〉 + b21〈φ1, φ1〉 + b1b2〈φ1, φ2〉

+ b2b1〈φ2, φ1〉 + b22〈φ2, φ2〉. (C.7)

Now differentiating (C.3) with respect to the ai’s and bi’s we find that

∂F

∂a1

= 2a1〈A11φ1, φ1〉 + a2〈A11φ2, φ1〉 + a2〈A11φ1, φ2〉

+ b1〈A12φ1, φ1〉 + b2〈A12φ2, φ1〉
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+ b1〈A21φ1, φ1〉 + b2〈A21φ1, φ2〉

− λ [2a1〈φ1, φ1〉 + a2〈φ1, φ2〉 + a2〈φ2, φ1〉] , (C.8)

∂F

∂a2

= a1〈A11φ2, φ1〉 + a1〈A11φ1, φ2〉 + 2a2〈A11φ2, φ2〉

+ b1〈A12φ1, φ2〉 + b2〈A12φ2, φ2〉

+ b1〈A21φ2, φ1〉 + b2〈A21φ2, φ2〉

− λ [a1〈φ1, φ2〉 + a1〈φ2, φ1〉 + 2a2〈φ2, φ2〉] , (C.9)

∂F

∂b1
= a1〈A12φ1, φ1〉 + a2〈A12φ1, φ2〉

+ a1〈A21φ1, φ1〉 + a2〈A21φ2, φ1〉

+ 2b1〈A22φ1, φ1〉 + b2〈A22φ2, φ1〉 + b2〈A22φ1, φ2〉

− λ [2b1〈φ1, φ1〉 + b2〈φ1, φ2〉 + b2〈φ2, φ1〉] , (C.10)

∂F

∂b2
= a1〈A12φ2, φ1〉 + a2〈A12φ2, φ2〉

+ a1〈A21φ1, φ2〉 + a2〈A21φ2, φ2〉

+ b1〈A22φ2, φ1〉 + b1〈A22φ1, φ2〉 + 2b2〈A22φ2, φ2〉

− λ [b1〈φ1, φ2〉 + b1〈φ2, φ1〉 + 2b2〈φ2, φ2〉] . (C.11)

So we wish to solve the following system of homogeneous simultaneous linear

equations

2 [〈A11φ1, φ1〉 − λ〈φ1, φ1〉] a1 + [〈A11φ2, φ1〉 + 〈A11φ1, φ2〉 − 2λ〈φ1, φ2〉] a2

+ [〈A12φ1, φ1〉 + 〈A21φ1, φ1〉] b1 + [〈A12φ2, φ1〉 + 〈A21φ1, φ2〉] b2 = 0, (C.12)

[〈A11φ2, φ1〉 + 〈A11φ1, φ2〉 − 2λ〈φ1, φ2〉] a1 + 2 [〈A11φ2, φ2〉 − λ〈φ2, φ2〉] a2

+ [〈A12φ1, φ2〉 + 〈A21φ2, φ1〉] b1 + [〈A12φ2, φ2〉 + 〈A21φ2, φ2〉] b1 = 0, (C.13)

2 [〈A22φ1, φ1〉 − λ〈φ1, φ1〉] b1 + [〈A22φ2, φ1〉 + 〈A22φ1, φ2〉 + λ〈φ1, φ2〉] b2

+ [〈A12φ1, φ1〉 + 〈A21φ1, φ1〉] a1 + [〈A12φ1, φ2〉 + 〈A21φ2, φ1〉] a2 = 0,(C.14)

[〈A22φ2, φ1〉 + 〈A22φ1, φ2〉 − λ〈φ1, φ2〉] b1 + 2 [〈A22φ2, φ2〉 − λ〈φ2, φ2〉] b2

+ [〈A12φ2, φ1〉 + 〈A21φ1, φ2〉] a1 + [〈A12φ2, φ2〉 + 〈A21φ2, φ2〉] a2 = 0.(C.15)
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Determination of a(t), b(t), c(t),
ξ0(t) and ξ1(t)

Equations (5.68)-(5.71) may be solved using Gaussian elimination. We outline

the steps required here and derive a relationship between ξ0(t) and ξ1(t). This

in turn will allow us to derive expressions for a(t) and c(t). We start by adding

