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boIJ cý4 The ncn-14-near typer, - partial-differential equations -overning 
lonF-wave propagation in two spatial dimensions are postulated. Through 

the met. -od of c", aracteris tics, specific conditions are developed for 
inte6rating the Iong-wave equations. By introducing finite difference 

approximations to the characteristic conditions, an explicit numerical 

scheme is developed as an alLernative to more standard finite difference 

zechniques. The mo-4ifications requi-red at the open and closed boundary 

points are cj' particular imLortance iýnd le-ad to a 4-5 0 characteriztic 
numerical scheme. 

A practical assessment of stability and consistency criteria 

asaociated wi: h the n=erical scheme is shown to be important for the 

! Fucceszful siculaticn of free and forced tidal oscillations. : esto 

with motion prescribed by analytical solutions verify the accuracy of 

the integration procedure and lead to the correct form of interpolation 

coefficients. A met-nod of subdivisions is developed for improving the 

simulation of free wave oscillation in a closed basin of tra. cezoidal 

zrofile. Analytical solutions for steady and unsteady wind surges are 

used to examine the effect of introducing wind stress terms into the 

numerical scheme. 

A practical evaluation of the scheme is accomplished by simuic-. t ing 
tidal propagation in the Clyae sea "ea. 'Tidal motion in this region is 

hiEhliShted by the existence of an MphidrOmic point. Data for the 

model, provided ty a tidal survey, confirm certain vFlues of range and 

phase given in the Tide Tables (1979). 

No --eparate surge events ý nulated in the Clyde sea area. The T, re sim 

relative size of each surge component znd the interaction between tide 

and surge are established. ! he Orms of the surges and the metecro- 

logical conditions required for their yrcpagation into the Clyde sea 

area are alzo assessed. Finally, a west coast shelf model is deve. 1oped 

to overcome the problem of specifying the external 3urge as a boundary 

condition. 
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INTRC, DUCTICN 

With the advance of technological developments over the years, 

the im-oact of civil constructions on the immediate environment has 

become greater. Consecuently, if these constructions have adverse 

effects, then usually it is impractical to attempt suitable alterations. 

'The credibility of n. w propz)sals is therefore strongly dependent on being 

able to determine their effects with greater advance precision than was 

previously required. An important part of the design process may be the 

assessment of environmental impact using numerical models as a basis. 

in this context the numerical model can only provide important inform- 

ation if a satisfactory prior verification of the model's accuracy has 

been established. 

Within the framework of hydraulic engineering, the construction 

of the Thames Barrier as a storm surge defence exemplifies the inter- 

action of large projects. The development of numerical models as a 

research tool, such as that used by I-Rossiter and Lennon (1965) was 

important in determining a favourable location for the Barrier. To a 

large extent the u-nderlying reasons for constructing the Thames 1)arrier 

arise from the increased attention given to the measurement and cal- 

culation of tidal movements in and around the British Isles. In fact 

most hydraulic engineering problems in maritime waters will require an 

assessment of the basic tidal motion in the surrounding waters. By 

considering the ti-Jal motion as governed by the basic hydrodynamic 

ecuations, the foundation is laid for a more detailed investigation of 

ime problems. In addition to determining the basic any cther marit-L 

dynamics of tidal motion within the system concerned, an inclusion of 

the subsidiary natural returbations and configuration effects which 

interact with the basic tide may have to be considered if they are not 

trivial. It may also be necessary to consider the interactive effect 

of the prozosed construction on the basic tide if this is thought to 

be signii . icant. These steps may be regarded as sufficient grcunds for 

develozing the numerical model. In seeking a numerical solution to 

the Ilonj wave' equaticns for tidal motion thrcugh repeated tests which 

are related to s-pecific numericall aspects oj- the model, such as cali- 

bration the credibility of the model can be established. Once obtained, 

the numerical model can be applied to other prcblems in hydraulic 
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engineering. Therefore the baS4 c hypothesis is that if the model 

reproduces the features of the prototype, changes in the model should 

predict changes to be made in the prototype providing these changes 

are not too drastic. This follows the philosophy of Vernon Harcourt 

(1889) on physical estuary model'ing. 

The present analysis is concerned mainly with the f1mda- 

mental determination of one of the problems in hydraulic research. 
This is the means by which a storm surge is propagated and its inter- 

action with the tidal regime. The study area namely the Firth of Clyde 

has in the past been subject to severe storm surges and yet no apparent 

detailed investigation of the susceptibility of the area to major storm 

surges appears to have been conducted. The simulation of such surge 

events in this area has most certainly not been attempted with the 

resolution undertaken in this research. Previous research concerning 

"owing the British Isles has instead been focLssed on the North Sea foll 

the disasterous flood of 1953 which has been detailed by Rossiter (1954). 

The most serious hazard produced by meteorological conditions 

of storm intensity in coastal low lands is the flooding of coastal 

regions by sea water through the action of a storm surge. Any increased 

understanding of this phenomena ahould contribute to the implementation 

of necessary coastal protection to safeguard life and property. The 

ultimate objective of any surge research should be to make predictions 

with the accuracy required for advanced warning time needed for 

effective disaster protection. Some protect-'ve actions cost very little 

relative to their protection value. For example it my be possible to 

protect some valuable but exposed property by providing emergency water 

tight bulkheads that can be installed quickly when required. In a case 

where the safeguarding of human life is concerned, any evacuation scheme 

or breakwater ccnstruction would be fully justified. 

The general system of long wave equations that represent storm 

surges has been treated numerically with success for the past twenty- 

five years. In various moues these systems may model one, two or 

three spatial dimensions but are usually st-ted in terms of vertically 

integrated differential equations and extend in complexity to irclude 

the effect of the eartn's rotation and field accelerations. ýIhese 

equations also describethe ma-icrity of hydraulic problems wnen zresented 
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in sim-cle or more complex form and comprise to form the basis for 

a numerical model. ýýhe obvious attraction of applying such a model 
to a specific hydraulic -croblem is that it is able to provide off- 

shore information. This feature is particularlY important if the 

situation in the offshore area is undetermined. 4'. 1ternatively, such 
deficiencies may be overcome by employing a physical model and the 

use of a numerical model in the present research is not intended to 

undermine the physical model. Instead the numerical model should be 

seen not merely as a replacement of the physical model but rather as 

a complementary maans of modelllin, 3 and as a develotment into some 

areas inaccessible to physical =cdellin. S.. Nevertheless the physical 

model is still a valuable engineering too! which in 'the hands of a 

skilled operator will continue to make substantial contribut_40. nS to 

the solution of complex hydraulic problems. However for many appli- 

cations of --odelling, especially t. -ose involving wind stresses, 

salinity variations, effects of the Coriolis acceleration and such 
influences, the physical model is not a feasible approach and the 

mathematical model is therefore used. 

Attempts have been made with promising results to develop a 

long wave numerical model based on the 'x-t' mýthod of characteristics 

in the Department of Civil Engineering, University of Strathclyde. 

This method, in comparison to other numerical schemes has the advant- 

age that computations can be performed withoutthe use of a staggered 

grid such that elevation and velocities are calculated at the same 

grid points. Townson (1974) has extended its application to Ix-y-t' 

space for uniformly variable depth configurations and at a later date, 

Matsoukis (1980) succeeded in making the scheme operational for an 

irregular sea bottom. in establishing that the numerical scheme 

correctly integrated the partial differential equations, 11ýatzcukis 

also showed that a linear interpolation scheme was most compatible 

with the characteristic equationE. it was at a later stage that 

hStsoukis published his results and so to some extent his research and 

the present analysis have similar obý-ectives. The area of overlap is 

the verification of the accuracy of the numerical so , . eme within which 

the present research is more concerned with the development of the 

boundary conditions. In applying the numerical scheme to simulate 

tidal motion in 'x-t' ýimensionsusjng sim-cle channels in Ix-y-t' space, 



some important conclusions were drawm concerning the correct form of 
boundary interpolation. These simulations have proved useful as a 

means of refining the numerical scheme. For t. nis reason, the 

analytical investigaticns are presented as an integral par-. of the 

j, resent research. 

Ensuring that as far as possible, any numerical discrer- 

ancies have been eliminated and th. at the limitations of the numerical 

scheme have been identified is vitally important in establishing the 

accuracy of the model. Otherwise, as a result, the wrong conclusions 

would be made regarding the nature of the tide ý_nd surge processes. 

. Vith this in mind, t'-Ie investigation oý the numerical aspects of the 

method of characteristics has somewhat d. -minated this research in 

relation to an examination of the physical fe_ýtures of tides and surges 
in the Firth of Clyde. Such considerations are in keeping with Abbot ,s 

opinion (1976) regarding the need for further investigation into the 

modelling process. it is this theme in addition to the study of the 

natural tide and surge -processes that have determined the direction 

and formed the content of the Fresent research. 
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CHaTER 1 

THE BASIC, PARTIAL - DIFFERENTIAL LCeUATIONS 
FOR LONG - PERIOD GRAVITY WAVES 

1.1 INTRODUCTICN 

This chapter reviews the classical derivation of the partial 
differential equations for the non-steady motion of long waves as 
detailed by Lamb (1932), Stoker (1957), Dronkers (1964) and many others. 
Such wave motion forms the basis of tidal movements and are produced 
by gravitational forces. In comparison with these forces, the effects 
associated with the viscous nature of the fluid are of secondary 
importance except in the immediate vicinity of solid boundaries. 
Consequently, the equations describing tidal propagation are derived 
from the Buler equations of ideal fluid flow rather than from the more 

general Navier-Stokes equations. However the effects of viscosity are 
introduced into theequations of motion, and special attention is given 
to the engineering practice of using empirical values. The method of 
deriving the 'long wave' equations is based upon the vertical inte- 

gration of the equation of motion and the continuity equation for an 
incompressible fluid in Bulerian co-ordinates. 

1.2 BASIC SýUATICKS 

The basis of this research is the fluid-flow equations rep- 

resenting velocities and pressures relative to a fixed co-ordinate 

system. These equations are therefore in the Eulerian form. The 

Cartesian axes x and ý are taken counterclockwise in a horizontal plane 

of the undisturbed water surface, with the z-axis vertically upward. 

The components of velocity are u, v and w which are parallel to the co- 

ordinate axis at the point (x, y, z). For nonviscous flow the dynamic 

equations may be written 
Lu- 

4- 11 
L-4 

., 
Lu- ýLt ý 

LV 

ýt 
+ 14 

LV- 
-4. v 

LV 

ý 
-1i -. w 

ý-' 
+v 

ý-' 
Li = 

where,, o is the density of the fluid, r is the pressure on an element 
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and X, YqZ are the components of the external forces per unit mass, 
These forces comprise of the forces generated by the rotation of the 

earth, the tide generating forces and the gravity force in the z- 
direction. 

The left Imand side of each of these equations of motion 
represents the total derivative (defined by the operator 

I) 
c- the I-t I 

component velocity experienced by a particular fluid particle . The 
total rate of increase of the components of particle acceleration can 
be attributed to two separate effects 

a) A rate of change which is independent of the state of 
motion of the particle and is defined by the operator '6 t 

b) A rate of change which accounts for field gradients in the 
property of the particle at a given time. The effect is 
termed 'convective' and defined by the operator Lt *v 1+ j 'a'-1 

To complete the description of ideal fluid flow, the continuity 
equation for an incompressible fluid takes the following form 

ý-V 
. 4.0 (1.4) 

1-3 EqUATIONS FOR LONG-PERIOD WAVE MOTION 
The ccLrtesian co-ordinate system is taken in the horizontal 

plane of the undisturbed water surface. The distance between tbiB 
reference Plane and the bottom is specified by H and the distance 
between this reference plane and the water surface at a specific time is 

given by ý 

Long wave motion in general implies a wave motion in a depth 

which is small compared with the wavelength (HIL <1110) and to some 

extent the wave amplitude is small compared to the len, #h ( YLIL -C 11 400). 
Forced tidal response, surge propagation and seiche action may all be 

considered as long wave phenomena. For such waves, the theoretical 

der-I. vation neglects the vertical acceleration of the fluid particles 

since these accelerations are very small with respect to the acceleration 

of the gravity field. Also, the velocities of the water particles in 

the z-direction may be neglected in dealing with long waves. Thus, all 

terms containing Li in equations(l. 1), (1.2) and (1-3) are omitted. 

Since the effects of the vertical acceleration and velocity 
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may be neglected, equation (1-3) may be written as 

7- 

In the vertical direction the external forces Z are the gravity force, 

the component of the forces induced by the earth's rotation and the tide 

generating forces. The latter two are very small compared to gravity 
and so can be neglected in the analysis giving Z= -9. It is assumed 
that the density is uniform and consequently the pressure is assumed to 
be hydrostatic and a linear function of depth, as follows 

p (7-) = 
/0 j (rt -Z) -4- p. 

where p, is the atmospheric pressure. In tidal computations, atmos- 

Pheric pressure is usually assumed to remain constant over the problem 

area however pressure variations are important in the generation of 

storm surges. The derivatives of pressure in the horizontal directions 

now become a function of water level and atmospheric pressure, 

LrL 
6x 

It has been shown by Hansen (1956) that the vertically averaged 

velocity components in a horizontal plane of the fluid can be defined 

according by 
n_ 

U (1.9) 
N rL) 

V= 
(H 

I ri. 
V. A7 (1.10) 

H 
As mentioned already in section 1.2, the horizontal components 

of the external forces per unit mass namelav)(and Y include the effects 

of the earth's rotation and the tide generating forces. Numerical 

computations and estimates based upon theoretical considerations have 

shown that the tide generating forces can generally be omitted from 

actual computations. Consequently the only external force requiring 

consideration is that of the earth's rotation. The Coriolis acceler- 

ation components, and the associated inertia forces are induced by the 
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rotation of the earth with angular velocity w and therefore depend on 
the latitude y of the body of fluid. With the co-ordinate system as 
previously defined, the x-axis can be considered eastwards and the 

y-axis northwards. The inertia forces in the positive >c and t directions 

are /o. f2. V and -p- JQ. U respectively where R= 2-. w. s't%4, , When these forces are 
integrated with respect to z and divided by the total depth (H+q )9 the 
final form can be equated to the external forces as follows 

Z. V. W. Sir, (p (1.11) 

y=-z- LL -w. Sm. ky 
These are the forces on a unit mass of the fluid, 

The dynamic equations (1.1) and (1.2) are integrated with respect 
to Z from the bed to the surface of the fluid, and divided by the total 
depth ( H+rL ). By deleting the vertical velocity terms and introducing 
the equations (1-7) to (1.12), the integrated dynamic equations for a 
unit mass of fluid become 

LL ++V Uk 

)t ++v I-V 
ýx 

Up to this point in the derivation, an inviscid fluid has been 

considered. However expressions for the viscous shear-stress representing 

effects of wind at the surface and friction at the bottom can be obtained 
by examining the Navier - Stokes equations for turbulent flow. Such 

expressions can then be introduced into equations (1-13) and (1.14). 

The inclusion of horizontal friction forces strictly implies 

consideration of viscous turbulent flow and the associated concepts of 

'momentum exchange'and 'eddy viscosity'. The friction forces in the 

negative x and y directions can be expressed in terms of the local fluid 

velocity components u. and v. These forces can be integrated throughout 

the depth and divided by the total depth (H +q_) to produce the following 

terms 

Lu 
ä X" j%j H'* lý L. 

17- 
j9 
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jýV , 
£v ýe[ ýLV 1 

The velocities LL and V in these equations are depth averaged and the 
constants e, and e,. are the 'dynamic coefficients of eddy viscosity' 
in the horizontal and vertical planes respectively. These coefficients 
contain the effect of both viscosity and turbulent processes. As a 
result of the dimensions of the fluid flow, the eddy coefficient in the 
horizontal 

, 
plane is usually greater than in the vertical plane. If it 

is assumed that the shear stresses associated with horizontal momentum 
transfer are small, then the friction forces remaining are those in the 
horizontal direction which are caused by vertical velocity gradients. 
In the integrated form, the horizontal shear stresses and'ý,, in the 
negative x andý directions are prescribed as 

iv v 

These expressions represent the difference in shear stress between 

surface and bed which are undoubtedly affected by the presence of wind 
stresses on the water surface. 

Experimental evidence indicates that shear stress at the sea 
bed may be expressed in terms of the well known Chezy friction 

coefficient C as is used in open channel flow. However it is emphasised 
that this approach must be regarded as a very limited means of fully 
describing the process of tidal dissipation even though it is used in 

the present analysis. 

The equilibrium between gravitational and resistance forces 

can be expressed as 

Hý 
r6 

(1.19) 

wbere'r, ý, is the resultant shear stress proportional to the resultant 

depth average velocity ( Uý4 VI ) and i is the slope of the water surface. 

The resultant velocity may be deduced from De Chezy's empirical 

relationship namely 
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rL) (1.20) 

since (R+rL) corresponds to the hydraulic mean depth in a very wide 
channel. From the previous two equations, it follows that the result- 
ant frictional stress at the sea bed is given by 

LU V 
c: 2. 

(1.21) 

Also, the components of the resultant frictional stress which oppose 
the fluid flow are expressed as follows 

U 
1'2-2- 

V (1.22) 

'TýV 4-5 - VPU- -V*l (1.23) 

C, 

The frictional resistance factor C,, which is used to establish these 

relationships between the squared velocity and the bottom stress, can 
be found only by observation. This coefficient depends on the roughness 

of the bottom, the bottom material, and the depth. 

The horizontal shear force at the free surface of the fluid 

as a result of wind stress may be determined from an empirical approach 

similar to that for investigating bottom stress. The wind stress is a 

forcing function in the system of equations and is related to the square 

of the fluid flow as is bottom stress. However for wind stress the 

medium of flow is air not water. The components of wind stress are 

expressed as 

llrxs k- 
'A', -w. u (-os ý 

IT, ýS 
k-A,, 

.W-WSýmP 

where k is the wind stress coefficient,, A,, is the density of air and LJ 

is the wind speed above the water surface. 

Introducing the expressions for bottom stress and wind stress 

into the two-dimensional dynamic equations ((1-13) and (1.14)) produces 

the following 

60 ý (1.26) ý., -RVx 

ýv 
'U 

ýv +V ýv + jý U (1.27) 

ýt ýx S-5 bb /0 Sj 
,4 

(H -0 
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These equations include the forcing functions of wind stress and 
barometric pressure in the x and Lý directions respectively. 

In a similar manner, the continuity equation can be integrated 

over the vertical and so equation (1.4) may be expressed as 
eL 

ýý + ýýY 0 (1.28) 

H( 
ýX ý Ll 

) 

As a result of the condition wrO, a particule of fluid must remain on 
the same horizontal plane throughout its motion. Accordingly the 

boundary condition for the free surface is obtained from the 'chain 

rule' 
n- + u.. V. Tt 

)X (1.29) 

Similarly at the sea bed 

(-H) -+ LL + V. 0 (1-30) 

Now equation (1.28) can be written as 

'L 4 Ix . 'L 7- 
rl- ý-V 

. 
17. 

=0 (1-31) TX tH I t6 

where LL4Z + Lt. ýH -I- 
rL LLL 1 (1-32) 

Ix TX 

LH 

ýX 

OL 

and V. IL ýj + V. ýH + (1-33) 

which are obtained from the differential theory governing the product 

of two variables. By adding equations (1-32) and (1-33) to obtain 

equation (1-31) and by takinginto account the boundary conditions at 
thefree surface and the bottom, the following equation is obtained 

M- 
L, ý, 

Lz + V. 1Z (1-34) ýX 

-H 
ýý5 

H 

Recalling from equations (1.9) and (1.10) the respective definitions 

M( H-tý and V(H+rL) %-17- 
and substituting these definition& 

into equation (1-34) produces 

E LL V( H., rL C) (1-35) 
ýX 

This equation expresses the conservation of mass within an elementary 

column of fluid. 
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Equations (1.26), (1.27) and (1-35) together constitute a non- 
linear hyperbolic system of first order partial differential equations 

which mathematically define the conditions governing long-wave motion in 
(x-y-t) space. Their solution is obtained when each of the unknowns 
U., V and ý is related to the independent variables x, y, t. The form of 

the equtions is such that theoretically, a general solution applying to 

all circumstances does not exist and therefore approximate solutions are 
determined. In a tidal system the complexity of its movement usually 

results in a reduction to lower order systems. In this way the analytical 

solutions in simplified situations and the numerical analysis of more 

realistic cases have been developed. The analysis of these systems is 

detailed in chapters 4 and 7 respectively. 

The advances in computational facilities and techniques have 

enabled mathematical solutions of the more complex systems of long wave 

equations to be found. In obtaining the solution surfaces, the numerical 

approach is very much dependent on the results from field research which 
indicates the extent of problems associated with a realistic situation. 
However given the appropriate empirical coefficients and the initial and 
boundary conditions, the solution is obtainable once a numerical 
technique has been perfected. The development of the characteristic 

conditions as a numerical technique is therefore the subject of the next 

chapter. 
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CHAPTER 2 
THE METHOD OF CHARACTERISTICS IN (X, Y, T) SPACL 

2.1 INTRODUCTICN 

An exact harmonic solution to the long wave equations cannot 
be produced from an analysis which takes into consideration all the 

major processes that operate within a system. More precisely, it is 

impossible to combine the equations of motion and continuity, which 

constitute a hyperbolic system, into an elliptic second order partial 
differential equation representing an analytical expression. When a 

system consists of an irregular configuration in which shallow water 

effects and frictional stresses are significant a numerical method is 

the only means of providing a solution to the hyperbolic equations. 

The usual numerical technique involves the transformation of 
the basic equations into finite difference form to obtain a numerical 

solution. In achieving this solution the numerical scheme requires 

an integration process applicable over a series of discrete points 

which describe the spatial variation of the dependent variables. 
Generally the values of the dependent variables are computed at points 

on a rectangular grid in space and time. The principal feature of 

such a method is that the motion is propagated from given initial 

conditions and is depicted at successive time increments as it spreads 

over the problem area. The solution at a point is independent of events 

in the system at any other times and is formulated solely by conditions 

prevailing at a particular time in the domain of dependence of that 

point. Therefore a hyperbolic problem is, in most casest independent 

of the initial conditions, a feature closely related to the meaning of 

hyperbolicity. if the initial values closely represent the final 

solution then the problem should be accurately modelled from the start. 

In reality however, these values are only approximate and a period of 

time must elapse during which it is anticipated, the final solution is 

approached. This philosophy is discussed by Stoker (1957). If the 

scheme includes a continuous external harmonic disturbance the numerical 

scheme should eventually produce a corresponding harmonic solution 

which is a reasonable indication that at least stability has been main- 

tained. However it is necessary to ensure further that the numerical 

integration procedure gives a solution which converges to that of the 
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original differential equations. Convergence is only achieved when 
the numerical scheme is both consistent and stable; these conditions 
are discussed in section 2.4. 

It should be noted that numerical techniques are not solely 
limited to producing harmonic solutions. Since the periodicity of the 
final solution is dependent on whether the boundary COLditiOns are 
periodic or not; no other requirements concerning periodicity are 
necessary. Thus methods of the numerical step by step type are partic- 
ularly suitable for the analysis of surge effects. 

The most obvious and the simplest means of integrating the 
dependent variables over a discrete number of points is to substitute 
some form of finite difference approximation directly into the basic 

system of hyperbolic partial differential equations constituting long 

wave motion. Alternatively, there are some distinct advantages to be 

gained on applying a finite difference scheme to the characteristic 

equations rather than the original set of basic equations. The 

characteristic equations are produced through linear combinations of 
the original hyperbolic equations and have the property that they involve 

differentiation in one less direction than the original equations. For 

example, in one-dimensional unsteady flow, the characteristic equations 
become ordinary differential equations. In general, a characteristic in 

YL independent variables is a sub-space of n-i dimensions in space at 

which derivative discontinuities may occur. For equations (1.26), (1-27) 

and (1.35) the characteristic equations remain partial differential 

eauations with the directions of differentiation contained within surfaces 

called 'characteristic surfaces'. Solutions to these equations then 

must also propagate within the characteristic surfaces. The system is 

hyperbolic and the associated characteristic surfaces represent the 

boundaries between disturbed and undisturbed regions. The character- 
istic surfaces can therefore be thought of as wave fronts which delineate 

the propagation of disturbances through the fluid. These disturbances 

propagate with time in the x and y directions with speeds determined by 

the locall inclination of these surfaces in x-y-t space. Since partial 

derivatives of the dependent variables in the direction normal to the 

characteristic surfaces drop out of the characteristic equations, these 

allow discontinuities in the gradients of LL, V and q across the 

characteristic surfaces. It is the very existence of derivative 
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discontinuities across these integral surfaces which classify the 

problem as being hyperbolic. In contrast, the existence of such 
discontinuities is imaginary in the elliptic problem which typifies 

the steady flow of fluid, heat or stress. For example the elliptic 

equations governing the ocean tides and seiche action in lakes and 
harbours are derived from the long wave equations through simplifying 
assumptions. In these problems the physical conditions require that 

every part of the surface solution depends on all the other parts. 
This implies that the solution surface and its derivativesare continuou's 
at every point in the problem area and that characteristic surfaces 
marking any possible discontinuities are non-existent. In the third 

class of problem, that of parabolic systems, the DropagBtion occurs 
only in one direction such as in diffusion and heat conduction. In these 

systems the characteristic paths are coincident* 

The method of characteristics essentially involves tracing the 

propagation of waves. Using this technique, the formation of discon- 

tinuities or shock waves may be analysed without any difficulty. Since 

the derivatives located in the characteristic surfaces are not discon- 

tinuous then consequently a finite difference approximation may safely 
be applied. It should be emphasised that the existence of character- 

istic surfaces implies only the possibility of discontinuities across 

the solution surface and not a definite presence of them. Lven when 

discontinuities are not present there are certain attractive features 

associated with the method of characteristic lines or surfaces. The 

most important attribute of this method is the analagcus processes 

between the physical system and its characteristic representation. For 

example the domain of dependence and the region of influence at any 

point are defined rigorously by the method of characteristics and 

correspond to the point in the physical prototype. 

It is of some importance to note that certain finite difference 

schemes involving central difference approximations require that the 

surface elevations and depth mean velocities be computed at alternate 

points in alternate time planes. (Dronkers and Schonfeld (1955)). 

This method leads to difficulty in interpreting the results especially 

at the boundary points. Fortunately with the finite difference scheme 

required to implement the characteristic conditions, the dependent 
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variables are computed at the same grid points at the same instant& 

of time. The above methods are explicit since the values of the 
dependent variables at a certain grid point are calculated without regard 
to the values at the other grid points at the same time level. 

Alternatively, implicit schemes are available in which the values of 
the dependent variables at the one time level are calculated simul- 
taneously from each other. Implicit finite difference schemes are not 
thought to be as physically analagous as the characteristic scheme and 
so are not considered any further in the present research. 

Referring back to the long wave equations ((1*35), (1.26) 

and (1-27)), the mean depth of the fluid, H is a function of the space 

variables only. The analysis is somewhat simplified by introducing 

the total depth term Z defined as 

Z=H+ ri 
(2.1) 

and the basic equations can be restated as 

+UU+V 
ý7- 

,Z -Z ýV 0 (2.2) 
SX ýX ýj 

jLj +1 ýLL + ý2- ýVj 
- -i v ýP-- 

+ +( -S - (2-3) t5 6X 3 ýj ýX i x 4 '3 ýX 
, 0-5. Z 

' 
W 

4- 
A LY +1 LY 4- 

ILL 
+ 

('TYS -T-fO (2.4) 
§ Tt 5 ýX 3 aj 4ý "0 -54, j 5 0.5.2- 

The terms not involving partial differentials of the dependent variables 

have been placed on the right hand sid e of the equations and include 

the external forces and shear stress terms. Iquations (1.35), (1.26) 
and (1.27) can also be written in mat rix form as follows 

R+9ý -A- C. 
(2.5) 

in w hich I is the identity matrix and 

Z :z0 LL V : Z- (2.6) [ 

LL !) LL 0 V C; P 
V00 LL 0 

with 00 0 
ýH 

-I , 

I 

fz V !jý. -A- ;; a= 

-i. - "0 z ( 22- - 7) 
ý-H 

- -L 
ý P. 

- ý 
a L' +(r,,,, 5 - 

T, ) 
5V 6ý A -a ý i 

/I Z. 
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These equations represent the hyperbolic system to a first order of 

accuracy. 

The means of evaluating a system of hyperbolic partial 

differential equations describing fluid wave motion using the method 

of characteristics was first introduced by D'Alembert (1747) as a 

result of an investigation of air currents. Riemann (1860) generalised 

and expanded the basic concept of this method. Massau. (1889) presented 

an important paper describing a semi-graphical integration method using 

a further development of characteristics for evaluating a system of wave 

equations. More recently, Daubert and Graffe (1967) have given a 

derivation of the method in (x-y-t) space. The analysis presented in 

the next section is a modified version of that given by Fox (1966) which 

also has been reviewed by Webster (1968). 

2,2 THE CHAIL4CTERISTIC CONDITIONS 

The analysis of characteristics is achieved through a trans- 

formation of coordinates. If a cartesian coordinate system I-r-s chosen 

with a local inclination to the x-y-t system such that the coefficients 

of all partial derivatives with respect to, say, r in the transformed 

ecpations are in the same proportion in each equation, then a linear 

combination of the three equations will eliminate ther derivatives and 

so reduce the number of independent variables by one. The resulting 

equation will contain derivatives only in theq and s directions, which 

will then define locally the characteristic plane, normal to r. Since 

the derivatives on the characteristic surface are continuous, the 

derivatives with respect to<j and s must be likewise. By eliminating 

derivatives with respect to r which may be discontinuous, the resulting 

system of equations may be expressed in finite difference form with 

complete safety. 

In an arbitrarily orientated Tr-s system, equation (2-5) 

transforms to 

LA 
+E 

ýrk 
-f-. F Lrý G (2.8) 

ä CL är ýs 
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in which D, E and F are the transformations of the original coefficient 
matrices in the new coordinate system. In particular 

+R+ (2.9) 

in which 6r/6t, ýr/bx and ýr/bý are the direction cosines of vectors 
orientpd in the T- direction. The elements of the matrix E are found 
from equations (2.6) and (2.9) to be 

(2.10) 

t 'a ý 

E0 5 4X 

in which JZ- LJ V ýr (2.11) 
ax '6 ý 

For Y, to be normal to the characteristic surface, the determinant of 
E must equal zero. 

The singularity of E implies that some linear combination of 
the rows will produce a zero vector. Assuming that there exists a matrix 
vector H such that H. E = 0, then multiplying both sides of equation 
(2.8) produces 

ý-A H-F- ý-A 
CL ýs 

In this equation the derivatives of the dependent variables are taken 

with respect to the cL or s coordinate and so the equation in this form 

constitutes the 'characteristic condition' for the system of basic 

equations. 

The expansion of the determinant of equation (2.10) yields 
the result 

11) 1( ýj 

)Z j 
Cý Z (2.13) 

Equation (2.13) can be satisfied either by settinglýL or the expression 

in braces equal to zero* The latter case yields the more useful result 

0 

in which J- 
LL, v 

LIL U! - 'r., LL-V 
v LL-I/ v I- 

C 
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and the variable c is defined as 
2. 

The quantity 'rr is the transpose of the unit vector in the *r direction 

and takes the form 

Lr ý-r LT j 
ýt bx ýbý 

Equation (2.14) applies at every point in the flow field in x-y-t space. 
It can be regarded as a necessary relationship among the direction 

cosines of every possible orientation of a normal at a point on the 

characteristic surface. If a plame defined by t=1 in some local origin 
is placed at this point, the intersection of this plane with the family 

of normals will be a plane curve whose coordinates (x, y) will be 

related to the direction cosines of the normals by 

I >C 
6r 'ar 
; -t 

In view of this expression, equation (2.14) becomes 
'T' 

KK0 

in which -, 
IIX51- 

Expansion of equation (2.19) yields a second-degree equation in x and y 

which of necessity represents a conic section. Depending upon the 

relative values of ( LL2+ VL and C this can either be an ellipse 

a parabola or a hyperbola. The family of normals passing through a 

given point (x, y, t) then comprise of a circular cone in x-y-t space. 
Lines perpendicular to these normals must be tangent to the character- 

istic surface there. In order to discern the nature of this character- 

istic surface, an expression relating the direction cosines of the 

family of tangent lines is required. The vector L=T. K must be tangent 

to the dnaracteristic surface since K and-T-K are orthogonal. With some 

algebraic manipulations the following expression is obtained 

-r -I 
(. 2.20) 

and reveals that the characteristic surfaces at a given point envelope 

a circular cone, each of whose elements is perpendicular to the cone 

of normals. The projections of differential elements of this charater- 

istic cone passing through its apex are therefore related by 
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I- LL -+ v LL v It -Fr p C2 

4t u0 Ix 
c 

v ýi c 2. 

in which the square matrix is J* -1 
. 

The differential consideration is introduced at this point 
because in general C, U and V are different in every point of x-y-t 
space and therefore only in a differential region about a given point 
is the characteristic surface a cone. If it is desired to extend the 

surface to finite regions, the inclination of its generators must change 
as it becomes successively tangent to varying differential cones. 
Hence in a finite region of x-y-t space the characteristic surfaces 
form a conoid rather than a cone. Equation (2.21) can also be written 
as 

( All- U.. Lt)'+ lit 7- 
(2.22) 

The quadratia surface described by equation (2.22) is called a 'character- 

istic conoid I and its generators are called 'bicharacteristics 1, Water 

waves propagate along bicharacteristics in three-dimensional space in 

exactly the same way as along characteristic curves in two-dimensions. 

The component velocities of the wave along the bicharacteristics are 

expressed in terms of a parametric angle(9, as follows 

lý x LL -c- cos 0 (2.23) 

cý 5 (2.24) 
. Lt 

and satisfy equation (2.22). The angle &corresponds to the whole circle 

bearing of the bicharacteristic projected on a constant time plane and 

measured from the positive x- direction at the vertex of the conoid. 

In order to simplify the numerical integration procedure in 

the present analysis it is assumed that the bicharacteristics can be 

represented by straight lines with 0 constant. The implications of 

this assumption are discussed in section 2-3- It is sufficient to note 

at the present that the modified bicharacteristics Passing through a 

point delineate a characeristic cone and not a conoid. 
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There are actually two families of characteristic surfaces 

and consequently two sets of normals; one family has been established 
by satisfying equation (2.19) while the other corresponds to R=0 

where 
ý-' +U+v ýT 

. Fquations (2.19) and (2.20) are also 

applicable to the second family of characteristics and it is easily 
deduced that 

1 
K L. K. 0 (2.25) 

For the second family of characteristics, a further relationship 

similar to equation (2.25) may be derived. By introducing a vector M 

defined as 

LL (2.26d' 

V 

M `2 

1'j 

then the condition RýOcan be written as 

K Ir. (2.27) 

Equation (2.27) is only satisfied when the equality L=M exists and in 

this case the characteristic surface of the second type is defined by 

the line directions 

ý- 
)< = LL (2.2E it 

Lý 
=v (2.29) 

IL t 

In physical terms these latter two equations describe the motion of a 
fluid particle or streamline. Such a streamline defines the motion 

of the main body of fluid and is actually a degenerate characteristic 

since a true characteristic defines the motion of a water wave. In 

the present analysis the particle path is assumed to approximate a 

straight line as have the bicharacteristics previously considered* 

The directions of the first family of bicharacteristics 

given by equations (2.23) and (2.24) suggest the form of the linear 

combination required in order to eliminate the partial derivatives in 

the'T, direction from the characteristic flow equations. The specific 

form of the ratio of the combinations is contained in the vector 

and is 

= LL (2.28) 

HIIC. Cos 0 C. S L'r,, (9 
1 (2.30) 

It frollows that the multiplication of this vector with the transformed 
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equation (2.8) will produce the fundamental characteristic equation 
(2.12). Since the original set of equations (2.2), (2-3) and (2.4) are 
exactly equivalent to the transformed equations then such a multipli- 
cation of the original equations must yield the characteristic 
condition. Therefore equation (2-3) is multiplied by C. aose and added 
to equation (2.4) multiplied by C. SIN 0 and added to equation (2.2). 
After a certain amount of algebraic manipulation the result is 

ý-z c cos + (v+ C. Sirt 7- 
t ýx 

-C-os 
LUL +( Ll + C. cc's&) LUL + c SW6 3 ýt ýx 

ýLv + LL 6L) + V trL 
VV 

sm L + 

c COS& 1- SM + r- os V 
3 ýx I 

+c- cos C. SM 

C. Cos FX c- sLrL Ry (2-31) 

The characteristic condition given in equation (2-31) can be 
regarded as containing two differential operators. The first operator 
is a total time derivative I of the dependent variable and has the form 

t LL + C. Cos ýy 
(V +Cý 5U%, & 

along a given bicharacteristic. The second operator 

5 Ln + Cos 

involves spatial differentiation of the dependent variable in a direction 

normal to the bicharacteristic. The characteristic condition can be 

expressed in terms of these operators producing total time derivatives 

of the dependent variables as follows 

V AzIU 

t + C. Cos + r-, SLA (2-32) 
t IL t 
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where C. Cos +c 

( ýV- )I SLA &. Cos Cos& 

+ 5uM (2-33) 

where F and F,, represent the terms on the right hand side of the x 
equations (2-3) and (2.4) respectively. 

The particle path of the fluid corresponding to the second 
family of bicharacteristics, is defined by the directions 

I 
1W = LL - 

It 
I 

Aý 
= V. At 

Hence the total time derivative of surface elevation along this 
bicharacteristic may be written as 

17- ý 7- LL. ý 7- +V ý7- (2-34) 
X-t Tt TX Iý 

On inserting this total derivative into equation (2.2) the particle 
path relationship immediately becomes 

z 

.Lr+U (2-35) 
It 

I 
ýx ýý 

I 

and is simply another form of the continuity equation. 

With regard to equation (2-32), the possibility of an infinite 

number of values for S suggests that there are an infinite number of 
characteristic conditions. This implies that there is an infinite 

number of sources propagating waves which is clearly not the case. 
Matsoukis (1980) has shown that there are, in fact, only four sources of 

principal waves in x-y-t space and therefore only four possible bicharacter- 

istics along which these waves travel. The four directions occur at 
intervals of Trj2- in the parametric angle & and correspond to positive 

and negative waves travelling along the positive and negative X and 

ý directions respectively. For example a positive wave in the positive 

x direction has an associated family of characteristics defined by 

'cLx Ilt z L)-*C , J-111t =V, and is a result of the quadratic form of equation 
(2.22). There are therefore only four families of characteristic 

surfaces which are tangential to the envelope cone along the bicharacter- 

istics. The characteristic cone was considered by Matsoukis (1980) to 

represent all the possible bicharacteristics that water waves could 
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follow but, in fact, the waves only travel along four of them. These 

conclusions have an important bearing in determining the formation of 
the numerical scheme discussed in the next section. 

2.3 THE (TARACTLRISTIC NTMERICAL SCIMME 
There are at present numerous characteristic methods avail- 

able for the integration of the hyperbolic long wave equations in two 

spatial dimensions and three independent variables. Very few of these 

methods have been applied to computationally significantproblems, with 
the exception of the schemes proposed by Thornhill (1948), Coburn and 
Dolph (1949), Hartree (195.3) and Butler (1960). These characteristic 
schemes have been reviewed by Fox (1966) and more recently by Katepodes 

and Strelkoff (1979). The method originally proposed by Butler (1960) 

known as the inverse pentahedral network produces second order accuracy 

with respect to &t and forms the basis of the numerical technique used 
in the present analysis. The proposed technique outlined in this 

section is of first order accuracy with respect to &t. 

Consider a two-dimensional orthogonal grid of points taken on 

some initial surface in the x-y plane with each point spaced a distance 

apart. The values of the dependent variables are calculated at each 

and every grid point and constitute a discrete series of approximate 

values to a continuous solution. The calculations are accomplished by 

introducing the characteristic conditions as operations on the values 

at each gridpoint and so the behaviour of the fluid at one time level 

is advanced to later time planes,, 

With regard to a general situation, consider a point with 

coordinates (X. , ý. q t. ) remote from the spatial boundaries of the 

problem. If the values of the dependent variables are desired at this 

point then linear bicharacteristics are extended backwards in time until 
they intersect the previous solution surface in t-t. - At . Theme 

bicharacteristics emanate from the vertex of the conoid at values of the 

parametric angle 6 separated by increments of 1112. - This arrangement 

of bicharacteristics and the particle path bicharacteristic 
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are as shown in figure 2.1 
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In figure 2.1 the parametric angle take the values 

&l = IY 0 
2. = il-Y 

Z 
'94 

and so determine the directions of the characteristics. 

(2.36) 

In figure 2.2 a section in the x -plane taken from the time 

t-tht to t+at shows that the linear bicharacteristicis define two 

separate regions* 

-t-at - zz 

:[ r4-rrc. Rn-rt oN Poi N -r 

(-. , b. , t. ) 

BtcviFi RficrE RiST IC 
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DOMPIN OF Dr. PrNDENCC- 

t 
L 

Figure 2.2 

The region between t and t+4t is called the domain of influence since 
it comprises a space-time continium which is affected by water waves 

generated at point , to ). In the same way the solution at 

the vertex of the cone at time t is dependent on the generation of 

water waves at time t-bt. For this reason the region is called the 
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domain of dependence. It is one of the basic assumptions of a scheme 
of first order accuracy that the celerity of the wave is constant 
during any time &t while in the domain of dependence and so the 

bicharacteristics are linear. The value of the celerity is obtained 
at the point 0 with coordinates ( >c. t-at) to ensure an explicit 
form of numerical scheme. 

Under circumstances of constant celerity and with the 

parametric angle taking the values in equation (2.36) the respective 

characteristic conditions derived from equation (2-32) are along 
bicharacteristic AX- LL - C: I 

ýj =V X-t - ýt 

c3 -W- c-ý -ý -C C2 z _H -t 
IL tIt ýX 

along bicharacteristic LL jt 
-ý =V-C OLt CLt 

7- V C, ILL ýH + c. Fv 
X-t it- TX 

along bicharacteristic 
I)C 

LL +V 
CU 

LV 5--F + C. CX 

along bicharacteristic LL V 
OLt 

Az VU LH (2-37) 
+ C. Lý C+C. F 

'Lt It 

where F 2-1 + 
LY 

+6 X /0-5 bX 
z 

J= Y+ (2-38) 

Together with the above characteristic conditions, there is also the 

particle path equation (2.35) defined along the bicharacteristic 

X 
1! 

ý =V-2 
LLk 

+ýV) .= Ll 
)- 

LZ 
=-C (2-39) zt- jLt It ýX 61 

The total derivatives along the bicharacteristics in equations(2-37) 

and (2-39) can be replaced by forward differences in time (providing 
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the time increment is small) as follows 

]ý- Z 
At CA-Lif At - cz. + F. (2.40) 

cý 
--YL = -c 

LL 
T c 4- c. F., (2,41) n6t X 

Lt, 
3 +c C2, 

V F 
(2.42) 

At 

5 .ZI, +c:. ýO, 
= 

ýLt 

-c-+ LH - c. 5 * Fý (2.43) 
Lt Lt ýx 

Z- 7-, S rl- Lv (2.44) 

In these characteristic conditions Z, U, V represent the integrated 

dependent variables at the vertex of the conoid and Z LL,., V (1,6 rL 46 

are interpolated values on the previous time plane t- &t The values 

of the partial derivatives of U, V and H are those at point 5. The 

five equations comprise a system involving five unknowns; the three 

dependent variables and the partial derivatives, LLL and LY. Nither of ýX 6ý 
the integrated variables Z, U, V are obtained by combining the 

equations (2,40) to (2.44) in such a way as to remove the partial 
derivatives and then substituting 

ýH H, -Hs IH Hz - H,. (2.45) 
ýx Z. C. &t Tý Z. C. Lt 

Hence adding equations (2.4o) to (2.43) and subtracting twice 

equation (2.44) gives 

.( 
-4, * 11. - 7-3 + Z,, - Z7. 

s) - ýzl ý2-( V2. -Vý, + U, -L15) (2.46) -Z = -! Z' 5 

Subtracting equation (2.42) from equation (2.40) produces 

Y;, ( LL, + Lk Z, - H, -Z+HF- at (2.47) 

Subtracting equation (2.43) from equation (2.41) produces 

V,, 4 V,,. )- ý2. -ý(II-H;, - 7- 
4. tHAP)-3, Rf 

.at(, 
2.48) 

C 
for a grid point remote from the boundary conditions. The equations 
(2.46) to (2.48) yielding the integrated dependent variables are 

identical to that given by Townson (1974). 
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It is apparent from equations (2.46) to (2.48) that com- 

puting the dependent variables involves the values at the intermediate 

points 1 to 5 at which the bicharacteristics intersect the time plane 
t-&t. At this time level an interpolation scheme is required in order 

to calculate the values of Z, U, V, H at the intermediate points from 

the known grid point values. With reference to figure 2.1 and consider- 
ing linear bicharacteristics, the coordinates of the intermediate points 

at which interpolation is made are; 

X= ýc. - LL - x= LL :; c)- Dit 
ýj 

1,31 s=ý, - V. at C). &t (2.49) 

The most suitable interpolation scheme describing a quantity Q at various 

points has been shown by Matsoukis (1980) to be a first order linear 

polynomial such that 

Q= i4)< (2.50) 

where A= Is, GZ /&X= (a 
T+,,, T - )/ 2. - AS 

B= aQ/&ýj =- Qx, -S-l 
V Z. I'S 

C GZ 

and AS is the spacing between grid points. 

The actual form of the interpolation xheme is determined by 

the following considerations. The basic system of differential equations 

haye been derived by applying the physical laws to a control volume of 

infinitesimal base dimensions ZS5 along the x- and y- axes. If CZ 

represents the dependent variables at a point (x, y) and it is assumed 

that the variation of the quantity Q is continuous then the value of 

this quanti ty at a point (x+26S, is given by Taylor Isf ormula 

for two independent variables namely 

GL(x +z8S, Z SS) CZ(X, '. J) + Z. 6 S. L9 + 2-6 S. LQ (2-51) ýx ý4 

+2x 
)ýQ 2. LQ 

,SS". 
ý2, a 

+ 
x 

X, AS ýý% ) 
In the derivation of the differential scheme only the first three terms 

of Taylor's formula were considered therefore the formula was applied 

with first order accuracy. The corresponding control volume in the 
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difference scheme can be considered to be of base length ZLS along the 

x- and y- axes, where aS-ols-, O. Hence applying Taylor's formula to this 

control volume with first order accuracy gives 

C.. -) (x+zaSý+a5)=Q (X, -6 )+aS ý-Q -t 1 0, r. 'MO (2.52) 
ax 

which can be rewritten using the grid point coordinates 

aS 4ýQ 
_,. &S. ZI Gk (2-53) 

4. Xa ý5 
The component of the variable Q in the x- direction can be expressed as 

2.4s. 4 a? which if rearranged produces X 

lgt-a -0 
(2-54) 

L' X 

Similarly the component of Q in the y- direction is Qx,; T+l 
+2. &S. Lawhich rearranges to give 4Y 

7+ t (2.55) 

Firstly it is noted that in order to have equivalence between the 

dif f erential and difference expressions then Lo- 
-i 

ý-Q as 'Nx --ý 0 and 
Ax bx 

LO as &b 0. Secondly, the finite dif f erence expressions in 

equations (2-54) and (2-55) are equivalent to the coefficients A and 

B respectively of the interpolation scheme. Therefore these coefficients 

A and B are actually numerical approximations to the differential terms 

'60 
) 
ýO respectively at the central point. It is also apparent then that 

TX TV 
the following conditions are valid; 

CR + b, S. 
ý- Q 

L6 S 

x 

ý2 
8x 

P. AS 

G? CL S B-A5 (2.56) 

x ": -I s a. as 

The constant term C of the interpolation scheme is therefore obtained 

by adding the four equations in (2.56) to produce 

I/ ++ C '4, ( Q="): 
r + QT19ti 
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Only this condition satisfies all the requirements of equation (2-56). 

It should be noted that the three coefficients of interpolation A, B 

and C are obtained from the set of four equations in (2.56), whereas 

actually only three equations are required for an exact solution. 'The 

use of four equations implies a plane passing through four distinct 

grid points which may not always be possible and in such a case the 
interpolating plane represents an averaged one. 

With the interpolating coefficient as prescribed in 

equation (2-50) the values at the intermediate points may be calculated. 

The interpolation scheme is actually a first order version of Taylor's 

formula and ensures consistency between the differential scheme and the 

difference scheme. Therefore the finite difference expressions of 

equations (2-54) and (2-55) are not merely numerical approximations 

but necessary and sufficient conditions for equivalence between the 

numerical and differential processes. Furthermore a second order inter- 

polation scheme is incompatible with the first order accuracy in which 

the long wave equations have been derived. Matsoukis (1980) has shown 

that second order interpolation schemes introduce additional terms in 

the difference scheme which are not present in the differential one. 

The form of the numerical scheme as expressed by the character- 
istic equations (2.46), (2.47) and (2.48) is only a temporary one and 
is subsequently modified by the introduction of the interpolation scheme. 
The unknowns Z, U, V thus become dependent on the values of the variables 

at the grid points at time t-&t and not on the intermediate points 1 to 

on this time plane. Lquations (2*46) to (2.48) become 

LL = LL. 5 -2- iý t- P't -5-at. F, (2-57) 

VS - -9 - &t -B". -5- &t - Fy 

which can be written as 

Z-zs =-c 

, ýb t 5 

LL - LL 5 -3- Z, Q 
At 1. A s 

v V, 5 
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where rL=Zý, -H. is the elevation above mean water level at a time t-ht 

and VA,, is the interpolated mean water depth at grid point 0. The 

previous equations have a similar form to the following equations 
which are the initial partial differential equations of long wave 
motion: 

az 
- ýE' .ý Uý - r., .ýv 

Uý (2-59) 

, AV F: y At 

In fact a comparison of equations (2-58) with (2-59) shows that the 

numerical scheme for an internal point based on the characteristic 
conditions is a numerical approximation of the governing long wave 
equations. Such an approximation is only produced under the conditions 
resulting from introducing a linear interpolation scheme. It is clear 
that the means of integrating the initial differential equations is 

along the particle path characteristic IL' - LL 113 
-V. However to Xt- -) IE - 

retain an explicit form of solution using the numerical scheme the 

values along the particle path are calculated at point 5 at a time 

-ý-at. In relation to point 0, (see figure 2.1) point 5 has coordinates 
(- Ll -&tj - V- At) which represent convective displacements. For the case of 
tidal motion in which the convective terms are small, conditions at 

points 0 and 5 are very similar and there is then the possibility of 

constructing a linear finite difference scheme based solely on grid 

point values and independent of the characteristic paths. In the tide 

and surge simulations presented in Chapters 7,8 and 9 the convective 

terms have been included where finite amplitude conditions are 

encountered. In these simulations the numerical scheme for an internal 

point is obtained from equation (2-57) by substituting the finite 

difference aprroximations found from the interpolation scheme of 

equation (2-50). The final system of equations take the form 
Z=Z- 

Sý 

. 
at 

.( 
LL 

=41 
Lt%-1'3 V2' IL 5 

5- 'I' X'1+1 - V1111- I)/ 5 

LL = LL 5-5*'( rL��, - rL 
-, 1, 

)/ Z- &S -9- A't - 
(F: 

X)s (2.60) 

dcý-t . 
(rt��, 

- YLX, C-l 
)/Z. 4S-j. 4t (FY )5 
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where F from equation (2.38) becomes x 

I N-ill 

(LLS vs Uý s 
cz5 

wV5 

2. 
WS COS 

3Zs 

(2.61) 

and similarly 51 becomes 

Fv =-IP, ý,, 

V' )VI' V5 es 
5 

ULS 

SLAI 13, 

(2.62) 

C -, .z5 '4 W-5-Z! S 

In the tests presented in the following chapters, the pressure gradient 

term was not retained in the numerical scheme. In practice the values 

of the external forces are computed at point 0 instead of at point 5, 

to reduce the amount of interpolation. 

