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Abstract

The thesis studies the approximation properties of splines with maximum smooth-

ness. We are interested in the behaviour of the approximation as the degree of

the spline increases (so does its smoothness). By studying B-spline interpolation,

we obtain error estimates measured in the semi-norm that are explicit in terms of

mesh size, degree and smoothness. This new result also gives a higher approxima-

tion order than existing estimations. With the results, we investigate the B-spline

finite element approximation with k-refinement, which is a strategy of improving

the accuracy by increasing the degree and smoothness. The problem is studied in

the setting of heat equations and wave equations. We give B-spline FEM schemes

for the problems, and obtain error estimates. Moreover, by proving a Markov-type

inequality for splines, where an exact constant is derived, we deduce how the sta-

bility of the scheme behaves with the k-refinements. We also improve the efficiency

of the schemes for problems with periodic boundary conditions by applying the

fast Fourier transform.

The thesis also focuses on developing algorithms for efficiently evaluating the

element system matrices in finite element methods with Berstein-Bézier splines as

shape functions, where the splines are of arbitrary order and defined on quadrilat-

erals and hexahedrons. The algorithms achieve the optimal complexity by making

use of the sum factorial procedure. We test the algorithms in C++ implemen-

tation, and the numerical results illustrate that the optimal cost and expected

accuracy are achieved.
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Chapter 1

Introduction

1.1 Background and Motivation

The finite element method (FEM) is one of the most important numerical tech-

niques for approximating solutions of differential equations with a broad appli-

cation in industry and science [71]. The method has the advantage of handling

problems in complex geometries and dealing with various constrains. The tech-

nique typically involves dividing the domain of the problem into regular shaped

sub-domains and then approximating the true solution on each of the sub-domains

with appropriate simple functions, which are called shape functions [13]. The ap-

proximation is obtained by formulating governing equations locally on each sub-

domain from a variational formulation of the problem. Then a set of global equa-

tions is constructed by assembling the local equations on each sub-domain under

certain constraints of the problem, say boundary conditions. Finally, the numer-

ical solution is achieved by solving the equations. In Section 1.4, we give a more

detailed introduction to the Galerkin FEM method.

There has been a wide range of shape functions used for approximation in

FEM, for instance, Lagrange polynomials and Bernstein polynomials [95]. Another

option is B-splines. A spline is a piecewise polynomial function that possesses

certain smoothness at connecting points. The connection points and the union of

2



Chapter 1 3

the sub-intervals are referred to as nodes and meshes, respectively. B-splines are

the splines with minimal support for a prescribed smoothness requirement on the

nodes. When employed as a basis for spline space in numerical approximation,

since B-splines are compactly supported, they possess non-global behaviour, that

is, changing a coefficient only affects a local part of the function’s shape. B-

splines also have the properties of forming a partition of unity and point-wise

non-negativity. Moreover, Cox and de Boor’s recursive B-spline definition [21, 24]

enables a variety of efficient manipulations on splines. For instance, the de Boor

algorithm [25, 67] provides an efficient way of value evaluation of spline curves. B-

splines play an important role in approximation and geometric modelling. They are

applied in data fitting, computer-aided design (CAD), automated manufacturing,

and computer graphics.

B-splines have been employed as shape functions in FEM because they can

generate smooth approximations, which improves the accuracy for certain prob-

lems. For instance, cubic B-splines have been used in the analysis of problems such

as vibration on shells, beams and plates [61, 57], and on elastic rods [50]. How-

ever, their recent popularity for FEM arises from a technique called isogeometric

analysis (IGA) proposed in [45, 19], which lays a foundation for interfacing CAD

systems with FEM. The technique selects shape function employed in FEM to be

the same types of function utilized to express a geometry in CAD, which are usually

B-spline based functions, for example, the non-uniform rational spline (NURBS)

and T-splines [19, 67]. Thus, the geometry from CAD is represented exactly in

FEM, which greatly simplifies the procedure for discretization and improves the

accuracy. In addition, by employing a basis with high degree and continuity, IGA

also shows high accuracy and robustness for certain problems such as structural

vibrations, wave propagations [18, 72], phase field problem [59, 33], and turbulent

flows [4, 9].

The flexibility of B-splines enables efficient use of classical h-refinement and

p-refinement [17, 82, 7], the two common strategies to improve the approxima-
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tion in FEM. h-refinement represents the same geometry with a finer mesh while

maintaining the same degree and global smoothness. p-refinement increases the

degree and maintains the same mesh and global smoothness. Besides these two

approaches, another option of refinement available in B-spline FEM is increasing

both the degree and smoothness of the spline with the mesh size fixed, which is

referred to as k-refinement in [45]. k-refinement has been shown to outperform

the classical p-refinement and h-refinement by extensive spectrum and dissipa-

tion analysis on problems of structural vibrations, acoustic and wave propagations

[18, 72, 20, 46]. In particular, [30] studies the Kolmogorov n-widths of some types

of spline spaces and shows that they are optimal subspaces for approximating

certain Sobolev spaces.

Although the approximation property for h-refinement is comprehensively stud-

ied [81, 8, 85], the approximation theory for k-refinement is still incomplete. The

existing studies include [86] which gives error estimates for the splines of maximum

smoothness, but the estimates are only sharp for functions of low smoothness. [22]

provides an estimate that is explicit regarding degree and smoothness of a spline.

However, an assumption has to be satisfied that the smoothness of the spline is suf-

ficiently low compared with the degree. Particularly, as pointed out in the paper,

the interesting case of the spline of maximum smoothness is still open.

This thesis aims to study the problems in this case, that is, the approximation

property for the splines of maximum smoothness when the degree and smoothness

are increasing. Notice that in this case, smoothness is fixed to be 1 degree lower

than the degree, therefore when the degree grows, so does the smoothness. In the

following context, we only mention the growth of the degree. In particular, we

focus on B-spline FEM schemes using the Galerkin method in the setting of heat

equations and wave equations. We develop error estimates using the classic error

analysis treatments for the Galerkin methods in [87, 56, 39]. This analysis requires

knowledge about how well the shape functions can approximate the exact solution.

In our case, we need estimates of the best approximation measured in semi-norms.
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Particularly, for demonstrating the behaviour of the approximation as the degree

is raised, the estimates are supposed to be dependant on the degree. For this

reason, we first study a B-spline interpolation problem to give the estimates of

the approximation. Besides the error analysis, a behaviour of the stability when

the degree increases is also investigated. By studying a Markov-type inequality

for the periodic B-spline, we derive a stability condition for the scheme in the

k-refinements. Efficiency is also an important factor when studying FEM. We

consider the efficiency of the schemes for the problems with periodic boundary

conditions. By utilizing the fast Fourier transform, we derive efficient schemes

for these problems. The thesis only considers the standard Galerkin method of

the B-spline FEM and the reader may refer to the literature for other approaches

such as collocation methods [73, 77], adaptive methods using hierarchical B-splines

[90, 49, 12, 76], and mesh-less methods [43, 42].

We also consider algorithms for optimal assembly of element matrices for

Berstein-Bézier spline finite element methods. More introduction is given in Chap-

ter 5.

1.2 Thesis Layout

The thesis is arranged as follows. In the following parts of this chapter, we give

some preliminaries and overview the Galerkin method, the definitions and proper-

ties of B-splines.

In Chapter 2, we study the approximation properties regarding B-spline inter-

polation of periodic functions, and then generalize the result to the non-periodic

case. We also give some experiments to justify our theoretical conclusions.

In Chapter 3, we study the B-spline FEM approximation for heat equations,

where two kinds of boundary conditions are considered, periodic and Dirichlet. We

first review the heat equations of interest and then derive a B-spline scheme for

the problems. We also analyse the stability of the scheme and the approximation
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error. Finally, we conduct some experiments justifying the result regarding the

analysis.

In Chapter 4, we consider the approximation for wave equations. Analogously

to the study of heat equations, we investigate the stability and error estimation,

and at last compare the analysis with the result of experiments.

In Chapter 5, we give an algorithm for efficiently evaluating the load vector,

mass matrix and stiffness matrix when using Berstein-Bézier spline function as a

basis for the finite element method. We first introduce the Berstein-Bézier spline

on a quadrilateral and hexahedron respectively. Then we develop the algorithms

for evaluating Bernstein polynomial moments on [0, 1]d, which is used to develop

algorithms for evaluating the load vector, mass matrix and stiffness matrix. Fi-

nally, we check the experimental results based on our C++ implementation.

Appendix A.1 contains samples of the Matlab codes of schemes for the periodic

heat equation in one-dimensional. Appendix A.2 contains samples of the C++

codes for evaluating Bernstein-Bézier element matrices on a hexahedron.

1.3 Preliminary

1.3.1 Fast Fourier Transform

The fast Fourier transform (FFT) is an algorithm for efficiently evaluating the

discrete Fourier transform of a vector ~v ∈ CN , which is also viewed as the product

of Fourier matrix F ∈ CN×N and ~v. Define a N ×N Fourier matrix F as

F i,j =
1√
N
e−ij2πi/N . (1.3.1)

The product F~v is formed by the FFT in O(N logN) operations. For more back-

ground about various FFT algorithms, the reader may see, for example, [60, p.

206],[70].



Chapter 1 7

1.3.2 Circulant Matrix

For a0, . . . , aN−1 ∈ C, a N ×N circulant matrix (see [37, p. 31]) is characterized

as a square matrix A with (i, j)th entry

Ai,j = a(j−i) mod N ,

with the form

A =



a0 a1 . . . aN−2 aN−1

aN−1 a0 a1 aN−2

... aN−1 a0
. . .

...

a2
. . . . . . a1

a1 a2 . . . aN−1 a0


.

From the definition, it’s obvious that the whole matrix is able to be constructed

with only the first row of the matrix. We denote such a circulant matrix by

Cir(a0, . . . , aN−1) or Cir(a0, . . . , aN−1). The following are some standard properties

of circulant matrices which are used in our analysis (see [93] for more details).

Property 1. (i) The sum or product of two circulant matrices is still a circulant

matrix, and the inverse of a circulant matrix is still circulant.

(ii) The eigenvalues of a circulant matrices are given by

λj = a0 + a1wj + a2w
2
j + . . .+ aN−1w

N−1
j , j = 1, . . . , N − 1,

where wj = exp(2πij/n), i =
√
−1. The corresponding eigenvectors are given

by

vj = (1, wj, w
2
j , . . . , w

N−1
j ).

A circulant matrix is diagonalizable with the Fourier matrix [60, p. 206],

A = F−1ΛAF . (1.3.2)

Matrices ΛA are diagonal matrices, whose diagonal entries are corresponding eigen-

values ofA. It follows from the Property 1(ii) in Page 7 that the ith diagonal entry
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of ΛA is given by ith element of the vector F~aT , where ~a = (a0, . . . , aN−1) is the

first row of A.

When calculating the product of a circulant matrixA and a vector ~v, a straight-

forward approach would cost O(N2) operations. However the FFT can be applied

to make the calculation more efficiently by making use of (1.3.2). For a vector

~a = (a1, . . . , ad) and ~b = (b1, . . . , bd), define the component-wise product to be

~a. ∗~b = (a1b1, . . . , adbd). (1.3.3)

The task of computing A~v is summarized in the following steps:

1. ~f = F~v

2. ~g = F~aT

3. ~zT = ~f. ∗ ~g

4. ~y = F−1~z.

Since the FFT can be used to perform the steps 1,2 and 4 inO(N logN) operations,

the overall cost of forming the product A~v is reduced to O(N logN) operations.

When it comes to evaluating the product of a N×N circulant matrix and an arbi-

trary N ×N matrix, by viewing the matrix product as N matrix-vector products,

FFT is still applicable, which reduce the computation down to O(N2 logN).

1.3.3 Kronecker Product

Let matrices A = (aij) ∈ Rm×n and B = (bij) ∈ Rr×s. The Kronecker product of

A and B is defined to be

A⊗B =


a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .
The Kronecker product has the following properties (see [36] and [83]):

Property 2. (i) For j = (j1, . . . , jd), define the bijective mapping σN : Nd
0 → N0

as

σN(j) = jdN
d−1 + jd−1N

d−2 + · · ·+ j1. (1.3.4)
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Assume Ak ∈ RN×N , i = σN(i1, . . . , id) and j = σN(j1, . . . , jd), where σN is

defined in (1.3.4). Then

A = Ad ⊗Ad−1 ⊗ · · · ⊗A1

is equivalent to

Ai,j = Ad;id,jdAd−1;id−1,jd−1
. . .A1;i1,j1 .

(ii) (A⊗B)⊗C = A⊗ (B ⊗C).

(iii) If B1, . . . ,Bd are invertible, then B = Bd⊗Bd−1⊗ · · · ⊗B1 are invertible,

and B−1 = B−1
d ⊗B

−1
d−1 ⊗ · · · ⊗B

−1
1 .

(iv) IfAk is a mk×nk matrix andBk is a nk×rk matrix, then AB = (Ad⊗Ad−1⊗

· · · ⊗A1)(Bd ⊗Bd−1 ⊗ · · · ⊗B1) = (AdBd)⊗ (Ad−1Bd−1)⊗ · · · ⊗ (A1B1).

(v) If A and B are m×m and n×n matrices, the Kronecker sum of two matrices

A and B is defined to be A⊕B = A⊗Im+In⊗B, where Im is the identity

matrix. If A has eigenvalue λa,i (i = 1, 2, . . . ,m) and B has eigenvalue λb,j,

j = 1, 2, . . . , n) then A ⊕B has mn eigenvalues, which are all the possible

sums of λa,i and λb,j.

1.3.4 Function Spaces

We first give the definition of weak derivative. Some spaces considered in the thesis

are introduced here. For more detail, the reader may refer to [64, 13].

1.3.4.1 Sobolev Spaces

Given a domain Ω ∈ Rd, the set of locally integrable functions is denoted by

L1
loc(Ω) := {f : f ∈ L1(K) ∀ compact K ⊂ interior Ω}.
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For ~α = (α1, . . . , αd), the weak derivative of f ∈ L1
loc(Ω), D~αf exists provided

there exists a function g ∈ L1
loc(Ω) such that∫

Ω

D~αf(x)φ(x)dx = (−1)|~α|
∫

Ω

f(x)φ(~α)(x)dx ∀φ ∈ C∞c (Ω),

where C∞c (Ω) is the set of C∞ functions with compact support in Ω and φ(~α) is

the partial derivative,
∂α1

∂xα1
1

. . .
∂αd

∂xαdd
φ.

Let f ∈ L1
loc(Ω). If the weak derivative D~α exists for all |~α| ≤ k, the Sobolev

norm is defined to be

‖f‖Wk
p

:= (
∑
|~α|≤k

‖D~αf‖pLp(Ω))
1/p.

The Sobolev space is defined to be

W k
p (Ω) := {f ∈ L1

loc(Ω) : ‖f‖Wk
p
<∞}.

We denote by Hk(Ω) the Sobolev space W k
2 (Ω). Let | · |k be the semi-norm, that

is

|f |k := (
∑
|~α|=k

‖D~αf‖pLp(Ω))
1/p.

For a vector ~α = (α1, . . . , αd) ∈ Nd
0, define the norm ‖~α‖∞ = max

i=1,...,d
{αi}. By

writing ~α ≤ n, we mean ‖~α‖∞ ≤ n. Define Hn(Ω) be the space consisting of all

functions f ∈ L2(Ω) with norm ‖D~αf‖L2(Ω) <∞ for all α ≤ n. We also define the

space Hn
0 (Ω) to be the completion of C∞c (Ω) on Hn(Ω).

1.3.4.2 Periodic Sobolev Spaces

Let T = R/Z be a circle (see [27, p.1]), which is understand to be R with identifi-

cation of points with modulo 1. Let L2(Td) be Lebesgue space of functions defined

on Td. Note that the integral on Td is the integral on a period, that is,∫
Td
f(x)dx =

∫
[0,1]d

f(x)dx.
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We denote by ‖ · ‖ the norm, and the bilinear form in the space L2(Td) by

(u, v) :=

∫
Td
u(x)v(x)dx and a(u, v) :=

∫
Td
∇u(x)∇v(x)dx.

Let Hn(Td) be the space of all functions f ∈ L2(Td) with norm ‖D~αf‖ < ∞

for all α ≤ n. Note that Hn(T) = Hn(T).

1.3.4.3 Space L2([0, T ];V ) and Ck([0, T ];V )

Given a Banach space V with norm ‖ · ‖V , denote by L2([0, T ];V ) the space of

functions f : [0, T ]→ V with norm

‖f‖L2([0,T ];V ) =

(∫ T

0

‖f(t)‖2
V dt

)1/2

.

The dual space of L2([0, T ];V ) is L2([0, T ];V ∗), where V ∗ is the dual space of V .

We also define Ck([0, T ];V ), k ∈ N0 consisting of all continuous functions

u : [0, T ]→ V that have continuous derivatives up to order k on [0, T ].

1.3.5 The Constant C

Throughout the thesis, C denotes a general constant that is independent of mesh

size h, the degree of the spline p, and is not necessarily the same at different

occasions.

1.4 Overview of the Finite Element Method

In this section, we give a brief introduction to the Galerkin finite element method.

For more detailed discussion, the reader my consult the literature, for example,

[96, 63, 13].

1.4.1 Ritz-Galerkin Method

We first review the Ritz-Galerkin method for approximating a variational problem.

Let V be a Hilbert space with inner product (·, ·) and norm ‖·‖, a(·, ·) be a bilinear
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form, and L be a functional in V ′. Consider the variational form: find u ∈ V such

that

a(u, v) = 〈L, v〉 for any v ∈ V. (1.4.1)

We say a(·, ·) is continuous if there exist an constant α such that |a(u, v)| <

α‖u‖‖v‖ for all u, v ∈ V . We say a(·, ·) is coercive if there exist an constant β > 0

such that |a(u, u)| > β‖u‖2 for all u ∈ V . The Lax Milgram theorem (see [29])

states that if a(·, ·) is continuous and coercive , then problem (1.4.1) has a unique

solution for the equation.

Let Vh = {φi}i∈J ⊂ V be a finite dimensional space, where J is an index set.

An approximation from Vh to the solution of the weak formulation is obtained by

finding uh ∈ Vh such that

a(uh, v) = 〈L, v〉 for any v ∈ Vh. (1.4.2)

Letting uh =
∑
j∈J

αjφj and choosing v = φi for each i ∈ J gives

∑
j∈J

αja(φj, φi) = 〈L, φi〉 .

This leads to a series of equations which may be written as

A~α = ~l, (1.4.3)

with the entries Ai,j = a(φi, φj), ~lj = 〈L, φj〉 and ~α = (αj). Since the finite

dimensional space Vh is a Hilbert space, according to the Lax Milgram theorem,

the equation has a unique solution. uh is an approximation in the space Vh to the

solution u ∈ V .

1.4.2 Discretization

Let Ω be the domain for functions belonging to the space V in equation (1.4.1)

and ΣΩ = {Ki}Ni=1 be a subdivision, which is a set of sub-domains such that the

union of all Ki is Ω and the intersection of the interior of any two different Ki is

empty.
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In finite element analysis, the space Vh in (1.4.2) is constructed by discretizing

Ω, and assembling finite elements. We define the finite element here following

Cialet’s definition in [13]. (K,P ,N ) is called a finite element if

(i) K ∈ Rn is a bounded closed set with non-empty interior and piecewise

smooth boundary,

(ii) P = {φK1 , . . . , φKk } is a finite-dimensional space of functions on K, and

(iii) N = {N1, N2, . . . , Nk} is a basis for the dual space of P ′. The set K is

called an element domain, {φK1 , . . . , φKk } are call shape functions, and {N1, . . . , Nk}

are called nodal variables. Thus, for each sub-domain Ki of Ω, we have a corre-

sponding finite element. Then the space Vh is obtained by assembling the shape

functions on each element domain Ki. Some constraints such as functions in space

Vh satisfying certain prescribed smoothness or boundary conditions may also be

imposed.

1.4.3 Implementation

In practice, a common approach to produce the shape functions efficiently on

an element domain is the transformation of a reference finite element using an

isoparametric mapping (see [13]). The linear system (1.4.3) is constructed by

deriving the element matrices on each of the domains Ki first, and then assembling

them along with the smoothness requirements and boundary conditions. For more

detail, the reader may see [96].

1.5 Overview of B-splines

We only consider the uniform B-spline with maximum smoothness, where the

maximum smoothness means that the spline with degree n is globally n− 1 times

continuously differentiable, which will be simply called a B-spline in the following

treatment, since that is the only spline considered in the thesis. We shall first

review the cardinal splines [79] which are the B-splines on the uniform mesh on
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R, since they have nice definitions in convolution form, which are frequently em-

ployed in our analysis. Based on the cardinal splines, we define periodic B-splines

and derive some similar properties. At last, we introduce the general recurrence

definition of B-spline.

1.5.1 Cardinal B-spline

0 1 2 3 4 5
0

0.5

1
p=0
p=1
p=2
p=3
p=4

Figure 1.1: Cardinal B-splines of degree p from 0 to 4

A cardinal B-spline with degree n is defined recurrently in convolution as

bn(x) = (bn−1 ∗ b0)(x),

with b0 to be

b0(x) =

 1 x ∈ (0, 1]

0 x /∈ (0, 1]
.

We call the space spanned by all the cardinal splines on R a cardinal spline space,

denoted by Xn(R) = span{bn(x− i), i ∈ Z}. Figure 1.1 gives a example of cardinal

B-splines of different degrees. Here are their basic properties, which can also be

found for instance in [42], [81], [79, p . 11] and [16].

Property 3.

(i) bn(x) is non-negative for any n and x and its support is [0, n+ 1].
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(ii) bn(x) is symmetric in the sense that

bn(x) = bn(n+ 1− x),

and strictly monotonically increasing on [0, (n+1)/2] and decreasing on [(n+

1)/2, n+ 1].

(iii) bn(x) is infinitely differentiable in a subinterval and bn(x) is n − 1 times

continuously differentiable at a node within its support.

(iv) A cardinal spline has the convolution form∫ +∞

−∞
bm(t− x)bn(t)dt = bm+n+1(n+ 1− x).

(v) For f ∈ Hn+1([0, n+ 1]) and k = 0, . . . , n+ 1, we have∫ +∞

−∞
bk−1(x)f (k)(x)dx = (D+)

k
f(0),

where D+f(x) = f(x+ 1)− f(x).

(vi) The derivative of a basis function can be written as

bn(x)′ = bn−1(x)− bn−1(x− 1).

(vii) bn(x) is a weighted combination of bn−1(x) and bn−1(x− 1)

bn(x) =
x

n
bn−1(x) +

n+ 1− x
n

bn−1(x− 1).

(viii) The Fourier transform for bn is b̃n = 1√
2π

(sinc(x/2))n+1, where sinc(x) =

sin(x)/x.

1.5.2 Periodic B-spline

In the thesis, periodic B-splines refer to the B-splines under periodic boundary

conditions. Since periodic B-splines with arbitrary period can be derived by scaling
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1-period B-splines, without loss of generality, we only discuss this case and simply

call them periodic B-splines. Assume the interval [0,1] is divided by N subintervals,

and denote the mesh size by h = 1/N . For any k ∈ Z, a periodic B-spline of degree

n is defined as

bk;n,N(x) =
∑
i∈Z

bn(x/h− k + i/h),

where bn(x) is a cardinal spline as defined in Section 1.5.1. Throughout the thesis,

the number of subintervals is always assumed to be N ; for the sake of simplicity,

we use a notation bk,n(x) instead of bk;n,N(x). It follows immediately from this

definition that bk,n(x) is 1-periodic and can be seen as defined on the unit circle T.

We define the periodic B-spline space by XN,n(T)=span{bk,n}k∈Z. Since bk,n(x) =

bk+N,n(x), the space is of dimension N and has a basis {bi,n}i∈I , where the index

set I = {0, . . . , N − 1}. From the definition of the cardinal B-spline, we also have

that

bi,n(x) =

∫ x

x−h
bi,n−1(t)dt. (1.5.1)

The smoothness and periodicity of bk,n(x) implies XN,n(T) is a subspace of Hn(T).

Figure 1.2 gives an example of a B-spline basis with degree 2.

x
0 0.2 0.4 0.6 0.8 1

y

0

0.5

1

Figure 1.2: Basis of periodic B-splines with degree 2 and 5 sub-intervals.

The periodic B-spline bk,n(x) possesses some similar properties as the cardinal

spline bn(x) as follows.

Property 4. (i) For x ∈ R, bk,n(x) is non-negative for any n and x and its

support is [kh+ i, (k + n+ 1)h+ i], i ∈ Z.
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(ii) B-spline is periodic in the sense that, for k ∈ Z,

bk,n(x) = bk+N,n(x).

(iii) B-spline is symmetric in the sense that

bk,n(x) = b−(n+1+k),n(−x).

(iv) For any i, j ∈ Z,∫ 1

0

bi,m(x+ t)bj,n(t)dt = hbi−j−(n+1),m+n+1(x).

(v) For f ∈ Hn+1(T), we have∫ 1

0

bi,k−1(x)f (k)(x)dx = 1/hk−1(D+
h )kf(ih),

where D+
h f(x) = f(x+ h)− f(x).

(vi) The derivative of bk,n is a linear combination of bk,n−1 and bk+1,n−1

b′k,n(x) =
1

h
bk,n−1(x)− 1

h
bk+1,n−1(x).

Proofs. Proof of (i) follows directly from Property 3(i) in Page 14.

Proof of (ii):

The definition of bk,n(x) gives

bk,n(x) =
∑
i∈Z

bn(x/h− k + i/h)

=
∑
i∈Z

bn(x/h− k + (i− 1)/h)

=
∑
i∈Z

bn(x/h− k −N + i/h)

=
∑
i∈Z

bk+N,n(x).

Proof of (iii):
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From the definition of bk,n(x) and Property 3(ii) in Page 14,

bk,n(x) =
∑
i∈Z

bn(x/h− k + i/h)

=
∑
i∈Z

bn(n+ 1− (x/h− k + i/h))

=
∑
i∈Z

bn(−x/h+ k + n+ 1− i/h)

= b−(n+1+k),n(−x).

Proof of (iv):

Since bk,n is periodic, its definition and (iii) imply∫ 1

0
bi,m(x+ t)bj,n(t)dt =

∫ 1

0
bi−j,m(x+ t)b0,n(t)dt

=
∫ 1

0
b−(m+1+i−j),m(−x− t)b0,n(t)dt.

On the interval [0, 1], b0,n(t) is identical to the cardinal spline bn(t/h). Then the

equality is expressed as∫ 1

0

b−(m+1+i−j),m(−x−t)b0,n(t)dt =

∫ 1

0

∑
k∈Z

bm(−(x+t)/h+m+1+i−j+k/h)bn(t/h)dt.

Changing the variable by t = hτ , since bn(x) vanishes outside the interval [0, 1/h],

we have ∫ 1

0

∑
k∈Z

bm(−(x+ t)/h+m+ 1 + i− j + k/h)bn(t/h)dt

= h
∫ 1/h

0

∑
k∈Z

bm(−x/h− τ +m+ 1 + i− j + k/h)bn(τ)dτ

= h
∑
k∈Z

∫ +∞
−∞ bm(−x/h+m+ 1 + i− j + k/h− τ)bn(τ)dτ.

Moreover, Property 3(iv) and Property 3(iii) give

h
∑
k∈Z

∫ +∞
−∞ bm(−x/h+m+ 1 + i− j + k/h− τ)bn(τ)dτ

= h
∑
k∈Z

bm+n+1(−x/h+m+ 1 + i− j + k/h)

= hb−(m+1+i−j),m+n+1(−x)

= hb−(n+1)+i−j,m+n+1(−x),

which completes the proof.
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Proof of (v):

Since both bi,k−1(x) and f are of period 1, we have∫ 1

0
bi,k−1(x)f (k)(x)dx =

∫ 1

0
b0,k−1(x− ih)f (k)(x)dx

=
∫ 1

0
b0,k−1(x)f (k)(x+ ih)dx.

The fact that b0,k−1(x) vanishes outside the interval [0, 1] shows∫ 1

0

b0,k−1(x)f (k)(x+ ih)dx =

∫ 1

0

bk−1(x/h)f (k)(x+ ih)dx.

Let g(x) = f(hx+ ih) and change the variable with z = x/h. It follows that∫ 1

0

bk−1(x/h)f (k)(x+ ih)dx = 1/hk−1

∫ 1/h

0

bk−1(z)g(k)(z)dz.

Property 3(v) implies that∫ k

0

bk−1(x)g(k)(x)dx = (D+)kg(0).

Thereupon we have∫ 1

0
bi,k−1(x)f (k)(x)dx = 1/hk−1(D+)kg(0)

= 1/hk−1(D+
h )kf(ih).

Proof of (vi):

It follows from Property 3(vi) that

b′k,n(x) =
∑
i∈Z

1/hb′n(x/h− k + i/h)

= 1/h
∑
i∈Z

(
b′n−1(x/h− k + i/h)− b′n−1(x/h− k + i/h− 1)

)
= 1/hb′k,n−1(x)− 1/hb′k+1,n−1(x).

1.5.3 B-spline on Finite Interval

We would like to review de Boor’s recursive definition of B-splines. This is a more

general definition which is able to define the cardinal and periodic B-splines as
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discussed before. The definition is widely used in implementation since it facilitates

efficient computation of B-splines.

To begin with, we define a knots vector, which determines the span and smooth-

ness of the B-splines. A knots vector is a vector Ξ = (ζ1, . . . , ζN+2n+1), where

ζ1 ≤ . . . ≤ ζN+2n+1. Note that there may be repeated values in the vector. We

say a knot ζi has multiplicity k if there are k elements in the vector with the same

value as ζi. For instance, it has multiplicity 1, when all the other knots in Ξ are

distinct to ζi. The first and last knots are called end knots which are the ends of

the finite interval and the other knots are called interior knots. A knot vector is

called open if both the end knots both have multiplicity n+ 1.

B-splines with degree n on the knots vector Ξ are given by the following recur-

rence relation:

φi,n(x) =
x− ζi
ζi+n − ζi

φi,n−1(x) +
ζi+n+1 − x
ζi+n+1 − ζi+1

φi+1,n−1(x), (1.5.2)

and for the case when n = 0,

φi,0(x) =

 1, x ∈ [ζi, ζi+1)

0, otherwise
.