(5.70) and (5.71) and then solve the following system of three equations in three

unknowns a(t), b(t) and c(t)

a(t)ξ0 + 1
2
b(t)ξ2

0 + 1
6
c(t)ξ3

0 = 1
2
(φ0 − φ1) , (D.1)

a(t)ξ1 − 1
2
b(t)ξ2

1 + 1
6
c(t)ξ3

1 = 1
2
(φ0 − φ1) , (D.2)

2a(t) + b(t) (ξ0 − ξ1) + 1
2
c(t) (ξ2

0 + ξ2
1) = 0. (D.3)

Writing (D.1)-(D.3) system in augmented matrix form we reduce the problem

to row echelon form by performing elementary row operations (ERO) as follows





ξ0
1
2
ξ2
0

1
6
ξ3
0

ξ1 −1
2
ξ2
1

1
6
ξ3
1

2 ξ0 − ξ1
1
2
(ξ2

0 + ξ2
1)

1
2
(φ0 − φ1)

1
2
(φ0 − φ1)

0



 (D.4)

First ERO R3 := R3 − 2
ξ0
R1





ξ0
1
2
ξ2
0

1
6
ξ3
0

ξ1 −1
2
ξ2
1

1
6
ξ3
1

0 −ξ1 1
6
ξ2
0 + 1

2
ξ2
1

1
2
(φ0 − φ1)

1
2
(φ0 − φ1)

− 1
ξ0

(φ0 − φ1)



 (D.5)
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Second ERO R2 := R2 − ξ1
ξ0
R1





ξ0
1
2
ξ2
0

1
6
ξ3
0

0 −1
2
ξ1 (ξ1 − ξ0)

1
6
ξ1 (ξ2

1 − ξ2
0)

0 −ξ1 1
6
ξ2
0 + 1

2
ξ2
1

1
2
(φ0 − φ1)

1
2
(φ0 − φ1) (1 − ξ1/ξ0)

− 1
ξ0

(φ0 − φ1)



 (D.6)

Third ERO R3 := R3 − 2
ξ1−ξ0R2





ξ0
1
2
ξ2
0

1
6
ξ3
0

0 −1
2
ξ1 (ξ1 − ξ0)

1
6
ξ1 (ξ2

1 − ξ2
0)

0 0 1
6
(ξ1 − ξ0)

2

1
2
(φ0 − φ1)

1
2
(φ0 − φ1) (1 − ξ1/ξ0)

0



 (D.7)

Now for consistency we see that the the last row of (D.7) yields ξ0(t) = ξ1(t) so

that (D.1), (D.2) and (D.3) may be reduced to the following pair of simultaneous

equations

2a(t)ξ0 + 1
3
c(t)ξ3

0 = φ0 − φ1, (D.8)

2a(t) + c(t)ξ2
0 = 0. (D.9)

This immediately implies that b(t) = 0. Then from (D.9) we have that

c(t) = −2a(t)

ξ2
0

, (D.10)

which on substitution into (D.8) yields

a(t) =
3

4

(φ0 − φ1)

ξ0
, (D.11)

so that

ξ0(t) =
3

4

(φ0 − φ1)

a(t)
, (D.12)

which on substituting back into (D.10) gives

c(t) = −32

9

1

(φ0 − φ1)
2a

3(t). (D.13)



Appendix E

Weighted Residual Methods

The principle behind the method of weighted residuals is relatively straight-

forward. What we aim to do is solve a generally non-self-adjoint differential

eigenvalue problem by discretising the differential eigenvalue problem and in

so doing form an algebraic eigenvalue problem which we may solve using stan-

dard methods taken from linear algebra [61, p.27]. Here we follow the general

treatment given by Meirovitch [64] on the subject of weighted residuals. In ad-

dition we shall regard the operator eigenvalue problem more generally and so

we shall also take into account the general eigenvalue problem in Finlayson [67]

and adapt our discussion to suit. Suppose we have the following differential

eigenvalue problem

Ay = ΛBy, (E.1)

with homogeneous boundary conditions

Biy = 0, i = 1, 2, . . . , n at x = −δ and x = δ, (E.2)

where operators A and B are general differential operators. Consider a trial

function w(x). In general w(x) does not satisfy (E.1) which means that if we

substitute the trial function for y in (E.1) the measure of the error when we do

this is given by the residual which we define to be

R(w, x) = Aw − ΛBw. (E.3)
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If we chose as the trial function the eigenfunction wi and associated eigenvalue

