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Abstract

This thesis first constructs a stochastic differential equation (SDE) model of a

fjord nutrient, based on the hydrographic and chemical data collected from the

1991 field campaign implemented in Loch Linnhe. Stochastic modelling approach

is able to account for the process noise in the nutrient data. The SDE model is

first extended from a deterministic nutrient model by the parameter perturbation

scheme. To capture the annual variations in the sea-loch nutrient, the SDE model

is refined by considering the complex physical and biological processes that make

big effects on the nutrient dynamics. The model is parameterised using the least

squares approach. The goodness of fit of the SDE model is assessed by comparing

the distribution graphs and by performing statistical tests. The existence of the

environmental-type process noise in the nutrient data is illustrated by a residual

analysis for the data. Finally a simulation study is carried out to identify the

accuracy of the parameter estimation frameworks.

This thesis also studies the stochastic versions of the foraging arena predator-prey

system. The impacts of different types of environmental noise on the population

dynamics are deduced. First of all, the SDE predator-prey model is formulated

by incorporating white noise into the deterministic foraging arena system using

the parameter perturbation technique. We then prove that the SDE has a

unique global positive solution. We also study the asymptotic moment estimate

of the model solution and produce the conditions for the system to be extinct.

Furthermore the existence of a stationary distribution is pointed out under certain

parametric restrictions. Secondly of all, we take a further step of incorporating

telegraph noise and time delay to the stochastic foraging arena system. The

stochastically ultimate boundedness, extinction and the pathwise estimation of
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the population system are studied. Thirdly, we introduce white noise to more

system parameters since all of them can be influenced by the complex variability.

Namely, not only the growth rate of prey and the density-dependent mortality

rate of predator, but also the quadratic mortality rates of the two species and

the capturing rate of predator are perturbed by the stochastic noise. Then we

study how the correlations between the Brownian motions affect the long-time

properties of the system. The parametric conditions for the system to have a

stationary distribution are deduced. Numerical simulations are carried out to

substantiate the analytical results.
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Notations

a.s. : almost surely, or with probability 1.

A := B : A is defined by B or A is denoted by B.

∅ : the empty set.

IA : the indicator function of a set A, i.e. IA(x) = 1 if x ∈ A
or otherwise 0.

Ac : the complement of A in Ω, i.e. Ac = Ω− A.

σ(C) : the σ-algebra generated by C.
a ∨ b : the maximum of a and b.

a ∧ b : the minimum of a and b.

f : A→ B : the mapping f from A to B.

S : ={1, 2, · · · , N}, the finite state space of a Markov chain.

R+ : the set of all nonnegative real numbers, i.e. R+ = [0,∞).

Rd : the d-dimensional Euclidean space.

Rd
+ : ={x ∈ Rd : xi > 0, 1 6 i 6 d}, i.e. the positive cone.

Bd : the Borel-σ-algebra on Rd.

Rd×m : the space of real d×m-matrices.

|x| : the Euclidean norm of a vector x.

AT : the transpose of a vector or a matrix A.

trace(A) : the trace of a square matrix A = (aij)d×d,

i.e. trace(A) =
∑

16i6d aii.

λmin(A) : the smallest eigenvalue of a symmetric matrix A.

λmax(A) : the largest eigenvalue of a symmetric matrix A.

|A| : =
√

trace(ATA), i.e. the trace norm of a matrix A.

||A|| : = sup{|Ax| : |x| = 1} =
√
λmax(ATA), i.e. the operator norm

of a matrix A.

Vx : = (Vx1 , · · · , Vxd) = ( ∂V
∂x1
, · · · , ∂V

∂xd
).

Vxx : = (Vxixj)d×d = ( ∂2V
∂xi∂xj

)d×d.

C([−τ, 0];Rd) : the space of all continuous Rd-valued functions ϕ defined

on [−τ, 0] with a norm ||ϕ|| = sup−τ6θ60 |ϕ(θ)|.
Lp([a, b];Rd) : the family of Borel measurable functions h : [a, b]→ Rd

such that
∫ b
a
|h(t)|pdt <∞.
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Lp([a, b];Rd) : the family of Rd-valued Ft-adapted processes {f(t)}a6t6b
such that

∫ b
a
|f(t)|pdt <∞ a.s.

Mp([a, b];Rd) : the family of processes {f(t)}a6t6b in Lp([a, b];Rd)

such that E
∫ b
a
|f(t)|pdt <∞.

Lp(R+;Rd) : the family of processes {f(t)}t>0 such that for every T > 0,

{f(t)}06t6T ∈ Lp([0, T ];Rd).

Mp(R+;Rd) : the family of processes {f(t)}t>0 such that for every T > 0,

{f(t)}06t6T ∈Mp([0, T ];Rd).
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Chapter 1

Introduction

1.1 Ecological Modelling

Natural systems are complex and diverse. As the saying goes, there are no two

identical leaves in the world. To explore the underlying mechanisms and regular

rules behind the complex and unpredictable phenomenon, extensive attention has

been dedicated to the quantitative modelling of natural systems. Ecological mod-

elling, the mathematical reconstruction and analysis of the ecological dynamics,

makes use of the classical mathematical methodologies, biological theories and

the techniques from a variety of fields, including computer science and operations

research, etc. to understand the complex ecological processes and forecast the

ecosystem behaviours [50, 69,70,109,124].

In the late eighteenth century, Malthus [83] first presented basic ideas in

population science and explained the associations between the growth and

well-being of human population with the development of natural resource. In

the nineteenth century, Verhulst’s formula [126] of logistic growth was presen-

ted to describe the growth behaviours under limited resources. Later on the

introduction of the predator-prey interactions by Lotka [79] and Volttera [129]

brings a brand new dimension into the study of population ecology. Since

then the differential equation approach has become a crucial tool in population

ecology. Lindeman [77] pioneered the theory of trophic interrelations, which is

influential in modern aquatic community ecology. In 1980s, the development

2



Chapter 1 3

of object-oriented programming has provided considerable new insights into the

ecological modelling [58, 66]. For example, inspired by this technique, Kaiser [66]

pointed out the individual based models. Such model introduces more options

to synchronously reflect the uncertainties in physiological states of organisms.

At the same time the self-organization paradigm [56] was proposed, which has

been influential in ecology. Nowadays modelling has become an essential tool to

analyse the complexity in the ecological systems. Many researchers have devoted

serious efforts to the methodologies and techniques of model construction and

use in various branches of ecology (e.g. [114]). In marine ecology, Steele [115]

presented a three-dimensional model to analyse the interactions among nutrient,

phytoplankton and zooplankton in a two-layered sea. Heath et al. [53] proposed an

age-structured population model to examine how different natal fidelity scenarios

affect the cod populations in North Sea and West of Scotland. A differential

equation model was proposed to identify the impact of fishing on Kenyan coral

reefs [96]. In invasion ecology, a deterministic model was formulated to evaluate

the spread of feral rape along road verges [41, 124]. Also a two-dimensional

model was carried out to assess the invasion of grasslands by pine species [20].

In biogeochemistry, many mathematical models have been dedicated to oxygen

and nutrient cycles (e.g. [46]). Mathematical models have also been intensively

explored in other fields, including conservation biology [22], epidemiology [97],

landscape ecology [51] and genetics ecology [25], etc.

After the construction of a mathematical model, ecologists are concerned

with the reliability of the model to represent the real world. In general, the

correctness of the model can be identified based on the observed data [39, 124].

Firstly, the available measurements allow modellers to obtain the optimal

parameters which minimize the difference between the modelled data and the

observed one, rather than empirically determine the parameters based on the

expert knowledge. Then the model can be evaluated by testing whether its

numerical simulation is consistent with the data. As a result, a desirable model

can then be formulated in an iterative procedure by correcting the existing

model or constructing an alternative model and examining its numerical correct-

ness [39, 124]. These reflect that the observed data can significantly contribute
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to the model evaluation and refinements. On the other hand, ecological data

is rarely accurate and inevitably contain error. Recently, Lv [82] revealed the

weakness of the conventionally used deterministic models in representing the

inherent stochasticity in the data [73, 127]. As elaborated in [13], different types

of error in the data need to be handled by different modelling approaches to

assure the model reliability. Namely, the model performance benefits from the

ecological data, meanwhile the modelling approach employed is limited by the

type of error in the data. In the population abundance data, there are two major

types of error, observation error and process noise [4, 32]. Observation error,

including systematic error and random error, is caused by different methods used

to collect data. For example, difficulty in detecting animals due to field conditions

or harsh environmental conditions and the imperfect calibration of measurement

instruments can lead to the observation error. While process noise can be regarded

as variations in the true population abundance due to biotic factors caused by

e.g. other organisms sharing its habitat, and abiotic factors such as insolation,

weather and geology [4, 32, 50]. The extensively used deterministic models are

capable of analysing data driven by observation error but has its limitation in

accounting for process noise [82]. Lv et al. [82] emphasised the importance of

recognising the process noise in the data as it can help understand the underlying

ecological mechanisms. The results from [73] suggest that the process noise is

the most important factor in the catch-at-age data for North Sea plaice. As a

powerful tool to understand the environmental-type process noise in the data,

stochastic modelling has been receiving intensive attention [15,31,44,73,82,86].

1.2 Ecological Modelling in a Random World

A deterministic model produces a single outcome under a certain circumstance.

It describes the dynamics driven exclusively by internal deterministic mech-

anisms [69, 109]. However the natural systems are exposed to the external

environments with complex variations that cannot essentially be reflected by

the deterministic approaches. As a result there is an increasing demand of a

modelling approach to interpret such probabilistic nature. This leads to the

introduction of stochastic models which assume that the systems are partly
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driven by environmental noise [13, 50]. Compared to deterministic models, a

stochastic one predicts a set of possible outcome based on their likelihoods or

probabilities. Nowadays, stochastic models play an important role in a variety of

areas including epidemiology, biology, demography, health care systems, polymer

science, physics, telecommunication networks, economics, finance, marketing

and social networks [71]. In particular, they can be applied to account for the

variations in the biological and medical processes, evaluate the uncertainty in

the management decisions, investigate the complexity in psychological and social

interactions and develop innovative ideas and methodology to various scientific

research [121].

In the past few years, researchers have devoted serious efforts to the devel-

opment of various stochastic formulations in the ecological applications, including

discrete-time Markov chain (DTMC) models, continuous-time Markov chain

(CTMC) models and stochastic differential equation (SDE) models. In population

ecology, there is an extensive literature concerned with stochastic models. For

example, stochastic versions of the classic logistic model

dy

dt
= ry

(
1− y

K

)
have been intensively studied, including DTMC models [8], CTMC mod-

els [109] and SDE models [45]. In addition, Ackleh et al. [2] derived a

DTMC model and an SDE model to describe the dynamics of the age-

structured juvenile amphibian population coupled with the size-structured adults.

Moreover, Markov chain and SDE models have also been widely employed

to characterise the dynamical properties of the predator-prey population sys-

tems [14, 52, 62–64, 75, 76, 78, 80, 88, 89, 93–95, 119, 134, 135]. In fisheries science,

the importance of understanding and accounting for stochasticity has received

widespread attention, particularly for stock recruitment. SDE versions of the

linear growth models and von Bertalanffy growth model [130] have been formu-

lated to analyse the fish growth and recruitment [81,104]. Moreover, Gloaguen et

al. [43] depicted the fishing vessels trajectories using SDE models. In movement

ecology, animal movements patterns have been drawn by SDE models [113].

Moreover, a CTMC model is used to depict animal movement [19]. In chemical

ecology, several stochastic approaches have been receiving growing attention [13].
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CTMC and DTMC models were used to describe the concentrations of chemical

species [13, 85], while SDE models were introduced to mimic the behaviours of

the neuronal signal transduction networks [85, 86], the biochemical networks [38]

and the transcriptional regulatory networks [26]. In landscape ecology, Markov

chain models have been adopted to depict the quantitative and spatial change of

landscape features (e.g. [18,120]) and forecast the future land use tendency [49].

The main differences among these models are the underlying assumptions

on the time and state variables. The DTMC models provide discrete time and

state variables. The CTMC models give discrete state variables but continuous

time. While in an SDE model, both time and state variables are continuous [9].

Most of the stochastic population models are SDE and CTMC models since they

are continuous in time [7]. Dennis [30] suggested that an SDE model follows

from a diffusion approximation of a CTMC model when the population sizes are

large, while Allen and Allen [9] pointed out that the SDE models also work well

for small population sizes. Recently, the DTMC models have also been adopted

in the population modelling when the species have nonoverlapping generations.

The DTMC models are often more biologically realistic. Also compared to

the continuous-time systems, the DTMC models are easier formulated and

understood [9]. Computational ease is also an important factor to consider.

The Markov chain models can lead to a high computational cost, especially for

large-scale simulations such as the numerical analysis of the signal transduction

networks that exist in cells [85]. While an SDE model is able to dramatically

reduce the computational time by simulating its sample path based on e.g. the

Euler-Maruyama method and Milstein’s approach [57].

1.2.1 SDE Models

Stochastic differential equation (SDE) models are often applied to characterise the

dynamics of ecological systems since they take the random external perturbations

into account. The SDE models are natural extension of the ordinary differential

equation (ODE) models. In an SDE model, the relevant parameters are modelled

as stochastic processes or the stochastic processes are added to the driving systems.

By including stochasticity into the deterministic models, one can understand the
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effects of the environmental noise on the ecological dynamics [85]. In many cases,

noise only blurs the system behaviours. However, noise in the nonlinear systems

can qualitatively vary the underlying dynamics. Namely, stochastic factors can

enhance, diminish or even change the dynamical behaviours [13]. There are various

types of stochastic factors [48,87,89,94,119] and now we focus on white noise and

telegraph noise.

1.2.1.1 White Noise

White noise is representative of environmental noise and the effects of such noise

on the ecological systems have been extensively explored. White noise can be

incorporated to the deterministic models by a routine technique called parameter

perturbation [48, 89, 92]. In population ecology, a pioneering work belongs to

[92] who discovered that the stochastic versions of the Lotka-Volterra model have

more intriguing properties than its deterministic system - even a tiny amount of

white noise can suppress an imminent deterministic explosion in many co-habiting

species. For example, consider a classic two-dimensional Lotka-Voltera model

ẋ1(t) = x1(t)[b1 − a11x1(t) + a12x2(t)],

ẋ2(t) = x2(t)[b2 − a22x2(t) + a21x1(t)],
(1.2.1)

where a11, a12, a21, a22, b1 and b2 are positive constants. To avoid explosion of the

solution at a finite time, the parameters need to obey a12a21 < a11a22. Now we

illustrate what will happen if the above requirement is not hold. Without loss of

generality we may assume a11 = a22 = α, a12 = a21 = β, α2 < β2, b1 = b2 = b > 1

and x1(0) = x2(0) = x0 > 0. We then obtain a simplified equation

ẋ(t) = x(t)[b+ (−α + β)x(t)]

with the solution

x(t) =
b

−(−α + β) + b+(−α+β)x0
x0

e−bt
.

Then the expression α2 < β2 causes an explosion of the solution at a finite time

t = 1
b
(log(b+(−α+β)x0)−log((−α+β)x0)). However, the theory illustrated in [92]

indicated that the introduction of white noise can avoid this explosion. This brings

a brand new dimension into the study of population modelling. In general, white
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noise can stabilise an unstable system, destabilise a stable system or make a stable

system become even more stable [10,24,68]. In particular, white noise can suppress

or express exponential growth of a system [29]. Moreover, the presence of white

noise also can result in a stationary distribution of populations [23, 78, 91, 134].

Furthermore, the effects of white noise on various types of predator-prey mod-

els have been extensively analysed [14, 62–64, 78, 80, 88, 93, 95, 134]. In fisheries

science, white noise has been found to increase the chance of fish recruitment in

simple growth models [104]. In addition, Lv and Pitchford [81] suggested that

white noise in the von Bertalanffy growth model can lead to a big positive impact

on fish recruitment probability, population mean growth rate and the expected

observed growth rate. In conservation ecology, white noise is introduced to a de-

terministic model to evaluate the growth rates and extinction probabilities of an

endangered species [31]. Results show that the existence of white noise is useful for

the studies on species preservation. In plant ecology, the randomness of the growth

of plant roots in an unpredictable and heterogeneous environment is investigated

by an SDE model incorporating white noise. Then the intra- and inter-specific

competition between plants with contrasting growth strategies is studied [82,104].

In chemical ecology, white noise also plays an important role. For example, due to

the presence of white noise, a model describing neuronal signal transduction path-

ways produces stable responses, indicating that the variances of the responses are

not increasing with time. Also the model has overcome the problem of producing

negative concentrations [85,86].

1.2.1.2 Telegraph Noise

An SDE model incorporating telegraph noise can characterise the systems where

the structures and parameters experience abrupt changes due to abrupt environ-

mental disturbances and changing subsystem interconnections [94], etc. To under-

stand the telegraph noise easily, let us consider the Lotka-Volterra model (1.2.1)

incorporating telegraph noise. Telegraph noise can be regarded as a switching

between two or more regimes of environments [35, 48]. The switching is memory-

less and the waiting time for the next switch has an exponential distribution. The

regime switching is then modelled by a finite-state Markov chain [48]. To make

it simple, we suppose that there are only two regimes. Namely, the Markov chain
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r(t) in the state space S = {1, 2} controls the switching between the environ-

mental regimes. Model (1.2.1) under regime switching can then be described by

the following system:

ẋ1(t) = x1(t)[b1(r(t))− a11(r(t))x1(t) + a12(r(t))x2(t)],

ẋ2(t) = x2(t)[b2(r(t))− a22(r(t))x2(t) + a21(r(t))x1(t)],
(1.2.2)

where the system parameters a11(i), a12(i), a21(i), a22(i), b1(i) and b2(i) are all

positive constants for i ∈ S. This system is operated as follows: when t = 0, if

r(0) = 1, the system obeys equation (1.2.2) with r(t) = 1 until time τ1 when the

Markov chain jumps to state 2 from state 1; the system will then obey equation

(1.2.2) with r(t) = 2 from time τ1 till time τ2 when the Markov chain jumps to

state 1 from 2. The system will continue to switch as long as the Markov chain

jumps. If r(0) = 2, the system switches in the similar way. Namely, system (1.2.2)

switches from one to another according to the law of Markov chain.

In an ecological system, when random factors make a switching among dif-

ferent deterministic subsystems, the population behaviours become rather

complicated to analyse. Hence the introduction of telegraph noise is necessary

to deal with this abrupt change in the ecological modelling. Telegraph noise can

affect an ecological system significantly. Takeuchi [119] revealed an important

influence of telegraph noise on a Lotka-Volterra system: If the two deterministic

subsystems have different equilibrium states, the stochastic population system

is neither permanent nor dissipative. Slatkin [112] analysed the growths of

species experiencing a variable environment in a class of population models under

telegraph noise. A stationary distribution of populations has been found in this

Markovian environment. In genetic ecology, Paszek [103] presented the ODE

models with telegraph noise to analyse the gene regulation with the number of

active genes forming a discrete-valued stochastic process in the Chemical Master

Equation (CME) regime and the levels of mRNA and protein taking real values.

He chose mass action ODEs for the reactions involving mRNA and protein and

found that this switching gave a steady-state variance that does not match the

underlying CME [61].

Moreover, there is an extensive literature concerned with the combination
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of white noise and telegraph noise in an ecological system. In population ecology,

Hu et al. [60] showed that the regime switching and white noise make the

original system with exponential solution become a new system with solution

grow at most polynomial. The influence of both stochastic factors on the

multi-dimensional predator-prey models have also been extensively investigated

(e.g. [52,75,76,94,135]). In genetic ecology, Hu et al. [61] proposed an SDE model

with Markovian switching for modelling gene regulation. This SDE model has

been proved to preserve the biologically relevant measures of mean and variance.

As discussed in section 1.1, stochastic modelling has made an impressive

contribution to the analysis of the environmental-type process noise inherent in

the ecological data (e.g. [15]). This prospect has attracted a number of researchers

engaged in the analysis of ecological data (e.g. [27]). Lewy and Nielsen [73]

proposed a stochastic model of age-based fish stock. Parameters were estimated

using the likelihood-based Markov Chain Monte Carlo (MCMC) technique.

Results suggested that this stochastic model has well explained the process noise

in the catch data and stock data. Brillinger et al. [21] built an SDE model that

characterises some behaviours of seals by working with the location data for a seal.

Parameter inference was performed using the robust linear regression approach.

Then the temporal and spatial reasonableness of the model was assessed by

inspecting synthetic plots. Gloaguen et al. [44] fitted an SDE model of individuals

movement to a data set of fishing vessels trajectories. Parameterization was

carried out using four approximate maximum likelihood approaches. Results

indicated that the Euler method is not robust to low sampling rates, while the

Ozaki local linearization technique is well-performed among the four procedures

in the context of movement ecology. Gloaguen et al. [82] formulated an SDE

model of individual plant growth of Arabidopsis thaliana. The model was fitted to

the experimental data and evaluated within a Bayesian framework. The posterior

distribution of the model parameters was sampled by the MCMC algorithm. The

success of this model benefited from the stochastic perspective of understanding

complex environmental variability in the data. Balzter [15] studied the Markov

chain models of vegetation dynamics. Based on several data sets, the reliability

of the models was evaluated using the mean square error, Spearman’s rank
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correlation coefficient and Wilcoxon’s signed-rank test.

1.3 Structure of this Thesis

1.3.1 Nutrient Dynamics

Nutrients including carbon (C), nitrogen (N), phosphorus (P) and silicon (Si) are

essential for organisms during the cellular processes [116]. In an aquatic environ-

ment, the availability and recycling rates of nutrient resources directly regulate

the aquatic primary productivity [50, 128]. Moreover, the enrichment of N and P

can change the structure and function of an aquatic ecosystem [101]. In coastal

ecosystems, nutrients export fluxes affect the water quality and control the nature

and magnitude of coastal productivity. Research on the aquatic nutrients has

received growing attention. Especially, ecological modelling can be carried out

to quantitatively understand the dynamical behaviours of the aquatic nutrients.

Lancelot et al. [72] proposed an MIRO model to characterise the seasonal cycles

of nutrients including C, N, P and Si in North Sea. The parameters were deduced

based on literature reviews and on targeted studies under field and laboratory

conditions. Then the validation of the model was examined using the biogeochem-

ical data sets including temperature, nutrients and phytoplankton data collected

from three locations in North Sea. Baretta-Bekker et al. [16] adopted an ERSEM

model to describe the dynamics of C, P, N and Si in marine enclosures. The model

was calibrated with data from mesocosm experiments performed in Knebel Vig,

Denmark and then verified with results from experiments conducted in Hylsfjord,

Norway. Furthermore, the nutrient dynamics has been widely investigated based

on the well-known nutrient-phytoplankton-zooplankton systems [125]. However,

to the best of our knowledge, stochastic modelling approach is rarely employed

to represent an aquatic nutrient component. Motivated by this, in Chapter 3 we

will develop a stochastic differential equation (SDE) model which captures the

seasonal changes in the fjord nutrient, based on the hydrographic and chemical

data collected from the 1991 field survey carried out in Loch Linnhe. According

to section 1.2, such an SDE model can account for the environmental-type process

noise in the nutrient data.
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1.3.2 Predator-Prey Model and Foraging Arena Scheme

Predator-prey interactions play a crucial role in the relationships between pop-

ulations. In the past few years, researchers have devoted serious efforts to the

studies on the predator-prey systems. In a general predator-prey model (1.3.1),

the trophic function λ2 links the dynamics of prey and predator populations:

dx(t)

dt
= λ1(x(t))x(t)− λ2(x(t), y(t))y(t) (1.3.1a)

dy(t)

dt
= γλ2(x(t), y(t))y(t)− λ3(y(t))y(t), (1.3.1b)

where x(t) and y(t) represent the population densities of prey and predator at time

t, λ1(x(t)) is the per capita net prey growth in absence of predator, λ2(x(t), y(t))

is the density-dependent uptake response of consumers, γ is the trophic efficiency

ranging from 0 to 1 and λ3(y(t)) is the consumers death rate. Especially, λ1(x)

takes the form of λ1(x) = r (exponential growth) or λ1(x) = r(1 − x
K

) (logical

growth) [84], where r is the intrinsic growth rate and K is the carrying capacity.

Moreover λ2(x(t), y(t)) is called the ”functional response” in the prey equations

(1.3.1a) and the ”numerical response” in the consumers equation (1.3.1b) [6, 54].

The simplest description of the trophic function λ2(x, y) is dependent solely on

prey abundance. One is the classic Lotka-Volterra type response in which per

capita uptake by the consumers is linearly related to the prey density. Another

is Holling type equation [59]. The Holling II function is widely studied in the

terrestrial and aquatic food chain models [42]:

λ2(x) = u1x/(u2 + x),

where u1 is a maximum uptake rate by the predator and u2 is a prey half-saturation

coefficient. An alternative nonlinear formulation is the Holling III function:

λ2(x) = u1x
2/(u2

2 + x2).

In contrast to the prey-dependent uptake response, the trophic function depending

on both the prey and consumers abundance suppresses responsiveness by regulat-

ing the flux between prey and predator [54]. The simplest form of such uptake

regulation is the ratio dependence [6, 11,12]:

λ2(x, y) = λ2(x/y).
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However, an extreme property happened to the ratio-dependent formulation is

that the uptake rate tends to infinity as consumer abundance tends to zero [1].

Hence the concerned model fails to satisfy the continuity condition at origin. To

alleviate this property, the Beddington-DeAngelis type was then proposed [17,28].

This type is capable of taking care of a variety of the ecological mechanisms:

λ2(x, y) = u3x/(u4 + u5x+ y),

where u3/u4 = predator capture rate and u5/u4 = handling time per prey item [67].

Another functional response to avoid the extreme property happened to the ratio

dependence model is the foraging arena model pointed out by [3, 131]:

λ2(x, y) = sx/(β + y),

where β is the consumer density at half maximum per capita uptake rate and

s/β is the maximum per capita uptake rate by predator. Foraging arenas are

common in aquatic systems. They are formed by a series of mechanisms such as

the restrictions of the consumer distributions in response to the predation risk due

to their own predators and the risk-sensitive foraging behaviour by their prey [3].

Especially, the classic Lotka-Volterra model and the Holling types assume that

the individual prey and predator items are distributed in a spatially uniform way.

While the foraging arena model considers the spatial and temporal restrictions in

predator and prey activities. The foraging arena theory has been widely used in

fisheries science to explain and model responses of harvested ecosystems. This is

done mainly through the application of Ecosim which is the dynamic modelling

part of an ecosystem modelling software suite called Ecopath with Ecosim (EwE).

Ecosim is built around foraging arena theory and is capable of fitting historical

data on responses of multiple fish populations to harvesting and changes in primary

production regimes [3, 131]. The two-dimensional foraging arena predator-prey

model can be represented as follows:

dx̄1(t) = x̄1(t)
(
a− bx̄1(t)− sx̄2(t)

β + x̄2(t)

)
dt,

dx̄2(t) = x̄2(t)
( hx̄1(t)

β + x̄2(t)
− c− fx̄2(t)

)
dt,

(1.3.2)

where x̄1(t) and x̄2(t) denote the population densities of prey and predator at

time t and a, b, s, β, h, c and f are all positive constants. More precisely, a is
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the intrinsic growth rate of prey, c is the density-dependent mortality rate of

consumers, h = γs, b and f are the quadratic mortality rates of prey and predator

respectively. We set x̄(t) = (x̄1(t), x̄2(t))T as the solution to model (1.3.2) with

the initial value x̄0 = (x̄1(0), x̄2(0))T . In model (1.3.2), there are two non-negative

trivial equilibrium points Ē0 = (0, 0) and Ē1 = (a
b
, 0). Also an unique interior

equilibrium point Ē∗(x̄∗1, x̄
∗
2) with the nullclines

(a− bx̄∗1)(β + x̄∗2) = sx̄∗2,

(β + x̄∗2)(c+ fx̄∗2) = hx̄∗1

exists and is globally asymptotically stable provided that a > bβc
h

[74]. According

to section 1.2, population systems are always subject to the complex variations.

A natural response is to consider stochastic models. An extensive literature is

concerned with the effects of environmental variability on the predator-prey pop-

ulations [14, 62–64, 75, 76, 78, 80, 88, 93–95, 134]. However, we are not aware of

any literature addressing this issue for the foraging arena model. This is the mo-

tivation for us to study the stochastic versions of the foraging arena system. In

particular, Chapter 4 will study the impact of white noise on the population sys-

tem. In Chapter 5, we will further incorporate telegraph noise and time delay

to the stochastic foraging arena model formulated in Chapter 4 and investigate

its long-time properties. Finally in Chapter 6, we will introduce white noise to

more parameters of the SDE system established in Chapter 4 and discover how

the correlations of the Brownian motions affect the population behaviours.
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Mathematical Background

This chapter aims to introduce some general concepts on the stochastic differen-

tial equations (SDEs) and SDEs with Markovian switching. The topic discussed in

this chapter includes probability theory, stochastic processes, Brownian motions,

stochastic integrals, the Itô formula, stochastic differential equations, Markov pro-

cesses, generalised Itô’s formula, stochastic differential equations with Markovian

switching and some useful inequalities. The materials given in this chapter are

mainly from [89] and [94].

2.1 Probability Theory

Probability theory deals with mathematical models of trials whose outcomes de-

pend on chance. All the possible outcomes are grouped to form a set Ω, with typical

element ω ∈ Ω. We only group the observable or interesting events together as a

family, F , of subsets of Ω. Such a family, F , has the following properties:

(i) ∅ ∈ F , where ∅ is the empty set;

(ii) A ∈ F ⇒ AC ∈ F , where AC = Ω− A is the complement of A in Ω;

(iii) {Ai}i>1 ⊂ F ⇒
⋃∞
i=1Ai ∈ F .

A family F satisfying these three properties is known as a σ-algebra. The pair

(Ω,F) is a measurable space, and the elements of F are called F -measurable sets.

If C is a family of subsets of Ω, there is a smallest σ-algebra σ(C) on Ω which

15
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contains C. We say that such σ(C) is the σ-algebra generated by C. If Ω = Rd

and C is the family of all open sets in Rd, then Bd = σ(C) is the Borel σ-algebra

and the elements of Bd are the Borel sets.

A real-valued function X : Ω→ R is F -measurable if

{ω : X(ω) 6 a} ∈ F for all a ∈ R.

The function X is also called a real-valued (F -measurable) random variable.

An Rd-valued function X(ω) = (X1(ω), · · · , Xd(ω))T is F -measurable if Xi is

F -measurable for all i = 1, · · · , d. Moreover, a d × m-matrix-valued function

X(ω) = (Xij(ω))d×m is F -measurable if Xij is F -measurable for all i = 1, · · · , d
and j = 1, · · · ,m. The indicator function IA of a set A ⊂ Ω is

IA(ω) =

1, for ω ∈ A,

0, for ω /∈ A.

A probability measure P on a measurable space (Ω,F) is a function P : F → [0, 1]

satisfying

(i) P(Ω) = 1;

(ii) for any disjoint sequence {Ai}i>1 ⊂ F (i.e. Ai ∩ Aj = ∅ if i 6= j)

P
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai).

The triple (Ω,F ,P) is called a probability space. If X is a real-valued random vari-

able and is integrable with respect to the probability measure P, the expectation

of X with respect to P is

EX =

∫
Ω

X(ω)dP(ω)

and the variance of X is

V ar(X) = E(X − EX)2.

The pth moment of X is denoted as E|X|p (p > 0). Given another real-valued

random variable Y , the covariance of X and Y is

Cov(X, Y ) = E[(X − EX)(Y − EY )].
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We say X and Y are uncorrelated if Cov(X, Y ) = 0. For an Rd-valued random

variable X = (X1, · · · , Xd)
T , define EX = (EX1, · · · ,EXd)

T . For a d×m-matrix-

valued random variable X = (Xij)d×m, define EX = (EXij)d×m. If X and Y are

both Rd-valued random variable, the symmetric nonnegative definite d× d matrix

Cov(X, Y ) = E[(X − EX)(Y − EY )T ]

is called the covariance matrix.

Let X be an Rd-valued random variable. Then X induces a probability

measure µX on the Borel measurable space (Rd,Bd) defined by

µX(B) = P{ω : X(ω) ∈ B} for B ∈ Bd,

and µX is called the distribution of X. The expectation of X can be represented

as:

EX =

∫
Rd
xdµX(x).

If g : Rd → Rm is Borel measurable, we have the following transformation formula

Eg(X) =

∫
Rd
g(x)dµX(x).

Let I be an index set. A family of random variable {Xi : i ∈ I} (whose

ranges may differ for different values of the index) is independent if the σ-algebras

σ(Xi), i ∈ I generated by them are independent. For example, two random vari-

ables X : Ω→ Rd and Y : Ω→ Rm are independent if and only if

P{ω : X(ω) ∈ A, Y (ω) ∈ B} = P{ω : X(ω) ∈ A}P{ω : Y (ω) ∈ B}

holds for all A ∈ Bd and B ∈ Bm. If X and Y are two independent real-valued

integrable random variable, then XY is integrable and

E(XY ) = EXEY.

If X, Y ∈ L2(Ω;R) are uncorrelated, then

V ar(X + Y ) = V ar(X) + V ar(Y ).

If X and Y are independent, they are uncorrelated. If (X, Y ) has a normal

distribution, then X and Y are independent if and only if they are uncorrelated.
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Let {Ak} be a sequence of sets in F . Define the upper limit of the sets

by

lim sup
k→∞

Ak = {ω : ω ∈ Ak for infinitely many k} =
∞⋂
i=1

∞⋃
k=i

Ak.

Lemma 2.1 (Borel-Cantelli’s lemma). (i) If {Ak} ⊂ F and
∑∞

k=1 P(Ak) <∞,

then

P
(

lim sup
k→∞

Ak

)
= 0.

That is, there exists a set Ω0 ∈ F with P(Ω0) = 1 and an integer-valued random

variable k0 such that for every ω ∈ Ω0, we have ω /∈ Ak whenever k > k0(ω).

