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Abstract

With the use of advanced technologies and digital tools, asset management is advancing

to a smarter stage with increasing availability of operational data. However, this also

presents challenges in effectively utilising data to drive informed decisions. This thesis

aims to address two critical tasks within the context of smart asset management through

data-driven approaches: predicting degradation and developing maintenance policies.

Three parts under different scenarios are involved in this thesis.

To address the challenge of degradation prediction with limited observations, the

first part of this thesis introduces a method that generates, selects, and reweights

synthetic data to enhance prediction performance. Unlike existing methods that mix

synthetic and real data without considering sample selection or weighting, this approach

uses multiple data augmentation methods to generate time-series data, then applies an

influence function to select effective synthetic samples, followed by reweighting via

gradient descent. To further improve the performance of the deep learning algorithm,

transfer learning is applied by pre-training the deep learning model and then fine-tuning

it with real data. Numerical experiments demonstrate the framework’s effectiveness,

especially for highly stochastic degradation data.

The second part of the thesis explores a data-driven preventive maintenance prob-

lem where the true time-to-failure model is unknown, but past time-to-failure data and

working conditions are observable. Traditional estimate-then-optimise methods sep-

arate estimation from optimisation, potentially propagating errors into the decision-

making process. To overcome this, an end-to-end framework has been proposed to

directly determine the optimal preventive replacement time under specific working

conditions without assuming a time-to-failure model. The end-to-end approach treats
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historical working conditions as features, mapping them to optimal maintenance deci-

sions by minimising the maintenance cost rate. Supervised learning algorithms then

train these features against the optimal decisions. The findings suggest that end-to-end

learning can reduce error propagation and that a linear model, when aligned with the

learning objective, may outperform more complex alternatives.

Lastly, the third part of the thesis presents a condition-based maintenance pol-

icy considering component heterogeneity and dynamic working conditions. Bayesian

Poisson and linear regressions are applied to analyse the shock occurrence and mag-

nitude, updating parameters with new observations during online monitoring. The

maintenance planning problem is framed as a Markov decision process. This approach

establishes a tractable degradation model that accounts for heterogeneity and dynamic

conditions and explores the structural properties of optimal maintenance policy. A

heuristic algorithm based on the most likely distribution has been introduced to re-

duce computational complexity. Results reveal that maintenance thresholds, which

serve as control limits, fluctuate with covariates and demonstrate the advantages of the

proposed policy in handling varying working conditions and component heterogeneity.

Collectively, this thesis tackles the challenges of degradation prediction and mainte-

nance optimisation in smart asset management through data-driven approaches. The

proposed methods offer improved solutions for degradation prediction with limited

data, and maintenance policies with dynamic working conditions and heterogeneity,

contributing to more effective and informed asset management strategies.
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Chapter 1

Introduction

1.1 Background

Unplanned failure of a critical asset poses a considerable risk, potentially leading to se-

vere societal and financial consequences. For instance, China Northwest Airlines Flight

2303, a domestic flight from Xi’an to Guangzhou, experienced a catastrophic failure on

June 6, 1994. The aircraft, a Tupolev Tu-154M, broke up mid-flight and crashed due to

an autopilot malfunction, which caused violent shaking and overstressed the airframe.

As of 2024, it remains the deadliest airplane crash in mainland China (Flight Safety

Foundation, 2024). Motivated by the consequences of unplanned breakdowns, asset

management is proposed as a strategy to prevent failures. Assets can be classified into

two categories: tangible assets (physical objects such as infrastructure, manufacturing

plants, buildings, etc.) and intangible assets (such as financial assets) (Van der Lei

et al., 2012). This thesis focuses on tangible assets, particularly in engineering systems.

The International Organisation for Standardisation (ISO) has defined Asset man-

agement as “an integrated approach to deriving value from asset systems” in ISO 55000

(ISO, 2014). Asset management plays a critical role in ensuring the long-term perfor-

mance and value of physical assets across various industries. It encompasses a variety

of activities, from acquisition and operation to maintenance and eventual disposal, all

with the goal of optimising the lifecycle and cost-efficiency of assets. Among these

activities, maintenance stands out as a pivotal component that directly influences the
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reliability, availability, and performance of assets. Effective maintenance strategies not

only prolong the operational life of assets but also reduce downtime and operational

costs. In this context, maintenance can be viewed as the backbone of asset manage-

ment, providing the essential processes needed to sustain asset functionality.

Today, advanced technologies like the Internet of Things (IoT), artificial intelli-

gence, and big data analytics are drawing researchers’ attention to smart asset man-

agement. These technologies can be applied to optimise the use, performance, and

maintenance of physical assets (Teoh et al., 2021). By integrating real-time data col-

lection, predictive analytics, and automation, smart asset management systems enable

organisations to make informed decisions, reduce downtime, and extend the lifespan of

their assets. These approaches not only enhance operational efficiency but also improve

cost-effectiveness and sustainability (Liu et al., 2023). This thesis delves into the main-

tenance aspect of asset management, with a particular focus on predictive maintenance

techniques and their role in enhancing the overall management of assets in complex,

data-driven environments.

Four key tasks are included in smart asset management:

1. Identify a set of health indicators. Health indicators are constructed to

evaluate the health state of the asset and its critical components. These indicators

can be identified directly or indirectly. For example, in a bearing system, health

indicators include kurtosis and the root mean square of vibration signals (Wang

et al., 2017). In a wastewater system, the Sludge Volume Index (SVI) can reflect

the tendency of activated sludge solids (Liu et al., 2020).

2. Establish a monitor system to capture the degradation. With diverse sen-

sors and IoT systems, real-time monitoring of health indicators can be achieved.

For instance, a piezoelectric sensor placed under the insert of a cutting tool can

measure the force applied. As the tool wears, the measured force decreases, allow-

ing the wear rate to be determined. The monitored data can be sent to the cloud,

which has the computational power for prediction and maintenance scheduling

(Mekid, 2021).
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3. Predict future levels of degradation. With real-time data indicating the

health state, asset managers can apply statistical, physical, or machine learning

models to predict future degradation levels (Tian and Zuo, 2010). These predic-

tions help identify potential future failures and estimate the remaining useful life

of assets (Lei et al., 2018).

4. Design a maintenance policy to improve asset availability or reduce the

maintenance cost. Once degradation patterns are analysed through historical

health indicators, asset managers can adopt either time-based or condition-based

maintenance policies, depending on the type of data and the chosen strategy

(Ahmad and Kamaruddin, 2012).

This thesis focuses on prediction model development and maintenance policy design.

1.2 Research gaps and objectives

As stated, this thesis mainly focuses on developing algorithms to predict the future

levels of health indicators and design maintenance policies. Although the two tasks are

broadly discussed, several research gaps in the existing literature are summarised as

follows.

Accurate degradation prediction is fundamental to predictive maintenance, as it

enables decision-makers to intervene before failures occur and avoid costly unplanned

downtime. Recent advances in Machine Learning (ML) and Deep Learning (DL) have

introduced powerful tools for modelling complex degradation patterns. However, these

models typically require large and diverse datasets to generalise well. In some industrial

contexts, such data is scarce due to the high cost of sensor deployment, long asset

lifecycles, or the infrequency of failure events in high-reliability systems. As a result,

DL-based methods may suffer from overfitting or fail to extract meaningful features,

leading to unreliable forecasts. Therefore, developing DL prediction methods that can

operate effectively under limited-data regimes is essential.

While accurate prediction is crucial, the ability to translate predictions into optimal

maintenance decisions is equally important. Maintenance decision-making tradition-
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ally follows a two-stage process: model parameters—such as time-to-failure distribu-

tions—are first estimated from historical data and then used as inputs for a separate

optimisation procedure that aims to minimise maintenance costs or maximise system

availability. Although this separation is analytically convenient, it creates a discon-

nect between predictive accuracy and decision quality. The objective functions used

for model estimation (e.g., minimising mean squared error) are often misaligned with

downstream goals like cost efficiency or operational risk. Consequently, prediction

errors or distributional biases may propagate into the decision layer, leading to subop-

timal or even misleading maintenance policies. To address this challenge, recent studies

advocate for end-to-end, decision-aware frameworks that couple predictive modelling

with task-specific objectives (Qi et al., 2023; Donti et al., 2017). This thesis contributes

to this paradigm by exploring data-driven end-to-end approaches to unify prediction

and optimisation.

A further complication arises from the observation that asset degradation does

not occur in isolation from environmental and operational context. Assets operate

under dynamic conditions, such as fluctuating temperature, humidity, production rate,

and operating speed (Kong et al., 2021). These factors can affect the degradation

trajectories of components, and failure behaviours observed under one set of conditions

may not generalise to others. Nevertheless, many existing models assume stationary

or homogeneous environments, thereby neglecting the temporal and spatial variability

inherent in practical applications. To overcome these limitations, this thesis proposes

maintenance optimisation frameworks that are explicitly conditioned on environmental

and operational variables, allowing degradation models to adapt dynamically to varying

contexts.

Finally, even when environmental factors are controlled for, latent variability among

components remains a modelling challenge. Components produced from the same de-

sign and operated under similar conditions may still degrade in different ways due

to subtle differences in raw materials, manufacturing processes, or historical usage.

This latent heterogeneity undermines the assumption that all components of the same

type can be treated as statistically identical. Learning a single deterministic model
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across all units risks obscuring individual degradation paths, potentially leading to in-

accurate forecasts and misdirected maintenance actions. Moreover, applying uniform

maintenance thresholds may result in over-servicing some components while leaving

others at higher risk of failure. Addressing this issue calls for modelling strategies that

can capture unit-level variability while still leveraging shared structures in the data

(Yang et al., 2019; Sun et al., 2021). In response, this thesis explores hierarchical and

latent-variable-based models to design maintenance strategies that are robust to hidden

heterogeneity and capable of delivering maintenance policies.

Together, these challenges highlight gaps in the current predictive maintenance lit-

erature. They motivate the need for methods that can operate under limited data,

align predictions with decision objectives, adapt to dynamic environments, and ac-

count for hidden heterogeneity across components. This thesis addresses these gaps by

developing data-driven frameworks for degradation modelling and maintenance policy

optimisation.

This thesis aims to address the aforementioned research gaps, with the objectives

outlined as follows:

• Improve the performance of degradation prediction when applying DL with lim-

ited data size.

• Develop data-driven maintenance policies that can integrate the data within

decision-making processes.

• Formulate effective maintenance policies that can account for varied working con-

ditions.

• Design maintenance policies that consider the latent heterogeneity among differ-

ent components.

1.3 Thesis outline

The rest of this thesis is organised as follows:
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• Chapter 2 presents a literature review on smart asset management, focusing on

methods for degradation prediction and categories of maintenance policies, in-

cluding time-based and condition-based maintenance strategies.

• To address the challenges of degradation prediction with limited data, Chapter

3 extends the applicability of DL algorithms for health indicator prediction with

limited observations by incorporating data augmentation, dropout, and transfer

learning. Numerical experiments and a case study are provided to validate the

proposed method.

• To consider the dynamic working conditions and derive an end-to-end mainte-

nance policy, Chapter 4 proposes time-based preventive maintenance that directly

determines the optimal maintenance decision using data, bypassing the parame-

ter estimation stage and thereby reducing error propagation from estimation to

decision-making.

• To incorporate both dynamic working conditions and heterogeneity, Chapter 5

proposes a Condition-Based Maintenance (CBM) policy that utilises real-time

data to update the parameters of the degradation model, ensuring an accurate

representation of degradation behaviour and enabling informed maintenance de-

cisions. This approach provides an analytically tractable model, offering a frame-

work for understanding the dynamics of CBM policies. Additionally, a heuristic

solution algorithm is proposed to improve the model’s computational efficiency.

• Chapter 6 provides the conclusion, which summarises the results by revisiting the

thesis and discusses potential future directions in smart asset management.
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Chapter 2

Literature Review

Asset management is proposed as a strategic and comprehensive approach for system-

atic planning, operation, and maintenance to maximise lifetime performance. As the

industry integrates more technology and equipment to meet consumer demands, asset

management has garnered notable interest from researchers across various disciplines.

Industrial assets need to ensure their reliability for both safety and economic purposes.

This necessitates a thorough understanding of their failure dynamics to accurately fore-

cast future potential failure, and meet the maintenance needs. Consequently, developing

quantitative models to predict the level of degradation and schedule maintenance plans

is essential.

This Chapter will examine the existing research on two crucial tasks in industrial

asset management: the prediction of degradation and the optimisation of maintenance

schedules. We will explore the relevant methods for degradation prediction, including

physics-based and data-driven methods. Regarding maintenance scheduling, we will

discuss time-based and condition-based maintenance strategies, considering working

conditions and the heterogeneity of components. In addition, this thesis will be posi-

tioned within the context of the existing literature. A summary will be provided to

conclude the literature review, highlighting key findings and identifying gaps that this

thesis aims to address.
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2.1 Degradation prediction

Health indicators are designed to evaluate the degradation of engineering systems using

time series data (Zhou et al., 2016; Ghofrani et al., 2022). Prediction of the health indi-

cators plays an important role in asset monitoring systems by providing early warnings

of potential failures and informing maintenance actions (Zakikhani et al., 2020). In

general, the mainstream of degradation prediction approaches can be divided into two

categories: physics-based and data-driven methods (Ren et al., 2022).

2.1.1 Physics-based methods

Physics-based methods utilise the underlying degradation mechanisms of components

to model their deterioration over time by explicitly capturing the relationship between

condition variables and system lifetime (Shahraki et al., 2017). These approaches quan-

titatively characterise failure behaviour using physical laws under specific loading con-

ditions, such as thermal, mechanical, chemical, or electrical stress (Escobar and Meeker,

2006; Fan et al., 2011).

A variety of physics-based methods have been applied to describe electronic device

degradation processes, including the Arrhenius model, Peck model, and Coffin–Manson

model (Escobar and Meeker, 2006; Cui, 2005; Liu et al., 2019b). Among these, the

Arrhenius model is used when temperature is the dominant acceleration factor. For

instance, the degradation of EVA (ethyl vinyl acetate) and Tedlar layers in monocrys-

talline silicon photovoltaic modules has been investigated using Arrhenius-based ap-

proaches to simulate indoor and outdoor ageing under composite climate conditions

(Rajput et al., 2017). The Peck model and the Coffin–Manson model have also been

adopted to characterise degradation under environmental and mechanical stresses in

electronic devices (Deng et al., 2023).

In addition, crack growth models have been applied to structural elements to estab-

lish the relationship between crack growth rate and stress. For example, finite element

analysis is used to evaluate stress and strain, and is then integrated with Paris’ law

to estimate the crack growth rate based on a set of bearing run-to-failure data (Liao,
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2013). A series of bending fatigue tests has also been conducted to analyse fatigue

crack propagation behaviour by measuring the residual stress and identifying critical

tooth regions (Yan et al., 2022). To account for the diverse nature of degradation,

four physics-based models have been incorporated for fatigue crack growth prediction:

the Paris-Erdogan model, polynomial model, global function-based model, and curve-

fitting model (Nguyen et al., 2019). Paris’ law has been combined with the extended

finite element method and an active learning Kriging surrogate model to predict fa-

tigue life and assess the reliability of cracked CFRP laminates under material and load

uncertainties (Liu et al., 2025).

Physics-based models play an important role in modelling degradation processes,

as they provide physically interpretable insights across a wide range of operating con-

ditions. However, their applicability is constrained by the increasing complexity of

modern systems and the lack of precise knowledge about failure mechanisms. In con-

trast, the growing availability of industrial data has made data-driven approaches an

attractive alternative, supporting the development of flexible and adaptive degradation

models.

2.1.2 Data-driven methods

Statistical methods

Statistical models for degradation modelling are typically classified into three subcat-

egories: regression-based models, general path models, and stochastic process models

(Escobar and Meeker, 2006). For example, logistic regression has been employed to

estimate the degradation-related failure probabilities of bearings using run-to-failure

datasets. These probabilities are then used as target vectors, which are subsequently

combined with AutoRegressive-Moving Average (ARMA) model to predict future degra-

dation trends (Caesarendra et al., 2010). In addition, filtering-based approaches have

also been utilised. For instance, the drift rate—a key health indicator for gyroscopes

that reflects long-term stability—has been predicted using random filtering theory to

estimate future system drift (Wang et al., 2014b). Kalman filter has similarly been

applied to infer the degradation states of systems affected by sensor deterioration (Liu
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et al., 2019a).

Many failure mechanisms can be traced to underlying degradation processes (Gor-

jian et al., 2010). General path models and stochastic process models are used to repre-

sent the underlying degradation process and make inferences about future degradation.

General path models describe the continuous degradation process as a linear/nonlinear

function of time. A general non-linear regression model has been presented to describe

the degradation paths of a population of units by introducing fixed-effect parameters

for the common characteristics of the population and a random error effect for a specific

unit (Lu et al., 2021). A linear degradation path model has been applied to estimate

the lifetime distribution of train wheels, with random parameters assumed to follow

lognormal, Weibull and normal distributions (Freitas et al., 2009). Although the linear

random-effect model has advantages, nonlinear models are better suited to capturing

complex degradation paths and provide a better fit to nonlinear data. To account

for non-monotonic degradation patterns while preserving random effects, additive and

multiplicative models have been developed (Bae et al., 2007). General path models are

applied because of their simplicity, capability to model continuous degradation paths,

and their compatibility with different variance-covariance structures of the response

vector (Shahraki et al., 2017). Stochastic dynamics are present in degradation paths

due to the uncertainties in the system working environments, measurement errors, and

variability among units in a population (Zhang et al., 2018). For continuous degrada-

tion processes, models such as the Gamma process, Gaussian mixture and the Wiener

process have been considered as independent increment processes and have been ap-

plied in the field of reliability analysis (Nicolai et al., 2007). In terms of parameter

estimation, both general path models and stochastic process models identify model

parameters based on frequentist methods, such as maximum likelihood estimation, or

Bayesian alternatives.

Machine learning methods

Both tree-based and neural network-based models have been applied in degradation

prediction. For instance, a study on the Melbourne tram network demonstrated that
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vehicle acceleration, used to assess ride comfort, can effectively serve as a health indi-

cator for predicting track degradation using a random forest model (Falamarzi et al.,

2019). To improve short-term water quality prediction, two hybrid models integrating

decision tree algorithms with a data denoising technique were developed and demon-

strated high accuracy and stability across six water quality indicators using real-world

data from the Tualatin River Basin (Lu and Ma, 2020).

Regarding neural network-based approaches, Convolutional Neural Networks (CNNs),

Recurrent Neural Networks (RNNs), their variants, and hybrid architectures are among

the most commonly used in this field (Guo et al., 2021). For example, the root mean

square value of vibration data has been shown to reflect gearbox health conditions,

and an extended RNN has been proposed for one-step data prediction, outperforming

the ARMA method (Tian and Zuo, 2010). In another study, five machine learning

models—including gradient boosting, LightGBM, random forests, extra trees, and XG-

Boost—alongside two deep learning models, Long Short-Term Memory (LSTM) and

LSTM-CNN, have been used to predict battery health states, with the gradient boost-

ing model achieving the best performance (Huotari et al., 2021).

Unlike statistical methods, machine learning methods do not require explicit math-

ematical formulations and operate under fewer clearly defined assumptions. It is worth

noting, however, that these studies generally rely on the availability of sufficient training

samples, and there is limited research on improving DL performance in small-sample

scenarios.

2.2 Maintenance policy

When a failed component is inexpensive and easy to replace, and its failure does not

greatly disrupt operations, run-to-failure maintenance—also called failure-based main-

tenance—can be a strategic asset management approach, allowing equipment or com-

ponents to be used until they break down. However, this approach is inappropriate for

critical assets because the consequences of failure are too severe to be tolerated. With

the collected historical failure data, preventive maintenance policy has been extensively

studied since the 1960s, with early works proposing general mathematical frameworks
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to decide preventive maintenance actions before the system failure occurs (Barlow and

Hunter, 1960). This early work on maintenance optimisation focuses on failure events

by modelling failure rates. A comprehensive review work provides an overview of the

preventive maintenance policy and summarises the related literature(Ahmad and Ka-

maruddin, 2012).

Preventive maintenance policies can be broadly categorised by their trigger schemes

into Time-Based Maintenance (TBM) and CBM (Ahmad and Kamaruddin, 2012).

Both policies aim to minimise the objective of interest, such as minimisation of mainte-

nance cost or maximisation of availability, to decide the appropriate maintenance plan.

The main differences between TBM and CBM are listed as follows:

• TBM: TBM depends on the relevant time-to-failure records. It involves decid-

ing the optimal maintenance interval to either minimise maintenance costs or

maximise asset availability.

• CBM: CBM is guided by the degradation behaviour and the monitoring data. It

aims to determine the optimal degradation threshold to achieve the same goals

of minimising maintenance costs or maximising availability.

2.2.1 Time-based maintenance policy

TBM, also known as age-based maintenance policy in some contexts, is an approach

used to determine the optimal time or age for replacing a system (Zhao et al., 2017).

The first step of TBM is to collect the historical time-to-failure data. Then these

data can be used for time-to-failure modelling based on some typical reliability-related

characteristics, such as mean time to failure, reliability distribution, and failure rate.

The parameters of the time-to-failure model can be estimated from the time-to-failure

data and then put into the maintenance scheduling model to output the preventive

maintenance intervals. Under this policy, the system is replaced at the scheduled age

or at the time of failure, whichever occurs first. The process for a TBM policy is

illustrated in Figure 2.1.
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Figure 2.1: TBM process

Failure rate

It is worth noting that a body of research focuses on modelling failure rates (also referred

to as hazard rates in some contexts) to develop a reliability function for maintenance

scheduling in TBM (Ahmad and Kamaruddin, 2012; Xia et al., 2015; de Jonge et al.,

2017).

For non-repairable systems, the failure rate represents the probability of being failed

at a given age. It is denoted by λ(t) and calculated as:

λ(t) =
f(t)

R(t)
, t ≥ 0

where f(t) is the Probability distribution function (PDF) of failure and R(t) is the

reliability function.

One of the conceptual failure rate models is the bathtub curve, which divides the

lifetime of an asset into three phases: infant mortality stage (unstable and with a

decreasing failure rate), random failures stage (stable and with a constant failure rate),

and wear-out stage (unstable and with an increasing failure rate) (Wang et al., 2002;

Zeng et al., 2016). This conceptual model contributes to understanding the different

stages of asset life and optimising maintenance schedules accordingly.

The Weibull distribution is applied in reliability engineering due to its flexibility in

modelling increasing, constant, and decreasing failure rates (Ahmad and Kamaruddin,

2012; Chan and Shaw, 1993; Xia et al., 2015). This flexibility can be achieved by

adjusting its shape parameter:

• When the shape parameter is greater than 1, it represents an increasing failure

rate.

• When the shape parameter is equal to 1, it represents a constant failure rate.
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• When the shape parameter is less than 1, it represents a decreasing failure rate.

In addition, exponential, gamma, and lognormal distributions are also studied (Yin

et al., 2013; Proschan, 1963; Jiang, 2010).

For repairable systems, designed to be restored to functionality after a failure,

repeated failures are a frequent occurrence. In this context, the term “failure rate”

refers to the rate at which failures occur in such systems and can be modelled using

a non-homogeneous Poisson process. The failure rate in repairable systems m(t) that

varies over time t (Krivtsov, 2007). Given that a failure has just occurred at time

T , the probability that the next failure occurs after time t is given by F (t) = 1 −

exp
(
−
∫ t
0 m(T + x) dx

)
, t ≥ 0. The power law function and log-linear function are

used for modelling failure rate in repairable systems (Cox and Lewis, 1966; Krivtsov,

2007).

With the parametric form of the time-to-failure distribution and the available time-

to-failure data sets, statistical inference techniques like Maximum Likelihood Estima-

tion (MLE) are utilised to estimate the relevant parameters (Fouladirad et al., 2018).

Furthermore, when the form of time-to-failure distribution is unknown, few studies

have applied the non-parametric kernel density estimator to estimate reliability func-

tion (Sidibé et al., 2016).

Maintenance scheduling

TBM aims to determine the optimal maintenance interval to achieve various objec-

tives, such as minimising maintenance costs, maximising asset availability, or address-

ing multiple objectives that combine both cost reduction and increased availability.

Before setting up the objective function, it is important to figure out whether the asset

is repairable or not. For non-reparable assets, the replacement policy is applicable.

Under this policy, the asset is replaced when its age reaches the optimal preventive

replacement age or failure occurs (Ahmad and Kamaruddin, 2012).

For non-repairable assets, a specific repair policy is applied: the asset is replaced at

an optimal replacement age, and any failure occurring before that age is addressed with

minimal repair. Replacement makes the asset “as-good-as-new”, while minimal repair
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restores functionality without altering the asset’s health state, meaning the failure rate

remains unchanged. Additionally, some research has discussed imperfect repair policies,

where after an imperfect repair, the asset’s state is assumed to be better than before

but not as good as new. Instead, it is considered to be at a younger age with a reduced

failure rate (Xia et al., 2015).

Renewal reward theory is applied in maintenance scheduling for TBM policy (Arts

et al., 2024). Renewal reward theory applies to a process that accrues reward contin-

uously over a renewal cycle, which is defined as the duration between two consecutive

replacements (Zhang and Jardine, 1998). The general form of the long run maintenance

is defined as:

C(t) = lim
t→∞

C(t)

t
=

E[C(Z)]

E[Z]
, t ≥ 0

where Z is the duration of the renewal cycle, C(Z) is the total maintenance cost of

a renewal cycle. Assuming only corrective maintenance and preventive maintenance

action are taken, the expected of maintenance cost is given as:

E[C(Z)] = F (Z)Cc +R(Z)Cp,

where F (Z) is the probability of failure, R(Z) is the reliability that R(Z) = 1− F (Z),

Cc is the cost of corrective maintenance and Cp is the cost of preventive maintenance.

Without loss of generality, Cc > Cp > 0.

TBM considering working condition

The ageing process of assets is influenced by various fixed or dynamic working con-

ditions, such as working load, speed, and temperature. These working conditions are

modelled as covariates and are incorporated into the failure rate model. The modelling

approaches can be divided into three categories: parametric methods, semi-parametric

methods, and non-parametric methods.

The Accelerated Failure Time (AFT) model is one of the parametric methods to

determine the failure distribution when considering covariates (Hu et al., 2017). In

addition, it also simplified the working condition as a piecewise function of time, which
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is not only practical but also easy to extend from existing models. This work is based

on an accelerated-time intensity Poisson process model where the failure rate function

is given by:

λ(t|x) = λ0(e
x⊺βt)ex

⊺β, t ≥ 0

where λ(t|x) is the failure rate function, λ0 is the baseline failure rate function that

considers the age of the asset, x is the vector of working conditions, β is the coefficient

vector that measures the impact of the covariates, and ex
⊺β is the acceleration factor.

if ex
⊺β > 1, the impact of the covariate is decelerated, and vice versa if ex

⊺β < 1. It

is a fully parametric model as it specifies a complete probability distribution for the

baseline failure rate.

As a semi-parametric model, Cox Propotional Hazard (PH) model is applied to

make regression on features and failure time (Debón et al., 2010; Zhang et al., 2014).

The Cox PH model is represented by the failure rate:

λ(t) = λ0(t)e
x⊺β, t ≥ 0

where λ0 is the baseline failure rate. Unlike the AFT model, the Cox PH model

does not specify the form of the baseline failure rate, allowing it to be estimated non-

parametrically from the data. ex
⊺β is the parametric part that captures the effect of

covariates on failure rate. The combination of parametric and non-parametric compo-

nents contributes to the robustness of the Cox PH model.

Non-parametric methods model the failure rate function without assuming a spe-

cific parametric form, allowing the failure rate to be estimated directly from the data.

Techniques such as Bayesian non-parametric methods, kernel smoothing, and additive

models are used for this purpose. However, according to the literature, non-parametric

models are not as popular as the aforementioned parametric or semi-parametric meth-

ods. This is likely due to the increased complexity and computational demands asso-

ciated with non-parametric approaches, as well as the challenges in interpreting their

results compared to more straightforward parametric or semi-parametric models.
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TBM considering heterogeneity

The collected time-to-failure data might show heterogeneity patterns caused by latent

heterogeneity, such as the differences in manufacturing process, raw materials. To

account for the latent heterogeneity, different methods are proposed and developed.

These methods are based on the modelling of the failure rate.

Change-point method is applied to break down the failure rate function into seg-

ments. The general form of the change-point method is:

λ(t) = λ1(t)I(1 ≤ t ≤ t1) + λ2(t)I(t > t1),

where I(x) is an indicator function, defined as I(x) = 1 if x is true, and I(x) = 0

otherwise. Though the change-point method can detect shifts in the failure rate, it still

assumes a single failure rate function for the entire lifetime of the asset.

To capture the heterogeneity among the population, the frailty model is introduced.

This model introduces an additional variability into the failure rate function, known as

the frailty term, allowing for a more flexible and accurate construction of the failure

rate function (Vaupel et al., 1979; Huber-Carol and Vonta, 2004; Li and Liu, 2016).

Taking the Cox PH model as an example to show how to incorporate the frailty term,

for an individual i. the failure rate function is given as:

λi(t|xi, zi) = λ0(t)e
x⊺
i βzi,

where zi is the frailty term for asset i and it is assumed to follow a specific parametric

distribution. A proportional failure rate function with random effects is proposed to

generalise the frailty model by allowing certain coefficients to be random variables that

follow specific prior distributions (Vaida and Xu, 2000; Hu and Chen, 2020).

Instead of modelling the failure rate, another approach is to model the time-to-

failure distribution as a mixture distribution. This method models the time-to-failure

distribution as a weighted sum of component distributions of the same type, but with

different parameter distributions. Distributions such as Weibull and Lognormal are

used as components to model the sub-populations of assets (Bučar et al., 2004; Cheng
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and Yuan, 2013).

2.2.2 Condition-based maintenance policy

For TBM policy, the collected data includes the lifetime of each asset, which is used

to inform maintenance scheduling. With advancements in modern sensors and wireless

communication technologies, the health condition of assets can now be monitored and

collected, providing a richer and more comprehensive dataset for maintenance planning

(De Jonge and Scarf, 2020; Kim and Makis, 2013; Drent et al., 2023).

Generally, The CBM process consists of three steps, which are illustrated in Figure

2.2 and summarised as follows:

• Condition monitoring. During the monitoring, the condition monitoring signals,

such as the vibration of rotating equipment, electoral and temperature, are mon-

itored using certain types of sensors. The monitoring process can be carried

out either online or offline. Online monitoring is carried out during the operat-

ing state, while offline monitoring is performed when the asset is not running.

In addition, the monitoring can also be carried out periodically or continuously

(Ahmad and Kamaruddin, 2012).

• Degradation process modelling. The collected condition monitoring signals, also

referred to as degradation data, generally contain the health information of the

asset and can be further modelled to reflect the degradation process. These

degradation processes are stochastic and can be either continuous or discrete. By

analysing the degradation process, the failure time distribution and its parameters

can be determined (Zhang et al., 2018).

• Maintenance scheduling. Once the degradation reaches a certain threshold, the

asset is failed. For CBM policy, it is important to dynamically decide the optimal

maintenance threshold to take action in advance of reaching the failure threshold

(Elwany et al., 2011).
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Figure 2.2: The process of CBM

Stochastic degradation process

Stochastic processes serve as fundamental model-based methods, providing benefits in

the optimisation of CBM policies. The degradation process is categorised into contin-

uous degradation processes and discrete degradation processes.