Λi the residual would be zero. Next we choose a weighting function v(x) and

define the weighted residual

vR = v(Aw − ΛBw). (E.4)

If v(x) is chosen so that v(x) is orthogonal to R(w, x) then the integral of the

weighted residual is zero

(v, R) =

∫ δ

−δ
v(Aw − ΛBw)dx = 0. (E.5)

Now specify an approximate solution of (E.1) by defining the function

yn =
n
∑

j=1

ajφj, (E.6)

where φ1, φ2, · · · , φn are n functions which are chosen from a complete set of

test functions. The completeness property is crucial as is the condition that the

functions φj be linearly independent [67]. Then we choose another set of func-

tions ψ1, ψ2, · · · , ψn from another complete set. The coefficients a1, a2, · · · , an are

determined by demanding that the functions ψi be orthogonal to the weighted

residual R = R(yn, x) so that

(ψi, R) =

∫ δ

−δ
ψi(Ayn − ΛnByn)dx = 0, i = 1, 2, . . . , n, (E.7)

where Λn is the approximate eigenvalue associated with yn. The eigenvalue Λn

is generally determined by numerical means. Then introducing (E.6) into (E.7)

we find that

(ψi, R) =

∫ δ

−δ
ψi

(

n
∑

j=1

ajAφj − Λn

n
∑

j=1

ajBφj
)

dx

=
n
∑

j=1

(kij − Λnmij)aj = 0, i = 1, 2, . . . , n, (E.8)
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where

kij = (ψi,Aφj) =

∫ δ

−δ
ψiAφjdx, i, j = 1, 2, . . . , n,

mij = (ψi,Bφj) =

∫ δ

−δ
ψiBφjdx, i, j = 1, 2, . . . , n. (E.9)

where we find that the elements kij and mij are constant coefficients. Then

defining the vector a = (a1, a2, . . . , an)
T and the matrices K = [kij] and M = [mij ]

we may write this down as follows

Ka = Λn
Ma, (E.10)

which we recognise as an eigenvalue problem. Now (E.10) has a non-trivial

solution, that is the aj’s are non-zero, provided its determinant vanishes

det(kij − Λnmij) = 0. (E.11)

This gives a characteristic equation in Λn of degree n. The coefficients ai may

then be determined by a process of Gaussian elimination.

The method of weighted residuals can be extended to problems where the

differential operators are such that A,B ∈ Rn×n with n ≥ 1. Then the problem

becomes one of solving the generalised operator problem

Ay = ΛBy, (E.12)

where y ∈ Rn. Now choosing the trial function so that w ∈ Rn we define the

residual to be

R(w, x) = Aw − ΛBw. (E.13)

Once again if we are given a Λi representing an eigenvalue of (E.12) along with

an associated eigenvector wi the residual R(wi, x) is zero. At this point we want

to form a weighted residual which we may use to determine an orthogonality

condition.
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Previously we chose a trial function w and a weighting function v and ensured

orthogonality via (E.5). Now however the problem is complicated due to the

presence of R
n×n operators. Somehow we need to weight our residual R(w, x)

with respect to a weighting function.

