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The non-linear hyperbolic partial-differential equations governing
long-wave propagation in two spatial dimensions are postulated. Through
the method of characteristics, specific conditions are developed for
integrating the long-wave equations., By introducing finite difference
approximations to the characteristic conditions, azn explicit numerical
scheme is developed @s an alternative to more standard finite difference
techniques. The modifications required at the open and closed boundary
points are of particular importance znd lead to a 450 characteristic

numerical scheme.

A practical assessment of stability and consistency criteria
associated with the numerical scheme is shown to be important for the
successful sirulation of free and forced tidal oscillations. Tests
with motion prescribed by analyticazl sclutions verify the accuracy of
the integration procedure and lead to the correct form of interpolation
coefficients. A method of subdivisions is developed for improving the
simulation of free wave oscillation in a closed basin of trapezoidal
profiles Analyticel solutions for steady and unsteady wind surges are

used to examine the effect of introducing wind stress terms into the
numerical scheme.

A practical evaluation of the scheme is accomplished by simulating
tidal propagation in the Clyde sea arez. Tidal motion in this region is
highlighted by the existence cof an amphidromic pointe Data for the

model, provided by a tidal survey, confirm certain values of range and
phase given in the Tide Tables (1979).

Two separate surge events are simulated in the Clyde sea area. The

relative size of each surge component c¢nd the interaction between tide
aznd surge are established. The forms of the surges and the meteoro-
logical conditions required for their propagation into the Clyde sea

area are also assessed. Finally, a west coast shelf model is developed

to overcome the problem of specifying the external surge as a boundary

condition.
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NOTATICN

channel length.
wave amplitude,
channel breadth.
long wave celerity.
4

maximum wave celerity calculated from (g.H_ )Z.

average celerity of a free wave travelling across the shelf.
Chezy resistance coefficient,

total or material derivative.

standard (mean) deviaticn.

space and time increments used in the numerical model.
dynamic coefficient of eddy viscosity.

dimensionless wind stress (positive towards shore).

X,y components of the external forces presented in
dimensionless form (see eguation (2.38)).

fetch length. "

gravitational acceleration.

equilibrium water depth.

equilibrium water depth at the head and mouth of a channel,
also the equilibrium water depth at the shore and edge

of the shelf model.
equilidbrium water depth at the mouth of a channel.

gradient of total energy line,
coordinate system for a mesh of grid points in 'x,y' space.
Bessel function of the first kind.

wave number , 2r/L
wind stress coefficient used in conjunction with air density.

wind stress coefficient used in conjunction with water
density,

wavelength.
average bed slope of Scottish West coast continental shelf.,

m number of subdivisions up to a maximum number n, also the
number of nodes zlong the x,y axes defining a particular

mode of seiche.
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MyN number of grid points along the x,y axes of a channel or

Sea arecdce

P pressure.
- atmospheric pressure.
PE semi-diurnal tidal period.

interpolated variable.
r correction factor (ratio of the exact steady state
solution to Reid's approximate steady state sclution).
S displacement of free surface from equilibrium level as

a result of an applied wind stress (wind surge).

S¢ computed value of S,

- 08 maximun computed value of So

£ independent time variable,

5 t/T, dimensionless time variable.

t; relative time of passage of end of fetch at shore.

t; relative time of occurrence of maximum surge level at
shore.

t; relative time of meximum shoreward wind speed at shore.
waveperiod.

Tf : travel time for a free, long wave to cross the shelf,

Uy Ve W X,Yy 2 components of fluid velocity.

U,V x,y components of mean, horizontal fluid velocity.

Y. shoreward velocity of the storm.

W surface wind speed at sbout ten metres above sea lzvel.

W maximum surface wind speed.

XY independent variables in horizontal planee.

X0, X,y coordinates of grid point in guestion.

X1y XD yee x coordinates of characteristic rointse.

Fra Toves y coordinates of characteristic rointse.

Y Neumann function (Bessel function of the second kind).

i Weber function (Bessel function of the second kind).

z independent veriable in the vertical plane.

total depth (H+n),
: : 1O
total depth at a grid point using linearised 45

™
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Any quantity at the lef

dynamic response factor (dimensionless water level
variable),

Reid's value of 2 at shore at time t .

Reid's maximum value of Z,.

computed maximum value of Z at shore.

Reid's value of Z  adjusted by correction factor r.

wind direction measured clockwise from true north.
Courant number c.At/As

X,y ccmponents of an infinitesimal space increment.
infinitesimal time increment.

discrete values of space and time increment.

free surface displacement from equilibrium level.
harmonic free surface displacement from equilibrium level.
harmonic displacement at mouth of channel.

angle at the vertex of the conoid of a characteristic
projected onto a constant time plane measured anti-
clockwise from the positive x-axis.

root of characteristic equation.

Horizontal displacement of the free surface.
3.1415926.

fluid density.

angular freguency of harmcnic motion.

shear stress (tangential force per unit area).

Xoy components .f bottom frictional stress.

Xyy components of surface wind stress.

ratio of wavelength to channel length, L/a.

angular velocity of the earth.

earth's rotation reduced by lztitude.

partial derivative,

modulus of a variable,

also thedeterminant of a matrixe.

hand side of a characteristic eguation

represents the value at t=t+at.



INTRODUCTION

With the advance of technological developments over the years,
the impact of civil constructions on the immediate environment has
become greater. Conseguently, if these constructions have adverse
effects, then usually it is impractical to attempt suitable alterations.
The credibility of ncw proposals is therefore strongly dependent on being
able to determine their effects with greater advance precision than was
previously required. An important part of the design process may be the
assessment of environmental impact using numerical models as a basis.

In this context the numerical model can only provide important inform-
ation if a satisfactory prior verification of the model's accuracy has

been established.

Within the framework of hydraulic engineering, the construction
of the Thames Barrier as a storm surge defence exemplifies the inter-
action of large projects. The development of numerical models as a
research tool, such as that used by Rossiter and Lennon (1965) was
important in determining a favourable location for the Barrier. To a
large extent the underlying reasons for comstructing the Thames Barrier
arise from the increased attention given to the measurement and cal-
culation of tidal movements in and around the British Isles. In fact
most hydraulic engineering problems in maritime waters will recuire an
assessment of the basic tidal motion in the surrounding waters. By
considering the tidal motion as governed by the basic hydrodynamic
equations, the foundation is laid for a more detailed investigation of
any cther meritime problems. In addition to determining the basic
dynamics of tidal motion within the system concerned, an inclusion of
the subsidiary natural peturbations and configuration effects which
interact with the basic tide may have to be considered if they are not
triviale It may also be necessary to consider the interactive effect
of the proposed construction on the basic tide if this is thought to
be significant. These steps may be regarded as sufficient grcunds for
develoring the numerical model. In seeking a numerical solution to
the 'long wave' equations for tidal motion through repeated tests which
are related to specific numerical aspects of the model, such as cali-
bration the credibility of the model can be established. Once obtained,

the numerical model can be applied to other problems in hydraulic



engineering., Therefore the basic hypothesis is that if the model
reproduces the features of the prototype, changes in the model should
predict changes to be made in the prototype providing these changes
are not too drastic. This follows the philosophy of Vernon Harcourt

(1889) on physical estuary modelling.

The present analysis is concerned mainly with the funda-
mental determination of one of the problems in hydraulic researche
This is the means by which a storm surge is propagated and its inter-
action with the tidal regime. The study area namely the Firth of Clyde
has in the past been subject to severe storm surges and yet no apparent
detailed investigation of the susceptibility of the area to major storm
surges appears to have been conducted. The simulation of such surge
events in this area has most certainly not been attempted with the
resolution undertaken in this research. PFPrevious research concerning
the British Isles has instead been focussed on the North Sea following

the disasterous flood of 1953 which has been detailed by Rossiter (1954).

The most serious hazard produced by meteorological conditions
of storm intensity in coastal low lands is the flooding of coastal
regions by sea water through the action of a storm surge. Any increased
understanding of this phenomena should contribute to the implementation
of necessary coastal protection to safeguard life and property. The
ultimate objective of any surge research should be to make predictions
with the accuracy required for advanced warning time needed for
effective disaster protection. Some protective actions cost very little
relative to their protection value. For example it may be possible to
protect some valuable but exposed property by providing emergency water
tight bulkheads that can be installed quickly when required. In a case
where the safeguarding of human life is concerned, any evacuation scheme

or breakwater construction would be fully justified.

The gereral system of long wave eqguations that represent storm
surges has been treated numerically with success for the past twenty-
five years. In various modes these systems may model one, two or
three spatial dimensions but are usually stated in terms of vertically
integrated differential eguations and extend in complexity to include
the effect of the earth's rotation and field acceleraticns. These

ecuations also describe the majority of hydraulic provlems when presented



in simple or more complex form and comprise to form the tasis for

a numerical model. The obvious attraction of applying such a model
to a specific hydraulic problem is that it is zble to provide off-
shore information. This feature is particularly important if the
situation in the offshore area is undetermined. Alternatively, such
deficiencies may be overcome by employing a physical model and the
use of a numerical model in the present research is not intended to
undermine the physical model. Instead the numerical model should be
seen not merely as a replacement of the physical model but rather as
a complementary means of modelling znd as a development into some
areas inaccessible to physical modelling., Nevertheless the physical
model is still a valuable engineering tool which in the hands of a
skilled operator will continue to make substantial contributions to
the solution of complex hydraulic problems. However for many appli-
cations of modelling, especially those involving wind stresses,
salinity variations, effects of the Coriolis acceleration and such
influences, the physical model is not a feasible approach and the
mathematical model is therefore used.

Attempts have been made with promising results to develop a
long wave numerical model based on the 'x-t' m~thod of characteristics
in the Department of Civil Engineering, University of Strathclyde.
This method, in comparison to other numerical schemes has the advant-
age that computations can be parformed without the use of a staggered
grid such that elevation and velcocities are calculated at the same
grid points. Townson (1974) has extended its application to 'x-y=-t'
space for uniformly variable depth configuraticns and at a later date,
Matsoukis (1980) succeeded in msking the scheme operational for an
irregular sea bottom. In establishing that the numerical scheme
correctly integrated the partial differential ecuations, Matsoukis
also showed that a linear interpdlation scheme was most compatible
with the characteristic equations. It was at a later stage that
Matsoukis published his results aznd so to some extent his research and

the present analysis have similar objectives. The area of overlap is

D

the verification of the accuracy of the numerical scheme within which
the present research is more concerned with the development of the
boundary conditions. In applying the numerical scheme to simulate

tidal motion in 'x-t' dimensionsusing simple channels in 'x-y=-t' space,
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some important conclusions were drawn concerning the correct form of
boundary interpolation. These simulztions have proved useful as a
means of refining the numerical scheme. For this reason, the
analytical investigaticns are presented as an integral part of the

present research,

Ensuring that as far as possible, any numerical discrep-
ancies have been eliminated and that the limitations of the numerical
scheme have been identified is vitally importznt in establishing the
accuracy of the model. Otherwise, as a result, the wrong conclusions
would be made regarding the nature of the tide and surge processes.
With this in mind, the investigation of the numerical aspects of the
method of characteristics has somewhat dcminated this research in
relation to an examinztion of the physical feztures of tides and surges
in the Firth of Clyde. Such considerations are in keeping with Abbot's
opinion (1976) regarding the need for further investigation into the
modelling process. It is this theme in addition to the study of the
natural tide and surge processes that have determined the direction

and formed the content of the present research,



CHAPTER 1
THE BASIC, PARTIAL - DIFFERENTIAL EQUATIONS
FOR LONG - PERIOD GRAVITY WAVES

1.1 INTRODUCTION

This chapter reviews the classical derivation of the partial
differential equations for the non-steady motion of long waves as
detailed by Lamb (1932), Stoker (1957), Dronkers (1964) and manyothers.
Such wave motion forms the basis of tidal movements and are produced
by gravitatiqnal forces. In comparison with these forces, the effects
associated with the viscaus nature of the fluid are of secondary
importance except in the immediate vicinity of solid boundaries.
Consequently, the equations describing tidal propagation are derived
from the Euler equations of ideal fluid flow rather than from the more
general Navier-Stokes equations. However the effects of viscosity are
introduced into the equations of motion, and special attention is given
to the engineering practice of using empirical values. The method of
deriving the 'long wave' equations is based upon the vertical inte-
gration of the equation of motion and the continuity equation for an

incompressible fluid in Eulerian co-ordinates.

1.2 BASIC EQUATIONS
The basies of this research is the fluid-flow equations rep=-

resenting velocities and pressures relative to a fixed co-ordinate
system. These equations are therefore in the Eulerian form. The
Cartesian axes x and y are taken counterclockwise in a horizontal plane
of the undisturbed water surface, with the zeaxis vertically upward.
The components of velocity are u,v and w which are parallel to the co-
ordinate axis at the point (x,y,z). For nonviscous flow the dynamic

equations may be written

du du du B - Bg 2.3
3t 5 dx 5 el Boj ol dz o P2 dx ( )
dv v v W -4 BB

B+ + v s + W e - Y =% 5@ (1.2)
BY®) W v AW L wdw = - ¥ 2k 1,
¥t \aks 3X bnj 3Z - é dZ (3,52

where o is the density of the fluid, P is the pressure on an element



and X,Y,Z are the components of the external fopces rer unit mass.
These forces comprise of the forces generated by the rotation of the
earth, the tide generating forces and the gravity force in the z-

direction.

The left kand side of each of these equations of motion
represents the total derivative (defined by the operator it ) cf the
component velocity experienced by a particular fluid particle « The
total rate of increase of the components of particle acceleration can

be attributed to two separate effects

a) A rate of change which is independent of the state of
motion of the particle and is defined by the operator f%

b) A rate of change which accounts for field gradients in the

property of the particle at a given time. The effect is

termed 'convective' and defined by the operator u.-g-x-rv R

>
Y 22
To complete the description of ideal fluid flow, the continuity
equation for an incompressible fluid takes the following form
oL, v + W = O (1.4)
d3x 35 32
1.3 EQUATIONS FOR LONG=-PERIOD WAVE MOTION

The cartesian co-ordinate system is taken in the horizontal
plane of the undisturbed water surface. The distance between this
reference plane and the bottom is specified by H and the distance
between this reference plane and the water surface at a specific time is

-given by n

Long wave motion in general implies a2 wave motion in a depth
which is small compared with the wavelength (HfL.<ljzo) and to some
extent the wave amplitude is small compared to the length (n L <1fica).
Forced tidal response, surge propagation and seiche action may all be
considered as long wave phenomena, For such waves, the theoretical
derivation neglects the vertical acceleration of the fluid particles
since these accelerations are very small with respect to the acceleration
of the gravity field. Also, the velocities of the water particles in
the z-direction may be neglected in dealing with long waves. Thus, all

terms containing w in equatioms(l.1), (1.2) and (1.3) are omitted.

Since the effects of the vertical acceleration and velocity



may be neglected, equation (1l.3) may be written as

e
R a2 Z (150

In the vertical direction the external forces Z are the gravity force,
the component of the forces induced by the earth's rotation and the tide
generating forces. The latter two are very small compared to gravity
and s0 can be neglected in the analysis giving Z =-9. It is assumed
that the density is uniform and consequently the pressure is assumed to

be hydrostatic and a linear function of depth, as follows

P(Z) 5 /oa(V’l'—Z) 7.4 Pw

where Po is the atmospheric pressure. In tidal computations, atmos=-

(1.6)

pheric pressure is usually assumed to remain constant over the problem
area however pressure variations are important in the generation of
storm surges. The derivatives of pressure in the horizontal directions

now become a function of water level and atmospheric pressure,

> x dx X
B_{E = 0.9-30 + B_P_._ (1.8)

s ' big
It has been shown by Hansen (1956) that the vertically averaged
velocity components in a horizontal plane of the fluid can be defined

according by .
(H+n)
~H
e i e N (1.10)
(H+VL)
~H

As mentioned already in section 1.2, the horizomtal components
of the external forces per unit mass namely X and Y include the effects
of the earth's rotation and the tide generating forces. Numerical
computations and estimates based upon theoretical considerations have
shown that the tide generating forces can generally be omitted from
actual computations. Consequently the only external force reguiring
consideration is that of the earth's rotation. The Coriolis acceler-

ation components, and the associated inertia forces are induced by the



rotation of the earth with angular velocity w and therefore depend on
the latitude y of the body of fluid., With the co-ordinate system as
previously defined, the x-axis can be considered eastwards and the
y-axis nortbwards. The imertia forces in the positive x and Y directions
are 0.0V and -p.Nl.U respectively where U= 2wsiny « When these forces are
integrated with respect to z and divided by the total depth (H+n ), the

final form can be equated to the external forces as follows

26w N ey sin (1.11)

y = _Z‘u. W-Sl'\.ky (1012)

These are the forces on a unit mass of the fluide

The dynamic equations (1.1) and (1.,2) are integrated with respect
to Z from the bed to the surface of the fluid, and divided by the total
depth (H+n ). By deleting the vertical velocity terms and introducing
the equations (1.7) to (1.12), the integrated dynamic equations for a
unit mass of fluid become

'SR 1" SR VIR ' SRS | I I Y N e (1.13)
’t dx Y h v ZSPx s
VTR | PSRV SN > § (1.14)
3 TEHEH 3§'§+§£§+Q‘“’°

Up to this point in the derivation, an inviscid fluid has been
considered., However expressions for the viscous shear-stress representing
effects of wind at the surface and friction at the bottem can be cbtained
by examining the Navier - Stokes equations for turbulent flow. Such
expressions can then be introduced into equations (1.13) and (1.14).

The inclusion of horizontal friction forces strictly implies
consideration of viscous turbulent flow and the associated concepts of
'momentum exchange' and 'eddy viscosity's The friction forces in the
negative x and y directions can be expressed in terms of the local fluid
velocity components w and v. These forces can be integrated throughout
the depth and divided by the total depth (H+rn ) to produce the following

terms n
 § Y
e, L_ui»fé_.”.P 3_)'@;] (1.15)
ox 33 Ho e L e



"
Y e, [ 3
e'[ 9, R g;l'] * Hir,_ “ Xz J_ (1.16)

The velocities U and V in these equations are depth averaged and the
constants €, and €, are the 'dynamic coefficients of eddy viscosity'
'in the horizontal and vertical planes respectively. These coefficients
contain the effect of both viscosity and turbulent processes. As a
result of the dimensions of the fluid flow, the eddy coefficient in the
horizontal plane is usually greater than in the vertical plane. If it
is assumed that the shear stresses associated with horizontal momentum
transfer are small, then the friction forces remaining are those in the
horizontal direction which are caused by vertical velocity gradients.
In the integrated form, the horizontal shear stresses T, and T, in the

negative x andy directions are prescribed as
n

T el[i—“;_} (1.17)
=¥
L 8

T, = ez[ égiz] (1.18)

~H
These expressions represent the difference in shear stress between
surface and bed which are undoubtedly affected by the presence of wind

stresses on the water surface.

Experimental evidence indicates that shear stress at the sea
bed may be expressed in terms of the well known Chezy friction
coefficient C as is used in open channel flow. However it is emphasised
that this approach must be regarded as a very limited means of fully
describing the process of tidal dissipation even though it is used in

the present analysise.
The equilibrium between gravitational and resistance forces

can be expressed as

B mu g ey Yo (1.19)
where1:b is the resultant shear stress proportional to the resultant
depth average velocity (U?* V1j‘ and ¢+ is the slope of the water surface.
The resultant velocity may be deduced from De Chezy's empirical

relationship namely
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o u’+ V1 = - Cx i.@i*q\ (1.20)

since (H+n ) corresponds to the hydraulic mean depth in a very wide
channel. From the previous two equations, it follows that the result-

ant frictional stress at the sea bed is given by

Teb = A9 [u+v'] (1.21)
Cl

Also, the components of the resultant frictional stress which oppose

the fluid flow are expressed as follows

T~ = peas g ey (1.22)
Cl

’rsl’ = /0.3 = V / u.l’Vl (1.23)
Cl

The frictional resistance factor C, which is used to establish these
relationships between the squared velocity and the bottom stress, can

be found only by observation. This coefficient depends on the roughness
of the bottom, the bottom material, and the depth.

The horizontal shear force at the free surface of the fluid
as a result of wind stress may be determined from an empirical approach
similar to that for investigating bottom stress. The wind stress is a
forcing function in the system of equations and is related to the square
of the fluid flow as is bottom stress. However for wind stress the

medium of flow is air not water. The components of wind stress are

expressed as

e

k./o&-w.wcosp (1.24%)

Ty = k.o .W. Wsinp (1.25)

where R is the wind stress coefficient, p, is the density of air and W
is the wind speed abtove the water surface.

Introducing the expressions for bottom stress and wind stress
into the two-dimensional dynamic equations ((1.13) and (l.1%)) produces
the following
RRENR 04" ¢ s T RO ¢ T
A(H=1)

o = (1.27)
2 + Al (1¥'4;b) v
A(H+n)
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These equations include the forcing functions of wind stress and

barometric pressure in the x and Y directions respectively.

In a similar manner, the continuity equation can be integrated

over the vertical and so equation (1l.4) may be expressed as

n
( (l‘ﬁ-pﬁ_!)al.z IR (1.28)
e A% btj

As a result of the condition w=0, a particule of fluid must remain on
the same horizontal plane throughout its motion. Accordingly the

boundary condition for the free surface is obtained from the 'chain

rule'
an
ok 6 TR T “‘%% e (1.29)
Y4
Similarly at the sea bed
w(-H) + w-3 + v.3H = o© (1.30)
X 33
Now equation (1.28) can be written as
n n
( W 4z - I W .dz = o (1.31)
X 35
-H -H
n n
where 2{ , dz = w.d 4+ W.dH + g T (1.32)
)xLH Ix % Ly O
n
and _i_. ( V.ll. = V. %__'L + V. B_ﬂ + gl §.\_/ -ll (1033)
3L 4 Y i

which are obtained from the differential theory governing the product
of two variables. By adding equations (1.32) and (1.33) to obtain
equation (1.31) and by taking into account the boundary conditions at

the free surface and the bottom, the following equation is obtained

n

n
2 el RO 5 iy TR an (1.3%)
A X 35 Bt

-H ~H
Recalling from equations (1.9) and (1.10) the respective definitions

W(H* ) = guw'll and V(H+n ) = J‘v-lz and substituting these definitions
-H 7
into equation (1l.34) produces 5

S [u(H- 3 [ V(H+ + M = o (1.35)
This equation expresses the conservation of mass within an elementary

column of fluid.
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Equations (1,26), (1.27) and (1.35) together constitute a non-
linear hyperbolic system of first order partial differential equations
which mathematically define the conditions governing long wave motion in
(x~-y-t) space. Their solution is obtained when each of the unknowns
W,V and N is related to the independent variables x,y,t. The form of
the equtions is such that theoretically, a general solution applying to
- all circumstances does not exist and therefore approximate solutions are
determined. In a tidal system the complexity of its movement usually
results in a reduction to lower order systems. In this way the analytical
solutions in simplified situations and the numerical analysis of more
realistic cases have been developed. The analysis of these systems is

detailed in chapters 4 and 7 respectively.

The advances in computational facilities and techniques have
enabled mathematical solutions of the more complex systems of long wave
equations to be found. In obtaining the solution surfaces, the numerical
approach is very much dependent on the results from field research which
indicates the extent of problems associated with a realistic situation.
However given the appropriate empirical coefficients and the initial and
boundary conditions, the solution is obtainable once a numerical
technique has been perfected. The development of the characteristic

conditions as a numerical technigue is therefore the subject of the next

chapter.
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CHAPTER 2
THE METHOD OF CHARACTERISTICS IN (X,Y,T) SPACE

261 INTRODUCTION

An exact harmonic solution to the long wave egquations cannot
be produced from an analysis which takes into consideration all the
major processes that operate within a system. More precisely, it is
impossible to combine the equations of motion and continuity, which
constitute a hyperbolic system, into an elliptic second order partial
differential equation representing an analytical expression. When a
system consists of an irregular configuration in which shallow water
effects and frictional stresses are significant a numerical method is

the only means of providing a solution to the hyperbolic equations.

The usual numerical technique involves the transformation of
the basic equations into finite difference form to obtain a numerical
solution. In achieving this solution the numerical scheme requires
an integration process applicable over a series of discrete points
which describe the spatial variation of the dependent variables.
Generally the values of the dependent variables are computed at points
on a rectangular grid in space and time. The principal feature of
such a method is that the motion is propagated from given initial
conditions and is depicted at successive time increments as it spreads
over the problem area. The solution at a point is independent of events
in the system at any other times and is formulated solely by conditions
prevailing at a particular time in the domain of dependence of that
point. Therefore a hyperbolic problem is, in most cases, independent
of the initial conditions, a feature closely related to the meaning of
hyperbolicity. If the initial values closely represent the final
solution then the problem should be accurately modelled from the start.
In reality however, these values are only approximate and a period of
time must elapse during which it is anticipated, the final solution is
approached. This philosophy is discussed by Stoker (1957). If the
scheme includes a continuous external harmonic disturbance the numerical
scheme should eventually produce a corresponding harmonic solution
which is a reasonable indication that at least stability has been main-
tained. However it is necessary to ensure further that the numerical

integration procedure gives a solution which converges to that of the
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original differential equations. Convergence is only achieved when
the numerical scheme is both consistent and stable; these conditions

are discussed in section 2.4.

It should be noted thét numerical techniques are not solely
limited to producing harmonic solutions. Since the periodicity of the
final solution is dependent on whether the boundary conditions are
periodic or not; no other requirements concerning periodicity are
necessary. Thus methods of the numerical step by step type are partic-

ularly suitable for the analysis of surge effects.

The most obvious and the simplest means of integrating the
dependent variables over a discrete number of points is to substitute
some form of finite difference approximation directly into the basic
system of hyperbolic partial differential equations constituting long
wave motion. Alternatively, there are some distinct advantages to be
gained on applying a finite difference scheme to the characteristic
equations rather than the original set of basic equations. The
characteristic equations are produced through linear combinations of
the original hyperbolic equations and have the property that they involve
differentiation in one less direction than the original equations. For
example, in one-dimensional unsteady flow, the characteristic equations
become ordinary differential equations. In general, a characteristic in
n independent variables is a sub-space of n-i dimensions in space at
which derivative discontinuities may occur. For equations (1.26), (1.27)
and (1.35) the characteristic equations remain partial differential
equations with the directions of differentiation contained within surfaces
called 'characteristic surfaces'. Solutions to these eguations then
must alsc propagate within the characteristic surfaces. The system is
hyperbolic and the associated characteristic surfaces represent the
boundaries between disturbed and undisturbed regions. The character-
istic surfaces can therefore be thought of as wave fronts which delineate
the propagation of disturbances through the fluid. These disturbances
propagate with time in the x and y directions with speeds determined by
the local inclination of these surfaces in x-y-t space. Since partial
derivatives of the dependent variables in the direction normal to the
characteristic surfaces drop out of the characteristic equations, these
allow discontinuities in the gradients of U,V andn across the

characteristic surfaces. It is the very existence of derivative
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discontinuities across these integral surfaces which classify the
problem as being hyperbelic. In contrast, the existence of such
discontinuities is imaginary in the elliptic problem which typifies

the steady flow of fluid, heat or stress. For example the elliptic
equations governing the ocean tides and seiche action in lakes and
harbours are derived from the long wave equations through simplifying
assumptions. In these problems the physical conditions require that
every part of the surface solution depends on all the other parts.

This implies that the solution surface and its derivatives are continuous
at every point in the problem area and that characteristic surfaces
marking any possible discontinuities are non-existent. In the third
class of problem, that of parabolic systems, the propagation occurs

only in one direction such as in diffusion and heat conduction. In these

systems the characteristic paths are coincident.

The method of characteristics essentially involves tracing the
propagation of waves. Using this technigue, the formation of discon=-
tinuities or shock waves may be analysed without any difficulty. Since
the derivatives located in the characteristic surfaces are not discon=-
tinuous then consequently a finite difference approximation may safely
be applied. It should be emphasised that the existence of character-
istic surfaces implies only the possibility of discontinuities across
the solution surface and not a definite presence of them. Even when
discontinuities are not present there are certain attractive features
associated with the method of characteristic lines or surfaces. The
most important attribute of this method is the analagus processes
between the physical system and its characteristic representation. For
example the domain of dependence and the region of influence at any
point are defined rigorously by the method of characteristics and
correspond to the point in the physical prototype.

It is of some importance to note that certain finite difference
schemes involving central difference approximations require that the
surface elevations and depth mean velocities be computed at alternate
points in alternate time planes. (Dronkers and Schonfeld (1955)).

This method leads to difficulty in interpreting the results especially
at the boundary points. Fortunately with the finite difference scheme

required to implement the characteristic conditions, the dependent



variables are computed at the same grid points at the same instants

of time. The above methods are explicit since the values of the
dependent variables at a certain grid point are calculated without regard
to the values at the other grid points at the same time level.
Alternatively, implicit schemes are available in which the values of

the dependent variables at the one time level are calculated simul-
taneously from each other., Implicit finite difference schemes are not
thought to be as physically analagous as the characteristic scheme and

s0 are not considered any further in the present research.

Referring back to the long wave equations ((1.35), (1.26)
and (1.27)), the mean depth of the fluid,H is a functiom of the space
variables only. The analysis is somewhat simplified by introducing
the total depth term Z defined as

Z=H«+r]. (2.2)

and the basic equations can be restated as
32 L w32 L v3¥ L zW L ZW = O (2.2)

Y dx ? X 2y

b
QU Ty v a_‘_,l 3z - }:l‘ = =l A. a Q.y e 'Txlr)
4 + s + 3 + < - 3 +(/:53 7 (2.3)

w|-

LW 4 W W LV 32 M o = - AU (Te-Tw)  (2.4)
3 3 3x 3 ¥y Y 3y A9 ¥y - R 3

The terms not involving partial differentials of the dependent variables
have been placed on the right hand side of the equations and include
the external forces and shear stress terms. Equations (1.35), (1.26)

and (1.27) can also be written in matrix form as follows

e e R sl TS
in which I is the identity matrix and
Z b 2.0 veoR (2.6)
AL = e AR = 9 < Bt B = e A
' oyl g © v
with (o) (=] =
(- [ N e Y = Tes =T
E ot - 8B+ Ry L Sy ) (2.7)
1, R (RS - | Y u T —T
ARy R ®y ik T 1/
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These equations represent the hyperbolic system to a first order of

accuracye

The means of evaluating a system of hyperbolic partial
differential equations describing fluid wave motion using the method
of characteristics was first introduced by D'Alembert (1747) as a
result of an investigation of air currents. Riemann (1860) generalised
and expanded the basic concept of this method. Massau (1889) presented
an important paper describing a semi-graphical integration method using
a further development of characteristics for evaluating a system of wave
equations. More recently, Daubert and Graffe (1967) have given a
derivation of the method in (x-y-t) space. The analysis presented in
the next section is a modified version of that given by Fox (1966) which

also has been reviewed by Webster (1968).

2e2 THE CHARACTERISTIC CONDITIONS

The analysis of characteristics is achieved through a trans-
formation of coordinates. If a cartesian coordinate system q-r-s chosen
with a local inclination to the x-y=t system such that the coefficients
of all partial derivatives with respect to, say, v in the transformed
equations are in the same proportion in each equation, then a linear
combination of the three equations will eliminate ther derivatives and
so reduce the number of independent variables by one. The resulting
eguation will contain derivatives only in theq and s directions, which
will then define locally the characteristic plane, normal tor. Since
the derivatives on the characteristic surface are continuous, the
derivatives with respect to 9 and s must be likewise. By eliminating
derivatives with respect to r which may be discontinuous, the resulting

system of equations may be expressed in finite difference form with
complete safetye.

In an arbitrarily orientated q-r-s system, equation (2.5)
transforms to

(2.8)

o
W
3
m
o
p
+
T
o
by
!
D)

D

o

&
o
-1
o
o



in whichD, E and F are the transformations of the original coefficient
matrices in the new coordinate system. In particular
e Bt bR e e (2.9)
ot dX 3y
in which or/st, ¥/3x and Bt/35 are the direction cosines of vectors
oriented in the ™ direction. The elements of the matrix E are found

from equations (2.6) and (2.9) to be

r R e T (2.10)
X 3y
- ;T
E - 3 Tx r (o]
r o R
ML i
in which T P T PR A (2.11)
3t AX Bj

For v to be normal to the characteristic surface, the determinant of
E must equal zero.
The singularity of E implies that some linear combination of

the rows will produce a zero vector. Assuming that there exists a matrix
vector H such that H.E = O, then multiplying both sides of equation

(2.8) produces

o

9 S
In this equation the derivatives of the dependent variables are taken
with respect to the q or s coordinate and so the equation in this form

constitutes the 'characteristic condition' for the system of basic
eguations.
The expansion of the determinant of equation (2.10) yields

the result i
R{Rz_a_z[(;-;) +(§§)]} - o s

Equation (2.13) can be satisfied either by setting R or the expression
in braces equal to zero. The latter case yields the more useful result
v T.v = O (2.14)

in which J (2.15)

1
&=
Fﬂ
!
n
&
<
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and the variable € is defined as
2
c = g.Z (2.16)
3 T.