(ii) If the sequence {Ak} ⊂ F is independent and
∑∞

k=1 P(Ak) =∞, then

P
(

lim sup
k→∞

Ak

)
= 1.

That is, there exists a set Ωθ ∈ F with P(Ωθ) = 1 such that for every ω ∈ Ωθ,

there exists a sub-sequence {Aki} such that the ω belongs to every Aki.

Let A,B ∈ F and P(B) > 0, the conditional probability of A given the condi-

tion B is

P(A|B) =
P(A ∩B)

P(B)
.

Now let us introduce a more general concept of conditional expectation. Let

X ∈ L1(Ω;R). Let G ⊂ F be a sub-σ-algebra of F and hence (Ω,G) forms a

measurable space. In general, X is not G-measurable. Now we want to find an

integrable G-measurable random variable Y such that

E(IGY ) = E(IGX) i.e.

∫
G

Y (ω)dP(ω) =

∫
G

X(ω)dP(ω) for all G ∈ G.

According to the Radon-Nikodym theorem, there exists one such Y , almost surely

unique. It is called the conditional expectation of X under the condition G as

Y = E(X|G).

If G is the σ-algebra generated by a random variable Y , we have

E(X|G) = E(X|Y ).
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2.2 Stochastic Processes

Let (Ω,F ,P) be a probability space. A filtration is a family {Ft}t>0 of increasing

sub-σ-algebras of F . The filtration is right continuous if Ft =
⋂
s>tFs for all

t > 0. Once the probability space is complete, the filtration is said to satisfy

the usual conditions if it is right continuous and F0 contains all P-null sets.

Throughout this thesis, unless otherwise specified, we let (Ω,F ,P) be a complete

probability space with a filtration {Ft}t>0 satisfying the usual conditions. We

also define F∞ = σ(
⋃
t>0Ft), i.e. the σ-algebra generated by

⋃
t>0Ft.

A stochastic process is a family {Xt}t∈I of Rd-valued random variables with

parameter set (or index set) I and state space Rd. The parameter set I could

be the halfline R+ = [0,∞), an interval [a, b], the nonnegative integers or even

subsets of Rd. For a fixed t ∈ I, we have a random variable

Ω 3 ω → Xt(ω) ∈ Rd.

While for a fixed ω ∈ Ω, we have a function

I 3 t→ Xt(ω) ∈ Rd,

which is called a sample path of the process. We can also denote the sample path

Xt(ω) by X(t, ω) and the stochastic process can be regarded as a function of two

variables (t, ω) from I ×Ω to Rd. A stochastic process {Xt}t>0 is often written as

{Xt}, Xt or X(t).

An Rd-valued stochastic process {Xt}t>0 is said to continuous (resp. right

continuous, left continuous) if for almost all ω ∈ Ω function Xt(ω) is continuous

(resp. right continuous, left continuous) on t > 0. The stochastic process is

integrable if for every t > 0, Xt is an integrable random variable. It is said to be

{Ft}-adapted if for every t, Xt is Ft-measurable. It is said to be measurable if the

stochastic process regarded as a function of two variables (t, ω) from R+ × Ω to

Rd is B(R+)×F -measurable, where B(R+) is the family of all Borel sub-sets of R+.

Now let us introduce a stopping time. A random variable τ : Ω → [0,∞]

(it may take the value ∞) is called an {Ft}-stopping time (or simply, stopping
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time) if {ω : τ(ω) 6 t} ∈ Ft for any t > 0.

An Rd-valued {Ft}-adapted integrable process {Mt}t>0 is a martingale with

respect to {Ft} (or simply, martingale) if

E(Mt|Fs) = Ms a.s. for all 0 6 s < t <∞.

A stochastic process X = {Xt}t>0 is called square-integrable if E|Xt|2 < ∞
for every t > 0. If M = {Mt}t>0 is a real-valued square-integrable continuous

martingale, then there exists a unique continuous integrable adapted increasing

process {〈M,M〉t} such that {M2
t −〈M,M〉t} is a continuous martingale vanishing

at t = 0. The process {〈M,M〉t} is called the quadratic variation of M .

A right continuous adapted process M = {Mt}t>0 is a local martingale if

there exists a nondecreasing sequence {τk}k>1 of stopping times with τk ↑ ∞ a.s.

such that every {Mτk∧t − M0}t>0 is a martingale. Every martingale is a local

martingale, however the converse is not true. If M = {Mt}t>0 and N = {Nt}t>0

are two real-valued continuous local martingales, their joint quadratic variation

{〈M,N〉}t>0 is the unique continuous adapted process of finite variation such that

{MtNt − 〈M,N〉t}t>0 is a continuous local martingale vanishing at t = 0. When

M = N, {〈M,M〉}t>0 is called the quadratic variation of M .

Theorem 2.2 (Strong law of large numbers). Let M = {Mt}t>0 be a real-

valued continuous local martingale vanishing at t = 0. Then

lim
t→∞
〈M,M〉t =∞ a.s. ⇒ lim

t→∞

Mt

〈M,M〉t
= 0 a.s.

and also

lim sup
t→∞

〈M,M〉t
t

<∞ a.s. ⇒ lim
t→∞

Mt

t
= 0 a.s.

2.3 Brownian Motions

In 1828, the Scottish botanist Robert Brown identified the irregular movements of

pollen grains known as Brownian motions. A stochastic process Bt(ω) is adopted

to characterise the position of the pollen grain ω at time t.
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Definition 2.3. Let (Ω,F ,P) be a probability space with a filtration {Ft}t>0. A

(standard) one-dimensional Brownian motion is a real-valued continuous {Ft}-
adapted process {Bt}t>0 with the following properties:

(i) B0 = 0 a.s.;

(ii) for 0 6 s < t < ∞, the increment Bt − Bs is normally distributed with

mean zero and variance t− s;

(iii) for 0 6 s < t <∞, the increment Bt −Bs is independent of Fs.

Some important properties of the Brownian motion are listed below.

(i): {−Bt} is a Brownian motion with respect to the same filtration {Ft};

(ii): Let c > 0. Define Xt = Bct√
c

for t > 0. Then {Xt} is a Brownian motion

with respect to the filtration {Fct};

(iii): {Bt} is a continuous square-integrable martingale and its quadratic

variation 〈B,B〉t = t for all t > 0;

(iv): The strong law of large numbers states that

lim
t→∞

Bt

t
= 0 a.s.;

(v): For almost every ω ∈ Ω, the Brownian sample path B·(ω) is nowhere

differentiable.

Theorem 2.4 (Law of the Iterated Logarithm). For almost every ω ∈ Ω, we

have

(i) lim sup
t↓0

Bt(ω)√
2t log log(1/t)

= 1 (ii) lim inf
t↓0

Bt(ω)√
2t log log(1/t)

= −1,

(iii) lim sup
t→∞

Bt(ω)√
2t log log t

= 1 (iv) lim inf
t→∞

Bt(ω)√
2t log log t

= −1.

Definition 2.5. A d-dimensional process {Bt = (B1
t , · · · , Bd

t )}t>0 is called a d-

dimensional Brownian motion if every {Bi
t} is a one-dimensional Brownian motion

and {B1
t }, · · · , {Bd

t } are independent.

For a d-dimensional Brownian motion, we still have

lim sup
t→∞

|Bt|√
2t log log t

= 1 a.s.
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2.4 Stochastic Integrals and the Itô Formula

We shall define the stochastic integral∫ t

0

f(s)dBs

with respect to an m-dimensional Brownian motion {Bt} for a class of d × m-

matrix-valued stochastic processes {f(t)}. The integral cannot be defined in the

ordinary way as the Brownian sample path B·(ω) is nowhere differentiable for

almost all ω ∈ Ω. We first state the concept of simple processes.

Definition 2.6. A real-valued stochastic process g = {g(t)}a6t6b is called a simple

(or step) process if there exists a partition a = t0 < t1 < · · · < tk = b of [a, b] and

bounded random variables ξi, 0 6 i 6 k − 1 such that ξi is Fti-measurable and

g(t) = ξ0I[t0,t1](t) +
k−1∑
t=1

ξiI(ti,ti+1](t). (2.4.1)

We denote M0([a, b];R) the family of all such processes.

Definition 2.7. For a simple process g with the form of (2.4.1) in M0([a, b];R),

define ∫ b

a

g(t)dBt =
k−1∑
i=0

ξi(Bti+1
−Bti)

and call it the stochastic integral of g with respect to the Brownian motion {Bt}
or the Itô integral.

We then extend the integral definition from simple processes to processes in

M2([a, b];R).

Definition 2.8. Let f ∈ M2([a, b];R). The Itô integral of f with respect to {Bt}
is defined by ∫ b

a

f(t)dBt = lim
k→∞

∫ b

a

gk(t)dBt in L2(Ω;R),

where {gk} is a sequence of simple processes such that

lim
k→∞

E
∫ b

a

|f(t)− gk(t)|2dt = 0.

Let us now introduce some nice properties of the stochastic integral.
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Theorem 2.9. Let f, g ∈M2([a, b];R) and let α, β be two real numbers. Then

(i)
∫ b
a
f(t)dBt is Fb-measurable;

(ii) E
∫ b
a
f(t)dBt = 0;

(iii) E|
∫ b
a
f(t)dBt|2 = E

∫ b
a
|f(t)|2dt;

(iv)
∫ b
a
[αf(t) + βg(t)]dBt = α

∫ b
a
f(t)dBt + β

∫ b
a
g(t)dBt.

Definition 2.10. Let f ∈M2([0, T ];R). Define

I(t) =

∫ t

0

f(s)dB(s) for 0 6 t 6 T,

where I(0) = 0 by definition. We call I(t) the indefinte Itô integral of f .

Theorem 2.11. Let f ∈ M2([0, T ];R). Then the indefinite integral I =

{I(t)}06t6T is a square-integrable continuous martingale and its quadratic vari-

ation is given by

〈I, I〉t =

∫ t

0

|f(s)|2ds, 0 6 t 6 T.

Itô’s formula is useful in evaluating the Itô integrals and even plays an essen-

tial role in stochastic analysis. Let B(t) = (B1(t), · · · , Bm(t))T , t > 0 be an m-

dimensional Brownian motion defined on the complete probability space (Ω,F ,P)

adapted to the filtration {Ft}t>0.

Definition 2.12. An n-dimensional Itô process is an Rn-valued continuous adap-

ted process x(t) = (x1(t), · · · , xn(t))T on t > 0 of the form

x(t) = x(0) +

∫ t

0

f(s)ds+

∫ t

0

g(s)dB(s),

where f = (f1, · · · , fn)T ∈ L1(R+;Rn) and g = (gij)n×m ∈ L2(R+;Rn×m). We

shall say that x(t) has a stochastic differential dx(t) on t > 0 given by

dx(t) = f(t)dt+ g(t)dB(t).

Let C2,1(Rn × R+;R) denote the family of all real-valued functions V (x, t)

defined on Rn × R+ such that they are continuously twice differentiable in x and

once in t. If V ∈ C2,1(Rn × R+;R), we set

Vt =
∂V

∂t
, Vx =

( ∂V
∂x1

, · · · , ∂V
∂xn

)
,
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Vxx =
( ∂2V

∂xi∂xj

)
n×n

=


∂2V

∂x1∂x1
· · · ∂2V

∂x1∂xn
...

...
∂2V

∂xn∂x1
· · · ∂2V

∂xn∂xn
.


Theorem 2.13 (Itô’s formula). Let x(t) be an n-dimensional Itô process on t >

with the stochastic differential

dx(t) = f(t)dt+ g(t)dB(t),

where f ∈ L1(R+;Rn) and g ∈ L2(R+;Rn×m). Let V ∈ C2,1(Rn × R+;R). Then

V (x(t), t) is a real-valued Itô process with its stochastic differential given by

dV (x(t), t) =
[
Vt(x(t), t) + Vx(x(t), t)f(t) +

1

2
trace(gT (t)Vxx(x(t), t)g(t))

]
dt

+ Vx(x(t), t)g(t)dB(t) a.s.

Let us now state a multiplication table:

dtdt = 0, dBidt = 0,

dBidBi = dt, dBidBj = 0 if i 6= j.

For exmaple,

dxi(t)dxj(t) =
m∑
k=1

gik(t)gjk(t)dt.

2.5 Stochastic Differential Equations

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t>0 satisfying

the usual conditions. Let B(t) = (B1(t), · · · , Bm(t))T , t > 0 be an m-dimensional

Brownian motion defined on the probability space. Let 0 6 t0 < T < ∞. Let

x0 be an Ft0-measurable Rd-valued random variable such that E|x0|2 < ∞. Let

f : Rd × [t0, T ] → Rd and g : Rd × [t0, T ] → Rd×m be both Borel measurable.

Consider the d-dimensional stochastic differential equation of Itô type

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) on t0 6 t 6 T (2.5.1)

with initial value x(t0) = x0. By the definition of stochastic differential, this

equation is equivalent to the following stochastic integral equation:

x(t) = x0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

g(x(s), s)dB(s) on t0 6 t 6 .T (2.5.2)
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Definition 2.14. An Rd-valued stochastic process {x(t)}t06t6T is called a solution

of equation (2.5.1) if it have the following properties

(i): {x(t)} is continuous and Ft-adapted;

(ii): {f(x(t), t)} ∈ L1([t0, T ];Rd) and {g(x(t), t)} ∈ L2([t0, T ];Rd×m);

(iii): equation (2.5.2) holds for all t ∈ [t0, T ] with probability 1.

A solution {x(t)}is said to be unique if any other solution {x̄(t)} is indistinguish-

able from {x(t)}, that is

P{x(t) = x̄(t) for all t0 6 t 6 T} = 1.

The following theorem provides the conditions that guarantee the existence

and uniqueness of the solution to (2.5.1).

Theorem 2.15. Assume that there exist two positive constants K̄ and K such

that

(i) (Lipschitz condition) for all x, y ∈ Rd and t ∈ [t0, T ]

|f(x, t)− f(y, t)|2 ∨ |g(x, t)− g(y, t)|2 6 K̄|x− y|2; (2.5.3)

(ii) (Linear growth condition) for all (x, t) ∈ Rd × [t0, T ]

|f(x, t)|2 ∨ |g(x, t)|2 6 K(1 + |x|2). (2.5.4)

Then there exists a unique solution x(t) to equation (2.5.1) and the solution belongs

to M2([t0, T ];Rd).

Theorem 2.16. Assume that the linear growth condition (2.5.4) holds, but the

Lipschitz condition (2.5.3) is replaced by the following local Lipschitz condition:

for every integer n > 1, there exists a positive constant Kn such that for all

t ∈ [t0, T ] and all x, y ∈ Rd with |x| ∨ |y| 6 n,

|f(x, t)− f(y, t)|2 ∨ |g(x, t)− g(y, t)|2 6 Kn|x− y|2. (2.5.5)

Then there exists a unique solution x(t) to equation (2.5.1) in M2([t0, T ];Rd).
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Theorem 2.17. Assume that the local Lipschitz condition (2.5.5) holds, but the

linear growth condition (2.5.4) is replaced by the monotone condition: There exists

a positive constant K such that for all (x, t) ∈ Rd × [t0, T ]

xTf(x, t) +
1

2
|g(x, t)|2 6 K(1 + |x|2).

There exists a unique solution x(t) to equation (2.5.1) in M2([t0, T ];Rd).

In general, non-linear stochastic differential equations do not have explicit solu-

tions, however, it is possible to provide explicit solutions to linear equations. First

consider the linear stochastic differential equation

dx(t) = F (t)x(t)dt+
m∑
k=1

Gk(t)x(t)dBk(t) (2.5.6)

on [t0, T ], where F (t) = (Fij(t))d×d and Gk(t) = (Gk
ij(t))d×d are Borel-measurable

and bounded. For every j = 1, · · · , d, let ej be the unit column-vector in the

xj-direction, i.e.

ej = (0, · · · , 0, 1︸ ︷︷ ︸
j

, 0, · · · , 0)T .

Let Φj(t) = (Φ1j(t), · · · ,Φdj(t))
T be the solution of equation (2.5.6) with initial

value x(t0) = ej. Define the d× d matrix

Φ(t) = (Φ1(t), · · · ,Φd(t)) = (Φij(t))d×d.

We call Φ(t) the fundamental matrix of equation (2.5.6).

Theorem 2.18. Given the initial value x(t0) = x0, the unique solution of equation

(2.5.6) is

x(t) = Φ(t)x0.

Lemma 2.19. Let a(·), bk(·) be real-valued borel measurable bounded functions on

[t0, T ]. Then

y(t) = y0 exp
[ ∫ t

t0

(
a(s)− 1

2

m∑
k=1

b2
k(s)

)
ds+

m∑
k=1

∫ t

t0

bk(s)dBk(s)
]

is the unique solution to the scalar linear stochastic differential equation

dy(t) = a(t)y(t)dt+
m∑
k=1

bk(t)y(t)dBk(t)

on [t0, T ] with initial value y(t0) = y0.
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Now consider a general d-dimensional linear stochastic differential equation

dx(t) = (F (t)x(t) + f(t))dt+
m∑
k=1

(Gk(t)x(t) + gk(t))dBk(t) (2.5.7)

on [t0, T ] with initial value x(t0) = x0. Equation (2.5.6) is called the corresponding

homogeneous equation of system (2.5.7). The unique solution of (2.5.7) can then

be deduced by the following variation-of-constants formula.

Theorem 2.20. The unique solution of equation (2.5.7) can be expresses as

x(t) = Φ(t)
(
x0 +

∫ t

t0

Φ−1(s)
[
f(s)−

m∑
k=1

Gk(s)gk(s)
]
ds

+
m∑
k=1

∫ t

t0

Φ−1(s)gk(s)dBk(s)
)
,

where Φ(t) is the fundamental matrix of the corresponding homogeneous equation

(2.5.6).

2.6 Markov Processes

This section concerns some basic concepts about a Markov process. An n-

dimensional Ft-adapted process X = {Xt}t>0 is called a Markov process if the

following Markov property is satisfied: for all 0 6 s 6 t <∞ and A ∈ B(Rn),

P(X(t) ∈ A|Fs) = P(X(t) ∈ A|X(s)).

An equivalent statement is: for any bounded Borel measurable function ϕ : Rn →
R and 0 6 s 6 t <∞,

E(ϕ(X(t))|Fs) = E(ϕ(X(t))|X(s)).

The transition probability or function of the Markov process is a function

P (s, x; t, A) defined on 0 6 s 6 t < ∞, x ∈ Rn and A ∈ B(Rn), with the fol-

lowing properties:

(i) For every 0 6 s 6 t <∞ and A ∈ B(Rn),

P(s,X(s); t, A) = P(X(t) ∈ A|X(s));
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(ii) P(s, x; t, ·) is a probability measure on B(Rn) for every 0 6 s 6 t < ∞
and x ∈ Rn;

(iii) P(s, ·; t, A) is Borel measurable for every 0 6 s 6 t <∞ and A ∈ B(Rn);

(iv) The Kolmogorov-Chapman equation

P(s, x; t, A) =

∫
Rn

P(u, y; t, A)P(s, x;u, dy)

holds for any 0 6 s 6 u 6 t <∞, x ∈ Rn and A ∈ B(Rn).

A Markov process X = {X(t)}t>0 is said to be homogeneous if its transition

probability P(s, x; t, A) is stationary, that is,

P(s+ u, x; t+ u,A) = P(s, x; t, A)

for all 0 6 s 6 t <∞, x ∈ Rn, u > 0 and A ∈ B(Rn).

A stochastic process X = {X(t)}t>0 defined on a probability space (Ω,F ,P) with

values in a countable set Ξ (to be called the state space of the process), is called

a continuous-time Markov chain if for any finite set 0 6 t1 < t2 < · · · < tn < tn+1

of ”times”, and corresponding set i1, i2, · · · , in−1, i, j of states in Ξ such that

P{X(tn) = i,X(tn−1) = in−1, · · · , X(t1) = i1} > 0, we have

P{X(tn+1) = j|X(tn) = i,X(tn−1) = in−1, · · · , X(t1) = i1}

= P{X(tn+1) = j|X(tn) = i}.

If for all s, t such that 0 6 s 6 t < ∞ and all i, j ∈ Ξ the conditional probability

P{X(t) = j|X(s) = i} depends only on t − s, we say that the process X =

{X(t)}t>0 is homogeneous. In this case, P{X(t) = j|X(s) = i} = P{X(t − s) =

j|X(0) = i}, and the function

Pij(t) = P{X(t) = j|X(s) = i}, i, j ∈ Ξ, t > 0,

is known as the transition function or transition probability of the process. The

function Pij(t) is standard if limt→0 Pii(t) = 1 for all i ∈ Ξ.

Theorem 2.21. Let Pij be a standard transition function, then γi := limt→0
1−Pii
t

exists (but may be ∞) for all i ∈ Ξ.
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A state i ∈ Ξ is said to be stable if γi <∞.

Theorem 2.22. Let Pij be a standard transition function, and let j be a stable

state. Then γij = P ′ij(0) exists and is finite for all i ∈ Ξ.

Let γij = −γi and Γ = (γij)i,j∈Ξ. Γ is called the generator of the Markov chain.

If the state space is finite which we can take to be S = {1, 2, · · · , N}, then the

process is called a continuous-time finite Markov chain. Throughout this thesis,

we assume that all Markov chains are finite and all states are stable. For such a

Markov chain, almost every sample path is right continuous step function.

Theorem 2.23. Let P (t) = (Pij(t))N×N be the transition probability matrix and

Γ = (γij)N×N be the generator of a finite Markov chain. Then

P (t) = etΓ.

It is useful to emphasise that a continuous-time Markov chain X(t) with generator

Γ = {γij}N×N can be represented as a stochastic integral with respect to a Poisson

random measure. Indeed, let ∆ij be consecutive, left closed, right open intervals of

the real line each having length γij such that

∆12 = [0, γ12),

∆13 = [γ12, γ12 + γ13),

...

∆1N =
[N−1∑
j=2

γ1j,
N∑
j=2

γ1j

)
,

∆21 =
[ N∑
j=2

γ1j,

N∑
j=2

γ1j + γ21

)
,

∆23 =
[ N∑
j=2

γ1j + γ21,

N∑
j=2

γ1j + γ21 + γ23

)
,

...

∆2N =
[ N∑
j=2

γ1j +
N∑

j=1,j 6=2

γ2j,
N∑
j=2

γ1j +
N∑

j=1,j 6=2

γ2j

)
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and so on. Define a function h : S× R→ R by

h(i, y) =

j − i, if y ∈ ∆ij

0, otherwise.
(2.6.1)

Then

dX(t) =

∫
R
h(X(t−), y)ν(dt, dy),

with initial condition X(0) = i0, where ν(dt, dy) is a Poisson random measure with

intensity dt× µ(dy), in which µ is the Lebesgue measure on R.

2.7 Generalised Itô’s Formula

Let (Ω,F , {Ft}t>0,P) be a complete probability space with a filtration {Ft}t>0

satisfying the usual conditions (i.e. it is increasing and right continuous while

F0 contains all P-null sets). Let B(t) = (B1
t , · · · , Bm

t )T be an m-dimensional

Brownian motion defined on the probability space. Let r(t), t > 0 be a right-

continuous Markov chain on the probability space taking values in a finite state

space S = {1, 2, ·, N} with generator Γ = (γij)N×N given by

P{r(t+ δ) = j|r(t) = i} =

γijδ + o(δ), if i 6= j

1 + γiiδ + o(δ), if i = j,

where δ > 0. Here γij > 0 is transition rate from i to j if i 6= j while

γii = −
∑
j 6=i

γij.

We assume that the Markov chain r(·) is independent of the Brownian motion B(·).

Let x(t) be an n-dimensional Itô process on t > 0 with the stochastic dif-

ferential

dx(t) = f(t)dt+ g(t)dB(t),

where f ∈ L1(R+,Rn) and g ∈ L2(R+,Rn×m). Let C2,1(Rn × R+ × S;R) be the

family of all real-valued functions V (x, t, i) on Rn×R+×S which are continuously
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twice differentiable in x and once in t. If V ∈ C2,1(Rn × R+ × S;R), define an

operator LV from Rn × R+ × S to R by

LV (x, t, i) = Vt(x, t, i)+Vx(x, t, i)f(t)+
1

2
trace[gT (t)Vxx(x, t, i)g(t)]+

N∑
j=1

γijV (x, t, j),

where

Vt(x, t, i) =
∂V (x, t, i)

∂t
, Vx(x, t, i) =

(∂V (x, t, i)

∂x1

, · · · , ∂V (x, t, i)

∂xn

)
and

Vxx(x, t, i) =
(∂2V (x, t, i)

∂xi∂xj

)
n×n

.

Let us now state the generalised Itô formula.

Theorem 2.24. If V ∈ C2,1(Rn × R+ × S;R), then for any t > 0

V (x(t), t, r(t)) = V (x(0), 0, r(0)) +

∫ t

0

LV (x(s), s, r(s))ds

+

∫ t

0

Vx(x(s), s, r(s))g(x(s), s, r(s))dB(s)

+

∫ t

0

∫
R
(V (x(s), s, i0 + h(r(s), l))− V (x(s), s, r(s)))µ(ds, dl),

where the function h is defined by (2.6.1) and µ(ds, dl) = ν(ds, dl) − µ(dl)ds is a

martingale measure, while ν and µ have been determined at the end of Section 2.6.

2.8 Stochastic Differential Equations with

Markovian Switching

We assume that the Markov chain r(·) is Ft-adapted but independent of the

Brownian motion B(·). A stochastic differential equation with Markovian switch-

ing is in the form

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dB(t), t0 6 t 6 T (2.8.1)

with initial data x(t0) = x0 ∈ L2
Ft0

(Ω;Rn) and r(t0) = r0, where r0 is an S-valued

Ft0-measurable random variable and

f : Rn × R+ × S→ Rn and g : Rn × R+ × S→ Rn×m.
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Definition 2.25. An Rn-valued stochastic process {x(t)}t06t6T is a solution of

equation (2.8.1) if the following properties hold:

(i): {x(t)}t06t6T is continuous and Ft-adapted;

(ii): {f(x(t), t, r(t))}t06t6T ∈ L1([t0, T ];Rn) while {g(x(t)), t, r(t)}t06t6T ∈
L2([t0, T ];Rn×m);

(iii): for any t ∈ [t0, T ], equation

x(t) = x(t0) +

∫ t

t0

f(x(s), s, r(s))ds+

∫ t

t0

g(x(s), s, r(s))dB(s)

holds with probability 1.

Theorem 2.26. Assume that there exist two positive constants K̄ and K such

that the following two properties hold:

(Lipschitz condition) for all x, y ∈ Rn, t ∈ [t0, T ] and i ∈ S

|f(x, t, i)− f(y, t, i)|2 ∨ |g(x, t, i)− g(y, t, i)|2 6 K̄|x− y|2 (2.8.2)

(Linear growth condition) for all (x, t, i) ∈ Rn × [t0, T ]× S

|f(x, t, i)|2 ∨ |g(x, t, i)|2 6 K(1 + |x|2). (2.8.3)

Then there exists a unique solution x(t) ∈M2([t0, T ];Rn) to equation (2.8.1).

Theorem 2.27. Assume that (local Lipschitz condition) for every integer k > 1,

there exists a positive constant hk such that for all t ∈ [t0, T ], i ∈ S and those

x, y ∈ Rn with |x| ∨ |y| 6 k,

|f(x, t, i)− f(y, t, i)|2 ∨ |g(x, t, i)− g(y, t, i)|2 6 h̄k|x− y|2, (2.8.4)

Then there exists a unique maximal local solution to equation (2.8.1).

Theorem 2.28. Assume that the local Lipschitz condition (2.8.4) and the linear

growth condition (2.8.3) are satisfied. Then the conclusions of Theorem 2.26 still

hold.

Theorem 2.29. Assume that the local Lipschitz condition (2.8.4) holds, but the

linear growth condition (2.8.3) is replaced with the following monotone condition:

There exists a positive constant K such that for all (x, t, i) ∈ R× [t0, T ]× S

xTf(x, t, i) +
1

2
|g(x, t, i)|2 6 K(1 + |x|2).

There there exists a unique solution x(t) to equation (2.8.1) in M2([t0, T ];R).
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2.9 Useful Inequalities

In this section we state some frequently used inequalities which we adopt in this

thesis. We start from the simplest one:

2ab 6 a2 + b2, ∀a, b ∈ R.

It then follows that

2ab 6 εa2 +
1

ε
b2, ∀a, b ∈ R and ∀ε > 0.

Young’s inequality states that

|a|β|b|(1−β) 6 β|a|+ (1− β)|b|,∀a, b ∈ R and ∀β ∈ [0, 1].

Another important one is Hölder’s inequality:

|E(XTY )| 6 (E|X|p)1/p(E|Y |q)1/q

if p > 1, 1/p+ 1/q = 1, X ∈ Lp and Y ∈ Lq. An application of Hölder’s inequality

implies

(E|X|r)1/r 6 (E|X|p)1/p

if 0 < r < p <∞ and X ∈ Lp. Chebyshev’s inequality is given as

P{ω : |X(ω)| > c} 6 c−pE|X|p

if c > 0, p > 0, X ∈ Lp.

Theorem 2.30 (Gronwall’s inequality). Let T > 0 and c > 0. Let u(·) be a

Borel measurable bounded non-negative function on [0, T ], and let v(·) be a non-

negative integrable function on [0, T ]. If

u(t) 6 c+

∫ t

0

v(s)u(s)ds for all 0 6 t 6 T,

then

u(t) 6 c exp
(∫ t

0

v(s)ds
)

for all 0 6 t 6 T.

The following theorem is known as the Burkholder-Davis-Gundy inequality.
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Theorem 2.31. Let g ∈ L2(R+;Rn×m). For t > 0, define

x(t) =

∫ t

0

g(s)dB(s) and A(t) =

∫ t

0

|g(s)|2ds.

Then for every p > 0, there exist universal positive constants cp and Cp, which are

only dependent on p, such that

cpE|A(t)|p/2 6 E( sup
06s6t

|x(s)|p) 6 CpE|A(t)|p/2

for all t > 0. In particular, one may take

cp = (p/2)p, Cp = (32/p)p/2 if 0 < p < 2;

cp = 1, Cp = 4 if p = 2;

cp = (2p)−p/2, Cp = [pp+1/2(p− 1)p−1]p/2 if p > 2.

Theorem 2.32 (The exponential martingale inequality). Let g =

(g1, · · · , gm) ∈ L2(R+;R1×m), and let T, α, β be any positive numbers. Then

P
{

sup
06t6T

[ ∫ t

0

g(s)dB(s)− α

2

∫ t

0

|g(s)|2ds
]
> β

}
6 e−αβ.
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Stochastic Modelling of Sea-Loch

Nutrient

3.1 Introduction

The enrichment of nutrients in an aquatic ecosystem can affect the water quality,

regulate the aquatic primary productivity and even change the structure and

function of the environment [50, 101, 128]. The importance of understanding the

dynamical behaviours of the aquatic nutrients has been increasingly recognised.

In particular, mathematical modelling is a powerful tool to describe the changes

in the aquatic nutrient resources. In 1991, a comprehensive field campaign

was carried out by Marine Scotland Science in Loch Linnhe, where a large

amount of hydrographic and chemical data were collected. The high-resolution

measurements allow us to model the fjord nitrate, which is often most limiting

to the phytoplankton growth [40]. Stochastic modelling approach is employed

in this chapter to interpret the environmental-type process noise in the nitrate

data [15, 31, 31, 44, 73, 82, 82, 86]. More precisely, this chapter aims to formulate

an SDE model which captures the seasonal trends of the surface nitrate in Loch

Linnhe. Meanwhile, the reliability of our model can be evaluated based on the

observed data [39].

The structure of this chapter is as follows: Section 3.2 and 3.3 briefly in-

troduce the physical and biological environment of Loch Linnhe respectively. In

35
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section 3.4, we formulate a stochastic differential equation (SDE) model of the

fjord nitrate and then study the model fit for the one-month data. In section 3.5,

our model is refined to capture the annual variability in the fjord nitrate. This

requires the consideration of the complex physical and biological processes which

make big effects on the dynamics of the sea-loch nitrate. Meanwhile we construct

a separate SDE model which depicts the variations in the sea-loch salinity. By

combining the salinity model with the existing nitrate one, we obtain a coupled

SDE system. Section 3.6 illustrates the existence of the process noise in the

nitrate and salinity data, based on the residual analysis for the data. In section

3.7, we design a simulation study to examine the accuracy of our parameter

estimation techniques. We finally draw a conclusion in section 3.8.

3.2 Physical Environment of Loch Linnhe

Sea lochs, also known as fjords, are narrow arms of the open sea which extend

many miles inland from mountainous coasts. There are many fjords on the coasts

of Greenland, Iceland, New Zealand, Norway and Scotland, etc. [50, 118]. Loch

Linnhe is a sea loch on the west coast of Scotland from Firth of Lorn to Fort

William in a SW-NE direction and is about 50 kilometres long. The fundamental

physical features of the fjord ecosystem are the basis for the biology, ecology and

productivity of the region. The interactions between the bathymetry, meteorolo-

gical forcing, freshwater inflows and tides complicate the circulation patterns and

eventually form an estuarine circulation. These lead to a complex hydrographic

environment of Loch Linnhe. This section gives a brief introduction on the physical

characteristics of Loch Linnhe.

3.2.1 Winds

The prevailing wind directions in Loch Linnhe are from the southwest and from the

east. Due to the fact that side lochs are oriented in different directions, wind forcing

is variable in space. Wind in fjords often affects the distributions of temperature

and salinity. In dynamically wide systems, the strong winds can cause up-and

downwelling events. In Loch Linnhe, up-and downwelling areas can interact and

the system is influenced by different wind forcing, meanwhile the local bathymetry
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Figure 3.1: A schematic representation of fjord hydrodynamics (picture from [50]).

makes the circulation more complex. Outer Loch Linnhe is dynamically wide.

In wind-free conditions, the shallow water flowing downwards hugs the western

coastline [106]. However the presence of wind forcing results in different surface

patterns [122]. Especially, prevailing winds from the southwest push surface layer

across the loch to the eastern coast, and winds from southeast push shallow water

up to the Corran Narrows.