Note that in the recurrence relation (1.5.2), if ζi+n − ζi = 0, then the term

x−ζi
ζi+n−ζi = 0, and similarly if ζi+n+1 − ζi+1 = 0, then ζi+n+1−x

ζi+n+1−ζi+1
= 0. If a knot

ζi has multiplicity k, a basis is Cn−k continuous at the knot. In particular, if a

knot has multiplicity n, the basis is C0 at the knot. Moreover, in this case, the

basis is interpolatory at the knot, that is, the value of the B-spline at the knot is

the same as the value of the coefficient corresponding to this knot. Making use of

this fact, de Boor’s method (see [69, 67] for more details) provides an efficient way

to evaluate a B-spline at any point.
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Figure 1.3: B-spline of degree 2 on the interval [0,1]

In this work, we only consider the B-splines with open end knots, and equis-

paced and non-repeated interior knots, that is, B-spline with Ξ = (0, . . . , 0︸ ︷︷ ︸
n+1

, 1/N, 2/N, . . . , (N−

1)/N, 1, . . . , 1︸ ︷︷ ︸
n+1

). In this case, the interval [0, 1] is divided into N sub-intervals, and

there are N+2n+1 elements in the knots vector and N+n B-spline basis. We de-

fine the corresponding B-spline space by XN,n([0, 1]) = span{φ0,n, . . . .φN+n−1,n}.

XN,n([0, 1]) consists of equally spaced piecewise polynomials with Cn−1 smooth-

ness. It follows that XN,n([0, 1]) ⊂ Hn([0, 1]). Figure 1.3 gives an example of a

basis with degree 2 on the interval [0,1].

To study the problems with Dirichlet boundary condition in the following chap-

ters, we also need a subspace XN,n
0 ([0, 1]), which is composed of all the functions

in XN,n([0, 1]) vanishing on the boundary of the domain. Obtained by imposing

two extra constraints to XN,n([0, 1]), this space XN,n
0 ([0, 1]) has the dimension

N + n − 2. Also because the functions in {φi,n}N+n−2
i=1 vanish on the boundary

and are linearly independent, they form a basis for XN,n
0 ([0, 1]). For simplicity, by

denoting ψi,n = φi+1,n, the basis is given by {ψi,n}N+n−3
i=0 .

1.5.4 Multivariate Tensor Product B-spline

Let I = {0, . . . , N − 1}, J = {0, . . . , N +n− 1} and J0 = {0, . . . , N +n− 3}. We

define a multi-variate B-spline on Rd as a tensor product of univariate B-splines in

the sense that for variable x = (x1, . . . , xd) ∈ Rd, and index i = (i1, . . . , id) ∈ Id,
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j = (j1, . . . , jd) ∈ J d, and k = (k1, . . . , kd) ∈ J d
0 ,

bi,n(x) = bi1,n(x1)bi2,n(x2) . . . bid,n(xd),

φj,n(x) = φj1;n(x1)φj2,n(x2) . . . φjd,n(xd),

and ψk,n(x) = ψk1,n(x1)ψk2,n(x2) . . . ψkd,n(xd).

The tensor-product B-spline space is defined as

XN,n(Td) = span{bi,n(x)}i∈Id , XN,n([0, 1]d) = span{φi,n(x)}i∈J d ,

and XN,n
0 ([0, 1]d) = span{ψi,n(x)}i∈J d0 .

The definition of bi,n(x) implies that it is periodic in the sense that bi,n(x) =

bi,n(x + ek), where ek = (0, . . . , 0, 1︸ ︷︷ ︸
k

, 0, . . . , 0). The smoothness and periodicity of

functions in XN,n(Td) implies that the space is a subspace of Hn(Td). We also

have that XN,n([0, 1]d) ⊂ Hn([0, 1]d) and XN,n
0 ([0, 1]d) ⊂ Hn

0 ([0, 1]d).

Sometimes it’s more convenient to identify a B-spline by using a scalar index

instead of vector, as we do in the following chapters. Recall the bijective operator

σN defined in (1.3.4). Letting i = σN(i), j = σN+n(j) and k = σN+n−2(k), we

define

bi,n(x) = bi,n(x), φj,n(x) = φj,n(x), and ψk,n(x) = ψk,n(x), (1.5.3)

respectively.
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B-spline Interpolation

2.1 Background

Interpolation is the process of constructing a function that fits the data points from

the underlying function. It is widely applied in an approximation of functions,

numerical differentiation and numerical integrations.

A commonly used family of functions for interpolation is polynomials, which

are widely studied in literature such as [68, 23]. When high degree polynomi-

als are used with the data of equispaced interpolation points, the approximation

may suffer from Runge’s phenomenon, which is a problem of oscillation near the

ends of the intervals. One option to avoid the problem is to use splines in stead

of polynomials for the interpolation. Cardinal spline interpolation is studied by

Schoenberg in [79]. Regarding its approximation property, the author obtains a

Peano type remainder formula for the interpolation [80]. In [34], Goodman and

Lee generalized the remainder to a class of symmetric cardinal interpolation prob-

lems on R and gave a L∞ error estimation. The estimation depends on the degree

of the spline, which means it is capable of showing the behaviour of the error as

the degree increases.

We are interested in estimation with the same feature but measured in semi-

norms on a finite interval. At first, we study interpolation with periodic B-splines

23
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and give an error estimate in the L2 norm by using the Peano remainder and esti-

mation in [34]. After showing a best approximation property, this result together

with the Kolmogorov inequality in (2.3.10) leads to an estimate in semi-norm. Fol-

lowing from this, we derive an estimate for interpolation of tensor-product splines.

Finally, we extend these results to interpolation of functions which are not neces-

sarily periodic by introducing a new basis for the B-spline space.

2.2 Overview of Cardinal B-spline Interpolation

We recall some results about cardinal spline interpolation in [34]. For definition

and properties of cardinal B-spline, the reader may see Section 1.5.1.

A function f is called of power growth if there exist a constant γ such that

f (n)(x) = O(|x|γ) as x→∞. Assume the function f ∈ Cn(R), whose nth deriva-

tive f (n) is absolutely continuous on (j, j + 1), j ∈ Z, is of power growth.

Letting

zn =

 0 when n is odd

1/2 when n is even
,

there exists a unique cardinal spline fh ∈ Xn(R), such that fh(i+ zn) = f(i+ zn),

for each i ∈ Z. The interpolation is given by

fh =
+∞∑
i=−∞

f(i+ zn)ln(x− i),

where ln(x) is the unique Lagrange function in the cardinal B-spline space such

that ln(i + zn) = δi,0. We denote by Sn the operator such that Sn(f ;x) = fh(x),

or Snf = fh.

Theorem 2.1 in [34] gives a Peano type remainder formula for the interpolation,

f(x)− Sn(f ;x) =

∫ +∞

−∞
Kn(x, t)f (n+1)(t)dt, (2.2.1)

where Kn(x, t) is the Peano kernel defined as

Kn(x, t) =
1

n!
((x− t)n+ − Sn((· − t)n+;x)),
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with

(x− t)n+ =

 (x− t)n x ≥ t

0 x < t
.

The kernel Kn(x, t) is bounded by Lemma 4.1 in [34] with∥∥∥∥∫ +∞

−∞
|Kn(·, t)|dt

∥∥∥∥
∞
≤ C/πn+1, (2.2.2)

where the constant C is independent of n and ‖ · ‖∞ is the essential supremum

norm. The remainder formula implies an error estimate given in Theorem 1 in

[34],

‖f − Snf‖∞ ≤ C‖f (n+1)‖∞,

where the constant C is independent of n and f .

2.3 Univariate Periodic B-spline Interpolation

We first investigate the problem for univariate functions, and then extend to mul-

tivariate functions.

2.3.1 Method of Interpolation

Let I = {0, . . . , N − 1}. We choose the points for interpolation to be {ξj}j∈I with

ξj =

 jh when n is odd

(j + 0.5)h when n is even
. (2.3.1)

A B-spline interpolant of a function f ∈ Hn+1(T) is obtained by finding a spline

fh ∈ XN,n(T) such that for each j ∈ I,

fh(ξj) = f(ξj). (2.3.2)

The interpolation problem has a unique solution as a special case of cardinal spline

interpolation on R, which is proved in Corollary 4.3 of [35].
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Express the interpolant in a B-spline basis as

Sh,n(f ;x) =
∑
j∈I

βjbj,n(x).

To find the unknown coefficients βj, we impose constraints on the points in (2.3.2)

for each j ∈ I. This gives a series of N equations, which may be rewritten as a

linear system,

G~β = ~f,

with entries for matrix G ∈ RN×N ,

Gi,j = bj,n(ξi), (2.3.3)

and for vector ~f ∈ RN ,

~fi = f(ξi).

Let T = G−1. It follows that

~β = T ~f.

Therefore the interpolant fh is given by

fh(x) =
N−1∑
i=0

N−1∑
j=0

T i,jf(ξj)bi,n(x),

where denote by Sh,n : Hn+1(T)→ XN,n(T) the interpolation operator s.t. Sh,n(f ;x) =

fh(x) or Sh,nf = fh.

Property 4(ii) in Page 16 together with (2.3.3) implies that

Gi,j = bj−i,n(ξ0)

= G0,[j−i]N ,

with [k]N = k mod N . Therefore G is the circulant matrix

G = Cir(b0,n(ξ0), b1,n(ξ0), . . . , bN−1,n(ξ0)). (2.3.4)

As introduced in Section 1.3.2, the circulant matrix G has a diagonalized form

G = F−1ΛGF . (2.3.5)
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ΛG is a diagonal matrix, whose diagonal entries are eigenvalues of G, and the

diagonal of ΛG can be computed by applying the FFT to the first of row of G as

shown in section 1.3.2. The coefficients of the interpolant ~β are then

~β = F−1Λ−1
G F

~f.

Recall that .∗ stands for component-wise product of two vectors as in (1.3.3). The

interpolation is summarized in the following steps:

Algorithm 2.1. 1. Use the FFT to obtain f̂ = F ~f and ~vG = F~aTG. ~aG is the

first row of G computed using expression (2.3.3) and de Boor’s algorithm.

2. Calculate f̃ = ~vG. ∗ f̂ .

3. Apply the FFT again to get ~β = F−1f̃ .

2.3.2 Error of Interpolation

We use a similar approach as in [34] by first deriving the remainder formula and

then estimating the error by analysing the formula. The formula is given as follows.

Lemma 2.2. If f ∈ Hn+1(T), then

f(x)− Sh,n(f ;x) = hn
∫ 1

0

Kh,n(x, t)f (n+1)(t)dt, (2.3.6)

with

Kh,n(x, t) =
∑
j∈Z

Kn(x/h, (t− j)/h).

Proof. For any f ∈ Hn+1(T), define f̃(x) = f(x/h). Then f̃ ∈ Cn(R), whose nth

derivative f̃ (n) is absolutely continuous on (j, j + 1), j ∈ Z, and f̃(x) = f̃(x+N)

on R, which implies that it has power growth. Let y = x/h and τ = t/h. The
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equality (2.2.1) and periodicity of f̃ (n) gives

f(x)− Sh,n(f ;x) = f̃(y)− Sn(f̃ ; y)

=
∫ +∞
−∞ Kn(y, τ)f̃ (n+1)(τ)dτ

=
∫ N

0

∑
i∈Z

Kn(y, τ +Ni)f̃ (n+1)(τ)dτ

= hn
∫ 1

0

∑
i∈Z

Kn(x/h, (t+ i)/h)f (n+1)(t)dt.

To estimate the remainder in Lemma 2.2 , one would intuitively apply the

Cauchy-Schwarz inequality to the right hand side of equality (2.3.6), leaving

f(x)− Sh,n(f ;x) ≤ hn
(∫ 1

0

K2
h,n(x, t)dt

)1/2

‖f (n+1)‖.

Taking the L2 norm on both sides of the inequality, it follows that

‖f − Sh,nf‖ ≤ hn
(∫ 1

0

∫ 1

0

K2
h,n(x, t)dtdx

)1/2

‖f (n+1)‖. (2.3.7)

Applying the first mean value theorem gives∫ 1

0

∫ 1

0
|K2

h,n(x, t)|dtdx =
∫ 1

0
Kh,n(ξ, t)

∫ 1

0
|Kh,n(x, t)|dxdt

=
∫ 1

0
|Kh,n(ξ, t)|dt

∫ 1

0
|Kh,n(x, η)|dx,

(2.3.8)

where ξ and η are real numbers in [0, 1].

Now to estimate the right hand side terms in this equality, we first put forward

a relation between them given in the following lemma, which can save us the

trouble of estimating both of them.

Lemma 2.3. The kernel Kh,n(x, t) defined in Lemma 2.2 has the property

Kh,n(x, t) =

 Kh,n(t, x) n is odd

−Kh,n(t− 0.5, x− 0.5) n is even
.
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Proof. From the definition of the kernel Kh,n(x, t) in (2.3.6), the result of the

lemma follows naturally if the equality

Kn(x, t) =

 Kn(t, x) n is odd

−Kn(t− 0.5, x− 0.5) n is even
(2.3.9)

is shown to be true. This is the object of the rest of the proof.

Equality (2.7) in [34] implies that

Sn((x− t)n+;x) =

 Sn((x− ·)n+; t) n is odd

Sn((x− · − 0.5)n+; t− 0.5) n is even
.

This leads to

Kn(x, t) =

 1
n!

(x− t)n+ − 1
n!
Sn((x− ·)n+; t) n is odd

1
n!

(x− t)n+ − 1
n!
Sn(x− (·+ 0.5))n+; t− 0.5)) n is even

.

From the fact

(x− t)n = (x− t)n+ − (−1)n+1(t− x)n+,

and Sn((x− ·)n; t) = (x− t)n, it follows that

Kn(x, t) =

 1
n!

(t− x)n+ − 1
n!
Sn((· − x)n+; t) n is odd

− 1
n!

(t− 0.5− (x− 0.5))n+ − 1
n!
Sn((· − (x− 0.5))n+; t− 0.5) n is even

.

This shows equality (2.3.9) is true, and therefore completes the proof of the

lemma

An error bound of the interpolation is obtained as stated in the following

theorem.

Theorem 2.4. If f ∈ Hn+1(T), then

‖f − Sh,nf‖ ≤ Chn+1/πn+1‖f (n+1)‖.
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Proof. Together with (2.3.7), we estimate the kernel terms in (2.3.8) to give the

result. To estimate the term
∫ 1

0
|Kh,n(ξ, t)|dt, the triangle inequality and the error

bound in (2.2.2) yield∫ 1

0
|Kh,n(ξ, t)|dt ≤

∑
i∈Z

∫ 1

0
|Kn(ξ/h, (t+ i)/h)|dt

= h
∫ +∞
−∞ |Kn(ξ/h, t)|dt

≤ h‖
∫ +∞
−∞ |Kn(·, t)|dt‖∞

≤ Ch/πn+1.

As for the term
∫ 1

0
|Kh,n(x, η)|dx, using Lemma 2.3 and a similar approach to

the previous analysis it follows∫ 1

0

|Kh,n(x, η)|dx ≤ Ch/πn+1.

Hence, (∫ 1

0

∫ 1

0

K2
h,n(x, t)dtdx

)1/2

≤ Ch/πn+1.

Substituting this estimate in (2.3.7) completes the proof.

Making use of this result and the Kolmogorov inequality, we now study the

error ‖(f − Sh,nf)(k)‖. The Kolmogorov inequality (see Proposition 3.3.7 [53])

states that if g ∈ Hn(T) then

‖g(k)‖ ≤ ‖g‖1−k/n‖g(n)‖k/n. (2.3.10)

Let n = 2r + 1, r ∈ N0, the term f − Sh,nf ∈ Hn(T), and f ∈ Hr+1(T). Applying

the Kolmogorov inequality we have

‖(f − Sh,nf)(k)‖ ≤ ‖f − Sh,nf‖1−k/(r+1)‖(f − Sh,nf)(r+1)‖k/(r+1). (2.3.11)

We used the Kolmogorov inequality corresponding to functions in Hr+1(T)

rather than Hn(T), because we are able to give an error bound for the term

‖(f−Sh,nf)(r+1)‖, where the term is shown to be smaller than ‖f (r+1)−Sh,nf (r+1)‖

based on the following lemma and then estimated using Theorem 2.4.
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Denote by Inm,h the operator such that Inm,h(f ; ·) = g ∈ XN,n(T) satisfying

(g, v) = (f, v) for any v ∈ XN,m(T). (2.3.12)

Lemma 2.5. Let n = 2r + 1, r ∈ N0. We have

(Sh,nf)(k) = In−kk−1,hf
(k) for k = 0, . . . , n.

Proof. We start with expressing the right hand side of the equality by B-splines.

Let In−kk−1,hf =
N−1∑
j=0

cjbj,n−k and choose v in (2.3.12) to be bi,k−1, for each i ∈ I. The

process leaves a series of equations that are able to be written in the form of the

linear system

M k−1,n−k~c = ~F ,

with M k−1,n−k
i,j = (bi,k−1, bj,n−k), ~c = (c0, c1, . . . , cN−1)T and ~Fi = (bi,k−1, f

(k)). Let

~bn = (b0,n, b1,n, . . . , bN−1,n). Then we have that

In−kk−1,hf = ~bn−k(M
k−1,n−k)−1 ~F . (2.3.13)

Using Property 4(iv) in Page 16, we have

M k−1,n−k
i,j =

∫ 1

0
bi,k−1(x)bj,n−k(x)dx

= hbj−i+k,n(0).

This fact and the periodic property of B-splines shows that

M k−1,n−k = hCir{(bk,n(0), b1+k,n(0), . . . , bN−1+k,n(0))}.

As for the left hand side, assuming Sh,nf =
N−1∑
i=0

dibi,n, the coefficients di are

obtained by solving the linear system

G~d = ~f,

with ~fi = f(ih), ~di = di and

Gi,j = bj,n(ih)

= bj−i,n(0).
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This implies

G = Cir(b0,n(0), b1,n(0), . . . , bN−1,n(0)).

Note also that Sh,nf = ~bnG
−1 ~f .

If we compare M k−1,n−k and G, and consider the periodicity of B-splines, it’s

apparent that G is obtained by shifting the matrix 1/hM k−1,n−k down by k rows.

To express the relation using matrix products, let D = Cir{(0, . . . , 0, 1)}, then

G = 1/hDkM k−1,n−k.

Inverting the matrices on both side of the equation gives,

G−1Dk = h(M k−1,n−k)−1. (2.3.14)

To relate ~F and ~f , we first define the matrix DF = Cir(−1, 1, 0, . . . , 0) whose

product with a vector gives a forward difference. Property 4(v) in Page 16 implies

~Fi =
∫ 1

0
bi,k−1(x)f (k)(x)dx

= 1/hk−1(D+
h )kf(ih).

It follows that

~F = 1/hk−1Dk
F
~f. (2.3.15)

LetDB := Cir(1, 0, . . . , 0,−1). A simple matrix calculation givesDDF = DB.

Since the multiplication of circulant matrices is commutative [93], taking the kth

derivative of Sh,n(f ;x) and using Property 4(vi) in Page 16, we have

(Sh,nf)(k) = 1/hk~bn−kD
k
BG

−1 ~f

= 1/hk~bn−kG
−1DkDk

F
~f.

This equality together with equality (2.3.14), (2.3.15), and (2.3.13) gives the

result of the lemma.

The definition of the operator Inm,h implies that Irr,hf
(r+1) − f (r+1) is orthogo-

nal to every element in XN,r(T). Therefore together with Lemma 2.5, we know
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(Sh,nf)(r+1) = Irr,hf
(r+1) is the best approximation of f (r+1) from XN,r(T), in the

sense that

‖f (r+1) − (Sh,nf)(r+1)‖ ≤ ‖f (r+1) − v‖ for any v ∈ XN,r(T).

This inequality implies that

‖(f − Sh,nf)(r+1)‖ ≤ ‖f (r+1) − Sh,rf (r+1)‖

= Chr+1/πr+1‖f (n+1)‖.
(2.3.16)

The result enables us to give the following theorem.

Theorem 2.6. Let n = 2r + 1, r ∈ N0 and f ∈ Hn+1(T). For k = 0, . . . , r + 1,

we have

‖(f − Sh,nf)(k)‖ ≤ C(h/π)n+1−k‖f (n+1)‖.

Proof. Substituting Theorem 2.4 and the inequality (2.3.16) into (2.3.11) implies

‖(f − Sh,nf)(k)‖ ≤ ‖f − Sh,nf‖1−k/(r+1)‖(f − Sh,nf)(r+1)‖k/(r+1)

≤ (Chn+1/πn+1‖f (n+1)‖)1−k/(r+1)(Chr+1/πr+1‖f (n+1)‖)k/(r+1)

= C(h/π)n+1−k‖f (n+1)‖.

The theorem shows that as the mesh size h → 0, the error has an algebraic rate

of convergence [82, p.78], which agrees with the result for the h-refinements [8,

Lemma 3.3]. However, due to the term ‖f (n+1)‖ on the right-hand side of the

theorem, we cannot conclude that the error converges as the degree n → ∞. As

shown in the numerical results in Section 2.7.0.1, there exist functions such that

the error diverges. Therefore, we make more assumptions to facilitate convergence,

which is shown in the following corollary.

Corollary 2.7. For n = 2r + 1, r ∈ N0, let f ∈ Hn+1(T). Assume there exists

σ > 0 s.t. ‖f (n+1)‖ ≤ σn+1‖f‖. For k = 0, . . . , r + 1, we have

‖(f − Sh,nf)(k)‖ ≤ C(hσ/π)n+1−k‖f‖.
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The corollary implies that, for a function f ∈ C∞(T) satisfying Markov type

inequality ‖f (k)‖ ≤ σk‖f‖, k ∈ N0, the error converges exponentially with the

degree n, if we choose h such that hσ/π < 1.

The following corollary gives an estimate for the more general case where the

function f is of any period l, which is needed in Section 2.5.2. Let Hn+1(lT) be

the Sobolev space on lT, which is the circle of length l, and XN,n(lT) the periodic

spline space with degree n and N sub-intervals of in a period. Denote by L2(lT)

the L2 space defined on lT.

Corollary 2.8. Let f ∈ Hn+1(lT), n = 2r + 1, r ∈ N0, and fh ∈ XN,n(lT) be the

interpolant such that f(lξi) = fh(lξi). Then

‖(f − fh)(k)‖L2(lT) ≤ C(l/(Nπ))n+1−k‖f (n+1)‖L2(lT).

Proof. Let x = ly, g(y) = f(ly) and gh(y) = fh(y). In this case, we have

g ∈ Hn+1(T), and then gh is the corresponding B-spline interpolant. Applying

Theorem 2.6, we complete the proof.

Remark 2.9. In some literature, Bernoulli kernel is used to represent and estimate

the error of periodic spline interpolation. For instance [53, Ch. 5] shows that for

f ∈ W n+1
∞ (T), k = 0, 1,

‖(f − Sh,nf)(k)‖ ≤ C(h/π)n+1−k‖f (n+1)‖∞,

where W n+1
∞ (T) is the periodic Sobolev space such that for every f ∈ W n+1

∞ (T),

f (n) is absolute continuous and ‖f (n+1)‖∞ <∞.

The same estimates was also derived by studying the extremal property of the

functions from W n+1
∞ (T) that vanishes at the breaking points. The idea is to bound

the error with perfect splines (Theorem 5.1.1 [53]) and then estimating the norm

of the error by evaluating the norm of the perfect spline.
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In our case, we generalise the assumption of the interpolated function from

being in the space W n+1
∞ (T) to Hn+1(T).

Remark 2.10. Regarding to estimating the interpolation error in semi-norm, the

existing approach include making use of the estimation, for n = 2r + 1,

‖f − Sh,nf‖ ≤ C(h/π)r+1‖f (r+1)‖,

and the minimal semi-norm property of periodic spline interpolation as shown in

[41], that is, for n = 2r + 1,

‖(f − Sh,nf)(r+1)‖2 = ‖f (r+1)‖2 − ‖(Sh,nf)(r+1)‖2,

which implies that

‖(f − Sh,nf)(r+1)‖2 ≤ ‖f (r+1)‖2.

Then applying the Kolmogorov inequity, it follows

‖(f − Sh,nf)(k)‖ ≤ ‖f − Sh,nf‖1−k/(r+1)‖(f − Sh,nf)(r+1)‖k/(r+1)

≤ C(h/π)r+1−k‖f (r+1)‖.
(2.3.17)

Remark 2.11. The best approximation property (2.3.2) was also proved with re-

producing kernel approach as shown in [26].

Remark 2.12. B-spline functions on uniform meshes can also be viewed as ra-

dial basis functions (RBF). Literature discussing estimates of RBF interpolations,

for example, [15], [58], and [14], also addresses estimates of spline interpolation

problems.

2.4 Multivariate Periodic B-spline Interpolation

2.4.1 Method of Interpolation

Recall that I = {0, . . . , N − 1}. For interpolating a multivariate function f(x) ∈

Hn+1(Td), we choose

ξi = (ξi1 , ξi2 , . . . , ξid), (2.4.1)
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for each i = (i1, i2, . . . , id) ∈ Id, where {ξk}k∈I , are the points defined in (2.3.1).

Denote by fh(x) ∈ XN,n(Td) the B-spline interpolant of f(x), and let

fh(x) =
∑
j∈Id

βjbj,n(x),

such that

fh(ξi) = f(ξi)

for each i ∈ Id. Let i = σN(i) and j = σN(j), where σN is defined in (1.3.4). It

follows that

G~β = ~f,

where entries for the vector ~f are

~fi = f(ξi),

and for the matrix G are

Gi,j = bj,n(ξi). (2.4.2)

Let T = G−1. It follows that

~β = T ~f,

and therefore

fh(x) =
Nd−1∑
i=0

Nd−1∑
j=0

T i,jf(ξj)bi,n(x). (2.4.3)

The definition of bj,n, (2.3.3), and (2.4.2) give

Gi,j = bj1,n(ξi1)bj2,n(ξi2) . . . bjd,n(ξid)

= Gi1,j1Gi2,j2 . . .Gid,jd .

Together with Property 2(i) in Page 8, it follows that

G = G⊗G⊗ · · · ⊗G︸ ︷︷ ︸
d

. (2.4.4)

It follows that

T = T ⊗ T ⊗ · · · ⊗ T︸ ︷︷ ︸
d

.
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This property together with (2.4.3), and Property 2(iv) in Page 8 yields

fh(x) =
N−1∑
i1=0

. . .

N−1∑
id=0

N−1∑
j1=0

. . .

N−1∑
jd=0

T i1,j1 . . .T id,jdf(ξj)bi,n(x). (2.4.5)

By abuse of notation, we still denote with Sh,n(f ;x) = fh(x) or Sh,nf = fh

the interpolation operator regardless of the dimension of the variables x as it is

apparent from the context in the thesis.

Substituting (2.3.5) into the expression (2.4.4), Property 2(iv) implies

G = F−1ΛGF ,

with

F = F ⊗ F ⊗ · · · ⊗ F︸ ︷︷ ︸
d

,

and

ΛG = ΛG ⊗ΛG ⊗ · · · ⊗ΛG︸ ︷︷ ︸
d

.

The coefficients for the interpolant fh are

~β = F−1Λ−1
G F ~f.

The matrix G is invertible since it is the Kronecker product of invertible matrices.

Therefore the high-dimensional interpolation problem has a unique solution.

The interpolation process is summarized as follows.

Algorithm 2.13. 1. Use FFT to obtain f̂ = F ~f and ~vG = ~vG⊗ . . .⊗~vG, where

~vG is obtained using step 1 in Algorithm 2.1.

2. Calculate f̃ = ~vG. ∗ f̂ .

3. Apply FFT again to get ~β = F−1f̃ .
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2.4.2 Error of Interpolation

For f ∈ Hn+1(Td), we denote by the operator Sx and Sxs

Sxf(x) = Sh,n(f ;x) and Sxsf(x) = Sh,n(f ;xs),

which means Sxf(x) is given by (2.4.5) and Sxsf(x) has the expression

Sxsf(x) =
N−1∑
is=0

N−1∑
js=0

T is,jsf(x1, . . . , xs−1, ξjs , xs+1, . . . , xd)bis,n(xs).

It follows from the linearity of the summation that

Sxf = SxdSxd−1
. . . Sx1f.

Let I be the identity operator. For a vector ~α = (αi)
N
i=1, denote by |~α| =

N∑
i=1

|αi|.

Recall that ~α ≤ k means ‖~α‖∞ ≤ k, for any k ∈ N0. Based on the results in the

one-dimensional case, we have the following estimate for the interpolation.

Theorem 2.14. Letting f ∈ Hn+1(Td) with n = 2r + 1, r ∈ N0, and ~k ∈ Nd
0 with

~k ≤ r + 1, we have

‖D~k(f − Sh,nf)‖ ≤ C
∑

~α∈Nd0,‖~α‖∞=1

(
h

π

)|~α|(n+1)−~α~k

‖D(n+1)~α−~α.∗~k+~kf‖.

Proof. Recall that

Sx = SxdSxd−1
. . . Sx1 .

It follows that, for ~α = (α1, . . . , αd),

D
~k(I − Sx) = −D~k

∑
~α∈Nd0,‖~α‖∞=1

(−I + Sxd)
αd . . . (−I + Sx1)

α1

= −
∑

~α∈Nd0,‖~α‖∞=1

∂kd

∂xkd
(−I + Sxd)

αd · · · ∂k1
∂xk1

(−I + Sx1)
α1 .



Chapter 2 39

The Cauchy-Schwarz inequality and Theorem 2.6 imply

‖D~k(I − Sx)f‖ ≤
∑

~α∈Nd0,‖~α‖∞=1

‖ ∂kd
∂xkd

(I − Sxd)αd . . . ∂k1

∂xk1
(I − Sx1)

α1f‖

≤
∑

~α∈Nd0,‖~α‖∞=1

(C(h
π
)αd(n+1−kd)

‖ ∂αd(n+1−kd)+kd

∂xαd(n+1−kd)+kd

∂kd−1

∂xkd−1
(I − Sxd−1

)αd−1 . . . ∂k1

∂xk1
(I − Sx1)

α1f‖)

=
∑

~α∈Nd0,‖~α‖∞=1

(C(h
π
)αd(n+1−kd)

‖ ∂
kd−1

∂xkd−1
(I − Sxd−1

)αd−1 . . . ∂k1

∂xk1
(I − Sx1 )α1 ∂αd(n+1−kd)+kd

∂xαd(n+1−kd)+kd
f‖).