For continuous degradation processes, popular models include Wiener processes

(Wang et al., 2014a; Zhang et al., 2018), Gamma processes (Wang et al., 2021), and

inverse Gaussian processes (Ye and Chen, 2014), selected based on the nature of degra-

dation increment. When the degradation model is a Wiener process with a positive

drift, the first-passage time (i.e., the time when the degradation reaches the failure

threshold) follows an inverse Gaussian distribution. Additionally, the Wiener degra-

dation process is not strictly increasing; the degradation increment in each unit of

time can be either positive or negative. However, monotonicity is inherent in Gamma

processes and inverse Gaussian processes, which have only positive increments.

Many systems are subject to random shocks caused by sudden environmental changes

(Rafiee et al., 2015). For example, bridges probably experience random shocks such

as rainstorms, floods, earthquakes and overloads (Wang et al., 2020). This type of

degradation can be modelled using a discrete degradation process, where the arrival of

shocks follows a Poisson distribution and the increments caused by these shocks are in-

dependent and identically distributed. This shock-based discrete degradation model is

also referred to as the Compound Poisson degradation model (Junca and Sanchez-Silva,

2013; Drent et al., 2023).

Given the degradation process X(t), the lifetime of system is defined as:

T = inf{t : X(t) ≥ L|X(0) < L},

where L is the failure threshold. According to first-passage-time theory, when modelling
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the degradation process as a Wiener process, the first passage time (also referred to

as the remaining useful time) for a fixed level follows an inverse Gaussian distribution

(Bian and Gebraeel, 2012; Ye et al., 2013). This distribution of remaining useful time

can further enhance maintenance scheduling.

In addition, the selection among these stochastic processes depends not only on the

underlying mechanism but also on criteria such as AIC (Akaike Information Criterion)

and BIC (Bayesian Information Criterion) (Nguyen et al., 2018). It can be summarised

that, regardless of the type of stochastic process selected, the degradation is assumed

to be stationary with independent increments, which ensures favourable mathematical

properties (Wang et al., 2014c).

Maintenance scheduling

Given the degradation model and the estimations of the parameters, the maintenance

scheduling models in CBM can be categorised into two classes: renewal reward theory

and Markov Decision Process (MDP) (Arts et al., 2024). In addition, renewal cycle

theory is applied in both TBM and CBM. The main difference between TBM and CBM

when applying for renewal reward theory is the derivation of reliability depends on the

type of data, i.e., the failure event or condition monitoring signals.

MDPs are applied to make optimal sequence decisions under uncertainty (Elwany

et al., 2011; Drent et al., 2023). A standard MDP consists of 4 elements that can

be represented as a tuple (S,A, Pa, Ra), where S is the state space, A is the set of

actions, Pa is the transition probability matrix when taking action a, and Ra is the

corresponding reward. When incorporated with CBM policy, the state space generally

includes the age of the asset and the degradation level. The action space includes the

possible action that the decision-maker can make, such as preventive maintenance, or

corrective maintenance. The reward is the cost for corresponding maintenance action.

The transition probability matrix can be derived from the stochastic degradation model

when taking the degradation levels as states.

When modelling maintenance policies via MDP in CBM, both finite horizon and

infinite horizon approaches are broadly discussed. For the infinite horizon problem, it
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is assumed that the asset operates indefinitely, and this problem can be solved using

policy iteration or value iteration (Elwany and Gebraeel, 2008; Chen et al., 2015). One

proposed advantage of modelling an infinite horizon is that the asymptotic long-run

cost rate converges to the cost ratio with renewal reward theory, which is relatively

easy to obtain. However, most assets are designed with a limited operating time due to

factors such as demand changes or product upgrades (Zhang et al., 2024a). Thus, it is

necessary to model a finite horizon for such scenarios. Backward dynamic programming

can be applied to solve finite horizon MDPs (Liu et al., 2021). Additionally, the optimal

maintenance policy can be represented as a control limit policy, regardless of whether

the problem is modelled as a finite or infinite horizon.

Some other extensions of MDP are also incorporated into CBM policy. Partially

Observable MDP (POMDP) is applied when the underlying state cannot be directly

observed (Kim, 2016; Deep et al., 2023). In addition to a standard MDP, POMDP in-

cludes a set of observations, a belief vector, and an emission matrix. The belief vector

represents the decision-maker’s belief about the underlying state, while the emission

matrix contains probabilities that link the underlying states to the observations. How-

ever, computing an optimal policy for a POMDP is an intractable problem due to the

“curse of dimensionality” (Lee et al., 2007). It has been noted that solving a finite

POMDP is PSPACE-complete and finding an optimal policy over an infinite horizon is

undecidable. In addition to POMDP, Semi-MDP is applied in CBM when the sojourn

time in each state is a general continuous random variable. Furthermore, POMDP and

Semi-MDP can be combined to address scenarios involving both unobservable states

and random transition sojourn times (Khaleghei and Kim, 2021).

CBM considering working condition

In order to incorporate working conditions that influence degradation processes, various

studies have extended and generalised variants from conventional stochastic degrada-

tion models. Static and dynamic working conditions have been studied. Static working

condition means the working conditions remain stable when operating (Zhao et al.,

2019). However, dynamic means that the working condition is time-varying, which
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can be represented as a function of time, or the evolution of the working condition is

modelled by a continuous-time Markov process (Hu et al., 2021; Bian et al., 2015).

One of the frequently used approaches utilises a link function to describe the ef-

fects of working conditions on the parameters in the stochastic degradation process.

Linear, power law, and exponential functions are selected as link functions based on

the goodness-of-fit (Ye and Xie, 2015). Existing works link the working condition to

the drift parameter in both the Wiener process and inverse Gaussian process (Liao and

Tian, 2013), the shape parameter in the Gamma process (Bagdonavicius and Nikulin,

2001; Zhao et al., 2019), and the occurrence of shock in the Compound Poisson (CP)

process (Zhu et al., 2015).

CBM considering component heterogeneity

The issue of component heterogeneity has been addressed in existing literature, re-

gardless of whether working conditions are taken into consideration or not. Observed

components within the same population may exhibit different degradation paths due

to various reasons, such as variability in raw material. For unobservable heterogene-

ity, the random effects model treats certain parameters in the stochastic degradation

model as random variables that follow specific parametric distributions (Ye and Xie,

2015; Lawless and Crowder, 2004; Peng and Tseng, 2009; Ye and Chen, 2014). It is

worth noting that the maintenance policy exhibits different structural properties when

heterogeneity is considered (Chen et al., 2015; Zhang et al., 2016). Considering com-

ponent heterogeneity in maintenance policy, the earliest work models the degradation

paths as Brownian motion and sets the drift parameter as a random variable that fol-

lows normal distribution (Elwany et al., 2011). The maintenance decision is modelled

as an infinite horizon MDP to minimise the maintenance cost and find the optimal

Preventive Maintenance (PM) threshold. The structural property of the maintenance

shows that the PM threshold increases with the component age. This work has been

further extended to other stochastic degradation processes, such as Gamma (Liu et al.,

2021), inverse Gaussian process (Chen et al., 2015).

One more related and recent work on discrete degradation paths modelled by the CP
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process has addressed the heterogeneity of components (Drent et al., 2023). This work

considers heterogeneity in the number of shocks and the shock magnitude separately.

Specifically, the number of shocks is assumed to follow a Poisson distribution, with

the rate parameter regarded as a Gamma-distributed random variable. The shock

magnitude is assumed to follow a one-parameter exponential family distribution, with

the parameter also exhibiting unobserved heterogeneity and regarded as a Gamma-

distributed random variable. The prior parameters are initialised using historical data,

and further updated when new observations are available. This process follows the

Bayesian learning paradigm, which has been frequently used in the literature on price

and inventory management (Wang, 2021; Harrison et al., 2012; Chuang and Kim, 2023).

Similar to the aforementioned CBM policies, the MDP has been applied to derive the

optimal PM threshold, which has been proven to increase with the component age.

2.2.3 Summary and research trends

TBM and CBM policies have been studied over the past decades, forming the foun-

dation of modern maintenance optimisation. TBM primarily relies on historical fail-

ure data to determine optimal preventive replacement intervals, while CBM leverages

real-time condition monitoring to dynamically schedule maintenance activities. TBM

typically uses reliability models based on failure rates or time-to-failure distributions,

including parametric, semi-parametric, and non-parametric approaches. CBM, in con-

trast, utilises stochastic degradation models such as Wiener, Gamma, or Compound

Poisson processes, in conjunction with decision-making frameworks like MDPs and their

extensions. Both approaches aim to improve reliability and reduce maintenance costs,

but follow distinct modelling frameworks and data requirements.

Despite substantial progress, several limitations remain. TBM models often assume

stationary operating environments and fail to accommodate time-varying conditions or

latent heterogeneity. CBM models, while more flexible, rely heavily on high-quality

sensor data and face challenges related to model complexity, computational demands,

and interpretability. In multi-component systems, dependencies among components

further complicate scheduling, particularly when integrated with production planning
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or resource constraints.

Recent research has increasingly focused on extending maintenance policies to ac-

count for system-level interactions. TBM and CBM approaches have evolved from

applications in single-component systems (Das and Acharya, 2004; Elwany et al., 2011)

to more complex multi-component systems (Scarf et al., 2009; Nakagawa and Yasui,

2005; Liu et al., 2021; Chen and Hao, 2025). In such systems, various forms of inter-

dependence—including stochastic, structural, and economic dependencies, pose chal-

lenges to the design and implementation of effective maintenance strategies (Shi and

Zeng, 2016). Structural dependence refers to how system functionality is influenced by

the configuration of components, which can follow series (Dao and Zuo, 2015), parallel

(Berrichi et al., 2009), mixed series-parallel (Xia et al., 2013), or k-out-of-n arrange-

ments (Liu et al., 2024). Stochastic dependence is typically captured through failure

rate or stochastic process models (Fan et al., 2021; Liu et al., 2021; Rasmekomen and

Parlikad, 2016). Economic dependence implies cost-saving potential through group or

opportunistic maintenance, where components are maintained jointly—even if some are

serviced earlier or later than ideal—to reduce overall maintenance costs (Zhou et al.,

2009; Xia et al., 2015). These interdependencies affect not only the reliability modelling

of the system but also the optimisation of maintenance decisions.

There is increasing emphasis on integrating maintenance with broader decision-

making domains such as production planning, inventory control, and resource manage-

ment, supported by Bayesian learning, reinforcement learning, and hybrid models for

adaptive, data-driven maintenance. The joint optimisation of maintenance and pro-

duction planning has been explored in studies where asset degradation is influenced

by production load, making it necessary to coordinate scheduling decisions across both

domains (Cassady and Kutanoglu, 2005; Paprocka, 2019; uit het Broek et al., 2020).

Similarly, maintenance policies have been jointly optimised with spare parts inventory

management (Elwany and Gebraeel, 2008; Wang, 2012; Vaughan, 2005), where chal-

lenges arise due to the intermittent and lumpy nature of spare parts demand, which

is directly driven by the maintenance schedule. Integration with resource manage-

ment has also gained attention, particularly when maintenance-related resources such
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as personnel, tools, and time are limited (Glazebrook et al., 2005; Martorell et al.,

2010; Do Van et al., 2013). Selective maintenance, for example, has been formulated

as a MDP that incorporates stochastic action durations and resource constraints, and

solved using a rollout-based approximate dynamic programming algorithm enhanced

with heuristics and machine learning to enable scalability (Zhang et al., 2024b). In the

offshore wind sector, where maintenance costs are particularly high, a holistic oppor-

tunistic maintenance strategy has been proposed that integrates degradation trends,

failure events, and weather forecasts to optimise turbine grouping, vessel routing, and

scheduling, yielding substantial cost reductions in real-world applications (Si et al.,

2025).

In summary, maintenance policy research is shifting towards system-wide, data-

driven strategies that integrate maintenance with broader operational decisions. Em-

phasis is being placed on handling uncertainty, exploiting interdependencies, and lever-

aging learning-based methods to enhance adaptability and cost-effectiveness in complex,

resource-constrained environments.

2.3 Positioning in the literature

In this section, we position each chapter in the literature, highlight its intersections

with other research fields, and identify gaps in the current literature for each chapter.

2.3.1 Positioning of Chapter 3

Chapter 3 focuses on degradation prediction using DL methods, as reviewed in Section

2.1. However, within the field of degradation prediction using time series data, although

various data-driven methods have been proposed, there has been no study addressing

scenarios with insufficient data.

Some works in the research field of Computer Vision tackled the overfitting prob-

lem caused by insufficient training data (Park et al., 2019; Ke et al., 2019; Cai et al.,

2017). Various image-based Data Augmentation (DA) methods—including rotation

(randomly rotating the image), solarising (inverting pixel values above a threshold),
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histogram equalisation (enhancing contrast), and posterising (reducing the number of

pixel intensity levels)—are applied to increase the training data size. These transfor-

mations introduce visual diversity while preserving the essential shape and structural

patterns relevant. Moreover, the optimal DA strategy with the best combination of DA

methods and suitable parameters is explored to enhance the performance of the DL

algorithm in the classification of images (Cubuk et al., 2019). The development and

enhancement of DL algorithms for time series data are relatively new and there is still

no related work for degradation prediction.

The most relevant work to our study is the enhancement of DL algorithms with

limited time series data by applying DA method (Bandara et al., 2021; Demir et al.,

2021). The basic DA techniques of time series data focus on transforming in the time

domain, frequency domain and time-frequency domain respectively (Wen et al., 2020).

Decomposition methods, statistical generative methods and some learning methods like

the deep generative model and auto augmentation are the recent works for advanced

DA techniques. However, it can be observed from these studies that most existing

works focus on classification tasks—such as predicting discrete health states or failure

types—while only a few address regression tasks, where the goal is to estimate contin-

uous values such as degradation levels or remaining useful life (Fons et al., 2021; Iwana

and Uchida, 2021). So far, only one work explored the combination of a DA method

and Transfer Learning (TL) strategy and gained improvement on LSTM in the presence

of limited time series data sets (Bandara et al., 2021). Our work is distinguished from

the previous studies in three aspects. Firstly, we adopt multiple DA techniques and

construct a novel framework based on these augmented data. Secondly, we integrate

both data selection and reweight to improve the quality of training data. Thirdly, DA

methods, data dropout, data reweight and TL are stacked in the whole framework to

get better performance on degradation prediction.

2.3.2 Positioning of Chapter 4

Chapter 4 aligns with the literature on TBM policy considering the working condi-

tions. However, the requirement for prior information about the failure is difficult
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for decision-makers, thereby limiting the application (Ahmad and Kamaruddin, 2012).

When applying the parametric methods, the optimisation results will be amplified if the

underlying parametric form is misspecified. Although non-parametric methods allevi-

ate assumptions on the reliability distribution, separating prediction and optimisation

can result in sub-optimality. Therefore, there is a need to develop a distribution-free

framework that integrates prediction and optimisation in preventive maintenance prob-

lems.

Recently, one work has been devoted to the condition-based maintenance problem

based on a fully data-driven approach with an unknown deterioration process and

unknown failure behaviour (Cai et al., 2023). Under the setting of the CBM policy, the

work aims to decide the optimal degradation threshold with a minimal maintenance cost

rate. In order to obtain the decision directly, the cost rate function can be adjusted

into the data-driven formula by replacing the failure probability with approximated

expressions from the collected runs-to-failure data. Notably, the approximated failure

probability becomes more accurate when more runs-to-failure data becomes available.

Similar to our work, the maintenance decision is made by finding a close form of the

cost rate function using the data-driven method instead of putting any prior assumption

to underlying failure distribution. To distinguish it from our work, our work not only

provides the theoretical bound of the approximated maintenance cost rate function for

the TBM problem but also incorporates the working conditions into the preventive

maintenance decision policy.

Beyond the maintenance decision area, several works have explored the integration

of prediction and optimisation. To the best of our knowledge, two works have been

dedicated to proposing general integration frameworks. One of the works constructs the

objectives as a weighted linear combination of each sample, where the weights can be

estimated using collected data sets through machine learning algorithms like k-nearest

neighbours algorithm, trees, and kernel methods (Bertsimas and Kallus, 2020). Another

paradigm known as “smart predict, then optimise” has introduced a general framework

to minimise decision errors during the training of the prediction model (Elmachtoub

and Grigas, 2022). The loss function during the training process is the absolute gap of
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cost between the predicted decision and the optimal decision, rather than the prediction

accuracy typically employed in traditional two-step optimisation methods.

In addition, two studies have explored solving feature-based newsvendor problems

using big data sets. One work takes the optimal solutions as a linear combination of

features while minimising the empirical cost function. Linear programming and ker-

nel optimisation methods are leveraged to find solutions and show better performance

compared with sample average approximation and other two-step methods (Ban and

Rudin, 2019). Another study considers the optimal ordering number as the label for

the machine-learning algorithm and adopts the empirical cost minimisation as the loss

function (Oroojlooyjadid et al., 2020). The work leverages deep learning frameworks

as the learning algorithm. The effectiveness of the proposed method is demonstrated

through experiments conducted on small data sets, real data sets, and randomly gen-

erated data sets.

Chapter 4 is inspired by the end-to-end machine learning algorithm, which refers

to the end goal of the learning algorithm directly from the raw input of data without

any intermediate step (Donti et al., 2017). Recently, there has been a growing body of

research that applies this paradigm to various domains, including finance, text recog-

nition, and also feature-based inventory problems that consider uncertain demand and

lead time (Qi et al., 2023; Bengio, 1997; Wang et al., 2011). In this line of work, the

main challenge is to find the labels for the training data set first and subsequently apply

well-established machine learning or deep learning algorithms. However, to the best of

our knowledge, no prior work has explored the integration of such a framework in the

preventive maintenance policy considering varied working conditions.

2.3.3 Positioning of Chapter 5

Chapter 5 aligns with the literature on CBM policy considering heterogeneity and

time-varying working conditions. Similar to the aforementioned CBM policies, the

MDP has been applied to derive the optimal PM threshold, which has been proven

to increase with the component age (Drent et al., 2023). To distinguish from this

work, our contribution lies in being the first to incorporate working conditions into the
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maintenance policy with heterogeneous components leveraging real-time data. Under

such a scenario, developing an analytically tractable result becomes challenging due to

the increased complexity of the state space.

Chapter 5 is also related to Contextual MDP (CMDP). In the literature, CMDP

was first proposed as an extension of MDP to integrate environmental information as

a form of contexts (Hallak et al., 2015; Benjamins et al., 2022). To the best of our

knowledge, the earliest paper describes a contextual MDP as a set of MDP models

that share the same state and action space, with each MDP model corresponding to an

environmental context (Hallak et al., 2015). To enhance its generality, a unified con-

textual MDP framework has been proposed to accommodate both MDP and partially

observable MDP. An application area of CMDP is personalised service decisions, such

as web advertising and precision medicine (Modi et al., 2018). For instance, in pre-

cision medicine, optimal medication dosages can be determined using patient-specific

information, such as gender and age, extracted from electronic health records.

However, CMDP faces challenges such as limited observations under the same con-

text, the trade-off between exploration and exploitation, and arbitrarily large context

space (Bastani and Bayati, 2020). These challenges have been addressed in the ex-

isting research. To efficiently utilise the observations, the Q function, also known as

the action-value function, is approximated via a set of functions once a low Bellman

rank is achieved (Jiang et al., 2017). During the approximation, the valid functions are

then selected when the Bellman error is low, which further contributes to optimistic

exploration (Jiang et al., 2017). When facing large context space, the context repre-

sentation can be factorised into sub-blocks and referred to as block CMDPs (Sodhani

et al., 2021).

Although this thesis integrates working conditions into the MDP model for optimal

maintenance control, our work differs from CMDP in the following aspects. First, we

incorporate dynamic working conditions that vary over time periods, wherein CMDP

typically deals with static contexts or changes occurring at a much slower pace than

the decision periods. Second, the CMDP framework lacks the considerations of the un-

derlying heterogeneity, which we address comprehensively in this thesis. Additionally,
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unlike CMDP which optimises the tradeoff between exploration and exploitation, our

work focuses on exploitation. This is due to the fact that exploration in a relatively

short episode, such as the maintenance decision epochs, may lead to a sub-optimal

decision (Sutton et al., 1998; Siraskar et al., 2023).

2.4 Summary

This chapter provides a comprehensive review of the literature on two critical tasks in

asset management: health indicator prediction and maintenance policy. The discussion

begins with an in-depth exploration of health indicator prediction, where three pri-

mary methodologies are highlighted: model-based, physics-based, and data-driven ap-

proaches. Model-based methods rely on mathematical models to forecast asset health,

while physics-based methods use the physical principles governing the asset’s opera-

tion. Data-driven methods, on the other hand, utilise statistical and DL techniques to

predict asset health based on historical data.

The chapter then shifts focus to maintenance policies, specifically reviewing TBM

and CBM, along with their various extensions. TBM policies are scrutinised for their

scheduled approach to maintenance, highlighting the importance of regular intervals

regardless of the asset’s condition. In contrast, CBM strategies are analysed for their

reliance on real-time data and working conditions, enabling more responsive and po-

tentially cost-effective maintenance actions. Furthermore, the chapter contextualises

the positions of Chapters 3, 4, and 5 within the broader scope of the literature, and

addresses the existing research gaps in the literature. It clarifies how each chapter

contributes to the overall understanding of asset management.

In summary, this chapter systematically reviews the literature on degradation pre-

diction and maintenance policies, offering a detailed examination of various methodolo-

gies and their applications. It not only integrates the discussions of Chapters 3, 4, and

5 but also points out the critical gaps in existing research, paving the way for future

contributions to the field.
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Chapter 3

Extending the Applicability of

Deep Learning Algorithms to

Degradation Prediction with

Limited Time Series Data

DL algorithms, such as deep neural networks have shown advantages over classical

time series prediction methods. However, the performance of DL algorithms depends

on the size of the data set with a risk of overfitting for smaller data sets. To extend

the applicability of DL algorithms in degradation prediction with such relatively small

datasets, this Chapter proposes DA methods to increase the data volume by effectively

generating synthetic data. Different from the existing studies that simply mix synthetic

and real data without considering the selection of synthetic samples or the weight of each

sample, a novel method is proposed to generate, select and reweight synthetic samples to

improve the prediction accuracy. After generating a collection of time-series data with

multiple DA methods, this Chapter develops an influence function to select the effective

synthetic samples and then reweight the selected samples using the gradient descent

method. To improve the accuracy of DL algorithms with the mixture of synthetic and

real samples, we pre-train the DL models drawing upon the idea of transfer learning and
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use real samples to adjust the model parameters with a small learning rate. Simulation

experiments are conducted under various settings to illustrate the effectiveness of the

proposed method and indicate the scenarios where our approach exhibits its advances.

In addition, we describe an illustrative example that involves predicting the values of

health indicator in a real wastewater treatment plant, where the data of system health

indicator is collected daily. Compared with classical forecasting models, the developed

approach indicates superior performance in degradation prediction. The results from

the illustrative example show that the proposed method can improve the prediction

accuracy of DL algorithms in a less data-abundant scenario.

3.1 Introduction

Degradation prediction is fundamental for designing and providing cost-effective main-

tenance strategies. Health indicators refer to condition-monitoring signals that reflect

the degradation state of a system over time. These indicators are typically collected

as time series during system operation and are used to assess the system’s health and

support predictive maintenance decisions. For instance, the failures of the traction

motor can be reflected in the changes in the temperature signal, which is a sequence

of data points collected over an interval of time (Dong et al., 2022). Also, the ratio of

current capacity to the initial capacity of a battery is defined as the health indicator

for lithium-ion batteries to assess the state of health (Huotari et al., 2021). Prediction

of these health indicators is useful to capture the dynamic degradation trend based

on historic time-stamped data (Han et al., 2019). In the research field of degrada-

tion prediction with time-series data, various methods have been developed, including

statistical forecasting models, ML models and DL models, to improve the accuracy of

prediction (Tian and Zuo, 2010).

The study of statistical forecasting models for degradation prediction with time se-

ries data has been widely developed. Among these classical prediction algorithms, the

Autoregressive Integrated Moving model (ARIMA) has continuously received scholarly

attention to deal with time series data (Liu et al., 2020). Nevertheless, conventional sta-

tistical forecasting models encounter challenges when processing and predicting datasets
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characterised by non-linear relationships.(Qin et al., 2017; Kabir et al., 2024). Nowa-

days, ML algorithms such as Decision Tree, Random Forest, Support Vector Machine

emerge as the forefront in time series prediction (Zhang et al., 2021; He et al., 2017). As

one of the subfields of ML, DL shows good performance with multi-layers to represent

the latent features of data at a higher level (Goodfellow et al., 2016; Ajayi et al., 2020).

Among DL algorithms, RNN has been designed to deal with time-dependence data.

In order to overcome the gradient exploding problem of RNN, variants of RNN have

been proposed, i.e., LSTM, Gate Recurrent Unit (Yu et al., 2019). Nevertheless, the

performance of DL algorithms highly relies on the size of input data since insufficient

data usually leads to overfitting with poor prediction performance in the test data set

(Stødle et al., 2023). Engineering systems that are subject to discrete inspections, such

as wastewater treatment systems generally measure parameters related to degradation

two or three times a week (Choi and Park, 2001). There can be relatively few inspection

observations that limit the applicability of DL algorithms (Fu et al., 2020).

In less data-abundant settings, DA and TL are two effective ways to avoid overfitting

in DL algorithms (Bandara et al., 2021). DA techniques aim to generate artificial

data to increase the sample size of available training data and the effectiveness has

been verified in various applications like Computer Vision (Shorten and Khoshgoftaar,

2019), Recognition Technology (Cai et al., 2022). Also, there is work that generates

samples with high similarity and diversity in gearbox fault diagnosis (Chen et al., 2022).

Nonetheless, DA methods are mainly applied in classification tasks as aforementioned

applications. In the research field of degradation prediction with time series data,

DA approaches like data jittering and deep generative models have been proposed and

successfully applied in regression tasks (Fawaz et al., 2018; Nourani et al., 2021). On

the other hand, the challenge induced by the shortage of data can also be alleviated

by transferring the pre-trained model from a source domain with abundant data to a

target domain that has limited observational data in prediction with time series. In the

TL process, the common features can be captured in the pre-trained model and then

transferred to the target domain with a relatively small learning rate (Weiss et al.,

2016; Tan et al., 2018). Moreover, in the existence of DA, the effectiveness of TL
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prediction with time series has been verified through comparison with simply pooling

the real and artificial data (Bandara et al., 2021). However, in the research field of

degradation prediction with time series data, while various data-driven methods have

been proposed, no study has investigated the scenario with a lack of sufficient data.

To the best of our knowledge, this is the first work that applies DA in degradation

prediction. Different from existing work in prediction with limited time series data,

when applying the DA methods, the training data is appropriately pre-processed and

selected to improve its performance instead of leveraging the augmented samples di-

rectly to train the DL models. Firstly, a subset of training data should be selected

from the augmented samples, since not all of the augmented samples are favorable.

Secondly, the weight of augmented data should be assigned considering different con-

tributions to the prediction task. Thirdly, the combination of augmented data with real

data needs further exploration in the remit of TL. However, there is no work integrating

the selection, reweight and TL to the augmented samples based on multi-DA methods.

In this Chapter, we propose a novel framework to integrate data selection and data

reweight to optimize the synthetic samples generated by DA techniques, then apply

TL between the synthetic samples and real data. The proposed method is named

as ADRT, which integrates data Augmentation, synthetic samples Dropout, Reweight

and Transfer learning. Moreover, we utilise LSTM, one of the state-of-the-art methods

for dealing with sequence data (Karevan and Suykens, 2020), as the baseline model.

The proposed method is called LSTM ADRT in the following. Finally, a numerical

experiment is conducted using simulated data and an illustrative example is performed

with a real data set from a wastewater plant to show the effectiveness of the proposed

method. The contribution of the study is summarised as follows:

1. We increase the size of training data by integrating multi-DA methods in degra-

dation prediction with limited observational data.

2. We develop an approach to select the important augmented data with dropout

and reweight, to improve the prediction performance before channelling it into

the DL algorithms.
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3. Instead of simply mixing the real data and synthetic data, we train the DL models

based on the TL scheme in advance and then use the real samples to adjust the

parameters with a small learning rate so as to improve the effectiveness of the

approach.

The remainder of this Chapter is organised as follows. The proposed ADRT frame-

work is discussed in Section 3.2. The general description and elements of the approach

are discussed in detail, including data augmentation, pre-processing, sample dropout,

reweight and TL scheme. Section 3.3 presents the experiment results using simulated

data. Section 3.4 presents an illustrative example of a wastewater treatment plant to

illustrate the developed approach. Extensive experiments are conducted to show the ef-

fectiveness of the approaches and investigate various factors influencing the algorithm’s

performance. Finally, concluding remarks and future research directions are provided

in Section 3.5.

3.2 Method description

3.2.1 Overview of the proposed method

The overall structure of the proposed method ADRT is given in Figure 3.1. Six steps

are involved in this framework including data collection, augmentation, pre-processing,

dropout, reweight, and transfer learning. With the collected time series data of health

indicator, we use multi DA techniques to generate a collection of synthetic data based

on real data. Subsequently, we normalise these data to the range of [0,1] and then use

the moving time window to generate synthetic samples during the pre-processing stage.

In the step of sample dropout, the top negative influential samples generated in the

first stage are dropout. In addition, the top positive influential samples are kept for

the data reweight. The influence of each sample is determined by assessing its effect on

the prediction accuracy of the real dataset when the corresponding sample is removed.

A positive influence value indicates that the synthetic sample can enhance prediction

accuracy. In the last step, the designed TL scheme is applied to retain the model with

a small learning rate to adjust the model parameters in the transfer learning stage.
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By and large, DA, sample dropout, reweight and a designed TL scheme are stacked

to enhance the DL algorithm step by step. The steps mentioned above will be further

discussed in the following sections.

𝒅𝟏 … Real observations

Data Augmentation and Pre-processing

Moving
Window

Data 
Normalization

Sample Drop Out and Reweight

Transfer Learning

Influence 
Calculation

Drop out the top 
negative samples

Collect the top positive samples

Sample
Reweight

Target Domain 
(Real samples)

Source Domain 
(Synthetic samples)

𝒅𝟐 𝒅𝟑 𝒅𝒏𝒅𝒕…

DA method 1

DA method 2

DA method M

Pooled synthetic data set

… …

Figure 3.1: Overview of the ADRT framework

3.2.2 Data augmentation and pre-processing

Data augmentation methods

To overcome the overfitting of DL algorithms with a small data set, synthetic data is

generated by leveraging DA methods. In this Chapter, we utilise DA techniques in

time series data including jittering, scaling permutation, magnitude warping, window

slicing and window warping (Fawaz et al., 2018; Iwana and Uchida, 2021).

One of the simplest ways to generate synthetic data is jittering, which generates

artificial data by adding noise to the real data. The process of jittering can be defined

as:

DJ
A = [d1 + ξ1, ..., di + ξi, ..., dn + ξn] (3.1)

where DJ
A is the synthetic data sequence augmented by jittering. d1, . . . , dn represent
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the input real data sequence, where di denotes the ith data element. ξi is the noise,

which follows the Gaussian distribution ξi ∼ N(0, σ2
ξ ) and can be added into the time

series at each step.

Scaling aims to change the magnitude of time series with a random scalar value

αs:

DS
A = [αsd1, ..., αsdi, ..., αsdn] , (3.2)

where the random scaling parameters αs follows the Gaussian distribution αs ∼ N(1, σ2
αs
),

DS
A is the synthetic data set augmented by scaling.