The quantity r is the transpose of the unit vector in the Y direction
and takes the form

r w] &1 ®c ¢ (2.17)

3t dx B\j

Equation (2.14) applies at every point in the flow field in x=y=t space.
It can be regarded as a necessary relationship among the direction
cosines of every possible orientation of a normal at a point on the
characteristic surface. If a plane defined byt =| in some local origin
is placed at this point, the intersection of this plane with the family
of normals will be a plane curve whose coordinates (x,y) will be

related to the direction cosines of the normals by

2 AR e PR (2.18)
dr i3 ar g r
ot 3% Sg

In view of this expression, equation (2.14) becomes

K.J K = O (2.19)

in which K = [1 x y].
Expansion of equation (2.19) yields a second-degree equation in x and y
which of necessity represents a conic section. Depending upon the
relative values of ( U + Vz)% and c= (gZ)ir this can either be an ellipse
a parabola or a hyperbola. The family of normals passing through a
given point (x,y,t) then comprise of a circular cone in x-y-t space.
Lines perpendicular to these normals must be tangent to the character=-
istic surface there. In order to discern the nature of this character-
istic surface, an expression relating the direction cosines of the
family of tangent lines is required. The vector L =T Kmust be tangent
to the characteristic surface since K andJ.K are orthogonal. With some
algebraic manipulations the following expression is obtained

|

T I (2.20)
and reveals that the characteristic surfaces at a given point envelope
a circular cone, each of whose elements is perpendicular to the cone
of normals. The projections of differential elements of this charater-

istic cone passing through its apex are therefore related by



20

c’- c!. Cl
[J.t dx Jj] = L2 o dx = O
. & (2.21)
v skl
¢ i

in which the square matrix is I)'—l.

The differential consideration is introduced at this point
because in general C, U and V are different in every point of x-y-t
space and therefore only in a differential region about a given point
is the characteristic surface a cone. If it is desired to extend the
surface to finite regions, the inclination of its generators must change
as it becomes successively tangent to varying differential cones.
Hence in a finite region of x=-y=-t space the characteristic surfaces

form a conoid rather than a cone. Eguation (2.,21) can also be written

as

7 2 2
(A.x- U.J.'t) * (A“j =l N At) — 38 o A.tz (2.22)

The quadratie surface described by equation (2.22) is called a 'character-
istic conoid' and its generators are called 'bicharacteristics's Water
waves propagate along bicharacteristics in three-dimensional space in
exactly the same way as along characteristic curves in two-dimensions.

The component velocities of the wave along the bicharacteristics are

expressed in terms of a parametric angle &, as follows

dx - W +C.cos® (2.23)
at

oS & s 2
é?. = V + C.sin O (2.24)
At

and satisfy equation (2.22). The angle 8 corresponds to the whole circle

bearing of the bicharacteristic projected on a constant time plane and

measured from the positive x = direction at the vertex of the conoid.

In order to simplify the numerical integration pro;edure in

the present analysis it is assumed that the bicharacteristics can be
The implications of

represented by straight lines with © constant.
It is sufficient to note

this assumption are discussed in section 2.3.
at the present that the modified bicharacteristics passing through a

point delineate a characeristic cone and not a eonoid.
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There are actually two families of characteristic surfaces
and consequently two sets of normals; one family has been established

by satisfying equation (2.19) while the other corresponds to R =0

where R = % + U ;—l; e ¥ B—g—; . Bguations (2.19) and (2.20) are also
applicable to the second family of characteristics and it is easily

deduced that
T T
e Bt W e D (2.25)
For the second family of characteristics, a further relationship

similar to eguation (2.25) may be derived. By introducing a vector M

defined as

|
M= luW (2.26)
\'
then the condition R=0Ocan be written as
K'"M = M.K = © (2.27)

Equation (2.27) is only satisfied when the equality L = M exists and in
this case the characteristic surface of the second type is defined by

the line directions

i
X
[

35 = w (2.28)
g
prie ks <L (2.29)
dt

In physical terms these latter two equations describe the motion of a
fluid particle or streamline. Such a streamline defines the motion
of the main body of fluid and is actually a degenerate characteristic
since a true characteristic defines the motion of a water wave. In
the present analysis the particle path is assumed to approximate a
straight line as have the bicharacteristics previously considered.

The directions of the first family of bicharacteristics
given by equations (2.23) and (2.24) suggest the form of the linear
combination required in order to eliminate the partial derivatives in
the ™ direction from the characteristic flow equations. The specific

form of the ratio of the combinations is contained in the vector
and is

H = [ | c.cos @ c.sin@] (2.30)

It follows that the multiplication of this vector with the transformed
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equation (2.8) will produce the fundamental characteristic equation
(2.12), Since the original set of equations (2.2), (2.3) and (2.4) are
exactly equivalent to the transformed equations then such a multipli-
cation of the original equations must yield the characteristic
condition. Therefore equation (2.3) is multiplied by C.cos® and added
to equation (2.4) multiplied by C.sin6 and added to equation (2.2).
After a certain amount of algebraic manipulation the result is

%—zt-' +(u.¢c.(°ss).§_§ -+ (v+ Csln&).‘b_

sy
, C.cos® [ -1/ R (u_+ C.Cosa). %ﬁ % (V—rc.sG»D).B

8
9 3¢ Bj
. U ] Y4
_‘,C;\*\-G[L\é +(u+c.ws&)A%‘:_( +(V+csmb) Yg}
___._c‘-siuo[ -snB.¥W + cos@ . U ]
9 dx hj
-czcos&[ LRRS W e cond W ]
3 dx Y
+ Cc.CO08 . 2H + c.sm 6. ¥
x 33
+cieos®. F, 4+ c.smn0® F, (2,31)

The characteristic condition given in equation (2.31) can be
regarded as containing two differential operators. The first operator

is a total time derivative f; of the dependent variable and has the form

—§~‘E+ (LL-A-C.COS&),_%_;( +(V+C_5'\n’s)._gg

along a given bicharacteristic. The second operator

W R PEERRT TN T |

3x Bj
involves spatial differentiation of the dependent variable in a direction
normal to the bicharacteristic., The characteristic condition can be

expressed in terms of these operators producing total time derivatives
of the dependent variables as follows

. dv
Sj;f - c.c.ose_JI'% + c.sm¢9.ﬂ

.f‘ (2.32)
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where f = C.j.cosﬁ._‘j.( +c.3.5m9 aH

o |10
(&4

b
Y i 3w _ ‘ (W, W Ly W
-c[sm.e.-—— ‘::»u\.G.ccastS(\° B)+C050.35}

Hcig cont Byl 4 cog. S8 F, (233

where F, and F; represent the terms on the right hand side of the

equations (2.3) and (2.4) respectively.

The particle path of the fluid corresponding to the second
family of bicharacteristics, is defined by the directions

dw Ww. At : ol.j = V.4t

Hence the total time derivative of surface elevation along this

bicharacteristic may be written as

' T TRRY3 32 (2.34)
E = -{i + . X;( + Vv %-g

On inserting this total derivative into equation (2.2) the particle
path relationship immediately becomes

1 S RS N 2.35)
Scl.t- C[BX-..‘B_Q] (2.35

and is simply another form of the continuity equation.

With regard to equation (2.32), the possibility of an infinite
number of values for & suggests that there are an infinite number of
characteristic conditions. This implies that there is an infinite !
number of sources propagafing waves which is clearly not the case.
Matsoukis (1980) has shown that there are, in fact, only four sources of
principal waves in x-y-t space and therefore only four possible bicharacter=
istics along which these waves travel. The four directions occur at
intervals of 77|2 in the prarametric angle & and correspond to positive
and negative waves travelling along the positive and negative x and
y directions respectively. For example a positive wave in the positive
x direction has an associated family of characteristics defined by
'J.x[é.t=u.+c. lg[d\-hvy and is a result of the quadratic form of equation
(2422). There are therefore only four families of characteristic
surfaces which are tangential to the envelope cone along the bicharacter=
istics. The characteristic cone was considered by Matsoukis (1980) to
represent all the possible bicharacteristics that water waves could
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follow but, in fact, the waves only travel along four of them, These
conclusions have an important bearing in determining the formation of

the numerical scheme discussed in the next sectione.

2.3 THE CHARACTERISTIC NUMERICAL SCHEME

There are at present numerous characteristic methods avail-
able for the integration of the hyperbolic long wave equations in two
spatial dimensions and three independent variables. Very few of these
methods have been applied to computationally significant problems, with
the exception of the schemes proposed by Thornhill (1948), Coburn and
Dolph (1949), Hartree (1953) and Butler (1960). These characteristic
schemes have been reviewed by Fox (1966) and more recently by Katepodes
and Strelkoff (1979). The method originally proposed by Butler (1960)
known as the inverse pentahedral network produces second order accuracy
with respect to At and forms the basis of the numerical technique used

in the present analysis. The proposed technique outlined in this

section is of first order accuracy with respect to At.

Consider a two-dimensional orthogonal grid of points taken on
some initial surface in the x-y plane with each point spaced a distance
apart. The values of the dependent variables are calculated at each
and every grid point and constitute a discrete series of approximate
values to a continuous solution. The calculations are accomplished by
introducing the characteristic conditions as operations on the values
at each gridpoint and so the behaviour of the fluid at one time level

is advanced to later time planes.

With regard to a general situation, consider a point with
coordinates (X, ,Y4, 4t, ) remote from the spatial boundaries of the
problem. If the values of the dependent variables are desired at this
point then linear bicharacteristics are extended backwards in time until
they intersect the previous solution surface int =t,-At. These
bicharacteristics emanate from the vertex of the conoid at values of the
parametric angle © separated by increments of'ﬂ]l « This arrangement

of bicharacteristics and the particle path bicharacteristic
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are as shown in figure 2.1
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Figure 2.1

In figure 2.1 the parametric angle take the values

B, %o : 9,_:3_211
i
B =2 &, = 7T (2.36)

and so determine the directions of the characteristicse.

In figure 2.2 a section in the x -plane taken from the time
t-at to t+at shows that the linear bicharacteristics define two
separate regionso

t+at

—— e —— —— —— ——

DoMRIN oF INFLUENCE

(X., 50 Al t’)

DoMRIN oF DEPENDENCE

t
e A RN T s i e T T__.x

Figure 2.2

The region between t and t+At is called the domain of influence since
it comprises a space~-time continium which is affected by water waves
generated at point (X, ,4Yo y t, )o In the same way the solution at
the vertex of the cone at time t is dependent on the generation of

water waves at time t-At. For this reason the region is called the



domain of dependence. It is one of the basic assumptions of a scheme

of first order accuracy that the celerity of the wave is constant
during any time At while in the domain of dependence and so the
bicharacteristics are linear. The value of the celerity is obtained
at the point O with coordinates ( x

o) Yo t-at) to ensure an explicit
form of numerical scheme.

Under circumstances of constant celerity and with the
parametric angle taking the values in equation (2.36) the respective

characteristic conditions derived from equation (2.32) are along

bicharacteristic dx = u-c -
dt
SJ;E' -c.é*_u = —cz.éy, —c.3-éﬁ+c,j-F‘(
J.t a\,t 55 dX
bicharacteristic A"—'x = U é‘.ﬂ = ¥ =C
along bicharacteristi it b
S cia iy a0 SR o - +c.g.F
s i it 3x 3 3y
dy  _
along bicharacteristic %‘ = ke ﬁ il
a7 g oty PN | SRCILE
B IRES RS TR T
J . . l._).‘ — u- J"s = V+C
along bicharacteristic 13 = e
dz S SRR RS . RN - (2.37)
9- Tt + c. P c £y 9 v g-F
s T e PR S
. " G5 3 AR L
b Bl (1% =Tl
F e s ok o BB g (15 -y (2.38)
Y 3 ¥y 3 £.9-2

Together with the above characteristic conditions, there is also the
particle path equation (2.35) defined along the bicharacteristic

die' . N Y 21U, &V
Tz, @y 12:-c(~+~—)

e 2o

The total derivatives along the bicharacteristics in equations(2.37)

and (2.39) can be replaced by forward differences in time (providing



the time increment is small) as follows

.Z;__t3| b c.u_‘;%n = —c".%—‘i1 —c.s.%_x + "3‘Fx (2.40)
a_%z 3 c'\%fvz i -c",%l).l‘ - c.ﬁ.%% +c.g.F (2.41)
3.%s+c.‘f&:t&s=—C”g‘z”+°-3-%‘~1‘°'3‘f'—x (2.42)
3_7_3.?7_5 i 'CZ(BSL’,L(J'BS%) (2.4b)

In these characteristic conditions Z, U, V represent the integrated
dependent variables at the vertex of the conoid and Z“,U.“, Vu (1ene5)
are interpolated values on the previous time plane t-At. The values
of the partial derivatives of U, V and H are those at point 5. The
five equations comprise a system involving five unknowns; the three

dependent variables and the partial derivatives, %—l-" and ébl/. Either of
X -
the integrated variables Z, U, V are obtained by combining the

equations (2.40) to (2.44) in such a way as to remove the partial
derivatives and then substituting
T G T e T e M (2.45)
dx 2.c. At 2y 2.6 4%
Hence adding equations (2.40) to (2.43) and subtracting twice
equation (2.44) gives
Z = ’5.(1»"2'7.* Z,*Z“-Z.Z.s) "/z %(V1~V“+U.,-u.}) (2.46)
Subtracting equation (2.42) from equation (2.40) produces
W=%(U+U,)~%2(z,-H -Z,+H) -9 F bt (2.47)
Subtracting equation (2.43) from equation (2,41) produces
Vo 4(h+V)-%2(2,-H, -1, +H4,)-g F-at (2.48)
for a grid point remote from the boundary conditions., The equations

(2.46) to (2.48) yielding the integrated dependent variables are
identical to that given by Townson (1974).
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It is apparent from equations (2.46) to (2.48) that com-
puting the dependent variables involves the values at the intermediate
points 1 to 5 at which the bicharacteristics intersect the time plane
t-Ate At this time level an interpolation scheme is required in order
to calculate the values of Z, U, V, H at the intermediate points from
the known grid point values. With reference to figure 2.1 and consider-
ing linear bicharacteristics, the coordinates of the intermediate points

at which interpolation is made are;

o x =~ W&t x = xo-(u;c).At

Juas = Yo - V.At Yo = Y '(V3C)-At (2.49)

The most suitable interpolation scheme describing a quantity Q at various
points has been shown by Matsoukis (1980) to be a first order linear
polynomial such that

Q = Rx + 53 + G (2.50)

where Rewaajax = (@, - - qu,:)/ ottt

1]

B A/ay = (QIJu - Q3 )/ 2.48

= 1,
c "'(G“z-n,:' i Q:-n,:r t Ry * G:,-x—n)
and AS is the spacing between grid pointse.

The actual form of the interpolation sheme is determined by
the following considerations. The basic system of differential equations
have been derived by applying the physical laws to a control volume of
infinitesimal base dimensions 23S along the x=- and y- axess If @
represents the dependent variables at a point (x,y) and it is assumed
that the variation of the quantity Q is continuous then the value of
this quantity at a point (x+26S,4y+259 is given by Taylor's formula

for two independent variables namely

s * e
Q(x+285,4+288) = Q(X,‘g)-»z.ss.%—‘i«*lSs'gg (2.51)

Y 1ye g é‘_Q)
- 0_C . S
2(3s. 38 +z2385.13 +385.35 )+
In the derivation of the differential scheme only the first three terms
of Taylor's formula were considered therefore the formula was applied

with first order accuracy. The corresponding control volume in the
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difference scheme can be considered to be of base length 2AS along the

x=- and y- axes, where AS-+35-0. Hence applying Taylor's formula to this
control volume with first order accuracy gives

5 AQ 8¢ (2.52)
Q(x+2.05,y+2.85) = @(x,4) + 2.88. 35 +2.48. 33
which can be rewritten using the grid point coordinates

o AR AQ 2e
an,:nl % Qz-n,-:-\ + -85 . A X g 2"AS'2§" (2.53)

The component of the variable Q in the x=- direction can be expressed as

Rzaz = Q,-__,‘, + 2.A5. %5: which if rearranged produces

A"‘——'G =3 Qz_,;:— o Qx_‘ - (2.5‘*)
) )
A X 158
Similarly the component of Q in the y- direction is Q

+ 2.1\5.2% which rearranges to give

2,90 = Rz oz

- Qs 341 = @2 5., (2.55)
Ay 2.AS

Firstly it is noted that in order to have equivalence between the

differential and difference expressions then :—g—) g.f.(? as AX- 0 and

%‘—: - 1—9 as Oy >0 o Secondly, the finite difference expressions in
” .

equations (2.54) and (2.55) are equivalent to the coefficients A and

B respectively of the interpolation scheme. Therefore these coefficients

A and B are actually numerical approximations to the differential terms
BSQ ,2%5! respectively at the central point. It is also apparent then that
X ¥y

the following conditions are valid;

c
o

s o & = 7 2 =)
e e QI‘_“ + AS. e C =+ A
Q-:—x,-x s M S As-%&i - ¢ - R.ALS
Rz,se1 = Qz,: + DS %c-; = €'+ B.AS (2.56)
TR O S AS. 2@ = ¢ - BR.As
: 4

The constant term C of the interpolation scheme is therefore obtained
by adding the four equations in (2.56) to produce

|
s /‘*(Qzﬂ,r b G:-.,s s Qz,:n g QI,U’-I)
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Only this condition satisfies all the requirements of equation (2.56),
It should be noted that the three coefficients of interpolation A, B
and C are obtained from the set of four equations in (2,56), whereas
actually only three equations are reguired for an exact solution. The
use of four equations implies a plane passing through four distinct
grid points which may not always be possible and in such a case the

interpolating plane represents an averaged one.

With the interpolating coefficient as prescribed in
equation (2.50) the values at the intermediate points may be calculated.
The interpolation scheme is actually a first order version of Taylor's
formula and ensures consistency between the differential scheme and the
difference scheme. Therefore the finite difference expressions of
equations (2.54) and (2.55) are not merely numerical approximations
but necessary and sufficient conditions for equivalence between the
numerical and differential processes. Furthermore a second order inter-
polation scheme is incompatible with the first order accuracy in which
the long wave equations have been derived. Matsoukis (1980) has shown
that second order interpolation schemes introduce additional terms in

the difference scheme which are not present in the differential one.

The form of the numerical scheme as expressed by the character-
istic equations (2.46), (2.47) and (2.48) is only a temporary one and
is subsequently modified by the introduction of the interpolation scheme.
The unknowns Z, U, V thus become dependent on the values of the variables
at the grid points at time t-at and not on the intermediate points 1 to 4
on this time plane. Equations (2.46) to (2.48) become

2

c
z=15_§..m.(nu+8v)
e Te e B TR ST BT T (2.57)
Vom, Yy = 9. B B, - a. bt F

which can be written as

ot R -1£. au i B
At 9 2.A5 e | 2.08

u"_u‘s = - AQ iE (F
At : ZAsS 3:( ‘)5

V-V » (2.58)
= Vx = ~a i n - i B
At 2 2.A8 3 ( ’)5
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where N=2-H is the elevation above mean water level at a time t-At
and H, is the interpolated mean water depth at grid point C. The
previous equations have a similar form to the following equations
which are the initial partial differential equations of long wave

motion:
AR R | (T
dt 3 X S y
‘}L'—,f = o A R (2.59)
X
"L B B
At W 377

In fact a comparison of equations (2.58) with (2.59) shows that the
numerical scheme for an internal point based on the characteristic
conditions is a numerical approximation of the governing long wave
equations. Such an approximation is only produced under the conditions
resulting from introducing a linear interpolation scheme. It is clear
that the means of integrating the initial differential equations is
along the particle path characteristic j‘-f: w, iy =V . However to
retain an explicit form of solution using the numerical scheme the
values along the particle path are calculated at point 5 at a time
t-ot. In relation to point O, (see figure 2.1) point 5 has coordinates
(-W.At, -V.0t) which represent convective displacements. For the case of
tidal motion in which the convective terms are small, conditions at
pointé O and 5 are very similar and there is then the possibility of
constructing a linear finite difference scheme based solely on grid
point values and independent of the characteristic paths. In the tide
and surge simulations presented in Chapters 7, 8 and 9 the convective
terms have been included where finite amplitude conditions are

encountered. In these simulations the numerical scheme for an internal
point is obtained from equation (2.57) by substituting the finite
difference approximations found from the interpolation scheme of

equation (2.50). The final system of equations take the form

C'L
Zz = 2'5 - 3— R o (u.:,“‘, - u"")’ + VI,:!*\ = Vg,:'-))/z.hs

w= ug - g - At ‘('lxu,: &) '1.:-.,:)/1-4'5 = S‘At‘(Fu)s (2.60)

Vs Yy =g b (Mg - 0, )/2.88 - 3.At(Fy)S



%2

where F, from equation (2.38) becomes

Y 1 SR S
2 TR T (2.61)
LAY i RO (PR W g
i Ay -8 - Lg
and similarly F, becomes
e - L PS.J*‘ = Pz, - A sunip.
F, = P3 ~Z.as 3 ERIS L KRR
2 2 \4 2
“'(u-s"'vs)-vs - R.pa Wy . sn B
> 25 Au-9- Zg

In the tests presented in the following chapters, the pressure gradient
term was not retained in the numerical scheme. In practice the values
of the external forces are computed at point O instead of at point 5,

to reduce the amount of interpolation.

Application of the interpolation scheme ®=Rx+By+C to the terms
Z,,Wand V, in equations (2.60) leads to the following expression stated

in terms of the general dependent variable Q as
R =@ = “-:,7 % (onn,z ~ Ry v )/;..As

- Mgy -AE .(a,’,“ - @ 5, )/ 2.05 (2.63)

where Q, 6 = Vu( Rzn,zr + a‘_“, I TR @z.:-n)

The analytical solutions developed in Chapter 4 are derived
from linear considerations and do not include convective acceleration
terms. To reproduce these solutions numerically, the numerical scheme
for an internal point as shown in equation (2.60) must be suitably
modified. Hence the convective terms denoted by multiples of uz),
and V; ; in equation (2.63) are excluded from the linear scheme so that
25=Z; y Wy=UW, and V =V . The necessity of linear conditions also
requires that the celerity in the continuity equation in (2.60) be
calculated from the mean water depth and not the total depth. The

linearised numerical scheme for an internal point then becomes

- e N At,(u,x“)z = U.I_“’ + Vz,:u = V:.:-\ )/Z-AS

o

Z

w u-o =g At.(q.zu,:r - rL:-,)-;)/Z.AS - SAt(F,). (2.6“’)

Vi= V° - 9 At ('1:,3..\ "n.:):-|)/l,As - 3 At(FY)o

n
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It is evident from the comparison of either equations (2.60)
or (2.64) with equations (2.46) to (2.48) that the interpolation scheme
becomes an integral component of the numerical scheme and is bound to
have a critical effect on the stability and consistency of that scheme.
With this viewpoint an understanding of the fundamental properties of
convergence consistency and stability is required before any practical

application of the scheme can be madeo

2.4 CONVERGENCE

The term convergence has in the past been somewhat loosely
regarded as the process in which the numerical scheme achieves a periodic
final solution from an arbitrary initial surface. This periodicity does
not necessarily ensure convergence and is merely the result of an
induced harmonic disturbance in the system and only implies that the
numerical scheme is stable. Therefore there is no guarantee that the
periodic solution obtained is equivalent to that attributed to the system
of partial differential equations. However it is exactly this equiva-
lence between the numerical and physical processes that defines convergence
of a numerical scheme. In a strict mathematical sense, a numerical
scheme is considered to be convergent when the solution of the difference
equations tends to the solution of the differential equations as the

space and time increments tend to zero.

A rigorous mathematical analysis of convergence is still not
entirely satisfactory for non-linear finite difference schemes. Alter-
natively a numerical approach could be used in which the results from
repeated tests with decreasing space and time increments are compared
with an analytical solution or observed data. The sequence of solutions
could then be examined for convergence. This approach is unfortunately
impractical owing to the demands on machine time when using small values
of space and time increments. Another more logical means of conducting
the analysis of convergence is to consider the consistency and stability
of the numerical scheme. Consistency examines the limit of the
difference equations themselves as the space and time increments tend
to zero instead of examining the numerical solution of these eguations.
A stability analysis can be performed to investigate the error in
the solution of linearised difference equations with finite values of

the space and time increments as the number of computations tends to
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infinity. Obviously if the numerical scheme is either inconsistent
or unstable then convergence is not achieved. Hence both consistency
and stability are necessary and sufficient conditions for convergence

of a linearised scheme.,

2oltal Consistency

A consistency analysis is required since the incorporation of
an interpolation scheme into the numerical scheme modifies the
characteristic conditions. It has already been shown in section 2.3
that the interpolation scheme Q= Ax+By+C is essentially consistent
with Taylor's expansion to first order accuracy and so did not introduce
spurious terms into the characteristic conditions. This is evident from
the numerical equations (2,58) incorporating the interpolation scheme
on comparison with the original partial differential equations (2.59).
It now remains to show that the numerical scheme is comsistent in that
as the space and time increments tend to zero, the difference equations

become identical to the original differential equations.

The technique used in the consistency analysis is to express
each dependent variable with local coordinates ( 3x, $y,3t ) relative
to a central grid point O using Taylor's expansion. WithQ representing
the dependent variable, Taylor's expansion to a first order approx=-
imation becomes

Q(Sx, 55 . St) - N EX'%%" ~+ 55'58%" + Et'és'c‘z' (2.65)

This expression is applied in turn to the characteristic equations
(2.46) to (2.48) while neglecting the external forces and stress terms
which have no effect on the generality of the consistency analysis.
Consider first, equation (2.46) namely

zZ = X(Z2,+2,+2,+2,-22,) =455 (V,-V + U -U)
The introduction of Taylor's formula which may be regarded as an inter-

polation scheme transforms equation (2.46) into

- MR i 3Z. _ 32,
Z,»dt 0 = %Tag - 2u,.350. % - 2.3t 33]

o

oot ] z.c,.at.é_t_t.]
13 3Ax
- TR
9{3[ N e | 3 X‘;

which can be further reduced to a form comparable with the original
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continuity equation (2.2) and is

7 SR e S L N + C: -é_l&o + _:_BV o)

- [- Qe —

3t 3 X Y RS 3y (2.66)

A similar transformation of the dynamic characteristic condition

(equation (2.47)) may be obtained as follows

w = '/J.(ll.*bl.s) & '/1%('1,-(1.3)

becomes
Sl Ul 'R
W +3t = = = ol A
. St Sfal, can et -2y, 5t 5 ]
-3 N,
Lc,[ 2.c, -3t 3 ]
which simplifies to
§_u.° + u—o 3._‘_"'_" + Vo é_.q.'o + 3 _A__n,o =" (2.67)
ot dx dy 2%

which is equivalent to the left hand side of equation (2.3). Similarly
equation (2,48) which is

Vel +V") i (Qz 4)
is tranformed to
v, + st. 3V - st —z.v..St.i\ie]
3 vy e e ¥

which simplifies to

B_y_o -+ u,° ?;V_o -+ V° BV + . b o =

and is equivalent to the left hand side of equation (2.3).

It is spparent from equations (2.66) to (2.68) that the
consistency conditions are satisfied for an internal point. In the
same way it is easily shown that the boundary conditions are also
consistent and so the physical consistency of the proposed numerical

method may be established.

2.4e2 Stability

A system of difference equations constituting a numerical scheme
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can be regarded as being stable if the growth of rounding and discret-
isation errors is bounded as the number of computations tend to
infinity. In the case of a harmonic solution the scheme is stable if
this solution is a close approximation to the solution of the original
partial differential equations. In other words the stability of a
consistent difference scheme implies its convergence, a feature noted

by Lax and Richtmyer (1956).

The absolute magnitude of the bound of the error is obviously
related to the accuracy of the numerical scheme and the values of the
space and time increments. A stability analysis will therefore require
to establish restrictions on the size of the space and time increments
which when imposed on the difference equations will prevent errors from
being amplified to an unacceptable extent. According to Richtmyer and
Morton (1967) instability is not a result of rounding errors but is
clearly a property of the difference scheme. Also Courant, Friedrichs
and Lewy (1928) have remarked that instability is accelerated by
reducing the spatial representation of the numerical grid while retaining
the same timestep. This finding suggests that an upper bound to the
size restriction of the grid may not be sufficient and that a lower

bound is required.
Consider the general form of a system of hyperbolic partial

differential equations defined as

§f§ = . =R
2t 2;; . X

where m is the number of spatial variables, @ represents the matrix of
dependent variables and H_ the corresponding real coefficient matrices.
The above quasilinear system describes the propagation of long waves
for which the numerical sheme has been developed. The simulation of
this motion is classed as an initial and boundary value problem for
which a stability analysis is unfortunately not at present available.
The normal approach is to treat the problem as an initial value one and
test the stability of finite difference equations by applying a Fourier
analysis to a linearised difference scheme with constant coefficients.
It may be applied also with caution to non-linear difference schemes

with variable coefficients. However Strang (1964) has shown that the



stability of a non-linear system depends on the stability of the
linearised difference equations providing the solution has a sufficient
number of continuous derivatives. This requirement has been rigorously
proved by Stetter (1961) to be fulfilled when the difference equations
are derived from the characteristic conditions since derivative
discontinuities cannot occur along the bicharacteristics. Hence for a
non-linear system the stability analysis may be applied to the

linearised characteristic scheme and confidently assumed to apply equally

to the non-linear system.

The necessary condition for convergence of a difference scheme
derived from a system of linear partial differential equations with
constant coefficients was established by Courant, Friedrichs and Lewy
(1928) and is termed the CFL condition. It requires that the domain of
dependence of the difference scheme must contain the domain of dependence
of the differential equations. The differential domain of dependence

is defined as the base of the characteristic cone at time t-At and is

shown in figure 2.3.
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N
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Figure 2.3

For the difference scheme represented by equations (2.64) the values of
the dependent variables at point O, at time t are obtained by consider-
ing the known values of the variables at grid points (x-1,7), (I,7-1),
(z+,7) and (I,7+#1) at time t-At, Therefore the domain of dependence

of the difference scheme is the convex hull of base points defined by

the boundary of the union of all triangles formed by joining all pairs

of points by straight lines. The difference domain of derendence is also

shown in figure 2.3 and it is apparent that the CFL condition only takes
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into account the location of those base points which are vertices of
the convex hulle As a result of this limitation and the fact that the
difference scheme is non-simplicial it remains to be determined whether
the CFL condition is a sufficient stability criterion or merely a

necessary one.,

It is worth emphasising that ihe numerical scheme is explicit
and that the approximate solution at a grid point at time level T is
calculated using the known values at a certain number of grid points
at time t-At. If the number of grid points used is L + 1 where L
is the number of space variables then the numerical scheme may be
regarded as simplicial. The proposed numerical scheme is clearly non-
simplicial since four grid points on the initial value surface are
considered rather than three which is the simplicial requirement.

With regard to the general influence of the CFL criterion on
the stability of a numerical scheme Hahn (1958) extended the work of
Lax (1958) to demonstrate that the CFL criterion is a sufficient
condition for stability for all simplicial networks. Hahn also showed
that the CFL criterion is sufficient for non-simplicial networks
providing the space increment is the same size in both the x and y
directions. Since this requirement is fulfilled in all the tests in
the present research it is concluded that the CFL criterion is both a

necessary and suificient condition to ensure stability of the numerical
scheme.

The implication of the CFL stability criterion can be fully
realised on considering the equivalence theorem of lLax. The theorem
amounts to the fact that given a properly posed initial value problem
and a consistent linearised finite difference approximation with
constant coefficients then the stability of the numerical scheme is a
necessary and sufficient condition for convergence. As a consequence
of Lax's theorem, satisfaction of the CFL condition ensures both

stability and convergence of the numerical scheme.

Ignoring for a moment Hahn's conclusion regarding the
sufficiency of the CFL criterion for non-simplicial networks, the same
conclusion can be verified in another way by applying the von Neumann
stability criterion to the present numerical scheme. In this way it can

be shown that both criteria impose the same restrictions on the value



of the time increment in order to maintain stability. The von Neumann
condition, presented in detail by Lax and Richtmyer (1956) is a
necessary condition for the stability of linear finite difference
equations with constant coefficients. With regard to the works of
Strang and Stretter which Jjustified the application of the CFL criterion
to the present numerical scheme, the same argument applies to the von
Neumann criterion. Furthermore, Lax (1958) has shown that this criterion
is both a necessary and sufficient condition for stability, providing
that the initial data is infinitely differentiable, The doubt
concerning the sufficiency of the von Neumann criterion for arbitrary
initial data can be removed by realising that this data can be closely
approximated by infinitely differentiable data, By investigating a number
of difference schemesy Richtmyer (1957) also came to the same conclusion

as lax concerning the sufficiency of the von Neumann criterion.

The basic difference between the CFL and the von Neumann
criteria is that the former condition only considers the location of
those base points which are vertices of the convex hull. The von Neumann
condition considers both the location of all the base points and the
means by which the solution at a point is calculated from the dependent
variables at the base points. For this reason the von Neumann criterion
is regarded as a stronger necessary condition for stability of non-
simplicial networks and is equivalent to the CFL condition for simplicial

networks.

The von Neumann stability analysis gives an insight into what
happens during computation by following a Fourier expansion of a line
of errors as time progresses. Stability in this sense refers to the

Fourier transformation of a linearised difference scheme to a form

3"‘“ 2y '};t (2.69)

where the elements of the vector 3t are the Fourier coefficients of the
dependent variables at time T and A is the so called 'amplification
matrix'. In quasi-linear equations the dependent variables appearing
in R are supposed to be 'locally constant', an assumption which becomes
invalidated when these variables change rapidly from one grid point to
another. The von Neumann necessary condition for stability states that

all eigenvalues AL of this amplification matrix must be less than or equal
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to unity in absolute value., The condition Aslo+ O(At) is usually
strengthened by one or another sufficient conditions as described by
Richtmyer and Morton (1967).