To do so we follow the procedures outlined in [85, p.193-204] and [64, p.312-

319]. In both of these treatments a weighted residual method is applied to a pair

of coupled ODE’s arising from a problem in aeroelasticity theory. Applied to the

current problem the procedure for tackling the system involves the following. In

order to weight the residual the trial function is chosen to be an approximate

solution to the governing operator problem (E.12), viz

yn =

[

yn1
yn2

]

, where yn1 =
n
∑

j=1

ajφj and yn2 =
2n
∑

j=n+1

ajφj. (E.14)

Then taking the residual R(w, x) to be R ∈ R2×1 and writing R in component

form R = (R1, R2)
T , we choose 2n weighting functions ψi and form 2n weighted

residuals as follows

ψiR1 = ψi
[

A11y
n
1 + A12y

n
2 − Λ2n (B11y

n
1 + B12y

n
2 )
]

, i = 1, 2, · · · , n, (E.15)

ψiR2 = ψi
[

A21y
n
1 + A22y

n
2 − Λ2n (B21y

n
1 + B22y

n
2 )
]

, i = n+ 1, n+ 2, · · · , 2n,

(E.16)

Note that the eigenvalues for this system Λ2n are of multiplicity 2n. We shall

use the notation given in Stewart [4] for the tensor product or dyadic product,

so that the symbol ⊗ is used to represent the tensor product in the sense

[a ⊗ b]ij = aibj . (E.17)

This means that in Cartesians a ⊗ b corresponds roughly to a matrix with

components given by (E.17). Consider the weighted residual given at (E.15).

If we substitute for yn1 and yn2 from (E.14) in (E.15) we can write the problem



169

down as

ψiR1 = ψi

[

A11

n
∑

j=1

ajφj + A12

2n
∑

j=n+1

ajφj − Λ2n

(

B11

n
∑

j=1

ajφj + B12

2n
∑

j=n+1

ajφj

)]

=

n
∑

j=1

aj
[

ψiA11φj − Λ2nψiB11φj
]

+

2n
∑

j=n+1

aj
[

ψiA12φj − Λ2nψiB12φj
]

=
n
∑

j=1

aj

[

(

ψ ⊗ υA11

)

ij
− Λ2n

(

ψ ⊗ υB11

)

ij

]

+

2n
∑

j=n+1

aj

[

(

ψ ⊗ υA12

)

ij
− Λ2n

(

ψ ⊗ υB12

)

ij

]

(E.18)

where we define the vectors

ψ =











ψ1

ψ2
...
ψn











, (E.19)

along with

υA11 =











A11φ1

A11φ2
...

A11φn











,υB11 =











B11φ1

B11φ2
...

B11φn











,υA12 =











A12φ1

A12φ2
...

A12φn











,υB12 =











B12φ1

B12φ2
...

B12φn











(E.20)

In a similar fashion we define the weighted residual associated with R2 with

respect to ψi as

ψiR2 =
n
∑

j=1

aj

[

(

ψ ⊗ υA21

)

ij
− Λ2n

(

ψ ⊗ υB21

)

ij

]

+
2n
∑

j=n+1

aj

[

(

ψ ⊗ υA22

)

ij
− Λ2n

(

ψ ⊗ υB22

)

ij

]

(E.21)

where we define

υA21 =











A21φ1

A21φ2
...

A21φn











,υB21 =











B21φ1

B21φ2
...

B21φn











,υA22 =











A22φ1

A22φ2
...

A22φn











,υB22 =











B22φ1

B22φ2
...

B22φn











.

(E.22)
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Then the orthogonality conditions follow by integrating (E.15) and (E.16) with

respect to x over the interval −δ ≤ x ≤ δ as follows

∫ δ

−δ
ψiR1 dx =

∫ δ

−δ

n
∑

j=1

aj

[

(

ψ ⊗ υA11

)

ij
− Λ2n

(

ψ ⊗ υB11

)

ij

]

+

2n
∑

j=n+1

aj

[

(

ψ ⊗ υA12

)

ij
− Λ2n

(

ψ ⊗ υB12

)

ij

]

dx

= 0, i = 1, 2, · · · , n, (E.23)
∫ δ

−δ
ψiR2 dx =

∫ δ

−δ

n
∑

j=1

aj

[

(

ψ ⊗ υA21

)

ij
− Λ2n

(

ψ ⊗ υB21

)

ij

]

+

2n
∑

j=n+1

aj

[

(

ψ ⊗ υA22

)

ij
− Λ2n

(

ψ ⊗ υB22

)

ij

]

dx

= 0, i = n+ 1, 2, · · · , 2n, (E.24)