Permutation as one of the DA methods has been proposed to disrupt the order of

time series (Um et al., 2017). We first slice the data into NS same-length segments and

randomly permute the segments to create a new time series. Therefore, the number of

segments NS is the critical variable ranging from 1 to 5 (Um et al., 2017). The data

set generated by permutation is noted as DP
A.

Magnitude Warping is a specific augmentation method to warp the time series

data by a smoothed curve and is defined as:

DM
A = [M1d1, ...,Midi, ...,Mndn] (3.3)

whereDM
A is the synthetic data set augmented by magnitude warping andM1, ...,Mt, ...,Mn

is sequence generated by interpolating a cubic spline S(u) with the knots parame-

ters u = u1, ..., um, ..., uM . These knots parameters are random values and follow the

Gaussian distribution N(1, σ2
M ). σM and the total number of knots M are both the

parameters of magnitude warping.

Window Slicing is similar to cropping in the image data augmentation by slicing

time steps as:

DWS
A = [dφ, ..., di, ..., dW+φ] (3.4)

where DWS
A is the synthetic data set augmented by window slicing and the parameter

W is the size of the window which can be decided by the warp ratio RWS multiply the

length of the sequence, and φ is a random integer in the range of 1 to n −W . Thus,

RWS is the parameter of window slicing. After window slicing, the time series data
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are interpolated back to the original length to maintain a consistent input size for the

model.

Window Warping is a data augmentation technique adapted from time warping

which is more time-series specific. It involves selecting a random segment (window)

of the time series and altering its temporal structure by compressing (speeding up) or

stretching (slowing down) that segment along the time axis. The rest of the sequence,

outside the selected window, remains unchanged. This operation preserves the overall

pattern of the sequence but introduces local time distortions. The degree of warping is

controlled by a warp ratio RWW, which defines the scaling factor applied to the selected

window. The rest of the sequence remains unchanged. The resulting augmented dataset

is denoted as DWW
A , and the value of RWW can be adjusted experimentally.

The effectiveness of different DA methods varies with the data set. Thus this Chap-

ter mixes all the generated data and then selects the appropriate data adaptively. In

application, the parameters in these DA methods can be found in the existing works

(Fawaz et al., 2018). The examples of different data augmentation methods are il-

lustrated in Figure 3.2. A broad range of data augmentation techniques, including

permutation, scaling, and jittering, are adopted to generate diverse augmented sam-

ples. Given the initial uncertainty regarding the suitability of different augmentation

methods, a data dropout and reweighting process are implemented to automatically

evaluate, select, and adjust the augmented samples. This strategy ensures that the

final training set maintains good quality information while gaining improved diversity

and robustness through augmentation.

Data pre-processing

After generating augmented data by multi DA methods, we mix all of the synthetic

data set to generate a pooled data set as DA =
{
daij , 1 ≤ i ≤ P, 1 ≤ j ≤ N

}
, where daij

is the jth synthetic data point generated by the ith DA method, P is the total number of

DA methods and N is the length of data generated by each DA method. Subsequently,

in order to reduce the calculation time, normalisation is a necessary step to scale down

the data. Min-Max normalisation is a simple and widely used technique that can keep
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Figure 3.2: Illustration of data augmentation methods. (a) Jittering (σξ=0.05). (b)
Scaling (σαs = 0.5). (c) Permutation (NS = 12). (d) Magnitude Warping
(σM = 0.1,M = 4). (e) Window Slicing (RWS = 0.6). (f) Window Warpping
(RWW = 0.5)

.

the relationships among the data (Patro and Sahu, 2015). Here, we utilise the Min-Max

normalisation technique for the pooled synthetic data set DA according to the following

equation:

dnij =
daij − damin

damax − damin

, daij ∈ DA (3.5)

where dnij is the synthetic data after normalisation, damin and damax are the minimal and

maximal value among the pooled synthetic data before normalisation respectively.

The moving window method is used as a data preparation strategy, rather than a

prediction model itself. It constructs training samples by sliding a fixed-size window
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Figure 3.3: Illustration of moving window method

over the historical time series to create multiple input–output pairs. This allows the

model to incorporate the most recent information and simulate dynamic updates in a

rolling prediction setting. A sample generated by the moving window method can be

described as the previous l data points used to predict the next data points at time t.

The moving window method is used for each synthetic data set separately. The whole

process of the moving window method is described in Figure 3.3, where the moving

window length l = 4, indicating the previous four data points are set as the input data

for the DL model and the next data point is the corresponding output value. The

pooled synthetic samples generated moving widow are denoted in the form of pairs

{(xsi , ysi ), 1 ≤ i ≤ J}, where xsi is the input value for prediction from the ith synthetic

sample after data pre-processing, ysi is the associated output value, J is the size of the

synthetic samples after pre-processing. It is worth noting that all of the data used in the

moving window method come from the pooled synthetic data set after normalisation.

We also define the real observations after pre-processing as {(xri , yri ), 1 ≤ i ≤ K},

which is the pre-processed real samples, where (xri , y
r
i ) is the ith real sample after pre-

processing.

After normalisation and the moving window method, the pooled synthetic samples

still need to be properly selected and assigned weight before being treated as the training
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data set. The details of data dropout and reweight will be discussed in the following.

3.2.3 Sample dropout and reweight

Sample dropout

The pooled synthetic samples are generated by multi DA methods that may have dif-

ferent contributions to the prediction task. Thus, the quality of these pooled synthetic

samples is unknown for the prediction task. Before treating these synthetic samples as

the training data set, unfavorable samples should be removed considering the negative

influence on the prediction accuracy of real data. In this Chapter, we leverage the in-

fluence function to pick up the subset of pooled synthetic samples and then reassign the

weight for each synthetic sample. We use the influence function (Cook and Weisberg,

1982) to evaluate the influence of deleting a synthetic sample on the prediction accuracy

of the real data set. In the previous study, the influence function has been utilised to

evaluate the effect of upweighting and perturbing a training input on the model param-

eters and the loss of test data (Koh and Liang, 2017). Moreover, conjugated gradients

and stochastic estimation have been developed to reduce the computational burden for

calculating the Hessian matrix in the influence function. In this Chapter, we compute

the influence of dropping each synthetic sample on the prediction accuracy of the real

sample set and then delete the top negative samples after ranking their impact.

Let fθ(x) be our baseline DL prediction model, θ the parameter of the model,

L(fθ(x)) the loss function between the true value and the predicted value. The influence

of dropping the jth synthetic sample (xsj , y
s
j) on the kth real sample (xrk, y

r
k) is given as

Ij,k = L(fθ(x
r
k))− L(fθ′(x

r
k)) (3.6)

where θ is the optimal parameter that minimises the loss function θ = argmin
θ

1
J

∑J
i=1 L(fθ(x

s
i)),

and J is the total number of the synthetic samples after pre-processing. Denote

θ′ as the optimal DL model parameter by removing the synthetic sample (xsj , y
s
j),

θ′ = argmin
θ

1
J

∑J
i=1,i ̸=j L(fθ(x

s
i)). However, one challenge lies in the computational

efficiency to remove the data point and then retrain the model. Following the devel-
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oped influence function (Koh and Liang, 2017), the effect of dropping the jth synthetic

sample (xsj , y
s
j) on the loss of predicting the kth real sample (xrk, y

r
k) can be written as

Ij,k = −▽θ L(fθ(x
r
k))

TH−1
θ ▽θ L(fθ(x

s
j)) (3.7)

whereHθ =
1
J

∑J
i=1▽2

θL(fθ(x
s
j)) is Hessian matrix which is positive define. ▽θL(fθ(x

s
k))

represents how the synthetic sample influences the model parameters during training,

and ▽θL(fθ(x
r
k)) captures how sensitive the real sample’s loss is to changes in those

parameters. The inverse Hessian H−1
θ adjusts for the curvature of the loss surface,

ensuring the direction and magnitude of influence are properly scaled.

In order to enhance the efficiency to calculate the influence function, Hessian-vector

products is applied to avoid directly calculating H−1
θ . Let stest = H−1

θ ▽θL(fθ(x
r
k)) and

the influence can be rewritten as Ij,k = −stest ·▽θL(fθ(x
s
j)). stest can be approximating

by

stest ≡ argmin
p

(pTHθp−▽θL(fθ(x
r
k))

Tp). (3.8)

This is a convex quadratic problem where p is the solution vector that approximates

H−1
θ ▽θ L(fθ(x

r
k)). This problem can be efficiently solved using conjugate gradient

methods, leveraging automatic differentiation frameworks that support Hessian-vector

products without constructing the full Hessian (Martens et al., 2010).

The influence of removing one synthetic sample (xsj , y
s
j) on the whole real data set

{(xri , yri ), 1 ≤ i ≤ K} can be summed as Ij,K =
∑K

i=1 Ij,k. We sort the influence values

in ascending order, then delete the top negative synthetic samples that might reduce

the prediction accuracy on real data. Besides, in order to choose a validation set to

reweight the synthetic samples, we collect the top positive ones that are helpful in the

prediction of real samples. After sorting the pooled synthetic samples according to the

influence function, the synthetic samples {(xsi , ysi ), 1 ≤ i ≤ J} after dropout the top J ′

negative synthetic samples are defined as {(xdi , ydi ), 1 ≤ i ≤ J − J ′}.
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Sample reweight

Traditionally, training a DL model aims to minimise the expected loss in the training

samples, where all the samples are of the same importance. However, the synthetic data

generated from different DA approaches have different influences on the performance of

predicting performance. Thus, we need to reweight the synthetic samples to highlight

the important samples before being used in the pretraining and transfer learning stage.

The objective for a DL model with weighted loss in the synthetic samples {(xdi , ydi ), 1 ≤

i ≤ J − J ′} after dropout can be written as

θ∗(w) = argmin
θ

J−J ′∑
i=1

wiL(fθ(x
d
i )) (3.9)

where wi is the weight of the i
th synthetic sample and

∑J−J ′

i=1 wi = 1. Besides, we select

the top V positive influential samples by using the influence function as the validation

set. Since these positive samples are most responsible for the prediction and can be

used to guide the reweight process. The result of the optimal wi can be obtained by

minimising the loss on the validation data set {(xvi , yvi ), 1 ≤ i ≤ V }. The optimal w∗ is

based on the performance of the validation set:

w∗ = argmin
w≤0

1

V

V∑
i=1

L(fθ∗(w)(x
v
i )) (3.10)

As can be observed, the above is a complex and time-consuming two-loop opti-

misation process. A single loop optimisation was proposed in the mini-batch data

{(xdi , ydi ), 1 ≤ i ≤ n} from the pooled synthetic samples after dropout and {(xvi , yvi ), 1 ≤

i ≤ v} from the validation data set based on single gradient descent step at step p,

which can be utilised to update the parameter θ as (Alessandri and Gaggero, 2017):

θp+1 = θp − β ▽ (
1

n

n∑
i=1

(fθ(x
d
i ))) (3.11)

where β is the step size, n is the mini-batch size of synthetic data and n≪ J − J ′, v is

the mini-batch size of validation data set and v ≪ V . By perturbing the weight by for
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each synthetic sample Lδi(fθ(x
v
i )) = δiL(fθ(x

v
i )), then the sample weight W

′
i,p at step

p without normalisation can be estimated by single descent step in the mini-batch as

(Ren et al., 2018):

W
′
i,p = −ϵ

∂

δi,t

1

v

v∑
i=1

L(fθp+1(x
v
i ))

∣∣∣∣
δi,p=0

(3.12)

where ϵ is the descent step size. In the case where Wn,p is negative, we can use Wi,p = 0

instead to diminish the negative effect on the weight of other samples. In order to

normalise the weight set, we define Wi,p =
W

′
i,p∑m

i W
′
i,p

. After optimising the weight for

P steps, the final weight Wi,P can be obtained. The detailed computation graph of

reweight is given in Figure 3.4, which can be concluded as running the left graph firstly

to train the LSTM model and then using backward automatic differentiation to make a

second-order gradient. The pseudo-code of the sample reweight algorithm can be found

in Algorithm 1.
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Figure 3.4: The single loop computation graph for the reweight process

3.2.4 Transfer learning scheme

By adapting the knowledge learned in a similar model, TL has been recognised as an

effective approach to learn a DL model in the presence of insufficient data. Instance

transfer, feature-based transfer, parameter transfer, and knowledge transfer are the
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Algorithm 1: Data reweight algorithm

Initialise: Initialised DL model parameter θ0,
mini batch size of pre-processed synthetic samples after dropout n,
mini batch size of pre-processed synthetic samples with top m positive
influence,
pre-processed synthetic samples after dropout {(xdi , ydi ), 1 ≤ i ≤ J − J ′},
pre-processed synthetic samples with high positive influence
{(xvi , yvi ), 1 ≤ i ≤ V }
for t = 0...T − 1 do

{(xdi , ydi ), 1 ≤ i ≤ n} ← GetMiniBatch({(xdi , ydi ), 1 ≤ i ≤ J − J ′})
{(xvi , yvi ), 1 ≤ i ≤ v} ← GetMiniBatch({(xvi , yvi ), 1 ≤ i ≤ V })

end
for i = 1...n do

ŷdi ←− Forward (xdi , y
d
i , θt)

end

ϵ ← 0; Ld ←
∑n

i=1 ϵiL(fθt(x
d
i ))

∇θt ← BackwardAD(Ld,θt)
θ̂t ← θt − β∇θt

for i = 0...m do

ŷvi ←− Forward (xvi , y
v
i , θ̂t)

end
Lv ←

∑m
i=1 ϵiL(fθ̂t(x

v
i ))

∇ϵ← BackwardAD(Lv,ϵ)
W ′ = max(−∇ϵ, 0); W = W ′∑m

i W ′

L̂d ←
∑i=n

i=1 WiL(fθ̂t(x
d
i )

∇θt ← BackwardAD(L̂d,θt)
θt+1 ← OptimiserStep(θt,∇θt)

Output: W
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most commonly used methods in TL (Tan et al., 2018). In our method, one of the

key issues is to transfer the knowledge from the pre-trained neural network using the

synthetic model to the real data. Thus, instead of pooling the real data and synthetic

data directly, applying TL scheme is effective to borrow the knowledge from real data

to the DL process trained with augmented data.

In the field of TL, a domain D generally consists of two elements: the feature space

X and the corresponding probability distribution P (x), where the input x ∈ X. The

domain can be denoted as D = {(X,P (x))}. In a traditional TL process, the data sets

are usually segmented into two domains: source domain and target domain. The two

domains are generally with different probability distributions Dsource ̸= Dtarget. Each

task T consists of two components: the label space y and the predictive model f(·).

Thus the task can be represented as T = {(y, f(·))}. Considering the two different

domains, the objective of TL is to improve the model performance of target predictive

function ftarget(·) in Dtarget by utilising the knowledge in Dsource and Tsource.

Furthermore, recent evidence indicates that the transferability extracted from dif-

ferent layers can capture the latent features from general to specific when the layer

goes deeper (Goodfellow et al., 2016). Four schemes have been proposed for RNNs in

small data amounts to achieve fast transfer. In the proposed method, we develop a

novel architecture for LSTM with 3 LSTM residual layers and 2 dense layers. Two

stages are involved in the proposed TL scheme. Firstly, in the pre-train stage, we use

synthetic samples after dropout to train the LSTM model with weight obtained in the

sample reweight stage. Then, in the transfer stage, we freeze the trainable parameters

in the top 3 LSTM residual layers, and then the dense layers are re-trained with a small

learning rate. Besides, the synthetic samples after dropout are regarded as the source

domain Dsource : {(xdi , ydi ), 1 ≤ i ≤ J − J ′} to pre-train the LSTM model, and the real

samples are regarded as the target domain Tsource : {(xri , yri ), 1 ≤ i ≤ K} that faces the

practical prediction problem. The detailed transfer scheme is presented in Figure 3.5.
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Figure 3.5: The detailed transfer scheme for LSTM structure

3.3 Numerical experiments

3.3.1 Simulation settings

The Wiener process has been widely applied in degradation modelling due to its math-

ematical property of independent increments. In this section, we leverage the Wiener

process to simulate the degradation process, which is used to indicate the variation of

health indicator H(t). Assume that during the degradation process, the health indica-

tor H(t); t ≥ 0 is modelled as a Wiener process and formulated as:

H(t) = h0 + µt+ σBB(t)

where h0 is the initial value of the health indicator, µ is the drift coefficient describing

the rate of degradation, σB is the diffusion coefficient and B(t) is the standard Brownian

motion that represents the stochasticity of the degradation process. In order to anal-

yse the performance of different prediction methods, we simulate the values of health

indicator under different µ and σB, where µ ∈ {0.1, 0.2, 0.3, 0.4} and σ ∈ {1, 2, 3, 4}. In

total, we generate 16 degradation curves in the time series form that follow the Wiener
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process with different µ and σB. For each degradation curve, 100 time series data are

randomly generated, as presented in Figure 3.6.
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Figure 3.6: Illustration of simulated health indicator under different combinations of µ
and σB. (a) Simulated data follow the Wiener process with µ = 0.1, σB ∈ {1, 2, 3, 4}.
(b) Simulated data follow the Wiener process with µ = 0.2, σB ∈ {1, 2, 3, 4}. (c)
Simulated data follow the Wiener process with µ = 0.3, σB ∈ {1, 2, 3, 4}. (d)
Simulated data follow the Wiener process with µ = 0.4, σB ∈ {1, 2, 3, 4}.

In the data preprocessing stage, the moving window length l is set as 4, which means

the previous 4-day observations are used to predict the value of the fifth day. After

data preprocessing, 80% of the simulated samples are used as the training samples for

data augmentation, reweight and transfer learning, and 20% of the simulated samples

are regarded as the test samples to show the performance of the prediction methods.

Jittering, scaling, permutation, magnitude warping, window slicing, and window

warping are used as data augmentation methods to extend the simulated data. Pa-

rameters of each augmentation method can refer to the existing research (Fawaz et al.,

2018). The parameters of each method are given in Table 3.1.

During the data dropout and reweight process, after sorting the synthetic samples
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Table 3.1: Parameters of the augmentation methods

Methods Tunable Parameters

Jittering σξ ∈ {0.03, 0.06, 0.09}
Scaling σαs ∈ {0.05, 0.1, 0.15, 0.2}
Permutation NS ∈ {5, 6, 7, 8, 9}

Magnitude warpping
σM ∈ {0.1, 0.2, 0.3}
M ∈ {4, 5}

Window slicing RWS ∈ {0.5, 0.6, 0.7, 0.8, 0.9}
Window Warping RWW ∈ {0.05, 0.1.0.15, 0.2}

by the influence values, we remove the last 10% samples and select the top 10% samples

to guide the data reweight. Given the LSTM’s demonstrated ability to handle long-

term dependencies in time series data, it is employed as the baseline model (Xia et al.,

2020). Adaptive Moment Estimation is the optimisation method to minimise the square

error loss during the training process in this work. Table 3.2 shows the structure of

the baseline model, which consists of LSTM layers followed by Feedforward Neural

Network (FNN) layers. We use the Rectified Linear Unit (ReLU) and Hyperbolic

Tangent (Tanh) functions as activation functions in different layers.

Table 3.2: Structure of the baseline LSTM

Model Lay No. Layer type Neurons Activation

LSTM

1 LSTM 128 ReL)
2 LSTM 128 ReLU
3 LSTM 128 ReLU
4 FNN 16 Tanh
5 FNN 1 Tanh

3.3.2 Evaluation criteria

Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE)

are two widely employed to measure the differences between the predicted value and

observed value, and therefore are used to evaluate the prediction performance of the

proposed approach. The RMSE is defined as follows:

RMSE =

√√√√ 1

Nt

Nt∑
i=1

(yti − fθ(x
t
i))

2 (3.13)
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where yti represents the real observations in the test data set after pre-processing, fθ(x
t
i)

represents the output of the prediction model and Nt is the total number of the test

samples. The definition of MAPE is given as

MAPE =
100%

Nt

Nt∑
i=1

|yti − fθ(x
t
i)|

yti
(3.14)

Clearly, the smaller the RMSE and MAPE, the better the performance of a given

prediction method. In addition, each experiment is repeatedly verified 20 times to elim-

inate the effects of stochasticity and local minimal problems in DL and ML algorithms,

and we calculate the mean values and standard deviation (Std) of RMSE and MAPE.

3.3.3 Comparisons

Six prediction algorithms including ARIMA, Random Forest Regressor (RFR), Gra-

dient Boosting Machine (GBM), Light Gradient Boosting Machine (LGBM), eXtreme

Gradient Boosting (XGB) and Least Absolute Shrinkage and Selection Operator (LASSO)

are conducted to compare the performance of the DA methods and the transfer learn-

ing. ARIMA is a recognised statistical method to predict time series data and it will be

used for comparison to illustrate the effectiveness of the DA-powered ML algorithms.

RFR, GBM, LGBM, XGB and LASSO are typical ML algorithms utilised in both re-

gression and classification tasks, and LSTM is the baseline DL model adopted in this

Chapter. The parameters in these algorithms can be selected by the cross-validation

method. The RMSE and MAPE of different prediction methods for the simulated

health indicator data are shown in Table 3.3. Since each run of the ARIMA model

returns the same performance, the Std values of RMSE and MAPE in ARIMA are not

shown. Besides, the predicted value of LGBM and XGB remains the same in the result

because of overfitting, the Std values of RMSE and MAPE are also not given.

The highlighted numbers are the smallest mean values of RMSE and MAPE. ARIMA

shows the best performance on the prediction of the simulated data with µ = 0.1, σB = 1

and LSTM ADRT is very close to ARIMA regarding the mean of RMSE and MAPE.

For other simulated data, LSTM ADRT shows the smallest mean value of RMSE and
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Table 3.3: RMSE and MAPE of different prediction methods for simulated data the
under combinations of σB and µ

σB = 1 σB = 2 σB = 3 σB = 4
RMSE MAPE(%) RMSE MAPE(%) RMSE MAPE(%) RMSE MAPE(%)

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

µ = 0.1

ARIMA 1.122 / 0.890 / 1.562 / 0.998 / 3.554 / 2.567 / 5.418 / 2.747 /
RFR 2.656 0.049 2.075 0.047 2.027 0.052 1.460 0.049 5.592 0.238 4.030 0.237 9.873 0.161 5.887 0.097
GB 2.506 0.031 1.936 0.027 2.860 0.052 2.153 0.039 6.201 0.007 4.521 0.007 10.803 0.015 6.298 0.012
LGBM 3.111 / 2.469 / 1.524 / 0.923 / 8.801 / 6.737 / 15.021 / 9.148 /
XGB 2.519 / 1.947 / 2.489 / 1.862 / 6.6410 / 4.998 / 10.460 / 6.164 /
LASSO 1.659 0.005 1.276 0.005 1.263 0.002 0.733 0.002 4.033 0.019 2.829 0.016 5.590 0.020 2.889 0.013
LSTM 2.519 0.095 1.948 0.085 1.511 0.064 1.029 0.080 3.415 0.192 2.372 0.098 7.202 0.486 4.328 0.306
LSTM ADRT 1.135 0.035 0.893 0.038 1.243 0.030 1.004 0.072 3.013 0.021 2.134 0.020 4.937 0.222 2.625 0.195

µ = 0.2

ARIMA 1.204 / 0.950 / 3.095 / 2.436 / 6.184 / 3.748 / 3.538 / 3.182 /
RFR 1.165 0.029 0.953 0.029 3.613 0.052 2.784 0.041 12.507 0.360 8.493 0.260 2.951 0.088 2.361 0.065
GB 1.245 0.016 0.973 0.013 4.384 0.025 3.522 0.025 15.907 0.107 10.956 0.077 3.294 0.050 2.360 0.044
LGBM 1.713 / 1.397 / 5.256 / 4.047 / 14.973 / 10.282 / 3.393 / 3.149 /
XGB 1.202 / 0.932 / 4.283 / 3.356 / 14.419 / 9.930 / 3.143 / 2.499 /
LASSO 0.822 0.000 0.643 0.000 3.196 0.005 2.505 0.003 5.931 0.031 4.005 0.025 2.978 0 2.597 0
LSTM 0.928 0.033 0.732 0.026 2.877 0.063 2.392 0.025 7.436 0.370 4.945 0.250 2.964 0.043 2.608 0.026
LSTM ADRT 0.819 0.010 0.621 0.020 2.794 0.040 2.372 0.022 5.227 0.204 3.400 0.146 2.860 0.046 2.593 0.020

µ = 0.3

ARIMA 1.297 / 0.873 / 3.427 / 2.047 / 3.461 / 2.415 / 3.996 / 2.964 /
RFR 4.985 0.041 3.874 0.037 15.139 0.132 8.377 0.085 4.454 0.112 3.194 0.079 3.364 0.130 2.604 0.091
GB 4.962 0.033 3.844 0.029 14.602 0.042 8.012 0.030 5.138 0.074 3.695 0.056 4.278 0.062 3.111 0.039
LGBM 5.769 / 4.588 / 17.420 / 10.131 / 4.068 / 3.266 / 4.303 / 2.945 /
XGB 4.958 / 3.842 / 15.898 / 8.838 / 4.607 / 3.364 / 3.379 / 2.540 /
LASSO 1.686 0.011 1.260 0.007 5.392 0.006 3.226 0.004 3.485 0.003 2.899 0.002 3.940 0.014 3.024 0.011
LSTM 3.513 0.052 2.744 0.048 8.485 0.396 4.817 0.247 3.271 0.040 2.576 0.101 4.006 0.138 3.076 0.112
LSTM ADRT 1.197 0.079 0.873 0.055 3.407 0.227 1.901 0.133 3.134 0.023 2.356 0.033 3.908 0.054 2.928 0.097

µ = 0.4

ARIMA 1.305 / 0.784 / 2.687 / 1.580 / 4.356 / 2.741 / 3.400 / 2.044 /
RFR 1.690 0.026 1.041 0.022 7.044 0.093 4.312 0.064 6.432 0.053 3.282 0.038 7.026 0.154 3.293 0.090
GB 2.322 0.012 1.556 0.008 5.510 0.032 3.251 0.027 5.821 0.007 2.934 0.014 8.184 0.082 4.258 0.055
LGBM 3.773 / 2.424 / 7.479 / 4.548 / 10.761 / 6.370 / 8.013 / 4.039 /
XGB 1.773 / 1.084 / 8.533 / 5.287 / 6.388 / 3.156 / 9.000 / 4.763 /
LASSO 1.945 0.008 1.234 0.006 4.446 0.005 2.644 0.002 4.319 0.032 2.317 0.021 4.505 0.020 2.534 0.011
LSTM 1.452 0.067 0.825 0.044 4.039 0.164 2.329 0.130 4.081 0.089 2.348 0.036 4.502 0.237 2.442 0.083
LSTM ADRT 1.251 0.034 0.751 0.008 2.676 0.088 1.590 0.052 3.633 0.076 2.138 0.026 3.296 0.061 1.945 0.045

MAPE. The comparative results indicate that the proposed approach is superior in

most cases, especially for the degradation processes with high stochasticity. Tradi-

tional data-driven methods such as ARIMA, work well in the scenarios of degradation

with less volatility.

3.3.4 Analysis of moving window length

In order to analyse the influence of different moving window length l on the predic-

tion performance, we choose the simulated data generated by the Wiener process with

µ = 0.4, σB = 4 for the moving window length l equals to 4, 8 and 12. Table 3.4

presents the mean and Std of RMSE and MAPE of the 8 prediction methods on the

test samples for different moving window lengths, wherein the highlighted values show

the best performance for the corresponding settings. It can be observed that the mean

of RMSE and MAPE shows an increasing trend with the increase of l in ARIMA

and LSTM ADRT. LASSO has the smallest Std among these prediction methods.
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Table 3.4: RMSE and MAPE of different prediction methods for simulated data
(µ = 0.4, σ = 4) with moving window length l = 4, 8, 12

l = 4 l = 8 l = 12

RMSE MAPE(%) RMSE MAPE(%) RMSE MAPE(%)
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

ARIMA 3.400 \ 2.044 \ 3.589 \ 2.068 \ 3.822 \ 2.103 \
RFR 7.026 0.154 3.293 0.090 6.815 0.235 3.123 0.119 6.621 0.234 2.978 0.087
GB 8.184 0.082 4.258 0.055 6.431 0.105 3.097 0.037 6.671 0.221 3.251 0.089
LGBM 8.013 \ 4.039 \ 7.795 \ 3.897 \ 6.545 \ 3.079 \
XGB 9.000 \ 4.763 \ 9.233 \ 4.512 \ 8.900 \ 4.167 \
LASSO 4.505 0.020 2.534 0.011 4.450 0.025 2.502 0.014 4.644 0.039 2.579 0.021
LSTM 4.502 0.237 2.442 0.083 4.490 0.196 2.425 0.041 4.803 0.073 2.460 0.041
LSTM ADRT 3.296 0.061 1.945 0.045 3.479 0.035 2.051 0.020 3.708 0.063 2.069 0.030
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Figure 3.7: RMSE and MAPE of LSTM ADRT for simulated data (µ = 0.4, σ = 4)
with moving window length l from 2 to 12

LSTM ADRT has smaller Std values compared with the LSTM baseline model. Note

that LSTM ADRT still shows the best performance in the mean values of RMSE and

MAPE compared with other prediction methods with different moving window lengths.

The detailed RMSE and MAPE of LSTM ADRT prediction with simulated data

generated by the Wiener process with µ = 0.4, σB = 4 under different moving window

lengths l from 2 to 12 are given in Figure 3.7. Both the RMSE and MAPE show

an increasing first and then decreasing trend with the increasing of moving window

length. When choosing moving window length l = 4, the LSTM ADRT shows the best

performance.
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3.3.5 Discussion

The comparative results demonstrate the effectiveness of the proposed LSTM ADRT

method across a range of degradation processes with varying levels of stochasticity.

When µ = 0.1 and σB = 1, ARIMA shows the best performance in terms of RMSE

and MAPE; however, the LSTM ADRT model achieves very close results, indicating its

capability to handle degradation scenarios with low volatility. For other combinations

of µ and σB, particularly under higher stochasticity levels, LSTM ADRT consistently

outperforms other ML and DL baselines, achieving the lowest RMSE and MAPE values.

These results highlight the robustness of the proposed method in capturing complex

degradation patterns where traditional methods such as ARIMA struggle due to the

increased uncertainty.

Further analysis on the influence of the moving window length, reveals that the

window size has a significant impact on prediction performance. Both RMSE and

MAPE exhibit a trend of initially increasing and then decreasing as the moving win-

dow length increases from 2 to 12. This behaviour suggests that an optimal window

length exists, balancing between capturing sufficient temporal information and avoid-

ing excessive noise. Specifically, a window length of l = 4 yields the best performance

for LSTM ADRT in the considered setting, achieving the lowest RMSE and MAPE

compared to other methods. It is also observed that LSTM ADRT maintains relatively

low standard deviations, indicating better stability across different window lengths.

Overall, the results validate the effectiveness of the data augmentation, selection,

and reweighting strategies in improving predictive performance. By managing the

quality of augmented samples, the LSTM ADRT model demonstrates generalisation

and robustness across varying degradation dynamics and data segmentation settings.

3.4 Illustrative example

3.4.1 Description of the example and data

In this section, an illustrative example from a wastewater treatment plant with a modi-

fied activated sludge process is used to show the prediction performance of the proposed
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Figure 3.8: Real observations of SVI values

method. One of the most common failures in a wastewater treatment process is sludge

bulking, which is caused by the imbalance of bacteria in the secondary clarifiers with

a rapid degradation trend (Liu et al., 2020). SVI is the health indicator to imply the

degradation degree and alarm the failure in advance. The values of SVI in this illustra-

tive example are collected daily with 213 observations in total. The data collected from

the operational process is given in Figure 3.8, which varies from 75mg/L to 253mg/L.