The eigenvalues of the amplification matrix are obtained
from the determinant of the 'characteristic equation' A-AI1=0 where T
is the unit matrix. Following the analysis presented by Matsoukis

(1980) the determinant may be expressed as

A=A B R )
Hm R =X o = O (2.70
AR o AR-Xx

3
which becomes

R-2).[R-))*=-n,n, - Ry Ay ] =0 (2.71)
For the case R-A=0the root A\, is equal to R/ = % cos ( 1"’1‘,‘,’""35) t
X COS(,;E‘E" AS)and for any pair of grid points (m,n) the condition
|\ |s! is satisfied. The other two eigenvalues A, , Ay are calculated

from the gquadratic expression in equation (2.71) as

= ) rm  ae m.As)
)\2’3 /1[cos( - ) - cos( e

(2.72)

s
= Crﬁs_t/( sz(%,as) + SI‘J\-z(&ILL.L:-Aﬁ)

The von Neumann condition reguires ]A,,,I‘! which is ensured for any

grid points (mn), with associated wavelengths (L, ,Ly), when

At & 2 . As (2.73)
7L C
It is important to compare the restriction in timestep given
by equation (2.73) with the condition imposed by the CFL condition.
At the maximum limiting timestep the characteristic cone representing

the domain of dependence of the differential scheme is as shown in

figure 2.4 .
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It is apparent from figure 2.4 that at this limiting condition the
characteristic cone is tangential to the convex hull of the difference
equations. This geometrical condition has been noted by Mitchell
(1969) from which it is obvious that C.At = ‘/-%-AS. Hence the CFL
stability requirement in (x-y-t) space may be expressed by the

inequality
2 . as
Nt TR o (2.74)
which is identical to that derived from the von Neumann stability
analysis. It has therefore been shown that at least for the method of
characteristics, the CFL condition is both a necessary and sufficient

criterion for stability and hence for convergence of the difference

equations,

The stability considerations presented in this section have
been orientated towards assessing the degree of influence of the CFL
criterion on the finite difference scheme based on characteristic
equations. Establishing this influence is important since the CFL
condition is more than just a relationship between time and space
increments, it represents a significant fundamental relationship between
the physical celerity C and the numerical celerity 2% in the numerical
scheme, Obviously in an accurate simulation the numerical celerity must
propagate through the space-time grid as close as possible to the
physical celerity with which principal waves propagate in reality. In
this respect the CFL condition maintains stability as a numerical
requirement for the simulation of physical conditions. Conversely,
certain tests presented in Chapter 4 suggest that numerical discrep-

ancies occur when deviations from the physical conditions controlled by

the CFL criterion take place.

One important consequence of the CFL condition at the limiting
timestep is that along certain curves namely the bicharacteristics,
the domain of dependence of the difference equations is tangential
to the differential cone. Referring back to figure 2.4 which depicts
the system at time t-at, the four tangent points l', 2', 3', and 4
evidently occur at the base of the bicharacteristics considered over a
period At. The important feature highlighted by considering the CFL

O i
criterion is that the bicharacteristics occur at 90 increments of
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the parametric angle @ orientated at 450 angles to the x-axis. This
orientation suggests that the characteristic equations derived from
equation (2.32) should be formulated with values of the parametric

angle taken in turn as

ST BN iRt
G‘n "L':' 92: ] ‘-L:
2.74
6. = ﬁ & = él-r ( 7 )
3 I 'y L

instead of the values taken along the axes directions given in equation
(2.36). The two respective methods are henceforth denoted as 45°
characteristics and 90o characteristics and a comparison of their results
and an assessment of their accuracy in simulating tidal flow is presented
in chapters 4 and 7. At present it suffices to say that a non-linear
finite difference scheme for an internal point based on 45° character-
istics and the proposed interpolation scheme may be shown to be identical
to equations (2.60) which is the non-linear finite difference scheme
obtained from 90o characteristic considerations. However the finite
difference expressions at the boundary points developed using 45° and

90° characteristics are found on comparison to be slightly dissimilar
from each other. Attention is given to these boundary conditions which

are examined in the next chapter.
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CHAPTER 3
NUMERICAL ASPECTS AND DEVELOPMENTS

36l INTRODUCTION

Considerztion must first be given to the development of
finite difference expressions which describe numerically the long
wave motion at boundary points. The general situation at a particular
boundary peint is as for an internal point in that the values of the
dependent variables Z,U,V are known on a time plane t = t,- at and
are required at a grid point with coordinates ( x°)7°)to)° Once again
the characteristic conditions of equations (2.40) to (2.44) associated
with the bicharacteristics have to be combined so as to produce the
required solution. However at a boundary point the presence of the
boundary will prevent the establishment of at least one of the
bicharacteristics in the problem area and the solution must be form=
ulated from the remaining bicharacteristics. At the same time the
situation is somewhat simplified since the imposed boundary condition

at a point reduces the number of unknown variables by at least one.

An irregular coastline may be approximated by an orthogonal
mesh of grid points. It is usual practice to identify each particular
boundary point by assigning to it a configuration number which char=-
acterises that particular boundary configuration. The allocation of

these numbers for a typical coastline is shown in figure 3.1l.
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It should be noted from this figure that certain outlying points along

the coastline may be assigned the configuration number O and are

regarded as having identical conditions as those for an internal point.

With reference to figure 3.1 two types of boundary points may

be distinguished in the following ways:

a)

b)

Open boundary points;

These points delineate an interface between the area under
examination and the open sea through which tide and surge
waves are propagated. This interface or open boundary is
distinguished by the occurrence of flow with a component

normal to the orientation of the open boundary.

Open boundary points are denoted by negative configuration

numbers and the associated boundary conditions may be stated

as follows;

Points =1, =4 : Wso: . .¥x0
Points =2, =3 : WUx0 , Y=0
Points <5, <6 : W=0 , V%0 (3.1)

The zero velocities at some of these points are a result of
the assumption that no flow occurs normal to the coastline.

If the problem area is an estuary it is assumed that the
open boundary is sufficiently removed from the immediate
influence of the estuary so that the effect of the oceanic
tides can be represented as harmonic variations in surface
displacements. This variation is established by referring
to measurements obtained from tide recorders or by using

Tide Tableso

Closed boundary points;

The series of points forming a closed boundary can be
considered to represent a fixed vertical wall with a
variation in height which corresponds to the total depth
of water (H+n) along the particular coastline. It is

assumed that the component of velocity normal to this
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boundary 'wall' is zero and so for points with the

following configuration numbers, the boundary conditions

are;
Points 1,3 :
Points 2,4 :
Points 5,6,7,8 :

U=o , V&% O
Uu=o V=

)

W=0, V=0

(3.2)

Whereas with open boundary points only the required velocity

components are computed from the finite difference scheme

obtained from the characteristic conditions, both elevation

and any non-zero velocity are computed at a closed boundary

point,

3.2

BOUNDARY EQUATIONS BASED ON 90° CHARACTERISTICS

The values of the dependent variables at the boundary points
may be obtained by considering the bicharacteristic directions proposed

by Butler (1960), namely G=ﬁ,3—f‘ o, % o The derivation uses as a

basis the characteristic conditions given by Townson (1974).

These

conditions have been stated as equations (2.40) to (2.44) and

correspond to the four bicharacteristic directions and the particle

path streamline.

3.1‘2'\ - c.U-u, =
At At
9 Eoly = 16N =
At At
.2-15 + Y U.'ll3 =
J At At
3‘_2-"2"* S W LT V-V =
At At
q- Zi;és

ot 3%

~et W
3y
- c? éi}
dx
-t
3y
Y
dx

= -C".(B_\_L-v.sl)
3y

It is worth restating these conditions as follows;

—ca-z_H o4 C'S'Fx (3.3)

- c-g-3H & c.q.F, (3:4)
Y

¥ c.3.§ﬂ - ¢.9.F, (3.5)
dX

+ c 3 €9 Fy (3.6)
3y

{3.7)

Consider now the group of closed boundary points with

configuration numbers 1, 2, 3, or 4 confining the analysis to boundary

point number 1 which may be considered typical of these points.
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At this boundary point not all the bicharacteristics intersect the
initial value surface and so the spatial domain of dependence is
reducede As shown in figure 3.2 the domasin corresponds to that
portion of the base of the characteristic cone which is situated
within the problem area and is determined by the geometric shape of

the boundary.

SokuTioN PoiNT

The solution for Z is formulated along the bicharacteristic paths 2,

3y 4 and 5 by combining the corresponding characteristic conditions.
In this way the two unknowns %ﬁ and %{ are eliminated from the problem

and the solution is

Z w2 ) g - %%(VI‘V» = 2.Us)

+c. ¥s At - c.F At (3.8)
¥dx

Since the boundary condition is U=0, the term F, is also zero valued.

Similarly by considering the bicharacteristics 2 and 4 and
hence subtracting equation (3.6) from (3.4), the expression for velocity

V is obtained as follows;

W '{_(VZ*VA) "{%—(ZI-Z“) * 3'2_115'At o 3’F5'A't (3.9)
=
This equation is identical to that for an internal point.
A linear interpolation scheme Q = Ax + By + C which is similar
to that for an internal point is introduced to define a plane passing
through the points (L,¥+1), (L ,7~1) and (z-1,T ). The coefficients

have the form
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AR = ['/2-(&::..':‘1 % a:,:’-l) & QI"':]/AS
B N B T Rasif —8s

% (3.10)

U}
N
TN
9

100 * Rz 3 )

The coordinates of the bicharacteristic base points are

Xl“”s = X, : X, = Xo-c,gt

33'5 = 30- V.at ) 3*." = 50 —(V:- C)At

Hence with (><,‘3,) as the origin of the local coordinate system

Ey= T ciat. B

iy = %y - .00 B
therefore ¥(Z,+2,) = Z, in equation (3.8). Similar substitutions for
Z, Uy, V and H using this interpolation scheme transforms equations
(3.8)and (3.9) to finite difference egquations expressed in terms of the
grid points. From the point of view of clarity, the essential form of
these expressions is more apparent on considering the particular case

geg = O, With this condition the boundary equations (3.8) and (3.9)

become
(S _ff:!f at. [ (R o, + U o) - U, ,1]/as
i %1 at. [ Vg 7 Mg 2o 1/ 285
Vi Nt e at At I o -1, ]/Z.A.S > 7Ry AL o3 .43)

for a boundary point with a configuration number equal to l. The values

of Z5 and Vg are obtained from the interpolation scheme; for example
Zy % Ly me.at. R, - N.at. B,
Ve = V, - V.at. B, (V, = z,(v,),,”vt)f_,))

The second type of closed boundary point is the 'corner' point which is
represented by the configuration number 5, 6, 7 or 8o Point 5 is
representative of such points and is now examined for the derivation of
its boundary equations. With regard to figure 3.3 the only bicharacter=-
istic paths inside the problem area are those with characteristic

conditions given by equations (3.5), (3.5) and (3.7)e
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Figure 2.3
From these equations, expressions are required for the three unknown
variables, the total depth Z and the partial derivatives % and %\—/

at point I,J. The velocities at this point are determined by the
boundary condition U = V = O, The solution for Z is obtained by adding

equations (3.5) and (3.6) and subtracting equation (3.7), and is

F R G 3He | ¥H
e ror SR ST o G S B c.ut(hxs 33) ks
The partial derivatives of mean water depth may be expressed as
3w He=H 3. o o Hew H
2 At ) vy o il (3.13)

and these substitutions in equation (3.12) produces
c
¢ SRR S e PRSI TR +"3'(LL3+Vk) (3.14)
which is the expression for surface elevation above mean water level,

An interpolation scheme of the form Q = Rx + 834c is
introduced so as to produce a plane passing through the three points
(z-',7 ), (£,7) and (T,T-1 ). The interpolating coefficients may be

expressed as

Bl= Gz,:r = Qr-t,:\' : B = G::,:r = Q::‘:r-n co iR (3.15)
AS NG i

and are consistent with the expressions in equation (3.13). Introducing

the intervolation scheme into eguation (3.12) produces
2
L = Ly~ Z“_ = 2.5 %3 %- - ot (u'z,:r ‘u:-nzg V:.:’ = V;\:,:r—o) (3.16)

in which the finite difference expressions for %—"—‘ and ;-S'j have been
x

omitted to simplify the presentation.
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An alternative derivation for the solution of Z is to assume
that the ternms %ﬁ and %g are not unknowns and can be represented by
their finite difference approximations. Hence the solution is obtained
by combining only equations (3.5) and (3.6) and neglecting the particle

path equation. The characteristic solution for Z is therefore
= % Yy & -y (WL N LLPR Y.
Z L(Zs¢7.“) + % s(uyv“) 3( + bn)-At +4%.C (B 3)At(3 17)

Introducing the interpolation scheme transforms this equation into

2
7 = I/’.(Zz + z“) — 23-— A .(L‘Lr,s o= u.:-l,,A; V;,:’ 'V:,J-l ) (3.18)

which is equivalent to the finite difference expression given by
equation (3.16) provided Zg = %( Z,+2,). This equation suggests that,
at least for boundary point 5, the quantities %ﬁ and %@ can indeed be
approximated by means of their finite difference expressions (llzﬂ"

W, ,:)/AS and (Vg 3=~ Vg 3., )/&S respectively.

At boundary points 6, 7 and 8 the solutions may be derived

in a similar manner and have a form comparable to equation (3.18).

Open sea boundary points are responsible for generating
tidal waves (and surge waves if required) into the area of the model.
In the tidal problem such points ultimately establish harmonic
conditions throughout the modele. At this type of point the harmonic
displacement of the sea surface is specified while the velocity
components U or V or both remain as unknown dependent variables.

Considering a point with the configuration number-l as
typical of such open boundary points, the system of bicharaceristics

is as shown in figure 3.4,
SowwTioN PoiNT

oPen SER BOUNDRRY T T )
PoinT, =1

Figure 3.4
The system consists of all the bicharacteristics except number 3 and

so equation (3.5) is not included in the characteristic conditions.
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The remaining four conditions may be combined to provide a solution
for the unknownsU and V whilst eliminating the unknowrs %% and %

from the conditions themselves. As a result the solution becomes

u

"
¥
4
ol
N
(
N
—
&

é:(vl-v“) + 3.%%} Sl 3.E.At
g RS I T ) o SRS M R B %S.At - g.F,.at

with
Z = a.cos(ot) + H, (3.19)

The derivation of the velocity component V is identical to that given
for boundary point 1l.

The interpolation scheme Q= RAx+ By+C with the values of the
coefficients given by equation (3.10) applied to boundary point 1 is
also applicable to the present case. Incorporating this interpolation

scheme into the velocity equations in (3.19) produces

U= u.‘ + %_ (Z"‘l.) + C.At.(Vz',‘.-V ) 4.353%‘;.&{_ -S'F"'At

1,7-1
N (3.20)
 Sp i S'At'(r’.:,:rn 5 rl.z,:r—l) -~ g-F.at
2.08

In the previous equations the components of friction incorporated in
the terms F, and F, (in dimensionless form) are neglected at the open
boundary points since the tidal elevation whether measured or taken from
tables implicitly includes this effect. The velocities are therefore
computed from these 'fricticnalised' elevations and so explicit friction
terms need not be present.

In equations (3.20) the values of U, and Z, are interpolated
from the grid point values as follows (using Q as the general dependent

variable)
@, =Qg - cnt (G, -%(az,, * a,',_,))/ as (3.21)
where Qs = 4(Qz 7,7 @z3 ) = WAL(Rzy 5~ %( @y o, + Q2 3-))/AS
- Vo At(Qg 0y = @ y.)/ 288 (3.22)

It is apparent then that the particle path point 5 has coordinates
(-U.at, -V.at) relative to the boundary point under discussion. If
this boundary point is situated in deep sea the values of the particle

velocities will be very small compared to the wave celerity therefore
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the particle point 5 will lie very close to the boundary point. On
the flood tide (W>0) the convective displacement Xg = -W.At will be
negative and so the particle path point will lie outside the area of
the model., The situation is more satisfactory on the ebb tide since
W<Oand the particle path lies inside the model, Hence equatiocn
(3.22) is only strictly appropriate for an ebb tide situation.

Ideally the central difference expression U-At(af_,,,,‘ Qzoy,r )/2.a5
is required in equations (3.21) and (3.22) however the data at point
Qx-h: is unavailable and so a forward difference is used instead. As
a result of the position of the particle path on the flow tide this
forward difference is strictly not applicable and so an extrapolation
is required. If it is assumed that the value (g—‘:‘ )5 outside the model

is equivalent to the value (%%)5 inside the model then the respective

backward and forward differences may be equated
Si( Q + Q R <

)
I,3+]| I,7-) ) z-1,7 an,-: P ﬁ(at,sol" QI,:’-|)

&as o (3.23)

This assumption appears to be reasonable provided, as already mentioned,
the particle path point is positioned close to the boundary point.

Only then can equation (3.22) be considered a good approximation to

the exact interpolation of the particle path point on the flood tide.

In contrast, if the open boundary was positioned in shallow water where
the fluid velocities U and V were of substantial magnitude compared to

the wave celerity then a more accurate extrapolation scheme would have
to be devised.

The final type of boundary point to be examined results from
the junction between a closed and open sea boundary. A typical example
of such a point is shown in figure 3.5 and has the configuration number

"2.

SOLUTION PoinT

CLosgdD BOUNDARY

1,3'

MiIXED BOuNDRRY PoIiNT -2
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The boundary condition at this point is V=0 and since the total
elevation is a known harmonic function then the three unknown variables
are U, %—" and % o There are three bicharacteristics 1, 4 and 5 with
associated characteristic conditions namely equations (3.3), (3.6) and
(2.7}, Combining these equations so as to eliminate the terms %“-: and
%gives a solution of the form

W= u-v + %( Z- L,-z“-»-zs) + 3(2—'-;54%:)‘M - g.F, st
with V = 0O

=
Z = a..cos(ort) + H, (3.24)

Using the interpolation scheme Q= Hx*B\yC and taking the
values of the coefficients as those for a 'corner' point given in
equation (3.15), the interpolation of the intermediate points in the
above equation is straightforward. The final expression for the
velocity component U may be expressed in terms of rl by assuming the term

(Hg-H,) is negligible. Hence

w=Uu, + %(Q'q.l"’lu‘rls) - c.ab (Vg V::w) - g.F,.at
with as (3.25)

U= U, o + C.At.(li..:ﬂ_:-hl:':)
NG

n-k ar’ '1:,: = C'At(Q::;'q: :r-|)

0P AR ST e |
AS

P r[,‘, . u'At'(rl.:,.g r‘.zf)
A:S
The position of particle path point 5 on the flood tide has the same
convective displacement —W.At in the X direction as that of boundary
point =1, Hence the same assumptions regarding extrapolation have been

made for boundary point -2,

An analysis of boundary points =3, =5, -6 follows the same principles
governing the derivation of equation (3.24) and the final form is also

similar. For example the solution at boundary point =3 is

L=l v 2 (2m2,-2,02,) + g et )- g Roat
L (3.26)

a.cos (ot) =+ Ho
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With the boundary conditions formulated the next logical step
would be to examine their stability. However a stability analysis at
the boundary points is extremely difficult. One possible means of
analysis is to consider the Ryandiki - Godunov criterion although
Richtmyer and Morton (1967) have commented that it is 'fearfully
complicated', Unfortunately the condition is only a necessary one and
may not be sufficient for ensuring complete stability. The von Neumann
stability analysis is reasonably straightforward in its application
but does not account for the various boundary conditions and therefore
is not completely rigorous. It is notable that the C.F.L. condition,
by virtue of being applicable to any specific point, gives requirements

for boundary points in the same manner as for an internal pointe

In practice simple numerical tests have been used to establish
stability and consistency of the internal point. Once this has been
verified, any signs of instability on further application of the scheme
can only be assumed to originate from the boundary conditions. For
example in section 4.3.1 the internal point and boundary conditions were
stable in test 7. The same numerical scheme for the internal points was
used in test 8, Since the results from test 8 showed signs of instability

then this can only be attributed to changing the boundary conditions
from those in test 7.

Specific tests in Chapter 4 are aimed at establishing the
accuracy of the 90o characteristic numerical scheme by simulating
idealised motion and Comparing results with the governing analytical
solution. In these tests consistency of the numerical scheme with the
simplifying assumptions used to derive the analytical solution requires
that at all grid points numerical celerity be calculated from mean water

depth and that convective terms be removed from the prescribed character-
istic equations.

As an example of the accuracy of the 90° characteristic scheme,
the simulation of a two-dimensional seiche in test 41 (section 4.4.2)
gave results very close to those from the analytical solution. However
in test 39 a numerical scheme based on 450 characteristics reproduces
exactly the motion presribed by the analytical solution. The difference
in results obtained from the two schemes lies in the differing boundary

equations. Hence the 45° characteristic boundary equations are rresented
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in the next section so that the significance of their difference from

the 90° characteristic boundary equations may be better understoode

23 BOUNDARY E(UATIONS BASED ON 459 CHARACTERISTICS

The 450 characteristic equations as developed by Matsoukis
(1980) were shown by him to be theoretically superior and slightly
more accurate in practice than the 90° characteristic scheme. <t is
emphasised that both schemes have identical form at an internal point
and differ only at the boundary points. To formulate the boundary
equations, the 450 characteristic conditions must first be considered.
These conditions are obtained from equation (2.32) by taking values of

the parametric angle as

= B w  Axr
6, = 3 , 8, E s
= 3 5+27
Gy = I A 0# = 22

which correspond to the bicharacteristics shown in figure 3.6

BASKE OF THE
CHARRCTERISTIC CoNE

——

Figure 3.6

The characteristic conditions have the form

(2-2,) < V2 .c.(U-U;) - 2 .c.(V-V)) = -c.q.4Z (2 +2H
S At A (At') 2 ('A—t") 3 2.( X 5)
(3.28)
S - W W\ . VL. cq[-F-F
I(é Y x+f> 7 63( x v)
9-(2-2,) +J_;J=.c‘((l—u.1-)- _@.c.(%\lz_-) = —c.S.g(-%ﬁ +3H
ot At z ot % x y (5.59)
a3 Lo, v 5
-‘,:(Fi*éig+ax*‘a‘5) Z.cq-(R-Fy)

+ 2
SEDIE Sl o g < (%)= co (3L o)

Ot & At At (3.30)
..%;(E&& Wi N ¢ et + 2V ) = {%.c.j.(Fi+fﬁ)

X Y

°1<
(¥
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aE2 - 257 -\/’_;7:_ o) 4 % e (V-Yy) = cg. ﬁ.( M 4 _w

dx b_\j
~C (A LM W LY _JZ gy (3.31)
T(z\x*s's*_g; 'g;g) e (= #R)
and the particle path equation is
- ~- WV
3(1 Zg) = c (e + X (3.32)

The derivation of the #50 boundary equations is similar to
that for 90° characteristics. However in the former case the partial
derivatives are this time treated as known variables. This assumes
that the interpolating coefficients A and B are close approximations to
the partial derivatives which is reasonable provided the grid size is

sufficiently small,

Consider again boundary point 1 with the boundary condition
U = O and the 450 bicharacteristics as shown in figure 3.7

SowuTion PoinT

T, 7+

\.CLOSED BouNDARRY
POINT , 1

Figure 3,7
There are two bicharacteristics available (since the particle path is
not really a bicharacteristic) and two unknown variables Z and V. Hence
by adding and subtracting equations (3.29) and (3.30) the respective

solutions for Z and V are as follows

2= (zp+2,) + %%(uz"us') & J%(v:"-vl')
BVl i | & :
A S)A +%.C.At.%t}( (3.33)
= aty) - B (ugeily) c E -2 (2502

= 2

a - Ve b g

l

‘:’:.c.At(éLL + §_\!) 3 3.A.t.3
Z b:’ AX

o]
(¥ <

These solutions have been obtained without the involvement of the particle
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path equation.

With the interpolation scheme @ = Rx + 85~C and the co-

efficients given in equation (3.10) (where A and B are approximations

to 13; and %% respectively) the following expressions are obtained

” \ = - J—_L— é& - ﬁ- b_&

c. 3 - e 3% < ¥ At bs + u.s
L R Al vZ W -

Wy = ¢ % A.t.-; + ¢ T'At'ig +Us  (Us=0)

hence &5 k R - ]
(U, +Uy) = -5 5 4 at
a

similarly Z

—c- -— ' - -} i —a~v' .
o b e G il
With these substitutions in equation (3.33) and taking %}i= o for
convenience of presentation the solution for Z is

I e Al % £ 3
= : 3 e ) S~ U P S -
Z 2 ( c A 7, ) 3 A A 3 55

which may be written as

-
ZLw % (1 "zg‘) i %'At'['/z(u':,;rﬂ hi u'I‘J’-I)- u‘z-l,:)J/AS

kS
c:
gt AR e PR (3.35)
and has a form similar to its 90o characteristic alternative (equation

(3.11)).

Equation (3.34) may be expressed in terms of ] as
. a2
Ve E(Ve e V) - E(uy-uy) 2 ey - N
2 URIRY! | G TS
z ’-'At'(—a Bx) 3 X (3.36)

The interpolation scheme gives

Sl 1 v vz .V
Vp o= Vg Z.C.At. b & 1 c.at 55
ety . M e at W L VI o At W
3 5 2 dx rd 53
' . Z Y
hence /:L(V,_--vV}.) = \/5 = Z'C'At' b
\ VZ
and similarly 4 (U, - Uy) = F. coat 3

<



Substituting these terms in equation (3.36) gives

bl T 3'“’['1-1.3*! ¥ FL,‘,_.]/LAS - g-at.F (3.37)

which is equivalent to the velocity expression for an internal point

and also to that derived using 90° characteristics,

Both 90o and 450 characteristics yield solutions at the
boundary points where the absence of certain bicharacteristics causes
the solution for total elevation to be formulated in terms of the
characteristic path points. This contrasts with the solution for an
internal point where the form of the equations indicates that the
solution propagates along the particle path. It is therefore at the
boundary points that the characteristic conditions have their most
important role and hence the importance of establishing a method which

considers the correct position of the bicharacteristicse

The boundary point with a configuration number of 5 is typical
of a 'correr' point which has as boundary conditions U=0,V=0, In
figure 3.8 the single bicharacteristic is depicted and its character=-

istic condition (equation (3.30)) provides the solution directly for Z.

SoLuTioN PoINT

CLoseD BouNDARY
/ PoinT 5

Hence

(3.38)

Interpolating for point 3' using the equation Q&= Rx+By+C produces

=
Ry t= 0, - %-C-At.%% ~ %.c.at.% (u.5=o)
Vy = Vg = %.c.at.%/( - J%.C.At.%yg (Vs=0)
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which combines to give

N .. G g e S W LWV LW
7 3 (u3‘+v5l)= { —3- At(s-x *,6—3 +.S,x.+.8_5)
Substituting this expression into equation (3¢38) and expressing
VZ M L2 =
% . c.at. (S§ + f%) = Hg-Hy
results in

kS
- S - W
{ W P 5(bx+33)'At
With the coefficients of the interpolation scheme taking the values

given in equation (3.15) the solution takes the final form

kS
T T 'g' - at (u‘:.:r N u—z—u,:A; Vis v‘*."‘) (3.39)

where C"/S ® Le.y

In equation (3.39) the form of the difference expressions is identical
to equation (3.16) however the latter equation was derived using the
approach whereby the partial derivative terms were considered to be
unknown. The equivalence between the finite difference expressions in
both equations using two different approaches suggests an equivalence
between the partial derivatives and their finite difference represent=-

ationse.

Consider now the set of open boundary points represented by

configuration number =1 with its bicharacteristics as shown in figure

3°9' SoLuTION PoinT

OPEN SER BOUNDRRY
POINT =L

Figure 3.9

Since the surface displacement Z is a known harmonic function the
characteristic conditions along the two bicharacteristics may be
combined to give solutions for the unknowns W and V. The solution for
the V component of velocity is formulated by subtracting equation

(3429) from (3.31) to give
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= . - ” Yz .9 o !i MW, W
v y”(vl +V“.) ji(un' u's’) 2 'c'.'(q I’l_) CAt( 3) (3.40)
By introducing the interpolation scheme @=FHAx+By+C with coefficients

given by equation (3.10), the solution for V becomes

i im VS g 3'At'(q,:,:r¢| = rl,:.,:-( )/Z,AS

This expression is identical to that obtained by considering 90°

(3.41)

characteristicse.

In the same way equations (3.29) and (3.31) may be added to

produce the solution for U namely

W= (U ly) + % (Vo) + 2 4 (22-2,-1,) (3.42)
N3 M. 3y
-o-j-At-%?( + %.C.At.('g%( 53)

A further development is to incorporate the particle path equation
(3.32) to give

= E(L ) (Vv) R R (202, -2,-0) gt (5

The values at the intermediate points 1 to 5 may be expressed in terms

of the grid point values using the interpolation scheme as follows

S L
vy oV
15_(\4. - v“,) = Z . at . %_‘j , P

5 o B A RS P %-cAt %7;

As with the 90° characteristic scheme at this boundary point, the inter=-
mediate point 5 will lie outside the model during the flow tide. The
assumptions mentioned previously regarding the extrapolation procedure

are also applicable to 45° characteristics.,

Finally, the boundary point =2 is examined since it represents

a mixed oper and closed boundary system. The boundary conditions are

ré
V = O

so the only unknown is the velocity component U, Its solution is

a.cos(dt) + H,

obtained from the characteristic condition (equation (3.31)) directly

by considering the bicharacteristic shown in figure 3.10.
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The solution for U is therefore

W= U=V, + (’l Me) + (H H )+\ficat )SU,‘%QS Y 35)@-‘*/)

With the interpolation scheme Q= Hx+35+c and the coefficients given
in equation (3.15) the values at the intermediate points may be

expressed as

Z W Z
Uyimid, + F.c.at. 3k o h.ciat %.g
V“' = \/5 + J—E'-C. at %{ - Jl;_ c.AtE..g (V5=O)

If the term (H-Hg) is neglected then the interpolations transform
equation (3.45) into

u = L. + {géﬁ (q-‘llu‘) o R, At.(]§% + %%S)

which may be written as
2 JZ
U = u's S (YL l’l ) =i At( :nl,:"u't,: *Vf.-‘l"v:,:'-t) (3°l+6)

HS
The essential feature in deriving this and the other solutions

at the boundary points is that terms such as gg‘é! appear in the
characteristic form of the solution which subsequently cancel with the
terms In the interpolated expressions for the intermediate points.
Hence the final form only contains terms such as %% and %§ which may

be expressed in terms of the grid points.
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3ot CONSTANT DEPTH CONSIDERATIONS

The simulation of a two-dimensional seiche in a frictionless
basin of constant depth provides a good illustration of the success or
otherwise of the integration and interpolation procedures based on
either 90° or 450 characteristics. The results of the tests using both
numerical schemes are presented in section 4.4.2 and suggest that the
45° characteristic scheme is the only one which can successfully
reproduce the analytical motion. The greater accuracy produced using
a 450 characteristic scheme compared with a 90° characteristic one can
only be attributed to the boundary ecuations since only at these points

do the numerical schemes differ,

The analytical solution is only produced when the numerical

scheme is linearised and when boundary point 1 has the following

equations
l = Z‘o b Ha'At'[&(u"I,‘r-&l = u’x‘:.) e u’x-x's J/As
= Hoat. [ Vo oy = Ve 2y ]/ 2-48
V=V, - q.8t.(n, . - Nes-)/ 2-85 (3.47)
Ww=o0
where Z, = ’f,( Prgar ¥ g o * & Z:_,_,) (3.48)
Yo = ‘{‘(V:,:ﬂ %] V:,:r-l 5 7"\/:-1,:) (3.49)
and when boundary point 5 has the following conditions
o B = MRk T Sl e - VI‘,_,)/AS (3.50)
W=V =0
where Zo = 8 (ZI_,,’ + Zr,:’—u) (3.51)

It remains now to show that these btoundary equations can only be derived

) - . . ° 2 . 3
from 450 chnaracteristics and not from 90 characteristics.

It has already been mentioned that the CFL criterion is not
merely a stability condition but at its limit gives the relationship
between numerical and physical celerity. In x-y-t space this relation-

ship is ¢ = %'ﬁ—i‘ and it is essential that this condition is maintained
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so0 as to ensure an equivalence between the numerical and physical
celerities. Therefore to accurately simulate two-dimensional seiche

action the numerical timestep must be calculated as at = %% -4s.
: c

Consider now the base of the characteristic cone at boundary
point 1 obtained from 450 and 9Oo characteristics in figures 3.11(a)

and 3.11(b) respectively

I3+l I, T+l
2
T -1, T 3 2E=2.T
N a
E b
I,7-| ; 2,7-
As
———

Figure 3,11

By observing the CFL criterion the domain of dependence of the
differential scheme (the cone) is, at the limit, tangential to the
domain of dependence of the difference scheme (the rhombus shown in
figure 3.11). However only in the case of 450 characteristics do the

base cf the bicharacteristics lie at the tangent points.

o = fokd : )
The 45 characteristic solution for surface elevation

(equation (3.325)) has been derived as

2
- lﬁ(zf + 15') ¥ %'At'(li<u'x)3’-l s u'z,:r-l)"us.-u,:r)/As

- _6.3_ - at. ( Vi ge1 = vz,,_,)/ 2.45

This equation is in fact identical to equation (3.47) providing

A (:Lf > zéi)
Now by interpolating

»

% o ek A2 Z 1
- IR S SR o = » I.c.at.gi
NpS 7
G Kl Al —:-‘-“?g

and 23= Czunder linear considerationss.
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Hence ’i(Z,zv-;Z_B.) = Zs = %'c.bt.%

Since the CFL limiting timestep is used

)

7:- C.At .= éi's'

and from the interpolating coefficients

Zs % }i(zz,:n £ Zz,:—n)
A ;
¥ (é(zz,iu z'r.,:rq) z':-n,-.r)/AS
Therefore
z ) :
Z.- Tocot. B = S 2g i 2ea,) - 808 ( 200 2, )2 )
and so
%(z,+2,) = '/u(zr’w T B X Sty

as reguired.