Application of the interpolation scheme Q=A-Bý-C to the terms 

M Lt 
S 
and V, in equations (2.60) leads to the following expression stated 

in terms of the general dependent variable Gý as 

Q5Q. - Uz, 
2 .. 

at 
ý(- )/z., as 

V-r, z-A. t-( ý2 17*1-0 w), 7-1 )/2. a5 (2.63) 

where Q. = 
ý4, ( 0%. 

tl, 7 -, 

The analytical solutions developed in Chapter 4 are derived 

from linear considerations and do not include convective acceleration 
terms. To reproduce these solutions numerically, the numerical scheme 
for an internal point as shown in equation (2.60) must be suitably 

modified. Hence the convective terms denoted by multiples of U,,,. 

and V,,,., in equation (2.63) are excluded from the linear scheme so that 

zS=z LL = LL and V. =V . The necessity of linear conditions also S00 
requires that the celerity in the continuity equation in (2.6o) be 

calculated from the mean water depth and not the total depth. The 

linearised numerical scheme for an internal point then becomes 

Z= zo -H0- iLt 
( LLX 

- . ). T - LL 
%- t' 7+- vx,: 

r-t )/ 2-A, 5 

LL = Lt, -3, at. ( pi: C+ ý, 's - rt x )/, Z. 4S-3- At . 
(F, ). (2.64) 

t rL ,-9. at. (F, ). 
,' ý_, )/ 2.. AS 
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It is evident from the comparison of either equations (2.60) 

or (2.64) with equations (2.46) to (2.48) that the interpolation scheme 
becomes an integral component of the numerical scheme and is bound to 

have a critical effect on the stability and consistency of that scheme. 
With this viewpoint an understanding of the fundamental properties of 
convergence consistency and stability is required before any practical 

application of the scheme can be made. 

2.4 CONVERGENCE 

The term convergence has in the past been somewhat loosely 

regarded as the process in which the numerical scheme achieves a periodic 

final solution from an arbitrary initial surface. This periodicity does 

not necessarily ensure convergence and is merely the result of an 

induced harmonic disturbance in the system and only implies that the 

numerical scheme is stable. Therefore there is no guarantee that the 

periodic solution obtained is equivalent to that attributed to the system 

of partial differential equations. However it is exactly this equiva- 

lence between the numerical and physical processes that defines convergence 

of a numerical scheme. In a strict mathematical sense, a numerical 

scheme is considered to be convergent when the solution of the difference 

equations tends to the solution of'the differential equations as the 

space and time increments tend to zero. 

A rigorous mathematical analysis of convergence is still not 

entirely satisfactory for non-linear finite difference schemes. Alter- 

natively a numerical approach could be used in which the results from 

repeated tests with decreasing space and time increments are compared 

with an analytical solution or observed data. The sequence of solutions 

could then be examined for convergence. This approach is unfortunately 

impractical owing to the demands on machine time when using small values 

of space and time increments. Another more logical means of conducting 

the analysis of convergence is to consider the consistency and stability 

of the numerical scheme. Consistency examines the limit of the 

difference equations themselves as the space and time increments tend 

to zero instead of examining the numerical solution of these equations. 

A stability analysis can be performed to investigate the error in 

the solution of linearised difference equations with finite values of 

the space and time increments as the number of computations tends to 
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infinity. Obviously if the numerical scheme is either inconsistent 

or unstable then convergence is not achieved. Hence both consistency 
and stability are necessary and sufý ficient conditions for ccnvergence 
of a linearised scheme. 

2.4.1 Consistency 

A consistency analysis is required since the incorporation of 

an interpolation scheme into the numerical scheme modifies the 

characteristic conditions. It has already been shown in section 2-3 

that the interpolation scheme (), = V1 x- Bj -* c is essentially consistent 

with Taylor's expansion to first order accuracy and so did not introduce 

spurious terms into the characteristic conditions. This is evident from 

the numerical equations (2-58) incorporating the interpolation scheme 

on comparison with the original partial differential equations (2-59)- 

It now remains to show that the numerical scheme is consistent in that 

as the space and time increments tend to zero, the difference equations 
become identical to the origina-I differential equations. 

The technique used in the consistency analysis is to express 

each dependent variable with local coordinates ( Sx, Sýj ) St ) relative 
to a central grid point 0 using Taylor's expen iono WithO representing 
the dependent variable, Taylor's expansion to a first order approx- 
imation becomes 

it (2.65) 
1 'ä xýb it 

This expression is applied in turn to the characteristic equations 

(2.46) to (2.48) while neglecting the external forces and stress terms 

which have no effect on the generality of the consistency analysis. 

Consider first, equation (2.46) namely 

Z3+ 7- 4-zZ., 
)-ý, - ý- ( V,. - V, - u-, - u, ) 

The introduction of Taylor's formula which may be regarded as an inter- 

polation scheme tran forms equation (2.46) into 

tZ 7-,, LL. t- ý-Z` 
- 2. Vo - 

ýt L7.. 
x 

- C. Ez. C- ý. It- ý6, v 1 
which can be further reduced to a form comparable with the original 
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continuity equation (2.2) and is 

V. +CI+ z2o 0 
V. 

=o ý-x 
5 'Ox (2.66) 

A similar transformation of the dynamic characteristic condition 
(equation (2.47)) may be obtained as follows 

LL ýi ( Li, Y7 rL rL 

becomes 

'S t 2- LL. z a. 'St V. ,It 

iz. E Z. r, -St-ýX. 
I 

which simplifies to 

ý LA. + L-L" ý-LL- + V. LLL. + C) (2.67) 
Tt ýx 6ý ýx 

which is equivalent to the left hand side of equation (2-3)- Similarly 

equation (2.48) which is 

V='. /I ( VZ - 
V4 

is tranformed to 

\10 + St 2, VO LL. , 
St. z-V. 

ýx 

which simplifies to 

L". + LL. ý! -, + V. ý--Výg +5-=0 (2.68) 

and is equivalent to the left hand side of equation (2-3)- 

It is apparent from equations (2.66) to (2.68) that the 

consistency conditions are satisfied for an internal point. In the 

same way it is easily shown that the boundary conditions are also 

consistent and so the physical consistency of the proposed numerical 

method may be established. 

2.4.2 Stability 

A system of difference equations constituting a numerical scheme 
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can be regarded as being stable if the growth of rounding and discret- 
isation errors is bounded as the number of computations tend to 
infinity. In the case of a harmonic solution the scheme is stable if 
this solution is a close approximation to the solution of the original 

partial differential equations. In other words the stability of a 
consistent difference scheme implies its convergence, a feature noted 
by Lax and Richtmyer (1956). 

The absolute magnitude of the bound of the error is obviously 
related to the accuracy of the numerical scheme and the values of the 

space and time increments. A stability analysis will therefore require 
to establish restrictions on the size of the space and time increments 

which when imposed on the difference equations will prevent errors from 
being amplified to an unacceptable extent. According to Richtmyer and 
Morton (1967) instability is not a result of rounding errors but is 

clearly a property of the difference scheme. Also Courant, Friedrichs 

and lewy (1928) have remarked that instability is accelerated by 

reducing the spatial representation of the numerical grid while retaining 
the same timestep. This finding suggests that an upper bound to the 

size restriction of the grid may not be sufficient and that a lower 

bound is required. 

Consider the general form of a system of hyperbolic partial 

differential equations defined as 

x 

wherern is the number of spatial variables, (R represents the matrix of 

dependent variables and R,, the corresponding real coefficient matrices. 

The above quasilinear system describes the propagation of long waves 

for which the numericalaDheme h" been developed. The simulation of 

this motion is classed as an initial and boundary value problem for 

which a stability analysis is unfortunately not at present available. 

The normal approach is to treat the problem as an initial value one and 

test the stability of finite difference equations by applying a Fourier 

analysis to a linearised difference scheme with constant coefficients. 

It may be applied also with caution to non-linear difference schemes 

with variable coefficients. However Strang (1964) has shown that the 
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stability of amon-linear system depends on the stability of the 
linearised difference equations providing the solution has a sufficient 
number of continuous derivatives. This requirement has been rigorously 
proved by Stetter (1961) to be fulfilled when the difference equations 
are derived from the characteristic conditions since derivative 
discontinuities cannot occur along the bicharacteristics. Hence for a 
non-linear system the stability analysis may be applied to the 
linearised characteristic scheme and confidently assumed to apply equally 
to the non-linear system. 

The necessary condition for convergence of a difference scheme 
derived from a system of linear partial differential equations with 

constant coefficients was established by Courant, Friedrichs and Lewy 

(1928) and is termed the CFL condition. It requires that the domain of 
dependence of the difference scheme must contain the domain of dependence 

of the differential equations. The differential domain of dependence 

is defined as the base of the characteristic cone at time t- &t and is 

shown in figure 2-3. 

: Z-1 , -S 

DIFFERENcE t)omftl9 OF 
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I'HC- I: NTERPOLATýON 54HEME 

r 

D IF FgPrcN-r I FIL DOMPI tN 

OF DEPENDENC-r- 

+l) 

Figure 2.3 

For the difference scheme represented by equations (2.64) the values of 

the dependent variables at point 0,,., at time t are obtained by consider- 

ing the known values of the variables at grid points (1-1, "J ), 

(1+1, -l ) and (T, -X+l ) at time t-&t. Therefore the domain of dependence 

of the difference scheme is the convex hull of base points defined by 

the boundary of the union of all triangles formed by joining all pairs 

of points by straight lines. The difference domain of dependence is also 

shown in figure 2.3 and it is apparent that the CFL condition only takes 
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into account the location of those base points which are vertices of 
the convex hull, As a result of this limitation and the fact that the 
difference scheme is non-simplicial it remains to be determined whether 
the CFL condition is a sufficient stability criterion or merely a 
necessary one. 

It is worth emphasising that ýhe numerical scheme is explicit 
and that the approximate solution at a grid point at time level t is 
calculated using the known values at a certain number of grid points 
at time t-&t. If the number of grid points used is L+1 where L 
is the number of space variables then the numerical scheme may be 

regarded as simplicial. The proposed numerical scheme is clearly non- 
simplicial since four grid points on the initial value surface are 
considered rather than three which is the simplicial requirement. 

With regard to the general influence of the CFL criterion on 
the stability of a numerical scheme Hahn (1958) extended the work of 
lax (1958) to demonstrate that the CFL criterion is a sufficient 
condition for stability for all simplicial networks. Hahn also showed 
that the CFL criterion is sufficient for non-simplicial networks 
providing the space increment is the same size in both the x and y 
directions. Since this requirement is fulfilled in all the tests in 

the present research it is concluded that the CFL criterion is both a 

necessary and sufficient condition to ensure stability of the numericall 

scheme. 

The implication of the CFL stability criterion can be fully 

realised on considering the equivalence theorem of Lax. The theorem 

amounts to the fact that given a properly posed initial value problem 
and a consistent linearised finite difference approximation with 

constant coefficients then the stability of the numerical scheme is a 
necessary and sufficient condition for convergence. As a consequence 

of Lax's theorem, satisfaction of the CFL condition ensures both 

stability and convergence of the numerical scheme. 

Ignoring for a moment Hahn's conclusion regarding the 

sufficiency of the CFL criterion for non-simplicial networks, the same 

conclusion can be verified in another way by applying the von Neumann 

stability criterion to the present numerical scheme. In this way it can 
be shown that both criteria impose the same restrictions on the value 
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of the time increment in order to maintain stability. The von Neumann 

condition, presented in detail by Lax and Richtmyer (1956) is a 
necessary condition for the stability of linear finite difference 

equations with constant coefficients. With regard to the works of 
Strang and Stretter which justified the application of the CFL criterion 
to the present numerical scheme, the same argument applies to the von 
Neumann criterion. Furthermore, Lax (1958) has shown that this criterion 
is both a necessary and sufficient condition for stability, providing 
that the initial data is infinitely differentiable* The doubt 

concerning the sufficiency of the von Neumann criterion for arbitrary 
initial data can be removed by realising that this data can be closely 
approximated by infinitely differentiable data. By investigating a number 
of difference schemes, Richtmyer (1957) also came to the same conclusion 

as Lax concerning the sufficiency of the von Neumann criterion. 

The basic difference between the CFL and the von Ne 

criteria is that the former condition only considers the location of 

those base points which are vertices of the convex hull. The von Neum 

condition considers both the location of all the base points and the 

means by which the solution at a point is calculated from the dependent 

variables at the base points. For this reason the von Neumann criterion 
is regarded as a stronger necessary condition for stability of non- 

simplicial networks and is equivalent to the CFL condition for simplicial 

networks. 

The von Neumann stability analysis gives an insight into what 

happens during computation by following a Fourier expansion of a line 

of errors as time progresses. Stabil-ty in this sense refers to the 

Fourier transformation of a linearised difference scheme to a form 

t +at AR- it (2.69) 

where the elements of the vector 
I 

are the Fourier coefficients of the 

dependent variables at time t and A is the so called 'amplification 

matrix'. In quasi-linear equations the dependent variables appearing 

in R are supposed to be 'locally constant', an assumption which becomes 

invalidated when these variables change rapidly from one grid point to 

another. 7he von Neumann necessary condition for stability states that 

all eigenvalues AL of this amplification matrix must be less than or equal 
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to unity in absolute va. 'Aue. The condition Xý 4s, I -t 0(&t) is usually 

strengthened by one or another sufficient conditions as described by 

Richtmyer and Morton (1967). 

The eigenvalues of the amplification matrix are obtained 

from the determinant of the 'characteristic equation' R-XIcO where: L 

is the unit matrix. Following the analysis presented by Matsoukis 

(1980) the determinant may be expressed as 

R-\R 
Iz. 

R 

F; 21 R-X0 C) (2-70) 

R F1 

which becomes 

(FI -X)[ (P -X) 
2» 

- P, 
x-R2.1 -9, - 13 -31 

1=0 

For the case R -X -0 the root X, is equal to R= ki. Cos ( Z- =F -a5)+ 

Cos and for any pair of grid points (m, n) the condition 

<-I is 8atisf ied. The other two eigenvalues X,, X. are calculated 

from the quadratic expression in equation (2-71) as 

!" 
-rw% C. 0s(&. T-r-r, - 

.as L, Ly 

)l 

(2.72) 

The von Neumann condition requires I \%, 31-c I which is ensured for any 

grid points with associated wavelengths (L, 
) L., ), when 

at F2. 
.LS Ic 

(2.73) 

It is important to compare the restriction in timestep given 

by equation (2.73) with the condition imposed by the CFL condition. 

At the maximum limiting timestep the characteristic cone representing 

the domain of dependence of the differential scheme is as shown in 

figure 2.4 

1/3 
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Figure 2.4 
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It is apparent from figure 2.4 that at this limiting condition the 
characteristic cone is tangential to the convex hull of the difference 

equations. This geometrical condition has been noted by Mitchell 
(1969) from which it is obvious that C- &t J- aS. Hence the CFL 2. 
stability requirement in (x-y-t) space may be expressed by the 
inequality 

At <-LS (2.74) 

which is identical to that derived from the von Neumann stability 
analysis. It has therefore been shown that at least for the method of 
characteristics, the CFL condition is both a necessary and sufficient 
criterion for stability and hence for convergence of the difference 

equations. 

The stability considerations presented in this section have 

been orientated towards assessing the degree of influence of the CFL 

criterion on the finite difference scheme based on characteristic 
equations. Establishing this influence is important since the CYL 

condition is more than just a relationship between time and space 
increments, it represents a significant fundamental relationship between 
the physical celerity C and the numerical celerity 0S in the numerical at 
scheme. Obviously in an accurate simulation the numerical celerity must 

propagate through the space-time grid as close as possible to the 

physical celerity with which principal waves propagate in reality. In 

this respect the CFL condition maintains stability as a numerical 

requirement for the simulation of physical conditions. Conversely, 

certain tests presented in Chapter 4 suggest that numerical discrep- 

ancies occur when deviations from the physical conditions controlled by 

the CYL criterion take place. 

One important consequence of the CFL condition at the limiting 

timesteD is that along certain curves namely the bicharacteristics, 

the domain of dependence of the difference equations is tangential 

to the differential cone. Referring back to figure 2.4 which depicts 

the system at time-t-&tq the four tangent points 1', 2', 3', and 4' 

evidently occur at the base of the bicharacteristics considered over a 

period At. The important feature highlighted by considering the CFL 

criterion is that the bicharacteristics occur at 90 0 increments of 
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the parametric angle 0 orientated at 450 angles to the x-axis. This 

orientation suggests that the characteristic equations derived from 

equation (2-32) should be formulated with values of the parametric 
angle taken in turn as 

-7 4T 
14, 

3-rr 
(2.74) 

4 

instead of the values taken along the axes directions given in equation 
(2.36). The two respective methods are henceforth denoted as 4.50 

characteristics and 90 0 characteristics and a comparison of their results 
and an assessment of their accuracy in simulating tidal flow is presented 
in chapters 4 and 7. At present it suffices to say that a non-linear 
finite difference scheme for an internal point based on 450 character- 
istics and the proposed interpolation scheme may be shown to be identical 

to equations (2.60) which is the non-linear finite difference scheme 

obtained from 90 0 characteristic considerations. However the finite 

difference expressions at the boundary points developed using 450 and 
900 characteristics are found on comparison to be slightly dissimilar 
from each other. Attention is given to these boundary conditions which 
are examined in the next chapter. 



CHAPTZR 3 
NUMLRICAL ASPECTS AND DEVELOR! ENTS 

3-1 INTRODUCTION 

Consideration must first be given to the development of 
finite difference expressions which describe numerically the long 

wave motion at boundary points. The general situation at a particular 
boundary point is as for an internal point in that the values of the 
dependent variables Z, U, V are known on a time plane t= t. - &t and 
are required at a grid point with coordinates ( Xo ) yo) to )- Once again 
the characteristic conditions of equations (2.40) to (2.44) associated 

with the bicharacteristics have to be combined so as to produce the 

required solutions However at a boundary point the presence of the 

boundary will prevent the establishment of at least one of the 

bicharacteristics in the problem area and the solution must be form- 

ulated from the remaining bicharacteristics. At the same time the 

situation is somewhat simplified since the imposed boundary condition 

at a point reduces the number of unknown variables by at least one. 

An irregular coastline may be approximated by an orthogonal 

mesh of grid points. It is usual practice to identify each particular 
boundary point by assigning to it a configuration number which char- 

acterises that particular boundary configuration. The allocation of 

these numbers for a typical coastline is shown in figure 3-1- 

OP9N SIEF4 

S 

* 

NIVANFIL POINT 

OPEM SifFi BOUNOORKI POINIS 

Figure 3-1 
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It should be noted from this figure that certain outlying points along 
the coastline may be assigned the configuration number 0 and are 

regarded as having identical conditions as those for an internal point. 

With reference to figure 3-1 two types of boundary points may 
be distinguished in thefollowing way: 

a) Open boundary points; 

These points delineate an interface between the area under 
examination and the open sea through which tide and surge 

waves are propagated. This interface or open boundary is 

distinguished by the occurrence of flow with a component 

normal to the orientation of the open boundary. 

Open boundary points are denoted by negative configuration 

numbers and the associated boundary conditions may be stated 

as follows; 

Points -1, -4 Ll #o V -v 0 
Points -2, -3 LL vc V 0 
Points -5, -6 LL -0 v 0 

The zero velocities at some of these points are a result of 

the assumption that no flow occurs normal to the coastline. 

If the problem area is an estuary it is assumed that the 

open boundary is sufficiently removed from the immediate 

influence of the estuary so that the effect of the oceanic 
tides can be represented as harmonic variations in surface 
displacements. This variation is established by referring 
to measurements obtained from tide recorders or by using 
Tide Tables. 

b) Closed boundary points; 

The series of points forming a closed boundary can be 

considered to represent a fixed vertical wall with a 

variation in height which corresponds to the total depth 

of water (H+ q', along the particular coastline. It is 

assumed that the component of velocity normal to this 
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boundary 'wall' is zero and so for points with the 
following configuration numbers, the boundary conditions 
are; 

Points 1,3 
Points 2,4 
Points 5,6,7,8 

LL =0V *F 0 
U* 0 V= 0 

Lk =01 V= o (3.2) 

Whereas with oDen boundary points only the required velocity 

components are computed from the finite difference scheme 

obtained from the characteristic conditions, both elevation 

and any non-zero velocity are computed at a closed boundary 

point. 

3.2 BOUNDARY &jUATIONS BASED ON 900 CHAR-4CTERISTICS 

The values of the dependent variables at the boundary points 

may be obtained by considering the bicharacteristic directions proposed 
Tr by Butler (1960), namely C9 = TT 1-Tv 0 The derivation uses as a )z) 

basis the characteristic conditions given by Townson (1974). These 

conditions have been stated as equations (2.40) to (2.44) and 

correspond to the four bicharacteristic directions and the particle 

path streamline. It is worth restating these conditions as follows; 

-= 

1 Ac. 

ýL --L zv- 
V2. 

at bt 

2-7-5 + C. LIL-LL, 
At Olt 

5.1-7-14. "' C- V-V4 

(3-3) 

ýu c-i-L" (3.4) 
bx ý3 

- C, W + c.. 5. ýH 
- r- -5, 

F:. 

(3.6) 
Ix 

-I L( ýLL ,w) 9. z5=-C. 
(3-7) Ltýx 

Consider now the group of closed boundary points with 

configuration numbers 1,2,3, or 4 confining the analysis to boundary 

point number 1 which may be considered typical of these points. 
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At this boundary point not all the bicharacteristics intersect the 

initial value surface and so the spatial domain of dependence is 

reduced. As shown in figure 3.2 the domain corresponds to that 

portion of the base of the characteristic cone which is situated 

within the problem area and is determined by the geometric shape of 
the boundary. 

S"UfION POINT 

s Cc ý.. SgD ESOVNDA; kZ POINT 

X, 3--l 

Figure 3.2 

The solution for Z is formulated along the bicharacteristic paths 2, 

3,4 and 5 by combining the corresponding characteristic conditions. 
v In this way the two unknowns and are eliminated from the problem 

and the solution is 

- 1, S:. 
Z3 Z. 

S 2.5 
( V, 

- 
Ll 3 

ýh-s Fx At (3-8) 
6x 

Since the boundary condition is Lk= 0, the term F, is also zero valued. 

Similarly by considering the bicharacteristics 2 and 4 and 
hence subtracting equation (3.6) from (3.4), the expression for velocity 

V is obtained as follows; 

7-2. - Z4 ý-H-5 Ftj 
' ltý (3-9) V' ji ( V2, ' VJ, )- 'ýZ' 

ý 

ý1ý3 
This equation is identical to that for an internal point. 

A linear interpolation scheme Q= Ax + By +C which is similar 

to that for an internal point is introduced to define a plane passing 

t1larough the points and The coefficients 
have the form 
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V 

T- (3-10) 

The coordinates of the bicharacteristic base points are 

x 3 

133's = ý. - V. &t 
I ý = ý. - (V:; r-) - 

at 

Hence with X., ý. ) as the origin of the local coordinate system 

Z2_ =z5+ r- iý, t - 
Bz 

Z, = zs c.. at. B. 
therefore J( Zz. 4 Z4 -Z5 in equation (3.8). Similar substitutions for 

Z, U, V and H using this interpolation scheme transforms equations 
(3-8)and (3.9) to finite difference equations expressed in terms of the 

grid points. From the point of view of clarity, the essential form of 
these expressions is more apparent on considering the particular case 
'6 H=o. With this condition the boundary equations (3-8) and (3-9) SX 
become 

Z Jý, 5 3"T. �j, -11,7- t 

vs -5- h' liz, 
e*l - im, e-t 

]/Z- 4cäý5 -5- Fýy - 'ý't 

for a boundary point with a configuration number equal to 1. The values 

of Z3 and V. S are obtained from the interpolation scheme; for example 

Z3 ý Z5 c. at. RX - V. &. t. BZ 

vs = V, V. &t .Bv 
( V. = -vi- ( v,,,., - 

The second type of closed boundary point is the 'corner' point which is 

represented by the configuration number 5,6,7 or 8. Point 5 is 

representative of such points and is now examined for the derivation of 

its boundary equations. With regard to figure 3-3 the only bicharacter- 

istic paths inside the problem area are those with characteristic 

conditions given by equations (3-5), (3-6) and (3.7). 
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Figure 3-3 
From these equations, expressions are required for the three unknown 
variables, the total depth Z and the partial derivatives ýA and IIX 
at point I, J. The velocities at this point are determined by the 
boundary condition U=V=0. The solution for Z is obtained by adding 
equations (3-5) and (3.6) and subtracting equation (3-7), and is 

Z=Z iLH-s , ýHS + \/4 ) 
-+ C' £ý't 

( 
(3.12) 

The partial derivatives of mean water depth may be expressed as 

H5-H, Hs - 
H4 

ýx C c.,. t &t 
(3-13) 

and these substitutions in equation (3-12) produces 

rL +U3 (3.14) 

which is the expression for surface elevation above mean water level. 

An interpolation scheme of the form Gk -Px+Bý-,. C is 

introduced so as to produce a plane passing through the three points 

(r-i -x ), (=, -T) and The interpolating coefficients maybe 

exi)ressed as 

R= 01: 
27 - 

Q-f-ill 
I 

G? 
=, -f 

(3-15) 
aS &S 

and are consistent with the expressions in equation (3-13)- Introducing 

the interpolation scheme into equation (3-12) produces 
2U 

Liz-l, 
-j (3.16) Z= Z3 + Z1, - 7-5 at 

( 

in which the finite difference exzressions f. or 
6M 

and 
1" have been 

omitted to simplify the presentation. 



49 

An alternative derivation for the solution of Z is to assume 
V that the terms 6 

and 
L 

are not unknowns and can be represented by 4x 45 
their finite difference approximations. Hence the solution is ob-ýained 
by combining only equations (3-5) and (3.6) and neglecting the particle 

path equation. The characteristic solution for Z is therefore 

Z V2. (ZS+ 1,, V2, (LL3. 
+ V,, Y, S: 

'( 
ý-'k 

I 
ýV- )-at 

4- V2. 
-C. 

( L" Hj 

3 . 17) 

Introducing the interpolation scheme transforms this equation into 

! 12- ( Z. 
3 4 1") - Sý 

. 
LLZ,: 

r - LL%_ 
1,1- - 

VI'T - Vr, 
'1 (3-18) ___ &S 

which is equivalent to the finite dif. ference expression given by 

equation (3-16) provided 7_, _ -j( Z3 +Z 4 
). This equation suggests that, 

at least for boundary point 5, the quantities LLL and V can indeed be 

approximated by means of their finite difference expressions (LL,,,, - 

LL )/&, 5 and (Vr - VT 
,3 

)/AS respectively. 

At boundary points 6,7 and 8 the solutions may be derived 

in a similar manner and have a form comparable to equation (3-18)- 

Open sea boundary points are responsible for generating 

tidal waves (and surge waves if required) into the area of the model. 
In the tidal problem such points ultimately establish harmonic 

conditions throughout the model. At this type of point the harmonic 

displacement of the sea surface is specified while the velocity 

components U or V or both remain as unknown dependent variables. 

Considering a point with the configuration number-1 as 

typical of such open boundary points, the system of bicharaceristics 

is as shown in figure 3.4. 
SOL. UTION POIN'r 

OPEN SER aoVND1A1k'j 

Figure 3.4 
The system consists of all the bicharacteristics excePt number 3 and 

so equation (3-5) is not included in the characteristic conditions. 
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The remaining four conditions may be combined to provide a solution 
for the unknownsU and V whilst eliminating the unknow-r ýý and L" 

bx b'6 
from the conditions themselves. As a result the solution becomes 

-. 
1 (7- 

- Z, ) 
tI( VL 

- 
Vj, )+5- ýý 5- at - 5. F" . at 6x 

+ 

with 
z=- H0 (3-19) 

The derivation of the velocity component V is identical to that given 
for boundary point 1. 

The interpolation scheme Q= Rc+ Bý3-&C with the values of the 

coefficients given by equation (3-10) applied to boundary point 1 is 

also applicable to the present case. Incorporating this interpolation 

scheme into the velocity equations in (3.19) produces 

LL = LL 
I -1- 

2. 
-(z-Z, 

)+c. &t. ( V., 
.-V, , *- 5 

ý-. ýs 
. at - S. F.. A 

C. 7, --, 
)-X 

z- 81 5 (3.20 

VV3- L6'- rl F- &t 
Z. &S 

In the previous equations the components of friction incorporated in 

the terms F. and F. (in dimensionless form) are neglected at the open 
boundary points since the tidal elevation whether measured or taken from 

tables implicitly includes this effect. The velocities are therefore 

computed from these 'frictionalised' elevations and so explicit friction 

terms need not be present. 

In equations (3.20) the values of U, and Z, are interDolated 
from the grid point values as follows (using Q as the general dependent 

variable) 

Q, = Q5- r-. it Gk (3.21) 

where Q, = -ý ( Q, 
X� - 1)/4 5 

Z. As (3.22) 

It is apparent then that the particle path roint 5 has coordinates 
(-Li. &t) -V, &t) relative to the boundary point under discussion. If 

this boundary point is situated in deep sea the values of the particle 

velocities will be very small compared to the wave celerity therefore 
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the particle point 5 will lie very close to the boundary point. On 

the flood tide (LL>O) the convective displacement ys = -LL. At will be 

negative and so 1ýhe particle path point will lie outside the area of 
the model. The situation is more satisfactory on the ebb tide since 
L, L, r-Oand the particle path lies inside the model. Hence equation 
(3.22) is only strictly appropriate for an ebb tide situation. 
Ideally the central difference exDression LL-at(a%, 1, T- 

Q-L-1,7 )/Z'aS 

is required in equations (3-21) and (3.22) however the data at point 
QT As 

. _,, T is unavailable and so a forward difference is used instead. 

a result of the position of the particle -oath on the flow tide this 
forward difference is strictly not applicable and so an extrapolation 
is required. If it is assumed that the value (i-Q ) outside the model hX S 
is equivalent to the value 00) inside the model then the respective bX S 
backward and forward differences may be equated 

a. 5 as % 

This assumption appears to be reasonable provided, as already mentioned, 

the particle path point is positioned close to the boundary point. 

Only then can equation (3.22) be considered a good approximation to 

the exact interpolation of the particle path point on the flood tide. 

In contrast, if the open boundary was positioned in shallow water where 
the fluid velocities U and V were of substantial magnitude compared to 

the wave celerity then a more accurate extrapolation scheme would have 

to be devised. 

The final type of boundary point to be examined results from 

the junction between a closed and open sea boundary. A typical example 

of such a point is shown in figure 3.5 and has the configuration number 

-2. 
SOLU-'rION POINIr 

Mi)(IED BOONDRR'* PCOPINT-2., 

OPEN SE19 50URDA$k'. ý 

-z, zr-i 
LL. 

Figure 3-5 

(3.23) 
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The boundary condition at this point is V=O and since the total 

elevation is a known harmonic function then the three unknown variables 
are LL, and '. here are three bicharacteristics 1,4 and 5 with 
associated characteristic conditions namely equations (35-3), (3.6) and 
(3-7). Combining these equations so as to eliminate the terms ýL-L and 6x 

gives a solution of the form 

LL LL, -V+ 7- "Z + 7. s. ýHs 
I)- 

&t b1t 4 cb 4 1ý 
)+0, 

with Vo 

Z=&. cos(o-t) 4. H. 
(3.24d' 

Using the interpolation scheme Q=Rx+ Bý *C and taking the 

values of the coefficients as those for a 'corner' point given in 

equation (3-15), the interpolation of the intermediate points in the 

above equation is straightforward. The final expression for the 

velocity component U may be expressed in terms of q by assuming the term 
( HS- H, ) is negligible. Hence 

Lt = Lt 
,+3-v 1) - 5. F, &t 

C. ( rL - rL ,-q1. -qs)-c- &'c -( Vx, .7 -Z 1 
11- 

wi th (3-25) 
U C. at LLT-111 - LLZA 

As 

at q=,. 
T' -) 

IN'S 

q5= rL 
; C, I - LL - b1t -(q r-t 1, T-q%, -s ) &S 

The position of particle path point 5 on the flood tide has the same 

convective displacement -II. Atin the x direction as that of boundary 

point -1. hence the same assumptions regarding extra-polation have been 

made for boundary point -2. 

An analysis of boundary points -3, -5, -6 follows the same principles 

governing the derivation of equation (3.24) and the final form is also 

similar. For example the solution at boundary point -3 is 

LL, + V2. ZI -2L41'. 
) + 5( 

ý, 6 4- ýhs )-5. Fý. &t 
'b x bi 

V= (3.26) 

C- osC cr ý). H 
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With the boundary conditions formulated the next logical step 
would be to examine their stability. However a stability analysis at 
the boundary points is extremely difficult. Cne possible means of 
analysis is to consider the Ryandiki - Godunov criterion although 
Richtmyer and Morton (1907) have commented that it is 'fearfully 

complicated'. Unfortunately the condition is only a necessary one and 
may not be sufficient for ensuring complete stability. The von Neumann 

stability analysis is reasonably straightforward in its application 
but does not account for the various boundary conditions and therefore 

is not completely rigorous. It is notable that the C. F. L. condition, 
by virtue of being applicable to any specific point, gives requirements 
for boundary points in the same manner as for an internal point* 

In practice simple numerical tests have been used to establish 

stability and consistency of the internal point. Once this has been 

verified, any signs of instability on further application of the scheme 
can only be assumed to originate from the boundary conditions. For 

example in section 4.3.1 the internal point and boundary conditions were 

stable in test 7. The same numerical scheme for the internal points was 

used in test 8. Since the results from test 8 showed signs of instability 

then this can only be attributed to changing the boundary conditions 
from those in test 7. 

Specific tests in Chapter 4 are aimed at establishing the 

accuracy of the 90 0 characteristic numerical scheme by simulating 
idealised motion and comparing results with the governing analytical 

solution. In these tests consistency of the numerical scheme with the 

simplifying assumptions used to derive the analytical so2ution requires 
that at all grid points numerical celerity be calculated from mean water 
depth and that convective terms be removed from the prescribed character- 

istic equations. 

As an example of the accuracy of the 9CO characteristic scheme, 

the simulation of a two-dimensional seiche in test 41 (section 4.4.2) 

gave results very close to those from the analytical solution. However 

in test 39 a numerical scheme based on 450 characteristics reproduces 

exactly the motion presribed by the analytical solution. The difference 

in results obtained from the two schemes lies in the differing boundary 

equations. hence the 450 characteristic boundary equations are presented 



54 

in the next section so that the significance of their difference from 
the 90 0 characteristic boundary equations may be better understood, 

3.3 BOUNDARY E, jUATIONS BASED ON 450 GHA: -JýCTERIbTICS 

The 450 characteristic equations as developed by Matsoukis 
(1980) were shown by him to be theoretically superior and s1l I 

i'-htly 

more accurate in practice than the 90 0 
characteristic scheme. It is 

emphasised that both schemes have identical form at an internal point 

and differ only at the boundary points. To formulate the boundary 

equations, the 450 characteristic conditions must first be considered. 
These conditions are obtained from equation (2-32) by taking values of 
the parametric angle as 

z 1-r 
(3.27) 

4- 
which correspond to the bicharacteristics shown in figure 3.6 

95 OF ip4E 

Figure 3.6 
The characteristic conditions have the form 

9 (Z - ZA - Icz .cý 
(L ýL) - 

L2- 
- --(v-vo) =- c- zz: 

at 2- at Z 

av 
(3-28) 

Lv )ýn Fy 
7- ýx -ij 7x' bi Z 

(ýý- ZJ r2- 
-c-( (i - L, 

2: 
) 

- ! ýzý 
-)= -C. 3, L2. Mm + ýH ) 

4t 
i 2- at Z ýx -gl- 

(3.29) 

--( 
l-LL + LLL , ý_v + 

Lv )- LZ 
. r- .2-(F. -Fy) 

r2- 
* r- (ý'Lý 3') + Y- V3*) cz (ýH. ký ) 

E 

at At 7- ýx bý 
(3-30)' 

%( ýLL 
- 

ýLL 
- 

ýbv 
, 

ýv )- c7- 
-c-. c.. j. (r, + 5, ) T äx iý i 2- 
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ýZ7, - C. ) -ýý + ý. b 
63 

- 9. (4 
-+ 4 

-+ ýy, ýv )- L2- 
. c. .(- Fr. i. iry )(3- 31 ) 

and the particle path equation is 

9 
(Z- 7-5 )- r- Z, ( ýMUL 

+ 
LY 

61t 
bx ý3 

) (3-32) 

The derivation of the 450 boundary equations is similar to 

that for 90 0 
characteristics. However in the former case the partial 

derivatives are this time treated as known variables. This assumes 

that the interpolating coefficients A and B are close approximations to 

the partial derivatives which is reasonable provided the grid size is 

sufficiently smallo 

Consider again boundary point I with the boundary condition 

U=0 and the 45 0 bicharacteristics as shown in figure 3.7 

T-, T- I 

CL-OSED BOUNDRR'J 

POINT 
,I 

Figure 3.7 
There are two bicharacteristics available (since the particle path is 

not really a bicharacteristic) and two unknown variables Z and V. hence 
by adding and subtracting equations (3.29) and (3-30) the respective 

solutions for Z and V are as follows 

Z. 
3, 

LL Lt 
-4, 

LZ 
\/3, 

3 

+ ýLY at j. 
r2 
ý. c (3-33) 

x 2. 

Ix Lt + 
17 

7- V, V3. ) 
2- 

-1 I(U 

C. - 'C' t ALL + ýv a, ý 
. 
ýH -5- at. F 

61 ýx 'g-j (3-34) 

These solutions have been obtained without the involvement of the particle 

SOLUTION POINT 
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path equation. 

With the interpolation scheme Gt -2 Rx+8! j - C, and the co- 
efficients given in equation (3-10) (where A and B are approximations 
to W 

and UO 
respectively) the following expressions are obtained 

ILL 

t+C 06t Uý 

2- TX 2- ýýj 5 
(LIS = 0) 

hence C_ 2* U. 
1+ 

LL LL 
TX 

similarly S- V V, ý_V 
S3X Zýý 

With these substitutions in equation (3-33) and taking ýh- 0 for 

convenience of presentation the solution for Z is 

-Z 7-,: - Z, ý At C- ý_V 

which may be written as 

7- '1-- YX ( 12'. + -Z 
3') - sý- -`- Ez, ( LLx, 

a-., - LL 
I, _T_ I) - Ltz-1 

, 
)]/A 5 

a, ý LV 

117.1 - Vz,, x- 
j/2. 

- 4. 
(3-35) 

and has a form similar to its 90 0 characteristic alternative (equation 

(3-11))- 

Equation (3-34) may be expressed in terms of q as 
Vý !/ 

;L( 
Vj + V3, ) k 

-I(U Lli + C 
q3' -q ý 2 

+ at - ýý ( 
, 

V V L 5. Lt. F, 
ýýq (3-36) 

The interpolation scheme gives 

V, V- 
L2- 

.C. &t 
LV 

2 
C& 

. r. ýV 

. 6x 

V, 
31 

V 2. 
ýV 

- 
Cl 

. 
b6t 

ýV 

; 
x 

hence V2.1 + V. 
31 

V5- Lit 
ýV 

: 4, / 

and similarly = 
r2- 

. 
§ý; LL LL 

3' 
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Substituting these terms in equation (3-36) gives 

V 
r, -5- ßt L rt , ý, s* i- rL 

, 1- 1]/2.. iý 5- 
_q - 

&-t - 
F, (3-37) 

which is equivalent to the velocity expression for an internal point 

and also to that derived using 90 0 
characteristics. 

Both 90 0 
and 45 0 

characteristics yield solutions at the 

boundary points where the absence of certain bicharacteristics causes 
the solution for total elevation to be formulated in terms of the 

characteristic path points. This contrasts with the solution for an 
internal point where the form of the equations indicates that the 

solution propagates along the particle path. It is therefore at the 

boundary points that the characteristic conditions have their most 

important role and hence the importance of establishing a method which 

considers the correct position of the bicharacteristics. 

The boundary point with a configuration number of 5 is typical 

of a 'corner' point which has as boundary conditions U--O, V=O. In 

figure 3-8 the single bicharacteristic is depicted and its character- 
istic condition (equation (3-30)) provides the solution directly for Z. 

SOLU'rION POINT 

CLOSED BOUMDAR'ý5 

PO I Nr 5 

-C. 4t 

Figure 3.8 
Hence 

, 
IH ýH at 

2- Tx iý 
)- 

at 
LV 

bx (3-38) 

Interpolating for point 3' using the equation 4k= C, produces 

LIL 
C2- 

r- Alt. 
a ý 2. 

-C. C. at. 0) 3S ýbx z 

V3, vs Lv - C. &t . 
L" vs 0 

ýx bý 
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which combines to give 

r2. 
.c. U- LL + V1. 

3 bx 

Substituting this expression into equation (3.38) and expressing 
C. At 14 ý-H + HS - HS 

results in 

rL + ýV_ at 3' ?1X 

With the coefficients of the interpolation scheme taking the values 

given in equation (3-15) the solution takes the final form 

2. 
at 

(3-39) 

where C '-: 
c, s 

In equation (3-39) the form of the difference expressions is identical 
to equation (3-16) however the latter equation was derived using the 
approach whereby the partial derivative terms were considered to be 

unknown. The equivalence between the finite difference expressions in 
both equations using two different approaches suggests an equivalence 
between the partial derivatives and their finite difference represent- 
ations. 

Consider now the set of open boundary points represented by 

configuration number -1 with its bicharacteristics as shown in figure 

3-9- SOLUTtON PO(Nr 
, 

OPEN SEF1 BOUNDRRIJ 

pomrr, -1 

01 

I'T-1 

Figure 3-9 

Since the surface displacement Z is a known harmonic function the 

characteristic conditions along the two bicharacteristics may be 

combined to give solutions for the unknowns LL and V. The solution for 

the V component of velocity is formulated by subtracting equation 

(3.29) from (3-31) to give 
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V1, + V,; LL 1 (3.40 
2L 

(bx 
ýt 

By introducing the interpolation scheme Q =Ax*Bý+C with coefficients 
given by equation (3-10), the solution for V becomes 

V= V5 -1 
(3.41) ! ý- IýIt -(- 

This expression is identical to that obtained by considering 90 0 

characteristics. 

In the same way equations 0.29) and (3-31) may be added to -4 

produce the solution for U namely 

LL = Y2. V, )+ 
2. C 

(3.42) 

El 
-C+ ýx 2( Zýx 

A further development is to incorporate the particle path equation 
(3-32) to give 

LL =ý( a'. - LL, ý 
)- 112, ( V, 

--V, - 
)+2Z L27 

'0'( 7- 'Is-Zi- 7-Aý) "5 4t (3.43) 
6X 

The values at the intermediate points 1 to 5 may be expressed in terms 

of the grid point values using the interpolation scheme as follows 

LL + 
rl 
2. at 

LL 

C.. r at 
(3.44) 

Z5 
TI 

As with the 90 0 characteristic scheme at this boundary point, the inter- 

mediate point 5 will lie outside the model during the flow tide. The 

assumptions mentioned previously regarding the extrapolation procedure 

are also applicable to 4,50 characteristics. 

Finally, the boundary point -2 is examined since it represents 

a mixed open and closed boundary system. The boundary conditions are 

CL -cos 

0 
so the only unknown is the velocity component U. Its solution is 

obtained from the characteristic condition (equation (3.31)) directly 

-z by considering the bicharacteristic shown in figure 
1.10. 
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SOLU'rION JPOINT 

0 0_1_ 

MIXý-D BoumDHRIýi POINT -2z cl.. osO souNDARý 

OPEN -SEFI BOUNDRFLY 

Figure 3.10 
The solution for U is therefore 

A3 
LL -V, + + H-HS) + c. at. (jý, f , LVý IV 

With the inter-polation scheme Q= Rx + 5ý+ C and the coefficients given 
in equation (3-1.5) the values at the intermediate points may be 

expressed as 

LL Lt + 5 C. At. C. at z 

V, ý 
VS + 

C2- 
- C- - at. 2. 

- ý-L. 
C- . At . ý-V bX z bý (V-S . 0) 

Hence Lt V 
S 

L2- 
.C- &t ý-V 

z bX 1ý 6, < 
+ ý-V 

ý"j 

If the term (H-H. ) i s neglected then the interpolations transform 

equation (3.45) into 

LL 2- 0 
4, 

)+ rz. C. n't - 5+': 
ýC-7- rL -I 

which may be written as 

Jz 
E- .9 LL', LLJý, V: C,. T- 1) 

(3.46) 

IO. S 
The essential feature in deriving this and the other solutions 

at the boundary points is that terms such as LLL 
I 

L"' appear in the ýq bx 
characteristic form of the solution which subsequently cancel with the 

terms --r- the interpolated expressions for the intermediate points. 
Hence the final form only contaizs terms such as 6L and V which may bx b! S 
be exrressed in terms of the grid points. 
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3.4 C014STAIIT DEPTH CONSIDZRýTICNS 

The simulation of a two-dimensional seiche in a frictionless 
basin of constant depth provides a good illustration of the success or 
otherwise of the integration and interpolation procedures based on 

either 90 0 or 45 0 characteristics. The results ol the tests using both 

numerical schemes are izesented in section 4ý4.2 and suggest that the 
450 characteristic scheme is 'the only one which can successfully 
reproduce the analytical motion. The greater accuracy produced using 
a 450 characteristic scheme compared with a 900 characteristic one can 

only be attributed to the boundary ejuations since only at these points 
do the numerical schemes differ. 

The analytical solution is only produced when the numerical 

scheme is linearised and when boundary point 1 has the following 

equations 

7- = 7-,, - at -E 'i ( u-,, - Lt %, 7. ) - LL. -,, I/& 
- H, - at, VM, 'J* I- vz, -j- I]/ Z. AS 

\f = Vo - 3' ät '( rL��� - 9- Z -as (3.47) 

ýI = 

4-IZ. 7-x-1,7 ) (3.48) where + 

va = V4 ( vzllj*l 4 'ý%) 
J-1 1. Z, V 

I-ill 
) (3.49) 

and when boundary point 5 has the following conditions 

- 11 x+v- 
vl,. (3-50) Z= ý4. - ät -(u. % it t) Z' %) %) Z 

LL - 

where z"= VI ( 7- T-1,7 +7T, v- I) 
(3-51) 

It remains now to show that these boundary equations can only be derived 

frcm 450 characteristics and not fror. 900 characteristics. 

It has already been mentioned that the CFL criterion is not 

merely a stability condition but a, its limit gives the relationship 

between numerical and physical celerity. In x-y-t space this relation- 

snip i-- c and it is essential that this condition is maintained 
at 
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so as to ensure an equivalence between the numerical and physical 

celerities. Therefore to accurately simulate two-dimensional seiche 

action the numericall timestep must be calculated as 4, t 45 

Consider now the base of the characteristic cone at boundary 

point 1 obtained from 45 0 
and 90 0 

characteristics in figures 3.111(a) 

and 3.11(b) respectively 

I 2 

Icä 

(U) (CL) 

Figure 
-3.11 

By observing the CFL criterion the domain of dependence of the 

differential scheme (the cone) is, at the limit, tangential to the 

domain of dependence of the difference scheme (the rhombus shown in 

ligure 3-1l)- However only in the case of 45 0 
characteristics do the 

base cf the bicharacteristics lie at the tangent points. 

The 450 characteristic solution for surface elevation 
(equation (3-35)) has been derived as 

VL ( Z, -, z")- S- - at. ( "i ( LL 2,1-*. 1+ LL %, 7-1 )-it %- tIT )/ as 13 

- 
4ý 

2. 

ýF . V%, 2. - &5 

This equation is in fact identical to equation (3.47) providing 

X; L ( Z,. - + 13, ) 

Now by interpolating 

L2. 
.r. iý, t ,ýZ2 zs -, 1. = 

r2 
. C.. 4t 

x -f» 

and Z, = C. under linear considerations. 
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! 
E2. 

Hence (7-i Z,, ) 
2. C. t 

Z 

Since the CFL limizing timestep is used 
HE 

as 
2. - r-. at = -T- 

and from the interpolating coefficients 

Z5 

&5 

Therefore 
C2- 

ý2 2, C- &t. 
ý7 7 

1., +z 

and so 

1,2* (2z--z31. Z 

as required. 

Starting from equation (3-36) which is the characteristic 

solution for V and assuming that (U 
21-U3 j) is negligible at boundary 

point 1 and also that the motion is irrotat-Jonal so that ký: 
- 

ý-v 
=0 ýIj ýx 

then it is easily shown that 

VZ ( VI: + V3' )M 
-ý 

(V=, 
7-1 

4. Vx'T_ 
I ý+ 2- VT. 

-%, I) 

and the solution for V in equation (3.47) is obtained. 

It is now shown that the 90 0 characteristic scheme cannot 
form the required numerical scheme given in equation (3.47) for 

boundary point 1. Starting from the term Z. in equation (3-11), the 
interpolation scheme gives 

C. at - 
47- 

Z3=z5- Zi x 

which may be written in terms of the grid points as 

Z3 Z+Z 
a- 

Z, 7+1 Z"J-1) - 2.7- Zz 

With r-. &t= r-&. &S from the CFL condition the final form is 
2. 

z 
3 

J-2). ( ZZ, 
7.1 + 2, 

* 
17- 

* 7-: r 

which is different from that in equation (3.48). It is precisely th. L 

term Z3 that causes the 900 characteristic scheme to differ in 

construction from the 45 0 
characteristic scheme. 
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A similar analysis is now performed at the corner boundary 

point 1, by considering the bicharacteristics as shown in figure 3.12. 

-'b--- 

cr'' 
U7Z, 3 

\\ / 

L. s 

3 
........... 

C. 

as 

(a-) 

Figure 3.12 
() 

Again only the 450 characteristic coincides with the point where the 
difference and differential schemes are tangent and where a solution is 

possible (figure 15.12(a)). The 450 characteristic solution for surface 
elevation at t, ',. e corner point has been shown to be 

Z at. ( LI, LL +V-V T-1.7 1ý3 

which is equivalent to equation (3-50) providing Zi Z, 

Now Z Z 
E2- 

5 Z. r , ax at 

obtained from the interpolation scheme. Inserting the interpolating 

coefficients gives 

7-S = Z.. 
ý.., - 

L2-. 
c., at. (ZZ, 

T - Z,: as 

Since the CFL limiting timestep is used c. at &S and so 
Zj : -- -V 2- 

( Z- 
r -, ) 7 -'- z 

=, T-I 
) 

as required by equation (3-551). 

Similar considerations given to the 90 0 
characteristic solution 

(equation (3.16)) namely 

Z= Z3+Z ill - 
zs -%%. . at. (a%, 7 - LLZ-l'zT +9%, ý - vl,: 

3. - ý )i AS 

shows that 
I Z. 

2"-z=Z. z- r- - &t. ; -. - a. at - UZ -z 355 

Inserting the interpolating coefficients yields 

Z3 + Z". - at 7-m,: r - Z%-,, -, 
7=, 3, 

Since c. lit=12-. &S from the C. 7-L condition then the previous expression 2. 
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gives something quite different from equation (3-5i)- 

It is apparent then that at the boundary 1points the form of 
the solution depends on whether 90 0 or 450 characteristic equations 
are used. To reproduce exactly the analytical motion for the two- 
dimensional seiche the CFL condition must be adhered to in determining 
the numerical timestep. Additionally the correct solution is only 
obtained by taking characteristics at 45 0 angles. 