To implement the developed approach, the length of the moving window l is set as

4 days to make an illustration, which means that the SVI values of every four days are

utilised to predict the value of the fifth day. In order to show the effectiveness of the

proposed method, we split the real data set into two parts: 80% of the real data is used

for the DA and training process, and 20% is used for testing the performance of the

proposed method.

3.4.2 Experimental results and comparisons

Similar to the previous numerical experiments, six prediction algorithms including

Arima, RFR, GBM, LGBM, XGB and LASSO are conducted to compare the perfor-

mance of the DA methods and the transfer learning. Each algorithm runs repeatedly 20

times to show the performance. The mean and Std of RMSE and MAPE are calculated.

The results are shown in Table 3.5. It can be observed that the proposed enhancement
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framework LSTM ADRT shows the best performance among these methods, in terms

of the mean and Std values.

Table 3.5: Comparison of RMSE and MAPE among different prediction methods

Methods
RMSE MAPE(%)

Mean Std Mean Std

ARIMA 13.1248 / 4.6731 /
RFR 30.4910 0.5160 11.5360 0.2629
GB 19.7372 0.2340 6.64805 0.0753
LGBM 20.7906 / 6.9912 /
XGB 25.0841 / 8.7912 /
LASSO 13.1752 0.1938 4.6319 0.0934
LSTM 19.4894 0.1872 6.6509 0.0887
LSTM ADRT 12.4175 0.0297 4.4815 0.0097

The estimations of SVI based on the ARIMA, RFR, GBM, LGBM, XGB, LASSO,

LSTM and LSTM ADRT are also illustrated in Figure 3.9. Considering sludge bulking

as a soft failure in wastewater plants, defined by the SVI value exceeding 230 mg/L, we

note that the first instance of this condition occurs in the 173rd set of real data. In this

context, a soft failure implies that the system can still operate in the presence of the

failure but with an elevated risk of disrupting the operating process. By anticipating

the prediction value surpassing the threshold for soft failure, engineers can proactively

take corrective actions. Then we take the 173rd data point as the real soft failure data

point. Among these prediction methods, the proposed LSTM ADRT predicts the 176th

data point is the first time exceeding the soft failure threshold and the closest to the

real soft failure data point.

3.4.3 Effectiveness of multi DA methods

We also draw line graphics to compare the performance for predicting SVI values with

and without DA, as presented in Figure 3.10. It is obvious that the performance of

these ML methods is improved with the augmented data. One extreme example is the

LGBM, which fails to capture the dynamic behaviour of SVI. The flat line of LGBM

shown in Figure 3.10c indicates the poor performance of LGBM when training only

with the real data set. However, the performance of LGBM with augmented data
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Figure 3.9: Estimated SVI value of test samples by different prediction methods

(LGBM A) improves compared to without augmented data, and the errors between

the real observations and predicted values are narrowed as shown in Figure 3.10c.

The details of RMSE and MAPE for each method with augmented data are shown

in Table 3.6. Compared with Table 3.5, the six methods trained with augmented data

outperform those with real data set. For example, the mean values of RMSE and

MAPE based on RFR that trained with augmented data (RFR A) are 13.6273 and

5.0433%, which is improved greatly from 30.4910 and 11.5360% when the RFR trained

with limited real data set.

Table 3.6: RMSE and MAPE of different prediction methods with augmented data

Methods
RMSE MAPE(%)

Mean Std Mean Std

RFR A 13.6273 0.0829 5.0433 0.0257
GBR A 18.2938 0.0521 7.6743 0.0307
LGBM A 18.4046 / 7.3856 /
XGB A 19.4645 / 8.2831 /
LASSO A 12.9232 0.1735 4.5617 0.0824
LSTM A 13.0561 0.4023 4.7465 0.2038
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Figure 3.10: The effect of augmented data for the SVI prediction under different
prediction methods
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3.4.4 Performance of TL scheme

As discussed, the developed approach consists of four techniques: DA methods, sample

dropping out, sample reweight and TL, to improve the performance of DL algorithms

with limited observations. In order to illustrate the effectiveness of the TL scheme,

we conduct TL separately on LSTM, LSTM with augmented data (LSTM A), LSTM

with augmented data and data dropout (LSTM AD), LSTM with augmented data and

reweight (LSTM AR), and LSTM with augmented data, data dropout and reweight

(LSTM ADR). The mean values and Std of RMSE and MAPE for running 20 times

are given in Table 3.7. To give a straightforward view of the effectiveness of TL, the

RMSE and MAPE before and after TL are sketched in Figure 3.11. It can be observed

that the TL scheme can effectively decrease the fluctuation and improve the stability

of algorithms. Besides, LSTM ADRT achieves the highest performance among these

methods with respect to the mean and Std of MAPE. In terms of RMSE, LSTM ADT

has the smallest mean value and LSTM ARRT has the smallest Std value, which in-

dicates that both TL and DA methods can be used for DL algorithms with limited

observations.

Table 3.7: The transfer effects on RMSE and MAPE

Methods
RMSE MAPE(%)

Mean Std Mean Std

LSTM 19.4894 0.1872 6.6509 0.0887
LSTM A 13.0561 0.4023 4.7465 0.2148
LSTM AD 12.5047 0.1669 4.5071 0.0312
LSTM AR 12.4548 0.0919 4.5071 0.0690
LSTM ADR 12.6871 0.0990 4.4870 0.0341
LSTM AT 12.5736 0.1009 4.6072 0.0314
LSTM ADT 12.3983 0.0397 4.5411 0.0313
LSTM ART 12.4601 0.0346 4.4921 0.0161
LSTM ADRT 12.4175 0.0297 4.4815 0.0102
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Figure 3.11: Comparing MAPE and RMSE of each method with and without transfer
learning

3.4.5 Sensitivity analysis

3.4.6 Effects of the size of real samples

The proposed method aims to extend the ability of DL algorithms in the limited data

scenario. In order to illustrate the effect of sample size, we adjust the size of the original

data to the first 50 days and first 100 days. Similarly, 80% of the data is used to train

the model and 20% is used to test the performance of the proposed method. Each

method run 20 times to test the mean and Std values considering the randomness of

the models.

Table 3.8 shows the mean value and Std of RMSE and MAPE under different

methods with 50 real data and 100 real data that are collected in the first 50 days and

100 days. As for 50 real data, it can be observed that LSTM has poor performance with

RMSE over 30 and MAPE over 20%. The DA techniques are effective in reducing the

prediction error by nearly 40% in RMSE and MAPE. Besides, the proposed framework

LSTM ADRT achieves the best performance on RMSE value in the scenario of 50

samples.

Similarly, DA techniques can improve the performance of the LSTM model when

the sample size is 100. The prediction ability of LSTM with the real data set of 100

days is better than the 50-day data set, which is 10.7751 on RMSE and 6.339% on
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Table 3.8: RMSE and MAPE of different methods with 50 samples and 100 samples

Methods
Sample size = 50 Sample size = 100

RMSE MAPE(%) RMSE MAPE(%)
Mean Std Mean Std Mean Std Mean Std

LSTM 31.7497 7.7497 20.5531 4.4661 10.7751 5.1204 6.3399 2.2772
LSTM A 17.3895 0.9755 11.5546 0.7544 8.1537 0.6045 4.8663 0.4454
LSTM AD 16.0429 0.7075 11.3628 0.5066 7.5018 0.4930 4.3941 0.3461
LSTM AR 14.4203 0.4104 9.7334 0.2593 6.3905 0.1410 2.6178 .0218
LSTM ADR 14.3929 0.1274 8.6970 0.2396 6.2061 0.0695 2.6712 0.0211
LSTM AT 15.3628 0.7830 8.1850 0.4287 7.0031 0.7131 4.0373 0.5087
LSTM ADT 14.9845 0.8878 8.8311 0.4564 6.7965 0.3854 3.8616 0.2249
LSTM ART 14.4390 0.1238 8.7174 0.2148 6.1570 0.1807 2.7219 0.1096
LSTM ADRT 14.3880 0.0731 8.6386 0.1761 5.9628 0.0248 2.8707 0.0762

MAPE. The performance of LSTM is improved by about 20% with the enhancement of

DA techniques. It indicates that the size of the data set can influence the performance.

Besides, we can see that LSTM is improved gradually in the stacking process of data

dropping, reweighting and TL scheme. In conclusion, LSTM ADRT achieves the best

performance on the mean values and their Std values of RMSE.

To illustrate the variations of the outputs for the 20 runs using 50 real samples,

we plot in Figure 3.12a the RMSE and MAPE for each run with respect to various

techniques: sample dropout, reweight, TL and their combinations. It can be observed

that the dispersity, the mean value and Std of the outputs are reduced. This is due to

the fact that the data reweight is continuously optimising the training data generated

by multi-DA methods and reassigning the weight according to the rank of the influence

for real data prediction accuracy.

The RMSE and MAPE for the repeated 20 experiments using 100 real samples are

given in Figure 3.12b. It can be seen that reweight is the most effective method among

these three methods when applying them separately. Besides, when stacking these

methods, the method LSTM ADRT shows the lowest RMSE value while LSTM AR

has the lowest MAPE value. One of the possible reasons is that the objective function

for the LSTM when training is minimising the square error between the predicted values

and observations.

Overall, the capability of LSTM is greatly influenced by the size of the training data
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Figure 3.12: Outputs of RMSE and MAPE for each run (a) with 50 samples. (b) with
100 samples.

set, since the 100-day data set shows better performance on LSTM when training with

50-day data set and DA techniques can improve the original LSTM with large data

size. Moreover, the stacking process shows improvements when applying each method

and its combinations. Among these comparisons, LSTM ADRT always shows the best

performance in decreasing RMSE values.

Effects of Data Dropout

As previously discussed, the top negative influential samples are removed since they

may lead to a decrease in the prediction accuracy of the health indicator. In this section,

we aim to analyse the effects of the delete ratio on the performance of LSTM ADRT.

Moreover, in order to illustrate the effectiveness of dropout according to the rank

of influence function, we also make a comparison with the method of deleting data

randomly with a similar delete ratio in the proposed method.

Figure 3.13 gives the results of different delete ratios on the proposed method

LSTM ADRT from 0 to 50% with 5% as the step size in the bar plot. The result
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of deleting data randomly is also shown in Figure 3.13 in the line graph. It can be

concluded that random delete shows a worse performance compared to removing data

according to the influence value. Besides, the RMSE and MAPE with different delete

ratios show a trend of first falling and then rising, indicating that there is an optimal

delete ratio. Unfortunately, we cannot provide a universal conclusion on the optimal

delete ratio. In this illustrative example, the delete ratio of 20% shows the best perfor-

mance.
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Figure 3.13: The effects on RMSE and MAPE of different sizes of delete samples and
random delete samples

Effects of Data Reweight

As stated previously, the top influential samples generated by DA techniques are se-

lected as the validation set to reweight the rest augmented samples. Thus, the size of

the samples used as the validation set is one of the essential parameters to explore the

effects on the results. In addition, we also explore the comparison between the top pos-

itive influential samples and randomly selected samples to illustrate the effectiveness of

the proposed approach.

Figure 3.14 shows the variation of RMSE and MAPE with the number of reweight

samples. The bar chart represents the results of reweight based on the influence func-

tion, while the dotted line stands for random reweight. It can be concluded that

reweighting using the top influential samples instead of random selection leads to su-

periority in all the given sizes.
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Figure 3.14: The effects on RMSE and MAPE of different size of influential samples
and randomly selected samples

3.4.7 Discussion

An illustrative example from a real wastewater treatment plant was conducted in this

section to illustrate the effectiveness of the proposed approach, which aimed to solve

the overfitting of DL algorithms due to insufficient observations in the degradation

prediction process. It shows that the proposed LSTM ADRT outperforms other classic

time series prediction methods in terms of RMSE, MAPE. Experiments also indicate

the effectiveness of multi DA methods and the designed TL scheme. The classical

machine learning methods applied in this Chapter are improved with augmented data.

In addition, the designed TL scheme can effectively enhance the stability of the DL

algorithms.

In addition, extensive experiments were conducted to test the effects of multiple

elements, including the size of original samples, the delete ratio, and the validation

sample size. When modifying the actual sample size, we maintain the parameters for

augmentation methods unchanged, ensuring that the ratio of the augmented sample

size to the real sample size remains constant. In terms of the size of real samples,

more improvements by the proposed approach were observed with a smaller sample

size. When adjusting the delete ratio from 5% to 50%, it shows the best performance

when the delete ratio is 20%. Also, data dropout according to the rank of influence

function shows superior performance compared with random dropout. Similar to data

dropout, data reweight based on the rank of influence function illustrates its effective-
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ness compared with that based on randomly selected data.

Furthermore, in comparison with simpler time series forecasting methods such as

ARIMA, the proposed LSTM ADRT model demonstrates slightly improved predictive

performance, as evidenced by reductions in RMSE and MAPE metrics. When real-

world data are limited, the benefits of such models remain uncertain and context-

dependent. Although the improvements in this illustrative example are limited, the

proposed approach may offer advantages in scenarios where the degradation process

exhibits high variability.

3.5 Summary

This Chapter extends the applicability of DL algorithms in system degradation pre-

diction with limited observations. DA is used to increase the training sample size

and improve the performance of DL algorithms in degradation prediction. Multiple

DA methods, including jittering, scaling, window warpping, etc., are used to generate

synthetic data. Influence function is applied to drop out the synthetic samples that

decrease the prediction accuracy. Considering the importance of different synthetic

samples, gradient descent approach is used to reweight the selected synthetic samples

before channelling into the DL algorithms. In addition, in order to further improve

data efficiency, a TL scheme is designed to retrain the model with real samples. The

numerical experiment examines the performance of the proposed method under various

settings. The illustrative example conducted with a real data set from a wastewater

treatment process shows the improved performance of DL algorithms and illustrates the

effectiveness of the developed approach. The findings suggest that the proposed model

excels in accurately predicting degradation, even with limited real observations, when

compared to some state-of-the-art prediction methods. This is particularly evident in

cases where the degradation process exhibits high stochasticity.

While this study has successfully improved the performance of deep learning al-

gorithms in degradation forecasting with limited observations, more endeavours are

demanded to further explore the potential of the developed approach. In this study,

six augmentation methods were utilised; nevertheless, the impact of each augmentation
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method on real-data prediction accuracy remains unknown. In future research, there is

a need to explore the development of an instructive indicator to guide the selection of a

specific augmentation method. In the context of application, decision-makers encounter

challenges in efficiently utilising degradation prediction for informed decision-making,

such as scheduling predictive maintenance and allocating maintenance resources. Fur-

thermore, in the extension, the integration of health indicator prediction through the

developed approach could be explored as a means to guide the formulation of an optimal

maintenance policy.
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Chapter 4

A Data-Driven End-to-End

Preventive Maintenance Policy

with Varied Working Conditions

We investigate a data-driven preventive maintenance problem in which the underlying

failure distribution is unknown, but the past run-to-failure data and working conditions

can be observed. The traditional Estimate-Then-Optimise (ETO) framework decouples

the estimation process from optimisation to identify the optimal maintenance decisions.

However, this approach may lead to the propagation of estimation errors into the opti-

misation phase, affecting the overall efficacy of the decision-making process. To address

this issue, we propose an End-To-End (E2E) framework to directly suggest the optimal

preventive replacement time under specific working conditions, without relying on any

preconceived assumptions of the failure distribution. In the E2E framework, the his-

torical working condition contexts are treated as featured data and mapped with the

approximated optimal maintenance decisions obtained by minimising the data-driven

maintenance cost rate functions. These functions have been analytically validated to

closely mirror the actual maintenance cost rate function, ensuring reliability and accu-

racy. Subsequently, supervised learning algorithms are leveraged to train the structured

data that consists of the features and corresponding approximated optimal maintenance

decisions. This approach enables us to streamline the decision-making process, facil-
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itating rapid and automated maintenance directives for systems under both new and

previously observed conditions. Numerical experiments illustrate the superiority of the

proposed E2E framework over the traditional ETO approach, in the context of both

repairable and non-repairable systems.

4.1 Introduction

Effective maintenance decision-making is crucial in mitigating unplanned failures and

reducing economic losses across diverse sectors, including manufacturing, national in-

frastructure, and the automotive industry (Elwany and Gebraeel, 2008). A system’s

ageing process is influenced by its working conditions, including both the environmen-

tal and operating conditions (Martorell et al., 1999). The advent of the Internet of

Things has enabled the accumulation of extensive data on failure events, under varying

working conditions, highlighting the need for adaptive preventive maintenance policies

(Compare et al., 2019).

Consider the example of vehicle tyres, which are typically recommended for replace-

ment after about six years, irrespective of their visible conditions (Kalsher et al., 2005).

The research shows that tyres are more prone to failure under conditions like high-speed

operation or extreme temperatures, underscoring the importance of developing mainte-

nance strategies that are responsive to specific operational scenarios. Modern “smart”

tyres, equipped with sensors, offer valuable insights into conditions like temperature,

pressure, and speed (Garcia-Pozuelo et al., 2017). These data, combined with historical

time-to-failure records, are stored in cloud databases, presenting a complex challenge:

efficiently deriving maintenance decisions from vast datasets and intricate patterns.

Maintenance policies are broadly classified into two groups: TBM and CBM (Ah-

mad and Kamaruddin, 2012). Both policies aim to minimise the objective of interest,

such as minimisation of maintenance cost or maximisation of availability, to decide the

appropriate maintenance plan. The difference lies in their foundational data: TBM

depends on the relevant time-to-failure records, while CBM is guided by the degra-

dation behaviour and the condition monitoring data (de Jonge et al., 2017). Despite

the potential advantages of CBM, TBM continues to be used due to its straightforward
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implementation using existing time-to-failure data (de Jonge et al., 2015). The primary

goal of TBM is to identify the optimal time for Preventive Replacement (PR), guided

by objectives such as expected maintenance costs per unit time, and system availability.

This study focuses on the time-based preventive maintenance policy. The traditional

ETO procedure of preventive maintenance policy consists of two steps (Elmachtoub

et al., 2023): parameter estimation upon the relevant time-to-failure model, and the

optimisation procedure to determine the optimal PR time. During the estimation step,

typically it is assumed that the time to failure follows a distribution, such as the Weibull

or Gamma distribution (Ahmad and Kamaruddin, 2012). The contexts of working

conditions are modelled as covariates to describe the influence upon the ageing process.

For non-repairable systems, Cox PH regression models the relationship between the

covariates and the hazard rate (Thijssens and Verhagen, 2020). For repairable systems,

the number of recurrent failure events is modelled with a non-homogeneous Poisson

process. Cox Proportional Intensity (PI) function models the intensity of the recurrent

failures (Jiang et al., 2006). The estimated parameters of these models are then factored

into the optimisation model to determine the optimal maintenance policy.

However, this two-step method suffers from several shortcomings. First, it decouples

the estimation and optimisation stages, meaning that predictive models typically com-

press high-dimensional input features—such as contextual variables and uncertainty

indicators—into a single point estimate or simplified distribution. In doing so, high-

dimensional information is discarded during the optimisation stage (Qi et al., 2023).

Second, the objective function used in estimation (e.g., minimising prediction error)

is misaligned with the objective function used in optimisation (e.g., minimising cost,

risk, or regret). This misalignment means that even highly accurate forecasts may not

translate into good decisions (Donti et al., 2017). Third, in some cases, the underlying

data-generating process of time-to-failure is unknown or only partially observable. If

the estimation is inaccurate, especially due to model misspecification or sparse data,

then decisions derived from the estimated model may systematically deviate from the

true optimum. If the model error is small and the decision is not highly sensitive,

the performance loss may be negligible. However, in high-stakes or highly non-linear
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decision contexts, small model misspecifications might propagate into flawed decisions

(Elmachtoub and Grigas, 2022).

In this Chapter, we develop a data-driven E2E preventive maintenance policy that

handles features and does not require the knowledge of the underlying time-to-failure

model. Here, the term “features” is synonymous with covariates used to represent the

working conditions. Working condition features may include environmental variables

(e.g., temperature, humidity), operational load levels (e.g., pressure, speed, vibration),

or usage patterns (e.g., operating hours, duty cycles). These covariates are treated

as the input to the supervised learning model. We derive approximated maintenance

cost functions for both repairable and non-repairable systems to obtain data-driven

maintenance decisions for varied working conditions. For each working condition, we

utilise supervised learning algorithms to map the features of working conditions with

maintenance decisions. The E2E framework is a one-step method that aims to find the

near-optimal maintenance time for preventive maintenance policy based on the input

features. While this work represents the first exploration of one-step method in the

maintenance decision domain, the integration of estimation and optimisation has been

examined in feature-based inventory management and the newsvendor problem (Qi

et al., 2023; Ban and Rudin, 2019; Oroojlooyjadid et al., 2020).

Labelling the optimal PR time poses a challenge when applying the supervised learn-

ing algorithm, particularly in a data-driving setting where the true time-to-failure model

is unknown. We consider the scenario where historical time-to-failure data and features

can be collected. This work applies two supervised learning algorithms: LASSO and

Artificial Neural Network (ANN). LASSO is well-suited for tackling high-dimensional

linear problems, and ANN is suitable for handling non-linear and high-dimensional

data. The contribution of our work in relation to the existing literature can be sum-

marised in three aspects:

• We are the first to propose approximated maintenance cost rate functions for

repairable systems and non-repairable systems, enabling us to decide near-optimal

PR time.

• We theoretically establish the bound between the approximated maintenance cost
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rate and the true maintenance cost rate function, providing a theoretical guaran-

tee of the accuracy of our approach.

• We develop a data-driven E2E framework for preventive maintenance policy. The

optimal maintenance decisions are provided directly from the data. This frame-

work neither specifies the form nor estimates the parameters of the time-to-failure

model, thereby avoiding potential error propagation.

The remainder of this Chapter is organised as follows. Section 4.2 describes the preven-

tive maintenance problem and the conventional two-step ETO procedures. Section 4.3

presents an overview of the E2E framework for repairable and non-repairable systems,

followed by a discussion of preventive maintenance policy under time-varying working

conditions. Section 4.4 presents numerical experiments to illustrate the effectiveness

of the proposed E2E framework. Finally, the conclusion and future research directions

are provided in Section 4.5.

4.2 Problem description

In this Chapter, we focus on developing a preventive maintenance policy that takes into

account the varied working conditions for single-unit systems. A single-unit system is

defined as a system containing only one primary component or unit, such as a light bulb

or a pump in a water supply system. The reliability of the entire system depends solely

on this single unit. The examination of single-unit systems serves as a foundation for

understanding more complex configurations, including series, parallel, and redundant

systems (Wang, 2002). We will use the term “systems” to refer to the single-unit

systems in the following.

The main objective is to determine the optimal PR time while minimising the

maintenance cost rate, given a specific working condition. We use the term “features”

to refer to the covariates that describe the working conditions. We assume the relevant

features have been identified and appropriate historical time-to-failure data has been

collected. Furthermore, we assume that the types of features are stable and the values

are constant.
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The preventive maintenance policy differs based on whether the system is repairable

or non-repairable. Repairable systems are subject to repair intended to restore func-

tionality and so can experience recurrent failures. On the other hand, non-repairable

systems experience a single failure event and will have to be replaced upon failure. In

the following sections, we introduce the preventive maintenance policy for repairable

systems and non-repairable systems, respectively.

4.2.1 Preventive maintenance policy for repairable systems

For repairable systems, failures are recurrent events, and as a result, multiple failure

times are observed for each system. Denote the arrival time of failures during a decision

interval under working condition i as zi = [zijk, ..., zijk], where 1 ≤ i ≤ M, 1 ≤ j ≤

Ji, 1 ≤ k ≤ Kij , M is the number of working conditions, Ji is the number of systems

operated under working condition i, and Kij is the total number of failures of the jth

system under working condition i. The accumulative time-to-failure data of repairable

systems with working conditions is denoted as XM = [(x1, z1), ..., (xM , zM )], where xi

is the feature vector of working condition i, xi ∈ Rp, and p indicates the number of

features.

We consider two types of maintenance actions for repairable systems: PR and

minimal repair. If the system fails during the decision-making interval, a minimal

repair can restore the system to an “as-bad-as-old” state. This indicates that the

system will be restored to the operational state immediately before failure, and the

failure intensity will remain identical. By contrast, PR can make the system “as-

good-as-new”, and the failure intensity reverts to the initial level when the system was

installed. The downtime duration of both minimal repairs and PR is assumed to be

negligible in relation to the operational time. The optimisation objective is to minimise

the cost rate per unit of time within a finite period. However, the maintenance time is

affected by other operating constraints such as resource availability, and therefore we

assume that the maintenance decision is within the interval
[
TRS
min, T

RS
max

]
, TRS

min > 0.
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The maintenance cost rate function is given by:

CRS(t|x) =
cmE [N(t|x)] + cp

t
, t ∈

[
TRS
min, T

RS
max

]
, (4.1)

where CRS(t|x) is the maintenance cost rate at time t, E [N(t|x)] denotes the expected

number of minimal repairs based on the vector of features x, cm and cp represent the

costs associated with each minimal repair and PR, cm < cp < ∞. When the failure

intensity m(t|x) is known, the expected number of minimal repairs is given by:

E[N(t|x)] =
∫ t

0
m(t|x)dt.

The optimal time for PR under working condition x is:

TM∗(x) = arg min
TRS
min≤t≤TRS

max

CRS(t|x). (4.2)

4.2.2 Preventive maintenance policy for non-repairable systems

In terms of non-repairable systems, we consider a scenario where there are Qi systems

observed under the same working condition i. The time to failure of systems observed

under working condition i can be represented as a vector ti = [ti1, ..., tiQi ]. Addition-

ally, for each set of time-to-failure observations ti, the corresponding q features are

known. The time-to-failure data set with working conditions can be represented as

SN = [(s1, t1), ..., (sN , tN )], where si is the feature vector and si ∈ Rq for i ∈ {1, ..., N},

N is the number of working conditions, and q denotes the number of features.

Since failure is a single event for a non-repairable system, the system can either

replace the failed system upon failure or at the optimal PR time. We assume both PR

and failure replacement recover the system to an “as-good-as-new” state with different

costs. Within the decision interval
[
TNRS
min , TNRS

max

]
, the preventive maintenance model

proposed to decide the optimal PR time while minimising the maintenance cost rate

function CNRS(t|s) is expressed as follows:

CNRS(t|s) =
cfF (t|s) + crR(t|s)∫ t

0 R(t|s)dt
, t ∈

[
TNRS
min , TNRS

max

]
, (4.3)
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where CNRS(t|s) is the maintenance cost rate at time t with the given feature vector

s for non-repairable systems. F (t|s) is the probability of failure at time t, R(t, s) is

the reliability at time t, and cr is the cost of preventive replacement and cf is the

cost of failure replacement, cr < cf < ∞. When the hazard rate λ(t|s) is known, the

reliability R(t|s) = exp
[
−
∫ t
x=t λ(x|s)dx

]
, thereby the cumulative probability of failure

F (t|s) = 1 − exp
[
−
∫ t
x=t λ(x|s)dx

]
. The optimal PR time within the decision interval

[TNRS
min , TNRS

max ] under working condition s can be obtained as:

TR∗(s) = arg min
TNRS
min ≤t≤TNRS

max

CNRS(t|s).

4.2.3 ETO method

The traditional ETO framework for obtaining a preventive maintenance policy requires

statistical analysis of time-to-failure data. In the optimisation problem defined in Equa-

tion (4.1), accurately estimating the expected number of failures is the key task before

taking into optimising maintenance decisions for repairable systems. In Equation (4.3),

the parameters of the failure Cumulative Distribution Function (CDF) need to be es-

timated in order to determine the optimal PR time.

For repairable systems, the number of failure occurrences is modelled as a stochastic

point process with a non-stationary failure intensity function m(t|x), which captures

the deterioration over discrete periods (Usher et al., 1998). We assume that the failure

intensity can be modelled with a parametric function as mw(t|x) given the feature vec-

tor x and parametric vector w. The power-law and log-linear model are two functions

to model failure intensity. The MLE technique can be used to estimate the parameter

w of the failure intensity function for repairable systems. Given the failure data set

XM , the likelihood function for the parametric model is given by:

LRS(w) =

M∏
i=1


Ji∏
j=1


Kij∏
k=1

m(zijk|xi,w)

 exp

(
−
∫ TRS

max

0
m(t|xi,w)dt

) ,

which is the product of individual likelihoods for each repairable system. The estimated

parameter w can be obtained by setting the first derivative ∂ logLRS(w)
∂w = 0.
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For non-repairable systems, the estimation of the failure probability can be achieved

by estimating the hazard rate λ(t|s,Θ), where Θ denotes the vector of parameters in

the hazard rate function. In situations where only time-to-failure data is available, a

Weibull function can be used to model the hazard rate due to its ability to represent

various types of ageing systems, including those with increasing, decreasing, or constant

hazard rates. Similar to repairable systems, MLE can be utilised to estimate the true

distributional parameters. Given the time-to-failure data set SN , the likelihood function

is:

LNRS(Θ) =
N∏
i=1


Qi∏
j=1

λ(tij |si,Θ) exp {−λ(tij |si,Θ)}

 .

The estimation of the parameters Θ can be obtained by equating the partial derivatives

of the logarithm of the likelihood function with respect to the parameters to zero.

4.3 End to end preventive maintenance policy

4.3.1 Overview of the E2E framework

The E2E framework is designed to directly derive maintenance decisions based on a

historical data set. This approach bypasses the need to estimate the parameters of the

hazard rate or failure intensity model in the preventive maintenance policy. The first

step involves determining whether the systems are repairable or non-repairable, as the

maintenance policy influences the formulation of objective functions for maintenance

decisions. After that, during the second stage, we aim to obtain an approximated main-

tenance cost function based on historical time-to-failure data collected under the same

working conditions. Next, a supervised algorithm is trained using the data set gener-

ated in the second stage composed of paired features and maintenance decisions. This

training process enables the algorithm to learn patterns and relationships between the

input features and the corresponding maintenance decisions. Finally, the maintenance

decisions of new working conditions can be obtained by the trained model. The overall

framework is illustrated in Figure 4.1.
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Figure 4.1: Overview of the E2E maintenance decision making framework

4.3.2 Data-driven optimisation of maintenance decisions

Maintenance decisions for repairable system

To obtain approximate PR maintenance decisions with the collected time-to-failure

data, we construct a data-driven maintenance cost rate function for repairable systems.

Without estimating the parameters for the failure intensity model under varied working

conditions, we rely on the sample average to estimate the expected number of failures

by a given time for a repairable system under a specific working condition.

For repairable systems with the accumulated time-to-failure data set XM , since

we have Ji systems operated under working condition i, we can empirically estimate

the average number of failures at time t under working condition i. Taking working

condition i as an example, the number of failures for system j from the beginning to

the current time t is N̂ij(t;xi) :=
∑Kij

k=1 1(zijk ≤ t), in which 1(A) is the indicator

function that equals to 1 when A is true. Subsequently, the approximated maintenance

cost rate function ĈRS(t;xi) under working condition i with feature vector xi can be

obtained as

ĈRS(t;xi) :=
cm

1
Ji

∑Ji
j=1 N̂ij(t;xi) + cp

t
, t ∈

[
TRS
min, T

RS
max

]
. (4.4)
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Here we use average 1
Ji

∑Ji
j=1 N̂ij(t;xi) to approximate the expected number of failures

at time t. The PR time derived from Equation (4.4) is defined as data-driven PR time,

which is given by

ˆTM
∗
i := arg min

t∈[TRS
min,T

RS
max]

ĈRS(t;xi).

