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Abstract

Tong Qiao. Advanced Spectral-Spatial Processing Techniques for Hyperspectral
Image Analysis. Ph.D. thesis, University of Strathclyde, 2016.

The main objective of this research is to design and implement novel spectral-
spatial processing techniques for hyperspectral image analysis and applications.
Although the high dimensionality of hyperspectral image data makes its trans-
mission and storage difficult, the uncompressed data format is still preferred as it
avoids compression loss which may degrade classification accuracy. In this thesis,
a quality-assured lossy compression scheme based on a modified three dimensional
discrete cosine transform is proposed. This novel technique is demonstrated to
maintain the integrity of hyperspectral data without degrading the classification
accuracy. Furthermore, this work has led to the creation of an effective spectral
feature extraction technique which uses curvelet transform and singular spectrum
analysis. In addition to this, an original classification framework which combines
joint bilateral filtering and an improved sparse representation classifier is presented.
Experimental results show that the proposed methodologies outperform most
of the state-of-the-art feature extraction and classification techniques commonly
employed in the hyperspectral community. This work also demonstrates that
hyperspectral imaging combined with advanced signal processing is an effective
technology for food quality control applications. For example, when applied to the
challenge of performing hyperspectral imaging-based meat quality assessment, the
techniques proposed in this work are shown to provide a more effective solution
than conventional visible and near-infrared spectroscopic technology. Finally, this
thesis provides the first set of results of assessing the quality of beef and lamb sam-
ples using an improved data regression technique. To sum up, the outcome of this
thesis advances the hyperspectral imaging community by proposing several novel
methodologies, and extensive experiments have been conducted to demonstrate
their superiority.
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Chapter 1
Introduction

1.1 Aims and motivations

Hyperspectral imaging (HSI) sensors, which capture hundreds of continuous bands
in a broad spectral range covering visible, near-infrared (NIR) and beyond, have
proven their success in many areas [2]. Typical examples include traditional
applications in remote sensing and military surveillance [3] as well as newly
emerging platforms for food quality analysis [4, 5], pharmaceutical studies [6] and
forensics/security related applications [7–9].

Hyperspectral images can be considered as an extension of traditional digital
images. Figure 1.1 uses the Indian Pines data set (Appendix A) [10] as an example
and shows a set of images, each of a different modality but corresponding to the
same scene. As can be seen, a colour image is formed by combining three grayscale
images in red, green and blue (RGB) channels, respectively. With the help of
filters/spectrograph, light can be separated across the electromagnetic spectrum
and multispectral/hyperspectral images can then be captured. The exact nature
of the data acquisition process depends on the design of the imaging system
being used. In a multispectral image there are generally tens of wide spectral
bands (usually less than 20) and there are often relatively large spectral gaps
between bands [11]. For this reason, multispectral imaging (MSI) systems are
usually designed for applications where prior knowledge exists with regard to
the spectral regions from which useful information can be extracted. Compared
to multispectral images, hyperspectral images provide an increased number of
spectral bands as well as higher spectral resolution, allowing an improved ability
for categorising different materials within the scene.

One drawback with the additional spectral information provided by the hy-
perspectral image is that the amount of data required to be stored/transmitted
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Fig. 1.1 From grayscale image to hyperspectral image.

is dramatticaly increased as a single hyperspectral image can potentially occupy
hundreds of megabytes [12]. Considering that there are a lot of HSI-based remote
sensing applications, hyperspectral images may need to be transmitted from
satellite/aircraft to a ground station or simply stored on board. This makes data
compression a necessary step for faster transmission and/or easier storage [13].
Since the data correlation between spectral bands is extremely high for hyperspec-
tral images, traditional three-dimensional (3D) compression algorithms designed
for isotropic 3D images might not achieve the best performance. Furthermore,
in order to preserve the hyperspectral image quality for subsequent analysis, the
development of compression algorithms has been focused on lossless compression
schemes in the past. In recent years, an interest in lossy or nearly lossless com-
pression for hyperspectral images has arisen. This is due to the fact that recently
published advanced data compression algorithms allow a more balanced trade-off
between data compression and the performance of end-user applications [14].

In addition to investigating efficient compression algorithms, another area
of interest lies in developing techniques to automatically process and analyse
hyperspectral images in order to efficiently understand their content. The spectral
features for each pixel in the hyperspectral image, also named as the spectra, are
associated with the spectral response of the light (reflection/absorption etc.) as
captured by the HSI system at each wavelength. For different materials, the light
reflection/absorption characteristics are usually unique along the electromagnetic
spectrum. Therefore, the spectrum in each pixel of a hyperspectral image contains
rich information about the captured scene, and this can be used for identifying
and recognising a diverse range of materials and targets of interest that are present
in the image. As a result, this has led to an active research area for interpreting
the hyperspectral image – hyperspectral image classification.

Hyperspectral image classification, aiming at categorising image pixels into
different land-cover classes according to their unique spectral information, has
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become a popular research area in remote sensing for land mapping and land-cover
analysis in recent years [15]. Since a huge amount of information is present in
the hyperspectral image, it is impossible to perform this classification manually.
However, by manually labelling a small number of pixels in the region of interest
(ROI) (as opposed to the entire image), researchers found that this so called ‘prior
information’ could be used to solve the problem for autonomous classification. This
process is known as supervised classification, and the labelled pixels containing
class labels as well as spectral signatures are known as labelled training data.
Unfortunately, supervised classification of hyperspectral data is not straightforward
and many factors can significantly influence the classification accuracy. First of
all, the environmental effects present during image acquisition as well as the
large spatial variability in the field of view introduce the possibility that spectra
in the image may not directly match training spectra from the same category.
Furthermore, different materials may share similar spectral signatures because of
common chemical structures [16]. Another challenge posed by the hyperspectral
image which needs to be efficiently addressed for supervised classification is the
so called ‘curse of dimensionality’. It is also known as the Hughes phenomenon
[17], where the high number of spectral bands and low number of labelled training
samples result in an decrease in the generalisation capability of the classifier [18].
Much effort has been spent by researchers aiming to overcome these aforementioned
classification difficulties. Generally, these problems can be tackled in two steps, 1)
by extracting effective features from spatial/spectral domain and 2) by constructing
suitable classification models for raw/extracted features.

In addition to remote sensing-based applications, HSI has also been considered
as a promising tool for food quality evaluation as it can detect chemical properties
which cannot be observed using conventional imaging systems. Among all processes
in the food industry, assessing the quality of meat and meat products is extremely
important to consumers since meat is an essential source of protein for humans.
Conventional meat quality analysis consists of manually assessing meat and scoring
it in terms of: texture, flavour and visual appearance. This is a time-consuming,
destructive and, in many cases, an inconsistent process conducted by humans
using specific measuring instruments or reagents [19]. As such, this approach
is prone to subjectivity and human error. Therefore, the meat industry is keen
to develop modern, state-of-the-art techniques to help monitor and control the
overall quality of their meat products in a fast and non-destructive way, in
order to succeed in the extremely competitive marketplace [4]. In recent years,
spectroscopy-based techniques have been developed for rapid quality assessment
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of meat and meat products. However, these traditional approaches lack spatial
information and therefore may fail to provide the most valuable or informative
assessment results [20]. To this end, HSI systems which integrate both the imaging
and spectroscopy techniques together have emerged to overcome this drawback of
traditional spectroscopy. In spite of this, there is still no single and universally
accepted methodology for analysing hyperspectral images in this context to assess
the quality of meat.

The work presented in this thesis aims to develop novel data analysis tech-
niques to address the aforementioned problems related to both remote sensing
hyperspectral images and practical HSI-based applications, e.g. meat quality
assessment. In summary, the following objectives are defined:

1. To develop an innovative data compression approach for hyperspectral image
data, which is able to improve upon existing image compression methods
for isotropic 3D images.

2. To define a novel feature extraction method that improves the subsequent
classification accuracy when applied to hyperspectral images.

3. To investigate how to construct a suitable classification model for improved
hyperspectral image classification.

4. To investigate the feasibility of using an HSI system to predict meat eating
quality and to improve the prediction performance using various data analysis
techniques.

1.2 Main contributions of this research

In this thesis, several contributions have been made to address the main objectives
as listed in Section 1.1, and novel techniques have been developed for improving
the performance of HSI-based analysis. The key contributions presented in this
thesis are as follows:

1. An improved compression approach based on the 3D discrete cosine transform
(DCT) is proposed for compressing hyperspectral image data where the
novelty lies in the design of the quantisation matrix. Adapted originally
from video compression, machine learning techniques have been applied for
automatic prediction of the quantisation matrix, which provides a time-
saving capability when choosing the correct quantisation matrix. Compared
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with another popular compression technique based on the 3D discrete wavelet
transform (DWT), more effective compression performance is achieved using
the proposed methodology.

2. A novel spectral feature extraction method is proposed to improve the
classification performance of the hyperspectral image. The method aims
to apply the one-dimensional (1D) time series analysis technique, singular
spectrum analysis (SSA), to the image transformed in the curvelet domain.
Compared with a few state-of-the-art spectral feature extraction techniques,
the proposed method provides more accurate classification results.

3. By investigating hyperspectral image classification using the joint sparsity
representation classification (JSRC) method, an improved spectral similarity-
based JSRC (SS-JSRC) method is proposed to overcome the weakness of the
original JSRC. Additionally, joint bilateral filtering is proposed to be applied
for extracting effective spatial features prior to applying the classification.
By combining joint bilateral filtering and SS-JSRC together, the proposed
classification framework shows its efficacy among several typical spectral-
spatial methods for hyperspectral image classification.

4. The ability of HSI for evaluating meat quality non-destructively is inves-
tigated and several outcomes are achieved. Firstly, due to its excellent
performance, a more suitable data prediction method based on support
vector machines (SVM) replaces the commonly used partial least squares
regression (PLSR). Secondly, the ability of HSI for predicting beef quality
is compared with the traditional spectroscopy technique and the results
demonstrate that HSI provides a more promising solution in the context of
beef quality prediction. Furthermore, the aforementioned feature extraction
technique SSA is applied to pre-process the hyperspectral data and this
also leads to improved prediction accuracy. Finally, the HSI system is also
tested for lamb quality assessment and offers valuable benchmarking results
for other researchers working in this domain since there exists very little
research in the area of lamb quality prediction using HSI.

1.3 Thesis overview

This remainder of this thesis is organised as follows:
Chapter 2 provides relevant background information on the research topics

presented in this thesis by reviewing popular methods for hyperspectral image
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compression, feature extraction and classification. A literature review has also
been carried out in the area of spectroscopy-based technologies for meat quality
assessment. In addition, the theoretical background and descriptions of two
popularly used data analysis and machine learning techniques: principal component
analysis (PCA) and SVM, which are used throughout the experiments in this
thesis, are provided.

Chapter 3 presents an improved 3D DCT-based hyperspectral image compres-
sion approach, where the SVM is employed to determine the optimal weighting of
an inter-band correlation parameter within the quantisation matrix that influences
compression performance. In addition to conventional quantitative metrics for per-
formance assessment, the classification accuracy on the compressed hyperspectral
image is also adopted for quality-assured evaluation.

Chapter 4 describes a novel algorithm which exploits the properties of the
curvelet transform and SSA to create a new feature extraction method for hyper-
spectral images. The curvelet transform and SSA are first introduced thoroughly.
Then, a comprehensive set of experiments for assessing the performance of the
proposed methodology are described in detail.

Chapter 5 presents a spectral-spatial classification framework for hyperspectral
image data. Spatial features are extracted using joint bilateral filtering before being
classified using the improved SS-JSRC. The proposed classification framework is
benchmarked against several popular spectral-spatial classification methods to
show its effectiveness.

Chapter 6 describes some practical HSI-based applications, where hyperspectral
images of meat samples are used for non-destructive quality assessment. This
work begins with choosing the right data prediction tool. Extensive experiments
have been conducted on both beef and lamb samples. The HSI system is also
compared with the popular spectroscopic system to demonstrate its superiority.

Chapter 7 presents a series of concluding remarks, and possible ideas and
suggestions for future research topics are provided.
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Chapter 2
Background and Related Work

2.1 Introduction

Following the motivations and objectives addressed in Chapter 1, background
information and related work about hyperspectral image analysis are presented
in this chapter. First, relevant literature of hyperspectral image compression,
hyperspectral image classification and spectroscopic imaging-based meat quality
assessment is reviewed. Then, principles of two popular techniques used throughout
the thesis, principal component analysis (PCA) and support vector machine (SVM),
are also introduced.

2.2 Hyperspectral image compression

Compression of hyperspectral images has been studied for a long time and is still
considered as an active research area. According to different requirements in various
applications, techniques for hyperspectral image compression can be divided into
two categories, i.e. lossless and lossy compression [13]. For lossless compression,
images are encoded without loss of information thus the original images can
be fully recovered when decoded. Consequently, redundancy reduction within
the data is achieved purely by examining its spatial and spectral distributions.
Some widely used approaches for lossless compression include run-length encoding,
predictive coding and entropy encoding [21]. Since it does not lose information,
lossless compression can only achieve a very limited compression ratio of about
3:1 for hyperspectral images in some recent publications [22–24]. Although the
performance of lossless compression does not usually meet the requirements for
on-board systems [25], it is preferred for archiving the data and distributing to
end-users [13]. Lossy compression, on the contrary, allows loss of information when
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images are compressed. As a result, it helps to achieve a much higher compression
ratio than lossless compression and appears more suitable for on-board systems,
where users are allowed to tune parameters to obtain different rate-distortion
performance according to their applications [13].

Although lossy compression can significantly reduce the amount of data for
hyperspectral images, in most practical situations, lossless compression, which
has high computational cost, is desired to avoid loss of information as the lossy
compression may severely affect the accuracy for subsequent data analysis, i.e.
land-cover analysis [12, 26]. In the following two paragraphs, some typical lossless
compression techniques are consequently reviewed.

Adapted from 2D image compression algorithms, predictive coding is considered
as the main trend for lossless compression of hyperspectral images. Thanks to
the high inter-band correlation as well as the similarity of neighbouring pixels
presented in the hyperspectral image, a predictor can be used to predict pixel
values and the resulting prediction error is then coded using an entropy encoder,
such as the popular arithmetic or Huffman encoder [27]. Therefore, efforts have
been focused on designing optimal predictors for reducing data redundancy in
the hyperspectral image. In the very first publication on lossless compression of
hyperspectral images back to 1996, Roger and Cavenor [28] extended the standard
differential pulse code modulation (DPCM) using several linear predictors which
fell into spectral, spatial and spectral-spatial categories. As the variable-length
coding method, both Rice coding and Huffman coding were chosen to encode the
residues, where no codebook was required for Rice coding and adaptive codebooks
were designed for Huffman coding based on the estimated instrument noise. Both
coding methods could yield a relatively high compression ratio in the range from
1.6:1 to 2.0:1. As a variation of DPCM, the clustered DPCM (C-DPCM) was
introduced in [29] and [30]. In the C-DPCM method, the spectral profiles of
the hyperspectral image were clustered into different groups first. Then for each
cluster, linear prediction was performed using separate sets of coefficients and the
prediction error was coded using an adaptive entropy coder, with an achieved
compression ratio of around 3:1.

Alternatively, Abrardo et al. proposed an error-resilient and low-complexity
on-board lossless compression approach using distributed source coding (DSC)
[31]. Instead of encoding the prediction error, each band was encoded separately
according to its correlation with the previous band and joint decoding was re-
quired to decode each band iteratively. Although DSC suffered a slightly lower
compression ratio of about 2.5:1 with respect to C-DPCM, its low complexity
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made it possible to be implemented on board. Through reordering spectral bands
to maximise inter-band correlation in the hyperspectral image, a more efficient
scheme for lossless compression was presented in [32] and [33], with a higher
compression ratio of about 3.3:1 achieved. In addition, there were also some other
lossless compression approaches introduced, using techniques such as the lookup
table (LUT) [34] and context-based adaptive lossless image coding (CALIC) [35].
Although higher compression ratios can be reached by such approaches, the cost of
complex computations they require seems unaffordable for real-time applications.

Since redundancies within the hyperspectral image can be more effectively
removed, lossy compression has been more widely explored by researchers, using
typical approaches including vector quantisation (VQ) [36–39] and transform-
domain approaches [40–42]. The procedure for VQ-based compression algorithm
generally consists of two steps, which are codebook generation (training) and
codevector matching (coding). In codebook generation step, similar vectors in the
training set are clustered into a few groups and a representative vector named as
a codevector is generated for each cluster using the generalised Lloyd algorithm
(GLA) or the Linde-Buzo-Gray algorithm (LBGA) [43]. With the binary index
assigned to each codevector in the codebook, the rest vectors can be referenced to
the nearest codevectors in the coding step. In Chen’s work [44], it was found that
although it was simple, the traditional VQ approach was not able to compress the
image at a low bit rate. Consequently, a new method based on Kronecker-product
gain-shape VQ [45] was proposed for very low bit rate encoding of multispectral and
hyperspectral images. In [39], a novel multivariate VQ approach was presented for
hyperspectral image compression. In the codevector matching step, each spectrum
was represented using a linear combination of two codevectors from the codebook
and the reconstructed image distortion was reduced consequently.

By mapping the hyperspectral image into another space with more compacted
energy, transform-based approaches are widely used for lossy compression at low
compression bit rates. Typical transforms include Karhunen-Loève transform
(KLT), discrete Fourier transform (DFT), discrete cosine transform (DCT) and
discrete wavelet transform (DWT). Although KLT is considered as the optimal
transform with high compression ratio, its application is limited since it is rather
complex and signal-adaptive [14]. For transform-domain compression, DCT and
DWT are two commonly used techniques, which have been adopted in the Joint
Photographic Experts Group (JPEG) and JPEG2000 standards, respectively.
Basically, by applying them for hyperspectral image compression, these transforms
help to remove correlation (redundancy) in both spatial and spectral domains,
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followed by a quantiser and an entropy encoder. Usually, these approaches are
employed to compress individual bands of the hyperspectral image and are taken
as baseline techniques for benchmarking [46]. As a good approximation of KLT for
Gauss-Markov processes but with less computational complexity, DCT represents
the original image using a linear combination of some weighted basis functions
that are related to its frequency components. An algorithm based on the 3D
DCT was proposed by Abousleman et al. for hyperspectral image compression
[47], employing the trellis coded quantisation (TCQ) scheme. It was shown that
the 3D DCT system achieved much higher compression ratio than systems using
DPCM, block truncation coding and various VQ schemes. More recently, Pan et
al. proposed a low-complexity DSC scheme for hyperspectral image compression
with the help of the 2D DCT, which significantly outperformed the DSC scheme
applied in the wavelet domain [48].

