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(i)

ABSTRACT
Ouring. the refill stage of a Loss of Coolant

Accident (LOCA) in Pressurised Water Reactor (PWR)
the effectiveness with which the emergency coolant
penetrates to the-lower plenum, and hence to the
core, is of paramount importance.

This.thesis presents the results of experimental
and theoretical work carried out at the University
of Strathclyde on two: 1/10 scale planar test sections
of a PWR downcomer annulus. The experiments involved
the countercurrent flows of air and water and the data were
compared with existing flooding correlations for

tubes. The comparison revealed the inadequacy of the
existing correlations.

) In the Phase 1 test section arrangemeht, it was
found experimentally that, as the inlet air flowed
upwards against two opposing waterfalls, an increase
in air flowrate caused the waterfalls to move closer
together until a critical air flowrate was reached
where the waterfalls collapsed. A theoretical model
was also developed to define this collapse condition
which was shown to be-analogous to the choked flow of
air through a nozzle whose cross sectional area varied

with pressure. Whilst this phenomenon was not

directly related to the PWR refill problem, it was an

interesting feature in its own right.



Use was made of previous experimental results for
steam-water mixtures on 'similar test sections,in con-
junction with the present air-water data,to study
condensation effects. Here the non-equilibrium
effects were isolated and correlated against the
dependent parameters of inlet water flowrate, inlet
subcooling and downcomer wall temperature. A
theoretical model for the condensation process was
developed which gave good gqualitative and
quantitative agreement with experiment. Its
superiority over a current BCL correlation is

demonstrated.
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CHAPTER 1 : INTRODUCTION

During the past two decades, the share of electric
power generated by nuclear reactors has increased
dramatically and different types of nuclear reactors
are currently operating in different parts of the world.

The basic principle of the nuclear power plant is
the removal of energy (heat) generated in the core of
the reactor by nuclear fission and its subsequent use
to generate steam. The coolant used to remove the heat
generated in the core can be either liquid or gas. The
present work is related to the safety of Pressurised
Water Reactors (PWR), i.e., reactors which use water

as the coolant operating at fairly high pressure (~150 bar).

lel PWEK OPERATION

Figure 1:1 shows a diagrammatic arrangement of a PWR
plant under normal operating conditions. Here the
pressurised water flows downwards through t™e annulus
surrounding the reactor vessel core barrel and then up-
wards through the core fuel elements out of the reactor
vessel through the hot legs into steam generators
where it circulates through tubes, the outer surfaces
of which are in contact with a secondary stream of water
returning from the turbine condensers. The heat transfer
through the tubes causes the water to evaporate, so
producing steam to drive the turbines.

Since the steam

is not obtained directly from the core heating, this



system is called an "indirect cycle system".

After transferring energy in the steam generators,
the pressurised water is returned by means of circulating
pumps to the reactor vessel via the “"cold leg ' piping.
There are normally four loops associated with each
reactor vessel with each loop having an accumulator
vessel connected to the cold leg. The accumulator
contains borated water for emergency core cooling
purposes in the event of a system leakage and associated
depressurisation. The primary system is pressurised by
a single pressuriser vessel connected to one of the hot
legs as shown in Figure 1.1.

Because of the potentiai hazards inherent in the

operation of a PWR, it is essential that safety features

be incorporated into the design. A consideration of prime

importance is the loss of coolant accident (LOCA) since
this could result in a potential radiological danger to
the public in the event of the core cooling being
diminished. A postulated LOCA assumes that an instant-
aneous break or breach occurs in some part of the reactor
coolant system, e.g., cold leg piping. The largest pipe
break considered is the severance of the largest pipe in
the coolant system in such a way that the reactor

coolant would discharge unimpeded from both ends - the

so-called "double-ended guillotine break". Due to the

initially high pressure of the coolant, such a break would
result in a rapid expulsion of a large fraction of the
reactor coolant into the containment surrounding the

reactor, resulting in a rapid depressurisation of the
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primary system and consequent flash evaporation of some
of the remaining coolant. This is illustrated in
Figure 1.2.

1.2 LOSS OF COOLANT ACCIDENT

In the event of a LOCA, due to a double-ended cold
leg guillotine break, or other types of breach, the
effects within the reactor are postulated to occur as
follows :

(i) Blowdown The high pressure (~150 bar), high
temperature (~315°C) primary coolant
would be rapidly expelled from the
primary system. During the later
stages of this blowdown, present LOCA
calculations predict steam or two-
phase flows in the directions shown
schematically in Figure 1.2.

(ii) Refill When the vessel pressure decreases to
around 41 bar, check valves between the
accumulators and the cold leg open and
allow emergency coolant to pass into
the cold legs. These large volumes
of water, maintained at about 41 bar by
compressed Nitrogen gas in the
accumulator and designated as the
Emergency Core Coolant (ECC), enter the
downcomer annulus with the expectation
of passing downwards by virtue of momen-
tum and gravity. However, the upward

steam flow from the core opposes this



desired downward flow of ECC water and
can, under some conditions, bypass it
around the annulus and straight out the
fractured pipe. The refill stage is
completed when the lower plenum is filled

and the water level reaches the bottom

of the core.

(iii) Reflood The refload period involves the time
during which the level of coolant
contained in the pressure vessel rises
from the bottom to the top of the core,
completing the resubmergence of the

core and producing safe conditions.

1.3 CURRENT PROJECT

The work presented in this thesis is connected with
the safety aspects of PWRs and was supported by H.M.
Nuclear Installation Inspectorate (NII), a branch of
the Health and Safety Executive of the U.K. Government.
The possibility of PWRs being built in the U.K., and
the subsequent licensing, requires that NII be fully
aware of the merits and demerits of any theoretical
correlations, computations or experimental data
introduced into the safety case.

In this project, interest is confined to the refill
stage of a LOCA; with particular reference to the
effectiveness with which the emergency coolant traverses
the PWR downcomer and reaches the lower plenum. A

review of the literature indicated that conditions can
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exist whereby, if the flowrate of counter-current steam

generated in the core exceeds certain values, the ECC

will not penetrate to the lower plenum but a "liquid
bridging" or "flooding" or "bypass effect"* can occur,
i.e., the liquid entering the top of the downcomer wvia an
entry pipe flows around the downcomer and out through

the break. It was also noted that condensation played

an important role in ECC water penetration characteristics.
The experimental work carried out at Creare, BCL, and
Strathclyde indicated, however, that condensation does

not occur under thermal equilibrium, i.e., only a fraction
of the steam which could be condensed to raise the
temperature of the inlet water to saturation is

actually condensed. This non-equilibrium effect was
generally accounted for in the literature by introducing

a "non-equilibrium factor" or "condensation efficiency”
which was determined as a function of the inlet water

flow rate by statistical methods and without any
theoretical justification. The present work provides a
modest attempt at solving the problem of non-equilibrium

condensation associated with flooding during the refill

stage of a LOCA.

* Different names are used in the literature to describe

the same effect, viz. the steam holding up the water
entering the annulus and causing it to bypass around

the annulus and out through the break.



Due to the absence of reliable theoretical models to
describe the flooding phenomenon, it was necessary to
conduct air/water experiments to complement earlier
steam/water experiments carried out at Strathclyde
University (refs. 35, 36). An analytical model was
also developed, which incorporated the effects of inlet
sub-cooling and downcomer wall temperature, to predict
the critical steam flux to within iZO%. From observations
made during the experimental work, a study of the upward
flow of air between two waterfalls was also made with
attention being focused on: (i) the prediction of the
airflow condition at which the two waterfalls just
came together, (ii) a description of the waterfall
trajectories. The latter problem was essentially one
of choked flow and could be compared with the adiabatic
flow of 2air through a nozzle with flexible walls, the
shape of the nozzle being dictated by the air fiow. As
such, it is a two phase flow problem of particular
interest.

This thesis presents (i) the state of the art
relevant to the refill problem during a LOCA, (ii) a
description of the apparatus and instrumentation which was
used for this study, (iii) the experimental data obtained
during an air water test programme, (iv) theoretical and
analytical models developed in the course of this study.

It is hoped that the information presented will
contribute in some way towards a better understanding

of the flooding phencmenon involved in the refill stage

of a LOCA.
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CHAPTER 2 : REVIEW OF LITERATURE

The phenomenon of flooding in vertical counter-
current two phase flow systems first received attention
from chemical engineers in the design of packed columns.
In recent years, however, with the advent of nuclear
technology and the growing interest in various heat
transfer phenomenon in two phase flows, mechanical and
nuclear engineers have also become involved in this
phencmenon.

The present review consists of three main sections.
In the first section, a critical review is made of the
existing theoretical models which lead to the prediction
of the critical conditions at the onset of flooding
in vertical tubes. These models do not include the
effects of heat or mass transfer. In the second section,
the limited theoretical work on the effect of conden-
sation is reviewed. The third section presents
experimental work on flooding in simulated PWR geometries.

2.1 THEORETICAL ANALYSIS OF FLOODING IN VERTICAL TUBES

The exact mechanism of flooding remains undetermined.
Several models have been proposed in the last 15 years
or so and these can be divided into the following
categories:
(i) Wave stability Analysis
(ii) Film Flow Model

(iii) Hanging Film Models
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(iv) Annular Flow Models

(v) Entrainment Model
These models are reviewed in turn.

2.1.1 Wave Stability Analysis

The models presented in this section are promoted by
the observation of waves on the gas-liquid interface
when flooding conditions are approached. The wave
stability analysis speculates that once a finite
amplitude wave is formed it continues to grow until
it bridges the tube, whereupon the liquid is carried
up the tube or duct as a slug or as an entrained
phase.

Two approaches have been adopted. The first applies
a small perturbation analysis to the interface; the
second studies the forces on a single standing wave.

2.1.1.1 Small Perturbation Models

The first theoretical attempt in this direction was
carried out by Schutt (1), who endeavoured to find a
solution for the Navier-Stokes equations for incompress-
ible, two dimensional isotropic flow. The gas and
liquid were assumed to be immiscible with no
heat or mass transfer between the phases. The co-
ordinate system used is shown in Figure 2.1.

To solve the turbulent Navier-Stokes equation, Schutt
assumed the following:

(a) The Navier-Stokes equation can be solved as a two-

fold set: one incorporating Reynolds Stress (neglecting
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viscosity), and one in linearised form incorporating

viscosity (neglecting Reynolds Stresses).

(b) At bridging, the wave equation resulting from
double integration of the "viscosity" equation vanishes
leaving a more tractable relationship between static

and dynamic pressures as an adequate description of the
phenomenon.

(c) When used in conjunction with the solution to the
"Reynolds Stresses" equation, the large transverse velo-
city at bridging comes from a "resonance"* condition
satisfied by the solution for the transverse velocity.
(d) The longitudinal velocity vanishes at bridging. The
details of Schutt's analysis are lengthy, however the

resulting bridging equation is given by

+
f_1 D 2 tane. [
Ug -( By lg- (T +RQ)- II - IIT). S~ o To 577 )
(D/2 - 9)
where (2.1)
I=2(n_ -1) (]2 + n__| + 3) pLVULZ (2.2)
9 tr tr (D/2 ‘6)
= 2 _16_ 2
II = (2+n.)°. 18Rs ° Pl_uL (2.3)
_ 2 > 2
1= (- . gEmTey - Ay (2.4)
2
r. (@ + explamé/(p/2 -6)])
= T —exp [ 408/ (D72 - 5] + 1 (2.5)

*

Resonance is defined when a component of a travelling

pressure distribution is in phase with and of the same

wave length as the free surface wave.
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= 3.425 x 107> R 375 1 (empirically) (2.6)
4

Re = 23m (2.7)
gl 2 (2.8)

volume flowrate per unit perimeter

=

Tan€&€ = arbitrary phase factor which has the empirical
value

J?ZEE = 0.1636 - 4.95x 103 v (ST Units) (2.9)
n., = profile factor at bridging and should be

obtained by trial and error.

For small tube diameters Schutt's results showed
reasonable agreement with experimental flooding
conditions (Figure 2.2): for larger diameters the theory
did not agree well with experiment (Figure 2.3). Despite
the complicated mathematical derivation, it was not
possible to generate a single flooding cofrelation from
this analysis. However, as the first attempt at a very
complicated problem, Schutt's work is to be commended.

Cetinbudklar and Jameson (2) attempted to predict
the gas velocity at which the wave became unstable by
the use of a stability analysis similar to Schutt's. The
problem was formulated in conventional terms so that in
each phase the disturbance equation reduced to the
Orr-Sommerfield equation. They argued that the standing
waves in the liquid surface were in fact moving upwards
with respect to the gas next to the surface, which meant
the velocity of the liquid at the interface.

The analysis used can be summarised as follows. For
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the liquid, all distances were made dimensionless with
respect to the undisturbed film thickness S , all
velocities with respect to interfacial velocity u_, and
all other variables with suitable combination of those
two. The liquid flow was assumed to be laminar with a
parabolic velocity distribution. A sinusoidal
disturbance of the form

N =a exp (ix(x - Ct) (2.10)
was applied to the free surface

where

cC = Cr + iCi was a complex wave velocity. Figure 2.4
shows the co-ordinate system used in the analysis.

A steam function of the form

Y= -F(y)n (2.11)

was introduced and by substituting this into the Navier-

Stokes equation, linearisating and eliminating the pressure,

the Orr-Sommerfield equation was obtained thus

F - 268+ ofF = iare [(U- O (F-ofF) - U'F] (2.12)
where
. 58 _ g8
The boundary conditions were
1) at the wall (y = -1)
F(-1) = ™ (-1) =0 (2.13)
2) at the interface (y=0)
F (0) = C - U, (2.14)
) 2 o
F = - - -
(0) T x (C u.) U, (2.15)

(Tangential Stress Continuity)
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() F (0) - 2= (F (0)-362F (0)) = oW, - o (2.16)
(Normal Stress Continuity)
where
we = pe
L%
T4 and Pg = dimensionless stresses to be determined

from the gas phase.

By arguing that the stability of the film was largely
dependent on the conditions near the interface where
U' was zero, then U = Uy = constant and U" = 2 and
equation (2.12) reduced to a fourth order ordinary
differential equation with constant coefficients and

solution:

F = Cl 51n1%y + CZCOSWY + C331nQ¥ + C4cosn¥ (2.17)

where

“Bye = —of - iEot.Re (Uy - C) * [2ixRe + (i«ZRe(UO ) C))Z]If
(2.18)

c1,2,3'4 = constants

The gas was regarded as being in quasi-laminar flow over

the liquid and was subjected to small perturbation

represented by (2.10) at the gas-liquid interface.

The turbulent fluctuations in the gas were ignored

and a mean velocity profile was assumed. The solution of

the Orr-Summerfield was assumed to be ( ¢+ f) where
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$¢(y) is the inviscid. solution

f(y) is the viscous solution

The real and imaginary parts of Pg and Té were calculated

as
P, = (1 +0.644 K[3) A, (2.19)
Psj =-0.644 KA, (2.20)
Ter = 0.686 Ai/3 (1+ 1.288 va3) (2.21)
. /3
Tgi = 0.686 31 A, (3 +1.288 ® (2.22)
where
— \"/
A1 = o 9/

2 1 +1.288 K 3 + 1.288 K)

N 203&2(/:3‘/)0‘-'3)1

k = a}/3

1 x 1
ag
I = ’{V+2 exp (-ocy)dy
+ LN , . \A
\ = dimensionless gas velocity =
vatf
v
= Ve
Ve = free stream gas velocity
Cf = €friction coefficient

When the solution for F was substituted into the
four linear homogenous boundary conditions, a non-

trivial solution for the constants Cl, C2, C3 and C4
existed only if the determinant for the coefficients

vanished. The two resulting equations were solved for

Ci and V, given « and Re and with C, set equal to Up-
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Figure 2.5 illustrates the variation of the wave

growth rate («Ci) with the gas friction velocity Vg4 for
an air-water system. It was found that each curve passed
through a minimum Vg and it was this value which was
taken to be the flooding velocity. Figure 2.6 shows
comparison between this theory and the experimental data
of Clift et al (3). As can be seen, the agreement is
good.

Again the analysis failed to generate a single
flooding equation. Also, the results required the
assumption of an interfacial friction coefficient and

a gas velocity distribution and these are subject to

question.

2.1.1.2 Standing Wave Models

Shearer and Davidson (4) produced a theory which
assumed that, at the limiting gas flow, a standing wave
formed on the liquid surface, with an amplitude several
times the mean film thickness. They studied the flow

patterns on both the gas and the liquid sides.

On the gas side, the following assumptions were made:

i) The gas flow breaks away from the liquid surface
on the leeward side of the wave and hence the gas
préssure in this region must be constant.

ii) The shear stress exerted on the liquid surface

" by the gas can be neglected.

iii) For the variation of gas pressure over the

windward surface of the wave, the empirical expression

. 2
(p- p)/ %Ug

) (m8/2€)(1 + e/ 4f) (2.23)
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can be used,where

P = pressure far up wind from the wave

P pressure at any point on its windward surface
g 3p

® = film thickness = [*7;2m]1/3
- - g

= length from the crest to the trough

U
g

velocity of the gas stream

The co-ordinate system and the wave profile considered

are shown in Figure 2.7.

For the liquid side the following assumptions were
made :

i) Within the liquid film in the region A 1in
Figure 2.7, viscous and inertia forces were ignored.

ii) Below the crest, viscous and inertia forces

must be included.
iii)’ Velocity distribution is parabolic.
The resulting differential equation became

2
3 £
a’é Ay ne, 48 6, A1, 48
< dx3+—592-g(1+§%)dx +{g+5 o) dx
3P Q
3

= 0 (2.24)

with boundary conditions at X

=0
& = a + © ad = 0
O ————
dx
2 1/3
a<d 3 2
ana  ( 42-) = [2a-( parey ]
dx2 =0 2 ‘{
(pressure continuity)
where

a = wave amplitude
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Q, = total volume flowrate in the liquid £ilm

From the theory, the authors derived three

dimensicnless groups, namely,

Weber number, Weg = ( Gngsg/G")

Reynolds number, Re, = ( m / IJ)

7 =[a-( /qu Y3/ 4]

Figure 2.8 shows these dimensionless groups and the
comparison with experiments.

The Shearer and Davidson work suggested that a
relationship may exist between flooding and standing
waves On the interface. An interesting feature of
this model was that stability was determined solely
as a balance between pressures, viscosity appearing only
as a means of determining the undisturbed film thick-
ness and velocity.

However, the agreement between the theory and
experiment was not very good and the authors attributed
this to the entry conditions, the circularity effect in
small tubes and turbulence in the liquid film.

Ueda and Suzuki (5) argued that at bridging, part of
the liquid was continuously torn off from the crest of a
large amplitude wave and broke up into droplets.

Figure 2.9 illustrates a liquid lump of single large

amplitude wave formed on the steady liquid film. In this
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analysis the following assumptions were made:

i) The location of liquid lump is fixed in space
ii) The shear stress on the gas-liquid interface
and the shroud surface are negligible except for those

stresses on the liquid lump.

iii) Both gravity force and compressibility of the
gas phase were negligible.
From the force balances in the horizontal and vertical

directions, the gas velocity Ug and the wave height, Ah,

at the onset of flooding was deduced as
2 2

U f U A A 2
'('f?q’ﬁ ) (222G - 1] = (2.25)
L go go
and
m({D, + 28)ah = A1 T 2o (2.26)

The broken lines in Figure 2.10 show the limit
relationship calculated by (2.25) for air-water annuli

of shroud diameter DO' in which the profile factor and

the mean film thickness were assumed to be ﬂc = 1.5 and

® = o.4mm respectively.

General Comments on Wave Stability Analysis

1. Some of these theories involve very complicated
and lengthy mathematical computations and with empirical
factors incorporated, having no theoretical basis. Examples
of this are the profile factor n, and the the phase factor ¢
introduced by Schutt, the pressure distribution over the
windward surface of the wave adopted by Shearer and

Davidson, the interfacial frction coefficient introduced

by Cetinbudakler and Jameson and the introduction of a
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profile factor by Ueda and Suzuki.

2. Despite the lengthy mathematics involved, this
type of analysis failed to produce a single flooding

equétion, and this does not make life easy for the
design engineer.

3. All of these theories are based on the presumption
that once the growth of waves is initiated, the process
will continue until bridging occurs. This presumption
must be rejected where flooding takes place in large
tubes, or indeed in PWR systems, simply from a
consideration of the amount of liquid necessary to fill
the tube compared to the small amount of liquid
flowing in the film.

2.1.2 Film Flow Models

This model suggests that flooding is caused by a
sudden increase in interfacial shear stress due to a
wave action which takes place at, or near, the flooding
condition., Two similar analyses were proposed, one
by Solov'ev et al (43) and the other by Dukler et al (8).

In this model, the liquid is assumed to be Newtonian,
steady, laminar and one dimensional, and the interface
smooth. This is equivalent to the assumption that the
effect of the wave motion on the velocity in the film
averages out over the time and position as if the film

remained smooth. Thus the Navier-Stokes equation can
be approximated to

- AP g _ d“u
7 + /E -/J‘__" T (2.27)

Solov'ev et al (43) integrated equation (2.27) and
presented the solution in dimensionless form
( /igDv X2 3

) . (B= - X ) = (1 - 2)2 (2.28 - a)
3 z3
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where
L
1--w_at(g§ <0
du -
X = 1 at (a?) =0
4
1+ =% at (%% >0
A 0
Z = =P

4 = Length of the tube
Z;,=Wall shear stress

4

= Interfacial shear stress
The authors argued that the minimum pressure drop
corresponded to zero wall shear stress, thus

4
f3D>

Usually 2 <<1, thus equation (2.28 - a) can be written
as

min

o3

* 3% - 2x3)°1/3 (2.28 - b)

where 7 = Z/%4;i, and with the plus sign corresponding to
cocurrent flow and the minus sign to countercurrent flow.

Equation (2.28 - b) shows that Z is a function only

of X and does not depend on the physical properites of

the liquid or the dimensions of the tube, which implies

that equation (2.28 = b) is general.

The relationship
between X and

the dimensionless gas velocity ﬁq was
found experimentally to be
-2

X =0
g

U=20
Q/U

where

min
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th = gas velocity

Unin = 9as velocity corresponding to the
minimum pressure drop

Thus equation (2.28 = b) can be written as
= 2
= _ Ug
2=1 — 173
30, - 2
( g )
This is 2 useful relationship for practical application,
however, the main problem concerning flooding (namely the
relationship between flooding velocity Unin’ liquid
properties and geometry) is still unknown.
Dukler et al (6) suggested that in most practical
cases, the pressure gradient is negligible compared with

the term jgg, thus when equation (2.27) is integrated
with boundary conditions,

(2.28 = ¢)

It
o

at y (at the wall)

L]
o

at y (at the interface)

to give the general velocity distribution, u, which is
then, in turn integrated over the film thickness &

it gives
-0.75 W 4 FRZ -1 =0 (2.30)

Dimensionless film thickness = %%—
Film thickness

’

where

= Nusselt film thickness = (3Qm/£//ig)l/3

= Dlmen51onless she r

stress = . ,/ aN fi‘g

The solution to equation (2.30) is shown in Figure
2.11., The curve N -~ 0 is the solution in the case of

uniform downflow (0L F <1, u >0, Qp =

= QF’ where
QF is the feed flowrate). Curve 0 - B is the solution

for downflow with circulation in the case of equal

R
AN
2
%
F

amounts of circulating liquid passing up and down
(F;l,u—z—o, QL QF) CurveD-U-Cls the
soclution in the case of upflow (F;VZ, u < 0, QL = -QF).

Dukler et al did not present any experlmental data
to support their theoretical work reviewed above.
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Furthermore, the information on interfacial shear

stress (and hence F) ts very Ilmlted, a.factor which

undermlnes the practlcal use of thelr model
2.1.3 Hanging Film Models

Grolmes et al (7) argued that, below the flooding
velocity, the gas has some effect on the waviness of the
ligquid flow, but does not appreciably affect the velocity
profile in the liquid film.

They assumed the liquid to be one dimensional,
Newtonian and laminar, and under these conditions the
equation for the falling liquid film became

2

ol uL
/‘:‘ —-—53-2' + fig 0 (2.31)

with boundary conditions

uL = 0 at y = 0 (at the wall)
- du,.
{‘ _d_y\- = Zl at y = & (at the interface)

The interfacial shear stress, Z; was taken as

= 1 2
li= 3 £9.° €54 (2.32)
where
f2¢>= interfacial friction factor at flooding conditions

Flooding was assumed to take place when the mean film

velocity was equal to zero with the critical gas

velocity being deduced as

v = ;[___._/E .9_5_]% (2.33)
g ¢§ ‘G fou
where
Ipa | 1/3
& = | PgL m ) (2.34)
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Equation (2.33) could thus be used as a relation
for flooding velocity provided a satisfactory correlation
can be found for f2¢. The authors approached
the problem by looking for a correlation between the
interface friction factor at the onset of flooding and
the liquid film thickness. Their own data and the data
of Tobilevich (8) with fluids of higher ligquid viscosity
were used to establish such a correlation. Figure 2.12

shows the results of this correlation which is expressed

as
2
£ = 0-006 ¢ —3%%—.#4 (8 in cm) (2.35)
4]
where )
R = reference viscosity = 1l cp

Figure 2.13 shows a comparison between the flooding
velocity predicted using equations (2.33) and (2.35), and
experimental data. The limit of applicability of this

analysis was recommended to be

5. = 1 [%]1/5 [_Y.]"‘/S [y(@)] 1/5  (2.36)
g
where ® = film thickness (cm)
B = viscosity (g/cm.sec)
P = density (g/cm3)
v = Xkinematic viscosity (cmz/sec)
0 = surface tension (dyne/cm)
9 = acceleration of gravity (980 cm/secz)
y(©) =

function of contact anglea~ 1/3 for water
on glass
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The introduction of the interfacial friction factor,
f24’, is useful from a practical point of view, even if
insufficient information about it exists. It is likely
that more experiments need to be carried out to confirm
its dependence on the different variables. Also, the
assumption of the Nusselt film thickness is open to
‘question.

Wallis and Kuo (9) tackled the problem in terms of
separated flow as indicated in Figure 2.14, where gas
of density fb flows over liquid of density @. At
X = + 00 the gas velocity is uniform and equal to U
in the negative x direction. The gas flow is consideréd
to be inviscid and irrotational and the liquid is
considered stationary.

By considering Bernoullis equation for the gas and
liquid phases, and the interface boundary condition of

pressure continuity, these authors obtained the relation:

2*
T
3/2 +
bR - R (g
dx*
dy* * *) =
2;5 - (xo‘x) = C
e [1e (257
(2.37)
where C = constant

X* = X

3]
*
]

H

BBA
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with boundary conditions,

*
%%%i = 1 p gé%; = 0 at x* = o0
dax* _ * = * * = *
ay* - Cot B, r I, at x Xq

where B is the contact angle.

A key dimensionless group which emerged from (2.37)

was the Kutateladze number, Kg' defined as

\ L (2.38)
= "3 4

Kg ,%Ug ( APgo)

A dimensionless diameter was introduced as

D* = 2r* = D . VALa (2.39)

Equation (2.37) indicates various limiting behaviours
and these cases were examined by Wallis et al.
Case (1) : Large D*. Kg = 0 %%; -0 as r* —» o9
This corresponded to the case of an extensive

sheet of liquid with an interface shape which is uniform

in the third dimension, a problem which was solved by

Bankoff (10) resulting in

g sANTE T - 21 2

5_*3.)
) (2.40)
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Case (2 : Finite D*, Kg = 0
Equation(2.37) was solved numerically for U, = 0,

g =
*
gﬁ* —+ 0 as r*-—» o0 and Figure 2.15 shows different

solutions which were generated by varying the initial
surface slope at large r*. These results describe the
spreadihg of the ligquid film over the mouth of a sharp
edged hole in a horizontal surface.
Case (3 : Large D¥*, Kg.-7r’: 0, p~= 90°

With the assumption of a small curvature for large D¥*,

the Kutateladze number could also be defined from equation

(2.37) as

2
Kg = 2(xo* + Slnﬁ ( dy* )x* - Xx*
dzx*
- dy*2 v )dw*|2
dx*y213/2 daz*
[+ (&%) ] | (2.41)
where W* = dimensionless complex velocity potential
1
W (.qué
U ol (2.42)
1
APay?
zx = z.(2L9 (2.43)
z = X + iy (2.44)

A successful choice of an approximate shape of the
interface was obtained from the flow around a pair of
sources located at (0,% a) with strength A, transverse
to a uniform flow (Figure 2.16).