Next, we obtain a structural data set that consists of features and data-driven PR time

for repairable systems. The structural data set is denoted asDRS :=
[
(xi, ˆTM

∗
i ), 1 ≤ i ≤M

]
.

Define Nij(t) is the expected number of failures of the repairable system j un-

der working condition i. Assume that Ni1(t), Ni2(t), ..., NiJi(t) are independent and

identically distributed, and Nmin ≤ Nij(t) ≤ Nmax. In the following, we present the

absolute bound between the approximated maintenance cost rate function and the true

maintenance cost rate function by leveraging Hoeffding’s inequality.

Proposition 4.1 Given the decision interval that t ∈ [TRS
min, T

RS
max], for any accuracy

parameter ω > 0, with a probability of at least 1 − 2 exp{ −2Jiω
2

(Nmax−Nmin)2
}, the absolute

error between approximated maintenance cost rate and true maintenance cost rate is

∣∣∣CRS(t;xi)− ĈRS(t;xi)
∣∣∣ ≤ cmω

t
.

The proof of Proposition 4.1 is presented in the Appendix A.1. Proposition 4.1

suggests that the accuracy of the cost rate approximation improves as more systems

are operated under the same working condition. Specifically, increasing the number

of systems operated under the same working condition decreases the probability of

encountering large errors. This relationship is reflected in the exponential term of the

probability expression. This proposition has implications for the design and operation

of maintenance strategies. In particular, it suggests that obtaining a large sample of

systems operating under the same working condition can enhance the reliability of

cost rate approximations. Furthermore, when only a limited number of systems are

available, the approximated cost rates should be used with caution due to potentially

higher estimation errors.

To illustrate the data-driven maintenance decision-making method, we present a

simple numerical example considering two different working conditions, each with two
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identical repairable systems. Specifically, we have system 1 and system 2 operating

under working condition 1, and system 3 and system 4 operated under working con-

dition 2. The cost of minimal repair is set as cm = 200 and the cost of PR is set as

cp = 800. The failures of these systems occur at specific times, as depicted in Figure

4.2a. After employing 1
Ji

∑Ji
j=1 N̂ij(t;xi), we can obtain a piecewise function, as shown

in Figure 4.2b, representing the empirical expected number of failures for each working

condition. Incorporating this empirical expected failure count into the maintenance

cost rate function yields the approximated maintenance cost rate, depicted in Figure

4.2c. It is worth noting that the approximated maintenance cost rate remains in a

piece-wise form, with the change points corresponding to the failure times. The piece-

wise function is non-increasing between two consecutive failure times. By obtaining the

minimum value from the approximated maintenance cost rate function, the optimal PR

time for a specific working condition can be determined, as illustrated in Figure 4.2d. It

is worth mentioning that this example involves only four systems operating under two

working conditions to illustrate the data-driven method. However, it should be empha-

sised that the effectiveness of the proposed data-driven approach will improve with the

availability of the number of systems operated under the same working condition, as

its performance has been guaranteed by the absolute error between the approximated

maintenance cost rate function and the true one.

(a) Time to failure of
4 systems

(b) Expected number
of failures

(c) Approximated
maintenance cost

(d) Data-driven
maintenance decison

Figure 4.2: Illustration of data-driven maintenance decision for repairable systems
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Maintenance decisions for non-repairable systems

When considering non-repairable systems, the objective function differs from the re-

pairable systems and the key task lies in estimating the reliability function or failure

CDF. Leveraging the historical time-to-failure data set SN with Qi run-to-failure iden-

tical non-repairable systems operated under working condition i, we can empirically

estimate the failure CDF and the reliability function as

F̂ (t; si) :=
1

Qi

Qi∑
j=1

1(tij ≤ t), (4.5)

R̂(t; si) := 1− F̂ (t; si), (4.6)

where F̂ (t; si) and R̂(t; si) are the empirical failure CDF and empirical reliability func-

tion with feature si respectively. Then, the approximated maintenance cost rate under

feature si can be obtained:

ĈNRS(t; si) :=
cf F̂ (t; si) + crR̂(t; si)∫ t

t=0 R̂(t; si)
, t ∈

[
TNRS
min , TNRS

max

]
. (4.7)

By minimising the approximated maintenance cost rate function, the data-driven

PR time for working condition i with feature si can be obtained as

T̂R
∗
i := arg min

t∈[TNRS
min ,TNRS

max ]
ĈNRS(t; si).

By constructing the data-driven maintenance cost rate functions in this manner, we can

approximate the optimal PR time for the corresponding working condition and obtain

the structural data set consisting of features and data-driven PR time for non-repairable

systems, denoted as DNRS := [(s1, T̂Ri), ..., sN , T̂RN )]. Based on Massart’s inequality,

we can derive the bound for the approximated maintenance cost rate function in the

following.

Proposition 4.2 For any t ∈ [TNRS
min , TNRS

max ], with the probability of at least 1 −

2 exp−2Qiε
2
, where 0 ≤ ε < R̂2(TNRS

min ; si) is the accuracy parameter, the absolute error

between the approximated maintenance cost rate function and true maintenance cost
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function for non-repairable systems is:

∣∣∣ĈNRS(t; si)− CNRS(t; si)
∣∣∣ ≤ (2cf − cr)εt[

R̂2(TNRS
min ; si)− ε

]
(TNRS

min )2
. (4.8)

The proof of Proposition 4.2 is given in Appendix A.2. Based on Proposition 4.2, it is

evident that reducing the accuracy parameter ε leads to a tighter bound. However, this

tighter bound is associated with a reduced probability of guarantee. Furthermore, a

higher probability of guaranteeing the bound is observed when a greater number of sys-

tems operate under identical working conditions while maintaining a consistent bound

between the approximated function and the true function. This proposition highlights

considerations for maintenance decision-making in non-repairable systems. It empha-

sises the trade-off between approximation accuracy and confidence levels: achieving

tighter cost rate approximations requires more operational data. In scenarios where

only limited data is available, decision-makers must carefully balance the desire for

precision against the risk of relying on less confident estimations.

In a similar vein to the repairable systems, we can provide a simple example to

further illustrate the data-driven maintenance decision method. Consider that 5 sys-

tems are operated under working condition 1 and 4 systems operating under working

condition 2. The time to failure of these systems is presented in Figure 4.3a. By incor-

porating the empirical probability of failure, as depicted in Figure 4.3b, we can derive

the approximated maintenance cost rate function, which is shown in Figure 4.3c. Fi-

nally, by minimising the approximated cost rate function, we obtain the maintenance

decision for non-repairable systems under the two varied working conditions, as shown

in Figure 4.3d.

Supervised learning for mapping features and decisions

With the collected feature data and failure events, our goal is to determine the optimal

maintenance time through a supervised learning method, that is fRS : xi → TM∗
i

for repairable systems and fNRS : si → TR∗
i . Taking the linear supervised learning

algorithm as an example, the mapping between the working conditions and data-driven
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(a) Time to failure of
9 systems

(b) Empirical failure
probability

(c) Approximated
maintenance cost

(d) Data-driven
maintenance decision

Figure 4.3: Illustration of data-drive maintenance decision for non-repairable systems

PR time is illustrated in Figure 4.4. The training objective is to make the predicted

PR time close to the true optimal value. We define the respective training objective

functions for repairable systems and non-repairable systems as

min
M∑
i=1

L(fRS(xi), ˆTM
∗
i )

min

N∑
i=1

L(fNRS(si), T̂R
∗
i ),

where L(·) is the loss function to calculate the distance between predictions and labels.

Various supervised learning models can be employed to establish the mapping between

features and maintenance decisions. In this work, we illustrate the approach using two

representative methods: LASSO, which captures linear and sparse relationships, and

ANN, which model complex and non-linear mappings (Hoff et al., 2009; Mishra and

Srivastava, 2014). These examples are not intended to suggest a strict preference, but

rather to demonstrate how different types of models can be integrated into the policy

learning framework. Other supervised learning models, such as decision trees, random

forests, or support vector machines, may also be appropriate depending on the data

characteristics and application requirements (Muhammad and Yan, 2015).

4.3.3 Discussion: extension to time-varying working conditions

When dealing with time-varying working conditions, our data-driven preventive main-

tenance decision method remains applicable, provided that multiple identical systems
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Figure 4.4: Illustration of mapping working conditions with data-driven PR time

are observed concurrently. These systems can be measured either from the same start-

ing time or from each system’s base time, as long as they operate under the same

working condition after beginning operation. However, the form of features will dif-

fer as the values are not fixed over time. To account for time-varying features, we

can introduce an additional dimension to represent the temporal aspect by utilising a

piecewise method to divide time into multiple slots. This approach, which is also used

in traditional ETO preventive maintenance policies, allows us to capture the chang-

ing working conditions and incorporate them into the decision-making process (Liao

and Tian, 2013). By considering the temporal dimension, we can effectively adapt the

maintenance decisions to varying working conditions over time.

Consider the repairable systems and assume that the decision-making duration is

divided into m time slots. For a specific working condition i, the features xi is an p×m

matrix represented as: xi = (xijk)1≤j≤p,1≤k≤m. When facing high-dimensional features,

where the number of features p and the number of time slots m are large, the dimen-

sionality reduction method can be applied to reduce the feature space while preserving

the essential information. For example, principal component analysis can effectively

reduce the dimensionality of the features while retaining the most important patterns

and relationships within the data. By applying the dimensionality reduction methods,

we can decrease the size of the feature set while still capturing the relevant information

necessary for making accurate maintenance decisions. This dimensionality reduction

can simplify the modelling problem and alleviate the potential computational burden
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associated with high-dimensional feature spaces. In addition, deep learning algorithms,

including convolutional neural networks, are well-suited for handling high-dimensional

input features, such as two-dimensional matrices or three-dimensional tensors.

4.4 Numerical experiments

This Section presents experiments designed to evaluate the proposed E2E maintenance

decision making framework. The purpose of these experiments is to validate the frame-

work’s ability to accurately generate maintenance decisions under varying working con-

ditions. Specifically, the experiments aim to explore the following questions: (1) How

accurately are the cost rate functions approximated? (Section 4.4.2) (2) How accu-

rately can the framework output maintenance decisions compared with conventional

ETO methods? (Section 4.4.3) (3) How does the performance change when the under-

lying parameters are varied? (Section 4.4.4)

4.4.1 Experiments description

Experiment settings

Consider a set of identical repairable systems observed over the same time window,

and the failure intensity is in the form of the power-law function with three features,

as given by

m(t|x) = a

b
(
t

b
)a−1 exp (b1x1 + b2x2 + b3x3),

where a is the shape parameter and b is the scale parameter. The cost of minimal

repair is cm = 1000 and the cost of PR is cp = 2000. The decision duration is set

to the range [1,200]. The values of features are randomly generated for each working

condition, where x1 and x2 are randomly sampled from uniform distributions, x1 ∼

U [0, 1], x2 ∼ U [−1, 1]. The feature x3 is a binary variable generated by a uniform

distribution, and x3 ∼ U{0, 1}. Monte Carlo simulation is used to randomly generate

accumulated time to failure under 200 different working conditions. This is achieved

by generating time intervals between successive failures in a non-homogeneous Poisson

process, using the power-law failure intensity function with parameters listed in Table
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4.1. For each working condition, 50 systems are operated.

Table 4.1: Experiment settings for the repairable systems

Parameters cp cm a b b1 b2 b3 x1 x2 x3 J M

Values 2000 1000 2.5 50 0.2 0.1 0.7 U [0, 2] U [−1, 1] U{0, 1} 50 200

For non-repairable systems, the cost of PR is cr = 3000, the cost of failure replace-

ment cf = 4000, and the decision interval is set to the range [10,100]. The number

of features is also set to 3. The true non-repairable system is assumed to follow the

Weibull PH model with a Weibull hazard rate, which is given as:

λ(t|s) = α

β
(
t

β
)α−1 exp(c1s1 + c2s2 + c3s3)

where α is the shape parameter, β is the scale parameter and c1, c2, c3 are coefficients

for three features. The values of features s1, s2, s3 are randomly generated using a uni-

form distribution within the interval [0, 2]. Monte Carlo simulation is used to randomly

generate the time-to-failure data for each system based on the time-to-failure distri-

bution derived from the Weibull PH model. The parameters used in the experiments

for the set of non-repairable systems are presented in Table 4.2. For each of the 400

working conditions, 50 identical systems are operated.

Table 4.2: Experiment settings for the non-repairable systems

Parameters cr cf α β c1 c2 c3 s1,s2,s3 Q N

Values 3000 4000 3 60 0.4 0.1 0.2 U [0, 2] 50 400

After labelling the time-to-failure data, we obtain the structural data DRS and

DNRS for repairable and non-repairable systems respectively. A pair consisting of a

working condition and its PR time in the structural data is referred to as a sample.

70% of the samples are randomly selected to train the supervised learning models, i.e.

LASSO and ANN. The remaining 30% is used to evaluate the performance of the model.

Min-max normalisation is applied to scale the training and test data set into the range

[0,1]. As for the ANN, a three-hidden-layer architecture is employed, with the number

of neurons in each layer set as 32, 16, and 1. The corresponding activation functions
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for each layer are Relu, Relu and sigmoid (Muhammad and Yan, 2015). Techniques

such as grid search or random search with cross-validation can systematically tune

hyperparameters of LASSO and ANN. The process during the supervised learning

stage is the same for both repairable and non-repairable systems.

Performance metrics

To evaluate the performance of the proposed E2E framework, we use the Mean Absolute

Error (MAE) for maintenance time prediction, and for maintenance cost rate. MAE

in maintenance time prediction quantifies how closely the predicted maintenance times

align with the ground truth or optimal policy. This reflects the accuracy of the model

in identifying when maintenance should occur. MAE in maintenance cost rate captures

the average maintenance cost incurred per unit time. This metric reflects the overall

economic effectiveness of the maintenance policy.

For repairable systems, the performance metrics are given as:

MAET
RS =

1

N1

N1∑
i=1

∣∣∣ ˜TM i − TM∗
i

∣∣∣
MAEC

RS =
1

N1

N1∑
i=1

∣∣∣CRS( ˜TM i)− C(TM∗
i )
∣∣∣

where MAET
RS is the MAE between the predicted PR time given by E2E or ETO

methods and true optimal PR time, MAEC
RS is the MAE of cost rate based on predicted

PR time and cost rate based on true optimal PR time, andN1 is the number of evaluated

samples.

For non-repairable systems, the MAE of PR time and corresponding maintenance

cost rate are:

MAET
NRS =

1

N2

N2∑
i=1

∣∣∣T̃Ri − TR∗
i

∣∣∣
MAEC

NRS =
1

N2

N2∑
i=1

∣∣∣CNRS(T̃Ri)− C(TR∗
i )
∣∣∣
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whereMAET
NRS is the MAE between predicted PR time and optimal PR time,MAEC

NRS

is the MAE of maintenance cost rate based on predicted PR time and cost rate based

on optimal PR time, and N2 is the number of evaluated samples.

In addition, in-sample and out-of-sample performances are reported to assess the

performance of the proposed E2E optimisation framework. The in-sample performance

refers to evaluating the train data used to fit the supervising models, while the out-of-

sample performance measures the model’s ability to generate accurate results on unseen

data. Lower values of MAE correspond to more accurate performance. To mitigate

the effects of randomness, we conduct each experiment 20 times and then report their

average performance.

4.4.2 Construction of approximated cost rate functions and mainte-

nance decision

To construct the approximated cost rate functions for repairable systems and non-

repairable systems respectively, we use the empirical expectation to approximate the

expected number of failures within the given duration, and the empirical CDF to ap-

proximate the true failure CDF of the assumed model. For repairable systems, we com-

pare the empirical expected number of failures with the true expected failure number

when the number of systems J = 10 and J = 50, as shown in Figure 4.5a. Additionally,

we compare the corresponding approximated maintenance cost rate and true mainte-

nance cost rate in Figure 4.5b. Based on these results, it is observed that the empirical

expected number of failures is a better approximation when more systems are operated

under the same working condition. Moreover, the approximated maintenance cost rate

closely aligns with the true maintenance cost rate when J = 50 compared to J = 10,

which is consistent with Proposition 4.1.

Similarly, when considering the number of systems running under the same condi-

tion as Q = 10 and Q = 50, we present the empirical failure CDF and the true CDF

for the Weibull PH model using the parameters provided in Table 4.2. The functions

are depicted in Figure 4.6a. It can be found that the empirical CDF for Q = 50 closely

approximates the true CDF compared to the case of Q = 10. After utilising the em-
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(a) Number of expected failures (b) Approximated maintenance cost rate
function

Figure 4.5: Approximation of the number of expected failures and data-driven cost
rate function when J = 10 and J = 50 for repairable systems

pirical failure CDF to construct the maintenance cost rate function for non-repairable

systems, we show the approximation of the data-driven maintenance cost rate function

to the true maintenance cost rate function in Figure 4.6b. It is evident that there is

a noticeable discrepancy between the approximated cost rate function for Q = 10 and

the true cost rate function. In contrast, the approximation of maintenance cost rate

function for Q = 50 exhibits a closer resemblance to the true cost function, which is

consistent with the theoretical result established in Proposition 4.2.

(a) Approximation of failure CDF (b) Data-driven maintenance cost rate

Figure 4.6: Approximation of the number of expected failures and data-driven cost
rate function when J = 10 and J = 50 for repairable systems

The data-driven maintenance decisions for repairable and non-repairable systems

are obtained by minimising their corresponding approximated maintenance cost rate
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functions. To assess the approximation of the data-driven method, we create problem

setups with the number of systems that operated under the same working condition

J ∈ {50, 100, 150, ..., 500} and Q ∈ {50, 100, 150, ..., 500}. While the time-to-failure

data is randomly generated from the true failure CDF, we keep the other parameters

in Table 4.1 unchanged. Figure 4.7a presents the differences between the labels and

optimal PR time for repairable systems across 20 repeated experiments. Here, the

differences for the ith randomly-generated non-repairable failure data under the working

condition j are calculated as DIFFRS
ij = ˜TM

∗
ij − TM∗

ij .

We repeat the experiment 20 times for each J ∈ {50, 100, 150, ..., 500} and Q ∈

{50, 100, 150, ..., 500}, and evaluate the differences between the data-driven PR time and

the optimal PR time. The differences are shown in the boxplot in Figure 4.7b. Figure

4.7a and Figure 4.7b suggest that as the number of systems increases, the spread of the

differences between the data-driven PR time and optimal PR time decreases, due to the

improved approximation of the maintenance cost function. Furthermore, the median

of the differences is close to 0 regardless of the number of systems, which indicates the

robustness of the E2E framework.

(a) Differences in repairable systems when
varying J

(b) Differences in non-repairable systems
when varying Q

Figure 4.7: Differences of data-driven PR time and optimal PR time when varying
the number of systems under the same working condition

To analyse the results provided by LASSO and ANN models, we compare the PR

time predicted by LASSO, and ANN with the optimal PR time and the data-driven
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PR time. For repairable systems, we vary the value of x1 ∈ {0, 0.0.01, 0.02, ..., 1}, while

keeping x2 and x3 fixed at 1 and 0. Figure 4.8a shows that the PR time suggested by

LASSO decreases with an increase in x1. For non-repairable systems, we fix s2 = 1,

s3 = 1 and vary s1 to illustrate the results on a 2D plot while keeping other parameters

unchanged. The value of s1 ranges from 0 to 2 with an iteration step of 0.02. This

means the value of s1 ∈ {0, 0.0.02, 0.04, ..., 2}. Figure 4.8b reveals that the optimal

PR time approximately decreases linearly with an increase in s1. The data-driven PR

time shown in the scatter plot is distributed on both sides of the optimal solutions.

The scatter plots in the two figures also reveal patterns in the overestimation and

underestimation of the true optimal PR time. LASSO and ANN capture the trend of

the solutions as the value of s1 increases.

(a) Repairable systems (b) Non-repairable systems

Figure 4.8: Comparison of decisions given by LASSO, ANN, optimal PR time and
data-driven PR time

4.4.3 Comparisons with ETO methods

Comparisons with ETO methods for repairable systems

In order to compare the performance of the proposed E2E with the traditional ETO

framework for repairable systems, we introduce two Cox PI based models. These serve

as prediction models when the true intensity function is unknown. The Andersen-Gill

(AG) model assumes that failure events are conditionally independent given covariates,

with a shared baseline intensity function across events. In contrast, the Prentice-

Williams-Peterson (PWP) model accounts for the order of events, allowing the baseline
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intensity to vary by failure number. Using both AG and PWP models allows us to cover

different assumptions about the repair process, and ensures a more robust comparison

between the proposed E2E framework and traditional ETO-based approaches.

1. Andersen & Gill (AG) model: The AG model assumes independence between

events and applies a PI model for repairable system i asmi(t|x) = mi0(t) exp
[
bTxi

]
,

where m0(t) is the baseline intensity function, b is the coefficient vector and xi

is the working condition vector of system i.

2. Prentice, Williams and Peterson (PWP) model: In this model, the baseline inten-

sity varies from event to event, and the failure intensity function for the nth failure

event is expressed as mn(t|x) = m0n(t) exp
[
bT
nx
]
, where m0n(t) is the baseline

intensity function for the nth failure event and bn is the vector of coefficient for

the nth failure event.

These two models have been applied in survival analysis, as well as in engineering

reliability analysis (Jiang et al., 2006). The R package survival provides functions

for predicting failure intensity based on the PWP model and AG model for recurring

events. The corresponding syntax of R code can be found in existing works (Therneau,

2023; Thenmozhi et al., 2019).

To evaluate the performance, we experiment repeatedly 20 times with the parameter

settings described in Table 4.1 for repairable systems. We then prepare the structural

data with features and data-driven maintenance decisions. After training the super-

vised learning algorithms, LASSO and ANN, the average performance over 20 repeated

experiments is reported in Table 4.3. The E2E methods using LASSO and ANN are

denoted as E2E LASSO and E2E ANN in the results. The finding shows that the out-

of-sample is close to the in-sample performance for repairable systems. In addition,

E2E LASSO and E2E ANN outperform ETO methods in terms of both the MAET
RS

and MAEC
RS . E2E LASSO achieves the best performance, likely due to its sparse

structure and stable generalisation. E2E ANN performs slightly worse, which may be

attributed to its higher data requirement and limited training samples in the current

setting. The good performance of E2E LASSO demonstrates that simple linear models
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can benefit from direct E2E learning.

Table 4.3: Comparison of E2E and ETO methods for repairable systems

In-sample Out-of-sample
MAET

RS MAEC
RS MAET

RS MAEC
RS

E2E LASSO 0.783 0.017 0.762 0.023
E2E ANN 1.193 0.056 1.301 0.062
ETO AG 1.234 0.063 1.190 0.060
ETO PWP 1.367 0.074 1.289 0.077

Comparisons with ETO methods for non-repairable systems

We introduce two ETO methods with different time-to-failure models to compare with

the proposed E2E methods for non-repairable systems. The Cox PH model estimates

relative failure risk over time, while the WAFT model predicts time-to-failure directly

under covariate effects. By incorporating both, we evaluate the performance of the

E2E framework and ensure a fair comparison against well-established methods in the

literature.

1. Cox PH model: It assumes that the features have a linear multiplicative effect

on the hazard function. The hazard function is given as λ(t|s) = λ0(t) exp(c
⊺s),

where λ0(t) is the baseline hazard function, and c denotes the vector of coefficients

for each feature. Consider two individual non-repairable systems, where one has

feature s′ and the other has feature s′′. The ratio of their hazard functions is

λ(t|s′)
λ(t|s′′) =

exp(c⊺s′)
exp(c⊺s′′) and the coefficient vector c can be estimated based on this ratio

via MLE. The baseline hazard rate is estimated using Barlow’s non-parametric

method.

2. Weibull Accelerated Failure Time (WAFT) model: The WAFT model is a fully

parametric model in the field of reliability analysis. It is recognised as a useful

alternative tool to the Cox PH model (Volf and Timková, 2014). Unlike the Cox

PH model, which assumes the effect of features is to multiply the baseline hazard

rate by a constant, the WAFT model exhibits a multiplicative relationship with

respect to time to failure. It quantifies how different levels of covariates either
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speed up or slow down the time to failure. For the random time to failure ti

of ith non-repairable system, the general form of the WAFT model is given by

log ti = a⊺si + σϵi, where a is the coefficient in WAFT model, ϵi is the random

error, and σ is the scale parameter. The parameters of the WAFT model can be

estimated by the MLE method.

The Cox PH model and WAFT model can be implemented using library survival

in R or library lifelines in Python (Davidson-Pilon, 2019; Therneau, 2023). We repeat

the experiment 20 times using the parameter settings in Table 4.2 for non-repairable

systems. Subsequently, we prepare the structured data with features and labels by

minimising the empirical maintenance cost function. After training the supervised

learning algorithms, LASSO and ANN, we report the average MAE over 20 repeated

experiments in Table 4.4. We find that E2E LASSO exhibits the best performance,

while E2E ANN has a slightly poorer performance but is still better than ETO WAFT.

This pattern is consistent with the results observed in the repairable system setting.

Table 4.4: Comparison of E2E and ETO methods for non-repairable systems

In-sample Out-of-sample
MAET

NRS MAEC
NRS MAET

NRS MAEC
NRS

E2E LASSO 1.192 0.015 1.193 0.015
E2E ANN 1.956 0.043 2.005 0.045
ETO COXPH 1.591 0.033 1.584 0.033
ETO WAFT 2.230 0.046 2.210 0.046

4.4.4 Sensitivity analysis

Sensitivity analysis for repairable systems

We investigate the effects of different magnitudes of shape parameter a, scale parameter

b, the ratio of PR cost to minimal repair cost, the size of the data setM , and the number

of systems J under the same working condition. In the sensitivity analysis, we vary the

target parameter in the original settings while keeping other parameters unchanged,

and we report the averaged performance metrics over 20 repeated experiments.

First, we analyse the effects of the shape parameter a in the true power-law PI
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model. For each a ∈ {2.5, 3, 3.5, 4}, we repeat the experiment 20 times and evaluate

the averaged performance. The shape parameter influences the magnitudes of the

expected number of failures and thus controls the optimal PR time. Table 4.5 shows

that as the value of a increases, the MAET
RS and MAEC

RS for both E2E and ETO

methods decrease. Among these methods, E2E Lasso shows the best performance.

Table 4.5: Performance of the E2E and ETO methods under different shape
parameter a for repairable systems

Shape parameter α Methods
In-sample Out-of-sample

MAET
RS MAEC

RS MAET
RS MAEC

RS

a = 2.5

E2E LASSO 0.783 0.017 0.762 0.023
E2E ANN 1.193 0.056 1.301 0.062
ETO AG 1.234 0.063 1.190 0.060
ETO PWP 1.367 0.074 1.289 0.077

a = 3.0

E2E LASSO 0.768 0.022 0.760 0.030
E2E ANN 1.082 0.068 1.128 0.063
ETO AG 0.881 0.040 0.783 0.041
ETO PWP 1.167 0.064 1.189 0.067

a = 3.5

E2E LASSO 0.669 0.027 0.673 0.035
E2E ANN 0.870 0.061 0.930 0.055
ETO AG 1.111 0.092 1.130 0.088
ETO PWP 1.138 0.111 1.117 0.092

a = 4

E2E LASSO 0.599 0.019 0.576 0.030
E2E ANN 0.701 0.048 0.753 0.044
ETO AG 1.066 0.080 1.113 0.082
ETO PWP 1.133 0.094 1.252 0.095

In addition, we investigate the impact of the scale parameter of the power-law

function for the failure intensity. We alter the value of the scale parameter b ∈

{25, 50, 75, 100} and evaluate the average performance of the E2E and ETO meth-

ods across 20 repeated experiments. Table 4.6 presents the results, indicating that the

performance of the E2E and ETO methods deteriorates with increasing values of b.

Additionally, E2E LASSO consistently shows the best performance across the range of

b values.

We further examine the effects of cost ratio η =
cp
cm

on the performance of E2E

and ETO methods. We vary the cost ratio over the values η ∈ {1.5, 2.0, 2.5, 3} while

keeping the cost of minimal repair cm = 1000. Table 4.7 displays the performance,
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Table 4.6: Performance of the E2E and ETO methods under different scale parameter
b for repairable systems

Scale parameter b Methods
In-sample Out-of-sample

MAET
RS MAEC

RS MAET
RS MAEC

RS

b = 25

E2E LASSO 0.588 0.078 0.533 0.070
E2E ANN 0.690 0.132 0.674 0.110
ETO AG 1.851 0.316 1.023 0.239
ETO PWP 138.095 284.596 136.189 281.031

b = 50

E2E LASSO 0.783 0.017 0.762 0.023
E2E ANN 1.193 0.056 1.301 0.062
ETO AG 1.234 0.063 1.190 0.060
ETO PWP 1.367 0.074 1.289 0.077

b = 75

E2E LASSO 0.871 0.004 0.917 0.010
E2E ANN 1.842 0.033 1.858 0.030
ETO AG 2.131 0.051 2.116 0.049
ETO PWP 2.595 0.059 2.590 0.057

b = 100

E2E LASSO 1.462 0.100 1.510 0.107
E2E ANN 2.318 0.108 2.253 0.111
ETO AG 3.035 0.204 2.866 0.120
ETO PWP 3.938 0.397 4.610 0.425

indicating that E2E LASSO achieves the best performance among the four methods

and also shows the highest stability when the cost ratio varies.

We also show the effects of the number of working conditions on the performance

of E2E and ETO methods. The number of working conditions is varied over the values

M ∈ {100, 200, 300, 400} while keeping other parameters unchanged. Table 4.8 reports

the performance of E2E and ETO methods using the averaged performance of 20 re-

peated experiments when varying the value ofM . The results indicate that E2E LASSO

consistently has the best performance, and increasing the number of working conditions

leads to performance improvement for the E2E and ETO methods.

Finally, we examine the effects of the number of the systems on the performance of

the methods by varying the number of systems over the values J ∈ {50, 100, 150, 200}

under the same working condition. From Figure 4.7a we know that the estimated

labels become more accurate as the number of systems increases. The results presented

in Table 4.9 suggest that E2E ANN appears more sensitive to the accuracy of labels,

which is closely related to the number of systems. Specifically, when J ≥ 100, E2E ANN
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Table 4.7: Performance of the E2E and ETO methods under different cost ratio η for
repairable systems

Cost ratio η Methods
In-sample Out-of-sample

MAET
RS MAEC

RS MAET
RS MAEC

RS

η = 1.5

E2E LASSO 0.800 0.017 0.775 0.025
E2E ANN 1.250 0.059 1.298 0.060
ETO AG 1.081 0.050 1.063 0.050
ETO PWP 1.210 0.062 1.228 0.066

η = 2.0

E2E LASSO 0.783 0.017 0.762 0.023
E2E ANN 1.193 0.056 1.301 0.062
ETO AG 1.234 0.063 1.190 0.060
ETO PWP 1.367 0.074 1.289 0.077

η = 2.5

E2E LASSO 0.840 0.021 0.830 0.030
E2E ANN 1.154 0.058 1.164 0.051
ETO AG 1.203 0.062 1.182 0.063
ETO PWP 1.471 0.081 1.433 0.083

η = 3

E2E LASSO 0.923 0.027 0.921 0.038
E2E ANN 1.315 0.083 1.420 0.074
ETO AG 1.034 0.054 1.113 0.061
ETO PWP 1.564 0.102 1.524 0.099

Table 4.8: Performance of the E2E and ETO methods under different number of
working conditions M for repairable systems

data size M Methods
In-sample Out-of-sample

MAET
RS MAEC

RS MAET
RS MAEC

RS

M = 100

ETE LASSO 1.082 0.037 1.087 0.056
ETE ANN 1.454 0.097 1.621 0.104
ETO AG 1.350 0.091 1.378 0.097
ETO PWP 1.718 0.132 1.660 0.133

M = 200

E2E LASSO 0.783 0.017 0.762 0.023
E2E ANN 1.193 0.056 1.301 0.062
ETO AG 1.234 0.063 1.190 0.060
ETO PWP 1.367 0.074 1.289 0.077

M = 300

ETE LASSO 0.789 0.019 0.737 0.026
ETE ANN 1.091 0.053 1.144 0.056
ETO AG 0.979 0.043 0.997 0.044
ETO PWP 1.221 0.063 1.226 0.063

M = 400

ETE LASSO 0.759 0.013 0.734 0.025
ETE ANN 1.015 0.047 1.078 0.041
ETO AG 0.953 0.042 0.970 0.044
ETO PWP 1.099 0.053 1.108 0.053

94



outperforms ETO AG and ETO PWP.