Repeatedly applying Theorem 2.6 to the remaining operators in a similar way gives

‖D~k(I − Sx)f‖ ≤
∑

~α∈Nd0,‖~α‖∞=1

(C(h
π
)αd(n+1−kd) . . . (h

π
)α1(n+1−k1)

‖ ∂αd(n+1−kd)+kd

∂xαd(n+1−kd)+kd
. . . ∂α1(n+1−k1)+k1

∂xα1(n+1−k1)+k1
f‖)

= C
∑

~α∈Nd0,‖~α‖∞=1

(h
π
)|~α|(n+1)−~α~k‖D(n+1)~α−~α.∗~k+~kf‖.

The following corollary generalizes Corollary 2.7 to the multi-dimensional case,

where we also see an exponential convergence as p increases.

Corollary 2.15. Let f ∈ Hp+1(Td) with p = 2r + 1, r ∈ N0. Assume there exist

σ > 0 s.t. ‖D~sf‖ ≤ Cσ|~s|, for all ~s ∈ Nd
0, ~s ≤ p+1. For any ~k ∈ Nd

0 with ~k ≤ r+1

and hσ/π < 1, we have

‖D~k(f − Sh,pf)‖ ≤ C

(
hσ

π

)p+1−‖~k‖∞
.

In particular, if ‖D~sf‖ ≤ σ|~s|‖f‖, we have

‖D~k(f − Sh,pf)‖ ≤ C

(
hσ

π

)p+1−‖~k‖∞
‖f‖.

Proof. If ‖~α‖∞ = 1, then |α| ≥ 1 and ~α~k ≥ ~k. Since hσ/π ≤ 1, we have that

‖D~k(f − Sh,pf)‖ ≤ C
∑

~α∈Nd0,‖~α‖∞=1

(
hσ
π

)|~α|(p+1)−~α~k

≤ C
(
hσ
π

)(p+1)−‖~k‖∞
.

The particular case is proved similarly.
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In the following chapters we would frequently use the case when ~k = (0, . . . , 0)

and ~k = (1, . . . , 1) in Theorem 2.14. For the simplicity, we define the operators

Q0,n(f) =
∑

~α∈Nd0,‖~α‖∞=1

(
h
π

)|~α|(n+1) ‖D(n+1)~αf‖

and Q1,n(f) =
∑

~α∈Nd0,‖~α‖∞=1

(
h
π

)|~α|n ‖Dn~α∇f‖.
(2.4.6)

As a special case of the theorem, for n = 2r + 1, r ∈ N, we have

‖f − Sh,nf‖ ≤ CQ0,n(f)

and |f − Sh,nf |1 ≤ CQ1,n(f).
(2.4.7)

If we further assume that there exist σ > 0 s.t. ‖D~kf‖ ≤ Cσ|
~k| for all ~k ∈ Nd

0,

~k ≤ n+ 1. Letting hσ/π ≤ 1, it follows that

Q0,n(f) ≤ C
∑

~α∈Nd0,‖~α‖∞=1

(
hσ
π

)|~α|(n+1) ≤ C
(
hσ
π

)n+1

and Q1,n(f) ≤ Cdσ
∑

~α∈Nd0,‖~α‖∞=1

(
hσ
π

)|~α|n ≤ C
(
hσ
π

)n
.

(2.4.8)

2.5 Non-periodic B-spline Interpolation

2.5.1 Method of Interpolation

For n = 2r + 1, r ∈ N0, given any f ∈ Hn+1([0, 1]), we consider the interpolation

such that interpolant fh ∈ XN,n([0, 1]) satisfies, for each i = 0, . . . , N,

fh(ξi) = f(ξi),

and for each k = 1, . . . , r, and j = 0 or N ,

f
(2k)
h (ξj) = f (2k)(ξj). (2.5.1)

Denote by Bh,n : Hn+1([0, 1]) → XN,n([0, 1]) the operator such that Bh,nf = fh.

According to Theorem 3.2 in [35], this problem has a unique solution.
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2.5.2 Error of Interpolation

Before giving an error estimate, we define a basis for the space XN,n([0, 1]). Let

XN,n
E ([0, 1]) be a set composed of functions f ∈ XN,n([0, 1]) such that

f (2k)(ξj) = 0, for k = 0, . . . , r, and for j = 0, N.

The linearity of differentiation implies thatXN,n
E ([0, 1]) is a subspace ofXN,n([0, 1]).

The dimension of the space is N−1, since there are n+1 = 2(r+1) more constraints

to the space XN,n([0, 1]), whose dimension is N + n.

Let {φi}, i = 1, . . . , N−1, be a basis for the space XN,n
E [0, 1] and the polynomial

ψi(x) = xi, i = 0, . . . , n. We have the following lemma.

Lemma 2.16. When n = 2r + 1, r ∈ N0, the set

{φi}i=1,...,N−1 ∪ {ψj}j=0,...,n

forms a basis for space XN,n[0, 1].

Proof. To prove that they are linearly independent, assume a linear combination

of the basis elements satisfies
N−1∑
i=1

ciφi(x) +
n∑
j=0

djψj(x) = 0.

Take the 2rth derivative on both sides of the equation and choose x = ξj, j = 0

or N . Note that ξ0 = 0 and ξN = 1. Since φ
(2r)
i (ξ0) = φ

(2r)
i (ξN) = 0, for i =

1, . . . , N − 1, and ψj(x) = xj, we are left with two equations, (n − 1)!dn−1 = 0

and (n− 1)!dn−1 + n!dp = 0 corresponding to the points ξ0 and ξN respectively. It

follows from the two equations that dn−1 = dp = 0. Using a similar procedure by

taking the 2kth derivative of the equation, we may choose x = ξj, j = 0 or N , for

k = r−1, r−2, . . . , 0 in succession. Finally, we have d0 = d1 = . . . = dp = 0. Then

it follows from linear independence of {φi}i=1,...,N−1 that ci = 0 for i = 1, . . . , N−1.

Therefore the functions are linearly independent. There are totally N + n linear

independent functions and the dimension of the space XN,n[0, 1] is N + n. Hence,

the functions form a basis for the space.
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Since a function in Hn+1(T) is of period 1, we only need to consider the function

on a interval of a period, say, [0, 1]. For simplicity, we define the space Hn+1
per [0, 1]

consisting of the functions in Hn+1(T), where only the part of the function on the

domain [0, 1] is considered. Similarly, we define Hn+1
per [−1, 1] and X2N,n

per ([−1, 1])

based on Hn+1(2T) and X2N,n
per (2T), respectively. The error of the interpolation is

bounded in the following theorem.

Theorem 2.17. For n = 2r + 1, r ∈ N0 and f ∈ Hn+1[0, 1],

‖(Bh,nf − f)(k)‖ ≤ C

(
h

π

)n+1−k

‖f (n+1)‖, for k = 0, . . . , r + 1. (2.5.2)

Proof. The idea of the proof is to express the error of non-periodic interpolation

by that of periodic interpolation as shown in (2.5.6), and then using our estimates

for periodic interpolation to arrive at the result as shown in (2.5.8).

(a) Express the error by periodic interpolation:

Let fh = Bh,nf = Φ + Ψ, with Φ =
N−1∑
i=1

ciφi and Ψ =
n∑
j=0

djψj, and fE = f −Ψ.

It follows immediately that

‖(fh − f)(k)‖L2[0,1] = ‖(Φ− fE)(k)‖L2[0,1]. (2.5.3)

Assume further that

Φ̂(x) =

 Φ(x) x ∈ [0, 1]

−Φ(−x) x ∈ [−1, 0)
, (2.5.4)

and

f̂E(x) =

 fE(x) x ∈ [0, 1]

−fE(−x) x ∈ [−1, 0)
. (2.5.5)

From (2.5.3) we have

‖(fh − f)(k)‖L2[0,1] = 1/
√

2‖(Φ̂− f̂E)(k)‖L2[−1,1]. (2.5.6)
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We claim that Φ̂ is a periodic interpolation of f̂E and prove the claim by show-

ing that f̂E ∈ Hn+1
per ([−1, 1]), Φ̂ ∈ X2N,n

per ([−1, 1]) and Φ̂(ξi) = f̂E(ξi), for i =

−N, . . . , N , where ξ−i = −ξi.

(b) Prove that Φ̂ ∈ X2N,n
per ([−1, 1]):

From the definition (2.5.4), we know Φ̂ is a piecewise polynomial defined on

interval [-1,1]. We also need to address the smoothness and periodicity of Φ̂. As

for smoothness, due to Φ ∈ XN,n
E [0, 1], Φ(2s)(0) = 0, which implies Φ̂(2s)(0+) =

Φ̂(2s)(0−) = 0, for s = 0, . . . , r. From the definition of Φ̂ we have Φ̂(2s+1)(0+) =

Φ̂(2s+1)(0−) for s = 1, . . . , r − 1. Then it’s derived that Φ̂(s)(0+) = Φ̂(s)(0−) for

s = 0, . . . , n−1. Together with the fact that Φ̂ ∈ Cn−1[−1, 0]∪Cn−1[0, 1], we have

Φ̂ ∈ Cn−1[−1, 1].

As for periodicity, Φ ∈ XN,n
E [0, 1] implies that Φ̂(2s)(−1+) = Φ̂(2s)(1−) = 0,

for s = 0, . . . , r. We have Φ̂(2s+1)(−1+) = Φ̂(2s+1)(1−) for s = 1, . . . , r − 1 from

the definition of Φ̂. Then it follows that Φ̂(s)(−1+) = Φ̂(s)(1−) for s = 0, . . . , n −

1. Also because Φ̂ is a piecewise polynomial in space Cn−1[−1, 1], we have Φ̂ ∈

X2N,n
per ([−1, 1]).

(c) Prove that f̂E ∈ Hn+1
per [−1, 1]:

From the definition (2.5.5), we know that f̂E|[−1,0] ∈ Hn+1[−1, 0] and f̂E|[0,1] ∈

Hn+1[0, 1]. We still need to show the smoothness that f̂E ∈ Cn[−1, 1], and the

periodicity that f̂E
(s)

(−1+) = f̂E
(s)

(1−) = 0, for s = 0, . . . , n. As for smoothness,

Φ ∈ XN,n
E [0, 1] and fh = Bh,nf implies that, for s = 0, . . . , r,

fE
(2s)(0) = f (2s)(0)−Ψ(2s)(0)

= f (2s)(0)− (f
(2s)
h (0)− Φ(2s)(0))

= f (2s)(0)− f (2s)
h (0)

= 0.

(2.5.7)

This property yields f̂E
(2s)

(0+) = f̂E
(2s)

(0−) = 0, for s = 0, . . . , r. It’s obtained

from the definition of f̂E that f̂E
(2s+1)

(0+) = f̂E
(2s+1)

(0−), for s = 0, . . . , r. To-

gether with the fact that f̂E ∈ Cn[−1, 0] ∪ Cn[0, 1], we have f̂E ∈ Cn[−1, 1]. As
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for periodicity, similarly to (2.5.7), we have fE
(2s)(1) = 0, for s = 0, . . . , r, which

gives f̂E
(2s)

(−1+) = f̂E
(2s)

(1−) = 0, for s = 0, . . . , r. The definition of f̂E im-

plies f̂E
(2s+1)

(−1+) = f̂E
(2s+1)

(1−), for s = 0, . . . , r. Combining this property with

f̂E ∈ Hn+1[−1, 0] ∪Hn+1[0, 1] and f̂E ∈ Cn[−1, 1], we have f̂E ∈ Hn+1
per [−1, 1].

(d) Prove that Φ̂ is an interpolant of f̂E:

Since fh is an interpolant of f , we have, for i = 0, . . . , N ,

fE(ξi) = f(ξi)−Ψ(ξi)

= f(ξi)− (fh(ξi)− Φ(ξi))

= Φ(ξi).

Similarly, we have for i = −N, . . . , 0 that

−fE(−ξi) = −Φ(−ξi).

Then it follows from the definitions (2.5.4) and (2.5.5) that Φ̂(ξi) = f̂E(ξi), for

i = −N, . . . , N .

Hence, we conclude that Φ is a periodic B-spline interpolant of fE ∈ Hn+1
per [−1, 1].

(e) Estimate the error of non-periodic interpolation:

From Theorem 2.6 of this chapter, we have

‖(Φ̂− f̂E)(k)‖L2[−1,1] ≤ C(h/π)n+1−k‖f̂E
(n+1)
‖L2[−1,1],

(2.5.8)

where the constant C is independent of function f̂E. Since Ψ is a polynomial of

degree n, the definition of fE implies

‖f̂E
(n+1)
‖L2[−1,1] =

√
2‖f (n+1)

E ‖L2[0,1]

=
√

2‖(f −Ψ)(n+1)‖L2[0,1]

=
√

2‖f (n+1)‖L2[0,1].

(2.5.9)

Combining (2.5.6), (2.5.8) and (2.5.9), we arrived at the result of the theorem.
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Remark 2.18. A problem worth considering in the proof is whether the stability

of polynomial Φ, which interpolates the function f , may affect the error bound in

(2.5.2). The answer is no. Notice that the constant C in (2.5.8), which is the

same constant as in (2.5.2) is independent of f̂E according to the Theorem 2.6,

and therefore it is independent the polynomial Φ. Hence the bound is independent

of Ψ.

2.6 Multivariate Non-periodic B-spline Interpo-

lation

For any f ∈ Hn+1([0, 1]d), and x = (x1, . . . , xd) ∈ Rd, denote by Bxih,n the operator

of the univariate B-spline interpolation of function f in terms of variable xi. Then

a tensor-product B-spline interpolant fh ∈ XN,n([0, 1]d) is defined to be

fh = Bx1
h,n . . .B

xd
h,nf.

We still use the operator Bh,n for the multi-variate interpolation such that Bh,nf =

fh.

From the definition of the interpolation operator Bh,n, fh has the property that

fh(ξi) = f(ξi) for i ∈ Id and

D2~k.∗~αfh((~1− ~α). ∗ ξi) = D2~k.∗~αf((~1− ~α). ∗ ξi),

and D2~k.∗~αfh((~1− ~α). ∗ ξi + ~α) = D2~k.∗~αf((~1− ~α). ∗ ξi + ~α),
(2.6.1)

where ~α,~k ∈ Nd
0, ‖~α‖∞ = 1, ~k ≤ r, and ~1 = (1, 1, . . . , 1). The property (2.6.1)

means that all the even degree derivatives of fh equal these of f at the interpolation

points on the boundary. In the special case of d = 1, the condition is the same as

(2.5.1).

An error estimate of the interpolation is given in the following theorem.

Theorem 2.19. Letting f ∈ Hn+1([0, 1]d) with n = 2r + 1, r ∈ N0, and ~k ∈ Nd
0
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with ~k ≤ r + 1, we have

‖D~k(f − Bh,nf)‖ ≤ C
∑

~α∈Nd0,‖~α‖∞=1

(
h

π

)|~α|(n+1)−~α~k

‖D(n+1)~α−~α.∗~k+~kf‖.

Proof. The proof of the theorem is very similar to the proof of Theorem 2.14, only

with the modifications that replace Sx and Sxi by Bh,n and Bxih,n, respectively.

Similar as Corollary 2.15, we have

Corollary 2.20. Let f ∈ Hp+1([0, 1]d) with p = 2r + 1, r ∈ N0. Assume there

exists σ > 0, ‖D~sf‖ ≤ Cσ|~s| for all ~s ∈ Nd
0 with ~s ≤ p + 1. For any ~k ∈ Nd

0 with

~k ≤ r + 1 and hσ/π < 1, we have

‖D~k(f − Bh,pf)‖ ≤ C

(
hσ

π

)p+1−‖~k‖∞
.

In particular, if ‖D~sf‖ ≤ σ|~s|‖f‖, we have

‖D~k(f − Bh,pf)‖ ≤ C

(
hσ

π

)p+1−‖~k‖∞
‖f‖.

2.7 Numerical Experiment Results

The following experiment is designed to investigate, for B-spline interpolation, how

the error converges as the degree of the spline increases and how the different sizes

of mesh affect the convergence. Let the error of f be

E0f = log (‖f − fh‖/‖f‖) and E1f = log (‖∇(f − fh)‖/‖∇f‖) , (2.7.1)

where fh is Sh,nf for periodic interpolation and Bh,nf for non-periodic case. We

interpolate a sufficiently regular function and compute the error of approximation.

We plot the error against the degree of the splines, and moreover, adjust h to to

check the convergence in each case.
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Figure 2.1: Errors of B-spline interpolation in R

2.7.0.1 Univariate Function

We first choose the interpolated function to be f = sin(40πx) and implement

Algorithm 2.1. Figures 2.1 shows that the error E0f and E1f converges when the

value of h range from 1/41 to 1/60, and diverge when h = 1/39. That behaviour

agrees with Corollary 2.7, which implies that the error E0f and E1f is bounded

by O((40h)n+1) and O((40h)n), respectively. Hence, as we increase n, if h < 1/40,

both the errors are predicted to converge to zero. Moreover, the linear decrease of

the logarithm error suggests that the approximation converges to f exponentially.

The figures also show that when h = 1/40, the error oscillates as the degree

increases. In particular, when the degree p is odd the error stays high and un-

changed, but when the degree is even the error converges. This is because, when

degree is odd, the interpolation point is ξi = i/40, and so the corresponding data

is f(ξi) = sin(πi) = 0. The interpolation in this case gives the result of fh = 0 due

to an aliasing effect. The phenomenon agrees with Lemma 4.4 [34], which, in our
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Figure 2.2: Error of interpolation in R2

case, is interpreted as lim
n→∞

Sh,2n sin(40πx) = 0

lim
n→∞

Sh,2n+1 sin(40πx) = sin(40πx)
.

2.7.0.2 Multivariate Function

For the interpolation of a two variate function, the interpolated function is chosen

to be f = sin(40πx) cos(40πy). In figure 2.2, we observe a similar behaviour

of errors in univariate function case. That is because ‖f (~α)‖ = (40π)|α|‖f‖ for

all ~α ∈ N2
0. According to Corollary 2.15, the errors are bounded by the term

O((40h)n+1) andO((40h)n). So, when h < 1/40, the errors converge exponentially.
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2.7.0.3 Non-Periodic Function
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Figure 2.3: Errors of B-spline interpolation

We choose f = exp (10πx), for which ‖f (k)‖ = (10π)k‖f‖ for k ∈ N0. According to

Corollary 2.20, the error ‖f − Bh,nf‖/‖f‖ is bounded by O((10h)n). That means

for h < 1/10, as we increase the degree of B-spline n, the error converges to zero.

Figure 2.3 confirms this behaviour.
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B-spline Finite Element Method

for the Heat Equation

The heat equation is a form of diffusion equation governing the temperature distri-

bution in an object. For more detail, the reader may consult, for example, [31, 74].

We consider two types of boundary conditions, periodic and Dirichlet, where the

periodic case is studied first.

3.1 Problem with Periodic Boundary Condition

3.1.1 Model Problem

The problem under consideration is the heat equation

∂

∂t
u(x, t)−∆u(x, t) = η(x, t), (x, t) ∈ Td × [0,∞), (3.1.1)

with initial value

u(x, 0) = u0(x).

The initial value u0(x) and the non-homogeneous term η(x, t) are assumed to be

functions in the spaces Hp+1(Td) and L2(0, T ;Hp+1(Td)) respectively.

50
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A weak formulation corresponding to the heat equation is to find u(t) ∈

L2(0, T ;H1(Td)) with u̇(t) ∈ L2(0, T ;H−1(Td)) and u(0) = u0 ∈ L2(Td) such

that

d

dt
(u(t), v) + a(u(t), v) = (η(t), v) for any v ∈ H1(Td), (3.1.2)

where H−1(Td) is the dual space of H1(Td), and u̇(t) is the derivative of u w.r.t.

temporal variable t. According to Proposition 23.28 in [92] the weak formula-

tion has a unique solution u(t) ∈ L2(0, T ;H1(Td)). Moreover, since the non-

homogeneous term η(t) ∈ L2(0, T ;Hp+1(Td)), using the same proposition it can be

derived that the solution u(t) ∈ L2(0, T ;Hp+1(Td)).

Given the weak formulation (3.1.2), we derive a numerical scheme to approx-

imate its solution, by discretizing the problem using a B-spline finite element

method for the spatial variable and a finite difference method for the temporal

variable. We first give the scheme for one-dimensional problem, and then with the

results obtained, the scheme for the multi-dimensional case.

3.1.2 Scheme for the Equation on One-dimensional Do-

main

We are using the Galerkin method shown in Section 1.4.1 to approximate the

solution of (3.1.2). An approximation is obtained by finding uh(t) ∈ XN,p(T) such

that
d

dt
(uh(t), v) + a(uh(t), v) = (η(t), v) for any v ∈ XN,p(T).

Recall that I = {0, . . . , N − 1}. Let uh(t) =
∑
j∈I

αj(t)bj,p and v = bi,p for each

i ∈ I. This leads to a system of differential equations which is written as

M ~̇α(t) + S~α(t) = ~l(t), (3.1.3)

with ~̇α(t) = (α̇0(t), . . . , α̇N−1(t))T . M and S are the mass and the stiffness matri-

ces with entries

M i,j =

∫ 1

0

bi,p(x)bj,p(x)dx and Si,j =

∫ 1

0

b′i,p(x)b′j,p(x)dx.
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~l(t) is the load vector with entries

li(t) =

∫ 1

0

bi,p(x)η(x, t)dx. (3.1.4)

Since it is inconvenient and sometimes impossible to calculate the integrals

in the load vector analytically, for each t ∈ [0,∞), we approximate the non-

homogeneous term η(t) with an element ηh(t) ∈ XN,p(T). Letting ηh(t) =
∑
i∈I

βi(t)bi,p(x),

the system (3.1.3) is modified to

M ~̇α(t) + S~α(t) = M ~β(t), (3.1.5)

with entries for the mass matrix M ∈ RN×N ,

M i,j =

∫ 1

0

bi,p(x)bj,p(x)dx,

and for the stiffness matrix S ∈ RN×N ,

Si,j =

∫ 1

0

b′i,p(x)b′j,p(x)dx. (3.1.6)

Using B-spline interpolation as the approximation for the non-homogeneous term

η(t) for each t ∈ [0,∞), the vector ~β(t) is obtained from interpolating η(·, t),

namely,

~β(t) = G−1~η(t),

with

ηj(t) = η(ξj, t),

where G is given in (2.3.3). To evaluate M efficiently, choose x = 0 in Property

4(iv) in Page 16. It follows that

M i,j = hbi−j−(p+1),2p+1(0). (3.1.7)

By using Property 4(vi) in Page 16 for both b′i,p and b′j,p in (3.1.6), and expanding

the result, entries of the stiffness matrix are given by

Si,j = 1/h2(
∫ 1

0
bi,p−1(x)bj,p−1(x)dx+

∫ 1

0
bi,p−1(x)bj+1,p−1(x)dx

+
∫ 1

0
bi+1,p−1(x)bj,p−1(x)dx+

∫ 1

0
bi+1,p−1(x)bj+1,p−1(x)dx)

= 1/h(2bi−j−p,2p−1(0)

− bi−j+1−p,2p−1(0)− bi−j−1−p,2p−1(0)).

(3.1.8)
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Some properties of the matrices M and S are given as follows. Property 4(i) in

Page 16 implies that

M i,[i+k]N = Si,[i+k]N = 0 for |k| > p, (3.1.9)

where [i]N = i mod N . That means if N is greatly larger than p, the matrix is

sparse.

From (3.1.7), (3.1.8) and Property 4(iii) in Page 16, we have that

M i,[i+k]N = M i,[i−k]N and Si,[i+k]N = Si,[i−k]N . (3.1.10)

Property 4(ii) in Page 16 together with (3.1.7) and (3.1.8) imply that M and

S are circulant matrices, that is,

M i,j = M [i+k]N ,[j+k]N and Si,j = S[i+k]N ,[j+k]N . (3.1.11)

So is G, as shown in (2.3.4). The property of circulant matrices in (1.3.2) implies

that the matrices M , S and G are able to be diagonalized as

M = F−1ΛMF S = F−1ΛSF and G = F−1ΛGF . (3.1.12)

Matrices ΛM , ΛS and ΛG are diagonal matrices, whose diagonal entries are eigen-

values corresponding to M , S and G respectively.

Taking the expressions (3.1.12) into scheme (3.1.5), the semi-discrete scheme

is modified to

ΛM
˙̂α(t) + ΛSα̂(t) = ΛMΛ−1

G η̂(t), (3.1.13)

with α̂(t) = F ~α(t) and η̂(t) = F ~η(t). Since all the matrices are diagonal, the

system is equivalent to a series of independent scalar ordinary differential equations

(ODE).

We choose the θ method to solve the system numerically. The reader may

refer to [88] for more discussions. Note that when the time step δt decreases, the θ

method converges algebraically with order 2 if θ = 1/2, and with order 1 otherwise.

However, as shown later on, the spatial error may converge exponentially when
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p is increased, so the error of temporal discretization converges more slowly than

the spatial one. We only choose a low order time-stepping scheme because the

thesis focuses on the B-spline approximation of the spatial variable, and high order

numerical schemes for temporal variables are not in the scope of these topics. A

wide array of numerical methods are applicable for the system at this stage. The

reader may refer to the literature, for example, [40, 38] for more discussion.

Suppose we want to approximate the solution at time T . We divide the time

interval [0, T ] into m time steps, with the step size δt = T/m. Let tk = kδt.

Applying the θ-method for the equations in (3.1.13), we have the scheme

α̂k+1 = (ΛM + (1− θ)δtΛS)−1(ΛM − θδtΛS)α̂k

+((ΛM + (1− θ)δtΛS)ΛG)−1δtΛM((1− θ)η̂k+1 + θη̂k),
(3.1.14)

with η̂k = η̂(tk). The initial step ~α0 is obtained by interpolating the initial value u0.

Since all the matrices in (3.1.14) are diagonal matrices, the scheme is equivalent to

a series of independent scaler recurrence relations. Therefore, in implementation,

one may store the matrices as a vector to save storage space. The algorithm for

the B-spline scheme to approximate the solution at a time T = mδt is summarized

as follows.

Algorithm 3.1. 1. Construct the vector ~vM , ~vS and ~vG by applying FFT to

the fist row of matrices M , S and G respectively which are obtained using

the relation (3.1.7), (3.1.8), and (2.3.3) together with de Boor’s algorithm

for B-spline evaluation.

2. Obtain the initial value ~α0 by interpolation Algorithm 2.1, and then use FFT

to transform ~α0 by α̂0 = F ~α0.

3. For each time step k from 0 to m− 1,

• Apply FFT to give η̂k = F ~ηk.

• Generate α̂k+1 using the scalar iteration shown in scheme (3.1.14) where
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the scalar value corresponding to diagonal value of ΛM , ΛS and ΛG is

given by ~vM , ~vS and ~vG respectively.

4. Compute the coefficients for B-spline approximation of the solution u(·, T )

with applying FFT for ~αm = F−1α̂m.

In each time step the calculation takes O(N logN) operations. To see this, we

note that the dominant cost comes from calculating η̂k using the FFT and applying

scheme (3.1.14). As mentioned in Section 1.3.1, it costs O(N logN) to compute

the product of a circulant matrix and a vector using FFT. So the calculation of η̂k

needs O(N logN) operations. As for applying the scheme (3.1.14), the scheme is

actually equivalent to calculating N scalar iteration equations. The cost for this

part is therefore O(N). In the particular case when the non-homogeneous term

η = 0, the cost of each step is only O(N).

3.1.3 Scheme for the Equation on Multi-dimensional Do-

main

We are looking for an approximation by finding uh(t) ∈ XN,p(Td) such that

d

dt
(uh(t), v) + a(uh(t), v) = (η(t), v) for any v ∈ XN,p(Td). (3.1.15)

We apply the Galerkin method with multivariate tensor product B-spline {bi,p(x)}Nd−1
i=0

defined in (1.5.3) as basis and interpolate the non-homogeneous term η(t) and ini-

tial value u0(x) with the B-spline. In a similar way to Section 3.1.2, we arrive at

a semi-discrete scheme,

M~̇α(t) + S~α(t) =MG−1~η(t). (3.1.16)

~ηj(t) = η(ξj, t) and ξi ∈ Rd are the points of the interpolation defined in Section

2.4.1. The mass matrixM and stiffness matrix S have the entries

Mij =

∫
Td
bi,p(x)bj,p(x)dx and Sij =

∫
Td
∇bi,p(x)∇bj,p(x)dx. (3.1.17)
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Recall that for each i, j ∈ {0, . . . , Nd−1}, i = σN(i1, . . . , id) and j = σN(j1, . . . , jd),

where σN(x) is the function defined in (1.3.4). Expressing bi,p(x) and bj,p(x) in

equation (3.1.17) using their definition and rearranging the multiple integral gives

Mi,j =
∫ 1

0
bi1,p(x1)bj1,p(x1)dx1 . . .

∫ 1

0
bid,p(xd)bjd,p(xd)dxd

= M i1,j1 . . .M id,jd .

Together with the definition of the Kronecker product, this equality implies

M = M ⊗M ⊗ · · · ⊗M︸ ︷︷ ︸
d

. (3.1.18)

Similarly, expanding bi,p(x) and bj,p(x) using their definition and rearranging the

result leads to

Si,j =
d∑
s=1

∫
Td

∂
∂xs

(bi1,p(x1) . . . bid,p(xd))
∂
∂xs

(bj1,p(x1) . . . bjd,p(xd))dx

=
d∑
s=1

M i1,j1 . . .M is−1,js−1Sis,js︸ ︷︷ ︸
s

M is+1,js+1 . . .M id,jd ,

which implies

S =
d∑
s=1

M ⊗ · · · ⊗M ⊗ S︸ ︷︷ ︸
s

⊗M ⊗ . . .⊗M .

As before, we seek to diagonalize the matrices M,S and G in the scheme

(3.1.16). For the mass matrix M in (3.1.18), diagonalization formula of M in

(3.1.12) and Property 2(iv) in Page 8 gives

M = F−1ΛMF , (3.1.19)

with

F = F ⊗ F ⊗ · · · ⊗ F︸ ︷︷ ︸
d

,

and

ΛM = ΛM ⊗ΛM ⊗ · · · ⊗ΛM︸ ︷︷ ︸
d

. (3.1.20)

Similarly, we found that

S = F−1ΛSF and G = F−1ΛGF , (3.1.21)
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where

ΛS =
d∑
s=1

ΛM ⊗ · · · ⊗ΛM ⊗ΛS︸ ︷︷ ︸
s

⊗ΛM ⊗ . . .⊗ΛM , (3.1.22)

and

ΛG = ΛG ⊗ΛG ⊗ · · · ⊗ΛG︸ ︷︷ ︸
d

. (3.1.23)

Substituting the diagonalization forms ofM, S and G, the time stepping scheme

(3.1.16) is modified to

ΛM ˙̂α(t) + ΛSα̂(t) = ΛMΛ−1
G η̂(t), (3.1.24)

with α̂(t) = F~α(t) and η̂(t) = F~η(t). This is a series of independent scalar ODEs.