The method of solution adopted was to solve for

the interface and velocity obtained from the potential
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flow theory outlined above and to calculate the curvature
terms in equation (2.41) numerically for constant
Kg (£ 10%¥ of mean value ) . The maximum value of Kg was
found to be 1.87, well below the known experimental value
of 3.2.

The assumption used in deriving this theory, namely
frictionless gas and liquid, seems to be an over
simplicification of a complicated problem.

2.1.4. The Annular Flow Models

Kutateladze (11) proposed a model having a liquid
with a vanishingly small viscosity, thus eliminating
its consideration from the problems of the laminar or
turbulent nature of the motion and to concentrate
attention on the structural changes caused by the
presence of the interfaces.

In this very simple statement of the problem, the
stability of the stream structure as a whole was
determined by the stability of the elements of the
phases comprising it, e.g., droplets, bubbles and
films. The factors which disturbed these elements
were the dynamic heads of the phases in contact with
them, whereas a stabilizing factor was the surface
tension. Kutateladze proposed the following group as

a measure of the ratio of these forces,

2
2 - & Yg?%8

g - o (2.45)
where . épgz was the dynamic head of the gas and S a

characteristic dimension of the liquid.
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In formations which arose freely, i.e., when it
could be assumed that
S ,_J c (2.46)
It = Sy

the stability criterion defined by equation (2.45) assumed

the form

- L
K _ . Ug g o (2.47)

‘\/g()? £)

i g
This factor K.g (known as the Kutateladze Number) has
been used by a number of investigators to correlate data.
Experimentally, 53 was found to be 3.2 for the complete
bypass of the liquid film.
Wallis (12, 13, 14) considered the separate cylinders
model shown in Figure 2.17 and applied a force balance to

each '"cylinder" with a mixing length theory to obtain the

following two equations

% r
Ty = go_ AP+t od/4 (2.48)
* S * 49
e T L (1 - AP)% (1 -e) /4 (2.49)
ap
P, g
where APpP* = - 292 /g' ] (2.50)
: g (); - f;)
£ ¥
= =
ig Jg[gD ﬁf - ;‘;)] (2.51)-a
* In %
i = J £ (2.51)-b
g £ [gD(fg - %) ]
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T, = tube radius
X = void fraction
,f,,fé = mixing length of liquid and gas respectively
jf, jg = superficial velocity of liquid and gas respectively

Wallis considered two cases for scaling the mixing
length. 1In the first case it was scaled using the
dimensions of each cylinder: in the second it was scaled
by the overall pipe diameter.

Eliminating the pressure drop between equations (2.48)

and (2.49) and using the appropriate relation for the

mixing length, then

2 ig?
+ = 1 (2.52)
n (1 —) 1
X .

Differentiating (2.52) with respect to « and

eliminating « between the resulting equation and (2.52)

gave

#*2 /arl) %2 /(n+1)

g f

]
[y

(2.53)

Usually n had the value 3.5 or 2.5 depending on the
relationship used to determine the mixing length. If an

intermediate value of 3 is taken, equation (2.53) yields

to the well known Wallis correlation

JS% + j;%

0"
-

(2.54)
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or in a more general form

%3 + " = C (2.55)
Jg mJ f - .

The use of average velocities, instead of the local
velocities used in the wave stability analysis, simplifies
application to design. Indeed, much of the experimental
work reported in the literature has been correlated
on the basis of equation (2.55).

It should be noted that the parameter f; and the
Kutateladze number, Kg, can be related if the diameter,
D, in equation (2.51) is replaced by & , defined by
equation (2.46).

Wallis and Makkenchery (15) argued that the
Kutateladze number was the correct criterion in large
pipes if the liquid film remained thin. In this case
the perturbation in the gas flow around the film was
confined to a boundary layer and was substantially
independent of tube diameter. 1In very small tubes,
on the other hand, surface tension forces could act to
pull the liquid film into a bridge across the gas core ang
for a finite surface contact angle, the liquid film could
be held up against gravity, even with no gas flow
at all. The criterion for this condition could be

expressed in terms of the Bond number,
* - - 7
D plg( L f;)/o’]% (2.56)

It should be noted that equations (2.47), (2.51)and

@.56) are related through the equation



34

%*

ig

KgA[ D* s (2.57)

The experimental work of Wallis and Makkenchery
suggested that a constant value of J* gave a reasonable
fit to the data in the intermediate region. In very
small tubes (D* £ 2) the critical velocity tended to zero.

Imura et al (16) considered the system shown in
Figure 2.18, where both the gas and liquid were assumed
to be inviscid fluids with regard to stability of the
liquid film. The governing equations for both phases

in the flow were the Laplace equation for velocity

potential

5% + _}_._ba_r_(r%%) = 0 (2.58)
and the Bernaoulli equation
% = aTct- - -é—[( bbx ) +( )]— gx + const.

(2.59)

The boundary conditions were

at r = R —J%gl = 0 (at the tube surface)
at r = 0: %r = 0
atr=(R—5):_3,£f = —%ﬂt + Ui-—;%xl

(at the interface)
;s g -l 2] /e (2D )]3/2_ 1

R-6-1

(2.60)
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The wave at time t was assumed to have the following

sinusoidal form
n = qét) sin « (x-ct) (2.61)

Equation (2.58) was integrated over both liquid and
gas phases with the appropriate boundary conditions and
the resulting ¢b and ¢1 values substituted into

equation (2.59). With approximations and manipulations

the following equation was obtained:

1
T (¢ - ——E-%fﬁg— ) ]2 (2.62)

where Ug = gas velocity
UL* = liguid wvelocity
o = surface tension
o = wave number
R = radius of the tube

3

The following empirical relation between the wave

i

film thickness

length and the liquid film thickness , was assumed

X=¥5 (2.63)
thus
= 2)“_’ =_E2‘_g. = -g- (2.64)
where

\
§,§ = dimensionless quantities

Equation (2.62) could be expanded in the dimensionless

form
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Sy, L SS9y 591 (_fo
L G £ s S L
L ~L
1 %
x (& - R/5 -1 (2.65)
where G = superficial mass velocity of gas
L = superficial mass velocity of liquid
S = cross-sectional area of the tube
Sg = cross-sectional area occupied by gas

The following empirical expression was obtained

as the best equation for correlating the data

2 0.5 0.12
E = 0.046 (d f.:»g) x H ) (2.66)
" £

Figure 2.19 shows the comparison between experimental
data and equations(2.65) and (2.66).

Chung (17) neglected the tube curvature effect and
represented the flow as a two-dimensional plane shown
in Figure 2.20. The counter-current flow was approximated
as the immiscible, inviscid streams flowing counter
current to each other in an infinitely long channel. By
arguing that, in a vertical falling f£ilm, gravity was
largely balanced by the viscous force, and by applying
the small perturbation method, the author reduced the

perturbed Bernoulli equation to

P! \ \
L > N 7 . _._.\QdDL (2.67)
F T T Tt L DY )
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N

g 2 _ D,
e - __d_>g.~ + v - ___?1. (2.68)
‘f dt g dY
“a
and the Laplace equation to
———j% —E%f% = (2.69)
>x + S Y = 0] .
24 2,
-———% + _—%- = 0 2.70)
_X Y (
with boundary conditions
2P
% = 0 at x = -=h (at the wall)
>4 |
———5;9* = 0 at x = H-h (at the centre line)
A | B 2
dt L 2y X |n=x
(at the interface)
ant -1 R dd;
g oY 2x | N=x
and
L g >v2 L g
(interfacial pressure) (2.71)

where (') and (-) denote the perturbation and time

averaged components respectively and
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-
q:ﬂosin[z *(y - Ct)] (2.72)
Assuming the perturbation ¢ <could be expressed as
. 1L
b = xi(x)-cos[2>‘ (y-ct)] ., i =L, g (2.73)
I .

the perturbation terms were found to be:

cosh [ gg; (x+hﬂ
\ . — 20
b = -1 (c+V. ) cos ( y-ct)
(2.74)
and
2T
_ cosh [5— (x+h-H)] X1
¢ =-n(C-V ) cos |5 (y-ct)
9 g sinh [Q{L (H—h—nﬂ [ A ]
(2.75)

Substituting (2.74) and (2.75) into (2.71) yielded the

characteristic equation:
g coth [B-(s-n-m] ()%« Looth [E (nem]ies

A 2o (2.76)
= — - - + =
w9 (L -l X
Due to the algebraic complexity of the hyperbolic
cotangent function, equation (2.76) would not yield
a general explicit criterion, so the author proposed

the following approximation:

by

coth [£5— (n+M)] ~ ¢ h+2n" (2.77)
A
2m (2.78)

coth [&T{——(H—h—ﬂ)] ~ C n
H-h-
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where Cl was a constant chosen to best fit the hyperbolic
cotangent terms with their approximate expressions.

Substituting equations (2.77) and (2.78) into equation

(2.76) gave

H = .2 H .= .2 _ 1 _
o V" + Pay @) 'cl[Hg(f 3

+ (3 2%He ] (2.79)

By arguing that the travelling dynamic waves of
longitudinal type were a special case of kinematic waves,
the wave velocity for one dimensional flow systems was

expressed as

c = V4 Rr(3) (2.80)
where V was the mean velocity, K the local depth of the
fluid, and V the velocity at any axial location of the
channel. With sbme manipulation, equation (2.80) was
used to reduce equation (2.79) to:

Jade L3 2m, 2

1
= =[Hq(P = P) + (%] (2.81)
o3 (1=t 3 C1[ R 9 M ]

Considering the stability and flow limitation, the

envelope for equation (2.81) was obtained and eliminated

from the resulting equation and equation (2.81) to give:

k1% ooo1% . 1 %
[/g Jg] v [Py 1% = cl[2Hg( £ - Pl (2.82)

or in terms of the Kutateladze number:

1
K,s + K;ﬁ - C

g L K (2.83)

where CK was a constant.
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In a real situation, inlet disturbances do exist and

- cause additional heat loss. The efficiency of these inlet

disturbances on flooding could only be taken into account

through some semi-empirical modification of equation (2.83)

to give

1
K s + mK,é = C ‘ (2.84)
g L K

where m and CK were constants determined experimentally.
The constant CK depended on the actual disturbances.
Since the amount of disturbance was influenced by the
inlet circumference then CK was a fugction of the inlet

circumference, or, in the case of a round tube, the tube

diameter.

The author proposed the expression

C

]

*%
< ¢, tanh [ c,p*4] (2.85)
where C2 and C3 were experimental constants and D* the Bond

number.

Tien et al (18) cqrrelated their experiments with

the equation:

1
%

+
=]
~
]

Y (2.86)
*4
g ] c, tanh[c,D*4]
and Figure 2.21 shows the experimental data for the
case of nozzle air supply with sharp edge inlet. The data

were correlated successfully by the equation

1 1 1
kP o+ o.z31<L”2 = 2.1 tanh [0.8D*%] (2.87)

The significance of equation (2.83) is that it
shows clearly that flooding results from interfacial

instability and flow limitation and that flooding
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correlations of the Wallis-Kutateladze type, as given
in equations (2.55) and (2.84), have their origin in
the force balance across the interface.

2.1.5 Entrainment Model

This model was presented by Dukler and Smith (19)
in 1977. Their measurements demonstrated that the
onset of flooding was associated with the onset of
entrainment and that wave closure and blocking did
not occur. The model considered a balance betweén
the gravity and drag forces acting on a drop of

liquid suspended in a gas stream which could be

expressed as

I 2 - T 53 _
2c1(4@1)-%\7g = (Gd)g(/: £) (2.88)

droplet diameter

where 4

Cd = drag coefficient around the drip

Hinze (20) showed that the average drop size could

be determined by
We
a = —?"oﬁv ‘ (2.89)
g g

Combining equations (2.88) and (2.89) gave

[4We [o-g( El" Ed%

(2.90)

At the very low ligquid upward flowrates at which

o

entrainment was initiated, Vgﬁfjg, which reduced (2.90)

to

K [4We

g (2.91)

The critical Weber number took the wvalue of 12 for

drops which were suddenly accelerated, such as drops torn
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off a slow moving liquid surface; in the turbulent
regime, the drag coefficient for spheres had a
constant value of 0.44.

Substituting in equation (2.91) with the wvalues of
We and Cd’of 12 and 0.44 respectively gave

Kg = 2.46 (2.92)

This value of the Kutateladze number is less than
the reported experimental value of 3.2. The theory
reviewed above, whilst not substantiated by the experimental
data of the authors themselves, nevertheless could be
useful for large diameter tubes, with the same limitation
as the Kutateladze model.

Figure 2.22 shows the Dukler data plotted on the
basis of the Wallis correlation. The good agreement
between the data and the Wallis ccrrelation was attributed
by the authors to the fact that the tube size was not

very different from the size used by Wallis.
Comments on Parametric Dependence

The parametric dependence of the flooding correlations
discussed in section 2.1 is not well established, and an
examination of some geometric and fluid properties 1is
made below.

i) The tube entry geometry seems to have a definite
effect on flooding. the flooding velocity decreases
with the less smooth entry geometries. The work of
Chung (17) and Tien et al (18) indicated that gas entry

conditions also affect the flooding characteristics.
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ii) The effect of viscosity and the liquid film
thickness are not clear. Some investigators (13,17)
indicated that in general, viscosity has a destabilising
effect, while others (2,5) indicated the opposite
effect. The interrelatiounship between the hydraulic
diameter and the £ilm thickness makes it very difficult
to isolate the effect of the latter.

iii) Surface tension may be important to the flooding
characterisation as was shown in some of the work reviewed
above (17, 2, 11).

iv) Tube diameter and tube length effects are not
yet clear. Some experimental work (2,4,11,17) showed
no explicit diameter dependence, whereas the analysis
by Imura et al (16) and Wallis and Kue (9) indicated

the opposite.

2.2 THEORETICAL ANALYSIS ON THE EFFECT OF CONDENSATION

During the postulated loss of coolant accident,
éondensation plays an important role and can change
considerably the characteristics of flooding. :Hence it
is important to include the effects of condensation in
the flooding correlations. Most of the effort to improve
the existing models has been directed towards empirical
work without much understanding of the flooding-
condensation mechanism. However, some analytical work
has been reported lately, aimed at solving this problem.

The most obvious effect of condensation is to reduce
the amount of vapour available for hold-ygp. Hence, it is

reasonable to consider the phenomenon of flooding with
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heat and mass transfer as a superposition of two
events:

i) Condensation under non-equilibrium conditions

ii) Counter-Current Flow Limitation (CCFL)

Tien(21) proposed that the reduction in steam flow
should be calculated on the basis that the condensation
enthalpy change was balanced by the sensible heat required
to raise the temperature of the subcooled water to the
saturation temperature. The effective vapour flow,
based on the Kutateladze number ng was given by

Ay
ng g ne Ja —-—/g——) . KL (2.93)

[
~

|
~
4

where Kne was an empirical constant to account for
non-equilibrium effects and Ja the Jacob number defined

as . _ cC . A'Tsub
a - h_g
£

Substituting ng from equation (2.93) for Kg in

equation (2.83) gave the subcooled CCFL correlation:

£ % % :
L s _
[k -x,. 3 5 I R R S (2.94)
g
1 1
or [Kg-ct:KL]”j v R? - ¢, (2.95)
where P
_ Lk
= K T, %)

Figure 2.23 illustrates the CCFL correlation at

different values of ¢ . Also shown on this figure are

the following limited relations:
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i) The ordinary CCFL correlation as given by

(2.83) which represents the limiting case of

ATsub = 0 and small KL.
. _ (2.96)
K = ¢K
ii) g ¢ L
which describes the limit at large Kl
(i.e., ng = 0)

No experimental data were provided by the author to
substantiate the model, nevertheless it does seem
logical and the general trend of the subcooled flooding
curves calculated from equation (2.95) have the same
shape as those reported in the experimental literature
reviewed in section 2.3. The above model would be very
useful if reliable information about Kne could be
obtained.

Liu et al (22) tried to obtain a physical under-
standing of the non-equilibrium factor Kne by
considering the arrangement shown in Figure 2.24. Here
the falling liquid film was assumed to be turbulent,
the temperature of the falling liguid, T, was assumed
to be uniform across the film and only changing in
flow direction. The steam was assumed to be saturated
and free of»non—condensable gases. The shear stress at
the vapour liquid interface was neglected and the
physical properties of the fluid were constant and

uniform.

Tha mass balance for the differential section 5x

yielded:
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= = I | (2.97)

and the heat transfer rate across the interface

aMm
s = - .
where h was an interfacial heat transfer coefficient per

unit length. The energy balance for the same

differential section could also be written as

am
)
gx (MLCPT) &x hg —EX—-Sx (2.99)

]

Solving equations (2.97), (2.98), and (2.99) with

some approximation yielded the following expressions for

the condensed steam flowrate

-hL

which could be expressed in a dimensionless form

compatible with equation (2.93)

1
b
Kqq = KL o3¢ (—-7CL—) K _ (2.101)
g
where K__ = [1 - exp (Eﬁ%—)] (2.102)
|

The authors calculated the average heat transfer
coefficient by comparing the steam-water and air-water

data obtained in the BCL 1/15 scale glass vessel
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facility. The average heat transfer coefficient was

correlated using Akers and Rosson (23) expression given

by
- 1/3 0.8
N, = 0.145 PrL Req (2.103)
where,Req is a two-phase equivalent Reynolds number
given by
TR
v L
Re = Rev( ) )"+ Re (2.104)
q L
s

Figure 2.25 shows a comparison between experimental and

calculated Nusselt numbers.

The authors attributed the non-equilibrium

condensation to:

i) conduction-controlled heat transfer at the
interface.
ii) condensation induced pressure oscillation
iii) the finite contact time (finite condensation
length)
The heat transfer across the interface was due to bubble
collapse at the interface which could be treated as an
instantaneous heat source at the interface. The
temperature at the interface was very high, thus preventing
other bubbles collapsing in the short time period until
the temperature of the interface was lowered by
conduction heat transfer. Pressure oscillations could
result in intermittent heat transfer due to the variation
in water subcooling.
The work of Liu et al (21)was a step in the right

direction, however it 1is necessary to discuss and
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question some of the assumptions and correlations
presented in this model. The assumption of a heat
transfer coefficient per unit length is unusual and not

very meaningful, hence equation (2.98) should perhaps

have been written as

dMs

T ox hfg = hB (TSat - T) 6x (2.98) -a
where B is the width of the falling liquid film. Also,
correlating the heat transfer coefficient with an equivalent
Reynolds number, which depends on the steam Reynolds
number, contradicts the assumption of a constant inter-
facial heat transfer coefficient, since the local

steam Reynolds number varies considerably with x.

Another argument against this type of correlation is

that conduction controlled condensation is governed

mainly by the falling liquid film, thus it might be
expected that the interfacial heat transfer coefficient
would be a function of the liquid subcooling (or Jacob
number) since this will influence the heat conduction.
Indeed a close examination of Figure 2.25 reveals a
dependence on subcooling in the data. Finally, the
assumption that no heat is transferred from/to the

walls to/from the liquid £ilm is probably not true

since in the experimental work, no precautions were

taken to prevent wall-film heat transfer. In the actual
PWR, the falling water f£ilm will certainly be heated

by the hot annulus walls and this effect should have

been included in the model.
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2.3 FLOODING IN PWR GEOMETRIES

The next logical step, after the theoretical and
experimental work on circular cross-sections (tubes), is
to consider scaled models of different PWR geometries.
Because of the difficulty in understanding the actual
mechanism of flooding in a simple geometry, most of
the work on complex geometries has been experimental,
and with the resulting empirical correlations, and this
is reviewed below.

Wallis et al (24) investigated the possible flow
regimes which could be present in the downcomer of the
PWR during the refill period of a postulated loss of
coolant accident. The experiments were carried out
with water only, i.e., no counter-current gas or vapour
was used. The test section was a scaled model of an
"unwrapped" downcomer annulus and the principal
experimental variables were

i) cold leg diameter

ii) gap spacing

iii) injection water flowrate
Six possible regimes were identified, as follows =
Regime O

Here the inlet water tube did not "run full" and
the water either dribbled out of the end or formed a
narrow jet which jumped across the gap and flowed as a

rivulet down the far wall.
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Regime 1

This regime consisted of a water stream which filled
the cress-section of the gap. The stream was broadest a
little below the injection point and then contracted as
it accelerated under the influence of gravity.

Regime 2

In this regime, the upper part of the water jet filled
the gap., as in regime 1, but the lower part separated from
the near wall and jumped the gap to form a spreading
film on the far wall. This film fell under gravity
directly below the injection point.

Regime 3

This regime was an outgrowth from Regime 2 as the
flowrate was increased. The jet separated completely
from the near wall, impinged on the far wall and spread
out in all directions. Most of the liquid stream lines
eventually terminated in a'"hydraulic jump" where they
expanded to fill the gap. The film regime was surrounded
by a broad band of liquid, filling the gap to form
a continuous arch.

Regime 4

This was the limit for Regime 3 in which the band of
liquid was thin enough to be considered as a single
streamline rather than a two-dimensional continuum flow.
Regime 5

The jet impinged on the far wall and spread out to

form an outer band which did not £ill the gap but fell

partially away from the wall.
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All of the above flow regimes are shown in Figure 2.26.
The authors proposed an approximate flow regime map to
identify the boundaries between the different flow
regime and this is shown in Figure 2.27.

This work provides a very good start in the study
of modelling the actual PWR situation. A possible
extension of this work could be a study of the film
thickness which is included in several models (1,2,3,6,
7 and 17), the heat transfer coefficient between the hot

walls and the liquid film or the liquid Reynolds
number.

Crowley et al (25) studied the intereaction of
counter-current steam and water system in a 1/30 linearly
scaled "unwrapped" annulus simulating the downcomer of
the PWR. This work was orientated towards geometric
changes such as baffles and thermal shields.

Tests were conducted both by setting the water flow
and increasing steam to the flooding point (water
first) and by setting the steam flow and increasing the
water flow to the point where flocding ceased (steam first).
The steam entering the test section was saturated or
slightly superheated at 102-103°% (215-217°F) and three
different levels of sub-cooling were used, corresponding
to inlet water temperatures of 13, 38 and 60°C (55, 100
and 140°F) respectively. The results were presented in

terms of the Wallis parameters defined in equations

(2.57a and (2.5DDb with D replaced by the hydraulic

diameter D .
H
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These authors observed that the transition from
total penetration of the water to the lower plenum, to
total expulsion of the water out of the break was sharp
and well defined. Figure 2.28 shows a typical set of
critical conditions (flooding) obtained at different
inlet water cubcoolings. A reference line is shown
to indicate the locus where the enthalpy of the steam
was just enough to raise the water temperature to

saturation, i.e., the line of thermodynamic ratio R

T
equals unity where
ch ATSub
= ————E—————
RT ¥ h (2.105)
s fg

Increasing the water subcooling improved the
flooding condition from a LOCA point of view, i.e., a
larger value of steam flowrate was required to cause
flooding at a particular flowrate.

The effect of thermal shield in reducing bypass
or changing the locus was found to be negligible,
but a baffled system was able to sustain higher steam
flows before flooding occurred.

The authors divided ‘the experimental results into

three regions, as sketched in Figure 2.29, and these

are discussed below.
Region 1

The behaviour in this region essentially followed
the Wallis correlation, this being due to the fact that

Region 1 lay to the left of the RT = 1 line. Thus it
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was not possible for the water to condense all of the
steam at these flows. However, since some water was
able to penetrate the annulus, it was possible that an
amount of steam could be condensed in the lower plenum.
Thus the amount of steam required to cause bypass is

slightly above that predicted by the Wallis correlation

due to lower plenum condensation.
Region 2
In this region, the data lay above the line R, = 1.

T
The difference between the data points and the line

RT = 1 was attributed by the authors to the steam which
avoided condensation in the lower plenum.
Region 3

In this region the data had the tendency to level
off at higher liquid flowrates. No satisfactory
explanation was given for this region.

The data show clearly a non-equilibrium condensation
superimposed on the hydrodynamic nature of flooding
described in section 2.1, and this is most obvious in
Region 2. 1In those early days, the investigators
eagerly trying to find an empirical correlation
failed to appreciate the presence of non-equilibrium.
However, the work reviewed above gave a good experimental
and physical description of flooding.

Block and Crowley (26) conducted steam-water
experiments in a 1/15 scale planar model of a PWR
downcomer, with multiple cold and hot legs, at

between 1 and 2 bar (15-30 psia) system pressure. The
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principal variables tested were:.
i) inlet water temperature (or sub-coolong)
ii) water flowrate
iii) steam flowrate
iv) downcomer gap spacings
The authors found that the data obtained from
different downcomer gaps did not overlay when plotted
using the Wallis parameters based on the downcomer
hydraulic diameter, i.e., the gap size (DH = 25).
Therefore, they concluded that the downcomer gap was
not the governing characteristic dimension. The
downcomer width (or circumference) was arbitrarily

chosen instead. Thus the new dimensionless variables

were defined as

. P k
J; = Jg[ aw ( fL:j_ E)] (2.106)

k ]1’2

- il -
L LT oav O - g

(2.107)

where W was the downcomer width or circumference.
Figure 2.30 shows experimental data based on the downcomer
width as the characteristic dimension for different gap
sizes.

The experimental data also showed that higher values
of counter-current steam were required to bypass the

ECC water as the water subcooling or flowrate was

increased.

Block et al (27) presented a semi-empirical model
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for calculating the rate of delivery of water to the
lower plenum as a function of time in the presence of
steam upflow and superheated downcomer walls. The
following assumptions were made:
(i) The walls were planar, thermally thick" and
axial .conduction could be neglected.

(ii) The walls were initially at uniform temperature,

T .
w

(iii) The upward steam flow from the core was constant
and the steam was not superheated.

(iv) The heat transfer coefficient was infinite over
the wetted portions of the walls and zero

elsewhere.
(v) No lower plenum voiding.

The liquid in the downcomer was well mixed.

- ige = Jdgcona (2.108)

—
i
(S
+
()

where j net volumetric flux of steam upward

in the annulus

jgw = the volume flux of wall-generated steam
jgc = the volumetric steam flux from the core
Jgpond = the volume flux of the core steam that

condenses on the water in the vessel
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The authors chose the Wallis correlation for the bypass

condition
£d = C (2.109)

where Jg and J;d‘ were defined by equations (2.106)
and (2.107).
The condensation of steam upflow was expressed as

- )
* _ . Cp(Toat L ‘/ £ (2.110)
J = K .J . ——
g,cond ~ ne £,in h F

fg g

Using equations (2.106), (2.107), (2.108), and (2.110)

.

into (2.109) yielded :

1
c/)<> 2
* * L *
- - -
[ JgW * ch Kne (Tsat TL) h f,in ]
g

fg

1
*% = 2.111
+om T2y C ( )

If JSW was considered negligible, equation (2.111) became

C / £ ’
* - - il e) L *
[ch Kne Tsae = ™) & £ J’é,in] * me,%d = C

fg g
(2.112)
The authors proposed the following correlations for m, ¢
and K |
ne
c = 0.32 (2.113)

m = exp[ -5.6 J*0 6 ] (2.114)
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K = PLQ % 1
ne 14.7) X (1-+~bJ§ ) ) (2.115)
,in
where PLp is 1q psia
b = 16 for flat plate and 30 for cylinder

Figures 2.31 and 2,32 show comparisons between
experimental and predicted values of the dimensionless
steam flux for the flat plate and cylindrical geometries.
The agreement is very good.

The model presented above has been used as a starting
point for much theoretical work (21,22).