As mentioned above, entropy coding should be applied to transformed coeffi-
cients. According to different entropy coding methods, compression algorithms
based on DWT can be divided into two groups, which are zero-tree coding and
context-based coding [49]. The most straightforward approach for zero-tree coding
is the embedded zerotrees of wavelet coefficients (EZW), where the transformed
wavelet coefficients can be successively quantised and encoded using the zerotrees.
In [50], 3D EZW has shown its success for coding the hyperspectral image. By
utilising zerotrees with higher degrees, Said and Pearlman extended EZW and
introduced set partitioning in hierarchical trees (SPIHT) [42] with better perfor-
mance. With the success of 3D SPIHT for video compression [40], it was also
proposed for hyperspectral image compression in [51]. For context-based coding,
the concept has been adopted in the JPEG2000 standard as the core entropy
encoder. Annex N of Part 2 of JPEG2000 standard supports multi-component
imagery compression which can be used for hyperspectral image compression.
Even though Part 10 of JPEG2000 standard was designed for 3D images, it is
not suitable for hyperspectral images because it requires the image as isotropic
as possible. Many researchers have compared performances between 3D SPIHT
and JPEG2000 multi-component. Fowler and Rucker have shown that JPEG2000
multi-component achieved the signal-to-noise ratio (SNR) of 0.1 to 0.3 dB higher
than 3D SPIHT for several remote sensing images [12]. However, Tang and Pearl-
man have proved that 3D SPIHT yielded higher SNR, e.g. 1.5 to 3.5 dB, than
JPEG2000 multi-component at various compression bit rates [51]. Nevertheless,
3D SPIHT provided comparable results to JPEG2000 multi-component as shown
by Christophe et al. [2].
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2.3 Hyperspectral image classification

Hyperspectral image classification is a complex problem comprising of several
processes aiming at solving the difficulties addressed previously. The general su-
pervised classification problem for the hyperspectral image is illustrated in Figure
2.1. Since features presented in the hyperspectral image are often redundant, an
important early step to extract/select effective features is needed to maximise
the separability between classes [1]. Once the feature extraction step is accom-
plished, choosing the specific classification algorithm to apply to those labelled
training samples is the next task. A number of feature extraction techniques
and classification algorithms have been proposed and explored for hyperspectral
image classification, and an overview of such techniques is presented in following
paragraphs.

Fig. 2.1 The schematic diagram of hyperspectral image classification and analysis
process (reproduced from [1]).

In addition to the curse of dimensionality, hyperspectral image also faces the
problem of data redundancy due to its high inter-band correlation. Therefore,
by mapping the high dimensional data into lower dimensional subspace without
sacrificing the performance of following analysis, several unsupervised (if no prior
information is available) and supervised (if training samples are available to
obtain the projection matrix) feature extraction techniques have been proposed
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for dimensionality reduction before classification. Dimensionality reduction could
be considered as a linear or non-linear data transformation. Among unsupervised
dimensionality reduction techniques, PCA [52, 53], also known as the discrete
counterpart of the continuous KLT, is considered as the most widely applied linear
approach. PCA is found to be able to transform the original data into a new
feature space, where the variance in the original data is rearranged according
to their magnitude, resulting in uncorrelated components in the new feature
space [54]. In Section 2.5, background theories of PCA are explained in detail.
The dimensionality reduction is consequently achieved by selecting the first a
few principal components that are enough to represent most of the variance. In
general, the first three principal components can preserve more than 90% energy of
the original data [4]. It was found that for hyperspectral images, the conventional
PCA is dominated by the visible and near-infrared bands since the variances of
those spectral bands are higher than those of the remaining bands. To overcome
the bias problem, Jia and Richards proposed the segmented PCA [54], achieving
satisfactory results as well as reduced computational load. Other variations include
the structured covariance PCA [55] and the folded-PCA [52], where both methods
were proposed for fast computation. Independent component analysis (ICA) [56],
which is famous for source separation, has also received considerable interest
for dimensionality reduction of hyperspectral images, aiming at identifying a
linear transformation that separates the original signal vector into a set of sources
which are statistically independent. Similar approaches include minimum noise
fraction (MNF) [57] and non-negative matrix factorisation (NMF) [58]. Using
two cascaded PCA transformations, MNF projects the high-dimensional data
into a new space consisting of two parts, the signal part and the noise-dominated
part. This is also the reason why MNF is called the noise-adjusted PCA. By
segregating the noise-dominated part in the data, dimensionality reduction can
be achieved with MNF. Different from PCA or ICA which could only extract
holistic features from the original image, NMF is a parts-based learning algorithm,
decomposing a non-negative matrix into two non-negative matrices which are more
intuitive and interpretable. One of the decomposed matrices is formed with a set
of basis vectors, which can be utilised to project the original data into the lower
dimensional subspace. The aforementioned linear approaches can be extended
to non-linear ones through kernel methods at a cost of high computational load,
leading to kernel PCA [59], kernel ICA [60], kernel MNF [61] and kernel NMF
[62].
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Unlike unsupervised dimensionality reduction techniques, supervised methods
require prior information of labelled training samples to achieve the discriminative
projections. Linear discriminant analysis (LDA) is an standard supervised dimen-
sionality reduction technique for pattern recognition, where the highest degree of
class separability is obtained by maximising the Raleigh quotient, i.e. the ratio of
the between-class scatter matrix to the within-class scatter matrix [4]. Since the
conventional LDA requires the within-class scatter matrix to be non-singular, it
might fail when there are not enough training samples for all the classes in the
hyperspectral image. To overcome the ill-posed problem, a preliminary feature
extraction step, such as PCA, is added to project the original image into a lower
dimensional space before applying LDA so that the within-class scatter matrix
is non-singular [4]. However, in this way, dimensionality reduction is actually
achieved with PCA, and LDA only helps to maximise the class separability in
the PCA-projected space. Another problem of LDA is that if the difference
within the class-mean vectors is small, the selected features could be unreliable.
If the distance between one mean vector and the others is large, its class will
eclipse the others when computing the between-class scatter matrix. Therefore,
non-parametric weighted feature extraction (NWFE) [63] was proposed to weight
every sample to get the weighted mean, and new non-parametric between/within
scatter matrix can be defined to obtain more features. Similar to the kernel
methods, these supervised dimensionality reduction techniques also suffer from
slow speed due to high computational cost.

Additionally, instead of reducing the dimensionality, feature extraction can
also be achieved by signal decomposition, both in spectral and spatial domain.
For spectral-based signal decomposition, an impressive technique, namely singular
spectrum analysis (SSA) [64, 65], has recently demonstrated its ability in effective
spectral feature extraction for HSI data, with a great improvement compared with
another similar technique, empirical mode decomposition (EMD) [66, 67]. Being
the fundamental part of the Hilbert-Huang transform (HHT), EMD is a non-linear
and non-stationary signal decomposition method that decomposes the signal
into a finite number of intrinsic mode functions (IMFs). Each IMF represents a
zero-mean frequency-amplitude modulation component that is often related to
a specific physical process so that EMD is not biased with any predetermined
basis or subband filtering process. Although EMD has shown its efficacy in time
series decomposition (e.g. speech recognition), results reported in [67] indicated
that spectral feature extraction using EMD could potentially reduce the following
classification accuracy. Consequently, a more robust and data-driven technique,
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the ensemble EMD (EEMD) [68, 69] was proposed to alleviate the addressed
problem. Besides, a major drawback of EMD is its heavy computational load,
making it less attractive than SSA. In a similar way, SSA could decompose the
spectral profiles of HSI data into a few components as well, including the trend,
oscillations and noise components. It was demonstrated in [64] that compared
with EMD, SSA was able to enhance the spectral feature extraction performance
while reducing the computational complexity.

Although spectral feature extraction attracts much attention from researchers
in the past, limited contribution has been found without incorporating the spatial
context presented in the hyperspectral image. The extended 2D versions of
EMD [67, 70] and SSA [71] have been applied to each individual band in the
hyperspectral image and incredible improvement has been noticed with the help
of the extracted spatial information. However, the computational complexity of
2D EMD is still a problem, let alone hundreds of bands in a hyperspectral image
[16]. Besides, it is noticed the extracted spatial information using 2D-SSA can
be over-smoothed with blurred features, leading to classification error especially
around edges. A simple but effective way for effectively exploiting the contextual
information is based on the filtering techniques, such as morphological operators
and wavelet decompositions. The morphological profile (MP) constructed by
opening/closing morphological operators using a series of structure elements (SEs)
with different sizes has been developed as a valuable state-of-the-art technique
for extracting spatial geometrical details for HSI data. As shown in [72] and
[73], MP and morphological attribute profile (MAP) were applied to the first a
few principal components achieved from a hyperspectral image, generating the
extended MP (EMP) and the extended MAP (EMAP). In [74], texture features
were effectively extracted using Gabor wavelets, leading to improved classification
accuracy. Besides, wavelet decomposition has also been employed for image de-
noising, which can be combined with MP [16] and EMD [70] for better classification
performance.

Furthermore, various machine learning techniques have been proposed for hy-
perspectral image classification, including maximum likelihood [75, 76] or Bayesian
estimation methods [77, 78], artificial neural networks [79–81], and decision trees
[82, 83] et al.. Maximum likelihood classification assumes that each class ωi can
be explained by the Gaussian distribution and is modelled with a class-conditional
probability density function (PDF). The task is then to assign a given spectrum x
to the class ωi with the maximum posterior probability p (ωi|x), which is equivalent
to p (x|ωi) p (ωi) according to the Bayes rule. However, classification results based
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on maximum likelihood could potentially be unreliable since the assumption of
the class-conditional PDF is not true for all situations. Without making any
assumption about the data frequency distribution within each class, artificial
neural networks, inspired by the function of human brains, are able to perform
model-free function estimation using non-linear mapping structures. The most
widely used artificial neural network model for hyperspectral image classification is
the back-propagating multi-layer perception, including one input layer, at least one
hidden layer and one output layer. As an extension of the multi-layer perception
model, deep learning, which comprises deep neural networks typically deeper
than three layers, has recently demonstrated its success for hyperspectral image
classification [84, 85]. In order to achieve superior performance, the artificial
neural networks need to be carefully designed, where optimal parameters can be
obtained using an extensive training phase. As a result, their applications are
hindered by the complex configuration and the expensive computing time. As a
fast and statistical assumption free method, decision trees employ a multi-stage ap-
proach for label assignment, where a chain of simple decisions rather than a single,
complex decision are made based on the results of sequential tests. However, it was
noticed that decision trees also suffer from the Hughes phenomenon [82], where
the classification accuracy declines as the number of features increases. Among all
approaches, SVM has demonstrated its success in supervised hyperspectral image
classification [5, 18, 52] as it can handle large input spaces efficiently and it is less
sensitive to the Hughes phenomenon compared to artificial neural networks [86].
In particular, details of SVM are explained separately in this chapter.

2.4 Meat quality assessment using spectroscopic
technologies

Visible and near-infrared (VIS-NIR) spectroscopy has been recognised as a rapid,
low cost and non-destructive tool for determining food chemical composition [87].
The visible spectrum is part of the electromagnetic spectrum which is visible to
human eyes, lying between 390 to 700 nm [88]. The NIR and short-wavelength
infrared (SWIR) spectrum, whose wavelength ranges from about 780 to 3000 nm,
is just between the visible and intermediate infrared region [89]. Although the
SWIR region is usually covered by the VIS-NIR spectroscopy as well, it is left
out of the name for simplicity. Over the past thirty years, VIS-NIR spectroscopy
has been applied in the meat industry for predicting the meat quality since the
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demand and consumption of meat and meat products are generally high in most
developed countries [90].

Compared with conventional approaches to assess meat quality, VIS-NIR
spectroscopy has many advantages. In addition to being non-destructive, it
requires minimal sample preparation, needs no reagents, and produces no waste,
allowing assessing numerous meat properties at the same time [4]. It is also
suitable for on-line application where the rapidity of measurement allows the
determination of several different attributes simultaneously. The success of VIS-
NIR spectroscopy has been demonstrated in [91] where the FOSS FoodScan NIR
spectrophotometer was approved by the association of analytical communities
(AOAC) for commercial analysis of moisture, fat and protein in meat and meat
products. However, the quality evaluation method in [91] is destructive since it
requires representative samples to be homogenised using grinding before collecting
spectral profiles. Additionally, simple discrimination of different meat products
using VIS-NIR spectroscopy has been proved feasible in late 1990s, e.g. for
differentiating frozen and unfrozen beef [92], broiler and local chickens [93] as well
as detecting minced beef adulteration [94, 95]. Moreover, VIS-NIR spectroscopy
was found to be less reliable when predicting technological and sensory attributes
of meat and meat products [90]. A thorough review on the application of VIS-NIR
spectroscopy for predicting meat and meat products can be found in [90], with
numerical prediction results reported.

According to [90], sensory attributes of meat generally include colour, shape,
marbling, odour, flavour, juiciness, tenderness and firmness, among which flavour,
juiciness and tenderness are three most significant parameters influencing the
meat eating quality [96]. Besides, visual factors such as lean meat and fat
colours are also adopted by consumers to infer meat eating quality at the time of
purchase [97]. Generally, sensory attributes can be quantitatively represented by
a number of technological parameters, including surface colour in the Commission
Internationale de l-Eclairage (CIE) L*, a* and b* colour space, ultimate pH, as
well as tenderness parameters, such as Warner-Bratzler shear force (WBSF) and
slice shear force (SSF) [98–100].

The redness is often used as an indicator of freshness by consumers, and it
can be affected by many factors during production, processing and packaging.
Meat surface colour is commonly measured in the 3D L*a*b* colour space using
a hand-held colourimeter calibrated against a reference tile. Take [101] as an
example, beef surface colour was recorded with a Konica Minolta CR-400 chroma
meter, where L* indicates colour lightness ranging from 0 (black) to 100 (white),
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a* defines the green-red colour degree ranging from 0 (green) to 255 (red) and
b* is the blue-yellow colour degree ranging from 0 (blue) to 255 (yellow). It
was noticed that L* and b* are highly correlated to the absorbance spectra at
1230 – 1400 nm and 1600 – 1710 nm respectively, where the intramuscular fat is
related to these wavelengths as well [99]. This finding was also confirmed in [102],
concluding that meat with a higher intramuscular fat content appears lighter.
As mentioned earlier, fat content can be successfully determined with VIS-NIR
spectroscopy. Consequently, there should be no doubt that colour prediction of
L* and b* was also found to be promising by means of VIS-NIR spectroscopy in
most studies [98, 99, 103, 104]. On the contrary, the green-red colour degree a*
is related to the water content as well as the concentration of myoglobin, which
are usually corresponding to the visible range in the electromagnetic spectrum
[90]. By selecting proper wavelengths for analysis, a* could also be predicted
successfully [105].

Ultimate pH is the most commonly measured technological parameters for
meat since it is related to most sensory traits. It was found that meat with high pH
values is potentially darker, has more bacterial and less flavour [98]. Thus, early
assessment of ultimate pH in a non-destructive way is necessary to detect spoiled
products. It is well known that ultimate pH affects the light scattering properties
of muscle tissue and it makes the accurate prediction of ultimate pH using VIS-NIR
spectroscopy possible, as long as there is a wide range of reference data available
when constructing the prediction model [90, 98, 106]. Tenderness is identified as
the most significant factor influencing the result of a meat eating quality test,
where the tenderness can be either measured with a trained sensory taste panel or
quantitatively using laboratory-based shear force tests [107]. Most studies adopted
WBSF as the tenderness representation [98, 99, 103, 108], while some researchers
used SSF as a fast alternative to WBSF [109]. The performance of VIS-NIR
spectroscopy in predicting meat tenderness was generally poor, probably due to
lack of precision when measuring the shear force as well as a limited variability in
the reference data [90].

While spatial information is usually ignored in a traditional single-point VIS-
NIR spectroscopy, it is extremely important especially for heterogeneous meat
products (e.g. meat with fat). This fundamental prerequisite drives the devel-
opment of HSI system, which is also known as imaging spectroscopy. In the
past two decades, a number of innovative implementations of the HSI technique
have been reported as promising tools for quality and safety control of various
meat products, though there are not as much as the reported one with VIS-NIR
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spectroscopy. In [110], the HSI system was proven to be effective for identifying
the faecal and ingesta contaminants on poultry carcasses. Rather than utilising
all spectral bands, only two or three bands were employed for contamination
detection in the experiments. For beef quality assessment, HSI was used to predict
colour parameters [101, 111], ultimate pH [101], tenderness in terms of WBSF
[111–113] and SSF [101], water-holding capacity [114] and fatty acid composition
[115]. Similarly, HSI was also applied to pork samples for predicting several
quality attributes in [116] and [117], including colour, ultimate pH and drip loss,
while others tended to use the achieved hyperspectral images for categorising
pork quality with the help of texture filters [118, 119]. Lamb quality assessment
using the HSI system has also been investigated by predicting water content/drip
loss [20, 120], fat content [120], protein content [120], ultimate pH [20], colour
[20] and tenderness in terms of WBSF [121]. Besides, the potentiality of the HSI
technique for fast detection of lamb adulteration has been studied in [122], where
good predicting results are yielded, indicating the great promise of HSI.

Although meat quality assessment using both VIS-NIR spectroscopy and HSI
has been studied a lot in the past, the majority of them estimated the prediction
accuracy with the help of partial least squares regression (PLSR) [20, 101, 114, 117,
120], while some researchers used multiple linear regression (MLR) [111] and feed-
forward neural networks [116]. Moreover, feature extraction was rarely applied to
the hyperspectral image before the multivariate data analysis except for PCA to
identify important spectral bands [110, 112, 114]. Therefore, choosing an effective
feature extraction technique and a suitable regression model for the HSI data
could be a possible solution to improve the prediction of meat quality parameters.
For validating the robustness of the regression model, there are generally two
ways: internal cross-validation and external validation. Although the leave-one-out
cross-validation which entails removing and predicting each sample sequentially
seems more popular among researchers as shown in [20, 101, 111, 112, 114, 117],
whether it can be truly considered as a form of model validation is arguable as
the future performance of the model on external samples is left unknown [97]. For
this reason, the external validation method has become of interest to practical
applications in the meat industry [123].
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2.5 Principles of related techniques

Two data analysis and machine learning techniques, PCA and SVM, which
are employed in the experiments throughout the current study, are introduced
accordingly down below.

2.5.1 Principal component analysis

Fig. 2.2 The process of reshaping 3D hyperspectral image to 2D spectral data matrix.