3.2.2 Tides

In a fjord ecosystem, tidal flows around the sill are often turbulent and at high

velocity, causing a strong mixing between open sea and deep water (figure 3.1).

Moreover the deep water is coupled to the surface layer by tidal upwelling and

turbulent diffusion [50]. In Loch Linnhe, tides are dominated by the semi-diurnal

M2 tide with amplitudes of 1.30 m at the northern end of the loch and 1.26 m at

the southern end. Tidal flows through the Corran Narrows can reach 2.5 ms−1 at

spring tides, causing strong mixing around the sill [99]. The dynamics at the sills

can lead to deep-water renewal. Rabe and Hindson [106] pointed out that tides

have a bigger effect on the currents below the wind-influenced surface layer.
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3.2.3 Freshwater

Fjords always occur in mountainous regions with high rainfall [50]. In Loch Linnhe,

the mean annual rainfall is between 2200 and 2800 mmy−1 and in the high-lying

areas it can exceed 2800 mmy−1 (UK Met Office). Close to sea level, the average

rainfall from 1981 to 2010 was 1681 mmy−1 at Dunstaffnage and 1809 mmy−1 at

Tulloch Bridge near Fort William (UK Met Office). According to [37], the observed

mean freshwater inflow to Loch Linnhe system is 7553× 106m3y−1. In particular,

47% comes from the catchment area of inner Loch Linnhe and Loch Eil, and 40%

originates from the catchment of Loch Etive. Freshwater inflows by the largest

rivers Lochy and Nevis are monitored by the Centre for Ecology and Hydrography

(CEH, National River Flow Archive).

3.2.4 Estuarine Circulation

In Loch Linnhe, the interactions between the bathymetry, winds, tides, freshwater

inflows and Earth’s rotation form an estuarine circulation, which conforms the

classical theory of estuarine circulation [117]. This makes the hydrographic envir-

onment in Loch Linnhe complex and varied spatially and temporally. The shallow

water with salinities sometimes below 20 flows out of the loch while a deeper layer

with salinities between 30 and 33 flows into the system. The exchange across sills

due to tidal streams lead to deep-water renewal.

3.3 Biological Environment of Loch Linnhe

A group of physical factors due to fjords’ rather subtle hydrodynamics deeply

affect the biological components of a sea-loch ecosystem. The basic interactions of

these biological components can be illustrated by an aquatic food web (Figure 3.2),

where the inorganic nutrient links all the trophic levels. Firstly, a phytoplankton

group, often dominated by a single phytoplankton species, takes up dissolved

inorganic nutrient, and is grazed by zooplankton which is also frequently domin-

ated by a single species. Then zooplankton is consumed by carnivores (jellyfish).

Faecal pellets and dead individuals from these living plants and animals enter

the detritus. The nutrient they contain is remineralised to inorganic nutrient by
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Figure 3.2: A schematic representation of an aquatic food web.

bacterial action in the sediment. Through denitrification the dissolve nutrient

is converted to nitrogen gas [50]. Human activities result in strong alterations

in the structure and function of the ecosystems [123]. Figure 3.2 suggests the

two main ways in which human influence a food web. Firstly human-related

activities such as industrial effluents, agricultural runoff and municipal sewage

can cause eutrophication [72]. Secondly, over-fishing may disrupt the food chain

and finally destroy the balance of the ecology. Moreover, an aquatic system is

affected by climate change. In particular, the variations in the water temperature

can alter the fundamental ecological processes and the geographic distribution of

the species [65].

In Loch Linnhe, ecological research is carried out to understand biodiversity,

biogeochemistry and plankton and benthic ecology through observations and

ecosystem modelling. In particular, Marine Scotland Science has implemented

a comprehensive field program in 1991. This campaign has provided a variety

of hydrographic and chemical measurements, including the hydro-chemistry,

phytoplankton taxonomy, zooplankton net (30 um) and OPC profiles, carbon,

nitrate and ammonia uptake, zooplankton excretion and gut fluorescence, micro-

heterotroph production, bacterial production, and sediment nitrate and ammonia
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Figure 3.3: Locations of the moorings and process-study sites during the 1991

study in Loch Linnhe (picture from [105]). Data covered in this chapter were

collected from the outer basin during the monthly process studies.

fluxes. More details about this program are described below.

3.3.1 The 1991 Field Campaign

During 1991, the vessel ”Lough Foyle” conducted sampling through 12 surveys

at about 30-day intervals in Loch Linnhe. The main sampling areas were the

Firth of Lorn and the inner and outer basins of Loch Linnhe. A series of methods

were used to implement intensive surveys in the loch and an area of the open sea

outside the loch in the Firth of Lorn. Firstly, the ARIES system [36] was towed in

a vertically undulating track along the axis of the loch and out to the sea. Next

the instruments were towed on a track at a depth of 4 m and the track travelled

back and forth across the loch in a horizontal plane. Finally a Methot-Isaacs-Kidd

Trawl (MIKT) was deployed at ten sites along the axis of the loch to sample the fish

larvae and macroplankton on each cruise. Apart from these mobile surveys, four
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fixed sampling stations were set up on each of the 12 cruises to carry out process

studies (Figure 3.3). The stations included two in the outer basin, one in the Firth

of Lorn and one in the inner basin of Loch Linnhe. In these three locations, the

instrumented moorings were maintained during the study period from January

1991 to February 1992, and the instruments were serviced at monthly intervals

(Figure 3.3). More information about this field campaign can be found in [105].

Data from the 1991 Surveys

The 1991 field program provided us with a variety of hydrographic and chemical

data. All the data are held by Marine Scotland Science. Figure 3.4 and 3.5 show

some time series of the high-resolution data collected from the outer basin (Figure

3.3) during the monthly process studies. These observations are used to examine

our model reliability.

Surface Nitrate Data The moored nitrate instruments were replaced regularly,

causing different amplitudes of instrument error in the nitrate data (see Figure

3.4(a)). This can lead to difficulties in data fitting. Hence we modify the nitrate

data by scaling the instrument error using the formula:

xm(t) =
σi
σc(t)

(xo(t)− x̄o(t)) + x̄o(t),

where xo(t) represents the nitrate observation from a certain instrument at time t,

xm(t) is the corresponding modified nitrate at time t, σi is the ideal value for the

standard deviation determined by the data from June to September, σc(t) denotes

the standard deviation of the nitrate observation from a certain instrument, x̄o(t)

is the average value of the nitrate data from a certain instrument. The modified

surface nitrate data are shown in Figure 3.4(a).

Sea Level Data The moored sea-level instruments were replaced regularly. This

may result in an offset provided that a new instrument was not replaced at exactly

the same position as the old one. As a result, the sea-level data is modified by

taking out the possible offsets (Figure 3.4(b)).
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Figure 3.4: (a) Time series of the hourly surface nitrate concentrations (mMoles ·
m−3) from the moored nitrate analysers (black lines), its modified version (red

lines) and water bottle data (green points). (b) Modified sea level data (metres)

from moored sensor. (c) Hourly chlorophyll data (mg/m3) and its local regression.

(d) Integrated light intensity Einstens/m2/d and its local regression. (e) Hourly

deep nitrate data (mMoles ·m−3), its local regression and the water bottle data.

(f) River nitrate (mMoles ·m−3) and its local regression.
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Figure 3.5: (a) Daily averaged flow rates of freshwater (m3/sec) from rivers and

rainfall and its local regression. (b) Temperature records (oC) and its local regres-

sion. (c) Hourly surface salinity data (ppt). (d) Hourly deep salinity data (ppt)

and its local regression.
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Other Data We also have chlorophyll data, light intensity records, deep nitrate,

river nitrate, freshwater inflow rates, temperature data and shallow and deep sa-

linity data from the surveys. Due to the different measurement time of the data

and the missing values contained in the data, we smooth the observed data by

calculating the corresponding estimated hourly values. The hourly values for most

data sets are approximated using the local regression (LOESS) approach. While

the exponentially weighted moving average (EWMA) technique is employed for

the freshwater input rates as the current inflow rate also depends on the previous

run-off.

3.4 Model Fit for the One-month Data

The measurements collected from the 1991 field campaign allow us to model the

complex variations in the surface nitrate in Loch Linnhe. An SDE model is then

formulated by incorporating white noise into a deterministic nutrient model, based

on the parameter perturbation scheme. Then we study the model fit for the one-

month period data (21 April to 19 May 1991).

3.4.1 Model Set-up

Recently, Heath et al. [54] proposed a simplest mathematical model of a nutrient

resource x in a food web:

dx(t) = (I − µx(t))dt, (3.4.1)

where I is the external input rate of the nutrient and µ is the nutrient uptake rate

by primary producers. Due to the probabilistic nature, the nutrient consumption

rate µ may be influenced by some environmental factors such as temperature fluc-

tuations. Parameter perturbation is a routine way to introduce the environmental

noise to the deterministic dynamic systems [14, 47, 92, 93, 95]. Suppose that µ is

stochastically perturbed with

µ→ µ+ σ̃(x(t))Ḃ(t),
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where Ḃ(t) is a white noise and σ̃(x(t)) > 0 represents the noise intensity, this

perturbed system can be described by the Itô equation:

dx(t) = (I − µx(t))dt+ σ̄(x(t))dB(t),

where σ̄(x) = −xσ̃(x). If we let

σ̄(x) = σ or σ̄(x) = σx or σ̄(x) = σ
√
x,

where σ is a constant to be determined, we then respectively obtain the mean-

reverting Ornstein-Uhlenbeck (OU) process [89,111]:

dx(t) = (I − µx(t))dt+ σdB(t), (3.4.2)

the mean-reverting process [89,132]:

dx(t) = (I − µx(t))dt+ σx(t)dB(t) (3.4.3)

and the mean-reverting square-root process [89]:

dx(t) = (I − µx(t))dt+ σ
√
|x(t)|dB(t). (3.4.4)

A general form for these models is the mean-reverting theta process [89]:

dx(t) = (I − µx(t))dt+ σ|x(t)|θdB(t). (3.4.5)

By letting θ = 0, 1 and 1
2
, model (3.4.2)–(3.4.4) are then deduced respectively. In

the next section, the parameters of model (3.4.2)-3.4.4 are approximated using the

least squares method.

3.4.2 Parameter Estimation

This section focuses on the parameter estimation for model (3.4.2)–(3.4.4). We

use the general model (3.4.5) to introduce the estimation procedure. Firstly, the

Euler-Maruyama (EM) scheme [57, 89] is used to approximate the path of the

process (3.4.5) such that the discretised form of (3.4.5) can be rearranged as

a regression model. Then the regression theory can be applied to estimate the

model parameters [47,102,107].
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Given a stepsize ∆ > 0 and setting tk = k∆ for k = 0, 1, 2, ... and X0 = x(0), the

EM scheme produces the approximations Xk ≈ x(tk) of the form

Xk = Xk−1 + (I − µXk−1)∆ + σ|Xk−1|θ∆Bk (3.4.6)

for k = 1, 2, ..., where ∆Bk = B(tk) − B(tk−1), provided that the stepsize ∆ is

small enough. Given {Xk : 0 ≤ k ≤ n} for the time interval [0, T ], where T = n∆

for any positive integer n, one may rearrange equation (3.4.6) to get

Xk −Xk−1

|Xk−1|θ
=

I∆

|Xk−1|θ
− µXk−1∆

|Xk−1|θ
+ σ
√

∆Zk, (3.4.7)

where Zk ∼ N(0, 1) for 1 ≤ k ≤ n. Let

yk =
Xk −Xk−1

|Xk−1|θ
, uk =

1

|Xk−1|θ
, vk =

Xk−1

|Xk−1|θ

and

α = I∆, β = −µ∆, γ = σ
√

∆, (3.4.8)

equation (3.4.7) is rewritten as

yk = αuk + βvk + γZk, 1 ≤ k ≤ n, (3.4.9)

where each γZk is a normally distributed random variable with mean 0 and variance

γ2. Then the observations {yk, µk, vk}nk=0 are calculated. According to the multiple

linear regression in the general matrix form introduced by Rawlings [107]

Y = Mρ+ ε, (3.4.10)

where

Y =


y1

y2

...

yn

 , M =


1 m11 m12 ... m1p

1 m21 m22 ... m2p

...
...

...
. . .

...

1 mn1 mn2 · · · mnp

 ,
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ρ =


ρ0

ρ1

...

ρp

 , ε =


ε1

ε2
...

εn

 ,

with p a non-negative integer and εk ∼ N(0, η2) for 1 ≤ k ≤ n and η > 0, we may

regard equation (3.4.9) as a multiple linear regression model which can be written

in the matrix form of (3.4.10) by setting

M =


u1 v1

u2 v2

...
...

un vn

 , ρ =

(
α

β

)
, ε =


γZ1

γZ2

...

γZn,


where η = γ and remaining Y the same as in the general form. Then from the

regression theory, we may derive the estimators for θ and γ based on the least

squares method. From equation (3.4.10), we obtain that

ρ̂ =

(
α̂

β̂

)
= (MTM)−1(MTY ) =

(
Suu Suv

Suv Svv

)−1

·

(
Suy

Svy

)

and

γ̂ =

√∑n
k=1 (yk − α̂uk − β̂vk)

2

n− 2
,

where

Suu =
n∑
k=1

u2
k, Svv =

n∑
k=1

v2
k, Suv =

n∑
k=1

ukvk, Syu =
n∑
k=1

ykuk, Syv =
n∑
k=1

ykvk.

By (3.4.8), we further obtain the estimators for σ, I and µ as

Î =
α̂

∆
, µ̂ =

β̂

−∆
, σ̂ =

γ̂√
∆
.

Let us consider a one-year period (T=1). As the nitrate data are available

hourly, the stepsize ∆ is set to be 1/(365× 24) = 0.0001170412 (the time unit is

one year), where (365× 24) denotes the total hours in one year. Consequently, by

applying the estimation technique elaborated above, the estimators Î , µ̂ and σ̂ of

model (3.4.2)–(3.4.4) are obtained accordingly. Results are shown in Table 3.1.
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Parameter estimator Î µ̂ σ̂

Model (3.4.2) 8980.72 1326.06 115.00

Model (3.4.3) 13619.71 2031.72 51.93

Model (3.4.4) 12966.39 1910.77 62.25

Table 3.1: Parameter estimation for model (3.4.2)–(3.4.4).

3.4.3 Model Selection

So far we have obtained three candidate models (3.4.2)–(3.4.4) for the fjord nitrate.

The correctness of each model is assessed by comparing the probability distribution

of the simulation data of each candidate model with that of the nitrate data. This

is done by comparing the corresponding statistics and the distribution graphs. Fur-

thermore, we perform a statistical test, the Kolmogorov-Smirnov (K-S) test [108],

to investigate any differences in the distributions between the model simulations

and the nitrate data. Namely, the hypothesis

H0: The simulation data of model (3.4.2) (or (3.4.3), (3.4.4)) follow the same

distribution as the modified nitrate data does;

H1: The simulation data of model (3.4.2) (or (3.4.3), (3.4.4)) does not follow

the same distribution as the modified nitrate data does

is considered. If the distribution of the model simulation is consistent with that

of the nitrate data, this model is able to fit the nitrate data in distribution. After

the model-selection procedure, the goodness of fit of the model is then evaluated

by a normality test.

Firstly, from Table 3.2, both the mean values and standard deviations of

the simulation data of model (3.4.2) and (3.4.4) are close to the corresponding

statistics of the nitrate data. In the contrast, the standard deviation of the

simulation data of model (3.4.3) is far from that of the nitrate observations.

Secondly, from Figure 3.6(a)-(c), the distribution graph for model (3.4.2) is the

closest to that for the nitrate data. Moreover, the p-value of 0.07 in the K-S test

suggests that model (3.4.2) has captured the variations in the sea-loch nitrate in

distribution.
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Figure 3.6: (a)-(c) Probability distribution comparisons between the nitrate re-

cords and the simulated solutions of the SDE model (3.4.2)–(3.4.4). (d) The

distribution of the nitrate observations compared with the standard normal dis-

tribution. The SDE model (3.4.2)–(3.4.4) are simulated by the Euler-Maruyama

scheme with stepsize 1/(365× 24) and the initial value 6.81 (the average value of

the one-month nitrate data).
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Mean Standard deviation P-value

Modified nitrate data 6.81 2.32 –

Simulation data of model (3.4.2) 6.86 2.27 0.07

Simulation data of model (3.4.3) 6.99 15.85 < 0.0001

Simulation data of model (3.4.4) 6.84 2.80 < 0.0001

Normality test for model (3.4.2) – – 0.017

Table 3.2: Basic statistics of the modified nitrate data and the simulated solutions

to model (3.4.2)–(3.4.4). The p-values are produced in the K-S test examining

any differences in the distributions between the model simulations and the nitrate

data or examining whether the nitrate data follow N( Î
µ̂
, σ̂

2

2µ̂
). The SDE models are

simulated by Euler-Maruyama method with stepsize 1/(365 × 24) and the initial

value 6.81 (the average value of the one-month nitrate data).

To verify the above results, we evaluate the goodness of fit of model (3.4.2)

by a normality test. According to the variation-of-constants formula (Theorem

2.20), the solution to model (3.4.2) is

x(t) = e−µtx0 +
I

µ
(1− e−µt) + σ

∫ t

0

e−µ(t−s)dB(s). (3.4.11)

We therefore obtain that the mean

Ex(t) = e−µtEx0 +
I

µ
(1− e−µt) + σ

∫ t

0

e−µ(t−s)dB(s)→ I

µ
as t→∞

and the variance

V ar(x(t)) = e−2µtV ar(x0) +
σ2

2µ
(1− e−2µt)→ σ2

2µ
as t→∞.

It then follows from (3.4.11) that the solution x(t) to model (3.4.2) approaches the

normal distribution

N
( I
µ
,
σ2

2µ

)
asymptotically as t → ∞ for arbitrary initial value x(0) [89, p.103]. As a result,

to investigate whether model (3.4.11) is able to fit the nitrate data, we carry out

a normality test:
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H0: The nitrate data follow N( Î
µ̂
, σ̂

2

2µ̂
);

H1: The nitrate data does not follow N( Î
µ̂
, σ̂

2

2µ̂
).

From Table 3.2, the normality test produces a p-value of 0.017, which is consistent

with the previous results in the K-S test. Therefore we conclude that model

(3.4.2) outperforms the other two models to fit the one-month nitrate data. In

other words, the diffusion coefficient of our SDE model has been identified by

the nitrate data. In the next section we would like to improve our model fit by

exploring the effects of tides on the nitrate dynamics.

3.4.4 Model Fit Improvement

Recall that model (3.4.2) assumes a constant external input rate of nutrient re-

source. From section 3.2.2, however, the turbulent tidal flows may cause a dy-

namical change in the nitrate input rate. Assuming that the nitrate input rate is

linearly related to sea-level, model (3.4.2) is corrected to

dx(t) = (oh(t)− µx(t))dt+ σdB(t), (3.4.12)

where o is a constant to be determined and h(t) refers to the sea levels with units

of metres. Model (3.4.12) is then parameterised with the observed data.

Parameter Estimation

Let us consider a one-year duration. As the nitrate data are measured hourly, the

stepsize is ∆ = 1/(365× 24) = 0.0001170412 (the time unit is one year), where

(365 × 24) denotes the total hours in one year. Consequently, by applying the

estimation approach proposed above, the estimators ô, µ̂ and σ̂ of the SDE model

(3.4.12) are deduced (Table 3.3).

Parameter estimator ô µ̂ σ̂

Model (3.4.12) 323.88 1276.02 115.34

Table 3.3: Parameter estimation for model (3.4.12).
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Model Fit Analysis

The goodness of fit of model (3.4.12) is analysed in two ways. On the one hand, the

probability distribution of the simulation data of model (3.4.12) is compared with

that of the nitrate data. This is done by comparing the corresponding statistics

and by performing a statistical test, K-S test [108]. Namely, the hypothesis

H0: The simulation data of model (3.4.12) follow the same distribution as

the modified nitrate data does;

H1: The simulation data of model (3.4.12) does not follow the same distri-

bution as the modified nitrate data does

is considered. On the other hand, we provide a theorem which shows that the

goodness of fit can be analysed by a normality test.

From Table 3.4, both the mean value and standard deviation of model

Mean Standard deviation P-value

Modified nitrate data 6.81 2.32 –

Simulation data of model (3.4.12) 6.75 2.31 0.075

Normality test for model (3.4.12) – – 0.032

Table 3.4: Basic statistics of the modified nitrate data and the simulated solution

to model (3.4.12). The p-values are produced in the K-S test examining any

differences in the distributions between the model simulation and the nitrate data

or examining whether the normalised nitrate data follow N
(
0, σ̂

2

2µ̂

)
. The SDE model

(3.4.12) is simulated by the Euler-Maruyama approach with stepsize 1/(365× 24)

and the initial value 6.81 (the average value of the one-month nitrate data).

(3.4.12) are close to the corresponding statistics of the nitrate data. Furthermore,

the K-S test produces a p-value of 0.075, indicating that model (3.4.12) is able to

fit the changes in the fjord nitrate.

Now we would like to assess the model fit by a normality test. By the

variation-of-constants formula (Theorem 2.20), the solution to model (3.4.12) is

x(t) = e−µtx(0) + oe−µt
∫ t

0

eµsh(s)ds+ σ

∫ t

0

eµ(s−t)dB(s). (3.4.13)
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Assuming that the surface nitrate and sea levels both have a period of N , we define

the following three functions:

H : [0, N ]→ R : H(t) =

∫ t

0

eµsh(s)ds;

m : [0, N ]→ R : m(t) = oe−µt
(
H(t) +

H(N)

eµN − 1

)
;

δ : R+ → [0, N ] : δ(t) = t−
[
t

N

]
N, t ≥ 0,

where

[
t

N

]
is the integer part of

t

N
.

Theorem 3.1. With the notations above, as t→∞

x(t)−m(δ(t)) ∼ N
(

0,
σ2

2µ

)
, (3.4.14)

where m(δ(t)) is the asymptotic periodic mean.

Proof. It follows from (3.4.13) that the distribution of solution x(t) approaches

the normal distribution with mean

Ex(t) = e−µtEx(0) + oe−µt
∫ t

0

eµsh(s)ds,

and variance

V ar(x(t)) = e−2µtV ar(x(0)) + e−2µtσ2

∫ t

0

e2µsds

= e−2µtV ar(x(0)) +
σ2

2µ
(1− e−2µt).

Namely,

x(t) ∼ N
(
e−µtEx(0) + oe−µt

∫ t

0

eµsh(s)ds, e−2µtV ar(x(0)) +
σ2

2µ
(1− e−2µt)

)
For t ∈ [fN, (f + 1)N ], f = 0, 1, 2, · · · ,

oe−µt
∫ t

0

eµsh(s)ds = o
(
e−µt

∫ t

fN

eµsh(s)ds+ e−µt
∫ fN

0

eµsh(s)ds
)

= o
(
e−µteµfN

∫ t

fN

eµ(s−fN)h(s− fN)ds+ e−µt
f−1∑
i=0

∫ (i+1)N

iN

eµsh(s)ds
)
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= o
(
eµ(fN−t)

∫ t−fN

0

eµsh(s)ds+ e−µt
f−1∑
i=0

eµiN
∫ (i+1)N

iN

eµ(s−iN)h(s− iN)ds
)

= o
(
e−µδ(t)

∫ δ(t)

0

eµsh(s)ds+ (e−µt − e−µδ(t))
∫ N

0
eµsh(s)ds

1− eµN
)
.

We then obtain that

lim
t→∞

(
Ex(t)−m(δ(t))

)
= lim

t→∞

(
oe−µt

∫ t

0

eµsh(s)ds−m(δ(t))
)

= lim
t→∞

(
oe−µδ(t)

∫ δ(t)

0

eµsh(s)ds+ o(e−µt − e−µδ(t))
∫ N

0
eµsh(s)ds

1− eµN
−m(δ(t))

)
= lim

t→∞

(
oe−µδ(t)

(∫ δ(t)

0

eµsh(s)ds−
∫ N

0
eµsh(s)ds

1− eµN
)
−m(δ(t))

)
= lim

t→∞

(
oe−µδ(t)

(
H(δ(t))− N(N)

1− eµN
)
−m(δ(t))

)
= lim

t→∞
(m1(δ(t))−m1(δ(t))) = 0.

and

lim
t→∞

V ar(x(t)) =
σ2

2µ
.

Therefore x(t)−m(δ(t)) ∼ N
(
0, σ

2

2µ

)
for arbitrary x(0) as t→∞ [89].

Theorem 3.1 shows that the normalisation of the solution to model (3.4.12)

approaches N(0, σ
2

2µ
) asymptotically as t → ∞. Let xk for k = 0, 1, 2, · · · denote

the observed nitrate data at time tk. Then to examine whether model (3.4.12)

can fit the nitrate data, we can then test whether the normalised nitrate data

xk −m(δ(tk)) for k = 0, 1, 2, · · · also follows N(0, σ
2

2µ
). That is, the hypothesis

H0: The normalised nitrate data follow N(0, σ̂
2

2µ̂
);

H1: The normalised nitrate data does not follow N(0, σ̂
2

2µ̂
)

is considered. Figure 3.7(c) shows that the distribution graph of the normalised

nitrate data is close to the normal distribution in figure. From Table 3.4, the

normality test provides a p-value of 0.032, showing that the model fit has been

improved by including the sea-level dynamics.
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Figure 3.7: (a) The asymptotic periodic mean m for model (3.4.12). (b) The

modified nitrate data and the normalised nitrate data. (c) Probability distributions

of the one-month nitrate data and the normalised nitrate data, comparing to the

normal distribution N(0, σ̂
2

2µ̂
).

3.5 Model Fit for the One-year Data

The goodness of fit of model (3.4.12) for the one-month period data has been

analysed in the previous section. Figure 3.4(a) suggests that the one-year data

contain much more seasonal variability. As a result, our model need to be refined by

considering more complicated physical and biological processes in the Loch Linnhe

ecosystem. The SDE model is formulated in an iterative procedure by correcting

the existing model and evaluating its goodness of fit based on the observed data.

Due to the page limit, this section only presents the final model. All the interim

models can be found in Appendix A.

3.5.1 Model Refinements

To match our model to the one-year data, we need to study more physical and

biological factors that can contribute to the dynamics of shallow nitrate in Loch

Linnhe. First of all, model (3.4.12) assumes a constant uptake rate of nitrate by

phytoplankton. In fact, the uptake rate is often dependent on the phytoplankton

abundance. Secondly, section 3.2 indicates that the turbulent tidal stream can

result in a mixing between surface and deep water. Consequently the net tidal
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exchange rate of nitrate in the surface layer can be represented as:

oh(t)(xd(t)− x(t)),

where xd(t) represents the deep nitrate concentrations (mMoles ·m−3). Thirdly,

section 3.2.3 suggests that the high rate of freshwater run-off from rainfall and

rivers is an additional essential source of surface nitrate. Meanwhile, there is a

stream of water flowing out to the ocean. Furthermore, water temperature can

cause the changes in the surface nitrate by affecting the strength of nitrification and

denitrification. Nitrate can be produced from ammonia production by nitrification.

Then denitrification is performed by bacterial species to convert nitrate to nitrogen

gas. The intensity of the complex bacterial action is dependent on the water

temperature. Consequently, we use temperature fluctuations to measure the net

impact of nitrification and denitrification on the nitrate dynamics. By including

the above processes, the nitrate model can be refined as:

dx(t) = [oh(t)(xd(t)− x(t))− µ1p(t)x(t) + (µ2xr(t)− µ3x(t))w(t)

+ µ4D(t)]dt+ σdB(t), (3.5.1)

where p(t) refers to the chlorophyll abundance (mg/m3) which is an index of

phytoplankton, xr(t) denotes the nitrate concentrations (mMoles · m−3) in the

rivers Lochy and Nevis flowing into Loch Linnhe at Fort William, w(t) is the

freshwater flow rates (m3/sec) into Loch Linnhe from river and rainfall, D(t)

represents the water temperature (oC), and o, µ1, µ2, µ3 and µ4 are constants to

be estimated. The parameter estimation for model (3.5.1) is conducted in the

following part.

Parameter Estimation

Let us consider a one-year duration. As the surface nitrate data are measured

hourly, the stepsize is ∆ = 1/(365× 24) = 0.0001170412 (the time unit is one

year), where (365 × 24) denotes the total hours in one year. The parameter es-

timation is given in Table 3.5. Unfortunately, we found that the values of µ̂2 and

µ̂3 are unexplained in the context of biology. In the next part we will combine

the nitrate model (3.5.1) with a separate model of surface salinity in Loch Lin-

nhe. The interactions between the coupled system might help us obtain a group

of biologically interpretable parameters.
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Parameter estimator ô µ̂1 µ̂2 µ̂3 µ̂4 σ̂

Model (3.5.1) 82.41 405.02 -1.04 -1.80 -73.74 50.14

Table 3.5: Parameter estimation for model (3.5.1).

3.5.2 Stochastic Modelling for Shallow Salinity

Salt is a passive tracer in a sea-loch environment. This section explores the dy-

namical variations in the shallow salinity in Loch Linnhe. Firstly, shallow water

is mostly coupled to deep by tidal upwelling and turbulence. Hence the net tidal

exchange rate of salinity in the surface layer can be represented as

osh(t)(sd(t)− s(t)),

where sd(t) denotes the deep salinity at time t and os is a constant to be defined.

Secondly, the surface water is flushed by a high rate of freshwater run-off from

river and rainfall. Meanwhile, a stream of water flows out to the open sea. As a

result, the shallow salinity is diluted by the freshwater with a rate

µsw(t),

where the constant µs is assumed to equal µ3 in (3.5.1) . Consequently the salinity

model is formulated as

ds(t) = [osh(t)(sd(t)− s(t))− µ3w(t)s(t)]dt+ σsdB(t), (3.5.2)

where σs is a constant to be estimated. By combining the nitrate model (3.5.1)

with the salinity model (3.5.2), we obtain a coupled equation:

dx(t) = [oh(t)(xd(t)−x(t))−µ1p(t)x(t)+(µ2xr(t)−µ3x(t))w(t)+µ4D(t)]dt+σdB(t),

(3.5.3a)

ds(t) = [osh(t)(sd(t)− s(t))− µ3w(t)s(t)]dt+ σsdB(t). (3.5.3b)

In the following part, this coupled equation is parameterised with the observed

data.

3.5.3 Parameter Estimation

Let us consider a one-year duration. As the surface nitrate data and salinity

data are measured hourly, the stepsize is ∆ = 1/(365× 24) = 0.0001170412 (the
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time unit is one year), where (365 × 24) denotes the total hours in one year.

From Table 3.6, the parameters are consistent with their biological meanings. The

results benefit from the interactions between the coupled system (3.5.3)

Parameter estimator ô ôs µ̂1 µ̂2 µ̂3 µ̂4 σ̂ σ̂s

Model (3.5.3) 33.02 75.57 305.59 1.05 0.07 -97.99 10.64 50.14

Table 3.6: Parameter estimation for model (3.5.3).

3.5.4 Goodness of Fit

P-value

Normality test for model (3.5.3a) < 0.01

Normality test for model (3.5.3b) < 0.01

Table 3.7: The p-values are produced in the K-S test examining whether the

normalised nitrate or salinity data follow N(0, 1).

In this section, the goodness of fit of model (3.5.3) is assessed. We will

introduce a theorem which suggests that the model fit can be evaluated by

examining whether the normalised nitrate and salinity data are standard normally

distributed. This is done by comparing the distribution graphs and by carrying

out a normality test (K-S test).

Assuming that the surface nitrate, sea levels, chlorophyll data, deep ni-

trate, freshwater input rate, river nitrate, temperature, surface and deep salinity

all have a period of N , we define the following functions.

T : R+ → R+ : T (t) = exp
(∫ t

0

(oh(s) + µ1p(s) + µ3w(s))ds
)

;

T1 : R+ → R+ : T1(t) = oxd(t)h(t) + µ2xr(t)w(t) + µ4D(t);

H1 : [0, N ]→ R : H1(t) =

∫ t

0

T1(s)T (s)ds;

H2 : [0, N ]→ R : H2(t) =

∫ t

0

T 2(s)ds;
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Figure 3.8: (a) The asymptotic periodic mean m1 and standard deviation
√
m2

for model (3.5.3a). (b) The modified nitrate data and the normalised nitrate. (c)

Probability distributions of the modified nitrate data and the normalised nitrate

data, comparing to the standard normal distribution N(0, 1).
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Figure 3.9: (a) The asymptotic periodic mean ms1 and standard deviation
√
m2

for model (3.5.3b). (b) The hourly salinity data and the normalised salinity data.

(c) Probability distributions of the salinity data and the normalised salinity, com-

paring to the standard normal distribution N(0, 1).
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m1 : [0, N ]→ R : m1(t) =
1

T (t)

(
H1(t) +

H1(N)

T (N)− 1

)
;

m2 : [0, N ]→ R : m2(t) =
σ2

T 2(t)

(
H2(t) +

H2(N)

T 2(N)− 1

)
;

Ts : R+ → R+ : Ts(t) = exp
(∫ t

0

(osh(s) + µsw(s))
)

;

Hs1 : [0, N ]→ R : Hs1(t) =

∫ t

0

ossd(s)h(s)Ts(s)ds;

Hs2 : [0, N ]→ R : Hs2(t) =

∫ t

0

T 2
s (s)ds;

ms1 : [0, N ]→ R : ms1(t) =
1

Ts(t)

(
Hs1(t) +

Hs1(N)

Ts(N)− 1

)
;

ms2 : [0, N ]→ R : ms2(t) =
σ2
s

T 2
s (t)

(
Hs2(t) +

Hs2(N)

T 2
s (N)− 1

)
;

δ : R+ → [0, N ] : δ(t) = t−
[ t
N

]
N, t ≥ 0,

where
[ t
N

]
is the integer part of

t

N
.