It is worth considering at this stage the effect of the inter- 

polation scheme in modifying the characteristic equations at the boundary 

points 1,2,3 and 4. Until now only one linear interpolation scheme 
has been used to derive the final form of the boundary equations at 
boundary point 1. The interpolation scheme (known as interpolation 

scheme 3) is of the form Q- Rw+Bj.,. r. and has the following coefficients 

Gk 
x7.. "* 6k %, 7- 1)-Q IT)/ 'ý' 

+ 

From this interpolation scheme, equation (3.37) was derived at boundary 

point 1 which under linear, frictionless constant depth conditions 
becomes 

(3.52) 

where VC) = 12/. ( V%, 
T- I-V. ") 

(3-53) 

It has been shown that interpolation scheme 3 applied to the character- 

istic velocity equation (3.316) under the same conditions also produces 

ecuation 0.52) however V. takes the form 

V. = !, - +V+ 2_. V 4( 
VZ, 

7+1 Z,: r- 1 1121-1 
) 

(3.54) 
There are therefore two different forms of the solution for V. and 
hence for V. It is found that in the case of an Ix-t' seiche in a 

basin of constant depth that the analytical motion is produced only when 
V. has the form given in equation (3-54). This also means that at 

boundary points 2 and 4 the correct form for U. in the equation 

LL = LIO -5- &t .(q %41,7 - 
)/ Z. as 

(3-55) 

must be 

Lt. = ! zi+ -( ýL% 
+ t,. r + LLZ-5.1 + Z. Lt 

Z) . 24 1) (3.56) 
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Under constant depth considerations at boundary point 1 the correct 
form for V, (equation (3-54)) suggests an interpolation scheme 

Q=Rx*B. ý+C with coefficients 

R=o) 
7+1 -Q%,: r- I 

where (; represents the dependent variables Z, U and V. This interpol- 

ation scheme which is only applicable in constant depth configurations 
(with the numerical timestep calculated from the CFL condition) is known 

as interpolation scheme 1. Its incormoration into boundary point I and 
its corresponding form incorporated into boundary points 2,3 and 4 

reDresents one necessary requirement for the successful simulation of 

the one and two-dimensional seiche motion in a basin of constant depth. 

For the general case of an irregularly varying sea bed and 

under non-convective flow conditions the solution for the velocity 

components U and V at an internal point has been shown to be 

LL U, -9- &t U 2. aS 

where Y4 ( LLx 
., 1,. r 

LL + LL Ll 

V4, VT -v 
. 1741 ,,, 

)/ Z. as 

where V. kk (* 
-f- V 2, 

V=-,, 
7 

VZ, 
X-l Z, 7-1 

On comparing this scheme with those derived using interpolation scheme I 

it is apparent that at boundary point 1 (or 3) the boundary conditions 

given in equations (3-52) and (3.54) are consistent with the V- 

component of flow at an internal point. Similarly at boundary point 2 
(or 4) the bcandary equations (3-55) and (3-56) are consistent with the 

U- component of flow at the internal point. This suggests that the 

boundary conditions given by equations (3-52), (3-54), (3-55) and (3-56) 

are the correct form for flow in channels of variable depth as well as 
for constant depth. 

Interpolation scheme 1 may be viewed as providing expressions 

only at the particle path point M., V. ). It does not provide a means 

of interpolating at the intermediate points where the bicharacteristics 

lie. However the solution for the total depth at boundary point 1 is 

given by equation (3o35) in terms of the bicharacteristic pointso In 

such a case it is perfectly correct to use interpolation scheme 3 since 
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for elevation this interpolation scheme is the general form of inter- 
polation scheme 1, and gives an equivalent solution for elevation as 
interpolation scheme 1 for channels of constant depth. 

To summarise then, the solution in a channel which is not of 
constant depth is obtained by using equations (3-52), (3-54), (3-55) 

and (3.56) for the velocity components which are based on interpolation 

scheme 1 while the total depth equation must be incorporated with inter- 

polation scheme 3. This arrangement is termed interpolation scheme 4 

and is shown in test 26 (section 4-3-3) to produce the most favourable 

results of all the tests used to simulate a forced oscillation in a 
channel of linearly varying mean depth. 

The remaining linear interpolation scheme that is considered 
in the present investigation has at boundary point I for example, 

coefficients of the form 

Z'. 3, - 9%-I, l 
)/ 

B=( QZI. 
T+l -a)/Z-& 

C= 

It is shown in Chapter 7 that this interpolation scheme (interpolation 

scheme 2) is preferable to the other schemes when the coastline is very 

irregular. A possible explanation for the success of interpolation 

scheme 2 and the limitations of the others in a real situation is 

suggested in section 7.3.2. interpolation scheme 2 may be viewed as a 

scheme constructed out of the necessity for results close to the physical 

prototype with less regard for its mathematical verification. In contrast 

both these requirements are fulfilled when using boundary interpolation 

scheme 1 for constant depth channels and also when using boundary inter- 

polation scheme 4 in channels of linearly varying mean depth. 

3-5 Tla METFOD OF SUBDIVISIONS 

Any improvement of the characteristic numerical scheme must 
first involve an understanding of the fundamental mechanism by which 

simulated waves are propagated through the grid along the bicharacter- 

istics. Only then will any limitations in the scheme become apparent 
for further examination and rectification. With this concept in mind, 

the simple case of a unimodel seiche in a closed basin of constant deDth 



68 

in x-t space is now considered. 

It has been shown in Chapter 2 that to maintain stability a 
timestep must be selected that is less than or equal to that prescribed 
by the C31 criterion. -Lt is Low shown that consistency considerations 
between the numerical and physical processes require that the timestep 

be the maximum permissible value obvying the CFL condition. Furthermore 

a timestep less than this does not improve the accuracy of the simulation, 
in fact it reduces it. Consider the characteristic paths in figure 3.13 

representing wave fronts in a one-dimensional seiche in a channel of 

constant depth and hence constant celerity 

+ Nt 

Figure 3-13 
The solution at point 0 is formulated from the superimposition of two 

waves of celerity C travelling in opposite directions along the x-axis 

and meeting at point C. In numerical terms the solution at point 0 attime 

t-6, at is obtained from the two characteristic paths originating at points 

I-1 and I+l and travelling with a numerical celerity ! Ms. The numerical at 
scheme must therefore be constructed so that tidal waves propagate with 

celerity 4L5 and this should be as close as possible to the physical at 
celerity c to maintain an equivalence between the numerical and physical 

processes. This relationship is precisely that given by the CFL 

condition at the limiting timestep ie at LSR. If a timestep at I is 
G 

selected such that it is half the value of the maximum timestep then 

the solution will be required at 01 as shown in figure 
. 
1.13. This 

implies that the characteristics originating from I+1 and 1-1 propagate 

with computed celerity ! ý--5 which is twice the physical celerity. In 

this case physical consistency is not maintained. In section 4.4.1, 

the simulation of a one dimensional seiche in x-y-t space using tests 

35 and 37 verify that the analytical motion is only achieved when the 

timestep is obtained from the CFL criterion at its limiting condition. 
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The results in this section suggest a decreasing performance on 
reducing the timestep in each test. The conclusion is obvious, once 
the spacestep has been selected there is only one value of timestep Lýt 

appropriate to the problem. A greater value than At causes instability, 

a lesser value leads to inaccuracy. This conclusion applies in any 
number Of space dimensions. 

Now consider the previous seiche motion in x-t space only 

now the bed slope varies linearly. To preserve the stability require- 

ments the computational grid must be based on the maximum depth in the 

channel. hence having selected a suitable spacestep, the timestep iz 

obtained f rom the CFL criterion &t = 11 S/ r-,,, where C,,,,, ý (, B HmAy)ý * 
At a point along the channel where H -. ýj 

MPIA 
the arrangement of character- 

istics is as shown in figure 3.14 

1' 

At 

.1 _1J 

() I 

Figure 3.14 

as =C at rnA5e 

The solution at point 01 can be expressed directly in terms of the 

characteristics originating from grid points I-1 and 1+1. The solution 

is as follows 

Z: C..., UL: LL Z. bS ýý. at. ( 
%, (3-57) 

LL 'ý 4. ( LLT. 
-I 'ý' Ltlý 

I) - 3. &t I. ( Z=41 - ZT. 
-I) 

I 7--, LýIs (3-58) 

However the constraints off a regular grid require that the solution 
be obtained at point 0. At such a point the characteristics are assumed 

to emanate from the intermediate points 1 and 3 and not from the grid 

points I+l, I-1 as in the previous case. To obtain a solution at point 

0 the values of the dependent variables at points 1 and 3 must be 

obtained by interpolating between the known values at the grid points. 

The solution at point 0 is 

(3-59) 

C. at 
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LI, -. 11 
r- (3.60) 

-3) 
- 2- - 

2- (q-- rL 
,) 

and a linear interpolation scheme Ci = Ax +C with 

+ 

transforms the characteristic equations into 

7- -= /Z ! -. , &t ( 
2- As LL 

LL V7- .t q. 1 
(3.62) &S ( q,:., 

-I 
)) 

A comparison of these equations with equations (3-57) and (3-58) shows 
that the only difference is the value of the timestep, nevertheless the 
solutions are different. In equations (3.61) and (3.62) the term S--&t 

as 
denoted as 6 is known as the 'courant number' and represents the ratio of 
celerity at Point 0 to the maximum celerity, The expression 0- S) 

provides a measure of the degree to which interpolation is required at 
each point. It is apparent from the geometry of the characteristics 
shown in figure 3.14 that the characteristics at point 0 arrive ahead of 
the characteristics at point 01 by 0-S). &SIC time units too soon and 
as already mentioned the solutions at both points are not'equivalent. 

The extent to which an interpolation scheme poses problems in 

the case of variable celerity may be better understood on considering 

the propagation of characteristics in x-t space over several time 

increments as shown in figure 3-15- 

at 

- t.. 2. at 

at 

Figure 3.15 

t. .A 

-t. 

-1 
ýl 
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Consider a true disturbance, travelling with a celerity c and represented 
by a negative characteristic at point B which arrives at point P1. In 

numerical terms the disturbance at Doint B is transmitted to point P 

through the series of 'broken-line' characteristics which employ the 

interpolation scheme. After three successive time increments the 

interpolated characteristic arrives 3(1-S)-&S1C time units too soon in 

front of the true physical disturbance. The numerical wave front 

represented by the broken-line characteristics has in fact been generated 

at a celerity determined by the grid parameters (which is the maximum 

celerity in the channel) and is not equivalent to the celerity at point I. 

From the symmetry of the figure it is also apparent that a similar 

argument is valid for positive characteristics. 

The problems associated with a regular mesh of grid points 

applied to the case of variable celerity as a result of linearly 

varying mean depth manifest themselves in theform of numerical atten- 

uation. The tests in section 4.4-3 provide ample evidence of this 

attenuation. However it is notable that the method of characteristics 

indicates how attenuation might occur by showing that disturbances may 

be wrongly propagated through the grid. These erroneous disturbances 

or 'ghost chFracteristics' are shown as dotted lines in figure 3.15. 

The generality of this figure also implies that reducing both grid 

parameters will not improve the simulation. 

Numerical attenuation was also found by Wiggert and Sundquist 

(1977) when simulating free wave motion of variable celerity using the 

method of characteristics with linear interpolations and a regular grid. 

Their error analysis suggested that a measure of the propagation error 

may be expressed as 
C ft 

__Z_MW - (3-63) Cn-0- S) 
where rl is the number of subdivisions of the spacestep. (Note that 

nml for the grid shown in figure 3.15). The term 6 can be regarded 

as a shifting operator brought about by the need for interpolation. Its 

affect on the total error can be reduced according to equation (3.6171) 

by increasing the value of rL. The emphasis is only on reducing the 

error since rL would require to be very large to remove the error 

completely. A large number of points over the spatial domain is impract- 

ical with the present computer facilities. 



72 

The ideal computational grid would be one with a flexible 

spacestep, which could adjust to ensure that at each point the domain 

of dependence of the difference and differential schemes were 
tangential to one another along, the characteristics. At present this 

situation only occurs in cases of constant depth where there is one 
fixed celerity. The Lnethod of subdivisions atte=ts to approximate 

the ideal state in channels of variable depth whilst retaining the 

advantages of a regular grid for example the convenience of having 

results at equidistant points. The method aims at ensuring that the 

characteristic paths are positioned in the immediate vicinity of the 

grid points so that the error associated with interpolating (1-$ ) 

is reduced. By considering once again a channel of linearly varying 

mean depth in Ix-t' space with emphasis on the movement of wave fronts 

as depicted by the characteristics, the advantages of the method of 

subdivisions in comparison to former methods become apparent. Consider 

the characteristics at an internal point in a channel where the space- 

step &S is divided into three equal parts as shown in figure ,,;. 16. 

c at C'. c,,,. at 

M W-L 

c at at 

Figure 3.16 

It is obvious that in subdividing the spacestep and so increasing the 

number of grid points, the feet of the characteristics will be closer 

to these roints than before. The error in interpolatin, ýý from these 

points (I- 16 ) is now reduced from S'61 to I- S-O't where rn is the 
as M. asý 

minimum number of subdivisions required to form the domain of depend- 

ence of the difference scheme at a given point. Another advantage of 

this scheme is that since the characteristic zaths are close to the grid 

points, the characteristics at one time level will follow on closely 

from those at the previous time level. Thus by using a method such as 

t-at 

at 
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this, the characteristics are more continuous and therefore there is 
less possibility that 'ghost characteristics' are being generated. 
However it would not be expected by using only three subdivisions 
of the spacestep to entirely remove this unwanted process. 

In considering the method of subdivisions in 'x-t' space the 
CFL criterion Lt = &S/C-mPtx is still valid and may be written as 

rL. & S' (3.64 
C MRX 

It is an interesting sideline of the method of subdivisions that if As' 
is given the value of as, and if rL=3 then equation (3.64) produces a 
value of timestep, three times larger than that given by at. asIC . 
In such a case the timestep has been amplified instead of subdividing 
the spacestep yet no violation of the CFL criterion has occurred. The 

possibility therefore exists of performing computations using a larger 

timestep, than that required with a regular grid without subdivisions. 
This feature is examined in section 5-b. 3 for wind surge propagation 

on a shelf with linearly varying mean depth. Again the advantage of 

more continuous characteristics using subdivisions is evident from 

figure 3.17 
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The method of subdivisions outlined so far seems an attractive 

proposition, however near the boundary points its implementation is 

rather more difficul-.. This is especially true as the number of space 

dimensions increases and this author has found no publications 

regarding this problem in x-y-t space although Vardy (1977) has presented 

details in Ix-t' space. Consider now a typical boundary point in Ix-t' 

space with three subdivisions of the spacegrid as shown in figure 3-18. 
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At the boundary point I the solution can be obtained directly from back- 

ward characteristic in the usual manner however at grid points 1+1,1+2 

the forward characteristics intersect the boundary along its time axis. 

At these points the characteristic equations (3.61) and (3.62) are not 

applicable since they are derived from forward and backward character- 
istics originating at one time level. Considering point A, one possible 

means of obtaining a solution there would be first to obtain the values 

at point Aby interpolating from the known values at the boundary point 

at times t. and t. +&t . The position of point A' can be obtained by 

assuming that the forward characteristic has a celerity given by the 

average celerity between points 1+1 and I at time t0. The character- 
istic equations would then have to be revised to include character- 

istics generated at different time levels within a given timestep. This 

method is extremely complicated in x-y-t space and so was not attempted. 
Instead as an initial investigation of the method of subdivisions a 

simple linear interpolation applied between the points P and (; was used 

to obtain the values at A and Bo 

The interpolation scheme incorporated into the numerical scheme 

for two space-dimensions is now outlined. Essentially it consists of 

assigning at each grid point, an interpolation number in accordance 

with the particular way in which a bicharacteristic intersects a boundary 

point. If there is no intersection then the solution at the vertex of 

the bicharacteristics is calculated in the usual manner and the grid 

point given the interpolation number 0. Each point is examined at any 

given time level to establish the grid points required to form the 
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domain of dependence of the difference scheme that encloses 
the differential one. The limiting condition is obtained from the 

CFL criterion namely 
F7L 

. 
rL T 
c rn RX 

and is depicted in figure 3-19 for three subdivisions 

T-A T 
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Figure 3-19 
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At any point in general the difference domain will require to extend 

a distance along the x and y- directions. The length of 
this path in relation to one subdivision is therefore Jr-2.. -. &t. / as' 

and the nearest integer m greater than this value indicates the number 

of spacesteps of size &s' required to form the difference domain of 

dependence. The number of spacesteps incorporated into the difference 

domain varies at each grid point according to value of celerity and 

takes values of 1,2 or 3 meaEured from the centre of the domain. 

At each grid point and from the knowledge of required number of 

spacesteps M to form the difference domain, conditions may be written 

to establish if the spacesteps lie within the model. If the space- 

steps are not available the grid point is assigned an interpolation 

number and the next point considered. A typical example of a number 

of grid points with their allocated interpolation numbers is shown in 

figure 3.20 and represents portions of the channel 
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Figure 3.20(a) represents the situation near the boundaries in deep 

water and the non-zero interpolation numbers show that at most points 
the bicharacteristics intersect at least one of the boundaries and the 

complete difference domain cannot be formed. In figure 3.20(b) the bound- 

aries are situated in shallower water and so only at the grid points very 

close to the boundaries, do the bicharacteristics intersect one of the 

boundaries. Having found solutions at all points with interpolation 

number 0 at a given time level the non-zero points may be returned to 

for the interpolation. The form of the interpolation is indicated by 

the interpolation number itself. For example at interpolation point 2 

the interpolation is 

. 4. Q 

and at interpolation point 6 it is 

QZ 
T-Z 

and so on. The interpolatiom in this form are somewhat imprecise, 

theoretically, and were only constructed because time did not allow 

the formation of a more satisfactory solution near the boundaries. in 

its application, care was taken to ensure that the grid spacing was small 

in relation to the problem so that the interpolations are not applied 

over too great a distance. In this way the method of subdivisions in its 

present form was found to reproduce the analytical solution for an Ix-t' 

seiche in Ix-3r-tl space. The method is also shown in section 4.4. 
-3 

to have 

some success in simulating the same phenomenon in a channel of linearly 

varying mean depth. In this case however the method of subdivisiorscan 
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only reduce the error in interpolationg not completely remove it and 
as a result attenuation still occurs. This error may be more precisely 
defined in x-y-t space as an inability to form a domain of dependence 
of the difference scheme that encloses exactly the domain of dependence 
of the differential one throughout all points in the channel. Initially 
the numerical schemes which were programmed in Algol - 60 were run 
using a George 3 teletype system linked to an Ia1904S computer housed 
at the University of Strathclyde. The programs were written in a 
general manner to allow their application to simple and more complex 
schematisations. The individuality of each problem was maintained by 
keeping the particular information of each case on separate data files. 
For the more complex configurations (presented in Chapter 7) involving a 
large number of grid points, the program required over twenty minutes 
computational time to complete one tidal cycle. Since the computer 
department operated a batch mode system giving priority to shorter 
programs, this inevitably led to a slow turnover of these programs 
during periods of peak demand. However by March 1979 it was possible to 

access the more powerful IBM 2980 comDuter at the Bush Estate, Edinburgh. 
To improve the program's efficiency it was rewritten in Fortran, the 
information being relayed from punched cards. As a result the computational 
time for subsequent programs was reduced by about one-tenth of that 

using the 1904S. It had been hoped that the factor would be about one- 
fortieth but this was not so because of the difficulty in outputing 
results using Fortran. A format of results which printed surl6ce elevation 
and velocity components to coincide with the position of the respective 
grid point had been used simply and effectively in the Algol programs. 
In Fortrang two dimensional arrays of results cannot be printed using 
only one control statement, consequently the array must be printed row 
by row using a do loop. Also to obtain a format which represented the 

arrangement of grid point8t meant describing the elements of the format 

statement and combining these elements in an array according to the 

configuration number. This involved long lines of programming and so 
increased the computational time. 

The WIL/B system used on the IBM 298C also operated a batch 

mode system wii-. ich even on this computer became overloaded with users' 

demands for machine time. The situation was drastically improved by 
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January 1980 when an on-line VDU system became generally available to 

all users. From then onwards a significant increase in the turnover 

of programs was produced. 
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CHAPTER FOUR 

THE SIMULATION OF LONG WAVE MOTION 

IN CHANNELS OF SIMPLE GEOMETRIC SHAPE 

4.1 INTRODUCTION 

To establish that the proposed numerical schemes derived in 
Chapter 3 are capable of providing reliable information, two fund- 

amental issues concerning the accuracy of these schemes must be 

resolved. Firstly, one must show that the numerical integration 

scheme can successfully solve the differential equations and secondly 
that the difference equations combined with the initial and boundary 

conditions can define the physical phenomenon. Only then is an 
equivalence between the physical process and the numerical model 

established. Testing the ability of the model to integrate the 
differential equations is mathematically related to the concepts of 

convergence, consistency and stability. For example, one of the 

requirements of the integration of the difference scheme is that it 

is equivalent to the solution of the differential one as both space 

and time increments tend to zero. In practice this requirement 
becomes difficult to implement as a result of increased computational 
time with successive decreases in the spacestep and timestep. 

Application of the numerical model directly to an idealised or 

real situation and comparing the model's results to theoretical 

formulae or recorded data is the commonest form of testing a numerical 

model. By selecting a channel in which the geometry is easily defined, 

the boundary conditions can be accurately represented in the numerical 

scheme. By simplifying the boundary problem the effect of the 

integration and inter-polation schemes can be investigated more 

confidently than for a complex schematisation. Unfortunately an 

assessment of the effect of the integration scheme cannot be made 

separately from that of the interpolation scheme in a direct way but 

it can be achieved by comparing the effects produced by changing 

either scheme. The distinct advantage of simulating the motion 
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produced in a simple channel is that the analytical expression, if 
known, provides the elevations and velocities atevery position in 
the channel at all time levels. This information is useful when 
comparing it with results from the model, The analytical models may 
not be totally representative of the real conditions but are never- 
theless valuable as a method of verifying that the numerical model 
is competent in solving the differential equations. Only after this 
has been established can the same equations in the numerical model 
be applied with confidence to real situations in which the testing of 
initial and boundary conditions will be more rigorous. If this step 
is successful the model is then capable of reproducing the physical 
process and an equivalence exists between the numerical and physical 
operations. 

4.2 THE ANALYTICAL SOLUTIONS 

The derivations of the analytical solutions are presented in 
this chapter in order to emphasise the correspondence between the 

simplifying assumptions used in producing these equations and the 

requirements of the numerical scheme when simulating x-t flow. These 

relationships are stated later in this section and are better under- 

stood once the analytical solutions are derived. 

Consider a narrow channel of variable rectangular cross section 

of width B and depth H, the x- axis is taken along the length of the 

channel with its origin at the head. The propagation of a long wave 

along this channel is defined by the surface elevation 6 and the depth 

mean velocity U which are functions of x and t. In the absence of bed 

friction and Coriolis forces and assuming that 6 is small in relation 

to depth H, then the equation of motion is defined as 

-+0 
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and the continuity equation has the form 

ý( B-H-U) =0 (4.2) 

By eliminating the velocity U from the above equations the second - 
order differential equation is obtained 

= 
BL 

(4-3) 

This equation is hyperbolic and becomes elliptic under the following 

assumption that surface elevation is harmonic 

61 ex r(ý . 7- t) (4.4) 

The general elliptic equation is therefore 

I15- ý' - (4-5) 

The case of a channel closed at one end with the other end open to 

the sea (in harmonic oscillation with it) was considered by Lamb 

(1932) who derived simple analytical solutions for numerous channels 

with different configurations. The following examples are of interest 

a) Constant breadth and depth 

b) Constant depth and linearly varying breadth 

c) Constant breadth and linearly varying depth 

With the origin of the x axis located at the closed end of the channel 

of length c6 and by representing conditions at the seaward end by the 

symbols ý, 7, Iff, Iff the problem is completely specified. The 

-t 
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tidal oscillation at the seaward end is denoted by 

Cos (0--t) (4.6) 

For each of the above cases Lamb solved the general equation 
(4.5). The results obtained by Lamb are now lirted 

a) Breadth H(x) a 'R 

Depth B(x) =3 

equation (4.5) becomes 

(4-7) 

taking k- cr/jq-H -P 

the solution is given by 

(4.8) 
c os (K0. ) 

on restoring the time factor. 

b) Breadth B(x) = x/a 

Depth H(x) = 

equation (4-5) becomes 

ýýYL 
-L C) (4.9) 

1x2. XX 

with K as previously defined, and the solution is found to be on 

restoring the time factor 

COS 4. io) 

K C, - 
) 
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(kx) is the Bessel function of zero order given by 
2. L4 

T" (x +xx 

or more generally by 

0.0 

C) Breadth B(x) = 
'9 

Depth 
-H(x) = 

'ff 
x/a 

The general equation (4-5) becomes 

x. II 
-I + Lq 

+k1 0- 1xIX 

with k as defined previously, and the solution is given as follows 

on restoring the time factor 

cr t (4.13) 
-J', ( 7- K c, - 

) 

The natural period of the lowest mode occurs when a nods exists at 

x=a such that q- o and the root of the Bessel function has the 

value 0.76551r 

Therefore 0.7655-rr 

and on substituting for k produces 

-r 
1. -5 0 ep . ti. 0, (4.14) 

where T is the period which is equivalent to 1.306 times that of an 

equivalent rectangular channel of constant depth 
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One of Lamb's basic assumptions is that the free surface 

elevations are small relative to the mean water depth. However in 

case c) where the channel profile is triangular this assumption will 

not be valid at the head of the channel. Furthermore this condition 

of zero mean water level cannot be applied in the numerical scheme 
because it requireq the condition 

q --- (4.15) 

so that the celerity calculated from the following equation 

c=L9( rL) I X, 
(4.16) 

is the root of a positive expression. It therefore becomes more 

advantageous to perform the simulations in a channel of trapezoidal 

profile. Firstly, though, the analytical solution for this channel 

is requiredq and the relevant hydrodynamic theory was first presented 

by Chrystal (1904). The derivation is as follows; 

If the origin of the x- axis is taken at a point where the depth is 
-9 then the law of depth will be 

H(X) X/a) 

where a is the length of the channel shown in figure 4.1 in its 

untruncated state. 

QL 

( 4.17) 

Figure 4.1 
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The harmonic variation of velocity at the mouth is defined as 

P cos HxI Cj- 

where ý is the horizontal displacement and P is determined by 

P+P (4.19) 
xH (i -x 

The elevation of the water surface relative to mean water level is 

defined as 

rL (4.20) 

Lquation (4.19) is transformed into 

Gýlp + 
Lp. 

+0 (4.21) 
AW1WAw 

by putting P= Rw (4.22) 

and =Zx C6 (4.23) 

so that equation (4.21) is a particular case of the Bessel equation. 
If J, (w) and Y, (w) denote the Bessel and Neumann functions of first and 

second kind respectively, the general solution of (4.21) is 

R. T, B Y, 
(4,24) 
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Hence with dight adaptation of the constants A and B the equation for 

elevation is found 

(4.25) 
Aw w 

and also 

( (4.26) 

One of the fundamental properties of and Y, (-) is that 

II(" -S, (W) ) -S,, (, ) _L 
ý (w Y, (w)) = Y,, (w) (4., 27) 

w Tw w lw 

Hence equation (4.25) becomes 

rL = Lz- [ 19 J, - (-) -aY. C W) ý Cos (0, t. 0) (4.28) 
p 

on restoring the time factor. Denoting 0(- = IM/Ic5q) (4.29) 

obtained from equation (4.23) with X- 0 and in a similar way 

p= la, [C 
I-fI OL ) 

11( 
5p) (4.30) 

corresponds to xap. 
The boundary condition for w -a'p is 

ý=0 
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Hence from equation (4.26) 

(A Tý (0- P) B Y, (-ý) )- Cos (crt +0)= C) (4.32) 

which yields the following solution for B namely 

F> =- FI -S, (0- P) (4-33) 
Y, (, 7- g) 

and substituting into equation (4.26) gives 

1 vi = R' ( (Lr ý) . i" (W) - j", (a. ý) (6j» Los (irt + 0) (4-34) 

and in equation (4.25) gives 

co_ 0) (4.35) 
rL Y, Y. 

The equations (4-34)1(4.35) define the movement and displacement of the 

free surface of this channel which is equivalent to considering one 

half of a symmetrical truncated lake. The lowest mode of frequency of 

the channel therefore corresponds to the case of odd nodality in the 

symmetrical truncated lake. With the boundary condition defined as 

ý=0 CLt LJ = c: r C. L (4.36) 

applied to equation (4-35) the following equation is obtained 

(cr ,)-ý, ("- ý) 
(4-37) 
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From this expression the period of the channel or lake can be found. 

For the special case where p=a such the channel profile is 

triangular, equation (4.35) reduces to the equation (4.13) derived 
by Lamb. To prove this, rewrite equation (4-35) in the form 

r- 05 (4.38) 

Y, (cr P) 
i 

With p=a the boundary condition p-o produces 

L T, 
0 

W=O Y. 

so that equation (4.38) reduces to 

C. ". 5 (O-t 

With the origin of the-x axis at the head of the channel 

LJ CL 

(4-39) 

(4.40) 

(4.41) 

and with k= cr 
/J3"Hý 

yields on substitution 

K 

(4.42) 

(4.43) 

which is the argument in Lamb's expression. Finally, the constant 

,ý in equation (4.40) can be chosen so that 

2R 
- 

ci 3 (k') 
(4.44) 



and the equation (4.13) is obtained namely 

'lk rZx 

IkC, ) 

A point of practical programming importance is that both the 

Bessel and Neumann functions are defined by infinite series, the 

Neumann function being a Bessel function of the second kind and can 
be expressed as 

A- 1 

(4.4.5) 

where n is the order and 5, =I- ;i --IS + .. -- kpý and '% =0 

In the program only the first 12 terms of these functions were 
included but as a check on their ability to accurately represent 

these functions a comparison was made with the tabulated values of 

these functions. Tabulated values of Neumann's functions were not 

readily availableg however those of Weber's Bessel function of the 

second kind were; Watson (1923)- Weber's function of the second 

kind of order v%. is as follows 

A-1 m- Ir- 

57 
17 1. - ( Y, -x ý) 

.0 

(4.46) 
er 

rwo 
r n* r) f%+r 

It was this function that was specified in the program and it can 
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also replace Neumann's function in the analytical equations (4-34) 

and (4-35) because equation (4.24) used in their derivation can be 

replaced by the following 

R=R, : r, (-ý (4.47) 

This equation will produce the analytical equations identical to 
those of (4-34) and (4-35) except that the constant A' will take a 
different value. 

The free surface across the channel corresponding to the fcur 
different configurations and defined by the respective equations 
(4.8), (4.10), (4.13), (4.35) are shown in figure 4.2. Since the 

tidal frequency d' and the acceleration of gravity, g, are essentially 
fixed, the critical parameter governing the amplitude of the free 

surface is the ratio cL 
11H 

- For each channel the value of this ratio 
is 17,500 which is close to the ratio for the channels simulated in 

section 4-3. The curves depicted in figure 4.2 illustrate that a 

contraction of depth or width, which modifies the channel shape from 

that of case a), causes a corresponding increase or decrease in the 

amplitude of the standing wave over the length of the channel. It 

is also possible to show that for all values of the ratio =114' 
the order of the maximum amplitude with cLIZ-r- : L/8 is as shown in 

figure 4.2, with the largest amplitude produced in the channel of 
triangular profile. However if the waves were progressive, Green's 

theorem (Lamb p. 274-5) in which 3H shows that a decrease 

in width or depth of the channel produces an increase in amplitude 

compared to that of case a). 

In deriving the analytical solutions the problem has been 

reduced from a hyperbolic to an elliptic level. This reduction was 

accomplished by combining the partial differential equations of 

motion into a single second order ordinary differential equation by 

assuming a harmonic solution is possible. The appropriate equations 

are shown in (4-5) for Lamb's solutions and (4.21) for Chrystalls 

solution. The full extent to which classical solutions of the two- 

dimensional equations are possible was given by Vantroys (1959). 
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Hij (and low) water curves for flo,.., in frictionless 

channels derived from analytical solutions. 
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In his paper the relationship between the hyperbolic and elliptic 
aspects of the problem were rigorously established. 

The correct approach in simulating the long wave motion in 

georretrically simple channels is closely related to whether the 

problem is elliptic or hyperbolic. The analytical solutions for 

'x - t' flow were produced by removing the non-linear terms in the 

governing equations of motion. It is only when these terms are 
disregarded that the problem becomes elliptic and for the model to 

reproduce this solution it too must be linear. In simulating a 

problem of the elliptic type-the final solution is not independent 

of the initial conditions and the starting point for the numerical 

calculations cannot be an arbitrary free surface but the correct free 

surface. A rigorous derivation of these conditions was provided by 

Stoker (1957). The verification of the model is that the starting 

free surface is reproduced at the end of each tidal cycle. This 

supports the idea of periodicity of the final solution and any lack 

of periodicity is a result of the shortcomings of the model. The 

importance of the starting conditions in the model was noted by 

Matsoukis (1980) and the numerical philosophy was summarised by him 

as follows: - 

The response of a channel to a periodic excitation at the 

open sea boundary must be periodic. 

(a) If the solutic-i is elliptic then it is also 
dependent on the initial conditions. 

(b) If the solution is hyperbolic, periodicity is 

achieved through the actions of friction and 
Coriolis forces introduced through the momentum 

equation and the non-linear terms in the continuity 

equation. 

2. If the response of the channel is nor. periodic then the model 

is not functioning properly. 

The reduction of a problem to the elliPtic level through the 

assumption of small amplitude and the absence of non-linear terms 

effectively limits the analytical solutions either to the ocean tides 
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or to seiche action in closed basins. These configurations are 
considered in sections 4.3 and 4.4. In conclusion it should be 

noted that analytical formulae have been produced which account for 
the frictional forces albeit in a linearised form, Lorentz (1926). 

Proudman (1955) extended this method to include the effects of 
quadratic bed friction, and presented a formal sol,, tion for the 

case of an estuary with variable cross-section. This solution was 
also developed for application to uniform estuaries. 

4-3 TIDAL SIMULATION IN FRICTIONILSS OPEN CHANNEIZ 

In establishing the success or otherwise of the numerical 

schemes it seemed appropriate to begin by using the analytical 

models determined by Lamb and Chrystal described in section 4.2. 

In each configuration the harmonic condition of equation (4.6) was 

applied at its open boundary. The period of the boundary condition 
was chosen to be larger than the natural period of Ix - t' flow in 

the channel. The resulting motion was therefore a force oscillation 

as distinct from the natural oscillation of free waves studied in 

section 4.4. In assessing the accuracy of the numerical schemes 
in simulating Ix - t' flow using x-y-t dimensions, certain specific 

objectives were thought to be important. These may be summarised as 
follows: 

a) To apply the numerical model to differing configurations. 
Three differing channel shapes were studied to show the 

effect of variable breadth and depth on the numerical 
scheme's performance. 

b) To compare the results from the 450 and 900 characteristic 

schemes with the analytical solutions. 

C) To investigate the influence of different linear interpolation 

schemes at the boundary positions by observing their effect 

on the final solution. 
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d) To show that the correct approach in simulating Ix - t' 
flow in frictionless channels is obtained from elliptic 
considerations. 

e) To assess the effect of timestep on the final solution. 
Davies (1979) has shown that the choice of timestep is 
important from the point of view of numerical dissipation. 

f) To investigate the effect of non-linear terms on the final 

solution and to test the simulation of finite amplitude 

wavesý, * -Sgr- worF oN Psc-E i3o. 

4.3.1 The rectangular channel of constant depth. 

A synopsis of the investigations for the case of a frictionless 

rectangular channel of constant depth is presented in Table 4.2. 

From the information in this table the starting conditions, the 
boundary interpolation schemes and the geometric parameters of the 

channel are apparent. The parameters controlling the wave motion 

are also displayed together with an assessment of the results from 

the model. The simulations were conducted on two different channels; 
tests 1 to 4 correspond to a timestep 0.943 times that obtained from 

equation (4.51), tests 5 to 12 correspond to a timeatep equal to the 

maximum timestep. The geometric and wave parameters for the channel 

used in tests 5 to 12 is calculated from the following expression, 

-101 D5 (4.48) 
D -r- 

for linear conditions with L equal to the wavelength and T equal to 

the period of the forced oscillation. The wavelength L can be 

expressed as 

L= DS (4.49) 
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with X= L/a 8, where a is the length of the channel and is given 
by 

CX. (M-1) 
- D5 (4.50) 

where M is the number of grid points along the length of the channel. 
Making the necessary substitutions produces 

DT 0- -7 0 -7 .TI (M-1). x (4-51) 

which relates the timestep to the waveform and the computational 
grid. These parameters are selected in such a way that the timestep 
is an integer. With the timestep calculated, and the spacestep 

selected, the C. F. L. condition yields C and hence H 

The large number of tests presented in this section requires a 

system which describes the important features of each numerical scheme 
used in these tests. Therefore a symbolic system as shown in table 
4.1 is used which clarifies the presentation of the tests in the tables 

and graphs of this section and other sections in this chapter. 

SYMBOL DESCRIPTION OF THE NUMERICAL SCHEME 

>e Boundary interpolation scheme 1 (I. S. 1) 

+ Boundary interpolation scheme 2 (1. S. 2) 

Boundary interpolation scheme 3 (1-5-3) 

Boundary interpolation scheme 4 (I. S. 4) 

0 Non-linear depth and convective terms 
present 

Subscript represents a 90 0 
characteristic 

scheme 

Table 4.1 
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The different interpolation schemes have been fully detailed in 

section 3-4. In some of the tests which follow the numerical scheme 
may contain more than one of the pertinent features shown in table 
4.1. For these cases the symbols are grouped together. 

The analytical solution applied to the channels with the 
dimensions given in table 4.2 produces a free surface and hcrizontal 

velocities as depicted in table A. I. The results from tests 1 to 
12 are also presented in tables A. 2 to A. 5. These tables show the 

elevations and velocities at each tidal cycle corresponding to the 

grid points along the centre of the channel and also at the two 

corner points at the head of the channel. If the results are not 
periodic then they are presented for a time equal to the end of the 
fifth tidal cycle. The tabulated results only represent the tidal 

motion at high and low water in order to reduce the bulk of the 

results* In some cases, where the low water displacements are not 
included, it can be assumed that they are equal in modulus to the 

value of high water at the same grid point. For each test involving 

small amplitude, the successive high and low waters are depicted in 

figure 4.4 which clearly shows the tests with results favourable to 

the analytical solution. A similar type of graph shown in figure 
4-5 shows the numerical results for the second channel used in tests 

.5 to 1-1- 

By comparing one test to another in a method that highlights 

the effect on results of changing a particular condition and by 

comparing the results to those obtained from the analytical solution 
defined by equation (4.8), some important conclusions can be drawn. 

a) It was found that in both tests 4 and 5 the results shown 

in tables A. 2 and A-3 were identical to those of the 

respective analytical solutions shown in table A. 1 at 

all positions in the channel at any time level. In both 

tests the numerical schemes used linear 450 characteristics. 

The analytical free surface corresponding to high water 

and zero velocities was the initial condition. The boundary 

interpolation scheme derived from the theory of 450 

characteristics, namely I. S. 1, was also used. In test 4 



97 

the numerical data corresponded to the situation where 
DT -c oT MRX whereas in test 5 the use of equation (4-51) 

ensured that oT - o-r.... , This was the only significant 
difference between the two tests and it appears that this 
factor is not important in simulating the motion of forced 

waves. It is shown later that in the case of free waves 
the analytical motion can only be produced using the 

condition DT - OT... for a channel of constant depth. 

b) The ni-erical scheme and data of test 5 were applied to 

the case of a finite amplitude wave motion. The results 

corresponding to test 12 are shown in table A. 5. Allowing 

for the scale factor in amplitude, the results from this 

test were similar to those from test 5 showing that the 

simulation of finite amplitude waves can be performed 

without becoming unstable. Since the numerical scheme 

was linear, the results from test 12 did not exhibit any 

non-linear effects associated with finite amplitude waves. 

C) In test 1 the effect on the results of using open sea 

boundaries at the northern and southern side of the 

channel, where the three unknown variables were cal- 

culated, was assessed by comparison to the results of 

test 2. The figure 4-3 shown illustrates the boundary 

conditions used in both tests. Since the results from 

tests 1 and 2, as presented in the table A. 2, 

---------- 

V 

H 
II 

Test 1 Test 2 

Figure 4-3 
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were identical it showed that no spurious transverse velocities 
were produced across these open boundaries. This is an important 
first step in assessing the performance of this type of boundary 

which is used in the shelf surge model discussed further in 
Chapter 9. 

d) The results of test 3 on comparison with test 4 showed that 
the interpolation scheme used at the boundaries in test 3. 

namely I. S. 2, had the effect of producing a harmonic solution 
not equal to the analytical solution. This test was conducted 
with c)-r v- r) -r MAK 

e) A comparison of results from tests 7 and 8 in which the 
interpolation schemes 1-5-3 and I. S. 2 were investigated 
showed that the interpolation scheme 1.5.2 was unstable 
when the condition DT- DT... was met. This effect is noted 
also in other configurations where conditions of constant 
depth exist and is in fact a general finding of this research. 
The instability of this interpolation scheme is clearly 
evident on the Tpropriate curves shown in figure 4.5 as a 
rapid increase in the modulus of the elevation at high and 
low waters. 

f) The results from tests 5 and 6 on comparison showed that the 

interpolation scheme used in test 6 was inadequate in properly 

representing the conditions at the boundaries. This interpolation 

scheme, namely 1-5-3 is stable but since the free surface 

elevations at high water are less than those from the analytical 

solution, it appears that the scheme produces numerical 

dissipation. This is closely related to the fact that the 

boundary interpolation for the velocity calculation only 

considers two grid points instead of three and so is 

inconsistent with the scheme used for internal points. This 

is also true for test 7 which uses the interpolation scheme 

of test 6. 

g) It is concluded from the results Of tests 4 and 5 that the 

elliptic approach is a successful method of simulating the 
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x-t motion in the frictionless channel. Other invest- 
igators, for exa ple, Webster (1968), have treated the 

simulation as a hyperbolic problem by introducing friction 
into the scheme. In his tests this non-linear term produced 
convergence from the arbitrary free surface to the final 

solution. It was then assumed that the effect of friction 

on the final solution was small enough to allow a compar- 
ison with Lamb's analytical solution for a frictionless 

channel. In theory this method of comparison is incorrect 
but it was tested using the numerical scheme and data as 
for test 5. The results for test 11 showed that with the 

value of Chezy's co-efficient equal to 150, convergence to 

a final solution had not been obtained, however the results 
would indicate that convergence is slow* A lower friction 

parameter would accelerate the convergence but may also 

produce a solution that would differ from the linearised 

analytical solution. 

h) It was concluded from tests 1 and 2, which include the non- 

linear and convective terms in the numerical scheme, that 

these terms were responsible for the final solution not 

being periodic, see figure 4.4. The result of successively 

increasing high waters would have eventually created an 

unstable situation through the violation of the C. F. L, 

condition. This would occur because C= jq(H+rj) 

and with celerity increasing the maximum timestep obtained 

from DT 0.707DS 
C 

would eventually become less than the computational timestep. 

This was exactly the mechanism for instability for the non- 

linear scheme used in test 9. The results of this test from 

table A. 4 when plotted in figure 4.5 show that the non-linear 

terms produce successive increases in high and low water 

until the third tidal cycle. At this time the C. F. L. 

condition is violated and its effect is shown by the increased 

rate of growth of the high waters and the increase in modulus 

of the low waters. Furthermore a comparison of test 9 with 
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test 10, in which test 10 used a linear convective scheme, 
showed that the non-periodicity was directly related to 
the non-linear calculation of celerity from the total 
depth. Evidently the amplitude of the wave is not 
sufficiently small for the non-linear effect to be negligible. 
The enly justifiable reason for the non-linear term to 

affect the periodicity is that since the channel is 

relatively short, then non-linear terms should not be 

present in the first place. By their inclusion in the 
interior of the channel a non-linear response is generated 
but at the open boundary the cosine function controlling the 
boundary elevation is based on linear conditions. The 
inconsistency between the events at the boundary and the 
interior of the channel may upset the periodicity of the 

oscillations. 

4.3.2 The converging channel of constant dept . 

For a channel of uniformly varying breadth the analytical 

solution was given in equation (4.10). In deriving this solution, 
Lamb made the simplifying assumption that the transverse velocities 

were zero and the flow was strictly in x-t dimensions. There- 

fore when simulating this motion in (x -y- t) space and comparing 
the results to Lamb's solution, the velocities in the y-direction 

must also be zero. In reality the same linear scheme and tidal 

characteristics at the entrance create two-dimensional tidal flow 

by virtue of the converging coastline which evidently reflects 

tidal waves and introduces values for the transverse velocity V. 

By simulating these conditions in which the transverse velocity is 

allowed to propagate across the channel it is shown that a periodic 

solution is produced from hyperbolic considerations. A comparison 

with the simulations of motion in the rectangular channel in section 
4.3.1 shows that the hyperbolic approach is justified in the situation 

of a converging coastline which propagates tidal waves in the y- 

direction and flow is two dimensional. 

From the Point Of view of numerical schematisation the converging 

coastline was replaced by a polygonal set of horizontal and vertical 

lines and so it provided an opportunity to study the general effect of 



lo4 

replacing a continuous coastline with an irregular one. 

The objectives a) to f) stated in section 4-3 are applicable 
to the convergent channel and so the presentation of computations is 

similar to those of section 4-3-1. For each test the numerical scheme 
and the computational parameters are listed in table 4-3 together 

with the percentage variation of the final solution from the 

analytical solution based on elevations at the head of the channel* 
In the tables A. 6 to A. 9 the results from the analytical solution 
given by equation (4.10) and from the computations of each test 

corresponding to the high and low water elevations are shown. It is 

also of importance in these tests to consider the effect of the 

numerical scheme in simulating a truly standing wave therefore the 

mean high water interval M. H. W. I. for each test is shown. All results 

are representative of conditions along the centre line of the channel* 
By comparing the computed results with those derived from the 

analytical solution and by comparing individual tests to one another 
some useful conclusions were made. These conclusions were deduced 

as follows: 

a) The computations from test 13 together with the results 

obtained from the analytical solution are presented for 

comparison in table A. 6. The free surface in both cases 

corresponded to L/a w 8.037 which was used in equation 
(4-51) to calculate the timestep. The numerical scheme 

used in test 13 was identical to that of test 5 which 

was successful in simulating the tidal motion in the 

rectangular channel of constant depth. However in test 

13 the transverse velocities were not computed, to comply 

with Lamb's assumption. The computations of test 13 

showed that a periodic solution was established which was 

similar to the analytical solution. Considering that the 

closed boundaries were discontinuous this result was most 

satisfactory. 

b) In test 13 an elliptic approach was used in simulating the 

tidal motion and for comparison the tests 14 to 16 used a 

hyperbolic method since transverse velocities were allowed 
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to propagate in the model. In all these tests the 

amplitudes were small and the numerical schemes linear* 
The results from tests 14 to 16 are shown in the respective 
tables A. 6 and A-7 which indicate that the arbitrary 
initial condition is that of mean water level and, zero 
velocities and that the final solution becomes independent 

of the initial conditions and is periodic after the 

completion of two tidal cycles. The effect of convergence 
for these tests 14,15,16 is illustrated in figure 4.6. 

Also shown are the results from test 13 and the analytical 
free surface, for successive high waters at the head of 
the channel. Since the numerical schemes were linear, 
Ihigh waterl = Ilow waterl and so the low water elevations 
were not presented in the tables or graphs. A comparison 

of tests 13 and 16 showed that although the transverse 

velocity V was important in causing convergence, in test 

16 it did not significantly change the final solution. 
Indeed this solution as shown in figure 4.6 is very close 
to that of test 13 and to the analytical solution. Also 

shown in figure 4.6 is a comparison between the results 
from tests 15 and 16 and again the elevations at the head 

of the channel are very similar. The number of grid points 
in the y direction N, in test 16 was ten whereas in test 15 

it was eleven and it was concluded that the representation 

of the head of the channel by either N=2 or 3 grid points 
does not significantly affect the numerical computations. 

The results from test 14, which uses the 90 0 characteristic 

scheme and interpolation scheme 3 (I-S-3), are also shown 

in figure 4.6 and this scheme gives a reasonably accurate 

harmonic free surface solution. 

In test 17 a finite amplitude wave of lm amplitude at the 

open boundary was simulated and the results are shown in 

table A. 8 together with the analytical solution for linear 

conditions. The numerical scheme however was non-linear 

and its effect is shown in the results where the high water 

elevations are greater than the low waters. The final 
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solution was established using 90 0 characteristics and I. S. 2 which 
is conditionally stable for D-r< D-r,,, . The results were in good 
agreement wit -h those of the analytical solution suggesting that 
the channel was too short for the non-linear terms to have an 
appreciable effect. 

d) In simulating the tidal motion in the converging channel Matsoukis 
(1980) produced results of very high accuracy for small amplitude 

waves. His channel parameters are listed in table 4.3 under tests 
18 and 19. 

, 
These tests indeed prove that a high degree of accuracy 

can be obtained and the results are presented in table A. 9. These 

results however became less significant when it was noted that 
Matsoukis had not maintained a linear variation in the breadth of 
the channel which violated one of Lamb's assumptions. The channel 
is shown in figure 4.7 together with a channel in which the breadth 

is a linear function of its length. There seems no obvious reason 

why Matsoukis compared the results from his channel with Lam b's 

analytical solutions 

ý- 
3-D5 4. Ds I-5 -D5 

The Matsoukis Channel 

4. DS 4. DS 4. DS 

The LinearBreadth Schematisation 

Fig-ire 4.7 
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4-3-3 The rectangular channel of linearly varying mean deDth. 

Previous investigations of forced wave simulation presented 
in sections 4-3-1 and 4-3.2 hav e been concerned with channels of 
constant depth. For these configurations the successful numerical 

scheme used 450 characteristics wl'-4ich were linearised. This 
linearisation was in accordance with the linear assumptionsgoverning 
the derivation of the analytical solutions in section 4.1. In 

simulating the tidal motion in a channel of linearly varying mean 
depth the above-mentioned linear scheme was applied without any 
changes. The use of a linear scheme reauired that the initial 

conditions were those of the analytical free surface for a successful 
simulation. This method constituted an elliptic approach to the 

problem. However further tests with the channel of linearly varying 

mean depth showed that convergence to the analytical solution could 
be achieved using arbitrary starting conditions. It was concluded 
from the latter result that a non-linear process had occurred in 

the model using this configuration which originated from the terms 

involving celerity. More precisely, the terms involving the celerity 
in the numerical scheme have a non-linear effect since the celerity 
itself is not constant throughout the length of the channel* 

The natural oscillation of the channel shown in figure 4.8 

was derived by Chrystal and presented in section 4.2. This 

solution for the vertical displacement of the free surface applies to 

Figure 4.8 
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the free wave condition but can be applied to the forced wave 
condition with the period of the forced wave greater than the natural 
period of the channel. With this condition the node will be outside 
the channel and so the equation (4-35) defines the free surface of 
the channel of length t which, with the larger period, is also the 

surface of the forced oscillation for the channel of length cx 
With equations (4.23), (4,29) and (4.30) restated as 

W cr CK, (I-xI CL, ) 
VL 

(4-52) 

C- OK. = 2. lY CL . 2- (4-53) 
C, -r 

(7 p cr m(1- pl 0, ) 
V, 

(4-54) 

and the dimensions of the channel given in table 4.4 produces 

w=1.645 corresponding to H=H, obtained from equations (4.52), 
(4-53) and w=0.520 at H=H. obtained from equations (4-53) and 
(4-54). With the constant A' in equation (4-35) taken as 1.803 to 

produce a maximum amplitude of 1.3m corresponding to the depth HI, 

the analytical surface for the forced oscillation using Weber's 
function in (4.35) becomes 

q : -- I-q -3 ( 1.4 23T. (W) +0-2 513 /. (,., )) (4.55) 

for the high water displacements along the channel. This surface 

is compared with the figurer, obtained using Lamb's equation (4.13), 

for a channel of length cLand a triangular profile in table A. 10. 