Table 4.9: Performance of the E2E and ETO methods under different numbers of
systems J for repairable systems

Number of systems J Methods
In-sample Out-of-sample

MAET
RS MAEC

RS MAET
RS MAEC

RS

J = 50

E2E LASSO 0.783 0.017 0.762 0.023
E2E ANN 1.193 0.056 1.301 0.062
ETO AG 1.234 0.063 1.190 0.060
ETO PWP 1.367 0.074 1.289 0.077

J = 100

ETE LASSO 0.628 0.014 0.604 0.016
ETE ANN 0.926 0.039 1.007 0.044
ETO AG 0.970 0.044 0.950 0.041
ETO PWP 1.123 0.052 1.319 0.112

J = 150

ETE LASSO 0.710 0.015 0.664 0.022
ETE ANN 0.904 0.039 0.967 0.039
ETO AG 0.951 0.0410 0.933 0.040
ETO PWP 1.021 0.045 1.062 0.050

J = 200

ETE LASSO 0.627 0.013 0.603 0.018
ETE ANN 0.768 0.028 0.848 0.031
ETO AG 0.896 0.039 0.911 0.039
ETO PWP 0.935 0.040 0.973 0.042

Sensitivity analysis of non-repairable systems

We explore the effects of different magnitudes of the shape parameter α, scale parameter

β, cost ratio of PR cost cr to failure replacement cost cf , number of working conditions

N , and the number of systems Q under the same working condition.

We first examine the effects of the shape parameter α. When α = 1, the Weibull

distribution reduces to an exponential distribution, and the optimal PR time tends to

be infinity, indicating that the system is replaced only at failure. We vary the value

α ∈ {2.5, 3, 3.5, 4}, and for each value of α we average the performance of 20 repeated

experiments. The reason why we chose these values starting from α = 2.5 is that

when α > 2, the slope of the hazard rate increases with time, making it applicable for

seeking optimal PR time. Table 4.10 indicates that as the shape parameter α increases,

the MAET
NRS and MAEC

NRS for all methods decrease. E2E LASSO shows the best

performance, and E2E ANN is better than ETO WAFT in each case. When α = 4,
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the performance of E2E ANN surpasses that of ETO COXPH.

Table 4.10: Performance of the E2E and ETO methods under different shape
parameter α for non-repairable systems

α Methods
In-sample Out-of-sample

MAET
RS MAEC

RS MAET
RS MAEC

NRS

α = 2.5

E2E LASSO 1.255 0.006 1.233 0.006
E2E ANN 2.634 0.031 2.722 0.035
ETO COXPH 2.524 0.032 2.565 0.033
ETO WAFT 3.646 0.047 3.637 0.047

α = 3

E2E LASSO 1.192 0.015 1.193 0.015
E2E ANN 1.956 0.043 2.005 0.045
ETO COXPH 1.591 0.033 1.584 0.033
ETO WAFT 2.230 0.046 2.210 0.046

α = 3.5

E2E LASSO 0.755 0.013 0.757 0.013
E2E ANN 1.337 0.039 1.380 0.043
ETO COXPH 1.328 0.039 1.343 0.041
ETO WAFT 1.751 0.049 1.750 0.048

α = 4

E2E LASSO 0.566 0.010 0.548 0.010
E2E ANN 1.049 0.038 1.085 0.040
ETO COXPH 1.159 0.039 1.145 0.038
ETO WAFT 1.392 0.045 1.389 0.044

Next we examine the effects of the scale parameter β on E2E and ETO methods.

The value of β varies within the range of {10, 20, 30, ..., 70}. It is important to note

that, based on the characteristic of the Weibull distribution, a larger scale parameter

corresponds to distribution with greater spread. Table 4.11 provides evidence that the

two E2E methods attain the best performance when β = 10 and 30. E2E LASSO

still shows the best performance and E2E ANN has smaller values of MAET
NRS and

MAEC
NRS compared to ETO WAFT when β increases.

To analyse the effects of PR cost and failure replacement cost, we introduce a

cost ratio γ, which is a ratio of the PR to the failure replacement cost. For each

γ ∈ {0.2, 0.4, 0.6, 0.8}, the cost of failure replacement cf remains unchanged at 4000,

while the cost of PR cr = γcf . A smaller cost ratio γ implies a smaller cr relative to a

fixed cf . The value of cr is lower than cf because PR action helps avoid unscheduled

downtime compared to a failure replacement. Table 4.12 shows that as the cost ratio

γ increases, both the in-sample and out-of-sample MAET
NRS and MAEC

NRS increases.
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Table 4.11: Performance of the E2E and ETO methods under different scale
parameter β for non-repairable systems

β Models
In-sample Out-of-sample

MAET
NRS MAEC

NRS MAET
NRS MAEC

NRS

β = 10

E2E LASSO 0.221 0.203 0.230 0.220
E2E ANN 0.287 0.384 0.283 0.417
ETO COXPH 4.198 4.597 3.598 4.514
ETO WAFT 1.353 7.071 1.349 7.223

β = 30

E2E LASSO 0.558 0.032 0.551 0.033
E2E ANN 1.032 0.103 1.008 0.105
ETO COXPH 1.353 0.204 1.343 0.203
ETO WAFT 2.015 0.364 2.015 0.364

β = 50

E2E LASSO 0.809 0.013 0.826 0.013
E2E ANN 1.721 0.059 1.730 0.061
ETO COXPH 1.700 0.064 1.684 0.064
ETO WAFT 2.343 0.091 2.344 0.092

β = 70

E2E LASSO 1.150 0.009 1.125 0.009
E2E ANN 2.284 0.036 2.345 0.038
ETO COXPH 1.823 0.027 1.864 0.028
ETO WAFT 2.455 0.035 2.470 0.035

Furthermore, we find that E2E LASSO maintains the smallest MAE values for the

performance metrics. When γ = 0.6 and 0.8, the performance of E2E ANN surpasses

ETO WAFT but remains inferior to ETO COXPH.

To analyse the effects of the number of working conditions N on the performance of

the proposed method, we conduct experiments with varyingN,N ∈ {100, 200, 300, ...1000}

and keep other parameters unchanged. The averaged performance metrics of 20 re-

peated experiments for each number of working conditions are presented in Figure 4.9.

The figure illustrates the in-sample and out-of-sample performance metrics. We observe

that E2E LASSO maintains the best performance and demonstrates stability when the

sample size reaches 200. The MAEC
RS and MAET

RS of E2E ANN decrease, and are

smaller than ETO WAFT, when the number of working conditions increases from 100

to 200.

Finally, we compare the performance of the E2E and ETO methods under differ-

ent numbers of systems. We evaluate the performance by averaging over 20 repeated

experiments with varying the number of systems Q ∈ {50, 100, ..., 500}. Figure 4.10
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Table 4.12: Performance of the E2E and ETO methods under different cost ratio γ

γ Models
In-sample Out-of-sample

MAET
NRS MAEC

NRS MAET
NRS MAEC

NRS

γ = 0.2

E2E LASSO 0.468 0.026 0.474 0.028
E2E ANN 0.896 0.100 0.894 0.104
ETO COXPH 0.792 0.074 0.815 0.080
ETO WAFT 0.589 0.031 0.583 0.031

γ = 0.4

E2E LASSO 0.539 0.024 0.553 0.024
E2E ANN 0.943 0.075 0.974 0.080
ETO COXPH 0.819 0.053 0.848 0.055
ETO WAFT 0.819 0.037 0.826 0.037

γ = 0.6

E2E LASSO 0.590 0.014 0.599 0.014
E2E ANN 1.130 0.049 1.168 0.052
ETO COXPH 1.101 0.045 1.110 0.046
ETO WAFT 1.336 0.049 1.342 0.050

γ = 0.8

E2E LASSO 1.011 0.005 0.990 0.005
E2E ANN 2.045 0.023 2.089 0.023
ETO COXPH 1.885 0.021 1.848 0.020
ETO WAFT 2.996 0.042 2.975 0.041

(a) In-sample MAET
NRS (b) In-sample MAEC

NRS

(c) Out-of-sample MAET
NRS (d) Out-of-sample MAEC

NRS

Figure 4.9: Performance of the E2E and ETO methods under different number of
working conditions N for non-repairable systems
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displays the comparison of MAET
NRS and MAEC

NRS applying E2E and ETO methods

for non-repairable systems. As the number of systems Q increases, both E2E methods

show improved performance and narrow the gaps with the optimal decisions. Notably,

E2E LASSO keeps the best performance and E2E ANN has greater improvement as the

number of systems increases. These results suggest that the E2E methods have the po-

tential to achieve better performance compared to the ETO methods for non-repairable

systems, especially as the number of systems increases.

(a) In-sample MAET
NRS (b) In-sample MAEC

NRS

(c) Out-of-sample MAET
NRS (d) Out-of-sample MAEC

NRS

Figure 4.10: Comparison of MAET
NRS and MAEC

NRS applying E2E and ETO
methods with different number of systems for non-repairable systems
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4.4.5 Discussion

The experimental comparisons and sensitivity analyses provide insights into the strengths

and applicability of the proposed E2E framework relative to ETO approaches. First,

across both repairable and non-repairable systems, the E2E methods consistently achieve

lower MAET and MAEC values than ETO methods. This suggests that directly learn-

ing maintenance decisions from operational data, without explicit model parameter es-

timation, reduces the error propagation in ETO pipelines. Sensitivity analyses reveal

the following patterns:

• When the number of observed systems (J or Q) is small, both E2E and ETO

methods suffer, but E2E methods, especially those using LASSO, show greater

resilience to label estimation errors.

• As the number of systems or working conditions increases, the performance gap

between E2E and ETO methods narrows. This is because larger datasets also

benefit ETO models by improving parameter estimation accuracy. Nevertheless,

E2E LASSO maintains good stability and accuracy across different settings.

• When degradation processes are highly stochastic (e.g., lower shape parameters

a or α), E2E methods adapt better compared to model-based ETO approaches

that rely on strict distributional assumptions.

• Varying cost ratios (η or γ) affects all methods, but E2E LASSO remains the

least sensitive, suggesting its potential in applications where cost structures are

uncertain or dynamic.

Moreover, it is observed that E2E ANN, although slightly less accurate than E2E LASSO

under small sample conditions, catches up and even surpasses some ETO models as

the sample size increases. This indicates that deeper architectures could benefit from

larger datasets, while linear models such as LASSO remain robust under limited data.

These findings collectively highlight that the proposed E2E framework shows advan-

tages in maintenance policy making under dynamic operational conditions. The ability
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to bypass explicit model assumptions allows for flexible decision-making in data-driven

maintenance settings.

4.5 Summary

This Chapter proposes a data-driven E2E framework for preventive maintenance con-

sidering varied working conditions. In contrast to the traditional ETO framework that

first specifies and estimates the model parameters, and then optimises the objective,

the proposed E2E framework can directly determine the optimal maintenance decision

in a data-driven manner. E2E framework bypasses the estimation parameters of an

assumed time-to-failure model, thereby reducing the error propagation from parame-

ter estimation to decision-making. We analytically provide the error bounds between

the data-driven maintenance cost rate functions and the true maintenance cost rate

functions. We also show that the data-driven maintenance cost rate functions can ap-

proximate the true maintenance cost rate functions with high probability with a large

number of systems operated under the same working condition. Numerical experi-

ments demonstrate that the proposed E2E framework outperforms the ETO frame-

work across both repairable and non-repairable systems. In particular, E2E LASSO

consistently achieves the best performance, likely due to its robustness and sparsity in

limited-data settings, while E2E ANN performs slightly worse, possibly due to higher

data requirements. These results suggest that direct policy learning can outperform

prediction-based optimisation, and that a simple, linear model can be highly effective

when aligned with the learning objective.

This study can be further extended in the following three directions. The first is to

extend the E2E framework to CBM problems considering degradation processes and

associated features, which could expand the framework’s applicability to a wider range

of maintenance strategies. Different to TBM, which collects time-to-failure data, CBM

relies on condition monitoring data, resulting in a different labelling process based on

degradation levels. Incorporating labels for maintenance actions at specific degradation

levels under particular working conditions could enable future work to extend the E2E

framework to CBM strategies.
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Secondly, this study considers fixed values for the costs of maintenance actions,

which limits the applicability of the E2E framework. Future work could address this by

incorporating the costs of maintenance actions as features in the input of the supervised

learning algorithm, enabling the development of an adaptive model. Additionally, fea-

ture engineering and dimensionality reduction techniques could be applied to construct

a more effective set of inputs, which could further enhance the model’s effectiveness.

Thirdly, we could investigate the sample complexity of the E2E framework, i.e., the

number of samples required to achieve a satisfactory solution. Analysing sample com-

plexity offers insights into the number of samples needed to achieve better performance

compared to the ETO framework. The probably approximately correct learning frame-

work could be a valuable tool for conducting a theoretical sample complexity analysis,

particularly when employing machine learning algorithms.
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Chapter 5

Online Learning and Control of

Degradation Process under

Dynamic Working Conditions

This Chapter considers a maintenance policy for discrete degradation paths caused

by shock-based damage, modelled as a CP process. To address the challenges arising

from component heterogeneity and dynamic working conditions, this Chapter employs

Bayesian linear regression and Bayesian Poisson regression to analyse the occurrence

and magnitude of shocks. Regression parameters are updated with the arrival of new

observations on shock occurrences and magnitudes during online monitoring. The

optimal maintenance problem is formulated as an MDP, wherein decisions are triggered

when the parameters are updated and converge towards the underlying values.

The proposed framework in this Chapter is inherently data-driven: it relies on con-

tinuous condition monitoring data, including timestamped shock events and their mea-

sured magnitudes, along with contextual covariates that characterise dynamic working

environments. Rather than assuming a fixed parametric form for system degradation,

the model updates the posterior distributions of regression parameters directly from

data. This allows the system to adaptively learn degradation dynamics specific to each

component and operating condition, without relying on pre-calibrated failure models.

This Chapter not only establishes an analytically tractable degradation model that

103



captures the component heterogeneity and dynamic working conditions, but also in-

vestigates the structure of the optimal preventive maintenance thresholds. To ease the

computation burden caused by the dynamic working conditions, a heuristic algorithm

was proposed to use the most probable distribution, thereby reducing the complexity

of the state space. The effectiveness of the developed approach is illustrated through

comparisons in numerical experiments, and its applicability is demonstrated through

an illustrative example.

5.1 Introduction

Unplanned asset failure poses a notable risk, resulting in irreversible economic loss and

requiring expensive actions for restoration. To mitigate such undesirable breakdowns,

it is crucial to develop an effective maintenance policy. Leveraging modern sensors

and wireless communication technologies, CBM has emerged as the most advanced

maintenance strategy with the availability of real-time system information. Unlike

traditional time-based maintenance, which mainly addresses failure events, the CBM

policy monitors the degradation status of observed components. Once the measurement

exceeds the optimised critical level/threshold, maintenance actions are decided (Van der

Duyn Schouten and Wartenhorst, 1994; Olsen and Tomlin, 2020).

The heterogeneity among observed components poses challenges in utilising moni-

toring data. In the industry, the performance of components produced from the same

manufacturing process varies due to variations in raw materials and fluctuation in the

manufacturing process (Yang et al., 2019). Consequently, these components may dis-

play distinct degradation paths, even when operating within the same environment

(Sun et al., 2021). In such a scenario, the conventional assumption of homogeneous

components is no longer suitable for accurately modelling the degradation process.

In addition, neglecting latent heterogeneity may introduce errors in the maintenance

optimisation stage.

The dynamic working conditions fluctuating over time, including environmental

factors such as temperature, and humidity, alongside operating factors like production

rate (uit het Broek et al., 2020) and operating speed, present challenges in accurately
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capturing the degradation process. For example, the lifetime of lithium-ion batter-

ies shortens when operating at lower temperatures (Kong et al., 2021). In addition,

it has been verified that a higher charge/discharge rate accelerates capacity loss due

to mechanical-induced damage of active particles (Snyder, 2016). Consequently, the

degradation process is affected by both latent heterogeneity and varied working envi-

ronments, thereby adding further challenges to the optimisation of the maintenance

policy.

The traditional CBM policy involves modelling the degradation process and sub-

sequently integrating it into the MDP (Derman, 1963; De Jonge and Scarf, 2020) or

partially observable MDP (Kim, 2016; Khaleghei and Kim, 2021; Kim and Makis, 2013)

to derive the optimal PM threshold, depending on whether the degradation stat can be

directly observed. However, the degradation modelling and policy optimisation phases

are separated in most existing works, implying first estimating the parameters of the

stochastic degradation process and then optimising the PM threshold. Notably, the

conventional CBM policy seldom considers the heterogeneity of components with the

availability of real-time data. Furthermore, to the best of our knowledge, no research

has addressed the CBM policy considering the integration of two critical factors: latent

heterogeneity and dynamic working conditions.

This Chapter explicitly focuses on shock-based degradation, in which the degrada-

tion paths are driven by discrete shock events and are modelled as a CP process. This

modelling choice is based on the Poisson distribution governing the number of shocks

and the Normal distribution characterising the magnitude induced by each shock. To

account for latent heterogeneity and dynamic working conditions, Bayesian linear re-

gression and Bayesian Poisson regression are introduced to characterise the CP process.

Regression is a statistical tool employed for delineating relationships between depen-

dent and independent variables (Azoury and Miyaoka, 2009). The Bayesian updating

approach is employed to learn the parameters of a component’s degradation process

using real-time data (Drent et al., 2023). The process is initiated by estimating the

initial parameters based on historical data sets. Subsequently, these parameters are

iteratively updated and the optimal PM threshold is determined based on the latest
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observations at each epoch. The formulation of the CBM problem is modelled as a

finite-horizon MDP, allowing for a comprehensive analysis of its structural properties.

This approach contributes to an understanding of the adaptability of CBM policy to

evolving component heterogeneity and dynamic working conditions. The contributions

of this Chapter are summarised as follows:

• Latent heterogeneity and dynamic operating conditions are jointly modelled using

Bayesian linear and Poisson regressions within a discrete stochastic degradation

framework.

• Real-time data is incorporated to dynamically update model parameters, support-

ing informed maintenance decisions on the PM threshold under heterogeneous and

time-varying conditions.

• An analytically tractable solution is presented, providing a structured framework

for formulating and computing the CBM policy under uncertainty. It also reveals

key structural properties of the policy, such as the maintenance threshold and its

monotonic behaviour under certain conditions.

• A heuristic solution algorithm is designed to alleviate the computational burden

due to the complexity of state space, enhancing the practical feasibility of the

proposed methodology.

This Chapter is structured as follows. Section 5.2 extends the discrete stochastic

degradation process, modelled as a CP process in this work, to incorporate heterogene-

ity and varied working conditions. Section 5.3 describes the online Bayesian updating

for Bayesian linear regression and Bayesian Poisson regression. Section 5.4 presents a

finite-horizon MDP model, outlining the methodology to obtain the optimal PM thresh-

old and associated structural properties. Section 5.5 introduces the heuristic algorithm

to simplify the state space. In Section 5.6, the performance of the proposed method

is studied through numerical experiments and an illustrative example. In Section 5.7,

the findings of this work are concluded and the future directions are discussed. Proofs

are presented in the Appendix B.
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5.2 Degradation model with dynamic working conditions

In this work, the CP process models degradation as a result of discrete shock events,

in line with the focus on shock-based degradation. The components undergo con-

tinuous monitoring until the accumulative degradation exceeds the failure threshold,

denoted as D. During the monitoring process, dedicated sensors are employed to ob-

serve the number of shocks, the magnitude of degradation caused by each shock, and

the working conditions influencing the degradation process. Although the system is

continuously monitored, the maintenance decision can only be made at planned down-

time epochs. The maintenance decision is made at equally spaced discrete-time epochs

t, t = 0, 1, ..., T . The interval between epoch t − 1 and epoch t is denoted as pe-

riod t. Let K be the number of random shocks that follow the Poisson process, i.e.,

K ∼ Poisson(λ), where λ is the expected rate of shock occurrence. The magnitude of

degradation caused by each shock is denoted as X that follows the Normal distribu-

tion, X ∼ N (u, σ2), where u is the mean and σ2 is the variance. The accumulative

degradation up to epoch t is given by Zt = Zt−1 + Yt, where Yt :=
∑Kt

i=1Xti represents

the degradation increment in period t. In addition, let Xt = [Xt1, Xt2, ..., XtKt ] be

a Kt-dimensional vector comprising the degradation magnitude of each shock up to

epoch t. The described accumulative shock-based degradation model is referred to as

the CP process, illustrated in Figure 5.1.

Figure 5.1: Illustration of a CP Process with Poisson-distributed shock times and
normally distributed magnitude
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The degradation process is influenced by the dynamic working conditions, which

can be represented as covariates, also referred to as explanatory variables (Ye and Chen,

2014). Let st denote the vector st = [1, st1, ..., stp], where p is the number of covariates,

and sti is the ith covariate in period t. Systems are considered to be operated in

environments with well-documented historical data and real-time monitoring of working

conditions, indicating future operational conditions are predictable to some extent. For

a more focused investigation and to facilitate the derivation of insights, it is assumed

that the decision-maker has prior knowledge of the component’s working conditions.

When the working conditions are partially known, they can be forecasted based on

historical observations. Heterogeneity among components is modelled by incorporating

covariates into the CP process that will be updated given the number and magnitudes

of shocks.

Regression models estimate the relationship between a dependent variable and in-

dependent variables, enabling the analysis of how shock number and shock magnitude

are influenced by working conditions. One method of accommodating regression and

heterogeneity is Bayesian regression, which provides a flexible framework for modelling

relationships between variables while accounting for uncertainty (Azoury and Miyaoka,

2009; Evgeniou et al., 2007). As the occurrence of random shock follows the Poisson

distribution and shock magnitude follows the Normal distribution, Bayesian Poisson

regression and Bayesian Normal regression are employed. These methods are applied

to model the relationship among working conditions, the number of shocks and magni-

tude, accounting for the heterogeneity among the component population. The number

of shocks in period t is represented as a Poisson regression model:

λ(st) = estα,Kt ∼ Poisson(λ(st)),

where α is a p + 1-dimensional vector representing regression coefficients, and λ(st)

is the link function to regression covariates with Poisson distribution. This choice of

using an exponential over a linear link function is motivated by the fact that the linear

function can only yield non-negative values for restricted combinations of st and α (Cox

and Lewis, 1966). The exponential link function is adopted in the Bayesian Poisson re-
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gression model (Christiansen and Morris, 1997; Ma and Kockelman, 2006). Considering

unobservable heterogeneity with random regression coefficients among components, a

multivariate Normal prior on the coefficient vector α ∼ N (α̃,Σα) is introduced, where

α̃ is the prior mean and Σα is covariance matrix.

Similarly, the standard Normal regression model is employed for the magnitude of

each shock in period t,

u(st) = stβ, Xt ∼ N (u(st), σ
2),

where β is a p + 1-dimensional vector of regression coefficients, σ2 is the variance

and u(st) is the link function. It is worth noting that a linear link function is used

in Normal regression to derive analytical solutions (Gelman et al., 1995). When the

relationship between the mean of magnitude and covariates displays non-linear pat-

terns, it is expected to be transformed into linear functions. Techniques like Taylor

Expansion and piecewise linear approximations can be employed for this purpose (Ban

and Rudin, 2019). For the prior information on the random vector β, it is assumed

that β ∼ N (β̃,Σβ), where β̃ is the prior mean and Σβ is prior covariance matrix. As

pointed out by (Gelman et al., 1995), the parameter σ is typically less influential than

β, and the variance σ2 can be estimated using sample variance, estimating the coef-

ficient vector β is consequently more challenging. Given the non-negativity of shock

magnitudes, it is assumed that the mean and variance satisfying stβ̃ ≥ 3σ(1 + stΣβs
⊺
t )

for ∀t ∈ {0, 1, ..., T}, ensuring that the probability of negative magnitude is negligible.

The comprehensive framework of modelling the heterogeneous degradation process and

dynamic working conditions, is depicted in Figure 5.2.

Following the Bayesian updating process, the initial task of the maintenance decision-

maker involves estimating the prior parameters α̃0, β̃0,Σα0 ,Σβ0 based on historical ob-

servations. MLE is applied to carry out this estimation based on the historical data

set (Si et al., 2018), and the details are provided in Appendix B.6. When applying for

a newly installed component, the online inference at epoch t + 1 is leveraged to up-

date the posterior distribution of α and β and determine the conditional distribution of

(zt+1|s1, ..., st, k1, .., kt,x1, ...,xt). With the updated posterior distribution, the decision

maker can reduce the uncertainty of the degradation process and make maintenance
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Figure 5.2: Illustration of CP process considering working condition and heterogeneity

decisions to minimise the overall maintenance cost. The described Bayesian updating

and maintenance decision process is depicted in Figure 5.3.

Figure 5.3: Flow chart of Bayesian updating and maintenance decision process
considering heterogeneity and dynamic working conditions

5.3 Bayesian updating of degradation parameters

The initial estimates of the parameters α̃0, β̃0,Σα0 ,Σβ0 are derived using MLE based on

the historical degradation data set. This is also referred to as the offline update process.

Subsequently, the online Bayesian updating method is utilised to update the posterior

distribution on α and β by incorporating the in-situ degradation measurements and

the real-time working conditions (Drent et al., 2023; Alós-Ferrer and Garagnani, 2023).
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Denote the covariate matrix of working conditions as

St =


1 s11 · · · s1p
...

...
...

...

1 st1 ... stp


and the vector of the occurrence of shocks kt = [k1, · · · , kt]⊺, where stp represents the

p covariate in period t. The posterior distribution P(α|St,kt) is calculated with Bayes

rule as follows:

P(α|St,kt) ∝ P(kt|St,α)P(α)

Since K ∼ Poisson(λ(s)), the likelihood is

P(kt|St,α) =

t∏
i=1

esiαkie−esiα

ki!
. (5.1)

As the occurrence of shocks ki increases, Equation (5.1) can be approximated using

Normal approximation (Chan and Vasconcelos, 2009). The approximation of Equation

(5.1) is

P(kt|St,α) ≈
t∏

i=1

1

ki
N (stα| log ki, k−1

i )

=
t∏

i=1

1

(2π)
t
2

exp

[
t∑

i=1

−ki
2
(siα− log ki)

2)

]

=
|Σkt |

1
2

(2π)
t
2

exp

[
−1

2
(Stα− logkt)

⊺Σ−1
kt

(Stα− logkt)

]
,

(5.2)

where Σkt = diag( 1
k1
, ..., 1

kt
). The Normal approximation is provided in the Appendix

B.7. The prior distribution of α is assumed to follow a multivariate Normal distribution

as

P(α) =
1√

(2π)p+1|Σα0 |
exp

[
−1

2
(α− α̃0)

⊺Σ−1
α0

(α− α̃0)

]
,

where α0 is the prior mean vector and Σα0 is the prior covariance matrix. Historical

observations of degradation and working conditions from the same or similar type of
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components can be used as the prior data set to estimate α0 and Σα0 . Therefore, the

posterior distribution α is

P(α|St,kt) ∝ exp

[
−1

2
(Stα− logkt)

⊺Σ−1
kt

(Stα− logkt)−
1

2
(α− α̃0)

⊺Σ−1
α0

(α− α̃0)

]
≈ N (α̃t,Σαt),

(5.3)

where α̃t = (S⊺
tΣ

−1
kt

St + Σ−1
α0

)−1(S⊺
tΣ

−1
kt

logkt + Σ−1
α0

α̃0), and Σαt = (S⊺
tΣ

−1
kt

S⊺
t +

Σ−1
α0

)−1. Denote Pt = S⊺
tΣ

−1
kt

St and Qt = S⊺
tΣ

−1
kt

logkt. The posterior distribution of

α is updated as Lemma 5.1.

Lemma 5.1 Given the observed shocks kt and working conditions St, the posterior

distribution of α at epoch t can be approximated by multivariate Normal distribution

with mean α̃t = (Pt+Σ−1
α0

)−1(Qt+Σ−1
α0

α̃0) and covariance matrix Σαt = (Pt+Σ−1
α0

)−1,

i.e., α ∼ N (α̃t,Σαt |Pt,Qt), where Pt = S⊺
tΣ

−1
kt

St and Qt = S⊺
tΣ

−1
kt

logkt.

Proofs of the Lemmas and Propositions are presented in Appendix B.1-B.5. Simi-

larly, the posterior distribution of β can also be derived following the standard Bayesian

process (Deisenroth et al., 2020). Denote the vector of the occurrence of shocks

xt = [x1, · · · , xJ ]⊺, where J is the total number of shocks J =
∑t

i=1 ki, and let the

corresponding covariate matrix

St =


1 s11 · · · s1p
...

...
...

...

1 sJ1 ... sJp

 .

Denote Mt = StS⊺t + σ2Σ−1
β0

and Nt = S⊺t xt, the updating of the posterior of β is

summarised in Lemma 5.2.

Lemma 5.2 Given the observed degradation magnitudes xt and working conditions

St, the posterior distribution of β at epoch t is multivariate Normal with mean β̃t =

M−1
t (Nt + σ2Σ−1

β0
β̃0) and covariance matrix Σβt = σ2M−1

t , i.e., β ∼ N (β̃t,Σβt |Nt),

where Mt = StS⊺t + σ2Σ−1
β0

and Nt = S⊺t xt.
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Proof of Lemma 5.2 is similar to that of Lemma 5.1, therefore, the detailed proof

is omitted to avoid repetition. Based on the updated regression coefficient vectors

αt,βt and covariance matrices Σαt ,Σβt , the number of shocks in period t + 1 can be

approximated as a negative binomial distribution, and the magnitude of each shock in

period t+1 follows Normal distribution. The predictive distributions of Kt+1 and Xt+1

are summarised in Proposition 5.1.

Proposition 5.1 1. Given the working conditions, the predictive shock numbers

Kt+1 in period t+ 1 is approximated as a negative binomial distribution,

Kt+1 ∼ NegBin(est+1α̃t , st+1Σαts
⊺
t+1|Pt,Qt),

P(kt+1|Pt,Qt) =
Γ(a+ kt+1)

Γ(kt+1 + 1)Γ(a)
(

1

1 + b
)a(

b

1 + b
)kt+1 ,

where a = (st+1Σαts
⊺
t+1)

−1, b = st+1Σαts
⊺
t+1e

st+1α̃t, α̃t = (Pt + Σ−1
α0

)−1(Qt +

Σ−1
α0

α̃0) and Σαt = (Pt +Σ−1
α0

)−1.