Theorem 3.2. With the notations above, as t→∞ the solution to model (3.5.3)

obeys

x(t)−m1(δ(t))√
m2(δ(t))

∼ N(0, 1) (3.5.4)

and

s(t)−ms1(δ(t))√
ms2(δ(t))

∼ N(0, 1), (3.5.5)

where m1 and m2 are the asymptotic periodic mean and variance for the modi-

fied surface nitrate data and ms1 and ms2 are the asymptotic periodic mean and

variance for the salinity data respectively.

Proof. With the notations above, the solution to model (3.5.3a) is

x(t) =
1

T (t)

(
x(0) +H1(t) + σ

∫ t

0

T (s)dB(s)
)

;

For any initial value x(0), the solution x(t) obeys normal distribution with mean

Ex(t) =
1

T (t)
Ex(0) +

H1(t)

T (t)
=
x(0)

T (t)
+
H1(t)

T (t)
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and variance

V ar(x(t)) =
1

T 2(t)
V ar(x(0)) +

σ2

T 2(t)

∫ t

0

T 2(s)ds

.For t ∈ [fN, (f + 1)N ] with f = 0, 1, 2, · · · , we obtain

H1(t)

T (t)
=

1

T (t)

∫ t

0

T1(s)T (s)ds =
1

T (t)

∫ fN

0

T1(s)T (s)ds+
1

T (t)

∫ fN

t

T1(s)T (s)ds,

where

1

T (t)

∫ fN

0

T (s)T1(s)ds =
1

T (t)
·
f−1∑
i=0

∫ (i+1)N

iN

T (s)T1(s)ds

=
1

T (t)

f−1∑
i=0

∫ (i+1)N

iN

T (s)T1(s− iN)ds =
1

T (t)

f−1∑
i=0

∫ N

0

T (s+ iN)T1(s)ds

=
1

T (t)

f−1∑
i=0

T (iN)

∫ N

0

T (s)T1(s)ds =
1

T (t)

1− T (fN)

1− T (N)

∫ N

0

T (s)T1(s)ds

=
1

1− T (N)

( 1

T (t)
− T (fN)

T (t)

)∫ N

0

T (s)T1(s)ds

=
1

1− T (N)

( 1

T (t)
− 1

T (t− fN)

)∫ N

0

T (s)T1(s)ds

=
1

1− T (N)

( 1

T (t)
− 1

T (δ(t))

)∫ N

0

T (s)T1(s)ds,

and

1

T (t)

∫ t

fN

T (s)T1(s− fN)ds =
1

T (t)

∫ t

fN

T (s)T1(s− fN)ds

=
1

T (t)

∫ t−fN

0

T (s+ fN)T1(s)ds =
T (fN)

T (t)

∫ t−fN

0

T (s)T1(s)ds

=
1

T (t− fN)

∫ t−fN

0

T (s)T1(s)ds =
1

T (δ(t))

∫ δ(t)

0

T (s)T1(s)ds.

Therefore

H1(t)

T (t)
=

1

T (t)

∫ t

0

T (s)T1(s)ds

=
1

1− T (N)

( 1

T (t)
− 1

T (δ(t))

)∫ N

0

T (s)T1(s)ds+
1

T (δ(t))

∫ δ(t)

0

T (s)T1(s)ds.

We thus obtain that

lim
t→∞

(Ex(t)−m1(δ(t)))
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= lim
t→∞

(x(0)

T (t)
+
H1(t)

T (t)
−m1(δ(t))

)
= lim

t→∞

( 1

T (t)

∫ t

0

T (s)T1(s)ds−m1(δ(t))
)

= lim
t→∞

( 1

1− T (N)

( 1

T (t)
− 1

T (δ(t))

)∫ N

0

T (s)T1(s)ds+
1

T (δ(t))

∫ δ(t)

0

T (s)T1(s)ds

−m1(δ(t))
)

= lim
t→∞

( 1

1− T (N)

(
− 1

T (δ(t))

)∫ N

0

T (s)T1(s)ds+
1

T (δ(t))

∫ δ(t)

0

T (s)T1(s)ds

−m1(δ(t))
)

= lim
t→∞

(
− 1

T (δ(t))(1− T (N))

∫ N

0

T (s)T1(s)ds+
1

T (δ(t))

∫ δ(t)

0

T (s)T1(s)ds

−m1(δ(t))
)

= lim
t→∞

( 1

T (δ(t))

(
H1(δ(t))− H1(N)

1− T (N)

)
−m1(δ(t))

)
= lim

t→∞
(m1(δ(t))−m1(δ(t))) = 0.

Similarly, we can deduce that

lim
t→∞

V ar(x(t))

m2(δ(t))
= lim

t→∞

σ2

m2(δ(t))T 2(t)

∫ t

0

T 2(s)ds

= lim
t→∞

( σ2

T 2(δ(t))

∫ δ(t)

0

T 2(s)ds+
σ2

1− T 2(N)

( 1

T 2(t)
− 1

T 2(δ(t))

)
·∫ N

0

T 2(s)ds
)/

m2(δ(t))

= lim
t→∞

( σ2

T 2(δ(t))

∫ δ(t)

0

T 2(s)ds+
σ2

1− T 2(N)

(
− 1

T 2(δ(t))

)∫ N

0

T 2(s)ds
)/

m2(δ(t))

= lim
t→∞

σ2

T 2(δ(t))

(∫ δ(t)

0

T 2(s)ds− 1

1− T 2(N)

∫ N

0

T 2(s)ds
)/

m2(δ(t))

= lim
t→∞

σ2

T 2(δ(t))

(
H2(δ(t))− H2(N)

1− T 2(N)

)/
m2(δ(t)) = lim

t→∞

m2(δ(t))

m2(δ(t))
= 1.

Consequently (3.5.4) follows immediately. Assertion (3.5.5) can be proved in the

same way and hence omitted.

Theorem 3.2 shows that the normalisation of the solution to model (3.5.3)

follows the standard normal distribution N(0, 1) asymptotically. Let xk and sk
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for k = 0, 1, 2, · · · denote the observed nitrate data and salinity data at time tk

respectively. Then to examine whether model (3.5.3) is able to fit the nitrate and

salinity data respectively, we could then test whether the normalised nitrate data

xk −m1(δ(tk))√
m2(δ(tk))

for k = 0, 1, 2, · · · (3.5.6)

and the normalised salinity data

sk −ms1[δ(tk)]√
ms2[δ(tk)]

for k = 0, 1, 2, · · · (3.5.7)

also follow N(0, 1). Figure 3.8 suggests that the distributions of the normalised

nitrate and salinity data are graphically close to the standard normal distribution.

Furthermore, the normality tests are performed for system (3.5.3). Namely, the

two hypotheses

H0: Normalised nitrate data follow N(0, 1);

H1: Normalised nitrate data does not follow N(0, 1)

and

H0: Normalised salinity data follow N(0, 1);

H1: Normalised salinity data does not follow N(0, 1)

are examined respectively. From Table 3.7, the p-values are too small to suggest

good model fit.

3.6 Error Inherent in the Data

As revealed in [13], different types of error in the data should be handled by dif-

ferent modelling approaches to assure the model reliability. This chapter employs

stochastic modelling to account for the environmental-type process noise in the

data. In this section, we conduct a residual analysis for the data to illustrate the

presence of such error type. We first assume that the data are driven by obser-

vation error. This type of error can be interpreted by the corresponding ordinary

differential equation (ODE) system:

dx(t) = [oh(t)(xd(t)− x(t))− µ1p(t)x(t) + (µ2xr(t)− µ3x(t))w(t) + µ4D(t)]dt,

(3.6.1a)
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Figure 3.10: Time series of the modified nitrate data and the salinity data, simula-

tions for the ODE model (3.6.1) and the SDE model (3.5.3) and the 95% confidence

intervals of the solution to SDE model (3.5.3).
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Initial Values for the Parameters o os µ1 µ2 µ3

(50,200,300,1,0.5,-100,32.5,6.8) 497.08 8.31 1339.83 5.51 0.02

(80,150,100,0.5,5,-200,32.5,7) 497.18 8.33 1339.51 5.51 0.02

(40,100,200,4,10,-150,32.5,7.5) 493.37 8.23 1346.50 5.48 0.02

(100,300,50,0.1,2,-250,32.5,7.5) 496.86 8.34 1340.91 5.51 0.02

(120,150,350,1.5,5,-250,32.5,7.5) 494.86 8.27 1347.33 5.50 0.02

Initial Values for the Parameters µ4 x(0) s(0) Convergence

(50,200,300,1,0.5,-100,32.5,6.8) -687.05 7.14 32.45 Yes

(80,150,100,0.5,5,-200,32.5,7) -687.30 7.14 32.45 Yes

(40,100,200,4,10,-150,32.5,7.5) -679.74 7.14 32.45 Yes

(100,300,50,0.1,2,-250,32.5,7.5) -686.53 7.14 32.45 Yes

(120,150,350,1.5,5,-250,32.5,7.5) -682.29 7.14 32.45 Yes

Table 3.8: Parameter estimation for the ODE model (3.6.1) based on the five

groups of initial values for the parameters.

ds(t) = [osh(t)(sd(t)− s(t))− µ3w(t)s(t)]dt. (3.6.1b)

Then the residuals of the data are approximated by taking away the simulation

data of the ODE model (3.6.1) from the observed data. Provided that the

residuals are normally distributed, we conclude that the data are driven by

observation error. If the residual patterns contain obvious seasonal trends, process

noise might exist in the data.

The ODE model (3.6.1) is parameterised based on the least squares ap-

proach. More precisely, the parameters are approximated by minimising the

residual sum of square value using the R function optim. This R function can

obtain a general-purpose minimisation based on the Nelder–Mead algorithm [98].

The initial values for the parameters to be estimated are required in the R

function. From the biological meanings of the model parameters, o, os, µ1, µ2 and

µ3 are supposed to be positive and µ4 could be any real number. Based on these

prior information, five sets of randomly chosen initial values are used in estimation

(Table 3.8). This estimation scheme produces a convergent result which is not

sensitive to the given initial values. With the corresponding estimated parameters,
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Figure 3.11: Residual patterns for the fjord nitrate and salinity data.

the ODE model (3.6.1) is then simulated using the Euler-Maruyama method with

stepsize 1/(365 × 24) and initial value determined by the parameter estimation.

Figure 3.10 shows that the ODE simulations pass through the average values of

the nitrate and salinity observations throughout the year, suggesting good model

fit. From Figure 3.11, the seasonal trends in the residual patterns indicate the

possible existence of the process noise in the data. Such error type has been

analysed by our SDE model.
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o os µ1 µ2 µ3

True Parameter 90 40 200 1 0.1

SDE Model 87.62 42.45 203.25 0.86 0.11

ODE

(10,100,300,10,1,-200,32.5,7.5) 431.43 134.44 255.06 2.34 1.07

(50,50,250,3,0.5,-300,32.5,7.5) 430.31 134.04 254.29 2.34 1.07

(80,200,100,5, 2,-250,32.5,7.5) 432.89 134.75 255.51 2.34 1.07

(100,150,90,0.5,10,-50,32.5,7.5) 431.34 134.34 254.82 2.34 1.07

µ4 x(0) s(0) σ σs

True Parameter -100 – – 60 20

SDE Model -93.80 – – 60.33 19.78

ODE

(10,100,300,10,1,-200,32.5,7.5) -160.20 4.99 32.04 – –

(50,50,250,3,0.5,-300,32.5,7.5) -159.75 4.99 32.01 – –

(80,200,100,5, 2,-250,32.5,7.5) -160.61 4.99 32.06 – –

(100,150,90,0.5,10,-50,32.5,7.5) -160.10 4.99 32.05 – –

Table 3.9: Parameter estimation for the simulation data driven by process noise.

3.7 Simulation Study

This section aims to illustrate the accuracy of the parameter estimation techniques

for the SDE and ODE models introduced in section 3.4.2 and 3.6 respectively.

Recall that both modelling approaches are parameterised based on the least

squares method. More precisely, in the SDE parameter estimation procedure,

the discretised form of the SDE generated from the Euler-Maruyama scheme is

rearranged as a regression model. Hence the estimators are deduced based on the

regression theory. In a deterministic model, the parameters are approximated by

minimising the residual sum of square value based on the well-known Nelder-Mead

algorithm. In this section, a simulation study is carried out by producing two data

sets driven by process noise and observation error respectively. This is achieved by

deriving the simulation data of the SDE model (3.5.3) and the ODE model (3.6.1)

with a group of biologically meaningful parameters using the Euler-Maruyama

scheme. A group of independent noise collected from the normal distribution

are additionally added to the ODE simulation data. As a result, we obtain two

sets of data driven by process noise and observation error respectively. Then the
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o os µ1 µ2 µ3

True Parameter 90 40 200 1 0.1

SDE Model 300.1 266.45 595.01 3.59 0.67

ODE

(50,50,250,3,0.5,-300,32.5,7.5) 70.32 37.71 154.11 0.78 0.09

(80,200,100,5,2,-250,32.5,7.5) 70.39 37.55 154.29 0.78 0.09

(100,150,90,0.5, 10,-50,32.5,7.5) 70.24 37.35 153.99 0.78 0.09

(200,50,150,10,1,-75,32.5,7.5) 70.41 37.76 154.33 0.78 0.09

µ4 x(0) s(0) σ σs

True Parameter -100 – – – –

SDE Model -343.80 – – 47.04 5.12

ODE

(50,50,250,3,0.5,-300,32.5,7.5) -77.82 7.09 32.41 – –

(80,200,100,5,2,-250,32.5,7.5) -77.90 7.09 32.40 – –

(100,150,90,0.5, 10,-50,32.5,7.5) -77.72 7.09 32.41 – –

(200,50,150,10,1,-75,32.5,7.5) -77.93 7.09 32.41 – –

Table 3.10: Parameter estimation for the simulation data driven by observation

error.

stochastic and deterministic estimation frameworks are used to approximate the

parameters for the two data sets. The accuracy of the estimation techniques is then

evaluated by comparing the estimated values with the underlying true parameters.

Table 3.9 and Table 3.10 show the parameter estimation for the data driven

by process noise and observation error respectively. It suggests that the SDE

estimation procedure can approximate the underlying parameters for the data

driven by process noise, while the ODE estimation approach is capable of

capturing the true parameters for the data with observation error. In Table 3.10,

one may recognize that the ODE estimation is not perfectly close to the true

parameters. One possible reason is that the ODE estimation procedure involves

the Euler-Maruyama simulations which cause computational error. In addition,

the SDE and ODE estimation frameworks always produce very different groups

of parameters for a specific set of data. This reflects the importance of adopting

appropriate modelling approaches for the ecological data.
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3.8 Conclusions and Discussion

Figure 3.12: Loch Linnhe ecosystem. Nutrient transformations and the material

transport associated with water movements are shown by solid arrows. Transform-

ations by dashed arrow does not occur in Loch Linnhe but happens in the tropical

water.

In this chapter, we have constructed an SDE model which captures the

dynamical behaviours of the sea-loch nitrate, based on the hydrographic and

chemical data collected from the 1991 field program implemented in Loch Linnhe.

Stochastic modelling was employed to account for the process noise in the nitrate

data. The SDE model of nitrate was developed by incorporating the white noise

into the deterministic model of nutrient (3.4.1). In section 3.4, we considered

the model fit of the one-month data. The diffusion coefficient of the SDE model

measuring the noise intensity was identified based on the observed data. The

goodness of fit has been assessed by comparing the distribution of the nitrate
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data with that of the model simulation and by testing whether the nitrate data

follow N( Î
µ̂
, σ̂

2

2µ̂
). The results from the K-S tests have indicated good model

fit. In section 3.5, the model fit of the one-year nitrate data was explored. To

capture the annual changes in the sea-loch nitrate, our model has been refined

by incorporating more physical and biological factors that can contribute to the

nitrate dynamics in Loch Linnhe. In addition, we also set up a separate SDE

model which describes the dynamics of the shallow salinity in Loch Linnhe. By

combining the salinity model with the existing nitrate model, we then obtained

a coupled equation (3.5.3). The goodness of fit of the coupled system has been

assessed by examining whether the normalised nitrate and salinity data follow

the standard normal distribution. In the normality test, the p-value was too

small to suggest good model fit. From a statistical point of view, the convincing

results of the statistical tests are always based on a large amount of long-duration

data, while the one-year period data is obviously not enough. On the other

hand, the distribution graph of the normalised data for model (3.5.3) has become

much closer to the standard normal distribution, compared to the graph for any

interim model shown in Appendix A. This revealed that the SDE model (3.5.3)

has recognised more annual seasonality in the fjord nitrate and salinity. Due to

the low p-value, we cannot say that the SDE model (3.5.3) has successfully been

able to characterise the dynamics of the shallow nitrate and salinity. However, we

would conclude that currently model (3.5.3) has been the best one for describing

the nitrate and salinity dynamics in Loch Linnhe.

Figure 3.12 shows a schematic representation of the Loch Linnhe ecosys-

tem. Firstly, the shallow nitrate is consumed by a phytoplankton group, which

is then grazed by zooplankton. Faecal pellets and dead individuals from these

functional groups contain organic nitrogen, which is converted to ammonia by

ammonification. Then nitrification is performed by bacterial species to produce

nitrate from the ammonia production. Meanwhile, nitrate is converted to nitrogen

gas by denitrification. Tidal streams can lead to an intense mixing between the

shallow and deep water. The surface layer is additionally flushed by the freshwater

run-off from river and rainfall. Meanwhile a stream of water flows out to the

ocean. These biological and physical processes build up a full story of the sea-
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loch nitrate, which has been mathematically represented by the SDE model (3.5.3).

In section 3.6, we conducted a residual analysis for the nitrate and salinity

data in order to illustrate the existence of the process noise in the observed

data. We first supposed that the nitrate and salinity data were solely driven by

the observation noise, which can be explained by the corresponding ODE model

(3.6.1). The parameter estimation for the ODE model was performed using the

least squares method. Figure 3.10 showed good fit of the ODE model, with the

simulations passing through the average values of the observed data over the

whole year. As a result, the residuals patterns were deduced by taking away the

simulated solutions to the ODE model (3.6.1) from the observed data. From

Figure 3.11, the residuals for the data were not normally distributed, reflecting

either that the process noise was contained in the data, or that the correct models

of nitrate and salinity have not been found. In the former case, the process noise

has been interpreted by the SDE model (3.5.3). Although the possible presence

of the process noise has been illustrated, we have not been able to detect the

dominant error type in the data. On the other hand, section 3.7 designed a

simulation study to verify the accuracy of the parameter estimation approaches

for the ODE and SDE models. The results also confirmed the ability of the

SDE model (3.5.3) to account for the process noise and the corresponding ODE

model (3.6.1) to explain the observation error. In particular, the ODE and SDE

estimation frameworks have provided us with very different parameters for a

specific set of data, indicating the importance of detecting the dominant error in

the data. In other words, we need to develop a statistical technique to separate

the observation error and the process noise in the data. Bayesian state-space

modelling has been increasing used to address this issue [4, 32], however, the

strong assumptions behind it are not applicable to our data. This becomes our

important future work.

We have analysed the ability of the ODE model (3.6.1) and the SDE model

(3.5.3) to deal with different types of error inherent in the data. Now we would

like to point out another difference between the two modelling approaches. The

simulation for the ODE model is fixed with a specific group of parameters and
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initial values. On the other hand, the simulation for the SDE model is different

each time due to the presence of the environmental variability. From Theorem

3.2, this uncertainty can be characterised by the 95% confidence intervals of the

solutions to the SDE model (3.5.3):

m1(δ(tk))− 1.96
√
m2(δ(tk)) 6 x(tk) 6 m1(δ(tk)) + 1.96

√
m2(δ(tk))

and

ms1(δ(tk))− 1.96
√
ms2(δ(tk)) 6 s(tk) 6 ms1(δ(tk)) + 1.96

√
ms2(δ(tk))

for k = 0, 1, 2, · · · . The confidence intervals were shown in Figure 3.10. Apparently

most nitrate and salinity measurements have been bounded by the corresponding

intervals, suggesting good model fit.
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Stochastic Predator-Prey

Population System with Foraging

Arena Scheme

4.1 Introduction

The predator-prey interactions play a crucial role in the food-web dynamics.

Especially, the foraging arena type predator-prey system (1.3.2) considers the

spatial and temporal restrictions in the predator and prey activities. Some general

properties of such system can be found in section 1.3.2. In this chapter, we will

investigate how the environmental noise affect the system behaviours.

This chapter is organised as follows: In section 4.2, the foraging arena pop-

ulation system is formulated as a stochastic differential equation (SDE). In section

4.3, we verify the existence of a positive global solution to this SDE model.

Next in section 4.4, we explore the asymptotic moment estimation of the system.

Moreover the parametric condition for the system to be extinct is developed in

section 4.5. In section 4.6, the stationary distribution of this SDE system is

examined. In section 4.7, we perform some computer simulations to illustrate our

results. We then give a conclusion in section 4.8. Most of the work in this chapter

has been published in [23].

74
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4.2 SDE Foraging Arena Predator-prey System

In the remaining chapters, unless stated otherwise, we let (Ω, {Ft}t>0,P) be a

complete probability space with a filtration {Ft} satisfying the usual conditions

(i.e.it is right continuous and increasing while F0 contains all P-null sets). Let

B(t) = (B1(t), B2(t))T be a two-dimensional Brownian motion defined on this

probability space. Now recall the foraging arena predator-prey system defined in

(1.3.2) in section 1.3.2. Due to the random nature of the population system, some

environmental factors such as temperature fluctuations and the changes in the

composition of the nutrient resource may vary the intrinsic prey growth rate and

the consumer death rate in model (1.3.2). Suppose that a and c are stochastically

perturbed with

a→ a+ σ1Ḃ1(t) and c→ c+ σ2Ḃ2(t),

where B1(t) and B2(t) are two independent Brownian motions and the two positive

constants σ1 and σ2 represent the intensities of the white noise. As a result, this

perturbed system is given by

dx1(t) = x1(t)
(
a− bx1(t)− sx2(t)

β + x2(t)

)
dt+ σ1x1(t)dB1(t) (4.2.1a)

dx2(t) = x2(t)
( hx1(t)

β + x2(t)
− c− fx2(t)

)
dt− σ2x2(t)dB2(t), (4.2.1b)

where x1(t) and x2(t) represent the population densities of prey and predator in

model (4.2.1) at time t. We set x(t) = (x1(t), x2(t))T as the solution of model

(4.2.1) with the initial value x0 = (x1(0), x2(0))T .

4.3 Global Positive Solution

To investigate the dynamical behaviours of model (4.2.1), the existence of a unique

global positive solution is verified first. The coefficients of the SDE model (4.2.1)

are locally Lipschitz continuous, however, they do not satisfy linear growth condi-

tion (Theorem 2.15). Hence the existing general existence-and-uniqueness theorem

on SDEs is not applicable to model (4.2.1) and there exists a unique maximal local

solution to model (4.2.1). That is, the solution may exit from R2
+ space at a finite

time [92, 94]. In this section, we shall show that the solution of model (4.2.1) is

positive and global as in [47,92].
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Theorem 4.1. For any given initial value x0 ∈ R2
+, there is a unique solution x(t)

to equation (4.2.1) on t > 0 and the solution will remain in R2
+ with probability 1,

namely x(t) ∈ R2
+ for all t > 0 almost surely.

Proof. Since the coefficients of the equation (4.2.1) are locally Lipschitz continuous,

for any given initial value x0 ∈ R2
+, there is a unique maximal local solution x(t)

on t ∈ [0, τe), where τe is the explosion time (exit time) from R2
+. To show that

this solution is global, we need to verify τe = ∞ a.s. Let k0 > 0 be sufficiently

large for x1(0) and x2(0) lying within the interval
[

1
k0
, k0

]
. For each integer k > k0,

define the stopping time

τk = inf{t ∈ [0, τe) : xi(t) /∈
(1

k
, k
)

for some i = 1, 2}.

Obviously, τk is increasing as k →∞. Set τ∞ := limt→∞ τk and whence τ∞ 6 τe a.s.

Hence to complete the proof, we need to show that

τ∞ =∞ a.s. (4.3.1)

If (4.3.1) is not true, there are three constants T > 0, k1 > k0 and ε ∈ (0, 1) such

that

P(Ωk) > ε for all k > k1, where Ωk = {τk 6 T}.

Define a C2−function V : R2
+ → R+ by V (x) = x1 − log x1 + x2 − log x2. From

the Itô formula (Theorem 2.13),

dV (x(t)) = LV (x(t))dt+ (σ1x1(t)− σ1)dB1(t)− (σ2x2(t)− σ2)dB2(t),

where

LV (x) = −a+
sx2

β + x2

+ c+
σ2

1

2
+
σ2

2

2
+ (a+ b)x1 +

hx1x2

β + x2

+ (f − c)x2 −
sx1x2

β + x2

− hx1

β + x2

− bx2
1 − fx2

2

6 −a+ s+ c+
σ2

1

2
+
σ2

2

2
+ (a+ b+ h)x1 + (f − c)x2 − bx2

1 − fx2
2,

which is bounded, say by Q, in R2
+. Consequently,

EV (x(τk ∧ T )) 6 V (x0) +QE(τk ∧ T ) 6 V (x0) +QT. (4.3.2)
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Moreover for all ω ∈ Ωk, x1(τk, ω) or x2(τk, ω) equals either k or 1
k
. Hence

V (x(τk)) > (k − log k) ∧
(√1

k
+ log k

)
.

This with (4.3.2) infers

V (x0) +QT > E(IΩkV (x(τk))) > ε
(

(k − log k) ∧
(√1

k
+ log k

))
.

This leads to a contradiction as we let k →∞,

∞ > V (x0) +QT =∞.

So we have τ∞ =∞ a.s.

4.4 Asymptotic Moment Estimate

After analysing the global positive solution of model (4.2.1), we now explore the

long-time dynamical behaviours of the prey and predator populations.

Theorem 4.2. For any θ > 0, there exists a positive constant K(θ) such that for

any initial value x0 ∈ R2
+,

lim sup
t→∞

E|x(t)|θ 6 K(θ).

Proof. Applying the Itô formula to eηt(xθ1(t) + xθ2(t) for any η > 0 and θ > 0,

eηt(xθ1(t) + xθ2(t)) = xθ1(0) + xθ2(0) +

∫ t

0

eηsf(x(s))ds+ θσ1

∫ t

0

eηsxθ1(s)dB1(s)

− θσ2

∫ t

0

eηsxθ2(s)dB2(s), (4.4.1)

where

f(x) =
(
aθ +

1

2
θ(θ − 1)σ2

1 + η
)
xθ1 +

(
− cθ +

1

2
θ(θ − 1)σ2

2 + η
)
xθ2 −

sθxθ1x2

β + x2

+
hθx1x

θ
2

β + x2

− bθxθ+1
1 − fθxθ+1

2 .

For θ > 1, the Young inequality yields

x1x
θ
2

β + x2

6 x1x
θ−1
2 6

xθ1
θ

+
θ − 1

θ
xθ2.
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Hence

f(x) 6

(
aθ +

1

2
θ(θ − 1)σ2

1 + h+ η

)
xθ1 +

(
(θ − 1)h− cθ +

1

2
θ(θ − 1)σ2

2 + η

)
xθ2

− bθxθ+1
1 − fθxθ+1

2 ,

which is bounded, say by K∗(θ). Moreover, it follows from (4.4.1) that

E
[
eη(t∧τk)

(
xθ1(t ∧ τk) + xθ2(t ∧ τk)

)]
6 xθ1(0) + xθ2(0) +K∗(θ)

∫ t∧τk

0

eηsds.

Letting k →∞ and then t→∞ yields

lim sup
t→∞

E
[
xθ1(t) + xθ2(t)

]
6 lim

t→∞

1

eηt

(
xθ1(0) + xθ2(0) +

K∗(θ)(eηt − 1)

η

)
=
K∗(θ)

η
.

On the other hand, we have

|x|2 6 2 max(x2
1, x

2
2), so |x|θ 6 2θ/2 max

(
xθ1, x

θ
2

)
6 2θ/2(xθ1 + xθ2).

As a result,

lim sup
t→∞

E|x(t)|θ 6 2θ/2 lim sup
t→∞

E[xθ1(t) + xθ2(t)] 6
2θ/2K∗(θ)

η
= K(θ). (4.4.2)

For 0 < θ < 1, Hölder’s inequality yields

E|x(t)|θ 6
(
E|x(t)|

)θ
.

Hence from (4.4.2)

lim sup
t→∞

E|x(t)|θ 6 lim sup
t→∞

(
E|x(t)|

)θ
6 K(θ).

4.5 Extinction

In this section, we investigate the conditions for the system to be extinct.

Lemma 4.3. A one-dimensional Brownian motion {Wt}t>0 has the property that

for almost every ω ∈ Ω,

lim
t→∞

min06u6tW (u, ω)

t
= lim

t→∞

max06u6tW (u, ω)

t
= 0. (4.5.1)
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Proof. According to Theorem 2.4, for any n > 0, there exists a positive random

variable ρn such that for almost every ω ∈ Ω,

−(1 + n)
√

2t log log t 6 W (t, ω) 6 (1 + n)
√

2t log log t for all t > ρn(ω).

It then follows that for almost every ω ∈ Ω,

max
06u6t

W (u, ω) 6 max
06u6ρn(ω)

W (u, ω) + (1 + n)
√

2t log log t.

This implies

0 6 lim
t→∞

max06u6tW (u)

t
6 0 a.s.

Hence we obtain

lim
t→∞

max06u6tW (u)

t
= 0 a.s.

Similarly, we also have

lim
t→∞

min06u6tW (u)

t
= 0 a.s.

Theorem 4.4. For any initial value x0 ∈ R2
+,

(a) if

2a < σ2
1, (4.5.2)

both x1(t) and x2(t) tend to zero exponentially as t→∞ with probability 1;

(b) if

σ2
1 < 2a < φ, (4.5.3)

where

φ = σ2
1 +

2bβc

h
+
bβσ2

2

h
, (4.5.4)

x1(t) obeys

lim
t→∞

1

t

∫ t

0

x1(u)du =
2a− σ2

1

2b
a.s.

and x2(t) tends to zero exponentially as t→∞ with probability 1.
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Proof. (a) Applying the Itô formula on log x1(t), we have

d log x1(t) =

(
a− bx1(t)− σ2

1

2
− sx2(t)

β + x2(t)

)
dt+ σ1dB1(t) (4.5.5)

6

(
a− σ2

1

2

)
dt+ σ1dB1(t).

Integrating from 0 to t and dividing by t, we get

1

t
log x1(t) 6

1

t
log x1(0) + a− σ2

1

2
+
σ1B1(t)

t
.

Letting t→∞ and by the strong law of large numbers for martingales (Theorem

2.2),

lim
t→∞

σ1B1(t)

t
= 0 a.s.

and thus from condition (4.5.2)

lim sup
t→∞

1

t
log x1(t) 6 a− σ2

1

2
< 0 a.s.

as required. Hence x1(t) tends to zero exponentially as t→∞ and

lim
t→∞

1

t

∫ t

0

x1(u)du = 0 a.s. (4.5.6)

Meanwhile

d log x2(t) =
( hx1(t)

β + x2(t)
− c− σ2

2

2
− fx2(t)

)
dt− σ2dB2(t). (4.5.7)

It follows that

log x2(t)

t
6

1

t

(
log x2(0) +

h

β

∫ t

0

x1(u)du

)
−
(
c+

σ2
2

2

)
− σ2B2(t)

t
.

Letting t→∞ and recalling equation (4.5.6),

lim sup
t→∞

log x2(t)

t
6 −

(
c+

σ2
2

2

)
< 0 a.s.

(b) Applying Itô’s formula on 1
x1(t)

gives

d

(
1

x1(t)

)
=

(
1

x1(t)

( sx2(t)

β + x2(t)
− a+ σ2

1

)
+ b

)
dt− σ1

x1(t)
dB1(t).
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Hence by the variation-of-constants formula (Theorem 2.20) and Lemma 2.19,

1

x1(t)
= exp

(∫ t

0

(1

2
σ2

1 − a+
sx2(u)

β + x2(u)

)
du− σ1B1(t)

)
·[ 1

x1(0)
+ b

∫ t

0

exp

(∫ u

0

(
a− sx2(v)

β + x2(v)
− 1

2
σ2

1

)
dv + σ1B1(u)

)
du
]

= exp
(
− σ1B1(t)

)[ 1

x1(0)
exp

(
−
(
a− 1

2
σ2

1

)
t+ s

∫ t

0

x2(u)

β + x2(u)
du
)

+ b

∫ t

0

exp
(
−
(
a− σ2

1

2

)
(t− u) + s

∫ t

u

x2(v)

β + x2(v)
dv + σ1B1(u)

)
du

]
.

(4.5.8)

On the one hand, (4.5.8) leads to

1

x1(t)
6 exp

(
− σ1B1(t)

)[ 1

x1(0)
exp

(
−
(
a− 1

2
σ2

1

)
t+ s

∫ t

0

x2(u)

β + x2(u)
du

)
+ b exp

(
σ1 max

06u6t
B1(u) + s

∫ t

0

x2(u)

β + x2(u)
du

)∫ t

0

exp

(
−
(
a− σ2

1

2

)
(t− u)

)
du

]
6 exp

(
σ1

(
max
06u6t

B1(u)−B1(t)
)

+ s

∫ t

0

x2(u)

β + x2(u)
du

)
·[

1

x1(0)
exp

(
−
(
a− 1

2
σ2

1

)
t

)
+ b

∫ t

0

exp

(
−
(
a− σ2

1

2

)
(t− u)

)
du

]

= exp

(
σ1

(
max
06u6t

B1(u)−B1(t)
)

+ s

∫ t

0

x2(u)

β + x2(u)
du

)
·[

1

x1(0)
exp

(
−
(
a− 1

2
σ2

1

)
t

)
+

2b
(

1− exp
(
− (a− σ2

1

2
)t
))

2a− σ2
1

]
.