Crowley et al (28) conducted counter-current flow
tests in a 1/30 scale cylindrical vessel at three
different injected water temperatures: 100°¢, 65°C and
20°c (212°F, 150°F and 70°F). The data exhibited the

same general trends as those of Ref. (27).

Figure 2.33 compares calculated values fo Kne as a
*

function of Jf,in for 1/15 and 1/30- scale data. It
is seen that equation (2.115) provides a fairly good
fit to the data at both scales.

Figure 2.34 compares values of m as a function of
J;,in calculated from the 1/30-scale data and the
correlation of equation (2.114). The 1/30-scale data
shows a reasonable agreement with the correlation.

A scatter plot for the 1/30-scale data is shown in
Figure 2.35, which indicates that the "theory" under-

predicts the actual penetration curve. A better

agreement was obtained using the Kutateladze number
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instead of the Wallis parameters. Equations (2.112)-

(2.115) were transformed into:

jﬁ; Aﬁ. %k Y L
[Kgc - Kne(Tsat - Tl) (hf )(’_72') £,in ] + me,d =C2
(2.116)
c, = 1.41 (2.117)

K. . 0.6
= - f‘ln

m exp [ 5.6 ( 19.5 ) ] (2.118)

“ne = 14-% 1 + 1.54K .

f,in

Figure 2.36 presents a scatter plot of the 1/30-scale
data compared with the correlations of equations (2.116)
through (2.119).

The authors could not recommend strongly either J¥*
or K. Their work was considered, however, as a step
forward towards a more realistic modelling of flooding
with condensation in PWR.

Cudnik et al (29) of BCL presented experimental
studies of ECC penetration behaviour in a 1/15-scale model
of a four-loop pressurised water reactor. Data
correlation efforts focussed on obtaining a correlation
of the 1/15-scale, steel vessel penetration data. The

correlation form proposed by BCL was
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1
[t - kaexihy 1P em[r 2,05 =[x, /Voe]”

(2.120)

~
i

Kutateladze number = 3.2

A linear regression analysis was utilized to find
the values of Kne and m which minimised the sum of the
squares of the differences between the measured and
calculated values of [j; Jb*] . Comparisons of the
observed error trends with those obtained using constants
for the empirical factors m and Kne suggested that using
(2.114) and (2.115) in (2.120) provided a better
correlation of the data, probably due to subcooling and
j* effects being better represented. Thus the BCL

wl

correlation defined by equation (2.120) was modified to:

[.jg - £R N5y, ] i momg [Fi % - [Kg/‘fo*]lé

(2.121)
where m and Kne are given by equations (2.114) and

(2.115) respectively and

£ = 0.90

m 2.1252

£

The differences between the BCL and the Creare

correlations included

(1) The BCL correlation used j*s, based on the
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downcomer gap width, whereas the Creare
correlation used J*s, based on the downcomer
circumference.

(ii) The BCL correlation used values for the £

and.n%factors of 0.9 and 2.1252 respectively,
whereas the Creare correlation used unity
coefficients.

(iii) The right hand side of BCL correlation was
given by [Kg[V&ﬁ]% which was a very weak
function of pressure:; the right hand side of
the Creare correlation was constant.

Figure 2.37 shows a comparison between BCL and
Creare correlations. It is clear from the figure that
the BCL correlation consistently predicts a steeper
penetration curve than is predicted by the Creare
correlation, although the deviation is not great.

The above work did not present any physical under-
standing of ECC penetration. Also, it was not clear
why the authors based their correlation on the downcomer
gap siée, contrary to the findings of Creare that the
gap size was not the characteristic dimension for
flooding.

Rothe and Crowley (30) focussed their attention on
a single ECC injection rate (J;i = 0.116) in order to
emphasise the effects of pressure and sub-cooling. The
Creare correlation defined by equation (2.112) was modified

as follows:

i) the coefficient C was taken to be 0.4 instead

of 0.32.
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ii) the pressure effect was eliminated in Kne . For
J%i = 0.116, Kne was found to be 0.16.
iii) the slope m was considered to be
a) a constant for saturated water and steam as
well as for air and water
b) adequately represented by a function of
thermodynamic ratio for sub-cooled water.
This is shown graphically in Figure 2.38.

In fitting the data, the following approach was

followed:
1. The coefficient C was given by JSE where
J;b was the complete bypass point for saturated
water.

2. The condensation coefficient was determined from

the complete bypass points for water with various

sub-coolings.
3. The slope coefficient m was determined from the
entire data base with C and Kne fixed.
This approach reflected the view that the complete
bypass points were relatively stable operating points

and that the partial delivery range was dynamically

unstable.

Figure 2.39 shows a comparison of the new Creare
correlation with data at various sub-coolings. The
agreement is good, but again it is purely experimental
without any theoretical justification or physical
understanding of non-equilibrium condensation. This

work, however, re-affirmed that correcting the supplied
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steam flux Jg for condensation effect to an "effective"
steam flux 1is an appropriate way to correlate data.

Alb and Chambre (31) applied dimensional analysis
to the partial penetration of ECC water in a PWR

downcomer annulus.and this gave rise to the following

functional relation:

143
Frg=¢(Frwi,F,7;,, %% —E 5 E

K.AT ¥ f
3s%b -
PI'L ; L(g W )'ﬁ ' Qg ’ PL )

A comparison of the dimensions of the various scale

(2.122)

models, presented in Table 2.1, showed that most models
tested were not geometrically similar to each other.
Theauthors argued that this could be the reason for the
different experimental results obtained in the various

experimental models. The 1/15 and 2/15-scale
models of BCL were found to be geometrically similar.

The penetration data from these two models were correlated

to give:

r = 0.011253 (147)~0-7206 5 0.6169
rg a

0.2366
Fr 0.3104 ( ;i )

wi ﬁ;

(2.123)

The authors did not recommend equation (2.123) to

be used to predict the penetration data obtained on

non-geometrically scaled models. The Froude number

correlation given by equation (2.123) was compared with
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COMPARISON OF SCALED VESSEL DIMENSIONS

63

Dimension Creare, scale Battelle, scale
1/30 1/1s - /15 /159 /18 /159 2/15®
Cold leg inside diameter,

DcL *DsRr 1.0 2.0 1.875 2.0 2.1 2.1 4.02
Hot leg simulator diameter, Dy 1.8 3.0 3.0 2.5 <) c) 7.34
Gapsize, § 0.267 0.625 0.5 0.6 0.6 0.6 1.23
Upper annulus height, L 3.0 6.0 6.0 4.37 4.37 437 8.74
Downcomer length, Ly 9.0 18.0 19.0 16.13 16.13 16.13 32.26
Lower plenum depth, L4 24.0 24.0 30.0 14.5 14.8 14.5 29.11
Vessel inner diameter, D; 6.14 12.0 11.5 12.1 12.1 12.1 24.35
Core basrel outer diameter, Do gf s 10.73 “9"2 ' 109 109 109 21.89

Average annulus circumference, W i;; 35.6 g;'g 36.1 61 361 7263
Steam distributor no no no yes yes yes yes
Intact cold legs 3 3 3 3 3 3 3
Hot legs 4 4 4 4 4 2 2

8) Transparent vessel model.

®) §0-120 injection geometry configuration, all other geometries use a 90-90 injection geometry configuration.

¢) Geometric dimension not available to us. as of this writing.

% From Alb and Chambre (31)
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the modified Wallis correlation given by equations (2.112)
to (2.115) by testing bothagainst the BCL experimental
data. The comparisons are shown in Figures 2.40 and 2.41
respectively.

It is clear from these Figures that the Froude number
correlation is better than the modified Wallis correlation
in predicting the BCL data. However, equation (2.123)
is no more "universal" than the modified Wallis
correlation; the proper scaling parameters are still
far from clear. On the other hand, it is easier
to understand the logic behind the modified Wallis
correlation thatn equation (2.123).

Richter and Murphy (32) presented the results of
experiments performed in an annulus, approximately
2/15 scale of a reactor vessel, at Dartmouth College.

In order to study the influence of asymmetry of ligquid
and gas flow in the annulus on the flooding behaviour,
the experiments were performed with symmetrical top
flooding, non-symmetrical top flooding and side
injection of water.

The authors found that asymmetrical introduction of
water into the test section leads to higher water
penetration rates for the same gas flowrates. 1In
addition, zero penetration occurs.at higher gas flow=s
rates than for symmetrical top flooding. The work of
Richter and Murphy (32) supported the conclusion of
Rothe and Crowley (30), that the zero penetration in all

scales tested so far can be described approximately
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by a constant dimensionless gas flux Jé_ =-0.16. The
data obtained for non-symmetrical top flooding and the
resulting correlation is shown in Figure 2.42.

In a recent "state of the art" by Richter and
wallis (33), a comparison between the experimental results
of Creare, BCL and Dartmouth for different scales has
been presented. These are shown in Figures 2.43-2.46.

Richter and Wallis (33) speculated that for saturated

water and steam (or air-water) a flooding correlation

of the following type would be valid at all scales:

J;‘é + 0.8 Jf_‘*ﬁ = 0.4 (2.124)

where the slope m = 0.8 is a rough approximation from
Figure 2.47.

A theoretical attempt to solve the obvious
contradiction between the Wallis correlation (2.55) and
the Kutateladze prediction for zero penetration has
been provided by Richter (34). He considered the
arrangement shown in Figure 2.48. The penetration
of liquid in a pipe (or annulus) was assumed to occur
in the form of a thin wavy film flowing along the walls
which was the predominant flow observed in the

experiments.

Considering the force balance on the total cross

section (Control Volume I) yielded:

4 (2.125)
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where o¢ is the void fraction of the gas and 2; is the

wall shear stress. For the Control Volume II, which

included the gas phase only,

4

2 2
_g_;.(%l_)_oq_ Z;T;D\/: X TD ) (2.126)

where Z; is the interfacial shear stress. Eliminating

the pressure drop from (2.125) and (2.126) gave

4Z}1 4 {; _
5 +D\/.o_‘l = (/‘i- /;) g (1 - &) (2.127)

With manipulation and approximation, the following

correlation was developed for large diameter tubes and

very thin films.

cC
W 3 %6 %2 x4 *2
2 NB Jg ig + Cw NBJg + 150 Cw ] = 1
(2.128)
2[ gl PL - /;_2_]
where NB = Bond number = D pu (2.129)
and Cw = wall friction factor = 0.008 experimentally

Applying the same approach to the annulus led to

J* 2

v 3 «0 %2 *2 O _

C., Ny Jg S*Cgr® + C_ Ny Jg + 150 C g% = 1

P (2.130)
gy - Jq)
where N; = Wl [ ‘{ — 3 ] (2.131)
g
and s§* = 2 (2.132)
W .
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The first term in (2.130) represents the pressure
drop due to wall friction; the second term is the presure
drop due to friction at the interface if the surface is
smooth. Finally, the third term describes the pressure

drop due to the wavy interface.

For zero penetration, i.e., J* = 0, equation (2.130)

L
becomes:
N 2 L
NS* 2
2 75 B
PSR- N U PN LA b
g NB S 752 cw (2.133)

Two extremes were examined:

) Nés*2

= 550 & 1 (valid for small models)
w

N, s*2 % , N g2
B ) 214 L B
2520 52, (2.134)
w w

i.e., (1 +

If the full scale reactor gap width was 0.25m and

circumference 14.4m, equations (2.133) and (2.134)would
give:

L

Jaz = 0.41 (2.135)

which is in good agreement with the result of Rothe and

Crowley (30).

N' 2

s*
© o ii) ( 7%6——_—_) >»> 1 (valid for large models)
w
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' 2 ,2 ) 2 ;ﬁ
iLe N_ S* N, S*
B ~ [ .B
[1- (1~ 252 ¢ ) ] -(752 - ) (2.136)
w w

t 1 1/
= *' = 4 = P
K= J%- Ny (<) 3.3 (2.137)

which is very close to the experimental value of 3.2.
The result in equation (2.137) is very interesting.
The Kutateladze number contains gas inertia, buoyancy
and surface tension terms, but this shows that it is
equivalent to the fourth root of the inverse of the
wall friction factor. The correlation presented in
equation (2.130) gives the Wallis solution for small
scales and the Kutateladze solution for large scales.
Figure 2.49 shows a comparison between experimental
data and equation (2.130). The agreement is good. It
should be noted, however, that the assumption of a
uniformly distributed film along the wall might be
questionable if, during partial delivery, water

venetrated the annulus on one side while steam escaped

on the other.

2.4 PREVIOUS WORK AT STRATHCLYDE

The University of Strathclyde has been engaged for
a number of years in a research programme covering
different aspects of problems associated with the safety

of PWR's. The research programme is supported by
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H.M. Nuclear Installation Inspectorate, a branch of the

Health and Safety Executive of the U.K. Government. The
present review will be limited to the work relating to
the refill problem during LOCA.

Campbell (35) carried out an experimental and
theoretical programme on a 1/10-scale model of PWR
downcomer annulus which involved three different test
sections, namely Phase 1, Phase 2 and Phase 3 test
sections. The Phase 1 test section had a rectangular
cross section with a gap size of 25.4mm, a test section
width of 69mm and tangential entry coolant ducts which
had a rectangular cross section 76mm x 25.4mm. The
Phase 2 test section was similar to that of Phase 1
except that the cooclant entry ducts were half pipes,
76mm diameter, normal to the plane of test section.

Phase 3 was a cylindrical type test section with a gap
size of 25.4mm and core diaméter of 406mm. All three
test sections and adjacent pipe work were manufactured
from transparent polycarbonate to allow visual and

photographical studies. A layout of the test rig and
instrumentation, and diagrammatic arrangements of the
test sections, are shown in Figures 2.50 and 2.51.

The working fluids were steam and water, at pressures
around atmospheric, with a range of subcooled conditions
at coolant entry. The test facility allowed heating
of the back plate (or core) to a temperature which was
kept constant during each test, thus allowing the

effect of hot walls on bypass to be identified. A
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summary of Campbell's test programme is shown’in
Table 2.2.

The data was presented in terms of j* parameters
defined by equations (2.51)-a and (2.51)-b which are

reproduced below for convenience.

P

%
& . s
Js = Js [ gDH(f; - /;) ] (2.51)-a
L
Pur ‘
i* o= 50| - ] (2.51) -b
w w gDH( f’w ,"s)
where DH = hydraulic diameter 2£ 2S

Figure 2.52 shows the effect of geometry on the end
of bypass conditions. The effect of inlet subcooling
is shown in Figure 2.53 and the effect of wall temperature
is shown in Figure 2.54.

The transition between the start of bypass and com-
plete bypass did not exist. The data exhibited an
on/off behaviour, i.e., either all the inlet water
penetrated to the lower plenum or none reached the
lower plenum. It was also clear from the data that,
increasing the inlet subcooling or decreasing the wall
temperature, increased the amount of steam required to
cause ECC bypass. Non-equilibrium conditions were
noticed, but due to a lack of base line data (i.e., no
data at zero subcooling), it was not possible to isolate
the non-equilibrium factor observed by other investigators.

Simpson et al (36) made use of the experimental

observation in the water first Phase 1 tests that the
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water flowing into the downcomer was supported by the

uprising steam and argued that bridging occurred when

the steam input was just sufficient for the water bridge
to reach the centre of the outlet hole.

The arrangement considered is shown in Figure 2.55.
The equations of motion for an element of water jet,
of length ®s at the point (x,2z) with u and w the

velocity components in the x and z directions respectively,

were found to be

du Ap w
ST = - T —_—55 (2.138)
dt @Hw (u2 + w2)4
and
aw Ap u
= = . ——eee (2.139)
dt @HW (u2+ wz)%
From continuity
H,V = Hwiui (2.140)

o~ 1
where V = (u2 + wz)'5 was the absolute velocity of the

element at position (x,z). Ap the pressure difference
caused by the rising steam across the element of local
thickness H and density @H and the subscript "i"
referred to the inlet pipe where the flow was assumed
to be horizontal.

The integral equations for the water trajectories

were obtained by solving equations (2.138) to (2.140), to

give:
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For Z

N
N

>
!
1

” -1 (2.141) -a

pA y4
T /

1 - 2 1 L / 1-2 -1
S - F4
o | (1 - /ardz) z (1-JAP.dZ)

| Ap
where X = —2-g—'.x, Z = fzi—'z , and AP= 2g @H i
a. 2 2 Wi
. u'
i i
and ZT = value of Z at the top of the trajectory

The pressure difference across the jet was evaluated
by approximating the steam flow to the pattern shown in
Figure 2.56-a. The criterion for bridging was

considered to be that the water jets should just reach

the entry to the outlet pipe (i.e., Z = 0 when X = g)
giving
_ 1\5
w _ 20 (24P, - 1) (2.142)
2 3 AP_(1- aP )
m m
and
5 = 2 . (Jw . Frwi) (2.143)
and
2/3
- 2——. * % 2 —2/3 E_
AP % (JS. Frwi )< (J;fv - Fr ) (do) (2.144)
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where

e P ’

*'_':' X =

J g 3B f; — ‘é)] (x w,Ss)
ui2

Frwi = gHwi

B = Breadth of test section
do = OQuter hole diameter
APm = Maximum value of AP

Equations (2.142), (2.143 and (2.144) yielded a

1
unique plot of J* (Fr )? versus J* (Fr .), which could
s wi w wi

be drawn as shown in Figure 2.57. The theory presented

above was not compared with any experimental data and
its validity was doubtful pending experimental
work with saturated water and steam (or air and water).

2.5 SUMMARY AND CONCLUSION

(i) Most of the theoretical approaches to flooding
have been carried out with reference to vertical tubes.
Different mechanisms have been proposed which do not

include the effect of heat or mass transfer. These

mechanisms were grouped in the present review into the

following categories:

(a) Wwave Stability Analysis (1,2.,4,5)
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(b) Film Flow Model (6)

(c) Hahging Film Models (7.9)
(d) Annular Flow Models (11,12,13,14,15,16,17,18)

(e) Entrainment Model (19)

(ii) Only the annular flow models have prospects of
success due to their simplicity and possible back-up by
experimental data. It should be remembered, however,
that all of the experimental work was carried out in
small tubes and required extrapolation to very large

tubes or PWR geometries can be dangerous.

(iii) The most popular correlating parameters are

those presented by Wallis and Kutateladze defined as

J* _ - [ g( ]%
x  Ix bl gp ( @J- G)

and

: ko 4%

x jxga’\/(FL— };)

where x refers to either liquid or gas phase and
D is a length dimension which was taken at the beginning

as the tube diameter and was replaced later by the tube

circumference.

(iv) Both of the above parameters are interdependent

*
because J will reduce to K if the length dimension D

takes the value of
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>

-D = [g(joz; ja)]

(v) The two parameters differed in their prediction
of the point of complete bypass. The experimental work
of Wallis and Makkenchery (15) showed that Kg is the
proper parameter in large tubes and J; is better in
small tubes. This has been supported lately by

theoretical work by Richter (34).

(vi) Different linear scaled PWR models have been used

in the experimental work with the data generally being

correlated successfully using

*1 *1
% _ 3 =
Jg + mJL C1
or
k ks
+ =
Kg mgL C2

(vii) The gap size (or hydraulic diameter) seems not
*
to be the proper scaling parameter in J . Instead, Wallis

proposed the mean circumference, but without any

theoretical justifications.

(viii) When subcooled water and steam were used in the
flooding experiments, the behaviour was very different
from that observed in air-water experiments. This was

due to condensation which was found to have a stabilising

effect on flooding.
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(ix) A modified Wallis correlation was proposed to
account for the effect of condensation under non-
equilibrium conditions in the following form :
R . s
*——) J . ] + mJ = C

i

w

J* - K
[ S s WLP

ne Jal

(x) Different values for Kne’ m and ¢ have been

proposed in the literature, but no theoretical justifi-

cation has been given. The latest experimental work

suggests that C = 0.4 and this has been supported by
Richter (34) in theoretical work. The non-equilibrium
factor takes many forms without any physical understanding
of the factors affecting non-equilibrium such as geometry,

flow patterns, enerqy transfer, dwell time, wall

temperature etc.

{(xi) Strathclyde proposed a model which gave some
theoretical justification for the use of Wallis parameters

but this has not been verified by experimental work.

(xii) The present work acknowledges the contributions
made by previous investigators and intends to provide
another step in the right direction by addressing the
problem of non-equilibrium. It will also test the
validity of the different correiations and theories
presented in the literature in addition to making a
fresh investigation into some of the problems related

to a LOCA, such as the choking of the gas phase.
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Fig 2.2 COMPARISON OF THEORETICAL AND EXPERIMENTAL
BRIDGING GAS VELOCITIES VERSUS SUCROSE

SOLUTION (335%% WT) FLOW RATE, [Schutt(1)]
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CHAPTER 3 : APPARATUS AND INSTRUMENTATION

3.1 EXPERIMENTAL APPARATUS

The experimental apparatus was similar in many
respects to that used by Campbell (35) to simulate the
conditions existing in the downcomer annulus of a PWR
during a LOCA. It was constructed as a 1/10-scale
representation of a typical Westinghouse PWR design and
involved two different planar test sections which will
be detailed later.

In the tests carried out by the author, the working
fluids were air and water at pressures close to atmos-
pheric since steam-water data were already available (35).
Here the air represented the steam generated during the
sudden depressurisation in the initial stages of the
LOCA whilst the water represented the emergency core
coolant. The air-water combination further represented
the conditions whereby the steam and the injected water
were at the same temperature so that no mass transfer
occurred.

The test sections and adjacent pipe work were
manufactured from transparent polycarbonate to allow

visual studies of the physical mechanisms leading to

bypass.

3.1.1. Layout of the Test Rig

A layout of the test rig and instrumentation is

shown in Figure 3.1. Referring to this Figure, low
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pressure air was introduced into the lower plenum tank*
for passage up the test section and through the outlet
pipe. The air flowrate was measured using an orifice
plate inserted into the main air supply line and both
air pressure and temperature were measured in the lower
plenum.

Concurrent with the air entry, water was supplied
at twin entry points (these representing the cold leg
entry points in the real PWR). When total penetration
of the injected water to the lower plenum did not occur,
the air-water mixture passed out of the test section via
the outlet pipe (representing the broken pipe in a cold
leg break LOCA) to a tank mounted on a weighing machine.
The temperature and flowrate of the water at each entry

point were measured.

Details of the instrumentation used are given in

Section 3.2.

3.1.2 Test Sections

Two test sections were used during the experimgntal
programme and diagrammatic arrangements of these are shown
in Figure 3.2

Referring to Figure 3.2, both of these test sections

represented a 1/10-scale development (or planar model)

of the downcomer annulus of a PWR. The width of the test

* The lower plenum tank was not a scaled version of the

reactor lower plenum but was merely a tank for locating

the'"steam"entry and collecting the injected water which
penetrated the downcomer.
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section represented half the circumference of the annulus
and was 686mm (27 inches):; the gap size was 25.4mm (1 inch).
The outlet pipe representing the broken cold leg was

76mm (3 inches) in diameter and was centred on one face

of the test section at the same level as the entry pipes

or ducts. The front face of the test section was
manufactured from transparent polycarbonate and the
back from stainless steel. The transparent front
face allowed photographic and visual observations of
the events inside the test section to be made.

The main difference between the two test sections
concerned the water entry ducts. For Phase 1 tests, these
were rectangular in cross-section, 76mm x 25.4mm, and
were connected to each side of the test section providing
a tangential type entry. For Phase 2 tests, the water
entry ducts were half pipes of 76mm diameter connected
normal to the test section. Each of the inlet ducts was
provided with a scale at the junction with the test
section to measure the water height at the brink. A
photographic view of the test rig with the Phase 1 test

section is shown in Figure 3.3.

3.1.3 Air and Water Supplies

The water supply to the test rig was taken from the
main service supply in the laboratory, thus allowing a
total capacity of 1.36 x 1072 n3/s for general use. The

water temperature was generally 150c1=5°c.
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The air was supplied by the laboratory compressor at

a pressure of 200 psi. 1In order to reduce and maintain

the pressure at 15 psi, a special reducing valve was used

upstream of the test section.

3.2 INSTRUMENTATION AND MEASUREMENT

The measurements required during the tests were the
air and water flowrates, the outlet water flowrate,
various pressures and pressure differences and the temp-
erature at a number of measuring stations.

The data was collected manually and recorded on

data sheets.

3.2.1 Air Flowrates

The air flowrate measurements were made using an
orifice plate in conjunction with a differential
manometer and a digital thermometer. The orifice plate
was manufactured and calibrated in accordance with
BS1042 and details of the calibration are shown in
Appendix A. The pressure tapping points were located
at the D and D/2 positions and duplicate temperature
measurements were made upstream of the orifice.

For low air flowrates two ROTAMETERS were used, the
calibration of these being carried out in accordance with

the manufacturer's recommendation. Details of the

rotometer calibration are given in Appendix B.
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3.2.2 Water (Coolant) Flowrates

Measurements of inlet water flowrates were made at
each entry point using turbine flowmeters. These are
volume flowrate measuring devices which utilise the speed
of rotation of the turbine rotor and its characteristic
dimensions, the rotor speed being measured by an elec-
tronic pick-up unit and the signal passed to a
calibrated meter. The turbine flowmeters were calibrated
in situ before and after Phase 1 tests. Before the
start of Phase 2 tests, the flowmeters were returned to
the manufacturers for general overhauls. On return to
the laboratory, another in situ calibration was carried
out. Details of these calibrations and graphs represent-

ing the characteristics of the turbine flowmeters are

shown in Appendix C.

3.2.3 Outlet Water Flowrates

The water passing out through the broken leg was

directed to a large tank mounted on a weighing machine

that could measure up to 20001bs mass. The lever on the

weighing machine was divided into divisions of klb.

The technique for measuring the water flowrate was
very simple and straight-forward. The weighing machine
was adjusted to indicate a particular reading, when this

weight was reached and the lever started to move, a stop-

watch was started and then the weighing machine was

adjusted to a higher weight. When that weight was

reached the stop-watch was stopped. The difference
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between the two weights divided by the recdrded time
gave the outlet water flowrate. The difference in

weight and the time taken were large enough to minimise

measurement errors.

3.2.4 Pressure Measurements

Two pressure gauges were installed upstream of the
orifice plate and the rotameters which could read up to
2.5 bars. The lower plenum pressure was measured using
a U-tube. For low pressures, coloured water was uéed
as the manometric fluid in the U-tube. For higher
pressures, mercury was used.

The pressure difference across the orifice plate

was measured by a differential manometer.

3.2.5 Temperature Measurements

An electronic digital thermometer capable of
measuring temperatures with accuracy of +0.1% was
used. The digital thermometer had 10 input channels
which allowed duplication of all temperature measurements
to be made in the interests of accuracy and reliability.

The temperatures measured werei

(i) The air temperature upstream of the orifice

plate or rotameters.

(ii) The air temperature in the lower plenum.

(iii) The inlet water temperature upstream of the
turbine flowmeters.

(iv) The water temperature in the lower plenum.
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(v) The water temperature in the outlet pipe.

3.3 TEST PROGRAMME AND PROCEDURES

The tests were designed to obtain information on the

critical conditions required for bridging, in the absence

of heat or mass transfer, under different geometries and
methods of introducing air and water.
The test programme covered a range of conditions

which can be summarised as follows:

1. Air Flowrate

0 - 0.25 m>/s
2. Water Flowrate : 0 - 0.005 m3/s

3. Air Temperature : 10 - 20°%

4, Water Temperature =: 10 - 20°%¢

5. Air Pressure : 0.8 1.15 bar

3.3.1 Methods of Testing

Two methods of testing were used. 1In one, the water
was introduced first to the test section and then the air
was introduced (i.e., water-first tests). In the other,
the air flow was established before the water was
introduced (i.e., air-first tests).

In the water-first tests, a steady flowrate was
introduced into the test section, evenly distributed
between the inlet pipes, and the air flow increased
gradually, until liquid bridging occurred. This
procedure was repeated over a range of water flowrates

for both Phase 1 and Phase 2 tests.
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In the air-first tests, a steady air flowrate was
established in the test section before the main on/off
valve was opened to allow a pre-set amount of water to
flow evenly and simultaneously into the test section via
the two inlet pipes. For Phase 1 tests, the ajir-first
tests were carried out by introducing a steady air
flowrate and increasing the water flowrate in steps and
recording the different readings and visual observation.
For Phase 2 tests, a different.procedure was followed
to allow comparison between air-first and water-first.
The water flowrate was adjusted and then the main
control valve was shut, then air was introduced and
when it was established, the main control valve was

opened. This procedure was repeated for a range of

air flowrates.