Applying the θ-method for approximating the solution at the time T = mδt,

we obtain the scheme

α̂k+1 = (ΛM + (1− θ)δtΛS)−1(ΛM − θδtΛS)α̂k

+((ΛM + (1− θ)δtΛS)ΛG)
−1δtΛM((1− θ)η̂k+1 + θη̂k),

(3.1.25)

with η̂k = F~ηk, ~ηkj = η(ξj, kδt), and α̂0 = F~α0. The initial vector ~α0 is obtained

by interpolating the initial value u0.

The algorithm is summarized as

Algorithm 3.2. 1. Compute the vector storing the diagonal of ΛM using the

formula ~vM = ~vM ⊗ . . .⊗~vM where ~vM is obtained using Step 1 in Algorithm

3.1. Use the same procedure to obtain ~vS and ~vG corresponding to ΛS and

ΛG, respectively.

2. Obtain the initial value ~α0 with interpolation in Algorithm 2.13, and then

use FFT to transform ~α0 by α̂0 = F~α0.

3. For each time step k from 0 to m− 1,

• Apply FFT to give η̂k = F~ηk.

• Generate α̂k+1 using the scalar relation implied by the scheme (3.1.25)

where the scalar value corresponding to the diagonal value of ΛM, ΛS

and ΛG is given by ~vM, ~vS and ~vG respectively.
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4. Compute the coefficients for B-spline approximation of the solution u(·, T )

applying FFT for ~αm = F−1α̂m.

In each time step, calculation takes O(dNd logN) operations, because the cal-

culation of η̂k = F~ηk takes O(dNd logN) operations as shown in Section 1.3.1,

and the scheme (3.1.25) takes O(dNd) operations. When the non-homogeneous

term η = 0, the cost is only O(Nd).

3.1.4 Semi-discrete Error

The scheme’s error can be viewed as the composition of errors of the spatial vari-

able discretization and temporal discretization. In this section we investigate the

former, which is the error of semi-discrete approximation.

Recall that u(t) is the exact solution of the equation (3.1.1) and uh(t) is the so-

lution of the semi-discrete scheme (3.1.16). Denote by Rh : Hp+1(Td)→ XN,p(Td)

the operator such that

a (Rhf, v) = a (f, v) for any v ∈ XN,p(Td). (3.1.26)

Our error analysis follows the approach in [87, Ch.1], which divides the error into

two parts as

uh(t)− u(t) = ω(t) + ρ(t), (3.1.27)

with ω(t) = uh(t) − Rhu(t) and ρ(t) = Rhu(t) − u(t), and then estimates them

separately.

We first seek to bound the term |ρ(t)|1, which as shown in a later paragraph

yields an estimation for ‖ρ(t)‖. It follows from (3.1.26) that Rhf −f is orthogonal

to the space XN,p(Td) in the sense that

a (Rhf − f, v) = 0 for any v ∈ XN,p(Td).

This property together with the Cauchy-Schwarz inequality reveals

|Rhf − f |21 = a(Rhf − f, v − f)

≤ |Rhf − f |1|v − f |1 for any v ∈ XN,p(Td).
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That is

|Rhf − f |1 ≤ |v − f |1 for any v ∈ XN,p(Td).

Choosing v = Sh,pf gives

|Rhf − f |1 ≤ |Sh,pf − f |1. (3.1.28)

The following lemma produces a bound for ‖ρ(t)‖.

Lemma 3.3. Let f ∈ Hp+1(Td). Then

‖Rhf − f‖ ≤ C|Sh,pf − f |1.

Proof. On the hypercube Ω = [0, 1]d, let ψ be the solution of the equation

−∆ψ = Rhf − f, (3.1.29)

with the boundary conditions, for s = 1, 2, . . . , d,

ψ|xs=0 = ψ|xs=1 and ∂
∂xs
ψ|xs=0 = ∂

∂xs
ψ|xs=1. (3.1.30)

These conditions together with Green’s formula yields

a(ψ, v) = −(∆ψ, v) for any v ∈ Hp(Td).

Then the Cauchy-Schwarz inequality implies

‖Rhf − f‖2 = − (Rhf − f,∆ψ)

= a (Rhf − f, ψ)

≤ |Rhf − f |1|ψ|1.

(3.1.31)

To estimate the term |ψ|1, the Bramble-Hilbert lemma (Lemma 4.27 [39]) to-

gether with (3.1.29) imply

|ψ|1 ≤ C|ψ|2
= C‖Rhf − f‖,

where C is independent of ψ.

Substituting this inequality and (3.1.28) into (3.1.31), and cancelling the term

‖Rhf − f‖, we arrive at the result of the Lemma.
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Lemma 3.3 implies

‖ρ(t)‖ ≤ C|Sh,pu(t)− u(t)|1.

A bound for ‖ω(t)‖ is given by the following lemma.

Lemma 3.4.

‖ω(t)‖ ≤ C(‖u0 − Sh,pu0‖+ |u0 − Sh,pu0|1
+
∫ t

0
|u̇(τ)− Sh,pu̇(τ)|1dτ +

∫ t
0
‖η(τ)− Sh,pη(τ)‖dτ).

Proof. For any χ ∈ XN,p(Td), using the definition of ω(t), (3.1.15) and (3.1.26),

we have

(ω̇(t), χ) + a (ω(t), χ) = (u̇h(t), χ) + a (uh(t), χ)−
(
∂
∂t

(Rhu(t)), χ
)
− a (Rhu(t), χ)

= (ηh(t), χ)−
(
∂
∂t

(Rhu(t)), χ
)
− a (u(t), χ) .

Rearranging the inequality, the weak formulation (3.1.2) implies

(ω̇(t), χ) + a (ω(t), χ) = (η(t), χ)− a (u(t), χ)−
(
∂
∂t

(Rhu(t)), χ
)

+ (ηh(t)− η(t), χ)

= (u̇(t), χ)−
(
∂
∂t

(Rhu(t)), χ
)

+ (ηh(t)− η(t), χ)

=
(
∂
∂t

(u(t)−Rhu(t)), χ
)

+ (ηh(t)− η(t), χ).

Choose χ = ω(t). Then

(ω̇(t), ω(t)) + |ω(t)|21 = −
(
∂

∂t
(u(t)−Rhu(t)), ω(t)

)
+ (ηh(t)− η(t), ω(t)).

The equality together with the fact

‖ω(t)‖
(

d

dt
‖ω(t)‖

)
= (ω̇(t), ω(t))

and the Cauchy-Schwarz inequality leads to

‖ω(t)‖( d

dt
‖ω(t)‖) + |ω(t)|21 ≤ ‖u̇(t)−Rhu̇(t)‖‖ω(t)‖+ ‖ηh(t)− η(t)‖‖ω(t)‖.

Since |ω(t)|21 is non-negative, it follows that

d

dt
‖ω(t)‖ ≤ ‖u̇(t)−Rhu̇(t)‖+ ‖ηh(t)− η(t)‖.
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Integrating the inequality with respect to t gives

‖ω(t)‖ ≤ ‖ω(0)‖+

∫ t

0

‖u̇(τ)−Rhu̇(τ)‖dτ +

∫ t

0

‖ηh(τ)− η(τ)‖dτ. (3.1.32)

Recall that u̇(t) ∈ Hp+1(Td). Lemma 3.3 implies that

‖u̇(t)−Rhu̇(t)‖ ≤ C|u̇(t)− Sh,pu̇(t)|1.

Together with the fact

‖ω(0)‖ = ‖Sh,pu0 −Rhu0‖

≤ ‖Sh,pu0 − u0‖+ ‖Rhu0 − u0‖

≤ ‖Sh,pu0 − u0‖+ C|Sh,pu0 − u0|1

(3.1.33)

and

‖ηh(t)− η(t)‖ ≤ ‖η(t)− Sh,pη(t)‖,

inequality (3.1.32) implies the result of lemma.

Now that estimates of ‖ρ(t)‖ and ‖ω(t)‖ are obtained, we have the following

theorem. Recall the operatorQ0,p(f) andQ1,p(f) are defined in (2.4.6). We assume

that the p = 2r + 1, r ∈ N0 in the following theorem, because its proof requires

the result in Theorem 2.14, which require the spline to be odd degree.

Theorem 3.5. Let u(t) and uh(t) be solution of the equation (3.1.1) and the semi-

discrete scheme (3.1.16) respectively. For p = 2r + 1, r ∈ N0, we have

‖uh(t)− u(t)‖ ≤ C(Q0,p(u0) +Q1,p(u0) +Q1,p(u(t))

+
∫ t

0
Q1,p(u̇(τ))dτ +

∫ t
0
Q0,p(η(τ))dτ).

Proof. The result follows from applying the estimates in (2.4.7) to Lemma 3.3 and

Lemma 3.4 which gives estimates of ‖ω(t)‖ and ‖ρ(t)‖, and then substituting the

estimates into

‖uh(t)− u(t)‖ ≤ ‖ω(t)‖+ ‖ρ(t)‖.
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The following corollary shows that under certain assumptions about the heat

equation, the error converges with the degree of spline increasing.

Corollary 3.6. Let u(t) and uh(t) be solutions of the equation (3.1.1) and the semi-

discrete scheme (3.1.16) respectively. In the equation (3.1.1), assume u0 ∈ C∞(Td)

, η(t) ∈ L2(0, T ;C∞(Td)), and there exists σ > 0 s.t. ‖D~αu0‖ ≤ σ|~α|‖u0‖ and

‖D~αη(t)‖ ≤ σ|~α|‖η(t)‖ for any ~α ∈ Nd
0, and hσ/π < 1. For p = 2r+ 1, r ∈ N0, we

have

‖uh(t)− u(t)‖ ≤ C

(
hσ

π

)p
,

where the constant C is independent of p and h, but may be dependent on σ and

t.

Proof. We first show that under these assumptions, we have

‖D~αu(t)‖ ≤ C(t)σ|~α| and ‖D~αu̇(t)‖ ≤ C(t)σ|~α|, (3.1.34)

where C(t) ∈ L2([0, T ]) is independent of ~α. For simplicity, by abuse of notation,

C(t) does not necessarily have the same value in different occasions. On both

side of the equation (3.1.1), by taking the derivative D~α , multiplying D~αu(t) and

integrating over Td, we have∫
Td
D~αu̇(t)D~αu(t)dx−

∫
Td
D~α∆u(t)D~αu(t)dx =

∫
Td
D~αη(t)D~αu(t)dx. (3.1.35)

From the Green’s Theorem, the second term in the left hand side of the equality

is∫
Td

(∆D~αu(t))D~αu(t)dx = −
∫

Td
(∇D~αu(t))2dx+

∫
∂Td

(D~αu(t))∇(D~αu(t) · ~n)dx,

where the boundary integral is actually 0 because D~αu is periodic for all ~α ≤ p+1.

Substituting the term into (3.1.35), we have that

1

2

d

dt
‖D~αu(t)‖2 +

d∑
j=1

‖∂xjD~αu(t)‖2 =

∫
Td
D~αη(t)D~αu(t)dx.
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It follows that

‖D~αu(t)‖ d
dt
‖D~αu(t)‖ ≤

∫
Td
D~αη(t)D~αu(t)dx.

Cauchy-Schwarz inequality together with the above inequality gives

d

dt
‖D~αu(t)‖ ≤ ‖D~αη(t)‖.

Finally, integrating on both side from 0 to t, we have

‖D~αu(t)‖ ≤ ‖D~αu0‖+
∫ t

0
‖D~αη(τ)‖dτ

≤ σ|~α|(‖u0‖+
∫ t

0
‖η(τ)‖dτ)

≤ C(t)σ|~α|.

As for ‖D~αu̇(t)‖, taking the derivative D~α and L2 norm on both side of (3.1.1)

gives

‖D~αu̇(t)−D~α∆u(t)‖ = ‖D~αη(t)‖.

Applying the triangle inequality leads to

‖D~αu̇(t)‖ ≤ ‖D~α∆u(t)‖+ ‖D~αη(t)‖

≤ dσ|~α|+2(‖u0‖+
∫ t

0
‖η(τ)‖dτ) + σ|~α|‖η(t)‖

≤ C(t)σ|~α|.

Theorem 3.5 together with the estimate (2.4.8) and (3.1.34) completes the proof.

3.1.5 Stability of the One-dimensional Scheme

To study the convergence of the full scheme (3.1.25), we are interested in the

consistency and stability of the time stepping scheme. Since the θ-method is

consistent (see [88, p. 53]), we only need to consider stability, that is, when δt

is fixed does vector ~αk remain bounded as k → ∞? The vector ~αk is said to be

bounded if its maximum norm, ‖~αki ‖∞, is bounded as k →∞.
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3.1.5.1 Stability Condition

The object is to find out in the scheme (3.1.14) whether ~αk remains bounded as

k →∞. Recall that ~α = F α̂. So ~αk is bounded if α̂k is bounded. Let Λ = Λ−1
M ΛS,

λi;p = Λi,i and (λG)i = (ΛG)i,i, where we have the sub-index p in λi;p because Λ

corresponding to spline of degree p. The scheme (3.1.14) may be rewritten as a

series of linear recurrence relations, for each i = 0, . . . , N − 1,

α̂k+1
i =

(1− θδtλi;p)
(1 + (1− θ)δtλi;p)

α̂ki +
δt(θη̂ki + (1− θ)η̂k+1

i )

(1 + (1− θ)δtλi;p)(λG)i
.

Their characteristic polynomials show that it’s sufficient to ensure that they are

bounded as k →∞ by imposing the condition∣∣∣∣ 1− θδtλi;p
1 + (1− θ)δtλi;p

∣∣∣∣ ≤ 1.

This is equivalent to 0 ≤ δtλi;p ≤
2

2θ − 1
,

1

2
< θ ≤ 1

0 ≤ δtλi;p, otherwise
for i ∈ {0, 1, . . . , N − 1}. (3.1.36)

We see that the condition is satisfied if δt is adjusted to be small enough. We

are interested in how large δt is allowed to remain the condition satisfied. This

requires information about the largest value of λi;p, which is the object of the next

section.

3.1.5.2 Markov-type Inequality for Periodic Spline

The definition of Λ together with (3.1.12) gives

SF = MFΛ.

This equation shows λi;p is the eigenvalue of the generalised eigen-problem

S~c = λM~c, (3.1.37)
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with the corresponding eigenvector to be the ith column of the Fourier matrix F

as defined in (1.3.1). According to the Min-Max Theorem (Page 1091, [48]), the

largest eigenvalue λmax;p of the problem is given by

λmax;p = max
~c∈RN

~cTS~c

~cTM~c
,

where we have the sub-index p in λmax;p because the mass and stiffness matrices

are corresponding to the spline with the degree p. For any ~c ∈ RN , letting v =
N−1∑
i=0

cibi,p, then

~cTM~c =
N−1∑
i=0

N−1∑
j=0

~ci(bi,p, bj,p)~cj

= (
N−1∑
i=0

~cibi,p,
N−1∑
j=0

~cjbj,p)

= ‖v‖2.

Similarly, we have

~cTS~c = ‖v′‖2.

It follows that

λmax;p = max
v∈XN,p(T)

‖v′‖2

‖v‖2
. (3.1.38)

An inequality useful to estimate the right hand side of (3.1.38) is the Markov

inequality (see Proposition 3.4.2 [53]), stated as, if f ∈ XN,n(T) then

‖f (k)‖∞
‖f‖∞

≤ Kn−k

Kn

(π
h

)k
. (3.1.39)

The norm ‖ · ‖∞ is the supremum norm and

Km =
4

π

∞∑
k=0

(−1)k(m+1)(2k + 1)−(m+1),m ∈ N0,

is a Favard constant. It is infeasible to bound λmax;p in (3.1.38) directly using the

Markov inequality (3.1.39), due to their different norms. Therefore, we first derive

a Markov inequality in the L2 norm with the help of (3.1.39).

Theorem 3.7. Any spline v ∈ XN,n(T), n ∈ N0, satisfies the inequality

max
v∈XN,n(T)

‖v(k)‖
‖v‖

≤

√
K2(n−k)+1

K2n+1

πk

hk
.
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Proof. For any v ∈ XN,n(T), let

w(x) =

∫ 1

0

v(x+ t)v(t)dt.

We arrive at the result of the theorem by first showing that w(x) ∈ XN,2n+1(T)

and then substituting it in the Markov inequality (3.1.39). Let v(t) =
∑
i∈I

cibi,p(t).

Using Property 4(iv) in Page 16, we have

w(x) =
N−1∑
i=0

N−1∑
j=0

cicj
∫ 1

0
bi,n(x+ t)bj,n(t)dt

= h
N−1∑
i=0

N−1∑
j=0

cicjbi−j−(n+1),2n+1(x).

This implies w(x) ∈ XN,2n+1(T), since the expression is a linear combination of

basis element in XN,2n+1(T),

The chain rule of differentiation gives

w′(x) =
∫ 1

0
∂
∂x
v(x+ t)v(t)dt

=
∫ 1

0
v′(x+ t)v(t)dt

=
∫ 1

0
∂
∂t
v(x+ t)v(t)dt.

Then integration by parts and periodicity of v yields

w′(x) = −
∫ 1

0

v(x+ t)v′(t)dt,

where boundary terms are cancelled out due to periodicity of v(t). Repeatedly

using the procedure, we obtain that

w(2k)(x) =

∫ 1

0

∂k

∂tk
v(x+ t)

dk

dtk
v(t)dt, for k = 0, . . . , n,

where boundary terms are cancelled out due to periodicity of v(j)(t), j ∈ {0, . . . , n−

1}.

Applying the Markov inequality to (3.1.39) gives

‖v(k)‖2 = w(2k)(0)

≤ ‖w(2k)‖∞
≤ K2(n−k)+1π

2k/(K2n+1h
2k)‖w‖∞.

(3.1.40)
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Let x? be such that w(x?) = ‖w‖∞. The Cauchy-Schwarz inequality and period-

icity of v imply

‖w‖∞ =
∫ 1

0
v(x? + t)v(t)dt.

≤ ‖v(·+ x?)‖‖v‖

= ‖v‖2.

Taking this estimate into the inequality (3.1.40), the proof is completed.

Theorem 3.7 together with the equality (3.1.38) implies that λmax;p in eigen-

problem (3.1.37) is bounded by

λmax;p ≤
K2p−1

K2p+1

π2

h2
. (3.1.41)

We also would like to give a lower bound for the maximum eigenvalue. Ahead

of that, we show an explicit expression for the eigenvalues. Assume that the

eigenvectors in the problem (3.1.37) have the form ~zj = cos(µj). Substituting the

expression into the eigen-problem leads to the following equalities, for i = 1, . . . , N ,

N∑
j=1

Si,j cos(µj) = λ
N∑
j=1

Mi,j cos(µj). (3.1.42)

We now study the left hand side of the equation. As shown in (3.1.9), certain

entries of the matrix S are zero. Then it follows that

N∑
j=1

Si,j cos(µj) =

p∑
r=−p

Si,[i+r]N cos(µ[i+ r]N),

where [i]N = i mod N . We assume further that Nµ = 2kπ, which implies

cos(µ[i + r]N) = cos(µ(i + r)). Using the equality (3.1.10) and (3.1.11), and

expanding the cosine term, we have

N∑
j=1

Si,j cos(µj) = Si,i cos(µi) +
p∑
r=1

Si,[i+r]N (cos(µ(i+ r)) + cos(µ(i− r)))

= S0,0 cos(µi) +
p∑
r=1

S0,r(cos(µ(i+ r)) + cos(µ(i− r)))

= S0,0 cos(µi) + 2 cos(µi)
p∑
r=1

S0,r cos(µr).

(3.1.43)
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Similarly, the right hand side of equation (3.1.42) has the form

λ
N∑
j=1

Mi,j cos(µj) = λ

(
M0,0 cos(µi) + 2 cos(µi)

p∑
r=1

M0,r cos(µr)

)
. (3.1.44)

Substituting (3.1.43) and (3.1.44) into (3.1.42) and cancelling the term cos(µi)

gives

S0,0 + 2

p∑
r=1

S0,r cos(µr) = λ

(
M0,0 + 2

p∑
r=1

M0,r cos(µr)

)
.

We notice that the expression is independent of i, which means that λ remains

unchanged for each equality in (3.1.42). Therefore (~z)j = cos(2kπj/N) is an

eigenvector of the eigen-problem with the corresponding eigenvalue

λk;p =

S0,0 + 2
p∑
r=1

S0,r cos(2kπr/N)

M0,0 + 2
p∑
r=1

M0,r cos(2kπr/N)

.

Although it is not obvious from the expression to see which eigenvalue is the max-

imum one, by choosing suitable λk;p, we can give a lower bound for the maximum

eigenvalue. We show in the following corollary that when N is even, by selecting

k = N/2, the eigenvalue coincides with the upper bound of the maximum eigen-

values. In this case, the eigenvector is ci = (−1)i, and a spline with the coefficient

is called a perfect spline [11, Ch. 6].

Corollary 3.8. If the number of sub-intervals N is even, we have

max
v∈XN,p(T)

‖v(k)‖
‖v‖

=

√
K2(p−k)+1

K2p+1

πk

hk
.

Proof. Since the B-spline bj,0(x) is a function with value 1 on [j, j + h] and 0

elsewhere, the perfect spline u0(x) =
N−1∑
j=0

(−1)jbj,0(x) is a periodic function of

period 2h. Therefore u0(x) can be expressed by the Fourier series,

u0(x) =
4

π

∞∑
k=0

1

2k + 1
sin((2k + 1)πx/h). (3.1.45)
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The expression (1.5.1) implies the relation up(x) =
∫ x
x−h up−1(t)dt, which together

with (3.1.45) gives

up(x) =


(−1)(p+1)/2 2p+2

πp+1

∞∑
k=0

1
(2k+1)p+1 cos((2k + 1)πx/h) if p is odd

(−1)p/2 2p+2

πp+1

∞∑
k=0

1
(2k+1)p+1 sin((2k + 1)πx/h) if p is even

.

It follows that

u′p(x) =


(−1)1+(p+1)/2 2p+2

πph

∞∑
k=0

1
(2k+1)p

sin((2k + 1)πx/h) if p is odd

(−1)p/2 2p+2

πph

∞∑
k=0

1
(2k+1)p

cos((2k + 1)πx/h) if p is even
.

When p is odd, since
∫ 2h

0
cos(iπx/h) cos(jπx/h)dx = δi,j, we have that

‖up‖2 =

∫ b

0

u2
p(x)dx

=
N

2

22p+4

π2p+2

∫ 2h

0

(
∞∑
k=0

1

(2k + 1)p+1
cos2((2k + 1)πx/h))dx

=
N

2

22p+4

π2p+2

∫ 2h

0

∞∑
k=0

1

(2k + 1)2p+2
cos2((2k + 1)πx/h)dx

=
N

2

22p+4

π2p+2

∞∑
k=0

1

(2k + 1)2p+2

∫ 2h

0

cos2((2k + 1)πx/h)dx

=
N

2

22p+4

π2p+2

∞∑
k=0

1

(2k + 1)2p+2
.

(3.1.46)

Similarly, we have the same expression for the case where p is even. For the same

reason, we also have

‖u′p‖2 =
N

2

22p+4

π2ph2

∞∑
k=0

1

(2k + 1)2p
. (3.1.47)

Then together with (3.1.46) and (3.1.47), (3.1.38) implies that

λmax;p ≥
‖u′p‖2

‖up‖2

=
π2

h2

K2p−1

K2p+1

.

Together with Theorem 3.7, the result of the corollary follows.
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The corollary doesn’t hold for the case when N is odd. That is because the

eigenvector has the expression ~zj = cos(2πkj/N), and when N is odd the coeffi-

cients of the perfect spline do not satisfy the required expression. We conjecture

that when N is odd, the eigenvector ~zj = cos((N − 1)πj/N) corresponds to the

maximum eigenvalue given by

λmax;p =

S0,0 + 2
p∑
r=1

S0,r cos((N − 1)πr/N)

M0,0 + 2
p∑
r=1

M0,r cos((N − 1)πr/N)

. (3.1.48)

Figure 3.1 shows numerical results that agree with the conjecture.
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Figure 3.1: When N=61. The comparison between eigenvalues computed numeri-

cally and from expression (3.1.48).

Recall that

λmax;n = max
v∈XN,n(T)

‖v′‖
‖v‖

.

We show that the constant λmax;s doesn’t increase as the degree s increasing, which

is given in the following lemma.

Lemma 3.9. For all s < n,

λmax;n ≤ λmax;s.

Proof. For each f ∈ XN,n(T), we have f (n−s) ∈ XN,s(T). It follows that

‖f (n−s+1)‖
‖f (n−s)‖

≤ max
v∈XN,s(T)

‖v′‖
‖v‖

= λmax;s. (3.1.49)



Chapter 3 71

Since f ∈ Hn−s+1(T), using the Kolmogorov inequality in (2.3.10), which is for

any g ∈ Hn−s+1(T),

‖g(k)‖ ≤ ‖g‖1−k/(n−s+1)‖g(n−s+1)‖k/(n−s+1), for all k ≤ n− s+ 1, (3.1.50)

we have that

‖f (n−s)‖ ≤ ‖f‖1− n−s
n−s+1‖f (n−s+1)‖

n−s
n−s+1 . (3.1.51)

This inequality together with (3.1.49) gives

‖f (n−s+1)‖ ≤ λn−s+1
max;s ‖f‖.

Substituting the inequality into the Kolmogorov inequality (3.1.51), we have

‖f ′‖ ≤ λmax;s‖f‖.

Since this inequality holds for all f ∈ XN,n(T), then

λmax;n = max
f∈XN,n(T)

‖f ′‖
‖f‖

≤ λmax;s.

the result of the lemma follows.

The condition (3.1.36) together with (3.1.41) shows that when θ ∈ (0.5, 1], the

time stepping scheme (3.1.14) is stable if

δt ≤ 2K2p+1h
2

(2θ − 1)K2p−1π2
. (3.1.52)

Corollary 3.8, show that when N is even, the condition is sharp. Since the mass

and stiffness matrices are positive definite, λmax;p is always non-negative. So when

θ ∈ [0, 0.5], the scheme is always stable.

3.1.6 Stability of the Multi-dimensional Scheme

Similar to the stability analysis in Section 3.1.5, we let Γ = Λ−1
MΛS , γi;p =

(Γ)i,i, i = 0, . . . , Nd − 1 and (λG)i = (ΛG)i,i. Since all matrices in the scheme
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(3.1.25) are diagonal α̂0 = F−1~α0, stability of the scheme is equivalent to that of

the following recurrence relations, for each i = 0, . . . , Nd − 1,

α̂k+1
i =

(1− θδtγi;p)
(1 + (1− θ)δtγi;p)

α̂ki +
δt(θη̂ki + (1− θ)η̂k+1

i )

(1 + (1− θ)δtγi;p)(λG)i
.

To ensure these relations remain bounded as k → ∞, the following condition is

sufficient 0 ≤ δtγi;p ≤
2

2θ − 1
,

1

2
< θ ≤ 1

0 ≤ δtγi;p, else
, for i = 0, . . . , Nd − 1. (3.1.53)

The maximum value of γi;p needs to be investigated to understand how small δt is

enough for the scheme to be stable.

The definition of ΛM, ΛS and Property 2(iv) in Page 8 gives

Γ = Λ−1
MΛS

=
d∑
s=1

I ⊗ · · · ⊗ I ⊗Λ︸ ︷︷ ︸
s

⊗I ⊗ . . .⊗ I

= Λ⊕Λ⊕ · · · ⊕Λ︸ ︷︷ ︸
d

,

where ⊕ the is the Kronecker sum as introduced in Property 2(iv) in Page 8. The

expression together with Property 2(iv) in Page 8 reveals that the largest value of

{γi;p} is

γmax;p = dλmax;p ≤ d
K2p−1

K2p+1

π2

h2
.

Thus, from the inequality (3.1.53), when θ ∈ (0.5, 1], the time stepping scheme

(3.1.25) is stable if

δt ≤ 2

(2θ − 1)dλmax;p

≤ 2K2p+1h
2

(2θ − 1)dK2p−1π2
. (3.1.54)

To summarize,  θ ∈ [0, 0.5] always stable

θ ∈ (0.5, 1] stable if (3.1.54) holds
.

Since λmax;p decrease w.r.t. p as shown in (3.9), if we increase the spline’s degree,

the condition implies that the scheme’s stability gets better, that is, allowing a

larger value of the mesh size for a fixed step size.
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3.1.7 Error of the Full Scheme

We derive the error of the full scheme following the approach in [56, 39]. The full

scheme is for k = 0, . . . ,m− 1,(
Uk+1 − Uk

δt
, χ

)
+ a((1− θ)Uk+1 + θUk, χ) = (ηh(tk), χ) for any χ ∈ XN,p(Td).

(3.1.55)

We see that Um is an approximation of the true solution at time T . We are

interested in the error of the approximation, which is ‖Um− u(T )‖. Analogous to

the analysis of the semi-discrete error, we divide the error into two parts as

Um − u(T ) = ωm + ρm, (3.1.56)

and then estimate them separately, where ωk = Uk −Rhu(tk) and ρk = Rhu(tk)−

u(tk). Lemma 3.3 directly leads to an estimate of ‖ρm‖,

‖ρm‖ ≤ C|Sh,pu(T )− u(T )|1.

An estimate of ωm is given by the following lemma.

Lemma 3.10. Let θ ≤ 1/2 in the scheme (3.1.25). We have that

‖ωm‖ ≤ C(‖Sh,pu0 − u0‖+ |Sh,pu0 − u0|1
+
∫ T

0
|Sh,pu̇(s)− u̇(s)|1ds+ δt

∫ T
0
‖ü(s)‖ds

+δt
m−1∑
k=0

‖Sh,pη(tk)− η(tk)‖).

Proof. The full scheme (3.1.55) can be rewritten as, for any χ ∈ XN,p(T),(
Uk+1 − Uk

δt
, χ

)
+ a((1− θ)Uk+1 + θUk, χ) = (η(tk), χ) + (ηh(tk)− η(tk), χ).

Together with the equation (3.1.26) and (3.1.2), it follows that(
ωk+1 − ωk

δt
, χ

)
+ a

(
(1− θ)ωk+1 + θωk, χ

)
= (ψk, χ), (3.1.57)
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where

ψk =
Rhu(tk+1)−Rhu(tk)

δt
− ((1− θ)u̇(tk+1) + θu̇(tk)) + ηh(tk)− η(tk).