Suppose now that we select n = 2 so that the orthogonality conditions at (E.23)

yield

∫ δ

−δ
ψ1R1 dx =

∫ δ

−δ
a1

[(

ψ ⊗ υA11

)

11
− Λ2n

(

ψ ⊗ υB11

)

11

]

+a2

[(

ψ ⊗ υA11

)

12
− Λ2n

(

ψ ⊗ υB11

)

12

]

+a3

[(

ψ ⊗ υA12

)

13
− Λ2n

(

ψ ⊗ υB12

)

13

]

+a4

[(

ψ ⊗ υA12

)

14
− Λ2n

(

ψ ⊗ υB12

)

14

]

dx

= 0, (E.25)

and

∫ δ

−δ
ψ2R1 dx =

∫ δ

−δ
a1

[(

ψ ⊗ υA11

)

21
− Λ2n

(

ψ ⊗ υB11

)

21

]

+a2

[(

ψ ⊗ υA11

)

22
− Λ2n

(

ψ ⊗ υB11

)

22

]

+a3

[(

ψ ⊗ υA12

)

23
− Λ2n

(

ψ ⊗ υB12

)

23

]

+a4

[(

ψ ⊗ υA12

)

24
− Λ2n

(

ψ ⊗ υB12

)

24

]

dx

= 0, (E.26)
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whereas the orthogonality conditions at (E.24) yield the following expressions

∫ δ

−δ
ψ3R2 dx =

∫ δ

−δ
a1

[(

ψ ⊗ υA21

)

31
− Λ2n

(

ψ ⊗ υB21

)

31

]

+a2

[(

ψ ⊗ υA21

)

32
− Λ2n

(

ψ ⊗ υB21

)

32

]

+a3

[(

ψ ⊗ υA22

)

33
− Λ2n

(

ψ ⊗ υB22

)

33

]

+a4

[(

ψ ⊗ υA22

)

34
− Λ2n

(

ψ ⊗ υB22

)

34

]

dx

= 0, (E.27)

∫ δ

−δ
ψ4R2 dx =

∫ δ

−δ
a1

[(

ψ ⊗ υA21

)

41
− Λ2n

(

ψ ⊗ υB21

)

41

]

+a2

[(

ψ ⊗ υA21

)

42
− Λ2n

(

ψ ⊗ υB21

)

42

]

+a3

[(

ψ ⊗ υA22

)

43
− Λ2n

(

ψ ⊗ υB22

)

43

]

+a4

[(

ψ ⊗ υA22

)

44
− Λ2n

(

ψ ⊗ υB22

)

44

]

dx

= 0. (E.28)

Finally we may write the orthogonality condition down as a generalised eigen-

value problem so that

Aa = Λ2n
Ba, (E.29)

where the matrix elements Aij and Bij are given by

Aij =

∫ δ

−δ

(

ψ ⊗ υA11

)

ij
dx, i, j = 1, 2,

Aij =

∫ δ

−δ

(

ψ ⊗ υA12

)

ij
dx, i = 1, 2; j = 3, 4,

Aij =

∫ δ

−δ

(

ψ ⊗ υA21

)

ij
dx, i = 3, 4; j = 1, 2,

Aij =

∫ δ

−δ

(

ψ ⊗ υA22

)

ij
dx, i, j = 3, 4,

and

Bij =

∫ δ

−δ

(

ψ ⊗ υB11

)

ij
dx, i, j = 1, 2,
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Bij =

∫ δ

−δ

(

ψ ⊗ υB12

)

ij
dx, i = 1, 2; j = 3, 4,

Bij =

∫ δ

−δ

(

ψ ⊗ υB21

)

ij
dx, i = 3, 4; j = 1, 2,

Bij =

∫ δ

−δ

(

ψ ⊗ υB22

)

ij
dx, i, j = 3, 4,

E.1 The Galerkin method

The Galerkin method [67] is the name given to a scheme whereby the weighting

functions are made equal to the trial functions used to form the approximate

solution. So, for example, suppose we have a linear operator problem of the

form

Ly = λy, (E.30)

and we wish to approximate its solution using the function

yn(x) =

n
∑

j=1

ajφj(x) (E.31)

where the φj are a complete set of trial functions chosen to match the boundary

conditions of the problem in question. We form the residual as described in

Appendix E thus

R(yn, x) = Lyn − λyn, (E.32)

Then choosing the weighting functions to be equal to the trial functions, so

that ψi = φi we multiply the residual by the weighting functions so that on

integrating to form the orthogonality condition we see that

(φi, R) =

∫ δ

−δ
φiLφj dx = 0, for i, j = 1, 2, · · · , n. (E.33)

By contrast in the multidimensional case as given in (E.12), choosing the weight-

ing functions to be equal to the trial functions is achieved by making ψ = φ.