3.3.2 Experimental Procedures

Before and after each phase of tests, the turbine
flowmeters were calibrated.

Prior to any test the lower plenum was checked
to ensure it was empty of water, thus avoiding lower
plenum voiding which would give false outlet water
flowrate values.

Sufficient time was given to achieve steady state
condition before the measurements were recorded. The

unprocessed data for Phase 1 and 2 tests are tabulated

in Appendix D.
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CHAPTER 4

EXPERIMENTAL RESULTS
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CHAPTER 4 : EXPERIMENTAL RESULTS

In this Chapter, the air-water data are presented

for both the Phase 1 and Phase 2 tests and include :

(i) A complete physical picture of the events
leading up to liquid bypass and a description

of the various flow patterns observed during

the tests.

(ii) Tables of experimental data relating to
conditions up to and beyond bypass (or liquid

bridging) for a range of air and water flowrates.

(iii) Graphs illustrating the water penetration

characteristics and critical conditions for

liquid bridging.

(iv) Correlation of experimental data in terms of

the Wallis J* dimensionless flux parameters for

air and water.

(v) The results from auxilary tests carried out to
establish the relationships between water flowrate

and liquid level in the inlet water pipes at the

brink of the test section.

These are dealt with in turn.
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4.1 TCESCRIPTION OF FLOW PATTERNS

4.1.1 Phase 1 Tests

Consider the water first type tests, defined in
Section 3.3.1, where water was passed in from the sides
of the test section, in the form of two waterfalls as
shown in Figure 4.1-a, and air introduced into the bottom
of the test section. As the air rose between the two
waterfalls, the suction caused the two jets to come
together, (Figure 4.1-b), forming a barrier to the
upward rise of air. It wa; observed however that the
two waterfalls opened along the centre plain of the test
section to form a passage for the upward rise of the

air moving against the downwards film flow of the water
(this is indicated in the side views). An increase in
air flow caused the bridging of the two waterfalls to
occur further up the test section until ultimately the
bridge reached the outlet hole, as shown in Figure 4.1l-c,
where bypass of water commenced. A further increase in
air flow enhanced the water entrainment until the

waterfalls lost their identity and the air-water

combination became a turbulent two phase mixture in the

test section, with practically none of the inlet water
flow penetrating to the bottom of the test section
(Figure 4.1-d). The conditions for the flow patterns

shown in Figure 4.1 are indicated approximately in

Figure 4.2.
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For the air-first test series, the flow patterns

obtained were generally similar to those described above,
except that under some particular conditions, an anti-
clockwise vortex developed around the outlet hole

allowing more water to penetrate to the lower plenum.

4.1.2 Phase 2 Tests

The flow patterns in the Phase 2 test series were
predominantly film flows which did not fill the test
section. The flow patterns obtained without a counter-
current air flow confirmed those predicted by the flow
regime map given in reference (24).

In the water first tests, the impinging water jets
formed a film on the back plate. At small values of air
flow, the water film passed undisturbed to the lower
plenum; . as the air flow was increased a point
was reached where surface waves on the liquid film were

evident at the bottom of the test section. With further

increase in the air flowrate, the waves appeared to

become stationary before moving up the test section and
causing ligquid bypass to occur shortly afterwards. At

higher air flows, as in Phase 1, the air-water combination

became a turbulent two-phase mixture in the test section
with complete bypass not quite being achieved due to the
location of the inlet pipes which allowed a small amount

of inlet water to run down the side walls into the lower

plenum.
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In the air-first tests, the flow patterns were
identical to those described above for water-first tests.
In contrast to the Phase 1 tests (air-first), vortex

motion was not observed.

4.1.3 Cine Films

As part of the test programme, cine films were taken
to help in the understanding of the experimental results.
All of the flow patterns identified above could be seen
and were captured in the cine films, which are stored in
the Department of Thermodynamics and Fluid Mechanics,

University of Strathclyde.

4.2 TABLES OF EXPERIMENTAL DATA

The test data are tabulated in Appendices E, for
Phase 1 tests, and F, for Phase 2 tests. The data are
identified in terms of either "air-first" or "water-first"

tests Wwith the main data recorded for each type being:

(i) Inlet water flowrate, Mwi'

(ii) Entrained water flowrate, Mwo'

(iii) Water penetrating to the lower plenum, M
LP

(iv) Air flowrate entering the test section, M,.

Tables 1 to 18 in Appendices E and F show the
experimental data relating to water-first and air-first
tests and cover the conditions before inception of

bypass, partial penetration and complete (or near complete)



145
bypass.

4.3 GRAPHICAL RESULTS

The experimental data are presented graphically using

the dimensionless parameters J*., J* , J* given by
w wp A
T _ "MW:'L [ /3 ];ﬁ (4.1)
wi A Ea gB ( /; - /g)
and
M 1
W £ s
J* = —LE L (4.2)
“Lp A /; [ 9B ( /3 - /3)]
and
J;. = AMA/O [ B /oﬁ_ 2) ]Lé (4.3)
A g W A
where
A = Cross sectional area of the test section
B = Width of the test section which was chosen as

the characteristic length dimension in J%*.
(Not€:: In this thesis, the symbol J* is used to denote
the dimensionless flux based on the width of the
test section B to differentiate between it and

j*, which is based on the hydraulic diameter or

the gap size)

Typical penetration characteristics for Phase 1 tests
are shown in Figure 4.3 (water-first) and Figure 4.4

(air-first) and for Phase 2 tests in Figure 4.5 (water-

first) and Figure 4.6 (air-first). The lines shown
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represent a "best fit" through the data. It should be
remembered, however, that the air-first tests for

Phase 1 and Phase 2 were carried out in a different way
as mentioned previously in Chapter 3. Only the test run
plotted in Figure 4.6 was done in a way similar to that
of Phase 1 to enable comparison between the two Phases.
The complete set of data can be found in Appendices G and
and H.

Considering the water-first tests for both Phase 1
and Phase 2, these show that at low air flowrates all the
inlet water penetrated to the lower plenum and this is
represented by the data following a vertical line in
the graphs. As the air flow increased a point is

reached whereby part of the ligquid is entrained and

the water penetrating to the lower plenum is consequently

decreased. A further increase in the air flow results

in a further decrease in the lower plenum penetration

rate until a point is reached where all of the inlet

water is bypassed.

Figures 4.4 and 4.6 show an alternative method of
presenting the data, particularly for air-first tests.
For a fixed air flowrate, at low inlet water flowrates,
all of the inlet water penetrates to the lower plenum
and this is represented by the 45° line in the graphs.
As the inlet water flowrate is increased, a point is
reached whereby the rate of lower plenum filling becomes

independent of the inlet water flowrate, i.e., in the

partial penetration region the lower plenum filling is
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a function of the air flowrate only. This point was

taken to be the start of bypass. Also shown in Figure 4.4

and other graphs in Appendix G is the'"vortex'region which

was found to start when J;i ~ 0.085,.

4.4 CORRELATION OF DATA

4.4.1 Phase 1 Tests

Figure 4.7 shows a dimensionless plot of all water-
first test data identified in terms of different inlet
water flowrates. These data are replotted as the air

mass flowrate MA versus the water mass flowrate reaching

the lower plenum M ~in Figure 4.8.
YLp
that a Wallis type flooding correlation could reasonably

These graphs suggest

correlate the data. Thus the experimental data were

1
replotted in Figures 4.9 and 4.10 in terms of Jié versus

1 1 1
J* % and MA'5 versus M C respectively. The resulting
wLp Wp

straight lines define not only the inception of bypass
but also the partial penetration conditions, if it is

assumed that the partial penetration curves follow the

common envelope curve drawn in Figure 4.7 (or Figure 4.8).

The relationship between JZ and J* for the partial

P
penetration can be summarised by the following equation:

1
in + 1.26 J*VL % = 0.43 (4.4)
P

or in dimensional  form:



148

i

1
M% o+ 0.237 M 2 0.545

(4.5)
A Lp

These two equations also describe the inception of bypass

. * * . i

if JWLP and MWLP were replaced by Jwi and Mwi respectively,
since the partial penetration line coincides with the

inception of bypass line (as argued previously) and

J%ﬂ) = J;i (MwLp = Mwi) at the start of bypass.

Equation (4.4) is of the same form as that developed
by Wallis (12) to describe flooding in tubes except that
the coefficient of J;i is 1.26 instead of 1.0 and the
constant on the right hand side (which is dependent on
the choice of the characteristic dimension used in J%*)
is 0.43.

A comparison between Equation (4.4) and the partial

penetration data is shown in Figure 4.11 and others in

Appendix I. This will be discussed further in Chapter 5.

4.4.2 Phase 2 Tests

A similar approach was used to correlate the Phase 2

data. Figure 4.12 shows a dimensionless plot of all

water-first data identified in terms if different inlet

water flowrates. These data exhibit the same general

characteristic shape as the Phase 1, but when the data

1 L
were replotted in Figure 4.13 in terms of Jié versus J* 6,

they did not yield a straight line. The data for the

inception of bypass or flooding were extracted from the

partial penetration data shown in Appendix H and plotted

. 1 b
in terms of Jié versus J;ié in Figure 4.14. The resulting
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flooding equation is:

1 1
sz + 0.484 J* 2

i 0.349 (4.6)

Equation (4.6) is also shown in Figure 4.12 and 4.13,

together with the experimental data.

4,5 AUXILIARY TESTS

Strathclyde's initial attempts at formulating a
theoretical model for Phase 1 tests highlighted the fact
that the height of liquid in the injection pipes could
be important. However, measurements of the water height
were not taken.

In the present work, the height of the inlet water
level at the brink was measured using a cathetometer
and telescope. Figure 4.15 shows the variation of this
water level with the dimensionless inlet water flux for
Phase 1 tests (Note that J;i in this plot represents the
total inlet water flowrate, i.e., from both sides). A

similar plot for the Phase 2 tests is shown in Figure 4.16.
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CHAPTER 5 : DISCUSSION OF RESULTS

The experimental results presented in Chapter 4 are

discussed nere with emphasis on the shapes of the

penetration and bypass characteristics, and the differences

between these characteristics and those of steam/water

counter current flow systems. A comparison with some of

the theoretical work in the literature is also presented

and discussed.

5.1 WATER PENETRATION CHARACTERISTICS

The water penetration characteristics show the
ability of the coolant to penetrate to the lower plenum

in the presence of counter-current gas (or vapour) flow.

In the present test programme, the coolant was water and

the gas was air at near atmospheric conditions as

mentioned in Chapter 3. This simulates the case of

saturated steam and water system, i.e., no mass transfer

between the two phases and no temperature difference.

Referring to Figures 4.3 and 4.5 and others in

Appendices G and H, it can be seen that at low value of

air flowrates, all of the injected water passes

unaffected to the lower plenum. As the air flowrate

is increased a point is reached where a small part of

this water is expelled out of the test section (the

start of bypass). Further increase in the air flowrate

results in further decrease in the water penetrating to

the lower plenum until another critical point is reached,
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where all of the injected water is entrained (complete
bypass). The transition between the "start of bypass"
point and the "complete bypass" point is a gradual change,
unlike Campbell's steam water data (35)with high subcooling
where the two critical points more or less coincided with
each other. This on-off behaviour was probably due to

the local pressure reduction caused by condensation which
contributed to the rapid growth of surface waves to

block the passage of steam.

The dimensionless plot of all of the data for both
Phase 1 and Phase 2 tests is shown in Figure 4.7 and 4.12.
These Figures, together with Figures 4.4 and 4.6,
indicate that the partial penetration region follows a
common curve and in this region the amount of water

penetrating to the lower plenum is a function of the air

flowrate only. This is a very interesting result which

indicates that there is a maximum penetration flowrate
for any particular air flowrate regardless of the injected
wéter flowrate.

If attention is focussed now on the start of bypass,

it is clear from Figures 4.7 and 4.12 that increasing the

inlet water flowrate reduces the air flow required to cause

the start of bypass. This effect could be attributed to

the decrease of the area available for air, hence
increasing the pressure in the lower plenum and reducing
the distance required to be bridged by surface waves, thus
allowing smaller waves to bridge the test section. Again,

this behaviour is completely different from Campbell'’'s



steam/water data as shown in Figures 5.1 to 5.4, where
increasing the inlet water flowrate resulted in an
increased steam flowrate being necessary to cause
bridging. This difference could be attributed to
condensation, because incfeasing the mass flowrate of
inlet water increased the heat capacity of the water
phase thus more steam will be condensed. This suggests
that, for steam/water counter-current flows, part of
the steam is condensed and may have some effect on
flooding (or bypass) but with the remaining part being

mainly responsible for the flooding. However, close

examination of the steam/water data indicated that non-

equilibrium effects exist. This point is investigated

theoretically in Chapter 6.

5.2 COMPARISON OF AIR FIRST AND WATER FIRST TESTS

A comparison between "water first" and "air first"

169

test data would indicate the effect of mode of injection

and this could be useful in the study of flooding

characteristics in the actual PWR. The air first test
simulates more accurately the situation during a
potential LOCA because it is most likely that after the
blowdown period a flow of steam will be established in
the downcomer annulus before the ECC water is injected
via the cold leg. However, in the experimental work

it is easier to control the "water first" type of tests

more than "air or steam first" test. This probably

explains the reason why most of the experimental work
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reported in the literature is of the "water first" type.

Direct comparison between '"water first'and "air first"
data for Phase 1 test series was not possible due to
the differences in the method of testing outlined
previously in Chapter 3. However, a comparison between
all the air first data and equation (4.4) obtained from
"water first" data shows very good agreement, this being
shown in Figure 5.5.

The disadvantage in not having a means of direct
comparison between "air first" and "water first" data
for Phase 1 test series, together with the difficulty
in maintaining the air flow rate at a constant value,
led to the change in the experimental technigque during
Phase 2 test, as mentioned in Chapter 3. Figure 5.6
and others in Appendix J show a direct comparison between
"water first" and "air first" data for the Phase 2 test
series. As can be seen, the two sets of data are almost
identical with no obvious effect of changing the mode
of injection.

It can also be seen from the above comparison that
the correlations for the start of bypass obtained from
water first tests are valid for the air first tests also.
This result is also different from that obtained by
Campbell (35), whose data indicated that the critical
conditions for the steam first and water first tests
are not coincident. This could be due to lower plenum
condensation effects resulting in a reduction of the

steam flowrate entering the test section. For this reason,
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the author has disregarded Campbell's "water first" data
in subsequent analysis. From this point on, "Campbell's

data" will refer to steam first tests only.

5.3 COMPARISON OF PHASE 1 AND PHASE 2 TEST DATA

The comparison between Phase 1 and Phase 2 test data
gives an indication of the effect of the angle of water
injection into the test section, since both Phases
involved planar test sections.

This effect is illustrated in Figures 5.7 and 5.8,
and in Appendix K. Considering "water first" tests
for both Phases, shown in Figure 5.7, it is clear that
for a particular inlet water flowrate, the start of
bypass for Phase 1 test conditions requires a lower
air flowrate than that for Phase 2. If "air first"
is considered (shown in Figure 5.8), a similar effect
can be seen. The only deviation from this finding
occurred when J*wi (in Phase 1) exceeded the value of
0.085 when a vortex motion was developed around the
outlet .pipe (broken leg) allowing moré water to penetrate
to the lower plenum. At first, this vortex motion was
thought to be caused by a slight imbalance between the
two waterfalls, but ¢lose examination of the direction of
the vortex motion indicated that it was always anti-
clockwise. A possible explanation is that a non-
uniform pressure distribution exists along the width
of the test section due to the location of the air

inlet pipe being on one side of the lower plenum. This
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vortex effect, however, did not appear in the "water-

first" tests, probably because the water phase was fully
established in the test section before introducing the
air.

Another obvious effect regarding the point of complete
bypass can be seen by examining Figures 4.9, 4.13, 5.7
and others in Appendix K. While complete bypass is
achieved for Phase 1 at JZ = 0.185, a much higher value
of air flowrate is needed for complete bypass in Phase 2.
This could be attributed to the "end effects" resulting
from the location of the water inlet pipes on both sides
of the test section, thus allowing a "solid" stream of
water to run down the sides to the lower plenum. This
explains the deviation of the data points from Equation

(4.6) in Figure 4.13 at J* %k = 0.1.
Yip

whether or not Equation (4.6) would have represented

One can speculate

the penetration data better had the water inlet pipe been
in the centre of the test section width (as was the case
in the Creare and Dartmouth experiments,(refs. 24.28).
There may be some support for the speculation from the
Phase 1 test data where a single equation (4.4) did
represent all of the penetration data and where the
tangential water entry could have '"pushed" the water
away from the sides of the test section.

The behaviour of the air/water test data discussed
here is quite different from Campbell's steam/water tests
which indicated that the "waterfall type of flow regime

present in Phase 1 tests gave a more effective
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penetration than the film flow regime of Phase 2". This
difference can be attributed to condensation effects since
the waterfalls will provide a smaller surface contact
area between thesteam and water, for interaction, than

will the film flows present in Phase 2.

5.4 COMPARISON WITH THEORETICAL WORK

Several attempts have been made in the last two
decades or so to present theoretical and empirical
models to predict flooding in tubes and PWR geometries.
These were reviewed in detail in Chapter 2. 1In the
remainder of this Chapter, some of the theoretical

models will be tested against the présent data.

5.4.1 Phase 1 Geometry

As far as is known, no other investigation
involved a geometry similar to the Phase 1 test section
used by Strathclyde. Simpson et al (36) presented a
theoretical bridge type model to predict the flooding
or bypass conditions for Phase 1 test which reduced

to the equations (2.142) to (2.144). In this model,

the Froude number, Erwi, was taken to be equal to unity:

however, accurate measurement of the height of water at
the brink of the test section indicated that this was
not the case. Referring to Figure 4.15, it was found
that the water height at the brink, Hwi' in a partially
filled pipe could be correlated with the dimensionless

water flux, J;i to give



H . = 9.22 + 940.2 J*, (5.1)
wi wi

with Hwi in millimetre.

Equation (5.1) was solved together with Equations
(2.142) to (2.144) to give Ji Vs J;i. Figure 5.9 shows
a comparison between the resulting solution and the

start of bypass for the present experimental work given
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by equation (4.4). Also shown is the graph the condition

for complete bypass given by

J*? = 0.43 (5.2)

It is clear from the graph that the bridge theory

does not agree with either the locus of the start of

bypass (Equation (4.4)) or the complete bypass condition

given by Equation (5.2). This could be due to the fact
that the bridge theory does not allow for the fact that
the two waterfalls opened along the ceﬁtre plane of the
test section to form a passage for the upward rise of

air moving against the downwards film flow of the water,

as indicated in Section 4.1.1. The theory could be

correct, however, for steam/water situations where

condensation could cause a blockage of the passage.

5.4.2 Phase 2 Geometry

Phase 2 geometry simulates the actual PWR conditions
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better than Phase 1 and several investigators have used
planar test sections similar to the Phase 2 test section.

However, most of the theoretical work has been carried

out to predict flooding in tubes. In this Section, a

comparison between different theoretical correlations

and the present Phase 2 test data is made.

Before proceeding with the comparison, it is worth

re-iterating the system used.

(i) The comparison is carried out in terms of Wallis

parameters defined by:

(a
b
1

ML[ fa ]%z_% 1 (5.3)
LA gB()?N- /i) Lr fq

o

M

L M £k .
S /32 3B /25- /X)]g}; 'EL'(—/_%_) o

(1ii) Whenever the tube diameter is involved in an

empirical correlation (e.g., the coefficient <§

defined by equation (2.66)), the hydraulic

diameter

»DH = 2S (5.5)

is used instead of diameter

(iii) The units used throughout are SI units

The Phase 2 test data are compared with the theoret-

ical correlations of Schutt (1), Grolmes et al (7),
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Imura et al (16) and Richter (34). The empirical

correlation presented by Richter and Wallis (33) to
predict flooding in small PWR geometry is also used in

the comparison. These correlations are dealt with in

turn.

5.4.2.1 Comparison with Schutt (1)

Schutt (1) applied the small perturbation method
to the Navier-Stokes equation and produced Equation (2.1)
to describe the flooding conditions. The equation is
very complicated in its present form; however, it can

be approximated under the present test conditions to:

0.75 0.5 r s
- * §  rem—
st = 0.063 [ (4.647% - 3293 o5 | (5.6)
where
0.375.1 2
[1+ exp(1.763 3x°-37%)]
r = + 1 (5.7)
1 - exp(1.763 %;0'375)

The details of this approximation are given in Appendix L.
Figure 5.10 shows a comparison between the present
experimental data and Equation (5.6). It is clear from
the Figure that Schutt's correlation predicts higher
values of air flowrate at the start of bypass. Also the

qualitative agreement between Schutt (1) and Equation (4.6)

is very poor.
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5.4.2.2 Comparison with Grolmes et al (7)

Grolmes et al (7) presented a semi-empirical
correlation to predict the start of bypass or flooding
in vertical tubes. The procedures presented in
Appendix L reduced Equation (2.33) to:

0.074 J*
W

J* = r (5.8)
A (0.006 + 15.68 J;2/3)6 :

The comparison between Equation (5.8) and the
experimental data is shown in Figure 5.11. It is
evident from the comparison presented in Figure 5.11 that
both the qualitative and the quantitative agreement

between Equations (4.6) and (5.8) is very poor.

5.4.2.3 Comparison with Imura et al (16)

The semi-empirical flooding correlation (Equation
(2.65)) was reduced to the following Equations for the

test conditions of the present experimental work.

For J;i 5; 0.0067

0.0733
J* = 2/3
A CRVE: - 0.3197 J* (5.9)
For J,, > 0.0067
1
I = 0;2483 - 0.1385 J% (5.10)
J .
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The derivation of Egquations (5.9) and (5.10) is shown

in Appendix L.

Figure 5.12 shows a comparison between Equation (5.9)

and (5.10), and the experimental data. From the Figure

it is clear that the qualitative agreement between the

data and Imura's flooding equation is good. However,
Imura's flooding curve is consistenetly higher than the

experimental flooding curve given by Equation (4.6).

5.4.2.4 Comparison with Richter and Wallis (33)

As a result of an extensive review of flooding
literature, Richter and Wallis (33) proposed the

following empirical equation as a flooding equation

suitable for all PWR geometries:
1 1
% i S
%{ + O.8J§ = 0.4 (5.11)

Figure 5.13 shows a comparison between Equation (5.11)
and the experimental data. As can be seen, the agreement
is much better than the previous correlations. Not a
very surprising result, since Equation (5.11) was obtained
by approximating the existing flooding data from different
scaled PWR geometries. However, this agreement becomes
poorer as J;i exceeds 0.04. The present data supports
the previous works at Creare and Dartmouth which

indicated that at complete bypass (J* = 0)

1
Jzé = 0.4 (5-12)
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This is probably'a reasonable approximation which seems
to be insensitive to the geometry or the injection

1
angle (for Phase 1, Jzé was equal to 0.43 at complete

bypass) .

5.4.2.5 Comparison with Richter (34)

Richter (34) developed a theoretical model to
describe the conditions at the start of bypass. This

model yielded the following equation:

c N.J*0s%23x2 N_J* + 150c—i-‘§i = 1 (5.13)
w B g L S B g W S* ’
where
G, = 0.008
s

* = 2
S B
o, = 82X ﬁL-}o)]%

B o

Equation (5.13) is compared with the experimental
data in Figure 5.14. The comparison shows that Richter's
theory overpredicts the flooding conditions. However,
the data supports the prediction of the point of complete
bypass as given by Equation (5.13). The qualitative
agreement is good and quantitatively it is not too far

from the experimental data.



180

5.4.3 General Comment on the Comparisons

It is clear from the above comparisons that none of
the correlations tested really agree with the expiremental
data. Moreover, the general comparison shown in
Figure 5.15 indicates that these correlations do not
agree with each other. This indicates clearly that
the actual mechanism of flooding remains undetermined.

A possible reason for the differences is the lack of
reliable data for the liquid film thickness under PWR
gemoetry conditions. It goes without saying that the
film flow resulting from impinging jets is different

from that of a falling film. Also it might be expected
that turbulence would be more likely to be present in the
former than in the - latter.

In the present situation none of the above correlations
should be used outwith the experimental conditions from
which they were derived.

As a result of the above discussion, the author shall
use Equation (4.6), obtained from the present air/water
tests, as a basis for developing a model for condensation

effects. This model is presented in Chapter 6.
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CHAPTER 6 : THEORETICAL ANALYSIS

In this éhapter, the experimental work presented is
related to theoretical analyses for both the Phase 1
and Phase 2 configurations. For Phase 1, a theoretical
investigation into the effect of the air rising between
the two opposed waterfalls is presented. For Phase 2
(which is a better simulation of the PWR geometry) a
theoretical expression is presented to predict non-
equilibrium effects which allow for the effect of

geometry, inlet water flowrate, inlet water subcooling

and downcomer wall temperature.

These are dealt with in turn.

6.1 THE UPWARD FLOW OF AIR BETWEEN TWO WATERFALLS

This section is concerned with the upward flow of
air between the waterfalls with attention being focussed
on (i) predicting the airflow conditions at which the
two waterfalls just come together and (ii) describing
the waterfall trajectories.

The study arose from observations made during the
experimental work reported in Chapter 4. During these
tests, when the water was introduced through the side
entries it flowed down through the test section in the
form of twin waterfalls, as indicated in Figure 6.1. It
was found that, for any particular inlet water flowrate,

varying the air flowrate altered the water trajectories
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and eventually produced a condition at which the water-
falls were pulled together (condition b in Figures 4.1
and 4.2).

Waterfall trajectories were measured using a
cathetometer and telescope and typical results are shown
in Figure 6.2. These measurements are tabulated in
Appendix M. The conditions under which the waterfalls
were observed to come together at the bottom of the
test section (i.e., condition b in Figure 4.1) are
plotted in Figure 6.3 in the form of air mass flowrate
versus total water mass flowrate (i.e., twice the water
mass flowrate per inlet pipe). The curve is drawn as
rising from the origin, although experiﬁental data were
not obtained at very low values of Mw: a theoretical
justification for this is given later. Figure 6.3 does
indicate a maximum value of MA as M, increases followed
by a drop to zero as Mw is further increased. This final
condition is due to the horizontal velocity component of
the inlet water being sufficiently large as to cause the
waterfalls to meet even with zero air flow. The results

in Figure 6.3 are also tabulated in Table 6.1.