2. Given the working condition, the predictive shock magnitude Xt+1 in period t+1

follows Normal distribution,

Xt+1 ∼ N
(
st+1β̃t, σ

2(1 + st+1Σβts
⊺
t+1)|Nt

)
,

where st+1β̃t is mean, σ2(1+st+1Σβts
⊺
t+1) is variance, β̃t = M−1

t (Nt+σ2Σ−1
β0

β̃0)

and Σβt = σ2M−1
t

In proposition 5.1, the predictive distributions of Kt+1 and Xt+1 are updated using

the working conditions, number of shocks and the associated shock magnitude. Due to

the lack of conjugacy between the Poisson likelihood and the multivariate Normal prior,

the predictive distribution of Kt+1 cannot be derived analytically. Thus, the Normal

distribution is used to approximate the log-gamma distribution, as the log-gamma

shape can resemble a normal distribution. This approximation is typically sufficient

when the deviations between the two distributions are negligible, enabling the use of

conjugacy to obtain an analytic result. Combined with the solution in Proposition 5.1,

the degradation increment Yt+1 in period t+ 1 is further derived in Proposition 5.2.
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Proposition 5.2 Given the working condition, the predictive distribution of degrada-

tion increment Yt+1 in period t+ 1 is

f(Yt+1 = y|Pt,Qt,Nt) =
∞∑
k=0

Γ(a+ k)

Γ(k + 1)Γ(a)
(

1

1 + b
)a(

b

1 + b
)k
(
2πk(σ2 + d)

)− 1
2 e

− 1
2

(y−kc)2

k(σ2+d) ,

where a = (st+1Σαts
⊺
t+1)

−1, b = st+1Σαts
⊺
t+1e

st+1α̃t, c = st+1β̃t, d = st+1Σβts
⊺
t+1.

Proposition 5.2 can be used to predict the degradation increment in period t + 1

based on the working condition st+1, the posterior distributions on α and β at epoch t.

Earlier work shows that the stochastic order of the random variable Yt+1 is decreasing

in t and increasing in the accumulative degradation when the working conditions are

not considered (Drent et al., 2023). However, when considering the dynamic work-

ing conditions, the monotonic behaviour will no longer hold for the Bayesian linear

regression and Bayesian Poisson regression. To hold the monotonicity property, the

covariates must satisfy certain conditions, as being formalised in the Proposition 5.3.

Proposition 5.3 Let at+1 = (st+1Σαts
⊺
t+1)

−1, a
′
t+1 = (st+1Σ

′
αt
s⊺t+1)

−1, bt+1 = st+1Σαts
⊺
t e

st+1α̃t

and b′t+1 = st+1Σ
′
αt
s⊺t+1e

st+1α̃
′
t, ct+1 = st+1β̃t and c′t+1 = st+1β̃

′
t, if at+1 ≤ a′t+1,

bt+1 ≤ b′t+1 and ct+1 ≤ c′t+1, the stochastic order ⟨Yt+1|Pt,Qt,Nt⟩ ⪯ ⟨Yt+1|P′
t,Q

′
t,N

′
t⟩.

The stochastic order facilitates the study of degradation behaviours to compare the

expected degradation increments for two components in period t+1 when heterogeneity

exists. It also serves as a fundamental step for the monotonicity of value functions in

the MDP modelling. The stochastic order in Proposition 5.3 is illustrated through an

example.

Example 5.1 Let us consider a case where a single covariate s influences the degrada-

tion process. This example considers 2 periods, and s1 = 0.6, s2 = 0.5 in each period. At

epoch 0, the prior of α has mean α0 = [0.1, 0.5] and covariance matrix Σα0 =
[

4 −7
−7 14

]
.

The prior of β has mean β0 = [0.1, 2] and covariance matrix Σβ0 =
[

2 −4
−4 10

]
.

The number of shocks follows Poisson distribution, and the magnitude of each shock

follows Normal distribution with known standard deviation σ2 = 0.02. Consider two

cases of realisations of shocks and magnitudes in period 1. In case A, the number of
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shock k1 = 2, the magnitude of each shock x11 = 1 and x12 = 2. In case A
′
, the

number of shock k
′
1 = 3, the magnitude of each shock x

′
11 = 2, x

′
12 = 3 and x

′
13 = 4.

Given the observations of shocks in period 1, the posterior distribution of α can be

updated according to Lemma 5.1. For case A, α ∼ N (α̃1,Σα1), α̃1 = [0.048, 0.860]⊺,

Σα1 =
[

3.965 −6.754
−6.754 12.281

]
. For case A

′
, α

′ ∼ N (α̃
′
1,Σ

′
α1
), α̃

′
1 = [−0.043, 1.504]⊺, Σ′

α1
=[

3.959 −6.712
−6.712 11.986

]
.

Figure 5.4a displays the regression lines for the mean of random variable log(K) in

period 2, with the covariate s2 in the x-axis. The vector of covariates is represented

as s2 = [1, s2], incorporating the intercept in the regression. Figure 5.4b illustrates the

value of a2 and a′2. It is evident that a′2 ≥ a2 holds for any s2. In addition, b′2 ≥ b2

is satisfied when s2 ≥ 0.144. Hence, in period 2, the stochastic order of K of case A
′

dominates the stochastic order of case A when s2 ≥ 0.144 in this example. For a more

detailed perspective, Figure 5.4d illustrates P(K > k) during period 2 given s2 = 0.5.

Similarly, the stochastic order of X in period 2 can be explored. Given the ob-

servations of shock magnitude in period 1, the posterior distribution of β can be up-

dated according to Lemma 5.2. For case A, β ∼ N (β̃1,Σβ1), β̃1 = [0.075, 2.121],

Σβ1 =
[

1.952 −3.758
−3.758 8.788

]
. While for case A

′
, β

′ ∼ N (β̃
′

1,Σ
′
β1
), β̃

′

1 = [−0.176, 3.376],

Σ
′
β1

=
[

1.935 −3.676
−3.676 8.378

]
. Figure 5.5a plots the regression lines for the average magnitude

of shocks in period 2. The x-axis is the covariate s2 and the y-axis is s2β̃1, which is the

mean of X in period 2. It is straightforward to see that s2β̃1 ≤ s2β̃
′
1 holds if s2 ≥ 0.2

and fails otherwise. Because the variance of magnitude σ is not working conditions de-

pendent, the stochastic order of X in period 2 is achieved when the means are ordered.

Figure 5.4d plots P(X > x) in period 2 when s2 = 0.5. The stochastic order of X of

case A
′
dominates the stochastic order of case A if s2 ≥ 0.2 in this example. Therefore,

it can be concluded that the stochastic order holds ⟨Y2|P1,Q1,N1⟩ ⪯ ⟨Y2|P′
1,Q

′
1,N

′
1⟩

in this example if s2 ≥ 0.2, as Y2 =
∑K2

i=1X2i.
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(a) Regression line for the mean of log(K) (b) a2 and a′2 for case A and case A′

(c) b2 and b′2 for case A and case A′ (d) P(K > k) when s2 = 0.5

Figure 5.4: Illustrations comparing the stochastic order of the number of shocks in
period 2
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(a) Regression line for the mean of X (b) P(X > x) when s2 = 0.5

Figure 5.5: Illustrations comparing the stochastic order of the magnitude of shocks in
period 2

5.4 Maintenance modelling and optimal control policy

At each decision epoch, two maintenance actions are considered: Corrective Mainte-

nance (CM) and PM. The component is failed when the cumulative degradation exceeds

the threshold D. Upon failure at a decision epoch, CM is performed immediately in-

curring a cost of cr. At epoch t, if the cumulative degradation is less than the threshold

D, the component can either continue operating without any maintenance intervention

or PM is implemented at a cost of cp. It is assumed that the time required for CM

and PM is negligible, compared with the operating horizon. Without loss of generality,

assume 0 < cp < cr < ∞, representing the economic loss of unscheduled maintenance

resulting from breakdowns, such as late deliveries and shortages.

The system state at epoch t is defined by the vector (zt,Pt,Qt,Nt,χt), which

compactly represents the degradation history, shock behaviour, and future working

condition trajectory. This choice of state representation is informed by both statistical

sufficiency and predictive relevance. The variables Pt, Qt, and Nt serve as cumulative

sufficient statistics derived from past observations and covariates, and they form the ba-

sis for updating the posterior distributions of model parameters. Proposition 5.2 shows

that the predictive distribution of the degradation increment Yt+1 depends explicitly on
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the covariates st+1 and on the posterior of these parameters, which are functions of the

cumulative statistics. Therefore, these elements are not only essential for maintaining

the Markov property but also serve as direct inputs for predicting future degradation

dynamics under uncertain working conditions. The inclusion of zt ensures that the ab-

solute degradation level is tracked, which is central to maintenance triggering and cost

evaluation. The future covariate sequence χt = [st, st+1, . . . , sT ] enables anticipatory

policy decisions by incorporating predictive knowledge about upcoming environments.

The decision maker selects one of three actions from the set {CM, PM, NULL},

where NULL indicates no maintenance action. After either CM or PM is taken, the

component is restored to the as-good-as-new state with the same parameters, resulting

in an updated component degradation state of (0,P0,Q0,N0,χt), where P0 is a (p +

1)× (p+ 1) zero matrix, and Q0 and N0 are zero vectors of dimension p+ 1.

The value function that denotes the expected maintenance cost from epoch t to

epoch T is Vt,χt
(At), where At is the state set that At = (zt,Pt,Qt,Nt). Vt,χt

(At)

represent the expected discounted maintenance cost from the current epoch t to the

epoch T at state At. The maintenance policy aims to minimise the expected value

function and find the optimal action at each decision epoch. The value function follows

the Bellman optimality equation as

Vt,χt
(At) =

 min
{
cp + Vt,χt

(A0), γE
[
Vt+1,χt+1

(At+1|At)
]}

, zt < D,

cr + Vt,χt
(A0), zt ≥ D,

(5.4)

where γ ∈ (0, 1) is the discount factor. When the state transit from At to At+1,

Pt+1 = Pt+s⊺t+1
1

kt+1
st+1, Qt+1 = Qt+s⊺t+1

1
kt+1

log kt+1, Nt+1 = Nt+st+1xt+1, χt+1 :=

(st, st+1, ..., sT ). After the last decision epoch T , there are no future values of working

condition covariates. Thus, the terminal value function is defined as VT+1,χT+1
(·) =

0 regardless of the component states. Following the Bellman equation, the optimal

maintenance decision is a control limit policy, as stated in Proposition 5.4.

Proposition 5.4 For any given working condition χt, the optimal policy for the prob-

lem described in Equation (5.4) is a control limit policy. There exists a sequence

ζt,χt
(Pt,Qt,Nt,χt) at epoch t, t = 0, 1, ..., T , such that the optimal action at state
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(zt,Pt,Qt,Nt) is PM if zt ≥ ζt,χt
(Pt,Qt,Nt).

5.4.1 Heuristic solution algorithm

In this section, backward dynamic programming is applied to solve the finite MDP

formulation discussed in Equation (5.4). The degradation is discretised into L states

with equal increment δ = D
L , L ∈ N+, as the accumulative degradation amount Zt

is a continuous random variable. Te component’s accumulative degradation state is

denoted as ∆ = {δ, 2δ, ..., D − δ,D}. The degradation level of the component is in the

state jδ when the accumulative degradation falls within the range (j − 1)δ ≤ Z < jδ.

Even though the degradation is discrete into a set of finite states, there is still a

computational challenge caused by Bayesian online learning. With the observations

up to epoch t, the posterior distributions of α and β are updated. However, when

calculating the value function at epoch t, the number of possible shock occurrence

distribution sequences and shock magnitude distribution sequences at future period

t + i, i = 1, ..., T − t, are infinite because of the uncertain future realisations of shock

occurrence and magnitude.

In order to conquer the computational issue, the most likely distribution is leveraged

to simplify the Bayesian online updating process (Azoury and Miyaoka, 2009). In

general, given the information up to epoch t, the most likely probability mass function

of shock occurrences in future period t + i is Kt+i ∼ NegBin(est+iα̃t , st+iΣαts
⊺
t+i),

and the most likely probability density function of shock magnitude in future period

t + i, i = 1, ..., T − t + 1 is Xt+i ∼ N
(
st+iβ̃t, σ

2(1 + st+iΣαts
⊺
t+i)

)
. Hence, given

the observations up to epoch t, the most likely predictive distribution of degradation

increment Yt+i at epoch t + i is f̂t+i,t(Yt+i), and the corresponding cdf is defined as

F̂t+i,t(Yt+i). The most likely predictive distribution offers the simplification of the

state space by keeping parameter P,Q,N for future period t + i, i = 1, ..., T − t + 1

constant, aligning them with the values for the period t. Thus the state space collapses

into one dimension with the accumulative degradation zt. Let V̂t,t,χt
(zt) denote the

minimum expectation of discounted maintenance cost from epoch t to T , given the

updated parameter up to epoch t. The optimality equation applying the most likely
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distribution and discretisation of degradation is as follows:

V̂t,t,χt
(zt) =

 min
{
cp + V̂t,t,χt

(0), γ
∑

zt+1∈∆ F̂t+1,t(zt+1 − zt)V̂t+1,t,χt+1
(zt+1)

}
, zt < D,

cr + V̂t,t,χt
(0), zt ≥ D.

(5.5)

The terminal function is V̂T+1,t,χT+1
(·) = 0. Details of the backward dynamic program-

ming incorporating the most likely distribution are presented in Appendix B.8, which

can return the optimal total discounted maintenance cost and maintenance actions at

each epoch.

When incorporating the most likely distribution heuristic algorithm, the mainte-

nance policy is still a control optimal policy. It can further reduce the computation

burden. Based on Equation (5.5) and the stochastic order of the degradation incre-

ment in Proposition 5.3, the monotonicity property for the PM threshold is established

when incorporating the most likely distribution heuristic algorithm in Proposition 5.5.

From Proposition 5.3, it comes down to restrictions to the working conditions to hold

the monotonicity of random variable Yt+1, which implies the monotonicity of the PM

threshold at epoch t+ 1.

Proposition 5.5 For any given χt, let at+1 = (st+1Σαts
⊺
t+1)

−1, a
′
t+1 = (st+1Σ

′
αt
s⊺t+1)

−1,

bt+1 = st+1Σαts
⊺
t+1e

st+1α̃t and b′t+1 = st+1Σ
′
αt
s⊺t+1e

st+1α̃
′
t, ct+1 = st+1β̃t and c′t+1 =

st+1β̃
′
t. If at+1 ≤ a′t+1, bt+1 ≤ b′t+1 and ct+1 ≤ c′t+1. when implementing the most likely

distribution heuristic algorithm, the PM threshold ζ̂t,χt
(Pt,Qt,Nt) ≥ ζ̂t,χt

(P
′
t,Q

′
t,N

′
t).

5.4.2 Special case: Regression through the origin

If the relationship between the covariates and the dependent variable assumes an in-

tercept of zero, the regression line is forced through the origin. Regression through the

origin is rarely discussed, as imposing this constraint—by forcing the regression line to

pass through zero—may reduce the model’s flexibility and potentially weaken its ability

to fit the data accurately. Nevertheless, there exist reasons in many cases to argue that

the dependent variable equals zero when the covariates are at zero. In instances where

the operating speed of the production machine is zero, it is appropriate to employ re-
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gression analysis through the origin. This is justified by the observation that during

machine shutdown periods, the absence of activity indicates no shock arrivals.

When the regression is through the origin and only one covariate is considered, for

the Bayesian Poisson regression that applied to the number of shocks, the parameter

α collapses into slope α, which is a single parameter when the regression through the

origin with one covariate s. The prior on α is Normal distributed with prior mean α̃0

and variance σα0 . At epoch t, the posterior of α is Normal distributed with mean α̃t =

(Pt+σ−2
α0

)−1(Qt+σ−2
α0

α̃0), and variance σ2
αt

= (Pt+σ−2
α0

)−1, where Pt =
∑t

i=1
s2i
ki
, Qt =∑t

i=1
si log ki

ki
. In a similar manner, for the Bayesian linear regression, the parameter

β collapses into slope β, which is a single parameter when the regression through the

origin with one covariate s. The prior on β is Normal distributed with prior mean

β̃0 and variance σβ0 . At epoch t, the posterior of β is Normal distributed with mean

β̃t = M−1
t (Nt + σ2σ−2

β0
β̃0) and variance σβt = σ2M−1

t , where Mt = σ2σ−2
β0

+
∑t

i=1 kis
2
i

and Nt =
∑t

i=1(si
∑kt

j=1 xij).

In addition, for the special case that the regression is forced through the original

with one covariate, the following Corollary 5.1 can be extended from Proposition 5.5

when applying the heuristic algorithm.

Corollary 5.1 For any given χt, if the regression lines are forced through the origin

with one covariate s, let at+1 = (st+1σαt)
−1, a

′
t+1 = (st+1σ

′
αt
)−1, bt+1 = st+1σαte

st+1α̃

and b′t+1 = st+1σ
′
αt
est+1α̃′

, ct+1 = st+1β̃t and c′t+1 = st+1β̃
′
t. If at+1 ≤ a′t+1, bt+1 ≤ b′t+1

and ct+1 ≤ c′t+1, when implementing the most likely distribution heuristic algorithm,

the PM threshold ζ̂t,χt
(Pt, Qt, Nt) ≥ ζ̂t,χt

(P
′
t , Q

′
t, N

′
t ).

5.5 Numerical studies

5.5.1 Experiment setting

In numerical studies, it is assumed that the underlying parameters are unknown to

the decision maker, but he/she can assess the prior distribution of the heterogeneous

components. For illustrative purposes, let us consider one working condition, and set up

the underlying coefficient vector α = [0.7, 1.0]⊺ and the coefficient vector β = [0.1, 0.2]⊺.
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The prior distribution of α is assumed to follow a multivariate Normal distribution

with mean vector α0 = [0.1, 0.5]⊺ and covariance matrix Σα0 = diag(0.2, 0.2). The

prior distribution of β is assumed to follow a multivariate Normal distribution with

mean vector β0 = [0.01, 0.1]⊺ and covariance matrix Σβ0 = diag(0.2, 0.2). The variance

of the Bayesian Linear regression σ2 = 0.01. The working conditions vary along with

the epoch and are assumed as constant within one period, which is in a piecewise form

illustrated in Figure 5.6. Given the underlying parameters, the degradation paths are

randomly generated with dynamic working conditions.

Figure 5.6: Illustration of piecewise working conditions across epochs

The accumulative degradation level of a component is discretised into 30 discrete

states. A component is assumed to fail when its accumulative degradation level Z ≥ 30.

CM is carried out when a component is found to fail at the decision epoch, and PM is

performed if its accumulative degradation level exceeds the PM threshold. The costs

of CM and PM are given as cr = 400 and cp = 100. The discount parameter is set as

γ = 0.9. The component is assumed to operate from epoch 0 to epoch 15 and will be

discarded without any cost after the last epoch.

5.5.2 Results

First, the process of Bayesian updating upon the arrival of new observations is shown,

where the underlying parameter is given in the experiment settings. Since one covariate

122



is considered in the numerical study, the coefficient vector α comprises the intercept

and coefficient associated with the covariate. Figure 5.7 displays the contour plot that

illustrates the updating process of α combining with the observations of the number

of shocks. Figure 5.7a shows that the underlying coefficient and intercept in α is

far away from the prior distribution when the observation of shocks is not provided.

With the increase in observations, the estimation of α is becoming more centralised

and approaching the true parameter. In addition, Figure 5.7 illustrates that Normal

approximation can effectively be applied to estimate the parameters in the Bayesian

Poisson regression.

(a) Bayesian updating of α using 0
observation

(b) Bayesian updating of α using 5
observations

(c) Bayesian updating of α using 10
observations

(d) Bayesian updating of α using 15
observations

Figure 5.7: Bayesian updating of α with increasing number of observations

Similarly, the updating process of β is obtained with 0, 5, 10 and 15 observations, as

indicated in the contour plots of Figure 5.8. The posterior distribution of β is becoming
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narrow as the increasing of observations. When 15 observations of the magnitude of

shocks are considered, the posterior distribution converges close to the true parameters.

(a) Bayesian updating of β using 0
observation

(b) Bayesian updating of β using 5
observations

(c) Bayesian updating of β using 10
observations

(d) Bayesian updating of β using 15
observations

Figure 5.8: Bayesian updating of β with increasing number of observations

Furthermore, the PM threshold at each epoch is presented in Figure 5.9, which is

obtained by integrating Bayesian updating and dynamic programming while considering

the dynamic working conditions. Combining the dynamic working conditions displayed

in Figure 5.6, it can be observed that the PM threshold fluctuates along with the value

of the covariate. Specifically, the PM threshold becomes lower when the value of the

covariate becomes larger. This suggests that the system’s sensitivity to degradation

signals varies with specific operating conditions (e.g., high load, harsh environments,

or elevated temperatures). Consequently, maintenance decisions should be dynamically

adjusted to respond effectively to changing working conditions.
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Figure 5.9: PM threshold at each epoch considering varied working conditions

5.5.3 Comparison experiments

To illustrate the advantages of the proposed Bayesian updating method considering

varied working conditions, the proposed method is compared with two methods and

the optimal policy given the underlying parameters. 200 degradation paths that are

subject to the CP process are randomly generated using the underlying parameters

of α, β and the covariate in the aforementioned settings. The average maintenance

costs for the 200 degradation paths under the PM threshold given by each method are

reported. It is assumed that the same component will replace the component with the

same parameters of α, β when PM or CM is performed. The methods are discussed

as the followings.

The first method is called the offline approach. It ignores the online Bayesian

updating and only leverages the prior information to make the maintenance decisions.

Compared with the integrated method proposed by this work, the offline approach

directly uses the prior distribution of α and β for all the epochs. The optimisation

stage still solves the Bellman equation in 5.4 to minimise the expected maintenance

cost over the finite horizon.

The second method is called the myopic approach. The updating of the posterior

distribution of α and β is considered when a new observation is available. But in the
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optimisation stage, the maintenance decision is obtained by minimising the maintenance

cost up to the future one epoch, instead of looking ahead of the whole decision horizon.

Because of the computation efficiency, the myopic method is popular in stochastic

optimisation literature (Bertsekas, 2012; Levi et al., 2007).

In Figure 5.10, the average maintenance costs under different PM thresholds are

given by the offline approach, myopic approach, the proposed method in this work and

the optimal policy. It can be observed that the gap between the Bayesian method

and the optimal policy is the smallest among the three methods over 200 simulations.

Compared with the offline approach and myopic approach, the proposed method shows

better performance since the variance of the parameters is reduced with the new ob-

servations and it leverages the posterior distribution into the long-run optimisation.

Figure 5.10: Maintenance cost comparison across the proposed new method, offline
approach, myopic approach, and the optimal policy

5.6 Illustrative example

To illustrate the application of the proposed method, this section applies the experimen-

tal data related to ultra-thin gate oxide in metal-oxide-semiconductor devices (Cester

et al., 2003). Ultra-thin gate oxide which serves to separate the gate electrode from

the semiconductor and modulate its conductivity. The thinning of gate oxide is impor-

tant to maintain adequate drive current for proper circuit operation and achieve higher

performance in microelectronics (Hou et al., 2002). The term ’ultra-thin’ indicates the
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gate oxide layer as thin as a few nanometers or even less. Thinner gate oxide benefits in

accelerating the switch speeds and reducing power consumption. However, the scaling

of the gate oxide is limited by the gate leakage current, which causes unacceptable

standby power consumption. The maximum acceptable gate leakage current has been

suggested between 1 A/cm2 and 10 A/cm2, which is associated with the oxide thickness

(Suehle, 2002).

The experiment conducted by Cester et al. (2003) observed a discrete degradation

pattern in the leakage current of the ultra-thin gate oxide. The accelerated degrada-

tion experiments were performed on 3nm oxides under varying conditions of constant

voltage stress VCV S and ion irradiation ϕ. Figure 5.11 reproduces the experimental

data by extracting it from the original experiment plots, with the x-axis of Figure 5.11

representing the time of the accelerated experiment, and the y-axis showing the leakage

current density. It is worth noting that the constant voltage stress and iron irradiation

are two main factors related to the leakage of ultra-thin gate oxide.

Figure 5.11: Replot of leakage current density measured under varying conditions of
constant voltage stress and ion irradiation, based on the experiments from Cester
et al. (2003)

In the experimental data, the covariate vector for epoch t can be represented as

st = [1, Vcvs, ϕ], and every 1000s is regarded as a period. Based on the reproduced data

set, the prior values of the parameters are estimated using the MLE method as described
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in Appendix B.6, i.e., α̃0 = [1.976,−1.054, 0.667]⊺, β̃0 = [0.075, 0.009, 0.077]⊺,

Σα0 =


0.312 −0.087 −0.109

−0.087 0.080 −0.013

−0.109 −0.013 0.078

 ,Σβ0 =


0.001 −0.005 −0.004

−0.005 0.000 0.000

−0.004 0.000 0.000

 .

The prior estimates indicate that only the constant voltage stress is negatively cor-

related to the number of shocks. For the online estimating process with a specific

ultra-thin gate oxide, the underlying coefficients are assumed as α = [1.6,−1, 1]⊺ and

β = [0.05, 0.01, 0.1]⊺. The illustrative example in this section is based on a limited set

of experimental data, where heterogeneity is not clearly observable due to the small

sample size. To reflect potential heterogeneity effects, deliberate differences between

the underlying parameters and the MLE results are introduced (see the differences be-

tween (α,β) and (α̃0, β̃0)). This setting is intended to illustrate the applicability of the

proposed framework to cases involving heterogeneity, rather than to represent natural

statistical estimation errors. The primary aim of this Section is to demonstrate the

applicability of the proposed methodology.

The settings of constant voltage stress and ion irradiation are given in Table 5.1

for 12 periods. In Table 5.1, the operating condition 1 represents Vcvs = 4V and

2 represents Vcvs = 4.2 V in the row of constant voltage stress, 1 represents ϕ =

2× 106 ions/cm2 and 2 represents ϕ = 5× 106 ions/cm2 in the row of ion irradiation.

Table 5.1: Settings of constant voltage stress and ion irradiation

Period 1 2 3 4 5 6 7 8 9 10 11 12
Constant voltage stress 2 2 2 1 2 2 1 2 2 2 1 1
Ion irradiation 2 1 1 1 1 2 2 2 1 2 2 2

In the row of constant voltage stress, 1 represents Vcvs = 4V and 2 represents Vcvs = 4.2 V;

In the row of ion irradiation, 1 represents ϕ = 2× 106 ions/cm2 and 2 represents ϕ = 5× 106 ions/cm2.

At epoch 12, the parameters are updated as α̃12 = [1.617,−0.904, 0.861]⊺ and β̃12 =

[0.005, 0.016, 0.094]⊺, which are close to the underlying α and β. The maintenance

policy is illustrated in Figure 5.12, where the black solid line represents a randomly

generated degradation path using the underlying parameters and the working condition
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setting in Table 5.1, and the red dotted line indicates the failure threshold (10 A/cm2).

In Figure 5.12a, the leakage current density of the degradation path exceeds the PM

threshold at epoch 9, while it exceeds the failure threshold at epoch 10. In addition,

the blue dashed line in Figure 5.12a represents the PM threshold determined by the

proposed method. In Figure 5.12b, the green dashed line represents the optimal PM

threshold, determined based on the assumption of known underlying parameters. The

result presents that the obtained PM threshold is close to the underlying optimal one,

indicating the effectiveness of the proposed approach.

(a) PM thresholds determined by the
proposed method

(b) Optimal PM thresholds determined
with underlying parameters

Figure 5.12: PM thresholds of the proposed method and the optimal PM thresholds
determined based on the underlying true parameters

5.7 Summary

In this Chapter, the CBM policy is investigated and applied to the component degra-

dation following the CP process. The approach integrates both offline estimation and

online updating strategies, enabling the utilisation of real-time data for capturing the

dynamic behaviour of degradation. Bayesian Linear regression and Bayesian Poisson re-

gression are employed to effectively incorporate dynamic working conditions and latent

heterogeneity into the model. An analytically tractable degradation model is achieved

by leveraging conjugate priors to model the heterogeneity of the component popula-

tion. The optimal PM threshold is characterised in the form of a control limit policy.
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Notably, our findings challenge the classic monotonicity assumption, revealing that the

PM threshold is influenced by varied working conditions. The most likely heuristic and

backward MDP algorithms are combined to reduce the computation time. Numerical

experiments and an illustrative example are conducted to show the advancements of

the developed CBM policy considering both working conditions and heterogeneity. It

is important to note that the results presented are specific to degradation processes

driven by random shocks. While the modelling assumptions—such as employing a

Poisson process for shock occurrence and assuming normally distributed degradation

magnitudes—enable controlled simulation and analysis, they may oversimplify the com-

plexity and context-dependency of real-world scenarios. Maintenance policies for other

types of degradation mechanisms could be explored by extending the framework devel-

oped in this work.

There are several directions for potential future extensions. One theoretical direc-

tion involves a more in-depth analysis of the convergence of the Bayesian updating

process. This exploration will establish the error bounds between online decisions and

the optimal PM threshold. Building upon existing research on the convergence rate

of posterior distributions may provide valuable theoretical insights for such extension.

Another potential direction is to consider systems consisting of multiple components

with dependent degradation. The consideration of incorporating factors, such as varied

working conditions and latent heterogeneity, in such complex systems will lead to more

comprehensive and realistic maintenance policies. The degradation model developed in

this Chapter is well-suited for multiple components with independent degradation pro-

cesses, while future investigations will focus on dependent degradation with interactions

among components.
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Chapter 6

Conclusion

This thesis has investigated two key tasks in smart asset management: degradation

prediction and maintenance scheduling using data-driven approaches. This chapter

summarises the main findings across Chapters 3, 4, and 5, highlighting the commonal-

ities and differences among the developed methods, and proposes potential directions

for future research.

6.1 Thesis summary

This thesis addresses the challenges of degradation prediction and maintenance opti-

misation under varying data availability and operational conditions, and contributes a

suite of methodologies within the data-driven paradigm.

Chapter 3 developed a DL framework for degradation prediction under limited

observation conditions. DA methods—including jittering, scaling, window warping,

and others—were employed to expand the data set. Influence functions were used

to identify and filter out negative-impact synthetic samples, while a gradient-based

reweighting scheme was introduced to further enhance training efficiency. To improve

generalisation, a TL strategy was applied by fine-tuning the model on real samples.

Numerical experiments confirmed the proposed framework’s performance over baseline

methods. Although these gains were moderate in the illustrative examples, the frame-

work’s effectiveness remains valuable, especially in domains where degradation data are

non-stationary.
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Chapter 4 proposed an E2E data-driven framework for PM decision-making under

varied working conditions. Departing from the ETO approach, the E2E framework

directly maped operational data to maintenance decisions, bypassing explicit model

specification and parameter estimation. Theoretical results were established to mea-

sure the quality of the learned maintenance cost rate functions, with error bounds an-

alytically derived. Among the compared methods, E2E LASSO consistently delivered

the best results—likely due to its robustness and sparsity, which make it well-suited

to limited-data scenarios. In contrast, E2E ANN showed slightly lower performance,

potentially reflecting its greater data requirements. These findings highlight several

insights: Direct policy learning offers a more effective alternative to prediction-based

optimisation; A simple linear model, when aligned with the learning objective, can be

effective and may even outperform more complex architectures; The E2E framework

is adaptable to different system types, offering value for a wide range of maintenance

applications.