Appendix F

The adjoint of an R
2×2 general

second order linear differential

operator

First, suppose that we have a general linear differential operator L ∈ R2×2 and

two vectors u,v ∈ R1×2 such that

L =

[

l11 l12
l21 l22

]

,u =

[

u1

u2

]

and v =

[

v1

v2

]

. (F.1)

We define the inner product as follows

(v,Lu) =

∫ b

a

v · Lu dx

=

∫ b

a

v1l11u1 + v1l12u2 + v2l21u1 + v2l22u2 dx (F.2)

(F.3)

Then typically following an integration by parts we find that

(v,Lu) =

∫ b

a

u1l
∗
11v1 + u2l

∗
12v1 + u1l

∗
21v2 + u2l

∗
22v2 dx+B(η1, η2, ζ1, ζ2)

=

∫ b

a

u1l
∗
11v1 + u1l

∗
21v2 + u2l

∗
12v1 + u2l

∗
22v2 dx+B(η1, η2, ζ1, ζ2)

=

∫ b

a

u · L∗v dx+B(η1, η2, ζ1, ζ2)

= (u,L∗v) +B(η1, η2, ζ1, ζ2), (F.4)

where B(η1, η2, ζ1, ζ2) is a certain bi-linear form in the variables [86]

η1 = (u1(a), u
′
1(a), · · · , u

(n−1)
1 (a), u1(b), u

′
1(b), · · · , u

(n−1)
1 (b)), (F.5)
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η2 = (u2(a), u
′
2(a), · · · , u

(n−1)
2 (a), u2(b), u

′
2(b), · · · , u

(n−1)
2 (b)), (F.6)

ζ1 = (v1(a), v
′
1(a), · · · , v

(n−1)
1 (a), v1(b), v

′
1(b), · · · , v

(n−1)
1 (b)), (F.7)

ζ2 = (v2(a), v
′
2(a), · · · , v

(n−1)
2 (a), v2(b), v

′
2(b), · · · , v

(n−1)
2 (b)), (F.8)

Then we may write the adjoint as

L∗ =

[

l∗11 l∗21
l∗12 l∗22

]

, (F.9)

Suppose now we have a general linear differential operator of second order given

by

l = a2(x)
d2

dx2
+ a1(x)

d

dx
+ a0(x). (F.10)

It can be shown (see Lanczos [87, p.184]) using a suitable integration by parts

that the adjoint operator of l is given by

l∗ = a2
d2

dx2
+ (2a′2 − a1)

d

dx
+ (a′′2 − a′1 + a0). (F.11)

Suppose further that our operator L is such that the elements of L are given by

Lij = lij, (F.12)

and in addition the elements of L are general second order differential operators

lij ∈ C2[a, b] so that

lij = [aij ]2
d2

dx2
+ [aij ]1

d

dx
+ [aij ]0, (F.13)

then the adjoint of (F.13) is

l∗ij = [aij ]2
d2

dx2
+ (2[aij ]

′
2 − [aij ]1)

d

dx
+ ([aij ]

′′
2 − [aij]

′
1 + [aij ]0). (F.14)

We know, again see Lanczos [87, p.184], that the most general self-adjoint linear

differential operator of second order is

D = A(x)
d2

dx2
+ A′(x)

d

dx
+ C(x). (F.15)
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Then in order for lij = l∗ij we require that

[aij ]1 = [aij ]
′
2 ⇒ [aij ]

′
1 = [aij]

′′
2. (F.16)

Then

l∗ij = [aij ]2
d2

dx2
+ (2[aij ]

′
2 − [aij ]1)

d

dx
+ ([aij ]

′′
2 − [aij ]

′
1 + [aij ]0)

= [aij ]2
d2

dx2
+ [aij ]

′
2

d

dx
+ [aij]0.