It follows that

log x1(t)

t
> − logK1(t)

t
−
σ1

(
max06u6tB1(u)−B1(t)

)
t

− s

t

∫ t

0

x2(u)

β + x2(u)
du,

(4.5.9)

where

K1(t) =
1

x1(0)
exp

(
−
(
a− 1

2
σ2

1

)
t

)
+

2b
(

1− exp
(
− (a− σ2

1

2
)t
))

2a− σ2
1

and sup06t<∞K1(t) <∞ if condition (4.5.3) holds. By (4.5.5) and (4.5.9),

1

t

∫ t

0

x1(u)du
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=
2a− σ2

1

2b
− log x1(t)

bt
+

log x1(0)

bt
− s

bt

∫ t

0

x2(u)

β + x2(u)
du+

σ1

bt
B1(t) (4.5.10)

6
2a− σ2

1

2b
+

logK1(t)

bt
+
σ1

(
max06u6tB1(u)−B1(t)

)
bt

+
log x1(0)

bt
+
σ1

bt
B1(t).

As t→∞ and from the strong law of large numbers for martingales and Lemma

4.3,

lim sup
t→∞

1

t

∫ t

0

x1(u)du 6
2a− σ2

1

2b
a.s. (4.5.11)

From equation (4.5.7),

d log x2(t) 6
(hx1(t)

β
− c− σ2

2

2

)
dt− σ2dB2(t).

This and (4.5.11) yield

lim sup
t→∞

1

t
log(x2(t)) 6

h

β
lim sup
t→∞

1

t

∫ t

0

x1(u)du−
(
c+

σ2
2

2

)
6
h
(

2a− σ2
1

)
2βb

−
(
c+

σ2
2

2

)
< 0,

by condition (4.5.3). Hence for arbitrary small ζ > 0, there exists tζ such that

P(Ω̄) > 1− ζ where Ω̄ =
{
ω :

sx2(t, ω)

b(β + x2(t, ω))
6 ζ for t > tζ

}
.

On the other hand, (4.5.8) yields

1

x1(t)
> exp

(
− σ1B1(t)

)[ 1

x1(0)
exp

(
−
(
a− 1

2
σ2

1

)
t

)
+ b exp

(
σ1 min

06u6t
B1(u)

) ∫ t

0

exp

(
−
(
a− σ2

1

2

)
(t− u)

)
du

]
> exp

(
σ1

(
min

06u6t
B1(u)−B1(t)

))[ 1

x1(0)
exp

(
−
(
a− 1

2
σ2

1

)
t

)

+
2b
(

1− exp
(
− (a− σ2

1

2
)t
))

2a− σ2
1

]
.

Then

log x1(t)

t
6 − logK1(t)

t
−
σ1

(
min06u6tB1(u)−B1(t)

)
t

.
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Hence we obtain from (4.5.10) that

1

t

∫ t

0

x1(u)du >
2a− σ2

1

2b
+

logK1(t)

bt
+
σ1

(
min06u6tB1(u)−B1(t)

)
bt

+
log x1(0)

bt

− s

bt

∫ t

0

x2(u)

β + x2(u)
du+

σ1

bt
B1(t). (4.5.12)

For any ω ∈ Ω̄, (4.5.12) together with Lemma 4.3 indicates

lim inf
t→∞

1

t

∫ t

0

x1(u)du >
2a− σ2

1

2b
− ζ.

This and (4.5.11) imply

lim
t→∞

1

t

∫ t

0

x1(u)du =
2a− σ2

1

2b
a.s.

Remark 4.5. The parametric restriction for model (1.3.2) to die out is immediately

obtained by setting σ1 = σ2 = 0 in condition (4.5.3). Namely, under the condition

0 < a < bβc
h

, the solution to model (1.3.2) obeys limt→∞
1
t

∫ t
0
x̄1(u)du = a

b
and the

consumers tend to extinction ultimately.

Theorem 4.4(a) suggests that both species in model (4.2.1) will die out if 2a <

σ2
1. That is, large white noise intensity σ2

1 can cause the population extinction

of both species. In the real life, this may happen when a serious epidemic or

severe weather occurs. However this situation is not considered by model (1.3.2).

Additionally, from Remark 4.5, the deterministic model (1.3.2) will die out if

a < bβc
h

. While Theorem 4.4(b) suggests that the existence of white noise can

lead to the extinction of system (4.2.1) even with some a > bβc
h

(but need to obey

2a < φ). In the next section, we examine how the population system behaves

when a gets even larger.

4.6 Stationary Distribution

In this section, we give condition for the SDE model (4.2.1) to have a unique

stationary distribution. Let Px0,t(·) denote the probability measure induced by

x(t) with initial value x(0) = x0, that is

Px0,t(F ) = P(x(t) ∈ F |x(0) = x0) = Px0(x(t) ∈ F ), F ∈ B(R2
+),
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where B(R2
+) is the σ-algebra of all the Borel sets F ⊂ R2

+. If there is a probability

measure µ(·) on the measurable space (R2
+,B(R2

+)) such that

Px0,t(·)→ µ(·) in distribution for any x0 ∈ R2
+,

we then say that the SDE model (4.2.1) has a stationary distribution µ(·) [68,91,

94]. To show the existence of a stationary distribution, let us first cite a known

result from Khasminskii [68, pp. 107-109, Theorem 4.1] as a lemma.

Lemma 4.6. The SDE model (4.2.1) has a unique stationary distribution if there

is a bounded open set G of R2
+ such that supx0∈Q−G Ex0(τG) <∞ for every compact

subset Q of R2
+ such that G ⊂ Q where τG = inf{t > 0 : x(t) ∈ G}.

In the original Khasminskii theorem, there is one more condition that

inf
x∈G

λmin

(
diag(σ2

1x
2
1, σ

2
2x

2
2)
)
> 0 for x ∈ R2

+,

which is obvious and hence there is no point to state.

Theorem 4.7. If

2a
(

1− σ2
2

2h
− c

h

)
> φ, (4.6.1)

where φ is denoted in (4.5.4), then for any initial value x0 ∈ R2
+, model (4.2.1)

has a unique stationary distribution.

Proof. We define a C2−function V : R2
+ → R+:

V (x) = MV1(x) + V2(x) + e,

where

V1(x) = log(β + x1)− log(x1) +
l

h
x2 −

a+ bβ

h
log x2, V2(x) = x1 +

s

h
x2,

and e, l and M are three constants. We set e = −min(MV1(x) + V2(x)) to keep

the non-negativity of V (x),

l =
(hs
cβ

+
(a+ bβ)f

c

)∨ (a+ bβ)h

4fβ2
(4.6.2)

and M is to be defined later. First compute

LV1 =

(
x1

β + x1

− 1

)(
a− bx1 −

sx2

β + x2

)
+

1

2

(
1

x2
1

− 1

(β + x1)2

)
σ2

1x
2
1
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+

(
lx2

h
− a+ bβ

h

)(
hx1

β + x2

− c− fx2

)
+
a+ bβ

2h
σ2

2

6
ax1

β + x1

− bx2
1

β + x1

+ bx1 −
a+ bβ

β + x2

x1 − a+
sx2

β + x2

+
σ2

1

2
+

lx1x2

β + x2

− clx2

h
− flx2

2

h
+

(a+ bβ)c

h
+

(a+ bβ)f

h
x2 +

a+ bβ

2h
σ2

2

6
ax1

β + x1

+
bβx1

β + x1

− a+ bβ

β + x2

x1 − a+
σ2

1

2
+
a+ bβ

h
c+

a+ bβ

2h
σ2

2

+

(
s

β
+

(a+ bβ)f

h
− cl

h

)
x2 −

fl

h
x2

2 +
lx1x2

β + x2

= (a+ bβ)x1
x2 − x1

(β + x1)(β + x2)
− λ+

(
s

β
+

(a+ bβ)f

h
− cl

h

)
x2 −

fl

h
x2

2

+
lx1x2

β + x2

6
a+ bβ

β2
(x1x2 − x2

1)− λ+

(
s

β
+

(a+ bβ)f

h
− cl

h

)
x2 −

fl

h
x2

2 +
lx1x2

β + x2

,

where λ = a − σ2
1

2
− a+bβ

h
c − a+bβ

2h
σ2

2 > 0 from condition (4.6.1). By the Young

inequality and (4.6.2),

LV1 6 −λ+

(
s

β
+

(a+ bβ)f

h
− cl

h

)
x2 +

(
a+ bβ

4β2
− fl

h

)
x2

2 +
lx1x2

β + x2

6 −λ+
lx1x2

β + x2

.

Then compute

LV2 = ax1 − bx2
1 −

sc

h
x2 −

sf

h
x2

2 6 ax1 − bx2
1 −

sf

h
x2

2.

Hence

LV (x) 6M
(
− λ+

lx1x2

β + x2

)
+ ax1 − bx2

1 −
sf

h
x2

2,

where M satisfies Mλ > a2/(4b) + 2. Now we are aimed to show

LV (x) 6 −1 for all x ∈ R2
+ −G := Gc. (4.6.3)

If this holds, we let x ∈ Gc be arbitrary and τG be the stopping time defined in

Lemma 4.6. From (4.6.3), we have

0 6 V (x0)− Ex0(t ∧ τG ∧ τk), ∀t > 0.
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Letting k →∞ and then t→∞, we obtain

Ex0(τG) 6 V (x0), ∀x0 ∈ Gc

as required. To show that (4.6.3) actually holds, we define

Gc = Gc
1 ∪Gc

2 ∪Gc
3 ∪Gc

4,

where

Gc
1 = {x|x1 ∈ (0, ε1]}; Gc

2 =
{
x
∣∣∣x1 ∈

(
0,

1

ε1

]
, x2 ∈ (0, ε2]

}
;

Gc
3 =

{
x
∣∣∣x1 ∈

[ 1

ε1
,+∞

)}
; Gc

4 =
{
x
∣∣∣x2 ∈

[ 1

ε2
,+∞

)}
with two constants ε1, ε2 ∈ (0, 1) satisfying

ε21 6
1

M2l2

∧ b

2(N1 + 1)
, ε22 6

sf

2h(N2 + 1)
and ε2 6

βε1
Ml

, (4.6.4)

where the constants N1 and N2 will be determined later. We then show that in

any subset of Gc, (4.6.3) holds. From (4.6.4),

(a) if x ∈ Gc
1,

LV (x) 6 −Mλ+Mlx1 + ax1 − bx2
1 −

sf

h
x2

2 6Mlε1 − 2 6 −1;

(b) if x ∈ Gc
2,

LV (x) 6 −Mλ+
Mlx1x2

β
+ ax1 − bx2

1 −
sf

h
x2

2 6
Mlε2
βε1

− 2 6 −1;

(c) if x ∈ Gc
3,

LV (x) 6 −Mλ+ (Ml + a)x1 −
bx2

1

2
− bx2

1

2
− sfx2

2

h
.

Note that the polynomial −Mλ + (Ml + a)x1 − bx21
2
− sfx22

h
has an upper bound,

say N1. Hence

LV (x) 6 N1 −
b

2ε21
6 −1;

(d) if x ∈ Gc
4,

LV (x) 6 −Mλ+ (Ml + a)x1 − bx2
1 −

sfx2
2

2h
− sfx2

2

2h
.
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Note that the polynomial −Mλ + (Ml + a)x1 − bx2
1 −

sfx22
2h

is again bounded, say

by N2, we have

LV (x) 6 N2 −
sf

2hε22
6 −1.

In all,

LV (x) 6 −1 for all x ∈ Gc.

Recall that Theorem 4.4 considers the dynamical behaviours of model (4.2.1)

with 0 < 2a < σ2
1 and σ2

1 < 2a < φ. Next Theorem 4.7 shows that system (4.2.1)

has a stationary distribution when 2a > φ
1−σ2

2/(2h)−c/h . However we have not been

able to prove the case when

φ < 2a <
φ

1− σ2
2/(2h)− c/h

. (4.6.5)

We present a numerical analysis of this case (Example 4.11).

4.7 Examples and Computer Simulations

In this section, the Euler-Maruyama (EM) scheme is adopted for the numerical

simulations [57]. The EM approximate solutions have been proved to converge

to the true solution of model (4.2.1) in probability [90]. Assume that all the

parameters are given in appropriate units. We first give examples for the SDE

system (4.2.1) to die out.

Example 4.8. We perform a computer simulation of 10000 iterations of model

(4.2.1) with initial value x(0) = (1.0, 0.1)T using the Euler-Maruyama (EM)

method [57, 89] with stepsize ∆ = 0.01 and the system parameters given by

a = 1, b = 0.1, s = 6, β = 5, h = 0.9, c = 2, f = 0.5, σ1 = 1.5 and σ2 = 1.3.

(4.7.1)

It is easy to verify that these system parameters satisfy condition (4.5.2). By

Theorem 4.4(a), x1(t) and x2(t) will die out as t → ∞ with probability 1. The

computer simulations shown in Figure 4.1(a)(b) support these results.
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Example 4.9. We keep the system parameters the same as in Example 4.8 but

let σ1 = 0.7 instead. Obviously the system parameters obey condition (4.5.3). By

Theorem 4.4(b),

lim
t→∞

1

t

∫ t

0

x1(u)du =
2a− σ2

1

2b
= 7.55

and x2(t) will become extinct as t→∞ with probability 1. From Figure 4.1(c)(d),

the prey abundance fluctuates around the level 7.55 while the consumers die out.

This is consistent with the results in Theorem 4.4(b).

We found that the situation when both species die out considered in system

(4.2.1) does not happen in model (1.3.2). For example, the parametric restriction

indicated in Example 4.8 leads to the extinction of both populations in system

(4.2.1). However in the corresponding deterministic model (1.3.2), Remark 4.5

suggests that limt→∞
1
t

∫ t
0
x̄1(u)du = a

b
= 10 and the consumers tend to zero .

Figure 4.1(a)(b) shows this difference clearly. Next we study the case when the

SDE system (4.2.1) has a stationary distribution.

Example 4.10. We keep the system parameters the same as in Example 4.8 but let

h = 4, σ1 = 0.1 and σ2 = 0.2. It is obvious that this group of parameters satisfies

condition (4.6.1). From Theorem 4.7, both prey and predator populations have a

stationary distribution. The ergodic property enables us to obtain the approximate

probability distribution for the stationary distribution by computer simulation of

a single sample path of a solution to model (4.2.1). Therefore the histogram of

the 10000 iterations shown in Figure 4.2(b)(d) can be regarded as the approximate

p.d.f.s of the stationary distribution. On the other hand, as the parameters of

model (1.3.2) obey the condition a > bβc
h

, there exists a positive equilibrium point

Ē∗(x̄∗1, x̄
∗
2) of model (1.3.2). This is clearly shown in Figure 4.2(a)(c).

Example 4.11. We keep the system parameters the same as in Example 4.10 but

let c = 3. Therefore condition (4.6.5) is fulfilled. Figure 4.3(a)(c) indicates a

stationary distribution of both species. If this is true, the histogram of the 10000

iterations shown in Figure 4.3(b)(d) can be regarded as the approximate p.d.f.s of

the stationary distribution.
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Figure 4.1: Computer simulations of the paths (a) x1(t) and (b) x2(t) of 10000

iterations of SDE model (4.2.1) using the EM scheme with stepsize ∆ = 0.01 and

initial value x0 = (1.0, 0.1)T and the corresponding ODE paths (model (1.3.2))

with the system parameters provided by (4.7.1). Given the system parameters as

in (4.7.1) except that σ1 = 0.7, we get the computer simulation of paths (c) x1(t)

and (d) x2(t) of 10000 iterations using the EM method with stepsize ∆ = 0.01 and

initial value x0 = (1.0, 0.1)T and the corresponding ODE paths.
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Figure 4.2: Computer simulation of the paths (a) x1(t) and (c) x2(t) of 10000

iterations of SDE model (4.2.1) using the EM technique with stepsize ∆ = 0.01 and

initial values x0 = (1.0, 0.1)T and the corresponding ODE paths (model (1.3.2))

with the parameters provided by Example 4.10, followed by the histograms of the

SDE paths (b) x1(t) and (d) x2(t).
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Figure 4.3: Computer simulation of the paths (a) x1(t) and (c) x2(t) of 10000

iterations of SDE model (4.2.1) using the EM technique with stepsize ∆ = 0.01 and

initial values x0 = (1.0, 0.1)T and the corresponding ODE paths (model (1.3.2))

with the parameters described in Example 4.11, followed by the histograms of the

SDE paths (b) x1(t) and (d) x2(t).
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4.8 Discussion

In this chapter, the two-dimensional foraging arena model in presence of en-

vironmental perturbation has been considered. After studying the existence

and uniqueness of a positive solution to model (4.2.1), the long-time dynamical

behaviours were generated. In order to investigate the effects of the environmental

noise on the population dynamics, it is worth comparing the stochastic model

(4.2.1) with the deterministic one (1.3.2). Firstly, the deterministic model (1.3.2)

has two non-negative trivial equilibrium points Ē0 = (0, 0) and Ē1 = (a
b
, 0). Also

under the condition a > bβc
h

, there exists a positive equilibrium point Ē∗(x̄∗1, x̄
∗
2)

which is globally asymptotically stable. However, the stochastic model (4.2.1)

only has one trivial equilibrium point E0 = (0, 0). Secondly, recall that both

species of model (4.2.1) would die out ultimately if 2a < σ2
1. In the real life, it

may happen when a serious disease or severe weather occurs. While this situation

does not happen in model (1.3.2). Figure 4.1(a)(b) has illustrated this difference

clearly. This suggests that the stochastic system is a more realistic model to

describe the world than the deterministic one. Furthermore, recall that the

deterministic model (1.3.2) will die out, in the sense that the prey population

remains persistent while the consumers become extinct ultimately, provided that

a < bβc
h

. In the contrast, the stochastic model (4.2.1) goes to extinction even with

some a > bβc
h

(but need to obey 2a < φ) due to the presence of the white noise.

Hence we conclude that the presence of environmental noise brings a significant

difference to the population dynamics.

Furthermore, we have shown the existence of a unique stationary distribu-

tion under condition (4.6.1). However, the dynamics of model (4.2.1) under the

parametric condition (4.6.5) still remains an open problem, though the computer

simulation in Example 4.11 indicated a stationary distribution of both species.

In the stochastic predator-prey model with Beddington-DeAngelis response [62],

more restrictive conditions were produced for the system to have a stationary

distribution. These conditions were found based on the positive equilibrium of the

corresponding deterministic system. The complexity of the parametric condition

forms makes it harder to identify what cases have not been considered and hence

need further investigation.
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For the stationary distribution of the population system, the ergodic for-

mula enables us to obtain the approximate probability distribution by the

numerical simulation of a single sample path of a solution to the SDE model,

although the mean value and variance have not been explicitly computed as

in [47,91].

In this chapter, we have studied the effects of the white noise on the predator-prey

system. Next we will investigate how the interactions between the white noise,

telegraph noise and time delay affect the population dynamics.



Chapter 5

Stochastic Delay Foraging Arena

Predator-Prey System with

Markovian Switching

5.1 Introduction

Recall that Chapter 4 introduced white noise to the population system (1.3.2).

In this chapter, we additionally incorporate telegraph noise and time delay into

the population system (4.2.1). An SDE model including telegraph noise can

characterise the systems where the structures and parameters experience abrupt

changes due to abrupt environmental disturbances and changing subsystem

interconnections [94], etc. Moreover, Xu and Chen [133] suggest that time delays

often occur in a population system due to gestation.

This chapter is organised as follows: In section 5.2, we formulate the stochastic

delay foraging arena system with Markovian switching. In section 5.3, we prove

the existence of a global positive solution. Section 5.4-5.6 study the long-time

properties of the system including stochastic ultimate boundedness, extinction

and pathwise estimation. In section 5.7, we use computer simulations based

on the Euler-Maruyama scheme to verify the results. In section 5.8, we give a

summary for this chapter.

94
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5.2 Foraging Arena Predator-prey System with

Markovian Switching

Time delays are commonly found in population interactions. For instance, gesta-

tion may result in time delays [133]. Motivated by this, we incorporate time delay

into the predator-prey model (4.2.1). This leads to the following system:

dx1(t) = x1(t)
(
a− bx1(t)− sx2(t)

β + x2(t)

)
dt+ σ1x1(t)dB1(t),

dx2(t) = x2(t)
( hx1(t− τ)

β + x2(t− τ)
− c− fx2(t)

)
dt+ σ2x2(t)dB2(t),

(5.2.1)

where τ is the constant delay due to gestation. We also would like to investigate

the effect of telegraph noise on the population dynamics. Recall that telegraph

noise can be described as a switching between two or more regimes of environments

[35,48]. The regime switching can be modelled by a finite-state Markov chain [48].

We let r(t), t > 0 be a right-continuous Markov chain on the probability space

taking values in the state space S = {1, 2, . . . , N} with the generator Γ = (γuv)

given by

P{r(t+ δ) = v|r(t) = u} =

γuvδ + o(δ), if u 6= v,

1 + γuuδ + o(δ) if u = v,

where δ > 0. Here γuv > 0 is the transition rate from u to v if u 6= v while

γuu = −
∑

v 6=u γuv. Such process is called a continuous-time finite Markov chain.

We suppose that all the Markov chains are finite and all states are stable. For such

a Markov chain, almost every sample path is a right continuous step function with

a finite number of sample jumps in any finite subinterval of R+. There is a sequence

{ηn}n>0 of finite-valued Ft-stopping times such that 0 = η0 < η1 < · · · < ηn →∞
almost surely and

r(t) =
∞∑
n=0

r(ηn)I[ηn,ηn+1)(t).

The switching is memoryless and the waiting time for the next switch has an

exponential distribution with parameter −γii, given that r(ηn) = i. Namely

P(ηn+1 − ηn > T |r(ηn) = i) = eγiiT , ∀T > 0.

We also assume that the Markov chain r(·) is independent of the Brownian motion

B(·) and is irreducible. Under this condition, the Markov chain has a unique
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stationary distribution π = (π1, π2, · · · , πN) ∈ R1×N which can be defined by

solving the following linear equation

πΓ = 0

subject to
N∑
i=1

πi = 1 and π > 0 for all i ∈ S.

Now we will introduce the Markov switching into the SDE system (5.2.1). Suppose

the Markov chain r(t) in the state space S = {1, 2, · · · , N} controls the switching

between the environmental regimes, the population system (5.2.1) then becomes

dx1(t) = x1(t)
(
a(r(t))− b(r(t))x1(t)− s(r(t))x2(t)

β(r(t)) + x2(t)

)
dt+ σ1(r(t))x1(t)dB1(t)

(5.2.2a)

dx2(t) = x2(t)
( h(r(t))x1(t− τ)

β(r(t)) + x2(t− τ)
−c(r(t))−f(r(t))x2(t)

)
dt+σ2(r(t))x2(t)dB2(t),

(5.2.2b)

where the system parameters a(i), b(i), s(i), β(i), h(i), c(i), f(i), σ1(i) and σ2(i) are

all positive constants for all i ∈ S. We set x(t) = (x1(t), x2(t))T as the solution to

model (5.2.2) with the initial value x0 = (x1(0), x2(0))T .

5.3 Existence of A Unique Positive Solution

It is an essential property for a population system to have a unique positive solu-

tion. We found that the coefficients of model (5.2.2) do not obey the linear growth

condition, though they are locally Lipschitz continuous. This suggests that the

solution may exit from R2
+ space at a finite time. The following theorem shows

the existence and uniqueness of a positive global solution to model (5.2.2).

Theorem 5.1. For any given initial value {x(t) : −τ 6 t 6 0} ∈ C([−τ, 0];R2
+),

there is a unique solution x(t) to equation (5.2.2) on t > −τ and the solution will

remain in R2
+ with probability one, namely x(t) ∈ R2

+ for all t > −τ almost surely.

Proof. Since the coefficients of equation (5.2.2) are locally Lipschitz continuous,

for any given initial value {x(t) : −τ 6 t 6 0} ∈ C([−τ, 0];R2
+), there is a unique

maximal local solution x(t) on t ∈ [−τ, τe), where τe is the explosion time (exit
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time) from R2
+. To show that x(t) ∈ R2

+ a.s. for all t > 0, we need to verify τe =∞
a.s. Let k0 > 0 be sufficiently large for

1

k0

< min
−τ6t60

|x(t)| 6 max
−τ6t60

|x(t)| < k0.

For each integer k > k0, define the stopping time

τk = inf{t ∈ [0, τe) : xi(t) /∈
(1

k
, k
)

for some i = 1, 2}.

Obviously, τk is increasing as k →∞. Set τ∞ := limt→∞ τk and whence τ∞ 6 τe a.s.

Hence to complete the proof, we need to show that

τ∞ =∞ a.s. (5.3.1)

Define a C2−function V : R2
+ → R+ by V (x) = x1 − log x1 + x2 − log x2. From

the Itô formula (Theorem 2.13),

dV (x(t), r(t)) = LV (x(t), x(t− τ), r(t))dt+ σ1(r(t))
(
x1(t)− 1

)
dB1(t)

+ σ2(r(t))
(
x2(t)− 1

)
dB2(t), (5.3.2)

where

LV (x, y, i) = −a(i) +
s(i)x2

β(i) + x2

+ c(i) +
σ2

1(i)

2
+
σ2

2(i)

2
+ (a(i) + b(i))x1 + (f(i)

− c(i))x2 − b(i)x2
1 − f(i)x2

2 +
h(i)x2y1

β(i) + y2

− h(i)y1

β(i) + y2

(5.3.3)

The Young inequality then indicates that

h(i)x2y1

β(i) + y2

6
h(i)x2y1

β(i)
=

h(i)y1

β(i)
√
f(i)

√
f(i)x2 6

h2(i)

2β2(i)f(i)
y2

1 +
f(i)

2
x2

2

It is then followed from (5.3.3) that

LV (x, y, i) 6 −a(i) + s(i) + c(i) +
σ2

1(i)

2
+
σ2

2(i)

2
+ (a(i) + b(i))x1 + (f(i)− c(i))x2

− b(i)x2
1 −

f(i)

2
x2

2 +
h2(i)

2β2(i)f(i)
y2

1

Hence there exist three positive constants K1, K2 and K3 for

LV (x, y, i) 6 K1

(
1 +
|x|
2

)
−K2|x|2 +K3y

2
1. (5.3.4)
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Note that |x| 6 2V (x). Equation (5.3.2) is then followed from (5.3.4) that

dV (x(t), r(t)) 6 [K1(1 + V (x(t)))−K2|x(t)|2 +K3x
2
1(t− τ)]dt

+ σ1(r(t))(x1(t)− 1)dB1(t) + σ2(r(t))(x2(t)− 1)dB2(t).

For any k > k0 and t1 ∈ [0, τ ], we obtain

EV (x(t1 ∧ τk)) 6 K4 +K1E
∫ t1∧τk

0

V (x(t))dt−K2E
∫ t1∧τk

0

|x(t)|2dt, (5.3.5)

where

K4 = V (x(0)) +K1τ +K3

∫ τ

0

x2
1(t− τ)dt <∞.

We then obtain from (5.3.5) that

EV (x(t1 ∧ τk)) 6 K4 +K1

∫ t1

0

EV (x(τk ∧ t))dt.

This and the Gronwall inequality (Theorem 2.30) imply that

EV (x(t1 ∧ τk)) 6 K4e
τK1 for 0 6 t1 6 τ, k > k0. (5.3.6)

It then follows that

EV (x(τk ∧ τ)) 6 K4e
τK1 for k > k0.

We can hence show that τ∞ > τ a.s. [47, 89, 92]. Additionally, letting k → ∞ in

(5.3.6) gives

EV (x(t1)) 6 K4e
τK1 for 0 6 t1 6 τ.

By setting t1 = τ in (5.3.5) and then letting k →∞, we have

E
∫ τ

0

|x(t)|2dt 6 1

K2

(K4 + τK1K4e
τK1) <∞. (5.3.7)

For t2 ∈ (τ, 2τ ],

EV (x(t2 ∧ τk)) 6 K5 +K1E
∫ t2∧τk

0

V (x(t))dt−K2E
∫ t2∧τk

0

|x(t)|2dt (5.3.8)

+K3E
∫ t2∧τk−τ

0

x2
1(t)dt

6 K̃5 +K1E
∫ t2∧τk

0

V (x(t))dt−K2E
∫ t2∧τk

0

|x(t)|2dt, (5.3.9)
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where K5 = V (x(0)) + 2K1τ + K3

∫ τ
0
x2

1(t − τ)dt and K̃5 = K5 + 1
K2

(K4 +

τK1K4e
τK1) < ∞ in view of (5.3.8). Similarly we obtain that τ∞ > 2τ a.s.

and

EV (x(t2)) 6 K̃5e
2τK1 .

By setting t2 = 2τ in (5.3.8) and then letting k →∞ yields that

E
∫ 2τ

0

|x(t)|2dt 6 1

K2

(
K̃5 + 2τK1K̃5e

2τK1

)
<∞.

Repeating this procedure, one can show τ∞ > mτ with probability one for any

integer m > 1. Therefore τ∞ =∞ a.s.

5.4 Stochastically Ultimate Boundedness

After analysing the global positive solution to model (5.2.2), we now explore the

conditions for system (5.2.2) to be stochastically ultimately bounded.

Theorem 5.2. If

h(i) 6 β(i)f(i) for all i ∈ S, (5.4.1)

then for any θ > 0, there exists a positive constant K(θ) such that for any initial

value {x(t) : −τ 6 t 6 0} ∈ C([−τ, 0];R2
+),

lim sup
t→∞

E
∣∣x(t)

∣∣θ 6 K(θ).

Proof. Condition (5.4.1) yields that there exists a constant θ̃ > 1 sufficiently large

such that

eτhθ̃+1(i)

(θ̃ + 1)β θ̃+1(i)f θ̃(i)
< b̂ for all i ∈ S.

We first consider the case when θ > θ̃. It then follows that

eτhθ+1(i)

(θ + 1)βθ+1(i)f θ(i)
< b̂ for all i ∈ S. (5.4.2)

Applying the Itô formula to et(xθ1(t) + xθ2(t)),

d(et(xθ1(t) + xθ2(t)) = etφ(x(t), x(t− τ), r(t))dt+ θσ1(r(t))etxθ1(t)dB1(t)
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+ θσ2(r(t))etxθ2(t)dB2(t), (5.4.3)

where

φ(x, y, i) =
(
a(i)θ +

1

2
θ(θ − 1)σ2

1(i) + 1
)
xθ1 +

(
− c(i)θ +

1

2
θ(θ − 1)σ2

2(i) + 1
)
xθ2

− s(i)θxθ1x2

β(i) + x2

+
h(i)θy1x

θ
2

β(i) + y2

− b(i)θxθ+1
1 − f(i)θxθ+1

2 .

Integrating on both sides of (5.4.3) and then taking expectation then yields that

E
[
et∧τk(xθ1(t ∧ τk) + xθ2(t ∧ τk))

]
= xθ1(0) + xθ2(0)

+

∫ t∧τk

0

euφ(x(u), x(u− τ), r(u))du.

From the Young inequality, for all i ∈ S

h(i)y1x
θ
2

β(i) + y2

6
h(i)y1

β(i)f
θ
θ+1 (i)

· f
θ
θ+1 (i)xθ2 6

hθ+1(i)

(θ + 1)βθ+1(i)f θ(i)
yθ+1

1 +
θf(i)

θ + 1
xθ+1

2 .

Hence

φ(x, y, i) 6 φ1(x, i) + φ2(y, i)− b(i)θxθ+1
1

with

φ1(x, i) =
(
a(i)θ +

1

2
θ(θ − 1)σ2

1(i) + 1
)
xθ1 +

(
− c(i)θ +

1

2
θ(θ − 1)σ2

2(i) + 1
)
xθ2

− f(i)θ

θ + 1
xθ+1

2

and

φ2(y, i) =
θhθ+1(i)

(θ + 1)βθ+1(i)f θ(i)
yθ+1

1 .

Note that∫ t∧τk

0

euφ2(x1(u− τ), r(u))du

6
θeτ

θ + 1

∫ t∧τk

−τ

hθ+1(r(u+ τ))eu

βθ+1(r(u+ τ))f θ(r(u+ τ))
xθ+1

1 (u)du

6
θȟθ+1eτ

(θ + 1)β̂θa+1f̂ θ

∫ 0

−τ
xθ+1

1 (u)du+
θeτ

θ + 1

∫ t∧τk

0

hθ+1(r(u+ τ))eu

βθ+1(r(u+ τ))f θ(r(u+ τ))
xθ+1

1 (u)du
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Hence

E
[
et∧τk(xθ1(t ∧ τk) + xθ2(t ∧ τk))

]
6 xθ1(0) + xθ2(0) +

∫ t∧τk

0

eu
[
φ1(x(u), r(u)) + φ2(x(u− τ), r(u))− b(r(u))θxθ+1

1

]
du

6 xθ1(0) + xθ2(0) +
θȟθ+1eτ

(θ + 1)β̂θ+1f̂ θ

∫ 0

−τ
xθ+1

1 (u)du+

∫ t∧τk

0

eu
[
φ1(x(u), r(u))

+
( eτhθ+1(r(u+ τ))

(θ + 1)βθ+1(r(u+ τ))f θ(r(u+ τ))
− b(r(u))

)
θxθ+1

1 (u)
]
du

This and (5.4.2) indicate that there is a positive constant K∗(θ) such that

E
[
e(t∧τk)(xθ1(t ∧ τk) + xθ2(t ∧ τk))

]
6 xθ1(0) + xθ2(0) +

θȟθ+1eτ

(θ + 1)β̂θ+1f̂ θ

∫ 0

−τ
xθ+1

1 (u)du+K∗(θ)

∫ t∧τk

0

eudu.

Letting k →∞ and then t→∞ yields

lim sup
t→∞

E
[
xθ1(t) + xθ2(t)

]
6 K∗(θ). (5.4.4)

On the other hand, we have

|x|2 6 2 max(x2
1, x

2
2), so |x|θ 6 2θ/2 max

(
xθ1, x

θ
2

)
6 2θ/2(xθ1 + xθ2).