There are generally three steps in the conventional PCA, which are covariance
matrix calculation, eigenvalue decomposition of the covariance matrix and data
projection. Assume a hyperspectral image with size of P ×Q×B is denoted as
I (p, q) = (I1 (p, q) , I2 (p, q) , . . . , IB (p, q)) ∈ RB (p = 1, 2, . . . , P , q = 1, 2, . . . , Q),
where R represents the set of real numbers with the pixel intensity value Ib (p, q)
at all spectral channels b = 1, 2, . . . , B and P , Q refer to the spatial dimensions
of the hypercube. The main purpose of PCA is to reduce the B-dimensional
HSI cube to a m-dimensional cube (usually m << B), and the first step is to
reshape the 3D image into a 2D spectral data matrix with size of B ×N , where
N = P × Q. Thus, the spectrum corresponding to an image pixel vector can
be represented as Ik = (I1, I2, . . . , IB)T

k . The reshaping process is illustrated in
Figure 2.2. Then, the B by B covariance matrix CI for the image I is defined as:

CI = E
{
(I− E {I}) (I− E {I})T

}
, (2.1)
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where E {·} is the expectation operator. The covariance matrix can also be
approximated via the following calculation,

CI = 1
N − 1

N∑
k=1

(
(Ik − Im) (Ik − Im)T

)
, (2.2)

where Im is the mean spectrum vector representing the average intensity value of
the image across all bands and it is defined as below:

Im = 1
N

N∑
k=1

(I1, I2, . . . , IB)T
k . (2.3)

The core step of PCA is based on eigenvalue decomposition of the obtained
covariance matrix, which takes the form as Equation (2.4),

CI = PT DP, (2.4)

where D = diag {λ1, λ2, . . . , λB} is a diagonal matrix composed of B eigenvalues of
the covariance matrix CI arranged in descending order, i.e. (λ1 ≥ λ2 ≥ . . . ≥ λB),
and P is an orthogonal matrix of corresponding eigenvectors arranged in rows, i.e.
P = (U1,U2, · · · ,UB)T . Then the full PCA projection for Ik can be calculated
as:

yk = P (Ik − Im) , (2.5)

where yk is the projected output of mean-shifted Ik so that the mean spectrum
in each dimension is zero. This mean-shifting step is not necessary, but it makes
the decorrelation of PCA more evident in subsequent stages. Since the full PCA
projection keeps the highest variance in the first band and the lowest variance
in the last band, the first a few projected bands would contain the majority of
energy residing in the original hyperspectral image. By only keeping the first m
rows in P, the projected spectrum with reduced dimensionality can be achieved,
as shown in Equation (2.6),

yk
′ =


U(1,1) U(1,2) · · · U(1,B)

U(2,1) U(2,2) · · · U(2,B)
... ... . . . ...

U(m,1) U(m,2) · · · U(m,B)

 (Ik − Im) . (2.6)
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2.5.2 Support vector machine

Developed by Cortes and Vapnik in 1995 for binary classification problems,
SVM [124] has been evolved into a powerful machine learning technique for high
dimensional data classification and regression. Assume for a binary classification
problem in a B-dimensional space, there are N training samples xi ∈ RB with
corresponding labels yi = ±1. In order to avoid the situation that attributes
with greater values dominate those in smaller numerical ranges, both training and
test samples need to be normalised to the range [−1, 1] or [0, 1]. If the data are
separable by a hyperplane, there would be an infinite number of representations
for the hyperplane. The goal of SVM is to separate the set of training vectors
{(xi, yi) |i ∈ [1, N ]} into two classes by finding an optimal hyperplane maximising
the margin, which is the nearest distance between two vectors from different
classes. The hyperplane Hp is named as the canonical hyperplane and it is defined
as follows:

w · x + b = 0, ∀x ∈ Hp, (2.7)

where w ∈ RB is the weight vector perpendicular to the hyperplane and b ∈ R
is noted as the bias. For data points not on the canonical hyperplane, Equation
(2.8) defines the distance from the data point x to the hyperplane Hp:

f (x) = |w · x + b|
∥w∥

. (2.8)

For the canonical hyperplane, parameters w and b are constrained by Equation
(2.9) to maximise the margin,

min
i∈[1,N ]

|w · xi + b| = 1. (2.9)

Training vectors x satisfying w · x + b = ±1 are used for describing the canonical
hyperplane, and they are therefore known as the support vectors.

When the training vectors are linearly separable, the canonical separating
hyperplane satisfies the following constraint:

yi (w · xi + b) ≥ 1, ∀i ∈ [1, N ] . (2.10)

According to Equation (2.8), given two support vectors x1 and x2 from different
classes, the margin, which is the distance d between them on the direction
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perpendicular to the canonical hyperplane, is calculated as:

d = |w · x1 + b| − |w · x2 + b|
∥w∥

= 2
∥w∥

. (2.11)

Therefore, maximising the margin is equivalent to minimising ∥w∥, leading to the
following quadratic optimisation problem:

minimise 1
2∥w∥

2

subject to yi (w · xi + b) ≥ 1, ∀i ∈ [1, N ] .
(2.12)

However, in general, the training data are not always linearly separable. To
enable a generalised optimal separating hyperplane, non-negative slack variables
ξ are introduced to address the misclassified data and the optimisation problem
in Equation (2.12) is modified as:

minimise 1
2∥w∥

2 + C
N∑

i=1
ξi

subject to yi (w · xi + b) ≥ 1− ξi, ∀i ∈ [1, N ] ,
(2.13)

where the constant C is a pre-determined regularisation parameter that controls
the amount of penalty. The optimisation problem in Equation (2.13) can be
represented as its dual formulation utilising Lagrange multipliers and solved using
quadratic programming accordingly. With the determined parameters w and b

by solving Equation (2.13), the classification result yt for a test sample xt can be
calculated as:

yt = sgn (w · xt + b) . (2.14)

It should be noted that the optimisation algorithm for solving Equation (2.13)
only depends on the dot products between vectors xi. Hence, training vectors
can be mapped into a high dimensional feature space with non-linear kernel
functions and the linear separability of data is enhanced consequently. In this way,
calculations can be carried out in the input space rather than the high dimensional
feature space with reduced computational complexity. An inner product in the
feature space holds an equivalent kernel in the input space, shown as below:

K (xi,xj) = Φ (xi) · Φ (xj) , (2.15)
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where Φ (·) is the non-linear mapping function and K (·) is the kernel function
satisfying the Mercer’s condition [125]. The Gaussian radial basis function (RBF)
is the most widely used kernel for hyperspectral image classification, with the
form below:

K (xi,xj) = exp
(
−γ∥xi − xj∥2

)
, γ > 0, (2.16)

where γ is the width parameter for the RBF kernel. To train the classifier, a grid
search using cross-validation is employed to look for optimal values of C and γ by
trying exponentially growing sequences. For instance, C = 2−10, 2−9, . . . , 214, 215

and γ = 2−15, 2−14, . . . , 29, 210.
As mentioned in the beginning, SVM was originally designed for the binary

classification problem. However, hyperspectral image classification is usually a
K-class problem. A number of methods have been proposed, where the one versus
one classification approach is adopted in a well-known publicly available SVM
library – LIBSVM [126]. In this methodology, K (K − 1) /2 binary classifiers are
applied to each pair of classes and the test sample is assigned to a class label with
the highest number of votes.

For the SVM regression, theories are similar to the classification, but the target
values yi for training samples xi are real numbers rather than ±1 any more. The
optimisation problem for SVM regression has the formation as:

minimise 1
2∥w∥

2 + C
N∑

i=1
ξi

subject to |yi −w · xi − b| ≤ ε+ ξi.

(2.17)

The parameter ε serves as a threshold which limits that the deviation from the
prediction to actual target value is ε at most. Therefore, this is also known as
ε-SVM regression. For a test sample xt, the predicted target value yt is calculated
as:

yt = w · xt + b. (2.18)

Similarly, the non-linear mapping can be applied to SVM regression for better
performance as well.
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2.6 Summary

In this chapter, related work about hyperspectral image analysis are reviewed
in three topics: hyperspectral image compression, hyperspectral image feature
extraction and classification, and meat quality assessment using spectroscopic
technologies. Popular techniques for hyperspectral image compression, including
both lossless and lossy compression, are discussed. For the hyperspectral image
classification problem, extracting effective features and constructing suitable
classifiers are two important steps for improving the classification accuracy. State-
of-the-art spectral/spatial feature extraction techniques as well as some typical
classifiers are introduced. Additionally, literature review of meat quality assessment
using both VIS-NIR spectroscopy and HSI system is carried out, with general
meat quality measurement methods described. Furthermore, theoretic background
of the most widely used feature extraction technique PCA and the most popular
classifier SVM has also been reviewed in detail. These two techniques will be used
throughout in this thesis.
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Chapter 3
Hyperspectral Imagery Compression Based on
an Improved Three-Dimensional Discrete Co-
sine Transform Approach

3.1 Introduction

Although the development of hyperspectral imaging (HSI) leads to success in many
areas, a major associated problem is the huge volumes of data it contains, resulting
in not only high cost for storage but also greater analysing/processing time and
difficulty in data transmission, especially the one from satellites to ground [26].
As a consequence, compression and coding of the hyperspectral image is highly
desired in this context.

The aim of this chapter is to propose a solution for quality-assured, low-cost
and lossy compression of the hyperspectral image. Ideally, a high compression ratio
should be achieved with very limited degradation on the accuracy for subsequent
analysis and application. Despite the suggestion for lossless compression to preserve
the quality of the hyperspectral image [12, 26], it is found that a moderate amount
of data loss would not affect the image quality in many applications [37, 127].
Herein quality-assured is to reach a trade-off between a high compression ratio
whilst minimising the effects to following data analysis, i.e. classification accuracy.

In this chapter, both discrete cosine transform (DCT) and discrete wavelet
transform (DWT)-based three-dimensional (3D) approaches are investigated, and
an improved 3D DCT-based approach is proposed. As mentioned in Chapter 2,
3D set partitioning in hierarchical trees (SPIHT) provides similar or even better
compression performance than JPEG2000 multi-component scheme. Therefore,
3D SPIHT is chosen as the representation of 3D DWT-based approach in the
following experiments and benchmarked with the proposed 3D DCT-based method.
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Although it was found DWT usually outperforms DCT in this context [14, 128],
better results from DCT were reported by others as well [48]. Therefore, this
chapter also aims to evaluate these two approaches in terms of the compression
performance and any side-effects on subsequent data analysis. Using four publicly
available remote sensing hyperspectral data sets, interesting results are produced,
and the efficacy and efficiency of the proposed approach for quality-assured
hyperspectral image compression are fully validated.

The remaining part of this chapter is organised as follows. In Section 3.2,
technical details of the proposed 3D DCT-based approach are presented. Section
3.3 discusses the experimental data sets and evaluation criteria used in the
experiments. Results and evaluation on land-cover analysis are given in Section
3.4. Finally, some concluding remarks are drawn in Section 3.5.

3.2 Improved 3D DCT-based approach

By combining the two-dimensional (2D) spatial DCT and the one-dimensional (1D)
spectral DCT together [49], 3D DCT is formed for more effective compression of the
hyperspectral image as it can fully exploit the correlation in the 3D hypercube [46].
Furthermore, it allows fast access to each band image by partially decoding the
compressed image in band groups. In this section, an improved 3D DCT approach
with learning-based determination of optimal quantisation table is presented.

3.2.1 From 2D DCT to 3D DCT

For 2D DCT in JPEG standard, a block size of 8× 8 is chosen for block-based
compression. For 3D DCT used for hypercube compression, similarly, an 8 ×
8× 8 sub-cube is applied. As a result, every 8 bands is grouped when they are
compressed, which enables each band to be accessed by decoding the grouped 8
bands, i.e. partially decoding the whole compressed hypercube.

Let f (x, y, λ) denote the sub-cube with N = 8, the 3D forward DCT is defined
as follows [129],


F (u, v, w) = c(u)c(v)c(w)

(N/2)3/2

N−1∑
x=0

N−1∑
y=0

N−1∑
λ=0

f (x, y, λ)

cos
(

2x+1
2N

uπ
)

cos
(

2y+1
2N

vπ
)

cos
(

2λ+1
2N

wπ
)
,

(3.1)
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where u, v, w = 0, 1, . . . , N − 1 and c (·) satisfies

c (k) =


1√
2 , k = 0

1 , k ̸= 0
.

In order to acquire lossy compression, the 3D transformed coefficients must be
quantised. The step of quantisation is the main source of loss in the DCT-based
coding. Therefore, the quantiser should make the entropy of those quantised
coefficients smaller. The quantisation process is defined in Equation (3.2), where
Q is the 3D quantisation table and C is the quantised result,

C (u, v, w) = round

(
F (u, v, w)
Q (u, v, w)

)
. (3.2)

The 3D DCT quantisation table is formed with 512 quantitative values. After
the transform, low frequency components are located near the coordinate (0, 0, 0)
and high frequency components are located near the coordinate (7, 7, 7). High
frequency components can be discarded after the quantisation stage since human
vision systems are more sensitive to low frequency components [130]. However,
JPEG standard has only defined the standard quantisation matrix for 2D DCT-
based compression. Thus, the 3D DCT quantisation matrix can be designed on
one’s own choice, as long as values in the matrix are small at low frequency while
large at high frequency.

In general, the quantisation matrix is the key for DCT-based compression as it
affects the performance of coding. The multiplication [131] and the sum of the three
coordinates [132], uvw and u+ v+w, were used by some researchers to determine
the quantisation matrix, respectively. In the proposed approach, however, the
quantisation matrix [133] below is used, where the spectral component, w, is
non-linearly weighted to reflect the inter-band correlation. In fact, inter-band
correlation decreases when two bands are further apart, similar to correlation
between video frames. As a result, the matrix from video compression can be
used for coding of the hyperspectral image, shown in Equation (3.3),

Q (u, v, w) = round (u+ v + kw + 3) , u, v, w ∈ [0, 7] , (3.3)

where k stands for an inter-band correlation coefficient between spectral bands,
which has 26 values of choice: 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1,
1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5 and 8. Therefore, in total there are
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26 quantisation tables, denoted from No.1 to No.26, where No.1 is used for weak
inter-band correlation and No.26 is for strong inter-band correlation.

3.2.2 Proposed learning-based approach

For a trade-off between the quality of the reconstructed image and the compression
bit rate achieved, a quality level ranging from 1 to 99 is decided, where a smaller
number refers to poorer quality of the compressed image hence a higher compression
ratio and a lower compression bit rate. By adjusting the quality level, the desired
compression bit rate can be achieved.

The quality level of the quantisation matrix specified in Equation (3.3) is
defined as 50 and Q50 is denoted as the standard quantisation matrix. For a
quality level (QL) higher than 50 and lower than 50, the quantisation matrices
are different as shown in Equation (3.4) [134],

Q =


100−QL

50 ×Q50, QL > 50
50
QL ×Q50, QL < 50

. (3.4)

As mentioned before, every 8 bands forms a group to be compressed in the
3D DCT transform. Therefore, the value of k for each group should not be the
same considering that the inter-band correlation for each group could be different.
According to some preliminary experiments, the compression performance is
sensitive to the choice of k if only a fixed value is applied for the whole hyperspectral
image. Thus, the quantisation table in [133] with only a fixed k may not be an
optimal solution. Additionally, the value of k in [133] is hand-picked by trial
and error so that the process is not efficient enough. As a result, the support
vector machine (SVM) is employed to predict k for each group in the proposed
compression approach. In each group containing 8 spectral bands, if the correlation
coefficient between every two bands is calculated, a vector containing 28 correlation
coefficients can be obtained. In order to train the prediction model, a few spectral
band groups from a hyperspectral image will be selected first. The next thing is
to determine optimal values of k for selected groups. Quantisation tables with
all values of k shown in Section 3.2.1 have been applied to compress every group
at a bit rate of 0.5 bpppb (bits per pixel per band) respectively by adjusting
the quality level. Therefore, for each group, there are 26 reconstructed images
at the same compression bit rate. The lowest mean squared error (MSE) among
26 reconstructed images indicates the best compression performance, where the
corresponding k is chosen as the optimal value of the quantisation table for that
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particular group. Thus, in the training set for the SVM, for every instance, it
contains one ‘target value’ k and 28 ‘attributes’ (correlation coefficients). The
goal is to construct a regression model to predict the ‘target value’ k for remaining
band groups given their correlation coefficients only. The performance of the
above mentioned two quantisation matrices in Section 3.2.1 and the proposed
SVM prediction-based quantisation matrix is compared in Section 3.3.3.

Entropy coding is completed after the quantisation process, where coefficients
at (0, 0, 0) in each 8 × 8 × 8 cube are referred to as DC coefficients whilst all
others are named as AC coefficients. For the Huffman encoder adopted in the
experiments, DC coefficients and AC coefficients are separately coded. Let DCi

and DCi−1 represent DC coefficients for block i and block i − 1, respectively.
Considering a high correlation of DC coefficients in adjacent blocks, differential
coding can be employed to encode DC values for improved efficacy, where only
the difference of DCi and DCi−1 needs to be Huffman coded [134].

For AC coefficients, the scanning order is from low frequency to high frequency
items, in the connection order with the 3D zigzag shape. Please note that the
scanning order here is fixed, enabling fast access to designated items in a look-up
table. On the contrary, DWT relies on SPIHT tree to determine the connection
between coefficients, thus it is unfixed and time-consuming though it is expected
to produce better results of coding.

Except for DC and AC coefficients, the inter-band correlation coefficients k
for each compression group need to be coded as well. Similar to DC coefficients,
values of k are differential coded.

At the decoding stage, Huffman codes are decoded [135], followed by the
de-quantisation step and the inverse DCT transform. Then, the reconstructed
image can be achieved. Similar to other block-based coding techniques, one of
the most noticeable degradations of 3D DCT is the block artefact, which is a
regular pattern of visible block boundaries [136]. However, such artefacts do not
necessarily degrade the performance of subsequent image analysis, as demonstrated
in next two sections.

3.3 Data sets and experimental setup

In total, four publicly available hyperspectral data sets are used for performance
evaluation, and the data sets, experimental setup, and quantitative evaluation
criteria are discussed in detail below.
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3.3.1 Data set preparation

There are four hyperspectral data sets used in the experiments, including the
airborne visible/infrared imaging spectrometer (AVIRIS) scenes Moffett Field
scene 1, Indian Pines and Salinas Valley, as well as the reflective optics system
imaging spectrometer (ROSIS) scene Pavia University, which are widely used in
this context. Details of these data sets can be found in Appendix A.

The first data set, Moffett Field scene 1 [137], is cropped from the top-left
corner for simplicity of compression, and 16 noisy bands are removed to form
a hypercube with dimensions of 512 × 512 × 208. The cropped hypercube is
then binned to a smaller size of 128 × 128 × 208 by using the average spectrum
to represent each 4 × 4 block in the spatial domain. Therefore, the image size
is dramatically reduced for easy processing using the 3D SPIHT algorithm. In
the second data set Indian Pines [10], 20 bands affected by water absorption and
noise are removed first [138]. After that, an additional 19 bands are discarded so
that 185 bands are remained as suggested in [139]. Finally, the hypercube has
a new size of 144 × 144 × 184, by cropping the image to allow each dimension
to be divided by 8 with no remainder, for the easy implementation of DCT in
block-based compression. Similar to Indian Pines, for the third data set Salinas
Valley [140], only 184 out of 224 bands are used for testing. Also, the image is
cropped in spatial dimension, forming a new hypercube sized 144 × 144 × 184,
i.e. same as the second data set. The last data set Pavia University [141] is also
further cropped to 144 × 144 × 96 in the experiments for easy implementation of
the coding algorithms.