Chapter 5 extended the investigation to CBM policies under dynamic working en-

vironments, focusing on degradation driven by shock processes modelled via a CP

framework. Bayesian linear and Poisson regressions were employed for online updat-

ing, effectively capturing both working condition dynamics and latent heterogeneity

across systems. A control-limit PM policy was characterised, and a most likely heuris-

tic algorithm combined with a backward MDP was developed to reduce computational

complexity. By examining the dynamic working conditions, it was observed that the

PM threshold fluctuates in accordance with changes in the covariate. This behaviour

suggests that maintenance decisions may benefit from being dynamically adjusted in

response to changing working conditions. In such settings, static policies could be less

effective, while the proposed adaptive framework provides an approach to account for

variability in real time.

Across these three chapters, the requirements for data and assumptions about sys-

tem behaviours varied: Chapter 3 focused on scenarios with limited degradation tra-

jectory data, enhancing predictive models through DA and TL. Chapter 4 assumed

the availability of time-to-failure data under relatively constant working conditions,
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enabling direct supervised learning for TBM strategies. Chapter 5 addressed more

complex settings with online degradation monitoring under time-varying conditions,

integrating statistical updating and dynamic optimisation. Moreover, different per-

spectives of maintenance were explored: Chapter 4 emphasised TBM decisions under

constant conditions. Chapter 5 developed CBM strategies accounting for real-time

environmental variations and system heterogeneity.

The methodologies developed across Chapters 3 to 5 collectively contribute to build-

ing smart maintenance systems that can adapt to various operational scenarios, and

address key aspects such as predictive accuracy, maintenance decision making under

uncertainty.

6.2 Future research

In the summary sections of Chapters 3, 4, and 5, the potential future extensions specific

to each chapter have been discussed. The final section will outline three broader avenues

for future research that extend beyond the scope of these individual chapters.

Develop an explainable DL algorithm for degradation prediction.

Despite the success of DL in degradation prediction, it is often perceived as a “black

box”, making it less understandable and limiting its use in safety-critical applications.

Typically, DL methods lack the ability to interpret learned representations, explain

generated decisions, or quantify the reliability of those decisions. Future work on

explainable DL for degradation prediction could focus on several key areas: analysing

how input features contribute to the performance of DL networks by integrating prior

knowledge of degradation mechanisms, evaluating the importance of training samples

to refine data selection, and assessing model uncertainty to better support maintenance

decisions.
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Data-driven spare part management integrating with CBM policy.

The maintenance policy naturally interacts with spare part management, directly in-

fluencing the demand for spare parts. A key challenge in this integration is that spare

parts demand is often intermittent and irregular, with extended periods of zero de-

mand. However, by leveraging historical degradation data, it is possible to develop

a data-driven approach, such as kernel-based methods, to model the relationship be-

tween preventive maintenance thresholds and spare parts demand distribution. This

approach could further contribute to determining optimal maintenance thresholds and

spare part inventory decisions.

Data-driven maintenance policy under the deteriorating sensor.

The CBM policy utilises sensors and communication systems to monitor equipment

conditions and predict system failures based on collected measurements. In the liter-

ature, it is often assumed that sensor readings are either perfect or only subject to

measurement errors. However, this assumption overlooks the fact that sensors are also

prone to degradation over time due to environmental and ageing factors. To address

this, a hidden Markov model could be applied to capture the dynamics between hidden

states, i.e., sensor degradation and observable data. Subsequently, the maintenance

problem could be modelled as a POMDP over an infinite horizon. This extension not

only improves maintenance efficiency but also enhances the reliability of the monitoring

system by incorporating sensor health into the maintenance scheduling process.
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Appendix A

Proofs for Chapter 4

Fact 1 (Hoeffding’s inequality). Let Z1, ..., Zn be independent bounded random vari-

ables with Zi ∈ [a, b] for all i, where −∞ < a ≤ b <∞. Let

Z̄ =
Z1 + Z2 + ...+ Zn

n

Then,

P(
∣∣Z̄ − E(Z)

∣∣ ≥ ϵ) ≤ 2 exp (
−2n2ϵ2∑n

i=1(bi − ai)2
)

Fact 2 (Massart’s Inequality) Suppose real-valued variables X1, ..., Xn are independent

and identically distributed with cumulative distribution function F (·). Let F̂ (·) denote

the associated empirical distribution function denoted by

F̂ (x) =
1

n

n∑
i=1

1[Xi ≤ x], x ∈ R

Then for all α ≥ 0,

P
[
sup
x∈R

∣∣∣F̂ (x)− F (x)
∣∣∣ ≥ α

]
≤ 2 exp−2nα2

A.1 Proof of Proposition 4.1

Proof For the labelling process, assume Ni1(t), ..., Nik(t) are independent and identi-

cally distributed random variables bounded by [Nmin, Nmax]. According to Hoeffding’s
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inequality, with probability at least 1− 2 exp −2kω2

(Nmax−Nmin)2
then

∣∣N̄(t)− E(N(t))
∣∣ ≤ ω.

Then the empirical cost rate for repairable system converges as

∣∣∣CRS(t;xi)− ĈRS(t;xi)
∣∣∣ = ∣∣∣∣cm(E(N(t)− N̄(t))

t

∣∣∣∣ ≤ cmω

t

A.2 Proof of Proposition 4.2

Proof According to Massart’s inequality (Fact 2), for any t ∈ [TNRS
min , TNRS

max ] with

probability at least 1− 2 exp−2mε2 then

∣∣∣F̂ (t; si)− F (t; si)
∣∣∣ ≤ ε (A.1)∣∣∣R̂(t; si)−R(t; si)
∣∣∣ ≤ ε (A.2)∣∣∣∣∫ t

t=0
R̂(t; si)dt−

∫ t

t=0
R(t; si)dt

∣∣∣∣ ≤ εt (A.3)

Thus, for the absolute error of the approximated cost function for the non-repairable

systems, we have

∣∣∣ĈNRS(t; si)− CNRS(t; si)
∣∣∣ = ∣∣∣∣∣(cf − cr)F̂ (t; si) + cr∫ t

t=0 R̂(t; si)dt
−

(cf − cr)F (t; si) + cr∫ t
t=0R(t; si)dt

∣∣∣∣∣
≤

∣∣∣∣∣(cf − cr)F̂ (t; si)∫ t
t=0 R̂(t; si)dt

−
(cf − cr)F (t; si)∫ t

t=0R(t; si)dt

∣∣∣∣∣︸ ︷︷ ︸
1○

+

∣∣∣∣∣ cr∫ t
t=0 R̂(t; si)dt

− cr∫ t
t=0R(t; si)dt

∣∣∣∣∣︸ ︷︷ ︸
2○

(A.4)

Let G(t; si) denote
∫ t
t=0R(t; si)dt and Ĝ(t; si) denote

∫ t
t=0 R̂(t; si)dt. From the prop-

erty of CDF in reliability analysis, we know that F̂ (t; si), F (t; si), Ĝ(t; si), G(t; si) are
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non-decreasing functions, thus we have

0 ≤ F̂ (t; si) ≤ 1; 0 ≤ F (t; si) ≤ 1;R(t; si) ≤ G(t; si) ≤ t; R̂(t; si) ≤ Ĝ(t; si) ≤ t.

We drop si for notation convenience in the following functions. Combining with

inequality given in A.1, A.2, A.3, we can analyse the item 1○ in Equation A.4:

(cf − cr)F̂ (t)

Ĝ(t)
−

(cf − cr)F (t)

G(t)
=

(cf − cr)[F̂ (t)G(t)− F (t)Ĝ(t)]

Ĝ(t)G(t)

≤
(cf − cr)

[
F̂ (t)(Ĝ(t) + εt)− (F̂ (t)− ε)Ĝ(t)

]
Ĝ(t)G(t)

=
(cf − cr)

[
εtF̂ (t) + εĜ(t)

]
Ĝ(t)G(t)

≤
2εt(cf − cr)

Ĝ(t)G(t)
.

Similarly, we can also have

(cf − cr)F̂ (t)

Ĝ(t)
−

(cf − cr)F (t)

G(t)
≥

(cf − cr)
[
F̂ (t)(Ĝ(t)− εt)− (F̂ (t) + ε)Ĝ(t)

]
Ĝ(t)G(t)

≥
−2εt(cf − cr)

Ĝ(t)G(t)
.

Thus, we need to find the lower bound of Ĝ(t)G(t). The first derivative of Ĝ(t)G(t) is

R̂(t)G(t) + Ĝ(t)R(t) ≥ 0,

therefore Ĝ(t)G(t) is non-decreasing over t for any t ∈ [TNRS
min , TNRS

max ], and

1

Ĝ(t)G(t)
≤ 1

Ĝ(TNRS
min )G(TNRS

min )
≤ 1

Ĝ2(TNRS
min )− εTNRS

min Ĝ(TNRS
min )

≤ 1

−ε(TNRS
min )2 + (R̂(TNRS

min )TNRS
min )2

when the value of ε satisfied ε < R̂2(TNRS
min ).

Thus we can obtain 1○ in Equation A.4:∣∣∣∣∣(cf − cr)F̂ (t; si)∫ t
t=0 R̂(t; si)dt

−
(cf − cr)F (t; si)∫ t

t=0R(t; si)dt

∣∣∣∣∣ ≤ 2εt(cf − cr)

(R̂2(TNRS
min )− ε)(TNRS

min )2
.
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By a similar argument, we also have item 2○ in Equation A.4:∣∣∣∣∣ cr∫ t
t=0 R̂(t; si)dt

− cr∫ t
t=0R(t; si)dt

∣∣∣∣∣ ≤ εtcr

(R̂2(TNRS
min )− ε)(TNRS

min )2
.

So we establish the bound

∣∣∣ĈNRS(t; si)− CNRS(t; si)
∣∣∣ ≤ (2cf − cr)εt

(R̂2(TNRS
min ; si)− ε)(TNRS

min )2
(A.5)

with the probability of at least 1 − 2 exp−2Qiε
2
, where 0 ≤ ε < R̂2(TNRS

min ; si) is the

accuracy parameter.
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Appendix B

Proofs for Chapter 5

B.1 Proof for Proposition 5.1

Proof We prove 1 and 2 in Proposition 5.1 respectively.

1. At epoch t, we can approximate the posterior distribution of α using normal

distribution according to Lemma 5.1. Define an intermediate random value m =

sα, since αt+1 ∼ N (α̃t,Σαt), hence mt+1 ∼ N (st+1α̃t, st+1Σαts
⊺
t+1).

It is well known that the Gaussian distribution is approximately close to the log-

gamma distribution. Consider a random variable n ∼ Gamma(a, b), then the

transformed random variable log n follows the log-gamma distribution. For large

a, the log-gamma distribution is close to the normal distribution, that is log n ∼

N (log a + log b, a−1). Hence, emt+1 ∼ Gamma(a, b), where a = (st+1Σαts
⊺
t+1)

−1

and b = st+1Σαts
⊺
t+1e

st+1α̃t.

Now, we can derive the predictive distribution of kt+1 by marginalising the distri-

bution of k given emt+1 over the posterior distribution of emt+1 given a, b

f(kt+1|a, b) =
∫

f(kt+1|emt+1)f(emt+1 |a, b)demt+1

=
Γ(a+ kt+1)

Γ(kt+1 + 1)Γ(a)
p̂a(1− p̂)kt+1 ,

where p̂ = 1
1+b . Note that the negative binomial distribution is viewed as a Pois-

son distribution with a gamma prior on the rate parameter. Therefore, we can
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conclude that the predictive distribution of the number of shocks follows a negative

distribution as

kt+1|st+1, α̃t,Σαt ∼ NegBin(est+1α̃t , st+1Σαts
⊺
t+1).

2. At epoch t, the posterior distribution of β follow multivariate normal distribution

with p + 1-dimensional vector according to Lemma 5.2. By marginalising the

distribution of x, the predictive distribution is

f(xt+1|st+1, β̃t,Σβt , σ
2) =

∫
f(xt+1|st+1β, σ

2)f(β|β̃t,Σβt)dβ

=

∫
N (xt+1|st+1β, σ

2)Np+1(β|β̃t,Σβt)dβ

= N
(
xt+1|st+1β̃t, σ

2(1 + st+1Σβts
⊺
t+1)

)
.

This follows the linear combination property of multivariate normal distribution,

see Theorem 3.1 in (Gut, 2009).

B.2 Proof for Proposition 5.2

Proof We first discuss the predictive distribution of degradation increment given the

number of shocks Kt+1 = k in period t+ 1. The predictive distribution of xt+1 follows

the normal distribution according to Proposition 5.1. Thus, the k-fold convolution of

PDF of the random variable X still follows the normal distribution. Then the condition

distribution of future degradation increment Yt+1 is

f(Yt+1 = y|Kt+1 = k, β̃t,Σβt
) = fk(

k∑
i=0

xi|βt,Σβt
)

= Normal
(
kst+1β̃t, kσ

2(1 + st+1Σβt
s⊺t+1))

)
=
(
2πkσ2(1 + st+1Σβts

⊺
t+1)

)− 1
2 exp

[
−(y − kst+1β̃t)

2

2kσ2(1 + st+1Σβts
⊺
t+1)

]
.

(B.1)

According to Proposition 5.1, the number of shocks follows the Negative Binomial
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distribution, thus we have

P(Kt+1 = k|α̃t,Σαt) = NegBin(est+1α̃t , st+1Σαts
⊺
t+1)

=
Γ(a+ kt+1)

Γ(kt+1 + 1)Γ(a)
p̂a(1− p̂)kt+1 ,

(B.2)

where where a = (st+1Σαts
⊺
t+1)

−1, b = st+1Σαts
⊺
t+1e

st+1α̃t, and p̂ = 1
1+b

Combining the Equation (B.2) into Equations (B.1), the joint probability distribu-

tion of the random variable Yt+1 and Kt+1 in epoch t+ 1 can be obtained as:

f(Yt+1 = y,Kt+1 = k|α̃t,Σαt , β̃t,Σβt) = exp

[
−1

2

(y − kst+1β̃t)
2

kσ2(1 + st+1Σβts
⊺
t+1)

)

]
Γ(a+ k)p̂a

Γ(k + 1)Γ(a)
(1− p̂)k

×
(
2πkσ2(1 + st+1Σβts

⊺
t+1)

)− 1
2

The predictive distribution of random variable Yt+1 is

f(Yt+1 = y|α̃t,Σαt , β̃t,Σβt) =

∞∑
k=0

Γ(a+ k)

Γ(k + 1)Γ(a)
(

1

1 + b
)a(

b

1 + b
)k
[
2πkσ2(1 + d)

]− 1
2 exp

[
−1

2

(y − kc)2

kσ2(1 + d)

]
,

where a = (st+1Σαts
⊺
t+1)

−1, b = st+1Σαts
⊺
t+1e

st+1α̃t, c = st+1β̃t, d = st+1Σβts
⊺
t+1.

B.3 Proof for Proposition 5.3

We use the following definitions to explain and compare the stochastic order of random

variables (Shaked and Shanthikumar, 2007).

Definition 1 A random variable A is less than or equal to a random variable B in the

usual stochastic order, denoted as A ⪯ B, if

P(A > x) ≤ P(B > x),∀x ∈ (−∞,+∞).

Definition 2 A random variable A is said to be smaller than or equal to a random

variable B in the likelihood ratio order, denoted as A ⪯lr B if their PDFs fA(x)
fB(x) is non-

decreasing in x. Note that the likelihood ratio order is stronger than the usual stochastic

order. Hence, if A ⪯lr B, then A ⪯ B.
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Proof We first consider the random variable Kt+1 that follows Poisson distribution

with parameter λ(st+1) = est+1αt and K ′
t+1 follows Poisson distribution with parameter

λ(st+1)
′ = est+1α′

t. For Poisson distribution, the random variables Kt+1 are stochas-

tically increasing in λ(st+1), that is, λ(st+1) ⪯ λ′(st+1) implies ⟨Kt+1|λ(st+1)⟩ ⪯

⟨K ′
t+1|λ′(st+1)⟩. Since λ(st+1) = est+1αt, est+1αt approximately follows gamma dis-

tribution Gammma(at+1, bt+1) based on the proof of Proposition 5.1, where at+1 =

(st+1Σαts
⊺
t+1)

−1 and bt+1 = st+1Σαts
⊺
t+1e

st+1α̃t. Hence, the stochastic order λ(st+1) ⪯

λ(s′t+1) if at+1 < a′t+1 and bt+1 < b′t+1.

Thus, the inequality holds

⟨Yt+1|Pt,Qt,Nt⟩ =
Kt+1|Pt,Qt∑

i=1

⟨Xi|Nt⟩

⪯ ⟨
K

′
t+1|P′

t,Q
′
t∑

i=1

Xi|Nt⟩ = ⟨Yt+1|P′
t,Q

′
t,Nt⟩

The random variables ⟨Xt+1|Nt⟩ is normal distributed with mean st+1β̃t and vari-

ance σ2(1 + sjΣβts
⊺
j ), and ⟨X ′

t+1|N′
t⟩ is normal distributed with mean sjβ̃

′
j−1 and

variance σ2(1 + sjΣ
′
βt
s⊺j ). Since Σβt = σ2(StS⊺t + σ2Σ−1

β0
)−1, it can be observed that

the updating of Σβt is independent with the observations. Hence Σβt = Σ′
βt

given

the same working condition and Σβ0. That is, Xj and X ′
j are normally distributed

with different means but common variance. Define cj = sjβ̃t and c′j = sjβ̃
′
t, where

β̃t = M−1
t (Nt + σ2Σ−1

β0
β̃0) and β̃

′
t = M−1

t (N′
t + σ2Σ−1

β0
β̃0). If cj ≤ c′j, it is sufficient

to show the stochastic order ⟨Xt+1|Nt⟩ ⪯ ⟨Xt+1|N′
t⟩. Thus, the inequality holds

⟨Yt+1|Pt,Qt,Nt⟩ =
Kt+1|Pt,Qt∑

i=1

⟨Xi|Nt⟩

⪯ ⟨
Kt+1|Pt,Qt∑

i=1

X ′
i|N′

t⟩ = ⟨Yt+1|Pt,Qt,N
′
t⟩
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Therefore, by merging the two inequalities, it can be concluded that

⟨Yt+1|Pt,Qt,Nt⟩ ⪯ ⟨Yt+1|P′
t,Q

′
t,Nt⟩

⪯ ⟨Yt+1|P′
t,Q

′
t,N

′
t⟩.

B.4 Proof for Proposition 5.4

Proof First, we need to prove the value function is non-decreasing in zt for all t,

t = 0, 1, ..., T by induction. At the last epoch t = T , the value function

VT,χT
(zT ,PT ,QT ,NT ) =

 0, zT < D

cr, zT ≥ D.

It can be observed that VT,χT
(zT ,PT ,QT ,NT ) is constant and satisfies the non-decreasing

property. Assuming that the property holds at epoch t+1, t = 0, ..., T − 1, we can show

that it also holds at t.

Consider the case when the accumulative degradation zt < D, we have Vt,χt
(zt,Pt,Qt,Nt) =

min{cp+V (0), γE
[
Vt+1,χt+1

(zt+1,Pt+1,Qt+1,Nt+1)
]
}. As Vt+1(zt+1,Pt+1,Qt+1,Nt+1)

is non-decreasing in zt+1 and ⟨zt+1|z−t ,Pt,Qt,Nt⟩ ⪯ ⟨zt+1|z+t ,Pt,Qt,Nt⟩ holds given

the working condition and z−t ≤ z+t , and E
[
Vt+1,χt+1

(zt + yt+1,Pt+1,Qt+1,Nt+1|zt,Pt,Qt,Nt)
]

is non-decreasing in zt. Therefore, we can conclude that the value function Vt,χt
(zt,Pt,Qt,Nt)

is non-decreasing in zt when zt < D. On the other hand, when the accumulative degra-

dation zt ≥ D, the value function Vt,χt
(zt,Pt,Qt,Nt) = cr+Vt,χt

(0,P0,Q0,N0), which

a constant and holds the non-decreasing property. Hence, the induction holds hypothesis

holds for all t, 0 ≤ t ≤ T .

Then, according to the Bellman equation, PM is optimal when the inequality

cp + Vt,χt
(0,P0,Q0,N0) ≤ γE

[
Vt+1,χt+1

(zt+1,Pt+1,Qt+1,Nt+1)
]

holds. Since the left-hand side of the inequality is constant with respect to zt and the

right-hand side is non-decreasing in zt. Therefore, this establishes a control limit policy

that there exists a threshold ζt,χt
(Pt,Qt,Nt), such that the PM is performed when the
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accumulative degradation zt ≥ ζt,χt
(Pt,Qt,Nt).

B.5 Proof for Proposition 5.5

Proof First, we prove that the maintenance policy is still a control limit policy when

applying the most likely distribution. Given the observations up to epoch t, the parame-

ters are updated according to Lemma 5.1 and Lemma 5.2, and the most likely predictive

distribution of Yt+i at epoch t+ i is f̂t+i,t(Yt+i|α̃t,Σαt , β̃t,Σβt) for i = 1, ..., T − t. At

the last epoch T , the value function

V̂T,t,χT
(zT ) =

 0, zT < D

cr, zT ≥ D.

It can be observed that V̂T,t,χT
(zT ) is constant and satisfies the non-decreasing prop-

erty. Assuming that the property holds at epoch t+1, t = 0, ..., T −1, we can show that

it also holds at t.

Consider the case when the accumulative degradation zt < D, we have V̂t,t,χt
(zt) =

min{cp + V (0), γE
[
V̂t+1,t,χt+1

(zt+1)
]
}. As V̂t+1,t,χt+1

(zt+1) is non-decreasing in zt+1

and ⟨zt+1|z−t , α̃t,Σαt , β̃t,Σβt⟩ ⪯ ⟨zt+1|z+t , α̃t,Σαt , β̃t,Σβt⟩ holds given the working con-

dition and z−t ≤ z+t , which yields E
[
V̂t+1,t,χt+1

(zt + yt+1|zt)
]
is non-decreasing in zt.

Therefore, we can conclude that the value function V̂t,t,χt
(zt) is non-decreasing in zt

when zt < D. On the other hand, when the accumulative degradation zt ≥ D, the value

function V̂t,t,χt
(zt) = cr + V̂t,t,χt

(0), which is a constant and holds the non-decreasing

property. Hence, the induction holds hypothesis holds for all t, 0 ≤ t ≤ T . Afterwards,

we can further derive that the PM threshold is a control limit policy, which is similar

to the proof of Proposition 5.4.

From the control limit policy, it is known that PM is optimal when the inequality

cp + V̂t,t,χt
(0) ≤ γE

[
V̂t+1,t,χt+1

(zt+1)
]

holds. As stated in Proposition 5.3, if at ≤ a′t, bt ≤ b′t and ct ≤ c′t, then given any

working condition, the stochastic order ⟨Yt+1|at, bt, ct⟩ ⪯ ⟨Yt+1|a′t, b′t, c′t⟩. Hence, the
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right-hand side

E
[
V̂t+1,t,χt+1

(zt+1)
]
=

∑
zt+1∈∆

F̂t+1,t(zt+1 − zt|α̃t,Σαt , β̃t,Σβt)V̂t+1,t,χt+1
(zt+1)

≤
∑

zt+1∈∆
F̂t+1,t(zt+1 − zt|α̃′

t,Σ
′
αt
, β̃′

t,Σ
′
βt
)V̂t+1,t,χt+1

(zt+1)

The left-hand side of the inequality is constant with respect to zt, hence the PM threshold

ζ̂t,χt
(Pt,Qt,Nt) ≥ ζ̂t,χt

(P
′
t,Q

′
t,N

′
t).

B.6 MLE for the initial value of the parameters

We estimate the initial values for the shock arrivals and the shock magnitude separately

since they are independent in the CP process. For the degradation paths, we sort the

historical shock arrivals ki within one epoch and the corresponding working condition

vectors si as a tuple (ki, si), i ∈ I, where si = [1, si1, ..., sip], p is the number of co-

variates, and I is the number of paths for shock arrivals. The historical magnitude of

shocks and the corresponding working condition vector as a tuple (xi, s̄i), i ∈ J , where

J is the number of path for degradation magnitude, s̄i is a p+ 1 dimensional vector.

Firstly, we show the MLE for estimating the prior distribution of α, which is the

coefficient vector. In the Poisson regression model, the number of shocks follows the

Poisson distribution K ∼ Poisson(esα). The likelihood function for I independent

Poisson observation is a product of probability as

L(α) =

I∏
i=1

e−siαsiα
ki

ki!
.

The log-likelihood function is

logL(α) =

I∑
i=1

{ki log(siα)− siα} .

Hence, the estimated α0 = argmaxα logL(α), which can be solved by using standard

numerical methods, e.g. Newton-Raphson technique.
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Based on the fact that the maximum likelihood estimator α0 approximates the mean

of α, and the covariance matrix is the inverse of the information matrix, which is the

minus expected value of the second derivative of the log-likelihood as −E(∂
2 logL(α)

∂2α
).

Hence, the covariance mateix can be estimated as Σα0 = S⊺WS, whereW is a diagonal

matrix, wi = siα0, i ∈ I, and S is a I × (P + 1) matrix that contains the values of

working conditions. The proof of covariance matrix can be found in Appendix B.5.2 of

the note (Rodŕıguez, 2007).

For estimating the prior distribution of β, which is the coefficient vector of working

conditions for linear regression. In the Linear regression model, the shock magnitude

follows normal distribution X ∼ N (s̄β, σ2). The likelihood function for J independent

observations is:

L(β, σ) =
J∏

i=1

1√
2πσ2

e−
(xi−s̄β)2

2σ2 . (B.3)

Differentiating the logarithm of Equation (B.3) with respect to β, the MLE of β can

be obtained as β0 = (S̄
⊺
S̄)−1S̄

⊺
x, where S̄ is a J × (p + 1) matrix that contains

values of the working condition, x is a J dimensional vector of the shock magnitude.

The variance-covariance matrix of the MLE estimators is then obtained by taking the

negative inverse of the Hessian matrix of the log-likelihood function evaluated at the

MLE, that is Σβ0 = (S̄
⊺
S̄)−1σ2. When the σ is unknown to the decision maker, it

can be estimated by σ = 1
J (x− S̄β)⊺(x− S̄β) by differentiating Equation (B.3) with

respect to σ. The derivate process for the mean value β0, the variance matrix Σβ0 and

variance σ can be found in Appendix B.2 and B.3 of the note (Rodŕıguez, 2007).

B.7 Normal approximation

Consider a random variable X ∼ Gamma(a,b), where a is the shape parameter and b

is scale parameter, and the distribution function is:

P(x|a, b) = xa−1e−
x
b

Γ(a)ba
.
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The logarithm Y = logX follows log-gamma distribution. When a tends to be infinite,

the log-gamma distribution is normal distribution:

y = log x ∼ N (log a+ log b, a−1).

By setting a = k, k ∈ {0, 1, ...}, and b = 1,

P(x|k, 1) = xk−1e−x

(k − 1)!
.

The distribution of y is obtained as

P(y|k, 1) = P(x = ey|k, 1)∂e
y

∂y

=
ekye−ey

(k − 1)!

≈ N (y| log k, k−1)
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B.8 Heuristic algorithm

Algorithm 2: Backward dynamic programming algorithm with most likeli-
hood distribution

Data: Initial parameters α̃0, β̃0, Σα0 , Σβ0 , cost parameter cp, cr, vector of
covariates χt, last epoch T , discount factor γ

Initialise: Terminal value function VT+1,t,χT+1
(·) = 0 for all t

for t = 0, 1, 2, ..., T do
for u = T − t, ..., 0 do

forall zt+u ∈ ∆ do

V̂t+u,t,χt+u
(zt+u) =

γ
∑

zt+u+1∈∆ F̂t+u+1,t(zt+u+1 − zt+u)V̂t+u+1,t,χt+u+1
(zt+u+1)

if V̂t+u,t,χt+u
(zt+u) > cp + V̂t+u,t,χt+u(0) then

V̂t+u,t,χt+u
(zt+u) = cp + V̂t+u,t,χt+u(0)

if u = 0 then
πt,t,χt

(zt)← PM
end

else
if u = 0 then

πt,t,χt
(zt)← DN

end

end

end

end

Update α̃t+1, β̃t+1, Σαt+1 , Σβt+1 based on new observations xt, kt
end

Output: V̂t,t,χt
(zt) and maintenance policy πt,t,χt

(zt)
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IB Sidibé, Abdelhakim Khatab, Claver Diallo, and Kondo H Adjallah. Kernel estima-

tor of maintenance optimization model for a stochastically degrading system under

different operating environments. Reliability Engineering & System Safety, 147:109–

116, 2016.

165

https://grodri.github.io/glms/notes/
https://grodri.github.io/glms/notes/


Rajesh Siraskar, Satish Kumar, Shruti Patil, Arunkumar Bongale, and Ketan Kotecha.

Reinforcement learning for predictive maintenance: A systematic technical review.

Artificial Intelligence Review, 56(11):12885–12947, 2023.

Chelsea Snyder. The effects of charge/discharge rate on capacity fade of lithium ion

batteries. Rensselaer Polytechnic Institute, 2016.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning

with context-based representations. In International Conference on Machine Learn-

ing, pages 9767–9779. PMLR, 2021.

Kaia Stødle, Roger Flage, Seth D Guikema, and Terje Aven. Data-driven predictive

modeling in risk assessment: Challenges and directions for proper uncertainty repre-

sentation. Risk Analysis, 43:2644–2658, 2023.

John S Suehle. Ultrathin gate oxide reliability: Physical models, statistics, and char-

acterization. IEEE Transactions on Electron Devices, 49(6):958–971, 2002.

Xuxue Sun, Wenjun Cai, and Mingyang Li. A hierarchical modeling approach for

degradation data with mixed-type covariates and latent heterogeneity. Reliability

Engineering & System Safety, 216:107928, 2021.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction,

volume 1. MIT press Cambridge, 1998.

Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang

Liu. A survey on deep transfer learning. In International Conference on Artificial

Neural Networks, pages 270–279. Springer, 2018.

Yyi Kai Teoh, Sukhpal Singh Gill, and Ajith Kumar Parlikad. IoT and fog-computing-

based predictive maintenance model for effective asset management in Industry 4.0

using machine learning. IEEE Internet of Things Journal, 10(3):2087–2094, 2021.

Mani Thenmozhi, Visalakshi Jeyaseelan, Lakshmanan Jeyaseelan, Rita Isaac, and Rupa

Vedantam. Survival analysis in longitudinal studies for recurrent events: Applications

and challenges. Clinical Epidemiology and Global Health, 7(2):253–260, 2019.

166



Terry M Therneau. A Package for Survival Analysis in R, 2023. URL https://CRAN.

R-project.org/package=survival. R package version 3.5-5.

OWM Thijssens and Wim JC Verhagen. Application of extended Cox regression model

to time-on-wing data of aircraft repairables. Reliability Engineering & System Safety,

204:107136, 2020.

Zhigang Tian and Ming J Zuo. Health condition prediction of gears using a recurrent

neural network approach. IEEE Transactions on Reliability, 59(4):700–705, 2010.

Michiel AJ uit het Broek, Ruud H Teunter, Bram de Jonge, Jasper Veldman, and

Nicky D Van Foreest. Condition-based production planning: Adjusting production

rates to balance output and failure risk. Manufacturing & Service Operations Man-

agement, 22(4):792–811, 2020.

Terry T Um, Franz MJ Pfister, Daniel Pichler, Satoshi Endo, Muriel Lang, Sandra
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