Let

ψk1 =
Rhu(tk+1)−Rhu(tk)

δt
− u(tk+1)− u(tk)

δt
,

and

ψk2 =
u(tk+1)− u(tk)

δt
− ((1− θ)u̇(tk+1) + θu̇(tk)).

It follows that ψk = ψk1 + ψk2 + ηh(tk)− η(tk).

Choosing χ = (1 − θ)ωk+1 + θωk in (3.1.57) and using the Cauchy-Schwarz

inequality, we have

1

δt

(
ωk+1 − ωk, (1− θ)ωk+1 + θωk

)
≤ ‖ψk‖‖θωk+1 + (1− θ)ωk‖.

On the other hand, rearranging the inner product and using the Cauchy-Schwarz

inequality gives(
ωk+1 − ωk, (1− θ)ωk+1 + θωk

)
≥ (1− θ)‖ωk+1‖2 + (1− 2θ)‖ωk‖‖ωk+1‖ − θ‖ωk‖

= (‖ωk+1‖ − ‖ωk‖)((1− θ)‖ωk+1‖+ θ‖ωk‖).

Combining the two inequalities yields

‖ωk+1‖ − ‖ωk‖ ≤ δt‖ψk‖,

that is,

‖ωk+1‖ ≤ ‖ωk‖+ δt‖ψk‖.

By repeated application, the inequality implies

‖ωm‖ ≤ ‖ω0‖+ δt
m−1∑
k=0

‖ψk‖

≤ ‖ω0‖+ δt
m−1∑
k=0

‖ψk1‖

+δt
m−1∑
k=0

‖ψk2‖+ δt
m−1∑
k=0

‖ηh(tk)− η(tk)‖.
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We now seek to estimate the four summands in the right hand side separately.

Using the same estimate in (3.1.33) leads to

‖ω0‖ ≤ ‖Sh,pu0 − u0‖+ C|Sh,pu0 − u0|1. (3.1.58)

Since the Ritz operator Rh in (3.1.26) and temporal derivative commute, we have

ψk1 =
1

δt

∫ tk+1

tk

Rhu̇(s)ds− 1

δt

∫ tk+1

tk

u̇(s)ds,

and

δt
m−1∑
k=0

‖ψk1‖ ≤
m−1∑
k=0

∫ tk+1

tk
‖Rhu̇(s)− u̇(s)‖ds

=
∫ T

0
‖Rhu̇(s)− u̇(s)‖ds

≤ C
∫ T

0
|Sh,pu̇(s)− u̇(s)|1ds.

(3.1.59)

As for ψk2 , Taylor expansion gives

δtψk2 = (1− θ)(u(tk+1)− u(tk)− δtu̇(tk+1)) + θ(u(tk+1)− uk − δtu̇(tk))

= −(1− θ)
∫ tk+1

tk
(s− tk)ü(s)ds+ θ

∫ tk+1

tk
(tk+1 − s)ü(s)ds

=
∫ tk+1

tk
(tk+1 − (1− θ)δt− s)ü(s)ds,

and it follows that

δt
m−1∑
k=0

‖ψk2‖ ≤
m−1∑
k=0

∫ tk+1

tk
‖(tk+1 − (1− θ)δt− s)ü(s)‖ds

≤ δt
∫ T

0
‖ü(s)‖ds,

(3.1.60)

since |tk+1 − (1− θ)δt− s| ≤ δt for s ∈ (tk, tk+1).

Since ηh(t) = Sh,pη(t), by summing up the estimates (3.1.58), (3.1.59), and

(3.1.60), we complete the proof.

Then the following theorem gives an estimation of the error in the full scheme.

Theorem 3.11. Let u(T ) and Um be the solution of the equation (3.1.1) and the

scheme (3.1.25) at time T respectively. Assuming that u0(t) and η(t) satisfy the

assumption of Corollary 3.6 and θ ≤ 1/2 in (3.1.25), we have

‖u(T )− Um‖ ≤ C

((
hσ

π

)p
+ δt

)
.
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(b) Scheme in R2

Figure 3.2: The error of semi-discrete solution.

Proof. The proof follows from the equation (3.1.56), Lemma 3.3, and Lemma 3.10.

Specially for the term δt
m−1∑
k=0

‖Sh,pη(tk)−η(tk)‖ in Lemma 3.10, Corollary 2.15 and

the error of Riemann sum [54, Chapter 4], imply that

δt
m−1∑
k=0

‖Sh,pη(tk)− η(tk)‖ ≤ C(hσ
π

)p+1δt
m−1∑
k=0

‖η(tk)‖

= C(hσ
π

)p+1(
∫ T

0
‖η(s)‖ds+O(δt))

≤ C(hσ
π

)p+1
∫ T

0
‖η(s)‖ds+ C(hσ

π
)p+1δt.

All the other terms are estimated by Corollary 2.15 and (3.1.34). By summing up

the estimates, the proof is completed.

3.1.8 Numerical Experiment Results

3.1.8.1 Semi-discrete Error

Our first experiment concerns the difference between the solution of the heat equa-

tion (3.1.1) and the semi-discrete approximation, which is the solution of (3.1.16).
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We are interested in the convergence when raising the spline degree and also in

how the mesh size affects the convergence.

We consider the heat equation in one-dimensional and two dimensional cases,

where the true solutions are set to be u = sin(40πx+t) and u = sin(40πx+40πy+t),

respectively. Since the ODE system (3.1.24) is equivalent to a series of scalar

ODEs, and in our case, there exist an analytical expression for each ODE, we

obtain the semi-discrete solution. We calculate the error E0u for various degrees

of B-spline p, and for different mesh sizes h, where E0 is defined in (2.7.1). The

result is presented by plotting the error against the B-spline degree for each h.

Figure 3.2a and 3.2b shows when h < 1/40, the error converges linearly. The

behaviour of the error is as anticipated from the error analysis in Section 3.1.4.

Corollary 3.6 implies that the error is bounded by O((40h)p). Then as p increases,

if h < 1/40, the error converges. The linear convergence rate implies the error

converges exponentially since we take a logarithm transformation of the error.

The oscillation for the case of h = 1/40 arises from the interpolation of the initial

value and non-homogeneous term, which are explained in Section 2.7.0.1.

3.1.8.2 Stability

The next experiment tests the sharpness of the stability condition of the time-

stepping scheme (3.1.25) for the problem in R and R2 respectively.

We implement Algorithm 3.2, and calculate the maximum norm of the coeffi-

cient ~αk for each time step k. The number of iterations are set large enough such

that the trend of ‖~αk‖∞ is obvious to spot. A figure of log(k) against log(‖~αk‖∞)

for different h is depicted, where the value of h = 1/N is adjusted by choosing con-

secutive numbers of N , and the threshold value of h in stability condition (3.1.52)

lies between these values. In this way, we can check whether or not the stability

condition is sharp.

Figure 3.3a shows the result for the one dimensional scheme when δt = 0.0002,

p = 4 and θ = 0.9. The solid line corresponding to h = 1/35 (approximately
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Figure 3.3: Stability of the θ-scheme

0.0286) converged, while the others did not. The result agrees with the stability

analysis in Section 3.1.5, where the condition (3.1.52) implies if the mesh size h is

larger than the threshold value 0.0281, the time-stepping is stable. The solid line

shows a case that satisfies the condition, while the others do not.

A similar result is shown in Figure 3.3b for the two-dimensional case in the

same setting of parameters. Using the condition (3.1.54), we calculate that the

scheme is stable if h > 0.397. Only the case shown in the solid line corresponding

to the case h = 0.04 satisfies the condition. The results of these two tests agree

with our analysis and suggest that the condition is sharp.

3.1.8.3 Error of Full Scheme

We now consider the full error of the same problem in Section 3.1.8.1. As shown

in Figure 3.4a and 3.4b, as the degree increases, if h < 1/40, the error converges.

When h = 1/60, the errors converge at first, then stop converging when the errors

decrease to a certain level. The errors behave as we expected from Theorem 3.11.
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(a) Scheme in R
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(b) Scheme in R2

Figure 3.4: Error of full scheme

The full scheme’s error consists of the errors caused by both spatial discretization

and temporal discretization. By increasing the degree of the spline, only the spatial

part decreases. When the spatial part is negligible compared with the temporal

one, the convergence of the full error stops because the temporal error dominates.

3.2 Problem with Dirichlet Boundary Condition

3.2.1 Model Problem

Let Ω = [0, 1]d. The problem under consideration is the heat equation

∂

∂t
u(x, t)−∆u(x, t) = η(x, t), (x, t) ∈ Ω× [0,∞), (3.2.1)

with initial value

u(x, 0) = u0(x) ∈ Hp+1
0 (Ω),

Dirichlet boundary condition

u(x, t) = 0 for x ∈ ∂Ω,
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and non-homogeneous term

η(t) ∈ L2(0, T ;Hp+1
0 (Ω)).

A weak formulation of the problem is finding u(t) ∈ L2(0, T ;H1
0(Ω)) with

u̇(t) ∈ L2(0, T ;H−1(Ω)) and u(0) = u0 ∈ L2(Ω) such that

d

dt
(u(t), v) + a(u(t), v) = (η(t), v) for any v ∈ H1

0(Ω). (3.2.2)

Analogous to the periodic case, because of Proposition 23.28 in [92], and the

regularity of u0 and η, we have u(t) ∈ L2(0, T ;Hp+1
0 (Ω)).

3.2.2 B-spline Scheme

Let J0 = {0, 1, . . . , N + p − 3}. Using the Galerkin method, we approximate the

solution by finding uh(t) ∈ XN,p
0 (Ω) such that

d

dt
(uh(t), v) + a(uh(t), v) = (η(t), v) for any v ∈ XN,p

0 (Ω). (3.2.3)

Approximating η(t) by Bh,pη(t), we have the matrix form,

M~̇α(t) + S~α(t) =M~l(t). (3.2.4)

Letting i = σN+p−2(i) and j = σN+p−2(j) for i, j ∈ J d
0 , the mass matrixM and

stiffness matrix S have the entries

Mij =

∫
Ω

ψi,p(x)ψj,p(x)dx and Sij =

∫
Ω

∇ψi,p(x)∇ψj,p(x)dx. (3.2.5)

Similarly to the periodic case, the tensor product structure of basis ψi,p(x) implies

that

M = M ⊗M ⊗ · · · ⊗M︸ ︷︷ ︸
d

, (3.2.6)

and

S =
d∑
s=1

M ⊗ · · · ⊗M ⊗ S︸ ︷︷ ︸
s

⊗M ⊗ . . .⊗M ,
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where

M i,j =

∫ 1

0

ψi,p(x)ψj,p(x)dx and Si,j =

∫ 1

0

ψ′i,p(x)ψ′j,p(x)dx.

The expression (3.2.6) implies that we can evaluateM and S from M and S,

respectively. Unlike the periodic cases, M and S are no longer circulant matrices,

since the basis functions near the boundaries of Ω have different shapes to the

interior ones. We do not have explicit expressions to compute the matrices, but

since they are integrals of polynomials, quadrature rules can be applied to evaluate

them exactly. One standard way in FEM is to apply a Gaussian quadrature rule

to evaluate element matrices on each of the subintervals and then assembly to

construct the global matrices. However, since the B-spline is of high smoothness

on the whole domain, more efficient quadrature strategies exist by reducing the

employed quadrature points [6, 47, 78]. That is because the quadrature is designed

to give exact integrals for splines, and the high smoothness of splines reduce the

number of conditions the quadrature rule satisfying. We use the quadrature rule

described in [6].

We still apply the θ method to solve the ODE systems (3.2.4), which gives

(M+ (1− θ)δtS)~αk+1 = (M− θδtS)~αk + δtM((1− θ)~lk+1 + θ~lk), (3.2.7)

where ~lk is the coefficient of Bh,pη(tk), and the initial value α0 is the coefficient of

Bh,pu0.

3.2.3 Error of the Semi-discrete Scheme

The error analysis is very similar to the periodic case in Section 3.1.4, and we only

list the results and the different lines in the proof.

Let Rh : Hp+1
0 (Ω)→ XN,p

0 (Ω) the operator such that

a (Rhf, v) = a (f, v) for any v ∈ XN,p
0 (Ω). (3.2.8)

With the same idea of deriving (3.1.28), we have for every f ∈ Hp+1
0 (Ω),

|Rhf − f |1 ≤ |Bh,pf − f |1. (3.2.9)
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We split the error in the same form as (3.1.27). The following lemma provides a

bound for ‖ρ(t)‖.

Lemma 3.12. For n = 2r + 1, r ∈ N0, and f ∈ Hp+1(Ω),

‖Rhf − f‖ ≤ C|Bh,pf − f |1.

Proof. Friedrich’s inequality (Lemma 3.6 [39]) implies that for any v ∈ H1(Ω), one

has

‖v‖2 ≤ C

(
|v|21 +

(∫
∂Ω

vdx

)2
)
.

Since Rhf − f ∈ Hp
0(Ω) ⊂ H1(Ω), from the Friedrich’s inequality we have that

‖Rhf − f‖ ≤ C|Rhf − f |1,

where the boundary integral term is 0 because Rhf − f vanishes at boundaries.

By substituting (3.2.9) into the inequality, the proof is completed.

From Lemma 3.12, we have

‖ρ(t)‖ ≤ C|Bh,pf − f |1.

A bound for ‖ω(t)‖ is given by the following lemma.

Lemma 3.13.

‖ω(t)‖ ≤ C(‖u0 − Bh,pu0‖+ |u0 − Bh,pu0|1
+
∫ t

0
|u̇(τ)− Bh,pu̇(τ)|1dτ +

∫ t
0
‖η(τ)− Bh,pη(τ)‖dτ).

Proof. The proof is similar to the proof of Lemma 3.4 with the following changes.

• Replace all the spaces Hp+1(Td) and XN,p(Td) by Hp+1
0 (Ω) and XN,p

0 (Ω),

respectively.

• Replace all the operators Sh,p by Bh,p.
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• Replace the reference of equations (3.1.15), (3.1.26), and (3.1.2) by (3.2.3),

(3.2.8), and (3.2.2), respectively.

The following theorem gives an estimate for the semi-discrete scheme.

Theorem 3.14. Let u(t) and uh(t) be solutions of the equation (3.2.1) and the

equation (3.2.4) respectively. For p = 2r + 1, r ∈ N0, we have

‖uh(t)− u(t)‖ ≤ C(Q0,p(u0) +Q1,p(u0) +Q1,p(u(t))

+
∫ t

0
Q1,p(u̇(τ))dτ +

∫ t
0
Q0,p(η(τ))dτ).

Proof. By applying Theorem 2.19 together with (2.4.6) to Lemma 3.12 and Lemma

3.13, we have estimates of ‖ω(t)‖ and ‖ρ(t)‖. Substituting the estimates into

‖uh(t)− u(t)‖ ≤ ‖ω(t)‖+ ‖ρ(t)‖,

we complete the proof.

Corollary 3.15. Let u(t) and uh(t) be solutions of the equation (3.2.1) and the

semi-discrete scheme (3.2.4) respectively. In the equation (3.2.1), assume for

u0(t) ∈ C1(0, T ;C∞c (Ω)) and η(t) ∈ L2(0, T ;C∞c (Ω)), there exists σ > 0 s.t.

‖D~αu0‖ ≤ σ|~α|‖u0‖, and ‖D~αη(t)‖ ≤ σ|~α|‖η(t)‖ for any ~α ∈ Nd
0. Letting p = 2r+1,

r ∈ N0 and hσ/π < 1, we have

‖uh(t)− u(t)‖ ≤ C

(
hσ

π

)p
,

where the constant C is independent of p and h, but may be dependent on σ and

t.

Proof. We derive that

‖D~αu(t)‖ ≤ C(t)σ|~α| and ‖D~αu̇(t)‖ ≤ C(t)σ|~α|, C(t) ∈ L2([0, T ]), (3.2.10)
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in the same approach as deriving (3.1.34) in Lemma 3.6, where the boundary

integral term is 0 when applying Green’s Theorem because D~αu vanish on the

boundary of Ω. Therefore u satisfy the condition for (2.4.8), and so do u0 and η.

Together with Theorem 3.14, the result follows.

3.2.4 Error of the Full Scheme

The full scheme corresponding to the Dirichlet boundary condition case is(
Uk+1 − Uk

δt
, χ

)
+ a((1− θ)Uk+1 + θUk, χ) = (ηh(tk), χ) for any χ ∈ XN,p(Ω).

(3.2.11)

We still write the error in the same form of (3.1.56), where Rh is given in (3.2.8).

From Lemma 3.12, we have

‖ρm‖ ≤ C|Bh,pu(T )− u(T )|.

An estimate of ωm is given by the following lemma.

Lemma 3.16. Let θ ≤ 1/2 in the scheme (3.2.7). We have that

‖ωm‖ ≤ C(‖Bh,pu0 − u0‖+ |Bh,pu0 − u0|1
+
∫ T

0
|Bh,pu̇(s)− u̇(s)|1ds+ δt

∫ T
0
‖ü(s)‖ds

+δt
m−1∑
k=0

‖Bh,pη(tk)− η(tk)‖).

Proof. The proof of the lemma resembles the proof of Lemma 3.10 except for the

following modifications.

• Replace the spaces Hp+1(Td) and XN,p(Td) by Hp+1
0 (Ω) and XN,p

0 (Ω), re-

spectively.

• Replace reference of equations numbered (3.1.55), (3.1.26) and (3.1.2) by

(3.2.11), (3.2.8) and (3.2.2), respectively.
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Then the error of the full scheme is bounded in the following theorem.

Theorem 3.17. Let u(T ) and Um be the solution of the equation (3.1.1) and

scheme (3.2.7) at time T respectively. Assume that u(t) and η(t) satisfy the as-

sumptions of Corollary 3.15 and θ ≤ 1/2. We have

‖u(T )− Um‖ ≤ C

((
hσ

π

)p
+ δt

)
.

Proof. The proof of the theorem are very similar to that of Theorem 3.11 with the

following modification.

• Replace Lemma 3.3, Lemma 3.10, and Corollary 2.15 by Lemma 3.12, Lemma

3.16, and Corollary 2.20, respectively.

• Replace operator Sh,p by Bh,p.

• Replace (3.1.34) by assumptions of u(t) and (3.2.10).
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3.2.5 Numerical Experiment Results
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(a) Convergence with different mesh size
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Figure 3.5: Scheme for heat equation with Dirichlet condition

The experiment is similar to that in Section 3.1.8.3, except that we use the scheme

in Section 3.2.2 and choose the true solution to be u(x, t) = cos(t) sin(41πx). Al-

though vanishing on boundary, u(t) is not in Hp+1(T), since its first derivatives are

not periodic. We plot the convergence of errors for the schemes with various mesh

size h and various time-step size δt in Figure 3.5a and Figure 3.5b, respectively.

Figure 3.5a shows that the error converges only when h < 1/41, which agrees with

Corollary 3.15, but when h = 1/80 the error stops converging when the degree is

high. Figure 3.5b confirms that this is caused by the temporal errors, which agrees

with Theorem 3.17.



Chapter 4

B-spline Finite Element Method

for the Wave Equation

In this chapter, we investigate the B-spline FEM for the wave equations. The

treatment is studied similar to that in Chapter 3. For more details of the wave

equation, the reader may refer to [31, 74].

4.1 Problem with Periodic Boundary Condition

4.1.1 Model Problem

The problem under consideration is the wave equation

∂2

∂t2
u(x, t)−∆u(x, t) = η(x, t), (x, t) ∈ Td × [0,∞), (4.1.1)

with initial value

u(x, 0) = u0(x),

and
∂

∂t
u(x, 0) = v0(x).

We assume u0, v0 ∈ Hp+1(Td) and η(t) ∈ L2(0, T ;Hp+1(Td)).

87
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A weak formulation for the problem is finding u(t) ∈ L2(0, T ;H1(Td)) with

u̇(t) ∈ L2(0, T ;L2(Td)), ü(t) ∈ L2(0, T ;H−1(Td)) satisfying

d2

dt2
(u(t), v) + a(u(t), v) = (η(t), v) for any v ∈ H1(Td), (4.1.2)

with u(0) = u0 ∈ H1(Td), and u̇(0) = v0 ∈ L2(Td). According to Theorem 24.A in

[92], the problem has a unique solution. Moreover, since the initial value u0(x) ∈

Hp+1(Td), this theorem also implies that the solution u ∈ L2(0, T ;Hp+1(Td)).

4.1.2 B-spline Scheme

The approximation in XN,p(Td) to the solution of (4.1.2) is given by finding uh(t) ∈

XN,p(Td) such that

d2

dt2
(uh(t), v) + a(uh(t), v) = (η(t), v) for any v ∈ XN,p(Td).

Similar to the heat equation case, we approximate the non-homogeneous term by

ηh(t) ∈ XN,p(Td) obtained from the B-spline interpolation. Then the B-spline

approximation is uh(t) ∈ XN,p(Td) such that

d2

dt2
(uh(t), v) + a(uh(t), v) = (ηh(t), v) for any v ∈ XN,p(Td). (4.1.3)

Applying the Galerkin method leads to the ODE system

M~̈α(t) + S~α(t) = ~l(t), (4.1.4)

with ~̈α(t) = (α̈0(t), . . . , α̈N−1(t))T . M , S and ~l(t) are the mass matrix, stiffness

matrix, and load vector as in (3.1.17) and (3.1.4).

Recall that ξj ∈ Rd are the points for interpolation defined in (2.4.1) and

bj,p are multi-variate B-spline with scalar index defined in (1.5.3). Let ηh(t) =
Nd−1∑
j=0

βj(t)bj,p, where vector ~β(t) is

~β(t) = G−1~η(t),
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with

~ηj(t) = η(ξj, t).

Taking these expressions into the scheme (4.1.3) leads to the semi-discretization

form

M~̈α(t) + S~α(t) =MG−1~η(t).

To diagonalize the matrices, substituting the expressions (3.1.19), (3.1.21) into the

equation leads to

ΛM ¨̂α(t) + ΛSα̂(t) = ΛMΛ−1
G η̂(t), (4.1.5)

with α̂(t) = F~α(t) and η̂(t) = F~η(t). ΛM, ΛS , ΛG and F are as defined in

(3.1.22), (3.1.20) and (3.1.23). Since the matrices in (4.1.5) are diagonal, the

equation is a series of second order ODEs.

Recall that tk = δtk. We choose Newmark’s method to solve the problem

numerically. For more detail on the method, the reader may see, for example,

[91, 84]. Applying the method gives the two-step scheme

(ΛM + κ∆t2ΛS)α̂k+1 = {2ΛM − (0.5 + υ − 2κ)∆t2ΛS}α̂k

−{ΛM + (0.5− υ + κ)∆t2ΛS}α̂k−1

+∆t2ΛMΛ−1
G {κη̂k+1 + (0.5 + υ − 2κ)η̂k

+(0.5− υ + κ)η̂k−1},

(4.1.6)

where κ, υ ∈ [0, 1] are Newmark parameters and η̂k = η̂(tk). The initial value ~α0

is obtained by interpolating the initial value u0, that is,

~α0 = G−1 ~u0, (4.1.7)

with ( ~u0)i = u0(ξi). Using the forward difference to approximate the differentia-

tion, that is

u′(0) ≈ u(t1)− u(0)

δt
,

and interpolating both sides with B-splines, we have

~α1 = G−1( ~u0 + δt~v0), (4.1.8)

with (~v0)i = v0(ξi).
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Algorithm 4.1. 1. Compute the diagonal matrices ~vG, ~vM and ~vS using Step

1 in Algorithm 3.2.

2. Obtain the initial value ~α0 and ~α1 with the equation (4.1.7) and (4.1.8), and

then use FFT shown in Section 1.3.1 to obtain α̂0 = F~α0 and α̂1 = F~α1.

3. For each time step k from 1 to m− 1,

• Apply FFT to give η̂k = F~ηk.

• Compute α̂k+1 using the scalar relation implied by the scheme (4.1.6)

where the scalar value corresponding to diagonal value of ΛM, ΛS and

ΛG is given by ~vM, ~vS and ~vG respectively.

4. Compute the coefficients for B-spline approximation of the solution u(·, T )

with ~αm = F−1α̂m.

Each time step costs O(dNd logN) operations for the same reason as that for

Algorithm 3.2. In the case when the non-homogeneous term η = 0, the cost is

only O(Nd).

4.1.3 Error of the Semi-discrete Scheme

Similar to the error analysis for the heat equation, we split the error into two parts

u(t)− uh(t) = ρ(t) + ω(t), (4.1.9)

where ρ(t) = u(t)−Rhu(t), ω(t) = Rhu(t)− uh(t). ‖ρ(t)‖ is estimated by Lemma

3.3. Estimation of ‖ω(t)‖ is given by following Lemma.

Lemma 4.2.

‖ω̇(t)‖+ ‖ω(t)‖ ≤ C(|v0,h − Sh,pv0|1 + ‖v0 − Sh,pv0‖+ |u0 − Sh,pu0|1
+
∫ t

0
‖η(τ)− Sh,pη(τ)‖+ |ü(τ)− Sh,pü(τ)|1dτ).
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Proof. Taking the difference of the equation (4.1.2) and (4.1.3) leads to

d2

dt2
(u(t)−uh(t), ν)+a(u(t)−uh(t), ν) = (η(t)−ηh(t), ν) for any ν ∈ XN,p(Td).

Together with the definition of Rhu in (3.1.26), this implies

a(ω(t), ν) = a(Rhu(t)− uh(t), ν)

= a(u(t)− uh(t), ν)

= (η(t)− ηh(t), ν)− d2

dt2
(u(t)− uh(t), ν).

(4.1.10)

Taking a sum of (4.1.10) with the equation

d2

dt2
(ω(t), ν) = d2

dt2
(Rhu(t)− u(t) + u(t)− uh(t), ν)

= d2

dt2
(−ρ(t), ν) + d2

dt2
(u(t)− uh(t), ν).

This leads to

(ω̈(t), ν) + a(ω(t), ν) = −(ρ̈(t), ν) + (η(t)− ηh(t), ν).

Choosing ν = ω̇(t) and using the triangle inequality, it follows that

d

dt
(‖ω̇(t)‖2 + |ω(t)|21) ≤ 2‖η(t)− ηh(t)‖‖ω̇(t)‖+ 2‖ρ̈(t)‖‖ω̇(t)‖.

Integrating w.r.t. t gives

‖ω̇(t)‖2 + |ω(t)|21 ≤ ‖ω̇(0)‖2 + |ω(0)|21
+2
∫ t

0
(‖η(s)− ηh(s)‖+ ‖ρ̈(s)‖)‖ω̇(s)‖ds

≤ ‖ω̇(0)‖2 + |ω(0)|21
+2
∫ t

0
‖η(s)− ηh(s)‖+ ‖ρ̈(s)‖ds max

s∈[0,t]
‖ω̇(s)‖

≤ ‖ω̇(0)‖2 + |ω(0)|21

+2
(∫ t

0
‖η(s)− ηh(s)‖+ ‖ρ̈(s)‖ds

)2

+ 1
2

(
max
s∈[0,t]

‖ω̇(s)‖
)2

.

The equation holds for any t ∈ [0, T ], which leads to(
max
s∈[0,T ]

‖ω̇(s)‖
)2

+

(
max
s∈[0,T ]

|ω(t)|1
)2

≤ ‖ω̇(0)‖2 + |ω(0)|21

+2
(∫ T

0
‖η(s)− ηh(s)‖+ ‖ρ̈(s)‖ds

)2

+1
2

(
max
s∈[0,T ]

‖ω̇(s)‖
)2

.
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Since T is arbitrary, choosing T = t it follows that(
max
s∈[0,t]

‖ω̇(s)‖
)2

+

(
max
s∈[0,T ]

|ω(t)|1
)2

≤ 2‖ω̇(0)‖2 + 2|ω(0)|21

+4
(∫ t

0
‖η(s)− ηh(s)‖+ ‖ρ̈(s)‖ds

)2

.

Hence,

‖ω̇(t)‖2 + |ω(t)|21 ≤ 2‖ω̇(0)‖2 + 2|ω(0)|21
+4
(∫ t

0
‖η(s)− ηh(s)‖+ ‖ρ̈(s)‖ds

)2

.

Since Rhu(t) and uh(t) are same on the boundary of the domain, ω(t) = Rhu(t)−

uh(t) vanishes at the boundary. Friedrich’s inequality (Lemma 3.6 [39]) implies

that ‖ω(t)‖ ≤ C|ω(t)|1. It follows that

‖ω̇(t)‖+ ‖ω(t)‖ ≤ C(‖ω̇(t)‖+ |ω(t)|1)

≤ C(‖Rhv0 − v0,h‖+ |Rhu0 − u0,h|1
+
∫ t

0
‖η(s)− ηh(s)‖+ ‖ρ̈(s)‖ds).

(4.1.11)

Now we estimate the summands on the right hand side of the inequality indi-

vidually. Lemma 3.3 gives

‖ρ̈(s)‖ ≤ C|ü(s)− Sh,pü(s)|1.

Since v0,h = Sh,pv0 and u0,h = Sh,pu0, together with Lemma 3.3, it follows that

‖Rhv0 − v0,h‖ ≤ ‖Rhv0 − v0,h‖+ ‖Sh,pv0 − v0‖

≤ C|Sh,pv0 − v0,h|1 + ‖Sh,pv0 − v0‖,

and

|Rhu0 − u0,h|1 ≤ |Rhu0 − u0|1 + |Sh,pu0 − u0|1
≤ 2|Sh,pu0 − u0|1.

Taking the estimates into inequality (4.1.11) completes the proof.

Theorem 4.3. Let uh(t) be the semi-discrete approximation in (4.1.4) to the wave

equation (4.1.1). Assume the degree of spline p = 2r + 1, r ∈ N0. We have

‖u(t)− uh(t)‖ ≤ C(Q0,p(v0) +Q1,p(v0) +Q1,p(u0) +Q1,p(u)

+
∫ t

0
Q0,p(η(τ)) +Q1,p(ü(τ))dτ).
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Proof. The result follows from the equation (4.1.9), Lemma 3.3, and Lemma 4.2.