As the 3D DCT-based compression proposed in this chapter is adapted from
video compression whose maximum pixel value is 255, experimental hyperspectral
data sets need to be normalised to the range of 0 to 255 first, and the normalised
hyperspectral images are used both for the proposed 3D DCT-based compression
and the 3D SPIHT-based compression. Although images are transformed from
12/16 bits to 8 bits per pixel, subsequent image analysis is not influenced as shown
in Section 3.4. Another thing that needs to be addressed is that considering the
test image size, the decomposition level of 3D DWT in the experiments is set to
three for all data sets.

To illustrate the contents of four experimental data sets after essential cropping,
pseudo colour images of each data set are shown in Figure 3.1. As can be seen,
these images contain different natural/urban scenes, which correspond to various
regions of interest. More importantly, there are ground truth maps available for
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the last three data sets, as shown in Figure 3.2, which enables classification of
pixels for quality-assured performance evaluation of both compression approaches.

Fig. 3.1 Pseudo colour images of four experimental data sets, from left to right: Moffett
Field scene 1 (after cropping and binning), Indian Pines (after cropping), Salinas Valley
(after cropping) and Pavia University (after cropping).

Fig. 3.2 Ground truth maps for the last three data sets including Indian Pines (left),
Salinas Valley (middle) and Pavia University (right).

In Figure 3.2, the ground truth for Indian Pines data set contains 16 classes,
corresponding to alfalfa, corn, grass, hay, wheat, and so on. For Salinas Valley
data set, the ground truth has 9 classes, including broccoli, lettuce, grapes, and
so on. Finally, the Pavia University data set has 8 classes defined in the cropped
ground truth, containing meadows, asphalt, soil and trees, etc. [138]. How these
ground truth maps are used for the quality-assured performance evaluation is
discussed in Section 3.3.2.

3.3.2 Evaluation criteria

For performance evaluation of both compression algorithms, several commonly
used criteria are summarised. The first one is the compression bit rate, which is
determined through dividing the compressed bit stream size by the original image
size and its unit is bpppb.

Although a lower bit rate means a smaller number of data needed for the
compressed hypercube, the degradation of the image quality is high. Therefore,
a good compromise between the bit rate and the image quality is desired [139].
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For quality assessment of the reconstructed image, both subjective and objective
criteria are usually used and summarised below.

For subjective evaluation, it mainly relies on the judgement from some selected
observers. First, visual capabilities of candidate observers are tested, and those
qualified are chosen to assess the quality of the tested image by giving different
ranks. Since human visual systems are highly adapted to extract structural infor-
mation from the viewing area, subjective assessment is considered as the best way
to evaluate images to be viewed by human beings. However, in practice, subjective
evaluation is less preferable than objective assessments because the solution tends
to be inconsistent, inconvenient, and time consuming [142], especially for the
hyperspectral image that contains hundreds of bands. Besides, it is meaningless
to compare a single band of the hyperspectral image because it is not typically
designed to be observed by human viewers. Therefore, in the experiments, subjec-
tive assessment is completed by visually comparing two accumulated difference
images between the reconstructed data set and the original data set under the
same compression bit rate, thus a straightforward evaluation is achieved. The
accumulated difference image Idiff for a B-band HSI is calculated as shown in
Equation (3.5),

Idiff (i, j) =
B∑

k=1
|X (i, j, k)− Y (i, j, k)|, (3.5)

where X and Y represent the original image and the reconstructed image, respec-
tively.

Ideally objective evaluation approaches also prove good subjective assessments,
and they are easier to apply as images could be automatically analysed for quality
assessment without human involvement. Often, a full-reference approach is used for
objective quality assessment, where a complete reference is supplied for comparison
[143]. A simple statistical error metric called the signal-to-noise ratio (SNR) is
adopted for this purpose. Under a given compression bit rate, SNR can be used
to assess the rate-distortion performance in terms of reconstruction fidelity as
detailed below.

Regarding the SNR, it is defined as the energy ratio between the original image
and the noise, which is widely used for quality assessment. As SNR increases,
the reconstructed image quality improves. However, it only has an approximate
relationship with the human visual image quality because it compares the image
pixel by pixel without taking the global content represented into consideration
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[144]. The SNR is represented in decibels (dB), and its definition is given by

SNR = 10 log

M∑
i=1

N∑
j=1

K∑
k=1

X(i, j, k)2

M∑
i=1

N∑
j=1

K∑
k=1

(X (i, j, k)− Y (i, j, k))2
. (3.6)

Despite the fact that SNR is simple to calculate, it is not perfectly matched
to the perceived visual quality [145]. Therefore, another metric named as the
structural similarity (SSIM) [146] is also applied to measure the similarity between
two spectral bands. The formula for calculating SSIM between the original image
X and the reconstructed image Y for each band is given in Equation (3.7), and
the mean SSIM of all spectral bands will be used to compare the distortion,

SSIM (X, Y ) = (2µXµY + C1) (2σXY + C2)
(µX

2 + µY
2 + C1) (σX

2 + σY
2 + C2)

, (3.7)

where µ is the mean intensity, C1, C2 are two constants, σ is the standard deviation
and σXY can be estimated as

σXY = 1
MN − 1

MN∑
u=1

((Xu − µX) (Yu − µY )). (3.8)

To fully compare the similarity between original and compressed hyperspectral
images, not only spatial difference should be addressed, but also the spectral
integrity needs to be considered. Therefore, a spectral angle mapper (SAM)
between original and reconstructed images is shown to illustrate it. The spectral
angle of a single pixel is calculated as

α (i, j) = arccos


B∑

k=1
λX (i, j)λY (i, j)√

B∑
k=1

λX
2 (i, j)

√
B∑

k=1
λY

2 (i, j)

 , (3.9)

where λ represents the selected spectrum with B bands.
Although distortion measures shown above can give a general concept of how

the reconstruction is distorted, they have little or even no correlation to the
degradation in accuracy of subsequent image analysis [147]. Instead of looking at
the rate-distortion performance, quality-assured assessments, such as hyperspectral
image classification, can be adopted. Classification results from the original
image and the reconstructed image are collected and compared to show how the
compression and coding have affected the performance of subsequent data analysis.
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Since rate-distortion performance is not always a good indicator for the quality
of the reconstructed image [148], the quality-assured evaluation is particularly
important for quality assessment of hyperspectral image compression.

With the available ground truth, SVM is employed for pixel-wise classification
and it is applied to images compressed using 3D SPIHT and different 3D DCT tech-
niques, respectively. By comparing classification results from images reconstructed
by these techniques, a higher accuracy reflects better quality preserved from the
quality-assured assessment point of view. The accuracy measurement used here is
the overall accuracy (OA), which is the percentage of correctly classified labels
among all pixels.

For SVM-based multi-class classification, a publicly available library BSVM
[149] is adopted. In the experimental setup, 50% of pixel samples in each class are
used for training the SVM model and the remaining 50% of pixel samples are used
for testing the model. The spectral data are linearly scaled within the range from
0 to 1 since normalisation is required before applying SVM for classification. As
the most commonly used kernel function, the Gaussian radial basis function (RBF)
kernel is selected as it generates higher classification results than other kernels
[150]. Two important parameters, the regularisation parameter C and the width
parameter γ, are optimally determined by ten-fold cross-validation, where a ‘grid
search’ is conducted to look for optimal values of C and γ by trying exponentially
growing sequences. Finally, the optimised model can be obtained from SVM for
testing the classification performance, and relevant results are reported in Section
3.4.

3.3.3 Comparison of different quantisation matrices

As mentioned previously, the performance of the proposed SVM prediction-based
quantisation matrix is compared the other two quantisation matrices used for
3D DCT-based compression in this subsection. For simplicity, the quantisation
matrices using the multiplication and the sum of three coordinates are referred
to as Matrix 1 [131] and Matrix 2 [132], respectively. The quantisation matrix
in [133] with a fixed k is addressed as Matrix 3. Therefore, the proposed one is
named as SVM predicted Matrix 3.

In the proposed approach, the first five groups (40 bands) of Moffett Field
scene 1 data set are selected to train the SVM regression model. Optimal values
of k are calculated for each group, which are 3, 5, 5, 5.5 and 3.5 respectively.
The performance of the previously mentioned two quantisation matrices and
the proposed SVM prediction-based quantisation matrix is compared using all
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four data sets. Under the same compression bit rates from 0.1 to 1 bpppb, the
rate-distortion curves with SNR are illustrated in Figure 3.3. As can be seen,
thanks to the weighting of inter-band correlation, the SVM predicted Matrix 3
consistently outperforms Matrix 1 and Matrix 2 for all data sets, especially at
higher compression bit rates.

Fig. 3.3 Rate-distortion curves of different quantisation matrices for four experimental
data sets.

3.4 Results and discussion

Using the four experimental data sets as described in the previous section, results
from both subjective and objective assessments are analysed and compared in
detail as follows.

3.4.1 Results of the subjective assessment

For all data sets, the compression bit rate is set as 0.1 bpppb and the accumulated
difference images from 3D SPIHT and 3D DCT are compared in Figure 3.4,
along with the average value of the intensity difference showing above each figure.
Contrast of these difference images has been adjusted using histogram equalisation
in order to be seen more clearly. Corresponding original images could be found in
Figure 3.1 for reference.
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Fig. 3.4 Difference images between original and reconstructed images based on 3D
SPIHT and 3D DCT (bottom) at 0.1 bpppb. From left to right, the four columns
correspond to Moffett Field scene 1, Indian Pines, Salinas Valley and Pavia University,
respectively.

As can be seen, the difference image could show some details at 0.1 bpppb,
yet results from 3D SPIHT based on DWT seem to show more high-frequency
components than those from 3D DCT approach, which can be proved by higher
average difference values as well. Specifically, 3D SPIHT has over-smoothed
high-frequency details of the image, while 3D DCT helps to preserve such details
even under very low compression bit rates, though the block effect can be observed.
In addition, those slight block artefacts with 3D DCT approach are due to the
accumulated difference image, which can hardly be noticed in reconstructed
images.

When the compression bit rate increases, due to limited space, only the Moffett
Field scene 1 data set is compared. For other data sets, they are further evaluated
using the quality-assured measurement as discussed in Section 3.4.3. Under various
bit rates ranging within 0.2, 0.5, 0.8 and 1 bpppb, the contrast-adjusted difference
images are shown in Figure 3.5 for comparison. Again, it can be seen that the
improved 3D DCT approach produces better results at various bit rates. In
addition, block effect caused artefacts are degraded at higher bit rates, and more
detailed evaluation can be observed via quantitative results as given below.
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Fig. 3.5 Difference images of Moffett Field scene 1 based on 3D SPIHT (top) and 3D
DCT (bottom) algorithms at different compression bit rates of 0.2, 0.5, 0.8 and 1 bpppb
respectively (from left to right).

3.4.2 Results of the objective assessment

At a specific compression bit rate, the rate-distortion related metrics SNR and
SSIM are employed for the objective assessment. A better compression approach
is expected to produce higher values of SNR and SSIM in comparison with others.
With the compression bit rate varying between 0.02 and 1 bpppb, results from
the four experimental data sets are illustrated in Figure 3.6 and Figure 3.7 for
evaluation.

For the four data sets, the proposed 3D DCT approach consistently outperforms
the 3D SPIHT approach at different compression bit rates ranging from 0.02 to 1
bpppb, and an average gain of 5 – 8 dB in SNR is achieved. Regarding the SSIM,
which is closer to human perception, 3D DCT also gives a more similar structure
than 3D SPIHT.

Spectral angle maps for four data sets at compression bit rates of 0.1, 0.2, 0.5,
0.8 and 1 bpppb are shown in Figure 3.8 – 3.11, and an average spectral angle
value is shown above each map. In order to show the difference more clearly,
the contrast is adjusted for each data set and the colour bar is added below the
spectral angle maps. It is noticed that with increased compression bit rate, average
spectral angles of both 3D SPIHT and 3D DCT approach 0, while those of 3D
DCT are much lower, which indicates the spectral distortion from the 3D DCT
approach is less than that from the 3D SPIHT-based compression.
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Fig. 3.6 SNR (dB) comparison between 3D SPIHT and 3D DCT compression perfor-
mance for four experimental data sets.

Fig. 3.7 SSIM comparison between 3D SPIHT and 3D DCT compression performance
for four experimental data sets.
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Fig. 3.8 Spectral angle maps of Moffett Field scene 1 based on 3D SPIHT (top) and
3D DCT (bottom) algorithms at different bit rates of 0.1, 0.2, 0.5, 0.8 and 1 bpppb
respectively (from left to right).

Fig. 3.9 Spectral angle maps of Indian Pines based on 3D SPIHT (top) and 3D DCT
(bottom) algorithms at different bit rates of 0.1, 0.2, 0.5, 0.8 and 1 bpppb respectively
(from left to right).
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Fig. 3.10 Spectral angle maps of Salinas Valley based on 3D SPIHT (top) and 3D DCT
(bottom) algorithms at different bit rates of 0.1, 0.2, 0.5, 0.8 and 1 bpppb respectively
(from left to right).

Fig. 3.11 Spectral angle maps of Pavia University based on 3D SPIHT (top) and
3D DCT (bottom) algorithms at different bit rates of 0.1, 0.2, 0.5, 0.8 and 1 bpppb
respectively (from left to right).
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3.4.3 Results of the quality-assured classification assess-
ment

Since there is no ground truth available for the Moffett Field scene 1 data set,
only the other three data sets, Indian Pines, Salinas Valley and Pavia University,
are tested using the quality-assured assessment, where SVM-based classification
is employed to measure the quality of subsequent data analysis.

For the three test data sets, optimal parameters determined by grid search-
based cross-validation are summarised in Table 3.1. Using these optimal parame-
ters, classification accuracies achieved with original images are also presented. In
order to avoid error, the accuracy reported for each data set is an average one
from ten random tests, where 50% of pixel samples in each class are used for
training and the other 50% are used for testing.

After the optimal SVM model is learnt from the original image, it is applied
to the reconstructed image for testing. A higher accuracy here indicates a better
preservation of the image quality. Again, the test is carried out 10 times on
randomly selected pixel samples and the average accuracy is then determined.
For the three testing data sets at various compression bit rates, achieved overall
classification accuracies from different compression approaches are plotted in
Figure 3.12 for comparison.

Table 3.1 Optimal classification parameters and overall classification accuracies (%)
for original data sets Indian Pines, Salinas Valley and Pavia University.

Data set Parameters Classification accuracy (%)C γ
Indian Pines 27 2−1 93.68
Salinas Valley 29 2−1 99.02
Pavia University 210 2−2 98.56

As can be seen, classification accuracies for images reconstructed from the 3D
DCT-based compression methods are consistently higher than those for images
from the 3D SPIHT approach, especially at low compression bit rates from 0.02
to 0.5 bpppb. Besides, for 3D DCT-based compression methods, the proposed
SVM predicted Matrix 3 is superior to other two matrices, which agrees with the
results shown in Figure 3.3. When the bit rate becomes higher than 0.5 bpppb,
classification accuracies on reconstructed images from the proposed approach are
almost the same as those from original images. It means that the hypercube can
be compressed at a moderate bit rate without degrading the quality of following
data analysis. However, the compression has to be carried out using the proposed
3D DCT approach with the SVM prediction-based quantisation matrix rather
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Fig. 3.12 Comparison of classification accuracies for three reconstructed data sets
using 3D SPIHT and different 3D DCT-based compression algorithms with available
ground truth, including Indian Pines (top), Salinas Valley (middle) and Pavia University
(bottom).
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than other methods, as those generate much worse results in Indian Pines and
Pavia University even at a higher bit rate of 1 bpppb.

In comparison with the objective assessment, results from the quality-assured
assessment are more consistent with the subjective assessment. For the bit
rate lower than 0.2 bpppb, where reconstructed images are fuzzy, classification
accuracies for images compressed using both techniques are low. Also, for images
with poorer subjective evaluation, i.e. with 3D SPIHT compression approach,
the classification error is higher. Besides, it is worth noting that it seems the
block artefacts mentioned in Section 3.3 have little impact on the classification
performance.

3.4.4 Complexity

For transform domain-based compression using 3D DCT and 3D SPIHT ap-
proaches, the computational complexity contains two parts, i.e. the transform
itself and the following on sorting, quantisation and coding of coefficients. Ac-
cording to the analysis in [151], the computational complexity of 3D DWT is
estimated as

CDWT = O
(
M

2 LPB
24
7
(
1− 8−x

))
, (3.10)

where L is number of lines in the hyperspectral image, P is number of pixels per
line, B is number of bands, x is the number of levels in the wavelet decomposition,
and M is the length of the longest filter for the biorthogonal wavelet decomposition.
For the CDF 9/7 filter used in the experiments, M is equal to 9.

The complexity of the fast 2D DCT is given as O (N2 logN2) for an N ×N
block [152]. Similarly, the fast 3D DCT complexity will be O (N3 logN3) for
an N × N × N block and N is 8 in the experiments as mentioned previously.
Therefore, for an hyperspectral image with L lines, P pixels per line and B bands,
the computational complexity for 3D DCT is determined as

CDCT = O (3LPB logN) . (3.11)

Comparing Equation (3.10) and Equation (3.11), it is noticed that the com-
putational complexity of 3D DWT is five times more than that of 3D DCT. In
addition, the 3D DCT approach becomes more efficient in the second stage. This
is because the sorting order in the 3D DCT approach is fixed and can be easily
implemented using a lookup table for fast access and manipulation. On the con-
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Table 3.2 Comparison of encoding time (in seconds) for Moffett Field scene 1, Indian
Pines, Salinas valley and Pavia Univeristy data sets using 3D SPIHT and 3D DCT.

Data set Coding scheme Compression bit rates
0.2 bpppb 0.5 bpppb

Moffett Field scene 1 3D SPIHT 74.13 938.59
3D DCT 4.04 10.74

Indian Pines 3D SPIHT 75.74 1093.23
3D DCT 4.37 10.62

Salinas Valley 3D SPIHT 44.99 898.49
3D DCT 3.19 9.18

Pavia University 3D SPIHT 23.66 272.17
3D DCT 2.91 6.90

trary, the sorting order in the 3D SPIHT approach is determined by conditional
comparison, hence requiring much more additional operations.

For the four experimental data sets, running time for the encoding stage at
0.2 and 0.5 bpppb is summarised in Table 3.2 for comparison. These experiments
are carried out on a personal computer with an Intel Core i5-2400 CPU at 3.10
GHz. As can be seen, the proposed approach requires much less time than the 3D
SPIHT approach, generating compressed images with better quality.