Starting from equation (3.36) which is the characteristic
solution for V and assuming that (UZ' - U3') is negligible at boundary
point 1 and also that the motion is irrotational so that %% ™ %“i o

then it is easily shown that

'/7"(\/1.' 5 Vs') = % (Vz,:rol % v:,r-n 98 L'Vx.-n,:r)

and the solution for V in equation (3.47) is obtained.

It is now shown that the 90° characteristic scheme cannot
form the required numerical scheme given in eguation (3.47) for
boundary point l. Starting from the term Z, in equation (3.11), the

interpolation scheme gives

_Z

zZ, = v c.At.g;

which may be written in terms of the grid points as
Z
Z, = !{'(Zz,rn i z:,w-n) & -f( L(Z:‘su ¥ Zr,g-u) i z:-n,r)
With c.at= %"_-:.As from the CFL condition the final form is
23 = K((z-ﬁ)‘(zt,S%I 54 Z:,s.q) . L"ri' ZI-I,J’)
which is different from that in equation (3.,48). It is precisely this

term Z, that causes the 90° characteristic scheme to differ in

: g o) Ry
construction from the 45 characteristic schemeo



64

A similar analysis is now performed at the corner boundary

point 5 by considering the bicharacteristics as shown in figure 3,12,

R T e e o T F
’ : I J;T t : 1 T
, Z.c.n 1 ‘
a ’ v L1 c lat
3 JHEHN
LA I 3-) £ 2,31
AS X AS
() (¥)
Figure 3.12

Again only the 45° characteristic coincides with the point where the
difference and differential schemes are tangent and where a solution is
possible (figure 3.12(a)s The 45° characteristic solution for surface

elevation at the corner point has been shown to be
S

ol S e S Sp O R

3 3 % I-1,7

which is equivalent to eguation (3.50) providing 2= 2,

N B -z 8L nia

ow 23._'2_5 T -c.at. 35 J—%—-.C.At.%

obtained from the interpolation scheme. Inserting the interpolating

coefficients gives

A e % eat . (z,zlT » Z_:_h._,)/AS - i;?-.c.At.(Zm- z:,,_,) as

= -
Since the CFL limiting timestep is used %~c.at = %_-5- and so

= 4
2'3 2“( Z:-n): t Z:,:r-n)
as required by equation (3.51).
Similar considerations given to the 90° characteristic solution

(equation (3.16)) namely
(S

Z=Z,+2,-2;5+ % at. ( u‘:,r * u‘z-l,: 2 Vx,ﬂ’ 2 VI,”‘)/AS
shows that

S e D R K e c.At.%é
Inserting the interpolating coefficients yields

Zy¢2,-Lg = Z, . -cat. (2, ,-2,.,,+2Z,.-2;5,)/AS

Since c.At = J_;’;.As from the CFL condition then the previous expression

~ catifs - 2,
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gives something quite different from equation (3.51).

It is apparent then that at the boundary points the form of
the solution depends on whether 90o or 450 characteristic equations
are used. To reproduce exactly the analytical motion for the two-
dimensional seiche the CFL condition must be adhered to in determining
the numerical timestep. Additionally the correct solution is only

obtained by taking characteristics at 1+5° angles,

It is worth considering at this stage the effect of the inter-
polation scheme in modifying the characteristic equations at the boundary
points 1, 2, 3 and 4. Until now only one linear interpolation scheme
has been used to derive the final form of the boundary equations at
boundary point 1. The interpolation scheme (known as interpolation

scheme 3) is of the form Q=RAx+By+C and has the following coefficients

R = (}i(az‘:ﬂ-u i qz‘r-n) = Qg-|,:)/As
B = (az,:ﬂ 5 Q:,:r-l )/Z.AS
]
Lot '5-(az,:r-n i QI,J‘-I)
From this interpolation scheme, equation (3.37) was derived at boundary
point 1 which under linear, frictionless constant depth conditions

becomes

V=V, - 3'“'(%,,,‘ o M7 a8 (3.52)
(3.53)

where ¢ = '{(Vx,:m - v-:,:-u)

It has been shown that interpolation scheme 3 applied to the character-
istic velocity equation (3.26) under the same conditions also produces
equation (3.52) however V, takes the form

S '{r(v:r.,:r-u o v:,:r—l w2 V:,:r-n) (3454)
There are therefore two different forms of the solution for V, and
hence for V. It is found that in the case of an 'x-t' seiche in a
basin of constant depth that the analytical motion is produced only when
V, has the form given in equation (3.54). This also means that at
boundary points 2 and 4 the correct form for U, in the eguation

W=, - 3'At‘(n.:«,:r- rl-r.-.,:)/z"bs i

must be

W, + 2, ) (3.56)
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Under constant depth considerations at boundary point 1 the correct
form for V_, (equation (3.54)) suggests an interpolation scheme
Q=Rx~35~c with coefficients

R=20 ) B=0 C = ‘ﬂ'(az,:rn" Q’.':,“‘f Z.Q,_\',)

!

where Q represents the dependent variables Z, U and V. This interpol-
ation scheme which is only applicable in constant depth configurations
(with the numerical timestep calculated from the CFL condition) is known
as interpolation scheme 1. Its incorporation into boundary point 1 and
its corresponding form incorporated into boundary points 2, 3 and &
represents one necessary requirement for the successful simulation of

the one and two-dimensional seiche motion in a basin of constant depth.

For the general case of an irregularly varying sea bed and
under non-convective flow conditions the solution for the velocity

components U and V at an internal point has been shown to be
=W, -g-at (U, _ - ux_l',)/z.as

where |, = 4 (u':n,-: Y u'z-n,:r " u’z,:m o U.,),_,) )
Vam NG & 3'At‘(vz,rn % Vz,,,l)/.?..AS

where V, = % (V + v + V + V

Tal,z -7 x, Tl x,7-1 )

On comparing this scheme with those derived using interpolation scheme 1
it is avparent that at boundary point 1 (or 3) the boundary conditions
given in equations (3.52) and (3.54) are consistent with the V =
component of flow at an internal point., Similarly at boundary point 2
(or 4) the becundary equations (3.55) and (3.56) are consistent with the
U - component of flow at the internal point. This suggests that the
boundary conditions given by eguations (3.52), (3.54), (3.55) and (3.56)
are the correct form for flow in channels of variable depth as well as
for constant depth.

Interpolation scheme 1 may be viewed as providing expressions
only at the particle path point (um'V.). It does not provide a means
of interpolating at the intermediate points where the bicharacteristics
lie. However the solution for the total depth at boundary point 1 is

given by equation (3.35) in terms of the bicharacteristic points. In

such a case it is perfectly correct to use interpolation scheme 3 since
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for elevation this interpolation scheme is the general form of inter-
polation scheme 1, and gives an equivalent solution for elevation as

interpolation scheme 1 for channels of constant depth.

To summarise then, the solution in a channel which is not of
constant depth is obtained by using equations (3.52), (3.54), (3.55)
and (3.56) for the velocity components which are based on interpolation
scheme 1 while the total depth equation must be incorporated with inter=-
polation scheme 3., This arrangement is termed interpolation scheme 4
and is shown in test 26 (section 4.3.3) to produce the most favourable

results of all the tests used to simulate a forced oscillation in a

channel of linearly varying mean depth.

The remaining linear interpolation scheme that is considered
in the present investigation has at boundary point 1 for example,

coefficients of the form
H 3 (Qz,:' 4 QI-I,:)/AS
(Q:gwn‘ Ggrq)/l'ﬁs

oL

It is shown in Chapter 7 that this interpolation scheme (interpolation

B

scheme 2) is preferable to the other schemes when the coastline is very
irregular. A possible explanation for the success of interpolation
scheme 2 and the limitations of the others in a real situation is
suggested in section 7.3.2. Interpolation scheme 2 may be viewed as a
scheme constructed out of the necessity for results close to the physical
prototype with less regard for its mathematical verification. In contrast
both these requirements are fulfilled when using boundary interpolation
scheme 1 for constant depth channels and also when using boundary inter-

polation scheme 4 in channels of linearly varying mean degth.

3.5 TEE METHOD OF SUBDIVISIONS

Any improvement of the characteristic numerical scheme must
first involve an understanding of the fundamental mechanism by which
simulated waves are propagated through the grid along the bicharacter-
istics. Only then will any limitations in the scheme become apparent
for further examination and rectification. With this concept in mind,

the simple case of a unimodel seiche in a closed basin of constant depth
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in x-t space is now considered,

It has been shown in Chapter 2 that to maintain stability a
timestep must be selected that is less than or equal to that prescribed
by the CFL criterion. it is now‘shown that consistency considerations
between the numerical and physical processes require that the timestep
be the maximum permissible value obeying the CFL condition. Furthermore
a timestep less than this does not improve the accuracy of the simulation,
in fact it reduces it. Consider the characteristic paths in figure 3.13
representing wave fronts in a one-dimensional seiche in a channel of

constant depth and hence constant celerity

AS DS
{ L e
A o ' Bt at
X
c 1
A e T e Ser Tl TAE e
i e
| . ~
At e bk
[ i) | e t
I-1 b3 I+l S
Figure 3.13

The solution at point O is formulated from the superimposition of two
waves of celerity C travelling in opposite directions along the x=-axis
and meeting at point O. In numerical terms the solution at point O at time
t+At is obtained from the two characteristic paths originating at points
I-1 and I+l and travelling with a numerical celerity %%, The numerical
scheme must therefore be constructed so that tidal waves propagate with
celerity'gs and this should be as close as possible to the physical
celerity ¢ to maintain an equivalence between the numerical and physical
processes. Ihis relationship is precisely that given by the CFL
condition at the limiting timestep ie At = %5_’. If a timestep at' is
selected such that it is half the value of the maximum timestep then

the solution will be reguired at O' as shown in figure 3.13. This
implies that the characteristics originating from I+l and I-1 propagate
with computed celerity %ﬁ; which is twice the physical celerity. In
this case physical consistency is not maintained. In section bob,1,
the simulation of a one dimensional seiche in x-y-t space using tests
35 and 37 verify that the analytical motion is only achieved when the

timestep is obtained from the CFL criterion at its limiting conditione.
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The results in this section suggest a decreasing performance on
reducing the timestep in each test. The conclusion is obvious, once
the spacestep has been selected there is only one value of timestep At
appropriate to the problem. A greater value than At causes instability,
a lesser value leads to inaccuracy. This conclusion applies in any

number of space dimensions.,

Now consider the previous seiche motion in x-t space only
now the bed slope varies linearly. To preserve the stability require-
ments the computational grid must be based on the maximum depth in the
channel., Hence having selected a suitable spacestep, the timestep is
obtained from the CFL criterion At= As/c"“ where C,_ = (3HH"))’: .
At a point along the channel where ¥{<kﬁmxthe arrangement of character-

istics is as shown in figure 3.14

o S o)
A
=i 7w
at » !
at // \\\ |‘ %‘% = c'mnx
t
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| \
I={ =3 1 g+l
[ .G-Bt L as L
Figure 3.14

The solution at point O' can be expressed directly in terms of the

characteristics originating from grid points I-1l and I+l., The solution

is as follows
-

Z o~ %f2., = Z‘“) - %-Atl_<u,;“- &:_|)/Z.A$ (3.57)
W= (U, «U) - gt (z,-2._,)/288 (3.58)

However the constraints of a regular grid require that the solution

be obtained at point O. At such a point the characteristics are assumed
to emanate from the intermediate points 1 and 3 and not from the grid
points I+l, I-1 as in the previous case. To obtain a solution at point
O the values of the dependent variables at points 1 and 3 must be

obtained by interpolating between the known values at the grid points.

The solution at point O is

z:ii(z,+z,3)-'4_-%.(u|-u:) (3.59)
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o= afnsu,) - 1.2 (0, -n,) (3.60)
and a linear interpolation scheme § = Ax + C with
e (Qtwl % Qz-|)/ o C = '/z,(Q.,_“ ; Q"')
transforms the characteristic equations into
; e ( cat
z = /"(z'x.ﬂ 3 1;-|) B I/z' 3 ( AS (u':n' u'z-| )) (3‘61)
S & Bk
u' z'( u'i-fl i u’t-\) R 1/2. %( AS (rl‘“‘ rlz-| )) (3062)

A comparison of these equations with equations (3.57) and (3.58) shows
that the only difference is the value of the timestep, nevertheless the
solutions are different. In equations (3.61) and (3.62) the term %K%t
denoted as & is known as the 'courant number' and represents the ratio of
celerity at point O to the maximum celerity. The expression (1-8)
provides a measure of the degree to which interpolation is required at
each point. It is apparent from the geometry of the characteristics
shown in figure 3.14 that the characteristics at point O arrive ahead of
the characteristics at point O' by (i1-8§ ).Aslc time units too soon and

as already mentioned the solutions at both points are not equivalent.
The extent to which an interpolation scheme poses problems in

the case of variable celerity may be better understood on considering

the propagation of characteristics in x=t space over several time

increments as shown in figure 3.15.

SRS
3(1-%).a8
z P

Figure 3,15
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Consider a true disturbance, travelling with a celerity ¢ and represented
by a negative characteristic at peint B which arrives at point P', 1In
numerical terms the disturbance at point B is transmitted to point P
through the series of 'broken-line' characteristics which employ the
interpolation scheme. After three successive time increments the
interpolated characteristic arrives 3(1-8).a8/c time units too soon in
front of the true physical disturbance. The numerical wave front
represented by the broken-line characteristics has in fact been generated
at a celerity determined by the grid parameters (which is the maximum
celerity in the channel) and is not equivalent to the celerity at point I.
From the symmetry of the figure it is also apparent that a similar

argument is valid for positive characteristics.

The problems associated with a regular mesh of grid points
applied to the case of variable celerity as a result of linearly
varying mean depth manifest themselves in theform of numerical atten-
uation. The tests in section 4.4.3 provide ample evidence of this
attenuation. However it is notable that the method of characteristics
indicates how attenuation might occur by showing that disturbances may
be wrongly propagated through the grid. These erroneous disturbances
or 'ghost characteristics' are shown as dotted lines in figure 3.15.
The generality of this figure also implies that reducing both grid
parameters will not improve the simulation.

Numerical attenuation was also found by Wiggert and Sundquist
(1977) when simulating free wave motion of variable celerity using the
method of characteristics with linear interpolations and a regular grid.

Their error analysis suggested that a measure of the propagation error

may be expressed as

B, o n
'—C—“ n-(1-%) (3.63)

where n is the number of subdivisions of the spacestep. (Note that
n=1 for the grid shown in figure 3.15). The term & can be regarded
as a shifting operator brought about by the need for interpolation. Its
affect on the total error can be reduced according to equation (3.63)

by increasing the value of n. The emphasis is only on reducing the
error since N would reguire to be very large to remove the error

completely. A large number of points over the spatial domain is impract-

ical with the present computer facilities.
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The ideal computational grid would be one with a flexible
spacestep which could adjust to ensure that at each point the domain
of dependence of the difference and differential schemes were
tangential to one another along .the characteristics. At present this
situation only occurs in cases of constant depth where there is one
fixed celerity. The method of subdivisions attempts to approximate
the ideal state in chznnels of variable depth whilst retaining the
advantages of a regular grid for example the convenience of having
results at equidistant points. The method aims at ensuring that the
characteristic paths are positioned in the immediate vicinity of the
grid points so that the error associzted with interpolating (1~-%)
is reduced. By considering once again a channel of linearly varying
mean depth in 'x-t' space with emphasis on the movement of wave fronts
as depicted by the characteristics, the advantages of the method of
subdivisions in comparison to former methods become apparent. Consider
the characteristics at an internal point in a channel where the space=-
step AS is divided into three equal parts as shown in figure 3.16,

l
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Figure 3.16

It is obvious that in subdividing the spacestep and so increasing the
number of grid points, the feet of the characteristics will be closer
to these points than before. The error in interpolating from these

i -§) i e - c.at - et o i
points (1=8) is now reduced from | =s to |- &, wherem is the

minimum number of subdivisions required to form the domain of depend-

ence of the difference scheme at a given point. Another advantage of

this scheme is that since the characteristic paths are close to the grid

points, the characteristics at one time level will follow on closely

from those at the previous time level. Thus by using a method such as
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this, the characteristics are more continuous and therefore there is
less possibility that 'ghost characteristics' are being generated,
However it would not be expected by using only three subdivisions

of the spacestep to entirely remove this unwanted processe
In considering the method of subdivisions in 'x-t' space the
CFL criterion at = As/c.n“ is still valid and may be written as

PO AeqfIRa | 1) Yy (3.64 )

= mAX

It is an interesting sideline of the method of subdivisions that if As'
is given the value of As, and if n=3 then equation (3.64) produces a
value of timestep, three times larger than that given by at -Aslc o
In such a case the timestep has been amplified instead of subdividing
the spacestep yet no violation of the CFL criterion has occurred. The
possibility therefore exists of performing computations using a larger
timestep than that required with a regular grid without subdivisions.
This feature is examined in section 5.6.3 for wind surge propagation
on a shelf with linearly varying mean depth. Again the advantage of

more continuous characteristics using subdivisions is evident from

figure 3.17
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Figure 3.17

The method of subdivisions outlined so far seems an attractive

proposition, however near the boundary points its implementation is

rather more difficult. This is especially true as the number of space

dimensions increases and this author has found no publications

regarding this problem in x~-y-t space although Vardy (1977) has presented
details in 'x-t' space. Consider now a typical boundary point in 'x-t'
space with three subdivisions of the spacegrid as shown in figure 3.18.
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At the boundary point I the solution can be obtained directly from back=-
ward characteristic in the usual manner however at grid points I+1l,I+2
the forward characteristics intersect the boundary along its time axis.
At these points the characteristic equations (3.61) and (3.62) are not
applicable since they are derived from forward and backward character-
istics originating at one time level. Considering point A, one possible
means of obtaining a solution there would be first to obtain the values
at point A'by interpolating from the known values at the boundary point
at times t, and t,+at . The position of point A' can be obtained by
assuming that the forward characteristic has a celerity given by the

average celerity between points I+l and I at time t,. The character-

istic equations would then have to be revised to include character=-
istics generated at different time levels within a given timestep. This
method is extremely complicated in x-y-t space and so was not attempted.

Instead as an initial investigation of the method of subdivisiéns a

simple linear

to obtain the

The

interpolation applied between the points P and Q was used

values at A and B,

interpolation scheme incorporated into the numerical scheme

for two space-dimensions is now outlined. Essentially it consists of

assigning at each grid point, an interpolation number in accordance
with the particular way in which a bicharacteristic intersects a boundary

point., If there is no intersection then the solution at the vertex of

the bicharacteristics is calculated in the usual manner and the grid

point given the interpolation number 0. Each point is examined at any

given time level to establish the grid points required to form the
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domain of dependence of the difference scheme thzt encloses
the differential one. The limiting condition is obtained from the

CFL criterion namely

zZ i
A¥ = o n.aAs
cmﬂx

and is depicted in figure 3.19 for three subdivisions

Figure 3.19

At any point in general the difference domain will require to extend

a distance JZ.c.at along the x and y- directions. The length of

this path in relation to one subdivision is therefore ff.c.at./As'
and the nearest integer m greater than this value indicates the number
of spacesteps of size As' required to form the difference domain of
dependence. The number of spacesteps incorporated into the difference
domain varies at each grid point according to value of celerity and
takes values of 1, 2 or 3 measured from the centre of the domain.

At eacn grid point and from the knowledge of required number of
spacesteps m to form the difference domain, conditions may be written
to establish if the spacesteps lie within the model. If the space-
steps are not available the grid point is assigned an interpolation
number and the next point considered. A typical example of a number
of grid points with their allocated interpolation numbers is shown in

figure 3.20 and represents portions of the channel
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Figure 3.20

Figure 3.20(a) represents the situation near the boundaries in deep
water and the non-zero interpolation numbers show that at most points
the bicharacteristics intersect at least one of the boundaries and the
complete difference domain cannot be formed. In figure 3.20(b) the bound-
aries are situated in shallower water and so only at the grid points very
close to the boundaries, do the bicharacteristics intersect one of the
boundaries. Having found solutions at all points with interpolation
number O at a given time level the non-zero points may be returned to
for the interpolation. The form of the interpolation is indicated by

the interpolation number itself. For example at interpolation point 2

the interpolation is

Q = 3.4 = %'Qz-z,:r

3 41,3

and at interpolation point 6 it is

> %
Rexr = ¥ Qz«n,-.rn ' 3'Qr-z.,:r-z

The interpolatiorsin this form are somewhat imprecise,

and were only constructed because time did not allow
In

and so on.

theoretically,
the formation of a more satisfactory solution near the boundaries.

its application, care wes taken to ensure that the grid spacing was small
in relation to the problem so that the interpolations are not applied
over too great a distance. In this way the method of subdivisicns in its
present form was found to reproduce the analytical solution for an 'x=-t'
seiche in 'x=yt' space. The method is also shown in section 4l4.3 to have
some success in simulating the same phenomenon in a channel of.ﬁnauix

varying mean depth. In this case however the method of subdivisions can
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only reduce the error in interpolation, not completely remove it and

as a result attenuation still occurs. This error may be more precisely
defined in x-y-t space as an inability to form a domain of dependence

of the difference scheme that encloses exactly the domain of dependence
of the differential one throughout all points in the channel. Initially
the numerical schemes which were programmed in Algol - 60 were run
using a George 3 teletype system linked to an ICL 1904S computer housed
at the University of Strathclyde. The programs were written in a
general manner to allow their application to simple and more complex
schematisations. The individuality of each problem was maintained by
keeping the particular information of each case on separate data files.
For the more complex configurations (presented in Chapter 7) involving a
large number of grid points, the program required over twenty minutes
computational time to complete one tidal cycle. Since the computer
department operated a batch mode system giving priority to shorter
programs, this inevitably led to a slow turnover of these programs
during periods of peak demand. However by March 1979 it was possible to
access the more powerful IBM 2980 computer at the Bush Estate, Edinburgh.
To improve the program's efficiency it was rewritten in Fortran, the
information being relayed from punched cards. As a result the computational
time for subsequent programs was reduced by about one-tenth of that
using the 1904S. It had been hoped that the factor would be about one-
fortieth but this was not so because of the difficulty in outputing
results using Fortran. format of results which printed suriace elevation
and velocity components to coincide with the position of the respective
grid point had been used simply and effectively in the Algol programs.
In Fortran, two dimensional arrays of results cannot be printed using
only one control statement, consequently the array must be printed row
by row using a do loop. Also to obtain a format which represented the
arrangement of grid points, meant describing the elements of the format
statement and combining these elements in an array according to the
configuration number. This involved long lines of programming and so

increased the computational time,
The VME/B system used on the IBM 2980 also operated a batch
mode system which even on this computer became overloaded with users'

demands for machine time. The situation was drastically improved by
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January 1980 when an on-line VDU system became generally available to
all users. From then onwards a significant increase in the turnover

of programs was produced,



e

CHAPTER FOUR

THE SIMULATION OF LONG WAVE MOTION

IN CHANNELS OF SIMPLE GEOMETRIC SHAPE

L,1  INTRODUCTION

To establish that the proposed numerical schemes derived in
Chapter 3 are capable of providing reliable information, two fund-
amental issues concerning the accuracy of these schemes must be
resolved. Firstly, one must show that the numerical integration
scheme can successfully solve the differential equations and secondly
that the difference equations combined with the initial and boundary
conditions can define the physical phenomenon. Only then is an
equivalence between the physical process and the numerical model
established. Testing the ability of the model to integrate the
differential equations is mathematically related to the concepts of
convergence, consistency and stability. For example, one of the
requirements of the integration of the difference scheme is that it
is equivalent to the solution of the differential one as both space
and time increments tend to zero. In practice this requirement
becomes difficult to implement as a result of increased computational

time with successive decreases in the spacestep and timestep.

Application of the numerical model directly to an idealised or
real situation and comparing the model's results to theoretical
formulae or recorded data is the commonest form of testing a numerical
model. By selecting a channel in which the geometry is easily defined,
the boundary conditions can be accurately represented in the numerical
scheme. By simplifying the boundary problem the effect of the
integration and interpolation schemes can be investigated more
confidently than for a complex schematisation. Unfortunately an
assessment of the effect of the integration scheme cannot be made
separately from that of the interpolation scheme in a direct way but
it can be achieved by comparing the effects produced by changing

either scheme. The distinct advantage of simulating the motion
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produced in a simple channel is that the analytical expression, if
known, provides the elevations and velocities atevery position in
the channel at all time levels. This information is useful when
comparing it with results from the model. The analytical models may
not be totally representative of the real conditions but are never=
theless valuable as a method of verifying that the numerical model
is competent in solving the differential equations. Only after this
has been established can the same equations in the numerical model
be applied with confidence to real situations in which the testing of
initial and boundary conditions will be more rigorous. If this step
is successful the model is then capable of reproducing the physical

process and an equivalence exists between the numerical and physical

operations.

L,2 THE ANALYTICAL SOLUTIONS

The derivations of the analytical solutions are presented in
this chapter in order to emphasise the correspondence between the
simplifying assumptions used in producing these equations and the
requirements of the numerical scheme when simulating x-t flow. These
relationships are stated later in this section and are better under-

stood once the analytical solutions are derived.

Consider a narrow channel of variable rectangular cross section
of width B and depth H, the x - axis is taken along the length of the
channel with its origin at the head. The propagation of a long wave
along this channel is defined by the surface elevation € and the depth
mean velocity U which are functions of x and t. In the absence of bed
friction and Coriolis forces and assuming that € is small in relatiom

to depth H, then the equation of motion is defined as

o
=
o
m
|

o
"
o
x |
!
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and the continuity equation has the form

B éf + S (B.H.u) (4.2)

3t d X

|
)

By eliminating the velocity U from the above equations the second =

order differential equation is obtained

X

€
i R (4.3)
ot - S d X

This equation is hyperbolic and becomes elliptic under the following

assumption that surface elevation is harmonic

& = r] exp ( Lot ) (4ol4)
The general elliptic equation is therefore

9 d B.H. ‘l'l .

_— — —_— -+ = O (405)

B dx [ d x J 1

The case of a channel closed at one end with the other end open to
the sea (in harmonic oscillation with it) was comsidered by Lamb

(1932) who derived simple analytical solutions for numerous channels

with different configurations. The following examples are of interest

a) Constant breadth and depth
b) Constant depth and linearly varying breadth
c) Constant breadth and linearly varying depth

With the origin of the x axis located at the closed end of the channel
of length a and by representing conditions at the seaward end by the
symbols ﬁ} Z, ﬁ, B the problem is completely specified. The
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tidal oscillation at the seaward end is denoted by

E = Fl cos (a—t) (4.6)

For each of the above cases Lamb solved the general equation

(4.5). The results obtained by Lamb are now listed
a) Breadth H(x) = H
B

Depth B(x) =
equation (4.5) becomes

el T B (4e7)

taking k = c-/laﬁ

the solution is given by

) S n ocos (kx) . cos (ot+ o) (4.8)
cos ((ka)

on restoring the time factor.

b) Breadth B(x)
Depth H(x)

equation (4.5) becomes

B x/a
H

_‘:n. B -'_. A;n_ - - kz = (0] 4,
d x* X dx 1 3]

with K as previously defined, and the solution is found to be on

restoring the time factor

1= N T (Kx) . cos (ot +5) (4.10)
Jo (ka)
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Jo (kx) is the Bessel function of zero order given by
6

(M)
Tt = | =B & & e s SN

2 kS

iy g D Al
or more generally by :

o r n+ar

J-n.(x) o Z (-I) i ('/1,)() (4.11)
s vl (wxe r) |

c) Breadth B(x) = B
Depth H(x) = H x/a
The general equation (4.5) becomes
2
x4 yitodn e (4.12)

d x* d x

with Kk as defined previously, and the solutioa is given as follows

on restoring the time factor

o= 1% (2kSax ) . cos(ot+ @) (4.13)
i (Zka.)

The natural period of the lowest mode occurs when a node exists at
x = a such that n=o0 and the root of the Bessel function has the

value 076551

Therefore 2ka = 0.76551

and on substituting for k produces

e e T 5—_:‘_' (bo1k)

T
( q )lll

(o

where T is the period which is eguivalent to 1.%06 times that of an

equivalent rectangular channel of constant depth E.
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One of Lamb's basic assumptions is that the free surface
elevations are small relative to the mean water depth., However in
case ¢) where the channel profile is triangular this assumption will
not be valid at the head of the channel. Furthermore this condition
of zero mean water level cannot be applied in the numerical scheme

because it requires the condition
.= H (4.15)

so that the celerity calculated from the following eguation

c = [3(H+YL)]V" (4.16)

is the root of a positive expression. It therefore becomes more
advantageous to perform the simulations in a channel of trapezoidal
profile. Firstly, though, the analytical solution for this channel
is required, and the relevant hydrodynamic theory was first presented
by Chrystal (1904). The derivation is as follows;

If the origin of the x - axis is taken at a point where the depth is
E then the law of depth will be

H(x) = H(1 - x/a) (4.17)

where a is the length of the channel shown in figure 4.1 in its

untruncated state.

” v |
Zpex,

9 M.wW. L |
o = ————

-
-
-

Figure 4.1
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The harmonic variation of velocity at the mouth is defined as

U = Peos (ot +9) = EH(-x=) (k18

where t is the horizontal displacement and P is determined by

% : 4
A—P A = 0 (4.19)

(lxz aljl(l—x[a.)

The elevation of the water surface relative to mean water level is

defined as

(R M (4420)
d x

Equation (4.19) is transformed into

2

d eV R (=LA © (4e21)

J,ul o Aw o
by putting P = Rw (4,22)
and wa 20 f(l—xlcu) (4.23)

JC9H)

so that equation (4.21) is a particular case of the Bessel equation.
If J,(w) and Y,(w) denote the Bessel and Neumann functions of first and

second kind respectively, the general solution of (4.,21) is

b2k
o BT e o BLY, () ( )
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Hence with dight adaptation of the constants A and B the equation for

elevation is found

= le
i

|3

dw

_{ (w- 3, (ud) + B i{ (w Y, w)) ] (4.25)

and also

tw o ( R :ru (“") = B Y. (\—J)) cos (O’t * ¢) ("’.26)
One of the fundamental properties of 3.(»}) and Y, (w) is that

(wY@) = YW (427)

|8

(G = Towy, oLid
wodw

A

|
W W

Hence equation (4.25) becomes

N = 2e {g SoG e BN (w)} cos (ot + ) (4428)
H

& = la./‘[(.sq) (ke29)

on restoring the time factor.Denoting

obtained from equation (4.23) with X=0 and in a similar way

B la.f(l—[a]ou)/fcaﬁ) (4.30)

corresponds to x = p.
The boundary condition for w= G'P is

¢ = o (4.31)
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Hence from equation (4.26)
( AT @p) + BY, (c'p)‘) .cos (et + g) = © (4.32)
which yields the following solution for B namely

B = -8R T, (op) (4433)
YI ("'5)

and substituting into equation (4.26) gives
tw = H| ( : (op) - J,(w - J, (c®) 4 (u)) cos (°'t+¢) (4.34%)

and in equation (4.25) gives

A [ Y (cp). Tow) - Jilep) - Y,M] cos(ot+g) (439

?

I 2

II|

(4.34),(4.35) define the movement and displacement of the
equivalent to considering one

The equations

free surface of this channel which is

half of a symmetrical truncated lake. The lowest mode of frequency of

the channel therefore corresponds to the case of odd nodality in the

symmetrical truncated lake. With the boundary condition defined as

) B al W= o o (L4.36)

applied to equation (4.35) the following equation is obtained

Y\ (O'P) j‘, (O"o&) — j| (a’ﬁ) = Yo (c'd..) = 0O (’4.37)
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From this expression the period of the channel or lake can be found.

For the special case where p = a such the channel profile is
triangular, equation (4.35) reduces to the equation (4,13) derived
by Lamb. To prove this, rewrite equation (4,35) in the form

)

YI. =i F\‘{ 2 (\_,> AR ("'P) ¥ W) ] cos (a'(:-vw) (4.38)

MG

-

With p = a the boundary condition B=0 produces

ko 8D o o (4.39)
poe Y

so that equation (4.38) reduces to

n o= is R T, (w) cos (ot=+9) (4.40)
A

With the origin of the-x axis at the head of the channel

w o= Lea J %] (L4o41)
J gH

and with K = o-/ftj—’ﬁ (4.,42)

yields on substitution

T 1 (4.43)

which is the argument in Lamb's expression. Finally, the comstant

A in equation (4.40) can be ckosen so that

(4obk)

I
9
T
l

L
3s (1Kc\.)

-



and the equation (4.13) is obtained namely

g = N TJe(2kJax ) cos(ot «¢)
jo(lKa.)

A point of practical programming importance is that both the
Bessel and Neumann functions are defined by infinite series, the

Neumann functiom being a Bessel function of the second kind and can

be expressed as

Yl\ (X) 5 jn. (x) ( !‘\’ (x> E: Sr\. = Z--

m=0

N~

st nl u (%)

(n-m)- ml ™

- Z )7 (nerm) T 00 (4.45)

m(r\+m)

where n is the order and S, = l+%+% +...%A and S, = O

In the program only the first 12 terms of these functions were
included but as a check on their ability to accurately represent
these functions a comparison was made with the tabulated values of
these functions. Tabulated values of Neumann's functions were not
readily available, however those of Weber's Bessel function of the
second kind were; Watson (1923). Weber's function of the second

kind of order n is as follows

n-2r

Vo lx)y: = 1%:‘(0-51'!14’ L\.(&x)) Ja) - 'rl'? E (n-rr!-l)!(é)

11-‘1\.

ar % %) L+ 14 4 4% ek el ) (b,b6)
1~ Z ( [ n#r}

r‘ (n+r)!