As a result,

lim sup
t→∞

E|x(t)|θ 6 2θ/2 lim sup
t→∞

E[xθ1(t) + xθ2(t)] 6 2θ/2K∗(θ) = K(θ). (5.4.5)

For 0 < θ < θ̃, Hölder’s inequality yields

E|x(t)|θ 6 (E|x(t)|θ̃)
θ
θ̃ .

Hence from (5.4.5)

lim sup
t→∞

E|x(t)|θ 6 lim sup
t→∞

(E|x(t)|θ̃)
θ
θ̃ 6 K(θ).
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5.5 Extinction

In this section, we investigate the conditions for the system to be extinct.

Theorem 5.3. For any initial value {x(t) : −τ 6 t 6 0} ∈ C([−τ, 0];R2
+), if

λ1 :=
∑
i∈S

πi

(
a(i)− σ2

1(i)

2

)
< 0, (5.5.1)

both x1(t) and x2(t) tend to zero exponentially as t→∞ with probability one.

Proof. Applying the Itô formula on log x1(t), we have

d log x1(t) =

(
a(r(t))− b(r(t))x1(t)− σ2

1(r(t))

2
− s(r(t))x2(t)

β(r(t)) + x2(t)

)
dt

+ σ1(r(t))dB1(t) (5.5.2)

6

(
a(r(t))− σ2

1(r(t))

2

)
dt+ σ1(r(t))dB1(t).

Integrating from 0 to t and dividing by t, we get

1

t
log x1(t) 6

1

t
log x1(0) +

1

t

∫ t

0

(
a(r(u))− σ2

1(r(u))

2

)
du+

σ̌1B1(t)

t
.

Letting t→∞ and by the strong law of large numbers for martingales (Theorem

2.2)

lim
t→∞

σ̌1B1(t)

t
= 0 a.s.

Thus by the ergodic property of the Markov chain,

lim sup
t→∞

1

t
log x1(t) 6 λ1 < 0 a.s.

as required. It follows that

lim
t→∞

1

t

∫ t

0

x1(u)du = 0 a.s. (5.5.3)

Meanwhile

d log x2(t) =
( h(r(t))x1(t− τ)

β(r(t)) + x2(t− τ)
− c(r(t))− σ2

2(r(t))

2
− f(r(t))x2(t)

)
dt

+ σ2(r(t))dB2(t). (5.5.4)
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It follows that

log x2(t)

t
6

1

t

(
log x2(0) +

ȟ

β̂

∫ 0

−τ
x1(u)du+

ȟ

β̂

∫ t

0

x1(u)du

)
−
(
ĉ+

σ̂2
2

2

)
+
σ̌2B2(t)

t
.

Letting t→∞ and recalling equation (5.5.3),

lim sup
t→∞

log x2(t)

t
6 −

(
ĉ+

σ̂2
2

2

)
< 0 a.s.

5.6 Pathwise Estimation

In this section, we discuss the long-time properties of the solutions of system (5.2.2)

pathwisely.

Theorem 5.4. Assume that condition (5.4.1) holds. Then for any initial value

{x(t) : −τ 6 t 6 0} ∈ C([−τ, 0];R2
+),

lim sup
t→∞

log(x1(t) + x2(t))

log t
6 1 a.s.

Proof. From the Young inequality,

d
[
x1(t) + x2(t)

]
6
[
a(r(t))x1(t) +

h(r(t))x1(t− τ)x2(t)

β(r(t)) + x2(t− τ)

]
dt+ σ1(r(t))x1(t)dB1(t)

+ σ2(r(t))x2(t)dB2(t)

6
[
ǎx1(t) +

ȟ2

2β̂2
x2

1(t− τ) +
1

2
x2

2(t)
]
dt+ σ1(r(t))x1(t)dB1(t) + σ2(r(t))x2(t)dB2(t).

Then we have

E
[

sup
t6u6t+1

(
x1(u) + x2(u)

)]
6 E

[
x1(t) + x2(t)

]
+ ǎ

∫ t+1

t

E[x1(v)]dv

+
ȟ2

2β̂2

∫ t+1

t

E[x2
1(u− τ)]du+

1

2

∫ t+1

t

E[x2
2(u)]du

+ E
(

sup
t6u6t+1

∫ u

t

σ1(r(v))x1(v)dB1(v)
)

+ E
(

sup
t6u6t+1

∫ u

t

σ2(r(v))x2(v)dB2(v)
)
.

(5.6.1)
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By the Burkholder-Davis-Gundy inequality (Theorem 2.31),

E
(

sup
t6u6t+1

∫ u

t

σ1(r(v))x1(v)dB1(v)
)
6 4
√

2E
(∫ t+1

t

σ̌2
1x

2
1(v)dv

) 1
2

6 E
(

sup
t6u6t+1

x1(u) · 32σ̌2
1

∫ t+1

t

x1(v)dv
) 1

2

6 E
(1

2
sup

t6u6t+1
x1(u) + 16σ̌2

1

∫ t+1

t

x1(v)dv
)

=
1

2
E
(

sup
t6u6t+1

x1(u)
)

+ 16σ̌2
1

∫ t+1

t

E
[
x1(v)

]
dv.

Similarly, we have

E
(

sup
t6u6t+1

∫ u

t

σ2(r(s))x2(s)dB2(s)
)
6

1

2
E
(

sup
t6u6t+1

x2(u)
)

+16σ̌2
2

∫ t+1

t

E
[
x2(v)

]
dv.

Hence (5.6.1) is then followed that

E
[

sup
t6u6t+1

(
x1(u) + x2(u)

)]
6 2E

[
x1(t) + x2(t)

]
+ 2ǎ

∫ t+1

t

E[x1(v)]dv

+
ȟ2

β̂2

∫ t+1−τ

t−τ
E[x2

1(v)]dv +

∫ t+1

t

E[x2
2(v)]dv + 32

(
σ̌2

1 ∨ σ̌2
2

) ∫ t+1

t

E
[
x1(v) + x2(v)

]
dv.

Letting t→∞ and making use of (5.4.4), we obtain

lim sup
t→∞

E
[

sup
t6u6t+1

(
x1(u)+x2(u)

)]
6 2
(

1+ǎ+16
(
σ̌2

1∨σ̌2
2

))
K∗(1)+

( ȟ2

β̂2
∨1
)
K∗(2).

Hence there is a positive constant K̃ such that

E
[

sup
k16u6k1+1

(
x1(u) + x2(u)

)]
6 K̃ for k1 = 1, 2, · · ·

Let ε > 0 be arbitrary. By the Chebychev inequality,

P
[

sup
k16u6k1+1

(
x1(u) + x2(u)

)
> k1+ε

1

]
6

E
[

supk16u6k1+1

(
x1(u) + x2(u)

)]
k1+ε

1

6
K̃

k1+ε
1

for k1 = 1, 2, · · · . By the Borel-Cantelli lemma (Lemma 2.1), for almost all ω ∈ Ω,

sup
k16t6k1+1

[
x1(t) + x2(t)

]
6 k1+ε

1 holds for all but finitely many k1.

Hence there exists a k̃(ω), if k1 > k̃ and k1 6 t 6 k1 + 1,

log
[
x1(t) + x2(t)

]
log t

6
log
[

supk16t6k1+1

(
x1(t) + x2(t)

)]
log t

6
log k1+ε

1

log t
6 1 + ε a.s.
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Consequently,

lim sup
t→∞

log
[
x1(t) + x2(t)

]
log t

6 1 + ε a.s.

Letting ε→ 0, we obtain the required assertion.

Theorem 5.4 shows that for arbitrary small ε > 0, there is a positive random

variable t3 = t3(ω) such that with probability one,

log[x1(t) + x2(t)]

log t
6 1 + ε for all t > t3.

Hence we have

x1(t) + x2(t) 6 t1+ε for all t > t3.

It then follows that

x1(t) + x2(t) 6 sup
06t6t3

[x1(t) + x2(t)] + t1+ε for all t > 0.

This means that the total amount of prey and predator species will grow at most

polynomially with order close to 1.

Recall that Lemma 4.3 in Chapter 4 introduced a nice property of a one-

dimensional Brownian motion {Wt}t>0. Based on this, the following theorem

shows some other asymptotic properties of the prey and predator populations.

Theorem 5.5. For any initial value {x(t) : −τ 6 t 6 0} ∈ C([−τ, 0];R2
+), if

a(i)− σ2
1(i)

2
:= q(i) > 0 for all i ∈ S, (5.6.2)

then

lim sup
t→∞

1

t

∫ t

0

x1(u)du 6
λ1

b̂
a.s.

In particular, if also

(i) λ2 > 0, then lim inf
t→∞

1

t

∫ t

0

x1(u)du >
λ2

b̌
almost surely;

(ii)
ȟ

b̂β̂
λ1 − λ3 < 0, then lim inf

t→∞

1

t

∫ t

0

x1(u)du >
λ1

b̌
and x2 dies out exponentially

almost surely,

where

λ2 =
∑
i∈S

πi

(
a(i)− s(i)− σ2

1(i)

2

)
and λ3 =

∑
i∈S

πi

(
c(i) +

σ2
2(i)

2

)
.
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Proof. Applying Itô’s formula (Theorem 2.13) on 1
x1(t)

gives

d
( 1

x1(t)

)
=
( 1

x1(t)

( s(r(t))x2(t)

β(r(t)) + x2(t)
−a(r(t))+σ2

1(r(t))
)

+b(r(t))
)
dt−σ1(r(t))

x1(t)
dB1(t).

Hence by the variation-of-constants formula (Theorem 2.20) and Lemma 2.19,

1

x1(t)
= exp

(∫ t

0

(1

2
σ2

1(r(u))− a(r(u)) +
s(r(u))x2(u)

β(r(u)) + x2(u)

)
du−

∫ t

0

σ1(r(u))dB1(u)
)
·[ 1

x1(0)
+

∫ t

0

b(r(u)) exp

(∫ u

0

(
a(r(v))− s(r(v))x2(v)

β(r(v)) + x2(v)
− 1

2
σ2

1(r(v))
)
dv

+

∫ u

0

σ1(r(v))dB1(v)

)
du
]

= exp
(
−
∫ t

0

σ1(r(u))dB1(u)
)[ 1

x1(0)
exp

(∫ t

0

(
− a(r(u)) +

1

2
σ2

1(r(u))

+
s(r(u))x2(u)

β(r(u)) + x2(u)

)
du
)

+

∫ t

0

b(r(u)) exp
(∫ t

u

(
− a(r(v)) +

1

2
σ2

1(r(v))

+
s(r(v))x2(v)

β(r(v)) + x2(v)

)
dv +

∫ u

0

σ1(r(v))dB1(v)
)
du
]
. (5.6.3)

On the one hand, (5.6.3) leads to

1

x1(t)
6 exp

(
−
∫ t

0

σ1(r(u))dB1(u)
)[ 1

x1(0)
exp

(∫ t

0

(
− a(r(u)) +

1

2
σ2

1(r(u))

+
s(r(u))x2(u)

β(r(u)) + x2(u)

)
du
)

+ b̌ exp
(
σ̌1 max

06u6t
B1(u) +

∫ t

0

s(r(u))x2(u)

β(r(u)) + x2(u)
du
)
·∫ t

0

exp(−q̂(t− u))du
]

6 exp
(
σ̌1 max

06u6t
B1(u)− σ̂1B1(t) +

∫ t

0

s(r(u))x2(u)

β(r(u)) + x2(u)
du
)[ 1

x1(0)
exp(−q̂t)

+ b̌

∫ t

0

exp(−q̂(t− u))du
]

= exp
(
σ̌1 max

06u6t
B1(u)− σ̂1B1(t) +

∫ t

0

s(r(u))x2(u)

β(r(u)) + x2(u)
du
)[ 1

x1(0)
exp(−q̂t)

+
b̌
(
1− exp(−q̂t)

)
q̂

]
,

It then follows that

log x1(t)

t
> − logN1(t)

t
− σ̌1 max06u6tB1(u)− σ̂1B1(t)

t
− 1

t

∫ t

0

s(r(u))x2(u)

β(r(u)) + x2(u)
du,

(5.6.4)
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where

N1(t) =
1

x1(0)
exp(−q̂t) +

b̌(1− exp(−q̂t))
q̂

and sup06t<∞N1(t) <∞ under condition (5.6.2). By (5.5.2) and (5.6.4),

1

t

∫ t

0

x1(u)du 6
1

b̂t

∫ t

0

(
a(r(u))− σ2

1(r(u))

2

)
du− log x1(t)

b̂t
+

log x1(0)

b̂t

− 1

b̂t

∫ t

0

s(r(u))x2(u)

β(r(u)) + x2(u)
du+

σ̌1

b̂t
B1(u)

6
1

b̂t

∫ t

0

(
a(r(u))− σ2

1(r(u))

2

)
du+

logN1(t)

b̂t
+

log x1(0)

b̂t
+
σ̌1

b̂t
B1(t)

+
σ̌1 max06u6tB1(u)− σ̂1B1(t)

b̂t
.

As t → ∞ and from the strong law of large numbers for martingales (Theorem

2.2) and Lemma 4.3,

lim sup
t→∞

1

t

∫ t

0

x1(u)du 6
λ1

b̂
a.s. (5.6.5)

On the other hand, (5.6.3) yields

1

x1(t)
> exp(−σ̌1B1(t))

[ 1

x1(0)
exp

(∫ t

0

(
− a(r(u)) +

1

2
σ2

1(r(u))
)
du
)

+ b̂ exp
(
σ̂1 min

06u6t
B1(u)

)∫ t

0

exp
(∫ t

u

(
− a(r(v)) +

1

2
σ2

1(r(v))
)
dv
)
du
]

> exp
(
σ̂1 min

06u6t
B1(u)− σ̌1B1(t)

)[ 1

x1(0)
exp(−q̌t) +

b̂(1− exp(−q̌t))
q̌

]
,

It follows that

log x1(t)

t
6 − σ̂1 min06u6tB1(u)− σ̂1B1(t)

t
− logN2(t)

t
,

where

N2(t) =
1

x1(0)
exp(−q̌t) +

b̂(1− exp(−q̌t))
q̌

and sup06t<∞N2(t) <∞ under condition (5.6.2). This leads to

lim sup
t→∞

log x1(t)

t
6 0 (5.6.6)

(i) Equation (5.5.2) and (5.6.6) indicate

lim inf
t→∞

1

t

∫ t

0

x1(u)du > lim
t→∞

1

b̌t

∫ t

0

(
a(r(u))− σ2

1(r(u))

2
− s(r(u))

)
du =

λ2

b̌
> 0.
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This and (5.6.5) yield

λ2

b̌
6 lim inf

t→∞

∫ t

0

x1(u)du 6 lim sup
t→∞

∫ t

0

x1(u)du 6
λ1

b̂
a.s.

(ii) From equation (5.5.4),

d log x2(t) 6
(h(r(t))x1(t− τ)

β(r(t))
− c(r(t)− σ2

2(r(t))

2

)
dt+ σ2(r(t))dB2(t).

Hence

log x2(t) 6 log x2(0) +
ȟ

β̂

∫ 0

−τ
x1(u)du+

ȟ

β̂

∫ t

0

x1(u)du−
∫ t

0

(
c(r(u)) +

σ2
2(r(u)

2

)
du

+ σ̌2B2(t).

This and (5.6.5) yield

lim sup
t→∞

1

t
log(x2(t)) 6

ȟ

β̂
lim sup
t→∞

1

t

∫ t

0

x1(u)du− lim
t→∞

1

t

∫ t

0

(
c(r(u)) +

σ2
2(r(u))

2

)
du

6
ȟλ1

b̂β̂
− λ3 < 0.

Hence for arbitrary small ζ > 0, there exists tζ such that

P(Ωζ) > 1− ζ where Ωζ =
{
ω :

s(r(t))x2(t, ω)

b̌(β(r(t)) + x2(t, ω))
6 ζ for t > tζ

}
.

It then follows from (5.5.2), (5.6.6) and Lemma 4.3 that for any ω ∈ Ωζ ,

lim inf
t→∞

1

t

∫ t

0

x1(u)du >
λ1

b̌
− ζ.

Letting ζ → 0 and recalling (5.6.5) yields

λ1

b̌
6 lim inf

t→∞

1

t

∫ t

0

x1(u)du 6 lim sup
t→∞

1

t

∫ t

0

x1(u)du 6
λ1

b̂
a.s.

5.7 Numerical Simulations

It is worth pointing out that for some j ∈ S, if the environmental noise is big

enough, in the sense that a(j)− σ2
1(j)

2
< 0, then in the subsystem

dx1(t) = x1(t)
(
a(j)− b(j)x1(t)− s(j)x2(t)

β(j) + x2(t)

)
dt+ σ1(j)x1(t)dB1(t)

dx2(t) = x2(t)
( h(j)x1(t− τ)

β(j) + x2(t− τ)
− c(j)− f(j)x2(t)

)
dt+ σ2(j)x2(t)dB2(t),

(5.7.1)
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both prey and predator populations are extinct (Theorem 5.3). On the other hand,

for some j ∈ S, if a(j)− σ2
1(j)

2
> 0 and h(j)

b(j)β(j)

(
a(j)− 1

2
σ2

1(j)
)
− c(j)− 1

2
σ2

2(j) < 0,

we obtain from Theorem 5.5 (ii) that in the subsystem (5.7.1), the prey species is

persistent:

lim
t→∞

1

t

∫ t

0

x1(u)du =
2a(j)− σ2

1(j)

2b(j)
a.s.

while the predators die out ultimately. In addition, Theorem 5.3 yields that if in

some subsystems the preys are persistent and in some others the prey species are

extinct, then due to the presence of the Markov switching, in the overall system

both populations could be extinct if λ1 is negative. The following two examples

indicate the impacts of Markov switching on the population dynamics. The Euler-

Maruyama (EM) scheme is used for the computer simulations [57]. From Mao [90],

the EM approximate solutions are convergent to the true solution of model (5.2.2)

in probability. We shall assume that all the parameters are given in appropriate

units.

Example 5.6. We assume that model (5.2.2) switches from one to the other ac-

cording to the movement of the Markov chain r(t) in the state space S = {1, 2}
with the coefficients defined in Table 5.1. Given the generator of the Markov chain

Parameters a(i) b(i) s(i) β(i) h(i) c(i) f(i) σ1(i) σ2(i)

i = 1 0.4 1 1 2.5 0.8 3 2 1.5 0.5

i = 2 1.5 1.5 0.8 2 0.64 2 0.5 0.8 1

Table 5.1: Parameters of SDE model (5.2.2).

r(t) as

Γ =

[
−1 1

2 −2

]
(5.7.2)

with the unique stationary distribution π = (π1, π2) =
(

2
3
, 1

3

)
. Then λ1 = −0.09 < 0

a.s. Therefore by Theorem 5.3, for any initial value {x(t) : −τ 6 t 6 0} ∈
C([−τ, 0];R2

+), both the prey and consumers of system (5.2.2) will tend to zero

exponentially with probability one. The computer simulation in Figure 5.1 supports

this result clearly, illustrating the extinction of both species. We then compute

a(1) − 1
2
σ2

1(1) = −0.725 < 0, which shows that both species in the first subsystem
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die out ultimately (Theorem 5.3). Then we compute a(2) − 1
2
σ2

1(2) = 1.18 > 0

and h(2)
b(2)β(2)

(
a(2) − 1

2
σ2

1(2)
)
− c(2) − 1

2
σ2

2(2) = −2.248 < 0. Hence in the second

subsystem the prey population is persistent:

lim
t→∞

1

t

∫ t

0

x1(u)du = 0.787 a.s.

and the consumers tend to zero exponentially almost surely (Theorem 5.5 (ii)).

However due to the presence of Markov switching, the overall behaviour of both

populations remains extinctive ultimately.

Example 5.7. Assume that model (5.2.2) switches from one to the other according

to the movement of the Markov chain r(t) in the state space S = {1, 2} with the

coefficients defined in Table 5.2. Let the generator of the Markov chain r(t) be

Parameters a(i) b(i) s(i) β(i) h(i) c(i) f(i) σ1(i) σ2(i)

i = 1 1 0.5 0.5 1 1 1.1 1.5 0.9 0.1

i = 2 1.5 1.5 0.8 2 0.64 2 0.5 0.8 1

Table 5.2: Parameters of SDE model (5.2.2).

Γ =

[
−2 2

1 −1

]
(5.7.3)

with the unique stationary distribution π = (π1, π2) =
(

1
3
, 2

3

)
. Then a(i)− σ2

1(i)

2
> 0

for i ∈ {1, 2} and ȟ

b̂β̂
λ1 − λ3 = −0.065 < 0. Hence from Theorem 5.5(ii), the

solution to model (5.2.2) has the property that

0.657 6 lim inf
t→∞

1

t

∫ t

0

x1(u)du 6 lim sup
t→∞

1

t

∫ t

0

x1(u)du 6 1.97

and x2(t) goes to zero almost surely. The computer simulation shown in Figure

5.2 supports these results clearly.

5.8 Summary

This chapter is a continuous work of Chapter 4. We have introduced time delay

and telegraph noise to the stochastic foraging arena predator-prey system (4.2.1).
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Figure 5.1: Computer simulations of the paths (a) x1(t) and (b) x2(t) of 5000

iterations of SDE model (5.2.2) using the EM scheme with stepsize ∆ = 0.01 and

initial value x(t) = (2, 3)T for t ∈ [−1, 0] with the system parameters provided

by Table 5.1 and the generator of the Markov chain r(t) given by (5.7.2). The

trajectory and frequency of the Markov chain are shown in (c) and (d) respectively.
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Figure 5.2: Computer simulations of the paths (a) x1(t) and (b) x2(t) of 5000

iterations of SDE model (5.2.2) using the EM scheme with stepsize ∆ = 0.01 and

initial value x(t) = (0.5, 1)T for t ∈ [−1, 0] with the system parameters provided

by Table 5.2 and the generator of the Markov chain r(t) given by (5.7.3). The

trajectory and frequency of the Markov chain are given in (c) and (d) respectively.
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Theorem 5.3 suggested that a bigger amplitude of environmental noise may

destabilize the system. The presence of time delay makes the system become

stochastically ultimately bounded only under certain parametric restriction

(Theorem 5.2). Based on this, we then showed that the total amount of prey and

predator species will grow at most polynomially with order close to one (Theorem

5.4). The existence of Markov switching makes a difference to the population

behaviours. Especially, if the prey is persistent in some subsystems and is extinct

in some other subsystems, due to the presence of the Markov switching, both

populations in the overall system could be extinct as long as λ1 defined in (5.5.1)

is negative. Numerical simulations were carried out to substantiate the analytical

results.

Recall that in Chapter 4, we introduced white noise to the intrinsic growth

rate of prey and the density-dependent death rate of consumers in the population

system (1.3.2). In the next chapter, we will perturb more parameters and study

the impacts of the correlations between the Brownian motions on the population

system.



Chapter 6

Stochastic Foraging Arena

Predator-Prey System with

Correlated Brownian Motions

6.1 Introduction

Recall that Chapter 4 considered the effects of white noise on the population

system (1.3.2). In this chapter, we take a further step to stochastically perturb

more parameters including the capturing rate of predators and the quadratic

mortality rates of both species. Meanwhile we will explore how the correlations

between the Brownian motions affect the population dynamics.

In this chapter, we let (Ω, {Ft}t>0,P) be a complete probability space with

a filtration {Ft} satisfying the usual conditions (i.e.it is right continuous and

increasing while F0 contains all P-null sets). Let B(t) = (B1(t), · · · , B6(t))T and

B̆(t) = (B1(t), · · · , B4(t))T be six-dimensional and four-dimensional Brownian

motions defined on this probability space respectively. The SDE models are

formulated as follows: Due to the environmental variations such as temperature

and seasonal fluctuations, we stochastically perturb the parameters s and h in

model (4.2.1) with

s→ s+ r1Ḃ3(t) and h→ h+ r2Ḃ4(t),

114
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where r1 and r2 denote the intensities of the corresponding white noise. As a result

this perturbed system is given by

dx1(t) = x1(t)
(
a− bx1(t)− sx2(t)

β + x2(t)

)
dt+ σ1x1(t)dB1(t)− r1x1(t)x2(t)

β + x2(t)
dB3(t)

(6.1.1a)

dx2(t) = x2(t)
( hx1(t)

β + x2(t)
− c− fx2(t)

)
dt− σ2x2(t)dB2(t) +

r2x1(t)x2(t)

β + x2(t)
dB4(t).

(6.1.1b)

Furthermore, we would also like to incorporate perturbation into b and f :

b→ b+ δ1Ḃ5(t) and f → f + δ2Ḃ6(t),

where δ1 and δ2 represent the intensities of the corresponding white noise. We

then obtain

dx1(t) = x1(t)
(
a− bx1(t)− sx2(t)

β + x2(t)

)
dt+ σ1x1(t)dB1(t)− r1x1(t)x2(t)

β + x2(t)
dB3(t)

− δ1x
2
1(t)dB5(t) (6.1.2a)

dx2(t) = x2(t)
( hx1(t)

β + x2(t)
− c− fx2(t)

)
dt− σ2x2(t)dB2(t) +

r2x1(t)x2(t)

β + x2(t)
dB4(t)

− δ2x
2
2(t)dB6(t). (6.1.2b)

According to the literature on the stochastic population dynamics, most au-

thors only considered the case when the Brownian motions are uncorrelated. In

fact, some environmental factors such as diseases, temperature and pollution might

simultaneously affect several system parameters. This phenomena can be charac-

terised by the correlations between the Brownian motions [33, 34, 55, 100, 110]. In

this chapter, we assume that the Brownian motions in model (6.1.1) and (6.1.2) are

correlated. Namely, we let B(t) = $Z(t), where Z(t) = (Z1(t), · · · , Z6(t))T is a

six-dimensional independent standard Brownian motion and $T$ = R = (ρij)6×6

is a constant correlation matrix with ρij ∈ [−1, 1] represents the correlation coef-

ficient between Bi(t) and Bj(t) for i, j = 1, 2, · · · , 6. And B̆(t) can be defined in

the same way. We also denote

ρ̄ij =

ρij, if ρij > 0

0, otherwise
and ρ̃ij =

0, if ρij > 0

−ρij, otherwise.
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This chapter is divided into four main parts: In section 6.2 and 6.3, we discuss

the long-time behaviours of model (6.1.1) and (6.1.2) respectively. In section 6.4,

we discover the parametric restrictions for either model (6.1.1) or (6.1.2) to have

a stationary distribution. In section 6.5, we provide examples to illustrate our

theory. Finally we give a summary in section 6.6.

6.2 Model (6.1.1)

6.2.1 Positive and Global Solution

Theorem 6.1. For any given initial value x0 ∈ R2
+, there is a unique solution x(t)

to equation (6.1.1) on t > 0 and the solution will remain in R2
+ with probability 1,

namely x(t) ∈ R2
+ for all t > 0 almost surely.

By defining V (x) = x2
1− 2 log x1 + x2

2− 2 log x2, this theorem is then proved in

the same routine as in Theorem 4.1.

6.2.2 Moment Estimate

Theorem 6.2. For any θ > 0, there exists a positive constant K(θ) such that for

any initial value x0 ∈ R2
+, the solution to model (6.1.1) has the property that

lim sup
t→∞

E|x(t)|θ 6 K(θ).

Proof. Applying the Itô formula to et(xθ1(t) + xθ2(t)) for θ > 0,

et(xθ1(t) + xθ2(t))

= xθ1(0) + xθ2(0) +

∫ t

0

esf(x(s))ds+ θσ1

∫ t

0

esxθ1(s)dB1(s)− θσ2

∫ t

0

esxθ2(s)dB2(s)

− θr1

∫ t

0

esxθ1(s)x2(s)

β + x2(s)
dB3(s) + θr2

∫ t

0

esxθ2(s)x1(s)

β + x2(s)
dB4(s), (6.2.1)

where

f(x) = θxθ1

(
a− bx1 −

sx2

β + x2

)
+ θxθ2

( hx1

β + x2

− c− fx2

)
+

1

2
θ(θ − 1)xθ1

(
σ2

1

+
r2

1x
2
2

(β + x2)2
− 2σ1r1ρ13x2

β + x2

)
+

1

2
θ(θ − 1)xθ2

(
σ2

2 +
r2

2x
2
1

(β + x2)2
− 2r2σ2ρ24x1

β + x2

)
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+ xθ1 + xθ2.

Using the elementary inequality

vκ1v
1−κ
2 6 κv1 + (1− κ)v2 for v1, v2 > 0 and 0 6 κ < 1,

for θ > 2 we obtain

x1x
θ
2

β + x2

6 x1x
θ−1
2 6

1

θ
xθ1 +

θ − 1

θ
xθ2

and

x2
1x

θ
2

(β + x2)2
6 x2

1x
θ−2
2 6

2

θ
xθ1 +

θ − 2

θ
xθ2.

Hence

f(x) 6
(
h+ 1 + aθ + (θ − 1)

(1

2
θ(σ2

1 + r2
1 + 2σ1r1ρ̃13) + r2

2 + r2σ2ρ̃24

))
xθ1 +

(
1

− cθ + (θ − 1)
(
h+

1

2
θσ2

2 +
1

2
(θ − 2)r2

2 + (θ − 1)r2σ2ρ̃24

))
xθ2 − bθxθ+1

1

− fθxθ+1
2 .

is bounded, say by K∗(θ). Moreover, it follows from (6.2.1) that

E
[
et∧τk

(
xθ1(t ∧ τk) + xθ2(t ∧ τk)

)]
6 xθ1(0) + xθ2(0) +K∗(θ)

∫ t∧τk

0

esds,

where τk is a stopping time defined as

τk = inf{t ∈ [0, τe) : xi(t) /∈
(1

k
, k
)

for some i = 1, 2}.

Letting k →∞ and then t→∞ yields

lim sup
t→∞

E
[
xθ1(t) + xθ2(t)

]
6 lim

t→∞

1

et

(
xθ1(0) + xθ2(0) +K∗(θ)(et − 1)

)
= K∗(θ).

On the other hand, we have

|x|2 6 2(x2
1 ∨ x2

2), so |x|θ 6 2θ/2(xθ1 ∨ xθ2) 6 2θ/2(xθ1 + xθ2).

As a result,

lim sup
t→∞

E|x(t)|θ 6 2θ/2 lim sup
t→∞

E[xθ1(t) + xθ2(t)] 6 2θ/2K∗(θ) = K(θ). (6.2.2)

For 0 < θ < 2, Hölder’s inequality yields

E|x(t)|θ 6
(
E|x(t)|2

) θ
2 .

Hence from (6.2.2)

lim sup
t→∞

E|x(t)|θ 6 lim sup
t→∞

(E|x(t)|2)
θ
2 6 K(θ).
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6.2.3 Extinction

In order to study the asymptotic properties of model (6.1.1), we first introduce a

lemma.

Lemma 6.3. For any initial value x0 ∈ R2
+, the solution to model (6.1.1) has the

property that

lim sup
t→∞

1

t

∫ t

0

x2
1(u)du 6

4a2

b2
a.s.

Proof. According to (6.1.1a),

x1(t) = x1(0) + a

∫ t

0

x1(u)du− b
∫ t

0

x2
1(u)du− s

∫ t

0

x1(u)x2(u)

β + x2(u)
du+m1(t) +m3(t)

(6.2.3)

where

m1(t) = σ1

∫ t

0

x1(u)dB1(u) and m3(t) = −r1

∫ t

0

x1(u)x2(u)

β + x2(u)
dB3(u)

are two continuous local martingales with the quadratic variations

〈m1(t)〉 = σ2
1

∫ t

0

x2
1(u)du and 〈m3(t)〉 = r2

1

∫ t

0

x2
1(u)x2

2(u)

(β + x2(u))2
du 6 r2

1

∫ t

0

x2
1(u)du.

By the exponential martingale inequality (Theorem 2.32), we have

P
(

sup
o6t6n

(
mi(t)− 0.5α〈mi(t)〉

)
>

2 log n

α

)
6

1

n2
for i = 1, 3 and n = 1, 2, · · · ,

where

α =
b

σ2
1 + r2

1

. (6.2.4)

An application of the Borel-Cantelli lemma (Lemma 2.1) suggests that for almost

all ω ∈ Ω there is a random integer n0 = n0(ω) > 1 such that

sup
o6t6n

(
mi(t)− 0.5α〈mi(t)〉

)
6

2 log n

α
whenever n > n0 for i = 1, 3.

Hence for t ∈ [0, n] and n > n0,

mi(t) 6
2 log n

α
+ 0.5α〈mi(t)〉 a.s.
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And then (6.2.3) and (6.2.4) imply that for t ∈ [0, n] and n > n0,

x1(t) 6 x1(0) + a

∫ t

0

x1(u)du−
(
b− 0.5α(σ2

1 + r2
1)
)∫ t

0

x2
1(u)du+

4 log n

α

= x1(0) + a

∫ t

0

x1(u)du− b

2

∫ t

0

x2
1(u)du+

4 log n

α
a.s.

Therefore it follows that for t ∈ [0, n] and n > n0,

b

4

∫ t

0

x2
1(u)du 6 x1(0) + a

∫ t

0

x1(u)du− b

4

∫ t

0

x2
1(u)du+

4 log n

α

6 x1(0) +
a2t

b
+

4 log n

α
a.s.

Consequently, for almost all ω ∈ Ω, if n > n0 and n− 1 6 t 6 n,

1

t

∫ t

0

x2
1(u)du 6

4

(n− 1)b

(
x1(0) +

a2n

b
+

4 log n

α

)
.

Letting t→∞ and hence n→∞ we obtain

lim sup
t→∞

1

t

∫ t

0

x2
1(u)du 6

4a2

b2
a.s.