3.5 Summary

An improved 3D DCT-based approach is proposed, which appears to be a low-cost
and quality-assured solution for lossy compression of the hyperspectral image.
With the quantisation matrix determined using SVM via optimal weighting of
inter-band correlation, the compression efficacy of the 3D DCT approach is further
improved. In general, it generates a lower compression rate while successfully
maintaining the quality of the image. The comparison between the proposed
method and 3D SPIHT approach has suggested that 3D DCT has great potential
to produce better compression performance as it preserves more high-frequency
details. Consequently, the classification accuracy of the proposed methods achieved
using SVM for land-cover analysis is also higher than that from 3D SPIHT as
well as 3D DCT using other quantisation matrices. Besides, the classification-
based quality-assured assessment is found to be consistent with visual inspections
and distortion-based measurements, while it is difficult to gain a straightforward
concept of image quality from the latter. Finally, it is suggested that, using the
proposed approach, lossy compression of the hyperspectral image at a bit rate
of no less than 0.8 bpppb is feasible as the degradation on image quality for
subsequent analysis is negligible.
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Chapter 4
Hyperspectral Image Feature Extraction by
Exploiting the Curvelet Domain Using Singu-
lar Spectrum Analysis

4.1 Introduction

As mentioned previously, hyperspectral imaging (HSI) plays an important role
in many areas. Among a number of HSI-based applications, one of the most
widely applied area is remote sensing, where researchers could develop diverse
algorithms for different tasks, e.g. target detection for military surveillance [3],
data compression for faster transmission [39, 153] and data classification for land-
cover analysis [52, 53, 64, 65, 71]. However, owing to the high spectral correlation
within the hyperspectral image, data redundancy is inevitable. Furthermore, for
remote sensing hyperspectral images, noise could be involved during the process
of data acquisition and transmission. Therefore, effective de-noising and feature
extraction of HSI data is crucial for remote sensing applications, in particular for
supervised classification problems as discussed in this chapter.

It is assumed that directly applying de-noising techniques on the original
image could probably remove fine features and noise at the same time, which
is undesirable for following applications. To avoid this drawback, the multi-
scale wavelet transform-based approaches are widely used for image de-noising,
where the image is decomposed into a set of wavelet coefficients at different
decomposition levels and noise could be removed from the low-energy channels in
the transformed domain. A well-known algorithm called soft thresholding in the
wavelet domain was proposed by Donoho in [154]. By removing small coefficients
under a certain threshold and shrinking large coefficients, most unwanted noise
could be discarded easily. For HSI data, Othman and Qian proposed a hybrid
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spatial-spectral derivative-domain wavelet shrinkage approach based on the soft
thresholding [155]. This algorithm works in the spectral derivative domain, in
which the noise level is elevated and the signal regularity is different from the
original domain of the hyperspectral image. Recently, Chen and Qian combined
feature extraction and de-noising together, leading to a more effective de-noising
method for HSI data using principal component analysis (PCA) and wavelet
shrinkage [156]. In this approach, PCA transform is performed on the HSI data
first and then a two-dimensional (2D) bivariate wavelet thresholding method is
used to remove noise for low-energy PCA channels.

In this chapter, it is also proposed to combine feature extraction and de-
noising approaches together for improving classification accuracies of remote
sensing hyperspectral images. This work is inspired by [157] where the curvelet
transform is applied to HSI data and the representation of noise-free signals in the
curvelet domain is predicted using multiple linear regression (MLR). Although
the wavelet transform has been widely applied for image de-noising, many studies
have concluded that the wavelet transform cannot provide a good representation
of anisotropic singularity [158–160]. In image processing, anisotropic singularities
represent some significant parts of the image content, such as curves, edges or
other details which help to interpret the image. For this reason, soft-thresholding
directional curvelet coefficients that match image edges could achieve better noise
reduction effect than the coefficients obtained in the wavelet domain. It has been
proven that the curvelet transform could represent piecewise linear contours on
multiple scales through few significant coefficients, leading to a better separation
between geometric details and background noise [161]. Therefore, the curvelet
transform is a good candidate for image de-noising and enhancement. After
the curvelet transform, the coefficients of two adjacent bands still maintain the
correlation similarity as the original hyperspectral image [162], which means
spectral processing techniques could as well be applied in the curvelet domain.
Feature extraction by MLR in [157] is achieved by estimating the noise-free band
using all pixels in adjacent bands at the same time, while more accurate spectral
feature extraction is proposed to be achieved by applying the above mentioned
SSA pixel-wisely in this chapter. Besides, the denoising performance in [157] is
assessed by adding noise to the original HSI data and comparing the mean squared
error (MSE) and the mean structural similarity (MSSIM) between the original
data and de-noised data, while the classification performance on the de-noised
image is left unknown. Hence, the curvelet transform instead of the wavelet
transform is adopted in the proposed approach and SSA is combined to extract
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effective spectral features in the curvelet domain in order to improve classification
accuracies for remote sensing hyperspectral images.

The chapter is organised as follows, the theory of the curvelet transform and
SSA is introduced in Section 4.2. The proposed de-noising and feature extraction
approach applied on HSI data is given in Section 4.3. Section 4.4 introduces
the experimental setup, including data sets, the classifier and tuning of optimal
parameters. Results and analysis are presented in Section 4.5. This chapter ends
with a summary section.

4.2 Background principles

In this section, the theory of the curvelet transform and SSA presented in [64,
159, 163–166], which will be used in following sections, is reviewed.

4.2.1 The curvelet transform

Compared with the wavelet transform, the curvelet transform not only provides
the multi-scale analysis on images, but also generates a better representation of
anisotropic singularity. It was first proposed by Candès and Donoho in 1999, and
their version is also called the first-generation curvelet transform [167]. However,
this transform is rather complicated and needs at least four steps to complete,
including a sub-band decomposition, smooth partitioning, re-normalisation and
ridgelet analysis, where details can be found in [167]. A few years later, a simpler
and faster version of the curvelet transform was developed, which is the second-
generation transform named as the fast discrete curvelet transform (FDCT) [164].
Two forms of FDCT with the same computational complexity were proposed by
Candès et al., based on the unequally-spaced fast Fourier transform (USFFT)
and the wrapping of specially selected Fourier samples, respectively. The curvelet
transform used in this chapter is the one based on USFFT.

Let us assume there is a pair of smooth, non-negative and real-valued windows
called the radial window W (r) and the angular window V (t), such that W is
supported on r ∈ (1/2, 2) and V is supported on t ∈ [−1, 1]. These windows will
always satisfy the admissibility conditions:

∞∑
j=−∞

W 2
(
2jr

)
= 1, r ∈ (3/4, 3/2) ; (4.1)
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∞∑
l=−∞

V 2 (t− l) = 1, t ∈ (−1/2, 1/2) . (4.2)

For each scale j, the frequency window Uj is defined in the Fourier domain by

Uj (r, θ) = 2−3j/4W
(
2−jr

)
V

(
2⌊j/2⌋θ

2π

)
, (4.3)

where ⌊j/2⌋ is the integer part of j/2. Consequently the support of Uj is defined
by the support of W and V , which will be a polar wedge.

A mother curvelet waveform ϕj (x) is defined related to Uj (ω) (Uj (r, θ) will be
abbreviated as Uj (ω)), where the Fourier transform of ϕj is equal to Uj . Thus, all
curvelets at scale 2−j can be acquired by rotations and translations of ϕj, where
the equispaced sequence of rotation angles are θl = 2π · 2−⌊j/2⌋ · l, with l = 0, 1, . . .
such that 0 ≤ θl < 2π, and the sequence of translation parameters are defined as
k = (k1, k2) ∈ Z2. Then, the curvelets at scale 2−j, orientation θl and position
x

(j,l)
k = R−1

θl

(
k1 · 2−j, k2 · 2−j/2

)
can be achieved, defined as

ϕj,l,k (x) = ϕj

(
Rθl

(
x− x(j,l)

k

))
, (4.4)

where Rθ is the rotation by θ in radians and R−1
θ is its inverse form,

Rθ =
 cos θ sin θ
− sin θ cos θ

 . (4.5)

A curvelet coefficient of an element f ∈ R2 could be achieved by the inner
product of f and a curvelet ϕj,l,k,

c (j, l, k) := ⟨f, ϕj,l,k⟩ =
∫
R2
f (x)ϕj,l,k (x)dx. (4.6)

Discussion in this chapter on the digital curvelet transforms will always be in
the frequency domain. Therefore, the curvelet coefficient could be re-expressed
in the frequency domain via the Plancherel’s theorem, where the integral of a
function’s squared modulus is equal to the integral of the squared modulus of its
frequency spectrum,

c (j, l, k) := 1
(2π)2

∫
f̂ (ω)ϕ̂j,l,k (ω)dω

= 1
(2π)2

∫
f̂ (ω)Uj (Rθl

ω) ei

〈
x

(j,l)
k

,ω

〉
dω.

(4.7)
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However, in practice, instead of using the polar window defined in Equation
(4.3), it is more often to use Cartesian equivalents. The Cartesian frequency
window is shown as follows:

Ũj (ω) := ψj (ω1)Vj (ω) , (4.8)

where ψ (ω1) =
√
φ(ω1/2)2 − φ(ω1)2 is defined as a bandpass profile in ψj (ω1) =

ψ (2−jω1) and Vj (ω) = V
(
2⌊j/2⌋ω2/ω1

)
with V still obeying Equation (4.2). By in-

troducing the set of equispaced slopes tan θl := l·2−⌊j/2⌋ with l = −2⌊j/2⌋, . . . , 2⌊j/2⌋−
1, for each θl ∈ [−π/4, π/4), the Cartesian window could be rewritten as:

Ũj,l (ω) := ψj (ω1)Vj (Sθl
ω) , (4.9)

where Sθ is the shear matrix defined as below,

Sθ :=
 1 0
− tan θ 1

 . (4.10)

Similarly, curvelets should be re-defined in Cartesian form:

ϕ̃j,l,k (x) = 23j/4ϕ̃j

(
ST

θl

(
x− S−T

θl
b
))
, (4.11)

with b :=
(
k1 · 2−j, k2 · 2−j/2

)
. Accordingly, the curvelet coefficient will be

c (j, l, k) =
∫
f̂ (Sθl

ω)Ũj (ω) ei⟨b,ω⟩dω. (4.12)

Assume the input Cartesian arrays for an n by n image are in the form of
f [t1, t2], 0 ≤ t1, t2 < n, a four-step implementation of FDCT via USFFT can be
obtained as follows:

A. 2D FFT

Apply two-dimensional (2D) fast Fourier transform (FFT) to input arrays and
obtain Fourier samples as:

f̂ [n1, n2] =
n−1∑

t1,t2=0
f [t1, t2]e−i2π(n1t1+n2t2)/n, (4.13)

with −n/2 ≤ n1, n2 < n/2.
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B. Interpolation

For each pair of scale and angle (j, l), Fourier samples f̂ [n1, n2] are interpolated
to get new values f̂ [n1, n2 − n1 tan θl] for n1, n2 ∈ Pj. Pj is a set below:

Pj = {(n1, n2) : n10 ≤ n1 ≤ n10 + L1,j, n20 ≤ n2 ≤ n20 + L2,j} , (4.14)

where L1,j and L2,j are the length and width of a rectangle and (n10, n20) is the
index of the pixel at the bottom-left of the rectangle.

C. Multiplication

Multiply the interpolated samples with the frequency window Ũj and obtain

f̃j,l [n1, n2] = f̂ [n1, n2 − n1 tan θl] Ũj [n1, n2] . (4.15)

D. Inverse 2D FFT

The last step is to apply inverse 2D FFT to f̃j,l to get the discrete curvelet
coefficients:

CD (i, j, k) =
∑

n1,n2∈Pj

f̂ [n1, n2 − n1 tan θl] Ũj [n1, n2] ei2π(k1n1/L1,j+k2n2/L2,j).

(4.16)

Of all four steps, the discrete curvelet transform via USFFT requiresO (n2 log n)
flops for computation and O (n2) for storage.

4.2.2 Singular spectrum analysis

As a well-established approach, SSA has been applied for time series analysis and
forecasting widely used in different areas, including mathematics, economics and
even biomedical engineering [168]. SSA shares the same theoretical foundations
as PCA. Both of them are able to decompose the original time series into a linear
combination of a new orthogonal basis, which includes eigenvectors generated from
the diagonalisation of the data correlation matrix [169]. The main capability of
SSA is that it can decompose the original series into some interpretable components,
such as the trend, oscillations and unstructured noise [64]. The SSA algorithm
consists of two stages including the decomposition and the reconstruction, and it
is briefly explained as follows.
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A. Decomposition

Assume that X is a non-zero one-dimensional (1D) series vector with length N , i.e.
X = (x1, x2, · · · , xN). Given a window length L (1 < L < N), the original series
X is mapped to K lagged vectors, Xi = (xi, xi+1, · · · , xi+L−1)T for i = 1, 2, · · · , K,
where K = N − L+ 1. The window length should be chosen properly depending
on different applications. Then the trajectory matrix is formed as:

T =
(

X1 X2 · · · XK

)
=


x1 x2 · · · xK

x2 x3 · · · xK+1
... ... . . . ...
xL xL+1 · · · xN

 . (4.17)

It could be noted from Equation (4.17) that T has equal elements xij on the
anti-diagonals where i+ j = constant. Therefore T is a Hankel matrix with size
of L×K.

The next step is to compute the singular value decomposition (SVD) of the
trajectory matrix T. First, eigenvalues of TTT are calculated and sorted in the
descending order, i.e. (λ1 ≥ λ2 ≥ . . . ≥ λd), where d is the rank of T. Let the
corresponding eigenvectors be (U1,U2, · · · ,Ud), and the result of SVD is shown
in Equation (4.18),

T = T1 + T2 + · · ·+ Td, (4.18)

where Ti =
√
λiUiVi

T (i = 1, 2, · · · , d) and it is called the elementary matrix
with rank 1, and Vi = TT Ui/

√
λi are often referred to the principal components

of the matrix T. Generally, the contribution of the elementary matrix Ti to the
trajectory matrix T is determined by the ratio of each eigenvalue and the sum of
all eigenvalues, as shown in Equation (4.19),

ηi = λi/
d∑

i=1
λi. (4.19)

B. Reconstruction

The first step of reconstruction is grouping, where the set of indices {1, 2, · · · , d}
is divided into m disjoint subsets I1, I2, · · · , Im. Assume I = {i1, i2, · · · , ip} is
one group in the disjoint subsets, the trajectory matrix corresponding to this
particular group I can be acquired as TI = Ti1 + Ti2 + · · ·+ Tip . Similarly, the
resultant trajectory matrices can be computed for each group and consequently
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Equation (4.18) is expanded to Equation (4.20):

T = TI1 + TI2 + · · ·+ TIm . (4.20)

The last step is diagonal averaging, which hankelises each grouped ma-
trix TI and then transforms it into a new series with length N . Assume
Y1 = (y1, y2, · · · , yN) is the transformed 1D series of TI1 , elements in Y1 can be
calculated as Equation (4.21),

yk =



1
k

k∑
j=1

y∗
j,k−j+1, 1 ≤ k < L∗

1
L∗

L∗∑
j=1

y∗
j,k−j+1, L∗ ≤ k ≤ K∗

1
N−k+1

N−K∗+1∑
j=k−K∗+1

y∗
j,k−j+1, K∗ < k ≤ N

, (4.21)

where L∗ = min (L,K), K∗ = max (L,K), y∗
j,k−j+1 refers to the elements in TI1 ,

y∗
j,k−j+1 = yj,k−j+1 if L < K and y∗

j,k−j+1 = yk−j+1,j if L ≥ K. Then, the initial
series X = (x1, x2, · · · , xN) is decomposed into m series, like shown in Equation
(4.22),

X = Y1 + Y2 + · · ·+ Ym. (4.22)

Therefore, the original series vector could be reconstructed by only using the
first or the first a few groups generated from its eigenvalues and the rest could
be discarded as noise. However, there is no general rule for grouping. Like the
window length L, one can choose the eigenvalue grouping (EVG) value depending
on their applications. If all decomposed components are involved in the EVG, the
reconstructed series will be the same as the original series.

4.3 The proposed approach: applying SSA in
the curvelet domain

As briefly mentioned in Section 4.1, the proposed de-noising and feature extraction
approach will be applied on hyperspectral images and the flowchart is shown in
Figure 4.1 for reference. Hyperspectral sensors have a relatively high spectral
resolution that could generate hundreds of observation channels [18]. The obtained
three-dimensional (3D) HSI data cube can be regarded as a stack of 2D images of
the same scene corresponding to different wavelengths [157], and the correlation
between each two adjacent bands is fairly high. The first step is to perform the
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curvelet transform on each band of the hyperspectral image and a few image
stacks are generated after the transform as shown in Figure 4.1. By applying the
curvelet trasnform on each band, the band correlation property can be preserved
so that SSA is able to exploit the spectral signature. The next step is to apply
SSA on the spectral dimension for each detail image stack for further feature
extraction and de-noising. After that, the de-noised detail images at each band
are gathered according to their original location, followed by the inverse curvelet
transform to get the de-noised hyperspectral image.

Fig. 4.1 Flowchart of the proposed methodology: applying SSA in the curvelet domain.
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In this chapter, a hyperspectral image with size of P ×Q×B is denoted as
I (p, q) = (I1 (p, q) , I2 (p, q) , . . . , IB (p, q)) ∈ RB (p = 1, 2, . . . , P , q = 1, 2, . . . , Q),
where R represents the set of real numbers with the pixel intensity Ib (p, q) at
all sensor channels b = 1, 2, . . . , B and P,Q are the spatial dimensions of the
hyperspectral image. The 2D curvelet transform via USFFT employed in this
chapter is completed using the toolbox CurveLab (version 2.1.2) [170]. Similar to
the wavelet transform, the curvelet transform could also decompose the image into a
course image and several detail images. Just like most image processing algorithms,
the curvelet transform requires the processed image to be a square whose dimension
is a power of two. If the size of the original image is not a power of two, pixels with
a value of zero are padded to the next larger power of two. Given the zero-padded
HSI data set I_pad (m,n) = (I_pad1 (m,n) , I_pad2 (m,n) , . . . , I_padB (m,n))
(m,n ∈ [1, N ]) consisting of B bands where each band has N2 pixels, the curvelet
transform is performed on a band image I_padb to obtain the curvelet coefficients
corresponding to that band cD

b :

cD
b = CT (I_padb) , (4.23)

where CT stands for the discrete curvelet transform operation explained in Sec-
tion 4.2.1. The decomposition results of the transform can be regarded as a
superposition in the form as follows:

cD
b = Cb,J +

J−1∑
j=1

Wb,j, (4.24)

where Cb,J is the coarse version of the original band image with low frequency
contents and Wb,j stands for the detail band image at scale 2−j containing high
frequency contents. With an N by N image, the default number of decomposition
scales is J = log2 (N) − 3 as set in the CurveLab toolbox. Take a band image
with size of 128 by 128 for instance, the number of decomposition scales J will
be four. According to the settings in the toolbox, there are eight orientations of
the curvelet coefficients in the second and third scales, starting from the top-left
wedge and increasing in a clockwise fashion, but for the coarsest and finest scales,
there is only one direction. Thus, Equation (4.24) is rewritten as below,

cD
b = Cb,J,1 +Wb,1,1 +

J−1∑
j=2

8∑
l=1

Wb,j,l, (4.25)
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where Wb,1,1 represents the finest scale with one orientation. The schematic
diagram of four decomposition scales corresponding to a 128 by 128 image is
shown in Figure 4.2. Then after applying the curvelet transform to all bands,
there will be a coarse image stack and 17 detail image stacks.