It was this function that was specified in the progrem and it can
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also replace Neumann's function in the analytical equations (4.34)
and (4.35) because equation (4.24) used in their derivation can be

replaced by the following
R T Hn 5\ (“"3 + BI Y, (“"> (4.47)

This equation will produce the analytical equatiomns identical to
those of (4.34) and (4.35) except that the constant A' will take a

different value.

The free surface across the channel corresponding to the four
different configurations and defined by the respective equations
(4.8), (4.10), (4.13), (4.35) are shown in figure 4.2. Since the
tidal frequency & and the acceleration of gravity, g, are essentially
fixed, the critical parameter governing the amplitude of the free
surface is the ratio qlf:. For each channel the value of this ratio
is 17,500 which is close to the ratio for the channels simulated in
section 4.3. The curves depicted in figure 4.2 illustrate that a
contraction of depth or width, which modifies the channel shape from
that of case a), causes a corresponding increase Or decrease in the
amplitude of the standing wave over the length of the channel. It
is also possible to show that for all values of the ratio a [[R
the order of the meximum amplitude with o|ZT =1/8 is as shown in
figure 4.2, with the largest amplitude produced in the channel of
triangular profile. However if the waves were progressive, Green's
theorem (Lamb p.274=5) in which 1 = g ue , shows that a decrease

in width or depth of the channel produces an increase in amplitude

compared to that of case a)e

In deriving the analytical solutions the problem has been

reduced from a hyperbolic to an elliptic level. This reduction was

accomplished by combining the partial differential equations of

motion into a single second order ordinary differential equation by

assuming a harmonic solution is possible. The appropriate equations

are shown in (4.5) for Lamb's solutions and (4,21) for Chrystal's

solution. The full extent to which classical solutions of the two-

dimensional equations are possible was given by Vantroys (1959).
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High (and low) water curves for flow in frictionless

channels derived from analytical solutions.

H] / -
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o) ) c) d)

l]i (c-m)

17,500 (a=7oooom,s4=wm)
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Figure 4.2
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In his paper the relationship between the hyperbolic and elliptic

aspects of the problem were rigorously established.

The correct approach in simulating the long wave motion in
geometrically simple channels ié closely related to whether the
problem is elliptic or hyperbolic. The analytical solutions for
'x = t' flow were produced by removing the non-linear terms in the
governing equations of motion. It is only when these terms are
disregarded that the problem becomes elliptic and for the model to
reproduce this solution it too must be linear. In simulating a
problem of the elliptic type.the final solution is not independent
of the initial conditions and the starting point for the numerical
calculations cannot be an arbitrary free surface but the correct free
surface. A rigorous derivation of these conditions was provided by
Stoker (1957). The verification of the model is that the starting
free surface is reproduced at the end of each tidal cycle. This
supports the idea of periodicity of the final solution and any lack
of periodicity is a result of the shortcomings of the model. The
importance of the starting conditions in the model was noted by
Matsoukis (1980) and the numerical philosophy was summarised by him

as follows:i=

1. The response of a channel to a periodic excitation at the

open sea boundary must be periodice

(a) If the soluticn is elliptic then it is also

dependent on the initial conditions.

(v) If the solution is hyperbolic, periodicity is
achieved through the actions of friction and
Coriolis forces introduced through the momentum

equation and the non-linear terms in the continuity
equation.
2 If the response of the channel is not periodic then the model
is not functioning properly.
The reduction of a problem to the elliptic level through the

assumption of small amplitude and the absence of non-linear terms

effectively limits the analytical solutions either to the ocean tides
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or to seiche action in closed basins. These configurations are
considered in sections 4.3 and 4.4. In conclusion it should be
noted that analytical formulae have been produced which account for
the frictional forces albeit in & linearised form,Lorentz (1926).
Proudman (1955) extended this method to include the effects of
quadratic bed friction, and presented a formal solution for the
case of an estuary with variable cross-section. This solution was

also developed for application to uniform estuaries.

b3 TIDAL SIMULATION IN FRICTIONLESS OPEN CHANNELS

In establishing the success or otherwise of the numerical
schemes it seemed appropriate to begin by using the analytical
models determined by Lamb and Chrystal described in section L.2.
In each configuration the harmonic condition of equation (4.6) was
applied at its open boundary. The period of the boundary condition
was chosen to be larger than the natural period of 'x = t' flow in
the channel. The resulting motion was therefore a force oscillation
as distinct from the natural oscillation of free waves studied in
section 4.4. In assessing the accuracy of the numerical schemes
in simulating 'x - t' flow using x - y = t dimensions, certain specific

objectives were thought to be important. These may be summarised as

follows:

To apply the numerical model to differing configurations.
show the

a)
Three differing channel shapes were studied to

effect of variable breadth and depth on the numerical

scheme's performance.

b) To compare the results from the 45° and 90° characteristic

schemes with the analytical solutions.

c) To investigate the influence of different linear interpolation

schemes at the boundary positions by observing their effect

on the final solution.
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d) To show that the correct approach in simulating 'x - t'
flow in frictionless channels is obtained from elliptic

considerations.

e) To assess the effect of timestep on the final solution.
Davies (1979) has shown that the choice of timestep is
important from the point of view of numerical dissipation.

£) To investigate the effect of non-linear terms on the final
solution and to test the simulation of finite amplitude

waveso. ¥ SEE NOTE ON PAGE 130.

4,3,1 The rectangular channel of constant depth.

A synopsis of the investigations for the case of a frictionless
rectangular channel of constant depth is presented in Table k.2,
From the information in this table the starting conditions, the
boundary interpolation schemes and the geometric parameters of the
channel are apparent. The parameters controlling the wave motion
are also displayed together with an assessment of the results from
the model. The simulations were conducted on two different channels;
tests 1 to 4 correspond to a timestep 0.943 times that obtained from
equation (4.51), tests 5 to 12 correspond to a timestep equal to the
maximum timestep. The geometric and wave parameters for the channel
used in tests 5 to 12 is calculated from the following expression,

5 = o= 1o aDS (4.,48)
< i DT

for linear conditions with L equal to the wavelength and T equal to

the period of the forced oscillation. The wavelength L can be

expressed &s

g iom x_(m—q.os (4,49)
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with X = L/a = 8, where a is the length of the channel and is given

by

a = (M-’l) DS (4'50)

where M is the number of grid points along the length of the channel.

Making the necessary substitutions produces

DT = a-10% T ’ (M—l).x (4.51)

which relates the timestep to the waveform and the computational
grid. These parameters are selected in such a way that the timestep
is an integer. With the timestep calculated, and the spacestep

selected, the C.F.L. condition yields C and hence H .

The large number of tests presented in this section requires a
system which describes the important features of each numerical scheme
used in these tests. Therefore a symbolic system as shown in table
4,1 is used which clarifies the presentation of the tests in the tables

and graphs of this section and other sections in this chapter.

SYMBOL DESCRIPTION OF THE NUMERICAL SCHEME

Boundary interpolation scheme 1 (I.S.1)
Boundary interpolation scheme 2 (I2)
Boundary interpolation scheme 3 (I.8.3)

Boundary interpolation scheme 4 (I.8.4)

g e T e

Non-linear depth and convective terms
present

Subscript represents a 90° characteristic
scheme

£0

Table Lfol
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The different interpolation schemes have been fully detailed in
section 3.4.In some of the tests which follow the numerical scheme
may contain more than one of the pertinent features shown in table

4,1, For these cases the symbols are grouped together.

The analytical solution applied to the channels with the
dimensions given in table 4.2 produces a free surface and hcrizomtal
velocities as depicted in table A.ls The results from tests 1 to
12 are also presented in tables A.2 to A.5. These tables show the
elevations and velocities at each tidal cycle corresponding to the
grid points along the centre of the channel and also at the two
corner points at the head of the channel. If the results are not
periodic then they are presented for a time equal to the end of the
fifth tidal cycle. The tabulated results only represent the tidal
motion at high and low water in order to reduce the bulk of the
results. In some cases, where the low water displacements are not
included, it can be assumed that they are equal in modulus to the
value of high water at the same grid point. For each test involving
small amplitude, the successive high and low waters are depicted in
figure 4.4 which clearly shows the tests with results favourable to
the analytical solution. A similar type of graph shown in figure
4,5 shows the numerical results for the second channel used in tests
) Lo I

By comparing one test to another in a method that highlights
the effect on results of changing a particular condition and by
comparing the results to those obtained from the analytical solution
defined by equation (4.8), some important conclusions can be drawne.

a) It was found that in both tests 4 and 5 the results shown

in tables A.2 and A,3 were identical to those of the
ns shown in table A.l at

In both

respective analytical solutio
all positions in the channel at any time level.
tests the numerical schemes used linear 45° characteristics.
The analytical free surface corresponding to high water

and zero velocities was the initial condition. The boundary
interpolation scheme derived from the theory of 45°

characteristics, namely I.S.1, was also used. In test R



b)

c)

the numerical data corresponded to the situation where

DT < T, whereas in test 5 the use of equation (4.,51)
ensured that or=o0T,, . This was the only significant
difference between the two tests and it appears that this
factor is not important in simulating the motion of forced
waves. It is shown later that in the case of free waves
the analytical motiom can only be produced using the
condition OT = oT,., for a channel of constant depth.

The numerical scheme and data of test 5were applied to
the case of a finite amplitude wave motion. The results
corresponding to test 12 are shown in table A.5« Allowing
for the scale factor in amplitude, the results from this
test were similar to those from test 5 showing that the
simulation of finite amplitude waves can be performed
without becoming unstable. Since the numerical scheme

was linear, the results from test 12 did not exhibit any

non-linear effects associated with finite amplitude waves.

In test 1 the effect on the results of using open sea
boundaries at the northern and southern side of the
channel, where the three unknown variables were cal-
culated, was assessed by comparison to the results of

test 2. The figure 4.3 shown illustrates the boundary

conditions used in both tests. Since the results from

tests 1 and 2, as presented in the table A.2,

______ R R ;
: I: | TV:O
! |
1
._L_,u TR §

| i
! |
| v=0
LRy b If ______ g : }

Test 1 Test 2

27
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e)

£)

g)
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were identical it showed that no spurious transverse velocities
were produced across these open boundaries. This is an important
first step in assessing the performance of this type of boundary

which is used in the shelf surge model discussed further in

Chapter S.

The results of test 3 on comparison with test 4 showed that
the interpolation scheme used at the boundaries in test 3,
namely I.S.2, had the effect of producing a harmonic solution
not equal to the amalytical solution. This test was conducted

with
; DT = D-rm\x

A comparison of results from tests 7 and 8 in which the
interpolation schemes I.S5.3 and I.S.2 were investigated
showed that the interpolation scheme I.S.2 was unstable

when the condition DT = OT,, . was met. This effect is noted
also in other configurations where conditions of'constant
depth exist and is in fact a general finding of this research.
The instability of this interpolation scheme is clearly
evident on the ppropriate curves shown in figure 4,5 as a

rapid increase in the modulus of the elevation at high and

low waterse

The results from tests 5 and 6 on comparison showed that the
interpolation scheme used in test 6 was inadequate in properly
representing the conditions at the boundaries. This interpolation
scheme, namely I.S.3 is stable but since the free surface
elevations at high water are less than those from the analytical
solution, it appears that the scheme produces numerical

This is closely related to the fact that the
alculation only

dissipation.
boundary interpolation for the velocity ¢

considers two grid points instead of three and so is
jnconsistent with the scheme used for internal points. This

is also true for test 7 which uses the interpolation scheme
of test 6.

It is concluded from the results of tests 4 and 5 that the

elliptic approach is a successful method of simulating the
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x - t motion in the frictionless channel. Other invest-
igators, for example, Webster (1968), have treated the
simulation as a hyperbolic problem by introducing friction
into the scheme. In his tests this non-linear term produced
convergence from the arbitrary free surface to the final
solution. It was then assumed that the effect of friction
on the final solution was small enough to allow a compar=-
ison with Lamb's analytical solution for a frictionless
channel. In theory this method of comparison is incorrect
but it was tested using the numerical scheme and data as
for test 5. The results for test 11 showed that with the
value of Chezy's co-efficient equal to 150, convergence to
a final solution had not been obtained, however the results
would indicate that convergence is slows A lower frictiom
parameter would accelerate the convergence but may also
produce a solution that would differ from the linearised

analytical solution.

It was concluded from tests 1 and 2, which include the non-
linear and convective terms in the numerical scheme, that
these terms were responsible for the final solution not
being periodic, see figure 4,4, The result of successively
increasing high waters would have eventually created an
unstable situation through the violation of the CeFoLs
condition. This would occur because C = /7;6::;3

and with celerity increasing the maximum timestep obtained

from DT = O.ZOZDS

ma x
C

would eventually become less than the computational timestep.
This was exactly the mechanism for instability for the non-
linear scheme used in test 9. The results of this test from
table A.4 when plotted in figure 4.5 show that the non-linear
terms produce successive increases in high and low water
until the third tidal cycle. At this time the CoFole
condition is violated and its effect is shown by the increased
rate of growth of the high waters and the increase in modulus

of the low waters. Furthermore a comparison of test 9 with



100

2% 31qsyg,

TedT3fTRUY SY 402 |LO2 [000S |2Tlhy | 0°2 |Sw*62 |¢T |oe Teo134TRUY | 2T

08T=2
@ousiaaauo) MOTg 402 |402 |000G | 2wy | 2°0 [Gw 62 |<T |02 x' Jeauty | TT
TedT3LT8UY % UTOg OTUOWIBY 402 |L02 | 000G | 2Ty | 2°0 |Gn°62 | €T |02 ®' |testikreuy | or
sTqejsup Aymors 402 (402 | 000G | 2Tty | 2°0 |Gh*62 | ST | o2 ® Tedor3ieuy

eTqegsup 402 [L02 | 0005 | 2TLnh | 2°0 |sn62 | €T | 02 v
Te0oT34TBUY % U[Og O TUOWIEy 402 |402 | 0006 | 2Tehn | 2°0 | Gn®62 | €T | o2
TeoT34TRuUy ¥ UTOg dTUOWIEH 402 |402 | 000G | 2Tihy | 2°0 | Gh*62 | €T | o2

Teo13hTeuy sy 402 |L02 | 000G | 2Tihh | 2°0 | Gh°62 | €T | o2

6
TeoT3ATeUY | @
g Teotrjdreuy | /
V  |Test3freuy | g

4

%

TeotiAreny

TeoTihTRUY Sy | L°QT2 |02 | 000G Clh | 2°0|2H°92 | ST | 6T

X Tedtjireuy | 4
TeoT34TRUY ¥ UTOg OTUowTey | /°gTZ |40Z | 0006 | 2Tiwh | 2°0 2h*92 [ €T | 6T + Teotifteuy| ¢
dtuomrey JON [ /°QT2 |402 | 000G | 2Tihh | 2°0 [ 2h°92 | <T | 6T @ Tesrjhreuy| 2
otuowmrey JON | AL°QT2Z (402 | 000G | 2Tihy | 2°0 | 24°92 | €1 | 6T @ Teotjfreuy| T
xw“om 098 w 098 ruHE u sweyog| eowyang |3seg
uoTINTOg TEUYLy Ia | Ia| sa I U =® N | W | Teotxsuny| TeT3Tur

HIJTQ INVISNOD JO TANNVHO YVINONVIOHY SSTINOILOINI ¥V 504 SHALAWVAYA TYNOLLYLAJWOD

NOTIVTTIIOSO @¥d¥od a-L




101

Envelope curves of successive high and low waters at

the head of a frictionless rectangular channel ofconstant depth.

(DT < DTmax, M = 19)
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Envelope curves of successive high and low waters at the

head of a frictionless fectangular channel of constant depth.

(DT = DTmex, M = 20)
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test 10, in which test 10 used a linear convective scheme,
showed that the non-periodicity was directly related to

the non-linear calculation of celerity from the total

depth. Evidently the amplitude of the wave is not
sufficiently small for the non-linear effect to be negligible.
The enly justifiable reason for the non-linear term to
affect the periodicity is that since the channel is
relatively short, then non-linear terms should not be
present in the first place. By their inclusion in the
interior of the channel a non-linear response is generated
but at the open boundary the cosine function controlling the
boundary elevation is based on linear conditions. The
inconsistency between the events at the boundary and the
interior of the channel may upset the periodicity of the

oscillations.

4,3,2 The converging channel of constant depth.

For a channel of uniformly varying breadth the analytical

solution was given in equation (4.10). In deriving this solution,

Lamb made the simplifying assumption that the transverse velocities

were zero and the flow was strictly in x = ¢ dimensions. There-

fore when simulating this motion in (x = y - t) space and comparing

the results to lamb's solution, the velocities in the y-directionm

In reality the same linear scheme and tidal
two-dimensional tidal flow

must also be zeroe.
characteristics at the entrance create
by virtue of the converging coastline which evidently reflects
tidal waves and introduces values for the transverse velocity V.
By simulating these conditions in which the transverse velocity is

across the channel it is shown that a periodic
A comparison

allowed to propagate

solution is produced from hyperbolic considerations.

with the simulations of motion in the rectangular channel in section

L.3.1 shows that the hyperbolic approach is justified in the situation

of a converging coastline which propagates tidal waves in the y-

direction and flow is two dimensional.

From the point of view of numerical schematisation the converging

coastline was replaced by a polygonal set of horizontal and vertical

lines and so it provided an opportunity to study the general effect of



104

replacing a continuous coastline with an irregular one.

The objectives a) to f) stated in section 4.3 are applicable
to the convergent channel and so the presentation of computations is
similar to those of section 4.3.1. For each test the numerical scheme
and the computational parameters are listed in table 4.3 together
with the percentage variation of the final solution from the
analytical solution based on elevations at the head of the channel,
In the tables A.6 to A.9 the results from the analytical solution
given by equation (4.10) and from the computations of each test
corresponding to the high and low water elevations are shown.
also of importance in these tests to consider the effect of the
numerical scheme in simulating a truly standing wave therefore the

mean high water interval M.H.W.I. for each test is shown. All results

It is

are representative of conditions along the centre line of the channel.
By comparing the computed results with those derived from the
analytical solution and by comparing individual tests to one another

some useful conclusions were made. These conclusions were deduced

as follows:

a) The computations from test 13 together with the results
obtained from the analytical solution are presented for
comparison in table A.6. The free surface in both cases
corresponded to L/a = 8,037 which was used in equation

(4.51) to calculate the timestep. The numerical scheme
used in test 13 was identical to that of test 5 which
was successful in simulating the tidal motion in the
rectangular channel of constant depth. However in test
13 the transverse velocities were not computed, to comply
with Lamb's assumption. The computations of test 13
showed that a periodic solution was established which was
similar to the analytical solution. Considering that the
closed boundaries were discontinuous this result was most

satisfactory.

b) In test 13 an elliptic approach was used in simulating the
tidal motion and for comparison the tests 14 to 16 used a

hyperbolic method since transverse velocities were allowed
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to propagate in the model. In all these tests the
amplitudes were small and the numerical schemes lineare.
The results from tests 14 to 16 are shown in the respective
tables A.6 and A.7 which indicate that the arbitrary
initial condition is that of mean water level and .zero
velocities and that the final solution becomes independent
of the initial conditions and is periodic after the
completion of two tidal cycles. The effect of convergence
for these tests 14, 15, 16 is illustrated in figure 4.6.
Also shown are the results from test 13 and the analytical
free surface, for successive high waters at the head of
the channel. Since the numerical schemes were linear,

| high wateq = llow waterl and so the low water elevations
were not presented in the tables or graphs. A comparison
of tests 13 and 16 showed that although the transverse
velocity V was important in causing convergence, in test
16 it did not significantly change the final solution.
Indeed this solution as shown in figure 4.6 is very close
to that of test 13 and to the anmalytical solution. Also
shown in figure 4.6 is a comparison between the results
from tests 15 and 16 and again the elevations at the head
of the channel are very similar. The number of grid points
in the y direction N, in test 16 was ten whereas in test 15
it was eleven and it was concluded that the representation
of the head of the channel by either N=2 or 3 grid points
does not significantly affect the numerical computations.
The results from test 14, which uses the 90° characteristic
scheme and interpolation scheme 3 (I.S5.3), are also shown
in figure 4.6 and this scheme gives a reasonably accurate

harmonic free surface solution.

In test 17 a finite amplitude wave of 1m amplitude at the
open boundary was simulated and the results are shown in
table A.8 together with the amalytical solution for linear
conditions. The numerical scheme however was non-linear

and its effect is shown in the results where the high water

elevations are greater than the low waters. The final
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solution was established using 90° characteristics and I.S.2 which
is conditionally stable for bT<bpT,, . The results were in good
agreement with those of the analytical solution suggesting that
the channel was too short for the non-linear terms to have an

appreciable effect,

In simulating the tidal motion in the converging channel Matsoukis
(1980) produced results of very high accuracy for small amplitude
waves, His channel parameters are listed in table 4,3 under tests
18 and 19. These tests indeed prove that a high degree of accuracy
can be obtained and the results are presented in table A.9. These
results however became less significant when it was noted that
Matsoukis had not maintained a linear variation in the breadth of
the channel which violated one of Lamb's assumptions. The channel
is shown in figure 4.7 together with a channel in which the breadth
is a linear function of its length. There seems no obvious reason

why Matsoukis compared the results from his channel with Lamb's

analytical solution.

The Matsoukis Channel
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Figure 4.7
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4,3,3 The rectangular channel of linearly varying mean depth.

Previous investigations of forced wave simulation presented
in sections 4.3.1 and 4.3.2 haie been concerned with channels of
constant depth. For these configurations the successful numerical
scheme used 450 characteristics which were linearised. This
linearisation was in accordance with the linear assumptionsgoverning
the derivation of the analytical solutions in section 4.1. Im
simulating the tidal motion in a channel of linearly varying mean
depth the above-mentioned linear scheme was applied without any
changes. The use of a linear scheme required that the initial
conditions were those of the analytical free surface for a successful
simulation. This method constituted an elliptic approach to the
problem. However further tests with the channel of linearly varying
mean depth showed that convergence to the analytical solution could
be achieved using arbitrary starting conditions. It was concluded
from the latter result that a non-linear process had occurred in
the model using this configuration which originated from the terms
involving celerity. More precisely, the terms involving the celerity
in the numerical scheme have a non-linear effect since the celerity

itself is not constant throughout the length of the channel,

The natural oscillation of the channel shown in figure 4.8
was derived by Chrystal and presented in section 4.2. This
solution for the vertical displacement of the free surface applies te
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the free wave condition but can be applied to the forced wave
condition with the period of the forced wave greater than the natural
period of the channel. With this condition the node will be outside
the channel and so the equation (4.35) defines the free surface of
the channel of length |l which, with the larger period, is also the
surface of the forced oscillation for the channel of length a.

With equations (4.23), (4,29) and (4.30) restated as

n
R o—og(\—x,a):' (4.52)
ox = 1 g, S (4.53)
e, o
Y%
cp = o—a(n-f,;a,) (4o54)

and the dimensions of the channel given in table 4.4 produces

w= 1,645 corresponding to H = H, obtained from equations (4.52),
(4,53) and w = 0.520 at H = H, obtained from equations (4.53) and
(4.54), With the constant A' in equation (4.35) taken as 1.803 to

produce a maximum amplitude of l.3m corresponding to the depth Hy,
the analytical surface for the forced oscillation using Weber 's

function in (4.35) becomes
rl = 1.803 (I.uz:s 2 (w) + ©0-2513 Y,(w)) (4.55)

for the high water displacements along the channel. This surface
is compared with the figures obtained using Lamb's equation (4.13),
for a channel of length a and a triangular profile in table A.1l0.

The numerical schemes constituting tests 20 to 27 are

classified according to the starting conditions and the interpolation

schemes, in table 4.4. Also shown, as an assessment of the accuracy

of each test, is the percentage variation of elevation, at the head
of the channel, from that of the analytical solution, taken at the

end of the fifth tidal cycle. In some of the tests the periodicity
of the simulated elevations was subject to small fluctuations and to
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show this feature the results from each test corresponding to high
and low water are shown in tables A.1ll to A.18. This fluctuation is
better observed in figures 4.9 and 4,10 which show the results in the
tables A.ll to A.18 in graphical form for successive high and low
water displacements at the head of the channel. This position in the
channel was chosen since it represents the maximum disagreement with

Chrystal's analytical solution.

In conducting the tests 20 to 23 the initial conditiocns were
not those of the analytical solution. The effect of arbitrary
initial conditions on the periodicity and accuracy of the final
solution is illustrated in figure 4.9 and the following observations

were made from the results of these tests:

a) In test 23 the initial condition was that of mean water level
and zero velocities along the channel. The convergence to a
final solution had not occurred even after 5 tidal cycles.
This indicated a very slow rate of convergence. In test 22
the rate of convergence was guicker when the initial conditions
were closer to Chrystal's analytical solution and indeed the
final solution in this test was very close to the analytical.
For this test the initial surface was the high water level
given by Lamb's equation (4.13). In both tests interpolation
scheme 3 was used which was shown in test 6 to be reasonably
accurate. The numerical schemes in both tests 22 and 23 were

identical and based on linear 45° characteristics.

b) The conditions of test 21 were identical to those of test 22
except that in the former test the numerical scheme contained

the non-linear depth term (H +n ) and the convective terms.
A comparison of results from both tests showed that the non-
linear shallow water effect was produced, namely an increase

in positive elevation and a decrease in negative elevation

resulting in an increase in mean water level. This effect is

a consequence of two factors, firstly the wave is of finite

amplitude and secondly the effect of decreasing depth towards

the shore. Time did not permit a quantitative assessment of

the accuracy with which the pumerical scheme reproduces this
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phenomenum. Obviously since the results of test 21 include
the non-linear effect they are not in exact agreement with
the results from Chrystal's solution. The results from test
21 are very close to those of test 20 and this agreement
corresponds to the similarity in both numerical schemes.
However the numerical scheme of test 20 (and also test 25)
are only applicable to constant depth configuratiomnsand
although the results are favourable they are not obtained

using the correct schemes

Tests 24 to 27 were conducted to show that the simulation can

be performed using an elliptic method which essentially means that

the numerical schemes were linear and so required the analytical
condition as an initial condition. The elevations for successive

high waters are shown in figure 4,10 and the following comments are

applicable:

a)

b)

Of the tests 24, 25 and 26 the results from test 26 are the

most satisfactory and are shown in table A.l7. These results
also show that no variation of phase occurs along the channel
and that the final solution is a standing wave. The interpol-
ation scheme I.S.4 was constructed in accordance with comsistency
requirements and is theoretically superior to the interpolation
schemes of tests 24 and 25. For example in test 24 the boundary
interpolations for velocity are not consistent with the velocity
interpolations at internal points. For reference this scheme is
interpolation scheme 3. In test 25 the interpolation scheme
I.5.1, although in the same form as that in test 26, is omly
applicable for constant depth configurations.

The results shown in figure 4.10 suggest that a small disturbance
is present which slightly affects the periodicity. After three
tidal cycles the disturbance is negligible in tests 24 and 26.
The disturbance is not a result of simulating finite amplitude

waves because the same disturbance was observed using small

amplitude waves in test 27. The results for this test are

shown in table A.18.
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Envelope curves for successive high end low waters

at the head of a frictionless rectangular channel

with linearly varying mean depth.
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Envelope curves of successive high and lcw waters

at the head of a frictionless rectangular channel

with linearly varying mean depth.
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c) From the results of tests 24 to 27 the most successful
simulation was that of test 26 which used linear 450
characteristics and interpolation scheme 4, In sections
4,32.1 and 4.3.2 the most satisfactory interpolation scheme
was interpolation scheme 1. There is no reason why one
interpolation scheme should be more suitable for one channel
and not for another and indeed interpolation scheme 1 is
obtained from interpolation scheme 4 from the simplification
produced when considering constant depth. The equivalence
between interpolation schemes 1 and 4 has been shown in
section 3.4, These interpolations were tested using an
elliptic approach, with success, and in additiom, by
considering any special nature of the flow, as described also

in section 4.3.2 the hyperbolic method of simulation is

another alternatives

b4 SEICHE SIMULATION IN CLOSED BASINS

The occurrence of seiches in nature is invariably associated
with the oscillations of a relatively small body of water, such as in
a lake or harbour. These oscillations normally occur at a natural
frequency which is higher than those of tidal movements therefore
tidal resonance is unlikely to become a problem. With the
assumptions of small amplitude waves, the absence of bed friction and
Coriolis forces, and constant equilibrium depth the long wave
equations can be combined to give the following elliptic equationm,

2 % 2
L ¥ + LVL Fieige Y 240 (k.56
g 2y I3

This equation is the two-dimensional form of equation (4.7) derived
by Lamb in section 4.2 and describes the free oscillation of a body
of water. An analytical solution of equation (4.56) may be found for
the free oscillating modes for a rectangular basin with length L in

the x direction and width B in the y directionm. This solution is as



follows

(4.57)

where A is the maximum amplitude at the boundaries and m and n are the
number of nodes in the x and y direction respectively, which identify

the particular mode of oscillation. The natural frequency is

determined by

et R

and is a function of the dimensions of the basin.

For the particular case of an x - t seiche of lowest mode,

m=| , =0 the eguations of (4.57) become

T R cos (ﬁ{_) cos (ot)

< sin (ff
H

) . sIn (a-t) (4.59)

e
-

S e >

The period for this case is obtained from eguation (4.58) and is
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§ e 5 & (14.60)
c

where C = \/3—9

Consideration of the free oscillatiomsin closed basins, for
the purpose of simulation, closely follows the objectives pursued in
the simulation of forced waves. For consistency the period chosen
for free wave simulation is the same as that for the forced wave
condition and is of tidal magnitude. An important consequence of
considering closed basins is that in the absence of any external
forcing functions such as a boundary condition the numerical scheme
can be tested to establish if it is conservative. For example, in
the constant depth case it is shown that only the numerical timestep
corresponding to the limiting timestep obtained from the C.F.L.
condition will produce the free oscillations prescribed by the
analytical solution. This is assuming that the correct starting
conditions and boundary interpolations have been applied. If not,
or if another timestep is used the numerical scheme produces a

motion that either becomes unstable or attenuates numerically.

L.4,1 The x - t seiche in a rectangular basin of constant depth.

A synopsis of the tests 28 to 37 is presented in table 4.6
showing the computational parameters in simulating x - t oscillationse.
Since the variation of the free surface from the analytical one is a
measure of the inaccuracy of the numerical scheme, the last column in
table 4.6 shows the extent of this variation. A measure of this
variation is the attenuation of elevation at the boundaries during
each tidal oscillation and is calculated from |- qh“lqh where
k is the number of free oscillations. The tests can be divided into
three distinct sets according to the ratio of DT/DTmax and only in
test 35 with this ratio equal to unity is the analytical solution
achieved. A comparison of all these tests for successive high waters
at the boundaries of the basin is shown in figure 4,11, The curves

on this graph show clearly the attenuation which is proporti
f the tests.

onal to

the gradient of the curve, and is associated with most o
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The pertinent information extracted from an examination of
each test is listed in tables A.19 to A.22. An account of each test

together with its conclusion is provided as follows:

a) All the tests had as their starting condition the analytical
free surface corresponding to high water and zero velocities
throughout the basin. One eiception was test 34 which used
a linearly sloping free surface and failed to reproduce the
analytical scheme. This test confirms once more that a
hyperbolic approach cannot be used in an elliptic problem, for

configurations of constant depth.

b) The results from test 35 reproduced exactly the motion given
by the analytical solution, throughout all time levels. The
timestep was found from equation (4.,51) with X = 2. The
numerical scheme reguired DT = DTmax and interpolation scheme
1 and used linear 45° characteristics. This scheme was used

in the successful simulation in previous configurationse

c) Using the scheme of test 35 with values of timestep less than
the maximum timestep showed that the attenuation per tidal

cycle increased as DT/DTmax decreased. This phenomemumis

shown in table 4.5,

Test DT/DTmax % Attenuation/cycle
33 0.995 0.5
21 0.943 4,6
37 0.500 43,7
Table 4.5

The mechanism for attenuation has been discussed in section 3.5 and

is basically the result of the difference between the numerical and

physical celerities. The timestep is related to the physical celerity

through the C.F.L. condition, DI = 0.707 DS/Cp,,. If another

value of DT is chosen then the numerical celerity C will not be equal

to the physical celerity since C = 0.707 Ds/DT.
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Envelope curves of successive high water elevations

at the boundary of a frictionless closed basin of

constant depths |Hew|=|L.W
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The results of tests 29 and 30 are shown in table A.20. Since
test 30 used a linear numerical scheme and test 29 a non-linear
one, a comparison between the results of both tests showed that
the effect of the non-linear terms was very small. In both
tests attenuation occurred since the condition DT = DTmax was
not fulfilled and the attenuation was found to be greater when

the numerical scheme contained non-linear terms.

The results of test 36 showed that attenuation had taken place.
The data was identical to that for test 35 but the interpolation
scheme was not the same. In test 36 interpolation scheme 3 was
used and it differs from interpolation scheme 1 in the
construction of the velocity equation at the boundary points.
The failure of interpolation scheme 3 to produce the analytical

motion was also observed in tests 6 and 7 for the rectangular

channel of constant depth.

The interpolation scheme 2 used in test 30 was also found to be
dissipative since the energy loss resulted in elevat ions smaller
than those of the analytical solution. In this test DT = 0.943
DTmax' For the same numerical scheme applied in test 32 with
DT = 0.995 D‘I‘max the results were unstable. This instability

is shown in figure 4.11 as a curve with a positive gradient.

The conclusion from these two tests is that interpolation scheme
2 becomes unstable when the timestep is very close to that
determined from the C.F.L. condition. It is precisely this
interpolation scheme that is applied successfully to the
simulation of tides and surges in Chapters 7 and 8 and an
explanation for its inclusion in the numerical scheme is

provided in section 7.3. At this stage it is only important

to note that the analytical motion is produced with interpol-
: ° L
ation scheme 1 using the method of linear 45~ characteristics

with DT = DTmax for configurations with free oscillations.