Theorem 6.4. For any initial value x0 ∈ R2
+,

(a) if

2a < σ2
1 − 2r1σ1ρ̄13 (6.2.5)

then both x1(t) and x2(t) of model (6.1.1) tend to zero exponentially as t → ∞
with probability 1;

(b) if

σ2
1 + 2r1σ1ρ̃13 < 2a < σ2

1−2r1σ1ρ̄13 +
2bβc

h+ r2σ2ρ24

+
bβσ2

2

h+ r2σ2ρ24

for ρ24 > −
h

r2σ2

(6.2.6)

or

2a > σ2
1 + 2r1σ1ρ̃13 for − 1 6 ρ24 6 −

h

r2σ2

, (6.2.7)

then x1(t) of model (6.1.1) obeys

2a− σ2
1

2b
6 lim inf

t→∞

1

t

∫ t

0

x1(u)du 6 lim sup
t→∞

1

t

∫ t

0

x1(u)du 6
2a− σ2

1 + 2r1σ1ρ̄13

2b
a.s.

and x2(t) tends to zero exponentially as t→∞ with probability 1.
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Proof. (a) Applying Itô’s formula (Theorem 2.13) on log x1(t) yields

d log x1(t) =
(
a− bx1(t)− 1

2
σ2

1 −
sx2(t)

β + x2(t)
− r2

1x
2
2(t)

2(β + x2(t))2
+
r1σ1ρ13x2(t)

β + x2(t)

)
dt

+ σ1dB1(t)− r1x2(t)

β + x2(t)
dB3(t) (6.2.8)

6
(
a− 1

2
σ2

1 + r1σ1ρ̄13

)
dt+ σ1dB1(t)− r1x2(t)

β + x2(t)
dB3(t).

Integrating from 0 to t and dividing by t infers

1

t
log x1(t) 6

1

t
log x1(0) + a− 1

2
σ2

1 + r1σ1ρ̄13 +
M1(t)

t
+
M3(t)

t
,

where

M1(t) = σ1B1(t) and M3(t) = −r1

∫ t

0

x2(u)

β + x2(u)
dB3(u)

are two continuous martingales with the quadratic variations

〈M1(t)〉 = σ2
1t and 〈M3(t)〉 = r2

1

∫ t

0

x2
2(u)

(β + x2(u))2
dt 6 r2

1t.

By the strong law of large numbers for martingales (Theorem 2.2),

lim
t→∞

M1(t)

t
= 0 and lim

t→∞

M3(t)

t
= 0 a.s.

and thus from condition (6.2.5)

lim sup
t→∞

1

t
log x1(t) 6 a− 1

2
σ2

1 + r1σ1ρ̄13 < 0 a.s.

as required. Therefore we obtain

lim
t→∞

1

t

∫ t

0

x1(u)du = 0 a.s. (6.2.9)

Meanwhile

d log x2(t) =
(h+ r2σ2ρ24

β + x2(t)
x1(t)− c− σ2

2

2
− fx2(t)− r2

2x
2
1(t)

2(β + x2(t))2

)
dt− σ2dB2(t)

+
r2x1(t)

β + x2(t)
dB4(t). (6.2.10)

It follows that

log x2(t)

t
6

1

t

(
log x2(0) +

h+ r2σ2ρ̄24

β

∫ t

0

x1(u)du
)
−
(
c+

σ2
2

2

)
+
M2(t)

t
+
M4(t)

t
,
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where

M2(t) = −σ2B2(t) and M4(t) = r2

∫ t

0

x1(u)

β + x2(u)
dB4(u)

are two martingales with the quadratic variations

〈M2(t)〉 = σ2
2t and 〈M4(t)〉 = r2

2

∫ t

0

x2
1(u)

(β + x2(u))2
du.

Hence from Lemma 6.3,

lim sup
t→∞

〈M4(t)〉
t

6 lim sup
t→∞

r2
2

β2t

∫ t

0

x2
1(u)du 6

4r2
2a

2

β2b2
a.s.

By the strong law of large numbers for martingales (Theorem 2.2),

lim
t→∞

M2(t)

t
= 0 and lim

t→∞

M4(t)

t
= 0 a.s.

Letting t→∞ and recalling equation (6.2.9) indicates

lim sup
t→∞

log x2(t)

t
6 −

(
c+

σ2
2

2

)
< 0 a.s.

(b) Applying Itô’s formula on 1
x1(t)

gives

d
( 1

x1(t)

)
=
( 1

x1

( sx2

β + x2

− a+ σ2
1 +

r2
1x

2
2

(β + x2)2
− 2σ1r1ρ13x2

β + x2

)
+ b
)
dt− σ1

x1

dB1(t)

+
r1x2

x1(β + x2)
dB3(t),

where we write x(t) = x. Hence by the variation-of-constants formula (Theorem

2.20) and Lemma 2.19,

1

x1(t)
= exp

(∫ t

0

(1

2
σ2

1 − a+
sx2(u)

β + x2(u)
+

r2
1x

2
2(u)

2(β + x2(u))2
− 2r1σ1ρ13x2(u)

β + x2(u)

)
du

−M1(t)−M3(t)
)( 1

x1(0)
+ b

∫ t

0

exp
(∫ u

0

(
a− sx2(v)

β + x2(v)
− 1

2
σ2

1

− r2
1x

2
2(v)

2(β + x2(v))2
+

2r1σ1ρ13x2(v)

β + x2(v)

)
dv +M1(u) +M3(u)

)
du

)
= exp

(
−M1(t)−M3(t)

)( 1

x1(0)
exp

(
−
(
a− 1

2
σ2

1

)
t+ s

∫ t

0

x2(u)

β + x2(u)
du

+
r2

1

2

∫ t

0

x2
2(u)

(β + x2(u))2
du− 2r1σ1ρ13

∫ t

0

x2(u)

β + x2(u)
du
)
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+ b

∫ t

0

exp
(
−
(
a− 1

2
σ2

1

)
(t− u) + s

∫ t

u

x2(v)

β + x2(v)
dv +

r2
1

2

∫ t

u

x2
2(v)

(β + x2(v))2
dv

− 2r1σ1ρ13

∫ t

u

x2(v)

β + x2(v)
dv +M1(u) +M3(u)

)
du

)
. (6.2.11)

On the one hand, (6.2.11) leads to

1

x1(t)
6 exp

(
−M1(t)−M3(t)

)( 1

x1(0)
exp

(
−
(
a− 1

2
σ2

1

)
t+ s

∫ t

0

x2(u)

β + x2(u)
du

+
r2

1

2

∫ t

0

x2
2(u)

(β + x2(u))2
du+ 2r1σ1ρ̃13

∫ t

0

x2(u)

β + x2(u)
du
)

+ b exp
(

max
06u6t

M1(u)

+ max
06u6t

M3(u) + s

∫ t

0

x2(u)

β + x2(u)
du+

r2
1

2

∫ t

0

x2
2(u)

(β + x2(u))2
du

+ r1σ1ρ̃13

∫ t

0

x2(u)

β + x2(u)
du
)
·
∫ t

0

exp(−q(t− u))du
)

6 exp
(

max
06u6t

M1(u)−M1(t) + max
06u6t

M3(u)−M3(t) + s

∫ t

0

x2(u)

β + x2(u)
du

+
r2

1

2

∫ t

0

x2
2(u)

(β + x2(u))2
du+ r1σ1ρ̃13

∫ t

0

x2(u)

β + x2(u)
du
)( 1

x1(0)
exp(−qt)

+ b

∫ t

0

exp(−q(t− u))du
)

= exp
(

max
06u6t

M1(u)−M1(t) + max
06u6t

M3(u)−M3(t) + s

∫ t

0

x2(u)

β + x2(u)
du

+
r2

1

2

∫ t

0

x2
2(u)

(β + x2(u))2
du+ r1σ1ρ̃13

∫ t

0

x2(u)

β + x2(u)
du
)
·K1(t),

where

q := a− 1

2
σ2

1 − r1σ1ρ̃13 and K1(t) =
1

x1(0)
exp(−qt) +

2b
(
1− exp(−qt)

)
2a− σ2

1

.

Under condition (6.2.6) or (6.2.7), we obtain that q > 0 and therefore

sup06t<∞K1(t) <∞. It then follows that

log x1(t)

t
> − logK1(t)

t
− max06u6tM1(u)−M1(t) + max06u6tM3(u)−M3(t)

t

− s

t

∫ t

0

x2(u)

β + x2(u)
du− r2

1

2t

∫ t

0

x2
2(u)

(β + x2(u))2
du− r1σ1ρ̃13

t

∫ t

0

x2(u)

β + x2(u)
du.

(6.2.12)

By (6.2.8) and (6.2.12),

1

t

∫ t

0

x1(u)du =
2a− σ2

1

2b
− log x1(t)

bt
+

log x1(0)

bt
− s

bt

∫ t

0

x2(u)

β + x2(u)
du
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− r2
1

2bt

∫ t

0

x2
2(u)

(β + x2(u))2
du+

r1σ1ρ13

bt

∫ t

0

x2(u)

β + x2(u)
du+

M1(t)

bt

+
M3(t)

bt
(6.2.13)

6
2a− σ2

1

2b
+

logK1(t)

bt
+
r1σ1ρ̄13

b
+

log x1(0)

bt
+
M1(t)

bt
+
M3(t)

bt

+
max06u6tM1(u)−M1(t) + max06u6tM3(u)−M3(t)

bt
.

As t → ∞ and from the strong law of large numbers for martingales (Theorem

2.2),

lim sup
t→∞

1

t

∫ t

0

x1(u)du 6
2a− σ2

1 + 2r1σ1ρ̄13

2b
a.s. (6.2.14)

Assume that ρ24 > − h
r2σ2

. From equation (6.2.10),

d log x2(t) 6
(h+ r2σ2ρ24

β
x1(t)− c− σ2

2

2

)
dt− σ2dB2(t) +

r2x1(t)

β + x2(t)
dB4(t).

It is then followed from (6.2.14) and the strong law of large numbers for martingales

that

lim sup
t→∞

1

t
log x2(t) 6

h+ r2σ2ρ24

β
lim sup
t→∞

1

t

∫ t

0

x1(u)du−
(
c+

σ2
2

2

)
6

(h+ r2σ2ρ24)(2a− σ2
1 + 2r1σ1ρ̄13)

2βb
−
(
c+

σ2
2

2

)
< 0

in view of (6.2.6). If ρ24 6 − h
r2σ2

, it immediately indicates that

lim sup
t→∞

1

t
log x2(t) 6 −

(
c+

σ2
2

2

)
< 0.

Hence for arbitrary small ζ > 0, there exists tζ such that

P(Ωζ) > 1− ζ, where

Ωζ =
{
ω :

(s+ r1σ1|ρ13|)x2(t, ω)

b(β + x2(t, ω))
+

r2
1x

2
2(t, ω)

2b(β + x2(t, ω))2
6 ζ for t > tζ

}
.

On the other hand, (6.2.11) yields

1

x1(t)
> exp

(
−M1(t)−M3(t)

)( 1

x1(0)
exp

(
−
(
a− 1

2
σ2

1

)
t

− 2r1σ1ρ̄13

∫ t

0

x2(u)

β + x2(u)
du
)

+ b exp
(

min
06u6t

M1(u) + min
06u6t

M3(u)
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− 2r1σ1ρ̄13

∫ t

0

x2(u)

β + x2(u)
du
)
·
∫ t

0

exp
(
−
(
a− 1

2
σ2

1

)
(t− u)

)
du
)

> exp
(

min
06u6t

M1(u)−M1(t) + min
06u6t

M3(u)−M3(t)

− 2r1σ1ρ̄13

∫ t

0

x2(u)

β + x2(u)
du
)
·K2(t),

where

K2(t) =
1

x1(0)
exp

(
−
(
a− 1

2
σ2

1

)
t
)

+
2b
(

1− exp
(
− (a− 1

2
σ2

1)t
))

2a− σ2
1

and sup06t<∞K2(t) <∞ if either condition (6.2.6) or (6.2.7) holds. Then

log x1(t)

t
6− logK2(t)

t
− min06u6tM1(u)−M1(t) + min06u6tM3(u)−M3(t)

t

+
2r1σ1ρ̄13

t

∫ t

0

x2(u)

β + x2(u)
du.

Hence we obtain from (6.2.13) that

1

t

∫ t

0

x1(u)du >
2a− σ2

1

2b
+

logK2(t)

bt
+

log x1(0)

bt
− s

bt

∫ t

0

x2(u)

β + x2(u)
du

− r2
1

2bt

∫ t

0

x2
2(u)

(β + x2(u))2
du− r1σ1|ρ13|

bt

∫ t

0

x2(u)

β + x2(u)
du+

M1(t)

bt

+
M3(t)

bt
+

min06u6tM1(u)−M1(t) + min06u6tM3(u)−M3(t)

bt
.

(6.2.15)

For any ω ∈ Ωζ , (6.2.15) indicates

lim inf
t→∞

1

t

∫ t

0

x1(u)du >
2a− σ2

1

2b
− ζ a.s.

Letting ζ → 0 and together with (6.2.14) implies the required assertion.

Remark 6.5. Let all the Brownian motions in model (6.1.1) be uncorrelated. Then

Theorem 6.2 is still obtained. Moreover, Theorem 6.4(a) or (b) holds if assertion

(6.2.5) or (6.2.6) is satisfied with ρij = 0 for all i, j = 1, · · · , 4 and i 6= j.

Remark 6.6. Assume that ρ13 6 0. Then under condition (6.2.6) or (6.2.7), x1(t)

of model (6.1.1) obeys

lim
t→∞

1

t

∫ t

0

x1(u)du =
2a− σ2

1

2b
a.s.

and x2(t) tends to zero exponentially as t→∞ with probability 1.
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Theorem 6.4(a) shows that large white noise intensity σ2
1 may let the popula-

tions die out. In Theorem 6.4(b), the situation when a becomes larger is discussed.

There are generally two cases, depending on the value of ρ24. In the first case, B2(t)

and B4(t) are strongly negatively correlated (−1 6 ρ24 6 − h
r2σ2

). Then under con-

dition (6.2.7), the prey species keep persistent while the consumers become extinct

ultimately. On the other hand, we let ρ24 > − h
r2σ2

. Then system (6.1.1) has the

same behaviours as in the first case provided that (6.2.6) is fulfilled. It is then

interesting to examine how the population system behaves when a gets larger in

the case ρ24 > − h
r2σ2

. This is further developed in section 6.4.

6.3 Model (6.1.2)

In this section, we investigate the long-time behaviours of model (6.1.2). Notice

that if δ1 and δ2 are zero, model (6.1.2) is then degenerated to model (6.1.1) which

has been analysed above. Hence this section only focuses on the unique properties

of model (6.1.2) with two positive constants δ1 and δ2.

6.3.1 Positive and Global Solution

Theorem 6.7. For any given initial value x0 ∈ R2
+, there is a unique solution x(t)

to equation (6.1.2) on t > 0 and the solution will remain in R2
+ with probability 1,

namely x(t) ∈ R2
+ for all t > 0 a.s.

By defining V (x) = x0.5
1 − 0.5 log x1 + x0.5

2 − 0.5 log x2, this theorem is then

proved in the same routine as in Theorem 4.1.

6.3.2 Boundedness

Theorem 6.8. Let η1 and η2 be positive numbers satisfying

η1, η2 <
1

2
for ρ45 > 0 and ρ56 6 0;

η1 + 2η2 <
1

2
for ρ45 < 0 and ρ56 > 0;

η1 + η2 <
1

2
otherwise.
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Then for any initial value x0 ∈ R2
+, the solution to model (6.1.2) has the property

that

lim sup
t→∞

E[xη11 (t)xη22 (t)] 6 ec1/c2 ,

where c1 and c2 are two constants and are determined in (6.3.6) and (6.3.7) below

in the case ρ45 < 0 and ρ56 > 0.

In order to prove this theorem, let us first consider the following lemma.

Lemma 6.9. Let η1 and η2 be positive numbers satisfying

η1, η2 < 1 for ρ45 > 0 and ρ56 6 0; (6.3.1a)

η1 + 2η2 < 1 for ρ45 < 0 and ρ56 > 0; (6.3.1b)

η1 + η2 < 1 otherwise, (6.3.1c)

Then for any initial value x0 ∈ R2
+, the solution to model (6.1.2) has the property

that

lim sup
t→∞

E[xη11 (t)xη22 (t)] <∞ for all t > 0. (6.3.2)

Proof. Define a C2−function V : R2
+ → R+ by V (x) = xη11 x

η2
2 . And we obtain

LV (x) 6 V (x)
[
A1 + A2x1 + A3x2 +

1

2
δ2

1η1(η1 − 1)x2
1 +

1

2
δ2

2η2(η2 − 1)x2
2

+
η2(η2 − 1)r2

2

2(β + x2)2
x2

1 −
δ1r2η1η2ρ45

β + x2

x2
1 + δ1δ2η1η2ρ56x1x2

]
,

where

A1 = aη1 − cη2 − σ1σ2η1η2ρ12 + σ1r1η1(1− η1)ρ̄13 + r1σ2η1η2ρ̄23, (6.3.3)

A2 = −bη1 +
hη2

β
+
σ1r2η1η2ρ̄14

β
+ δ1σ1η1(1− η1)ρ15 +

σ2r2η2(1− η2)ρ̄24

β

+ σ2δ1η1η2ρ25 +
r1r2η1η2ρ̃34

β
+ δ1r1η1(1− η1)ρ̃35 + δ2r2η2(1− η2)ρ̄46 (6.3.4)

and

A3 = −fη2 − σ1δ2η2η1ρ16 − δ2σ2η2(1− η2)ρ26 + r1δ2η1η2ρ̄36. (6.3.5)
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Assuming that ρ45 < 0 and ρ56 > 0, we obtain

1

4
δ2

1η1(η1 − 1)x2
1 +

η2(η2 − 1)r2
2

2(β + x2)2
x2

1 −
δ1r2η1η2ρ45

β + x2

x2
1

6
1

4
δ2

1η
2
1x

2
1 −

1

4
δ2

1η1x
2
1 +

η2
2r

2
2x

2
1

2(β + x2)2
− η2r

2
2x

2
1

2(β + x2)2
+

1

2
η1η2

( r2
2x

2
1

(β + x2)2
+ δ2

1x
2
1

)
=

1

4
η1

(
η1 + 2η2 − 1

)
δ2

1x
2
1 +

1

2
η2(η1 + η2 − 1)

r2
2x

2
1

(β + x2)2

and

1

4
δ2

1η1(η1 − 1)x2
1 +

1

2
δ2

2η2(η2 − 1)x2
2 + δ1δ2η1η2ρ56x1x2

6
1

4
δ2

1η
2
1x

2
1 −

1

4
δ2

1η1x
2
1 +

1

2
δ2

2η
2
2x

2
2 −

1

2
δ2

2η2x
2
2 +

1

2
η1η2(δ2

1x
2
1 + δ2

2x
2
2)

=
1

4
η1(η1 + 2η2 − 1)δ2

1x
2
1 +

1

2
η2(η1 + η2 − 1)δ2

2x
2
2.

Hence

LV (x) 6 V (x)
(
A1 + A2x1 + A3x2 −

1

2
η1

(
1− (η1 + 2η2)

)
δ2

1x
2
1

− 1

2
η2

(
1− (η1 + η2)

)
δ2

2x
2
2

)
.

As the polynomial

A1 + A2x1 + A3x2 −
1

4
η1

(
1− (η1 + 2η2)

)
δ2

1x
2
1 −

1

4
η2

(
1− (η1 + η2)

)
δ2

2x
2
2

is bounded by

c1 =
η1

(
1− (η1 + 2η2)

)
δ2

1A1 + A2
2

η1(1− (η1 + 2η2))δ2
1

+
A2

3

η2

(
1− (η1 + η2)

)
δ2

2

, (6.3.6)

we obtain

LV (x) 6 V (x)
(
c1 − c2|x|2

)
,

where

c2 =
1

4

(
η1(1− (η1 + 2η2))δ2

1 ∧ η2

(
1− (η1 + η2)

)
δ2

2

)
. (6.3.7)

This leads to

EV (x(t ∧ τk)) = V (x0) + E
∫ t∧τk

0

LV (x(s))ds 6 V (x0) + c1

∫ t

0

EV (x(s ∧ τk))ds.
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It then follows from the Gronwall inequality (Theorem 2.30) that

EV (x(t ∧ τk)) 6 V (x0)ec1t.

Letting k →∞ implies

EV (x(t)) 6 V (x0)ec1t <∞ for all t > 0.

Similarly, assertion (6.3.2) can be deduced under condition (6.3.1a) or (6.3.1c).

Here it is omitted.

Proof of Theorem 6.8. This proof is standard using the results of Lemma 6.9. One

can refer to [92, pp. 104-105] for details.

Theorem 6.10. For any initial value x0 ∈ R2
+, the solution to model (6.1.2) has

the property that

lim sup
t→∞

log |x(t)|
log t

6 6 a.s. (6.3.8)

Proof. Defining V: R2
+ → R+ by V (x) = x1 +x2, for any constant γ > 0 we obtain

eγt log V (x(t)) = log V (x(0)) +

∫ t

0

eγug(x(u))du+
6∑
i=1

M̆i(t), (6.3.9)

where

g(x) = γ log V (x) +
1

V (x)

(
ax1 − cx2 − bx2

1 − fx2
2 −

sx1x2

β + x2

+
hx1x2

β + x2

)
− 1

2V 2(x)

(
σ2

1x
2
1 + σ2

2x
2
2 +

r2
1x

2
1x

2
2

(β + x2)2
+

r2
2x

2
1x

2
2

(β + x2)2
+ δ2

1x
4
1 + δ2

2x
4
2 − 2σ1σ2ρ12x1x2

+
2σ1r2ρ14x

2
1x2

β + x2

− 2σ1δ2ρ16x1x
2
2 +

2r1σ2ρ23x1x
2
2

β + x2

− 2r1r2ρ34x
2
1x

2
2

(β + x2)2
+

2r1δ2ρ36x1x
3
2

β + x2

+ 2δ1σ2ρ25x
2
1x2 −

2δ1r2ρ45x
3
1x2

β + x2

+ 2δ1δ2ρ56x
2
1x

2
2

)
and

M̆1(t) = σ1

∫ t

0

eγux1(u)

V (x(u))
dB1(u), M̆2(t) = −σ2

∫ t

0

eγux2(u)

V (x(u))
dB2(u),

M̆3(t) = −r1

∫ t

0

eγux1(u)x2(u)

(β + x2(u))V (x(u))
dB3(u),
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M̆4(t) = r2

∫ t

0

eγux1(u)x2(u)

(β + x2(u))V (x(u))
dB4(u),

M̆5(t) = −δ1

∫ t

0

eγux2
1(u)

V (x(u))
dB5(u), M̆6(t) = −δ2

∫ t

0

eγux2
2(u)

V (x(u))
dB6(u)

are local martingales with quadratic variations

〈M̆1(t)〉 = σ2
1

∫ t

0

e2γux2
1(u)

V 2(x(u))
du, 〈M̆2(t)〉 = σ2

2

∫ t

0

e2γux2
1(u)

V 2(x(u))
du,

〈M̆3(t)〉 = r2
1

∫ t

0

e2γux2
1(u)x2

2(u)

(β + x2(u))2V 2(x(u))
du, 〈M̆4(t)〉 = r2

2

∫ t

0

e2γux2
1(u)x2

2(u)

(β + x2(u))2V 2(x(u))
du,

〈M̆5(t)〉 = δ2
1

∫ t

0

e2γux4
1(u)

V 2(x(u))
du, 〈M̆6(t)〉 = δ2

2

∫ t

0

e2γux4
2(u)

V 2(x(u))
du.

Given any α1 ∈ (0, 1) and p > 1. By the exponential martingale inequality (The-

orem 2.32), we have

P
(

sup
06t6ψ

(
M̆i(t)−

α1

2
e−γψ〈M̆i(t)〉

)
>
peγψ

α1

logψ
)
6

1

ψp
, ψ = 1, 2, 3, · · · .

Then by the Borel-Cantelli lemma, for almost all ω ∈ Ω, there exists an integer

ψi = ψi(ω) such that

M̆i(t) 6
α1

2
e−γψ〈M̆i(t)〉+

peγψ

α1

logψ for all 0 6 t 6 ψ and ψ > ψi(ω).

Thus substituting this into (6.3.9) indicates that for almost every ω ∈ Ω,

eγt log V (x(t))

6 log V (x(0)) +

∫ t

0

eγu
(
γ log V (x(u)) + a+ h+ g1(x(u))− 1− α1e

γ(u−ψ)

2V 2(x(u))

(
δ2

1x
4
1(u)

+ δ2
2x

4
2(u)

))
du+

6peγψ

α1

logψ (6.3.10)

for all 0 6 t 6 ψ and ψ > ψ0(ω) := max{ψi(ω) : 1 6 i 6 6}, where g1(x) is a

first-order polynomial about x. By the elementary inequality

V 2(x)

2
6 |x|2 6 2V 2(x), (6.3.11)

we obtain
1

V 2(x)
(δ2

1x
4
1 + δ2

2x
4
2) >

1

4
(δ2

1 ∧ δ2
2)|x|2.
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Therefore (6.3.10) is rewritten as

eγt log V (x(t))

6 log V (x(0)) +
6peγψ

α1

logψ

+

∫ t

0

eγu
(
γ log V (x(u)) + a+ h+ g1(x(u))− 1

8
(1− α1)(δ2

1 ∧ δ2
2)|x(u)|2

)
du.

Obviously, there exists a positive constant K3 such that for almost every ω ∈ Ω,

eγt log V (x(t))

6 log V (x(0)) +K3

∫ t

0

eγudu+
6peγψ

α1

logψ 6 log V (x(0)) +
K3

γ
eγt − K3

γ

+
6peγψ

α1

logψ

for all 0 6 t 6 ψ and ψ > ψ0 := max(ψ1, ψ2, · · · , ψ6). Consequently, for ψ − 1 6

t 6 ψ and ψ > ψ0, it follows that

log V (x(t))

log t
6

1

log(ψ − 1)

(
e−γ(ψ−1) log(x1(0)x2(0)) +

K3

γ
+

6peγ

α1

logψ
)
.

This implies

lim sup
t→∞

log V (x(t))

log t
6

6peγ

α1

a.s.

Letting α1 → 1, p→ 1 and γ → 0 implies

lim sup
t→∞

log V (x(t))

log t
6 6 a.s.

Recalling inequality (6.3.11) gives the required assertion (6.3.8).

Remark 6.11. Let all the Brownian motions in model (6.1.2) be uncorrelated. Then

Theorem 6.10 still holds. Besides, Theorem 6.8 is fulfilled provided that η1 and η2

satisfy

η1, η2 <
1

2
,

with c1 and c2 defined by

c1 =
(hη2/β − bη1)2 + η1δ

2
1(1− η1)(aη1 − cη2)

η1(1− η1)δ2
1

and

c2 =
1

4

(
η1(1− η1)δ2

1 ∧ η2(1− η2)δ2
2

)
.
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6.4 Stationary Distribution

In this section, the stationary distributions of the solutions of model (6.1.1) and

(6.1.2) are established. To show the existence of a stationary distribution, let us

cite a known result from Khasminskii [68] as a lemma.

Lemma 6.12. The SDE model (6.1.2) has a unique stationary distribution if

(i) the matrix

U(x) = A(x)RA(x)T

is positive definite for x ∈ R2
+, where

A(x) =

[
σ1x1 0 −r1x1x2

β+x2
0 −δ1x

2
1 0

0 −σ2x2 0 r2x1x2
β+x2

0 −δ2x
2
2

]
;

(ii) there is a bounded openset G of R2
+ and

sup
x0∈Q−G

E(τG) <∞

for every compact subset Q of R2
+ such that G ⊂ Q where τG = inf{t > 0 : x(t) ∈

G}.

Theorem 6.13. If

ρi1i2 6= ±1; ρ1i3 , ρ4i3 < 1/2; ρ26, ρ35 > −1/2;

ρ1i3 6 ρ1i2ρi2i3 ; ρ35 > ρ3i2ρ5i2 ; ρ4i4 6 ρi14ρi1i4 ; ρ26 > ρ2i1ρ6i1 ;

2ρ1i3ρ26 6 ρ12ρ6i3 + ρ16ρ2i3 ; 2ρ35ρ4i4 6 ρ3i4ρ45 + ρ34ρ5i4 ; (6.4.1)

2ρ1i3ρ4i4 > ρ14ρi3i4 + ρ1i4ρ4i3 ; 2ρ35ρ26 > ρ23ρ56 + ρ36ρ25

for i1 = 1, 3 or 5, i2 = 2, 4 or 6, i3 = 3 or 5 and i4 = 2 or 6,

h0 := σ2r2ρ̃24 + δ2r2βρ̃46 < h, (6.4.2)

2a
(

1− 1 + β

2(h− h0)
σ2

2 −
(1 + β)c

h− h0

)
> σ2

1 + 2r1σ1ρ̃13 +
2(b+ b0)βc

h− h0

+
(b+ b0)β

h− h0

σ2
2

(6.4.3)

and

b >
1

2
δ2

1 +
E1

2hβ2
r2

2 +
a+ E2

β
, (6.4.4)
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where

b0 = σ1δ1ρ̃15 + r1δ1ρ̄35, E1 =
ah+

(
a+ b+ b0

)
βh

h− h0

and E2 = b0 +
h0E1

βh
,

then for any initial value x0 ∈ R2
+, model (6.1.2) has a unique stationary distribu-

tion.

Proof. (i) We compute

U(x) = (Uij(x))2×2,

where

U11(x) = σ2
1x

2
1 −

2ρ13σ1r1x
2
1x2

β + x2

− 2σ1δ1ρ15x
3
1 +

2r1δ1ρ35x
3
1x2

β + x2

+
r2

1x
2
1x

2
2

(β + x2)2
+ δ2

1x
4
1,

U22(x) = σ2
2x

2
2 −

2r2σ2ρ24x1x
2
2

β + x2

+ 2ρ26σ2δ2x
3
2 −

2ρ46δ2r2x1x
3
2

β + x2

+
r2

2x
2
1x

2
2

(β + x2)2
+ δ2

2x
4
2

and

U12(x) = U21(x) = −σ1σ2ρ21x1x2 +
ρ14r2σ1x

2
1x2

β + x2

− δ2σ1ρ16x1x
2
2 +

r1σ2ρ23x1x
2
2

β + x2

− ρ34r1r2x
2
1x

2
2

(β + x2)2
+
r2δ2ρ36x1x

3
2

β + x2

+ δ1σ2ρ25x
2
1x2 −

ρ45δ1r2x
3
1x2

β + x2

+ ρ56δ1δ2x
2
1x

2
2.

The sufficient conditions (6.4.1) guarantee that U11(x) > 0, U22(x) > 0 and

U11(x)U22(x)− U2
12(x) > 0. Hence U(x) is a positive-definite matrix.

(ii) We define a C2-function V : R2
+ → R+:

V (x) = MV1(x) + V2(x) + e,

where

V1(x) = x1 + log(β + x1)− log(x1) +
l

h
x2 −

E1

h
log x2, V2(x) = x1 +

s

h
x2,

and e, l and M are three constants. e = −min(MV1(x) + V2(x)) to keep the

non-negativity of V (x),

l =
(hs
cβ

+
E1f

c
+
E1σ2δ2ρ̄26

c

)∨(E1δ
2
2

2f
+

hr2
1

2fβ2
+

E1h

4fβ2

)
(6.4.5)
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and M is to be defined later. First compute

LV1 =
(
x1 +

x1

β + x1

− 1
)(
a− bx1 −

sx2

β + x2

)
+

1

2

(
1− x2

1

(β + x1)2

)(
σ2

1 +
r2

1x
2
2

(β + x2)2

+ δ2
1x

2
1 −

2σ1r1ρ13x2

β + x2

− 2σ1δ1ρ15x1 +
2r1δ1ρ35x1x2

β + x2

)
+
( lx2

h
− E1

h

)( hx1

β + x2

− c

− fx2

)
+
E1

2h

(
σ2

2 +
r2

2x
2
1

(β + x2)2
+ δ2

2x
2
2 −

2r2σ2ρ24x1

β + x2

+ 2δ2σ2ρ26x2

− 2δ2r2ρ46x1x2

β + x2

)
6 ax1 − bx2

1 +
ax1

β + x1

− bx2
1

β + x1

+ bx1 −
E1x1

β + x2

− a+
sx2

β + x2

+
1

2
σ2

1 +
r2

1x
2
2

2β2

+
δ2

1x
2
1

2
+ r1σ1ρ̃13 +

(
σ1δ1ρ̃15 + r1δ1ρ̄35

)
x1 +

lx1x2

β + x2

− clx2

h
− flx2

2

h
+
E1c

h

+
E1fx2

h
+
E1σ

2
2

2h
+
E1r

2
2x

2
1

2hβ2
+
E1δ

2
2x

2
2

2h
+
E1σ2r2ρ̃24x1

hβ
+
E1σ2δ2ρ26x2

h

+
E1δ2r2ρ̃46x1

h

6
(a+ E2)βx1

β + x1

+
ax1

β + x1

+
bβx1

β + x1

− E1x1

β + x2

+
(
− b+

δ2
1

2
+
a+ E2

β + x1

+
E1r

2
2

2hβ2

)
x2

1

− a+
1

2
σ2

1 + r1σ1ρ̃13 +
E1c

h
+
E1σ

2
2

2h
+
( s
β

+
E1f

h
− cl

h
+
E1σ2δ2ρ26

h

)
x2 +

(E1δ
2
2

2h

+
r2

1

2β2
− fl

h

)
x2

2 +
lx1x2

β + x2

6
E1(x1x2 − x2

1)

(β + x1)(β + x2)
+
(
− b+

δ2
1

2
+
a+ E2

β
+
E1r

2
2

2hβ2

)
x2

1 − λ+
( s
β

+
E1f

h
− cl

h

+
E1σ2δ2ρ26

h

)
x2 +

(E1δ
2
2

2h
+

r2
1

2β2
− fl

h

)
x2

2 +
lx1x2

β + x2

,

where λ = a− 1
2
σ2

1−r1σ1ρ̃13− E1c
h
− E1σ2

2

2h
> 0 from condition (6.4.3). Under (6.4.4),

(6.4.5) and the Young inequality,

LV1 6 −λ+
(
− b+

δ2
1

2
+
a+ E2

β
+
E1r

2
2

2hβ2

)
x2

1 +
( s
β

+
E1f

h
− cl

h
+
E1σ2δ2ρ26

h

)
x2

+
(E1δ

2
2

2h
+

r2
1

2β2
− fl

h
+
E1

4β2

)
x2

2 +
lx1x2

β + x2

6 −λ+
lx1x2

β + x2

.