So using the notation developed above the most general linear differential oper-

ator of second order is

lij = [aij ]2
d2

dx2
+ [aij ]

′
2

d

dx
+ [aij ]0. (F.17)

This means that all of the elements of lij must at least satisfy (F.17) in order

for the operator L to be self-adjoint. Moreover the off diagonal elements of

L and L∗, that is the elements l12, l21, l
∗
12 and l∗21 must satisfy the following

requirements

l12 = [a12]2
d2

dx2
+ [a12]

′
2

d

dx
+ [a12]0,

l∗12 = [a12]2
d2

dx2
+ [a12]

′
2

d

dx
+ [a12]0,

l21 = [a21]2
d2

dx2
+ [a21]

′
2

d

dx
+ [a21]0,

l∗12 = [a21]2
d2

dx2
+ [a21]

′
2

d

dx
+ [a21]0,

and since

L =

[

l11 l12
l21 l22

]

, and L∗ =

[

l∗11 l∗21
l∗12 l∗22

]

, (F.18)

a further requirement for L to be self-adjoint is that

l12 = l∗21, and l21 = l∗12. (F.19)

This means that the final requirement for the self-adjointness of L is that we

must have [a12]2 = [a21]2, [a12]
′
2 = [a21]

′
2 and [a12]0 = [a21]0. If any of the elements

do not satisfy at a minimum the requirement (F.17) then L cannot be shown to

be self-adjoint.
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Rayleigh-Ritz methods

Given the ansatz postulated at (4.1) to (4.4), we expect the perturbations to

decay when ω > 0. Consequently our goal now is to determine the sign of the

constant ω, and in the problem being considered ω plays the role of an eigenvalue

of A. We note from [88, p.121-2] that a compact self-adjoint operator A ∈ L(H)

is positive definite if and only if its eigenvalues are positive. By positive definite

we mean a compact self-adjoint operator A for which

(Ax,x) > 0 ∀x ∈ H (G.1)

holds. Moreover, the first eigenvalue ω1 maybe calculated by considering

ω1 = max
‖x‖=1

(Ax,x), (G.2)

with the spectrum of eigenvalues for the operator A such that ω1 ≥ ω2 ≥ · · · ≥

ωn ≥ · · · ≥ 0. Premultiplying both sides of (4.24) by xT , and integrating over

the interval τ ∈ [−L
2
, L

2
] we get

(Ax,x) = ω(x,x), (G.3)

where we define

(Ax,x) =

∫ L
2

−L
2

xTAx dτ, (G.4)

and

(x,x) =

∫ L
2

−L
2

xTx dτ. (G.5)
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From (G.4) and using integration by parts, we identify the following form for

the integral

(Ax,x) =

∫ L
2

−L
2

ãφ̂2
,τ − c̃φ̂2 + d̃ẑ2

,τ − ẽẑ,τ φ̂,τ − f̃ ẑ,τ φ̂ dτ. (G.6)

If we let F (φ̂,τ , φ̂, ẑ,τ) be equal to the integrand of (G.6), so that

F (φ̂,τ , φ̂, ẑ,τ ) = ãφ̂2
,ττ − c̃φ̂2 + d̃ẑ2

,τ − ẽẑ,τ φ̂,τ − f̃ ẑ,τ φ̂, (G.7)

and furthermore assume that ẽ and f̃ have arbitrary sign and that ã > 0, d̃ > 0

and ẽ > 0, we may write

F (φ̂,τ , φ̂, ẑ,τ) = yTBy, (G.8)

where

B =















ã 0 − ẽ
2

0 −c̃ − f̃

2

− ẽ
2

− f̃

2
d̃















, y =















φ̂,τ

φ̂

ẑ,τ















. (G.9)

Note that (G.8) is a quadratic form. Note also that

xTAx = yTBy. (G.10)

Recall we are attempting to establish that the eigenvalues of (4.24) are all pos-

itive. This is equivalent to showing that xTAx > 0. This in turn is equivalent

to demanding that the quadratic form given at (G.8) is positive definite. If we

can show yTBy > 0 then the matrix B is said to be a positive definite matrix,

and this in turn means that the matrix B has positive eigenvalues.