Fig. 4.2 Illustration of a 128 by 128 image with 4 decomposition scales, where (a) is
the first (finest) scale with 1 orientation, (b) is the second scale with 8 orientations,
(c) is the third scale with 8 orientations, and (d) is the fourth (coarsest) scale with 1
orientation.

As suggested by the commonly adopted wavelet de-noising rule, noise is
removed by thresholding only wavelet coefficients of detail sub-bands, while
keeping low frequency wavelet coefficients unchanged [171]. Therefore, in the
proposed approach, the coarse image stack stays unaltered as well. For each detail
image stack, SSA is applied to the spectral dimension for smoothing the spectral
profile, followed by the inverse curvelet transform to get the de-noised HSI data
cube. Given a detail image stack at scale 2−j and orientation l, which is denoted
as Wb,j,l (x, y) (b = 1, 2, . . . , B, x = 1, 2, . . . , X, y = 1, 2, . . . , Y ) containing X × Y
coefficients in each band, the spectral series vector for one pixel can be constructed
as Wj,l (x, y) = (W1,j,l (x, y) ,W2,j,l (x, y) , . . . ,WB,j,l (x, y)). Then, the smoothing
process on the spectral dimension by SSA could be achieved, denoted as below,

Yj,l (x, y) = SSAL,EV G (Wj,l (x, y)) , (4.26)

in which SSA is the operation of the singular spectrum analysis listed in Equa-
tion (4.18) – (4.22), L and EV G are the parameters of SSA, and Yj,l (x, y) =
(Y1,j,l (x, y) , Y2,j,l (x, y) , . . . , YB,j,l (x, y)) is the smoothed spectral feature in the
curvelet domain. After collecting all smoothed spectra for each detail stack,
the inverse discrete curvelet transform is performed on the smoothed curvelet
coefficients band by band and the de-noised HSI data cube is achieved, shown as
Equation (4.27),

I_db = ICT
Cb,J,1 + Yb,1,1 +

J−1∑
j=2

8∑
l=1

Yb,j,l

 , (4.27)
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where ICT stands for the inverse curvelet transform operation. The last step is to
crop the de-noised HSI cube to its original size. The pseudo code of the proposed
curvelet and SSA approach is summarised in Algorithm 1.

4.4 Data sets and experimental setup

In this section, the experimental data sets will be introduced as well as the choice
of the classification model and parameters.

Three publicly available and widely used HSI remote sensing data sets are
employed to evaluate experimental performance in this chapter, including the
airborner visible/infrared imaging spectrometer (AVIRIS) natural scenes Indian
Pines [10] and Salinas Valley [140], as well as the reflective optics system imaging
spectrometer (ROSIS) urban scene Pavia University [141].

Details of all data sets are explained in Appendix A. For Indian Pines, the
reduced 9 classes ground truth map is used. Additionally, due to atmospheric water
absorption, bands 104–108, 150–163 and 220 do not contain useful information and
are consequently removed to prevent from decreasing the classification accuracy,
resulting in a reduced data set with 200 spectral bands. Similarly, for Salinas
Valley, water absorption bands ([108–112], [154–167] and 224) are removed as
well, leaving 204 spectral bands. Pavia University is kept the same as described
in Appendix A.

The spatial area of all data sets is not in a square, hence, before applying
the curvelet transform, Indian Pines, Salinas Valley and Pavia University are
zero-padded to the size of 256× 256× 200, 512× 512× 204 and 1024× 1024×
103 respectively. Then, when the de-noising and feature extraction process is
finished, reconstructed images are cropped to their original sizes for the following
performance evaluation.

In the context of supervised classification, a variety of methods have been
developed for HSI data classification problems, including the famous artificial
neural networks [79–81], multinomial logistic regression [172], as well as the widely
used support vector machine (SVM) which shows its outstanding performance
in many papers [5, 18, 52, 86]. The properties of SVM make it an effective
tool for HSI data classification problems which are influenced by the Hughes
phenomenon. In this chapter, a publicly available SVM library called LIBSVM
[126] is adopted and the Gaussian radial basis function (RBF) kernel is chosen
as it outperforms other kernel functions for HSI data in terms of classification
accuracy [18]. Optimal values of the regularisation parameter C and the width
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Algorithm 1 The Curvelet and SSA algorithm
1: procedure CurveletSSA(I, L, EV G) ◃ P ×Q×B HSI data set I, SSA

window size L and grouping parameter EV G

2: if P ̸= Q and P , Q are not a power of two then
3: zero-pad each band of I to the next larger power
4: of two to get a new data cube I_pad with size of
5: N ×N ×B
6: else
7: I_pad← I
8: end if

9: for b← 1, B do
10: apply curvelet transform to I_padb to get the
11: coarse image Cb,J and detail images Wb,j,l

12: end for

13: for all detail image stacks do
14: for x← 1, X do
15: for y ← 1, Y do
16: Wj,l (x, y)← ((W1,j,l (x, y) , . . . ,WB,j,l (x, y))
17: Yj,l (x, y)← SSA (Wj,l (x, y) , L, EV G)
18: end for
19: end for
20: end for

21: substitute original detail curvelet coefficients with
22: SSA-processed detail coefficients

23: for b← 1, B do
24: apply inverse curvelet transform to Cb,J and
25: Yb,j,l to get the denoised band image I_db

26: end for

27: crop I_db to the original size P ×Q×B
28: end procedure
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parameter γ of the Gaussian RBF kernel are tuned with ten-fold cross-validation
of the exponentially increasing sequence {2−10, 2−9, . . . , 210} on training samples
for both parameters.

4.5 Results and discussion

In this section, the classification results based on SVM for the three de-noised
hyperspectral data sets discussed in the previous section are revealed. The
classification performance is evaluated by the overall accuracy (OA) and the
average accuracy (AA), where OA refers to the percentage of all pixels that are
correctly labelled and AA stands for the average percentage of correctly labelled
pixels for each class. Considering for C classes the number of correctly classified
pixels for each class is Ni and the total number of pixels for each class is Ti, the
OA and AA can be mathematically defined as Equation (4.28) and Equation
(4.29),

OA =

C∑
i=1

Ni

C∑
i=1

Ti

, (4.28)

AA = 1
C

C∑
i=1

Ni

Ti

. (4.29)

Since the proposed methodology is inspired by the feature extraction approach
simply using SSA [64] and the de-noised approach in [157] which uses MLR
applied in the curvelet domain, it is compared with them in subsection 4.5.1.
Besides, the curvelet transform is similar to the wavelet transform as a multi-
scale geometric analysis (MGA). Therefore, SSA and MLR are also applied in
the wavelet domain for comparison in the same subsection. For the wavelet
transform-based approaches, the hyperspectral data are also zero-padded and the
number of decomposition scales is set the same as the curvelet transform, where
the Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet is adopted. For convenience,
the proposed approach is denoted as CT-SSA and other comparison approaches
are named as SSA, CT-MLR (MLR applied in the curvelet domain), WT-MLR
(MLR applied in the wavelet domain) and WT-SSA (SSA applied in the wavelet
domain). The computational cost required for these methods is also discussed in
this part.
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Then, the CT-SSA method as well as its extended version CT-SSA-PCA, are
further compared with some state-of-the-art spectral feature extraction techniques
in subsection 4.5.2, including PCA, LDA, NMF and ensmeble EMD (EEMD) [69],
to show the efficacy of the CT-SSA method.

The proposed approach only takes into account the spectral information of the
hyperspectral image, while ignoring the important spatial information. For this
reason, in subsection 4.5.3, a simple yet powerful spatial post-processing technique
is applied to the classified ground truth map and it is compared with several
recent spectral-spatial classification methods listed in [173].

4.5.1 Comparison with inspirational approaches

The SSA-based feature extraction approach mentioned in [64] has two parameters,
which are the window size L and the grouping parameter EVG. By trial and error,
optimal settings for L and EVG are set as 5 and the first component for both
Indian Pines and Salinas Valley. For Pavia University, L is set as 4 and EVG is
still set as the first component. Same settings of SSA are used for CT-SSA and
WT-SSA as well.

For the Indian Pines data set, in each class out of 9 classes, 10% of pixels are
randomly chosen into the training set with the rest allocated to the test set. As
Salinas Valley is a high resolution HSI data set, spectra with this scene are more
separable than those with Indian Pines. Therefore, a lower percentage of samples
in each class (5%) is used for training the classification model of SVM to give a
more interpretable result. A recent publication proposed to use a fixed number
(200) from each class in the Pavia University data set as training samples [174],
which account for 4% of the whole labelled pixels. Therefore, 4% of pixels are
also randomly chosen from Pavia University for training SVM in the following
experiments. As shown in Figure 4.3 – 4.5, compared with those inspirational
methods, the CT-SSA method always presents better de-noising and feature
extraction performance in terms of highest overall classification accuracies.

Additionally, the capability of the proposed CT-SSA method in removing noise
is compared in particular. One noisy band is taken from each data set and the
same band after being processed by CT-SSA is compared visually in Figure 4.6
– 4.8. It can be observed that the CT-SSA method works for both high-noise
(Figure 4.6 and Figure 4.7) and low-noise (Figure 4.8) cases, where the noise in
the corrupted band is effectively suppressed and local details of the original image
can be kept simultaneously.
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Fig. 4.3 Classification results (overall accuracy in percentage) of Indian Pines obtained
on (a) original data, (b) SSA processed data, (c) CT-MLR processed data, (d) WT-MLR
processed data, (e) WT-SSA processed data, and (f) CT-SSA processed data.

In order to avoid errors and to get a more consistent result, ten repeated
experiments are carried out based on randomly chosen training and test samples,
and average classification accuracies are calculated, with numerical results shown
in Table 4.1 – 4.3 for three data sets. It can be noticed that compared with the
original image, OA using the CT-SSA method is increased with a percentage of
10.02%, 4.44% and 0.89% respectively for three experimental data sets, achieving
an impressive improvement over other methods. For both Indian Pines and Salinas
Valley, in most cases, the proposed method presents the highest classification
accuracy, especially in class 15 of Salinas Valley, the accuracy is improved by over
20% compared with the raw image. Although it was found that the classification
of hyperspectral urban data is a challenge problem without combining spatial
and spectral information together [175], both AA and OA are slightly improved
for Pavia University using the proposed spectral processing method CT-SSA. In
comparison with CT-MLR, WT-MLR yields slightly worse results in both AA and
OA. Same situations occur for WT-SSA and CT-SSA, where the latter presents
slightly higher AA and OA than the former. It proves that the curvelet transform
does have advantages over the wavelet transform for extracting geometric details
in some ways, but the performance of the curvelet transform is largely dependent
on the data set. Despite that CT-SSA is inspired by CT-MLR, SSA is applied to
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Fig. 4.4 Classification results (overall accuracy in percentage) of Salinas Valley obtained
on (a) original data, (b) SSA processed data, (c) CT-MLR processed data, (d) WT-MLR
processed data, (e) WT-SSA processed data, and (f) CT-SSA processed data.
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Fig. 4.5 Classification results (overall accuracy in percentage) of Pavia University
obtained on (a) original data, (b) SSA processed data, (c) CT-MLR processed data, (d)
WT-MLR processed data, (e) WT-SSA processed data, and (f) CT-SSA processed data.
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Fig. 4.6 Band 199 of Indian Pines in (a) original data and (b) CT-SSA processed data.

Fig. 4.7 Band 2 of Salinas Valley in (a) original data and (b) CT-SSA processed data.
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Fig. 4.8 Band 1 of Pavia University in (a) original data and (b) CT-SSA processed
data.

detail curvelet coefficients pixel-wisely while MLR is applied to each detail image
stack all at once, which is the reason why CT-SSA could extract more effective
and detailed features for improving the classification accuracy.

For an N ×N block, the computational complexity for the curvelet transform
is given as O (N2 logN) [164], while the computation of the wavelet transform
requires O

(
3
2 (mH +mL)

(
1− 1

4J

)
N2
)

flops for a block with the same size, where
J is the decomposition level and mH ,mL are the lengths of the filter [176]. With
the CDF 9/7 filter used in the experiments, the lengths of the filter are both
9, i.e. mH = mL = 9. Therefore, when J is higher than 2, the computational
complexity for the wavelet transform can be approximated as O (27N2), which
is much higher than that of the curvelet transform. Besides, it should be noted
that the processing time for MLR and SSA is largely dependent on the number of
detail coefficient stacks and the number of total pixels in those stacks. However,
it is not a problem for SSA, as fast implementation of SSA [65] has been proposed
without degrading the feature extraction performance. For the Indian Pines data
set, the computing time of the proposed CT-SSA method (using the original SSA
implementation) is about 5 min on a personal computer with an Intel Core i5-2400
CPU at 3.10 GHz using Matlab 2014a (Mathworks). Hence, it is reasonable to
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believe that with fully optimised CurveLab toolbox and the fast implementation
of SSA, the time cost of the proposed method should be much lower.

4.5.2 Comparison with other state-of-the-art spectral fea-
ture extraction techniques

Although the curvelet transform is applied on the spatial domain of the hyperspec-
tral image, the dominating part of the proposed de-noising and feature extraction
method, SSA, is applied on the spectral dimension. As a matter of fact, the pro-
posed CT-SSA approach actually belongs to the 1D spectral processing technique
for hyperspectral images. Therefore, a few state-of-the-art 1D spectral feature
extraction and dimensionality reduction techniques, including PCA, LDA, NMF,
are compared with the proposed approach for further performance assessment.
The NMF algorithm is realised using the NMF Matlab toolbox [177]. Additionally,
as an upgraded version of EMD, EEMD is also included for comparison as it
overcomes the drawback of EMD and therefore it outperforms EMD [69]. EEMD
is achieved by sifting an ensemble of white noise-added signal and it generates a
series of intrinsic mode functions (IMFs), where the sum of them represents the
processed signal. For this part of the experiment, the fast EEMD Matlab toolbox
[66] is adopted. The performance of PCA on the proposed approach for further
feature extraction is also included for comparison.

The number of resulting features using PCA on both original data and CT-SSA
processed data is tested within 5 – 50 in a step of 5 [71], while the dimensions of
extracted features are tested from 2 to 10 for LDA and NMF. Best results with
the highest classification accuracy are chosen for comparison. With regard to
EEMD, it is suggested the input white noise level ε0 should be in the range of 0.1
– 0.4 and the number of ensemble NE should be the order of 100 [68]. Therefore,
same parameters are kept as [69], where ε0 = 0.2, NE = 200 and the number of
IMFs is 7. Experiments are repeated ten times as well and comparison results are
given in Table 4.4.

It can be seen that those dimensionality reduction techniques could only give
similar results compared with original data sets, even though they could speed up
the classification process. As given in [64], with 10% training rate of Indian Pines,
the highest classification OA achieved by EMD was 75.49%. Although EEMD
has made an improvement of over 8% on this data set, it is still incomparable
to the proposed CT-SSA approach. For Indian Pines and Salinas Valley, adding
an extra PCA step leads to further improvement in the classification accuracy
while reducing the classification time with less number of features. Even though
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Table 4.4 Mean overall accuracy (%) and the corresponding standard deviation of
ten repeated experiments on original data sets, SSA, CT-MLR, WT-MLR, WT-SSA,
CT-SSA, CT-SSA-PCA and some state-of-the-art spectral feature extraction techniques
processed data sets, with dimensionality of features shown in parentheses.

Method
Data set

Indian Pines Salinas Valley Pavia University
(Training = 10%) (Training = 5%) (Training = 4%)

Original 84.11 ± 0.87 (200) 92.91 ± 0.12 (204) 92.96 ± 0.32 (103)
SSA 87.54 ± 0.83 (200) 93.49 ± 0.25 (204) 92.77 ± 0.37 (103)
CT-MLR 91.93 ± 0.50 (200) 95.18 ± 0.33 (204) 93.34 ± 0.20 (103)
WT-MLR 91.76 ± 0.44 (200) 95.11 ± 0.21 (204) 93.05 ± 0.30 (103)
WT-SSA 93.87 ± 0.38 (200) 96.08 ± 0.34 (204) 93.67 ± 0.21 (103)
CT-SSA 94.13 ± 0.28 (200) 97.35 ± 0.16 (204) 93.85 ± 0.28 (103)
CT-SSA-PCA 95.75 ± 0.46 (50) 98.33 ± 0.15 (50) 91.78 ± 0.40 (10)
PCA [53] 82.65 ± 0.53 (50) 92.78 ± 0.17 (40) 92.93 ± 0.39 (50)
LDA [178] 87.03 ± 0.43 (9) 91.62 ± 0.19 (10) 92.06 ± 0.53 (10)
NMF [177] 77.43 ± 1.15 (10) 92.64 ± 0.31 (10) 91.71 ± 0.25 (10)
EEMD [66] 83.78 ± 0.84 (200) 93.20 ± 0.09 (204) 93.22 ± 0.20 (103)

the extra step of PCA has limited performance on the Pavia University data set,
the proposed CT-SSA method still outperforms other spectral feature extraction
techniques.

4.5.3 Comparison with recent spectral-spatial classifica-
tion methods

For the majority of supervised classifiers, the spectral feature-based classification
chain is adopted. However, they are not able to incorporate spatial dependencies
presented in the original scene into the classification process [179]. Several recent
publications have demonstrated that the integration of spectral and spatial infor-
mation could be beneficial to hyperspectral image classification problems, where
some spectral-spatial classification methods, including the extended morphological
profile (EMP) [180], the logistic regression and multi-level logistic (LMLL) [181],
the edge-preserving filter (EPF) [182], image fusion and recursive filter (IFRF)
[183] and the intrinsic image decomposition (IID) [173], have been proven to
be superior to the spectral feature-based classification method. Therefore, a
post-processing step is added to the proposed CT-SSA approach for increasing the
spatial consistency in the classification result, where a T × T spatial window is
applied around each central pixel in the classification map and the final classified
label is decided in favour of the class which appears most in the window. The
window shape could be designed conforming to different scenes, but to make it
simple, the square window is used in this chapter.
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As can be noticed in ground truth maps in Figure A.2 – A.4, Indian Pines has
a smaller spatial area for some classes compared with Salinas Valley and Pavia
University. Therefore, the spatial post-processing (SPP) window size T is chosen
as 5 for Indian Pines, 9 for Salinas Valley and 9 for Pavia University, respectively.
Results using EMP, LMLL, EPF, IFRF and IID are cited directly from [173].
Since only 9 classes in Indian Pines are involved in the experiment of the proposed
method, the rest 7 classes from their results are eliminated accordingly and AA
and OA are recalculated as well. For Salinas Valley, they used 2% in each class
for training. Therefore, the experiment under the same training rate has been
re-performed with other parameters unchanged. Numerical results are shown in
Table 4.5 – 4.7, where the proposed method with spatial post-processing (CT-
SSA-SPP) gives relatively higher results than other spectral-spatial classification
methods in most cases.