Corollary 4.4. Let uh(t) be the semi-discrete approximation in (4.1.4) to the

wave equation (4.1.1). Assume u0, v0 ∈ C∞(Td) and η(t) ∈ C1(0, T ;C∞(Td)),

s.t. ‖D~αu0‖ ≤ σ|~α|‖u0‖, ‖D~αv0‖ ≤ σ|~α|‖v0‖ and ‖D~αη(t)‖ ≤ σ|~α|‖η(t)‖ for any

~α ∈ Nd
0. For p = 2r + 1, r ∈ N0 and hσ/π < 1, we have

‖uh(t)− u(t)‖ ≤ C

(
hσ

π

)p
,

where the constant C is independent of p and h, but may be dependent on σ and

t.

Proof. We first show that the assumptions for the initial value and the non-

homogeneous term yield the following estimates

‖D~βu(t)‖ ≤ C1(t)σ|
~β|, and ‖D~βü(t)‖ ≤ C2(t)σ|

~β| for any ~β 6= 0 ∈ Nd
0, (4.1.12)

where C1(t) ∈ C2([0, T ]) and C2(t) ∈ C1([0, T ]) are independent of ~α. Note that,

by abuse of notation both C1(t) and C2(t) do not necessarily remain the same value

in different occasions. On both side of the equation (4.1.1), by taking derivative

D~α , multiplying D~αu̇(t) and integrating over Td, we have∫
T
D~αü(t)D~αu̇(t)dx−

∫
T
D~α∆u(t)D~αu̇(t)dx =

∫
T
D~αη(t)D~αu̇(t)dx. (4.1.13)

From the Green’s Theorem, the second term in the left hand side of the equality

is∫
T
(∆D~αu(t))D~αu̇(t)dx = −

∫
T
∇D~αu(t)∇D~αu̇(t)dx+

∫
∂T

(D~αu̇(t))∇(D~αu(t)·~n)dx,

where the boundary integral is actually 0 because D~αu and D~αu̇ is periodic for all

~α ≤ p+ 1. It follows that

d
dt

(‖D~αu̇(t)‖2 +
d∑
j=1

‖∂xjD~αu(t)‖2) ≤ 2
∫

Td D
~αη(t)D~αu̇(t)dx

≤ ‖D~αη(t)‖2 + ‖D~αu̇(t)‖2,
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where the boundary term vanish when applying Green’s Theorem because D~αu is

periodic for all α ≤ p+ 1.

Gronwall’s inequality [31] implies that

‖D~αu̇(t)‖2 +
d∑
j=1

‖∂xjD~αu(t)‖2 ≤
∫ t

0
‖D~αη(τ)‖2dτ + ‖D~αv0‖2 +

d∑
j=1

‖∂xjD~αu0‖2

≤ σ2|~α|(
∫ t

0
‖η(τ)‖2dτ + ‖v0‖2 + dσ‖u0‖2)

≤ (C1(t)σ|~α|+1)2.

It follows from the inequality that for any j = 1, . . . , d,

‖∂xjD~αu(t)‖2 ≤ C1(t)σ|~α|+1.

Since the inequality is true for any ~α ∈ Nd
0, by letting ~β = ~α+ej, we have, for any

~β 6= 0 ∈ Nd
0,

‖D~βu(t)‖2 ≤ C1(t)σ|
~β|,

where ej = (0, . . . , 0, 1︸ ︷︷ ︸
j

, 0, . . . , 0).

As for ‖D~αü(t)‖, taking derivative D~α and L2 norm on both side of the equation

(4.1.1) gives

‖D~αü(t)−D~α∆u(t)‖ = ‖D~αη(t)‖.

Applying triangle inequality leads to

‖D~αü(t)‖ ≤ ‖D~α∆u(t)‖+ ‖D~αη(t)‖

≤ C2(t)σ|~α|,

where C2(t) is dependant on σ and t. Theorem 4.3 together with the estimate

(4.1.12) and (2.4.8) completes the proof.

4.1.4 Stability

Since all matrices in scheme (4.1.6) are diagonal, it is equivalent to a series of

recurrence relations, for each i = 0, . . . , Nd − 1,

(1 + κδt2γi)α̂
k+1 = {2− (0.5 + υ − 2κ)δt2γi}α̂k

−{1 + (0.5− υ + κ)δt2γi}α̂k−1

+δt2(γGi )−1{κη̂k+1 + (0.5 + υ − 2κ)η̂k + (0.5− υ + κ)η̂k−1},
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where γi and γGi are as defined in Section 3.1.6. The relation is stable if the roots

of its characteristic function,

(1+κδt2γi)ζ
2 +(−2+(0.5+υ−2κ)δt2γi)ζ+(1+(0.5−υ+κ)δt2γi) = 0, (4.1.14)

lie in the unit disc. Letting ζ = (ξ + 1)/(ξ − 1) and substituting into equation

(4.1.14) gives

δt2γiξ
2 + (2υ − 1)δt2γiξ + 4 + 2(2κ− υ)δt2γi = 0. (4.1.15)

If the roots of equation (4.1.15) have non-positive real part, roots of equation

(4.1.14) lie in the unit disc. From Routh-Hurwitz’s theorem [48, p.1086], all the

roots of equation (4.1.15) have non-positive real parts if and only if
δt2γi > 0

(2υ − 1)δt2γi ≥ 0

4 + 2(2κ− υ)δt2γi ≥ 0

.

The conditions show that when υ < 1/2 the scheme is always unstable re-

gardless of the value of δt. When υ ≥ 1/2 and υ ≤ 2κ, the scheme is stable

independent of δt. When υ ≥ 1/2 and υ > 2κ, to ensure the scheme is stable,

we need δt ≤ 21/2[(υ − 2κ)γi]
−1/2, for each i = 0, . . . , Nd − 1. In this case, it’s

sufficient to ensure stability by having δt ≤ 21/2[(υ − 2κ)γmax]−1/2. As shown in

Section 3.1.6, γmax = d(K2p−1/K2p+1)(π2/h2). We deduce that when υ ≥ 1/2 and

υ > 2κ, the time stepping scheme is stable if

δt ≤
√

2/(d(υ − 2κ))(K2p+1/K2p−1)(h/π). (4.1.16)

The stability condition is summarized as
υ < 1/2 unstable

υ ≥ 1/2 and υ ≤ 2κ always stable

υ ≥ 1/2 and υ > 2κ stable if (4.1.16) holds

.

Similar to the heat equation case, we see a slight improvement for the stability

condition as we increase the degree of spline.
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4.1.5 Error of the Full Scheme

We only consider the case when κ = 1/4 and υ = 1/2, which is one of the most

common choices [84]. In this case, the scheme is unconditionally stable. For

simplicity, we first introduce some notations. Recall that the time interval [0, T ]

is divided into m time-steps with size δt = T/m and tk = kδt. Let tk+1/2 =

(tk+1 + tk)/2. Let D+
t and D−t be respectively the forward and backward difference

operator

D+
t v(tk) =

v(tk+1)− v(tk)

δt
and D−t v(tk) =

v(tk)− v(tk−1)

δt
.

It follows that D−t D
+
t is the second order central difference,

D−t D
+
t v(tk) =

v(tk+1)− 2v(tk) + v(tk−1)

δt2
.

Define the operator

Dκ,υ
t v(tk) =

v(tk+1) + 2v(tk) + v(tk−1)

4
.

Then the full scheme is

(
D−t D

+
t U

k, χ
)

+ a(Dκ,υ
t Uk, χ) = (Dκ,υ

t η(tk), χ) for any χ ∈ XN,p(Td). (4.1.17)

We let

Uk − u(tk) = ωk + ρk, (4.1.18)

where ωk = Uk − Rhu(tk) and ρk = Rhu(tk)− u(tk). Let ωk+1/2 = (ωk + ωk+1)/2.

Then the following theorem gives estimates of the approximation of the full scheme.

Theorem 4.5. Let u(tm) and Um be the solution of the equation (4.1.1) and

scheme (4.1.6) at time T respectively. Assume u0, v0 and η(t) satisfy the assump-

tions of Corollary 4.4. For p = 2r + 1, r ∈ N0 and δt ≤ 1, we have

‖D+
t U

m − u̇(tm+1/2)‖+ ‖Um+1/2 − u(tm+1/2)‖ ≤ C

((
hσ

π

)p
+ δt

)
.
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Proof. The triangle inequality implies that

‖D+
t U

m − u̇(tm+1/2)‖+ ‖Um+1/2 − u(tm+1/2)‖ ≤ ‖D+
t ω

m‖+ ‖ωm+1/2‖

+‖D+
t ρ

m‖+ ‖D+
t u(tm)− u̇(tm+1/2)‖+ ‖ρm‖+ ‖ρm+1‖.

(4.1.19)

We first estimate the terms ‖D+
t ω

m‖ and ‖ωm+1/2‖. The scheme (4.1.17),

definition (3.1.26), and weak formulation (4.1.2) imply that(
D−t D

+
t ω

k, χ
)

+ a(Dκ,υ
t ωk, χ)

= −
(
D−t D

+
t Rhu(tk), χ

)
− a(Dκ,υ

t Rhu(tk), χ) + (Dκ,υ
t ηh(tk), χ)

= −
(
D−t D

+
t Rhu(tk), χ

)
− a(Dκ,υ

t u(tk), χ) + (Dκ,υ
t ηh(tk), χ)

= −
(
D−t D

+
t Rhu(tk), χ

)
+ (Dκ,υ

t ü(tk), χ) + (Dκ,υ
t (ηh(tk)− η(tk)), χ).

Let Ψk = Dκ,υ
t ü(tk)−D−t D+

t Rhu(tk) +Dκ,υ
t (ηh(tk)− η(tk)). It follows that

(D−t D
+
t ω

k, χ) + a(Dκ,υ
t ωk, χ) = (Ψk, χ). (4.1.20)

We choose χ = D+
t (ωk + ωk−1) in the equation (4.1.20). Expanding the operator

D−t , the first term in the left hand side of the equation is(
D−t D

+
t ω

k, D+
t (ωk + ωk−1)

)
= 1

δt

(
D+
t ω

k −D+
t ω

k−1, D+
t ω

k +D+
t ω

k−1
)

= D−t ‖D+
t ω

k‖.

The second term is

a(Dκ,υ
t ωk, D+

t (ωk + ωk−1)) = a(ω
k+1/2+ωk−1/2

2
, 2ω

k+1/2−ωk−1/2

δt
)

= D−t |ωk+1/2|21.

Then the left hand side of (4.1.20) is

D−t (‖D+
t ω

k‖2 + |ωk+1/2|21). (4.1.21)

The Cauchy-Schwarz inequality implies that the right hand side of (4.1.20) has

the following bounds,

(Ψk, D+
t (ωk + ωk−1)) ≤ ‖Ψk‖‖D+

t ω
k‖+ ‖Ψk‖‖D+

t ω
k−1‖

≤ (‖Ψk‖2 + ‖D+
t ω

k‖2)/2 + (‖Ψk‖2 + ‖D+
t ω

k−1‖2)/2

= ‖Ψk‖2 + 1/2(‖D+
t ω

k‖2 + ‖D+
t ω

k−1‖2).

(4.1.22)
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Let αk = ‖D+
t ω

k‖2 + |ωk+1/2|21. From (4.1.20), (4.1.21) and (4.1.22), we have the

inequality

D−t α
k ≤ ‖Ψk‖2 + 1/2(αk + αk−1).

Expanding the operator D−t , we have that

αk − αk−1 ≤ δt‖Ψk‖2 + δt/2(αk + αk−1),

which can be written as

αk ≤ βαk−1 +
δt

1− δt/2
‖Ψk‖2,

with β = 1+δt/2
1−δt/2 . Since β > 1, the recurrence relation implies that

αm ≤ βmα0 + δt
1−δt/2

m−1∑
j=0

βj‖Ψk−j‖2

≤ βmα0 + δt
1−δt/2β

m
m∑
j=1

‖Ψj‖2.

From the inequality that

βm =
(

1+δt/2
1−δt/2

)m
=
(

1 + δt
1−δt/2

)m
≤ exp

(
δt

1−δt/2m
)

= exp
(

T
1−δt/2

)
,

it follows that

αm ≤ C(α0 + δt
m∑
j=1

‖Ψj‖2).

Friedrich’s inequality (Lemma 3.6 [39]) implies that

‖D+
t ω

m‖+ ‖ωm+1/2‖ ≤ C(‖D+
t ω

m‖+ |ωm+1/2|1)

≤ C(‖D+
t ω

0‖+ |ω1/2|1 + δt
m∑
j=1

‖Ψj‖)

≤ C(‖D+
t ω

0‖+ |ω0|1 + |ω1|1 + δt
m∑
j=1

‖Ψj‖).

(4.1.23)

We now estimate the right hand side terms of the inequality. The inequality

(3.1.28) and Corollary 2.15 imply that

|ω0|1 = |Rhu0 − Sh,pu0|1
≤ |Rhu0 − u0 + u0 − Sh,pu0|1
≤ 2|u0 − Sh,pu0|1
≤ C(hσ

π
)p‖u0‖.

(4.1.24)
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Lemma 3.3, Corollary 2.15, a standard estimate on truncation error of the forward

difference [44], and the definition of initial value (4.1.8) lead to

‖D+
t ω

0‖ = ‖RhD
+
t u(t0)−D+

t U
0‖

≤ |D+
t u0 − Sh,pD+

t u0|1 + ‖D+
t u0 − Sh,pD+

t u0‖.

≤ C(hσ
π

)p‖D+
t u0‖

= C(hσ
π

)p‖u0 +O(δt)‖

≤ C(hσ
π

)p‖u0‖+ C(hσ
π

)pδt.

(4.1.25)

The definition of initial value (4.1.8), the inequality (3.1.28), and Taylor expansion

yield

|ω1|1 = |Rhu(t1)− U1|1
≤ |Rhu(t1)− (U0 + δtSh,pv0)|1
≤ |Rhu(t1)− u(t1)|1 + |u(t0 + δt)− (Sh,pu0 + δtSh,pv0)|1
≤ |Rhu(t1)− u(t1)|1 + |u(t0)− Sh,pu0 + δt(v0 − Sh,pv0) +O(δt2)|1
≤ |Rhu(t1)− u(t1)|1 + |u0 − Sh,pu0|1 + δt|v0 − Sh,pv0|1 + Cδt2.

Theorem 2.14 together with the inequality (4.1.12), (2.4.8), and Corollary 2.15

gives

|ω1|1 ≤ C(
hσ

π
)p(‖u(t0‖+ ‖u0‖+ δt‖v0‖) + C(δt). (4.1.26)

Now we estimate the term δt
m∑
k=1

‖Ψk‖. Let Ψk = Ψk
1 +Ψk

2 +Dκ,υ
t (ηh(tk)−η(tk)),

where Ψk
1 = D−t D

+
t u(tk) − D−t D

+
t Rhu(tk) and Ψk

2 = Dκ,υ
t ü(tk) − D−t D

+
t u(tk).

Theorem 2.14 together with the estimate (4.1.12), and (2.4.8) yield that

δt
m∑
k=1

‖Ψk
1‖ ≤ δt

m∑
k=1

‖D−t D+
t u(tk)− Sh,pD−t D+

t u(tk)‖

≤ δt
m∑
k=1

Q0,p(D
−
t D

+
t u(tk))

The truncation error of central difference [44] and a error bound for Riemann sums

[54, Chapter 4] imply that

δt
m∑
k=1

‖Ψk
1‖ ≤ C(hσ

π
)p+1δt

m∑
k=1

‖D−t D+
t C1(tk)‖

≤ C(hσ
π

)p+1δt
m∑
k=1

‖C̈1(tk)‖+O(δt2)

≤ C(hσ
π

)p+1
∫ T

0
‖C̈1(t)‖dt+ Cδt.
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Taylor expansion gives that

Ψk
2 = 1/4(ü(tk + h) + ü(tk − h) + 2ü(tk))−D−t D+

t u(tk)

= 1/4(ü(tk) + h
...
u (tk) +O(δt2)

+ü(tk)− h
...
u (tk) + 2ü(tk) +O(δt2))− (ü(tk) +O(δt2))

≤ Cδt2.

Then it follows that

δt

m∑
j=1

‖Ψj‖ ≤ C

(
hσ

π

)p+1

+ Cδt. (4.1.27)

Corollary 2.15, Taylor expansion, and an error bound for Riemann sums [54,

Chapter 4] imply that

δt
m−1∑
k=1

‖Sh,pDκ,υ
t η(tk)−Dκ,υ

t η(tk)‖ ≤ C(hσ
π

)p+1δt
m−1∑
k=1

‖Dκ,υ
t η(tk)‖

≤ C(hσ
π

)p+1(δt
m−1∑
k=1

‖η(tk)‖+O(δt))

= C(hσ
π

)p+1(
∫ T

0
‖η(s)‖ds+O(δt))

≤ C(hσ
π

)p+1
∫ T

0
‖η(s)‖ds+ C(hσ

π
)p+1δt.

(4.1.28)

The equality (4.1.23), together with (4.1.24), (4.1.25), (4.1.26), (4.1.27), and

(4.1.28) give

‖D+
t ω

m‖+ ‖ωm+1/2‖ ≤ C

(
hσ

π

)p
+ Cδt. (4.1.29)

Similarly, the terms ‖ρm‖, ‖ρm+1‖, and ‖D+
t ρ

m‖ are estimated using Lemma

3.3, Corollary 2.15, and (4.1.12), which give

‖ρm‖+ ‖ρm+1‖+ ‖D+
t ρ

m‖ ≤ C

(
hσ

π

)p
+ Cδt.

The estimate together with (4.1.29) and (4.1.19) complete the proof.

Although the theorem only gives the error at the time point tm+1/2, the estimate
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Figure 4.1: Stability of the Newmark Scheme

at tm may also be obtained in the following way.

‖1
4
(Um+1 + 2Um+1 + Um−1)− u(tm)‖ ≤ 1

2
‖Um+1/2 − u(tm+1/2)‖

+1
2
‖Um−1/2 − u(tm−1/2)‖+ ‖1

2
(u(tm+1/2) + u(tm−1/2)− u(tm)))‖

≤ C
(
hσ
π

)p
+ Cδt.

4.1.6 Numerical Experiment Results

4.1.6.1 Stability

We first test the stability condition by implementing Algorithm 4.1, calculating the

maximum norm of coefficient ~αk for each time step k, and plotting log(k) against

log(‖~αk‖∞) for different h.

The parameters of the Newmark scheme are set to be υ = 0.5 and κ = 0.2,

and time step δt = 0.0125. According to the condition (4.1.4), the schemes in R

and R2 are stable when h > 0.0152 and h > 0.0215, respectively. Figures 4.1a

and 4.1b show the results. The solid line in the plot corresponds to the case

where the condition is satisfied (h = 1/65 and h = 1/46 for the schemes in R and
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Figure 4.2: Convergence of scheme with different h

R2 respectively) while the others does not. This confirms the stability condition

analysis. Moreover, since the dashed line corresponds to the scheme which chooses

one more mesh-point than the solid line, it can be concluded that the stability

condition is sharp.

4.1.6.2 Error

Similar to the experiment in Section 3.1.8.3, we now test the convergence of the

full scheme (4.1.6).

We choose the solution of the equation (4.1.1) to be u = cos(40πx + t) and

u = cos(40πx+ 40πy + t), implement the Algorithm 4.1 and plot the error of the

approximation against the degree of the B-spline for different mesh size.

As shown in Figure 4.2a and 4.2b, as the degree n increases, only if the mesh

size h < 1/40 does the error converge. That complies with the result in Corollary

4.4. We can further observe that the convergence stops when reaching a level

around 10−7. From Theorem 4.5, this may be caused by the error from temporal
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Figure 4.3: Convergence of scheme with different δt

discretization. To confirm the statement, we also plot degree against error for fixed

mesh size but different time step size. As shown in Figure 4.3a and 4.3b, smaller

δt improves the convergence of spatial approximation.

4.2 Problem with Dirichlet Boundary Condition

4.2.1 Model Problems

Recall that Ω = [0, 1]d. We consider the wave equation

∂2

∂t2
u(x, t)−∆u(x, t) = η(x, t), (x, t) ∈ Ω× [0,∞), (4.2.1)

with initial value

u(x, 0) = u0(x) ∈ Hp+1
0 (Ω) and

∂

∂t
u(x, 0) = v0(x) ∈ Hp+1

0 (Ω),

Dirichlet boundary condition

u(x, t) = 0 for x ∈ ∂Ω,



Chapter 4 104

and the non-homogeneous term

η(t) ∈ L2(0, T ;Hp+1
0 (Ω)).

A weak formulation corresponding to the problem is finding u(t) ∈ L2(0, T ;H1
0(Ω))

with u̇(t) ∈ L2(0, T ;L2(Ω)) and ü(t) ∈ L2(0, T ;H−1(Ω)) s.t.

d2

dt2
(u(t), v) + a(u(t), v) = (η(t), v) for any v ∈ H1

0(Ω), (4.2.2)

with u(0) = u0 ∈ H1
0(Ω) and u̇(0) = v0 ∈ L2(Ω).

Analogous to the periodic case, because of Theorem 24.A of [92], the problem

has a unique solution. Moreover, since the initial value u0 ∈ Hp+1
0 (Ω), this theorem

also implies that the solution u(t) ∈ L2(0, T ;Hp+1
0 (Ω)).

4.2.2 B-spline Scheme

The Galerkin approximation in XN,p
0 (Ω) to the solution of (4.2.2) is given by

finding uh(t) ∈ XN,p
0 (Ω) such that

d2

dt2
(uh(t), v) + a(uh(t), v) = (η(t), v) for any v ∈ XN,p

0 (Ω). (4.2.3)

Let Bh,pη(t) =
∑

i∈J d0

li(t)ψi,p be the B-spline interpolant of η(t) in the space XN,p
0 (Ω)

as shown in Section 3.2.2. Approximating η(t) by Bh,pη(t) and substituting each

basis ψi,p, we have the semi-discrete scheme,

M~̈α(t) + S~α(t) =M~l(t). (4.2.4)

M and S are the mass and stiffness matrices given in (3.2.5), respectively. Ap-

plying Newmark’s method to solve the problem, we have the two-step scheme as

follows

(M+ κδt2S)~αk+1 = {2M− (0.5 + υ − 2κ)δt2S}~αk

−{M+ (0.5− υ + κ)δt2S}~αk−1

+δt2M{κ~lk+1 + (0.5 + υ − 2κ)~lk + (0.5− υ + κ)~lk−1},
(4.2.5)
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where κ and υ are the Newmark parameters. The vector ~lk is the coefficient of

Bh,pη(tk). The initial values ~α0 and ~α1 are the coefficients of Bh,pv0 and Bh,p(u0 +

δtv0), respectively.

4.2.3 Error of the Semi-discrete Scheme

Since the error analysis in this section is similar to that in Section 4.1.3, we only

give the results and list the modifications in the proofs. We still write the error in

the form of (4.1.9). Lemma 3.12 gives a bound for ‖ρ(t)‖. Estimation of ‖ω(t)‖ is

obtained from the following Lemma.

Lemma 4.6.

‖ω̇(t)‖+ ‖ω(t)‖ ≤ C(|v0,h − Bh,pv0|1 + ‖v0 − Bh,pv0‖+ |u0 − Bh,pu0|1
+
∫ t

0
‖η(τ)− Bh,pη(τ)‖+ |ü(τ)− Bh,pü(τ)|1dτ).

Proof. Our proof of this lemma is the same as that of Lemma 4.2 with the following

changes.

• Replace all the spaces Hp+1(Td) and XN,p(Td) by Hp+1
0 (Ω) and XN,p

0 (Ω),

respectively.

• Replace all the operators Sh,p by Bh,p.

• Replace Lemma 3.3 by Lemma 3.12.

• Replace (4.1.2), (4.1.3) and (3.1.26) by (4.2.2), (4.2.3) and (3.2.8).

Theorem 4.7. Let uh be the semi-discrete approximation in (4.2.4) to the wave

equation (4.2.1), then

‖u(t)− uh(t)‖ ≤ C(Q0,p(v0) +Q1,p(v0) +Q1,p(u0)

+Q1,p(u) +
∫ t

0
Q0,p(η(τ)) +Q1,p(ü(τ))dτ).
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Proof. The result follows from the equation (3.1.27), Lemma 3.12, and Lemma

4.6.

Corollary 4.8. Let uh(t) be the semi-discrete approximation in (4.2.4) to the wave

equation (4.2.1). Assume for u(t) ∈ C2(0, T ;C∞0 (Ω)) and η(t) ∈ C1(0, T ;C∞0 (Ω))

there exist σ > 0 s.t. ‖D~αu0‖ ≤ σ|~α|‖u0‖, ‖D~αv0‖ ≤ σ|~α|‖v0‖ and ‖D~αη(t)‖ ≤

σ|~α|‖η(t)‖ for any ~α ∈ Nd
0. For p = 2r + 1, r ∈ N0 and hσ/π < 1, we have

‖uh(t)− u(t)‖ ≤ C

(
hσ

π

)p
,

where the constant C is independent of p and h, but may be dependent on σ and

t.

Proof. We derive that

‖D~βu(t)‖ ≤ Cσ|
~β|, and ‖D~βü(t)‖ ≤ Cσ|

~β| for any ~β 6= 0 ∈ Nd
0, (4.2.6)

in the same way as deriving (4.1.12) in Lemma 4.4 , where the boundary integral

term is 0 when applying Green’s Theorem because D~αu vanish on the boundary

of Ω. Theorem 4.7 together with (2.4.8) and (4.2.6) completes the proof.

4.2.4 Error of the Full Scheme

Recall that the full scheme is(
D−t D

+
t U

k, χ
)

+ a(Dκ,υ
t Uk, χ) = (Dκ,υ

t η(tk), χ) for any χ ∈ XN,p
0 (Ω). (4.2.7)

Writing the error as in (4.1.18), An estimation of the error in the full scheme is

obtained by the following theorem.

Theorem 4.9. Let u(tm) and Um be the solution of the equation (4.2.1) and

scheme (4.2.5) at time T respectively. Assume u(t) and η(t) satisfy the assump-

tions of Corollary 4.8. For p = 2r + 1, r ∈ N0 and δt ≤ 1, we have

‖D+
t U

m − u̇(tm+1/2)‖+ ‖Um+1/2 − u(tm+1/2)‖ ≤ C

((
hσ

π

)p
+ δt

)
.
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Proof. The proof is the same as that of Theorem 4.5, with the following modifica-

tions.

• Replace all the spaces Hp+1(Td) and XN,p(Td) by Hp+1
0 (Ω) and XN,p

0 (Ω),

respectively.

• Replace all the operators Sh,p by Bh,p.

• Replace Lemma 3.3 and Corollary 2.15 by Lemma 3.12 and Corollary 2.20.

• Replace equations (4.1.17), (3.1.26), and (4.1.2) by (4.2.7), (3.2.8), and

(4.2.2).

• Replace the estimate (4.1.12) by assumptions of u(t) and (4.2.6).

4.2.5 Numerical Experiment Results
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Figure 4.4: Scheme for wave equation with Dirichlet condition
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We take a similar test to that in Section 4.1.6.2 using u(x, t) = cos(t) sin(41πx) as

the true solution which is in the space Hp+1([0, 1]) but not in Hp+1(T). Figure 4.4a

shows that the error converges exponentially when h < 1/41, but the convergence

stops as degrees grow larger than 7. Figure 4.4b suggest this may be caused by

the error of temporal approximation. The results agree with Corollary 4.8 and

Theorem 4.9.



Chapter 5

Optimal Assembly Procedure of

Bernstein-Bézier Spline Finite

Elements

5.1 Introduction

In the previous chapters, we considered spline finite element methods for the prob-

lems whose coefficients are constant. In these cases, the stiffness matrices are able

to be computed with explicit formulas, but for a problem with variable coefficients

such as the elliptic equation shown in (5.1.8), since the integrals in the expressions

are not always able to be evaluated analytically, explicit formulas may not be

available. Numerical methods such as quadrature rules have to be applied for an

approximation. A common procedure approximates the integrals locally on each

element first to attain the element matrices and then assembly them to construct

the global matrices.

However, in general, when the polynomial degree is high, the cost of evaluating

the element matrices can be huge. For instance, the matrix corresponding to poly-

nomials of degree n in d dimension contains n2d entries, and each entry requires

109
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O(nd) operations since the quadrature rule adopts no less than O(nd) quadrature

points. In total, the construction of the element matrix will cost O(n3d) opera-

tions. Therefore, an algorithm for efficiently computation the element matrices is

required.

The sum factorization method [65, 62] is generally applied to reduce the cost

in spectral methods with high order polynomials [28, 51, 89]. [5] makes use of

the method to evaluate the element matrices arising in FEM with tensor product

B-splines as shape functions. In [2], the authors develop algorithms that evaluate

the element matrices on simplicial elements in the optimal complexity O(n2d),

in the sense that the number of operations is at the same order of the matrix

entry number. In their algorithm, Bernstein-Bézier splines are employed as a basis

facilitating the possibility of utilizing the sum factorization procedure, which is the

main reason of the efficiency. Another advantage attributed to the basis is that

the product of two Bernstein polynomials is still a Bernstein polynomial, which is

exploited to simplify the evaluation of the element matrices to that of Bernstein

polynomial moments.

Following their approach, our work aims to develop algorithms for constructing

the element matrices in the finite element space of Bernstein-Bézier splines on

quadrilaterals and hexahedrons in the optimal complexity O(n2d). The chapter is

arranged as follows. The rest of the section reviews the Bernstein-Bézier spline

shape functions and their corresponding finite element methods. In Section 5.2,

we first develop the algorithm for evaluating the Bernstein polynomial moments,

and then based on this, we derive the algorithm for constructing the element

matrices. In Section 5.3, we show the results of some tests concerning the efficiency

and accuracy of the algorithms. Note that only divisions and multiplications are

counted as operations in our discussion.
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5.1.1 Bernstein-Bézier Spline Shape Function on Quadri-

laterals and Hexahedrons

In our work, the Bernstein-Bézier spline shape functions on quadrilaterals or hexa-

hedrons are obtained by an isoparametric mapping of the tensor product Bernstein

polynomials. Bernstein polynomials are one of the important types of polynomial

representation. They have many useful properties, such as positivity, continuity,

and unity of partition. There are many computational algorithms based on the

representation, for instance, de Casteljau’s algorithm [75, 55], which provides a

stable way to evaluate a polynomial in Bernstein form. Because of the desirable

properties, Bernstein polynomials play an important role in computer aided de-

sign with Bézier curves or surfaces [75]. They also have profound applications in

differential equations and approximation theory [66, 10].

5.1.1.1 Tensor Product Bernstein Polynomials

The Bernstein polynomial of degree n is defined as

Bn
i (x) =

(
n

i

)
xi(1− x)n−i, i = 0, . . . , n.