The numerical schemes constituting tests 20 to 27 are 

classified according to the starting conditions and the interpolation 

schemes, in table 4.4. Also shown, as an assessment of the accuracy 

of each test, is the percentage variation of elevation, at the head 

of the channel, from that of the analytical solutiong taken at the 

end of the fifth tidal cycle. In some of the tests the periodicity 

of the simulated elevations was subject to small fluctuations and to 
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show this feature the results from each test corresponding to high 

and low water are shown in tables A. 11 to A. 189 This fluctuation is 
better observed in figures 4.9 and 4.10 which show the results in the 
tables A. 11 to A. 18 in graphical form for successive high and low 

water displacements at the head of the channel. This position in the 

channel was chosen since it represents the maximum disagreement with 
Chrystal's analytical solution. 

In conducting the tests 20 to 23 the initial conditions were 
not those of the analytical solution. The effect of arbitrary 
initial conditions on the periodicity and accuracy of the final 

solution is illustrated in figure 4.9 and the following observations 
were made from the results of these tests: 

a) In test 23 the initial condition was that of mean water level 

and zero velocities along the channel. The convergence to a 
final solution had not occurred even after 5 tidal cycles. 
This indicated a very slow rate of convergence. In test 22 

the rate of convergence was quicker when the initial conditions 
were closer to Chrystal's analytical solution and indeed the 

final solution in this test was very close to the analytical. 
For this test the initial surface was the high water level 

given by Lamb's equation (4.13). In both tests interpolation 

scheme 3 was used which was shown in test 6 to be reasonably 

accurate. The numerical schemes in both tests 22 and 23 were 
identical and based on linear 450 characteristics. 

b) The conditions of test 21 were identical to those of test 22 

except that in the former test the numerical scheme contained 

the non-linear depth term (H - rL ) and the convective terms. 

A comparison of results from both tests showed that the non- 

linear shallow water effect was produced, namely an increase 

in positive elevation and a decrease in negative elevation 

resulting in an increase in mean water level. This effect is 

a consequence of two factors, firstly the wave is of finite 

amplitude and secondly the effect of decreasing depth towards 

the shore. Time did not permit a quantitative assessment of 

the accuracy with which the numerical scheme reproduces this 
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phenomenum. Obviously since the results of test 21 include 

the non-linear effect they are not in exact agreement with 
the results from Chrystal's solution. The results from test 
21 are very close to those of test 20 and this agreement 

corresponds to the similarity in both numerical schemes. 
However the numerical scheme of test 20 (and also test 25) 

are only applicable to constant depth configurationsand 
although the results are favourable they are not obtained 
using the correct scheme* 

Tests 24 to 27 were conducted to show that the simulation can 
be performed using an elliptic method which essentially means that 

the numerical schemes were linear and so required the analytical 

condition as an initial condition. The elevations for successive 
high waters are shown in figure 4.10 and the following comments are 

applicable; 

a) Of the tests 24,25 and 26 the results from test 26 are the 

most satisfactory and are shown in table A. 17. These results 
also show that no variation of phase occurs along the channel 
and that the final solution is a standing wave. The interpol- 

ation scheme I. S. 4 was constructed in accordance with consistency 
requirements and is theoretically superior to the interpolation 

schemes of tests 24 and 25. For example in test 24 the boundary 
interpolations for velocity are not consistent with the velocity 
interpolations at internal points. For reference this scheme is 

interpolation scheme 3. In test 25 the interpolation scheme 
I. S. 1, although in the same form as that in test 26, is only 
applicable for constant depth configurations. 

b) The results shown in figure 4.10 suggest that a small disturbance 

is present which slightly affects the periodicity. After three 

tidal cycles the disturbance is negligible in tests 24 and 26. 

The disturbance is not a result of simulating finite amplitude 

waves because the same disturbance was observed using small 

amplitude waves in test 27. The results for this test are 

shown in table A. 18. 
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Envelope curves for successive hi6h End lo,,. i wz, ters 
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C) From the results of tests 24 to 27 the most successful 

simulation was that of test 26 which used linear 45 0 

characteristics and interpolation scheme 4. In sections 
4.3.1 and 4.3.2 the most satisfactory interpolation scheme 

was interpolation scheme 1. There is no reason why one 
interpolation scheme should be more suitable for one channel 

and not for another and indeed interpolation scheme 1 is 

obtained from interpolation scheme 4 from the simplification 

produced when considering constant depth. The equivalence 
between interpolation schemes 1 and 4 has been shown in 

section 3.4. These interpolations were tested using an 

elliptic approach, with success, and in addition, by 

considering any special nature of the flow, as described also 

in section 4.3.2 the hyperbolic method of simulation is 

another alternative. 

4.4 SLICHE SIMULATION IN CLOSED BASINS 

The occurrence of seiches in nature is invariably associated 

with the oscillations of a relatively small body of water, such as in 

a lake or harbour. These oscillations normally occur at a natural 
frequency which is higher than those of tidal movements therefore 

tidal resonance is unlikely to become a problem. With the 

assumptions of small amplitude waves, the absence of bed friction and 
Coriolis forces, and constant equilibrium depth the long wave 

equations can be combined to give the following elliptic equation, 

It2 (4,56) ýLl 
+ ýLq 0" q=0 

ý X2 7- p 

This equation is the two-dimensional form of equation (4-7) derived 

by Lamb in section 4.2 and describes the free oscillation of a body 

of water. An analytical solution of equation (4-56) may be found for 

the free oscillating modes for a rectangular basin with length L in 

the x direction and width B in the y direction. This solution is as 



117 

follows 

). 4C1S ( cl t) 1 FI Co s( -Tr xý-c 06 A ry ýI 

Sim 'IY Cos A rf 1ý er 4- 

A -s- 

(4-57) 

where A is the maximum amplitude at the boundaries and m and n are the 

number of nodes in the x and y direction respectively, which identify 

the particular mode of oscillation. The natural frequency is 

determined by 

Tr 

and is a function of the dimensions of the basin. 

For the particular case of an x-t seiche of lowest mode, 

maI, n-0 the equations of (4-57) become 

9 cos -TY ýe ), Co s( &- t) (Z 
Lt C, x 51k (a-E) (4-59) 

V0 

The period for this case is obtained from equation (4-58) and is 
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-T, IL (4.6o) 
G 

where G 
Consideration of the free oscillatiorsin closed basins, for 

the purpose of simulation, closely follows the objectives pursued in 

the simulation of forced waves. For consistency the period chosen 
for free wave simulation is the same as that for the forced wave 

condition and is of tidal magnitude. An important conseauence of 

considering closed basins is that in the absence of any external 
forcing functions such as a boundary condition the numerical scheme 

can be tested to establish if it is conservative. For example, in 

the constant depth case it is shown that only the numerical timestep 

corresponding to the limiting timestep obtained from the C. F. L' 

condition will produce the free oscillations prescribed by the 

analytical solution. This is assuming that the correct starting 

conditions and boundary interpolations have been applied. If not, 

or if another timestep is used the numerical scheme produces a 

motion that either becomes unstable or attenuates numerically. 

4.4.1. The x-t seiche in a rectangular basin of constant depth. 

A synopsis of the tests 28 to 37 is presented in table 4.6 

showing the computational parameters in simulating x-t oscillations. 
Since the variation of the free surface from the analytical one is a 
measure of the inaccuracy of the numerical scheme, the last column in 
table 4.6 shows the extent of this variation. A measure of this 

variation is the attenuation of elevation at the boundaries during 

each tidal oscillation and is calculated from 1- 9 ý. ' 
19 1, where 

k is the number of free oscillations. The tests can be divided into 

three distinct sets according to the ratio of DT/DTmax and only in 

test 35 with this ratio equal to unity is the analytical solution 

achieved. A comparison of all these tests for successive high waters 

at the boundaries of the basin is shown in figure 4.11. The curves 

on this graph show clearly the attenuation which is proportional to 

the gradient of the curve, and is associated with most of the tests. 
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The pertinent information extracted from an examination of 
each test is listed in tables A. 19 to A. 22. An account of each test 

together with its conclusion is provided as follows: 

a) All the tests had as their starting condition the analytical 

free surface corresponding to high water and zero velocities 

throughout the basin. One exception was test 34 which used 

a linearly sloping free surface and failed to reproduce the 

analytical scheme. This test confirms once more that a 
hyperbolic approach cannot be used in an elliptic problem, for 

configurations of constant depth. 

b) The results from test 35 reproduced exactly the motion given 

by the analytical solution, throughout all time levels. The 

timestep was found from equation (4-51) with Y. = 2. The 

numerical scheme required DT = DTmax and interpolation scheme 
1 and used linear 450 characteristics. This scheme was used 

in the successful simulation in previous configurations. 

C) Using the scheme of test 35 with values of timestep less than 

the maximum timestep showed that the attenuation per tidal 

cycle increased as DT/DTmax decreased. This phenomenumis 

shown in table 4.5. 

Test DT/DTmax Attenuation/cycle 

33 0.995 0.5 

31 o. 943 4.6 

37 0.500 43-7 

Table 4.5 

The mechanism for attenuation has been discussed in section 3.5 and 

Iference between the numerical and is basically the result of the di, 

physical celerities. The timestep is related to the physical celerity 

through the C. F. L. condition, DT 
max a o. 707 DS/C 

max . 
If another 

value of DT is chosen then the numerical celerity C will not be equal 

to the physical celerity since C=0.70'7 DS/DT. 
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at the boundary of a frictionless closed basin of 

constant depth. IH.: 
wil = 

YES-T- 

3Z 
j+ 

35 X (IINAL 50k. N) 

9 33 X 36 L 
30 34. 2ý 37 X 
31 X 

ELFVAYION (rt) 

(MEYRE5) 

0 0.2.0 X- - --x 

140 

tx 

7. F1,7-rLNLLRrION PE zýE 3PE 4pF. SPF 

Figure 4.11 



122 

d) The results of tests 29 and 30 are shown in table A. 20. Since 
test 30 used a linear numerical scheme and test 29 a non-linear 

one, a comparison between the results of both tests showed that 
the effect of the non-linear terms was very small. In both 

tests attenuation occurred since the condition DT = DTmax was 
not fulfilled and the attenuation was found to be greater when 

the numerical scheme contained non-linear terms. 

e) The results of test 36 showed that attenuation had taken place. 
The data was identical to that for test 35 but the interpolation 

scheme was not the same. In test 36 interpolation scheme 3 was 

used and it differs from interpolation scheme I in the 

construction of the velocity equation at the boundary points. 
The failure of interpolation scheme 3 to produce the analytical 
motion was also observed in tests 6 and 7 for the rectangular 
channel of constant depth. 

f) The interpolation scheme 2 used in test 30 was also found to be 
dissipative since the energy loss resulted in elevat ions smaller 

than those of the analytical solution. In this test DT = 0.943 

DT 
max . 

For the same numerical scheme applied in test 32 with 

DT = 0.995 DT 
max 

the results were unstable. This instability 

is shown in figure 4.11 as a curve with a positive gradient. 
The conclusion from these two tests is that interpolation scheme 
2 becomes unistable when the timestep is very close to that 
determined from the C. F. L. condition. It is precisely this 
interpolation scheme that is applied successfully to the 

simulation of tides and surges in Chapters 7 and 8 and an 

explanation for its inclusion in the numerical scheme is 

provided in section 7-3- At this stage it is only important 
to note that the analytical motion is produced with interpol- 

ation scheme 1 using the method of linear 450 characteristics 
with DT = DT 

max for configurations with free oscillations. 

4.4.2 The x-y-t seiche in a square basin of constant dept 

The simulation of the x-y-t seiche action provides an 

opportunity of testing the models under circumstances of truly two 
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dimensional flow in which a comparison of the computations can be 

made with those from the analytical solution. Before the simulation 
can begin the channel geometry must be calculated whilst ensuring 
that thesquality DT = DT 

max 
is satisfied, This condition ensures 

that there is an equivalence between the numerical and physical 
celerities. The simulation was performed usin; the lowest mode of 
oscillation therefore m=n=1 and equation (4.58) reduces to 

II Tr 

, 
12- L 

Rearranging this equation produces 

vrT (4.62) 

This expression is the wavelength divided by the channel length 
(since L= B) and has been defined as x in equation (4.. 51). This 

equation with X-= fZ-- yields 

DT = T/2. (M-1) (4.63) 

With T= 44712 secs, M= 19 gives DT = 1242 secs and with DS = 20,000m 

the celerity obtained from the C. F. L. condition is 11-385 M/s. The 

depth H from C-115 is therefore 13.212m. This data is shown in table 

4.7 and was used in tests 38 to 41. The information on this table 

shows that in tests 38 and 39 the tidal oscillations were simulated 

in exact agreement with the motion determined by equations (4-57) 

shown in table A. 23. The exact reproduction of the analytical motion 

by this model is verification that for channels and basins of constant 

depth the method of characteristics is conservative. Matsoukis(igiro) 

considered the simulation of the x-y-t seiche as a very stringent 

test and showed that some well known finite difference models did not 

successfully produce this motion. 
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It is again emphasised that only one numerical scheme used 
in the tests of free and forced waves has produced the analytical 
tidal motion in each configuration. This scheme uses interpolation 

scheme I and linearised 450 characteristics. To evaluate the accuracy 
of simulating with a numerical scheme using 900 characteristics, 
test 41 was conducted and the results compared to those from test 39- 
The results from test 41 are presented in table A. 24 for successive 
high water displacements corresponding to grid points positioned 
along the diagonal of the basin. The elevations at any time level in 
test 41 were found to be very close but not exactly equal to those 
from test 39. The maximum difference in elevation between both tests 

occurred at high water or low water at the closed boundary points. 
The elevation there was 0.201m in test 41 whereas in test 39 and for 
the analytical solution it was 0.200m. Nevertheless the method of 

characteristics derived from bicharacteristics taken at 900 angles 
gives reasonably accurate results. This is not surprising since this 

method only differs in its construction from that using 450 character- 
istics when considering a boundary point. Both schemes are identical 
for the determination of the unknown variables at an internal point. 

In test 40 the numerical scheme of test 38 was re-run with non- 
linear and convective terms included. The computations are shown in 
table A. 24 and show that high and low waters are increasing positively 
with each oscillation. The conclusion from this test is the same as 
for that of test 9 which also included non-linear terms in the system. 
This conclusion is that the periodicity of the numerical results is 
disturbed by the introduction of non-linear terms and that their 
inclusion is not justified since the problem is essentially linear 
by virtue of starting condition. In being linear the problem is 
therefore elliptic and so requires the correct starting conditions; 
this is provided by the analytical solution which is also linear. 

4.4-3 The x-t seiche in a basin of linearly varying mean deioth. 

It has already been established in section 4.2 from equations 
(4.15) and (4.16) that the simulation of motion in a channel of 
triangular profile is impractical for the numerical schemes developed 

in Chapter 3. It is more convenient to consider a channel of 
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trapezoidal profile and this configuration was tested in section 
4.3-3 by comparing to Chrystal's analytical solutions derived in 

section 4.2. This channel was again investigated but with both ends 
closed to determine whether the numerical scheme can accurately 
simulate the free wave oscillations. The dimensions of the basin 

are shown in figure 4.12. 

H, = 160. 

Figure 4.12 

The lowest mode of oscillation in this basin corresponds to the second 

mode of the equivalent open channel. The period equation is obtained 
from equation (4.34) with the boundary condition o at w= a- oL 

and is 

y. (, --x) - -1, (e-P) -l,. yý (u- pý=(. 4.64) 

From equation (4.3o) and the dimensions of the basin 

cr p0--. Is IGI C- OL (4.65) 

Using trial values for crp and or'm to satisfy equation (4.64) gives 
arm. = 4.8 and O'p = 1.517. From equation (4.29) 

cf' oý, 2- IT 2- cL (4.66) 
-r- cl 
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gives Tw 15328 sec. 
The timestep DT corresponding to DT,,,, is obtained from the C. F. L. 

condition namely 

DT = 0.707DS 
c 

The free surface is determined from equation (4.35) so that 

,(Y, (dr. 0, ) - -, 
r. (ý, ý - (y- ). ý cos (-: r L. 95) (4.67) rL =8 sý (ý « %(t-1)- 

The constant A' was taken as 0.7446 in the simulation to produce a 

maximum of O. lm amplitude at the left hand side of the basin. The free 

surface along the x axis of the basin corresponding to high water 

conditions at one end is shown in table A. 25- 

The dimensions of the basin together with the set of parameters 

used to identify the tests 42 to 45 are shown in table 4.8. A 

description of each test highlighting its significant features and a 

comment on its results is as follows 

a) Tests 42 and 43 used the same data, however the interpolation 

scheme in test 43 is only applicable to constant depth cases. 
The results produced in table A. 26 can therefore be ignored. 

In both tests the analytical solution was not produced, 
instead numerical attenuation of the elevations and velocities 

occurred. The attenuation produced in each oscillation was 
found to be constant and was not unlike that produced in basins 

of constant depth simulated in section 4.4.1. In the latter 

case the attenuation occurred in some cases because DT < DTmax 

which was shown to mean an inequality between the numerical and 

physical celerities. 

b) The problems of simulating free waves using a fixed size of 

computational grid, which implies a fixed numerical celerity, 

applied to a situation of variable physical celerity have been 

discussed in section 3.5. For such a case, a heavy dependence 

is placed on the interpolation scheme and it was shown that a 
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more accurate method would be to subdivide the spacestep whilst 
retaining the original timestep. Such a scheme was devised and 
the details presented in Chapter 3 and it was applied in test 44 

with the data as shown in table 4.8. The results along the centre 
line of the channel in the direction of motion are shown for high and 
low waters in table A. 27. These results show that subdividing the 

spacestep used in test 42, by a factor of 3 does not entirely remove 
the attenuation but succeeds in reducing it from 45% per oscillation 
to 21% per oscillation. 

An alternative method, investigated in test 45 was merely to 

reduce the space and time steps of test 42 by a factor of 3- The 

numerical data is shown in table 4.8 and the results for high and 
low water are presented in table A-27. From these results the 

attenuation per cycle was also found to be 21%* In both tests 44 

and 45 the spacestep was one-third of that in test 42 and to maintain 
the length of the basin constant for all tests, the number of grid 

points in the x direction in tests 44 and 45 was fifty-five. Although 

the results from tests 44 and 45 were very similar the computational 
time for test 44 using the method of subdivisions only required one- 
third of the computational time for test 45* 

A theoretical explanation of the simulation of results other 

than those of the analytical solution for free wave motion has been 

presented in section 3-5. In that section the disadvantages of 

numerical interpolation as a result of using a regular grid were 

noted whilst the advantages of using the method of subdivisions were 

also highlighted. With the results from tests 42,44 and 45 the 

following conclusion is made regarding free wave oscillations in a 

basin of variable depth. For this case the energy loss cannot be 

entirely removed when the numerical scheme uses either a regular grid 

method or the method of subdivisions (although the latter scheme is 

more favourable). The features causing the energy loss are as follows: 

a) The presence of ghost characteristics as a result of interpolation. 

b) The application of an interpolation scheme which uses grid points 

that lie outside the domain of dependence of the difference scheme. 
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C) The method of subdivisions implies more than one numerical 
celerity for which the interpolation scheme is theoretically 

accurate. However, in reality, the variable depth basin has 

an infinite number of celerities corresponding to the 

variation in mean depth. 

The method of subdivisions is therefore an improvement on 

the regular grid method but requires further development. 

Note on finite amplitude 

Any reference in this thesis to a finite amplitude wave 

made only with respect to mean water depth H such that ý> H/1 

For these waves, the non-linear processes in their propagatic 

are important and so have been investigated. In general the 

forms studied are all of small amplitude by conventional 

definition (since ý< L/100) although non-linear according to 

Ursell parameter in which hL 2 /H 3 >;; ý 1. 
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CHAPTER 

THE SIMULATION OF WIND DRIVEN SURGES IN 

CHANNEIS OF SIMPLE GLOMETRY 

5.1 INTRODUCTION 

The verification, that a numerical model accurately 
represents the dynamics of the study region by comparing it with 
field observations, is of limited value. The limitations of this 

approach are partly the results of using inadequate data together 
with an incomplete understanding of the behaviour of the numerical 
procedure. Certain features should be highlighted: 

a) There is still a general lack of sufficient records of 
water depth and velocity throughout temporal and spatial 
domains of interest especially offshore and in the open sea. 
This position is steadily improving, however, for example 
field study data is published in the M. I. A. S. reports. 

b) Accurate vertically averaged velocities are particularly 
scarce. 

C) The overall effect of using an irregularly shaped schemat- 
isation of the original configuration is important yet can 
be difficult to estimate in view of point (a). 

These various sources of error and uncertainty in verification are 

eliminated when the numerical solutions are compared with the analytical 

solutions for surge development given later in this chapter. A rather 

systematic assessment of the performance of the numerical scheme may be 

based on the philosophy of Chapter 4. By necessity the shallow water 

equations have been linearised and likewise the numerical scheme 

constituting the model. In both situations wind stress and variable 
bathymetry have been incorporated in the solutions of the shallow water 

equations. 

The simple geometric configurations employed in the successful 
testing of the model for tidal propagation may also form the basis of 
the analytical solutions describing the free surface produced by the 
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wind field. A comparison of numerical results with these analytical 

solutions is conducted for uniform and non-uniform, steady and 
unsteady wind fields. This also bears upon the use of a wind drag 

coefficient as, for example, by Heaps (1969). 

5.2 WIND MUS AND WIND STRESS 

One of the largest components of a storm wave is supplied by 

the wind stress on the water surface* A full account of the wind 
wave interaction is most involved and outwith the direction of this 

research but it should be noted that at the present, the energy 
transfer mechanism from wind to water waves and the resulting wave 

growth is not fully understood. All wave forecasting relationships 

are adjusted by actual wave data. Such forecasts are obtained from 

semi-theoretical or semi-empirical theories, the latter approach 

encompasses the significant wave method and the wave spectrum method. 

Wave theories for wave generation have been proposed 
concerning the critical wind speed at which the fluid flow at the 
interface changes from hydrodynamically smooth to rough turbulent. 
Most theories presume that the stress developed will vary with the 
duration and fetch of the wind. Of particular importance is Munk's 

theoretical analysis (1955) which shows clearly the importance of the 

high frequency components of the wave motion which contribute largely 

to the form drag. According to Munk's theory the drag on the sea 

surface should not vary greatly with the fetch of the wind over the 

water surface, as the high frequency wave motion reaches the value 
for a fully developed sea much more rapidly than the low-frequency 

components. A similar conclusion was found by Francis (1951) during 

the measurement of the drag coefficient of a water surface in wind 

tunnel experiments. He concluded from his measurements that the 

mechanism for drag is not controlled by the large waves but largely 

by the tiny wind ripples. Therefore it is the smaller elements of 

roughness from the water's surface which provide the traction for the 

wind on the sea. This can be likened to the sand grain roughness, 

rather than the bed dunes, providing roughness resistance to water 

flow in channels. 

The mathematical expression defining the shear stress at the 
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air-water interface is obtained in an empirical manner and is given 
by Hellstrom (1941) 

x 

where k is the wind drag coefficient, 

(5.1) 

/c,, is the density of air 
and Wy is the shear velocity of the wind at a height y above the 

water surface. In most wind measurements, the values of wind speed 

are recorded at the 10m height and in storm surge calculations it is 

more appropriate to express equation (5-1) using /0 , the density of 
water. Therefore Kz (5-2) 

0 
An upper bound of K=3.3 x30 -6 for the wind drag coefficient is 

generally applied to limited bodies of water when WIc, > 15 .. /s and for 

the open ocean K=3x 10-6 is appropriate. By comparing Squations 
(5-1) and (5.. 2) the following expression is produced 

= (5-3) 

3 With the values of , 4.. - 1-2,5 and . 4, - io; L5 Kýjw equation (5.3) 

produces the relationship 

vzo (5,4) 

In the present numerical scheme the wind resistance coefficient K 

was specified as 2.513 x C)-3 for W,, > 19.2 m1s. These values were 

first suggested by Charnock and Crease (1957) and seem to be generally 

accepted as being representative of the drag coefficient on the sea 

surface. 

The analytical solutions derived in the next section have been 

developed by other authors using equation (5.2) and so are expressed in 

terms of K. When comparing the numerical results to those from the 

analytical solution an equivalence between k and K must be maintained. 

This is accomplished using *quation (5.4) and so k= 2-513 x 10-3 in the 

model is equivalent to K=3.06 x 10- 
6 

in the analytical solutions. 

. 
5-3 THY, ANALYTICAL SOLUTIONS FOR STEADY STATE WIND FIELDS / 
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5.3 THE ANALYTICAL SOLUTIONS FOR STEADY STATE WIND FIELDS 

The wind field exerts a tractive force on the water resulting 
in the water being dragged in the direction of the wind. The 

equilibrium surface slope maintained by the action of a steady wind 
field blowing over shallow water has been theoretically derived by 
Hellstrom. Although the mechanism represents a gross simplification, 
it may be expressed as 

Is 
A. T (5-5) 

1x 

where 
ASIAx is the surface gradient as a result of wind stress and rL 

is a constant dependent on frictional conditions at the sea bottom. 

For frictionless conditions ft=l and generally takes a value from 1 to 

1.5. Substituting for T (equation 5.2) into equation (5-5) produces 

15 K W2o- (5.6) 

IFX 3H 
10 

for the frictionless case* 

Considering the case of a steady uniform wind field directed along the 

axis of a channel of constant depth, the hydrostatic pressure is 

expressed as 

P= /ow n(H+ 5) (5-7) 

and a more accurate version of equation (5-5) is therefore 

(5.8) 

XH -t 5) 

which includes the hydrostatic effect of the surge in the term 

Integration yields an expression for the surge height 5; the proof is 

presented by Ippen (1966) and is as follows 

ý4 -+ S). K. W 2,1)( 

H. 15 S. Is K. W2' 

Since H is constant 

H. !5+ V2. K. QL 

where L is the length of the channel. Hence 
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(5.9) 
H+ 

Lquation (5.9) is quadratic and it is easily proved that the positive 
root is given by 

S= HI 
/2KWZL 

ý 

_; J (5.10) 
LI SH 

For the case of the closed basin shown in figure 5-1 

X, 
M-UL 

Figure 5.1 

the surge 5 is not measured from mean water level but from the lowest 

water level. Lquation (5.10) applies equally to an open channel of 
constant depth since this case is merely a segment of the closed basin. 
In both configurations it is more convenient to calculate the surge 
height from mean water level S' and one way is to assume that 51 = 512. 

This condition is only an approximation and a more accurate method arises 
from considering the position of the nodal point. Assuming that the 

node is not necessarily at thL--centre of the basin, its position is 

expressed as X, (5.11) X! 3' I- son X+I -S 
LZK\, /I L 

where S= Smax at X=L and Xn is as shown in figure 5.1. From 

equations (5.10) and (5-11) the following expressions can be derived 

1- -Y� 1L 

-sM. W. L, =Hr1 -Z K WIL ( 9, JL) 

!3 
With Xm IL = 0-5 these equations show in fact that I 

'+ 
1 4: 1- SM-U-LI 

- 
When the surge is small in relation to the depth it is reasonable to 

assume that the node is at the centre of the basin. 

A similar method is used to derive the analytical solution 
for a steady uniform wind field applied to a channel of linearly 

varying mean depth. Considering the channel shown in figure 5.2 the 
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analytical solution is obtained by integrating equation 
tW2 KW2. 

since z vr%. 
ix 

. Therefore 

KW 5=3 
VA ( 1-3 ,', 1-03,2 "p ) 

5= LS-l--/ 11 t. ( H, ) 

03 Vl^ 5e Ho 

where m is the bed slope. 

rh 

Figure 5.2 

The surge height obtained from equation (5.14) is accurate for H, > 10m 

and if the surge height is large in comparison to H. then the following 

expression should be used. 

tý-w IaH, 

5m 
Lý 

(H. + 

Equation (5-14) can only be realistically applied to channels of 
trapezoidal an opposed to triangular longitudinal profiles. For the 
latter configuration this analytical solution would predict an infinite 

surge height, since H, = 0. 

A comprehensive derivation of the analytical solution for a 

uniform steady wind field applied to open channels of variable bathymetry 

was given by Lynch and Gray (1978)- They provided an analytical solution 

for channels which have their depths represeiated by 

c. x' (5. i6) 
where c is a constant and n is not necessarily an integer and may 

assume any real value. The analytical solution is not confined to a 
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wind field directed along the axis of the channel, as shown in 
figure 5-30' 

L 

xi 

Figure 5-3 
Theboundary conditions for this problem are as follows at 

S+T,, 
x 

(5.17) 

at )( = X, :s(x, :ý)= C) (5.18) 

at ý=o, L: ý5+ 7y 
=0 

C xft 
14W 5- 

The complete steady state response to an arbitrary wind stress thus 

obtained by superposition of x and ý components is 

s( 
-Y, n) = r,, ( ". - L- ", - "- 

+ T', xf Zý ( X12 )[f., 
+ el, slr-k(YY)ý 

f 

7.1 X, X* 
(5.20) 

in which Tx and Ty are the x and ý components of wind stress respect- 
ively. This equation is valid for rL: kl and 

at. = W1 
I -r" 1114W 

(I- M). 5. CIý=I/, Aw (' -") - 5- C (5.21) 

For the case r%, =I the first term in equation (5.20) is replaced by 
T, ( oý - 

L- kv. 3, x) and the constants a and b are calculated from the 

boundary conditions (5-17) and (5.18). The values are 

0- = 
t. 

3 e )(. /, /.. -3- -n- 
,=j? 3. c (5.22) 

In the special case where Ty =0 and n=1, equation (5.20) reduces to 

the analytical solution given by equation Q5.14). The variables in the 
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second part of equation (5.20) are expressed as follows 

ý=(I- ri. )12 (5.23) 

iZ9c ?W 
(5.24) 

(5.25) 
Y, X, 0 

x ý. Z (5.26) 
rA: 

r 
= 

fý 

f. "' x1 7- ý(X, 

where Zh (X) = Tý (K) 
- 

'Yý (x, ) - Th (X, ) - 
'YO (X) (5.27) 

and Y:, is the T th zero of Zh 
_I . 

Equation (5.20) is impractical for readily producing results for 

comparison with the simulated results. The actual simulation was 
therefore not performed although it poses no difficulties. However 

the configurations corresponding to equations (5.12-)and (5.14) were 

simulated. 

5.4 APPLICATION OF THE WIND STRESS TO THE NUMERICAL SCHEME 

Having derived analytical solutions suitable for comparison 

with the results from the numerical scheme the next step was to 

represent the wind stress effect in the scheme using the appropriate 
algorithms. This was accomplished in several steps which are outlined 
in the flow charts shown in figures 5.4,5-5 and 5.6. Firstly 

the wind field is specified using an expression that defines its 

Position relative to the channel or basin. This is shown in block 1 

of figure 5.4. as is also the incorporation of the wind stress 
coefficient into the calculation of wind stress at each grid point. 
Each grid point was defined by a configuration number and for each 
point the wind stress was applied as an external force to the charact- 

eristic equations governing velocity. This latter step is shown in 

block 2 of figure 5.4. 

The flow diagram which represents steady uniform wind 

conditions may easily be modified to account for a non-uniform or 

non-steady wind field. In the case of a progressive wind field with 
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a triangular wind stress distribution the unsteady movement was 
achieved in two steps. These steps are shown in figures 5.5,5.6 

and can be summarised as follows: 

a) The wind stress distribution is mathematically defined as a 
continuous function of length and breadth of the channel* 
Block 1 in figure 5.5 therefore replaces block 1 in 
figure 5.4. 

b) The transient nature of the wind field was achieved by 

advancing the wind field one grid step at prescribed regular 
intervals of time. Providing these gridsteps are not too 

large, the wind field maintains a continuous motion over the 

channel. The steps involved in this stage are shown in the 

flow chart of figure 5.6 which modifies that of figure 5.5* 

The definitions of the symbols shown in figure 5.4 are as 
follows: 

WC, WK : Wind stress coefficient and wind speed in M. P. H. respectively. 
BK : Wind direction measured clockwise from true north, 

LF, LB : Each is an integer multiple of the spacestep DS, measured from 

the edge of the shelf defining the position of the front and 
back of the fetch respectively. 

W(I, J), B(I, J) : Wind speed and direction respectively at each grid 

point. 
WX(I, J), WY(I, J): Wind stress in che respective X and Y direction at 

each grid point. 
UF(I, J), VF(I, J): Depth averaged velocities in the respective X and Y 

direction at each grid point. 

A: The celerity of the wave. 
BF(I'j), H(I, J), ZF(I, J): The respective elevation above M. W. L, the 

depth below M. W. L and the total depth at each point. 
D: Density of sea water. 

ST : Time at which the wind field is first applied. 
IN : Principally for moving wind fields, it is the time interval 

in which the wind field moves across one spacestep. 
KT, KTMAX : KT is a counter that stores the number of discrete 

movements of the wind field and KTMAX in the maximum 

number of required movements* 
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Application of__wind stress to program. 

Steady, uniform wind stress. 
Gý 

I READ WK, BK, IF, LB, WC, ST, IN, KTMAX, D1 

KT =0 
TIME = DT 
Ia : LIM J= IIN 
WX(I, j) =o WY(Ifj) =0 

I No 
TIME. GT. ST+lNxKT ýNcs 

KT KT +I Yes 

Yes I Ism J= 19N 
KT. LT. K KT. EQ. K WX(IIJ) =0 

ý 

1, 
Yes 

WY(IIJ) =0 

KT KT +1 
I 1, M J= leN 
W(I@J) = WK BU#J) = BK 
1F (I. LT. LB) W(I, i) = 0.0 
1F (I. LT. LB) B(I#J) = 0.0 
1F (I. GT. LF) W(i@J) = 0.0 
1F (I. GT. LF) B(i@J) Z 000 
WX(ItJ) = 0,24976 x WC x w(l@J) x W(Iti) x SIN(PIXB(Ifi)/180) 
WY(I#J) = 0.24976 x WC x W(Iti) x w(i, i) x Cos(FIXB(1, J)/180) 

I= lom J=1, N 
IF CONF(I, J) =L GO TO (0,1,2094,5,6,70, -1, -2, -3, -4, -5, -6), L 

A= SUT (G x H(I, J)) 
UF(IjJ) = CHAR FQNS + WX x DT / (D x ZS(IIJ)) 
VF(I, J) = CHAR FQNS + VY x DT / (D x ZS(IjJ)) 
EF(IgJ) = CHAR EQ. NS 
ZF(I. J) = EF(I. J) + H(I. J) 

TIME = TIME + DT 

TIME = TMAX 
No 

Yes 

Figure 5.4 
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For a steady, triangular wind stress field block I in figure 
5.4 now becomes as shown in figure 5.5 

TK = WK x WK 

LW = LF - LB 

I= i'm 

J=1, N 
IF (I-LE. (0.5xlk+LB)) TS = TKx2-x(I-LB)/LW 
1F (I. GT(O. 5KLW+LB)) TS = TKx2x(LF-I)/LW 
B(I, J) = BK 

1F (I. LT. LB) TS = 0.0 
lF (I. LT. LB) B(IIJ) = 0.0 
1F (I. GT. LF) TS = 0.0 
1F (I. GT. LF) B(IIJ) = 0.0 
W(I*J) SQRT (TS) 

WX(I, J) 0.24976xwCxw(I, J)xW(I, J)xSIN(PlxB(I, J)/180) 

WY(IlJ) 0.24976xwCxw(IJ)xW(I, J)xCOS(PIxB(I, J)/180) 

Figure 5-5 

with the symbols defined as follows; 

LW : Length of the fetch as an integer multiple of the 

spacestep DS. 

TK Obtained by squaring the maximum wind speed and 

proportional to the maximum wind stress. 

TS A parameter proportional to the wind stress at a position I 

along the shelf. 

The value of wind stress at each grid point is calculated from the 

geometry of the stress field defined by the parameters LF, 1B, LW 

an shown. If the triangular wind stress field is unsteady, then 
figure 5-5 is adapted by inserting two extra lines of computation as 

shown in figure 5.6. 
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0 
TK z WK x WK 

Ditto 

WX(I. J)= Ditto 

WY(I. J)= Ditto 

LB= LB+l 

LF = LF+l 

Figure 5.6 

Hence after a time interval IN the values of the integers LB and LF 

which control the position of the fetch relative to the shelf are 
increased by one. This corresponds to a movement of a distance DS 

such that the speed of propagation of the storm V. is equivalent to 
the ratio DSIIN. As mentioned previously it is important that the 

spacestep is not too large or the accuracy of the simulation is 

affected. This point is referred to again in section 5.6.2 with the 

computational results provided in table 5-5- 

5-5 STEADY STATF6 ANALYTICAL SURGE SIMULATION 

5.5.1 Channels and Basins of Constant Depth* 

Equation (5.12) was compared with the numerical scheme using 
the configuration geometry of tests 4 and 31, corresponding to the open 

channel and closed basin respectively. The initial conditions were 
that of mean water level and zero velocities. In applying a steady 

uniform wind field over these constant depth configurations it was 
important to determine the accuracy of the simulation. In this respect 
the model's response is related to the particular value of wind stress 

coefficient. This coefficient was determined from the value of uniform 

wind speed in the following way 
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O-Sslj. - 10 

11 <w IC 43 :k=-0- ix + 0.0612.4 wx lo- 

-3 WZ 2-- 5 tl) - 10 
(5-38) 

with W in M. P. H. These coefficients were first presented by Heaps 
(1969) and their origins are discussed in Chapter 8. In each test a 
different value of wind speed was used and its effect on the surge 
height noted. The corresponding analytical surge was calculated for 

comparisong using equation (5.12) and the convertion equation (5.4). 

In each test the results of the simulated surge showed that 
a steady state condition was not achieved. These tests were conducted 
firstly on the closed basin of constant depth. Instead of an 
equilibrium water surface, the simulation produced free oscillations 
in the basin. As a result of DT Ar DT 

max some attenuation was present 
and its effect on the oscillations is shown in figure 5.7. The curve 
was derived from the surge elevations at the boundary of the basin for 
W= 30 M. P. H. It was noted that in each test the average of the 

maximum and minimum oscillations was found to be very close to the value 
for the analytical surge. This was also true for subsequent oscillations 
in the channel. The maximum, minimum and average computed surge heights 

are presented in table 5-1 together with the analytical surge for the 

basin of constant depth* 

To decide whether or not the surge oscillations were produced 

solely as a result of the channel acting as a closed system, the same 

wind fields were applied to an open channel of constant depth. The 

results for each test showed that surge oscillations occurred 

corresponding to the natural period of the channel. For one such test 

which used W= 50 M. P. H. the surge oscillations are shown in figure 5.8. 

As for the closed basin, the average of the maximum and minimum surges 

at the head of the open channel are very close to the analytical steady 

state surge height. The computed and analytical surges are shown in 

table 5-2 for four values of wind speed. 
In both channels, which were frictionless, the simulated 

motion was that of a free wave oscillation superimposed on the steady 

state surge. The oscillations slowly diminished in amplitude as a 

result of numerical attenuation present in the model since DT-k DT 
max. 
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Surge histories at a landward boundary point 0 

produced bY a uniform . And field. 
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The Response of a Closed Basin of Constant Depth to a Steady 

Uniform Wind Field 

Comparison of Analytical and Computed Surges 

Wind 
ý 

Computed Analytical 
Speed Wind Drag j Max Min Average Surge 

Coeff k j Surge Surge Surge 

M. P. H. 1 10-ý m m m m 

10 0-55 0003 -0.01 0.01 0-0093 1.07 

20 1.10 0.13 0.01 0.075 0-075 1.01 

30 1-71 0,47 0.07 0.27 c. 2 7 1000 

40 2-33 1.16 0.10 o. 63 0.62 1.02 

50 2.51 1.97 o. 16 i. o6 1.0 1.02 

6o 2.51 2.78 0.26 1-52 1.49 1.02 

70 2.51 3.76 o. 36 2. o6 2.00 1-03 

Table 5-1 

The Response of an Open Channel of Constant Depth. 

10 0.55 0.0138 -0.0048 0.0045 0.0046 0.978 

30 1.71 0.225 0.029 0.127 0.129 o. 984 

50 .1 2.5 0.958 0.064 0.511 0.525 0.973 

70 2.51 1.828 0.152 0.990 1.020 0.97 

Table 5-2 
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The failure of the model to produce a steady state free surface was 
not a result of any limitations or inadequacy of the numerical scheme. 
It became clear in retrospect that the oscillations were produced as a 
result of the method of initialising the wind field over the channel or 
basin. Since the wind field was impressed suddenly over the surface of 
the model a dynamic effect was introduced which was responsible for 

generating the oscillations. To remove this effect one might, 
intuitively seek to specify a slowly increasing wind field such that 
the maximum value of the uniform wind is reached as t -ý oo - 
This method however was found to be impractical and an alternative is 
demonstrated in section 5.6-3. 

5.5.2 Rectangular channel with linearly varying mean depth. 

Further tests involving the simulation of steady state surges 

were conducted. Both uniform and non-uniform steady wind fields were 
applied separately to a frictionless shelf of linearly varying mean 
depth. The shelf dimensions shown in figure 5.9 are identical to those 

from test 45 except that the spacestep has been changed from 3867m to 
4,000m. With this change the length of the channel corresponds to the 

breadth of the continental shelf of the west coast of central Scotland. 

This shelf is discussed in greater detail in Chapter 9. 

ý, w 

K, = 160. 

2-16 km 

L I 
H. = I(. - 

Figure 5.9 

M 55 
DS = 4.000- 

A uniform wind field with a wind speed of 50 M. P. H. and a 

wind stress coefficient obtained from the conditions in o4iation (5.28) 

determined the external forces in the model. The initial conditions 

were once again those of mean water level and zero velocities which 

applies to all non-tidal surge tests. Computations of the surge 

produced at the shore of the rectangular shelf, corresponding to H. 
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are shown in figure 5.10. Also shown is the steady state surge S, 

obtained from the analytical solution stated previously as equation 
(5.14). The computed surge was once again subject to dynamic effects 
which appear as free oscillations across the shelf. The oscillations 
at the shore, as shown in figure 5.10, have exactly the natural period 
of the channel corresponding to the lowest mode of oscillation as deter- 

mined from Chrystal's equation (4-37). The slow attenuation in ampli- 
tude with successive oscillations has been described in Chapter 3 and 
shown in the tests of Section 4.4. It is the effect on free waves as a 
result of an inability to maintain DT = DTmax throughout a channel of 
variable depth. The results from section 4-3-3 showed that no apparent 
attenuation was produced when simulating forced waves. The results from 

figure 5.10 also verify that no energy loss has occurred in simulating 
the forced part of the surge because the average surge obtained from the 

maximum and minimum oscillations is exactly equal to the analytical 

steady state surge. 

An identical conclusion can be made from the results of simu- 

lating a steady, non-uniform wind field across the shelf. Details are 

given in figure 5-11 for this test which shows that the average computed 

surge is equal to the analytical surge. The spatial variation of wind 

stress was triangular and the position of the stress and wind field 

relative to the channel is shown in figure 5.12. The analytical 

solution for this type of trapezoidal channel and wind stress 

T 

x 
Stress Distribution 

w 

Wind Distribution 

Shelf Profile 

Figure 5.12 
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Surge histories at a coastal point of a rectan-Ular 
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arrangement was first stated (without proof) by Reid (1956) and is 

expressed as 

S= Irf (K V4 
z 

Cl * 
(5.29) 

where is the travel time of a free wave across the channel and C, 
is the maximum celerity corresponding to the open end of the channel. 
Reid has termed Z as a dynamic response factor dependent on the length 

of the fetch. In his paper he calculated the maximum response factor 

at the shore for each fetch, found by numerical integration for different 
trial positions of the fetch. Unfortunately Reid does not give details 

of the position of the fetch corresponding to each response factor but 

only for the maximum response factors. The arrangement shown in figure 

5*12 does not correspond to a maximum response case by virtue of the 

position of the fetch relative to the shelf. Therefore the response 
factor at the shore is determined from first principles as follows. 

Consider the wind stress in dimensionless form given by 

K,, o w 
\J 2. 

(5-30) 

W1 M W., 

where W, is the maximum wind speed in the fetch. The function f shown 
in figure 5.13 is discontinuous and its integration is performed in two 

parts, A and B 

R 

(Y. 
- X, ) AO X,, j X. =0-I 

Figure 5.13 
For part A: 

xc, :f= 

x==I 
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produces R 
f (5-31) 

X. - (X, 

Withj = (x/x, )4 and dividing the top and bottom of equation (. 5-31) by 

x, gives 

jo 
S j (5-32) 

I) 

For part B 0 

X= tj ( ýe, -. X. ): f =I 

gives X, -Y (5-33) 
X, -4( ýe, 

Transforming this equation by dividing the numerator and denominator by 

x, gives 
tj (5-34) 

Reid has shown that the exact integral of the response factor at the 

shore is expressed as 

Z (5-35) 
C, 

where Y= I and for this c hannel where X, IX, =0-1, Y= o. 684. 

Sxpressing equation (5-35) in terms of f. and f. produces 

k [ko. tý) , 
Z. = L. Y, . f;; I 

1ý 1ý + V, . ý-. 1ý (5.36) 
'd !i 

Substituting equations (5-32), (5-34) into equation (5-36) gives 

-2 
ý 

+ 
- 

f 

(5-37) 
T 

-N46 . -74. 

which simplifies to 

4. 

+ 

(5-38) 

Integrating this equation produces 

1-92.6 V, + ý2 (5-39) 
-. 74. 

Inserting the numerical values into equation (5.39) gives Z. = 0.392. 
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With the channel dimensions inserted into eauation (5-29) and the 

value of K=3w 10-6 suggested by Reid, the following equation is 

produced 

So =0-557 7-0 (5.40) 

Equation (5.40) gives 5. = 0.218m as the steady state surge for a 
triangular wind stress distribution, where the fetch length is equal 
to the breadth of the shelf. This surge height at the shore is shown 
in figure 5.11 and is very close +Ip the average computed surge obtained 
from the maximum and minimum surges. 

5.6 UNSTEADY STATE; ANALYTICAL SURGE SIMUIATION 

As mentioned in Section 5.1 the analytical solutions are an 

important means of verifying the accuracy of the model under simplifying 

conditions. However if the assumptions used in the analytical derivation 

lack any physical meaning then the analytical solutions are of little 

value. For example the steady state analytical solutions apparently 
do not consider the complete dynamic process by which such a surface is 

produced. By contrast the numerical model, which does not ignore the 

dynamic considerations, thus cannot produce a steady state surge. By 

considering for simulation purposes the case of an unsteady wind field, 

there is the advantage of studying an important natural phenomena 

namely the transient effect of a wind field. Before actually conducting 

any numerical tests it is necessary to have a theoretical method as a 

comparison, that accounts for the dynamic effect of a transient wind 
field. For this purpose the semi-analytical method devised by Reid 
(1956) is appropriate. 

Reid succeeded in obtaining the water response using a method 

whereby all the factors defining the shape, size and duration of the 

surge were included without making the method impractical. The method 

was based on the simplified linear one-dimensional equations of motion, 

utilizing the method of characteristics to obtain the solution. A 

simple graphical integration procedure was devised which accounted for 

the bottom slope of the shelf and it was capable of dealing with almost 

any distribution of onshore components of wind speed. He only 

considered wind-driven surges and to facilitate interpretation of the 

results, the wind stress distribution was the same in all cases. 
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However, different combinations of the fetch length and speed of 
propagation of the storm were examined. Wind intensity was accounted 
for by employing a dimensionless parameter. 

The limitations of Reid's method are that two-dimensional 

effects associated with finite storm width, longshore windag and 
variations of bottom topography parallel to the shore were not 
considered. Furthermore, bottom friction and non-linearity associated 
with large water level changes were not included. This compromise was 
necessary because exact solutions of the hydrodynamic equations were 
(and still are) so complicated that a complete mathematical solution 
capable of dealing with any storm condition was outside the realm of 

practicability. At that time also, computer technology was inadequate 
for the application of a comprehensive yet flexible numerical scheme* 
However, for storms of large width parallel to the shore and for 

conditions where the surge is smaller than the mean water depth, Reid's 

method leads to reasonably realistic results. 

5.6.1 Derivation of a semi-analytical purge solution on a shelf of 

linearly varying mean dept . 

Although Reid's particular area of interest was Narragansett 

Bay in New Lngland the results from his calculations are applicable to 

any shelf region. This is a direct consequence of Reid generalising 

the problem by employing the concept of dimensionless variables. The 

only restriction in applying his results to any other shelf area is 

that the depth ratio is as follows 

H,, 1 (5.41) 

This condition was applied to the channel used in the tests of section 

5.5.2 and the channel has been the basis for further testa presented 
later. The dimensionless variables define any triangular storm stress 
distribution and any rectangular shelf with a linearly varying mean 

depth. 

One important dimensionless variable, namely dimensionless 

time is defined at this point, as follows 

(5.42) 
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because it is commonly used in subsequent presentations of results* The 

variable Tf which is the travel time for a free wave to cross the shelf 
is defined as 

L (5.43) 

where 7 is the average celerity across the shelf given by 

k2- (5.44) 

Equations (5.43) was considered by Reid to be indicative of the natural 

period of the shelf therefore it is important to understand the steps 
leading to its derivation. Starting with the Green-Du Boys 

theorem(Defant (1961)) 

ffxI 
H)"i * 

Ix (5.45) 

X0, 
which is applied to the shelf shown in f igure 5.14 

L 

xq 2. It. km 

Hz Mx+ H" 

Figure 5.14 
the following equation is obtained 

-f =L 
(5.46) 

i(mx+H. )- Ie 

and on integrating yields 

ft = 

Multiplying the numerat 

Ir, = 

and with Cl = (gH, )4 

equation (5.48) becomes 

Z Hý (5.47) 

ion and denominator by (H 
I+H0 

4) 
produces 

I(H, - Ho ) (5.48) 

Co (gH 
0 and (H, -H0 )/m =L 

(5.49) 
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which is equivalent to the combination of equations (5.43) and (5.44). 
Hence the Green-Du Boys integral provides an expression for-rt based on 
the average celerity of the shelf. Using equation (5.49) and the 
dimensions of the channel shown in figure 5.14 a travel time of 
8284 secs is obtained. 

The basic linearised differential equations of motion and 
continuity for the simplified one-dimensional water level problem are 
respectively 

H (5-50) 

n+0 (5-51) 
1. it 6X 

for Reid's case. He transformed these equations into the following 

equations. 

Y (5.52) + 

+ LY +Y0 (5-53) 

by using the following dimensionless variables 

)<, ) 
Vz (5-54) 

C, t5 (5-55) 
K. W 1, ( 

(5-56). 
KW 

T (5-57) 
2. 

(5-58) 

As a first step Reid considered the special case of steady state. The 

boundary conditions for this and any other problem was taken to be 

X) ý_ý =C> 
(5-59) 
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XD : (5.60) 

The boundary equation (5.60) modifies the equation (5-52) into the form 

(5.61) 

which can be rearranged in the form 

(5.62) 

The solution of this differential equation is 

ZO 1. f 1ý (5.63) 
7 

ýO which is the analytical form, and 'Z, is the value of Z at the shore. 
For the limiting case of a large fetch the forcing function f can be 

considered uniform (f = 1) and equation (5.63) yields 

Z, = 
1,5e (k, 

3. 
) (5.64) 

where Z, is Reid's exact value of the dynamic response factor at the 

shore in the steady state. By substituting in equation (5.64) the 

relationBhips (5-54), (5-55), (5-57) and (5-58) the more common form of 

equation (5.14) is produced. Equation (5.64) also shows that the 

maximum dynamic response for a unifoxv wind field in steady state is 

X, = 0.945 with the condition that (14. /H, ) = O. le In deriving equation 
(5.64) the condition (5-55) was used which if rearranged produces 

IKW2 ft ( H, ) V* 
Z (5.65) 

C1 W. 