Table 4.5 Comparison of class-by-class, average and overall accuracies (%) of the CT-
SSA-SPP method and recent spectral-spatial classification methods, with 10% training
rate on the Indian Pines data set.

Class
Method

EMP LMLL EPF IFRF IID CT-SSA-SPP
[180] [181] [182] [183] [173] (T = 5)

2 86.63 90.64 95.03 95.41 96.90 96.18
3 89.74 87.23 95.68 96.07 97.20 99.63
5 93.23 96.39 98.39 98.07 97.88 97.08
6 97.50 99.90 98.90 98.62 99.40 100
8 100 100 99.49 100 100 100

10 86.18 93.49 82.09 95.26 95.49 95.45
11 93.82 89.75 95.93 98.42 98.03 99.38
12 87.09 98.60 92.81 96.72 97.23 97.32
14 99.59 92.45 99.11 99.75 99.76 99.96

AA 92.64 94.27 95.27 97.59 97.99 98.33
OA 92.45 92.57 95.07 97.56 97.89 98.40

4.6 Summary

In this chapter, two powerful tools, SSA and the curvelet transform, are combined
for hyperspectral image de-noising and feature extraction. By applying SSA
in the curvelet domain, noise can be smoothed from the decomposed signals,
resulting in more effective feature extraction. Inspired by applying MLR in the
curvelet domain and another method of solely applying SSA on the hyperspectral
image, the proposed method takes advantages of those approaches. Using SVM
on three publicly available data sets for classification performance assessment, i.e.
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Table 4.6 Comparison of class-by-class, average and overall accuracies (%) of the CT-
SSA-SPP method and recent spectral-spatial classification methods, with 2% training
rate on the Salinas Valley data set.

Class
Method

EMP LMLL EPF IFRF IID CT-SSA-SPP
[180] [181] [182] [183] [173] (T = 9)

1 99.93 99.83 100 99.99 100 100
2 99.60 99.96 100 100 99.97 100
3 96.75 99.80 98.36 99.89 99.85 100
4 98.25 99.22 97.17 97.32 97.80 99.93
5 99.14 98.75 99.96 99.94 99.96 99.73
6 99.95 99.66 99.98 100 99.98 100
7 99.87 99.55 99.98 99.70 99.90 100
8 94.79 85.97 91.78 99.34 99.07 98.15
9 99.41 99.69 99.65 99.99 99.86 99.92

10 95.10 94.68 93.88 99.81 98.80 99.69
11 96.39 98.47 98.80 99.26 99.98 100
12 98.79 100 99.99 99.90 99.99 99.99
13 98.87 98.48 100 99.28 100 100
14 97.06 98.60 99.19 97.96 97.51 97.15
15 86.67 78.78 85.50 97.07 99.52 99.04
16 97.31 99.35 99.99 99.95 97.92 99.99

AA 97.37 96.92 97.76 99.34 99.38 99.60
OA 96.11 93.55 95.59 99.27 99.45 99.39

Table 4.7 Comparison of class-by-class, average and overall accuracies (%) of the CT-
SSA-SPP method and recent spectral-spatial classification methods, with 4% training
rate on the Pavia University data set.

Class
Method

EMP LMLL EPF IFRF IID CT-SSA-SPP
[180] [181] [182] [183] [173] (T = 9)

1 98.61 94.36 98.07 97.25 99.62 100
2 98.84 97.79 98.38 99.68 99.88 100
3 95.09 88.10 98.39 95.53 98.92 98.57
4 96.64 98.05 98.45 96.52 97.54 95.91
5 98.00 99.83 99.51 99.90 99.89 100
6 88.33 99.74 95.35 98.72 99.91 99.97
7 93.51 98.14 97.57 96.69 99.59 100
8 97.48 93.77 93.72 94.40 98.66 97.29
9 99.91 99.92 98.23 92.54 94.84 90.37

AA 96.27 96.63 97.63 96.80 98.76 98.01
OA 96.82 96.81 97.98 98.07 99.41 99.19
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Indian Pines, Salinas Valley and Pavia University, the proposed CT-SSA method
significantly improves OA by as much as 10% compared with the result of the
original Indian Pines data set. In addition, noise could be effectively removed by
checking the band image visually. Compared with the inspirational approaches and
some state-of-the-art spectral feature extraction techniques, the proposed method
always stands out with the highest classification accuracy. Furthermore, it is
noticed that with the spatial post-processing step, another 4% improvement could
be added to the OA of Indian Pines, while for Salinas Valley and Pavia University,
classification results can be even improved to nearly 100%. It is worth noting
that by adding the simple spatial post-processing step, the performance of the
proposed de-noising and feature extraction method in terms of the classification
accuracy is either comparable with or even higher than some recent spectral-spatial
classification methods.
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Chapter 5
Hyperspectral Image Classification Using Sparse
Representation of Features Extracted via Bi-
lateral Filtering

5.1 Introduction

As discussed in Chapter 4, hyperspectral image classification has been a relatively
active topic in remote sensing. In order to achieve high classification accuracy,
sufficient training samples are needed to cope with the curse of dimensionality, i.e.,
the Hughes phenomenon [18]. However, sometimes this requirement is infeasible
for classes with a limited number of samples. Besides, due to the noise present in
the hyperspectral image, the same material may have different spectral profiles,
whereas different categories may share similar spectral signatures [16]. The
aforementioned problems can significantly influence the classification result. Much
effort has been put into overcoming these problems by extracting more effective
features from spatial/spectral domain and constructing suitable classification
models for raw/extracted features as indicated in Chapter 2.

In recent years, sparse representation has received considerable attention in
fields of signal/image processing, computer vision and pattern recognition. As first
proposed in [184] for face recognition, the test image can be sufficiently represented
by samples from the same category via sparse representation. Sparse representation
is an indispensable prerequisite of the compressed sensing (CS) framework [185–
187], which demonstrates that most natural signals can be precisely reconstructed
by only a few measured values. Thus, the characteristics of sparse representation
make it an outstanding tool for image classification.

In [188], sparse representation classification (SRC) was applied for hyperspec-
tral image classification by Chen et al. and they have proposed a joint sparse
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representation classification (JSRC) method by assuming that all pixels around
the central test pixel in the neighbourhood window shares a common sparsity
pattern. Therefore, the hyperspectral image classification problem can be solved
by a joint sparsity model (JSM) [189, 190] and the classification accuracy is
greatly enhanced compared with the pixel-wise SRC method since the spatial
information is incorporated as well. However, in the JSRC method, all pixels
around the central test pixel in the neighbourhood window are considered equally
when constructing the JSM, which is inappropriate for an area composed of more
than one class. To address this problem, Zhang et al. [191] proposed a nonlocal
weighted joint sparse representation classification (NLW-JSRC) method to deter-
mine the weighted contribution of neighbouring pixels. In the NLW-JSRC method,
the weight of each neighbouring pixel is calculated by comparing the structural
similarity between an image patch around that pixel and the patch around the
central test pixel. In this way, both the spectral information between two pixels
and the geometrical details between two nonlocal image patches are compared,
leading to improved classification accuracy. Besides, sparse representation has
also been applied successfully for target detection in hyperspectral images, where
an adaptive spatial support was proposed for improved performance in [3].

Another family of frameworks to solve those classification difficulties is based
on the post-processing of preliminary classification results. In both [182] and [192],
authors proposed to use the edge-preserving filter for smoothing the pixel-wise
classification map under the smoothness assumption. Results showed that the
filtering-based post-processing could improve the classification accuracy signifi-
cantly.

Edge-preserving filtering is a popular topic in the area of image processing.
As a representative of the edge-preserving filter family, bilateral filter has been
successfully applied for hyperspectral image analysis, such as hyperspectral im-
age visualisation [193]. In [194], a vector bilateral filtering-based approach was
proposed for hyperspectral image enhancement. However, its application on
hyperspectral image feature extraction is rare. In this chapter, a spectral-spatial
classification framework based on bilateral filter and sparse representation is
proposed. It is believed that only with the contextual information is insufficient in
the JSRC method since there is no spatial/spectral feature extraction prior to the
classification. Therefore, in the proposed method, the spatial feature is extracted
using a joint bilateral filter with the first principal component as the guidance
image. With the first principal component as the guidance image, the quality of
extracted features can be effectively enhanced in the low-contrast spectral bands.

5.1 Introduction 74



For the classification, although it is claimed that NLW-JSRC could achieve higher
classification accuracies than JSRC [191], the choice of the Gaussian kernel and the
computational complexity could be a problem. Hence, a spectral similarity-based
JSRC (SS-JSRC) method, which utilises the statistics within a neighbourhood
window to exclude irrelevant pixels, is proposed as the improved classifier.

The layout of this chapter is as follows. The background principles of bilateral
filter and SRC are discussed in Section 5.2. Section 5.3 explains the proposed
feature extraction and classification framework, followed by the experimental data
sets and setup in Section 5.4. Classification results on two hyperspectral images
are given in Section 5.5, and conclusion is drawn in Section 5.6.

5.2 Background principles

Bilateral filtering and SRC are two basic concepts used in the proposed classifica-
tion framework. In this section, background principles are briefly introduced as
below.

5.2.1 Bilateral filtering

The bilateral filtering proposed by Tomasi and Manduchi [195] in 1998 is a
non-linear filtering technique that combines domain filtering and range filtering
techniques together to smooth images while preserving edges. This filtering
technique replaces the pixel value at one location with a weighted sum of nearby
pixel intensities based on their geometric closeness and their photometric similarity.
Given an input image f (x), using a continuous representation notation as in [195],
the bilateral-filtered image h (x) is achieved mathematically as follows:

h (x) = 1
k (x)

∫ ∞

−∞
f (ξ) c (ξ, x) s (f (ξ) , f (x)) dξ, (5.1)

where c (ξ, x) is a function that measures the geometric closeness (in the domain)
between the neighbourhood centre x and a neighbouring pixel ξ. The function
s (f (ξ) , f (x)) calculates the photometric similarity (in the range) between x and
ξ and the normalisation factor is given by:

k (x) =
∫ ∞

−∞
c (ξ, x) s (f (ξ) , f (x)) dξ. (5.2)

To make it simple, both the closeness function c (ξ, x) and the similarity func-
tion s (f (ξ) , f (x)) in a bilateral filter can be represented by Gaussian functions
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[195]. For image processing, it is more common to use discrete representations.
Thus, the discrete version of bilateral filtering for an input image I at the location
(i, j) can be expressed as [193]:

IBF (i, j) = 1
k (i, j)

∑
(p,q)∈w

Gσd
(i− p, j − q)Gσr (I (i, j)− I (p, q)) I (p, q), (5.3)

with the normalisation factor

k (i, j) =
∑

(p,q)∈w

Gσd
(i− p, j − q)Gσr (I (i, j)− I (p, q)), (5.4)

where (p, q) represents the location of pixels in the (2σd + 1) × (2σd + 1) lo-
cal window w around pixel at (i, j). The kernels for domain and range filter-
ing are defined as Gσd

(i− p, j − q) = exp
(
−
(
(i− p)2 + (j − q)2

)
/2σd

2
)

and
Gσr (I (i, j)− I (p, q)) = exp

(
−(I (i, j)− I (p, q))2/2σr

2
)
. The value of σd deter-

mines the neighbourhood window under consideration and the value of σr defines
the weight of contribution from neighbouring pixels [195].

5.2.2 Sparse representation classification

The task of supervised classification is to determine the correct category of test
samples based on a set of labelled training samples from M distinct classes
[184, 188]. Assume there are Nm training samples from the mth class in a B-
dimensional hyperspectral data cube, denoted as Am =

[
am

1 am
2 · · · am

Nm

]
∈

RB×Nm , then any test sample x ∈ RB from the same class could approximately
be represented by a linear combination of the training samples associated with
class m:

x = αm
1 am

1 + αm
2 am

2 + · · ·+ αm
Nm

am
Nm

= Amαm, (5.5)

where αm is an Nm-dimensional coefficient vector with only a few non-zero entries
in the sparsity model. Since normally the label for a test sample is unknown, a
new matrix A should be defined by concatenating all training samples from all
classes:

A =
[

A1 A2 · · · AM
]
∈ RB×N , (5.6)
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where N = ∑M
m=1 Nm. Then, the test sample x can be approximated as:

x = A1α1 + A2α2 + · · ·+ AMαM = Aα, (5.7)

where α is an N -dimensional sparse coefficient vector with most of entries as zero.
The task of hyperspectral image SRC is to determine the sparse vector α and

to assign a label to the test sample according to α. The sparse solution of α can
be obtained by solving the following optimisation problem:

α̂ = arg min ∥α∥0 subject to Aα = x, (5.8)

where ∥·∥0 is the ℓ0-norm representing the number of non-zero entries in a vector.
The optimisation problem in Equation (5.8) can be also modified as minimising
the reconstruction error with a pre-defined sparsity level K0 [188]:

α̂ = arg min ∥Aα− x∥2 subject to ∥α∥0 ≤ K0. (5.9)

The problem in Equation (5.9) is a NP-hard problem that could be solved by
greedy pursuit algorithms, such as orthogonal matching pursuit (OMP) [196] or
subspace pursuit (SP) [197]. In this chapter, it is solved using OMP where the
support set is augmented by one index for each iteration until K0 non-zero entries
are selected, and the computational complexity is in the order of O (BNK0). With
the obtained sparse vector α, the label of x could be assigned to the class with
lowest residue:

Class (x) = arg min
m=1,2,...,M

rm (x) , (5.10)

where the residue rm (m = 1, 2, . . . ,M) is calculated for each class separately as
follows:

rm (x) = ∥x−Amα̂m∥2. (5.11)

For hyperspectral images, the spectral profiles of neighbouring pixels in a
small window are usually highly correlated. By assuming pixels within the
neighbourhood window lie in a common subspace, Chen et al. [188] proposed the
JSRC method for hyperspectral images. Consider that the investigated test sample
x1 is located at the centre of the neighbourhood window, the sample matrix for
the window with T pixels can be modelled as X =

[
x1 x2 · · · xT

]
∈ RB×T .
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Applying the joint sparsity model, the sample matrix X can be represented by:

X =
[

Aα1 Aα2 · · · AαT

]
= A

[
α1 α2 · · · αT

]
= AS, (5.12)

where S ∈ RN×T is the set of sparse coefficient vectors for all pixels within the
neighbourhood window. The sparsity support for each pixel is the same, but the
associated coefficients are different. Similarly, the task of JSRC is to obtain the
sparse matrix S by solving the following optimisation problem:

Ŝ = arg min ∥S∥row,0 subject to AS=X. (5.13)

The symbol ∥·∥row,0 stands for the number of non-zero rows in the denoted matrix.
In the same way as Equation (5.9), the optimisation problem in Equation (5.13)
can be rewritten as:

Ŝ = arg min ∥AS−X∥F subject to ∥S∥row,0 ≤ K0, (5.14)

where ∥·∥F is the Frobenius norm. In this chapter, a greedy pursuit algorithm
named as simultaneous OMP (SOMP) [189] is used to solve the NP-hard problem
in Equation (5.14). Given the solved sparse matrix S, the investigated test pixel
centred at the neighbourhood window can be assigned to the class with the
smallest residue, as shown below:

Class (x1) = arg min
m=1,2,...,M

rm (X) = arg min
m=1,2,...,M

∥∥∥X−AmŜm
∥∥∥

F
. (5.15)

5.3 The proposed approach

The spectral-spatial classification framework proposed in this chapter combines
feature extraction and classification processes together. The effective feature
extraction step is achieved by joint bilateral filtering with the first principal
component as the guidance image, and the filtered image is classified using the
SS-JSRC method. In the following part, details about the proposed classification
framework is revealed.

For basic bilateral filtering introduced in Section 5.2.1, the Gaussian kernel
for range filtering is calculated based on the image intensities of a small patch.
If the pixel at (p, q) in the image patch has a similar intensity with the ’to-be-
smoothed’ pixel at (i, j), the weight of pixel (p, q) will be large. This is how the
edge information in the image is preserved using bilateral filtering.
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However, for some hyperspectral images, the contrast in a few spectral bands is
low. If the range filtering kernel is calculated using those bands, the edge informa-
tion will be lost in those bands after bilateral filtering. Therefore, in this chapter,
it is proposed to use a joint bilateral filter with the first principal component as
the guidance image since the first principal component after principal component
analysis (PCA) accounts for as much of the variability in the hyperspectral image
as possible. In this case, Equation (5.3) should be modified as follows:

IJBF (i, j, b) =

∑
(p,q)∈w

Gσd
(i− p, j − q)Gσr (IP C (i, j)− IP C (p, q)) I (p, q, b)∑

(p,q)∈w
Gσd

(i− p, j − q)Gσr (IP C (i, j)− IP C (p, q)) ,

(5.16)

where IP C represents the first principal component (PC), b is the spectral band
index and IJBF is the output of joint bilateral filtering (JBF).

Figure 5.1 (a) and (b) are one input band image and the first principal
component from the Indian Pines data set [10], while (c) and (d) show the filtered
images with different sets of parameters. Before applying the joint bilateral filter,
the the pixel intensities of the hyperspectral image are normalised to the range
[0,1]. In Figure 5.1 (c), the kernel parameter of domain filter σd is set as 2 and
the kernel parameter of range filter σr is changed from 0.1 to 0.4. As can be
noticed, the performance of joint bilateral filtering gradually approaches Gaussian
blurring with an increased σr. Hence, the range parameter σr is chosen as 0.1 for
the edge-preserving effect and the domain parameter σd is changed from 1 to 4 for
performance comparison in Figure 5.1 (d). Judging from the filtered image quality,
a higher domain parameter leads to smoother features in the result. Therefore,
the domain parameter σd is chosen as 4 in following experiments.

As mentioned above, joint bilateral filtering is applied to the hyperspectral
image instead of the normal bilateral filtering since the filtered image quality in
low-contrast spectral bands can be improved with the guidance image. Figure 5.2
(a) shows an example of low-contrast spectral band from the same data set, and
the first principal component is shown in (b). The result with normal bilateral
filtering and the one with joint bilateral filtering using the same set of parameters
(σd = 4, σr = 0.1) are shown in Figure 5.2 (c) and (d), respectively. It is notable
that the edge information is kept or even enhanced using joint bilateral filtering
with the first principal component as the guidance image.

With the extracted spatial features using joint bilateral filtering, the hyper-
spectral image is ready for classification. As mentioned in Section 5.2.2, all pixels
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Fig. 5.1 The performance of joint bilateral filtering with different sets of parameters.
(a) Input band image from the Indian Pines data set, (b) the first principal component,
(c) filtered images with different range parameters, and (d) filtered images with different
domain parameters.