6.1.1 The Trajectories of the Waterfalls

A simple theory for the trajectories of the waterfalls
is presented here in which the drag of the water on the
flat surfaces of the test section is neglected and the

jet is assumed to be projeqted horizontally with a

uniform velocityui and pressure p. Consider an element
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of the water jet of length ds and thickness 3W at point
(x,2z) and with velocity components ‘u (in the x direction)
and w (in the‘z direction) as shown in Figure 6.4. Thus,
if Ap is the pressure difference across the element ds,
the equations of motion for the element of water of

density /; and local thickness H  are

du AD W
[t = (6.1)
dt ( 'aﬁw) (w2 + \.12);i
aw = _ Ap_ u
~ Now from continuity:
H, v = HWi ui (6.3)

— 1

where Vv = (u2 + Wz)'5 is the absolute velocity of the
water element and Hwi and u; are the thickness and velocity
of the waterfall at the test section entry. It is then

possible to solve equations (6.1) to (6.3) to give the

velocities u, W, V by

Vv = (2g2 + u?l);i (6.4)
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= -1
u uoo+ waWiui j Apdz (6.5)
0

z 1
2

W= “l[(l + —%L-Z) {1+ 1 5 /;szf]

. PH U
s wwili Q
(6.6)

Noting that the position of (x,2z) of the water element

at any time t is given by the differential equation

dx .
dy

% e

(6.7)

The equation of the water trajectory is obtained as

r4
a
x = 2 " (6.8)
u?
1
(1 + 22— /Apdz)
A?Hwi“io

That can be made dimensionless by defining the variables
X and Z which are proportional to the reciprocal of Froude

numbers and a dimensionless pressure difference AP as:
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_ 29 . - 29 . - AD

\11 ul 1
(6.9)
giving
YA
X = dz
- 1+2 -1 % (6.10)
0 (1 +/APdZ)2
0

This is the general equation for the trajectory of each
waterfall when subjected to a gravitational force and a
pressure difference which can vary from point to point

along the trajectory. Equation (6.10) can be written as:

Z
_ dz
S -
0 (1L + Fz)
where 2
F, = / AP.dZ (6.12)
0
When Fz = 0, Equation (6.11) reduces to the parabolic form:
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1

X = 22° (6.13)

No allowance has been made so far for the effect that
just before the end of the water inlet pipe (i.e., the
brink), the vertical velocity profile (and the water
height) is non-uniform because the pressure of the water
at the bottom of the inlet pipe has to decrease from
(pa + g ﬁ?%ﬁj to pa, the atmospheric pressure. This
is a complex problem and an approximate solution is
described in Appendix N, where it is shown that the

’

effective mean inlet velocity uy and Froude number, Frwi

are enhanced by the mean hydrostatic head at the inlet

pipe to give:

/2 5
o, = k[ “?; 1+ 52— (6.14)a
1 Afw K? FqN
and
3/2
Fr = k3 Fr [ 1 + “"_2'—1_—— ] (6.14)Db
Wi Wz x¢ Fr,
y4
where F:wz and Hw"\ are the Froude number [ FH S] q

and the waterfall thickness measured just before

the brink, k, is a constant. experimentally determined later,

u?

and F:wi = —a

Fhwy
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6.1.2 Air Flow

As shown in Figure 6.4, the air rises between the
two waterfalls as if flowing in a divergent duct
with flexible walls, but some will be brought to rest
underneath the waterfalls. The resultant pressure
difference over the water element will thus correspond
to the kinetic head of the air between the waterfalls
at position z. If the air flow is assumed to be
one dimensional* of local velocity up / and if the density

f

A of the air is assumed to be constant

by u?
Ap > AU (6.15)
The air velocity up depends on the path followed by
the air jet as it passed between the waterfalls, a complex

problem in fluid mechanics.

Equation (6.15) can be written as:

= 1 A
sp = 3 A [ /g(a-zx)s] (6.16)

where MA is the air mass flowrate and B and S are the
breadth and depth of the test section, and x is the
horizontal distance to the air passage and is a function

of z in general.

* NOTE: Three dimensional air patterns in the lower
plenum tank are neglected in the analysis.
The effects of entry losses, shear stress on

waterfalls and liquid entrainment in aij
also neglected. troare
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The mass flowrate per side can be expressed asg :

2 /LulHW1S (6.17)

From Equations (6.16) and (6.17), the general

dimensionless pressure difference can be expressed asg :

M2 -1

s [ AN) ery L (618

A (B*/2 - X)

or

AP = K 5 (6.19)
(B*/2 - X)

where

k= ( A)( )Fr -1 (6.20)

B* = 2dp (6.21)
Yy

X = 2%1 (6.22)
Yy

It should be noticed that, as K increases, so the
ratio ;; increases thus, for the present experiments,
trajectory curves for varying K values can be regarded
as those relating to diferent upward air flowrates. The

shape of the water trajectory depends on X which depends

on the mode of air flow between the waterfalls. Three
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possible modes of air flow are illustrated in Figure

6.5.

(i) In the first and most conservative case,
illustrated in Figure 6.5a, it is assumed that the air
follows the curvature of the waterfall, unaffected by

the outlet hole of the test section. The curvature

can be approximated to

x = CZ? (6.23)

where ¢ is a constant and x is measured to the centre

of the water jet (jet thickness effects will be considered

later .

Now, from the boundary condition x =X, _ at z =

b = 2y
the value of the constant ¢ can be evaluated as
X Xb v
c = = 6.2
5 —5 (6.24)
b b
Substituting Equation (6.24) into (6.23) gives:
z L
x = x (=—) (6.25)

OR in dimensionless form:

- Z _\%
X o= x| zb) (6.26)
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(ii) At the opposite extreme, it is assumed that
the air separates from the walls of the waterfalls, as
it enters the water channel at its narrowest width
(B - 2xb), at the bottom of the test section with a
slow moving circulation pattern between the gas jet and
the waterfall giving an approximately uniform pressure.
If it is further assumed, as in Figure 6.5b, that the
width of the air jet remains constant at the bottom value

of (B - 2xb), i.e., a parallel jet, it follows that:

X = xb (6.27)
or in dimensionless form:
X = x (6.28)

(iii) In the third case, it is assumed that the air
moves as a jet from the inlet of breadth (B - 2xb) to the
outlet hole of diameter db' as shown in Figure 6.5c¢, so
that:

a %

= - (2-%) (2

+xb)

z (6.29)

o [N

Z

which can be expressed in dimensionless form as :
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) z (6.30)

6.1.3 Effect of Air Flow on the Water Trajectories

It is now possible to substitute Equation (6.19)
together with the appropriate value of X into Equation
(6.11) to obtain the water trajectories. This is
outlined below.

For case (i) with the air following the waterfall

profile ., combining Equations (6.26) and (6.19) gives:

X ¥
2K +
P, o= log [1 (555 (E£) |
z 2 B*/2'YZ. .,
X/ 2y € b
X 7\ 2
(% ) ‘5—)
_B*/2 b
1 _(xb )(,z_ ) Y (6.31)
B%/2  2p

Substituting Equation (6.31) into Equation (6.11) and

arranging gives :
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Y
Y
72 Y.dy
7 = 2 b ‘ (6.32)
.Y 1
1 + Kl 72
b -1
0 A 2
1 + K 2 F(Y)
2 7b
where .
X L .
Y "( B*BZ ( gb} (6.33)
- Y
F(Y) = loge (1 -Yv) + P, (6.34)
= X - X_
T2 TB7E T En | (6.35)
X X
= B2 _ = b :
K1 = B*/2 (6.37)
- 2K
K, 5%/2 (6.38)
Z z
- Db = b
A = B3 52 (6.39)

1.843 for the present work

Equation (6.32) was integrated numerically on a
computer to yield dimensionless trajectories of the form

Z versus X. A typical set of curves for a water inlet
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velocity u; = 0.475 m/s is shown in Figure 6.6. As

might be expected, the horizontal travel of the water

increases as the air flow increases. The corresponding

values of the dimensionless pressure difference AP at

the bottom of the test section, i.e., 2 = Z

= 2y are also
shown in Figure 6.6.
For Case (ii), with AP = APb, Equation (6.11) can
be integrated analytically to give
X ———  sin o 2pRD)) -2 A (R2Z)(6.40)
= 2 AP b R, b .
where the function ¢ is given by
1 1
- * _ ]
# (R, 2) (Ry2)* (1 - R 2) (6.41)
ap?
and the ratio Rb = l—_:-E—XE-’_b- (6.42)

It is possible to evaluate another family of trajec-

tories of X versus Z, this time with a parameter AP

ne as
shown in Figure 6.7.
It is useful from a conceptual point of view to
simplify Equation (6.40) further. For the case of
APb@% with R, 7Z &1, becomes :
Y 1
X = 22% (1 + 3 APbZ) (6.43)

a perturbation of Equation (6.13).
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Equation (6.43) is also plotted in Figure 6.7, again
a family of trajectories is obtained with the horizontal
travel of the water increasing as the air flow (and
hence 4APb) increases. The discrepancy between the
approximation to Equation (6.40) by (6.43) is also shown
in Figure 6.7. However, if the curves shown in Figure
6.7 are compared with those shown in Figure 6.6, the
horizontal travel of the water is seen to be greater
in the former case, as might be expected. Perhaps what
is unexpected is the magnitude of this effect:; in
Figure 6.7, a value of AP = 0.01 .s needed for
Xb & 12, compared with ‘APb ~ 0.04 in Figure 6.6.
Consequently, the two extreme assumptions embodied in
the above analysis imply widely different air flowrates
to give the same effect in the water trajectories.

For Case (iii), with linear varying air jet,

combining Equations (6.30) and (6.19) with Equation (6.12)

gives:
r4
Foo= dez = - e (6..44)
Do R Do/2 + “p ]
0 2 2 z
2y
Substituting Equation (6.44) into (6.11) andrearranging
gives :
z
= daz_
K. 1 T T 72 L (6.45)
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where
e e Kz . (6.46)
4 ' N + 7. -1
2%1[K1 N - 1 b Z]
A
Ky Ky 7, and XA are defined by Equations (6.36) to

(6.39) and

_ Do/2 _ do
>‘1 - B*/2 - B (6.47)
= 0.111 for the present geometry.

Equation (6.45) can be evaluated in terms of eliptic

functions of the first and second kind, but it is

simpler to evaluate Equations (6.45) and (6.46)numerically

on a computer.

These three numerical solutions are now exploited

below.

6.1.4 The Condition for the Collapse of the Pair

of Waterfalls

‘The condition for the collapse of the pair of water-
falls is similar forthe three cases of air flow described
above, but can be seen most readily from the simple case
of AP = APb with .APb 4;-% corresponding to
Equation (6.43). At the bottom of the test section, the

horizontal position of the trajectory Xb is given by

Equation (6.43) with 2 = 2, ,which can be reduced then to:
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K, = '_'§>:_( 1_ ?D)Z(W%?; - 1) (6.48)

Choosing a value of Kl' and remembering that for a
given test section shape Ais fixed, a curve of 7b versus
Ko, where K, is defined by Equation (6.38), can be plotted.
The solution of Equation (6.48) with K1 as a parameter 1is
tabulated in Appendix O. It is also shown in Figure 6.8
as a family of curves for values of K1 between 10 and
50. Each curve can be considered to represent the
theoretical predictions of the horizontal position of

the water jet at the bottom of the test section for a

given water flowrate (M, and vy fixed) and a range of

values of air flowrate MA‘ For a given air flowrate M

A
two positions of the water jet are possible as indicated
by 7b one corresponding to a low air velocity and

low value of 7b' and the other corresponding to a high
air velocity and a high value of 7b' Referring to
Figure 6.8 forany "water-first" type test, i.e., (fixed
Kl), it would be expected that the water trajectory
would move from position (1) towards position (2) as

the air flowrate is increased, i.e., (K2 increased),
causing the two water jets to come together. At the

maximum (position 2) any further increase in air flow

causes the water jets to collapse towards one another

as shown in Figure 4.1b. The maximum such as that

represented by position (2) corresponds to the maximum

possible air flow and can be regarded as a kind of choked

flow for water jet flow pattern.
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The choked flow condition can be evaluated analytically

for the simple case described by Equation (6.48). If the

am 4d
condition Eii = {0, or a%% = 0,

maximum is found as .

> (1% aVvk) (6.49)

7b max 3

is imposed, the

with

3
4 (1 - 2y »MK,)

K = (6.50)
2 max EIDN %/Kl

It is also possible to plot similar curves to those
shown in Figure 6.8 for Case (i), Case (ii) and Case (iii),
using a digital computer. These are shown in Figures
6.9, 6.10 and 6.11 and have the sgme general form. The
solution for the three cases is also tabulated in

Appendices P ,Q and R.

6.1.5 Choking Conditions

It is worthwhile considering further the condition

used above for the collapse of the pair of waterfalls,
aM
A

viz., ax. = 0. Consider the air flowing through
b
cross section area A between the water jets. Then the

conservation of mass gives:

‘ﬁ AuA = MA = (Constant (6.51)
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and the conservation of momentums:

-Adp-d(fus &) = O (6.52)

if frictional and gravity effects for the air are
neglected. As above, the variation of /z can be neglected
but, in the problem considered here, A varies with the

pressure p as well as position z. Equation (6.52) then

becomes:
2
"a IB_A_ '
3
o . S 2z | P (6.53)
az MZ
L _—A laA
3 dPp
[&A A

where the denominator term

M2
A3 . —%% = (Mach Number)2
AR 2

Choking occurs when %E —» o0, implying

M 2 V] W 2
{__EL] - A = ¢ = (sonic velocity)
B - A

(6.54)
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In this equation it is assumed that the effect of
pressure on the density of the air is small compared
with its effect on the area between the waterfalls. 1In
Equations (6.53) and (6.54) the Mach Number and sonic
velocity terms are equivalent to those used in gas
dynamics but with the gas compressibility effects small

compared with area change effects.

. - _ 1 2 .
Since ap = p_-P = 3 ,&CA, Equation (6.54) can

be rewritten as

1 A
>P
4
or
1
%
—5—%‘%—@- = 0 (6.56)

1
Now Ap;sA oC Kg and dA o€ - d7b. Thus Equation (6.56)

becomes
1
“
dK
=4 =0
To
or dMA ) .
dxb

Thus the criterion used to give the collapsing of the pair

or waterfalls is equivalent to that for choked flow in

Equation (6.54). It can be shown (Appendix S) that the
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corresponding "sonic" velocity given by Equation (6.54)
is about 3 m/s, very much less than the velocity of
sound in still air at the same temperature and pressure.
This is probably due to the flexibility of the

restraining water jets causing an area change and hence

changing thevJ%% term.

6.1.6. The Collapse Condition in Terms of J; and J;

Equations (6.20) and (6.48) can be written in a form

suitable for making comparison with the experimental

data by noting that

_ .5/3. -2/3__ -1/3 %
Zb = 2 Frwi Fer B
| (6.57)
B* = 25/3Frw;2/3 Frw;l/3
where
Mw 2 '
Fro = 758 1 / o8 (6.58)
Thus
MA)Z \/;. ( ./X)[F -1/6 B & 27/6 F 1/3]a (6.59)
v = a - T - - r . .
Mw 9 /% wb Z wi

Alternatively, this can be written in terms of Jz and

%
qN where
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J;. & (FrAJ%(/i//v:)% (6.60)
Mj . 2
| —A
Frap [ /5B '/ g8
and
J* 2« Fr e (6.61)
w wb .
to give
. k.2 2 1 7 3
[Ji'Frw16] = J; (JQ.FrWi)[(%t)é.. 2 /6 (Frwi.{; )1/3]

(6.62)

* ;ﬁ *
A plot of(JA.Frwi ) versus (J%. Frwi) for the test
gection geometry is shown in Figure 6.12. It is possible
to transform the curves in Figure 6.8 directly.

In a similar manner, it is possible to transform

the collapse condition shown in Figures 6.9 to 6.11

(also in tabulated forms in Appendix T) using Equations

1
; * 2 *
(6.57) to (6,61) to give curves of JAFrwi versus Jw.Frwi.
These curves are also plotted in Figure 6.12. For Case
(iii), a further refinement used was to take the two

dimensional equivalent of the outlet hole to be given by:

E; = V%%-do i.e., area = do 2 = %E d02
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6.1.7 BAllowance for the Thickness of the Waterfalls

In the previous analysis, the effect of the
thickness of the waterfall on the area available for
the passage of air has been neglected. This is a good
assumption near the top of the test section, but near
the bottom, particularly when 'n>0.9, a correction must
be made. Details of this correction are shown in
Appendix U. The calculatiohs described previously were
carried out with this correction factor and the results

were also plotted in Figure 6.12 and tabulated in

Appendix T.

6.2 COMPARISON BETWEEN THEORY AND EXPERIMENT

6.2.1 Water Trajectories with Zero Air Flow

Measurements were taken of the centre position of
the water jet trajectories for zero air flow and various
water flows and curves are shown in Figure 6.2 (also in
Appendix M), as mentioned earlier. The three typical
curves shown relate to water inlet conditions such that
the Froude numbers, Fer, measured just before the brink,
were 1.49, 1.41, 1.375 and 1.118 and the flowrates per
side (i.e., Mw/2) were 0.275, 0.395, 0.612 and 1.12 kg/s
respectively.

According to the above theory, the trajectory is given

by Equation (6.13), which can be rewritten as

{2 (6.63)
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or using Equation (6.14)a and eliminating H

: 1/3 L
1 g MFr S
2 Y4 A 1 !
B I FIE T
g w k Frw
z
(6.64)

A value of k = 0.819 was found to fit the experi-

1
mental data for all the trajectories, giving x = 11.626,

1 1
10.05z % and 8.952z¢ with X and 2z in mm. The agreement
between theory and experiment is very good bearing in
mind that only one adjustable parameter, k, was used,

the complexity of the brink flow, and the fact that no

allowance was made for drag on the walls of the test

section.

6.2.2 Condition for the Collapse of the Pair of

Waterfalls

The experimental values of the air flowrate MA at

which the two water jets collapse towards one anotner
for a given water flow are plotted on Figure 6.3 with

the corresponding values of Jz, J¥ and Fr,_ listed

in table 6.1, along with the parameters Frwi%Ji and
Frwiq;. These last two parameters are compared with
the theoretical curves in Figure 6.12.

The first point to note from Figure 6.12 is that
the theoretical curves and a line through the experi-

mental points are qualitatively of the same shape, but

that all the theories predict a higher value of air flow

required for waterfall collapse. The theory,predicts
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J*A'E‘rwili = 0 for ﬂ;Frwi = 0 'and {:Fﬁﬂi‘z 0.1;
the former corresponds to the case of the waterfall
thickness being infinitesimally thin for finite FRH.'
and the latter to the two waterfalls meeting in the center
of the test section without any assistance from the air.
Unfortunately, experimental values below {;Frwi = 0.015
could not be obtained, since, at these low values, the
flow of air caused the sluggish waterfalls to part., giving
a film flow as shown in Figure 4.1c.

The second point to note is how small a value of
JZFrw.ilﬁ is required (even at the maximum) for the

waterfalls collapse. The experimental data gives a

1
maximum value of JZ’;}E‘er_'5 2 0.007 compared with

the theoretical values of (i) 0.035 for the case of the
air jet following the contours of the waterfall, (ii) 0.016
for the case of AP = APb, a constant, and (iii) 0.008

for the case of the linear jet with due allowance made

for waterfall thictkness. Clearly, the linear air jet
theory gives the best agreement with experiment, at

least when J;Frwi £ 0.047, i.e., where the outlet

hole size do equals the waterfall gap (B -~ 2xb) at the
bottom. For values of J;Frwij> 0.047, i.e., high

water flowrates, the theory with AP = APb is closest
to the experimental data, a not too surprising effect
since the air jet will certainly separate from the water-
fall and not follow the linear divergence to the outlet

hole. The importance of the waterfall thickness is also

evident in Figure 6.12 when JﬁFer.j> 0.047.
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The air flows at these higher values of water
flows are very small, so much so that a mere shutting
of the drain valve from the bottom tank, resulting in
a smail flow of displaced air, was enough to move point
A to point B in Figure 6.12. The theory predicts this
sensitivity in a satisfactory way.

Thus it is concluded that the linear air jet theory
explains the theoretical data up to the water flowrates
at which do = (B - 2xb). whilst beyond that the AP = APy
theory gives the best fit. At the maximum, the theory
exceeds the experiment by about 15%, reasonable agree-
ment when the complexity of the flow and the simplifications
of the theory is considered. It seems likely that, in

water-first tests, (fixed kl) as the air flow is increased

(k2 is increased), i.e., along the lower position of one

of the curves ia Figures 6.8 to 6.11, the possibility

of jumping to the upper position of the curve will

increase as the maximum k2 value is reached. It is

thus likely that the experimental values shown on

Figure 6.12 were not true collapse points but some-~

what less than the maximum wvalue. Indeed, on occasions,

a fluttering of the waterfall position was noted as the
air passed between them.

Finally, it must be émphasised again, that the collapse
condition analysed above occurs at air flowrates far below

bypass conditions of interest in PWR refill problem.
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6.3 NON-EQUILIBRIUM EFFECTS IN DIRECT CONDENSATION

UNDER COUNTER CURRENT FLOW

During the refill stage of a LOCA, the
effectiveness with which the emergency coolant
traverses the PWR downcomer and reaches the lowef
plenum is of paramount importance. The comparison
between the bypass characteristics obtained from
the present air/water experiments and Campbell's
steam/water data (35) -(Figures 5.1 to 5.4) - showed
a completely different behaviour. The difference
between the liquid/gas and liquid/vapour counter-
current interaction is attributed to mass transfer, or
condensation, effects which can be significant (and
even overwhelming) depending on the temperature
difference between the-vapour(stéam) and the liquid
(water). Thus in order to correlate the flooding

conditions for liquid/vapour combinations and hence

define the hold-up process, the condensation effect

must be separated and allowed for.

The main difficulty in isolating the amount of
condensation lies in the lack of reliable information
about the degree of thermal non-equilibrium which
exists during the energy exchange between the ligquid
ana the vapour. If thermal equilibrium conditions
existed, then the amount of condensation could be

determined from the energy (heat) transfer necessary
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to raise the liquid temperature to that of the vapour.
In fact, thermal non-equilibrium conditions exist i.e.
the liquid temperature remains lower than that of the
vapour and it is this degree of non-equilibrium which
is unknown. However, recent experimental investi-
gations (26-30) showed that the penetration curves

for steam/water interactions with zero or near zero
liquid subcooling were very close to those for air/
water in the same vessel geometry. This enables the
reduction of the data, obtained from bypass experiments
carried out on a scaled model of a PWR reactor vessel,
to isolate the non-equilibrium effects, usually ih~

terms of a non-equilibrium factor.

Several empirical correlations (reviewed in
Chapter 2) have been presented to predict the non-

equilibrium factor, or condensation efficiency as it

is sometimes called. These correlations were obtained

using numerical best fits to test data. The con-
fidence with which these correlations can be used to
extrapolate to conditions outwith the test range is a

function of the degree of physical basis supporting
them.

In an attempt to understand the effects of con-
densation, heated walls, and counter-current flow
on ECC penetrations, the non-equilibrium factor was

isolated from Campbell's steam/water data using the
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air/water correlation (equation (4.6) presented in

section 4.4.2)as a base line (i.e. representing

ZSTsub = 0). In addition, a physical model of the
condensation effects, based on the simple flow
pattern of a liquid film draining down a heated wall,
was developed to predict and explain the behaviour

of the non-equilibrium factor.

6.3.1 Isolation of Condensation Effects

If thermal equilibrium conditions existed during
the direct contact heat exchange between the steam
and water in the downcomer annulus, then tﬁe mass
flowrate of steam required to be condensed in order to

increase the water temperature to saturation would be

M = wl PW ATSUb = M Ja (6.65)
s W .
c i
fg
where
C
P. AT
Ja = Jakob number = W _— sub (6.66)
h
fg

Thus the residual steam flowrate after condensation,

Ms becomes
mod

M = Ms - Mw Ja

(6.67)
Smod
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and the increased water flowrate allowing for

condensation is

Mw = MW + Mw;Ja (6.68)
mod

If departure from thermal equilibrium conditions
exists and the degree of non-equilibrium is represent-
ed by a non-equilibrium factor Kne then equations

(6.65), (6.67) and (6.68) become

MS = Kne Ja Mw; (6.69)
c
M =M - K JaM,_ (6.70)
smod s ne W,
and
Mw = MW' o+ Kne Ja MW' (6 71)
mod ! | 1 :

or in terms of Wallis dimensionless parameters

£ s
AN

The = Kpg Ja w (6.72)

(i
n *
H

1
- %
I~ Kne J2 (%) T (6.73)
S



* - *
Jw Jw (1 + Kne Ja) (6.74)
mod

In equations (6.73) and (6.74), J* and J* are
s W
mod mod
representative of the hold-up effect, since the

effects of condensation have been allowed for, and

can be correlated therefore by a Wallis type

correlation to give

1
3%+ m 7%t = c (6.75)
mod mod
Equations (6.73) and (6.74) together with equation

(6.75) can be solved to isolate the non-equilibrium

factor Kﬁe as

2
- a, + \/al - 4 aOa2 (6.76)

ne

where

2 2 2

- 2 * * - *
a_ =[e? + n® 3x - gF- 4 n®. % o (6.77)

o]

1

*

a, = sz- J‘%-[mz +(_/_/§1f] 2 (6.79)

228

Lk 2 2 x *x 22 %
a. = 2;; Ja'[mz + (%%)j[c +m -JW-JS]-4m 23w Ja (6.78)
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However, since the mass of steam condensed is small
relative to the mass of water effecting the con-

densation, equation (6.74) can be approximated to

W (6.80)
mod w
Thus, equations (6.73) and (6.80) together with
equation (6.75) yield
J* - (c-m J*‘/)2
K - _s W 2 (6.81)

ne 1

(é%;ﬁ Ja Jw

In this investigation, attention is focused on the
Phase 2 geometry since it is a more realistic re-
presentation of the PWR than Phase 1. For this

geometry,

m = 0.484 (6.82)

and

Q
]

0.349 | (6.83)

The values of J; and J; required in equations (6.76)

or (6.81) were obtained from Campbell's steam/water

data shown in Figures 5.1 to 5.4. At this stage it

is worthwhile stressing the following points.
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(i) These data refer to steam first tests only since
the reduction procedure adopted for isolating the
effects of condensation could be applied more con-
fidently to this type of test. The steam flowrate in
the downcomer annulus (the area of interest as far as
the direct contact condensation effect was concerned)
is required whereas it was the inlet steam flowrate to
the apparatus which was measured. 1In the water first
tests, thére was always the possibility of condensation

in the lower plenum which could affect the isolation

procedure.

(ii) The data points which lay below the air/water
flooding line were disregarded since they would give
negative non-equilibrium factors. This is possibly
due to exceeding the limit of accuracy of the measure-
ment instruments (turbine flowmeters) resulting in an
experimental error. These data points lay in region

1 in figure 6.13 which shows a typical steam/water
flooding behaviour as observed by many investigators
(25,41). Region 1, in which the steam/water flooding
line follows closely the air/water flooding line,

%
extended from J; = 0 to a critical value = ch near

4

the interception of the air/water flooding line and

the line of thermal equilibrium (RT = 1) given by

equation (6.65) which can be expressed in dimension-

less terms as
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*

Jg = Ja . (_éé) Y. J

" (6.84)

*

This interception point (point a in Fiqure 6.13) can
be obtained by substituting equation (6.84) into

equation (6.75) after replacing J; and J;
mod mod

with
J; and J; respectively. Thus

J* %
w

c .
c i
[Ja c (fg')4 + m] (6.85)

Thus the Campbell's steam/water data used in isolating
the non-equilibrium factor corresponds to those of

Region 2 in Figure 6.13.

(iii) Campbell's data were collected at the inception
of bypass which means that the steam and water flow-
rates were not independent.

The non-equilibrium factor Kne, isolated and evaluated
by the above mentibned method, is plotted in Figures
6.14 to 6.17 to a base of dimensionless inlet water
flow J; for a range of water subcoolings at a

particular downcomer wall temperature, Twall In

order to show the effect of downcomer wall temperature
on the non-equilibrium factor, the data in Figures
6.14 to 6.17 were replotted for a range downcomer wall

temperatures at a particular water subcooling in

Figures 6.18 to 6.21.
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' As is evident from Figures 6.14 to 6.21, the non-

equilibrium factor depends (in a complicated way)
on the water flowrate, water subcooling and the

downcomer wall temperature. 1In the following section

a simple physical model is developed which incorpo-

rates the above factors and the physical dimensions of

the downcomer annulus.

6.3.2 Condensation Model

In an attempt to understand the effects of con-
densation, heated walls, and countercurrent flow on
the ECC penetration, a physical model based on the
simple flow pattern shown in Figure 6.22 has been
developed, assuming that a one dimensional present-
ation of this configuration represents the average

chaotic phenomenon which occurs in the downcomer.

Figure 6.22 shows a water film draining down a
heated wall, the temperature of which is uniform and
constant at a temperature Twall. The falling water
film is assumed tﬁrbulent and both the velocity and
temperature profiles are expected to be flatter than
those of laminar flow. It is reasonable to assume

that the temperature T, of the falling film is

uniform across the film and is only changing in the

flow direction. It is also assumed that the steam is

saturated, and noncondensible gases are not present.