This is Reid's steady state surge equation for a triangular wind stress 

distribution which is the general case from which the analytical solution 
for a uniform wind surge has just been derived. 

In order to simplify the graphical procedure, Reid assumed that 

the terms Z/ý and Y/j in the equations (. 5.52) and (5-53) respectively were 

small compared to the terms and ýY/ajv and so could be neglected. 

This approximation is reasonable provided that ý. is sufficiently large 

so that the quantity ( H,. WI)7 is not too smalls After applying these 

approximations to equation (5-52) and then considering the steady state 

and boundary conditions (5-59) and (5.60) the following expression is 
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produced 

(5.66) 

and the solution at the shore is 

(5.67) 

This integral is slightly different in form from the exact integral 

expressed in equation (5.63)- Using equation (5.67) Reid calculated 

the values of Z. 1 for different positions of the fetch by numerical 
integration for different values of fetch length. The maximum value 

I of Z. for each fetch denoted by"k,, found from these calculations are 
shown in figure 5.24 together with the exact maximum steady state 
values Z., obtained from equation (5.63). The variation between the two 

curves is represented by a factor r such that 

-Er = -r. Z. (5.68) 
The values of this correction factorr are provided in the table 5-3 

as shown. 

F/L 0 0.2 0.5 1.0 2.0 4. o 8.0 00 

r 1-00 0-9C5 0.817 0.795 0-755 0.751 0-746 0.739 

Table 5.3 

The case of steady state therefore served an a useful method of 

calibration for Reid's graphical process since the factor r related this 

scheme to the analytical solution. He assumed thatr was only dependent on 

the fetch length and as a result he applied the correction factors to the 

maximum dynamic response Z., obtained from the same wind stress in the 

unsteady state. Therefore by using the graphical process the maximum 

response factor 7-. at the shore was found for the unsteady state and suit- 

ably corrected using the appropriate correction factor. This method led 

Reid to investigate a large number of moving wind fields of triangular 

stress distribution. From these results he plotted a response diagram as 

shown in figure 5-15. The response diagram gives the estimated maximum dy- 

namic response Z., associated with a particular storm speed and size. Coupled 



157 

with a knowledge of the shelf dimensions, the approximate maximum 

water level at the shore is accordingly provided from the equation 
(. 5.65) with rL - 5, and I= 7--, 

In performing the calculations Reid assumed that the wind drag 
coefficient was constant for wind speeds of storm intensity. This 

assumption evidently simplified the calculations since the dimension- 
less intensity of the wind stress factor f defined previously as 

K/o, V%(V. ), t 
m 

(5-30) 

becomes only a function of wind speed. Therefore f and ý. from 

equation (5-67) are only functions of distance x providing K is 

constant. The dynamic response factor Z. can therefore be calculated 

solely from the shelf dimensions and the wind stress function. This 

would not be the case if the wind drag coefficient was a function of 

wind speed such that 

KW (5.69) 
K.. W.. 

and Xcp would then be dependent on the value of the wind drag coefficient. 
The validity of assuming the wind drag constant throughout the wind 
distribution. is investigated in the next section. 

5.6., 2 Simulation of Unsteady Wind Fields 

In order to verify the accuracy of the model by comparing its 

surge heights with those of Reid's, it was necessary to use a constant 

wind stress coefficient in the model. This was in keeping with Reid's 

method and the wind stress coefficient used in the model was 

k= 2--5)3 - 10 -3 f'r W>o (5-70) 

Before presenting the simulations it was thought important to invest- 

igate the effect, on the computed surge, of using either a variable or 

a constant wind stress coefficient. It seemed appropriate to make a 

comparison of both methods since the model can function with equal 

ease in both cases. For the simulations with the variable coefficients, 

these coefficients were taken as those presented in equation (5-28)- 

In both cases the wind stress field had a triangular distribution with 

a maximum wind speed of 50 M. P. H. The configuration was that used in 

section 5-5.2, and shown in figure 5-9- 
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The computed maximum surge at the shore for a constant wind 
drag coefficient S and for a variable wind drag coefficient S. are 

shown in table 5.4 for a number of tests. 

F/L v,., /-c sk 

F/L 

m m 

12 0,245 0.29 0.85 0.5 
11 0.495 0.55 0.90 1 
42 0.59 o. 62 0.95 2 
2 0.605 o. 63 o. 96 2 
4 o. 68 o. 69 0.98 4 
4 0.5 0.515 0.51 1.01 8 

8 0.54 0-53 1.02 8 

Table 5.4 

The parameter F/L is the dimensionless fetch length which is the ratio of 

fetch length to the length of the shelf. The parameter V,, /-c is the 

dimensionless storm speed which is the ratio of theapeed of the storm to 

the average speed of a free wave across the shelf. A graphical rep- 

resentation of the ratio of surge heights S. /S for both methods plotted 

against the storm parameter 4ýý/-c is shown in figure 5.17. From the 

results a curve has been drawn as shown which indicates that the ratio 

Sk/S is OA1Y significantly less than one for small fast moving wind 

fields. For large slow moving fetches, the surges, produced, using 

either a variable or a constant wind drag coefficient, are very similar 

and the ratio 5, A tends to unity as F/L -too. These results suggest 

eid has the most significant that the central portion of the wind 
Y1Z 

effect in surge production in comparison with the ends of the fetch. In 

figure 5.16 the hatched area under the wind distribution represents the 

length of the fetch in which the wind stress is the same using either a 

variable or constant drag coefficient. 

Figure 5.16 

50 
43 RIEC. ýON Or MAXIML&M WIND 

F 
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Wind surge ratio obtained from comrutations using 

a variable and a constant. wind stress coefficient, 

plotted against a dimensionless wind field parameter. 

sk 
s 

I 
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FL 

Figure 5.17 

2 4.10 
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As the fetch length increasesl the hatched area becomes a greater 
percentage of the total area and the variable wind stress coefficient's 
effect approaches that of a constant wind stress coefficient's effect. 
It is also reasonable to assume that had WM = 80 M. P. H. in each test 
the curve shown in figure 5.17 would have approached unity even quicker 
than is shown, because the maximum wind stress coefficient would be 
dominant in the variable wind drag coefficient case. Reid considered 
actual storm events with maximum wind speeds of approximately 80 M. P. H. 
It therefore became reasonable to simplify the problem by assuming a 
constant wind drag coefficient. 

Before obtaining Reid's paper, reference was made to Silvester 
(1974) for equatiozLs and tables governing unsteady wind fields. Silvester 

refers to Reid's equation namely equation (5.29) but does not 

SK 
V4 

CH 
mention that it is basically a steady state equation. Furthermore he uses 
the misleading term 'triangular wind distribution' which may be taken 

to imply a different function entirely from the correct expression which 
is a 'triangular wind stress distribution'. The difference lies in the 

fact that wind stress is proportional to the square of wind speed. It 

was only after obtaining Reid's paper and after many computations using 
the triangular wind field, that the correct form for the wind stress was 

realised. The computations are therefore not presented, except for the 

steady state curve shown in figure 5.24, since they are unrealistic. 

The correct triangular wind stress distribution was incorporated 
in the model using a constant wind stress coefficient of 0.002513. The 

wind stress was applied over the shelf shown in figure -1.9 with a space- 

step of 12000 metres and 19 grid points along the length of the shelf. 
In each test the storm parameters F/L and Vý/-c were given suitable values 

and the surge history was computed at every grid point. The maximum 
surge elevation at the shore S... corresponding to the storm parameters 
is shown in table 5-5. Also shown is the computed dynamic response 
factor Z., obtained from equation (5.40), together with Reid's response 
factor 'Zr for comparison. In all these tests the computed response was 

less than that of Reid's, which suggested a deficiency in the method 

� 
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of simulation. The computed responses were also found to be in poorer 
agreement with Reid's resDonses for the smaller values of F/L and the 
larger values of 11, TC. 7his fact indicated that the discrepancy in 
the model was one of poor schematisation of the distribution and 
propagation of the wind field. Further evidence of poor schematis- 
ation of the wind field was noticed when simulating slow moving wind 
fields. The computed surge showed small peturbations which corresponded 
to the sudden movement of the wind field from one grid point to another. 
The peturbations are the dynamic effect associated with each movement 
across the grid. In order to decrease the effect of the sudden 'Jumps' 

the grid size was reduced by one-third so that fifty-five grid points 

were necessary to define the shelf. Simulations on this grid were not 

subject to perturbation effects however it appears that to simulate 

accurately the surge effect of a progressive wind field the grid para- 

meters have to be smaller than is required for tidal motion. 

In figure 5.18 the curves illustrate the generation of the 

surge from the edge of the shelf to the shore. The simulated surge 

responses are shown at intervals of 1242 seconds. The storm parameters 

were F/L aI and V,,, 7C =1 and the latter parameter caused the maximum 

surge at the shore to arrive at nearly the same time as the maximum 

wind passes over the shore. The respective dimensionless times were 
tImz1.65 and t'w = 1.50. The wind field did not produce a large free 

surface response except for in the relatively shallower area near or at 

the shore. At t ul. 80 the maximum wind speed passed over the shore and 

the curve at that time shows that a smaller secondary resurgence is 

being propagated towards the shore. 

The surge histories at the shore are presented in figure 5.19 

drawn from the results from several simulations. For each test the 

fetch length was constant such that F/L =1 however the storm speed V, 

varied. The maximum surge indicated by these curves occurs when the 

dimensionless storm speed V,,, /-C is approximately 0.75. The curves also 

show that the quicker moving storms produce earlier surge responses 

at the coast. 

In figure 5.20 the curve drawn from the results of a simulation 

using the storm parameters F/L =2V,,, /C- = 1, shows the resurgence at 

the shore. This resurgence occurs after the passage of the wind field 

over the shelf and its period corresponds to that of the lowest mode 

of a free wave oscillation given by Chrystal's equation (4-37). The 
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parameter which indicates the dimensionless time at which the maximum 
wind speed passes over the shore is given by 

I- 
W 

S- I ý. F (5-71) 
VW ZL 

and the dimensionless time for the back of the fetch to cross the shore 
is similarly 

(I+f (5-72) 
V", L 

The parameter te for the case F/L =2 and V,,., /C =1 is shown in figure 
5.20. For all the cases examined, the computed resurgences which 
followed the first wind driven surge produced smaller peak responses 
than the first peak. 

From the simulation of several storms with the parameter 
V,,, TC =1 the surge history at the shore has been d-awn for each test and 

shown in figure 5.21. Each test corresponds to a different value of 
fetch length and the curves show that the maximum surge response occurs 
later for the storms of longer fetch. From these curves it is clear 
that the overall maximum surge would occur with a dimensionless fetch 
length ratio F/L, between three and four. 

5.6.3 Comparison of Simulated and Semi-analytical 

Maximum Surges. 

For a triangular distribution of wind stress over a shelf of 

linearly varying mean depth a total of twenty-nine separate surge tests 

were conducted. In each test the maximum surge at the shore S, and 

the dynamic response factor Z,,, obtained from equation (5-40) was noted. 
These results are presented in table 5.6 corresponding to the wind fetch 

speed and size. Reid's maximum dynamic response factors Z, are also 

shown and their comparison with the computed response factors is in good 

agreement. In two of the tests namely with F/L = 1, K, /C 
= 0-5 and 

F/L = 1, VTC a2 the regular grid method of simulation and the method 

of subdivisions were compared. Both methods give very similar results 

for the maximum surge with the surges from the latter method being 

slightly larger. To reduce computational time the method of sub- 

divisions (discussed in Chapter 3) has been used in obtaining the 

results in table 5.6. 

The same tests also provided information concerning the arrival 
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time of the maximum surge at the shore These results are presented 
in table 5.7 together with the dimensionless time for the maximum wind 
speed at the shore obtained from equation (5-71). The parameter at' 
is obtained from 

&t= t'M - +,, 
w 

(5-73) 

and denotes the time lag between the maximum surge and the maximum 

wind at the shore. These values together with Reid's values &t'. are 

also shown in table 5.7. A graphical representation of the results 
from cable 5.7 is presented in figure 5.22. The curves in this figure 

indicate that, irrespective of fetch length, for fast moving storms 
the maximum wind reaches the shore before the maximum surge and so At 

is positive. Conversely for slow moving storms the maximum surge 

reaches the shore ahead of the maximum wind and so At is negative. 

From the results presented in table 5.6 a composite plot of 

the maximum dynamic responses against the storm parameters has been 

drawn and is shown in figure 5.23. Each curve represents the computed 

response for a particular value of the parameter F/L and for comparison 

the maximum dynamic responses obtained by Reid are also shown. At all 

values of V,., IE and F/L the comparison is shown to be very good. In 

both cases the ultimate maximum dynamic response occurs for a finite 

fetch length of approximately F/L =4 and V, 1Z =1 

It has been mentioned already in section 5.5.2 that difficulty 

arises in simulating a steady state problem because of the dynamic 

effects produced. An alternative method of finding the simulated 

steady state surge for a particular fetch length is simply to 

extrapolate the appropriate curve in figure 5.23 to the ordinate axis 
to obtain the maximum steady state response factor. By using this 

response and equation (5.40) the maximum steady state surge at the 

shore can be found. It was by means of this extrapolation technique 

that the maximum steady state response factors in table 5.6 were 

obtained. However it was possible to simulate the surge response for 

storm speeds as small as V,, IZ=0-05. 

Reid found that his graphical process for finding the 

maximum dynamic response at the shore for the case of small storm 

speed gave results which showed an oscillatory character. This effect 

is shown in figure 5-23 for his curve with FIL = 0-5- When he presented 
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his curves he chose to represent the oscillations by an upper envelope 
curve. The computed surges produced using slow moving wind fields did 

not suffer from the production of this oscillatory mode. However, when 
plotting the results and extrapolating to the steady state situation 
OV, = 0) the curves follow those of Reid's curves to assist in the 

extrapolation. As a result a comparison can be made between Reid's 

steady state responses and the computed steady state responses. This 

comparison can be made from curves 2 and 3 shown in figure 5.24. 
Curve 2 represents the steady state response obtained by Reid using 
equation (5.63) and represent exact analytical maximum dynamic 

responses. The steady state responses extrapolated from the computed 
maximum dynamic responses in figure 5-23 are represented in figure 
5.24 as curve 3. The comparison between curves 2 and 3 is very good 
and shows that the steady state responses obtained using the numerical 
model are superior to those from Reid's approximation equation (5.67)- 

The results from this approximate solution are shown as curve 1. 

Curves 4 and 5 represent the triangular wind stress case 
and the triangular wind field case respectively. In both cases the 
number of grid points along the shelf was nineteen and their inclusion 
in figure 5.24 highlights the effect of using an insufficient number of 
grid points in the simulation. 

Each curve shows that an increase in fetch length produces 

a corresponding increase in the dynamic response factor. As the fetch 

length becomes infinite the response factor tends to a limiting finite 

value, which is the response for uniform steady wind stress. For 

curve 2 this limit is 0.945 and with this value inserted in equation 
(5.65) this equation produces the same surge elevation as equation 
(5.14), therefore with Z, 0.945 

SKV1 
Y4 

KW 3. 
(t, 

H, rV% H" 

The dynamic response diagram shown in figure 5.25 has been 

drawn from the computational results in table 5.6. The sdales of F/L 

and V,, /C are logarithmic so that the limiting cases of uniform wind 
fields appear as straight isolines of Z with unit slope. An important 

feature of this figure (and Reid's response diagram shown in figure 

5-15) is that the ultimate maximum response Z., which determines the 
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water level at the shore, occurs at a finite fetch length and storm 

speed. 

Overall figure 5.15 should be more accurate in comparison 
to figure 5.25 since Reid performed more tests than did the numerical 
model. However in the region of the ultimate maximum response, 
Reid's tests were insufficient in number to establish exactly the 
fetch length ratio which produces the ultimate maximum response. He 
has taken this ratio to be F/L =4 and with VTC =I is equivalent 
to a forcing stress function of period 41,7C. The assumption that 
4L/_C is the resonant condition of the shelf is implicit in his reason- 
ing. Reid has therefore assumed that the natural period of the shelf 
T can be expressed as 

-r = 4,. (5-75) 

where Tf is the time for a free wave to cross the shelf determined 

from Equation (5.45) namely the Green-Du Boys expression. Chrystal 

has shown that the natural period of such a channel using the Green-Du 
Boys equation is too large. From Chrystal's Equation (4-37) the 

natural period has been found to be 3-26 IVrC' therefore 

3-Z6 (5-76) 

The period expressed by this equation was also confirmed by the results 
from the numerical model, and has been shown for the resurgences in 

figure 5.20. Furthermore in figure 5.21 the maximum surge has been 

shown to occur for a fetch length ratio between three and four. There 

is no doubt therefore that for this shelf or any other shelf satisfy- 
ing equation (5.41) that the ultimate maximum response occurs for the 

storm parameters F/L = 3-26 and V. /C = 1. 

Defant (1961) refers to the work of Thorade (1926) who 
investigated the behaviour of a long wave over a shelf of variable 
depth. Thorade has shown the inaccuracy of the Green-Du Boys equation 
when the wavelength is longer than the length of the channel. The 
inaccuracy increases as the wavelength increases. The Green-Du Boys 
theorem is only appropriate under certain circumstances which Green 

acknowledged yet its application has been made outwith its 'limits, see 
Groen and Groves (1962). 
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Surge Parameters for a Triangular Wind Stress Distribution 

With M=]: 2 

F/L m 0.5 F/L =1 F/L =2 F/L =4 F/L =8 

Oý, 27 0.45 o. 46 

0 00 

00 0-0 
2 o. 49 0.82 0.83 

-Z , o. 56 0.83 0.91 

0.28 o. 46 o. 47 

t 26.5 35-3 95 

t 30-0 60.0 100 
0.05 at -3.5 -4.7 -5.0 

Z-C 0.50 0.83 o. 84 

o. 56 c. 84 0.92 

0.29 o. 44 0.51 o. 46 

t 2.40 2.85 3.8 5.83 

t 2.50 3-0 4. o 6. o 
0.5 

n, -0.10 -0.15 -0.20 -0017 

Z 0-52 0.79 0191 0.83 

o. 76 1.02 1.18 0.95 

5 0.29 0.42 0.50 o. 6o 0.. 52 

t- 1.37 1.63 2.15 3.13 5-1 

1.0 t', ' 1.25 1.50 2.0 3-0 5-0 

1 8, t 0.12 0-13 0.15 0.13 0.1 

«z -, 0.52 0.75 0.90 1.08 Q-93 

-£ , o. 98 1. o6 1-13 1-38 0.97 

Table 5*5 
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Progression of a wind stress field across the shelf. 
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Surge history at the shore produced by the passage 

of a triangular wind stress distribution across 

the Shelf (showing first free oscillation). 
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Comparison of Computed and Analytical Maximum Response Factors for a 

Triangular Wind Stress Distribution over a Shelf of Linearly Varying 

Mean Depth, (M = 55) 

Table 5.6 

vR F/L 

0-5 12 3 4 5 8 16 

0.20 0.30 0-39 o. 46 0.49 0.50 
0 0.37 0.55 0.71 0.82 o. 88 0190 

o. 38 0.56 0-72 0.83 0.91 0.93 

0.21 0 31 0.40 0.05 0-38 0: 56 0.72 

oo46 0.49 0,90 
0.10 F- " I 

1 
I 

0.83 1 0.88 I 0.90 
- 

0.33 1 
0.25 0.59 

0.73 

T xi 
1 0 50 

smc 0.42 0.5 (0-55)1 0.51 0 
(0-54)ý 0.50 ý 

I Z--- 0.75 0 99 1 1.04 0.92 0.90 

r1 0.76 1: 02 1.18 0.95 0.92 

0.51 0.62 0.68 0.56 0-53 
0.92 1.11 1 1.22 1.01 o. 96 
0.94 1.07 1.22 1.21 0.97 

Sýc 0 49 0.55 o. 63 i 0.69 0 69 0 60 0.53 
1.0 -1 

Me 0: 88 0.99 1.13 
6 

1.24 1: 24 1: 08 
24 38 1 1 28 1 

0.95 
0 97 a, o. 98 i. o 1.13 . . . . 

x 
5 0.15 (0-30) 0.41 0.02 0.68 

(0,29) 
2.0 -Z 0.27 0-52 0.74 1.22 

0.29 0.51 0.77 1: 04 1-32 

(See also figure 5.2,5) 

x Both methods used and compared* 
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Computed Relative Time Parameters for a Triangular Wind Stress 

Distribution on a Shelf of Linearly Varying Mean Depth and M= 55 

Table 5.7 

F/L 

0. 5 4 5 16 
. 

t 22.8 26.1 3.5.4 

0.05 
25.0 30-0 

4 
4o. 0 

6 4 .9 -2.2 - . - 

27.7 8 89.0 48 
30-0 

: 
50 0 90.0 ý 

0.10 ! -2-3 -1.2 ý -100 

5.00 
tw 6.00 

0.25 
-1100 

t"! -1.20 
2.40 2 8.5 3-70 5-87 9.90 

tw2 50 3: 00 4 00 6. oo 10.00 
0.50 

ic .i :0 15 ý -0: 10 , : -: 03 -0.13 4 -0. lo ý i 

ý 
0 20 ý 

ý, ý, ! -0.10 , -0.20 -o. o 
1 ii 

1-75 2.05 2.70 3.83 6.6o 

0 7 1.66 2., 00 2.66 4. oo 6.66 
o6 . 5 0.09 Q. u> 0.06 -0.17 o. 

_C). 04 0.06 O. co -01101 

t'- 1.37 1.65 2.14 2.64 3.08 3-52 5.15 i 
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Steady state dynamic response factors at the 

shore of a frictionless shelf Llotted against 

the fetch length parameter. 
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For a particular occurrence of a storm, figure 5.25 can be 
used to find the corresponding maximum dynamic response factor. The 

approximate maximum surge at the shore can then be obtained by apply- 
in equation (5.65). Two such particular surge events occurring on 
the west coast of Scotland have been considered for this method. The 

storm conditions and the wind surge obtained from equation (5.65) are 

shown in table 5.8. 

Storm Wrn Y, 
I 

F/L vw V. M F- S Mr- 
MPH Knots m 

Dec 1972 

Mar 1979 

45 

38 

3-0 C 

2.69 

2 40 

2 27 

0.79 1 22 

0.54 i. o4 

0-55 

0.30 

Table 5.8 
For the surge of December 1972 the only suitable available record of the 

surge was at Malin. The wind surge had a maximum value there of 0.43m 

obtained by removing the pressure effect from the recorded surge. 

The effect of pressure is discussed in Chapter 8. The shelf dimensions 

define a coastline that passes through Crinan, Port Ellen and Bally- 

castle Bay. Measurements of the 1979 surge at these ports (shown in 

Chapter 8) were recorded using tide gauges. The wind surge was found 

by adjusting the measurements for the pressure effect, and the maxi- 

mum surges are as shown in table 5-9- 

Port Total Surge Pressure Surge Wind Surge 

m m m 

Crinan 0.62 0-32 0-30 
Port Ellen 0,56 0-30 0.26 

Ballycastle Bay 0.51 0.29 0.22 

Table 5-9 

For both surge events the wind surge level calculated from 

the response diagram was larger than the maximum observed wind surge. 
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The following conditions were responsible for the differences just 

mentioned. 

a) The dynamic response diagram and the analytical equation 
apply only to a frictionless shelf. 

b) The calculated wind surge assumed that the wind distribution 
had a triangular stress variation and that its progression 
was normal to the shore. 

C) It is conceivable that the recorded wind surge was reduced 

in height because of itsinteraction with the tides. The 

wind surge obtained from the response diagram did not 

consider this tidal effect. 

Despite these factors the calculated and recorded wind surges 

are in reasonably good agreement. Actually the limitations of the 

Jtations of the theory to which computed results are in fact the lim., 

the model has been applied. Nevertheless the theory has proved 

useful in showing that the model has performed most satisfactorily, 
judging from the comparison of computed and analytical wind surges 

shown in this chapter. The simulatiom of storm surges which are not 

restricted by points a), b) and c) and which are therefore closer to 

the true physical conditions are investigated in Chapter 8. 
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CHAPTER 6 

THE TIDAL SURVEY 

6.1 INTRODUCTION 

The sea area of particular interest in this research included, 
in addition to the Firth of Clyde, the adjacent waters of the Sound of 
Jura, and the North Channel approaches to both areas. For numerical 
modelling purposes, the definition of the sea area is partially deter- 

mined from the position of a suitable sea boundary or boundaries. 
Since these boundaries provide a means of inputing data into the model, 
it is essential that they are positioned in sea areas where existing 
tidal information is available. For the model subsequently used, it 

was necessary to have three such sea boundaries in order to define 

adequately the boundary conditions. The locations of these boundaries 

are shown in figure 6.1. 

At the southern sea boundary, which extended from Larne to 

Portpatrick, tidal information from recording gauges was available 

from both ports. This data in effect provided the tide and surge 

information for that boundary. For the entire sea area at coastal 

locations, tidal information was abstracted from the Admiralty Tide 

Tables Volume 1 (1972), (1979). For offshore areas the Admiralty chart 

No 5058 provided co-phase and co-range information for average spring 

tide conditions. These tables and the chart were the only available 

sources of tidal information at the western and northern sea boundaries. 

The western sea boundary was chosen so that its extremities occurred 

at Ballycastle Bay in County Antrim, and Port Ellen on the coast of 

Islay. The absence of tide recording gauges at both these ports meant 

that no surge information was available at this boundary. Similarly, 

no surge records existed at Crinan which was taken as representative 

of the smaller northern sea boundary. The lack of surge data alone 

would have justified the need to install tide gauges at Crinan, Port 

Ellen and Ballycastle Bay. However there was another reason. The 

tidal phases at Crinan, Port Ellen, (and any other port in the Sound 

of Jura) obtained from the Tide Tables (1979) were in disagreement with 

those from the co-phase chart. As an attempt to resolve this problem 

and establish which set of data was correct, a small tidal survey was 

undertaken. 
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At this point it is appropriate to note that in this research 
the term 'phase' is used to denote the time of high water of a 
particular tide. A more precise definition is that the phase of the 

tide is the mean time interval between the passage of the Moon over 
the Meridian of Greenwich and the time of the next high water at the 

place concerned. Hence the phase is sometimes termed the mean high 

water interval. In the tables that follow the phase is therefore 

expressed as a time relative to Greenwich (G. M. T. ), although many 

other reference works seem to favour the use of a phase angle. 

6.2 TIDE GAUGE IN--TAL'LATICN 

The purpose of this survey was to install tide recording 

gauges at Ballycastle Bay, Port Ellen and Crinan, which would provide 
data for subsequent analysis of tides and surges. These gauges together 

with the permanent ones at Larne and Portpatrick would therefore reason- 

ably define the boundary conditions at each sea boundary. 

The field trips were accomplished in two stages, namely, 

a) Portpatrick - Larne Ballycastle Bay. 

b) Crinan - Campbeltown Port Ellen. 

Both stages required the installation of tide gauges and tide poles for 

the establishment of the gaugest chart datums. This datum provides a 

means of relating a chart reading of water level to that of Ordinance 

Datum Newlyn (O. D. N. ). The Ordinance Datum can be transferred from a 

Bench Mark to a tide pole using a level. From the pole and chart 

readings, the Ordinance Level can then be transferred from the pole to 

the chart and the chart datum marked thereon. The chart datums relative 

to O. D. N. are usually measured from the lowest astronomical tide and 

for most ports in the United Kingdom are obtained from the Tide Tables. 

It is important to establish these datums on the charts when comparing 

the recorded levels with those from the Tide Tables since the latter 

levels are relative to the chart datums. 

The chart datum at Portpatrick was obtained by transferring 

-o the chart. Unfortunately the chart the O. D. N. level from a bench mark -'. 

datum at Larne could not be checked owing to harbour reconstruction at 

that time. The tide recorder and the tide pole situated in Portpatrick 

harbour are shown in Plate 1. 
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At Ballycastle Bay a tide pole was secured to the side of a 

small jetty and the tide gauge situated nearby. The instruments and 
their locations are shown in Plate 2. The tide gauge was a Negretti 

and Zambra recorder as were all the recorders used in this survey. 
The recorder was linked by a rubber tubing to a pressure-cell as shown 
in Plate 3 which responded to the hydrostatic head of water above it. 

The diaphragm in the head of the cell was maintained in an upright 

position on the sea bed by securing the cell to a concrete block. The 

pressure head arrangement was situated as far away as possible from 

the movement of boats and ships, since their disturbing action on the 

water would affect the gauge readings or even worse, their wake could 

invert the pressure head. The first stage of the survey was completed 

during the 5th - 7th February 1979. 

During the 27th February to the 2nd March 1979 the second 

stage of operations was carried out. At Crinan the tide gauge was 
housed conveniently in a small lighthouse which is shown in Plate 4. 

0 
The lighthouse is situated at the entrance of the harbour where 
fortunately a tide pole, which had been previously secured to the harbour 

wall, was still there. 

The new pier at Campbeltown provided a suitable location for 

the tide pole and the lifeguard's house situated on the pier housed 

the tide gauge. 

At Port Ellen, where the final tide gauge and pole were 

installed, the main problem was ensuring that the tide pole could be 

easily read on the jetty whilst shielding it from docking ships. 

Plate 5 shows the tide pole being secured to the jetty. 

The tide gauge at Ballycastle Bay provided no records after 

the 12th March and it was found that in fact, the pressure head had 

been wrenched off its connecting rubber tubing possibly as a result of 

an approaching ship. Once all the gauges were installed it was expected 

that the recording period would be about six months without regular 

cleaning of the pressure head from seaweed and barnacles. The temporary 

gauges at Crinan, Port Ellen and Campbeltown provided records till the 

end of April at which time it was decided to remove them. A storm surge 

had been recorded between the 7th - 9th March 1979 and it was thought 

to be improbable that another significant surge would occur during the 

months following March. 
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Plate 1 

Portpatrick harbour showing the tide gauge housing, 

part of the float chamber and the tide pole. 
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Plate 2 

Securing the tide pole to the jetty at Ballycastle 

Bay; the tide gauEe is shown in the foreground. 
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Plate 

'The jetty at Ballycaztle Bay; the -Pressure cell and 

its concrete support are shown in the foreground. 
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Plate 

6ecuring the tide role to Lhe jetty at Port Ellen. 

I Urinan liLýhthouse where the tide 9,1ýýuge was housed, 
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6.3 STORM SURGE FR&ýU-L, k-I Y 

Before conducting the tidal survey, a frequency analysis was 
performed to evaluate the probability of actually measuring a surge 
event during the months February to June. The analysis was blsed on 
recordings of surge heights exceeding 15.5 feet above chart datum at 
Broomielaw (Port Glasgow) during 1934 to 1970. These records were 
provided by the Clyde Port Authority and are presented in table 6.1 

in such a way that the frequency of occurrence of a certain surge height 

can be obtained. For example a surge height greater than 3 feet occurs 
every 0.47 years according to the results in table 6.1. The approximate 
frequency of occurrence is therefore one surge every 1/0.47 years. in 

the table an indication of the monthly frequency of storm surgesis also 

provided and shows that only 15% of all the surges occurred between 
March and June inclusively. 

The data shown in table 6.1 shows a similar analysis performed 
for the months February to June which was the estimated duration of the 

survey. This analysis shows that a surge greater than 3 feet has a 

recurrence interval of 2.31 years. This figure indicated that there was 

a significant chance of measuring a surge of this size over those five 

months. Indeed a surge did occur between 7th - 9th March and was 

recorded at all the gauges situated at the sea boundaries. The surge 
'logical elevations are presented in Chapter 8 together with the meteoro, 

conditions for the period. At Broomielaw this surge attained a maximum 
height of 2.6 feet, which according to the figures in table 6.1 should 

occur on average every l. 75 years. This figure somewhat agrees with 

the fact that a surge occurred only once during the time the gauges 

were present. 

6.4 TIM TIDE RECCRDS 

It should be noted that a rigorous analysis of the tide records 
from each port, which involves the identification of those semi-diurnal, 
diurnal and shallow water constituents comprising the total tide, was 

not conducted for the following reasons: 
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ANALYSIS OF THE RECURRENCE INTERVAL BASED ON 

37 YE; ýRS OF SURGE NEASURDIENT jjT THE BROOMIELAW 
DURING THE PERIOD 1934 TO 1970 INCLUSIVE 

Occurrences Within each Surge Interval 
I 

Total % 
Month C-11 1-21 2-3' 3-41 4-5' 5-61 6-7' 7-8' Monthly ýMonthly 

Surges Surges 
Jan 8 15 11 4 3 1 2 0 44 17 
Feb 7 10 9 5 1 0 0 0 32 13 

Mar 4 6 4 2 0 0 0 0 16 7 

Apr 0 3 5 4 0 0 0 0 12 5 

May 0 1 1 0 0 0 0 0 2 1 

Jun 0 0 1 3 1 0 0 0 5 2 

Jul 0 0 0 0 0 0 0 0 0 0 

Aug 0 0 

Sept 1 5 8 6 0 1 0 10 21 8 

Oct 1 9 9 4 5 2 32 13 

Nov 1 7 7 
19 9 2 2 0 0 28 11 

Dec 4 13 21 12 5 3 0 0 58 23 

Total 26 69 76 49 17 8 3 2 250 

Surge 10 28 30 20 7 3 1 1 100 

Recurrence Interval Based on Yearly Records 

Surge 
Greater 1 2 3' 4' 5' 6' 7 88 
Than 

- - 
7Total 224 155 79 

1 
10 1 3 57 5 2 0 

R. I o. 16 0.23 0.47 1-23 2.84 7.40 118-5 610 

Recurrence Interval for Period Feb-Jun Inclusive 
- 

Total 11 
T _ 

20 20 14 2 0 0 0 

ZTotal 56 36 16 2 0 0 

R. 1 o. 66 I 1.02 2-31 18.5 II 0,0 =11_ :. ý I OQ 00 

Table 6.1 
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a) The main objective of this research was to simulate storm 
surge events in the Firth of Clyde. For this purpose the 
total tide and the surge can be specified as boundary 
conditions, without prior knowledge of the tidal constituents, 
by using the tidal records. 

b) Tidal records from Greenock, Millport and Campbeltown 

showed that the tides were semi-diurnal and could be 
well represented by a single cosine constituent with 
a period of 44712 seconds. These records were assumed 
to be representative of tidal conditions in the Firth of 
Clyde and a similar conclusion was drawn from the records 

at Larne and Portpatrick. 

C) It was concluded from b) that the tides in the area of 
interest could be represented by a single harmonic 

constituent. With this assumption, the verification of 

the convergence of the numerical scheme and its ability 

to reproduce the same periodic solution at all points in 

the model, could be shown. The verification of the 

periodicity would have been unnecessarily complicated 

had a number of constituents been used to obtain the 

transition for spring to neap tide and back. 

d) It was only in the Sound of Jura that the tidal curves 

apparently could not be sufficiently defined by a single 

cosine curve. The tidal records from there, namely from 

Grinan and Port Ellen might have merited a complete tidal 

analysis had not the surge considerations suggested that 
it was not likely to be an important area. 

In view of the considerations of d) it was important that 
the shape and phase of the spring and neap tide curves be obtained 
from the survey at Crinan and Port Ellen. Only after this step was 
completed could a reasonably accurate simulation of the tides in this 

area be achieved and the effect of the tides in this area, on other 

sea areas be assessed. 

In his analysis of the tidal constituents in the Irish Sea, 
Defant (1961, Page 386) has shown that the diurnal tides are signifi- 
cant in the Sound of Jura. He used the term K, +O, to indicate the M2.1, Sx 
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ratio of the diurnal to the semi-diurnal components. The relevant 
figures are reproduced in table 6.2 which shows a large ratio in the 
Sound of Jura in comparison to Greenock in the Firth of Clyde. 

Port Amplitude Of Tidal Components K +0 
M2 S I 1X 

ý 
01 

11 
M 2+ S2 

cm M cm - -- I 

Greenock 132.8 3.1.6 5.0 7-3 0-07 
Belfast 122.5 29.0 7.9 12.8 o. 14 
Gigha Sound 18.9 16.2 9.4 8.2 0-50 
Port Askaig 51.2 30.8 8.2 7.9 0.20 
Carsaig Bay 46. o 25-0 8.5 8.2 0.24 

Table 6.2 

It was also noted that the complex nature of the tides in the 

Sound of Jura is suggested by the Admiralty Tide Tables (1979). The 

note at the foot of page 364 states that 'In the Sound of Jura, south 

of Loch Crinan, the rise of tide occurs mainly during the 7ri hours 

following low water and the fall during the 74 hours following high 

water. At other times the changes in level are usually small and 

irregular and at neaps the tide is sometimes diurnal while the range is 

negligible'. These features are certainly apparent in the average 

spring and neap tides curves for Port Ellen, shown in figure 6.2. 

These curves were both calculated from three separate periods of tidal 

occurrences. The average spring tide curve has a semi- diurnal period 

and the high and low waters occur towards the ends of their respective 

positive and negative elevation taken from mean water level. There is 

also a similarity in tidal characteristics at high and low water 

judging from the shape of the curve. The average spring range was found 

to be 0.82 metres while the phase of the curve was 0540 G. M. T. For 

comparison a cosine curve of equivalent range and phase is also shown in 

figure 6.2 to illustrate the differences between the the two curves. 

The average recorded tide curve is higher on the rising tide and lower 

on the falling tide than the cosine curve. It is also shown in the 

figure that the average recorded curve can be well represented by a 
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su=ation of cosine curves defined as 

1= 0-4-1 ( 11 cos 0, + 7- cos 01 + cOs '93) / JO'92- 

where 02.3 (L9- (9 3 

In deriving the average neap tide curve it was noted that 
there was a fairly wide variation in the phase of each recorded neap 
tide. This feature was not evident in the neep tide curves of Crinan 
and Ballycastle Bay. The phase variation at Port Ellen may be a result 
of the diurnal constituent which was noticeable in each record. The 

average neap curve shown in figure 6.2 certainly indicates that the 

period is about 14 hours which is longer than the semi-diurnal period 
of 12 hours 25 minutes. In agreement with the tide tables note, the 

neap range is small measuring 0.25 metres, and the phase is given as 
0800 G. M. T. The shape of the curve has the characteristic of the 

spring tide in that the high and low waters occur nearer the ends of 
the respective positive and negative elevations measured from mean water 
level. 

Although Crinan is situated in the northern part of the Sound 

of Jura, whereas Port Ellen is in the south-west, both average spring 

tide curves have similar characteristics. The average spring tide curve 

shown in figure 6-3 was calculatedfrom three separate periods of 

spring tide recordings. In comparison to the Port Ellen spring curve, 

the shape and phase of the Crinan curve which is 0545 G. M. T., is very 

similar. Only the range of the latter curve is different, being 

1.9 metres, which is considerably larger than the Port Ellen spring 

range. For comparison, the cosine curve of equivalent range and phase 

is shown in figure 6-3 together with the more accurate composite cosine 

curve. This composite curve which was subsequently used as a boundary 

condition in the numerical model to represent the average spring tide 

variation at Crinan is defined by 

q% 0.45 12 coS L9, + :5co5 &1 +5 CoS 03 (6.2) 

where 0, =-0 192 =3(6- 0) - 1100 &3 0- cl Ol 

The average neap tide curve at Crinan was calculated from 

three periods of its occurrence and is also shown in figure 6-3- It 

has a range of 0.40 metres and a phase of 1230 GG. M. T. This phase is 
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about 6,4 hours different from the spring phase, which is as expected 
for a semi-diurnal tide. This difference is produced by the M2 tide 

having a period 25 minutes longer than the 52 period. The lag is 

therefore 50 minutes each day and there are 7.382 days between the 

spring and neap tides. In figure 6.3 the cosine representation is 

shown to be a good approximation to the average neap tide curve which 

was also found to be the case for the neap tide curve at Ballycastle 

Bay. With the exception of the average neap tide curve at Port Ellen, 

it appears that all the ports lying on the sea boundaries have their 

neap tides reasonably well represented by a single cosine constituent. 

The success or otherwise of a single cosine curve as a boundary 

condition in the model is investigated in Chapter 

Although Ballycastle Bay is not situated in the Sound of Jura 

and its spring phase was not in any doubt, the average spring curve is 

presented in figure 6.4 to illustrate its difference in shape from 

that of Port Ellen or Crinan. This average spring curve is characterised 

by the occurrence of high and low water nearer the beginning of 

positive and negative elevation measured from mean water level. The 

range of this curve is 0.8 metres and the spring phase is 0745 G. M. T. 

Again it is shown that the cosine curve with the range and phase of the 

recorded curve is a poor comparison. In figure 6.4 the composite 

curve compares more favourably with the recorded curve. The composite 

curve is given by the expression 

I= 0-4 
( IL (. 05 0, . 4. Z Cos &z+ Cos 0, )/ fo. g; L (6-3) 

where 9, = L9 -0 
02, 

=3(&- )i )-! 1? 0* ) 49 3 =0-0- 170" 

In these expressions 0 is the phase of the tide and & is the angular 

time variation expressed as 

360 -t 
1+ 4,7 1Z (6.4) 

with t as the time in seconds and the period of a semi-diurnal tide 

being 44712 seconds. 

Since the tide recorder at Ballycastle Bay ceased to function 

from the 12th March, the only recorded occurrence of a neap tide was 

during the 6th and 7th March. Wind conditions over these two days were 

not strong enough to seriously affect the tidal measurement, although 
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they were effective in producing a positive surge on the 8th and 9th 
March. The average neap tide was calculated from the recordings in 
the 6th and 7th March and is presented in figure 6.4. This curve 
has a range of 0.56 metres and a phase of 0415 G. Y,. T. A cosine curve 

with these parameters is also shown and is in good agreement with the 

average neap curve. 

As already mentioned in section 6.1 the tidal phases at 

spring and neap tides in the Sound of Jura, are of particular interest. 

For this reason the recorded spring and neap tide phases are presented 
for comparison with the predicted phases, in table 6-3, for Port Ellen. 

As well as the successive high water times, the corresponding low water 

times for each spring and neap tide are also shown. The predicted 
tidal phases were calculated by using the Admiralty Tide Tables (1979) 

and applying the phase correction to the Standard Port for Port Ellen. 

The phase corrections are listed in the Tide Tables and are also shown 

in tables 6-3- In tables 6.4 and 6.. 5 a similar analysis has been conducted 

for the ports, Crinan and Ballycastle Bay respectively. 

For each port the comparison between the recorded and predicted 

times of high and low water is, in general, very good. Those few 

disagreements which occur at neap tides may be attributed to the 

difficulty in reading the exact time of high or low water, on a circular 

chart, when the range is small. These results certainly indicate that 

the Tide Tables provide a reasonably accurate means of obtaining the 

tidal phases at these ports. 

It should be noted that the recorded phases were only tabu- 

lated for periods when the wind effect was judged not to be prominent. 

The tide record is sensitive to the small period surface waves, which 

result when a strong wind is present and under these circumstances the 

trace appears as a broad curve. Therefore a thin trace indicates that 

low wind speeds were present at the time of recording the tide level. 

A comparison between the predicted and recorded phases for the 

data in tables 6.7t 6.4 and 6.5 may be more readily appreciated from 

figure 6.15. The curve shown was obtained by plotting the predicted and 

recorded phases against one another and represents the best fitting 

line. As the gradient of this line confirms the regression coefficient 

is very close to unity, the overall correlation is therefore good. It 
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Average recorded spring and neap tides at Fort Ellen. 
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Average recorded spring and neap tides at Crinan. 
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PREDICTED AND RECORDED TIDAL PHASE 

AT PORT ELLEN DU! dTNG 1979 

Spring Tide 

Date Oban 
I 

Port Ellen 

Predicted Recorded 

15/3 1302 L 1217 1208 

1900 H 1810 1830 

0104 0019 0000 

16/3 o658 o6o8 0630 

1329 1244 1200 

1926 1836 1900 

1812 H 1722 1730 
29/3 0022 L 2337 2330 

0631 0541 o6co 

1244 1159 1: L4o 

1844 1754 18oo 

3013 0103 oo18 2350 

0707 0617 o64o 

14/4 C036 L 2351 2340 

0633 H 0543 0545 
1302 1217 1210 
1902 1812 1830 

15/4 0110 002-5 0015 
0705 o615 c6oo 

Neap Tide 

Date Oban Port Ellen 

Predicted Recorded 

1821 L 1251 1-300 

2313 01.19 H 1949 1940 

07c)6 0136 OCOO 

14o8 0838 0830 

20CO 1430 1420 

24/3 0247 2117 21-50 

6/4 0139 H 2009 2030 

0801 L 0231 0100 

1417 o84,7 o63o 
1946 1416 1230 

7/4 0251 2121 2230 

og16 0346 0330 

21/4 0106 H 1936 1830 
0654 L 0124 013C 

1 1355 0825 0900 
1 

1936 1406 1500 

MEWS PE IVIF4S 
0- 

0050 

MLWS PE MLWS 
0- 

oo45 

All times in G. M. T. 

MHWN PF, = MHWN 
0- 

0530 

MLWN PE = MI: YiNo - 0530 

Table 6.3 



199 

PREDICTED AND RECORDED TIDAL PHASE AT CRINAN, 1979 

Spring Tide Neap Tide 

Date ban Crinan Date Oban Crinan 

Predicted Recorded Predicted Recorded 

1513 0630 H 0545 0545 1821 L 1736 1730 
1302 L 1227 1220 23/3 0.119 H 0009 0000 
1900 1815 1800 0706 0621 o6io 

16/3 0104 0029 0015 14o8 1258 1230 

o658 o613 o620 2000 1915 1900 
1329 1254 1250 24/3 0247 0137 0130 
1926 1841 1 1830 

1 6/4 0139 H 0029 0030 1 
1812 H 1727 1710 0301 L 0716 o650 

29/3 0022 L 2347 2340 1417 1307 1 1310 
C631 0546 0530 1946 1901 1915 
1244 1209 1200 7/4 0251 0141 0100 
1844 1759 1745 o916 0831 0830 

3013 0103 0028 0010 
0707 0622 0610 

13/4 
I 

0004 L 2329 2320 
0603 H 0518 0520 
1232 1157 1120 

1834 1749 1740 

All times in G. M. T. 

MEWS = MHýv S0- oo45 

MLWS 
c= 

ML'wSo - 0035 

MHWV = MhWN - 0110 
c0 

YILWN 
c= 

MI; wN0 - 0045 

Table 6.4 
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PREDICTED AND i. ECORDED TIDAL PHASE 

AT BALLYCASTLE BAY ZURING 1979 

Spring Tide Neap Tide 

Date Londonderry 
I 

Ballycastle Bay Date LondonderryT Ballycastla Bay 

Predicted Recorded Predicted Recorded 

1454 L 1329 1400 

2039 H 
11852 

1930 

1 _, 
7 
, /2 0244 

ý0119 
0200 6/2 

o851 0704 0750 

1525 14oc 1430 0357 H 
ý0450 

053C 

2110 11923 2COO 7/3 1013 L 11110 1130 

1620 ý1713 1710 

0308 L 0143 0230 2207 ý2303 2330 

28/2 0912 H1 0725 1 0720 

1535 i 141c 16oo 613 1944 L 12040 2100 

2134 1947 1 1920 C134 H 0227 C300 
113 0349 1 0224 0330 o825 ý 0921 0915 

0 955 5 0808 0815 1500 1553 16oo 

MHWS 
BA 2-- Mlfds 

IL - 0147 

ýMws 
BA ý' MLov'S LO - 0125 

All times in G. M. T. 

ýIHWNBA ý '%IHWIiLO + 0053 

ý*'IMN BA 'ý MLWN Lo + C056 

Table 6.5 
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Comparison of predicted and reccrded spring and neap 

tide mean hiCh aater intervals at Crinan, Port Ellen 

and ballycastle Bay. 
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can be observed from figure 6.5 that the data exhibits four rather 
distinctive groups. These groups correspond to the times of the two 
high and low waters occurring over twenty-foiz- hours. These groups 
occur irrespective of whether the tide is a spring or neup because the 

phase difference between these tides is 6.21 hours for a semi-diurnal 
tide. However the predicted and recorded times of high water at Port 

Ellen indicate that the phase difference between spring and neap tides 

is only about 2 hours. This figure again supports the argument that 

in the area between Port Ellen and Ylachrahanish the tides are not 
dominantly semi-diurnal in their occurrence. 

To assess the accuracy of the spring and neap ranges and phases 

obtained from figures 6.1,6.2 and 6.3 a comparison was made with data 

taken from the Tide Tables and the co-range co-tidal Chart No 5058. 

This chart covers the adjacent waters of the British Isles, and the 

part illustrating the co-range and co-tidal lines in the Sound of Jura, 

the North Channel, and the Firth of Clyde is shown in figure 6.6. 

A comparison of the spring tide data is presented in table 6.6 

Tura, namely Crinan and Port Ellen and for for ports in the Sound of 
Ballycastle Bay. 

Mean Spring Tide Data 

Port Chart 5058 Tide Tables (1979) Tidal Survey 
Range (m) Phase (hrs) Range (m) Phase (hrs) Range(m) Phase 

(hrs) 

Crinan 2.0 0200 2.0 0515 1.9 0545 

Port Ellen 0.7 o8oo o. 6 0515 o. 82 054o 

Ballycastle 1.1 0745 1.1 0730 o. 8o 0745 

Table 

From these results some important conclusions can be made. Firstly, 

there is general agreement, between the three data sources, regarding 

the magnitude of the spring range at each port. Secondly, and of 

greater significance, is the fact that the spring phases from the Tide 

Tables and the survey are in close agreement with one another (as was 
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already shown in figure 6-5) but differ considerably frcm the spring 
phases at Crinan and Port Ellen, taken from the chart. In view of 
these figures some doubt must be cast on the accuracy of the co-tidal 
lines in the Sound of Jura as shown in figure 6.6. The tidal phases 
from this figure indicate that there is a6 hour phase difference 

between the spring tides at the northern sea boundary (Crinan) and the 

western sea boundary extending from Port Ellen to Ballycastle Bay. 
This means that there is half a tidal period difference between the 
two sea boundaries. On the contrary, the Tide Table and survey phases 

suggest that these boundaries are almost in phase with one another 
(and the phase difference is therefore small). To support the idea of 
the northern and western sea boundaries being almost in phase with each 

other, the tidal streams from the Admiralty Stream Atlas (1974) are 

also in phase across these boundaries. These tidal streams, shown 
in figures 7.10 to 7.13 show that the inflow of water into the Sound 

of Jura across the two boundaries are in phase as are also the slack 

waters, at each boundary. In conclusion it can be said that had the 

tidal survey not been carried out, there would have been uncertainty 

as to the relative accuracies of the data from the Tide Tables and 
from the chart. It has now been established that the Tide Tables 

provide the more accurate data for the ports in the Sound of Jura. 

A similar comparison of the neap tide ranges and phases 

in and around the Sound of Jura is shown in table 6-7. 

Mean Neap Tide Data 

Port Tide Tables Survey 

Range(m) Phase(G. M. T. Range(m) Phase(G. M. T. ) 

Crinan c. 61 1115 o. 4o 1230 

Port Zllen 0.33 c655 0.25 o8oo 

Ballycastle Bay 0.40 0331 0.56 o4l. 5 

Table 6-7 

The co-range chart data is not applicable for neap tides and so the 

recorded data is compared with that of the Tide Tables. It can thus 

be said that whilst the recorded neap ranges are satisfactory, the 
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recorded phases require further explanation, being about 1 hour 
later than the Tide Table phases. It must be remembered that all 
the figures in table 6-7 represent average conditions, whilst during 
the survey period the tidal phase occurred later than average. For 
example the average yearly neap phase at the standard port, Oban, 
is 1225 G. M. T., whereas during the survey it was 0130 G. M. T., as 
noted in tables 6.3 and 6.4. This accounts for the 1 hour phase 
difference in table 6.7 between the predicted and recorded phases. 
A similar effect occurred in the spring tide results shown in table 
6.6 for the same reason although the difference between predicted 
and recorded phase at each port was only about 0.5 hours. 