The x = y = t seiche in a square basin of constant depth

The simulation of the x - y - t seiche action provides an

opportunity of testing the models under circumstances of truly two



123

dimensional flow in which a comparison of the computations can be
made with those from the analytical solution. Before the simulation
can begin the channel geometry must be calculated whilst ensuring
that theequality DT = P is satisfied. This condition ensures
that there is an equivalence between the numerical and physical
celerities. The simulation was performed using the lowest mode of

oscillation therefore m = n = 1 and equation (4.58) reduces to

- R T | DR (4.61)

W
Rearranging this equation produces

L = \/E_— (4.62)

This expression is the wavelength divided by the channel length
(since L = B) and has been defined as X in equation (4.51). This

equation with X=/Z yields

DT = T/2.(M=1) (4e63)

With T = 44712 secs, M = 19 gives DT = 1242 secs and with DS = 20,000m
the celerity obtained from the C.,F.L. condition is 11.385 m/s. The

depth H from Czlg is therefore 13212m. This data is shown in table

4,7 and was used in tests 38 to 41., The information on this table

shows that in tests 38 and 39 the tidal oscillations were simulated
in exact agreement with the motion determined by equations (4.57)
shown in table A.23. The exact reproduction of the analytical motion

by this model is verification that for channels and basins of comstant
depth the method of characteristics is conservative. Matsoukis (i9%0)
considered the simulation of the x - y - t seiche as a very stringent
test and showed that some well known finite difference models did not

successfully produce this motion.
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It is again emphasised that only one numerical scheme used
in the tests of free and forced waves has produced the analytical
tidal motion in each configuration. This scheme uses interpolation
scheme 1 and linearised hSo characteristics. To evaluate the accuracy
of simulating with a numerical scheme using 90o characteristics,
test 41 was conducted and the results compared to those from test 39.
The results from test 41 are presented in table A.24 for successive
high water displacements corresponding to grid points positioned
along the diagonal of the basin. The elevations at any time level in
test 41 were found to be very close but not exactly equal to those
from test 39. The maximum difference in elevation between both tests
occurred at high water or low water at the closed boundary points.
The elevation there was 0.20lm in test 41 whereas in test 39 and for
the analytical solution it was 0.200m. Nevertheless the method of
characteristics derived from bicharacteristics taken at 90o angles
gives reasonably accurate results. This is not surprising since this
method only differs in its construction from that using 45° character=-
istics when considering a boundary point. Both schemes are identical
for the determination of the unknown variables at an internal point.

In test 40 the numerical scheme of test 38 was re-run with non=-

linear and convective terms included. The computations are shown in

table A.24 and show that high and low waters are increasing positively

with each oscillation. The conclusion from this test is the same as

for that of test 9 which also included non-linear terms in the systeme.
This conclusion is that the periodicity of the numerical results is
disturbed by the introduction of non-linear terms and that their
inclusion is not justified since the problem is essentially linear

by virtue of starting condition. In being linear the problem is
therefore elliptic and so requires the correct starting conditionsj;
this is provided by the analytical solution which is also linear.

4,4,3 The x = t seiche in a basin of linearly varying mean depth.

It has already been established in section 4.2 from equations

(4.15) and (4.16) that the simulation of motiocn in a channel of

triangular profile is impractical for the numerical schemes developed

in Chapter 3., It is more convenient to consider a channel of
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trapezoidal profile and this configuration was tested in section
be3+3 by comparing to Chrystal's analytical solutions derived in
section 4.2. This channel was again investigated but with both ends
closed to determine whether the numerical scheme can accurately
simulate the free wave oscillations. The dimensions of the basin

are shown in figure 4,12.

13. DS

©
u

a = 20.05

Figure 4.12

The lowest mode of oscillation in this basin corresponds to the second
mode of the equivalent open channel. The period equation is obtained

from equation (4.34) with the boundary condition ¥=0 at w = o «

and is
Yi(orx) - T, (ep) — T, (eca). Y, (cp) = © (4.64)

From equation (4.30) and the dimensions of the basin

O0-3I6L O o (4.65)

op

Using trial values for o3 and o= to satisfy equation (4.64) gives
oot = 4,8 and op = 1.517. From equation (4.29)

(4.66)

(]
»

o & 0. e
cl

b
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gives T = 15328 sec.
The timestep DT corresponding to D‘I‘max is obtained from the C.F.L.

condition namely

DT = 0,707DS
C

The free surface is determined from equation (4.35) so that

n = n‘( Y (ea) - To() - J,@x). 7(,(\.,3)_‘05(,,“,,)(4.57)

The constant A' was taken as O.,7446 in the simulation to produce a
maximum of O.lm amplitude at the left hand side of the basin. The free
surface along the x axis of the basin corresponding to high water

conditions at one end is shown in table A.25.

The dimensions of the basin together with the set of parameters
used to identify the tests 42 to 45 are shown in table 4.8. A
description of each test highlighting its significant features and a

comment on its results is as follows

a) Tests 42 and 43 used the same data, however the interpolation
scheme in test 43 is only applicable to constant depth cases.
The results produced in table A.26 can therefore be ignored.
In both tests the analytical solution was not produced,
instead numerical attenuation of the elevations and velocities

The attenuation produced in each oscillation was

occurred.
found to be constant and was not unlike that produced in basins

of constant depth simulated in section 4.4.1. In the latter

case the attenuation occurred in some cases because DT < DTmax

which was shown to mean an inequality between the numerical and

physical celerities.

b) The problems of simulating free waves using a fixed size of
computational grid, which implies a fixed numerical celerity,
applied to a situation of variable physical celerity have been

discussed in section 3.5. For such a case, a heavy dependence

is placed on the interpolation scheme and it was shown that a



128

more accurate method would be to subdivide the spacestep whilst
retaining the original timestep. Such a scheme was devised and

the details presented in Chapter 3 and it was applied in test 44
with the data as shown in table 4.8. The results along the centre
line of the channel in the direction of motion are shown for high and
low waters in table A.27. These results show that subdividing the
spacestep used in test 42, by a factor of 3 does not entirely remove
the attenuation but succeeds in reducing it from 45% per oscillation

to 21% per oscillation.

An alternative method, investigated in test 45 was merely to
reduce the space and time steps of test 42 by a factor of 3. The
numerical data is shown in table 4.8 and the results for high and
low water are presented in table A.27. From these results the
attenuation per cycle was also found to be 21%. In both tests st
and 45 the spacestep was one-third of that in test 42 and to maintain
the length of the basin constant for all tests, the number of grid
points in the x direction in tests 4l and 45 was fifty-five. Although
the results from tests 44 and 45 were very similar the computational
time for test 44 using the method of subdivisions only required one-

third of the computational time for test 45.

A theoretical explanation of the simulation of results other
than those of the analytical sclution for free wave motion has been
presented in section 3.5. In that section the disadvantages of
numerical interpolation as a result of using a regular grid were
noted whilst the advantages of using the method of subdivisions were
also highlighted. With the results from tests L2, 44 and 45 the

following conclusion is made regarding free wave oscillations in a

basin of variable depth. For this case the energy loss cannot be

entirely removed when the numerical scheme uses either a regular grid
method or the method of subdivisions (although the latter scheme is

more favourable). The features causing the energy loss are as follows:

a) The presence of ghost characteristics as a result of interpolation.

b) The application of an interpolation scheme which uses grid points

that lie outside the domain of dependence of the difference scheme.
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The method of subdivisions implies more than one numerical
celerity for which the interpolation scheme is theoretically
accurate. However, in reality, the variable depth basin has
an infinite number of celerities corresponding to the

variation in mean depth.

The method of subdivisions is therefore an improvement on

the regular grid method but requires further development.

Note on finite amplitude

Any reference in this thesis to a finite amplitude waaé"’ifg'\’;‘
made only with respect to mean water depth H such that7> H/10.

For these waves, the non-linear processes in their propagatlonf

are important and so have been investigated. In general the m'“
forms studied are all of small amplitude by conventional
definition (since ?( L/100) although non-linear eccordingh# §
Ursell parameter in which 7L /H >> ‘¥ i
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CHAPTER 5

THE SIMULATION OF WIND DRIVEN SURGES IN

CHANNELS OF SIMPLE GECOMETRY

5.1 INTRODUCTION

The verification, that a numerical model accurately
represents the dynamics of the study region by comparing it with
field observations, is of limited value. The limitations of this
approach are partly the results of using inadequate data together
with an incomplete understanding of the behaviour of the numerical

procedure. Certain features should be highlighted:

a) There is still a general lack of sufficient records of
water depth and velocity throughout temporal and spatial
domains of interest especially offshore and in the open sea.
This position is steadily improving, howevér, for example

field study data is published in the M.I.A.S. reportse.

b) Accurate vertically averaged velocities are particularly
scarce.
c) The overall effect of using an irregularly shaped schemat=

isation of the original configuration is important yet can

be difficult to estimate in view of point (a).

These various sources of error and uncertainty in verification are
eliminated when the numerical solutions are compared with the analytical
solutions for surge development given later in this chapter. A rather
systematic assessment of the performance of the numerical scheme may be
based on’the philosophy of Chapter 4., By necessity the shallow water
equations have been linearised and likewise the numerical scheme
constituting the model. In both situations wind stress and variable

bathymetry have been incorporated in the solutions of the shallow water
equations.
The simple geometric configurations employed in the successful

testing of the model for tidal propagation may also form the basis of
the analytical solutions describing the free surface produced by the
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wind field. A comparison of numerical results with these analytical
solutions is conducted for uniform and non-uniform, steady and
unsteady wind fields. This also bears upon the use of a wind drag

coefficient as, for example, by Heaps (1969).

5.2 WIND FIELDS AND WIND STRESS

One of the largest components of a storm wave is supplied by

the wind stress on the water surfaces. A full account of the wind

wave interaction is most involved and outwith the direction of this
research but it should be noted that at the present, the energy
transfer mechanism from wind to water waves and the resulting wave

growth is not fully understood. All wave forecasting relationships

are adjusted by actual wave data. Such forecasts are obtained from

semi-theoretical or semi-empirical theories, the latter approach

encompasses the significant wave method and the wave spectrum method.

Wave theories for wave generation have been proposed
concerning the critical wind speed at which the fluid flow at the
interface changes from hydrodynamically smooth to rough turbulent.

Most theories presume that the stress developed will vary with the

duration and fetch of the wind. Of particular importance is Munk's

theoretical analysis (1955) which shows clearly the importance of the
high frequency components of the wave motion which contribute largely
to the form drag. According to Munk's theory the drag on the sea
surface should not vary greatly with the fetch of the wind over the
water surface, as the high freguency wave motion reaches the value

for a fully developed sea much more rapidly than the low-frequency

components. A similar conclusion was found by Francis (1951) during

the measurement of the drag coefficient of a water surface in wind

tunnel experiments. He concluded from his measurements that the

mechanism for drag is not controlled by the large waves but largely

by the tiny wind ripples. Therefore it is the smaller elements of

roughness from the water's surface which provide the traction for the

This can be likened to the sand grain roughness,

wind on the sea.
providing roughness resistance to water

rather than the bed dunes,

flow in channelse.

The mathematical expression defining the shear stress at the
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air-water interface is obtained in an empirical manner and is given
by Hellstrom (1941)

ER

"r' = ' h/o" W7 (5.1)
where R is the wind drag coefficient,

/fPa is the density of air
and Wy is the shear velocity of the wind at a height y above the
water surface. In most wind measurements, the values of wind speed
are recorded at the 10m height and in storm surge calculations it is
more appropriate to express eguation (5.1) using/oh,. the density of

water. Therefore e K pu \A/; (5.2)

An upper bound of K = 3.3 x10‘6 for the wind drag coefficient is
generally applied to limited bodies of water when Wo 2 15m[s and for

the open ocean K = 3 x 10'6 is appropriate. By comparing equations

(5.1) and (5.2) the following expression is produced

K = k/oa'//ou (543)

With the values of o, = 125 h5)m3 and o, = I0A5 uj)-? equation (5.3)

produces the relationship

5 = k} 20 (5"“‘)

In the present numerical scheme the wind resistance coefficient R

was specified as 2.513 x 10-3 for ¥4°>'19.2 m/s. These values were
first suggested by Charmock and Crease (1957) and seem to be generally

accepted as being representative of the drag coefficient on the sea

surfacee.

The analytical solutions derived in the next section have been

developed by other authors using equation '(5.2) and so are expressed in

When comparing the numerical results to those from the
ained.

terms of K.
analytical solution an equivalence between kR and K must be maint

This is accomplished using equation (5.4) and so k = 2,513 x 1072 in the

model is equivalent to K = 3.06 x 10 = in the analytical solutions.

5¢3 THE ANALYTICAL SOLUTIONS FOR STEADY STATE WIND FIELDS /
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Sed THE ANALYTICAL SOLUTIONS FOR STEADY STATE WIND FIELDS

The wind field exerts a tractive force on the water resulting
in the water being dragged in the direction of the wind. The
equilibrium surface slope maintained by the action of a steady wind
field blowing over shallow water has been theoretically derived by
Hellstrom. Although the mechanism represents a gross simplification,
it may be expressed as

' S o (5.5)
d x pu g H
where Jsjix is the surface gradient as a result of wind stress and n
is a constant dependent on frictional conditions at the sea bottom.
For frictionless conditions n=1 and generally takes a value from 1 to

1.5. Substituting for T (equation 5.2) into equation (5.5) produces
b X
J'_é e K \"/lo (5'6)
d x 9 H
for the frictionless case.

Considering the case of a steady uniform wind field directed along the
axis of a channel of constant depth, the hydrostatic pressure is

expressed as
P = /owj(H*5> (57

and a more accurate version of eguation (5.5) is therefore

e il (5.8)
d x 3 (H+S)
(H+S ),

which includes the hydrostatic effect of the surge in the term
Integration yields an expression for the surge height S; the proof is
presented by Ippen (1966) and is as follows

3(H*S).l5 o B

38 Hds + ¢ SS-lS = )&Vlglx
Since H is constant

q-H.S + g st = KW L

where L is the length of the channel. Hence
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S . = m_ (5.9)
g (H+5/2) :

Equation (5.9) is quadratic and it is easily proved that the positive

Ea Hl/zxwlt. 3.1 -1 (5,10)
3 H*

For the case of the closed basin shown in figure 5.1

root is given by

o L —eW
o — o —— =)
SI zH-U.L — e e
A/”—‘ H
}‘r —— SO TR Py ,'
Figure 5.1

the surge S is not measured from mean water level but from the lowest
water level. Eguation (5.10) applies equally to an open channel of
constant depth since this case is merely a segment of the closed basin.
In both configurations it is more convenient to calculate the surge
height from mean water level S' and one way is to assume that s' = S/2.
This condition is only an approximation and a more accurate method arises
from considering the position of the nodal point. Assuming that the

node is not necessarily at the centre of the basin, its position is

5& = i s:c.x + 2ZS5max H (5011)
@ 2Kw*L/3

where S = Spax at X = L and Xn is as shown in figure 5.l. From
equations (5.10) and (5.11) the following expressions can be derived

expressed as

+5H.u.g = H[/Z'KW’IL(‘—X"'|L~) + 1 -’] (5012)
. q Hl

- SMuwu = H[‘/iZKVLL‘(X'\-}L) il "’J (5.13)
g H*

With X, |L= 0-5 these equations show in fact that | +Smwn | x l o Sn.u.ul .
When the surge is small in relation to the depth it is reasonable to

assume that the node is at the centre of the basin.

A similar method is used to derive the analytical solution
for a steady uniform wind field applied to a channel of linearly

varying mean depth. Considering the channel shown in figure 5.2 the
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analytical solution is obtained by integrating equation (5.6).

(15 = K_‘MIJX@:: = t‘.."f-'_fili

9 . H ) m H
since d’j = m.lx. Therefore ‘ Ho
2
Kw -
S = 37 ( L:j‘ H : losc HD )
- H. )
- SN 4.3

where m is the bed slope.

Figure 5.2

The surge height obtained from equation (5.14) is accurate for H,> 10m
and if the surge height is large in comparison to H, then the following
expression should be used.

Kw’ H,

S g ¢ (H,+9) (5.15)

Equation (5.14) can only be realistically applied to channels of
trapezoidal as opposed to triangular longitudinal profiles. For the
latter configuration this analytical solution would predict an infinite
surge height, since H, = O.

A comprehensive derivation of the analytical solution for a
uniform steady wind field applied to open channels of variable bathymetry
was given by Lynch and Gray (1978). They provided an analytical solution
for channels which have their depths represented by

H= c.x" (5.16)

where ¢ is a constant and n is not pecessarily an integer and may

assume any real value. The analytical solution is not confined to a
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wind field directed along the axis of the channel, as shown in

figure 5.3.
= g = TR g
]
| h
| W ~
| e
: B [ Y
I N
: —————— = = . o x o
' )tg
el X |
Figure 5.3
The boundary conditions for this problem are as follows at
W s 35S + i T = = o (5.17)
3 x P
at T S{x,9) = @ (5.18)
at \3 2 Oy e a__é + TY = o) (5019)
éfj Pw g c iy

The complete steady state response to an arbitrary wind stress thus

obtained by superposition of x and Y components is

S(x.-_-,) TR S (a.—lrx‘-m)

P T [ E () [ () emelt)
5% 3 (5.20)

in which Tx and Ty are the x and y components of wind stress respect-

ively. This equation is valid for n %! and

] = ‘K.l-n'//ow (l-r\,).a. G-y " = '/fu ("“‘)'3"‘ (5.21)

For the case n=1 the first term in equation (5.20) is replaced by
Te( o - b-log,x ) and the constants a and b are calculated from the
boundary conditions (5.17) and (5.18). The values are

a = ""32 x‘//°‘-"3"' ) lr:l//au.ﬁ.c

In the special case where Ty = O and n = |, equation (5.20) reduces to
The variables in the

(5.22)

the analytical solution given by equation (5.14) .
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second part of equation (5.20) are expressed as follows

po= {1=n)]2 (523)
s i i R i (5.24)
¥:9¢ P
s e:’_[ | - cosk(%L)]/ sm.k(%L) (5.25)
e I, AR (5.26)
[ x [ 2 (52)] &
where 2 () = T (). Y, OGE Feiiy () - Ve () (5.27)

and ¥; is the Jth zero of Zp.i -

Equation (5.20) is impractical for readily producing results for
comparison with the simulated results. The actual simulation was
therefore not performed although it poses no difficulties. However
the configurations corresponding to equations (5.12) and (5.14) were
simulated.

5.4 APPLICATION OF THE WIND STRESS TO THE NUMERICAL SCHEME

Having derived analytical solutions suitable for comparison
with the results from the numerical scheme the next step was to
represent the wind stress effect in the scheme using the appropriate
algorithms. This was accomplished in several steps which are outlined
in the flow charts shown in figures 5.4, 5.5 and 5.6 Firstly
the wind field is specified using an expression that defines its
position relative to the channel or basin. This is shown in block 1
of figure 5.4, as is also the incorporation of the wind stress
coefficient into the calculation of wind stress at each grid point.
Bach grid point was defined by a configuration number and for each
point the wind stress was applied as an external force to the charact-
eristic equations governing velocity. This latter step is shown in
block 2 of figure 5.4%.

The flow diagram which represents steady uniform wind

conditions may easily be modified to account for a non-uniform or

non-steady wind field. In the case of a progressive wind field with
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a triangular wind stress distribution the unsteady movement was

achieved in two steps. These steps are shown in figures 5.5, 5.6

and can be summarised as folloOws:

a) The wind stress distribution is mathematically defined as a
continuous function of length and breadth of the channelo
Block 1 in figure 5.5 therefore replaces block 1 in
figure S.4.

b) The transient nature of the wind field was achieved by
advancing the wind field one grid step at prescribed regular
intervals of time. Providing these gridsteps are not too
large, the wind field maintains a continuous motion over the
channel. The steps involved in this stage are shown in the
flow chart of figure 5.6 which modifies that of figure 5.5.

The definitions of the symbols shown in figure 5.4 are as
follows:

WC, WK : Wind stress coefficient and wind speed in M.P.H. respectively.
BK : Wind direction measured clockwise from true north,
LF, LB : Each is an integer multiple of the spacestep DS, measured from
the edge of the shelf defining the position of the front and

back of the fetch respectively.
W(I,J), B(I,J) : Wind speed and direction respectively at each grid

point.
WwX(I,J), WY(I,J): Wind stress in the respective X and Y direction at
each grid point.
UF(1,J), VF(I,J): Depth averaged velocities in the respectiv
direction at each grid point.

e X and ¥

A : The celerity of the wave.
EF(I,J), H(I,J), ZF(I,J): The respective elevation above M.W.L, the
depth below M.W.L and the total depth at each poiat.

D : Density of sea water.
ST : Time at which the wind field is first applied.

IN : Principally for moving wind fields, it is the time interval

in which the wind field moves across one spacestep.

KT, KIMAX : KT is a counter that stores the number of discrete

movements of the wind field and KTMAX is the maximum

number of required movementse
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Application of wind stress to Programe

Steady, uniform wind stress.

READ WK, BK, LF, LB, WC, ST, IN, KTMAX, D

¥
KT = 0
TIME = DT

I'l,M J=1.N
WX(I,J) =0 WY(I,J) =0

y

No
TIME.GT,ST+INxKT > 2 S
- No
v Yes A KT = KT + 1
& I=1M J=1,N
KT.LT.KTMAi>»———>Eg————4<g§2§§:g§£§g>»——ﬁ——gg—- WX(I,J) =0 >
WY(I,J) = 0
4 Yes
N

KT = KT + 1
I=1M J=1,N @
W(I,J) = WK B(I,J) = BK
1F (I.LT.1B) Ww(I,J) = 0.0
lF‘ (IoLT.IB) B(I'J) = 0.0
IF (I.GT.IF) WEI'J; = 0.0
1F (I.GT.LF) B(I,J) = 0.0
WX(I,J) = 0.24976 x WC x W(I,J) x W(I,J) x SIN(PIxB(I,J)/180)
WY(I,J) = 0.24976 x WC x W(I,J) x W(I,J) x COS(PIxB(I:J)/ISO)

W/
AR e
IF  CONF(I,J) = L GO TO (0,1,2,3,4,5,6,7,8, =1, =2, =3, =k, =5, =6),L

¥

A = SQRT (G x H(I,J)) @
UF(I??? = CHAR EQNS + WX x DT / (D x 28(I,J))
VF(I,J) = CHAR EQNS + WY x DT / (D x 2s(I,J))
EF(I,J) = CHAR EQNS

Z2r(1,J) = EF(I,J) + H(I,J)

TIME = TIME + DT

TIME = TMAX

N

No

Yes

Figure 5.4
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For a steady, triangular wind stress field block 1 in figure

S.4 now becomes as shown in figure 5.5

¥

IK = WK x WK 4 @

IW = LF - LB

I=1M

J=1,N

1F (I.1E.(O.5xIW+LB)) TS = TKx2x(I-LB)/IW
IF (I.GT(0.5xLW+LB)) TS = TKx2x(LF=-I)/LW
B(I,J) = BK

1F (I.ILT.IB) TS = 0.0

1F (I.LT.IB) B(I,J) = 0.0

1F (I.GT.IF) TS = 0.0

1F (I.GT.LF) B(I,J) = 0.0

W(I,J) = SQRT (TS)

WX(I,J) = 0.24976xWCxW(I,J)xW(I,J)xSIN(PIxB(I,J)/180)
WY(I,J) = 0,24976xWCxW(I,J)xW(I,J)xCOS(PIxB(I,J)/180)

1

Figure 5.5

with the symbols defined as follows;

Iw : Length of the fetch as an integer multiple of the

spacestep DS.

K : Obtained by squaring the maximum wind speed and

proportional to the maximum wind stresse.
s : A parameter proportional to the wind stress at a position I

along the shelf.

The value of wind stress at each grid point is calculated from the
geometry of the stress field defined by the parameters LF, LB, IW
as shown. If the triangular wind stress field is unsteady, then

figure 5.5 is adapted by inserting two extra lines of computation as

shown in figure 5.6.



142

TK = WK x WK
Ditto

WX(I.J)= Ditto
WY(I.J)= Ditto

IB= 1B+l
IF = LF+1

Figure 5.6

Hence after a time interval IN the values of the integers LB and LF
which control the position of the fetch relative to the shelf are
increased by one. This corresponds to a movement of a distance DS
such that the speed of propagation of the storm V, is equivalent to
the ratio DS/IN. As mentioned previously it is important that the
spacestep is not too large or the accuracy of the simulationm is
affecteds This point is referred to again in section 5.6.2 with the

computational results provided in table 550

S5e5 STEADY STATE ANALYTICAL SURGE SIMULATION

S5e¢561 Channels and Basins of Constant Depthe
Equation (5.12) was compared with the numerical scheme using

the configuration geometry of tests 4 and 31, corresponding to the open

channel and closed basin respectively. The initial conditions were

that of mean water level and zero velocities. In applying a steady

uniform wind field over these constant depth configurations it was

important to determine the accuracy of the simulation. In this respect
the model's response is related to the particular value of wind stress

coefficient. This coefficient was determined from the value of uniform

wind speed in the following way
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-3
SV RS § IEp- kR = o0-554 = lo
.3
e W S k- R = =o0-12 + 0:06124 W = 10
: P
W.o» h3: R = 1-513 = 10

(5.38)

with W in M.P.H. These coefficients were first presented by Heaps
(1969) and their origins are discussed in Chapter 8. In each test a
different value of wind speed was used and its effect on the surge
height noted. The corresponding analytical surge was calculated for
comparison, using equation (5.12) and the convertion ejuation (S5.4).
In each test the results of the simulated surge showed that
a steady state condition was not achieved. These tests were conducted
firstly on the closed basin of constant depth. Instead of an
equilibrium water surface, the simulation produced free oscillations
in the basin. As a result of DT % DTmax some &attenuation was present
and its effect on the oscillations is shown in figure 5.7. The curve
was derived from the surge elevations at the boundary of the basin for
W = 30 M.P.H. It was noted that in each test the average of the

meximum and minimum oscillations was found to be very close to the value

for the analytical surge. This was also true for subsequent oscillations

in the channel. The maximum, minimum and average computed surge heights

are presented in table 5.1 together with the analytical surge for the

basin of constant depthe
To decide whether or not the surge oscillations were produced

solely as a result of the channel acting as a closed system, the same

wind fields were applied to an open channel of constant depth. The
results for each test showed that surge oscillations occurred

corresponding to the natural period of the channel. For ome such test

which used W = 50 M.,P.H. the surge oscillations are shown in figure 5.8.

As for the closed basin, the average of the maximum and minimum surges

at the head of the open channel are very close to the analytical steady
state surge height. The computed and analytical surges are shown in

table 5.2 for four values of wind speed.
In both channels, which were frictionless, the simulated

motion was that of a free wave oscillation superimposed on the steady

The oscillations slowly diminished in amplitude as a
resent in the model since DT % DTmax.

state surge.
result of numerical attenuation p
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Surge histories at a landward boundary point

produced by a uniform wind field.

Computed Surce (S.)
b fretaes) CLOSED BRASIN of CONSTRANT Dept

] ;S-;:.O'l'lm

T

T Al
W12 29 L2L 13L126 178348

1iMg (SECONDS)

Figure 5.7

OPEN CHANNEL OF CONSTANT DEPTH

f =
Compured_Susce (S,) W= B50M.P.H | DT<DT .
b (MeTRES)

Lk712 k2L 136 1788438
TIME (SECONDS)

Figure 5.8

W = 30MPH, DT< Dme

bk



The Response of a Closed Basin of Coastant Depth to a Steady

Uniform Wind Field

Comparison of Analytical and Computed Surges

145

Wind Computed Analytical| g
Speed | Wind Drag| Max Min Average Surge —==
Coeff kR | Surge | Surge | Surge S S, S.
M.,P.H. x IO_! m m m m
10 0.55 0.03 -0.01 | 0,01 0.0093 1.07
20 1.10 0.13 0.01 | 0.075 0.075 1.01
20 174 0.47 0.07 | 0.27 0.27 1.00
Lo 2433 1.16 0.10 | 0.63 0.62 1.02
50 2,51 1.97 0.16 | 1.06 1.04 1.02
€0 2o 2.78 026 [11:592 1.49 1.02
70 2451 3.76 0.3 2,06 2.00 1.03
Table 51
IIMM_@MM-
10 0.55 0.,0138 =0.,0048 | 0.0045 0.0046 0.978
30 1.71 0.225 | 0.029 | 0.127 0.129 0.984
50 2,51 0.958 | 0,064 | 0.511 0.525 0.973
70 2.51 1.828 0.152 | 0,990 1.020 0.970

Table 5.2




The failure of the model to produce a steady state free surface was

not a result of any limitations or inadequacy of the numerical scheme.
It became clear in retrospect that the oscillations were produced as a
result of the method of initialising the wind field over the channel or
basin. Since the wind field was impressed suddenly over the surface of
the mocdel a dynamic effect was introduced which was responsible for
generating the oscillations. To remove this effect one might,
intuitively seek to specify a slowly increasing wind field such that
the maximum value of the uniform wind is reached as t — oo .

This method however was found to be impractical and an alternative is

demonstrated in section 5.6.3.

5e542 Rectangular channel with linearly varying mean depth.

Further tests involving the simulation of steady state surges

were conducted. Both uniform and non-uniform steady wind fields were
applied separately to a frictionless shelf of linearly varying mean
depth. The shelf dimensions shown in figure 5.9 are identical to those
from test 45 except that the spacestep has been changed from 3867m to
4,000m. With this change the length of the channel corresponds to the
breadth of the continental shelf of the west coast of central Scotland.

This shelf is discussed in greater detail in Chapter 9.

—_— W

v M.W.L y
g IH°= lem

H, = |60m
M=55

DS = K oo0O0Om

_a}
o R R
|

p = 216 km
L -

Figure 5.9

A uniform wind field with a wind speed of 50 M.P.H, and a

wind stress coefficient obtained from the conditions in eqation (5.28)

determined the external forces in the model. The initial conditions

were once again those of mean water level and zero velocities which

applies to all non-tidal surge tests. Computations of the surge

produced at the shore of the rectangular shelf, corresponding to H,
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are shown in figure 5.10. Also shown is the steady state surge So
obtained from the analytical solution stated previously as equation
(5.14). The computed surge was once again subject to dynamic effects
which appear as free oscillations across the shelf. The oscillations

at the shore, as shown in figure 5.10, have exactly the natural period
of the channel corresponding to the lowest mode of oscillation as deter-
mined from Chrystal's equation (4.37). The slow attenuation in ampli-
tude with successive oscillations has been described in Chapter 3 and
shown in the tests of Section 4. It is the effect on free waves as a
result of an inability to maintain DT = DTmax throughout a channel of
variable depth. The results from section 4.3.3 showed that no apparent
attenuation was produced when simulating forced waves. The results from
figure 5.10 also verify that no energy loss has occurred in simulating
the forced part of the surge because the average surge obtained from the
maximum and minimum oscillations is exactly equal to the analytical
steady state surge.

An identical conclusion can be made from the results of simu=

lating a steady, non-uniform wind field across the shelf. Details are

given in figure 5.11 for this test which shows that the average computed

surge is equal to the analytical surge. The spatial variation of wind

stress was triangular and the position of the stress and wind field

relative to the channel is shown in figure 5.12. The analytical

solution for this type of trapezoidal channel and wind stress

T

/\I

Stress Distribution

Wind Distribution

Shelf Profile

Figure 5.12



148

Surge histories at a coastal point of a rectangular

shelf of linearly varying mean depth. (I=55,DS=kkm)

CompPufed Surak ( se)
MeTRrES) WIND FIERD wiTH UniFoAaM WinD Srress

W = 50 MPH

l So® 0-527Tm

T= 27000 s&cs

i T

L\l g
k112 SAKY 3136 178343
TIME (seconDs)

Figure 5.10

ComPuTed Suié (Se)

A
L MEs) WiND FiERD wiTK A TRIANGULAR STRESS
DiSTRIBUTION | wmx = SOMPH
- = 27000 s&s
~ - - . 3 £ - S5, ©218m
T T T T s
LuT7i2 8aAL2Y 13136 178848

TiMe | SECONDS)

Figure 5.11
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arrangement was first stated (without proof) by Reid (1956) and is

expressed as
A

S = le'rf(ﬂ)gz
Gy, - He

(5.29)

where T; is the travel time of a free wave across the channel and ¢,

is the maximum celerity corresponding to the open end of the channel.
Reid has termed Z as a dynamic response factor dependent on the length
of the fetch. In his paper he calculated the maximum response factor

at the shore for each fetch, found by numerical integration for different
trial positions of the fetch. Unfortunately Reid does not give details
of the position of the fetch corresponding to each response factor but
only for the maximum response factors. The arrangement shown in figure
512 does not correspond to a maximum response case by virtue of the
position of the fetch relative to the shelf. Therefore the response

factor at the shore is determined from first principles as follows.

Consider the wind stress in dimensionless form given by

: 3
g - Koy M " (\a_J ) (5.30)
K/°u W:L Wm

where W, is the maximum wind speed in the fetche The function f shown

in figure 5.13 is discontinuous and its integration is performed in two

parts, A and B

|
|
|
|
l .
X , Z(%+x,) Xo Xo| X, = o1

% )
y: l Ca(+93)1" % y = (x)x)%
Yoz (e)* = 03K
a 3
K(+%)]" = om
Figure 5.13 s s
For part A:
X X f: o
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o Mg (5.31)

produces )L“
: xo = Li (x. bl )(o)

Withy= (x/x,)ar and dividing the top and bottom of eguation (5.31) by

x, gives
a2 £ k8
j o e (5.32)
A & 2
(r-%)
For part B Koz 50 §=0
xX = 1&()(. +x°) § f:
gives 1— = o i S (5.33)
» X, - % (X, +Xo)

Transforming this equation by dividing the numerator and denominator by

x, gives

2
‘)('u - L bt (5.34)
£(1-9.)