The vapour shear stress at the liquid-vapour inter-
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face is ignored.

Subcooled water at temperature Tw is injected at a

i
rate Mw and the counter-current steam is injected at a
i

rate MSi The mass balance for a differential section §x

yields

de Sx dM

ax 3% (6.86X

This indicates that the mass exchange between steam and

water is due to phase change. The energy balance for

the same differential section can also be written as

d (chp T) 3x =—hg d M_8& + h B (T __,,-T)8x (6.87)
dx dx

where cp is the specific heat at constant pressure, h
is the specific enthalpy of the steam, B is the breadth
of the test section and hw is an average heat transfer

coefficient between the downcomer wall and the water

film.

Substituting equation (6.86) into equation (6.87),

’

neglecting the change in cp and rearranging yields.

dM
Mw cp %% =[hfg + cp (TS - T)] dxw+ th (Twall—T) (6.88)

here h. = (h_ - c_T) i
where £q ( g cp s) is the latent heat of

evaporation and Ts_is the saturation temperature. The

heat transfer rate across the steam-water interface
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of the differential section §x is given by

- h dMs &6x = hB (Ts - T) &x (6.89)
fq dax
where h is an average interfacial heat transfer co-

efficient. Substituting equation (6.86) into (6.89)
yields

aM

h ¥= hB(T -T) (6.90)
fg ax s

Now, introducing the two dimensionless quantities,

J = cp (Ts - Twall) (6.91)
Peg
and
¢ = Twall | (6.92)
Ts = T wal1 '

where ¥ is a Jakob number based on the temperature
difference across the water film and ¢$is a dimension-
less temperature difference. Usually J « 1 and Ja«1l
and can be ignored in any comparison with unity.
Substituting equations (6.91) and (6.92) inté

equations (6.88) and (6.90) and rearranging yields

d Mw . thZ

dx c
P

Z ae _ (6.93)
b%vJ dx -~
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and
d M, _ nBy(1 +4) (6.94)
dx CP

Equation (6.94) can be written as

c de
$ = _p_hBJ .-..__dx) - 1 (6.95)

Differentiating equation (6.95) with respect to x,
substituting the resulting equation together with
'equation (6.95) into equation (6.93), noting that h
is independent . of x, and rearranging gives

a’m dM_ _ hh 8%
M W hB hy W= W (6.96)

w dx * cp (1 + h ) dx cp2

Equation (6.96) is a non-linear differential equation
which cannot be solved analytically. However, the mass
of steam condensed is usually very small compared with

the injected water flowrate and this allows the follow-

ing approximation to be made

\N i ~ w. 4 W (6.97)

Substituting equation (6.97) into equation (6.96) and

arranging gives
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2 )
My M =y (6.98)
dx2 ax
where
hB h
oK = 1 + X
<M C1o+ =) (6.99)
and
hhw 82
y = M (6.100)
¢ W,
P i

Equation (6.98) is an ordinary differential equation
which can be solved with the proper boundary con-

ditions. The first boundary condition is

at x o , M = Mw and T =T (6.101)

and the second boundary condition can be obtained from

equation (6.94) at x = O to give

[ Dwy . hBf ¢ (6.102)
dx x=0 c
p
where
T
F= TS - wl
Ts - Twall

(6.103)
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Solving equation (6.98) with the boundary conditions

given by equations (6.101) and (6.102) yields

Mw = 1+ 3 ' Vw/h =X §hw(h2ax
M a[( h“’) (1 + hw)2 )+F(1 ]

(6.104)

Now, M_ =M,  + M (6-105 )

where MS is the mass of the condensed steam over the
c

length x substituting equation (6.105) into equation
(6.104) gives

=

Sc

—= = Ja[( 1 - (hw/h) (1- e-“x)+ hw/h)xx

M

hfl (1 + bw)  F(1+hw) F(1+ hy
h h :

;](6.106)

Equation (6.106) is of the same form as that for the
condensed steam shown in equation (6.69) and hence the
following expression for the non-equilibrium factor

Kne over the length L of the downcomer,is

{

= 1 - hw/h ooy
e | (T + ow) F‘Zl+hy_)2][1 ° %%%ﬁlfz (6.107)
h h " h

where «and F are defined previously by equations(6.99)

and (6.103) respectively,

Equation (6.107) gives an expression for the non-
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equilibrium factor Kne which incorporates the physical

dimensions of the downcomer annulus, the water sub-

cooling, the wall temperature, and the inlet water flow-

rate.

At this stage it is worthwhile examining two extreme

cases.

(i) Adiabatic Wall = i.e. no heat transfer to or from

downcomer wall

In this case hw = o, and equation (6.107) reduces to

_ - hBL
Khe = 1 -e c.M (6.108)
Pwi

which is the same expression as that derived by Liu et

al (22) where heat transfer from the downcomer wall

was. neglected.

(ii) Saturated Wall Temperature

When T wall"Ts i.e. F—» 00 equation (6.107)

reduces to

-l
Kne = 1 -e

(6.109)
(*+ o)

where «is previously defined by equation (6.99)
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If an empirical correlation can be found for the

interfacial heat transfer coefficient, equation
(6.107) can then be used in conjuction with equations
(6.73) to (6.75) to determine the bypass
characteristics for subcooled water and steam. An

attempt to find such an expression is presented in the

following section.

6.3.3 Estimation of the Interfacial Heat Transfer
Coefficient

The interfacial heat transfer coefficient which
appeared in the expression for the non-equilibrium

factor Kne given by equation (6.107) is still unknown.

14

Since detailed information on local interfacial heat
transfer coefficients and local interfacial areas in
counter current flooding flow of steam and water is not
available at this time, average values of the inter-
facial heat transfer coefficient were determined from
the experimental data (air-water data in conjuction
with Campbell's steam/water data) and correlated
against the dependent parameters. This was done

using the method outlined in section 6.3.1 in con-

junction with equation (6.107) making the following

assumptions.
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(i} The wall-film heat transfer coefficient hw can be

obtained from the Dittus-Boelter correlation

given by
Nu, = 0.023 re?'8 pp ©-4 (6.110)
where
h D
Nuw = wall Nusselt Number :kw = (6.111)
W
4Mwi
Re = film Reynolds Number = gy (6.112)
w
c_ A
Pr = film Prandtl Number = —Ei;ﬂ (6.113)
D, = film hydraulic diameter = 48 (6.114)

(ii) The film thickness &, can be obtained from the
. Brotz empirical correlation, reported in

reference. (42), and given by

2/3

3
1/3
(gg'i) = 0.068 Re (6.115)

(1ii) The water properties in equations (6.110) to
(6.115) were obtained from reference (40)

at a mean bulk temperature Tb given by
T + T
o= (i %) 4 (Twar + )

(6.116)
2 2
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where the term (Twi + Tg)/2 represents the mean
temperature in the flow direction if the outlet
water was saturated and the term (Twall + Ts)/2

represents the mean temperature across the water film.

(iv) Due to the slightly superheated steam inlet
conditions used during Campbell's experiments,
the evaluation of Jakob numbers (defined by
equation (6.66), was made using the enthalpy
difference between the inlet steam condition
and saturated liquid condition (in place

of hfg) where accuracy warranted this.

This allowed the interfacial heat transfer coefficient
to be isolated and correlated in dimensionless form.

In determining the dependent parameters, recourse was
made to Bankoff (38) who argued that "except under
highly transient or intense surface shear conditions,
the principal resistance to condensa.ion heat transfer,
in absence of air, is on the liquid side". Figure

6.23 shows a plot of the interfacial Nusselt number

Nui, versus Prl/3 Reo'8 and, as can be seen, both

the slopes and the intersection with the x axis

of the resulting straight lines are functions of the
inlet subcooling. Several attempts were made to
correlate this effect until that shown in Figure 6.24

was obtained with the resulting correlation being
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given by
Nu, = 0.011 (720-9 prl/3 re O-8_ 700) /3312 (6.117)

where

hD
k. (6.118)

Again, the water properties in equations (6.117) and
(6.118) are calculated at the mean bulk temperature

given by equation (6.116).

As mentioned earlier, the data points uéed are those
corresponding to Region 2 in Figure 6.13 which
roughly corresponds to the conditions prevailing at
and beyond point "a" in Figure 6.13. The condition

at point "a" can be represented, over the range of

subcoolings tested by Campbell, by

7299 prl”/3 re 0-8 = 700 (6.119)

For the range O ¢ Jao'9 Prl/3 Re0‘8<,700 a different

correlation is required to correllate the interfacial

heat transfer coefficient in Region 1 in Figure 6.13.

Unfortunately, no reliable data were available from

Campbell's experiments in this region consequently
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it was not possible to obtain a correlation for this
Region using his data. However, the experimental work
of Crowley (25) and Wallis (41) indicated that the
amount of condensation in this Region is very small.

Thus for the time being it is perhaps reasonable to

assume that

for o < 32°°% prl/3 ge 08 £ 700 | Nu, = O (6.120)

Ja0.9 Pr1/3 0.

for Re 8_> 700 Nui is given by

equation (6.117)

The author is aware, however, that Campbell's
experiments (35) were not designed to isolate the non-
equilibrium factor or the interfacial heat transfer
coefficient and despite the care taken in using his
steam first data some of the inlet steam could have
condensed due to heat loss from the large steel tank
(lower plenum)or due to contact with some of the

water which penetrated to the lower plenum. There-
fore equation (6.117) is not recommended for general
use under conditions which differ from those prevailing
in Campbell's experiments. However, it can be used

here in the isolation of non-equilbrium factors.

6.3.4 Discussion of the Condensation Model

In this section an attempt is made to explain the

behaviour of the non-equilibrium factors deduced from

t
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Campbell's data and to show the qualitative and
quantitative agreement between the theoretical model

presented in section 6.3.2 and the experimental data.

Referring to Figures 6.18 to 6.21, it is clear that
for any particular water flowrate and ligquid sub-
cooling, increasing the downcomer wall temperature
decreases (in general) the non-equilibrium factor.
The expression deduced from the condensation model
predicts this behaviour. For any particular water

flowrate and water subcooling equation (6.107) reduces

to
¥ne =5 * fg (6.121)a
F
or
Ke =3 *oAylTy - Ty (6.121)b

Where A1 A2 Aé are constants.

equation (6.121) - b that increasing the wall

It is clear from

- temperature Twall will reduce the non-equilibrium

factor Kn which is the same effect as observed

’

experimentally.

Referring to Figures 6.14 to 6.17, it is clear that

for any particular water subcooling all the curves go

through a maximum as the water flowrate (J*) is
w
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increased. This can be easily seem by examining the
the special case of adiabatic wall given by equation

(6.108) which can be rewritten as

—dIL 4
Ke = 1-e (6.122)

where

cp M, (6.123)

which can be expressed in terms of Re, Pr and Nui as

Nui
L = Pr.Re

i

(6.124)

Substituting equations (6.115) into equation (6.124)

yields

. 1/3 .
! 0.068 Pr Re 92

It is clear from equation (6.122) that increasing

« L also increase Kne. Referring to equation (6.125)
it can be seen that increasing the water flowrate
tends to reducecﬁL due to Re increasing but also tends
to increase «L due to Nu, increasing (equation 6.117)

Thus the final behaviour of the non-equilibrium factor

depends on the relative strength of these two opposing

effects.

A maximum value of Kne would exist only if
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4 Kne
i
or alternatively
d Kie =0 (6.127)
dRe

Differentiating equation (6.122) with respect to Re

gives

T Re 3 Re ) (6.128)

= 0 if d ((oqL) =0
d Re

For the present work Nui was correlated by equation

(6.117) Substituting equation (6.117) into egquation

(6.125) and rearranging gives.

3 /3

L (02618 )8t yire °-° - 7007720 %pr ]

* 70-35,2/3 - 52! . 54 :
a Re

(6.129)

Now, differentiating equation (6.129) with respect to

Re and equating the resulting equation to zero gives
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0.9 1/3

(6.130)

which is the condition for maximum L. and hence
maximum Kne. A similar result can be obtained for
the general case given by equation (6.107). Equation
(6.130) indicates that as the subcooling decreases
(Jakob number decreases), the value of Reynolds
number required for maximum Kne increases i.e. for
lower subcoolings the maximum non-equilibrium factor
occurs at higher water flowrates. Again this is
confirmed by the experimental findings as shown in
Figures 6.14 to 6.16. This maximum Kn however,

'

does not seem to be sensitive to wall temperature and

this is confirmed in Figure 6.18

Equation (6.117) can be written as

Nu; = 0.011 Re 0.8 = 1/3 _ 900
0.35 1.25
Ta Ia Re 0.8 (6.131)

6ver the range of subcoolings tested by Campbell (35)

the variation in( Pr1/3) is small. Thus:
0.35
Ja
1/3
Pr o
( 0.35) & const. (6.132)

Ja



Substituting equation (6.132) into equation (6.131)

and rearranging gives

1.25 (6.133)

where a1 and a2 are constants

Now, the effect of liquid subcooling on the non-

equilibrium factor can be examined by considering

two extreme cases.

Case (i) Small Water Flowrate

For any particular small water flowrate (Re ( Rﬁﬁux)

equation (6.133) can be reduced to

Nui 2 a3 - a

Ja (6.134)

Equation (6.134) indicates that for a particular water
flowrate, increasing Ja increases Ngi which in turn

increases L as indicated by equation (6.125). This

will result in increasing Kn This is in agreement

with the experimental findings as can be seen in

Figures 6.14 to 6.16 at low water flowrates.

248
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Case (ii) High Water Flowrates

For any particular high water flowrate (Re »Re max)

the term fg will be small in comparison to
1.25
Ja -

(a1 Reo's) in equation (6.133). Thus

Nuiz,(al . Re 0.8 ) (6.135)

i.e. Nu, can be considered a function of Re only.

Thus for a particular Reynolds number, equation (6.107)

can be written as

Kne = 4 + %g (6.136)
or
Kne = C1 + C2 (Ts - Twall) (6.137
AT . )
sub
It is clear from equation (6.137) that at any
particular wall temperature, increasing ATsub reduces

Kne Again this is in agreement with the experimental

results as shown in Figures 6.14 to 6.16 at high

water flows.

To summarise the above qualitative comparisons between
the theoretical model and the experimental data, the
behaviour of the non-equilibrium factor is idealised
into three distinctive regions. These are shown in

Figure 6.25 and are dealt with in turn.
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0.9 1/3

Region I O £ Ja ° Pr Reo'%g 700

The actual behaviour of the non-equilibrium factor

in this region is unknown due to lack of reliable data.
The author had to rely on other works (25,41)

to idealise the condition in this region which ipdicated
indicated that Kne is very small and could be approxi-
mated to zero i.e. kne is represented by the line 0 A

in Figure 6.25. The range of flowrates covered

by this region increases as Ja decreases.

Region II 700<Ja 0.9 Pr 1/3 ggo'sé_;;SO(at least for
unheated wall)

In this region, the non-equilibrium factor rises from
zero (point A) to a maximum (point B). 1In the simple

case of adiabatic wall this maximum is given by

equation (6.130). Since the flowrates in this. region

are not very high, increasing the liquid subcooling
increases the non-equilibrium factor due to the

increase in the interfacial heat transfer coefficient

as indicated in Case (i) above.

Region III Re>Remax

In this region the non-equilibrium factor falls from
. @ maximum value along the line B-C in Figure 6.25. As

the water flowrate is increased beyond point B, « L

~ decreases (for the general case the effect of increasing

Re is more complicated) and hence K decreases. At
ne

high flowrates in this region the interfacial heat
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transfer can be considered independent of Ja. Thus
increasing Ja will decrease Kne as indicated in case

(ii) above.

For all the three regions for any particular water

flowrate and subcooling, increasing the wall

temperature reduces Kne as indicated from equation

(6.121)

The above discussion has indicated the qualitative
agreement between thé mQedel and the experimental data.
In order to show the quantitative comparison between
theory and experiment, equation (6.117) was used
together with equations (6.110) to (6.115) into
equation (6.107) to calculate Kne which was then used .
in equations (6.73) to (6.75) to estimate J; for any
particular J;. Figures 6.26 to 6.28 show a com-
parison between the experimental and predicted flood-

ing steam flowrates and, as can be seen, the agreement

is very good except perhaps in Figures 6.28, where the
downcomer wall temperature approached the saturation
temperature (T__,; = 100 ¢). At these high wall
temperatures where the pressure fluctuations could
cause film boiling, a different correlation for wall/

film heat transfer coefficient hw may have to be used.

’

In order to compare the applicability of the above
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analysis relative to the "best fit" correlation avail-
able, the latest BCL correlation presented by Collier
et al (39) was used to calculate the steam dimension-
less flux at flooding and compared with Campbell's

experimental values. The BCL correlation is given by

K = 1.84

"€ 1 +47.78 J* (6.138)
i

and the comparisons are shown in Figures 6.29 to 6.31.
It is clear from the figures, that the BCL correlation
tends to give "horizontal" predictions with errors up
to +100%, It goes without saying that the effects
of water subcoolings are not represented at all in

equation (6.138) and this is evident in Figures

6.29 to 6.31.

Finally, the author does not claim that this theoreti-
cal model is the last word in the solution of this
complicated problem. Further experiments are clearly
needed to examine in more detail the different effects
emerging from the above analysis. It is hoped,
however, that the simple condensation model presented

in this Chapter, will be another step forward.
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values from Table 6.
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WATER FLOWRATE My kg/g

Fig 63 EXPERIMENTAL DATA FOR WATERFALL COLL APSE.
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CONCLUSIONS AND RECOMMENDATIONS
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

(i) An experimental and theoretical programme of
work has been carried out for the countercurrent
flow of air/water in two 1/10 - scaled PWR planar

test sections, namely Phase 1 and Phase 2 Test

Sections.

(1i1i) The experimental observations revealed that
the flow regimes in the Phase 1 test series were

characterised by air flowing between twWo waterfalls

and in the Phase 2 Tests by annular countercurrent

flow, i.e. water film on the downcomer wall.

(1iii) The Phase 1 air-water test data were cor-

related by the expression

Ja° o+ 1.26 J'w.l

0.43 (4.4)

for the inception of bypass. Equation (4.4) was

‘also found to correlate the partial penetration data

* Y
if Jw was replaced by J W
i LP

(iv) The corresponding data relating to the

inception of bypass for the Phase 2 test series

were correlated using the equation
*'t %
J + 0.484 J = 0.349
A w

(4.6)
i
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(v) The effect of mode of injection on flooding
was established by comparing "“air first" and
"water first". The data for the two cases was
almost identical, i.e. the mode of injection had

no effect on bypass characteristcs.

(vi) The effect of the angle of water injection
into the test section was examined by comparing
the Phase 1 and Phase 2 test series. The Phase 2
data was found to give better penetration

characteristics from a LOCA point of view.

(vii) The comparison between the present data and
the theoretical work in the literature indicated

that none of the correlations gave satisfactory

predictions.

(viii) The data supported the experimental find-

ings in Creare regarding the condition for complete

bypass which could be approximated to

(ix) A comparison between the present air/water

data and Campbell's steam/water data revealed that
the bypass characteristics for the two cases were
completely different. This was attributed to con-

densation effects which were found to play a stabi-
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lising role on the bypass characteristics as far

as a LOCA is concerned.

(x) The non-equilibrium effects existing during
countercurrent steam/water situations were isoclated
and were found to depend on the water flowrate, the

degree of inlet subcooling and the downcomer wall

temperature.

(xi) A simple theoretical model was presented for
countercurrent steam/water systems which yielded

an expression for the non-equilibrium factor

given by

Kpes(—L - _— (hw/m) J(1 - &%)+ (hw/h) < L
(1« By Fq, hwyZ F (14 b2

(6.107)

This was shown to give superior representation of
the data to the predictions of a recent BCL
empirical correlation

(xii) The experimental work in the Phase 1 tests
also gave rise to a theoretical study which provided
a satisfactory explanation of a collapse of the

pair of waterfalls when air flowed between them.
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7.2 RECOMMENDATION

7.2.1 Application To Reactor System

The condensation model and associated work presented

in this thesis can be used to determine the upward steam

flow in the annulus which is necessary for the inception

of bypass provided the following information is known.

(i)

(ii)

(iii)

(iv)

Inlet water flowrate (ECC flow) and temperature.
Steam pressure and temperature (from history of
depressurisation).

Downcomer wall temperature (from history of
depressurisation).

Bypass (or f£ledding) characteristic in absence

of condensation, e.g. Equation (6.75).

The procedure is as follows:

(a)

(b)

(c)

(d)
(e)

(£)

Evaluate the mass flowrate of steam Mg, necess-
ary to start bypass in the absence of condensation
- from equation (6.75).

Evaluate Ja, Re, Pr, Do from the known information

using Equations (6.66), (6.112), (6.113), and
(6.114).

Estimate h, and h using equation (6.110) and
(6.117) 'or (6.120).

Evaluate Kne from Equation (6.107).

Determine the steam condensation rate Mg, using
Equation (6.69).

The upward steam flowrate Mg in the annulus which
is necessary for the inception of bypass is then
given by M =M

+ M
S
s ne Se
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7.2.2 Recommendations For Future Work

Future work should include studies of:

(1)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

Further scaled PWR geometries (larger and

smaller, if possible).

The characteristic dimension to be used in
Wallis correlation - by using different
geometries and varying the physical dimensions
of the model i.e. gap size, downcomer

circumference and downcomer length.

Better simulations of PWR geometries including

hot leg projections through the annulus and a

scaled lower plenum.

The effect of impinging jets on liquid film

thickness.,

The effect of impinging jets over hot walls on

the wall/film heat transfer coefficient.

A more controlled range of liquid subcoolings,

particularly at low ATg,, values.

Experimental work to isolate the interfacial

heat transfer coefficient.

The effects of air inlet pressure loss and
shear stress on the water wall for the Bhasel
. geometry theory; also the possible effects

of water droplet entrainment in the air at

entry to the test section.
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APPENDIX A A2
CALIBRATION OF ORIFICE PLATE

FOR AIR FLOWRATE MEASUREMENTS

The orifice plate was designed, manufactured,
constructed and calibrated in accordance with British
Standards BS1042-Part I, 1964.

The mean diameter was calculated using six diameter
measurements taken on a NIKON Profile Projector at

x50 MAG. The diameter measurements were as follows:

Degree Diameters, mm

0 41.351

30 41.353

60 41.338

90 41.342
120 41.343
150 41.357

The mean diamter, d, = 41.347mm (1.6278 inches).

Referring to BS 1042, the following results were

derived on the basis of the 50.8mm (2 inch) diameter

air pipeline:

d/D = 0.814
m = (a/p Y = 0.6625
m = 0.4389
E = 1/(1 -nH* = 1.335

From Figure 38-a, Page 120, in BS 1042, C = 0.6117



A3

From Figure 38-c, Page 121 for Case B (steel, cold

drawn), ZD = 1.014

From Appendix A, Page 159

w = 3.478 x 1078 czera®ynf  xass (A-1)
_ 4000
Ry = ~—w W /4 (A-2)
where
Z = ZD'ZRD = cofrection factor
W = mass flowrate, kg/s
M o= dynamic viscosity, kg/m.s
f = density of air, kg/m3
h = head drop across the orofice, mm Hzo
Rd = Reynold's number
d = mean diameter of orifice, mm
For dry air
P x 100 _

T = 0.287 kJ/kgK (A-3)
where
P = absolute pressure upstream of orifice, bars
T = absolute temperature, K
From (A-3)

'f P
= 348.43205 T (A-4)

From (A-1), (A-4) and using the values of d4,c, and Zd
calculated above, we get



A4

w = 0.0919 x Zep ¥ € % V %g;' kg/s (A=-5)

also equation (A-2) can be written as

RA = 30.794 w/M (A-6)

From Figure 38-b, Page 120, the following values can be

obtained

Rd ZRD
500,000 1.006
200,000 1.014
100,000 1.021

50,000 1.029

The above values were curve fitted using an ICL-1904S

computer to give
2 = 1.2061 - 0.02138 ($hRd) + 0.000462 (@an)2
RD - * L]

(a=7)

From Figure 39, Page 122 , taking § = 1.4 and m = 0.6625,

the following values were obtained:

_€ h/P _mm/bara
1.000 0.0
0.986 368.3
0.971 736.6
0.957 1104.9

0.942 1473.2



AS

€ h/P__mm/bara
0.928 1841.5.
0.914 2209.8

The above values were also curve fitted to give

€ = 1.0-0.0000393 (h/P) (A-8)

From Thermodynamics and Transport Properties of Fluids

by Mayhew and Rogers, 1972, the values of u for air were

obtained as:

T (K) M x 105 kg/m.s
275 1.725
300 1.846
325 1.962
350 2.075
375 2.181
M x 10° = 0.4745 + 0.004568 T

(A-9)

How the Egquations Were Used

The following steps were carried out:

1. The values of ZRD were assumed to be equal to

unity and € calculated from equation (A-8)
2. Using Equation (A-5), the mass flowrate was

calculated using measured values of h, P and T.

3. Reynold's number was calculated from equation (A-6)
combined with equation (A-9) and the uncorrected
value of the mass flowrate.

4.

ZRD‘was calculated from equation (A-7).



5. The correct value of mass flowrate was calculated
using equation (A-5) with proper value of ZRD'
Equations (A-5), (A-7), (A-8) and (A-9) are shown on the

following graphs.

A6
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Mg T/P =0.0919/h

} 'l ]
0 10 20 30 4 50
vh Vmm

Fig_A-1 Characteristics Of Air
Flow Orifice [BS1042]
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APPENDIX B

CALIBRATION OF ROTAMETERS

" FOR_AIR FLOWRATE MEASUREMENTS

The rotameters used for air flowrate measurements
were calibrated in accordance with "Calibration Data
for 'Metric' Series Rotameters", provided by Rotameter
Manufacturing Company. The rotameters have the
following characteristicst.

Tube size 47

Duralumin Float (Metric type A)

INSTRUCTIONS

1. Symbols and Units

w = weight of float in grams
o = mean density of float in g/cm3
P =

density of fluid at working temperature and

. 3
pressure in g/cm

y = kinematic viscosity of fluid at working
3 conditions in Stokes
Fp = ‘“theoretical" capacity in liters/min (based
on no change in Reynold's number)
F = actual flow in liters/min at any selected
reading
.
T
K K

1+ K, are instrument constants which vary with tube sizes,

and are given.



2. Formulae

I = log[K1 x P X \/._;_"'_5_.___ X 104] (B-1)

w (e~ P)

Fp = K, x J %S_:;:f-i)- (B-2)

3. Evaluation

From the appropriate tables in (alibration Data for

"Metric" Series FRotameters':

W = 62.15 grams

& = 2.80 grams/cm3
Kl = 2.30
K2 = 4.355

From Air Tables, the properties of air at standard

conditions are

P = 1.2505 x 107° grarns/cm3

y

0.1430 cmz/sec

From (B-1),

I = 1.169

From (B-2),

FT = 970.67

)
]

970.67 x £ 1liters/min (B-3)

From the dynamic characteristics of metric series

B3
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rotameters size 47, combined with equation (B-3), the

following table was constructeqd:.

TABLE B-1

Calibration of Rotameters

(P =1 bar and T = 288K)

Scale Reading, cm Flowrate, Lit/min
0.125 97.067
3.500 194.134
6.688 291.201
9.625 388.268

12.563 485.335
15.375 582.402
18.125 679.469
20.750 776.536
23.188 873.603
25.563 970.670

The results tabulated above are also plotted in
Figure B-1 together with the calibration curve provided
by the manufacturers. It is clear that the manufacturer's

calibration curve would give higher flowrate than that

calculated from the charts. The two curves will coincide

if K2 is multiplied by a factor of 1.03, i.e.. K2 should

be taken as 4.486 instead of 4.355.