' THE TIDE TIABLBS 6.5 PHASE CALCULATICN FROM 

The area comprising the Firth of Clyde and its approaches 

is not only topographically complex, but also problematic in the 

determination of the tidal phase at each coastal location, using 

Tide Tables. A major problem is that the area is represented by 

five Standard Ports and the Tide Tables do not provide the phase 

relationships between tHem, for average spring and neap tide 

conditions. One solution to this problem was to calculate the phase 

relationships between each Standard Port by analysing one year of 

spring and neap high water times which are listed in the Tide Tables. 

Thus by noting the differences between the times of high water at 

two Standard Ports over one year the average yearly phase difference 

was calculated for spring and neap tides during 1979. 

The analysis of mean spring tide conditions is summarised 

in table 6.8 and the first column lists the Standard Ports. 
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Mean Spring Tide Phase Data 

Standard Average Standard Se ondary Phase Corr- r- Phase 
Port Phase Diff Deviation Port ection for G. M. T. 

.. r. (Hrs Mins) t M (Minutes) 
, Secondary (Hrs Mins) 

Port 
(Hrs Miins) 

Belfast 0000 1105 
Larne 00005 1100 

G Gr reenock + 0130 10 1235 
0 Ob ban - 0500 14 0605 

Loch Beag 0050 0515 
Port Ellen 0050 0515 

Londonderry - 0250 8 0810 
Ballycastle 0040 0730 
Bay 

Liverpool + 0015 6 1120 
Port- + ool8 1138 
patrick 

Table 6.8 

In columns two and three the average phase difference calculated between 

the Standard Ports, and the standard deviation of the calculation is 

respectively shown. The phase differences were calculated relative to 

Belfast since this port lies in an area of relatively constant spring 

phase (figure 6.6 shows this) and its phase of 1105 G. M. T., was thought 

to be accurate. In calculating the mean yearly spring phase differences 

it was convenient to have an indication of the variation in these 

differences at each port. For this purpose the standard deviation was 

calculated using the following expression 

0 
(6-5) -N 

The standard deviations were sufficiently small enough at each port to 

indicate that the analysis produces mean values that are representative 

of the phase differences throughout the year. In the final column the 

phase for each Standard Port is obtained by applying the phase difference 

to the phase at Belfast. From the phase of the Standard Ports, the 

phase of the respective Secondary Ports can be obtained by applying 
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the phase correction shown in column five of figure 6.8. These phase 
corrections are listed in the Tide Tables for the sub3tantial number of 
Secondary Ports located in the Firth of Clyde and its approaches. 
The Secondary Ports shown in table 6.8 correspond to the positions of 

the three sea boundaries represented in figure 6.1. Unfortunately 

Crinan is not listed in the Tide Tables and therefore its phase 

correction was taken as that from Loch Beag which is situated not far 

from Crinan. 

An analysis similar to that for the spring tides was 

conducted for the neap tides to establish the average phase differences 

between the Standard Ports. The results are shown in table 6.9 and 

again the phase. difference for each Standard Port is quoted relative 

to the neap tide phase at Belfast. 

L 
Mean Neap Tide Phase Data 

Standard Average I Standa dI Secondary Phase Corr- Phase 

Fort Phase Diff 
j 

Deviation! Port ection for G. M. T. 
(Hrs Mins) ! (Minutes) Sec Port (Hrs Mins) 

(Hrs Mins) 

Belfast 0000 0514 
Larne 0000 0514 

Greenock + oo46 12 o6oo 

Oban - o514 18 1225 
Loch Beag Clio 11-15 
Port Ellen 0530 0655 

Londonderryl 027,46 14 0238 
Ballycastle + 0051, 0331 
Bay 

Liverpool 0001 9 0513 
Port- + 0026 0539 
patrick 

Table 6.9 

As an indication of the variation in the phase difference between the 

Standard Port and Belfast, for one year of phase differences, the 

standard deviation is shown in column three of this table. A comparison 

of phases at Greenock and C-ban shows that there is a maximum variation 

in phase of nearly one half of a semi-diurnal period over the entire 

area. 
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By obtaining the average spring and neap tide phases 
as shown in tables 6.8 and 6.9 respectively, for the Standard Ports, 
the Tide Tables can thus be used to provide the average spring or 

neap phases at the Secondary Ports. Indeed, the Tide Table phases 
shown in tables 6.6 and 6-7 are taken from tables 6.8 and 6.9 

respectively. In each of the latter tables the Secondary Forts, 
Learne and Portpatrick provide data for the numerical model's southern 
sea boundary. Ballycastle Bay and Port Ellen phases are appropriate 
at the western sea boundary and the Crinan (Loch Beag) phase is rep- 

resentative of the tidal phase at the small northern sea boundary. 

The accuracy of the simulation using a numerical model, with this 

data providing the boundary phase conditions was carried out and is 

assessed in Chapter 7. In addition the response of the model to the 

average tide data, obtained from the survey records and specified as 
boundary conditions was also found for comparison. 

'MANN 
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CHAPTER 7 
TIDE SIMULATION IN THE FIRTH OF CLYDE 

AND ITS APPROACHES 

7.1 INTRODUCTIOU 

It has been shown in Chapter 4 that the analyticaLl studies 

were important for establishing the accuracy of the interpolation and 
integration schemes in the model. To complete these tests it is 

required that the effect of the initial and boundary conditions be 

examined, using a configuration more complex than a geometrically 

simple channel. For this purpose the application of the numerical 

scheme to simulate the tidal motion in a shallow sea area is approp- 

riate. By nature of the periodicity of the tides the effectiveness 

of the harmonic conditions at the sea boundaries in establishing a 

periodic solution throughout the model can be evaluated. It should be 

noted that only after the successful simulation of tidal motion in an 

irregular sea area, can the simulation of the tide and storm surge 

phenomenon be considered* 

7.2 APPLICATION OF THE MODEL TO A RLAL SITUATION 

The difficulties in simulating tidal motion in a real config- 

uration can be classified as follows: - 

a) Limitations of the quantity and quality of data. 

The effect of discretising an irregular coastline and 

sea bed. 

The effect of a) is to hinder the verification of the accuracy of the 

simulation. The results from the model are ultimately compared to 

observed data to assess their accuracy and it is easy to wrongly 

attribute discrepancies in the comparison to limitations of the model, 

where in fact the difference may be the result of data errom Resolving 

the differences becomes even more difficult when it is remembered that 

the model actually uses the incorrect data in its boundary conditions 

and so the accuracy of the simulation is effectively limited by the 

accuracy of the recorded data. 
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In terms of quantity, the physical data is usually in the 
form of a limited number of tidal records taken from recording gauges 
situated along the coastline with even fewer records available for 
offshore currents and displacements. Consequently the harmonic 
functions at the sea boundaries, which are based on either velocities 
or elevations with associated phases, are only known from the ports at 
the landward ends of these boundaries. Therefore the boundary data at 
grid points along the sea boundaries has to be obtained by linearly 
interpolating between the known points. 

The sea area and the sea boundaries encompassing the numerical 

model have been shown already in figure 6.1. Since the tidal constituents 

at the sea boundary ports were unavailable, the average spring and neap 

tide conditions at these ports were obtained from the Admiralty Tide 

Tables (1979). This source of information, which is derived from 

harmonic analysis was used at the boundary ports in the modelin pref- 

erence to actual tidal records because the latter may not be free from 

meteorological effects. The Tide Table data was thought to be 

sufficiently accurate as an input to the model and was shown in section 
6.4 to be in good agreement with the data obtained from the tidal survey. 

The comparison has been shown in tables 6.6 and 6-7. for mean spring and 

Mean neap tide conditions respectively. 

The Tide Tables also provided data at coastal locations, in 

sufficient quantity so that comparisons were made with the results from 

the model. For offshore locations the average spring tide ranges and 

phases were compared with those from Admiralty Chart 5058 although the 

Chart's co-phase lines in the Sound of Jura have been shown in section 

6.4 to be suspect. 

Returning to point b), the limitations mentioned are directly 

related to the method by which the model represents the physical topo- 

graphy of the sea area, An irregular coastline is schematised in terms 

of a polygon with sides of equal length DS and positioned along the x 

and y axes. This length is termed the spacestep, and controls the degree 

of discretisation of the model. It is usually determined by the require- 

ments of a reasonably representative grid, and yet cannot be so small 

that the numerical computations are beyond the capabilities of the 

computer. Having represented the area within the sea boundaries by a 
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suitable grid, the depths from mean water level at each grid point can 
be obtained by interpolating from the soundings on an Admiralty Chart 
or from a hydrographic survey. The whole process of schematisation 
using discrete points introduce's an element of approximation into the 
construction of the model. For the model to provide reliable results 
this rounding error must be maintained as small as possible. 

By constructing the grid to the scale of Admiralty Chart 2724, 
using a spacestep of 5 kilometres, the coastline schematisation and the 
soundings at each grid point were obtained for the sea area shown in 
figure 6.1. The schematisation and the soundings are shown in figure 
7.4 from which it is apparent that the depths in the North Channel are 
much greater than for either the Sound of Jura or the Firth of Clyde. 
In fact quite a large depth range is covered in a relatively small sea 

area and together with the complex indentation of the coastline provided 

a thorough test for the model in simulating the movement of the tides. 

In considering the physical processes taking place in a sea 

area as opposed to an idealised channel, the frictional stress at the 

sea bed must be accounted for. The friction parameter theoretically 

controlling this stress is a function of both depth and bed roughness. 
In general the values of the friction parameter at points on the sea 
bed are unknown unless an extensive survey has been conducted. Standard 

practice appears to be to assign a value to this parameter at each grid 

point in the model so that the correlation between the numerical and 

physical results is optimised. Indeed Leendertse (1967) chose a 
different value of the friction parameter at each grid point when 

simulating tides in the Rhine estuary. He obtained a high correlation 
between computed and recorded tide levels using a range of Chezy co- 

efficients varying from 30n, 1/sto 80-1/s. However a set of friction para- 

meters chosen without full knowledge of the physical conditions at the 

sea bed and also the eddy currents above, whilst improving the simu- 
lation seems unjustified. A more rational approach is to use only one 
friction parameter for the entire sea area. The performance of the 

numerical scheme can therefore be evaluated more readily since the 
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to a Chezy coefficient of 63m'/s. 
., o, 

In view of the points a) and b) the associated errors will 

combine to affect the output at each and every grid point. Therefore 

it is probable that the free friction parameter may be prescribed a 

value which is not entirely in agreement with the true physical friction 

coefficient. 

7-3 TIDES IN THL FIRTH OF CLYDE AND ITS APPROACHES 

7.3.1 Description of the Tide Motion. 

It is perhaps easier to appreciate the tidal propagation in 

the Clyde sea area by placing this motion in contex with the tidal 

oscillations occurring southwards in the Irish Sea. This area is shown 

in figure 7.1, together with the co-range and co-phase lines for the M 

tide as computed by Doodson and Corkan (1932). 

C 

I 

Co-tidal and co-rance lines of the M2 tide in the Irish Sea. -, phase im, 
ic -, ýper culmination of the moon in Greenwich; ------ amplitude in cm. 

Figure 7-1 

?/ 
3 Or' 
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The figure shows that in both the North Channel and the St George's 
Channel there is a crowding of co-phase lines in comparison to the 

almost uniform time of high water in the Irish Sea. There is also an 
increase in range on entering the Irish Sea from either Channel and 
throughout the entire sea area the tidal streams are weakest where the 

ranges are largest. These features indicate standing wave character- 
istics in the Irish Sea. 

The progression of the co-phase lines in the North Channel 

indicate that the Firth of Clyde tides are determined by tidal prop- 

agation across the coast of Northern Ireland from the Atlantic Ocean. 

Hence the Firth of Clyde tides are in co-oscillation with those in an 

area of the Atlantic, west of the Clyde. This is an interesting 

feature since the orientation of the Firth of Clyde is north - south- 

wards and so is more exposed, yet apparently less influenced by the 

tidal oscillations in the Irish Sea. This feature is also evident in 

the tidal streams shown later in section 7.3.3. 

A closer inspection of the area within the sea boundaries shown 

in figure 6.1, using the data obtained from the tidal survey and the 

Tide Tables has shown that the propagation of the tide from the western 

sea boundary to Greenock at the head of the Firth of Clyde, requires 

about six hours. The phase increases from about an average of 

0630 G. M. T., at the western sea boundary to 1230 G. M. Te, at Greenock, 

for mean spring tides whilst the corresponding ranges increase from an 

average of 0.8 metres to 3-1 metres. It has also been concluded from 

the Tide Table figures and the survey results that the western and 

northern sea boundaries are almost in phase with each other. Further- 

more the Tide Table phases at the southern sea boundary extending from 

I. arne to Portpatrick are in opposite phase with the northern and 

western sea boundaries. The average spring amplitude at the southern 

sea boundary is 1-3 metres and it occurs through the deceleration of 

flow and an increase in potential energy as the tide wave progresses 

from the western sea boundary and approaches the standing wave in the 

Irish Sea. A simplified representation of these conditions is depicted 

in figure 7.2 corresponding to the mean spring ranges along the axis 

of the North Channel. As shown, the ranges at each sea boundary are 
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in opposite phase with one another. 
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Figure 7.2 

The situation is of course an idealised one but nevertheless highlights 

the 'act that at a certain location there is a region of zero range. 

The position of the node will be located nearer to the western sea 

boundary as opposed to the southern sea boundary by virtue of the 

-magnitude of the ranges at each boundary. The node which is termed 

an amphidromic point or an amphidrome is shown in figure 7.1 and is 

as postulated near the western sea boundary and is about ten miles 

West of Machrahanish on the Kintyre Peninsula. 

In a study of the Irish Sea, Defant (1961) acknowledged the 

existence of the amphidromic point for average spring tide conditions 

in the North Channel. he produced profiles of the spring tide ranges 

and phases extending from the Scilly Isles to Tiree. The profiles 

extending from Tiree to Dublin, shown in figure 7.3, contain the 

western and southezn sea boundaries and the curves are comparable 
5p%k(N(. RIME 

WifgffkKm SOUTHFAN F B... D14 2-1041k-t DUSWN 

Figure ?. 3 
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to figure 7-2. The difference between the two figures is that the 
former shows a nodal region while figure 7.2 shows a nodal point. 
Defant concluded that it is the effect of friction that causes the 

abrupt change of phase of half a tidal period to be replaced by a 
gradual change. The standing wave of the co-oscillating tide takes 
the character of a progressive wave which travels toward the closed end 
of the bay or any other type of restriction such as another wave in the 

opposite direction. If friction does not become too great the position 
of the nodal lines continues to be clearly perceptible by the crowding 

of the co-phase lines. The node where the amplitude of the tide is 

zero disappears and instead becomes a region with minimal range. 

In large expanaes of sea, where the Coriolis force is signif- 

icant, such as in the North Sea, amphidromic points are produced. 

They have the inherent property that the co-phase lines travel anti- 

clockwise round their centres when they occur in the Northern 

Hemisphere, as is the case with the amphidrome shown in figure 7.1. 

Considering for a moment a wave that limits itself in the case of wide 

canals to one side, namely the side that follows rotation, the wave is 

termed a Kelvin wave. Its salient feature is that transverse oscill- 

ations do not occur, as a result of the Coriolis force being in eý: uili- 

brium with the gravitational component acting down the wave's transverse 

surface slope. Taylor (1920) has shown that perfect reflection of a 

Kelvin wave in a rectangular channel produces an amphidrome and similarly 

for two Kelvin waves travelling in opposite directions. It is unlikely 

that the amphidromic point shown in figure 7.1 is the result of the 

Coriolis effect since the sea area there is probably too small and 

confined. However Defant has concluded from the occurrence of amphi- 

dromic points in the Baltic and the Black Sea, which are also hielly 

confined, that these amphidromes can be produced from a combination of 

longitudinal and transverse oscillations. Referring to the particular 

amphidromic point in the North Channel there is an oscillating motion 

between the northern and southern sea boundaries, the western and 

southern boundaries and possibly a reflection from the Kintyre Peninsula 

for waves progressing through the western sea boundary. It is therefore 

not unlikely that these oscillations are responsible for the formation 

of this amphidromic point. 
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The occurrence of the amphidromic point is one of the most 
interesting features of the sea areas close to the Firth of Clyde. In 

considering the formation of this amphidromic point an account of all 
the salient tidal features in the Sound of Jura and the North Channel 
have been mentioned. By comparison the tidal pzopagation in the Firth 

of Clyde is straightforiward since it is a converging estuary which 
communicates with the North Channel through only one open sea boundary 

which can be taken from Campbeltown to Stranraer. The average spring 
range varies from 2.. 5 metres at the mouth to 3-1 metres at the head of 
the estuary while the phase difference along its length is only about 
thirty minutes. 

Although the following model was developed to assess its ability 
to simulate storms surges in the Firth of Clyde, since this is the area 

of largest surge, the important areas for the complex nature of the tides 

are the Sound of Jura and the North Channel. It was these two areas 

that offered a stern challenge to the eapabilities of the models 

7.3.2 General Description of the Models 

A classification of the models which are considered in this and 

other chapters has been made, simply according to the gridsize, within 

which, a number of different tests have been performed. Some features 

of these tests are common to all models and are mentioned as follows 

to avoid later repetition; 

a) Each numerical scheme contained friction and Coriolis terms 

and the non-linear depth and convective terms were also present. 

b) In each test the initial conditions were an arbitrary linear 

free surface and zero velocities throughout. A periodic 

solution was established after the completion of two tidal 

cycles, checked to an accuracy of four decimal places. 

C) The three sources of data, namely the Tide Tables (1979), 

the co-tidal chart 5058 and the survey records, which were 

compared in section 6.4, provided the ranges and phases for 

ports on the sea boundaries. Each source of data was in 

turn tested in the model and the response noted. At other 

grid points along the sea boundary, the ranges and phases 

were calculated by linearly interpolating from the known 
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data. The boundary elevations were then specified as an harmonic 

cosine function of time representing the average total tide 

at a particular point. The sea boundary velocities were 
calculated by the numerical scheme. 

It has been shown in Chapter 4 that boundary interpolation 

scheme 4 and I. S. 1 derived from it were the most favourable schemes for 

simulating analytical motion. These schemes, when applied in turn to 
a real situation with an irregular coastline produced an excessive 
amount of damping of the elevations and velocities. In schematising 

such a coastline the'corner points'represented by configuration 
numbers 5,6,7 and 8, each having boundary conditions U=0, V=0, 

were used quite extensively. The damping is thought to be produced 
as a result of using these boundary conditions, to a severe extent, in 

the velocity interpolations at the boundary points with configuration 

numbers 1,29 3 and 4. 

In contrast, interpolation scheme 2 has been shown to be 

unstable when applied to a constant depth configuration with the 

condition DT = DT However in the case of a forced oscillation in 
max, 

a real situation with irregular depths, this condition does not occur 

at the closed boundaries since the depths there are not as great as 
the maximum depth in the sea area. Therefore the numerical timestep 

is less than that obtained from the C. F. L. condition applied with the 

depth at a particular boundary point. The success of interpolation 

scheme 2 can only be attributed to the fact that the velocity inter- 

polations at the boundary points, with configuration numbers 1,29 3 

and 4, are not based on the adjacent boundary points and so exclude 
the 'corner points'. The tests conducted using Model 1 are presented 
in the next section and confirm the effect of using these boundary 

interpolations. Subsequent models were developed which also incor- 

porate interpolation scheme 2 into the numerical scheme. 

7-3.3 Simulation of the Mean Spring and Neap tides using Model I 

The schematisation of the Firth of Clyde and its approaches, 

based on a spacestep of 5 km and with the depths in metres is as 

shown in figure 7.4o As a stability requirement, the timestep was 

chosen as 69 seconds, which is less than the C. F. L. limiting timestep 
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Of 78 seconds. The limiting timestep was based on the maximum depth 

of 205 metres occurring near the southern boundary in the North Channel. 
Together, the spacestep and timestep are sufficient to classify the 

arrangement as Model 1 which was applied to a number of tests. These 

tests for mean spring tides are listed in table 7-1 together with the 
features characterising each particular test. Essentially the 

objectives were to evaluate the effect of the available data as an 
input to the model and also to establish a favourable interpolation 

scheme. To facilitate the interpretation of the computations they were 

either compared according to the data source to the co-tidal chart 

shown in figure 6.6 or the range and phase data taken from the Tide 

Tables (1979). For mean spring tides the Tide Table data is shown in 

table 7.3 for all the coastal locations (including the ports situated 

at the input boundaries). The locations of all these ports are shown 

in figure 7-5. 

The input of ranges and phases in Test I for a mean spring 
tide was extracted from the co-tidal chart, and specified along only 
the western and southern sea boundaries. As an initial simplification 
the northern sea boundary was treated as a land boundary and frictional 

stress was not applied throughout the grid. The simulated results are 

presented in table 7.4 for the coastal locations and the co-range and 

co-phase lines are depicted in figure 7-5. In the Firth of Clyde the 

ranges are about 15% larger than those of the chart, and in the Clyde 

estuary they are in excess of 3-5 metres. By comparison to the chart 
the simulated ranges and phases in the Sound of Jura are poor possibly 

as a result of closing the northern sea boundary. 

By introducing a value of the Chezy friction factor equal to 

loomils into the previous scheme, the stream flow especially in the 

shallower reaches was reduced. The results are listed as Test 2 in 

table 7.4. Comparing to test 1 the tidal range at Greenock has been 

reduced from 3-88 metres to 3-16 metres which is very close to that of 

the chart or Tide Table value. The frictional effect has caused the 

phases in the Firth of Clyde to be later than those of Test 1. This 

effect and the reduction of the ranges are in accordance with the 

findings of Proudman (1955) for a single progressive wave in a 

contracting estuary. 
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Mean water denths (in metres) at grid points which 

schematise the Clyde sea area. 
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No significant change in elevation or phase in the North 
Channel has occurred on introducing the friction factor. This would 
be expected since the frictional stress is inversely proportional to 
depth and most depths in that r egion are in excess of 100 metres. 

As a development from Test 2, the open sea boundary north of 
the Sound of Jura was represented in the scheme which constituted 
Test 3. The boundary conditions there were taken as the range and 
phase shown on Chart 5058 and the port of Crinan listed in Table 7.5 
is indicative of these conditions. it has already been established 
in section 6.4 that the chart phases in the Sound of Jura are of doubt- 

ful accuracy however this test had been performed prior to the tidal 

survey. A comparison of co-range and co-phase lines from the chart 

with those from Test 3, shown in figure 7.6, indicate an improvement 

over the results from Test 2 although neither the chart data nor the 

simulation show the existence of an amphidromic point. 

In the Firth of Clyde the computed ranges are in good agreement 

with the chart values although the computed phases are thirty minutes 

later than required at Greenock. 

It was decided to specify the northern and western sea boundary 

conditions using data taken from the Tide Tables, to note its effect, 

if any, in producing the amphidromic point. At the same time, two 

boundary interpolation schemes, 1-3-3 and I. S. 1 were examined in Test 4 

and Test 5 respectively. The previous three ýests have used boundary 

interpolation scheme 2 and its effect ha6 been discussed in section 7.3.2 

together with the effect of I. S. l. Both Tests 4 and 5 produced a 

periodic solution in which the elevations and velocities were less than 

those from the Tide Tables. A comparison of the data in table 7-3 and 

the computations from table 7.6 verifies this feature. For example, 

in Test 4 the computed range and phase at Greenock are 1.51 metres and 

0207 G. M. T., respectively while the corresponding Tide Table values are 

3.08 metres and 0010 G. M. T. The computed values in Test 4 were obtained 

with a Chezy friction factor of 90m"Is and no significant improvement 

was noted in Test 5 on reducing the frictional stress by increasing 

the friction factor to 14om--/s. It appears that interpolation schemes 

3 and 1 are unsuitable when simulating tidal conditions in a complex 

configuration. 
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The next stage of development was to combine the boundary 
interpolation scheme of Test 3 with the sea boundary data of Test 4, 

to form Test 6. In this test the numerical scheme was based on 90 0 

characteristics and for comparison Test 7 was performed using 45 0 

characteristics. With a friction factor equal to 90mi/s in both 

cases, the tests produced ranges and phases as shown in table 7.7. 
A comparison between both sets of results shows that the maximum 
difference in range is about 0.1 metres. In general both sets of 
results are very similar, probably because the numerical schemes 

are identical for an internal point with a configuration number equal 
to zero. The results from both these tests compare favourably with 
the Tide Table values shown in table 7.3, however the phases in 

Test ?, using the 45 0 characteristic scheme, are slightly superior to 

those from Test 6. For this reason and from similar deductions in 

section 4.4.2, the 450 characteristic scheme is the one used in further 

investigations. 

In producing the results from Test 7 the optimisation of the 

interpolation and integration schemes and also the friction parameter 

has been achieved by performing Testsl to 7. It was not thought 

possible to further improve the results of Test 7 in the Firth of Clyde 

and the North Channel bearing in mind the gridsize and limitations of 

the boundary data. However it was felt that computations in the Sound 

of Jura could be improved by examining the remaining important deter- 

mining factor, namely the northern and western sea boundary conditions. 

For this purpose Test 8 was performed. 

In defining the boundary equations in Test 8 it is necessary to 

refer back to the results from the tidal survey which were presented in 

Chapter 6. The recorded spring ranges and phases were averaged and 

these results were in good agreement with the Tide Table values. From 

the records, the average spring tide elevations were plotted for Crinan, 

Port Ellen and Ballycastle Bay and from these curves it was concluded 

that the spring tides in the Sound of Jura are principally semi-diurnal 

It is possibly the shape of these curves which is the most interesting 

feature since each curve differs significantly from a cosine repre- 

sentation of equivalent range and phase. For each curve an harmonic 

composite cosine representation was derived and these functions were 
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used as sea boundary conditions in Test 

At the northern sea boundary, the Crinan curve defined by 

equation (6.2) was used to represent the variation in elevation. At 
Port Ellen and Ballycastle Bay the corresponding equations (6.1) and 
(6-3) for the tidal elevations represented conditions at the western 

sea boundary. The equations (6.1), (6-3) can be generalised in the 
form 

ý= 14 Cos 0. +Z Cos 02+ Cos 03 )/(FI-1) (?. I) 

with ol = (9 -0 

ex = 3(s-0) - ISO" 
19 5 ý- 0-0- '0' 

This equation was used to define the tidal elevation along the western 

sea boundary, using different values of A, the amplitude of the first 

component and & the phase of the third component, for each grid point. 
The values of these two parameters for the nine grid points are shown 
in table 7.2 and provided a transition from the tide curve at Bally- 

castle Bay to Port Ellen. At each grid point along this boundary the 

Ballycastle Port Ellen 

12 l4 15 16 17 16 15 14 12 

270 292 315 337 0 22 55 67 90 

Table 7.2 

range and phase was controlled to comply with the Tide Table data used 

in Test 59 whilst the important feature namely the shape of the tidal 

curve was retained. It was necessary in this respect to have the values 

of A as shown in the table. If A had taken the value of twelve through- 

out, the tidal curve would have had a double peak midway along the sea 

boundary. At theamthern sea boundary the recorded tide showed that a 

single cosine representation of tidal elevation was adequate. 

The average spring ranges and phases were computed in Test 8 

using a Chezy friction coefficient of 90mils and these results are shown 
for coastal locations in table 7.8. These values are overall in good 
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agreement with the Tide Table figures shown in table 7-3. At Ayr and 
Troon the Tide Table ranges are 2-56 metres and 2.80 metres respect- 
ively, which is an appreciable difference considering their close 
proximity to one another. This distance is only two spacesteps and 
so localised influences on the tide may not be fully represented in 
the model. The computed ranges therefore at Ayr and Troon are 2-56 

metres and 2-58 metres respectively. 

From the results of Test 8, the co-range and co-phase lines 

are as shown in figure 7-7. These lines support the principles of 
tidal propagation in the Firth of Clyde and its approaches as discussed 
in section 7-3-1. The most important feature of these lines is the 

simulation of the amphidromic point situated west of the Kintyre 

Peninsula. In this region the computed ranges are less than 0.5 metres 

while the co-phase lines rotate anticlockwise from 6 hours to 12 hours. 

The model was unable to simulate the rotation of phases from 12 hours 

back to 6 hours and instead the phase progression appears as a 'phase 

jump' in which these phases occur as one phase line. This test was 
however the only one able to simulate the northward advance of the co- 

phase lines from 3.5 hours to 5 hours in the Sound of Jura. This effect 
is a consequence of specifying the composite cosine elevation curves at 
the northern and western sea boundaries. 

As a comparison to the previous test, Test 9 was performed in 

which the sea boundary data was abstracted from the Tide Tables (197oO. 

This test was very similar to Test 7 except the latter test used chart 
data at the southern sea boundary. For Test 9 the results are presented 
in table 7.9 for the coastal locations and were obtained with a Chezy 

friction factor of 70mi/s. The co-range and co-phase lines are also 

presented as shown in figure 7.8 and the characteristics of an amphi- 
dromic point are in evidence. Indeed the simulation of this feature 

is comparable to that produced in Test 8 since the ranges are small and 
the variation of the co-phase lines is substantially in agreement with 
the theoretical variation. 

Throughout the surface of the model the ranges, and to alesser 

extent the phases, compare favourably with those from the Tide Tables. 

This indicates that the numerical scheme, the boundary equations (which 

use a single cosine constituent at each grid point) and the value of the 
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friction coefficient are satisfactory. It is therefore these equations 

and this approach that is used in simulating the tidal conditions during 

a surge event. 

One of the features apparent in the simulations in previous 
tests was that the computed phases in the Firth of Clyde lagged the 

predicted phases by about thirty minutes. A method of reducing this 

lag was to simply increase the Chezy friction coefficient to 140m Is 

which would also cause the ranges to increase. The ranges remained 

similar to those in Test 9 by replacing interpolation scheme 2 at the 

sea boundaries with interpolation scheme 1. Interpolation scheme 2 

was retained at the closed boundaries. This arrangement, namely Test 

10 succeeded in reducing the lag to about ten minutes and the results 

are shown in table 7.9. The results are close to those of the Tide 

Tables however the method of two different boundary interpolations was 

not pursued because the friction coefficient taken as 140m'/s was 

thought unrealistic. Concerning acceptable values, Dronkers (1964) has 

stated Chezy parameters ranging from 60 to 100 for typical estuaries. 

It is shown later, using Model 2 which has a finer grid, that the phase 

lag can be reduced. 

In the Firth of Clyde, the phase difference between currentsand 

elevations is almost that of a standing wave. By comparing the results 

of Testsl and 2 it was found that the effect of friction on the tidal 

oscillationswas to delay the progression in the times of high water 

along the Clyde estuary, which is wedge shaped. It was also shown by 

comparing the results of Tests I and 2 that the frictional effect 

caused a reduction in range throughout the estuary, brought about by 

making high waters lower and low waters higher than they otherwise 

would be. To assess the effect of shallow water, which defines the 

waves to be of finite amplitude in the Clyde estuary, the high and low 

waters from Test 8 were also included in table 7.8. These elevations 

show that the effect of decreasing depth (and hence celerity) along the 

estuary produce I high waterl > Ilow water 
I 

such that there is a rise 

in mean water level. On further analysis of the simulation, the ebb 

tide duration was found to be ten minutes longer than that of the flow 

tide. The effect is a result of the wave being finite, consequently 

the celerity of the flow tide is greater than that of the ebb tide, 

therefore high water occurs earlier and low water later than a wave 
*6FIý NOTIE ON PA4E 1-30. 
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CLYDE SEA AREA AND ITS APPROACIMS. 

SPRING RANGES AVD PHASES FROM ADMIRALTY TIDE TABLES 1979 

Location 
Grid 

Reference MJfWS M1, WS 
Mean 

Spring Range 
Mean 

Spring Phase 

m m m Hrs Min(GNT) 

Greenock GR 3.44 0-36 3-08 0010 

Wemyss Bay WE 3-35 0.46 2.89 0005 

Rothesay Bay 1 RO 3-44 o. 36 3-08 0010 

Millport i mi 1ý 3.41 0.491 2.92 0005 

East Loch Tarbert! TA 1 3.41 0-33ý 3-08 0015 

Loch Ranza RA 3-01 o 36, 2.65 1220 

Brodick Bay BR 3.23 0.40ý 2.8.3 0010 

Ardrossan AR 3-17 
I 
1 0.34 2.83 1215 

Irvine IR 3.14 ý 0- 37 2.77 1215 

Troon TR 3.20 o. 4o 2.80 1210 

Ayr AY 3.02 0.46 2.56 1210 

Girvan GI 3-1.1 0.43 2.68 1210 

Campbeltown CA 2.96 0.40 2-56 1215 

Southend so 2.07 0.21 1.86 1215 

Stranraer ST 3.01 0.24 2.77 1215 

Portpatrick PO 3.78 0.34 3.44 1 1139 

Larne LA 2.8o o. 43 2-37 110C 

Red Bay 1.55 0-18 1-37 1122 

Ballycastle Bay BA 1.25 0-25 loco 073C 

Port Ellen PE 0.94 0.33 o. 61 0515 

Machrahanish MA o. 48 0215 

Gigha Sound GS 1.52 C. 61 0.91 0400 

Craighouse A 1.16 0.31 0.85 0435 

Crinan C 2.13 0.30 1.83 0515 

Table 7.3 
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CLYDE ShA AREA AND ITS APPROACHES. 

SPRING RANGES ANM PHASES FRCM MOiýEL 1 

Test Test 2 

Grid . 1 Spring 
Location Reference Ispring Range Phase Range Phase 

m GMT m GYT 

Greenock GR 3.88 0006 3-16 0026 

Wemyss Bay WE 3.65 0000 3-00 0023 

Rothesay Bay RO 3.65 1 0008 2.99 0030 

Millport ml 3-54 0005 2.91 0015 

Last Loch Tarbert, TA 2.68 0102 2.34 0111 

Loch Ranza RA 2.83 1 0011 11 2.49 0021 

Brodick Bay BR 2.96 0012 2.52 0023 

Ardrossan AR 3-14 1218 2.67 =6 

Irvine IR 3-08 1220 2.64 0002 

Troon TR 3-11 1219 2.63 0002 

Ayr AY 3-08 1220 2.61 ooo4 

Girvan GI 2.72 12o4 2.36 1136 

Campbeltown CA 2.85 1 1139 2056 1 1151, 

Southend 1.99 1123 96 1 1.124 

Stranraer ST 2. -57 
1110 

: 
2 44 llo8 

Portpatrick FO 3.20 1100 3.20 1100 

Larne LA 2. 
-30 

1100 2.30 1100 

Red Bay RE 1-51 1110 1,53 : 1123 

Ballycastle Bay BA 1.00 0730 00 1 0730 

Port Ellen PE 0-52 1 o8oo 0.52 0800 

Machrahanish NIA 2.17 0845 1.23 0809 

Gigha Sound GS 2.18 0847 1.21 o818 

Craighouse CR 2.27 0835 1.26 0834 

Crinan 2.08 1005 1.18 0936 

Table 7.4 
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CLYDE SEA AREA AND ITS APPROACHES. 

SPRING RANGES AND PHASES FROM MODEL 1 

Test 

Location 
Grid 

Reference MHWS 
I 

MLWS 
Spring ý 
Range 

MHWI 

T 
m m m GK T 

Greenock GR 1.69 -1-50 1 9 3 0028 

Wemyss Bay WE 1-59 -1.41 
:0 

0 3 0025 

Rothesay Bay RO 1.59 1-38 2-97 0031 

Millport mi 1 1-54 1-35 2.89 oo16 
Last Loch Tarbert TA 1.22 -1.11 2-33 0111 
Loch Ranza RA 1-33 -1-18 2-51 0022 

Brodick. Bay BR 1.36 -1.18 2-54 0022 

Ardrossan AR 1.42 1 -1.28 2 70 0006 

Irvine IR 1.40 i -1.27 2: 67 0002 

Troon TR i. 4o :1 -1.26 2#66 0002 

Ayr AY 1-39 -1.25 2.64 ooo4 

Girvan GI 1.26 -1.11 2-37 12o4 

Campbeltown UA 1.38 1 -1.20 2 58 1154 
Southend so l. o8 -0.92 2.00 1123 

Strauraer ST 1-30 -1.18 2.48 1107 

Portpatrick PO 1.60 -1.60 3.20 1100 

Larne LA 1.15 -1-15 i 2-30 1100 

Red Bay RE 0-83 -0-73 1-56 1112 

Ballycastle Bay BA 0.50 -0-50 1-00 1 0730 

Port Ellen PE 0.26 -0.26 0.. 52 0800 

Machrahanish MA o. 42 -o. 41 0.83 0800 
Gigha Sound GS o. 26 0.24 0.50 0838 
Craighouse CR o. 41 -0.40 0-81 0907 

Crinan C 1.0() -1.00 2.00 0200 

Table 7-5 
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CLYDE SEA AREA AND ITS APPROAChES- 

SPRING RANGES AND PHASES FRCM MODEL 1 

Test 4 Test 5 

Grid Spring Spring 
Location Reference Range Phase Rarme Phase 

m GMT m GMT 

Greenock GR 1.51 02o6 1.57 0220 

Wemyss Bay WE 1.53 c148 1-59 
i 

0200 

Rothesay Bay RO l.. 56 0143 1.62 1 0155 

Millport mi 1.65 0108 1.73 0119 

Last Loch Tarbert TA 1.57 0208 1.70 C)216 

Loch Ranza RA 1.74 0101 1.86 ol14 

Brodick Bay BR 1*77 0050 1-88 01CO 

Ardrossan AR 1.86 0039 2.01 i oo46 

Irvine IR 1.91 0035 1 
1 

2.0? 0039 

Troon TR 
1 

1.92 0037 2.10 0034 

Ayr AY 1-93 0034 2., 0? 0032 

Girvan GI 2-27 12o4 2.28 1216 

Campbeltown CA 2.46 12o4 2.42 0000 

Southend so 1.97 1126 2.46 1139 

Stranraer ST 2.51 1141 1.99 1204 

Portpatrick PO 3.20 1126 3.44 1139 

Larne I. A 2.30 1100 2-37 1100 

Red Bay RE 1.09 1146 1-45 1137 

Ballycastle Bay BA 1600 o623 1.10 0730 

Port Ellen PE 0.. 52 0515 o. 61 0530 

Machrahanish MA 0.87 0532 0.83 0642 

Gigha Sound GS 1.36 0438 o. 69 o615 

Craighouse CR 1.10 0607 o. 68 0620 

Crinan C 2000 0515 2.00 0515 

Table 7.6 
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CLYDE SEA AREA AND ITS APPROACHES. 

SPRING RANGES AND PHASLS FROM MODFL 1 

Test 6 Test 7 

Grid Spring Spring 
Location Reference Range Phase Range Phase 

m GMT m GMT 

Greenock GR 3-00 0058 3-05 0026 

Wemyss Bay WE 2.87 OC)58 2.99 0024 

Rothesay Bay RD 2-85 0103 2.91 0037 

Millport, mi 2.79 0054 2.84 0025 

Last Loch Tarbert TA 2-34 o148 2.45 0117 

Loch Ranza RA 2.38 0058 2.48 0039 
Brodick Bay BR 2.43 0059 2.55 0035 

Ardrossan AR 2.56 oo4l 2.66 0023 

Irvine IR 2-53 0038 2.63 0022 

Troon TR 2.. 53 0038 2.60 0017 

Ayr AY 2.51 0038 2-59 0017 

Girvan'' GI 2.26 0017 2-37 1220 

Campbeltown CA 2.47 1 0005 2.54 1222 

Southend so 2.12 u46 2.02 1143 

Stranraer st 1 2.29 1 1.152 2.26 1144 

Portpatrick 3.20 1126 3-20 1126 

Larne LA 11 2-30 1100 2-30 1100 

Red Bay RE 1.14 1.140 1.09 1105 

Ballycastle Ba y bA 1000 0623 1.00 o623 

Port Ellen PE 0.52 0515 0.52 0515 

Machrahanish MA 1.13 0601 1.03 o634 

Gigha Sound GS 0515 1.19 0545 

Craighouse 0.89 0533 0.77 0556 

Crinan C 21,00 0515 2.00 0515 

Table ?. 7 
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CLYDE SEA AREA AND ITS APPROACHES. 

SPRING RANGES AND PHASES FRQIý', MODEL I 

Test 8 

Grid MHWS MLWS 
Spring 
R MHWI 

Location Reference ange 
m M m GMT 

Greenock GR 1.57 1.46 3-03 0022 

Wemyss Bay WE 1.54 -1.44 2.98 0020 

Rothesay Bay RO 1 49 0 -1.40 2.89 
i 

0034 

Millport MI 1 . 46 -1-37 2-83 0022 

East Loch Tarbert TA 1.26 -1.17 2.43 o114 

Loch Ranza. RA 1.27 -1.20 2.47 0037 

Brodick Bay BR 1-30 -1.23 2-53 0033 

Ardrossan AR 1-35 -1.29 2.64 0020 

Irvine 11 IR 1.33 -1.27 2.60 0019 

Troon TR 1.32 1 -1.26 2.58 ool4 

Ayr AY 1-3.1 -1.25 2.56 0015 

Girvan 1.21 1.14 2.35 1219 

Campbeltown CA 1.29 -1.24 2.53 1220 

Southend so 1.05 -1-00 2.05 1134 

Stranraer ST 1.14 
1 -1.09 2.23 1 1135 

Portpatrick PO 1.6o -1.6o 
1 

3-20 1126 

Larne LA 1.15 -1.15 11 2.30 1100 

Red Bay RE o. 46 -0-35 0.81 1026 

Ballycastle Bay BA 0*55 -0-55 1.10 0730 

Port Ellen 1 PE 0.26 -0.26 0,52 0500 

Machrahanish MA 0.28 -0.18 o. 46 0547 

Gigha. Sound GS 0.79 -o. 65 1.44 0428 

Craighouse CR 0050 1 -0-34 o. 84 0537 

Crinan iC 1.00 -1.00 2.00 0530 

-i 

Table 7-8 
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CLYDE SEA AREA AND ITS APPROACHES- 

SPRING RkNGES AND PHASES FROM MODEL 1 

Test 9 Test 10 

Grid Spring I Spring l 

Location Referencel Range Phase Range Phase, 

m GMT m GMT 

Greenock GR i 3-10 0047 3-10 i 0013 

Wemyss Bay WE 11 3.04 0044 3.04 0011 

Rothesay Bay RO 2.96 0055 2-95 0024 

Millport mi 2.89 0041 2.88 0011 

Last Loch Tarbert TA 2.64 0129 2.53 =4 

Loch Ranza 2-57 0053 2.45 0()-'9 

Brodick Bay BR 2.61 oo48 2.54 0025 

Ardrossan AR 44'0 0035 2.66 0012 

Irvine IR 2.69 0034 61 2. 0011 

Troon TR 2.65 1 0029 2.59 0000 

Ayr AY 2.64 1 0029 2 -57 0000 

Girvan GI P-. 45 0006 2.46 1214 

Campbeltown CA 2-58 ooo6 2,44 12o8 

Southend so 1-83 1149 1.64 1136 

Stranraer ST 2-39 1155 2.36 l148 

PortDatrick PO 3.44 1139 1 3: 44 1139 

Larne LA 2.37 1100 2 37 1100 

Red Bay RE l. o6 1114 1007 1016 

Ballycastle Bay BA 1010 0730 1 . 10 0730 

Port Ellen PE o. 61 0530 0.61 0530 

Machrahanish MA 1.02 0630 1.24 0655 

Gigha Sound GS 1.16 0559 1.44 0616 

Craighouse CR 0.63 0626 0.64 0640 

Crinan C 2.00 0515 2.00 

Table 7.9 
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The mean spring tide co-range and co-phase lines in 

t-he Clyde sea area computed by Model 1. (See also Table 7.1) 
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The mean spring tide co-range and co-phase lines in the 

Clyde sea area computed by -odel 1. (See also Table 7-1)' 
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The trean spring tide cc-range and co-phase lines in 

the Clyde sea area com-puted by Model 1 using the 

survey data as input. 
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The mean sr-ring tide cc-range and co-phase lines in 

the Clyde sea area com)uz: ed by Nodel 1 using the 

Tide Table (1979) data as input. 
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travelling at a constant rate. Note that this feature is character- 
istic of progressive wave motion where the flow is in phase with its 

elevation and so does not apply to a standing wave. The ten minute 
difference in ebb and flow tides in the Clyde estuary therefore 

indicates that the tidal oscillations are not totally in a standing 
mode. 

To represent the stream flow in the Firth of Clyde and its 

approaches, six offshore locations were selected and are as indicated 
in figure 7-8. Points 1,2,4 and 5 are situated in the North Channel 

while point 3 is located in the Sound of Jura and point 6 is in the 
Firth of Clyde. At these points a comparison has been made between 

the computed depth averaged velocities obtained from Test 9 and the 

observed streams taken from the Admiralty Tidal Stream Atlas (1974). 

The comparison is presented in tables 7.10 and 7.11. In both tables 

the computed direction and the direction of the Atlas streams, measured 

as a whole circle bearing, are also provided for comparison. The Atlas 

streams are listed at hourly intervals preceding and following the time 

of high water at Dover which is 1100 G. M. T. These times were converted 
to times relative to Greenwich which accounts for the unusual time 

sequencesused in the tables. 

With reference to both tables it is evident that for the four 

4-las streams are signif- locations situated in the North Channel, the A 

icantly larger than the computed ones. A similar feature is apparent 

for Position 3 in the Sound of Jura. A possible explanation of the 

differences in magnitude is that the recorded streams in these deep 

waters were not measured at sufficient depth and so are not comparable 

in magnitude to the computed depth average velocities. It is interest- 

ing to note that at pcsition 6 in the relatively shallower Firth of 

Clyde the computed and measured velocities in close agreement. 

From the computed velocities shown in tables 7.10 and 7.11 

the tidal ellipses at each point have been drawn and are shown in 

figure 7.9. Since the numerical solution is periodic, there is no net 

or residual drift and the velocities produce closed ellipses. It is 

also noted that the circulation is clockwise at points 3 and 6 and 

anticlockwise for the other four points. It has been shown by Defant 

(1961), that most current ellipses have a clockwise rotation however 

he has made it cleex that when an amphidromic point is present with an 
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Computed tidal stream ellipses (from test 9) for 

six locations in the Clyde sea area. (See figure 7.8 for locations) 
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anticlockwise rotation of the co-phase lines then the current ellipses 
in that vicinity also rotate anticlockwise. A comparison of ellipses 

with those drawn from the Atlas streams cannot be made because the 

resolution of the streams in the Atlas was thought not to be good 

enough for this purpose. 

A more complete but lezs numerical comparison of the computed 

and the Atlas streams is provided in figures 7.10 to 7-13- Each flow 
diagram indicates the stream flow and direction over the entire sea area 
covered by Model 1. The length of each arrow is proportional to the 

magnitude of the stream centred at the position of the arrow head. The 

comparison of computed and recorded flows can be made at corresponding 
times relative to G. M. T., and the set of diagrams represent the stream 
history over one tidal period. An assessment of the computed velocities 

through a comparison with the Atlas streams with flow direction as the 

main factor can be simplified by noting the computed and recorded times 

of flow tide as shown in table 7.12. 

Location Times of Flow Tide (G. M. T) 

Computed Recorded 
-Hrs Hrs 

Northern Sea Boundary 3.2 to 9.0 4.8 to io. 6 
(Sound of Jura) 

Western Sea Boundary 3.6 to 9.8 4.7 to 11 
Southern Sea Boundary 3-0 to 9-1 4.5 to 10.8 

(North Channel) 

Firth of Clyde 6.2 to 0.0 6.0 to 0.0 

Table 7.12 

At both the northern and western sea boundaries a substantial 

part of the duration of the flow tide is accompanied by a reduction in 

elevation from high to low water as flow enters the North Channel. At 

the same time namely 4-5 to 10.8 hours, the flow tide enters the Irish 

Sea from the North Channel by passing through the southern sea boundary 
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during which low water there is increasing to high water level. 
Therefore during the flow tide passing through the North Channel the 

4verage elevations along the western and southern sea boundaries are 
in opposite phase with one another. This situation is represented 
in figure 7.14 which shows the stream flow phase relationships and 
also the high and low water phases at each sea boundary. Not only 
are the flows in phase at each boundary and the elevations in opposite 
phase but also the times of high and low water at each sea boundary 

occur very close to the times of slack water. These points suggest 
that the state of motion is akin to a seiche action of half a wave- 
length occurring between the northern and western sea boundary at the 

one end and the southern sea boundary at the other. The motion is 

not precisely a standing wave since it is shown in figure 7.14 that 

the slack waters precede the times of high and low water by about 
half an hour at the southern sea boundary and by an average of one and 

a half hours at the western sea boundary. By comparison the computed 

slack waters at the western and southern sea boundaries precede the 

recorded slack waters by about one hour and one and a half hours 

respectively. These figures can be deduced from the flow times shown 
in table 7.12 and are representative of all locations in the Sound of 
Jura and the North Channel. This disagreement between the computed 

and recorded variables represented one rather unsatisfactory aspect 

of this model. Despite numerous tests with different boundary data 

and Chezy friction coefficient the disagreement remained. A test in 

which the velocities were specified at the sea boundaries and the 

elevations calculated throughout merely produced elevations unrep- 

resentative of the area although the velocity phase was improved. 

Although the source of this discrepancy remained undiscovered 

computed velocities showed agreement in magnitude and phase with the 

Atlas streams in the Firth of Clyde. 

The comments in the previous paragraph regarding the computed 

and recorded flow tide phase are equally applicable to the ebb tide, 

bearing in mind that the flow direction is reversed, which is apparent 

in figures 7-10 to 7.14. A point previously remarked upon is evident 

in the Atlas streams and to a lesser extent the computed velocities 

and is that the ebb and flow tides in the Firth of Clyde occur via 

the western and northern sea boundaries and not through the southern 
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Figure 7.11 
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Figure 7.13 
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The Tidal Atlas spring tide streams at two points on the 0 

western and sou-ýhern sea boundaries during one tidal cycle. 
FLOW 

1.0 L,, 4 

0.5 

F6*w DmEcf%ohl 
0 

Pi-W 
P9 

I-FSmoKp. MERSUI(EMCNr Frr A 
-W 

POIN'r Nellik FOKr ELLE 

x ofrskclKE MGýASUREMEKT "r li 'i 
POINT NERR JýMLLYCRS'fL. E 139'7 

WýA 

X4 

i5 

Uo 

-1.0 

-us 

-Z. c) 

POINT NEAR 

X oFf"SHORE MOISL49EýMENr Fýr 11 
FO I Nl' NOW, LFtRNE 

sou-rhr, RN S9Ft 3cUNDANY 

Ficure 7.14 

"Nt 

ISM 



248 

sea boundary. The former boundaries therefore provide a communi- 
cation with the tides in the Atlantic Ocean. 

The application of Model 1 to the mean neap tide situation 
proved interesting since the simulation of the amphidromic point was 
again in evidence. This test was performed in a similar manner as 
Test 9 since the cca boundary data was again based on Tide Table 
information and the boundary equations and the friction coefficient 
are unchanged. In fact the computations of elevation although smaller 
than those of Test 9 form a similar pattern of co-range lines as do 

the co-phase lines. A comparison of the computations with the Tide 
Table values at coastal locations is shown in table 7.13 and the co- 
tidal lines are presented in figure 7.15. The phase relationships 
between the elevations at the sea boundaries are also similar to 

those of Test 9 in that the phase at the northern sea boundary is the 

same as the average phase across the western sea boundary and both 

phases are in opposite phase with the southern sea boundary. This 

test namely Test 11 also produced a flow phase that was earlier than 

indicated in the stream Atlas, a problem that was noted in Test 9. 