We let Bn
i (x) = 0, when i < 0 or i > n. The polynomials are linearly independent

[81], and so form a basis for the space of polynomial with a degree no larger than

n. Some useful properties follow directly from the definition. The product of two

Bernstein polynomials gives another one with higher degree,

Bn
i (x)Bm

j (x) =

(
n

i

)(
m

j

)
xi+j(1− x)n+m−i−j

=

(
n

i

)(
m

j

)
/

(
n+m

i+ j

)
Bn+m
i+j (x),

=

(
i+ j

i

)(
n+m− i− j

n− i

)
/

(
n+m

n

)
Bn+m
i+j (x).

(5.1.1)

The derivative of a Bernstein polynomial is a linear combination of lower degree

ones,

(Bn
i (x))′ = n!

(n−i)!(i−1)!
xi−1(1− x)n−i + n!

(n−i−1)!(i)!
xi(1− x)n−1−i

= n(Bn−1
i−1 (x)−Bn−1

i (x)).
(5.1.2)
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The integral of a Bernstein polynomial Bn
i (x) over [0,1] for each i = 0, . . . , n is∫ 1

0

Bn
i (x)dx = 1/(n+ 1). (5.1.3)

The definition of Bernstein polynomials is extended to higher dimension by

tensor products. For i = (i1, . . . , id) and n = (n1, . . . , nd),

Bn
i (t) =

∏
1≤r≤d

Bnr
ir

(tr). (5.1.4)

Let (
n

i

)
=

(
n1

i1

)
. . .

(
nd
id

)
,

and (ek)j = δk,j, where δk,j is Kronecker delta. The multivariate polynomials

Bn
i (t) have similar properties to (5.1.1), (5.1.2) and (5.1.3), which are

Bn
i (t)Bm

j (t) =

(
i+ j

i

)(
n+m− i− j

n− i

)
/

(
n+m

n

)
Bn+m

i+j (t), (5.1.5)

∂

∂tk
Bn

i (t) = nk(−Bn−ek

i (t) +Bn−ek

i−ek
(t)), (5.1.6)

and ∫
[0,1]d

Bn
i (x)dx =

d∏
r=1

1/(nr + 1). (5.1.7)

5.1.1.2 Bernstein-Bézier Spline Shape Functions on Quadrilaterals

We first give an isogeometric mapping from the unit square [0, 1]2 to a quadrilat-

eral. Given the four vertices of a quadrilateral {xij}0≤i,j≤1 ∈ R2, let B0(t) = 1− t

and B1(t) = t and define the mapping

φD(t) =
∑

0≤i,j≤1

xi,jBi(t1)Bj(t2).

We assume the four vertices are such that the quadrilateral is convex, which is

equivalent to that the mapping φD(t) is bijective [32]. Then D = φD([0, 1]2) is

the quadrilateral with the four vertices xi,j = φD((i, j)) for 0 ≤ i, j ≤ 1. The

Bernstein-Bézier shape functions on D are given by

ψn,Di,j (x) = B
(n,n)
i,j (φ−1

D (x)) for x ∈ D.

Denote by PnD the space spanned by all the shape functions ψn,Di,j for i, j = 0, . . . , n.
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5.1.1.3 Bernstein-Bézier Spline Shape Functions on Hexahedrons

We give the shape functions on a hexahedron in a similar manner to the quadri-

lateral case.

Given eight distinct points {xijk}0≤i,j,k≤1 ∈ R3, define the mapping

φH(t) =
∑

0≤i,j,k≤1

xi,j,kBi(t1)Bj(t2)Bk(t3).

If φH(t) is invertible on the cube [0, 1]3, then H = φH([0, 1]3) is called a hexa-

hedron. The invertibility of the mapping φH(t) is not in the scope of the work,

but the reader may check literature such as [94, 52] for the discussions about its

invertibility conditions. The shape functions on H are given by

ψn,Hi,j,k(x) = B
(n,n,n)
i,j,k (φ−1

H (x)) for x ∈ H and i, j, k = 0, . . . , n.

Denote by PnH the space spanned by all the shape functions ψn,Hi,j,k for i, j, k =

0, . . . , n. The faces of a hexahedron are not necessarily flat, where a face is flat

provided their four vertices lay in a plane. A hexahedron with all faces flat is

described as an ordinary hexahedron.

5.1.2 Bernstein-Bézier Spline Finite Element Method

Consider the elliptic equation

−div(A∇u) + bu = η in Ω

u = 0 on Γ,
(5.1.8)

where b is a continuous function and A is a d × d matrix-valued function which

is continuous and positive definite on a polygonal domain Ω ⊂ Rd. Its weak

formulation is given by finding u ∈ H1
0 (Ω) such that∫

Ω

∇vA∇udx+

∫
Ω

bvudx =

∫
Ω

ηvdx for each v in H1
0 (Ω).

Our work only considers the cases when d = 2 and d = 3. When Ω ⊂ R2, the

domain is discretized into quadrilaterals and when Ω ⊂ R3, into hexahedrons.
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For simplicity, we use K to stand for a quadrilateral or hexahedron, and PnK the

corresponding shape functions space with basis ψn,Hi . The discretization is denoted

by Σ = {Ki}Ni=1. Let PnΣ ⊂ H1
0 (Ω) be the space such that f |Ki ∈ PnKi . The solution

u is approximated by uh satisfying∫
Ω

∇vA∇uhdx+

∫
Ω

bvuhdx =

∫
Ω

ηvdx, for each v in PnΣ.

When applying the Galerkin method shown in Section 1.4.1, to obtain the global

linear systems by assembling local element matrices, we need to compute for each

element K the load vector L with components Li =
∫
K
ηφn,Ki dx, mass matrix M

with components M i,j =
∫
K
bφn,Ki φn,Kj dx and stiffness matrix S with components

Si,j =
∫
K
∇φn,Ki A∇φn,Kj dx.

The objective of the chapter is to derive algorithms for evaluating the mass

matrix M , stiffness matrix S and load vector L in optimal complexity. Note that

the problem of assembling and solving the global linear system is not in the scope

of the work, but standard preconditioning techniques [13, 39] are applicable for

the problem.

5.2 Algorithms for Generating Element Matri-

ces

In this section, we give algorithms for constructing the element matrices based on

the Bernstein polynomial moments. Therefore, the first concern is to develop the

algorithm for efficiently evaluating the moments.

5.2.1 Moment

The Bernstein polynomial moment of degree n is defined as

µn
i (f, [0, 1]d) =

∫
[0,1]d

Bn
i (t)f(t)dt.
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Using (5.1.4), the moment is rewritten as

µn
i (f, [0, 1]d) =

∫ 1

0
dtdB

nd
id

(td)

×
∫ 1

0
dtd−1B

nd−1

id−1
(td−1)

· · ·

×
∫ 1

0
dt2B

n2
i2

(t2)

×
∫ 1

0
dt1B

n1
i1

(t1)f(t1, t2, . . . , td).

(5.2.1)

If the function f(x) is constant, the moment µn
i (1, [0, 1]d) is given directly by equa-

tion (5.1.7). However, in general, the integrals may not be calculated analytically,

so quadrature rules are applied to obtain an approximation. We use the q-point

Gaussian quadrature rule ∫ 1

0

g(s)ds ≈
q∑
j=1

wjg(ςj),

where (wj, ςj) are the standard Gauss weights and nodes on the interval [0,1].

Applying the quadrature rule for each integral in (5.2.1) the moment µn
i (f, [0, 1]d)

is approximated by

µ̂n
i (f, [0, 1]d) =

q∑
jd=1

wjdB
nd
id

(ςjd)

×
q∑

jd−1=1

wjd−1
B
nd−1

id−1
(ςjd−1

)

· · ·

×
q∑

j2=1

wj2B
n2
i2

(ςj2)

×
q∑

j1=1

wj1B
n1
i1

(ςj1)f(ςj1 , ςj2 , . . . , ςjd),

where we choose q ≥ n+ 1 with n = max{nl}l=1,...,d. The quadrature rule gives an

exact integral for polynomials of degree no higher than 2q − 1. Equivalently, the

moment µ̂n
i (f, [0, 1]d) is obtained by evaluating F d(i1, i2 . . . , id) from the following
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recursion relations,

F 0(j1, j2, . . . , jd) = f(ςj1 , . . . , ςjd)

F 1(i1, j2 . . . , jd) =
q∑

j1=1

wj1B
n1
i1

(ςj1)F
0(j1, j2, . . . , jd)

F 2(i1, i2 . . . , jd) =
q∑

j2=1

wj2B
n2
i2

(ςj2)F
1(i1, j2 . . . , jd)

· · ·

F d(i1, i2 . . . , id) =
q∑

jd=1

wjdB
nd
id

(ςjd)F
d−1(i1, i2 . . . , id−1, jd).

(5.2.2)

The relations suggest that the computation of F l only relies on the information

in F l−1 along with the value of the basis at quadrature points. In practical im-

plementation, instead of generating individually the moment µ̂n
i (f, [0, 1]d) for each

i ∈ {0, . . . , n}d, a more efficient way generates all the entries of F l each time

based on F l−1 in succession for each l = 1, . . . , d. This approach is described as

the sum factorization procedure [65]. As for calculating the value of the basis at

the quadrature points, one option is pre-computing and storing the values using

the de Casteljau algorithm. Another approach, which also achieves the optimal

complexity but does not require pre-computing, is shown in the following algo-

rithms. Let Ik = {0, 1, . . . , nk} and J = {0, 1, . . . , q}. The following algorithms

evaluate all the moments µ̂n
i (f, [0, 1]d) for each 0 ≤ i ≤ n.

Algorithm 1: Moment(F 0,n,q)

Data: The array F 0 stores the function values at the quadrature points

with F 0
j = f(ςj1 , ςj2 , . . . , ςjd), n is the degree of the Bernstein

polynomial, and q is the order of Gaussian quadrature.

Result: The array F d stores the value of moments with F d
i = µ̂n

i (f, [0, 1]d).

for l = 1, . . . , d do

F l = MomentStep(F l−1, q, l)

Theorem 5.1. Given the values of function f at quadrature points and number

of quadrature points is q = n+ 1, Algorithm 1 evaluates the moments µ̂n
i (f, [0, 1]d)
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Algorithm 2: MomentStep(F in, q, l)

1 for jl ∈ J do

w = wjl , ς = ςjl , s = 1− ς, r = ς/s, w = w ∗ snl

2 for il ∈ Il do

for (i1, . . . , il−1, jl+1, . . . , jd) ∈ (I1, . . . , Il−1,J , . . . ,J ) do

3 F out
i1,...,il,jl+1,...,jd

+ = w ∗ F in
i1,...,il−1,jl,...,jd

w∗ = (r ∗ (nl − il)/(nl + 1))

in O(nd+1) operations. When f is a polynomial of degree ≤ 2q − 1 − n in each

variable, the moment µ̂n
i (f, [0, 1]d) = µn

i (f, [0, 1]d).

Proof. Since the function MomentStep is invoked in Algorithm 1, we first inves-

tigate its cost of operations in Algorithm 2.

The statement causing the most complexity is in Line 3, since it is within the

innermost loops. Compared with it the other statements’ costs are negligible when

n is large enough. Within the d+1 layers of loops conditioned by Line 1 and 2, the

statement repeats totally (n1 + 1) . . . (nr + 1)qd−r+1 times in Algorithm 2, and so
d∑
r=1

(n1 +1) . . . (nr+1)qd−r+1 in Algorithm 1. As n = max{nr}r=1,...,d and q = O(n),

the total operations for the statement are of order O(nd+1) in Algorithm 1.

5.2.2 Load Vector

The load vector L on K ⊂ Rd has entries

Li =

∫
K

ψn,Ki (x)η(x)dx.

Recall that K is a quadrilateral when d = 2 and a hexahedron when d = 3.

Substituting the definition of the shape functions and changing the variable with
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x = φK(t), it follows that

Li =
∫
K
Bn

i (φ−1
K (x))η(x)dx

=
∫

[0,1]d
Bn

i (t)η(φK(t)) det(JφK (t))dt

= µn
i (η(φK(t)) det(JφK (t)), [0, 1]d),

(5.2.3)

where JφK (t) is the Jacobi matrix of the function φK(t).

Hence, Algorithm 1 with Moment(FK ,n, q) evaluates the load vectors, where

FK
j = (η(φK(t)) det(JφK ))|(ςj1 ,...,ςjd ). Then the cost for constructing the load vector

L is the same as for the Bernstein polynomial moments in [0, 1]d, which is O(nd+1)

.

5.2.3 Mass Matrix

The mass matrix on K has entries

M i,j =

∫
K

ψn,Ki (x)ψn,Kj (x)b(x)dx.

Substituting the definition of the shape function, changing the variable with x =

φK(t) and using property (5.1.5), it follows that

M i,j =
∫
K
Bn

i (φ−1
K (x))Bn

j (φ−1
K (x))b(x)dx

=
∫

[0,1]d
Bn

i (t)Bn
j (t)b(φK(t)) det(JφK (t))dt

=

(
i+ j

i

)(
2n− i− j
n− i

)
/

(
2n

n

)
µ2n

i+j(b(φK) det(JφK (t)), [0, 1]d).

(5.2.4)

Let σi,j =

(
i+ j

i

)(
2n− i− j
d− i

)
/

(
2n

n

)
. Then we have the expression

M i,j = (
d∏
l=1

σil,jl)µ
2n
i+j(b(φK) det(JφK ), [0, 1]d).

The expression suggests that the evaluation of the binomial coefficients are required

in the algorithm. We use the Pascal triangle method to compute the coefficients

and store them in matrix κ with entry κi,j =

(
i+ j

i

)
. The following algorithm

gives the mass matrix.
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Algorithm 3: GetMass(FK , n, q)

Data: The array FK stores the values of the function fK = b(φK) det(JφK )

at the quadrature points with FK
j = fK(ςj1 , ςj2 , . . . , ςjd).

Result: The matrix M is the mass matrix.

for (i, j) ∈ I × I do

1 σi,j = κi,j ∗ κn−i,n−j/κn,n

2 L = Moment(FK , 2n, q)

for (i1, . . . , id) ∈ I × . . .× I do

for (j1, . . . , jd) ∈ I × . . .× I do

3 M i1,...,id,j1,...,jd = σi1,j1 . . .σid,jdLi1+j1,...,id+jd

Theorem 5.2. Given the value of the function fK = b(φK) det(JφK ) at the quadra-

ture nodes, the Algorithm GetMass constructs the mass matrix in O(n2d) opera-

tions for d = 2, 3.

Proof. As I = {1, . . . , n}, the cost for statements in Line 1 and Line 3 are O(n2)

and O(n2d), respectively. According to Theorem 5.1, the statement for calculat-

ing the moments in Line 2 costs O((2n)d+1) operations. Hence, the total cost is

O(n2)+O(nd+1)+O((2n)2d) = O(n2d).

Note that the algorithm requires pre-computing and storing the matrix σ which

takes O(n2) storage. But the storage is negligible compared with the O(n2d)

storage of matrix M .

5.2.4 Stiffness Matrix

The stiffness matrix on K ⊂ Rd has entries

Si,j =

∫
K

∇tψn,Ki (x)A(x)∇ψn,Kj (x)dx.
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Substituting the definition of the shape function, changing the variable with x =

φK(t) and converting the product into quadratic form gives

Si,j =
∫
K
∇tBn

i (φ−1
K (x))A(x)∇Bn

j (φ−1
K (x))dx

=
∫

[0,1]d
∇tBn

i (t)J−1
φK
A(φK(t))J−tφK (t)∇Bn

j (t)dφK(t)

=
∫

[0,1]d
∇tBn

i (t)Ã(t)∇Bn
j (t)dt

=
d∑

k=1

d∑
l=1

∫
[0,1]d

∂
∂tk
Bn

i (t) ∂
∂tl
Bn

j (t)Ãk,l(t)dt,

where Ã(t) = J−1
φK

(t)A(φK(t))J−tφK (t) det(JφK (t)). Using the property (5.1.5) and

(5.1.6), it follows that

Si,j = d2
d∑

k=1

d∑
l=1

∫
[0,1]d

(−Bn−ek
i (t) +Bn−ek

i−ek
(t))(−Bn−el

j (t) +Bn−el
j−el

(t))Ãk,l(t)dt

= d2
d∑

k=1

d∑
l=1

[
(
i− ek + j − el

i− ek

)(
2n− i− j
n− i

)
/

(
2n− ek − el
n− ek

)
µ2n−ek−el

i+j−ek−el
(Ãk,l, [0, 1]d)

−
(
i− ek + j

i− ek

)(
2n− i− j − el

n− i

)
/

(
2n− ek − el
n− ek

)
µ2n−ek−el

i+j−ek
(Ãk,l, [0, 1]d)

−
(
i− el + j

i

)(
2n− i− j − ek
n− i− ek

)
/

(
2n− ek − el
n− ek

)
µ2n−ek−el

i+j−el
(Ãk,l, [0, 1]d)

+

(
i+ j

i

)(
2n− i− j − ek − el

n− i− ek

)
/

(
2n− ek − el
n− ek

)
µ2n−ek−el

i+j (Ãk,l, [0, 1]d)

]
.

As shown in [3], for the purpose of efficient implementation the expression can be

rewritten as

Si,j = 2n
d∏
r=1

σir,jr
d∑

k=1

d∑
l=1

[αk,lµ
2n−ek−el
i+j−ek−el

(Ãk,l, [0, 1]d)

−βk,lµ2n−ek−el
i+j−ek

(Ãk,l, [0, 1]d)− γk,lµ2n−ek−el
i+j−el

(Ãk,l, [0, 1]d) + δk,lµ
2n−ek−el
i+j (Ãk,l, [0, 1]d)],

(5.2.5)

where the coefficients are given as

αk,l = 2nikjl
(ik+jk)(il+jl)

βk,l = 2nik(n−jl)
(ik+jk)(2n−il−jl)

γk,l = 2n(n−ik)jl
(2n−ik−jk)(il+jl)

δk,l = 2n(n−ik)(n−jl)
(2n−ik−jk)(2n−il−jl)

,

if k 6= l, and

αk,k = (2n−1)ikjk
(ik+jk)(ik+jk−1)

βk,k = (2n−1)ik(n−jk)
(ik+jk)(2n−ik−jk)

γk,k = (2n−1)(n−ik)jk
(2n−ik−jk)(ik+jk)

δk,k = (2n−1)(n−ik)(n−jk)
(2n−ik−jk)(2n−ik−jk−1)

.
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The algorithm for evaluating the stiffness matrix is given as follows.

Algorithm 4: GetStiff(FK)

Data: The array FK stores the values of the vector valued function Ã at

the quadrature points with FK
k,l;j = Ãk,l(ςj).

Result: The matrix S is the stiffness matrix.

for (i, j) ∈ I × I do

1 σ(i, j) = κ(i, j) ∗ κ(n− i, n− j)/κ(n, n)

for (k, l) ∈ {1, . . . , d} × {1, . . . , d} do

2 L = Moment(FK
k,l, 2n− ek − el, q)

if k 6= l then

for i = (i1, . . . , id) ∈ I × . . .× I do

for j = (j1, . . . , jd) ∈ I × . . .× I do

α = 2 ∗ n ∗ ik ∗ jl/(ik + jk)/(il + jl)

β = 2 ∗ n ∗ ik ∗ (n− jl)/(ik + jk)/(2n− il − jl)

γ = 2 ∗ n ∗ (n− ik)jl/(2n− ik − jk)/(il + jl)

δ = 2 ∗ n ∗ (n− ik) ∗ (n− jl)/(2n− ik − jk)/(2n− il − jl)

Si,j = Si,j + 2 ∗ n ∗ σi1,j1 . . .σid,jd ∗ [α ∗Li+j−ek−el − β ∗

Li+j−ek − γ ∗Li+j−el + δ ∗Li+j ]

else

for (i1, . . . , id) ∈ I × . . .× I do

for (j1, . . . , jd) ∈ I × . . .× I do

α = (2 ∗ n− 1) ∗ ik ∗ jl/(ik + jk)/(il + jl − 1)

β = (2 ∗ n− 1) ∗ ik ∗ (n− jl)/(ik + jk)/(2n− il − jl)

γ = (2 ∗ n− 1) ∗ (n− ik)jl/(2n− ik − jk)/(il + jl)

δ = (2∗n−1)∗ (n− ik)∗ (n−jl)/(2n− ik−jk)/(2n− il−jl−1)

Si,j = Si,j + 2 ∗ n ∗ σi1,j1 . . .σid,jd ∗ [α ∗Li+j−ek−el − β ∗

Li+j−ek − γ ∗Li+j−el + δ ∗Li+j ]

Theorem 5.3. Given the value of the vector-valued function Ã at quadrature
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points, Algorithm 4 generate the stiffness matrix in O(n2d) operations for d = 2, 3.

Proof. The statements in Line 1 and 2 cost O(n2) and O(nd+1) operations, respec-

tively. For the case when k 6= l, there are totally q2d layers of loops and each of the

operations in the innermost loops cost O(1). Since q = O(n), the cost is O(n2d).

For the case when k = l, a similar analysis gives the same estimation. Hence, the

overall cost of operations is O(n2d).

5.3 Experiments Results

5.3.1 Computation Times

In this part, we test the cost of the algorithms by comparing their CPU compu-

tation times. The algorithms are coded in C++, which follow the ideas of the

Library BBFEM [1] and are contributed as a part of the Library. Samples of the

code are given in Appendix A.2. The computations are performed on a Dell Opti-

plex 790 workstation with Intel Core i5-2400 3.10GHz processor and 7.6 GB RAM

using C++ and the gcc compiler. Each of the following tests is conducted for both

quadrilateral and hexahedron cases.
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5.3.1.1 With/Without Precomputed Data
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Figure 5.1: CPU computation time for constructing the moments with or without

precomputed values of the basis at quadrature nodes.

The test compares the of cost of Algorithm 1 and the algorithm using the precom-

puted basis values at the quadrature points as discussed in Section 5.2.1.

We do the log-log plot of the CPU computation times against the degrees of

Bernstein polynomials n for the two algorithms. A curve of Cnd+1 is also included

for comparison, where d = 2 corresponds to quadrilateral case and d = 3 to

hexahedron case.

Figure 5.1 shows the results for both quadrilateral and hexahedron cases. For

small n, the algorithm without precomputed values takes lower computation times,

but when n is large the two lines overlap and increase at rate of Cnd+1, which means

the difference between costs is negligible for high degree Bernstein moments.
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5.3.1.2 Mass and Stiffness Matrices
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Figure 5.2: CPU computation time for constructing mass and stiffness matrix.

The test aims at checking the cost of generating mass and stiffness matrices using

Algorithm 3 and 4, respectively.

Analogously to the previous test, the CPU computation time is plotted against

Bernstein polynomial degree n. As shown in Figure 5.2, with the growth of the

degree n, the two computation times increase at the same rate of Cn2d, although

more time for the stiffness matrix case is required than the mass case. Hence,

algorithms for both stiffness and mass matrices achieve the optimality complexity

O(n2d).

5.3.2 Errors of BBFEM Approximation

These experiments check whether the load vector, mass matrix and stiffness matrix

in Algorithm 1, 3, and 4, are correctly constructed, by solving specific problems of

the form (5.1.8) using Bernstein-Bézier Spline FEM, and observing the behaviour

of the error with the growth of the polynomial degree n. The relative error is
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Table 5.1: Error of FEM on quadrilateral

Quadrilateral Ordinary Hexahedron Non-Ordinary Hex.

n Error Cond. No. Error Cond. No. Error Cond. No.

2 8.8 ×10−1 1 2.1 1 5.5×10−2 1

3 6.1 ×10−1 1× 10 3.6 ×10−1 3.6× 10 2.4 ×10−2 8.7× 10

4 2.4×10−1 1.4× 102 6.1×10−2 3.2× 103 6.2×10−3 6.1× 104

5 2.4×10−2 1.1× 103 2.0×10−3 3.7× 105 1.0×10−4 3.9× 106

6 3.2×10−3 1.6× 104 9.1×10−4 2.9× 107 2.1×10−4 2.6× 108

7 9.3×10−4 2.4× 105 7.3×10−6 2.5× 109 1.1×10−6 1.6× 1010

8 9.5×10−5 1.1× 107 2.3×10−7 1.4× 1011 8.8×10−7 1.0× 1012

9 3.2×10−6 8.6× 107 6.3×10−9 1.2× 1013 9.6×10−9 5.9× 1013

10 4.0×10−8 5.3× 109 8.7×10−10 7.7× 1014 1.6×10−9 5.3× 1015

11 3.3×10−9 2.9× 1010 1.0×10−8 4.2× 1016 3.1×10−9 2.0× 1017

12 3.1×10−9 1.4× 1012 2.7×10−8 4.8× 1017 7.1×10−10 3.3× 1017

13 4.5×10−8 8.2× 1011 5.4×10−8 1.4× 1017 3.0×10−8 2.1× 1018

14 3.1×10−7 7.1× 1013 1.2×10−8 9.8× 1017 3.9×10−9 3.1× 1018

15 7.2×10−7 1.9× 1015 1.1×10−5 1.4× 1019 3.2×10−8 8.1× 1018
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given by ‖~u − ~uh‖2/‖~u‖2, where ~u is the value of true solution at certain points

and ~uh is the vector of the approximations values at the corresponding points.

For simplicity, the problem is studied on a single element domain with Dirichlet

boundary conditions. When d = 2, we choose the domain to be a quadrilateral,

and when d = 3, we are interested in two cases where the domain is ordinary and

non-ordinary hexahedrons, where non-ordinary hexahedrons are hexahedrons with

non-flat faces as explained in Section 5.1.1.3. The linear systems arising in FEM

are solved using LU factorization method in C++ package GMM.

Table 5.2: Vertices of the domains

Quadrilateral Ordinary Hexahedron Non-Ordinary Hex.

(2,2) (0, 0, 0), (10
20

,40
20

, −70
20

) (0, 0, 0), (1, 0, 0)

(5,1) (13
20

,39
20

,−61
20

),( 3
20

, −1
20

, 9
20

) (1, 1, 0), (0, 1, 0)

(3,4) (−3
20

, 6
20

, 9
20

), (−2
20

,10
20

, 2
20

) (0, 0, 5), (1, 0, 1)

(4,5) ( 1
20

, 9
20

, 11
20

), (0, 5
20

,18
20

) (1,1, 1), (0, 1, 1)

Table 5.2 shows the vertices of the three domains. The relative errors of the

approximation using the methods with various degrees of the splines are listed in

Table 5.1. The condition numbers of the linear system involved in the FEM for

each case are also included. It is observed from the table that the error converges

when the degree n is lower than 10, but as n grows higher, the error starts to

diverge. On the other hand, the condition numbers are very large at this phase

and keeps increasing as n raises. This suggests the divergence of the error is caused

by the inaccuracy when solving the linear system in FEM caused by high condition

numbers. Hence, the error behaviours are consistent with the assumption that the

element matrices are constructed correctly.
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Conclusion and Future Work

6.1 Conclusion

We began by considering B-spline interpolation of smooth functions. To study

the performance of the approximation as the degree and smoothness grow, we

derived an error estimate measured in a semi-norm which is explicit in the mesh

size h, degree p and order of semi-norm k. Making use of the result of [34], which

is an estimate in supremum norm of cardinal spline interpolation, we derived an

estimate for periodic functions in the L2 norm in Theorem 2.4. Using the Kol-

mogorov inequality and the best approximation property derived in Lemma 2.5,

the estimation was extended to the semi-norm case in Theorem 2.6. This result

then implies an estimate for tensor product B-spline interpolation of multivari-

ate functions in Theorem 2.14. Finally, in Theorem 2.17 and Theorem 2.19, we

removed the periodic constraint, and generated estimates for smooth functions

in both univariate and multivariate cases. As shown in the Corollary 2.15 and

2.20, the error converges algebraically in term of the mesh size h, and for function

satisfying the assumptions of the corollary the error converges exponentially. To

confirm the sharpness of the convergence rate in our estimates, we checked the

convergence numerically.

Equipped with the results for B-spline interpolation, we studied B-spline FEM

127
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approximation in the setting of heat equations and wave equations with each of

the two kinds of boundary conditions (periodic and Dirichlet). As in our study

of interpolation, we were interested in accuracy when the degree of the B-spline

increases, which is referred to as k-refinement in some literature [45]. Following

the standard approach of error analysis of Galerkin methods in [87, 56], we derived

error estimates of the semi-discrete schemes for the heat equation in Theorem 3.5

and 3.14, and estimates of the full scheme in Theorem 3.11 and 3.17 for periodic and

Dirichlet cases, respectively. For the wave equation, we gave the estimates of the

semi-discrete schemes in Theorem 4.3 and 4.7, and the full scheme in Theorem 4.5

and 4.9 for periodic and Dirichlet cases, respectively. Under certain assumptions

about the equation, as the degree of B-spline increases, the approximation error

of spatial variable is shown to converge exponentially in Corollary 3.6 and 3.15 for

the heat equation, and in Corollary 4.4 and 4.8 for the wave equation, respectively.

In all the cases, numerical results were found to agree with the theory.

Furthermore, in the periodic case, where periodic B-splines are employed as

a basis, we showed that the scheme can be implemented efficiently using the fast

Fourier transform for each time step in O(dNdlog(N)). We studied the stability

of the schemes in this case, which led us to prove a Markov-type inequality for

periodic B-spline in Theorem 3.7. The inequality gives the sharpest coefficient

when there are even mesh numbers, as shown in Lemma 3.8. In the odd case, we

give an expression which is conjectured to be the sharpest coefficient. Numerical

experiments supported this conjuncture. Our analysis implies that as the degree

increases, the coefficient decreases and converges to a constant. We conclude

that when the degree increases the stability does not deteriorate, but gets slightly

better.

We developed algorithms for constructing the element matrices in the finite

element space of Bernstein-Bézier splines on quadrilaterals and hexahedrons in

the optimal complexity O(n2d). Algorithms for evaluating Bernstein polynomial

moments are developed in Algorithm 1 by making use of the sum factorization
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procedure based on the tensor product structure of the basis, which costs O(nd+1)

operations. Relying on the relation of the element matrices with the moment,

the algorithms for evaluating the element matrices M , S, and L in the Bernstein-

Bézier spline finite element method were developed in Algorithm 3 and 4. The cost

of these two algorithms achieves the optimal complexity O(n2d). The load vector

is evaluated directly by Algorithm 1 with the cost of O(nd+1). The algorithms

were programmed in C++ where the code become a part of the C++ Library

bbfem [1]. The result of numerical simulation in benchmark problems agreed with

the predicted accuracy of the finite elements. The tests considering the cost of the

algorithm also showed that optimality is achieved.