In the working range the change in absolute



BS

temperature is very small, i.e., T =~ constant and

/u = constant, also o > ) . This will reduce

equation (B-1) to

1 = log(Kg/VrF ) (B-4)
where 4
K, x Mx 10
K, = -1 (B-5)
\}(0
at T = To and P = PO
I, = log (K3/\/§> (B-6)
at T = T1 and P = Pl

1, = log(K3/\/_)1o_) (B-7)

From (B-6) and (B-7) we get:

_ Ly A
I, = I, - 0 log ( 7 ) (B-8)
o
or
1 "y
I, = I - 5 log (B;) (B~9)

For small changes in pressure,]l can be taken as constant
since the working pressure ranged from 0.8 to 1.2 bars .the

calibration curve was calculated at 1.0 bar using the

same method as above. The results were curve fitted using

an ICL-1904S computer to give

M_ = 10.422 + 3.032 R, + 0.026 R/f kg/h (B-10)

Equation (B-10) is shown on Figure B-2.



Very few tests were carried out at P = 0.5 bar. The

calibration curve was

M, = 8.676 + 2.685 R + 0.019 Ri kg/h (B-11)

Equation (B-11) is shown on Figure B-3.
To allow for small variation in pressure (Po) in

calculating the flowrate the following equation was

deduced from equation (B-2):

Mackual = Mo % “?/}; (B-12)

B6
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—-— FACTORY CALIBRATION

CALCULATED CURVE
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o
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Fig B-1 Calibration Of The Rotameters
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Fig B-2 Calibration Of The Rotameters
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APPENDIX C

CALIBRATION OF TURBINE

" FLOWMETERS FOR WATER FLOWRATES

The turbine flowmeters, manufactured by Meter-Flow
Ltd., were used in measuring the inlet water flowrate to

the test sections. Due to space consideration, the meters

were installed vertically, contrary to the manufacturer's

recommendation. In situ calibration was carried out and

. compared with the manufacturer's calibration.

The calibration was carried out by allowing the water

to flow into a tank mounted on a weighing machine. For

each amount of water passed into the tank in a given time,

the meter reading was recorded. This process was

repeated three times for each meter reading and the mean
taken to correspond to that particular reading. This
procedure was repeated for a range of flowrates and the

results were fed into a computer programme to find the

best fitting curve.

The results of calibration before Phase 1 tests, which

were checked after the end of Phase 1 test series, are

shown in Tables C-1 and C-2. At the beginning of Phase 2

tests, the two meters were sent to the manufacturer for

overhaul. On return to the laboratory, they were calibrated

using the method mentioned above. The results of this

calibration are tabulated in Tables C-3 and C-4. A

graphical representation of all four calibrations is

shown in Figures C-1, C-2, C-3 and C-4.



TABLE C-1

In-situ Calibration of Meter No. 18021/75

For Phase 1 Tests

Meter Reading Rwlx Volume Flowrate - Q m3/hr
10 1.775
20 3.711
30 5.377
40 7.089
50 8.709
60 10.474

The equation to give best fit was found to be:

O
i

0.0346 + 0.1736Rwl m3/hr



TABLE C-2

In-situ Calibration of Meter No. 18022/75

For Phase 1 Tests

Meter Reading Rw2% Volume Flowrate - Q m3/hr
10.0 1.664
20.0 3.320
30'-0 4.941
40.0 6.533
50.0 8.403
60.0 10.411
70.0 12.477
74.5 13.608

The equation to give best fit was found to be:

= 2 3
Q = 0.09139 + 0.14475Rw2 + O.OOO46Rw2 m~/hr
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TABLE C-3

In-situ Calibration of Meter No. 18021/75

For Phase 2 Tests

Meter Reading Rwl% Volume Flowrate - Q m3/hr
2 0.440
4 0.802
6 1.122
8 1.493

10 1.859
16 2.956
22 4.099
28 5.269
34 6.383
40 7.391
46 8.474
52 9.594
62 ‘ 11.351

The equation to give best fit was found to be:

Q = 0.0488 + 0.1835 R . m® /hr
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TABLE C-4

In-situ Calibration of Meter No. 18022/75

For Phase 2 Tests

Meter Reading szx Volume Flowrate - Q m3/hr

2 0.335
4 0.646
6 0.950
8 1.401
10 1.719
16 2.858
22 4.031
28 5.126
34 6.156
40 7.249
46 8.312
52 5.406
73.5 13.964

The equation to give best fit was found to be:

Q = -0.1255 + 0.1871L R, m>/hr
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APPENDIX D

EXPERIMENTAL MEASUREMENTS
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APPENDIX E

AIR/WATER DATA (PHASE 1 TESTS)

El



STRATHCLYDE

DATA

Water First Tests

TABLE E-1

Liquid Bridging

= kg/s
My =0- 4031 kg

£,= 0. 0088

PHASE 1 TESTS

E2

Frwz= 1. 1008
TEST NO. 02057901
k kg/s
MA kg/s J; MWO g/s MWLP 9
0. 0784 0. 0487 0. 0020 0. 4012
0. 0968 0. 0597 0. o04g Q. 3984
0.1162 0. 0717 0.0111 0. 3921
0. 1440 0. 0881 0. 0868 0. 3143
0.1700 0. 1031 0. 1924 0. 2107
0. 1934 0.1178 0. 2577 0. 1455
0. 2074 0. 1248 0. 3232 0. 0799
0. 2433 0. 14932 0. 3973 0. 0057
0. 2947 0. 1309 0. 39%4 0. 0078
0. 2920 0.1743 0. 39%4 9. 0078
0. 3039 0.1812 0. 3989 0. G043
= * - = 1. >
Mwi-o. 8702 kg/s Jw= 00123 Frwz 1. 3900
TEST NO. 05047902
&
MA kg/s 'JA MWO kg/s MWLP kg/s
O, 0B7S 0 0.03%7° T 0.0007 0. 3693
0. 0747 0. 04463 0. 0010 0. 3692
0. 0827 0. 0513 0. 0023 0. 9677
0. 0771 0. 0601 0. 00%6 0. 3646
0.1112 0. 0486 D.0118 0. 5584
0. 128% 0. 0789 0. 1004 0. 4698
0. 15%2 0. 0941 0. 2329 0. 3172
0. 1872 ~ 0.1130 0. 3198 Q. 2504
0. 1993 . 0.1193 0. 4332 0. 1370
0. 2013 0. 1213 0. 4499 0. 1203
0.2114 0. 1285% D. 3437 0. 2065
0. 2400 0. 1448 0. 4473 0. 1229
0. 2626 0. 1573 0. 4825 0. 0877




STRATHCLYDE

DATA

Water First Tests

TABLE E-2 Liquid Bridging

PHASE 1 TESTS

. 28, k * - - .
Myi =0- 7024 ka/s Jy=0- 0154 Frwz_ 1. 4099
TEST NO. 02057903

kg/s kg/s kg/s
M, Ji Mo ko/s | My +
~0.0074 = O.004& 0. 0000 0. 7024

0. 0525 0. 0326 0. 0000 0. 7024

0. 0819 0. 0307 0. 0031 0. 4973

0. 1003 0. 0616 0.01%3 0. 6871

0. 1288 0. 0789 0. 0924 0. 6100

0. 1331 0. 0819 0. 2064 0. 4960

0. 1634 0. 0994 0. 3589 0. 3439

0. 1965 0.1188 0. 4913 0. 2111

0. 2129 0. 1279 0. 5799 0. 1225

0. 2419 0. 1443 0. 6213 Q. 0812

0. 2955 0.1738 D. 7010 0. 0019
Mw;= 1 0367 kg/s 5, =0. 0232 Frwzz 1. 8085
TEST NO. 06047904

®
kg/s
MA g JA MWO kg/s MWLP kg/s
~ 0 089470, U36T 0. 0081~ 1.UdH6"

0. 0852 0. 0523 0. 1683 0. 8884

0. 1030 0. 04634 0. 3389 0. 7178

0. 1363 0. 0832 0. 5662 0. 4505

0. 14669 0. 1012 0. 7142 0. 3425

0. 1990 0.1196 0. 8430 0.2137

0. 2289 0. 136% 0. 9293 0. 1274

0. 2522 0. 1492 0. 9449 0. 0918

0. 2542 0.15%¢ 0. 9948 0. 0719

E3



STRATHCLYDE

DATA

Water First

Tests

PHASE 1 TESTS

TABLE E-3 Liquid Bridging
. =1.6103 kg/s * = =
Mwi 9 [y=9. 0353 F"wz"1-6°1_°
TEST NO. 09047905
kg/s k
MA g J; MWO a/s MWLP kg/s
0. 0303 0. 0311 0.015% 1. 5948
0. 0623 0. 03853 0. 3203 1. 2900
0. 0971 0. 0996 0. 6352 0. 9751
0. 1269 0. 0767 0. 8589 0.7514
0. 1321 0. 0800 0. 8789 0.7314
0. 1381 0. 0943 1. 3203 0. 2700
0. 2002 0.117% 1. 4606 0. 1497
0. 2302 0. 1338 1. 5452 0. 0651
0. 2920 0. 1453 1. 5693 0. 0411
0. 2563 0. 1482 1. 5538 0. 0465"
0.2%91  0.1486 1. 5941 0. 0162
s 2. k /S - -
My 2 1345 kg 55, 30. 0468 FQ&..o.assa,
TEST NO. 10047906
kg/s ¢ k
MA g ‘JA MWO g/s MWLPkg/s.
T9.0372° 7 0.0230 0.1114° T 2. 0231
0. 0538 - 0. 0331 0. 4930 1. 6416
0. 0930 0. 0567 1. 0331 1. 1015
0. 1324 2. 0799 1. 5270 Q. 6075
0. 1358 0. 0923 1. 7925 0. 3420
0. 1904 0.1117 2. 0583 0. 0762
0. 2282 0. 1304 2. 0851 0. 0494
0. 2299 Q. 1337 2. 0291 0. 1054
0. 2309 0. 1337 2. 0246 0. 1099
0. 2479 0. 1336 2. 0996 0. 0349
 0.2877 0. 1634 2. 1317 0. 0028

E4



STRATHCLYDE

DATA

Water First Tests

TABLE E-4 Liquid Bridging

PHASE 1 TESTS

-2. 7065 kg/s T) Fr =0.808%
My 3= 72587 9 Jy=0. 0594 "W, Sve9
TEST NO. 17047907
 {
kg/s ka/s | M kg/s
MA 9 JA MWO . Lp
0. 0072 0. 0044 0. 0013 2.70%2
0. 0156 0. 0096 0. 1032 2. 6033
0. 030% 0. 0188 0. 4327 2.2738
0. 0359 0. 0343 0. 9568 1.7497
0. 0939 0. 0369 1. 4828 1. 0237
C0.1168 0. 0702 2. 0246 0. 6819
0. 1549 0. 0906 2.39%3 D.3112
0. 1836 ©. 1097 1. 8974 0. 8090
0. 2138 0. 1218 2.6177 0. 0388
0. 2363 0. 1333 2. 6483 0. 0983
0. 2983 0. 1442 2. 6677 0. 0388
- * - - - e
Mwi"a' 3710 kg/s T =0.072% F"wz 1. 2542
TEST NO. 18047908
%
kq/s M ka/s | M kq/s
M, ke Ja wo ' ° W
0. 0081 0. 0050 0. 3359 3. 0351
0. 0198 0. 0122 Q. 6270 2. 7441
0. 0278 n. 0172 0. BSSS 2. 5059
0. 0430 0. 0264 1. 4261 1. 9449
0. 0571 0. 0349 1. 7750 1. 3960
. 0971 n. 0583 2. 5289 0. 8421
9. 1203 n. 0714 2.7%41 0. 6169
D.1%22 0. 0884 2. 9545 0. 4165
0. 1816 0. 1038 3. 1494 0. 2216
0. 2045 0.1163 3.1582 Q. 2129
0. 2337 0. 1309 3. 2394 0. 1316
0. 2630 0. 1464 3.2768 Q. 0942

ES



STRATHCLYDE DATA

PHASE 1 TESTS

Water First Tests

TABLE E-5 Liquid Bridging

=3. kg/s
Muwi 3. 8878 kg/

* 290.0853 =1
]w 9. 08 Frwz 6682
TEST NO. 19047909
kg/s kg/s kg/s
M, ks J Mpo o/s | My,  o's
Q. 0431 0. 0264 1. 5638 “2.3240
0. 0404 0. 0363 2. 77Q9 1. 0969
0. 1094 0. 0%44 3. 2221 D. &&57
0. 1479 0. 0851 3. 8102 0.3776
Q. 1637 0. 0230 3. 3376 0. 3302
Q. 2030 0. 1146 3. 69513 0. 2363
Q. 2192 0. 12093 3. 6281 Q. 2097
D. 2447 9. 13933 3. 8004 D. 0874
0.2520 0.1395 3. 7384 0. 1294
=4. &027 kg/s * =0. 1009 =2. 3381
Mwi S va FQMZ
TEST NO. 23047910
kg/s kg/s kg/s
M, ks Ja hﬂwc>g “A“Qp g
. Q383 Q. 029 2. 3080 2. 2947
0. 0450 0. 0274 2. 2231 2. 3796
D. 0601 D. 0357 2. &625 1. 2402
0. 1132 D. 0455 3. 2745 1. 3282
D, 1283 D. 0738 3. 4357 1.1870
D. 15663 H. 0933 4. 0402 D, 4623
0. 17895 0. 1088 4, 22864 0. 3741
. 2421 D. 1294 4. 2944 0. 3081
D. 2980 D. 1416 4. 1331 D. 4396
0. 2673 0_1499, 4. 0931 Q. 074




E7

PHASE 1 TESTS

STRATHCLYDE DATA
Air First Tests
TABLE E-6 LIQUID BRIDGING
- * =0. 0051
M, =0-0081 kg/s W= :
TEST NO. 12077911
%
kg/s kg/s ka/s Jo F
MWi 9 Mwo 9 MWLP 9 W rwz
0. 5413 0. 0000 0. 5413 0.0119 1. 0848
0. 8839 0. 0000 0. 8839 0. 0154 1.1429
2. 8510 Q. 0808 2. 7701 0. 0625 0. 9778
3. 1416 Q. 1477 2. 9939 0. 0689 1. 0893
3. 3848 Q. 3099 3. 0749 0. 0742 1. 2648
3. 9278 0. 4732 3. 4549 0. 0861 1. 7026
- 4. 4778 0. 6333 3. 8243 0. 0982 2. 2129
4 7761 0. 6388 4. 1374 0. 1047 2. 5180
5. 2372 0. 7559 4. 4813 0. 1149 3. 0271
8. 6216 . 0.8325 S 4.7671  0.1233 3. 4878
M.= 0. ' kg/s * -o.
MA 0. 0282 kg jA 0.0174
TEST NO. 12077912
%
kg/s kg/s kg/s
M, k| M s 1My, ks Jw Fr,
0. 5452 0. 0000 0. 5452 '0.0120 T {. 3998
2. 22792 0. 0838 2. 1454 0. 0489 0. 6989
2.5148 0. 3239 2. 1909 0. 0552 0. 7284
2. 7835 0. 4922 2. 2913 0. 0610 0. 8923
2. 9960 0. 6934 2. 3025 0. 0657 1. 0337
3. 2877 0. 9351 2. 3527 0. 0721 1. 2191
3. 9746 1. 5461 2. 4285 0. 0872 1. 7445
4, 4274 2. 0184 2. 4088 0. 0971 2. 16434
4.7014 2. 2790 2. 4225 0. 1031 2. 4397
5. 7251 2. 5748 3. 1483 __ 0.12%6 3. 6174




STRATHCLYDE

DATA

Air

First Tests

TABLEE-7 LIQUID

E8

PHASE 1 TESTS

BRIDGING

4
=0. 41 3 = 0. 0451
MA Q. 07 g/s JA
TEST NO. 17077913
: *
kg/s kg/s kg/s
M,, s | M, o (M, o) dl, | Fr,
1. 2258 0. 0881 1. 1377 0. 02469 1. 2218
1. 8520 - 0.3837 _1.4483 0. 0406 ~1.0838
T2, 3242 0. 8098 1. 5143 0. 0510 0. 6221
2. 8848 1. 2884 1. 59464 0. 0633 0. 9185
3. 2877 1. 88957 1. 4020 0. 0721 1. 1930
3. 4803 2. 2123 1. 4681 0. 0807 1. 4949
3.9774 2. 8149 1. 1606 0. 0872 1. 4813
4 2749 2. 9401 1. 3347 0. 0938 1. 7127
4. 72?9 3. 0997 1. &89 0. 1048 2. 1380
TEST NO. 13087914
%
kg/s kg/s kg/s
M, M, s |My, ol Ji, | Fr,
C. 4737 T 0. 0069 0. 4672 0. 0104 ‘1.0323 _
0. 8839 0. 2140 0. 6679 0. 0194 1. 26353
1. 1098 0. 4373 0. 6724 0. 0243 1. 0870
1. 2234 0. 4973 0. 7283 0. 0248 0. 9234
1. 7796 0. 8573 0. 9223 Q. 0390 0. 44%7
2. 1349 1. 2686 0. 8650 0. 0448 0. 5247
2. 4912 1. 7973 0. 6939 0. 0544 0. 6851
2. 9234 2. 3227 0. 6006 0. 0641 0. 9433
3. 9587 3. 0234 0. 3333 0. 0780 1. 3982
3. 7768 3. 0602 C. 7166 0. 0828 1. 5753
4. 6268 3. 2394 1. 3874 0. 1018 2. 3627




E9

STRATHCLYDE DATA PHASE 1 TESTS
Air First Tests
TABLE E-8 LIQUID BRIDGING
/ 4-
MA =0.1419 kg/s A—0.0851
TEST NO. 14087915
as |M ks M, ks | F
kg/s kg/s q/s
MWi wo Wip W rWz
Q. 9220 0. 1954 0. 346%6 Q. 0114 1. 1438
0. 8839 0. 4956 0. 3882 0. 0194 0. 9417
1. 4753 1. 0629 0. 4124 0. 0324 0. 4312
1. 7116 1. 2756 0. 43%0 0. 0375 0. 4634
2. 3242 1. 8797 0. 4453 0. 0510 0. 3942
2. 923% 2. %886 0. 3349 0. 0641 0. 9433
3. 4839 3. 1826 0. 3010 0. 07464 1. 3393
4. 0770 3. 2394 0. 8376 0. 0894 1. 8345
4. 6730 3. 5710 ‘1. 1041 0. 1023 2. 4127
‘M,=0.1737 kg/s * 201023
A g JA
TEST NO. 18087916
$
kg/s kg/s kg/s
Mw§ M. MWLP J Frwz
0.9%413 6.37723 0. 1440 T0.01197 T T 0.837¢8
0. 8839 0. 6630 0. 2208 0. 0194 0. 8222
1. 3399 1. 0191 0. 3208 0. 0294 0. 7054
1. 8279 1. 53603 0. 2676 0. 0401 0. 4106
2. 3242 2. 1731 0. 1490 0. 0510 0. 8962
2. 8992 2. 6677 0. 231% 0. 0636 0. 9277
3.4386 | 3.2748 0. 1818 0. 0738 1. 3203
3:9746 - 3.9710 0.4036  0.0872 1.7443
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STRATHCLYDE DATA PHASE 1 TESTS
Air First Tests
TABLE E-S LIQUID BRIDGING
F 2
MA =0.2339 kg/s JA-—O.1379
TEST NO. 21087917
M M s M J, F
kg/s g/s kg/s
0. 4803 0. 4375 0. 0429 0. 0105 0. 8976
0. 8384 0. 7739 0. 0645 0.0184 0. 6476
1. 4325 1. 3437 0. 0887 0.0314 0. 3753
2. 2926 2. 1494 0. 1032 0. 0494 0. 9844
2. 8992 2. 8703 0. 0289 0. 0636 0. 94680
3. 4835 3. 3347 0. 1489 0. 0764 1. 3575
4. 0770 3. 9096 0. 1674 0. 0894 1. 9142
4 7761 4. 5733 0. 2029 0. 1047 2. 6275
 5.7528 5. 1536 0. 5993 0. 3

1262

. 8115




APPENDIX F

AIR/WATER DATA (PHASE 2 TESTS)
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STRATHCLYDE DATA

PHASE 2 TESTS

Water First Tests

_TABLE F-1 Liquid Bridging

-1.5198

=0. 5711 kg/s ? -0.0125 F
My=0 i ks =0.0139 e
TEST NO. 22098018
| kg/s kg/s
M, kass J/: Myo MwLP g
0. 1359 0. 0840 0.0189 0. 5523
0. 1472 0. 0903 0. 0206 0. 5505
0. 1567 0.09%7 0. 0945 0. 4767
0. 1706 0. 1039 0. 0248 0. 5444
0. 1763 0. 1072 0. 2492 0. 3220
0. 1964 0.1189 0. 2878 0. 2834
. 0.2171 0. 1306 0. 3830 0. 1881
n. 2357 0. 1412 0. 4165 0.1547 .
0. 2524 0. 1304 0. 2992 0.2720
0. 2585 0. 1535 0. 3040 0.2672
0.283% =~ 0.1879 ~ 0.3463 0 2247
=0. &59¢ =0. =1.616%9
My =088 kg/s 1, =0. 0153 F"wz 169,
TEST NO. 23098019
4
kg/s kg/s kg/s
M, s Ja Mo ko MwLP 9
0. 1298 TTO.0798 0 001907 T T06BsE T
0. 1488 0. C910 0. 1400 0. 5598
0. 1621 0. 0987 0. 1908 0. 5090
0. 1848 0.1124 0. 2646 0. 4352
0. 1948 0. 1180 0. 2999 0. 3998
0.2126 0.1283 0. 3693 0. 3305
0.2337 0. 1401 0. 4086 0. 2912
0. 2492 0. 1490 0. 4035 0. 2963
0. 2612 0. 1554 0. 4485 0. 2313
0. 2654 0. 1208 0. 4744 0. 2254
0. 2815 0. 1666 0. 4892 0. 2106




STRATHCLYDE

DATA

Water First Tests

TABLE F-2 Liquid Bridging

PHASE 2 TESTS

= 1.0%549 kq/s * =90.0231 F =1.0772
Mw| R - g Jw — e e rwz e e
TEST NO. 24098020
/s . kq/s kqg/s
M, & ’J:\ Mo MNLP g
0. 1215 0. 0753 0.0118 1. 0431
0. 1335 D. 0811 0. 2533 0. 7997
0. 1549 0. 0938 0. 3477 0. 5072
0. 1745 0. 1051 0. £6470 0. 4080
0. 1875 0.1123 0. 6851 0. 3499
D. 2162 0. 1288 0. 7447 0.3102
0. 2296 D. 1360 0. 8084 0. 2465
0. 2411 0. 1424 0. 7954 0. 2593
0. 2487 0. 1467 0. 8216 0. 2333
0. 2586 0.1%18 0. 8337 0. 2213
9.2810  0.1636 .._..0.8840 = 0.1709
=1.6057. s * -« O3 = 0. 5248
Mwi 7 - kg/ Jw=0.0352 r-rwz 0. 5248
TEST NO. 24098021
. E
kq/s kq/s kq/s
My & A Mwo ks MWLP 3
T0.1116 T 0. 0688 T 0. 6092 T i w95D
0.1221 0. 0740 0. 8309 1. 0748
0. 1397 0. 0841 0. 8705 0. 73%2
0. 1645 0. 0983 1. 0462 0. 5595
- 0. 1762 0. 1049 1. 1826 0. 4231
0. 1888 0. 1121 1. 2324 0. 3733
0. 2101 0. 1239 1. 2528 0. 3529
0. 2296 0. 1343 1. 2811 0. 3246 -
. 0. 2433 0. 1417 1. 2847 0. 3209
0. 2555 0. 1479 1. 3358 0. 2698
_0.2792 0. 1600 1.2633 0. 3424

F3



STRATHCLYDE

Water First Tests

DATA

PHASE 2 TESTS

TABLE F-3 Liquid Bridging
M. z2.13%8 kg/s * - 0. 0468 Fr. =0 3520
Mwi e e - g Jw e —— rwz e
TEST NO. 25098022 -
kg/s kg/s kg/s.
MA g/ J:\ MWO 9 IMWLP 9
0. 0988 0. 0408 0.0134 2. 1224
‘0. 1094 0. 0665 0. 6497 1. 4861
0.1276 0. 0769 1. 1008 1. 0351
0. 1486 0. o888 1. 3997 0. 7361
0. 1684 0. 0998 1. 5339 0. 6020
0. 1874 0. 1101 1. 6491 0. 4867
0. 2096 0. 1221 1. 6818 0. 4341
0. 2328 0. 1346 1. 6694 0. 4665
0. 2459 0. 1416 1.7157 0. 4201
0. 2399 0. 1482 1. 6739 0. 45623
0. 2732 0. 1351 1.7555 0. 3803
- * - 0.4777
My;= 27972 kg/s X, 00994 Fra, =
TEST NO. 26098023
kg/s kg/s kg/s
MA g/ JA MWO g MWLP g/
—9.0690  ©0.0424 0.0045 = 2.7026
0. 0841 0. 0914 0.0174 2. 6398
0. 1003 0. 0604 1. 1629 1. 5443
0.1186 9. 0709 1. 6284 1. 0788
0. 1448 0. 0857 2. 0429 0. 6543
0. 1579 0. 0927 2.1426 0. 5646
0. 1746 0.1013  2.2488 0. 4583
9.1978 0. 1131 2.3498 0.3%74
0. 2294 0. 1297 2. 4027 0. 2048
0.2531  0.1417 - 2.4481  0.2591
0.2712 Q. 1506 2.4681 Q. 2391

r4



STRATHCLYDE DATA PHASE 2 TESTS
Water First Tests
TABLE F-4 Lliquid Bridging
= 3.3712 kg/s I’ =0.073% Fr. = 0.7407
Mwi = 7 g w ’ Yz
TEST NO. 30098024
f
kg/s kg/s | M kg/s
“7T0. 0952 0.033%9 0. 00%&6 ~ ~ 3. 3656
" 0.07%4 0. 0481 0. 9753 2.3959
0. 1019 0. 0609 1. 7949 1. 8763 -
0. 1465 0. 0853 2. 5431 0. 8281
0. 1709 Q. 0783 2. 8081 0. 5630
0. 1924 0.1092 2. 9497 0.421%
0. 1991 0. 1126 2. 98364 n.387%
.0. 2184 0. 1222 3. 038& 0. 3324
0. 2302 0. 1279 3. 0540 0.3172
0. 2432 0. 1344 3. 0642 0. 30&%
€. 2661 0.1434 3.1223 _  0.2489
z 3.88%8 kg/s * =2 0.0892 = 0. 9841
Mwi 2 g Iy Frwz ik
TEST NO. 30098025
kq/s kq/s kg/s
M,k A Myo o MWLP g
0. 0687 "~ 0.0420 0.0743 3.8119%
0. 0827 0. 0499 1. 5244 2.3614
0. 1320 0.0771 2. 8149 1. 0690
0. 1519 0. 0872 3. 1494 0. 7364
0. 17460 0. 0996 3.274S 0. 6114 |
~ 0. 2042 0.1136 3. 4099 0. 4760
9. 2248 D. 1242 3. 5922 D.2937 |
0. 2297 0. 1263 3. 5484 0.3372
0. 2402 D. 1315 3. 4725 9D.4133
0. 2488 0. 1358 3. 4547 Q. 4292
Q. 2540 0. 1432 3. 3802 0. 5056




STRATHCLYDE DATA

Water First Tests

TABLE F-5 Liquid Bridging

PHASE 2 TESTS

TEST NO. 01108026
kg/s
MA kg/s J; MWO kg/s MNLP g
0. 06986 0. 0428 0. 0%44 4. 5457
0. 0761 0. 0443 1. 1338 3. 4675
0. G910 0. 0531 2. 5102 2.C911
Q. 1315 Q. 0738 3. 3908 1.2106
0. 1490 0. 0854 3. 6632 0. 9380
0. 1743 Q. 0991 3. 3898 1.0118
Q. 1778 0. 1107 3. 9436 Q. 6377
0. 2303 0. 1262 3. 9096 0. 6917
0. 2370 0. 1290 4. 0796 Q. 8217
D.24135 D. 1299 3. 9493 0. 6520
0. 2628 0. 1396 4. 0075 0. 9938