7-3.4 Simulation of the Mean Spring Tide using Model 2 

In order to determine whether the computed flow phase in 

Test 9 was in some way related to the spacestep, or timestep, another 

model of the same area was constructed. This model namely Model 2 

was developed with a spacestep of 3 km and a timestep of 46 seconds 

which represented a finer grid than that of Model 1. Its application 

required over four times as much computer time as that for Model 1, 

namely 650 seconds on the I. C. L. 2980 to complete one tidal cycle. 

Although Model 1 was more suitable in terms of running time 

on the computer, it was thought that in some areas represented by 

this model the grid size was too large to represent the variation in 

the changing coastline with sufficient accuracy. In particular the 

schematisation representing the upper reaches of the Firth of Clyde 

namely Loch Fyne and the Clyde estuary required improvement. In this 

-lied this requirement and its respect the grid used in Model 2 satis, 

schematisation can be appreciated in figure 7.16. 

The performance of Model 2 was evaluated using the sea boundary 



249 

data and the numerical scheme of Test 9 to simulate the mean spring 
tide. However to produce spring tide elevations comparable with those 
from the Tide Tables a Chezy friction factor 35m7Ys was used. This 
factor is quite low and was necessary because in this model the time- 

step is closer to its maximum timestep than it was in Model 1. The 

fact that the friction factor is determined from the spaceetep and 
timestep of the model supports the point already mentioned that this 

factor has a numerical implication and unfortunately is not solely a 

physical coefficient. 

From the test, the ranges and phases at all the coastal 

locations are compared with the corresponding Tide Table values in 

table 7.14. On this basis the computed ranges are in good agreement 

while the phases in the Firth of Clyde are an improvement on those in 

Test 9. However the co-tidal lines shown in figure 7-16 do not show 

any improvement in the co-phase lines near the amphidromic point. 

More importantly though, the phase of the tidal streams was found to 

be identical to those produced in Model 1 therefore the effect of 

changing the schematisation has not influenced the calculation of the 

stream velocities. The cause of the computed flow phase being earlier 

than the Atlas flows is certainly not a result of poor schematisation 

of either model in the North Channel. Since the advantages of Model 2 

such as the improvement of the times of high water in the Firth of 

Clyde, were outweighed by its requirements of computer time, the model 

was not used in this form for the simulation of storm surges. 

7.4 TIDES IN THE FIRTH OF CLYDE 

It is important to prove conclusively that the numerical 

scheme of Models 1 and 2 can accurately represent the physical process 

of tidal oscillation in a real situation. Models 1 and 2 have 

represented conditions in the Firth of Clyde quite accurately but their 

performance with the velocity phase in the North Channel was not ao 

impressive. Not only must the tidal elevation and its associated 

phase be accurately simulated but also the stream flows and their 

related Dhases. For these reasons the tides in the Firth of Clyde 

were simulated but also from a practical viewpoint because the area is 

well represented in the Tide Tables. 
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CLYDE SEA AREA AND ITS APPRCACHES. 

NEAP RANGES AND PHASES KiOM ADMIRALTY TIDE TABLES 1979 

AND MODEL 1 

Tide Tables 
I 

Test 11 

I Location 
Grid I 

Reference MSR 

m 

MHWI 

Hrs (G 
MSR I MHW II 

mI Hrs (GMT)l 

Greenock 

Wemyss Bay 

Rothesay Bay 

Millport 

East Loch Tarbert 

Loch Ranza 

Brodick Bay 

Ardrossan 

Irvine 

Troon 

Ayr 
Girvan 

Campbeltown 

Southend 

Stranraer 
Portpatrick 

Larne 
Red Bay 

Ballycastle Bay 

Port Ellen 

Machrahanish 
Gigha Sound 

Craighouse 

Crinan 

GR 1.89 o6oo 2.15 C711 

WE 1.80 0555 2.11 0707 
RO 1.89 0539 2*05 0720 

mi 1.83 0535 1 
2.01 0708 

TA 1.80 060.5 1*73 0758 
RA 1.67 0555 1.75 0720 
BR 1.71 0600 1.80 0717 
AR 1.77 0540 1-89 0701 
IR 1.64 0540 1*86 0702 

TR 1.71 0535 1.84 0657 
AY 1.49 0535 1-83 0657 
Gi 1.71 0520 1.69 0635 
CA 0518 1-72 0636 

so 1.22 0520 1150 0546 
ST 1.92 o. 540 1.72 0601 

PO 2.10 05-59 2.10 0539 
IA 1.72 0514 1.72 0514 
RE 1.22 0450 o. 86 0559 
BA o. 4o 0329 0.40 0329 

PE 0.33 0655 0.33 0655 
MA 1 49 () 0705 0,45 0642 

GS 
! : 

58 10 0735 o. 24 0740 

CR 0.49 0755 0.37 0707 

C 0.61 1115 o. 61 1115 

Table 7.13 
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The mean neap tide co-range and co-phase lines in 
0 

the Clyde sea area computed by Xodel 1. 
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Figure 7.15 
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CLYDE SEA AREA AND ITS APPROACHES. 

SPRING RANGES AND PHASES FROM MODEL 2 

Grid 

Tide Tables Test 12 

Location Reference SR MHWI SR MHWI 

m Hrs m Hrs 

Greenock GR 3-08 0010 3-16 1 0027 

Wemyss Bay WE 2.98 0005 3.02 0019 
Rothesay Bay RO 1 3.08 0010 2-97 0016 
Millport mi 2.92 0005 2., 92 0013 
Last Loch Tarbert TA 3-08 0015 2-72 0052 

Loch Ranza RA 2 65 1220 2-76 0022 

Brodick Bay BR 1 2*83 0010 2.81 0013 
Ardrossan AR 1 2.83 1215 2.84 0007 
Irvine IR 2.77 1215 2.84 1225 
Troon TR 2.80 1210 2.83 1225 

Ayr AY 1210 2.82 0002 

Girvan i GI 2.68 1210 2.69 1204 

Cam-pbeltown 2.56 1215 2.67 12,20 

Southend so 1.86 1215 2*1 9 13-52 

Stranraer ST 2.77 1215 2.69 u49 

Portpatrick PO 3.44 1139 1 3-44 1139 
Larne LA 2.37 L. LUV 1 2-30 1100 

Red Bay RE 1-37 1122 1-52 1130 

Ballycastle Bay BA 1.00 0730 1.10 0730 
Port Ellen PE 0.61 0515 0-52 0515 
Machrahanish MA o. 48 0215 0.78 0625 

Gigha Sound GS 1 0.91 0400 0., 78 0646 
Craighouse CR 0.8.5 0435 00 94 0550 
Crinan C 1.83 0515 2.00 0515 

Table 7.14 
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Figure 7.16 
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7.4.1 Description of Model 

The Firth of Clyde includes all the waters north of a natural 
shelf which defines the Firth from the relatively deeper North Channel. 
The average depth on the shelf edge is about 72 metres which decreases 
going northwards to a depth of 25 metres at Greenock. There is also 
an associated contraction of breadth especially between the islandof 
Bute and the mainland at Largs. 

For the purposesof the model the sea boundary follows the 

shelf edge quite closely and extends from Sanda Sound, off the south 
east coast of the Kintyre Peninsula to PortDatrick. The schematisation 
of the land and sea boundaries together with the mean water depths at 
each grid point are shown in figure 7.17. This grid formed the basis 

of Model 3 and is in fact the Firth of Clyde section of Model 2. The 

spacestep of 3 km and timestep of 46 seconds are therefore the same 

grid parameters as defined in Model 2. 

7.4.2 Simulation of the Mean Spring Tide using Model 

With the Tide Tables providing the maximum elevations and the 
high water times at the extremities of the sea boundary namely Sanda 
Sound and Portpatrick, Model 3 was tested using the mean spring tide. 
The computations for the coastal locations are presented as Test 13 
in table 7.15 together with the corresponding Tide Table ranges and 

phases. By comparison, the computed ranges are in good agreement while 
the computed times of high water are slightly later than the Tide Table 

phases. In this and other tests with Model 3 the Chezy coefficient was 
35m Is which was also the value used in Model 2. 

Another source of data available at the time was the Admiralty 

co-tidal Chart 5058 which has been reproduced in part in figure 6.6. 

The appropriate sea boundary conditions were taken from this chart and 

used as input to Model 3 with the results at the coastal locations shown 

as Test 14 in table 7-15. A comparison of the sea boundary conditions 

at Sands. Sound and Portpatrick for both tests shows that the chart phases 

are earlier and the ranges are smaller than those of the Tide Tables. 

The phases computed in Test 14 are therefore earlier than the Tide Table 
phases but compare favourably with the chart phases shown in figure 6.6. 
To illustrate this point the computed ranges and phases from Test 14 are 
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Mean depths (in metres) at grid roints in the Firth of Clyde model. 
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depicted as co-range and co-phase lines in figure 7.19 for comparison 
with figure 6.6. Also the co-range and co-phase lines from Test 13 

are provided in figure 7.20 to illustrate the difference in the 

simulated results from those of figure 7.19 from using two different 

data sources. Both sources are in reasonable agreement concerning the 

spring ranges in the Firth of Clyde however the phases are slightly 
dissimilar. By considering the relative phases (in ininutes) between 
the more significant ports as shown in figure 7-18 the differences 

between the two sources and also between the two simulations 
can be more easily understood. The Tide Table phase difference 
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between Portpatrick and Sanda Sound is greater than that of Chart 
5058 therefore the phase difference from Portpatrick to Greenock is 
likewise. Similarly the phase difference from Portpatrick to Greenock 
is greater in Test 13 than that of Test 14. Effectively the sea 
boundary phase from Portpatrick to Sanda Sound which is an input to 
the model determines the response at interior points in the model. 
The model has responded to this input, significantly enough in such a 
way that the computations are comparable with the data source at all 
corresponding grid points. In fairness to the two data sources 
namely the Tide Tables and the co-tidal chart there is in general good 
agreement between them in the Firth of Clyde and the phase differences 

shown in figure 7.18 are reasonably similar for both sources. 

To assess the accuracy of the computed tidal streams in the 

Firth of Clyde, three points corresponding to positions of stream 

measurement in the stream Atlas were selected and the streams compared 

to those computed in Test 13. The locations of the three points are 

shown in figure 7.20 and the comparison of results is detailed in 

table 7.16. At each position the computed and recorded stream velocities 

and directions measured as a whole circle bearing are compared through- 

. 
out hourly intervals of one tidal cycle* These intervals are specified 

in the stream Atlas in hours preceding and following high water at 

Dover which is 1100 G. M. T., however the computed streams correspond to 

Greenwich Mean Time. The times specified in table 7.16 are also 

relative to Greenwich so that two hours after high water at Dover 

becomes half an hour after high water at Greenwich and so on. At 

positions 2 and 3 the Atlas streams as published appear to suffer from 

being rounded off, nevertheless at each position the recorded and 

computed maximum stream flows on the ebb and flow tide are in quite 

good agreement. The times of maximum flow, slack waters and flow 

directions from Test 13 are also favourable with the Atlas values at 

each point. 

From the computations of Test 13 a series of diagrams showing 
the mean spring tide stream magnitudes and directions at intervals of 

one-twelfth of the tidal period are presented in figure 7.21. At times 

0 hours and 6.21 hours the respective high and low waters at Greenock 

are indicated corresponding to slack water at that location. Similarly 
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FIRTH OF CLYDE. 

SPRING RANGES AND PHASES FROM MODEL_ý 

Tide Tables 
(1979) Test 13 Test 14 

Grid l SR JiwI MHWI SR I MHWI SR MHWI 
Location Ref Im- [GMT m GMT m GMT 

Greenock G. R 3-08 0010 

i 

3-16 
, 

0019 3-17 1210 

Wemyss Bay WE 2.89 0005 
13-01 

001.1 3-02 12o6 

Rothesay Bay Ro 3-08 10010 2.96 0008 2* 96 -1205 
Millport MI 2.92 0005 2.91 0005 2*92 1203 

East Loch Tarbert 'TA 3-08 0015 2.72 oo44 2-71 0023 

Loch Ranza. RA 2.65 1220 2.67 0012 2.73 1219 

Brodick. Bay BR 2.83 0010 2.80 0005 2.78 1208 

Ardrossan AR 2-83 1215 2.84 
1 

1223 2.82 1201 

Irvine IR 2.77 1215 2.83 1217 83 '2 0 1156 

Troon TR 2.80 ' 1210 2.82 1217 2.82 
1 

1158 

Ayr Ay 2.56 1210 2.82 1219 2.82 1158 

Girva. n GI 2.68 1210 2.71 1155 2-70 1.138 

Stranraer ST 2o77 1215 2*87 1159 2.81 1144 

Campbeltown I CA 2o56 1215 2o44 1209 2.49 1148 

Sanda Sound SA - 1155 2.251 1155 2.15 1130 

Portpatrick PO 3.44 1139 1 

- 

3.44 1139 3-20 1126 

Table 7*15 
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Mean spring tide co-range and co-phase lines in the 

Firth of Clyde computed .., ith the input data taken 

from... chart . 5058. 
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Figure 7.19 
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Mean spring tide co-range and co-phase lines in the 

Firth of Clyde com-puted with input data taken from 

the ýd-iiralty Tide Tables (1979). 
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Stream flows in the Firth of Clyde at intervals of 

one-twel. "th of the mean spring tidal cycle. i; bb tide 

computed in Pest 13 usim-ý Nodel 3- 
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Figure 7.21 
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Stream flows in the Firth of Clyde at intervals of 

one-twelfth of the mean _, pring tidal cycle. Flow tide 
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at Portpatrick the high and low waters occurring at about 11.6 hours 
and 5.17 hours are also indicated and correspond to slack waters in 
that area. During the decrease in tidal elevation from high water to 
low water at both ports, ebb tide occurs and conversely an increase in 

elevation at both ports corresponds to the flow tide. It is apparent 
from these diagrams that the ebb and flow tides are strongly two- 
dimensional since tidal propagation occurs northeastwards towards 
Greenock while simultaneously propagating southeastwards towards 
Stranraer and Portpatrick before reversing direction. 

Throughout the area the tidal behaviour has been simulated 
predominantly as a standing wave since the phase of the flows and 
elevations differ by about ninety degrees. 'The same tidal character- 
istics can be deduced from the Tide Table elevations together with the 

Atlas streams. The model therefore has not only simulated accurately 
the elevations and velocities in the Firth of Clyde but is also competent 
in producing the correct phase relationship between them. Since surge 
data was available from Campbeltown, near Sanda Sound and Portpatrick 

this model was also considered suitable for simulating storm surges. 

In evaluating the accuracy of the tests presented in this 

chapter, the computations have been compared with the corresponding 
Tide Table values or the data from Chart 5058- On this basis, the 

comparison can be simplified by obtaining a single parameter F) which 

represents the average variation in tidal range or phase between the 

computations and the known data. For this purpose the standard deviation 

expressed as 

X X (7.2) 

has been calculated with X, and XI being the computed and Tide Table 

values respectively. Equation (7.2) has been applied to ranges and 

phases at the coastal locations appropriate to the particular model. 
The standard deviation of the computed ranges and phases with respect 
to the Tide Table values have been calculated for Tests 1 to 14 and are 

presented in table 7.17. 
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Model Test 15r Did 

m mina 

1 o. 62 
2 0.27 

3 o. 25 
4 0.82 73 

5 0.75 88 

6 0-30 47 

7 0.25 38 

8 0.27 37 
(0.26) (30) 

9 0.19 47 

1 10 0.27 44 

1 11 0.19 65 
2 12 o. 14 40 

(0-13) (16) 
3 13 0.13 10 
3 14 0.13 - 

(Values in brackets apply only to the Firth of Clyde). 

Table 7-17 

In Tests 19 29 3 and 14, the input data was taken from Chart 

5058. Theianges of this data are in good agreement with the Tide Table 

values, however the agreement between the Chart and Tide Table phases 
is not so close, especially in the Sound of Jura. For this reason, 
the application of equation (7-2) to these tests was only performed 
for the computed ranges and not the phases* The Chart phases in 

addition to being of doubtful accuracy, are also difficult to estimate 

precisely from the co-phase lines and so were unavailable for use in 

equation (7-2). 

In Test 1, the standard deviation obtained from the ranges is 

large as a result of frictionless conditions and is somewhat reduced 
in Test 2 when frictional forces are present. A comparison of standard 
deviations between Tests 4 and 6 for 90 0 characteristics and similarly 
for Tests 5 and 7 using 450 characteristics shows the improvement on 
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changing the boundary interpolation scheme. 

Using 450 characteristics, boundary interpolation scheme 2 

and the survey data, the optimum values of standard deviation in both 

ranges and phases were obtained in Test 8. The respective values of 
0.27 metres and 37 minutes were the most satisfactory of all the tests 

using Model 1. Referring again to table 7-179 the standard deviations 
for Test 8, given in brackets, represent values calculated from results 
obtained only in the Firth of Clyde. Comparing the standard deviations 
between Tests 8 and 12 shows the improvement in changing from Model I 
to Model 2. In the Firth of Clyde the standard error in computed range 
has been reduced from 0.26 metres to 0-13 metres while the error in 

the computed phases has reduced from 30 minutes to 16 minutes. It is 

evident that the application of a finer grid improved the values of 

computed range and phase especially in the Firth of Clyde. The values 

of standard deviation in the Firth of Clyde obtained from Test 12 are 

almost as good as those derived from Test 139 using Model 3 which 

schematised solely the Firth of Clyde* 

The important point, concerning the method of improving 

successive simulations, is that the variations in the computations 

from the accepted data may be accounted for and so the factors 

responsible may then be singled out for further improvement* It is 

this process that has been used to reduce the variations to the 

acceptable values shown in table 7.17 for Tests 8,12 and 13. These 

variations are thought to be sufficiently small, when simulating 

average spring or neap tide conditions, to allow the application of 

the models for reproducing the storm surge phenomena. 
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CHAPTER 8 

SIMUIJ, TION OF STORM SU. RGES IN ThE 

FIRTH OF CLYDE AND ITS APPROACHiZ 

8.1 INTRCDUCTION 

It is safe to say that the enlightenment on the understanding 
of storm surges began with the theory of tides as originally proposed 
by Airy (1845). Other important literary contributions prior to 1900 
were relatively limited. However between 1900 and 1950 some important 

contributions appeared, the first of which was a paper by Chrystal 
(1906). He investigated the occurrence of seiches from a hydrodynamic 

viewpoint which included a field survey of Loch Earn. Of significance 
also were the works of Taylor (1916), Proudman and Doodson (1926) and 
a few others who investigated retecrological effects on the sea. For 

example Hellstrom's work (1941) on wind setup in lakes earned him 

recognition as the originator of a wind set-up theory. On meteorological 
oceanography there appeared an important text by Sverdrup (1942). In 

a study of non-linear waves Proudman (1955) succeeded in establishing 

solutions for non-harmonic waves and hence attempted to analyse the 

interaction of tide and surge in an estuary. 

A considerable number of contributions have appeared since 

1950 as a consequence of the development in computer technology. In 

this respect Hansen (1956) seems to have been the first author to record 

the successful application of a numerical model to surge simulation. 

His x-y-t finite difference model was applied to the North Sea. A 

later simulation of storm surges in this area was made by Heaps (1969) 

to predict surge characteristics on the continental shelf. Both authors 

used an explicit technique based on the use of a staggered grid described 

by Hansen (1957). The work of Leendertse (1967), (1970) and Abbott 

(1973) falls generally within this category. Where shallow water effects 

are important, Reid and Bodine (1968) have given a thorough account of 

their application of the straightforward Hansen method to analyse storm 

surges in Galveston Bay. A later development was the (x-y-z-t) model 

which operates at the very limit of machine storage, machine time and 

calibration possibilities. Heaps (1973) developed such a model in his 

investigation of wind driven currents in the Irish Sea while Leendertse 

and Liu (1975) have presented details of applying such models to 

estuarine flows. More recently Leendertse and Liu (1978) have reviewed 
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a considerable number of existing modelling techniques and their 
application to seas and estuaries. 

To a lesser degreeg another factor drawing attention to the 
investigation of storm surges was the disasterous flooding produced by 

a North Sea surge in 1953. This spectacular surge breached embankments 
and flooded coastal parts of Britaing The Netherlands and Germany and 
the magnitude of its propagation has been detailed by Rossiter (1954). 
Since 1953 considerable attention has been focussed on storm surges in 
the North Sea and especially the River Thames, principally by the 
Institute of Oceanographic Sciences. The notable works of Rossiter (1961), 

Banks (1974) and Prandle (1976) being some interesting examples of this 

endeavour. The focal point for these studies was the Thames area in 

which storm tides frequently reach 1.6 metres or more above predicted 
levels. 

Possibly because the west coast of Scotland was relatively 

untouched by the surge of 1953, little attention has since been directed 

to the effect of surges in this area. The studies of Cartwright (1968) 

and Heaps (1969) have however considered the Scottish west coast but 

only in terms of providing data for storm surge analysis in the North 

Sea. However, with regard to the Scottish west coast some useful 
deductions can be made from Lennon's study (1963) of previous surges in 

the Irish Sea. As with the Thames area it required a flood situation to 

draw attention to the Scottish west coast. The devastation occurred 

during the 14th - 17th January 1968 when a severe gale of hurricane 

strength passed over the north of Scotland. For ports along the Scottish 

west coast, Milne (1971) has presented the surge history and shown that 

a maximum surge height of 2.25 metres above predicted tide level occurred 
in the Firth of Clyde at Rothesay Dock. One would expect the surge in 

this area to be high by considering the constricting nature of the topo- 

graphy of this region. Following the damage produced by this surge, the 
Department of Civil Engineering at Strathclyde University have monitored 

surge events on the Scottish west coast, principally in the Firth of Clyde. 

This study has led to the utilisation of the records as data for the 

proposed numerical model to facilitate a more complete understanding of 
the generation of storm surges in the Clyde sea area and its approaches. 
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8.2 THE STORM SURGE PHENOMENON 

8.2.1 Definition of a storm surge 

Most wind generated waves. are of short wavelength. However 

meteorological conditions can produce long, shallow water gravity waves 

similar to tides. Although storm conditions are not essential to their 
development, such waves frequently accompany storm conditions, thus they 

are referred to as storm surges. Tides, storm surges and Tsunamis 
(generated by seismic displacement of the ocean floor) represent three 

common forma of long wave motion. Unlike tides however, storm surges 

are not periodic waves since neither their occurrence nor their magni- 

tude can be anticipated with certainty. However deterministic models 

have recently been developed which attempt to forecast storm surge 

occurrences. Flather (1976) has taken this approach to a problem that 

has in the past been treated largely by statistical methods. 

Storm surges are sometimes referred to as meteorological tides 

since they are caused by unusually high or low barometric pressures and 

associated strong or prolonged wind speeds. When these conditions differ 

from the norm there are corresponding differences between the actual and 

predicted tide which, if recorded, become a measure of the storm surge. 
In this way a positive surge is associated with a net transport of water 

towards the shore resulting in an increase in tidal level. Naturally 

enough, previous studies have been more concerned with low pressure 

distributions and in simulating positive surges because of their 

importance in flood prediction. 

The effects of pressure and wind on the water's surface 

The areas of low pressure, termed depressions, which affect 
the weather off the weat coast of Europe develop over the Atlantic Ocean 

along the Atlantic Polar Front. Along this front the Polar Maritime and 
the Tropical Maritime air masses meet. Around the coasts of the British 
Isles the effect of a depression on the variation of mean sea level 

seldom exceeds 0-3 metres unless the depression is deep and moving 

quickly. However the depression can be important when coupled with the 

associated wind fields which are capable of producing dramatic changes 

in sea level, An account of the track of depressions and their effect 

on the surrounding waters of the British Isles has been comprehensively 
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assessed by Heaps (1965)- 

Considered staticaljyý the equilibrium relationship 
between atmospheric pressure and the sea causes the latter to act as an 
inverted barometer. The static law governing this situation was first 
presented by Charnock and Crease (1957) and is 

aH= -L (ý, - ý) (8.1) 
/49 

This law implies that a change of approximately one millibar of pressure 
results in a change in sea level by one centimetre. This relationship, 
also quoted by Reaps (1967). has been established mainly through its 

extensive use in the derivation of empirical formulae for surge fore- 

casting. The validity of equation (8*1) is only ensured when the 

pressure over the body of water is uniform and when the movement of the 
depression is sufficiently slow. Charnock and Crease (1957) have pointed 
out that this implies that the motion in the sea is small so that there 
is a free exchange of water between the areas inside and outisde the 

area covered by the depression. Cartwright (1968) has produced evidence 
to show that, at Aberdeen there is a departure from the static value for 

meteorological fluctuations with frequencies higher than 0.25 Hz. 

For the case of a progressive pressure system, the dynamic 

effect, as a result of the speed of the depression, can be critical. 
A response, similar to that evoked by other tide generating forces can 

occur and its magnitude is dependent on the speed of travel of the 

depression. In shallow waters over the continental shelf, when the 

speed of the storm approaches the speed of the free wave given by 

C= (gH)4, then resonance should be considered. Complete resonance will 

not occur because of frictional effects since without bottom friction at 

resonance, a dynamic theory would predict infinite elevation. Further- 

more, Bretachneider (1967), suggested that the maximum height should not 

exceed the breaking limit presented by the solitary wave theory 

max = 0.78H. 

Since the area represented in the Clyde sea area model is not 
large in relation to the size of a depression, the effect of pressure 

gradients in this area are small spatially and temporally. Hence the 

numerical terms representing these gradients in the model were not 
included when simulating the storm surges. 
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Changes in atmospheric pressure cause movements of air flows 

which constitute wind fields. As a result of the Coriolis effect, a 
wind field does not travel in the direction normal to the isobars but 

rather always anticlockwise round a low pressure point in the Northern 

Hemisphere. 

The effect of wind on the sea level can be extremely variable 

and depends largely on the topography of the sea under consideration. 
Factors such as bottom stress, bottom configuration and the confines 

of the coastline are important. The direction of the surge is also 
influenced both by the direction of the wind and by the earth's rotation, 
this feature being noted by Ekman (1905). The wind stress may cause 
the movement of vast quantities of water with progressive changes in sea 
level as the coastline is approached* When this stress is releasedo the 

water returns to an equilibrium position but not without the despatch 

of a long wave to the surrounding zone. The storm waves have the 

specific connotation that they are still under the influence of the wind 

field and that their duration is only as long as the wind producing them. 

If they emerge from the wind field they have different characteristics 

and are termed 'swell waves'. 

An account of the process of wind-wave interaction and the 

theory of wind stress has been given in section 5.2 in deriving 

analytical surge solutions* Accurate values of the wind stress co- 

efficient become more important when considering a real surge event as 

opposed to an idealised one, For this reason their measurement over 

lakes and seas by other authors is discussed in this chapter. That the 

extent of the variation of the wind stress coefficient with wind speed 

is still rather uncertain, is evident from figure 8.1 which shows the 

relationships derived from some of the past research. However a linear 

relationship between the stress coefficient and wind speed seems to be 

favoured. Deacon and Webb (1962) proposed the following condition 

k=(1. 
oo +0- 07 Vic, )- ý0- 

3: W, 
0 -IC 10 (8.2) 

in which I. /,. is in m/sec. At 20m/sec this expression would give 

= 0.0024 which agrees reasonably well with values from sea-slope data. 

Sheppard (1958) also proposed a linear relationship but with rather a 

greater slope. His proposal for the range 1- 20m/sec was 
h=(0- 

00 +II L4, W,. )xIo-3 (8-3) 
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At 20M/sec Sheppard's formula gives k= 0-0031 which appears to be 
somewhat large. Prior to this Deacon, Sheppard and Webb (1956) had 
evolved the relatiosship 

k= (0-9 113) \jýO )- 10- :5 -- ýý, e- j3 (8.4) 

which gives a stress coefficient of O. OC25 for wind speeds greater than 
13m/sec. This value of the coefficient is in close agreement with the 
value proposed by Charnock and Crease (1957) namely 

ý=0.00,1513 wic --* ]'I - 21 ft%/S&c (8-5) 

This value in equation (8-5) has been accepted by Heaps (1965) to be 

sufficiently close to the actual drag on the sea surface at high wind 

speeds typical of storm surges. From a private communication with 
Sheppard, Heaps has also taken the wind stress relationship to be 

k=0. ssý* % 10- 
3: W'. <5 

ý=(-0- 
11 + 1757 W,. )- 10- 

'1 
'. 5 C- W, < ii-; L; L 

fA fli 

which was inferred from wind measurements by application of the 'law 

of the wall'. The relationships (8*5), (8.6) are shown in graphical 
form in figure 8.1 and although smaller values of wind stress are 

obtained from these relationships than for the others, equations 
(8.5), (8.6) are apparently still used and widely accepted. 

To summarise the storm surge effect at a location derived from 

recordings of sea level, it may be regarded as consisting of a part 

generated by wind stress acting tangentially over the sea surface and a 

part generated by changes in atmospheric pressure. The surge character- 

istics for a location on the open coast are different from those in an 

estuary. Bottom friction plays a greater role and the rotation of the 

earth a lesser role in estuaries than on the open coazt. The dominant 

non-linearity of the surge on the open coast is the interaction between 

surface waves and the large scale flow. In estuaries it may be possible 

to neglect the surface waves in analysing the surge but non-linearities 

in the mean motion become more important. Open coast surges are some- 

times given greater attention because they are more general, whereas 

each estuary presents some unique surge features. 
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The variation in wind stress coefficient in rellation to 

wind sTeed as proposed by several authors. 
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8.2.3 The weather conditions associated with major storm surges 
along the west coast of the British Isles 

The intensity of the storm has been found by Harris (1966) 
to be the most important parameter for estimating the storm surge 
produced. The central pressure, the pressure gradient across the 
depression and the maximum wind speed are all valid indices of the storm 
intensity. The central pressure being the most stable of these para- 
meters. The location of the peak surge is largely determined from the 
track of the storm and the area affected depends on both its track near 
the coast and its size, 

An analysis similar to that of Harris was performed by Lennon 

(1963) for surge events along the west coast of the British Isles. He 

analysed seven depressions at both Liverpool and Avonmouth and noted the 

similarity of features in the depressions which were responsible for 

producing surges at either or both these ports. He concluded that a 

major surge could be expected along the west coast when four meteor- 

ological conditions occurred namely if: 

a) A deepening and well developed secondary depression approaches 
the country from the Atlantic Ocean such that its right-rear 
quadrant acts upon the water surface en route to the ports. 
Hence the ports experiencing the greatest surge, lie to the 

right of the path of the depression. 

b) The q)eed of approach of the depression is of the order of 
40 knots. 

C) A radius of depression up to 150 to 200 nautical miles is 

well defined by roughly concentric isobars. 

d) The depression reaches a depth of . 
50 mb over the country and 

is associated with a pressure gradient of approximately 
30 mb in 2_50 nautical miles in its right-rear quadrant. 

Lennon further concluded that of these four conditions, the 

first pair are more important than the second. The occurrence of these 

features in the two recorded Scottish west coast surges are discussed 

later in this chapter. 
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8-3 THE NUMERICAL RB; ýUIREMENTS OF A MODEL 

The operation of a model for simulating storm surges properly 
also requires the reproduction of the tide conditions prevailing during 
the passage of the surge. The three requirements of the model of which 
the latter two are tide and surge data requirements may be specified 

as. - 

a) Initial conditions. 

b) Boundary conditions. 

C) Wind and pressure data over the surface of the model. 

These three categories are discussed in turn as follows: - 

The surge problem differs from the purely tidal one in that 

an extra level of input is required, namely the meteorological conditions. 
However the problem is still of hyperbolic nature and so the initial 

conditions of null velocities and an arbitrary free surface are as 

previously mentioned for tidal simulation. The influence of the 

incorrect conditions disappear through the effect of the non-linear pro- 

cesses and the dominance of the impressed tidal elevations at the open 

sea boundaries. 

The generation of a surge has been shown by Heaps (1969) to 

originate at the edge of the continental shelf. Its build up, through 

the tractive effect of the wind forces, results in it being well 

established on entry to the area covered by the model. This is assuming 
that the model is of the nearshore area and does not extend to the edge 

of the continental shelf. It is essential for simulating the storm 

surge that the external surge be represented in the model by its 

measurement at the open sea boundary or boundaries. The terminology of 
'internal' and 'external' surges was first introduced by Corkan (1948) 

and external surges have been discussed by Corkan (1951) and Rossiter 
(1959), (1961). This type of surge is a free wave penetrating into a 

sea region from an open sea boundary, where it is induced by a changing 

sea-level disturbance of the adjacent open sea. The North Sea, English 

Channel and the Sea of Japan are examples of areas subject to external 

surges. 

A periodic solution for tidal motion is established in the 
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model after less than two tidal cycles. Therefore at the beginning of 
the third tidal cycle the boundary conditions consist of the tidal 

elevations and also the contribution from the external surge at grid 
points along the open sea boundary or boundaries. These conditions 

can only be obtained from records from tide gauges placed at locations 

along the open sea boundary. The gauges record the tidal elevations 
(relative to mean sea level at Newlyn) which are modified by the meteor- 

ological conditions. With a tide gauge positioned at either and of the 
location of the sea boundary, the grid elevations along the sea boundary 

can be obtained by interpolating from the two sets of records. If only 
two gauges are present then the interpolation procedure has to be linear. 
This procedure obviously represents an oversimplification of the actual 
boundary conditions and is certainly a determining factor in the standard 

of the surge simulation. 

Returning to point c) there is the problem of acquiring wind 

and pressure data over an area at least the size of the model. One 

method commonly used is to extract the geostrophic winds from the Meteor- 

ological Office daily weather charts. From the density, direction and 

curvature of the mean sea-level isobars on these charts, the geostrophic 

or gradient wind speeds and directions can be deduced. The wind conditions 

at the water surface are then calculated from the gradient winds using 

empirical relationships, see Findlater et al (1966). A relationship 

giving the surface winds as approximately two-thirds of the gradient 

winds has been suggested by Rossiter (1954). 

An alternative approach to calculating surface winds from 

geostrophic winds is simply to use the wind measurements recorded at 

wind stations. A comparison of the effect of both methods on the computed 

surge has been presented by McIntyre (1979)o His model used data from 

five wind stations based around a shelf model of the St George's Channel 

and the results were compared to those using the geostrophic winds. 

From his results he concluded that it seems to matter little whether the 

meteorological data comes from weather charts or directly from recorded 

wind values. This is an interesting finding because since the beginning 

of the present research the author has also found the use of weather 

station data for surge simulation to be perfectly acceptable. However 

care must be taken to ensure that the number of weather stations are not 

too few and that their locations are representative of the area covered by 
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the model. If these conditions are satisfied, the transformation of 
the recorded data at a discrete number 3f weather stations into a 
continuous function, covering all the grid points, can be accomplished. 
The method of transforming the-wind data is to use surface fitting 
techniques. As a first trial for the Clyde area, an exact fitting 

surface through the data was used and is defined by the polynomial 

0= Fl .I+ BI I*Cwý 
-t Dx+E. ý +F (8-7) 

represents the dependent variable, wind speed or direction, or 
barometric pressure and x and y are the co-ordinates of the system of 

grid points defining the model. In this equation there are six 

unknown coefficients therefore wind data from six different weather 

stations is required for their solutions In practice the resulting 

surfaces for wind speed and direction were ill-conditioned in their 

solution. This was a result of errors associated with data measure- 

ment and the close proximity of some of the weather stations to each 

other. The next consideration was a least squares polynomial surface, 

its form being determined by the fact that the number of unknown co- 

efficients must be less than the number of wind stations. Since the 

maximum number of wind stations providing data in the area was eight, 

a two-dimensional quadratic equation was chosen, which has the same 

form as equation (8-7). The surface obtained from the observed data 

at any given time level using the least squares analysis was found to 

be acceptable in that the wind speed and direction at any weather 

station was representative of the wind speeds and directions at the grid 

points. It was also found that for a uniform wind speed and direction 

at the six weather stations, at a given time level, the interpolating 

surface produced the required linear plane. In this way the interpol- 

ating quadratic surface was shown to be capable of reducing to a linear 

form expressed as 

a= (8.8) 

Using the least squares analysis the surfaces of wind speed 

and of wind direction were obtained at every grid point in the model. 

These values were maintained constant over successive time intervals 

until after an integral number of timesteps a new set of wind speeds and 
directions are calculated from the data which replaced the previous values 



278 

at each grid point. 

In a simi-lar manner the atmospheric pressure data at each 
weather station was used to provide surfaces of pressure over the 
model's grid. By applying the statical law (equation 8.1) at each grid 

point the change in mean water level as a result of a change in atmos- 
pheric pressure was obtained. It is of some importance to note that 

at the open sea boundaries only that part of the external surge, 
resulting from wind stress was added to the predicted tidal elevations 
above mean water level; that part of the external surge caused by the 

pressure effect, was added to mean water depth. The distinction between 

the two effects, ne ely that one is dynamic and the other treated as 
static, is the underlying reason for the aforementioned method of 

specifying these boundary conditions. The computations in the model 
therefore simulate the total storm surge since the pressure effect is 

included. These results are later compared to the recorded total surge. 
Some authors such as Heaps (1969), Prandle (1975) prefer to compare only 
the computed and recorded wind surge by extracting the pressure effect 
from the recorded tide. Either method seems acceptable; however in 

the first method the numerical scheme calculates the pressure effect 

whereas in the second method the reduction is performed manually. 

8.4 THE STORM SURGE OF DECEMBER 1972 

Originally it was intended that the storm surge produced by the 

'Great Gale' of the 14th - 17th January 1968 be simulated. It was 

apparent that its long duration made it impractical for calculations on 
the ICL 1904S computer in which one tidal cycle required twenty-five 

minutes of machine time. Instead the storm surge of 5th December 1972 

was selected from the available records primarily because the duration 

of the surge was reasonably short; less than two tidal cycles. 
Fortunately this surge was also of quite a large magnitude, reaching 
1.5 metres in maximum height at Greenock. Of the available records, 
this surge is second only in magnitude to the surge of January 1968. 

8.4.1 Wind, pressure and surge data 

The daily weather charts published by the Meteorological 

Office provided information concerning the movement of the depression 
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during the 4th - 6th December 1972. On the 4th it was apparent that 
an area of low pressure, south of Iceland moved northeast towards the 
Faroes while another depression east of Newfoundland moved very 
rapidly across the Atlantic and started to deepen quickly during the 

early part of the 5th December. After this time this intense depression 

which was west of Ireland continued to deepen and moved nnrtheastwards 
across the Orkneys and Shetlands into the Norwegian Sea. From the 

synoptic charts the following features were also deduced and are 
comparable to the weather conditions concluded by Lennon and mentioned in 

section 8.2-3- 

a) At the time of maximum surge in the Firth of Clyde, which 

occurred at 1400 hours, the location of the centre of the 

depression was near the Orkneys. This depression was the 

primary cause of the surge* 

b) The depression covered 960 nautical miles in twenty-four 

hours giving it an average speed of approach of 40 knots. 

C) The radius of the concentric isobars was about 150 nautical 

miles. 

d) The maximum depth of the depression reached 968 mb 

which is 45 mb below standard atmospheric pressure. 

These indices are very much in agreement with the conditions prescribed 
by Lennon for a major surge on the west coast of Scotland. The track 

of the depression was however too far north to create a serious surge 
in the west coast of England. 

The daily weather charts also provide wind speeds, wind 

directions and barometric pressures at six hour intervals. For 

simulation purposes these intervals are too long, therefore more detailed 

wind and pressure data was obtained from the Meteorological Office in 

Edinburgh. This data published on Metform sheets 3256B and 3257B provided 

hourly values of wind speed and direction and three hourly values of 

pressure for eight weather stations situated in and around the Firth of 

Clyde and its approaches. These stations were namely Abbotsinch, 

Prestwick, West Freugh (five miles east of Stranraer), Mull of Galloway, 

Aldergrove (Belfast Airport), Malin, Machrahanish and Tiree. A graphical 

representation of the wind speeds and directions for the eight stations 

during the 5th December 1972 is depicted in figures 8.2 and 8.3 
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respectively. This data formed the basis of the wind input to the model 
and the following remarks are applicable to this data. 

a) Wind speeds and directions are mean values for the hour 
following the time stated in figures 8.2 and 8-3- 

b) Wind data for Mull of Galloway and Malin were only available 
every three hours therefore hourly values were interpolated. 

C) The wind directions are expressed as whole circle bearings 

and are therefore measured clockwise from true north. 

d) In general the characteristics of wind speed and direction 

are evidently similar at each weather station. At all the 

stations the maximum wind speed occurs between 1100 hours 

and 1400 hours and is preceded by a marked change in 

direction from southerly to southwesterly. 

The maximum wind speed varies from 29 knots at Aldergrove 

to 53 knots at Tiree and these are the most southerly and 

northerly locations respectively, of the eight stations 

selected. Also by contrast, Aldergrove is landlocked and 

the wind is subject to greater frictional forces than at 

Tiree which is the most exposed of all the stations. 

The barometric pressures at the eight weather stations 
during the 5th December 1972 are listed in table 8.1 at three hourly 

intervals. Only the stations at Malin and Tiree are not in close 

proximity to the Firth of Clyde and its approaches whilat for the other 

six stations the spatial variation of pressure is only 8 mb. The 

production of flow in the sea during this surge as a result of pressure 

gradients will therefore be small and consequently the pressure gradient 
terms were not included in the numerical scheme governing the model. A 

small spatial variation in pressure across the area of the model also 
indicates that the area is not large in relation to the radius of the 
depression. The maximum temporal variation in pressure in the Firth of 
Clyde and its approaches resulting from the movement of the depression 

is about 12 mb. This occurs at Abbotsinch where the pressure drops from 

990 mb to 978 mb. According to the statical law this represents a rise 
in mean water level of about 0.12 metres which, again, is not large by 

comparison to the effect of the wind stress. 
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Surface wind speeds recorded on the 5th December 1972. 
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Surface wind directions recorded on the 5th December 1972. 
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For the purpose of simulating storm surges using Model 1 
(which has been described in Chapter 7) the meteorological effect on 
the tides must be recorded at the open sea boundaries of the model. 
Model 1 has three such open sea boundaries which are shown in figure 
6.1. For the particular surge of the 5th December 1972, no tide 

recorders were present at the northern and western sea boundaries, 
however the surge record was available at Malin which is west of the 

western sea boundary. The only means of providing surge data at the 

northern and western sea boundaries was to týLke the surge recorded at 
Malin as representative of surge conditions at these sea boundaries. 
In figure 8.4 the recorded tide+surge elevations at Malin are shown 
together with1he predicted tide. The difference between t4se curves 
is the recorded surge at Malin which is shown in figure 8-5. The 

recorded surge at Malin together with the predicted tides at Bally- 

castle Bay and Port Ellen provided the surge and tide input conditions 

at the western sea boundary ports. Similarly the surge at Malin together 

with the predicted tides at Crinan formed the input conditions for the 

smaller northern sea boundary. The tide and surge elevations at these 

three ports, found in this way are represented in figure 8.6. 

At the southern sea boundary the available surge data was more 

satisfactory. Recording gauges were present at the landward ends of 

the boundary, namely Larne and Portpatrick. For many years, Portpatrick 

has been a class A port for tide measurement. For both ports the tide+ 

surge elevations, together with their respective predicted tides are shown 

in figure 8.4. From this data the storm surge was calculated at each 

port and is shown in figure 8-5. A comparison of the surges in this 

figure at Larne and Portpatrick shows strong similarity of features, 

with the Portpatrick surge being slightly the larger. It is also evident 

from the ranges of the predicted tides at these ports that the surge of 

the 5th December 1972 occurred midway through a spring-neap tide 

transition. 

8.4.2 Comparison of simulated results with recorded data 

Tide gauge records of the December 1972 surge were used as a 

basis for comparison with the surge elevations computed at certain closed 

boundary points corresponding to the locations of the gauges. In the 

area represented by the model, only two gauges, one at Greenock, the 
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other at Millport, were able to provide surge records for this 
Purpose. Both of these ports are situated in the upper Firth of 
Clyde, an area of complex topography and consequently an area which 
could not be accurately schematised using Model 1. 

The recorded tide+surge elevations at both Millport and 
Greenock are reproduced in figure 8.7. The predicted tides are also 
shown so as to indicate the effects of the surge on the tide. It is 

apparent from both records that the ma imum elevation occurs shortly 
after the predicted tidal high water at 1200 G. M. T. Also of importance 
is the fact that the duration of the peak elevations from 1200 G. M. T., 

to 1500 G. M. T., closely corresponds to the time interval when the 

maximum wind speeds occurred in the Firth of Clyde. These features 

were also produced in the surge simulation and are evident from the 

computed tide+surge elevations at Millport and Greenock shown in 

figure 8.8. 

The maximum difference between the recorded and computed 
tide+surge elevations is 0.4 metres at 1200 G. M. T., at Greenock and in 

general the recorded elevations are slightly higher than the computed 

elevations. A comparison of the recorded and computed times of maximum 

elevation at both ports shows a phase difference of about forty minutes, 
the recorded phases being the earlier of the two. This phase lag also 

occurred in the results when simulating tide motion using this model 
(Model 1) and is evident from the results of Test 9 shown in table 7.9. 

It is therefore a limitation of the model which causes the computed 

phase to lag the predicted phase. Nevertheless the overall agreement 
between the recorded and computed tide+surge elevations at both Millport 

and Greenock is quite good. 

In figure 8.9 the recorded and computed storm surges are 

depicted for comparison at both Millport and Greenock. The recorded 

surge has been obtained from figure 8.7 by subtracting the predicted 
tide from the recorded tide plus surge. Similarly the computed surge 
has been calculated from figure 8.8 by subtracting the computed tide 

from the computed tide plus surge. At both ports the phase difference 

between the recorded and computed surges is apparent and, as already 

mentioned, is considered to be a schematisation effect. A comparison 

at both ports also shows that the simulated and recorded surges at 
Millport have a higher correlation than at Greenock. This is possibly 
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because the model's schematisation is more representative at Millport 
than at Greenock, since the latter port is situated in the relatively 
narrow Clyde estuary. The overall agreement between the recorded and 
computed surge is quite good at both ports considering the accuracy of 
the sea boundary data. 

An appreciation of the total magnitude of the surge in the 
Firth of Clyde is obtained from the curves in figure 8.9 which represent 
the total surge; that is the contribution from the external surge, wind 
stress and atmospheric pressure. The individual effects of these three 

components was subsequently analysed using the model. At this stage it 

can be concluded from the records at Malin, Larne, Portpatrick, Millport 

and Greenock that in this order, there is a corresponding increase in 

maximum surge from one port to the other. The highest maximum surge 

elevation of 1-55 metres occurring at Greenock. The increase in 

magnitude of the surge as it develops in its passage from Malin to 

Greenock can be attributed to a funnelling of the surge in that direction 

as a result of ever decreasing mean water depths and increasing confine- 

ment of the coastline. 

At this point it is appropriate to consider the interaction 

existing between tides and surges, which has been identified by 

Proudman (1955) to be of hydrodynamic origin. More precisely, the 

interaction is caused by the action of friction and variationsin the 

speed of propagation which modify a surge in the presence of a tide. 

These effects can be incorporated into the numerical scheme through the 

non-linear terms in the governing hydrodynamic equations. 

As a means of studying the effects of the tide+surge inter- 

action, the surge of the 5th December 1972 was simulated without the 

presence of the tides and the computed elevations compared to the 

computed surge obtained from the tido+surge simulation. This comparison 
between the surges, computed using the two different approaches is also 

presented in figure 8.9 for the ports Millport and Greenock. The 

simulation of the surge without the tidal presence required the external 

surge to be specified at the sea boundaries and so the input is effect- 
ively the data shown in figure 8-5. Referring to figure 8.9 it is 

apparent that the values of the surge computed without the tides are, 
in most instances, larger than for the surge computed with the tides. 

The differing results can be partly attributed to the way in which 

friction at the sea bed is calculated in the model. In this respect, 
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Taylor (1919) has shown that the frictional force is defined as 

F=k6 
'ýO 

U. (8.9) 

where tL is the mean velocity. Furthermore he showed that the work 
done by the frictional force E, can be expressed as 

1ý Ll (8.10) 
-rr 

It can be concluded from equation (8.10) that when the tide and surge 
waves are modelled simultaneously, the frictional dissipation will be 
proportional to the cube of the sum of their associated velocities. 
When modelled separately the net dissipation will be proportional to 
the sum of each velocity cubed. This conclusion has also been drawn by 
Prandle (1975) when simulating surges in the southern part of the North 
Sea. 

The action of bottom friction in the manner described may 

also be one reason why a large maximum surge apparently seldom occurs on 

a high water spring tide in an estuary. 

One of the distinct advantages of numerical modelling, as 

opposed to hydraulic modelling is the ease of isolating specific para- 

meters so as to evaluate the importance of various components of a 

system. Such a technique has been applied to the storm surge of 5th 

December 1972 in order to assess the relative importance of the various 
terms which contribute to the generation of the surge. 

The effect of each component of the surge at Millport and 
Greenock as computed by the model is as shown in fLgure 8.10. At both 

ports, the external surge, as a result of wind stress only, is the 

largest component of the peak surge, measuring 0.86 metres at Greenock. 

This effect is the largest since the generation of this component occurs 

over an area extending from the edge of the continental shelf to the 

locations of the model's open sea boundaries. 

The contribution to the peak surge at both ports from the wind 

stress over the surface of the model is the second largest component. 

It has a maximum amplitude of 0.6 me tres at Greenock and is a result Of 

the effect of the shallow inlets of the Firth of Clyde on the wind 

stress terms. 

At any point on the model's surface, pressure variations 

JIF "ýJ 
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introduce a slowly varying change in mean water level. The amplitude 

of this component is about 0.36 metres at its maximum and was evaluated 
in the model by the interpolating surface obtained from the atmospheric 

pressures measured at the weather stations. This component is there- 

fore the smallest of all three in the Firth of Clyde during the occurrence 

of this storm surge. It can therefore be stated that in general the 

surge comprises the external wind surge at the open boundaries, the surge 

produced by the wind stress over the surface of the model, and the 

effect of low atmospheric pressures. 

The simulation of each surge component was conducted in the 

presence of the tide and hence in figure 8.10 the components are compared 
to the recorded total surge which is also influenced by the tide. An 

interesting feature of the computed surges at Millport and Greenock 

obtained either from the external surge or from the wind stress effect, 
is that the peak surge in both cases is later than the recorded surge. 
It is concluded that the recorded peak surge produces the greatest 

depth of water and as a result the celerity is greater for this case than 

for the surge components. It is also found from a summation of the 

surge components at Greenock that the peak surge is about 1.72 metres. 

This value is greater than both the recorded maximum surge of 1.55 

metres and the maximum surge of 1.44 metres computed with all components 

present at the same time. A possible explanation for this behaviour 

may yet again be related to interaction effects, notably the operation 

of the friction term in the model. It appears that with frictional 

dissipation proportional to the cube of velocity that a summation of 

frictional dissipation during each component surge is obviously less 

than the frictional dissipation produced when the components are present 

together, when producing the surge. 