6.2 Future Work

Some further works are list as follows:

• All the estimates for the B-spline approximation require the degree to be

odd. The even degree case is still due to be studied.

• The B-splines considered are defined on a uniform mesh. It would be worth-

while to generalize to non-uniform meshes.

• We considered the spline of maximum smoothness, that is, the B-spine of

degree p and with smoothness Cp−1. It would be interesting to explore the

case where the smoothness is Cp−s, 1 ≤ s ≤ p, although the case when 2s ≤ p

is already studied in [22].

• We only investigated the periodic case of the stability of the scheme, but the

non-periodic case is also interesting to try.

• For the algorithms of Bernstein-Bézier splines finite elements methods, as

shown in Table 5.1, the numerical method gets less accurate for high degrees

because of the high condition number of the linear system. To fully make
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use of the optimal ratio for a high degree, it would be beneficial to study

preconditioning techniques for solvers of the system.
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Programming Codes

The appendix lists a small sample of the codes that were used in the computational

experiments.

A.1 B-spline FEM for the Heat Equation(Periodic

Case)

In this section we include some sample codes in Matlab for B-spline FEM.

A.1.1 Value Evaluation of Spline Function

Given a degree, knots vector and coefficients of a spline function express as a

B-spline, the following function evaluates its value at a point.

function [ opt ] =curvepo int (p , knots , cof , x , nok )

l o c=locspan (x , knots , nok ) ;

N=a l l B a s i s (x , p , knots , l o c ) ;

opt =0;

for i =0:p ,

opt=opt+N( i +1)∗ co f ( loc−p+i ) ;

end
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end

The following function finds the interval where the point of interest is located.

function [ pos ] = locspan (x , knots , Nok)

high=Nok ;

low=1;

mid=f loor ( ( high+low ) / 2 ) ;

while (x<knots (mid ) | | x>=knots (mid+1))

i f x<knots (mid ) ,

high=mid ;

else

low=mid+1;

end

mid=f loor ( ( high+low ) / 2 ) ;

end

pos=mid ;

end

The following function gives values of all the B-splines whose supports include the

sub-interval.

function [N] = a l l B a s i s (x , p , knots , l o c )

N=1:(p+1);

l e f t =1:(p+1);

r i g h t =1:(p+1);

N(1+0)=1;

for j =1:p ,

l e f t ( j )=x−knots ( loc−j +1);

r i g h t ( j )=knots ( l o c+j )−x ;

saved =0;

for r =0: j −1,
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temp=N( r +1)/( r i g h t ( r+1)+ l e f t ( j−r ) ) ;

N( r+1)=saved+r i g h t ( r +1)∗temp ;

saved=l e f t ( j−r )∗ temp ;

end

N( j+1)=saved ;

end

end

The following function evaluates the value of a periodic spline.

function [Y]= PerSplnVec (p , Nod , cof ,X)

%Evaluate v a l u e s o f p e r i o d i c s p l i n e .

NoK=length (Nod ) ;

Lf t=Nod ( 1 ) ;

Rht=Nod(end ) ;

co fhat=zeros (1 ,NoK+p−1);

for i =1:p ,

co fhat ( i )= co f (NoK−p+i −1);

end

for i =1:NoK−1,

co fhat ( i+p)= co f ( i ) ;

end

msize=(Rht−Lft )/ (NoK−1);

Nodhat=zeros (1 ,NoK+2∗p ) ;

Nodhat (p+1:p+NoK)=Nod ;

for i =1:p ,

Nodhat ( i )=Lft−p∗msize+( i −1)∗msize ;

Nodhat (NoK+p+i )=Rht+i ∗msize ;

end

Nodhat (p+1:p+NoK)=Nod ;
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NoK=NoK+2∗p ;

Y=zeros ( s ize (X) ) ;

for i =1: length (X)

x=X( i ) ;

i f (X( i )==Rht )

x=Lft ;

end

Y( i )=curvepo int (p , Nodhat , cofhat , x ,NoK) ;

end

end

A.1.2 Interpolation

The following function gives the coefficients for interpolation.

function [ teA , Vcoef , IntPnt ] = GivePerIntp1D . . .

( p , lenth , msize , Nod , Fun)

%%The f u n c t i o n g i v e the c o e f . o f Per iod ic i n t e p r o l a t i o n

%% The v a l u e o f i n t e r p o l a t e d f u n c t i o n .

IntPnt=zeros ( lenth , 1 ) ;

Pnt=zeros ( lenth , 1 ) ;

i f mod(p+1,2)==0,

for i =1: lenth ,

IntPnt ( i )=Nod( i ) ;

end

else

for i =1: lenth ,

IntPnt ( i )=Nod( i )+msize /2 ;

end

end
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for i =1: lenth ,

Pnt ( i )=Fun( IntPnt ( i ) ) ;

end

%% The matrix .

Cof=zeros (1 , l en th ) ;

Cof (1)=1;

Vcoef=PerSplnVec (p , Nod , Cof , IntPnt ) ;

%% Solve the l i n e a r system

teA= i f f t ( f f t ( Pnt ) . / f f t ( Vcoef ) ) ;

end

A.1.3 Mass Matrix

This function returns the mass matrix of the periodic B-spline scheme.

function [ Vmass ] = MassMtxPer1D( p , Nod , msize , l en th )

%Give the mass matrix .

Cof=zeros (1 , l en th ) ;

Cof ( lenth−p)=1;

IntPnt=Nod ( 1 : end−1);

IntPnt=reshape ( IntPnt , [ length ( IntPnt ) , 1 ] ) ;

Vmass=msize∗PerSplnVec (2∗p+1, Nod , Cof , IntPnt ) ;

end

A.1.4 Stiffness Matrix

This function returns the stiffness matrix of the periodic B-spline scheme.

function [ V s t i f f ]= Stif fMtxPer1D ( p , Nod , msize , l en th )

%Give the s t i f f n e s s matrix

Cof=zeros (1 , l en th ) ;
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Cof ( lenth−p+1)=1;

IntPnt=Nod ( 1 : end−1);

IntPnt=reshape ( IntPnt , [ length ( IntPnt ) , 1 ] ) ;

V s t i f f =2∗PerSplnVec (2∗p−1, Nod , Cof , IntPnt ) ;

Cof=zeros (1 , l en th ) ;

Cof ( lenth−p)=1;

V s t i f f=V s t i f f−PerSplnVec (2∗p−1, Nod , Cof , IntPnt ) ;

Cof=zeros (1 , l en th ) ;

Cof ( lenth−p+2)=1;

V s t i f f=V s t i f f−PerSplnVec (2∗p−1, Nod , Cof , IntPnt ) ;

V s t i f f=V s t i f f / msize ;

end

A.1.5 Full Scheme

This following routine implements the B-spline finite element method for solving

the heat equation.

clear

clc

Lft =0;Rht=1;

p=5;NoK=61;NoE=NoK−1;

TimeEnd=0.01;TimeNo=800;

theta =0.9 ; %The t h e t a in t h e t a scheme .

FunInt=@( x ) FunTruSoln (x , 0 ) ;

%%FunInt i s the f u n c t i o n o f i n i t i a l v a l u e .

%FunTruSoln i s the f u n c t i o n o f t r u e s o l u t i o n .

Frhs=@FRhsHt ;

%%FRhsHt i s the f u n c t i o n o f Nonhomogeneous term .

%% Give nodes
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MeshSize=(Rht−Lft )/NoE;

Nod=zeros (1 ,NoK) ;

for i =1:NoK,

Nod( i )=Lft+( i −1)∗MeshSize ;

end

%% Construct the matr ices

[ teA , Vcoef , IntPnt ]=GivePerIntp1D ( p ,NoE, MeshSize , Nod , FunInt ) ;

Vmass=MassMtxPer1D( p , Nod , MeshSize ,NoE ) ;

V s t i f f=Stif fMtxPer1D ( p , Nod , MeshSize , NoE ) ;

%% Apply the t h e t a scheme

Alph=TheteSchemePer ( theta , teA , TimeEnd , TimeNo , . . .

Vmass , V s t i f f , Vcoef , IntPnt , Frhs ) ;

%% Do p l o t s and c a l c u l a t e error

Npts =7513;

Px=linspace ( Lft , Rht , Npts ) ;

Py=PerSplnVec (p , Nod , Alph , Px ) ;

Pz=arrayfun (@( x ) FunTruSoln (x , TimeEnd ) ,Px ) ;

plot (Px , Py , Px , Pz , ’−−r ’ )

Err=norm(Py−Pz , 2 )

RelErr = Err/norm(Pz)∗100

A.2 Bernstein-Bézier Spline Finite Elements

(Hexahedron case)

The section gives examples of C++ codes for evaluating Bernstein-Bézier element

matrices on hexahedrons, as described in Section 5.2. For other functions in the

Library, the reader may see [1].
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A.2.1 Moments

The following function gives the Bernstein polynomial moments stored in MLoad.

Degx, Degy, and Degz specify the degree of the polynomial. Num Abs, Abs, and Wgt

give the number of quadrature nodes, the quadrature nodes and the correspond-

ing weights. Val Abs assigns the value of the function f in Section 5.2.1 at the

quadrature nodes.

void

Get TP moment ( int Degx , int Degy , int Degz , double ∗∗∗MLoad ,

int Num Abs , double ∗∗∗Val Abs , double ∗Abs , double ∗Wgt)

{

double ∗∗∗MF, ∗∗∗MS, TmpAbs, TmpWgt, TmpRat ;

// Create a 3D array .

MF=c r t a r y 3 (Num Abs+1, Num Abs+1, Degz +1);

for ( int Jx = 1 ; Jx<= Num Abs ; Jx++)

{

for ( int Jy = 1 ; Jy<= Num Abs ; Jy++)

{

for ( int I z = 0 ; Iz<= Degz ; I z++)

{

MF[ Jx ] [ Jy ] [ I z ]=0;

}

}

}

// Eva luate Fˆ1 in ( 5 . 2 . 3 )

for ( int Jz = 1 ; Jz<= Num Abs ; Jz++)

{

TmpAbs=Abs [ Jz ] ;

TmpWgt=Wgt [ Jz ] ;
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TmpWgt=TmpWgt∗pow(1−TmpAbs, Degz ) ;

TmpRat=TmpAbs/(1−TmpAbs ) ;

for ( int I z = 0 ; Iz<= Degz ; I z++)

{

for ( int Jx = 1 ; Jx<= Num Abs ; Jx++)

{

for ( int Jy = 1 ; Jy<= Num Abs ; Jy++)

{

MF[ Jx ] [ Jy ] [ I z ]+=(Val Abs [ Jx ] [ Jy ] [ Jz ]∗TmpWgt) ;

}

}

TmpWgt∗=(TmpRat∗( Degz−I z )/ ( I z +1)) ;

}

}

MS=c r t a r y 3 (Num Abs+1, Degy+1, Degz +1);

for ( int Iy = 0 ; Iy<= Degy ; Iy++)

{

for ( int Jx = 1 ; Jx<= Num Abs ; Jx++)

{

for ( int I z = 0 ; Iz<= Degz ; I z++)

{

MS[ Jx ] [ Iy ] [ I z ]=0;

}

}

}

// Eva luate Fˆ2 in ( 5 . 2 . 3 )

for ( int Jy = 1 ; Jy<= Num Abs ; Jy++)
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{

TmpAbs=Abs [ Jy ] ;

TmpWgt=Wgt [ Jy ] ;

TmpWgt=TmpWgt∗pow(1−TmpAbs, Degy ) ;

TmpRat=TmpAbs/(1−TmpAbs ) ;

for ( int Iy = 0 ; Iy<= Degy ; Iy++)

{

for ( int Jx = 1 ; Jx<= Num Abs ; Jx++)

{

for ( int I z = 0 ; Iz<= Degz ; I z++)

{

MS[ Jx ] [ Iy ] [ I z ]+=(MF[ Jx ] [ Jy ] [ I z ]∗TmpWgt) ;

}

}

TmpWgt∗=(TmpRat∗(Degy−Iy )/ ( Iy +1)) ;

}

}

for ( int Ix = 0 ; Ix<= Degx ; Ix++)

{

for ( int Iy = 0 ; Iy<= Degy ; Iy++)

{

for ( int I z = 0 ; Iz<= Degz ; I z++)

{

MLoad [ Ix ] [ Iy ] [ I z ]=0;

}

}

}

// Eva luate the moments , which are s t o r e d in the array MLoad .
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for ( int Jx = 1 ; Jx<= Num Abs ; Jx++)

{

TmpAbs=Abs [ Jx ] ;

TmpWgt=Wgt [ Jx ] ;

TmpWgt=TmpWgt∗pow(1−TmpAbs, Degx ) ;

TmpRat=TmpAbs/(1−TmpAbs ) ;

for ( int Ix = 0 ; Ix<= Degx ; Ix++)

{

for ( int Iy = 0 ; Iy<= Degy ; Iy++)

{

for ( int I z = 0 ; Iz<= Degz ; I z++)

{

MLoad [ Ix ] [ Iy ] [ I z ]+=(MS[ Jx ] [ Iy ] [ I z ]∗TmpWgt) ;

}

}

TmpWgt∗=(TmpRat∗(Degx−Ix )/ ( Ix +1)) ;

}

}

}

A.2.2 Load Vectors

The following function returns the load vector, which is stored in MLoad. Vertices

of the hexahedron are specified by Vertex. Degx, Degy, and Degz assign the degree

of the shape function. Num Abs gives the number of the quadrature nodes.

double

LodVecHex (double ∗∗∗∗Vertex , int Degx , int Degy , int Degz ,

double ∗∗∗MLoad , int Num Abs)
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{

double ∗∗∗Val Abs , ∗Abs , ∗Wgt ;

Abs=new double [ Num Abs+1] ;

Wgt=new double [ Num Abs+1] ;

// Create 3d array

Val Abs=c r t a r y 3 (Num Abs+1, Num Abs+1, Num Abs+1);

// C a l c u l a t e quadrature p o i n t s

GauJac 0 1 (Num Abs , 0 , 0 , Abs ,Wgt ) ;

for ( int i= 1 ; i <=Num Abs ; i++)

{

for ( int j= 1 ; j <=Num Abs ; j++)

{

for ( int k= 1 ; k <=Num Abs ; k++)

{

// Eva luate v a l u e s at quadrature p o i n t s o f

// transformed f u n c t i o n in ( 5 . 2 . 3 )

Val Abs [ i ] [ j ] [ k]=FunLodTran ( Vertex , Abs [ i ] , Abs [ j ] , Abs [ k ] ) ;

}

}

}

// C a l c u l a t e the load v e c t o r us ing ( 5 . 2 . 3 )

Get TP moment (Degx , Degy , Degz , MLoad ,

Num Abs , Val Abs , Abs , Wgt ) ;

}

A.2.3 Mass Matrix

The following function returns the mass matrix stored in Mat mass. The roles of the

other parameters are the same as in the function for the load vector, LodVecHex.
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void

MassMtrHex (double ∗∗∗∗Vertex , int Degx , int Degy ,

int Degz , double ∗∗Mat mass , int Num Abs)

{

double pdt , ∗∗binomialMatx , ∗∗binomialMaty ,

∗∗binomialMatz , ∗∗∗MLoad , ∗Abs , ∗Wgt, ∗∗∗Val Abs ;

Abs=new double [ Num Abs+1] ;

Wgt=new double [ Num Abs+1] ;

MLoad=c r t a r y 3 (2∗Degx+1, 2∗Degy+1, 2∗Degz +1);

Val Abs=c r t a r y 3 (Num Abs+1, Num Abs+1, Num Abs+1);

// Create 2d arrays .

binomialMatx=create BinomialMat (2∗Degx+1);

binomialMaty=create BinomialMat (2∗Degy+1);

binomialMatz=create BinomialMat (2∗Degz +1);

// Eva luate b inomia l c o e f f i c i e n t s which are s t o r e d in the arrays

computeBinomials ( binomialMatx , 2∗Degx+1);

computeBinomials ( binomialMaty , 2∗Degy+1);

computeBinomials ( binomialMatz , 2∗Degz +1);

GauJac 0 1 ( Num Abs , 0 , 0 , Abs ,Wgt ) ;

for ( int i= 1 ; i <=Num Abs ; i++)

{

for ( int j= 1 ; j <=Num Abs ; j++)

{

for ( int k= 1 ; k <=Num Abs ; k++)

{

// Eva luate v a l u e s at the quadrature p o i n t s o f the transformed

// f u n c t i o n in ( 5 . 2 . 4 )

Val Abs [ i ] [ j ] [ k]=FunMassTran ( Vertex , Abs [ i ] , Abs [ j ] , Abs [ k ] ) ;
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}

}

}

// C a l c u l a t e the moments o f the transformed f u n c t i o n

Get TP moment (2∗Degx , 2∗Degy , 2∗Degz , MLoad ,

Num Abs , Val Abs , Abs , Wgt ) ;

// Eva luate the mass matrix us ing ( 5 . 2 . 4 )

for ( int I 1 = 0 ; I 1<= Degx ; I 1++)

{

for ( int J 1 = 0 ; J 1<= Degy ; J 1++)

{

for ( int K 1 = 0 ; K 1<= Degz ; K 1++)

{

for ( int I 2 = 0 ; I 2<= Degx ; I 2++)

{

for ( int J 2 = 0 ; J 2<= Degy ; J 2++)

{

for ( int K 2 = 0 ; K 2<= Degz ; K 2++)

{

pdt=MLoad [ I 1+I 2 ] [ J 1+J 2 ] [ K 1+K 2 ] ;

pdt∗=binomialMatx [ I 1 ] [ I 2 ] ;

pdt∗=binomialMatx [ Degx−I 2 ] [ Degx−I 1 ] ;

pdt/=binomialMatx [ Degx ] [ Degx ] ;

pdt∗=binomialMaty [ J 1 ] [ J 2 ] ;

pdt∗=binomialMaty [ Degy−J 2 ] [ Degy−J 1 ] ;

pdt/=binomialMaty [ Degy ] [ Degy ] ;

pdt∗=binomialMatz [ K 1 ] [ K 2 ] ;

pdt∗=binomialMatz [ Degz−K 2 ] [ Degz−K 1 ] ;

pdt/=binomialMatz [ Degz ] [ Degz ] ;
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Mat mass [ I 1 ∗(Degy+1)∗(Degz+1)+J 1∗

( Degz+1)+K 1 ] [ I 2 ∗(Degy+1)∗(Degz+1)+J 2 ∗( Degz+1)+K 2]=pdt ;

}

A.2.4 Stiffness Matrix

The following function returns the mass matrix stored in Mat stiff. The roles of

the other parameters are the same as in the function for the load vector, LodVecHex.

void

Sti f fMtrHex (double ∗∗∗∗Vertex , int Degx , int Degy , int Degz ,

double ∗∗M a t s t i f f , int Num Abs)

{

for ( int I 1 = 0 ; I 1<= Degx ; I 1++)

{

for ( int I 2 = 0 ; I 2<= Degy ; I 2++)

{

for ( int I 3 = 0 ; I 3<= Degz ; I 3++)

{

for ( int J 1 = 0 ; J 1<= Degx ; J 1++)

{

for ( int J 2 = 0 ; J 2<= Degy ; J 2++)

{

for ( int J 3 = 0 ; J 3<= Degz ; J 3++)

{

M a t s t i f f [ I 1 ∗(Degy+1)∗(Degz+1)+I 2 ∗

( Degz+1)+I 3 ] [ J 1 ∗(Degy+1)∗(Degz+1)+J 2 ∗( Degz+1)+J 3 ]=0;

}

}
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}

}

}

}

int d [ 2 ] [ 3 ] [ 3 ]={{{0 , 0 , 0} ,{0 , 0 , 0} ,{0 , 0 , 0}} ,{{1 , 0 , 0} ,

{0 ,1 ,0} ,{0 ,0 ,1}}} , c [ 3 ] ;

c [0 ]= Degx ; c [1 ]= Degy ; c [2 ]= Degz ;

double ∗∗binomialMatx , ∗∗binomialMaty , ∗∗binomialMatz ;

// Eva luate b inomia l c o e f .

binomialMatx=create BinomialMat (2∗Degx+3);

binomialMaty=create BinomialMat (2∗Degy+3);

binomialMatz=create BinomialMat (2∗Degz +3);

double ∗∗∗Tem, ∗∗∗Mom, ∗Abs , ∗Wgt,∗∗∗Val Abs ,

∗∗∗∗MStifAbs ;

Tem=c r t a r y 3 (2∗Degx+5, 2∗Degy+5, 2∗Degz +5);

Mom=c r t a r y 3 (2∗Degx+1, 2∗Degy+1, 2∗Degz +1);

Val Abs=c r t a r y 3 (Num Abs+1, Num Abs+1, Num Abs+1);

//4d array

MStifAbs=c r t a r y 4 (9 , Num Abs+1, Num Abs+1, Num Abs+1);

Abs=new double [ Num Abs+1] ;

Wgt=new double [ Num Abs+1] ;

// Eva luate quadrature p o i n t s

GauJac 0 1 ( Num Abs , 0 , 0 , Abs ,Wgt ) ;

// Find v a l u e s o f the transformed f u n c t i o n s

// in Sec t ion ( 5 . 2 . 4 ) at the quadrature p o i n t s

Fst i fTran (Abs , MStifAbs , Vertex , Num Abs ) ;

int mt , nt , rt , mb, nb , rb , I t 1 , I t 2 , I t 3 ,

Jt 1 , Jt 2 , J t 3 ;

for ( int i =0; i <3; i++)
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{

mt=Degx−d [ 1 ] [ i ] [ 0 ] ;

nt=Degy−d [ 1 ] [ i ] [ 1 ] ;

r t=Degz−d [ 1 ] [ i ] [ 2 ] ;

for ( int j =0; j <3; j++)

{

mb=Degx−d [ 1 ] [ j ] [ 0 ] ;

nb=Degy−d [ 1 ] [ j ] [ 1 ] ;

rb=Degz−d [ 1 ] [ j ] [ 2 ] ;

for ( int v= 0 ; v <2∗Degx+3; v++)

{

for ( int w= 0 ; w <2∗Degx+3; w++)

{

binomialMatx [ v ] [ w]=0;

}

}

for ( int v= 0 ; v <2∗Degy+3; v++)

{

for ( int w= 0 ; w <2∗Degy+3; w++)

{

binomialMaty [ v ] [ w]=0;

}

}

for ( int v= 0 ; v <2∗Degz+3; v++)

{

for ( int w= 0 ; w <2∗Degz+3; w++)

{

binomialMatz [ v ] [ w]=0;

}
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}

computeBinomials ( binomialMatx , mt+mb+1);

computeBinomials ( binomialMaty , nt+nb+1);

computeBinomials ( binomialMatz , r t+rb +1);

// Transform matrix so t h a t i t g i v e s 0

//when e n t r i e s wi th n e g a t i v e index c a l l e d

Rearng binomial (1 , 1 , binomialMatx , mt+mb+1,

mt+mb+1, 2∗Degx+3, 2∗Degx+3);

Rearng binomial (1 , 1 , binomialMaty , nt+nb+1,

nt+nb+1, 2∗Degy+3, 2∗Degy+3);

Rearng binomial (1 , 1 , binomialMatz , r t+rb+1,

r t+rb+1, 2∗Degz+3, 2∗Degz +3);

for ( int u= 1 ; u <=Num Abs ; u++)

{

for ( int v= 1 ; v <=Num Abs ; v++)

{

for ( int w= 1 ; w <=Num Abs ; w++)

{

Val Abs [ u ] [ v ] [ w]=MStifAbs [3∗ i+j ] [ u ] [ v ] [ w ] ;

}

}

}

for ( int u= 0 ; u <2∗Degx+1; u++)

{

for ( int v= 0 ; v <2∗Degy+1; v++)

{

for ( int w= 0 ; w <2∗Degz+1; w++)

{

Mom[ u ] [ v ] [ w]=0;
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}

}

}

// Eva luate each moments needed in

// the formula in Sec t ion ( 5 . 2 . 5 )

Get TP moment (mt+mb, nt+nb , r t+rb , Mom,

Num Abs , Val Abs , Abs , Wgt ) ;

for ( int u=0;u<2∗Degx+5;u++)

{

for ( int v=0;v<2∗Degy+5;v++)

{

for ( int w=0;w<2∗Degz+5;w++)

{

Tem[ u ] [ v ] [ w]=0;

}

}

}

for ( int u=0;u<2∗Degx+1;u++)

{

for ( int v=0;v<2∗Degy+1;v++)

{

for ( int w=0;w<2∗Degz+1;w++)

{

Tem[ u+2] [ v +2] [w+2]=Mom[ u ] [ v ] [ w ] ;

}

}

}

double sgn =1;

for ( int k=0;k<2;k++)
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{

for ( int l =0; l <2; l++)

{

sgn=pow(−1 ,k+l ) ;

for ( int I 1 = 0 ; I 1<= Degx ; I 1++)

{

I t 1=I 1−d [ k ] [ i ] [ 0 ] ;

for ( int I 2 = 0 ; I 2<= Degy ; I 2++)

{

I t 2=I 2−d [ k ] [ i ] [ 1 ] ;

for ( int I 3 = 0 ; I 3<= Degz ; I 3++)

{

I t 3=I 3−d [ k ] [ i ] [ 2 ] ;

for ( int J 1 = 0 ; J 1<= Degx ; J 1++)

{

Jt 1=J 1−d [ l ] [ j ] [ 0 ] ;

for ( int J 2 = 0 ; J 2<= Degy ; J 2++)

{

Jt 2=J 2−d [ l ] [ j ] [ 1 ] ;

for ( int J 3 = 0 ; J 3<= Degz ; J 3++)

{

Jt 3=J 3−d [ l ] [ j ] [ 2 ] ;

//Add in each summand in ( 5 . 2 . 5 )

double Bio=1;

Bio∗=binomialMatx [1+mt−I t 1 ] [1+mb−Jt 1 ] ;

Bio∗=binomialMatx [1+ I t 1 ] [1+ Jt 1 ] ;

Bio/=binomialMatx [1+mt] [1+mb ] ;

Bio∗=binomialMaty [1+nt−I t 2 ] [1+nb−Jt 2 ] ;
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Bio∗=binomialMaty [1+ I t 2 ] [1+ Jt 2 ] ;

Bio/=binomialMaty [1+ nt ] [1+ nb ] ;

Bio∗=binomialMatz [1+ rt−I t 3 ] [1+ rb−Jt 3 ] ;

Bio∗=binomialMatz [1+ I t 3 ] [1+ Jt 3 ] ;

Bio/=binomialMatz [1+ r t ] [1+ rb ] ;

M a t s t i f f [ I 1 ∗(Degy+1)∗(Degz+1)+I 2 ∗

( Degz+1)+I 3 ] [ J 1 ∗(Degy+1)∗(Degz+1)+J 2∗

( Degz+1)+J 3 ]+=(sgn∗c [ i ]∗ c [ j ]∗

Tem[ I t 1+Jt 1 +2] [ I t 2+Jt 2 +2] [ I t 3+Jt 3 +2]∗Bio ) ;

}

}

}

}

}

}

}

}

}

}

}
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infs, and Optimality Ratios for the k-version of the Isogeometric Finite El-

ement Method. Computer Methods in Applied Mechanics and Engineering,

198(21):1726–1741, 2009.

[31] L. C. Evans. Partial Differential Equations. American Mathematical Society,

1998.

[32] A. Frey, C. Hall, and T. Porsching. Some Results on The Global Inversion of

Bilinear and Quadratic Isoparametric Finite Element Transformations. Math-

ematics of Computation, 32(143):725–749, 1978.
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[43] K. Höllig, U. Reif, and J. Wipper. Weighted Extended B-spline Approxima-

tion of Dirichlet Problems. SIAM Journal on Numerical Analysis, 39(2):442–

462, 2001.

[44] M. H. Holmes. Introduction to Numerical Methods in Differential Equations,

volume 52. Springer, 2007.



Appendix 157

[45] T. J. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric Analysis: CAD,

Finite Elements, NURBS, Exact Geometry and Mesh Refinement. Computer

Methods in Applied Mechanics and Engineering, 194(39):4135–4195, 2005.

[46] T. J. Hughes, A. Reali, and G. Sangalli. Duality and Unified Analysis of

Discrete Approximations in Structural Dynamics and Wave Propagation:

Comparison of p-method Finite Elements with k-method NURBS. Computer

Methods in Applied Mechanics and Engineering, 197(49):4104–4124, 2008.

[47] T. J. Hughes, A. Reali, and G. Sangalli. Efficient Quadrature for NURBS-

based Isogeometric Analysis. Computer Methods in Applied Mechanics and

Engineering, 199(5):301–313, 2010.

[48] A. Jeffrey and D. Zwillinger. Table of Integrals, Series, and Products. Table

of Integrals, Series, and Products Series. Elsevier Science, 2007.

[49] W. Jiang and J. E. Dolbow. Adaptive Refinement of Hierarchical B-spline

Finite Elements With an Efficient Data Transfer Algorithm. International

Journal for Numerical Methods in Engineering, 102(3-4):233–256, 2015.

[50] P. Kagan, A. Fischer, and P. Z. Bar-Yoseph. New B-spline Finite Element

Approach for Geometrical Design and Mechanical Analysis. International

Journal f, 41(3):435–458, 1998.

[51] G. Karniadakis and S. Sherwin. Spectral/hp Element Methods for Computa-

tional Fluid Dynamics. Oxford University Press, 2013.

[52] P. Knabner, S. Korotov, and G. Summ. Conditions for the Invertibility of the

Isoparametric Mapping for Hexahedral Finite Elements. Finite Elements In

Analysis and Design, 40(2):159–172, 2003.

[53] N. Korneichuk. Exact Constants in Approximation Theory. Cambridge Uni-

versity Press, 1991.



Appendix 158

[54] A. R. Krommer. Numerical Integration: On Advanced Computer Systems,

volume 848. Springer, 1994.

[55] M.-J. Lai and L. L. Schumaker. Spline Functions on Triangulations. Number

110. Cambridge University Press, 2007.

[56] S. Larsson and V. Thomée. Partial Differential Equations with Numerical

Methods, volume 45. Springer, 2008.

[57] A. Leung and F. Au. Spline Finite Elements for Beam and Plate. Computers

and Structures, 37(5):717–729, 1990.

[58] J. Levesley, W. Light, D. Ragozin, and X. Sun. A Simple Approach to the

Variational Theory for Interpolation on Spheres. In New Developments in

Approximation Theory, pages 117–143. Springer, 1999.
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