Fé6



STRATHCLYDE

DATA

Air  First Tests

TABLE F-6

PHASE 2 TESTS

Liquid Bridging

Mwisx‘_). 6798 kg/s

' - -
Iy= 0 0153 Fry, = 1. 3774
TEST NO. 10108027
M kg/ J M K /‘hﬂvv kg/
Via 1978 A wo 198 Wiy o 197
0. 1177 0. 0725 0. 0115 0. 6883
0. 1507 0. 0921 0.-1709 0. 5289
0. 1635 0. 1004 0. 2341 0. 4637
0. 1750 0. 1061 0. 2473 0. 4525
0. 1900 0. 1156 0. 2333 0. 4645
0.2213 0.13%0 0. 2449 0. 4353
0.23%1 0.1420 0. 4153 0. 2845
D. 2435 0. 1469 0. 4287 0. 2711
D. 2410 D. 1434 D. 4995 0. 2003
0. 2547 0. 1529 0. 4477 0. 2521
0. 2741 0. 1639 0. 4262 0. 2735
M, ;0. 6998 kg/s ‘[:v"o‘ 0153 Frwz= 1.3774
TEST NO. 13108028
]
kg/s kg/
MA g JA MWO g S]MWLP kg/s
0. 13%4 g70832 77 0.0169 0. £829
0. 1562 0. 0936 0. 0191 0. 6807
0. 1569 0. 0960 0.-1812 0. 5186
0.17%2 0. 1068 0. 3779 0.3219
0. 1941 0.1179 0. 3827 0.3171
0. 2148 0. 1296 0. 4266 0. 2731
0. 2584 0. 1433 Q. 3840 0.3138
0. 2489 0. 1488 0. 44164 0. 2582
D. 2498 0. 1492 D. 4451 0. 2547

F7



STRATHCLYDE

DATA

Air

First Tests

TABLE F-7 Liquid Bridging

PHASE 2 TESTS

- , -— - ‘
My =1- 0549 kg/s I, =0. 0231 Frwz-o. 8643
TEST NO. 16108029

M kg/s .J‘ M kg/s MW kg/s

A A WO LP

0.1198 0. 0738 0.0113 1. 0436

0.1414 0. 0860 0. 4528 0. 6022

0. 1546 0. 0937 0. 4637 0. 5912

0.174% 0. 1034 0. 8975 0. 4574

0. 1866 0. 1120 0. 6112 0. 4437

0. 2049 0.1218 0. 4129 0. 4421

0. 2239 0. 1323 0. &b11 0. 3938

0. 2298 0. 1333 0. 6621 0. 3729

0. 2361 0. 1407 0. 7309 0. 3041

0. 2477 0. 1467 0. 7422 0. 3127

0.2704 0. 1590 0. 7597 0. 2953
Mwi:1.6057 kg/s J;v_-;o, 0352 F,-wz.-.o. 7464
TEST NO. 16108030

kg/s k /s! kg/s

0. 1038 - 0. 0642 . 0.0084 1.9%973
0.117% 0. 0720 0. 5983 1. 0074
0. 1371 0. 0830 0. 9370 0. 6687
0. 1524 0. 0924 1. 0850C 0. 5207
0. 1835 0. 1101 1. 2442 0. 3613
0. 2071 0. 1228 1.2739 0. 3318
0. 2233 0. 1311 1.2757 0. 3300
. 0.2312 0. 1366 1. 1424 0. 44633
| 0.2474 0.14%2 1. 1569 0. 4487
0. 2980 0. 1510 1. 1810 0. 4246
0.2778 0.1610 1. 23%7 0. 3499

F8



STRATHCLYDE

DATA

Air

First Tests

TABLE F-8

Liquid Bridging

PHASE 2 TESTS

. _
M,,; =2. 1358 ka/s I, = 0. 0448 Frwz-o 5252
TEST NO. 17108031
}
kq/s ka/s kg/s
0. 0941 0. 0579 0. 0127 2. 1231
0. 1064 0. 0649 0. 8738 1. 2620
0. 1243 0.07%0 1. 2650 0. 8708
0. 1442 0. 0865 1. 3681 0. 7678
0.1742 0. 1032 1. 5774 0. 3584
0.1932 0.113% 1. 6294 0. 5064
0. 2078 0. 1206 1. 6158 0. 5200
0. 2285 0. 1312 1. 64612 0. 4744
0. 2411 0. 1380 1. 7398 0. 3960
0. 2493 0. 1427 1. 7997 0. 3362
0. 2868 0.1514 1, 7092 0. 4266
= 2. kg/s = =9.
M= 27072 kg Ly = 0.0994 Frw, =0 4777
TEST NO. 17108032
]
kg/s kq/s kq/s
MA 9 JA MW g MW g
LP
™H.0788 Q. 0485 D. 0086 2. 6986
0. 0902 9. 0548 D.9711 1. 7361
0. 1189 Q. 0712 1. 6432 1. 0640
0. 1375 0. 0818 1. 8287 0. 8785
0. 1602 0. 0936 2. 0835 0. 6236
D.1772 0. 1028 2. 0964 0. 6108
0. 1964 0. 1127 2. 2087 0. 4985
0. 2128 0. 1216 2.3539 0. 3532
0. 2353 0. 1331 2.3377 0. 34695
0. 2493 Q. 1401 2.2704 0. 4368
Q.2710  0.1306 _2.2905 0. 4167

F9



STRATHCLYDE DATA PHASE 2 TESTS
Air  First Tests
TABLE F-8 Liquid Bridging
- mere - , _ -
M, =3 3712 kg/s I7,=0.0739 Frwz_ 0. 7407
TEST NO. 2010 8033
}
kq/s ka/s ka/s
0. 0845 0. 0519 0. 0183 3. 3529
0. 0901 0. 0549 1. 0307 2. 3405
0. 1046 0. 0624 1. 8936 1. 4776
0. 1239 0. 0734 2. 2982 1. 0730
0. 1472 0. 0861 2. 37464 0. 9748
0.17153 0. 0984 2. 7653 0. &058
0. 1931 D. 1094 2. 7611 0. 6101
0.2108 0. 1184 2. 7995 0. 5717
0. 2246 0. 1256 2. 9788 0. 3924
0. 2429 9. 1354 2. B300 D.5411
0. 2328 . 0.1392 2. 9165 0. 4547
M .=3.88%5€ kg/s I =0 0852 Fr, =0.9841
Wi wz .
TEST NO. 20108034
kg/s * ka/s kq/s
MA g Jy Mwo g MWLP g
0. 0792 0. 04764 0. 7319 ' 3.1%44
0. 0839 0. 0%06 1. 6082 2. 2776
- 0.1140 0. 067% 2. 3125 1.3733
0. 1268 0. 0743 2. 6599 1. 2259
0.1473 0. 0850 2. 9836 0. 9022
0. 14653 0. 0945 3.0134 0. 8725
0. 1899 0. 1048 3. 2107 0. 6751
0. 2096 0. 1166 3. 2923 0. 5935
0.2217 0. 1223 3. 3285 0. 5573
0. 2423 0. 1322 3. 3470 0. 5389
0. 2630 0. 1419 3.4292 0. 4566

Fl0



STRATHCLYDE

DATA

Air.  First

Tests

Fll

PHASE 2 TESTS

TABLE F-10 Liquid Bridging

. 2 4. . S = =1.
Mwl 6019 k.g/ “w 0. 10,09 Frwz 1 379.?
TEST NO. 21108035
kg/s kg/s\ M kg/s
MA 9 J:\ MWO |
. _LP
0. 0394 0. 0364 0. 0790 4. %5223
Q. 0645 Q. 0392 1. 4772 3. 1241
0. 0799 0. 0480 2. 2348 2. 34645
0. 0960 0.0571 2. 7569 1. 8444
0. 1143 0. 04670 3. 1331 1. 4482
0. 1334 0.0771 3. 3656 1. 2357
0.1707 0. 0963 3. 6500 0.9513
0. 1977 0. 1089 3. 9436 0. 6577
0. 2197 0.1192 4. 0452 0. 5521
0. 2287 0.123% 4. 0857 0. 51%6
0. 2505 0. 1393 4.11%4 0. 4859
MASO‘MGT * = 00866
A
TEST NO. 27108036
. :
kg/s kg/s kg/s
M, M, koM, o5y | Fr,
0.6590  0.0202  0.6388 ~ 0.0145  1.3374
0.7410 0. 0201 D. 7209 5. 01627 T T 1.3249
1. 0549 0. 4373 0. 6176 0. 0231 1. 0772
1. 6057 0. 9945 0.6111 0. 03%2 0. 5248
2.13%8 1. 6491 0. 4867 0. 0448 0. 2973
2. 7072 2. 0521 Q. 6331 0.0%94 D. 4777
3.3712 2. %622 0. 8089 0. 0739 0. 7407
3. 8998 2. 9023 0. 9834 0. 0832 0. 9841
4. 6013 3. 65183 0. 9498 Q. 1009 1. 3799




APPENDIX G

PENETRATION CHARACTERISTICS

FOR_PHASE 1 DATA

Gl
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APPENDIX H

PENETRATLON'CHARACTERISTICS

FOR PHASE 2 DATA
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Fig H-1

Penetration Characteristics From Air-Water Tests
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APPENDIX I

COMPARISON BETWEEN PARTIAL PENETRATION DATA

FOR_PHASE 1 TESTS AND EQUATION (4.4)
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APPENDIX J

COMPARISON OF "WATER-FIRST"

WITH "AIR-FIRST" TEST DATA

(Phase 2 Tests)
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APPENDIX I,
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TO WALLIS PARAMETERS
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APPENDIX I,

" CONVERSION OF THEORETICAL WORK

TO WALLIS PARAMETERS

The results obtained in the present experimental

programme are presented in terms of Wallis parameters,

defined as

M £ Lk 0
gr = = | L]’z B

(L-1)
L BS f; ‘gB( A - 2

&

and

%
. 2 L
J; = Bngé [ gB ( fL —q fé)] @ Jg\/'a—‘% (;%; (L-2)

where
Qm = volume flowrate per unit width
jg = superficial gas velocity

The different theoretical equation used for comparison

with the present data are dealt with in turn.

L.1 SCRUTT'S THEORY

Schutt's analysis yielded equations (2.1) through

(2.9) to define the flooding conditions. The equations

are very complicated in their present form; a major

difficulty being the finding of an expression for Ny .-

Schutt presented graphs to help in estimating n and

tr
these graphs were used to construct Figure L-1, which



L3

shows the variation of ntr with Re.

Figure L-1 that n__ can be approximated to unity for

It can be seen in

values of Re exceeding 3500 for tube diameters of 1%"
and 3". Most of the present data have the value of
inlet water Reynolds number greater than 3500, also the
hydfaulic diameter = 2". Taking n = 1 and

tr
ignoring & in comparison with I/2, reduces Equation (2.1)

Ug(%)% - (2%, - 2. 2tane. ¢ )%

4UL2 - Re 2tane . - 1 (L-3)
where 2
o [1 + exp (élg%)] + 1 (L-4)
[1 - exp (8£2)]
4Q
Re = ——-Qﬂ——- (L—'S)

 From Equations (L-1) and (L-5%), -

4—@7 (L-6)

From Equations (L-6) and (2.6)

& = 13.a2s. -5 S 0.375 0.375 (L=7)
x 10 X (%7'“6%) Ji

From Equations (2.8) and (L-7),

_ ~5,2(4S 0.75 _,0.75
UL =35 (3.425 x 107)% (55~ [5E) ¥ (L-8)
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Since the film thickness is small compared to the gap

size, the gas velocity Ug can be taken as equal to the

superfacial velocity., jg, i.e.,

j (L-9)
g g

From (L-2) and (L-9), we get

B
Ug(-j;’:) = ax-yem (L-10)

The following values were used for the calculations

0.686 m

B (L-11)
S = 0.0254 m (L-12)
p = 0.0011 Kg/m.s (L-13)
’f = 1000 Kg/m> (L-14)
/g = 1.25 Kg/m> (L-15)
Dy = 2S5 = 0.0508 m (L-16)

From Equations (L-11) to (L-15), together with Equation
(L-B) [

e

e T 25,20 4S .75 _,0.75
Yo ST (3.425 x 107°) (—;——\/'g'é? I*

(L-17)

OR

L 0.75
= 10. * e -
Jgi 92 JL (L-18)



LS

Similarly .

-4
gD 1.55 x 10
_2_7 = (L-19)
4UL J£0.75

Substituting Equations (L-11) through (L-14) into

(L-6) gives
Re = 2.396 x 10 ° 3t (L-20)
OR
8 3.34 x 10°°
Re = 3% (L-21)
L
Equation

(L-7) can be made dimensionless by dividing

both sides of the equation by DH' This gives

S 0.07 g*0-375 (L-22)
- I

)

Substituting Equation (L-22) into (L-4) leads to

0.37542
*
o [1 + exp (1.763 qL. ﬂ + 1 (L-23)

[1 - exp (1.763 527373

and from (L-13). (L-14) and (2.9)

Vtané = 0.1581

2 tane = 0.05

(L-24)

(L425)



Substituting Equations (L-18), (L-19), (L-21} , (L-25)

and (L-10) into (L-3) and arranging gives

O
Q *
i

|
0.063 [(4.64 320-7°> _ 520-5 ) ——]

(L-26)

Equation (L-26) is compared with the experimental data

in Figure 5.10.

L.2 GROLMES et al

The following equation was derived by Grolmes et al

(7) to describe flooding conditions:

R ag 4
voo= 1.s(—Z)*(22) (L-27)
¢ G5t -
where
f2¢, = 0.006 + 2 x 106 82 (for air/water) (L-28)
3 4 Q .1/3
. L
and > - [—725——41] (L-29)
Equation- (L-29) can be expressed as
1/3
(3 M 1/3
d —(m) Re (L-30)



L7

From Equation (L-10) and (L-26)

3y = 115 (&) ==

| (L-31)
V 29

Dividing both sides of Equation (L-30) by B gives

(5) _(._3J“2 ;/3

_ 1/3
B sg po8°

Re (L-32)

From (L-11) to (L-14) and (L-20) into (L-30) and (L-32)

& = 0.0028 JL1/3 (L-33)
(-%f)= 0.0041 J£1/3 (L-34)

From Equations (L-28), (L-33) and (L-34) into (L-31),

0.074 Jx1/8
J* = L

-

d  (0.006 + 15.68 J£2/3#

(L-35)

Equation (L-35) is compared with the experimental data

in Figure 5.11.

L-3 IMURA et al

Equation (2.65) was derived by Imura et al (16) for

counter-current two-phase flow in an annulus. For a

planar test section, gEJguation (2.65) is reduced to:



A A ERT
s L LB ) - (R 2
L L
where
A = BS
_ 1)
Ag = BS(lﬁf S )
A = BS (S)
For % <1
A ~ A
g
and
2=
AL (g)

Equations (L-1) and (L-2) can be written as

L_ . _1
L 4 QEET_

and

o
Q *
u

S _ .
g

(L-36)

(L-37)
(L-38)

(L-39)

(L-40)

(L-41)

18

(L-42)

(L-43)

Substituting Equations (L-40) to (L-43) into Equation

(L-36) gives:



I* Ly A - AT
3%(-—’:%) +(—/%)(—§—) = Jli /ngS%g)_ (L-44)

The . film thickness was obtained from the following

equations:
2-1/3
3 p
% = 0.369|—== . Re1/3 Re > 400 (L-45)
£y
3/{’3 1/3 1,4
2 =|5&| - re Re £ 400 (L-46)
g
where .
M r3
Re = E,It = Y. '\/gB -JE (L-47)
. L

Substituting Equations (L-11) to (L-14) into Equations

(L-45) to (L-47) and dividing Equations (L-45) and (L-46)

gives:
2 - 0.1106 g*1/3 J* £0.0067 (L-48)
s L I .

and
@ _ g.2553 gxl/2 J* > 0.0067 (L-49)
S L L .

LS

From Thermodynamics and Transport Properties of Fluids (40)
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-5
/é = 1.8 x 10 Kg/m.s for air at temperature

e = 20% (L-50)

Substituting Equations (L-11) to (L-16) and (L-50)

together with a value for o= 0.072 N/m into (2.66) gives:

& = 1.413 (L-51)

Substituting Equations (L-11) to (L-15) together with

(L-48) or (L-49) into (L-44) and arranging, then

for J* £ 0.0067

0.0733 2/3
J* = e—2ei33 g b -
g _1/6 0.3197 JL (L-52)
L

and for JE > 0.0067

1
J* = 9;%&&; - -0.1385 J.* (L-53)
*
JL

Equations (L-52) and (L-53) were used to plot the curve

shown in Figure 5.12.
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APPENDIX M

MEASUREMENTS OF THE

WATERFALL TRAJECTORIES

M1
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APPENDIX N

FLOW OVER THE BRINK INTO THE TEST SECTION

N1



N2

APPENDIX N

FLOW OVER THE BRINK INTO THE TEST SECTION

As the water in the inlet pipe approaches the
entrance to the test section, the hydrostatic head has
to adjust such. that, after the water flows over the
brink, the pressure on the underside of the jet
becomes uniform and atmospheric. This is a complex
problem which has been studied extensively by civil
engineers and normally requires numerical integration
of the fluid flow equations for the water jet. This
integration has been done by Markland (37), who studied
the ideal problem of flow of a stream initially with
uniform velocity, u, over the brink. The velocity,
pressure and energy profiles at three stations (upstream,
brink ;hd downstream), are indicated in Figure N-1. It
can be seen that as the water at section 1 approaches

the brink at section 2, it accelerates and thus, by

continuity, the surface height decreases. At section 1,

the velocity profile is flat and the pressure and energy
increase linearly from top to bottom of the water jet.
At section 2, the pressure at the bottom of the channel
has dropped to atmospheric, leaving a pressure maximum
inside the water jet, and the velocity distribution
increases in a non-linear manner from top to bottom,
although the energy distribution is still linear. At
section 3, the velocity distribution is again flat and

the pressure uniformly atmospheric.



N3

The effect of the hydrostatic head at section 1
therefore is to accelerate the fluid at section 2.
There is, however, a residual pressure potential

which can accelerate the water further.

In the actual experiments, the flow patterns were
more complex. The water was fed to the side arms down

a vertical pipe resulting in an undulating surface,

initially as shown in Figure N-2. The actual measure-

ments are shown in Tables 1 - 5 in this Appendix. As
it can be seen from Figure N-2, the decrease in water
depth (and hence the increase in Froude number) is
apparent as the brink is approached. Because of the
complexity of the real flow and the non-linear aspects

of the above theory, a simplified analysis was made to
estimate the effective water jet velocity just after

the brink, based on the measured total mass flow, M

’

of the inlet water and the measured water depth, sz,

at section 2.

At section 2, the energy varies linearly from ug

2
to (u2 + 2gH_,) and the square of the velocity varies

in a non-linear manner between these two limits. Thus

the mean energy at section2, E,. is given by :

i
N
"
1=}
NN
+
Q
T

w2 (N-1)

2 .
The term us will be somewhat less than the corresponding

mean velocity term Gg, but this will be taken care of in



N4

a conversion factor k2. Thus, writing an energy balance

on the fluid between section 2 and section 3 (section 3
close to section 2), where the velocity uy is assumed

uniform at constant atmospheric pressure and channel height

H gives:

w3’

c
N
a5
e
N
—
~
o
N
+
Q
€I
z
N
(W}
|
£
I
’
e
N

3 Hy3-Yj (N-2)

=
o
I
e
m

2 By 3 Hy3 (N-3)

-2 2 =2
k" u;, + g H, (N-4)

o
w
i

giving

Eg = x4 G? [ 1+ ——2—1]

where

Fr = u22 and k2 ;( 2 )

(N-5)
Y2 gH

It is also possible to estimate the channel height,



N5

_ u2 sz _ uZ,HWQ
WT T T kw1 T
3 2 [ kzFr ]
w2
= HW2 ( 6)
= 2 N—
X [1 + —3— ]%
k"Fr .
w2
Thus,
523 3 . 3/2
Fr .3 = GH = kFr 2 [1 + ] (N-7)
w3 ' k Frw2

Using the nomenclature of the main

part of the thesis,

the effective uj and Frwi' just after the brink is

given by:
' M /2 -k
u, = k [-—lL———- ][1 + ___L__]
i ,‘% szs kzFrwz
and
3 3/2
= 1
Frwi = k Frwz [ 1 + -—2—-———-—]
.k Frwz

(6.14)a

(6.14)b

From the experimental data, k was found to be 0.819.
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Fig N-1 REPRESENTATION OF IDEALISED FLOW OVER A BRINK.
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APPENDIX O

POSITION OF WATERFALLS AT BCTTOM OF

TEST SECTION FOR CASE OF CONSTANT AP

(APPROXIMATE SOLUTION)
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APPENDIX P

POSITION OF WATERFALLS AT

BOTTOM OF TEST SECTION FOR THE

CASE OF AIR FOLLOWING WATER FALLS

Pl
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APPENDIX Q

POSITION OF WATERFALLS AT BOTTOM OF

TEST SECTION FOR CASE OF CONSTANT AP

(EXACT SOLUTION)
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APPENDIX R

POSITION OF WATERFALLS AT

BOTTOM OF TEST SECTION FOR THE

CASE OF LINEAR VARYING JET - (EO =

do)
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APPENDIX S

EVALUATION OF AIR VELOCITY AT CHOKING CONDITION

S1



S2

APPENDIX S

EVALUATION OF ATIR VELOCITY AT CHOKING CONDITION

At choking:
w = o M g 1
A /XS(B—2xb) /%S u]?_ . B*¥(1 - ’]b
(s-1)
2X
where 7b = B‘P
Now
M, 2 -
K = [__A_] . [ /ow]Fr .1 from Equation (6.20)
- —_— wi .
My Sa
with
M
2 _ W 2/3
u = —
i gHw Fr [25 /%ui ] g Frwi
1/3
M 2
W 1
x (74 x i1 -2
w
hence from (S-1)
M, K (7{;)% Fr %
u = W Wi___ X 2 X
A /ZS 2/3 M 2 1/3




S3

1
1 (s-3)
B*(1 - 1b)
Now
2
Fr = [ Mw ] _1_
wb /%SB gB
giving
3
M 2 B Fr
(=%l - — (S-4)
W
and from (6.57)
Frwé/3 = 25233 (s-5)
B*Fr |
wi

hence from (S-3)

]

1 £, 1 .
up 2 [55%5]4[ - -l7b] [ fi] [F‘iii]6 [5575] (s-6)

For this work

JEE = [9.81 x 0.69

2.602 m/s

£ = 1000 kg/m
£ = 1.308 kg/m’
Fr, = 2.2



S4
hence,

o s 1 1
up F 97[B—K*/-§] [T——_ﬁ;][m]

A typical value of B*/2 during the tests was 20 and,

from Figure 6.11, this gives corresponding values of

X
(g555) = 0.0085 ana ( z305) = 0.84,

hence

* (97)(0.0085) % (—=1=) (&) = 2.8 mss

Ua



APPENDIX T

TABLES OF THE COLLAPSE CONDITIONS

T1



7.372
8.000
10.000
15.000
20.000
30.000
- 40.000
50.000
60.000
70.000
80.000
90.000

100.000

TABLE T-1

2max

0.000000
0.003898
0.032952
0.133471
0.242921
0.457294
0.657205
0.842856
1.016242
1.179249
1.333420
1.479990

1.619945

COLLAPSE CONDITIONS FOR CASE (i)

WITH NO JET THICKNESS ALLOWANCE

7bmax

1.000000
0.982952
0.943902
0.874346
0.828267
0.770663
0.734846
0.710216
0.691898
0.677613
0.665840
0.656359

0.648078



7.372

8.000

9.000
10.000
13.000
17.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000

100.000

TABLE T-2

COLLAPSE CONDITIONS FOR CASE (ii)

WITH NO JET THICKNESS ALLOWANCE

K2max

0.000000
0.000026
0.000384
0.001352
0.001352
0.026001
0.043413
0.114892
0.194533
0.275559
0.355582
0.433535
0.509475
0.583195

0.654754

_Zbln_e“zz_

1.000000
0.970454
0.935811
0.904189
0.904188
0.769726
0.735120
0.659730
0.614467
0.583909
0.561068
0.543387
0.529145
0.517414

0.507423



TABLE T-3

COLLAPSE CONDITIONS FOR CASE (ii) - (APPROX.)

WITH NO JET THICKNESS ALLOWANCE

=

Kl K2max 7bmax

7.843 0.000000 1.000000
10.000 0.001588 0.905736
20.000 0.048174 0.738083
30.000 0.124773 0.663810
40.000 0.208824 0.619534
50.000 0.293631 0.589319
60.000 0.376962 0.567015
70.000 0.458052 0.549681
80.000 0.536689 0.535708
90.000 0.612887 0.524134
100.000 0.686742 0.514343

T4



7.843
10.00
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000

100.000

200.000

TABLE T-4

COLLAPSE CONDITIONS FOR CASE (iii)*

do

K2rﬁax

0.000000
0.002322
0.016635
0.031211
0.044757
0.057307
0.069006
0.079989
0.090365
0.100220
0.109623

0.187345

WITH NO JET THICKNESS ALLOWANCE

7bmax

1.000000
0.950757
0.844161
0.792908
0.761064
0.739940
0.723621
0.710894
0.700765
0.692391
0.685671

0.646555

TS



8.000

9.000
10.000
13.000
17.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000

100.000

TABLE T-5

2max

0.000000
0.000088
0.000234
0.006092
0.02203

0.038545
0.108363
0.187348
0.268125
0.348088
0.426266
0.502304
0.576150

0.647846

COLLAPSE CONDITIONS FOR CASE (ii)

WITH JET THICKNESS ALLOWANCE

1bmax

0.990688
0.947704
0.890225
0.839794
0.774580
0.738644
0.661798
0.616124
0.584632
0.561984
0.544112
0.529849
0.517877

0.507761



10.
20.
30.
40.
50.
60.
70.
80.
90.

100.

000
000
000
000
000
000
000
000
000
000

TABLE T-=6

COLLPASE CONDITIONS FOR CASE (iii)*

WITH: JET THICKNESS ALLOWANCE

K2max

0.001605
0.015357
0.029821
0.043355
0.055923
0.067651
0.078666
0.089075
0.098962

0.108395

7 bmax

0.956803
0.848476
0.794924
0.763324
0.741890
0.725009
0.711616
0.701497
0.6931489

0.685783

T7



10.00

20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000

100.000

TABLE T-7

COLLAPSE CONDITIONS FOR CASE (iii)*

WITH JET THICKNESS ALLCWANCE

E

K2max

0.001585
0.014015
0.026930
0.038965
0.050121
0

.060521

o

.070283

Qo

.079504
0.088260

0.096613

7bmax

0.963854
0.853569
0.801677
0.769671
0.746839
0.731286
0.718042
0.707816
0.699121

0.692208

T8



APPENDIX U

e 2

ALLOWANQE_FOR'EEE THICKNESS OF THE WATERFALLS
== AL ARMALLS

Ul



U2

APPENDIX U

ALLOWANCE FOR THE THICKNESS OF THE WATERFALLS

The waterfall thickness has two effects, (a) it

H .
increases Zb by —%i, (b) it decreases the air passage
H ,
width by H' = E;g%r— or in dimensionless form, by
W
o _ [ 2gHw 1 1
w - u2 cos @ :
' i

From Equations (6.3) and (6.6):

2 i %4 v
He o= [-S5-] 2g Pazy2 1
u’ v z : apd 2
1 ul[(l+ 2)“(l+/oHu?° ) ]
uy. ww i
, * - * =
Now consider the wvalue of Hw Hwb where 2z zb

(where the correction is important) and for the simplicity
assume there that cos9 ~ 1

—

%*
gwb

20 __Pwi uy _ 2 1
oui

= . (U-1)
1
(Zgzb +ui]¥§ }E‘rwi (1 + zb) Y

This correction was applied to the whole of the waterfall.

This in the previous calculations Zb was replaced by

: B BX'
Zb and 5 by 3 where



and

v}

*

[\%]

N

WErola

wi

Fr .
wi

(1 + Zb)ﬁ

Fr
wi

U3

(U-2)

(U-3)