Reid has shown that the exact integral of the response factor at the

shore is expressed as :

& -l
z_ = “—;-[ 9§ dy (5.35)

where ¥= | =4, and for this channel where X,[X, =2-1, ¥ = 0.684,
Bxpressing equation (5.35) in terms of fﬂ and f. produces

PRI LT ;
wr B[ gl e (g ] (5.36)

. yo csG+ 831
Substituting equations (5.32), (5.34) into equation (5.36) gives
% o-14 a 2 { a
- e W B | PR G S |
Z<> = oy ) —_— + / (5037)
: [J & f Y ¢a-o)
o316 PE
which simplifies to
7 - CERI . |
SAMp Y S P :
Z, = ; - [ j (3 j_) A"j + J (/3 j) 13 J
/2.("‘30) 3
©-36 o4

(5.38)

Integrating this equation produces

074

v (logg i) ] (5o

Inserting the numerical values into equation (5.39) gives Z, = 0.392.

2, = 1-8%6 [(%jl - ‘j: loj.j)

o-3e
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With the channel dimensions inserted into equation (5.29) and the
value of K = 3 x 10'6 suggested by Reid, the following equation is

produced

8o BB 2 (5.40)

Equation (5.40) gives S,= 0.218m as the steady state surge for a
triangular wind stress distribution, where the fetch length is equal
to the breadth of the shelf. This surge height at the shore is shown
in figure 5.11 and is very close % the average computed surge obtained

from the maximum and minimum surges.

5.6 UNSTEADY STATE; ANALYTICAL SURGE SIMULATION

As mentioned in Section 5.1 the analytical solutions are an

important means of verifying the accuracy of the model under simplifying

conditions. However if the assumptions used in the analytical derivation

lack any physical meaning then the analytical solutions are of little
value. For example the steady state analytical solutions apparently
do not consider the complete dynamic process by which such a surface is
produced. By contrast the numerical model, which does not ignore the
dynamic considerations, thus cannot produce a steady state surge. By

considering for simulation purposes the case of an unsteady wind field,

there is the advantage of studying an important natural phenomena
namely the transient effect of a wind field. Before actually conducting

any numerical tests it is necessary to have a theoretical method as a
comparison, that accounts for the dynamic effect of a transient wind

field. For this purpose the semi-analytical method devised by Reid
(1956) is appropriate.

Reid succeeded in obtaining the water response using a method
whereby all the factors defining the shape, size and duration of the
surge were included without making the method impractical. The method
was based on the simplified linear one-dimensional equations of motion,
utilizing the method of characteristics to obtain the solution. A
simple graphical integration procedure was devised which accounted for
the bottom slope of the shelf and it was capable of dealing with almost
any distribution of onshore components of wind speed. He only
considered wind-driven surges and to facilitate interpretation of the

results, the wind stress distributiom was the same in all cases.
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Eowever, different combinations of the fetch length and speed of
propagation of the storm were examined. Wind intensity was accounted

for by employing a dimensionless parameter.

The limitations of Reid's method are that two-dimensional
effects associated with finite storm width, longshore winds, and
variations of bottom topography parallel to the shore were not
considered. Furthermore, bottom friction and non-linearity associated
with large water level changes were not included. This compromise was
necessary because exact solutions of the hydrodynamic equations were
(and still are) so complicated that a complete mathematical solution
capable of dealing with any storm condition was outside the realm of
practicability. At that time also, computer technology was inadequate
for the application of a comprehensive yet flexible numerical scheme.
However, for storms of large width parallel to the shore and for
conditions where the surge is smaller than the mean water depth, Reid's

method leads to reasonably realistic resultse

Sebel Derivation of a semi-analytical surge solution on a shelf of
linearly varying mean depth.
Although Reid's particular area of interest was Narragansett

Bay in New England the results from his calculations are applicable to

any shelf region. This is a direct consequence of Reid generalising

the problem by employing the concep
only restriction in applying his results to any other shelf area is

that the depth ratio is as follows
H°! i o= o (5.41)

t of dimensionless variables. The

This condition was applied to the channel used in the tests of section

5.5.2 and the channel has been the basis for further tests presented
later. The dimensionless variables define any triangular storm stress

distribution and any rectangular shelf with a linearly varying mean
depthe
One important dimensionless variable, namely dimensionless

time is defined at this point, as follows

et RS T ] 1’§ (5.42)
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because it is commonly used in subsequent presentations of results. The

variable 1} which is the travel time for a free wave to cross the shelf

is defined as

‘l’j = L|C (5043)

where ¢ is the average celerity across the shelf given by
¢ % Hlc¥ e, (544)

Equations (5.43) was considered by Reid to be indicative of the natural
period of the shelf therefore it is important to understand the steps

leading to its derivation. Starting with the Green«Du Boys
theorem(Defant (1961))

X

= "__ 3 l)( (50‘4’5)
il [(s KIS
which is applied to the shelf shown in figure 5.14
: L }
%, Xo
X & I
' R 216 Rm.
: m = J/lSoo
[
I
l
Figure 5.14
the following eguation is obtained
X,
‘ % (5.46)
1 .
Tj’ = S—K (mx-’-H,) .l)(
xO
and on integrating yields
I e 4 .
e TNERE b e (5.47)

Multiplying the numeration and denominator by (Hlé + Hoi) produces

2 (H =He) (5.48)
Ty = Fe (Wa )
and with C, = (gH,)% s« Co= (gﬂo)éL and (H, = Ho)/m =L

equation (5.48) becomes

5 (5.49)

f, = —
3 % (Co+ ()
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which is equivalent to the combination of equations (5.43) and (5.44).
Hence the Green-Du Boys integral provides an expression for T} based on
the average celerity of the shelf. Using equation (5.49) and the
dimensions of the channel shown in figure 5.14 a travel time of

8284 secs is obtained.

The basic linearised differential egquations of motion and

continuity for the simplified one-dimensional water level problem are

respectively
LIS S q H L e e (5.50)
2t d % Pw
WMol Sla & o (5.51)
3t d x
for Reid's case. He transformed these equations into the following
equations.
bE iy x[b_i S i] 2 ‘3‘,/1‘/; (5.52)
't dy &5y
i - x[ﬁw/i] “ o (5.53)
at! dy it
by using the following dimensionless variables
y = (x] % e (5.54)
- SR SNE 5‘6' (5.55)
KWy
Y = a (5.56)
KWy
T (5.57)
iy 2
K/ou \J,_
A
AR SRR S S R (5.58)

As a first step Reid considered the special case of steady state. The

boundary conditions for this and any other problem was taken to be

x = O (5459)

x
]
X
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* i R Y=o0 (5.60)

The boundary equation (5.60) modifies the equation (5.52) into the form

Bi | ' 3, -4
e e ot Lo

which can be rearranged in the form

y 2 (3-'4_2) A ’5'.3‘ (5+62)

by

The solution of this differential equation is
|

4 N

Z, = \k S ‘3&‘13
4 3

which is the analytical form, and %, is the value of Z at the shore.

For the limiting case of a large fetch the forcing function f can be

considered uniform (f =1 ) and equation (5.63) yields

(5.63)

zr = I/y ‘j:i LOSQ (%oj (5.64)

where Z, is Reid's exact value of the dynamic response factor at the
shore in the steady state. By substituting in eeuation (5.64) the

relationships (5.54), (5.55), (5.57) and (5.58) the more common form of

equation (5.14) is produced. Eguation (5.64) also shows that the

maximum dynamic response for a uniform wind field in steady state is
Z. = 0.945 with the condition that (H,/H,) = O.le In deriving equation
(5.64) the condition (5.55) was used which if rearranged produces

]

(5.65)

This is Reid's steady state surge equation for a triangular wind stress
distribution which is the general case from which the analytical solution

for a uniform wind surge has just been derived.

In order to simplify the graphical procedure, Reid assumed that
the terms 2/4 and Y/y in the equations (5.52) and (5.53) respectively were
small compared to the terms 325/53 and bY/ﬁj, and so could be neglected.
This approximation is reasonable provided that Yy, is sufficiently large
so that the guantity ( H,AH\)% is not too small. After applying these
approximations to equation (5.52) and then considering the steady state
and boundary conditions (5.59) and (5.60) the following expression is
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produced
Xli SRR
dy Tin) (5.66)
and the solution at the shore is 3
|
S :
B i ‘ - SR 13 (5.67)

This integral is slightlymaifferent in form from the exact integral
expressed in equation (5.63). Using equation (5.67) Reid calculated
the values of 2; for different positione of the fetch by numerical
integration for different values of fetch length. The maximum value
of 1; for each fetch denoted by Z, found from these calculations are
shown in figure 5.24 together with the exact maximum steady state
values % obtained from equation (5.,63)s The variation between the two

curves is represented by a factor v such that
R R (5.68)
The values of this correction factor r are provided in the table 5.3

as shown.

F/L| O 0:2° 0.5 1,0 2.0 4,0 8.0 oo

Table 5.3

The case of steady state therefore served as a useful method of

calibration for Reid's graphical process since the factor r related this

scheme to the analytical solution. He assumed that & was only dependent on

the fetch length and as a result he applied the correction factors to the

maximum dynamic response Z, obtained from the same wind stress in the
unsteady state. Therefore by using the graphical process the maximum
response factor %, at the shore was found for the unsteady state and suit-

ably corrected using the appropriate correction factor. This method led

Reid to investigate a large number of moving wind fields of triangular

From these results he plotted a response diagram as
ram gives the estimated maximum dy-

stress distribution.

shown in figure 5.15. The response diag

namic response Z, associated with a particular storm speed and size. Coupled
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with a knowledge of the shelf dimensions, the approximate maximum
water level at the shore is accordingly provided from the equation

(5465) withn = S, and 2 = 2,

In performing the calculations Reid assumed that the wind drag
coefficient was constant for wind speeds of storm intensity. This
assumption evidently simplified the calculations since the dimension-

less intensity of the wind stress factor'f defined previously as

% 2
jr = K/°w W = (ﬂ ) (5.30)
K puw \J,: W

becomes only a function of wind speede Therefore § and %, from
equation (5.67) are only functions of distance x providing K is
constant. The dynamic response factor %, can therefore be calculated
solely from the shelf dimensions and the wind stress function. This

would not be the case if the wind drag coefficient was a function of

wind speed such that

2
T = K \Y " (5.69)
K W
and %, would then be dependent on the value of the wind drag coefficient.

The validity of assuming the wind drag constant throughout the wind

distribution is investigated in the next section.

5.6.2 Simulation of Unsteady Wind Fields

In order to verify the accuracy of the model by comparing its

surge heights with those of Reid's, it was necessary to use a constant

wind stress coefficient in the model.
method and the wind stress coefficient used in the model was

k = 25)3 » \0-3 fgr W >0 (5070)

This was in keeping with Reid's

Before presenting the simulations it was thought important to invest~

igate the effect, on the computed surge, of using either a variable or

a constant wind stress coefficient.
since the model can function with equal

It seemed appropriate to make a

comparison of both methods

ease in both cases. For the simulations with the variable coefficients,

en as those presented in equation (5.28)
s field had a triangular distribution with

these coefficients were tak
In both cases the wind stres
a maximum wind speed of 50 M.P.H. The configuration was that used in

section 5.5.2, and shown in figure 5.9.
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The computed maximum surge at the shore for a constant wind
drag coefficient S and for a variable wind drag coefficient Sh are

shown in table 5.4 for a number of tests.

F/L
F/L | V/e S, S 5/ v./C
m m
1 2 0.245 0.29 0.85 0.5
1 3 0.495 0.55 0.90 1
B 2 0.59 0.62 0.95 2
2 1l 0.605 063 0.96 2
b4 i 0.68 0.69 0.98 4
4 05 0.515 0.51 1.01 8
8  : Oe54 0053 1.02 8
Table S.4

The parameter F/L is the dimensionless fetch length which is the ratio of
fetch length to the length of the shelf. The parameter V,,/c is the
dimensionless storm speed which is the ratio of the gpeed of the storm to
the average speed of a free wave across the shelf. A graphical rep-
resentation of the ratio of surge heights S, /S for both methods plotted
against the storm parameter FA/V, /¢ is shown in figure 5.17. From the
results a curve has been drawn as shown which indicates that the ratio
Sh/S is ofly significantly less than one for small fast moving wind
fields. For large slow moving fetches, the surges, produced, using
either a variable or a constant wind drag coefficient, are very similar
and the ratio Sk/S tends to unity as _F_‘%_., . These results suggest
that the central portion of the wind Yi6Id has the most significant
effect in surge production in comparison with the ends of the fetch.
figure 5.16 the hatched area under the wind distribution represents the
length of the fetch in which the wind stress is the same using either a

In

variable or constant drag coefficient.

Figure 5,16

Recion oF MAxiMumM wWiND
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Wind surge ratio obtazined from computations using

a variable and a constant.wind stress coefficient,

plotted against a dimensionless wind field parameter.
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Figure 5.17
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As the fetch length increases, the hatched area becomes a greater
percentage of the total area and the variable wind stress coefficient's
effect approaches that of a constant wind stress coéfficient's effect.
It is also reasonable to assume that had W, = 80 M,P.H. in each test
the curve shown in figure 5.17 would have approached unity even quicker
than is shown, because the maximum wind stress coefficient would be
dominant in the variable wind drag coefficient case. Reid considered
actual storm events with maximum wind speeds of approximately 80 M.P.H.
It therefore became reasonable to simplify the problem by assuming a

constant wind drag coefficient.

Before obtaining Reid's paper, reference was made to Silvester
(1974) for equations and tables governing unsteady wind fields. Silvester
refers to Reid's equation namely equation (5.29) but does not
& e T ,(&)Vuz
c, Ho
mention that it is basically a steady state guation. Furthermore he uses
the misleading term 'triangular wind distribution' which may be taken

to imply a different function entirely from the correct expression which
The difference lies in the
It

is a 'triangular wind stress distribution'.
fact that wind stress is proportional to the square of wind speed.
was only after obtaining Reid's paper and after many computations using
the triangular wind field, that the correct form for the wind stress was
realised. The computations are therefore not presented, except for the
steady state curve shown in figure 5.24, since they are unrealistic.

The correct triangular wind stress distribution was incorporated
in the model using a constant wind stress coefficient of 0.,002513. The
wind stress was applied over the shelf shown in figure 5.9 with a space-
step of 12000 metres and 19 grid points along the length of the shelf.

In each test the storm parameters F/L and VW/E were given suitable values
and the surge history was computed at every grid point. The maximum
surge elevation at the shore S, corresponding to the storm parameters

is shown in table 5.5. Also shown is the computed dynamic response
factor Z__ obtained from equation (5.40), together with Reid's response
factor 2, for comparison. In 2ll these tests the computed response was

less than that of Reid's, which suggested a deficiency in the method
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of simulation. The computed responses were also found to be in poorer
agreement with Reid's responses for the smaller values of F/L and the
larger values of VW/E. This fact indicated that the discrepancy in

the model was one of poor schematisation of the distribution and
propagation of the wind field.A Further evidence of poor schematis=
ation of the wind field was noticed when simulating slow moving wind
fields. The computed surge showed small peturbations which corresponded
to the sudden movement of the wind field from one grid point to another.
The peturbations are the dynamic effect associated with each movement
across the grid. In order to decrease the effect of the sudden 'jumps;

the grid size was reduced by one-third so that fifty-five grid points

Simulations on this grid were not

subject to perturbation effects however it appears that to simulate
ind field the grid para-

were necessary to define the shelf.

accurately the surge effect of a progressive w

meters have to be smaller than is required for tidal motion.

In figure 5.18 the curves illustrate the generation of the
shelf to the shore. The simulated surge

ervals of 1242 seconds. The storm parameters

surge from the edge of the

responses are shown at int
were F/L = 1 and KM/E = 1 and the latter parameter caused the maximum

surge at the shore to arrive at nearly the same time as the maximum

wind passes over the shore. The respective dimensionless times were

]
t'n = 1.65 and t y = 1.50. The wind field did not produce a large free

surface response except for in the relatively shallower area near or at

L
the shore. At t =1.80 the maximum wind speed passed over the shore and

the curve at that time shows that a smaller secondary resurgence is
being propagated towards the shoree.

The surge histories at the shore are presented in figure 5.19
drawn from the results from several simulations. For each test the
fetch length was constant such that F/L = 1 however the storm speed Vo
varied. The maximum surge indicated by these curves occurs when the
dimensionless storm speed YN/E is approximately 0.75. The curves also

show that the gquicker moving storms produce earlier surge responses

at the coast.
In figure 5.20 the curve drawn from the results of a simulation

using the storm parameters F/L = 2 YN/E = 1, shows the resurgence at

the shore. This resurgence occurs after the passage of the wind field

over the shelf and its period corresponds to that of the lowest mode

of a free wave oscillation given by Chrystal's equation (4e37). The
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parameter which indicates the dimensionless time at which the maximum

wind speed passes over the shore is given by

'l', S ..-C; ( 1+ .F_ >
5 v, = (5.71)
and the dimensionless time for the back of the fetch to cross the shore

is similarly

i _E_(|+i) (5.72)
e v, ®

The parameter t, for the case F/L = 2 and V./C = 1 is shown in figure
5.20. For all the cases examined, the computed resurgences which

followed the first wind driven surge produced smaller peak responses
than the first peak.

From the simulation of several storms with the parameter

V,/C = 1 the surge history at the shore has been dawn for each test and

shown in figure 5.21. Each test corresponds to a different value of

fetch length and the curves show that the maximum surge response occurs

later for the storms of longer fetch. From these curves it is clear

that the overall maximum surge would occur with a dimensionless fetch

length ratioc F/L, between three and four.

S5¢6¢3 Comparison of Simulated and Semi-analytical
Maximum Surges.
For a triangular distribution of wind stress over a shelf of

linesrly varying mean depth a total of twenty-nine separate surge tests

were conducted. In each test the maximum surge at the shore 5 and

the dynamic response factor Z,  obtained from eguation (5.40) was noted.
These results are presented in table 5.6 corresponding to the wind fetch

speed and size. Reid's maximum dynamic response factors Z, are also

shown and their comparison with the computed response factors is in good
agreement, In two of the tests namely with F/L = 1, V;/E = 0,5 and
F/L = 1, V,/C = 2 the regular grid method of simulation and the method

of subdivisions were compared. Both methods give very similar results

for the maximum surge with the surges from the latter method being

slightly larger. To reduce computational time the method of sub-
divisions (discussed in Chapter 3) has been used in obtaining the
results in table S.6.

The same tests also provided information concerning the arrival
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time of the maximum surge at the shore t; « These results are presented
in table 5.7 together with the dimensionless time for the maximum wind
speed at the shore obtained from equation (5.71). The parameter at'

is obtained from

1 |

av. = ‘l‘,m kit (5.73)

W

and denotes the time lag between the maximum surge and the maximum
wind at the shore. These values together with Reid's values £&£r are
also shown in table 5.7. A graphical representation of the results
from table 5.7 is presented in figure 5.22. The curves in this figure
indicate that, irrespective of fetch length, for fast moving storms
the maximum wind reaches the shore before the maximum surge and SO at'
is positive., Conversely for slow moving storms the maximum surge
reaches the shore ahead of the maximum wind and so At is negative.
From the results presented in table S.6 a composite plot of
the maximum dynamic responses against the storm parameters has been

drawn and is shown in figure 5.23. Each curve represents the computed

response for a particular value of the parameter F/L and for comparison
the maximum dynamic responses obtained by Reid are also shown. At all
values of V_ | and F/L the comparison is shown to be very goods In
both cases the ultimate maximum dynamic response occurs for a finite

fetch length of approximately F/L = 4 and V,/CT =1
It has been mentioned already in section 5.5.2 that difficulty

arises in simulating a steady state problem because of the dynamic

effects produced. An alternative method of finding the simulated

steady state surge for a particular fetch length is simply to
extrapolate the appropriate curve in figure 5.23 to the ordinate axis
to obtain the maximum steady state response factor. By using this
response and equation (5.40) the maximum steady state surge at the
It was by means of this extrapolation technique

factors in table 5.6 were

shore can be found.
that the maximum steady state response

obtained. However it was possible to simulate the surge response for

storm speeds as small as Vv, [C = ©0-©5,

Reid found that his graphical process for finding the

maximum dynamic response at the shore for the case of small storm

speed gave results which showed an oscillatory character. This effect

is shown in figure 5.23 for his curve with F/L = 0.5. When he presented
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his curves he chose to represent the oscillations by an upper envelope
curve. The computed surges produced using slow moving wind fields did
not suffer from the production of this oscillatory mode. However, when
plotting the results and extrapolating to the steady state situation
(V,, = 0) the curves follow those of Reid's curves to assist in the
extrapolation. As a result a comparison can be made between Reid's
steady state responses and the computed steady state responses. This
comparison can be made from curves 2 and 3 shown in figure 5.24.

Curve 2 represents the steady state response obtained by Reid using
equation (5.63) and represent exact analytical maximum dynamic
responses. The steady state responses extrapolated from the computed
maximum dynamic responses in figure 5.23 are represented in figure
5.2k as curve 3. The comparison between curves 2 and 3 is very good
and shows that the steady state responses obtained using the numerical
model are superior to those from Reid's approximation equation (5.67).

The results from this approximate solution are shown as curve 1.

Curves 4 and 5 represent the triangular wind stress case
and the triangular wind field case respectively. In both cases the
number of grid points along the shelf was nineteen and their inclusion
in figure 5.24 highlights the effect of using an insufficient number of

grid points in the simulation.

Each curve shows that an increase in fetch length produces

a corresponding increase in the dynamic response factor. As the fetch

length becomes infinite the response factor tends to a limiting finite
value, which is the response for uniform steady wind stress. For

curve 2 this limit is 0.945 and with this value inserted in equation
(5.65) this equation produces the same surge elevation as equation

(5.14), therefore with Z_= 0,945

i/ 2
- K\Jl'r.f (f‘_' )" Z = K_W lojc(i ) (5074)
= H, qm Ho

The dynamic response diagram shown in figure 5.25 has been

drawn from the computational results in table 5.6. The sé¢ales of F/L

and Yw/a are logarithmic so that the limiting cases of uniform wind
fields appear as straight isolines of Z with unit slope. An important
feature of this figure (and Reid's response diagram shown in figure

5.15) is that the ultimate maximum response Z, which determines the
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water level at the shore, occurs at a finite fetch length and storm
speed.

Overall figure 5.15 should be more accurate in comparison
to figure 5.25 since Reid performed more tests than did the numerical
models However in the region of the ultimate maximum response,
Reid's tests were insufficient in number to establish exactly the
fetch length ratio which produces the ultimate maximum response. He
has taken this ratio to be F/L = 4 and with V,/C = 1 is equivalent
to a forcing stress function of period 41/C. The assumption that
4L/C is the resonant condition of the shelf is implicit in his reason-

ing. Reid has therefore assumed that the natural period of the shelf

T can be expressed as

om0 Tf (5475)

where T} is the time for a free wave to cross the
from Equation (5.45) namely the Green-Du Boys expression. Chrystal

shelf determined

has shown that the natural period of such a channel using the Green-Du

Boys equation is too large. From Chrystal's Equation (4.37) the

natural period has been found to be 3.26 L/C therefore

o G . S X 1} (5.76)

The period expressed Dy this equation was also confirmed by the results

from the numerical model, and has been shown for the resurgences in

Furthermore in figure 5.21 the maximum surge has been

figure 5.20.
etch length ratio between three and four. There

shown to occur for a f
is no doubt therefore that for this shelf or any other shelf satisfy-

ing eguation (5.41) that the ultimate maximum response occurs for the

storm parameters F/L = 3.26 and Y~/E = lo

Defant (1961) refers to the work of Thorade (1926) who
investigated the behaviour of a long wave over a shelf of variable
depth. Thorade has shown the inaccuracy of the Green-Du Boys equation
when the wavelength is longer than the length of the channel. The
inaccuracy increases as the wavelength increases. The Green-Du Boys

theorem is only appropriate under certain circumstances which Green

acknowledged yet its application has been made outwith its limits, see

Groen and Groves (1962).
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Surge Parameters for a Triangular Wind Stress Distribution

with M = 19
v/C F/L = 0.5 F/L=1 F/L = 2 F/L=4 | F/L=38
Sme 0027 0.45 0,46
te % - B
0] £ 00 oo )
at' - 00 - o - 0O
Z e 0.49 0.82 0.83
4 056 0.83 0.91
Dwe 0.28 0046 0.47
£ 2645 35.3 95
ty 30.0 60.0 100
0,00 at “3.5 ~4e7 =5.0
2 e 0,50 0.83 0.84
4, 0.56 0.84 0.92
Swe 0.29 Oo bl 0.51 0.46
e 2.40 2.85 3.8 5.83
£ 2.50 3.0 4,0 6.0
0.5 2Pl ieae =0.15 «0.20 -0.17
A 0.52 0.79 0.91 0083
z, 0.76 1,02 1.18 0.95
Sme 0.29 0.42 0,50 0.60 0452
A 1.37 1.63 2,15 3.13 5.1
1.0 A 1.25 1,50 2,0 3.0 540
At 0.12 0413 0.15 0.13 0.1
E v 0.52 0.75 0.90 1,08 0093
: 5 0.98 1.06 1.13 1.38 0.97

Table 5 05



Progression of a wind stress field across the shelf.
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Surge history at the shore produced by the passage

of a triangular wind stress distribution across

the shelf (showing first free oscillation).
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Comparison of Computed and Analytical Maximum Response Factors for a

Triangular Wind Stress Distribution over a Shelf of Linearly Varying
Mean Depth, (M = 55)

Table 5.6
v/ F/L
0.5 1 2 3 4 5 8 16
Sme | 0,20 | 0.30 | 0.39 0.46 0.49 0.50
0 Zoe | 037177055 | 10,71 0.82 0.88 0.90
z, 0.38 | 0,56 | 0.72 0.83 0.91 0.93
Swc |° Oul | O3l | 0.40
905 Zoe| 0638 | 0.56 | 0.72
2 - - -
S0 .46 0449 0450
0101 2. 0.83 0.88 0.90
1\- - - -
Sme 0.33
0025 11«& 0.59
C 0073
X
Smf. 00“2 (0055) 0058 0051 0.%
0.50 | (0.54)
3 Zme | 0475 | 0.99 | 1.04 0.92 0.90
2o 0,76 1,62 | 1.18 0.95 0492
0.75 Sme | 051 | 0.62 | 0468 0.56 0+53
g IR 2 - A R TP 5 S B TR 1.01 0.96
%o 0.94 | 1.07 | 1l.22 321 0.97
Sme | 049 | 0455 | 0.63 | 0.69| 0:69 | 0460 | 0453
160 |2, | 0.88 | 0.99 | 1.13 | 1.24| 1.24 1.08 | 0.95
27’ 0.98 1006 1013 1028 1038 1024 0097
X
Sme | 0615 |(030)| Okl 0.62 | 0.68
(0.29)
2.0 LBl 0.27 1 D52 | 0s7H 121 Ye2P
Z_. | 0.29 | 0.51 | 0.77 1.04 1.32

x Both methods used and comparede

(See also figure 5.25)



Computed Relative Time Parameters for a Triangular Wind Stress
Distribution on a Shelf of Linearly Varying Mean Depth and M = 55

173

Table 507
e F/L
v/C /
0.5 i 2 E] 4 5 8 16
t'm <
o.o t‘u ”
at - 0
A(’..r = o0
; [
tm | 22,871 260 '} 3Bk
by | 25.0 | 30,0 | 4040
0.05 Atl -2.2 ! -4.9 -“.6
at,| = ! - -
t'm | 2747 48.8 | 89.0
e 20.0 5060 90.0
ol At 2.3 wle? - mlelD
At, - - oo
t.n 5000
t'u 6.00
D83 iy =1,00 r
At «1.20 4
tm | 2440 2.85 | 3.70 5.87 9.90 |
0.50 £l 250 3,00 | 4.00 6400 10.00 |
> At‘ =-0.10 =0e15 =0¢3 =0.13 =0,10 |
At, | =0410 =0,20 | =020 =040 - !
te | 1475 2,05 | 2.70 3,83 6,60 |
0u75 |t | 1466 2.00 | 2466 k.00 6466 |
= At. 0.09 0005 0006 -0017 "0006 E
Aty =0.04 0.06 | 0.00 -0,01 - x
1.0 |t | 1.37 1,65 | 2.14 |2.64 | 3.08 [3.52 | 5415 |
X £ | 1.25 1,50 | 2,00 | 2450 3,00 | 3450 5,00 |
At | 0.12 0.15 | 0.14 |O0.14 0.08 | 0.02 0.15
Atlp Oooo 0.10 0.10 e o.lo - 0.00
t'm | 0,90 1,00 | 1.30 1.85 2470
2.0 {062 0.75 | 1.00 1,50 2050
Atl 0028 0025 0030 0035 0.20
At | O0.43 0.30 | 0430 0435 0.k0
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Steady state dynamic response factors at the

shore of a frictionless shelf rlotted against

the fetch length parameter,

1 Rew's FIRST APPROXIMATION USING GRAPHICAL METHOD Z
' -6
2 REDS RANALYTICAL FORMULA WITH K= 3= 10 e
3 TRIRNGULAR WIND sSTREsS |, M=55 Bge
L ARIANGULAR WIND STRESS , M =19
S AMaANaurAR WIND FIELD |, M =14
3 i
ASYMPTOTE 1-29
e i Ao [ s i & ek
ExRcT ASYMPTorE 0945
—— 2
————— _——————
AN e Fetic SRR SR,
———-————_:—4—-—— 5
FlL
i 6 1% 20

Figure 5.24
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For a particular occurrence of a storm, figure 5.25 can be
used to find the corresponding maximum dynamic response factor. The
approximate maximum surge at the shore can then be obtained by apply-
in equation (5.65). Two such particular surge events occurring on
the west coast of Scotland have been considered for this method. The
storm conditions and the wind surge obtained from equation (5.65) are

shown in table 5.8.

Storm W K /Ll Vo | AR [ 8.
MPH x |o'6 Knots m
Dec 1972 “'5 3.0 2 ‘+O 00?9 1022 0055
Mar 1979 38 2.69 2 27 0.54 [1.04 | 0.30
Table 5.8

For the surge of December 1972 the only suitable available record of the
surge was at Malin. The wind surge had a maximum value there of 0.43m
obtained by removing the pressure effect from the recorded surge.

The effect of pressure is discussed in Chapter 8. The shelf dimensions
define a coastline that passes through Crinan, Port Ellen and Bally-
castle Bay. Measurements of the 1979 surge at these ports (shown in
Chapter 8) were recorded using tide gauges. The wind surge was found

by adjusting the measurements for the pressure effect, and the maxi-

mum surges are as shown in table 5.9

Port Total Surge | Pressure Surge Wind Surge
m m m
Crinan 0.62 0.32 0.30
Port Ellen 0.56 0,30 0.26
Ballycastle Bay 0.51 0.29 0.22
Table 509

For both surge events the wind surge level calculated from

the response diagram was larger than the maximum observed wind surge.



179

The following conditions were responsible for the differences just

mentioned.

a) The dynamic response diagram and the analytical equation

apply only to a frictionless shelfe

b) The calculated wind surge assumed that the wind distribution
had a triangular stress variation and that its progression

was normal to the shore.

c) It is conceivable that the recorded wind surge was reduced
in height because of its interaction with the tides. The
wind surge obtained from the response diagram did not

consider this tidal effecte.

Despite these factors the calculated and recorded wind surges

are in reasonably good agreement. Actually the limitations of the

computed results are in fact the limitations of the theory to which
the model has been applied. Nevertheless the theory has proved
useful in showing that the model has performed most satisfactorily,
judging from the comparison of computed and analytical wind surges
shown in this chapter. The simulationsof storm surges which are not
restricted by points a), b) and c¢) and which are therefore closer to

the true physical conditions are investigated in Chapter 8e
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CHAPTER 6
THE TIDAL SURVEY

6.1 INTRODUCTION

The sea area of particular interest in this research included,
in addition to the Firth of Clyde, the adjacent waters of the Sound of
Jura, and the North Channel approaches to both areas. For numerical
modelling purposes, the definition of the sea area is partially deter-
mined from the position of a suitable sea boundary or boundaries.

Since these boundaries provide a means of inputing data into the model,

it is essential that they are positioned in sea areas where existing

tidal information is available. For the model subsequently used, it

was necessary to have three such sea boundaries in order to define

adequately the boundary conditions. The locations of these boundaries

are shown in figure 6.1
At the southern sea boundary, which extended from Larne to

Portpatrick, tidal information from recording gauges was available

from both ports. This data in effect provided the tide and surge

information for that boundary.
locations, tidal information was abstracted from the Admiralty Tide

Tables Volume I (1972),(1979). For offshore areas the Admiralty chart
No 5058 provided co-phase and co-range information for average spring
tide conditions. These tables and the chart were the only available

1 information at the western and northern sea boundaries.