It is well known that a symmetric matrix is positive definite if and only if

the determinant of every principal submatrix is positive [89]. Here we denote

the principal submatrices of B by Br, r = 1, 2, · · · , n. Considering the principal

submatrices of B then we find that the first and second submatrices are given

by

B1 = c̃ > 0, B2 = −ãc̃ < 0. (G.11)
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This test is inconclusive, and the result means that we must resort to integral

inequalities to demonstrate that make A positive definite.

G.1 Integral Inequalities

Consider again the integral given by (G.6). This maybe re-written as follows

(Ax,x) =

∫ L
2

−L
2

d̃ Q2 +

[

ã− ẽ2

4d̃

]

φ̂2
,τ −

[

c̃ +
f̃ 2

4d̃

]

φ̂2 dτ, (G.12)

where

Q = ẑ,τ −
f̃

2d̃
φ̂− ẽ

2d̃
φ̂,τ . (G.13)

We shall assume that

ã− ẽ2

4d̃
> 0. (G.14)

Then appealing to Hardy’s inequality [90, p.105]

∫ b0

a0

(

dy

dx

)2

≥
∫ b0

a0

y2

4[f(x)]2
dx, where f(x) = min{x− a0, b0 − x}, (G.15)

and noticing that on x ∈ (a0, b0)

|f(x)| ≤
(

b0 − a0

2

)

, (G.16)

so that we may write
(

1

f(x)

)2

≥
(

2

b0 − a0

)2

. (G.17)

we find that

(Ax,x) =

∫ L
2

−L
2

d̃ Q2 +

[

ã− ẽ2

4d̃

]

φ̂2
,τ −

[

c̃+
f̃ 2

4d̃

]

φ̂2 dτ

≥
∫ L

2

−L
2

d̃ Q2 +

[

ã− ẽ2

4d̃

]

φ̂2

4[f(x)]2
−
[

c̃ +
f̃ 2

4d̃

]

φ̂2 dτ

≥
∫ L

2

−L
2

[

ã− ẽ2

4d̃

]

φ̂2

4[f(x)]2
−
[

c̃+
f̃ 2

4d̃

]

φ̂2 dτ

≥
∫ L

2

−L
2

[

1

L2

[

ã− ẽ2

4d̃

]

−
[

c̃+
f̃ 2

4d̃

]]

φ̂2 dτ

≥ 0. (G.18)
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Then provided (G.14) is true and

1

L2

[

ã− ẽ2

4d̃

]

−
[

c̃ +
f̃ 2

4d̃

]

> 0, (G.19)

we have that

xTAx > 0, (G.20)

and so we are guaranteed that the quadratic form xTAx is positive definite.



Appendix H

Root solver

The root solver Root() used to determine critical field strengths is shown here.

Written in MAPLE it requires a function f() declared externally to the pro-

cedure and takes as arguments upper and lower values X2 and X1 respectively

along with a tolerance EPS. The code has been adapted from a root solver found

in [91, p.116].

# proc[Root] Adapted from the book Advanced Mathematical Methods

with Maple pg. 116.

Root:=proc(X1,X2,EPS)

local FL,FH,XL,XH,swap,dx,k,rtf,F,del,eps;

FL:=f(X1);FH:=f(X2);eps:=EPS;

if FL*FH>0 then RETURN(0) fi;

if FL < 0 then

XL:=X1; XH:=X2;

else

XL:=X2; XH:=X1; swap:=FL; FL:=FH; FH:=swap;

fi:

dx:=XH-XL;

for k from 1 to 50 do;

rtf:=XL+dx*FL/(FL-FH); F:=f(rtf);
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if F < 0 then

del:=XL-rtf: XL:=rtf; FL:=F;

else

del:=XH-rtf: XH:=rtf; FH:=F;

fi;

dx:=XH-XL;

if abs(del) < eps or abs(F) < eps then break fi;

od;

rtf

end:
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