In many cases, an important consideration is the effect of the 

tide+surge interaction upon the extraction of surge from the recorded 

tide+surge elevations. This problem is fundamentally difficult to 

accomplish accurately because the phenomena are dynamically non-linear 

such that 

qS4q 
Ir+ 5-q Ir 

(8., Li) 

where ý. 
r 

is the predicted tide free from surge interaction. There- 

fore a simple subtraction of the predicted tide from the recorded 
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elevations fails because of coupling effects. For example, as a result 
of the water depth being increased by the action of the storm the ordinary 
predicted tide will arrive ahead of schedule and will be lower in 
amplitude, but the total tide will be higher. As a result, the time 

of arrival of the tide is affected by the surge and a simple subtraction 
will make the difference, obtained in this way, show a more or less 

pronounced secondary oscillation having a tidal period. This effect has 
been pointed out by Groen and Groves (1962). One method of separating 
the two phenomenum is to account for the effect of the surge on the time 

of the tide by first shifting the time scale by a proper amount and then 

subtracting the predicted tide* This method has been proposed by 
Bretschneider (1967) but does not account for the reduction in tide 

elevation when coupled with the surgeo 

For the storm surge of the 5th December 19729 the calculation 

of the predicted tide at hourly intervals and its subsequent subtraction 

from the recorded tide+surge elevations is quite a lengthy and laborious 

procedure. Its execution could be more easily accomplished by develop- 

ing a procedure for use on the computer. Referring to figures 8.4 and 
8*7 it is apparent from the predicted times of high water at Malin and 

Greenock that they differ by about six hours. This time lag represents 

the required time for a tidal wave to propagate between these two ports. 

In contrastg figures 8-5 and 8.9 show that the time difference in the 

occurrence of maximum surge at Malin and Greenock is only about two 

hours. These values indicate the difference in propagation rate between 

the tide and surge processes. Another featureq which is related to the 

rapid occurrence of the surge, is its effect on the timing of the high 

waters near the time of peak surge. With reference to figures 8.4 and 8.7 

it is evident that the recorded time of high water of the tide+surge 

elevations are as expected, not earlier than those of the predicted tide 

at all five ports. The subsequent extraction of the surge from these 

records, therefore, did not require a shift of time scale for the 

predicted tide in the manner already proposed. Instead a simple subtraction 

process seemed justified* It appears that the sea area has responded as 

a whole to the wind and pressure effecto The differences between surge 

heights at each location are a result of the local topography, especially 

the effect of shallow water, affecting surge generation in the Firth of 

Clyde. 
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Tide and surge elevations recorded on the 5th December 1972. 
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Recorded surge elevations for the qth December 1972o 

RiEcoRDeD SuvkcF - Rrr-osko*D 'fsor, +5-9 - PUD-M, flwz 

0" 

-0" 

0*6 

OIX 

0.8 

0-6 

O-LI. 

0'Z 

16 to zi, 

-ýIMF- (Houlks) 

Figure 8.5 

A 
SA LVioJ 

o. 



292 

'Recorded' tide and surge elevations for the 5th December 1972 

obtained from measurements at Ialin. 
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Tide and surge elevations recorded on the 5th December 19? 2 

at interior locaticns in the model. 
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Computed tide and surge elevations for the 5th December 1972 

at interior locations in the model. 
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Comparison of computed and recorded surges at ports in 

the Firth of Clyde for the 
. 
5th December 1972. 
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Computed surge components for the 1--th December 1972 and 

a com-oarison with the recorded total surges at ports 

in the Firth of Clyde. 
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It can therefore be concluded that for the surge of December 
1972its duration or period is longer than either the tidal period or 
the natural period of the partly enclosed sea area considered. As a 
result, the surge and tide frequencies do not overlap to any great 
extent and the non-linear difficulties discussed previously are not 
serious. In more general terms this surge can be classified as being 
of low frequency, and this type of surge has in the past been extensively 
studied because of its damaging effect in small partly enclosed sea areas. 
In contrast there exists the high frequency transient surges of duration 
two to five hours that travel over a sea area which is large in comparison 
with the atmospheric disturbance involved. These surges of the running 
wave type can strongly determine the arrival of the tide since their 
frequencies overlap with those of the tide. The progression of these 

surges and thexesponse of the sea surface at the open coast has been 

studied in Chapter 5. 

8.. 5 THE STORM SURGE OF 7TH - 9TH MARCH 1979 

Having successfully simulated a storm surge event using 
Model 1, another storm surge was considered for this purpose for two 

reasons. Firstly this surge, which occurred during 7th - 9th March 
1979, was recorded on the tide gauges installed during the tidal survey 
and so surge data was available at all three open sea boundaries in the 

model. The same amount of information was not available for the 1972 

storm surge. Secondly, by using the 2980 I. C. L. computer at Edinburgh 

it became feasible to simulate a storm surge with a duration of two and a 

half days. 

8.5.1 Wind, pressure and surge dat 

Firstly the meteorological conditions during the 7th to the 

9th of March are considered. These conditions were obtained from the 

daily synoptic weather charts, published by the Mete orclo gical Office, 

and are summarised as follows. 

During the 7th March a depression (Low C) to the northwest 

of Scotland moved away northeastwards and a new shallow depression (Low S) 

formed on the frontal trough between Scotland and Norway. On the 8th 

March a small but deep depression (1, ow R) close to southwest Norway moved 
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steadily northeast while another deep depression (Low L) to the west of 
Iceland moved slowly east. Accompanying frontal troughs moved close to 

northern Britain later in the day. During the next twenty-four hours 

the Icelandic depression intensified, moving slowly northeast between 

Scotland and Iceland. During the 9th to the 10th March this depression 
(Low L) moved north away from east of Iceland while its associated fronts 

over Britain moved away eastwards. During this period pressure remained 
low north of Scotland. 

As a result of the presence of Low L, a positive surge occurred 
during the 8th and 9th of March 1979 on the west coast of Scotland. The 

magnitude of this surge was smaller than that of the 5th December 1972 

because, the tract of the March 1979 storm was further away from Scotland 

and the depression moved more slowly. The depression was however deeper 

than that of the December 1972 storm. The parameters defining the storm 

are as follows and are comparable with those presented by Lennon, discussed 

previously. 

a) The maximum surge occurred during 1800 G. M. T. on the 8th 

till 0800 G. M. T. on the 9th March. During this time the centre 

of the depression was about three hundred nautical miles north 

of the Orkneys. 

b) During a thirty-hour time interval the depression travelled 

820 nautical miles therefore its average speed was 27 knots. 

c) The radius of depression was measured as 100 nautical miles. 

d) The maximum depth of the depression below standard atmospheric 

pressure was 57 millibars. 

The daily weather charts also provided pressure data at six- 

hourly intervals at six weather stations; this data is presented in 

table 8.2. No pressure data was available for the weather stations, 

Islay and Machrahanish and so was obtained by interpolating from the 

existing data. From the data it is apparent that the spatial variation 

of pressure over the Firth of Clyde and its approaches was small during 

the presence of the surge. The temporal variation however was more 

significant in this area, dropping by 25 millibars, during the 8th of 

March. 

Wind speeds and directions at three hourly intervals were 
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Figure 8.11 

Surface wind speeds recorded during the 7th - 9th March 1970. - 
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Figure 8.12 
Surface wind directions recorded during the 7th 9th March 1979. 
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obtained from the Glasgow Meteorological Office for the eight weather 
stations; Abbotsinch, Prestwick, Machrahanish, Mull of Galloway, 
Aldergrove, Malin, Islay and Tiree. These wind speeds and directions 

are shown in figures 8.11 and 8.12 for the duration of the storm surge, 
and were obtained from measurements in the ten minute interval preceding 
the hour. With reference to the wind speeds in figure 8.11 there is 

general agreement for each station with an exception at Aldergrove where 
the wind speeds are slower. As already mentioned in section 8.4.. 1, 
Aldergrove is severely land-locked which accounts for the low wind 
speeds. At this station the maximum wind speed was 17 knots whereas 
at Malin it was 32 knots during the period of a positive surge in the 
Firth of Clyde. At many of the stations there was no distinct maximum 

wind speed; instead a gradual increase in wind speed occurred which 

remained relatively constant during the 8th and 9th of March. This 

state can be attributed to the relatively slow movement of the 

depression during this time. Also in good agreement are the wind 
directions at each weather station as shown in figure 8.12o During a 

greater part of the 8th, the wind direction is shown to be aouth-westerly 

which changes on the 9th to westerly and later still to a north-westerly 

wind direction. 

A requirement of the model is that the external surge be 

specified as an input; this condition was satisfied as a result of 

having tide recorders at each sea boundary. Thus a tide recorder at 

Crinan provided the tide+surge elevations at the northern sea boundary 

whilst the Ballycastle Bay and Port Ellen gauges represented the western 

sea boundary and similarly the Larne and Portpatrick records provided 

data for the southern sea boundary. The records together with the 

corresponding predicted tides at the five ports are shown in figure 8-13. 

The predicted ranges and phases during this period namely the 7th - 9th 

March represent neap tide conditions occurring at that time* The 

important feature of all the curves is that the recorded tide+surge 

elevations do not arrive ahead of the predicted tide. This effect is 

possibly more apparent in the curves in which the tidal ranges are 

greater than the surge. Since no perceptible phase shift occurred and 

since the duration of the surge is relatively long, it can be concluded 

that the surge is of low frequency. 

The duration of the surge can be more readily appreciated in 
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figure 8.14 in which the recorded surge at each of the five ports is 
presented. Certain major features of the surge should be highlighted 
since these characteristics are evident in the records at each port to 

a greater or lesser extent. Firstly, wind conditions were not of storm 
intensity during the 7th March yet negative surges were recorded at all 

ports. At some ports these negative surges were sustained till 1200 G. M. T. 

on the 8th March. These negative surges, which may be attributed to 
the stormy conditions on the 5th and 6th March, could have been produced 
by dynamic oscillations following a release of the positive surge or 
surges occurring during the 6th March. Secondly, from 1200 G. M. T. on 
the 8th March till 2000 G. M. T. on the 9th wind speed remained fairly 

constant while its direction progressively changed from south-westerly 
to northwesterly. During this time interval a flat shaped surge wan 

recorded at each of the five ports, The recorded maximum height of the 

surge at these ports was about 0.6 metres and occurred during 0000 G. M. T. 

and 0400 G. M. T. on the 9th March. The final gross characteristic of the 

recorded surge occurs from 1800 G. M. T. on the 9th March and is a small 

negative surge. At this time the wind speeds are diminishing and the 

negative surge possibly corresponds to a release of the earlier positive 

surge. 

These aforementioned observations describe the surge features 

such1hat they occur almost simultaneously at each port* This follows 

from the fact that the spatial extent of the storm surge is large in 

comparison to the areaL represented in the model, A similar reasoning 

applied to the storm surge of 5th December 1972- 

8.5.2 Comparison of simulated results with recorded data, 

An evaluation of the accuracy by which Model 1 reproduced 

the storm surge conditions of the 7th - 9th March 1979 was made at 

certain locations corresponding to the availability of tide records. 
For this purpose, records from tide gauges situated at Campbeltown, 

Millport and Greenock were obtained. Campbeltown is situated at the 

southwest entrance to the Firth of Clyde whilst Millport and Greenock 

are located at the head of the Firth with Greenock the most northerly 

port. 

The recorded tide+surge elevations at the three ports are 
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reproduced, together with their respective predicted tides, in figure 
8-15. Most apparent in all three sets of curves is that the surge effect 
has not radically modified the tidal oacillationz, since the latter 
effect dominates the total displacements. Another distinction of the 
recorded tide+surge elevations at the three ports is that their times 

of high water did not occur before those of the predicted tides. In 
fact during the period of positive surge the phases of recorded and 
predicted tides are very similar. For comparison with figure 8-15, the 
computed tide+surge elevations and the computed tide at each of the 
three ports are shown in figure 8.16. The computed tide+surge 

elevations also exhibit the general features of the recorded tide+surge 

elevations. An interesting feature occurring in both figures is that 
during the time interval of the positive surge there is no apparent 

growth in the surge from Campbeltown to Greenock at the times of 

recorded or predicted high water. This is evident from a comparison 

of the differences between the recorded and predicted elevations at 
each port. In contrast, the same comparison of differences at the three 

ports at times of low water shows that there is an increase in surge 

magnitude proceeding from Campbeltown to Greenock. At each occurrence 

of low water the increase in surge elevation between Campbeltown and 
Millport was found to be 0-13 metres. Similarly the increase in surge 
height between Campbeltown and Greenock at low waters was measured at 
0.2.5 metres. The growth of the surge between these ports at low water 
is more apparent in "-he recorded elevations and is a very interesting 

feature. It may possibly be produced as a result of frictional effects 
being smaller at low water than at high water but this would not explain 

why there was no surge growth at high water. 

The accuracy of the computed surge can be properly assessed 
by comparing it with the recorded surge as shown in figure 8-17. Both 

the computed and recorded surges at each port were derived from 

respective curves in figures 8.16 and 8.15* On comparison, the largest 

discrepancy between the computed and recorded surges occurs at Campbel- 

town and Millport during the negative surges on the 7th and early 8th 

of March. Possibly the recorded negative surges are produced by storm 

conditions on the 5th and 6th of March. If this is the case, then the 

model cannot reproduce the negative surges because conditions on the 5th 

and 6th are not included in the input. Supporting this idea is the fact 
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that the model reproduced the negative surge at the end of the 9th 
March without any difficulty. Considering the computed and recorded 

positive surge at the three ports in figure 8.17 it is appazent that in 

general the computed surge is the higher, by about 0.2 metres at some 

points. 

The smoothness of the computed surges and the greater similar- 
ity of shape at the three ports, in comparison to the recorded surges, 
suggests that the resolution of the model insufficiently represents 
variations in the local topographic features of the upper Firth of 
Clyde. For example, at 1600 G, M. T. on the 9th March a small positive 
surge occurring at tidal low water increased in magnitude on proceeding 
from Campbeltown to Millport, and then to Greenock. The same growth of 
this small surge was not reproduced by the model. It is also evident 
from the recorded surgel that the peak surge of 0.86 metres at Greenock 

occurring at 1800 G. M. T. emerged from a smaller positive surge further 

south, since at Campbeltown the corresponding surge is only 0,4 metres. 
At this time the wind direction being southwesterly, was favourable to 

the orientation of the Firth of Clyde. The wind direction later changed 
to northwesterly and as a result, another peak surge at Greenock of the 

order of 0.8 metres was not produced. It appears that a wind direction 

with a northerly component is not so effective as a southerly wind in 

generating surges in the upper Firth of Clyde, which may be intuitively 

obvious. 

The simulation of the storm surge of the 7th - 9th March 1979 

was also performed using Model 3 which represents the Firth of Clyde 

and has a finer gridsize than Model 1. As mentioned previously in 

section7o4the sea boundary of Model 3 extends from Sanda-Sound, near 
Campbeltown to Portpatrick. The external surge can therefore be 

specified in the model using the Campbeltown and Portpatrick records as 

shown in figures 8.15 and 8-13 respectively. 

A comparison of the computed and recorded surges at Millport 

and Greenock is presented in figure 8.18, and the agreement at both 

ports is very good. It would be misleading to assume that the agreement, 

although superior to that shown in figure 8.17 using Model 1, was totally 

achieved through using a finer grid. The gridsize was no doubt a 

significant factor but of possibly greater importance were the open sea 

boundary conditions. In comparison to Model 1, the sea boundary 
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conditions for Model 3 are more similar to the conditions recorded at 
locations in the interior of the model. The dominance of the boundary 

conditioas, namely the external surge, can be appreciated in figure 8.18 
by comparing the computed total surge with the smaller surge computed 
using only the wind stress terms over the model's surface. For example 
at Greenock the total recorded maximum surge elevation was about 0.8 

metres while the wind surge contribution over the Firth of Clyde was 
only 0.2 metres in maximum height. The maximum positive wind surge 
as shown in figure 8.18 was computed with slowly increasing wind speeds 
until 0800 G. M. T. on the 8th March and thereafter constant wind speed 
conditions. The significant feature was that the maximum positive wind 
surge resulted from a southwesterly wind direction. After 0000 G. M. T. 

on the 9th, the wind direction was westerly resulting in a reduction in 

size of the positive wind surge. Later on the 9th March the wind 
direction changed from westerly to northwesterly producing a negative 

wind surge at Greenock and Millport from 1400 G. M. T. to 2200 G. M. T. on 
the 9th March. Thus the three wind directions mentioned evidently have 

markedly differing effects on the computed wind surge, with southerly 

wind directions producing positive wind surges in the upper Firth of 
Clyde and northerly wind directions producing negative surges. 

An accurate assessment of the model's ability to reproduce 

the surge conditions, is restricted by the limitations of the data 

providing the input to the model and used for comparison with the 

output. Nevertheless the simulation of both surge events appears to 

be comparable with the recorded data and from this analysis some useful 

observations were made regarding the effects of wind direction on surges 

in the Firth of Clyde. 

While the model has demonstrated an ability to simulate storm 

surges in a nearshore environment the method of simulation is strongly 

dependent on prior knowledge of the external surge elevations. Only by 

extending the model to the edge of the continental shelf, where the 

storm surge originates, can the wind stress terms in the model be more 

accurately assessed. This possibility is examined in Chapter 9. 
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Figure 8.13 
Tide and surge elevations recorded during the 7th 9th March 1979 

at ports on the open sea boundaries of Model 1. 
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Figure 8.14 
Recorded surge elevations for the 7th - 9th March 1979 

at ports on the operr sea boundaries of ýýodel 1. 
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Figure 8.15 
Tide and surge elevations recorded during the 7th - 9th March 1979 

at ports in the Firth of Clyde. 
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Figure 8.17 
Comparison of computed and recorded surges at ports in the 

Firth of Clyde for the 7th - 9th March 1979. 
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Figure 8.18 

Comparison of computed and recorded surges at ports in the 
Firth of Clyde for the 7th - 9th ý'arch 10,79. 

SURCE ELEVM-NON 

0-6 

C. 
IL 

O.; L 

0 

C'. 

-0-4 

Compvfk. *D 5URCE 

USINC, MODIIELý -5) 

comru-, i; o 5vRrE 

(WIND 569*155 CINL, -/) 

ýEE N0CK 

06 

0.1ý. MILLPORT ILLP 

0.2. 

0 .............. 
................ 

'i'LLP 

RECORDIED SURGE 

CorlPvfED SURCE 

COMPU-rED 5UR6k 
(USINCý ONI. Y 'NIE WIND 

................. 

Ll 

16 10 0s 12,16 zo 0 4. s 17, lb 2c 0 

-7-rH 31-H 

_r, ME( HOU RS) 



3,13 

CHAPTER 9 

A CONTINENTAL SH. ELF MODEL FCR THE WEST COAST 

OF CENTRAL SCOTLAND 

9.1 INTRCDUCTION 

Previous surge simulations have shown that the 'external 

surge' was required as an input to the model in order to specify the 

surge conditions completely. Referring to the two surges analysed in 
Chapter 8, it is apparent that in each case, the largest component of 
the surge in the Firth of Clyde was produced by the external surge. 
Apart from the difficulties caused by incomplete data for rep- 
resenting the external surge at the open sea boundaries of the model, 
it also complicates the problem of evaluating the response of the model 
to the wind stress effect. A more effective method of assessing the 

wind stress effect is to develop a model which considers the topograph- 

ical features of the area, and uses a variable wind stress coefficient 
in a manner similar to the Clyde sea area models, but which also extends 
to the edge of the continental shelf. With these features the model 

represents a more refined version of the shelf model used in section 5.6 

which was limited to linear mean depths, a constant wind stress co- 

efficient and a wind direction normal to the shore. In both the model 
tested in section 5.6 and the shelf model outlined in the next section, 
the external surge was assumed to be negligible. Thus at the open sea 
boundary corresponding to the edge of the continental shelf, the 

condition S=0 was applied in the models. This condition has been 

studied theoretically by Veltkamp (1954) and Weenink (1954) for the case 

of a rectangular shallow sea bordering on an infinite ocean and being in 

equilibrium with a wind blowing over it. It appears from these studies 
that the above boundary condition is indeed a good approximation to actual 

conditions, especially if the ocean is very deep. In a practical contex, 
Reaps (1969) investigated the contribution of the oceanic surge to the 

disturbance in the North Sea. From a comparison of surge response in the 

North Sea using two models, of which only one included the oceanic areas, 
he concluded that a surge is generated on the shelf with little contri- 
bution from the ocean. 

9.2 THE SHELF MODEL 

Tho extent of the continental shelf off the west coast of Scotland 
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I . he Scottish west coast continental shelf and the 

sea area enclosed by the shelf model. (Model 
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and the shelf area represented by the model are shown in figure 9.1. 
This shelf area situated off the west coast of central Scotland 

effectively comprises of the shallower waters of the Atlantic Ocean. 
In comparison to the Clyde Sea. area, the shelf area has a simpler bathy- 
metry and is less influenced by the coastal topography. Consequently 
the model was contructed with a larger spacestep than the Clyde models 
without undue lose in accuracy. Indeed a shelf model covering this area 
with a fine Wid is impractical owing to its demand on machine time, 

With a spacestep of 12 km and a timestep of 207 seconds, the 

shelf model namely Model 4 extends across a shelf width of 216 km 
(116 nz) until a depth of 160 metrea is reached. The mean water depths 

were found from Admiralty Chart 2635 and are shown in figure 9-3 for all 
grid points. The coastline schematisation is also apparent from this 
figure. From the mean depths shown in this figure, the average long- 

itudinal mean depths on the shelf were calculated and are plotted in 

figure 9.4. Shown also are the linear mean depths chosen to represent 
the bathymetry of the shelf for the aemi-analytical study in Chapter 5- 
It is apparent from the non-linear depth profile that depths greater than 

165 metres occur over a relatively short distance and so mark the change 
to the oceanic depths. By comparison, the shelf model tested by Heaps 

(1969) took the depth at the shelf edge in the west coast sea area, to 

be 100 fathoms (183 metres), while Cartwright (1968) took the 200 metre 

contour to define the edge of the continental shelf* 

In general the nature and width of the offshore shelf area varies 

greatly, it being influenced as much by tectonic movements as by sedi- 

mentation. In this respect, average characteristics of continental 

shelves are of little significance to the engineer butthe values provided 

by Shepard (1963) do however give a sense of proportion. These values 

are shown in figure 9.2 and although smaller than those of the Scottish 

west coast, the general shape of both bed profiles is similar. 
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Figure 9.2 
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Mean water depths (in metres) at grid points in 

Yodel 4 (DS = 12km, DT = 207 secs). This model schematises 

the continental helf off the west coast of Centr--l Scotland. 
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The shelf model extends far enough offshore and sufficiently 
away from the coast so that wind surges generated on the model 
boundaries can be neglected. On the other hand a very fine computational 
grid is necessary to resolve the bathymetric irregularities in the 
complex nearshore area. Ideally then, two models are required; a 
large shelf model and a smaller, more detailed local model. Surges 

generated on the ocean model can then be transferred as boundary 

conditions to the local model* In this way the shelf model, Model 4 

with a spacestep of 12 km could have been connected to the Clyde sea 
area model, Model 2 which has a spacestep of 3 km. The connection 
between the models could have occurred at the common boundaries 

namely the western and northern sea boundaries. Linking of the two 

models was not attempted because the Clyde sea area is susceptible 

not only to wind surges travelling across the shelf and round the 

coast of Northern Ireland, but also to wind surges travelling north- 

wards from the Irish Sea. Therefore to fully represent the surge 

conditions from their origins to the Firth of Clyde, another model 

extending through the Irish Sea and out to the shelf edge southwest 

of Ireland is required, in addition to the two existing models* 

Constructing a model of the Irish Sea out to the shelf edge, in itself 

poses difficulties because the proximity of coastlines there would 

require a relatively fine grid, yet the area is too large to model 

accurately bearing in mind limitations in computer capacity. For 

this reason the Irish Sea and the part of the Atlantic Ocean extending 
to the shelf edge off southwest Ireland was not schematised. Instead 

the shelf model, Model 4 representing the west coast of Central Scotland 

was developed to verify that a wind surge can be simulated that 

originates on the shelf. This is shown by comparing the computed surge 

elevations to the recorded surge measured at coastal locations (outwith 

the Firth of Clyde) which are susceptible mainly to surges produced by 

winds with a strong westerly component* 

9.3 SIMULATION OF THE MEAN SPRING TIDE 

As with previous models, tidal simulation was required primarily 

because of its inclusion when simulating a surge event but also because 

it provides a convenient means of calibrating the shelf model. Once 

again mean spring tide conditions were simulated and then compared to 
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those Provided by co-range, co-phase Chart 5058. The co-range and co- 
phase lines from the chart covering the area represented by the shelf 
model are shown in figure 9-5. In the northeast of this area, the co- 
range lines indicate an increase in range associated with the onshore 
progression of the tide into an area of decreasingcbpth. Across the 
coast of Northern Ireland the opposite occurs; a progressive reduction 
in range takes place as flow enters the North Channel. The influence 

of this channel is apparent from the co-range lines and extends out, 
at least to the area southeast from Malin and Oban. Also the tidal 

streams through the sea boundary between Port Ellen and Ballycastle Bay 

are larger than anywhere else in the shelf. As the tide wave moves 
onshore, it appears to turn anticlockwise in latitudes north of Oban 

and to move clockwise south of Oban. The anticlockwise advance of the 

co-range lines is possibly caused by refraction of the tide wave as a 

result of the shallower depths in the surrounding waters of Barra. 

Similarly the clockwise movement of the co-range lines possibly 

results from the influence of shallow depths along the Irish coast 

although the influence of the North Channel is a much stronger factor. 

Good agreement exists between the chart data and the Tide- 

Table data, for a comparison made at coastal locations. Only in the 

North Channel, where the change in phase is rapid, notably around Fort 

Ellen and Ballycastle Bay, do the two sources of data disagree. Hence 

the tidal ranges and phases at the open sea boundary representing the 

edge of the continental shelf in the model were taken from Chart 5058 

and were assumed to be sufficiently accurate to be used as an input 

to the model. In all the tests the tidal elevations were specified 

as cosine functions along this sea boundary and the Chezy friction 

co-efficient was taken as 35 mi/s throughout. The Coriolis force was 

also represented in each tidal simulation* 

As an initial attempt to simulate tidal motion across the shelf 
the schematisation of the model was taken as that shown in figure 9.6. 

With regards to the schematisation, the most important physical feature 

was that the open sea boundary in the North Channel was treated as a 

closed boundary. In the figure, the computed co-range lines lie in a 

direction almost parallel to the shelf and increase in magnitude on 

moving shorewards. These characteristics indicate that the shelf system 

responds similarly to a rectangular channel with one open boundary and 
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a progressive wave travelling across it. In general the computed 

ranges are too large and the co-range and co-phase lines display 

features that are far removed from the chart co-range and co-phase 
lines shown in figure 9.5. The comparison is poor because the model 
did not represent the North Channel as an open passage. 

The simplest means of transf ozming the schematisation so as to 
include an open sea boundary in the North Channel was to position it 
between Ballycastle bay and Machrahanish. Tidal elevations and phases 
were specified as cosine functions in the usual manner at grid points 
along this boundary. The boundary modifications together with the co- 
range and co-phase lines drawn from the computations using this schem- 
atisation are shown in figure 9.7. These results are a marked improve- 

ment in comparison with the co-tidal lines shown in figure 9.6 and show 
greater similarity with the co-tidal chart data shown in figure 9.5. 
However the computations of the ranges in the North Channel and in the 
Sound of Jura are too large in comparison with the chart although the 
relative magnitudes are similar in both cases. As for the computed 
phases, they did not reproduce the rapid change of phase in the Sound 

of Jura associated with the presence of the amplaidromic point. It was 
concluded therefore that it was unrealistic to represent the Bound of 
Jura in the schematisation since its complex topography and bathymetry 

could not be accurately represented using the present grid size. 

The exclusion of the Sound of Jura in the model was accomplished 
by positioning the open sea boundary in the North Channel between Port 

Ellen and Ballycastle Bay. Also the small northern passage to the Sound 

of Jura has been tzeated as a closed boundary. With these changes, the 

co-range and co-phase lines were drawn from the computations and are 

shown in figure 9.8. These results compare most favourably with those 

from the chart shown in figure 9.5. The only discrepancy between both 

sets of results is a minor one and is that the computed phases in the 

Firth of Lorne near Oban are about thirty minutes later than the chart 

phases. The difference may be a result of closing the northern 

passage of the Sound of Jura in the model. Another feature shown on 

the Admiralty chart is the direction of the five hour co-phase lines 

which run almost parallel to each other in the sea area west of Islay. 

The model is incapable of reproducing this phenomenum (if it exists 
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at all) possibly as a result of the limitations associated with the 

resolution of the grid. In figure 9.8, the symbols at certain grid 

points give the positions of coastal locations which are listed in 

table 9.1. This table gives a. comparison at the coastal locations 

between the computed ranges and phases and those obtained from the 

Admiralty Tide Tables (1979). The comparison is very good considering 

the simplicity of the schematisation and the fact that tidal conditions 

were only specified at the edge of the shelf and not at the northern 

and southern sea boundariese 

Previous simulations have all included the effect of the 
Coriolis force since the shelf area is sufficiently large for this 

effect to be significant. A measure of this effect can be obtained by 

comparing the results in figures 9.8 and 9.9 since the latter figure 

was produced without the Coriolis effect. Its effect has been to 
increase the ranges particularly in the sea area north of Oban. The 

phases in this area computed with the Coriolis force are also earlier 
than those without this force. For example the range at Tobermory 
increased from 3.62 metres to 3-98 metres while the phase changed 
from 0609 G. M. T. to 0545 G. M. T. on retaining the Coriolis terms. 
These changes are in accordance with the effect of the Coriolis force 

which is to shift water eastwards in the Northern Hemisphere. 

9.4 SIMULATION OF THE '? TH - 9TH M"CH 1979 STORM SURGE 

The resolution of the shelf model has been shown to be 

sufficiently accurate for simulating the tidal elevations and phases 

at the coastal locations. Hence the model can be applied with a fair 

degree of confidence to simulating a surge event. Since the tide- 

surge elevations have been recorded at Crinan, Port Ellen and Bally- 

castle Bay during the storm surge of the 7th - 9th March 1979 it 

appeared logical to consider again this surge event. These surge 

records have been fully described and reproduced in section 8.5 and so 

are not recounted in this chapter. However wind and pressure data 

obtained from the daily weather charts for two additional weather 

stations, namely Benlecula in the Outer Hebrides and Offshore Weather 

Station ILI which is approximately 650 km westwards from the edge of 

the shelf, were also included aB meteorological input to the model. 

This data augments the existing data from the eight weather stations 

considered in section 8-5. The wind speeds and directions at both 
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stations are shown in figure 9.10 for the duration of the storm surge. 
It is noticeable that at weather station ILI the wind speeds are much 
larger than the other relatively more sheltered coastal weather station. 
However the wind directions at both stations always have a strong 
westerly component. 

It is worth restating that the objective of developing the 

shelf model was to simulate a surge evertwithout the need to specify 
the external surge at any of the open sea boundaries. Simulating the 

mean spring tide using this model has shown that tidal conditions are 
required as an input at the open sea boundary from Port Ellen to Bally- 

castle Bay. Therefore when simulating a surge event, both the tide and 
surge elevations are theoretically required as an input at this boundary. 
Such a specification of the surge heights is contrary to the objectives 
of developing this model. However as a first step, the storm surge of 
the 7th - 9th March 1979 was simulated with the inclusion of the tide- 

surge elevations specified at the sea boundary in the North Channel. 
The computed surge levels obtained by removing the computed tide from 
the total elevations are shown in figure 9.11 at five coastal locations. 
At Crinan, the computed surge elevations on comparison with the recorded 
surge shown in figure 8.14 show the same general trend. The computed 
peak surge is 0-51m occurring at 0300 G*M. T* on the 9th March while the 

recorded peak surge height is 0.62m at 0100 G. M. T. on the same day. In 

both cases the positive surge is of long duration without any real 
distinct maximum and so the term 'peak' is somewhat misleading and is 

used only to convey the magnitude of the surge. At other coastal 
locations the general shape and magnitude of the computed surge issLmilar 

to that at Crinan. This feature is probably a result of the surge being 

mainly produced by a widespread change in atmospheric pressure. Thu's on 
the open coastline, as opposed to a confined estuary, the effect of 

pressure is more significant in comparison to the wind stress effect. 
In figure 9.11 the maximum computed wind stress effect on elevation is 

shown at the five ports and occurs between 0000 G. M. T. and 0400 G. M. T. 

on the 9th March. The total surge was computed from the combined wind 

and pressure effects, the latter being the more significant. 

To some extent, the computed surge elevations throughout the 

model are dependent on the input of surge elevations at the open sea 
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boundary in the North Channels As a mejans of assessing this dependence 
the surge simulation was repeated but with only the tidal elevations 
specified at the North Channel boundary. From this test, the computed 
surge elevations at Tiree, Crinan and Malin have been plotted in 
figure 9.11 for comparison with the previous test. At all three ports, 
the surge heights from both tests are very similar especially during 
the occurrence of the positive surges, with the elevations from the 

second test being slightly the smaller. It can therefore be concluded 
that the absence of surge elevations at the sea boundary between Bally- 

castle Bay and Port Ellen does not greatly affect the surge computations 
at other locations. The influence of this boundary on surges is small 
and a result of the surge generation increasing eastwards and the fact 
that this boundary lies on the eastern side of the model. This surge 
generation at Malin for example would not be strongly dependent on the 

surge height at Ballycastle Bay because the surge currents flowed in an 
easterly direction. 

At the sea boundary in the model representing the connection 
between the Atlantic Ocean and the North Channel, the ideal condition 
would be one in which both the unknown velocities and the elevations were 
calculated in a similar manner as for an internal grid point. In fact 

such conditions already exist at the northern and southern edges of the 

shelf model and were present when simulating the mean spring tide and 
the surge event. The incorporation of this type of boundary at these 
locations did not present any problems judging from the results of the 

simulation. However when this type of sea boundary was used for 

computing the tidal elevations and velocities at the North Channel sea 
boundary the results were not as required. The test (which has not 
been presented) showed that the simulation of purely tidal flow out of 
the model was in accordance with the stream Atlas (1974). The 

corresponding tidal elevations were also satisfactory. The limitations 

of this type of boundary appear on the ebb tide, where the flow direction 

from the North Channel is into the region Of the Atlantic Ocean represented 
by the model. At the grid points along the adjoining sea boundary the 

computed ebb tide streams are virtually zero while the tidal elevations 

did not reach their required maximum negative values. It is thought 

the failure of these sea boundary conditions is related to the fact that 

flows across this boundary are calculated from a one-sided finite 
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difference expression. A boundary condition based on central 
differences in the spatial domain might be preferable but is not 
possible by virtue of considering boundary points. The effect of 
one-sided difference terms can be examined on considering the positions 
of the characteristic and particle paths shown in figure 9.12. The 
diagrams represeýit the ebb and flow tide conditions at a grid point 
on the sea boundary in the North Channel. 
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Figure 9.12 

During the flow tide the bottom of the characteristic path points 2 and 
3 and the particle path point 5 lie within the confines of the model. 
Therefore the position of the path points can be obtained by inter- 

polating between the known grid point values. Hence by forming the 

appropriate backward finite difference expressions the elevation and 

velocities can be calculated at a given time level. With regards to 

the ebb tide at the same grid point the computations are less straight- 
forward. At a given time level, the particle and characteristic path& 
lie outside the spatial domain of the model. The necessary forward 

difference equations therefore cannot be formed and their replacement 

with the available backward difference expressions appears to give less 
than satisfactory results. 

The inconvenience of not having central differences at this 

type of sea boundary is also present when computing velocities in other 

sea boundaries such as along the edge of the shelf model where the tidal 

elevations are specified. However the effect of calculating both the 

elevations and velocities at the North Channel sea boundary using one- 

sided difference schemes appears to comp=d the errors when simulating 

inflow into the model. At the northern and southern sea boundaries of 
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the shelf model, the computation of all three unknown was probably 

only possible because the tidal flow across these boundaries was very 

weak and so the errors remained small. In other words, it was 

reasonable to replace forward differences with backward differences 

and vice-versa. 

It is interesting to note that using a sea boundary with no 

specifications in the North Channel, tidal outflow from the model wan 

well simulated, therefore this boundary would have been suitable for 

surge simulation in which the currents are always eastwards. However 

the surge would require to be simulated without the presence of the 

tides since the tidal inflow at this boundary cannot be satisfactorily 

reproduced. As a result of this restriction, this test was not conducted. 

Instead the more conventional sea boundary with specified elevations 

was used in the tide-surge computations. However further research 

should be conducted into improving the open sea boundary conditions 

especially at boundaries where all three unknown variables are calculated 

in the model. 
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Mean sprin- tide co-range and co-phase lines computed 0 

by the shelf model. 
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Mean siorin. - tide co-range and co-phase lines computed 

by the shelf model. 
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CONTINENTAL SHELF OF WEST COAST OF CENTRAL 

SCOTLAND AND NORTHERN IRELAPM. 
RECORDED AND COMPUTED SPRING TIDE RANGES AND PHASES 

Grid Tide Tables 1979 
ý 

Computed 
Location 

Range MHWI Range wildi Referena 
m Hra m Hra 

Barra North BA 3.6 o612 3.6o o624 
Malaig MA 4.2 0608 4,40 0.549 

Bay of Laig, Eigg IA 4.1 0618 4.15 0541 
Loch Moidart MO 4-3 o602 4.35 0549 

Gott Bay, Tiree GO 3.5 0548 3,52 0517 

Tobermory TO 3-7 0543 3-98 0545 

Ulva Sound, Mull UL 3-8 0533 3-58 0541 

Iona, Mull 10 3.4 0543 3-45 0531 

Bunessen, Mull BU 3.6 0533 3.42 0538 

Oban OB 11 3-3 0533 3-46 o6og 
Scalasaig, Colonsay SC 3.4 05431 3-45 0535 

Glengarrisdale Bay GL 3-1 05481 3-46 0555 

Rubna A'Mhail RU 3.2 0533ý 3-51 0527 

Ardnave Pt, Islay AR 3-0 05431 3.33 0535 

Orsay Is, Islay OR 2.1 05431 1.95 0514 

Port illen, Islay PE 0.6 0500111 0.60 0514 

Ballycastle Bay BA 1.0 0700 ý 100 0730 

Portrush PO 1 1.7 0620 1-37 0555 

Warren Pt WA 1.9 06201 1.61 
, 

0545 

Malin MAL 3-3 0556 3-32 0556 

Fanael Head FA 3-5 0536 3-51 0521 

Table 9.1 
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Figure 9.10 

Surface wind szýeeds and directions recorded at two 

weather stations during the 7th 9th March 1979. 
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Figure 9.11 

Surge elevations for the 7th - 9th March 1979 computed 

at coastal locations in the shelf model. 
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CHAPTER 10 

RESULTS AND COCLUSIONS 

The present research has been concerned with the possibility 
of numerically simulating storm surges in x-y-t space using the method 
of characteristics. In pursuing this objective it was essential to 

establish the degree of confidence to be placed in the results of such 
simulations. It therefore became necessary to place this problem in 
the wider context of establishing the general reliability of results by 
using the method of characteristics under a wider variety of circumstances. 

The method of characteristics closely follows the wave fronts 

along which information propagates and so is potentially capable of 

providing a highly accurate solution. Indeed the theoretical derivation 

of the characteristic conditions at an internal point has been shown to 

provide, not in an arbitrary manner, but in a unique way the means of 
integrating the system of hyperbolic long wave equations. Furthermore 

it has been shown here and also by Matsoukis (1980) that by introducing 

" linear interpolation scheme of the form Q= Ax + By +C there results 

" fLnite difference scheme which is consistent with the original first- 

order partial differential equations. 

Once the theoretical basis for a numerical scheme was shown to 

be sound, thereafter any difficulties encountered were necessarily the 

result of the manner in which the model was applied. It is for this 

reason that a verification of the model was required. In practice, 

the CFL criterion is evidently extremely useful in providing both a 

necessary and sufficient stability condition. In addition, the CFL 

criterion, at its limiting condition (the equality) provides a very 

important practical relationship between numerical and phyeical celerity. 

In other words it determines the correct size of the domain of dependence 

of the difference scheme and ensures physical consistency in the model. 

This requirement has been investigated for free wave oscillations in 

geometrically simple channels. The tests applied here follow the 

general philosophy of Liggett andkolhiser (1967) who stressed the 

importance of seiches in verifying the accuracy of the integration 

procedure. Qf particular importance was the unimodel seiche in a 

cha-nnel of trapezoidal profile which showed attenuation of the free 

wave. Since this attenuation did not occur in constant depth cases, 
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the attenuation was t, -. ken t 'o indicate that the domain of de-Cendence of 
the difference scheme did not accurately represent the differential one. 
It was also shown that the method of subdivisions could significantly 
reduce the amount of free wave attenuation in a trapezoidal channel. 
From a theoretical viewpoint the method's main attractive feature is 
that it attempts to maintain physical consistency more rigorously than 
did a system based on no subdivisions of the spacestep. It is concluded 
from the tests with free waves that the key to successful simulation 
lies in observing physical consistency and hence the CFL criterion at 
all times and at all points along the channel. It is from this consid- 
eration that the methods of subdivisions offers an interest -ing line of 
development for future research. Finally it is concluded that the 

notion of Physical consistency must also be a valid requirement in other 

explicit numerical techniques. 

It was also from free wave considerations that the opportunity 

arose of testing the accuracy of the integration scheme under con- 

diltions of truly two-dimensional flow. The case referred to is the two- 

dimensional unimodel seiche in a channel of constant depth for which an 

analytical expression is available for comparison with the model's 

results. It was in reproducing this analytical solution that it was 

shown that the boundary equations must be formulated from characteristics 

with a 450 orientation rather than 900 directions. This result verifies 

the findings of Matsoukis (1980). It is also evident from any of the 

analytical tests that the correct orientation of the characteristics is 

extremely important at the boundary points in achieving an accurate 

simulation. 

The simulation of forced waves, for which analytical solutions 

were available, showed that highly accurate results were obtained 

throughout, even in a channel of linearly varying mean depth (trape- 

zoidal profile). It appears that physical consistency at all grid 

points is not so essential for forced waves as it is for free wave 

simulation. A possible explanation in the case of forced waves is 

that physical inconsistency is not readily apparent since temporal 

attenuation cannot occur in the presence of a forced boundary condition. 

By virtue of being harmonic, this boundary condition ensures that the 

disturbances at all other points also have a harmonic variation and 

in no teat was attenuation ever apparent. 
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A perfect example typifying the relative behaviour of sim- 
ulated free and forced waves occurred in the simulation of a steady 
state wind surge in a channel of linearly varying mean depth. The free 

wave oscillations set up by the initial application of the wind field 

subsequently attenuated in magnitude whilst the forced component of the 

surge retained a steady value throughout. In terms of accuracy the 

simulation of forced waves does not present any major problems to the 

method of characteristics. This is supported by the simulation of 
transient surges on a shelf of linearly varying mean depth where, in 

each case, the maximum surge elevation at the shore was shown to agree 
favourably with the results obtained from a semi-analytical method 
presented by Reid (1956). The accuracy of these tests also confirms 
that the wind stress terms may be incorporated into the character- 
istic equations in the form of external forces based upon the usual 

stress coefficients. More generally, the analytical studies of tides 

and surges in simplified situations have shown most satisfactorily that 

tile method of characteristics is capable of performing the necessary 
integration of the governing long wave equations. 

With the integration procedure verified, attention was then 

focussed on the tides and surges in the Clyde sea area. Records of 

large storm surges in the Firth of Clyde had suggested that an exam- 

ination of the causal factors be undertaken. The establishment of 

the tidal motion although interesting in itself and possessing some 

intriguing features was regarded primarily as a means of calibrating 

the model and evaluating its results before simulating particular storm 

surges. 

Tidal ranges and phases taken from the Admiralty Tide Tables 

(1979) augmented by similar data from Admiralty Chart 5058 for off- 

shore areas were used as sources of data for tidal simulation in the 

Clyde sea area. These -. wo data sources disagree substantially in their 

values of the mean high water interval in the Sound of Jura. A tidal 

survey, undertaken to resolve this problem, installed tide recorders at 

Ballycastle Bay, Port Ellen, Crinan and Campbeltown. The tidal records 

obtained from these ports were shown to be in good agreement with the 

Tide Table values and so cast considerable doubt on the accuracy of the 

high water times in the Sound of Jura given by the chart. The tidal suxTeY 

also provided measurements of the external surge elevations at two sea 
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boundaries for the period 7th - 9th ""arch 1979. These results were 
later used as input data for a simulation of the surge during that 

period. 

The schematisation of-the Clyde sea area required three open 

sea boundaries and the optimum spring tide simulation (test 8) was 

conducted using the tidal records obtained from the survey. These 

records r3presented sea boundary elevations in the Sound of Jura and 
the western approach to the North Channel. The elevations were shown 
to consist of several harmonic constituents which could not be rep- 

resented by a single cosine curve. A grid size of 5km and a Chezy 

friction factor 90m-fls were also used in test 8. The results, on com- 

parison with the Tide Table data at coastal locations, were found to 

have a standard deviation of 0.27 metres in range. This value is small 

in relation to the magnitude of the ranges in the Clyde sea area which 

have a variation in range from 0.5 metres to 3.1 metres. Similarly the 

standard deviation of the mean high water intervals was shown to be 

37 minutes which is relatively small compared to the six hour variation 

which occurs in the area. 

Evidence has been presented which confirms that an amrhi- 

dromic point exists in the southern part of the Sound of Jura during 

total spring tide. This is thouEht to originate rather from a combin- 

ation of longitudinal and transverse wave motions and their reflections, 

than from the more usual causal factor namely the Coriolis force. The 

model was able to reproduce the very small ranges associated with the 

amphidror. ic point, although the anticlockwise phase rotation was not 

entirely reproduced. This may be one result of having insuLfi ient 

data along the cpen sea boundaries. The simulations certainly 

sug-ested a heavy dependence on such data. 

In general, computed depth averaged velocities were of smaller 

magnitude than the recorded velocities given in the Admiralty Stream 

Atlas for certain offshore locotions. Only in the reL-. tively shallow 

waters of the Firth of Clyde where the stream flows do not exceed 

0 _45 mls was there an exception to this rule. In this area the 

maximum velocity (0.31 m/s) was found to be representative of the 

maximum depth averaged velocity (C-32 m/s) and throughout the tidal 

cycle both sets of values were of comparable magnitude. 
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A model of the Firth of Clyde based on a 3km grid spacing 
was shown to reproduce tidal elevations and velocities accurately. 
however in this model, the Chezy friction factor of 35 M"Y/s contrasts 
with the value of 90 m'y/s used in the Clyde sea area model. The results 
from the two models confirm the findings of Davies (1979) concerning the 
frictionfactor and its dependence on the ratio DT/DTmax. If this ratio 
is close to unity throughout the model there will be little tidal 
dissipation which if required is controlled by an appropriate value of 
the friction factor. This means that the friction factor is not solely 

physical coefficient and that unfortunately models of this type cannot 
be used as a means of evaluating the true bottom stress coefficient. A 

more rigorous assessment of numerical and physical energy loss can only 
be accomplished by further research into the behaviour of bottom frictional 

stress and the complete process of tidal dissipation. 

Non-linear effects associated with shallow water conditions 

only affected to a small extent mean water levels and the duration of 
the ebb and flow tide. The scale of these effects is more the result 

of shallow depths not being encountered in the Clyde rather than a limit- 

ation of the model. A more complete investigation of shallow water 
effects using the method of characteristics therefore remains as an 

avenue for future research. 

The meteorological requirements associated with a major storm 

surge on the west coast of the British Isles have been given by Lennon 

and stated in Chapter 8. These requirements identify the extent and 
depth of the depression and the region under greatest influence along 
its track. The meteorological reports from the two storm surges 

considered in this research substantiated these requirements. From a 
hydrodynamic viewpoint the records for both surges show that surge 

characteristics occur almost simultaneously at each port in the Clyde 

sea area. This suggests that the motion is similar to that of a standing 

wave.. Only the magnitude of the surge varies significantly from port 
to port and is affected by the local bathymetry and coastline confine- 

ment. Surge propagation in the Clyde sea area occurs in this way since 

the area is relatively small in relation to the size of the depression. 

A related feature of major storm surges is their long duration, longer 

than the tidal period and so tide-surge interaction does not unduly 

complicate identification of the gross surge characteristics. 
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The meteorological data required for surge simulation was 
in the form of surface measurements taken at eight weather stEtions in 

and around the Clyde sea area. A second-order, least-squares, poly- 
nomial interpolation scheme transformed this data into surfacesof 
pressure, wind speed, and direction for use at each grid point. Such 

a scheme is thought to be at least as accurate as the original weather 

station data and so acceptable for the purpose of simulation. 

'he components of a storm surge in the Firth of Clyde or any 

other sea area are the atmospheric pressure contribution, the external 

wind surge and the wind surge over the study area. An assessment of CD 
the relative proportions of the surge components for the Firth of Clyde 

is shown in table 10.1 and is based on the records of the maximum 

elevations from two storm surges presented in Chapter 8. 

External Wind Wind Surge 
Atmos Surge at Southern Growth in the Greenock 

jPressure 

Boundary Firth of Clyde Surge 
Dec Surge 
1972 Elevation 0 34m 0.80m o. 41m 1 55m 

% Greenocý 
L2 

52 26 
i0o 

Surge 

Mar Surge 
1979 Elevation. 0 22m o. 42m 0.22m 0 86m 

% Greenock ý5 50 2.5 i0o 
ISurge I 

Table 10.1 

The results in this table for eacý. 5torm surge are in very good agree- 

ment with one another regarding the relative proportions of their com- 

ponents. It is evident that the external wind surge is the largest com- 

ponent constituting approxim, ý, telY 50'/6 of the total surge. The remaining 

two components have aLproximately the same proportion namely 2,5x. A similar 

analysis of the March 1979 surge in the Clyde sea area tal=g the external 

wind surge to occur at the western sea boundary reveals the following 

proportions; the pressure component was 25ýa (0.22m), the external wind 

surge was found to be 36,6 (0.31m) and the surge growth in the Clyde sea 

area is therefore 39ýo (C-33m). All these figures suggest that 25,56 0-f 

the surge growth occurs in the Firth of Clyde and 3916 of the surge growth 
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occurs in the Clyde sea area. Further analysis of storm surge records 
should be undertaken to assess more accurately the proportions of surge 
components in the Firth of Clyde and in the Clyde sea area. 

It was also shown that the sum of each component's surge 
effect, simulated individually, was greater than their combined surge 
effect when simulated together and also greater than the recorded surge. 
This feature is an interaction effect shown to be related to bottom friction. 
The same interaction process causes the peak surge simulated in the 

presence of tides to be smaller than the peak surge simulated in the 

absence of tides. Any conclusions regarding the magnitude of a positive 
surge in connection with wind direction were found to agree with 
intuitive deductions based on the orientation of the Firth of Clyde, 

The Clyde sea area model has shown that the external surge is 

a necessary input and hence that its measurement is required at the open 

sea boundaries. It is more convenient to simulate the storm surge from 

its origins by extending the model at least as far as the edge of the 

continental shelf. A shelf model was developed using a 12km grid size 

and which complemented the Clyde sea area model. Establishing the 

accuracy of the surge simulation in the period 7th - 9th March 1979 would 
have been more straightforward had not an open sea boundary been required 
to represent the entrance to the North Channel. With regard to this 

boundary, it was shown as far as possible, that the model satisfactorily 

reproduced this surge at the few ports where surge records were available 
for comparison. The limitations of data were not so serious in the tidal 

simulation which was shown to be accurate at quite a number of coastal 
locations. 

Although it is acknowledged that the results from tide and 

surge simulationshave not provided radically new physical information 

about the Clyde sea area, it is emphasised that the main objective was 
verification of the model's accuracy which may only be accomplished using 
accepted existing information. This verification process was not solely 

restricted to the simulation of real tides and surges since it also 

covered the simulation of transient semi-analytical surges and revealed 

some important conclusions regarding free waves. In the latter case the 

method of characteristics was able to show, through the idea of physical 

consistency, the limitations in its application and offered a means of 
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improving the situation. The verification has finally established 
beyond doubt that the method of characteristics is an accurate numerical 
technique for nearly all those forms of long wave motion which were 
investigated. 
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APPZNDIX A 

RESULTS FRCM ANALYTICAL TESTS OF CHýTER 
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