For the entire sea area at coastal

sources of tida
The western sea boundary was chosen 8o that its extremities occurred

at Ballycastle Bay in County Antrim, and Port Ellen on the coast of
Islay. The absence of tide recording gauges at both these ports meant
that no surge information was available at this boundary. Similarly,

no surge records existed at Crinan which was taken as representative

of the smaller northern sea boundary. The lack of surge data alone

would have justified the need to install tide gauges at Crinan, Port

Ellen and Ballycastle Bay. However there was another reason. The

tidal phases at Crinan, Port Ellen, (and any other port in the Sound
of Jura) obtained from the Tide Tables (1979) were in disagreement with

those from the co-phase chart, As an attempt to resolve this problem

and establish which set of data was correct, a small tidal survey was

undertaken.
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The Clyde sea area represented by the waters enclosed by

the three open sea boundaries of Model 1.
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At this point it is appropriate to note that in this research

the term 'phase' is used to denote the time of high water of a
particular tide. A more precise definition is that the phase of the
tide is the mean time interval between the passage of the Moon over

the Meridian of Greenwich and the time of the next high water at the
place concerned. Hence the phase is sometimes termed the mean high
water interval. In the tables that follow the phase is therefore
expressed as a time relative to Greenwich (GeM.T.), although many

other reference works seem to favour the use of a phase angleo

6.2 TIDE GAUGE INSTALLATION

The purpose of this survey was to install tide recording

gauges at Ballycastle Bay, Port Ellen and Crinan, which would provide

data for subsequent analysis of tides and surges. These gauges together

with the permanent ones at Larne and Portpatrick would therefore reason-

ably define the boundary conditions at each sea boundary.

The field trips were accomplished in two stages, namely,
a) Portpatrick - Larne = Ballycastle Baye.

b) Crinan - Campbeltown - Port Ellen.

Both stages required the installation of tide gauges and tide poles for

the establishment of the gauges' chart datums. This datum provides a

means of relating a chart reading of water level to that of Ordinance

Datum Newlyn (0.D.N.). The Ordinance Datum can be transferred from a

Bench Mark to a tide pole using a level. From the pole and chart

the Ordinance Level can then be transferred from the pole to

readings,
The chart datums relative

the chart and the chart datum marked thereon.
to O.D.N. are usually measured from the lowest astronomical tide and
for most ports in the United Kingdom are obtained from the Tide Tables.
It is important to establish these datums on the charts when comparing
the recorded levels with those from the Tide Taebles since the latter

levels are relative to the chart datumse.

The chart datum at Portpatrick was obtained by transferring

the 0.D.N. level from a bench mark to the chart. Unfortunately the chart

datum at Larne could not be checked owing to harbour reconstruction at

that time. The tide recorder and the tide pole situated in Portpatrick

harbour are shown in Plate 1.
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At Ballycastle Bay a tide pole was secured to the side of a
small jetty and the tide gauge situated nearby. The instruments and
their locations are shown in Plate 2. The tide gauge was a Negretti
and Zambra recorder as were all the recorders used in this survey.

The recorder was linked by a rubber tubing to a pressure-cell as shown
in Plate 3 which responded to the hydrostatic head of water above it.
The diaphragm in the head of the cell was maintained in an upright
position on the sea bed by securing the cell to a concrete block. The
pressure head arrangement was situated as far away as possible from
the movement of boats and ships, since their disturbing action on the

water would affect the gauge readings or even worse, their wake could

invert the pressure head. The first stage of the survey was completed

during the 5th = 7th February 1979,

During the 27th February to the 2nd March 1979 the second

stage of operations was carried out. At Crinan the tide gauge was

housed conveniently in a small lighthouse which is shown in Plate b,
The lighthouse is situated at the entrance of the harbour where
fortunately a tide pole, which had been previously secured to the harbour

wall, was still there.
The new pier at Campbeltown provided a suitable location for

the tide pole and the lifeguard's house situated on the pier housed

the tide gauge.

At Port Ellen, where the final tide gauge and pole were
installed, the main problem was ensuring that the tide pole could be
easily read on the jetty whilst shielding it from docking ships.
Plate 5 shows the tide pole being secured to the jetty.

The tide gauge at Ballycastle Bay provided no records after
the 12th March and it was found that in fact, the pressure head had
been wrenched off its connecting rubber tubing possibly as a result of
an approaching ship. Once all the gaugeslwere installed it was expected
that the recording period would be about six months without regular
cleaning of the pressure head from seaweed and barnacles. The temporary
gauges at Crinan, Port Ellen and Campbeltown provided records till the
end of April at which time it was decided to remove them. A storm surge
had been recorded between the 7th = 9th March 1979 and it was thought

to be improbable that another significant surge would occur during the

months following March.
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6.3 STORM SURGE FREQUENCY

Before conducting the tidal survey, a frequency analysis was
performed to evaluate the probability of actually measuring a surge
event during the months February to June. The analysis was based on
recordings of surge heights exceeding 15.5 feet above chart datum at
Broomielaw (Port Glasgow) during 1934 to 1970. These records were
provided by the Clyde Port Authority and are presented in table 6,1
in such a way that the frequency of occurrence of a certain surge height
can be obtained. For example a surge height greater than 3 feet occurs
every 0.47 years according to the results in table 6.1. The approximate
frequency of occurrence is therefore one surge every 1/0.47 years.
the table an indication of the monthly frequency of storm surgesis also

provided and shows that only 15% of all the surges occurred between

0!

March and June inclusively.

The data shown in table 6.1 shows a similar analysis performed
for the months February to June which was the estimated duration of the

survey. This analysis shows that a surge greater than 3 feet has a

recurrence interval of 2.31 yearse. This figure indicated that there was

a significant chance of measuring a surge of this size over those five

months. Indeed a surge did occur between 7th - 9th March and was

recorded at all the gauges situated at the sea boundaries. The surge

elevations are presented in Chapter 8 together with the meteorological

conditions for the period. At Broomielaw this surge attained a maximum

height of 2.6 feet, which according to the figures in table .1 should

occur on average every l.75 years. This figure somewhat agrees with
the fact that a surge occurred only once during the time the gauges

were present.

6.4 THE TIDE RECCRDS

It should be noted that a rigorous analysis of the tide records
from each port, which involves the identification of those semi-diurnal,
diurnal and shallow water constituents comprising the total tide, was

not conducted for the following reasons:
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ANALYSIS OF THE RECURRENCE INTERVAL BASED ON
37 YEARS OF SURGE MEASUREMENT AT THE BROOMIELAW
DURING THE PERIOD 1934 TO 1970 INCLUSIVE

Occurrences Within each Surge Interval

Total %
Month | O=1'| 1=2'| 2=3'| 3-4'| 4=5' | 5=6' | 6=7' | 7=-8' | Monthly|Monthly

Surges |Surges
Jan 8 15 1 L 3 1 2 o} L 17
Feb 7 10 9 5 1 0 o} o} 32 13
Mar i 6 L 2 0 0 0 o} 16 7
Apr 0 3 5 4 0 0 0] o] 12 D
May 0 d 1l 0 0 0 0 K 1
Jun 0 0 1 3 1 0 0 o} 5 2
Jul o} (o) 0 0 0 0 0 0 0 0
Aug 0 0 0 0 0 0 0 0 0 0
Sept : | 5 8 6 0 1 0 0 2 8
Oct 1 9 9 n 5 1 A 2 32 13
Nov 1 d 2 9 2 2 0 0 28 11
Dec R T © T T A - 5 ) 0 0 58 23
Total 26 69 76 L9 17 8 3 2 250
%
Surge 10 28 20 20 7 3 1 1 100

Recurrence Interval Based on Yearly Records

T
surge ' ] 1 ' '
Greater 1 2' 3! " 5' 6 7 8
Than
T Total | 224 | 155 79 20 13 5 2 0
R.I 0.,16| 0423 | 047 | 1.23 | 2,84 | 7,40 [18.5 | oo

Recurrence Interval for Period Feb=Jun Inclusive
Total 11 20 20 14 2
T Total 56 26 16 2 0 0
R.I 0.66| 1.02| 2,31 |18.5 | o= e Gl o=

Table 6.1
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a) The main objective of this research was to simulate storm
surge events in the Firth of Clyde. For this purpose the
total tide and the surge can be specified as boundary

conditions, without prior knowledge of the tidal constituents,

by using the tidal records.

b) Tidal records from Greenock, Millport and Campbeltown
showed that the tides were semi-diurnal and could be
well represented by a single cosine constituent with
a2 period of 44712 seconds. These records were assumed
to be representative of tidal conditions in the Firth of

Clyde and a similar conclusion was drawn from the records
at Larne and Portpatricke.

c) It was concluded from b) that the tides in the area of
interest could be represented by a single harmonic
constituent., With this assumption, the verification of

the convergence of the numerical scheme and its ability

to reproduce the same periodic solution at all points in
the model, could be shown. The verification of the
periodicity would have been unnecessarily complicated
had a number of constituents been used to obtain the

transition for spring to neap tide and backs

d) It was only in the Sound of Jura that the tidal curves
apparently could not be sufficiently defined by a single
cosine curve. The tidal records from there, namely from

Crinan and Port Ellen might have merited a complete tidal

analysis had not the surge considerations suggested that

it was not likely to be an important area.

In view of the considerations of d) it was important that

the shape and phase of the spring and neap tide curves be obtained
rom the survey at Crinan and Port Ellen. Only after this step was
completed could a reasonably accurate simulation of the tides in this

area be achieved and the effect of the tides in this area, on other
sea areas be assessed.

In his analysis of the tidal constituents in the Irish Sea,

Defant (1961, Page 386) has shown that the diurnal tides are signifi-

He used the term K20 34 indicate the

cant in the Sound of Jura, Mg+ 52
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ratio of the diurnal to the semi-diurnal components. The relevant
figures are reproduced in table 6.2 which shows a large ratio in the

Sound of Jura in comparison to Greencck in the Firth of Clyde.

Port Amplitude Of Tidal Components | K,+0O,
M, 5, | ¥ 0, Mo,5,
cm cm cm cm

Greenock 132.8 | 31.6 | 5.0 7¢3 0,07
Belfast 122.5 | 29.0 | 7.9 | 12.8 0.1k4

Gigha Sound| 18.9 16.2 | 9.4 8.2 0450
Port Askaig| 51.2 30.8 | 8.2 7.9 0.20
Carsaig Bay ’-1'6.0 25.0 8.5 8.2 0.2"“

Table 6.2

It was also noted that the complex nature of the tides in the
Sound of Jura is suggested by the Admiralty Tide Tables (1979). The
note at the foot of page 364 states that 'In the Sound of Jura, south
of Loch Crinan, the rise of tide occurs mainly during the 3% hours
following low water and the fall during the 3% hours following high
At other times the changes in level are usually small and

water.
irregular and at neaps the tide is sometimes diurnal while the range is

negligible'. These features are certainly apparent in the average
spring and neap tides curves for Port Ellen, shown in figure 6224
These curves were both calculated from three separate periods of tidal

occurrences. The average spring tide curve has a semi- diurnal period

and the high and low waters occur towards the ends of their respective
positive and negative elevation taken from mean water level. There is

also a similarity in tidal characteristics at high and low water

judging from the shape of the curve. The average spring range was found

to be 0.82 metres while the phase of the curve was 0540 GeM.T. For
comparison a cosine curve of equivalent range and phase is also shown in
figure 6.2 to illustrate the differences between the the two curvese.

The average recorded tide curve is higher on the rising tide and lower

on the falling tide than the cosine curve. It is also shown in the

figure that the average recorded curve can be well represented by a
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summation of cosine curves defined as

N = 0-kl (lzcose, + 2c086, + cO5 83)/ 10-92 (6.1)
shere 8= 6-g , 6= 3(0-p)-nS | by o-g 20

In deriving the average neap tide curve it was noted that
there was a fairly wide variation in the phase of each recorded neap
tide. This feature was not evident in the neap tide curves of Crinan
and Ballycastle Bay. The phase variation at Port Ellen may be a result
of the diurnal constituent which was noticeable in each record. The
average neap curve shown in figure 6.2 certainly indicates that the

period is about 14 hours which is longer than the semi-diurnal period

of 12 hours 25 minutes. In agreement with the tide tables note, the

neap range is small measuring 0.25 metres, and the phase is given as
0800 G.M.T. The shape of the curve has the characteristic of the
spring tide in that the high and low waters occur nearer the ends of

the respective positive and negative elevations measured from mean water

level.
Although Crinan is situated in the northern part of the Sound

whereas Port Ellen is in the south-west, both average spring
The average spring tide curve

of Jura,
tide curves have similar characteristics.
shown in figure 6.3 was calculatea'from three separate periods of

In comparison to the Port Ellen spring curve,

the shape and phase of the Crinan curve which is 0545 G.M.T., is very

Only the range of the latter curve is different, being
the Port Ellen spring

spring tide recordings.

similar.

1.9 metres, which is considerably larger than

range. For comparison, the cosine curve of equivalent range and phase

is shown in figure 6.3 together with the more accurate composite cosine
curve. This composite curve which was subsequently used as a boundary

condition in the numerical model to represent the average spring tide

variation at Crinan is defined by

rlao-ﬂs( I2cos® + 3co58, + Scos 03)/ I Il (6.2)
] o
where 6, = &-¢ @ = S iR - Gy 6-¢-9o

t Crinan was calculated from
It

The average neap tide curve a
three periods of its occurrence and is also shown in figure 6.3
has a range of 0.40 metres and a phase of 1230 G.M.T. This phase is
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about 6% hours different from the spring phase, which is as expected
for a semi-diurnal tide. This difference is produced by the M2 tide
having a period 25 minutes longer than the 52 period, The lag is
therefore 50 minutes each day and there are 7.382 days between the
spring and neap tides. In figure 6.3 the cosine representation is
shown to be a good approximation to the average neap tide curve which
was also found to be the case for the neap tide curve at Ballycastle
Bay. With the exception of the average neap tide curve at Port Ellen,
it appears that all the ports lying on the sea boundaries have their
neap tides reasonably well represented by a single cosine constituent.
The success or otherwise of a single cosine curve as a boundary

condition in the model is investigated in Chapter 7.

Although Ballycastle Bay is not situated in the Sound of Jura
and its spring phase was not in any doubt, the average spring curve is

presented in figure 6.4 to illustrate its difference in shape from

that of Port Ellen or Crinan. This average spring curve is characterised

by the occurrence of high and low water nearer the beginning of
positive and negative elevation measured from mean water level.
range of this curve is 0.8 metres and the spring phase is 0745 G,M.T.
Again it is shown that the cosine curve with the range and phase of the
In figure 6.4 the composite

The composite

The

recorded curve is a poor comparison.
curve compares more favourably with the recorded curve.

curve is given by the expression

ne=o#4(l2cos®, + 2cos8, + cos 63) lo-92 (6.3)
03 = G'¢-2.7O°

where 6, = 6-9¢ | 6, = 3(0-#)-!?0‘ .
In these expressions @ is the phase of the tide and © is the angular

time variation expressed as

360.t
Bk 72 (6.4)

e
with t as the time in seconds and the period of a semi-diurnal tide
being 44712 seconds.

Since the tide recorder at Ballycastle Bay ceased to function
from the 12th March, the only recorded occurrence of a neap tide was

during the 6th and 7th March. Wind conditions over these two days were

not strong enough to seriously affect the tidal measurement, although
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they were effective in producing a positive surge on the 8th and 9th
March. The average neap tide was calculated from the recordings in
the 6th and 7th March and is presented in figure 6.4, This curve
has a range of 0.56 metres and -a phase of 0415 G.M.T. A cosine curve
with these parameters is also shown and is in good agreement with the

average neap curveo

As already mentioned in section 6.1 the tidal phases at
spring and neap tides in the Sound of Jura, are of particular interest.
For this reason the recorded spring and neap tide phases are presented
for comparison with the predicted phases, in table 6.3, for Port Ellen.

As well as the successive high water times, the corresponding low water

times for each spring and neap tide are also shown. The predicted

tidal phases were calculated by using the Admiralty Tide Tables (1979)
and applying the phase correction to the Standard Port for Port Ellen.
The phase corrections are listed in the Tide Tables and are also shown
in tables 6.3, In tables 6.4 and 6.5 a similar analysis has been conducted

for the ports, Crinan and Ballycastle Bay respectively.

For each port the comparison between the recorded and predicted

times of high and low water is, in general, very good. Those few

disagreements which occur at neap tides may be attributed to the

difficulty in reading the exact time of high or low water, on a circular

chart, when the range is smell. These results certainly indicate that

the Tide Tables provide a reasonably accurate means of obtaining the
tidal phases at these portse

It should be noted that the recorded phases were only tabu-
lated for periods when the wind effect was judged not to be prominent.
The tide record is sensitive to the small period surfszce waves, which

result when a strong wind is present and under these circumstances the

trace appears as a broad curve. Therefore a thin trace indicates that

low wind speeds were present at the time of recording the tide level.

A comparison between the predicted and recorded phases for the

data in tables 6.2, 6.4 and 6,5 may be more readily appreciated Irom

figure 6.5. The curve shown was obtained by plotting the predicted and

recorded phases against one another and represents the best fitting

As the gradient of this line confirms the regression coefficient
It

line.
is very close to unity, the overall correlation is therefore good.
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Average recorded spring and neap tides at Fort Ellen.
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Average recorded spring and neap tides at Crinan.
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Average recorded spring and neap tides at Ballycastle Bay.
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PREDICTED AND RECORDED TIDAL PHASE
AT PORT ELLEN DURING 1979
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Spring Tide Neap Tide
Date | Oban Port Ellen Pate | Oban Port Ellen
Predicted Recorded Predicted Recorded
15/3 | 1302 L | 1217 1208 1821 L | 1251 1300
1900 H | 1810 1830 23/3 | 0119 H | 1949 1940
0104 0019 0000 0706 01326 0C00
16/3 | 0658 0608 0630 1408 0838 0830
1329 1244 1200 2000 1430 1420
1926 1836 1900 2h/3 | 0247 2117 2150
6/4 | 0139 H | 2009 2030
1812 H | 1722 1720 0801 L | 0231 0100
29/3 | 0022 L | 2337 2330 1417 0847 06320
0631 0541 0600 1946 1416 1230
1244 1159 1140 7/4% | 0251 2121 2230
1844 1754 1800 0916 0346 0330
30/3 | 0103 0018 2350
0707 0617 0640 21/4 | 0106 H | 1936 1830
0654 L | 0124 0130
1355 0825 0900
14/4 | 0036 L | 2351 2340 1936 1406 1500
0633 H | 0543 o545
1302 1217 1210
1902 1812 18320
15/4 | 0110 0025 0015
0705 0615 0600
MHWS, = MHWS - 0050 MHWNL o = MEWN - 0530
MLWSpp = MLWS_ = 00L45 MLWNpp = MLWN = 0530

All times in G.M.T.

Table 643
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PREDICTED AND RECORDED TIDAL PHASE AT CRINAN, 1979

Spring Tide Neap Tide
Date Oban Crinan Date Oban Crinan
Predicted Recorded Predicted Recorded
15/3 | 0630 H | 0545 0545 1821 L | 1736 1730
1302 L | 1227 1220 23/3 | 0119 E | CCO9 0000
1900 1815 1800 0706 0621 0610
16/3 | 0104 0029 0015 1408 1258 1230
0658 0613 0620 2000 1915 1900
1329 1254 1250 2h/3 | 0247 0137 0130
1926 1841 18320
6/4 | 0139 H | 0029 0030
1812 H | 1727 1710 0801 L | 0716 0650
29/3 | 0022 L | 2347 2340 1417 1207 1310
0631 0546 0530 1946 1901 1915
e i 7/ | 0251 | 01kl 0100
1844 1759 1745 0916 | 0831 0830
30/3 | 0103 0028 0010
0707 0622 0610
13/4 | 00Ok L | 2329 2320
0603 H | 0518 0520
1232 1157 1120
1834 1749 1740

All times in G.M.T.

MHWS = MHWS = 0045 MHWN
¢ 0 ; c

MLWN = MLWN_ = 0045
c o

MHWNo - C110

MLWSc = MLWSO - 0035

Table 6.4




PREDICTED AND KECORDED TIDAL PHASE

AT BALLYCASTLE BAY DURING 1979
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Spring Tide Neap Tide
Date| Londonderry| Ballycastle Bay|Date | Londonderry| Ballycastle Bay
Predicted Recorded  Predicted Recorded
1454 L [1329 1400
2039 H |[1852 1930
13/2 | o2k 0119 0200 6/2 B
0851 0704 0750
1525 1400 1430 0357 H |0450 0530
2110 1923 2000 7/3 | 1013 L [1110 1130
1620 1713 1710
0308 L |0143 0230 2207 2303 2330
28/2 | 0912 H |0725 0720
1535 1410 1600 6/3 | 1944 L |20k0 2100
AF A i 0134 H |0227 0300
1/3| o349 022k 0320 0825 0921 0915
0955 0808 0815 1500 1553 1600
MHWSBA = MHWSm - 0147 MHWNB A= MHWNLO + 0053

All times in G.M.T.

Table 6 05
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Comparison of predicted and recorded spring and neap

tide mean high water intervals at Crinzn, Port Ellen

and Ballycastle Bay.
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can be observed from figure 6.5 that the data exhibits four rather
distinctive groups. These groups correspond to the times of the two
high and low waters occurring over twenty-four hours. These groups
occur irrespective of whether the tide is a spring or neap because the
phase difference between these tides is 6.21 hours for a semi-diurnal
tide. However the predicted and recorded times of high water at Port
Ellen indicate that the phase difference between spring and neap tides
is only about 2 hours. This figure again supports the argument that
in the area between Port Ellen and Machrahanish the tides are not

dominantly semi-diurnal in their occurrence.

To assess the accuracy of the spring and neap ranges and phases
obtained from figures 6.1, 6.2 and 6.3 a comparison was made with data
taken from the Tide Tables and the co-range co-tidal Chart No 5058.
This chart covers the adjacent waters of the British Isles, and the
part illustrating the co-range and co-tidal lines in the Sound of Jura,
the North Channel, and the Firth of Clyde is shown in figure 6.6.

A comparison of the spring tide data is presented in table 6.6

for ports in the Sound of Jura, namely Crinan and Port Ellen and for

Ballycastle Baye.

Mean Spring Tide Data

Port Chart 5058 Tide Tables (1979) Tidal Survey
Range (m) Phase (hrs)| Range (m) Phase (hrs) Range(m) Phase

(hrs)

Crinan 240 0200 2.0 0515 1.9 0545
Port Ellen 0.7 0800 0.6 0515 0.82 0540
Ballycastle | 1.1 0745 11 0730 0.80 0745

Table 6.6

From these results some important conclusions can be made. Firstly,

there is general agreement, between the three data sources, regarding

the magnitude of the spring range at each port. Secondly, and of

greater significance, is the fact that the spring phases from the Tide

Tables and the survey are in close agreement with one another (as was
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already shown in figure 6.5) but differ considerably from the spring
phases at Crinan and Port Ellen, taken from the charte In view of
these figures some doubt must be cast on the accuracy of the co-tidal
lines in the Sound of Jura as shown in figure 6.6. The tidal phases
from this figure indicate that there is a 6 hour phase difference
between the spring tides at the northern sea bouncary (Crinan) and the
western sea boundary extending from Fort Ellen to Ballycastle Bay.

This means that there is half a tidal period difference between the

two sea boundaries. On the contrary, the Tide Table and survey phases

suggest that these boundaries are almost in phase with one another
(and the phase difference is therefore small). To support the idea of

the northern and western sea boundaries being almost in phase with each

other, the tidal streams from the Admiralty Stream Atlas (1974) are

also in phase across these boundaries. These tidal streams, shown

in figures 7.10 to 7.13 show that the inflow of water into the Sound

of Jura across the two bounda
In conclusion it can be said that had the

ries are in phase as are also the slack

waters, at each boundary.

tidal survey not been carried out, there would have been uncertainty

as to the relative accuracies of the data from the Tide Tables and
It has now been established that the Tide Tables

e accurate data for the ports in the Sound of Jura.

from the charte.

provide the mor

A similar comparison of the neap tide ranges and phases

in and around the Sound of Jura is shown in table 6.7

Mean Neap Tide Data

Port Tide Tables Survey
Range(m) Phase(GeMoT.) Range(m) Fhase (G.M.T.)
Crinan 0.61 1115 0.40 1230
Port Ellen 0.33 0655 0.25 0800
Ballycastle Bay | 0.40 0331 0.56 0415
Table 6.7

The co-range chart data is not applicable for neap tides and so the
It can thus

the

recorded data is compared with that of the Tide Tables.

be said that whilst the recorded neap ranges are satisfactory,
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recorded phases require further explanation, being about 1 hour
later than the Tide Table phases. It must be remembered that all
the figures in table 6.7 represent average conditions, whilst during

the survey period the tidal phase occurred later than average. For

example the average yearly neap phase at the standard port, Oban,

is 1225 G.M.T., whereas during the survey it was 0130 G.M.T., as
noted in tables 6.3 and 6.4, This accounts for the 1 hour phase

difference in table 6.7 between the predicted and recorded phases.

A similar effect occurred in the spring tide results shown in table

6.6 for the same reason although the difference between predicted

and recorded phase at each port was only about O.5 hours.

645 PHASE CALCULATICN FROM THE TIDE TABLES

The area comprising the Firth of Clyde and its approaches

is not only topographically complex, but also problematic in the

determination of the tidal phase at each coastal location, using

Tide Tables. A major problem is that t
les do not provide the phase

he area is represented by

five Standard Ports and the Tide Tab
for average spring and neap tide

relationships between them,
this problem was to calculate the phase

conditions. One solution to
h Standard Port by analysing one year of

es which are listed in the Tide Tables.

relationships between eac

spring and neap high water tim
Thus by noting the differences between the times of high water at

two Standard Ports over one year the average yearly phase difference

was calculated for spring and neap tides during 1979.

The analysis of mean spring tide conditions is summarised

in table 6.8 and the first column lists the Standard Ports.
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Mean Spring Tide FPhase Data
Standard Average Standard | Secondary Phase Corr-| Phase
Port Phase Diff | Deviation Port ection for | G.M.T.
(Hrs Mins) (Minutes) Secondary (Hrs Mins)
Fort
(Hrs Mins)
Belfast 0000 - 1105
Larne - 0005 1100
Greenock + 013C 10 1235
Oban - 0500 14 0605
Loch Beag - 0050 0515
Port Ellen | - 0050 0515
Londonderry | = 0250 8 0810
Ballycastle | = O0OkO 0730
Bay
Liverpool + 0015 6 1120
Port- + 0018 1138
patrick

Table 6.8

In columns two and three the average phase difference calculated between

the Standard Ports, and the standard deviation of the calculation is

The phase differences were calculated relative to
ea of relatively constant spring

phase of 1105 G.M.Te, was thought

respectively showne
Belfast since this port lies in an ar

phase (figure 6.6 shows this) and its
In calculating the mean yearly spring phase differences
n indication of the variation in these

For this purpose the standard deviation was

to be accurate.
it was convenient to have a
differences at each port.

calculated using the following expression

N g
B = f;(Agb—Acb) (6.5)

N

s were sufficiently small enough at each port to

The standard deviation
e that the analysis produces mean values that are representative

indicat
In the final column the

of the phase differences throughout the years.
phase for each Standard Port is obtained by applying the phase difference

to the phase at Belfast. From the phase of the Standard Ports, the

phase of the respective Secondary Forts can be obtained by applying
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the phase correction shown in column five of figure 6.8, These phase
corrections are listed in the Tide Tables for the substantial number of
Secondary Ports located in the Firth of Clyde and its approaches.

The Secondary Ports shown in table 6.8 correspond to the positions of
the three sea boundaries represented in figure 6.l. Unfortunately
Crinan is not listed in the Tide Tables and therefore its phase
correction was taken as that from Loch Beag which is situated not far

from Crinan.

An analysis similar to that for the spring tides was

conducted for the neap tides to establish the average phase differences

between the Standard Ports. The results are shown in table 6.9 and

again the phase difference for each Standard Port is quoted relative

to the neap tide phase at Belfast.

Mean Neap Tide Phase Data

Standard Average Standard | Secondary Phase Corr- | Fhase
Port Phase Diff | Deviation Port ection for G.M,.T.
(Hrs Mins) | (Minutes) Sec Port (Hrs Mins)
(Hrs Mins)
Belfast 0000 - 051k
Larne 0000 0514
Greenock + 0046 12 0600
Oban - 0514 18 1225
Loch EBeag - Q110 1115
Port Ellen ! = 0530 0655
Londonderry| - 0236 14 0238
Ballycastle | + 0053 0331
Bay
Liverpool - 0001 9 0513
Port= + 0026 0539
patrick

Table 6.9

As an indication of the variation in the phase difference between the
Standard Port and Belfast, for one year of phase differences, the
standard deviation is shown in column three of this table. A comparison
of phases at Greenock and Oban shows that there is a maximum variation

in phase of nearly one half of a semi-diurnal period over the entire

areae
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By obtaining the average spring and neap tide phases
as shown in tables 6.8 and 6.9 respectively, for the Standard Ports,

the Tide Tables can thus be used to provide the average spring or

neap phases at the Secondary Ports. Indeed, the Tide Table phases

shown in tables 6.6 and 6.7 are taken from tables 6.8 and 6.9

respectively. In each of the latter tables the Secondary Ports,

Larne and Portpatrick provide data for the numerical model's southern

sea boundary. Ballycastle Bay and Port Ellen phases are appropriate

at the western sea boundary and the Crinan (Loch Beag) phase is rep-
resentative of the tidal phase at the small northern sea boundary.
The accuracy of the simulation using a numerical model, with this

data providing the boundary phase conditions was carried out and is

assessed in Chapter 7. In addition the response of the model to the

average tide data, obtained from the survey records and specified as

boundary conditions was also found for comparison.
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CHAPTER 7
TIDE SIMULATION IN THE FIRTH OF CLYDE
AND ITS APPROACHES

7.1 INTRODUCTION

It has been shown in Chapter 4 that the analytical studies
were important for establishing the accuracy of the interpolation and
integration schemes in the model. To complete these tests it is
required that the effect of the initial and boundary conditions be
examired, using a configuration more complex than a geometrically
simple channel. For this purpose the application of the numerical
scheme to simulate the tidal motion in a shallow sea area is approp=
riate. By nature of the periodicity of the tides the effectiveness
of the harmonic conditions at the sea boundaries in establishing a
periodic solution throughout the model can be evaluated. It should be
noted that only after the successful simulation of tidal motion in an

irregular sea area, can the simulation of the tide and storm surge

phenomenon be considered.

7.2 APPLICATION CF THE MODEL TO A REAL SITUATION

The difficulties in simulating tidal motion in a real config-

uration can be classified as follows:=

a) Limitations of the quantity and quality of data.
b) The effect of discretising an irregular coastline and
sea bed.

The effect of a) is to hinder the verification of the accuracy of the
simulation. The results from the model are ultimately compared to
observed data to assess their accuracy and it is easy to wrongly
attribute discrepancies in the comparison to limitations of the model,
where in fact the difference may be the result of data errors. Resolving
the differences becomes even more difficult when it is remembered that
the model actually uses the incorrect data in its boundary conditions

and so the accuracy of the simulation is effectively limited by the

accuracy of the recorded data.



210

In terms of quantity, the physical data is usually in the
form of a limited number of tidal records taken from recording gauges
situated along the coastline with even fewer records available for
offshore currents and displacements. Consequently the harmonic
functions at the sea boundaries, which are based on either velocities
or elevations with associated phases, are only known from the ports at
the landward ends of these boundaries. Therefore the boundary data at
grid points along the sea boundaries has to be obtained by linearly
interpolating between the known pointse

The sea area and the sea boundaries encompassing the numerical

model have been shown already in figure 6.l. Since the tidal constituents

at the sea boundary ports were unavailable, the average spring and neap
tide conditions at these ports were obtained from the Admiralty Tide
Tables (1979). This source of infarmation, which is derived from
harmonic analysis was used at the boundary ports in the modelin pref-
erence to actual tidal records because the latter may not be free from
meteorological effects. The Tide Table data was thought to be
sufficiently accurate as an input to the model and was shown in section
6.4 to be in good agreement with the data obtained from the tidal survey.

The comparison has been shown in tables 6.6 and 6.7, for mean spring and
mean neap tide conditions respectively.

The Tide Tables also provided data at coastal locations, in
sufficient quantity so that comparisons were made with the results from
the model. For offshore locations the average spring tide ranges and
phases were compared with those from Admiralty Chart 5058 although the

chart's co-phase lines in the Sound of Jura have been shown in section

6.4 to be suspect.
Returning to point b), the limitations mentioned are directly

related to the method by which the model represents the physical topo-

graphy of the sea area, An irregular coastline is schematised in terms

of a polygon with sides of equal length DS and positioned along the x
This length is termed the spacestep, and controls the degree

and y axes.
It is usually determined by the require-

of discretisation of the model.
ments of a reasonably representative grid, and yet cannot be so small
that the numerical computations are beyond the capabilities of the

computer. Having represented the area within the sea boundaries by a
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suitable grid, the depths from mean water level at each grid point can
be obtained by interpolating from the soundings on an Admiralty Chart
or from a hydrographic survey. The whole process of schematisation
using discrete points introduces an element of approximation into the
construction of the model., For the model to provide reliable results

this rounding error must be maintained as small as possibleeo

By constructing the grid to the scale of Admiralty Chart 2724,
using a spacestep of 5 kilometres, the coastline schematisation and the
soundings at each grid point were obtained for the sea area shown in
figure 6.1. The schematisation and the soundings are shown in figure
7.4 from which it is apparent that the depths in the North Channel are
much greater than for either the Sound of Jura or the Firth of Clyde.
In fact quite a large depth range is covered in a relatively small sea
area and together with the complex indentation of the coastline provided

a thorough test for the model in simulating the movement of the tides.

In considering the physical processes taking place in a sea

area as opposed to an idealised channel, the frictional stress at the

sea bed must be accounted for. The friction parameter theoretically

controlling this stress is a function of both depth and bed roughness.

In general the values of the friction parameter at points on the sea

bed are unknown unless an extensive survey has been conducted. Standard

practice appears to be to assign a value to this parameter at each grid

point in the model so that the correlation between the numerical and

physical results is optimised. Indeed Leendertse (1967) chose a

different value of the friction parameter at each grid point when

simulating tides in the Rhine estuary. He obtained a <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>