Then compute

LV2 = ax1 − bx2
1 −

sc

h
x2 −

sf

h
x2

2 6 ax1 − bx2
1 −

sf

h
x2

2.
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Hence

LV (x) 6M
(
− λ+

lx1x2

β + x2

)
+ ax1 − bx2

1 −
sf

h
x2

2,

where M satisfies Mλ > a2/(4b) + 2. Now we aim to show

LV (x) 6 −1 for all x ∈ R2
+ −G := Gc. (6.4.6)

As if this holds, let x ∈ Gc be arbitrary and τG be the stopping time as defined in

Lemma 6.12. From (6.4.6), we have

0 6 V (x0)− E(t ∧ τG ∧ τk), ∀t > 0.

Letting k →∞ and then t→∞, we have

E(τG) 6 V (x0), ∀x0 ∈ Gc

as required. To show that (6.4.6) actually holds, we define

Gc = Gc
1 ∪Gc

2 ∪Gc
3 ∪Gc

4,

where

Gc
1 = {x|x1 ∈ (0, ε1]}; Gc

2 =
{
x
∣∣∣x1 ∈

(
0,

1

ε1

]
, x2 ∈ (0, ε2]

}
;

Gc
3 =

{
x
∣∣∣x1 ∈

[ 1

ε1
,+∞

)}
; Gc

4 =
{
x
∣∣∣x2 ∈

[ 1

ε2
,+∞

)}
with two constants ε1, ε2 ∈ (0, 1) satisfying

ε21 6
1

M2l2

∧ b

2(N1 + 1)
, ε22 6

sf

2h(N2 + 1)
and ε2 6

βε1
Ml

, (6.4.7)

where the constants N1 and N2 will be determined later. We then show that in

any subset of Gc, (6.4.6) holds. From (6.4.7),

(a) if x ∈ Gc
1,

LV (x) 6 −Mλ+Mlx1 + ax1 − bx2
1 −

sf

h
x2

2 6Mlε1 − 2 6 −1;

(b) if x ∈ Gc
2,

LV (x) 6 −Mλ+
Mlx1x2

β
+ ax1 − bx2

1 −
sf

h
x2

2 6
Mlε2
βε1

− 2 6 −1;
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(c) if x ∈ Gc
3,

LV (x) 6 −Mλ+ (Ml + a)x1 −
bx2

1

2
− bx2

1

2
− sfx2

2

h
.

Note that the polynomials −Mλ + (Ml + a)x1 − bx21
2
− sfx22

h
has an upper bound,

say N1, hence

LV (x) 6 N1 −
b

2ε21
6 −1;

(d) if x ∈ Gc
4,

LV (x) 6 −Mλ+ (Ml + a)x1 − bx2
1 −

sfx2
2

2h
− sfx2

2

2h
.

Note that the polynomial −Mλ + (Ml + a)x1 − bx2
1 −

sfx22
2h

is again bounded, say

by N2, we have

LV (x) 6 N2 −
sf

2hε22
6 −1.

In all,

LV (x) 6 −1 for all x ∈ Gc.

Remark 6.14. Assume that all the Brownian motions in model (6.1.2) are un-

correlated. Then letting ρij = 0 for i, j = 1, 2, · · · , 6 and i 6= j in conditions

(6.4.1)-(6.4.4) gives the parametric conditions for model (6.1.2) to have a unique

stationary distribution.

Remark 6.15. Given that conditions (6.4.1)-(6.4.4) are satisfied with δ1 = δ2 = 0

and ρi5 = ρi6 = ρ56 = 0 for i = 1, 2, · · · , 4, model (6.1.1) then has a unique

stationary distribution.

6.5 Numerical Examples

The following examples are developed to illustrate our results. The system para-

meters are given in appropriate units. The Euler-Maruyama (EM) scheme is used

for the computer simulations [57]. From the theory introduced in [90], the EM

approximate solutions are convergent to the true solutions of model (6.1.1) and

(6.1.2) in probability.
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Example 6.16. We perform a computer simulation of 10000 iterations of model

(6.1.1) with initial value x(0) = (0.7, 0.15)T using the Euler-Maruyama (EM)

method [57, 89] with stepsize ∆ = 0.01 and the system parameters given by

a = 1, b = 0.5, β = 5, s = 16, h = 0.9, c = 2, f = 3, σ1 = 1.5, σ2 = 1.0, r1 = 0.5

r2 = 0.95 and ρ13 = 0.15. (6.5.1)

This group of parameters satisfies condition (6.2.5) clearly. Theorem 6.4 then

indicates that both species die out ultimately with probability 1. This is illustrated

in Figure 6.1.

Example 6.17. We keep the system parameters of model (6.1.1) the same as

Example 6.16 but let σ1 = 0.5. Moreover, we let ρ13 = 0.15 and ρ24 = 0.9. As a

result, condition (6.2.6) is fulfilled. From Theorem 6.4(b), the prey abundance has

the property that

1.75 6 lim inf
t→∞

1

t

∫ t

0

x1(u)du 6 lim sup
t→∞

1

t

∫ t

0

x1(u)du 6 1.825 a.s.

and the consumers will tend to zero exponentially with probability 1. Figure 6.2

supports these results clearly.

Example 6.18. In this example, we remain the system parameters of model (6.1.1)

the same as Example 6.17 except that we let ρ24 = −0.95. This group of parameters

does not obey condition (6.2.6) but satisfy (6.2.7). Hence Theorem 6.4(b) suggests

that

1.75 6 lim inf
t→∞

1

t

∫ t

0

x1(u)du 6 lim sup
t→∞

1

t

∫ t

0

x1(u)du 6 1.825 a.s.

and the consumers will tend to zero exponentially with probability 1. Figure 6.3

supports these results clearly.

Then we study the case when the SDE system (6.1.1) and (6.1.2) have a sta-

tionary distribution.

Example 6.19. We assume that the parameters of system (6.1.1) are the same

as in Example 6.18 but let β = 2.5, h = 10, σ1 = 0.01, and σ2 = 0.02. Also the
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correlation matrix is given by

R = (ρij)4×4 =


1 0 −0.8 0

0 1 0 −0.95

−0.8 0 1 0

0 −0.95 0 1

 .
The time series of the correlated Brownian motions is shown in Figure 6.4. It

is found that these parameters obey conditions (6.4.1)-(6.4.4) with δ1 = δ2 = 0

and ρi5 = ρi6 = 0 = ρ56 for i = 1, 2, · · · , 4. From Theorem 6.4 and Remark

6.15, system (6.1.1) has a stationary distribution. The ergodic property enables

us to obtain the approximate probability distribution for the stationary distribution

by computer simulation of a single sample path of a solution to model (6.1.1).

Therefore the histogram of the 10000 iterations shown in Figure 6.5(b)(d) can be

regarded as approximate p.d.f.s of the stationary distribution.

Example 6.20. In this example, the stationary distribution of model (6.1.2) is

examined. We keep the system parameters the same as in Example 6.19 and let

δ1 = 0.01 and δ2 = 0.02. Moreover the correlation matrix is given by

R = (ρij)6×6 =



1 0 −0.8 0 −0.5 0

0 1 0 −0.95 0 0.7

−0.8 0 1 0 0.9 0

0 −0.95 0 1 0 −0.8

−0.5 0 0.9 0 1 0

0 0.7 0 −0.8 0 1


.

Obviously, these parameters obey conditions (6.4.1)-(6.4.4). From Theorem 6.13,

model (6.1.2) has a stationary distribution. The approximate p.d.f.s of the station-

ary distribution could be identified from Figure 6.6(b)(d).

6.6 Summary

In this chapter, the different properties of the SDE population models (6.1.1)

and (6.1.2) incorporating white noise were studied. The correlations between the

Brownian motions do make an effect on the long-time behaviours of the systems.
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Figure 6.1: Numerical simulations of the paths (a) x1(t) and (b) x2(t) of SDE

model (6.1.1) using the EM scheme with stepsize ∆ = 0.01 and initial value x0 =

(0.7, 0.15)T with the system parameters provided by (6.5.1). Times series of the

correlated Brownian motions B1(t) and B3(t) is shown in (c).
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Figure 6.2: Under the system parameters described in Example 6.17, we obtain

the numerical simulations of the paths (a) x1(t) and (b) x2(t) of SDE model (6.1.1)

using the EM method with stepsize ∆ = 0.01 and initial value x0 = (0.7, 0.15)T .

Times series of the correlated Brownian motions B2(t) and B4(t) is shown in (c).
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Figure 6.3: With the system parameters given in Example 6.18, we obtain the

computer simulations of the paths (a) x1(t) and (b) x2(t) of SDE model (6.1.1)

using the EM method with stepsize ∆ = 0.01 and initial value x0 = (0.7, 0.15)T .

Times series of the correlated Brownian motions B2(t) and B4(t) is shown in (c).
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Figure 6.4: Time series of the correlated Brownian motions adopted in Example

6.19 and 6.20.
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Figure 6.5: Numerical simulations of the paths (a) x1(t) and (c) x2(t) of SDE

model (6.1.1) based on the model parameters described in Example 6.19 using the

EM technique with stepsize ∆ = 0.01 and initial value x0 = (0.7, 0.15)T , followed

by the histograms for the SDE paths (b) x1(t) and (d) x2(t).
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Figure 6.6: Computer simulations of the paths (a) x1(t) and (c) x2(t) of SDE

model (6.1.2) based on the model parameters provided in Example 6.20 using the

EM technique with stepsize ∆ = 0.01 and initial value x0 = (0.7, 0.15)T , followed

by the histograms for the SDE paths (b) x1(t) and (d) x2(t).
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Especially, in model (6.1.1), a positive correlation between B1(t) and B3(t) leads to

a slightly different condition for both populations to be extinct. Moreover, if B2(t)

is strongly negatively correlated to B4(t), the population system always remains

extinct (the prey populations become persistent white the consumers die out) and

has no chance to have a multiple coexisting stationary status. In the contrast,

provided that the correlation coefficient between B2(t) and B4(t) is bigger than

− h
r2σ2

, the system is possible to have a stationary distribution for both species

with a larger value of a. These imply how the correlations between the Brownian

motions affect the dynamical behaviours of the populations. Theorem 6.13 reflects

that a smaller amplitude environmental noise leads to a permanent population

system. The ergodic property of the stationary distribution makes it possible to

generate the approximate probability distribution using a single sample path of

the solution to the SDE model by computer simulations.
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Conclusions

The deterministic approach has been intensively applied to the ecological model-

ling. However, a natural response to the complex perturbations in the real world

would be to consider the stochastic models. This thesis has constructed an SDE

model which captures the annual variability in the surface nitrate in Loch Linnhe.

On the other hand, the stochastic versions of the predator-prey system have been

studied and the effects of the environmental noise on the long-time behaviours of

the populations have been investigated. The introduction of the stochasticity to

the population models complicates the system but probably can better explain

the real world.

In an aquatic ecosystem, nutrients, especially nitrogen and phosphorus, can

regulate the primary productivity and change the structure and function of

an aquatic environment [50, 101, 128]. Mathematical modelling of the aquatic

nutrients has received increasing attention. A comprehensive field program imple-

mented in Loch Linnhe in 1991 provided us with the high-resolution hydrographic

and chemical data. This allowed us to model the dynamics of the fjord nitrate,

which is often most limiting to the phytoplankton growth. Stochastic modelling

approach has been adopted to interpret the environmental-type process noise

inherent in the nitrate data. More precisely, we formulated an SDE model of

nitrate by introducing the environmental noise to the simplest deterministic

nutrient model (3.4.1) based on the well-established parameter perturbation

method. The reliability of the model can be evaluated based on the observed

145
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data. Firstly, we studied the model fit for the one-month data. The goodness of

fit has been analysed by comparing the distribution of the nitrate data with that

of the model simulation and by testing whether the nitrate data follows N( Î
µ̂
, σ̂

2

2µ̂
).

The p-values in both statistical tests (Kolmogorov-Smirnov test) suggested a good

model fit. Next the model fit for the one-year data was discovered. The annual

seasonal variations in the fjord nitrate have led us to refine our SDE model by

considering more physical and biological processes which make big effects on the

dynamics of fjord nitrate. In addition, we have developed a separate SDE model

which represents the seasonal trends of the shallow salinity in Loch Linnhe. By

combining the salinity model with the existing nitrate model, we then obtained a

coupled SDE system (3.5.3). The goodness of fit of the coupled equation has been

assessed by identifying whether the normalised nitrate and salinity data follow the

standard normal distribution. The p-values produced in the normality test were

too small to suggest good model fit. Statistically speaking, the convincing results

of the statistical tests are always based on large amounts of long-duration data.

Obviously the one-year data was not enough. On the other hand, by comparing

the distribution graph of the normalised data for model (3.5.3) with that for

any interim model shown in Appendix A, we found that the graph for model

(3.5.3) has become much closer to the normal distribution. This reflected that

more annual seasonality in the sea-loch nitrate and salinity has been captured

by model (3.5.3). Due to the low p-value, we cannot say that the SDE model is

capable of representing the annual changes in the sea-loch nitrate and salinity.

However we would conclude that so far (3.5.3) has been the best model of shallow

nitrate and salinity in Loch Linnhe. A schematic pattern of the Loch Linnhe

ecosystem was then drawn by tracking the paths of the surface nitrate and salt.

Moreover, we performed a residual analysis for the nitrate and salinity data in

order to investigate the presence of the environmental-type process noise in the

data. However, we have not been able to detect which type of error in the data is

dominant. We finally conducted a simulation study to illustrate the accuracy of

the parameter estimation techniques for the SDE and ODE models. It suggested

that the true parameters for the data with process noise can be captured using the

SDE parameter estimation scheme. While the ODE estimation procedure is able

to approach the underlying parameters for the data driven by observation error.
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In particular, the SDE and ODE estimation frameworks always produced very

different groups of parameters for a given set of data, indicating the importance of

detecting the dominant type of error in the data. This becomes our future plan.

In Chapter 4, we have studied a foraging arena predator-prey model. There

are many types of the functional responses in a general predator-prey model,

e.g. Lotka-Voterra type, Holling type, ratio-dependence type. The population

systems with these responses incorporating environmental noise have been widely

explored. However, to the best of our knowledge, there has not been any

literature addressing the problem for the foraging arena system. Chapter 4 was

to fill this gap by studying the asymptotic behaviours of the foraging arena

population model incorporating white noise. The effects of the white noise on

the dynamical system can be analysed by identifying the differences between

the SDE model (4.2.1) and the corresponding ODE system (1.3.2). Firstly, the

deterministic model has two non-negative trivial equilibrium points. Under the

condition a > bβc
h

, there exists a positive equilibrium point Ē∗(x̄∗1, x̄
∗
2) and it is

globally asymptotically stable. In the contrast, the stochastic model only has

one trivial equilibrium point E0 = (0, 0). Secondly, a series disease or severe

weather can lead to the extinction of both species. This situation has been

described by the stochastic model under condition 2a < σ2
1. The value of σ1

measures the intensity of the environmental variability. However this situation

was not reflected by the deterministic model. This indicated that the stochastic

model outperforms the deterministic one to account for the real-life situation.

In addition, notice that the deterministic system would be extinct, in the sense

that the consumers die out and the prey population keep persistent, provided

that a < bβc
h

. While the stochastic model goes to extinction even for some

a > bβc
h

. This indicated the influence that white noise has made on the dynamical

behaviours of the population system. We then proved that the system has of

stationary distribution provided that 2a > φ
1−σ2

2/(2h)−c/h . Unfortunately, we have

not been able to prove the case when φ < 2a < φ
1−σ2

2/(2h)−c/h , though the computer

simulation suggested a stationary distribution of both species under this condition.

In Chapter 5, we have additionally introduced telegraph noise to the popu-
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lation model formulated in Chapter 4 to describe the system where the structures

and parameters experience abrupt changes due to abrupt environmental disturb-

ances and changing subsystem interconnections [94]. In addition, time delay due

to gestation [133] has also been included to our population system. The long-time

behaviours of the system indicated that a bigger amplitude of environmental

noise may destabilize the system. The existence of the time delay makes the

stochastically ultimately bounded property of our system satisfied only under

certain parametric condition. Based on this, we then showed that the total

amount of prey and predator species will grow at most polynomially with order

close to one. We have also found that if in some subsystems the prey is persistent

and in some others the prey is extinct, due to the presence of the Markov

switching, both populations in the overall system could remain extinct with a

negative value of λ1 defined in (5.5.1).

Finally, we perturbed more parameters of the predator-prey system by stochastic

noise and studied how the correlations between the Brownian motions affect

the long-time properties of the SDE model. In particular, a positive correlation

coefficient between B1(t) and B3(t) in model (6.1.1) leads to a slightly different

condition for both populations to die out. Moreover, a strongly negative correla-

tion coefficient between B2(t) and B4(t) (−1 6 ρ24 6 − h
r2σ2

) can cause the system

remain extinct (the prey populations become persistent white the consumers die

out). In the contrast, provided that ρ24 > − h
r2σ2

, the system is possible to have

a multiple coexisting stationary status with a larger value of a. So far, we have

not been able to compute the representations of the mean and variance of the

stationary distribution as generated in [47,91]. This will remain an open problem.
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högskolan, 2009.



Chapter 7 159

[101] CB Officer and JH Ryther. The possible importance of silicon in marine

eutrophication. Marine Ecology Progress Series, 3(1):83–91, 1980.

[102] Jiafeng Pan, Alison Gray, David Greenhalgh, and Xuerong Mao. Parameter

estimation for the stochastic SIS epidemic model. Statistical Inference for

Stochastic Processes, 17(1):75–98, 2014.

[103] Pawel Paszek. Modeling stochasticity in gene regulation: characterization in

the terms of the underlying distribution function. Bulletin of mathematical

biology, 69(5):1567–1601, 2007.

[104] Jonathan W Pitchford, Alex James, and John Brindley. Quantifying the

effects of individual and environmental variability in fish recruitment. Fish-

eries Oceanography, 14(2):156–160, 2005.

[105] Berit Rabe, Thomas Adams, Dmitry Aleynik, Steven Benjamins, Andrew

Berkeley, Barbara Berx, Tim Brand, Andrew Dale, Keith Davidson, Ian

Davies, Anton Edwards, Clive Fox, Alejandro Gallego, Mike Heath, Jenny

Hindson, John Howe, Andronikos Kafas, Alastair R. Lyndon, David McKee,

Sharon McNeill, Greg Moschonas, Conor Ryan, Nabeil Salama, Ted Schlicke,

Sofie Spatharis, Caroline Struiver, Adrian Tait, Paul Tett, and Rob Watret.

A regional review of the loch linnhe and lynn of lorn system on the west

coast of scotland. Regional studies in Marine Science, 2018.

[106] Berit Rabe and Jennifer Hindson. Forcing mechanisms and hydrodynamics

in loch linnhe, a dynamically wide scottish estuary. Estuarine, Coastal and

Shelf Science, 196:159–172, 2017.

[107] John O Rawlings, Sastry G Pantula, and David A Dickey. Applied regression

analysis: a research tool. Springer Science & Business Media, 2001.

[108] Nornadiah Mohd Razali and Yap Bee Wah. Power comparisons of Shapiro-

Wilk , Kolmogorov-Smirnov , Lilliefors and Anderson-Darling tests. Journal

of Statistical Modeling and Analytics, 2(1):21–33, 2011.

[109] Eric Renshaw. Modelling biological populations in space and time, volume 11.

Cambridge University Press, 1993.



Chapter 7 160

[110] Ryszard Rudnicki. Long-time behaviour of a stochastic prey–predator model.

Stochastic Processes and their Applications, 108(1):93–107, 2003.
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Appendix A

Interim Nitrate Models

In Chapter 3, we have developed an SDE model which characterises the annual

variations in the fjord nitrate. In fact, the model is constructed in an iterative

procedure by correcting the existing model and assessing its goodness of fit based

on the observed data. In this appendix, we will present all the interim models

before obtaining the final version of the nitrate system (3.5.1).

A.1 Model Involving Phytoplankton

Recall that model (3.4.12) assumes a constant uptake rate of nitrate by the phyto-

plankton group. However, the rate is often dependent on the phytoplankton

abundance. Assuming that the uptake rate is linearly related to the phytoplankton

abundance, the nitrate model can then be corrected to:

dx(t) = [oh(t)− (µ0 + µ1p(t))x(t)]dt+ σdB(t), (A.1.1)

where µ0 and µ1 are constants to be defined. The parameter estimation for model

(A.1.1) is conducted in the following part.

A.1.1 Parameter Estimation

Let us consider a one-year duration. As the surface nitrate data are measured

hourly, the stepsize is ∆ = 1/(365× 24) = 0.0001170412 (the time unit is one

year), where (365 × 24) denotes the total hours in one year. The parameters are

shown in Table A.1.
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Parameter estimator ô µ̂0 µ̂1 σ̂

Model (A.1.1) 35.92 24.81 407.24 53.15

Table A.1: Parameter estimation for the SDE model (A.1.1).

A.1.2 Model Fit Analysis

This section considers the goodness of fit of model (A.1.1). We will introduce a

theorem which suggests that the model fit can be evaluated by examining whether

the normalised nitrate data are standard normally distributed. This can be done

by comparing distribution graphs and by carrying out a normality test (K-S test).

However, the statistical test always gives a small p-value. Thus we only test the

model fit by comparing distribution graphs.

Supposing that the surface nitrate, sea levels and chlorophyll data all have

a period of N , we define the following functions:

T : R+ → R+ : T (t) = exp
(
µ0t+ µ1

∫ t

0

p(s)ds
)

;

H1 : [0, N ]→ R : H1(t) =

∫ t

0

oh(s)T (s)ds;

H2 : [0, N ]→ R : H2(t) =

∫ t

0

T 2(s)ds;

m1 : [0, N ]→ R : m1(t) =
1

T (t)

(
H1(t) +

H1(N)

T (N)− 1

)
;

m2 : [0, N ]→ R : m2(t) =
σ2

T 2(t)

(
H2(t) +

H2(N)

T 2(N)− 1

)
;

δ : R+ → [0, N ] : δ(t) = t−
[
t

N

]
N, t ≥ 0,

where

[
t

N

]
is the integer part of

t

N
.

Hence the solution to model (A.1.1) is given by

x(t) =
1

T (t)

[
x(0) +H1(t) + σ

∫ t

0

T (s)dB(s)
]
. (A.1.2)

Theorem A.1. With the notations above, as t→∞

x(t)−m1[δ(t)]√
m2[δ(t)]

∼ N(0, 1), (A.1.3)
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Figure A.1: (a) The asymptotic periodic mean ms1 and standard deviation
√
m2

for model (A.1.1). (b) The modified nitrate data and the normalised nitrate. (c)

Probability distributions of the modified nitrate data and the normalised nitrate

data, comparing to the standard normal distribution N(0, 1).
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where m1 and m2 are called the asymptotic periodic mean and variance respectively.

The proof of this theorem directly follows from Theorem 3.2 and hence omitted.

From Theorem A.1, the normalisation of the solution to model (A.1.1) follows

N(0, 1). Let xk for k = 0, 1, 2, · · · denote the observed nitrate data at time tk.

Then to examine whether the normalised nitrate data

xk −m1[δ(tk)]√
m2[δ(tk)]

for k = 0, 1, 2, · · · is also standard normally distributed, the hypothesis

H0: Normalised nitrate data follow N(0, 1);

H1: Normalised nitrate data does not follow N(0, 1)

is considered. From Figure A.1(c), the distribution graph of the normalised nitrate

data is getting closer to the standard normal distribution, compared with that for

model (3.4.12). This reflects that the changes in the phytoplankton abundance

have a contribution to the dynamics of the fjord nitrate.

A.2 Model Involving Light Intensity

Phytoplankton take up nitrate at a rate which is dependent on irradiance. We

assume that µ1 in model (A.1.1) is regulated by a Michaelis-Menten function [5]

of light:

µmaxL(t)

L(t) + Lh
,

where µmax represents the maximum uptake rate achieved by the system, L is the

intensity of light in units of Einstens/m2/d and Lh is the light intensity at which

the uptake rate is half of µmax. Therefore our model is improved to

dx(t) =

[
oh(t)−

(
µ0 +

µmaxL(t)

L(t) + Lh
p(t)

)
x(t)

]
dt+ σdB(t). (A.2.1)

Now we estimate the parameters of model (A.2.1).
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A.2.1 Parameter Estimation

Let us consider a one-year duration. As the surface nitrate data are measured

hourly, the stepsize is ∆ = 1/(365× 24) = 0.0001170412 (the time unit is one

year), where (365× 24) denotes the total hours in one year. Results are shown in

Table A.2.

Parameter estimator ô µ̂0 µ̂max σ̂

Model (A.2.1) 36.87 91.75 767.83 53.12

Table A.2: Parameter estimation for the SDE model (A.2.1).

A.2.2 Model Fit Analysis

The fit of model (A.2.1) is evaluated in the same procedures as stated in section

A.1.2. Supposing that the surface nitrate, sea levels, chlorophyll data and light

data all have a period of N , we define the following functions:

T : R+ → R+ : T (t) = exp
(
µ0t+ µmax

∫ t

0

L(s)p(s)

L(s) + Lh
ds
)

;

H1 : [0, N ]→ R : H1(t) =

∫ t

0

oh(s)T (s)ds;

H2 : [0, N ]→ R : H2(t) =

∫ t

0

T 2(s)ds;

m1 : [0, N ]→ R : m1(t) =
1

T (t)

(
H1(t) +

H1(N)

T (N)− 1

)
;

m2 : [0, N ]→ R : m2(t) =
σ2

T 2(t)

(
H2(t) +

H2(N)

T 2(N)− 1

)
;

δ : R+ → [0, N ] : δ(t) = t−
[
t

N

]
N, t ≥ 0,

where

[
t

N

]
is the integer part of

t

N
.

The solution to model (A.2.1) is given by

x(t) =
1

T (t)

(
x(0) +H1(t) + σ

∫ t

0

T (s)dB(s)
)
.
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Figure A.2: (a) The asymptotic periodic mean ms1 and standard deviation
√
m2

for model (A.2.1). (b) The modified nitrate data and the normalised nitrate. (c)

Probability distributions of the modified nitrate data and the normalised nitrate

data, comparing to the standard normal distribution N(0, 1).
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Theorem A.2. With the notation above, as t→∞

x(t)−m1[δ(t)]√
m2[δ(t)]

∼ N(0, 1). (A.2.2)

where m1 and m2 are called the asymptotic periodic mean and variance respectively.

From Theorem A.2, the normalisation of the solution to model (A.2.1) follows

N(0, 1). To test whether model (A.2.1) can fit the nitrate data, we could simply

investigate whether the normalised nitrate data

xk −m1[δ(tk)]√
m2[δ(tk)]

for k = 0, 1, 2, · · · is also standard normally distributed. Figure A.2(c) provides the

distribution graph of the normalised nitrate for model (A.2.1). This graph does not

show any obvious difference from the graph for model (A.1.1). This suggests that

the model fit might not be significantly improved by including the light intensity.

This might due to the strong correlation between the variations in light and in

the phytoplankton abundance. Moreover, the time scale for the reproduction of

phytoplankton is quite rapid compared to the changes in light (Figure 3.4). As a

result, we decide not to incorporate light into our model.

A.3 Model Involving Deep Nitrate

From section 3.2, the surface layer is mixed with deep water by tidal turbulence

and upwelling. As a result, the net tidal exchange rate of shallow nitrate can be

represented by

oh(t)(xd(t)− x(t)),

where xd(t) represents the nitrate at deep layer. Thus the nitrate model is corrected

to:

dx = [oh(t)(xd(t)− x(t))− µ1p(t)x(t)]dt+ σdB(t). (A.3.1)

In the next section, model (A.3.1) is parameterised based on the data.
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A.3.1 Parameter estimation

Let us consider a one-year duration. As the surface nitrate data are measured

hourly, the stepsize is ∆ = 1/(365× 24) = 0.0001170412 (the time unit is one

year), where (365×24) denotes the total hours in one year. The model parameters

are given in Table A.3.

Parameter estimator ô µ̂1 σ̂

Model (A.3.1) 60.09 305.05 50.94

Table A.3: Parameter estimation for the SDE model (A.3.1).

A.3.2 Model Fit Analysis

Again the model fit is tested in the same procedures introduced in section A.1.2.

Supposing that the surface nitrate, sea levels, chlorophyll data and deep nitrate

all have a period of N , we define the following functions:

T : R+ → R+ : T (t) = exp
(∫ t

0

[oh(s) + µ1p(s)]ds
)

;

H1 : [0, N ]→ R : H1(t) = o

∫ t

0

xd(s)h(s)T (s)ds;

H2 : [0, N ]→ R : H2(t) =

∫ t

0

T 2(s)ds;

m1 : [0, N ]→ R : m1(t) =
1

T (t)

[
H1(t) +

H1(N)

T (N)− 1

]
;

m2 : [0, N ]→ R : m2(t) =
σ2

T 2(t)

[
H2(t) +

H2(N)

T 2(N)− 1

]
;

δ : R+ → [0, N ] : δ(t) = t−
[
t

N

]
N, t ≥ 0,

where

[
t

N

]
is the integer part of

t

N
.

The solution to model (A.3.1) is given by

x(t) =
1

T (t)

[
x(0) +H1(t) + σ

∫ t

0

T (s)dB(s)
]
.
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Figure A.3: (a) The asymptotic periodic mean ms1 and standard deviation
√
m2

for model (A.3.1). (b) The modified nitrate data and the normalised nitrate. (c)

Probability distributions of the modified nitrate data and the normalised nitrate

data, comparing to the standard normal distribution N(0, 1).
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Theorem A.3. With the notation above, as t→∞

x(t)−m1[δ(t)]√
m2[δ(t)]

∼ N(0, 1), (A.3.2)

where m1 and m2 are called the asymptotic periodic mean and variance respectively.

Theorem A.3 shows that the normalisation of the solution to model (A.3.1)

follows N(0, 1) asymptotically. Then we would investigate whether the normalised

nitrate data

xk −m1[δ(tk)]√
m2[δ(tk)]

for k = 0, 1, 2, · · · also follows the standard normal distribution. From Figure

A.3, the distribution graph of the normalised nitrate data is much closer to the

standard normal distribution, indicating that the seasonal variability in the deep

nitrate gives a big contribution to the nitrate dynamics.

A.4 Model Involving Freshwater Run-off

Section 3.2.3 points out that a high rate of freshwater run-off from river and rainfall

occurs in Loch Linnhe. Therefore the freshwater is another essential source of

surface nitrate. Meanwhile, a stream of water flows out to the ocean. As a result,

our model can be refined to:

dx(t) = [oh(t)(xd(t)− x(t))− µ1p(t)x(t) + (µ2xr(t)− µ3x(t))w(t)]dt+ σdB(t),(A.4.1)

where µ2 and µ3 are constants to be defined, w(t) (m3/sec) is the flow rates of

freshwater from river and rainfall, xr(t) is the nitrate concentrations (mMoles ·
m−3) in the Rivers Lochy and Nevis flowing into Loch Linnhe at Fort William.

Now we estimate the parameters of model (A.4.1).

A.4.1 Parameter Estimation

Let us consider a one-year duration. As the surface nitrate data are measured

hourly, the stepsize is ∆ = 1/(365× 24) = 0.0001170412 (the time unit is one

year), where (365 × 24) denotes the total hours in one year. The parameters are

given in Table A.4.
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Parameter estimator ô µ̂1 µ̂2 µ̂3 σ̂

Model (A.4.1) 59.15 374.04 0.51 0.082 50.81

Table A.4: Parameter estimation for the SDE model (A.4.1).

A.4.2 Model Fit Analysis

Now the model fit of model (A.4.1) is studied. Assuming that the surface nitrate,

sea levels, chlorophyll data, deep nitrate and freshwater inflow rate all have a

period of N , we define the following functions:

T : R+ → R+ : T (t) = exp
(∫ t

0

[oh(s) + µ1p(s) + µ2w(s)]ds
)

;

H1 : [0, N ]→ R : H1(t) =

∫ t

0

[oxd(s)h(s) + µ2xr(s)w(s)]T (s)ds;

H2 : [0, N ]→ R : H2(t) =

∫ t

0

T 2(s)ds;

m1 : [0, N ]→ R : m1(t) =
1

T (t)

[
H1(t) +

H1(N)

T (N)− 1

]
;

m2 : [0, N ]→ R : m2(t) =
σ2

T 2(t)

[
H2(t) +

H2(N)

T 2(N)− 1

]
;

δ : R+ → [0, N ] : δ(t) = t−
[
t

N

]
N, t ≥ 0,

where

[
t

N

]
is the integer part of

t

N
.

And the solution to model (A.4.1) is given by

x(t) =
1

T (t)

(
x(0) +H1(t) + σ

∫ t

0

T (s)dB(s)
)
.

Theorem A.4. With the notation above, as t→∞
x(t)−m1[δ(t)]√

m2[δ(t)]
∼ N(0, 1), (A.4.2)

where m1 and m2 are called the asymptotic periodic mean and variance respectively.

Theorem A.4 shows that the normalisation of the solution to model (A.4.1)

follows N(0, 1) asymptotically. Next we would investigate whether the normalised

nitrate data

xk −m1[δ(tk)]√
m2[δ(tk)]

for k = 0, 1, 2, · · ·
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Figure A.4: (a) The asymptotic periodic mean ms1 and standard deviation
√
m2

for model (A.4.1). (b) The modified nitrate data and the normalised nitrate. (c)

Probability distributions of the modified nitrate data and the normalised nitrate

data, comparing to the standard normal distribution N(0, 1).
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also follows the standard normal distribution. From Figure A.4, the distribution

graph of the normalised nitrate for model (A.4.1) is getting closer to the standard

normal distribution, reflecting that freshwater is an important source of surface

nitrate in Loch Linnhe.

The final version of the nitrate model is then formulated by incorporating

the water temperature fluctuations into model (A.4.1). This has been discussed

in section 3.5.1.
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