Fig. 5.2 Comparison of bilateral filtering and joint bilateral filtering on low-contrast
image. (a) Input band image from the Indian Pines data set, (b) the first principal
component, (c) output image using bilateral filtering, and (d) output image using joint
bilateral filtering with the first principal component as the guidance image.
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in a neighbourhood window are considered equally in the JSRC method. However,
the window may contain pixels from different categories around class edges, which
is against the assumption of JSM that neighbouring pixels from the same category
share a common sparsity pattern. Therefore, the SS-JSRC method is proposed for
getting rid of irrelevant pixels within the neighbourhood window and the flowchart
is illustrated in Figure 5.3.

Fig. 5.3 The flowchart of the proposed SS-JSRC method.

As shown in Figure 5.3, an investigated test sample x1 is located at the centre
of a small neighbourhood window in the Indian Pines data set and the data within
the window is the sample matrix X in Equation (5.12). With the enlarged window,
it can be noticed that the centre test pixel belongs to class red. However, pixels
from class blue, which have different spectral characteristics from the centre test
pixel, are involved in the sample matrix as well. To remove these pixels from class
blue, a Euclidean distance (ED) matrix is obtained first. For every neighbouring
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pixels in the window, its Euclidean distance to the centre test pixel is calculated
and the standard deviation (SD) of this matrix can be achieved. Then, a threshold
based on the standard deviation is set and pixels with distances lower than the
threshold are considered similar to the centre test pixel as shown in Equation
(5.17).

W =

 0, ED > n ∗ SD
1, ED < n ∗ SD

. (5.17)

Then the joint sparsity model can be applied with the reduced sample matrix
WX and the classified label for the centre test pixel can be achieved as follows:

Ŝ = arg min ∥AS−WX∥F subject to ∥S∥row,0 ≤ K0, (5.18)

Class (x1) = arg min
m=1,2,...,M

rm (WX) = arg min
m=1,2,...,M

∥∥∥WX−AmŜm
∥∥∥

F
. (5.19)

For details of the SOMP algorithm which is used to solve Equation (5.18), please
refer to [188].

5.4 Data sets and experimental setup

In this section, the experimental data sets will be introduced as well as the
parameter setting in the proposed classification framework.

Two publicly available and widely used HSI remote sensing data sets are
employed to evaluate experimental performance in this chapter, including the
airborne visible/infrared imaging spectrometer (AVIRIS) natural scenes Indian
Pines [10] as well as the reflective optics system imaging spectrometer (ROSIS)
urban scene Pavia University [141].

Details of these data sets can be found in Appendix A. For Indian Pines, the
16 classes ground truth map is used. Besides, bands 104–108, 150–163 and 220,
which do not contain useful information due to atmospheric water absorption,
are consequently removed to prevent from decreasing the classification accuracy,
resulting in a reduced data set with 200 spectral bands. For Pavia University, a
small portion is cropped from the original data set for following experiments in
order to save computing time. One band from the cropped Pavia University data
set and its corresponding ground truth map containing 8 classes are shown in
Figure 5.4.
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Fig. 5.4 Band 70 of the cropped Pavia University data set (left) and the 8 classes
ground truth map (right), with number of samples in parentheses.

Experiments are repeated ten times using randomly selected training and test
samples to avoid errors. For Indian Pines, 10% of the labelled samples from each
class are chosen for training the classifier, while a smaller percentage, 5%, is used
for Pavia University. The classification performance is evaluated using the overall
accuracy (OA), the average accuracy (AA) as well as the kappa coefficient (κ).
The kappa coefficient, also named as the kappa statistics, provides a standard for
overall classification performance by comparing the agreement against the one
occurring by chance and it is defined mathematically as follows:

κ = po − pe

1− pe

, (5.20)

where po is the proportion of all correctly-labelled samples in the test set, i.e. OA,
and pe is the proportion agreement occurring by chance. The value of κ ranges
from -1 to 1, where -1 stands for complete disagreement and 1 stands for perfect
agreement.

In order to verify the efficacy of the proposed SS-JSRC method, it is first
compared with the classical classifier SVM with the radial basis function (RBF)
kernel [18], SRC [188], JSRC [188] and NLW-JSRC [191]. Optimal parameters
for SVM are achieved using ten-fold cross-validation. It is suggested to choose
a larger neighbourhood window size for images containing large homogeneous
regions in [188]. As can be noticed that there are large homogeneous regions
in both data sets, the neighbourhood window size is consequently chosen as 9
× 9. Since [191] did not provide the Gaussian kernel parameter σ used for the
nonlocal weighting scheme, a value of 2 is chosen for the experiments in this
chapter, while keeping other parameters the same. The sparsity level K0 for all
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sparsity representation-based methods are tested from K0 = 5 to K0 = 40. In
Figure 5.5, the effect of the sparsity level K0 and the threshold parameter n in the
SS-JSRC method is revealed using the Indian Pines data set. As can be seen, the
overall classification accuracies are generally high when the threshold parameter
n is 2. Therefore, the value of n is set as 2 for following experiments.

Fig. 5.5 Effect of the sparsity level K0 and the threshold parameter n for Indian Pines
with the proposed SS-JSRC method.

After the evaluation of classifiers, the proposed classification framework (JBF-
SS-JSRC) using the joint bilateral filtering together with the SS-JSRC method is
compared with a few state-of-the-art spectral-spatial classification frameworks.
For the bilateral filter, the domain parameter σd and the range parameter σr are
set as 4 and 0.1 respectively as discussed in Section 5.3. The first comparison
method is SSA-SVM [71], where 2D-SSA is applied on each band for spatial feature
extraction, followed by SVM for classification. Another popular method EMAP-
SVM [73], where spatial features are achieved using a few attributes constructed on
components extracted by PCA and classified by SVM, is included for comparison as
well. The third comparison method proposes a spatial-aware dictionary learning
(SADL) approach and the learnt sparse coefficients are classified using SVM
[198]. Instead of only comparing with the ’feature extraction and classification’
family, the proposed framework is also compared with the ’classification and post-
processing’ family. The method in [182], which utilises an edge-preserving filter
for post-processing the initial SVM-classified result, is adopted and represented
as SVM-EPF. In order to show that the joint bilateral filtering is superior to
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the normal bilateral filtering, features learnt with these two filters are classified
using SVM for comparison as well and these two approaches are abbreviated as
BF-SVM and JBF-SVM respectively.

5.5 Results and discussion

With the two data sets and the experimental setup discussed in Section 5.4,
experiments have been carried out and results are shown in following subsections.

5.5.1 Evaluation of classifiers

First, results from the SS-JSRC method are compared with those using SVM,
SRC, JSRC and NLW-JSRC. The mean value and the standard deviation with
ten experiments for Indian Pines and Pavia University are given in Table 5.1 and
Table 5.2, together with chosen value for the sparsity level K0.

It can be seen that in most cases, classifiers containing contextual information
(JSRC, NLW-JSRC and SS-JSRC) outperform pixel-wise classifiers (SVM and
SRC), which proves that the robustness of the joint sparsity model. Although
authors in [191] claimed that NLW-JSRC helps to improve the classification
accuracies over JSRC, it is impossible to achieve the optimal results without
being given the right parameter for the Gaussian kernel, not to mention the heavy
computational complexity when calculating the weight parameters. Comparing
the proposed SS-JSRC method with the JSRC method, the overall accuracy has
increased from 94.58% to 95.19% for Indian Pines and 96.79% to 97.47% for Pavia
University, which seems not a big improvement. However, it is notable that the
improvement of the average accuracy is impressive since the results of those classes
with limited training samples are enhanced due to the simple pixel removal process
in the SS-JSRC method. For example, class 9 in the Indian Pines data set is a
narrow strip as shown in the ground truth map. With the JSRC method, pixels
from both class 3 and class 6 are included in the 9 × 9 window, while irrelevant
pixels can be removed using the SS-JSRC method successfully.

5.5.2 Comparison with typical state-of-the-art spectral-
spatial classification frameworks

After the comparison of different classifiers, the proposed classification framework
(JBF-SS-JSRC) is further compared with several other state-of-the-art classification
frameworks under the same experimental setting used previously. The classification
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maps of various methods for Indian Pines and Pavia University are shown in
Figure 5.6 and Figure 5.7. Detailed numerical results over ten repetitions are
shown in Table 5.3 and Table 5.4, respectively.

Fig. 5.6 The Indian Pines data set (a) ground truth and classification maps together
with corresponding overall accuracy obtained by (b) SSA-SVM, (c) EMAP-SVM, (d)
SADL-SVM, (e) SVM-EPF, (f) BF-SVM, (g) JBF-SVM and (h) JBF-SS-JSRC.

As shown in Table 5.3 and Table 5.4, four main findings can be identified: 1)
by comparing results from BF-SVM and JBF-SVM, it is found that joint bilateral
filtering with the first principal component as the guidance image yields better
spatial feature extraction performance than normal bilateral filtering, which is due
to the fact that the edge information is enhanced with the former. Take the Indian
Pines data set in Figure 5.6 (f) and (g) as an example, there are more misclassified
pixels around edges with the normal bilateral filtering. 2) Results achieved with
JBF are higher than some feature extraction techniques, such as SSA and SADL,
under the same classifier. Occasionally results of EMAP are slightly higher than
those of JBF. However, its computation is extremely slow. The computing time
of these feature extraction techniques is recorded on a personal computer with an
Intel Core i5-2400 CPU at 3.10 GHz using Matlab 2014a (Mathworks) and results
are presented in Table 5.5. 3) The proposed classification framework JBF-SS-JSRC
outperforms the one using JBF-SVM, which proves the finding in Section 5.5.1
again that SS-JSRC is superior to the pixel-wise classifier SVM. 4) For both data
sets, the performance of the proposed JBF-SS-JSRC framework is slightly better
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Fig. 5.7 The Pavia University data set (a) ground truth and classification maps together
with corresponding overall accuracy obtained by (b) SSA-SVM, (c) EMAP-SVM, (d)
SADL-SVM, (e) SVM-EPF, (f) BF-SVM, (g) JBF-SVM and (h) JBF-SS-JSRC.

than other state-of-the-art classification frameworks. For instance, as observed
from Table 5.3, the overall accuracy of JBF-SS-JSRC is 2.77%, 2.69%, 0.74% and
1.12% higher than that of SSA-SVM, EMAP-SVM, SADL-SVM and SVM-EPF,
respectively. All in all, the obtained results confirm the strong superiority of joint
bilateral filtering and SS-JSRC over other popular spectral-spatial classification
frameworks.

Table 5.5 Computing time (in seconds) for different feature extraction techniques.

Data sets Feature descriptor
SSA EMAP SADL BF JBF

Indian Pines 22 637 77 66 4
Pavia University 12 423 9 36 3

5.6 Summary

In this chapter, efforts have been focused on developing effective algorithms for
sparse representation-based classification of hyperspectral images. The task is
divided into two parts, i.e. extracting effective features and constructing suitable
classifiers. To this end, joint bilateral filtering with the first principal component
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as the guidance image, is proposed to extract spatial features without blurring
the edge information, where its superiority has been proven by comparing with
the normal bilateral filtering. In addition, an alternative classifier SS-JSRC,
which is an updated version of the JSRC method, is proposed for improved
classification capabilities. With the SS-JSRC method, a simple yet powerful
pixel removal process based on the statistics within the neighbouring window,
is added before applying the joint sparsity model. Results show that both the
classification accuracy and the kappa coefficient are improved over those of JSRC
and NLW-JSRC since irrelevant pixels have been effectively removed using SS-
JSRC, especially for classes with a small spatial area. By combining joint bilateral
filtering and the SS-JSRC method together, the classification performance of
the proposed approach is shown to outperform several typical spectral-spatial
classification approaches for both Indian Pines and Pavia University data sets.
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Chapter 6
Meat Quality Assessment Using Hyperspectral
Imaging

6.1 Introduction

Serving as a very important source of nutrition, the quality of meat and fish
influences the repurchase behaviour of consumers [123]. In order to meet the
quality standard of target consumers, control process must be carried out on
meat products before entering the market. Considering that food quality control
requires non-destructive real-time monitoring on the production line, visible and
near-infrared (VIS-NIR) spectroscopy was first established as a fast and promising
tool for multi-constitute food quality analysis. In recent years, the ability of
VIS-NIR spectroscopy for food quality assessment has been investigated by many
researchers. Due to its characteristics of being rapid and non-destructive, VIS-
NIR spectroscopy is widely applied to determine the composition of a variety of
agricultural products, which has proved its feasibility especially in meat industry
[123, 199].

However, with limited spatial information, sometimes internal constituent
gradients within food products could not be captured by VIS-NIR spectroscopy
successfully, leading to discrepancies between predicted and measured composition
[199]. Therefore, multispectral imaging (MSI) system, combining images at a small
number of narrow wavebands, was developed to overcome the above mentioned
drawbacks and has demonstrated its success for detection of meat quality [19, 200].

By combining hundreds of continuous bands at different wavelengths, another
similar platform named as the hyperspectral imaging (HSI) system, has received
considerable attention in recent years as an updated version of the MSI system.
Unlike VIS-NIR spectroscopy which could only attain the reflectance spectrum
for a small area of an object, HSI is able to collect the spectral information for
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more pixels over a large spatial area on the object. Due to the fact that HSI could
acquire more details than VIS-NIR spectroscopy and MSI, there is a growing trend
to investigate its ability for fast, non-destructive and non-reagent based meat
quality prediction. In this chapter, beef and lamb are chosen as representatives of
muscle food since beef contributes most to the meat market in EU with 8,000,000
tonnes annual consumption and similar levels of production [19], while lamb also
plays an important role in UK agriculture, contributing over 10% of total livestock
output [201].

Meat eating quality is related to many chemical and physical properties. It is
found that three key factors, including tenderness, juiciness, and flavour, contribute
to the consumer perception of satisfactory meat quality [96]. Surface colour and
ultimate pH, which are related to juiciness and flavour, can influence meat shelf
life and determine retail selection of consumers [202]. However, tenderness is
usually accepted as the most critical issue that affects the repurchasing behaviour
of customers [203], where it is commonly represented quantitatively by Warner-
Bratzler shear force (WBSF) or slice shear force (SSF).

Objective approaches as such offered by spectral technologies to determine
meat quality may be useful, but the analytical algorithms used remain to be opti-
mised. For predicting the above-mentioned meat quality traits, various statistical
regression approaches can be used to construct calibration equations, including
multiple linear regression (MLR), partial least squares regression (PLSR), principal
component regression (PCR) and neural networks [204]. Among these approaches,
PLSR is the most common method to construct the calibration models from VIS-
NIR spectra for the prediction of sensory parameters in meat [99, 104, 107, 108].
The PLSR model establishes a relationship between independent spectral variables
X and the dependent quality trait variable Y , where data in X is projected onto
a few latent vectors called PLS components [205]. However, PLSR is based on
the linear algorithm so that the best performance can only be achieved when
there is a linear relationship between spectra and quality trait values [20], which
might not be the case in every situation. In contrast, the support vector machine
(SVM), another popular machine learning approach, is based on the statistical
learning theory and is effective in the prediction of both linear and non-linear data
[206]. Advantages of SVM over other methods are that it does not require large
quantities of samples to construct the calibration model and seems unaffected
by sample outliers [125]. Although SVM has been successfully used in various
disciplines, it has not been applied extensively to the analysis of meat quality
parameters based on spectroscopic technologies. To this end, the performance of
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PLSR and SVM as tools for meat quality analysis using VIS-NIR spectroscopy is
evaluated first in this chapter. To the best of my knowledge, there is no research
comparing the performance of VIS-NIR spectroscopy and HSI on the same data
set. Hence, the second objective of this chapter is to determine whether HSI could
outperform VIS-NIR spectroscopy using the same batch of beef samples.

Besides, usually for both VIS-NIR spectroscopy and HSI, pre-processing of the
spectral profile is needed, to eliminate undesired effects and noise produced during
data collection process. Common pre-processing techniques, especially for VIS-
NIR spectra, include calculating derivatives, standard normal variate (SNV) and
multiplicative scatter correction (MSC) [207]. However, using derivatives of spectra
may even enhance the noise and lead to more difficult spectral interpretation.
For SNV and MSC, it is required to apply these transformations to all spectra
as the corrected spectra would be more accurate if more spectra were involved,
which is infeasible in the abattoir. In practice, ideally a prediction model based on
HSI will be installed in the abattoir production line, and for every single piece of
beef steak, the model should predict the quality assessment result in a real-time
manner. Therefore, it is necessary to use a pre-processing technique that can be
applied to every single spectrum itself, without considering other spectra. The
third objective of this chapter is to demonstrate that the previously mentioned
singular spectrum analysis (SSA) could be regarded as an optimal pre-processing
step in de-noising HSI spectra of beef, where it will not be restricted by the
number of HSI samples. Last but not least, the feasibility of HSI to facilitate
abattoirs classifying carcasses into different grading levels is also tested on lamb
since limited research has been conducted using HSI to predict eating quality
traits of lamb samples.

The remaining sections of this chapter are organised as follows. In Section
6.2, different data sets used in the experiment and data processing methods are
introduced. Results of four objectives are revealed in Section 6.3, followed by
summary in Section 6.4.

6.2 Materials and methods

There are four data sets involved in total, corresponding to the experiment for
each objective in this chapter. For simplicity, these data sets are named as data
set A, B, C and D respectively. Details of data acquisition, quality reference
measurement and data processing methods are explained down below.
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6.2.1 Data set A

Data set A is acquired on beef samples using VIS-NIR spectroscopy. A total of
234 cattle below 30 months of age, comprising 75 heifers, 118 steers, and 41 young
bulls, are randomly selected in a Scottish abattoir over a 10-week period. The
mean hot carcass weight is 332.6 kg, which is similar to the average carcass weight
(341.7 kg) of steers, heifers, and young bulls slaughtered in UK in January 2014
[208]. This data set is acquired as part of another experiment, where PLSR was
used for beef quality prediction [97].

All 234 carcasses are quartered between the 10th and 11th ribs at 48 hours post
mortem into hind and forequarters. An approximate 2.5 cm piece of beef sample
containing the M. longissimus thoracis, associated muscles, and subcutaneous
fat is removed from the 11th rib section of each carcass at quartering. After 2
min of blooming as advised in [203], 10 replicate scans are randomly collected
from different sites on the cut surface using an ASD QualitySpec Pro VIS-NIR
spectrometer with a fibre-optic probe (wavelength λ = 350 – 1800 nm at 1
nm intervals). A calibration reference is required to determine corresponding
wavelengths where absorption occurs and it is achieved by using a white calibration
tile that reflects nearly 100% of the radiation at all VIS-NIR wavelengths [89].
Dividing the reflected spectrum by the white reference spectrum, the reflectance
R can be calculated as

R = I

I0
, (6.1)

where I and I0 are intensities of the reflected spectrum and the white reference,
respectively. For VIS-NIR spectroscopy to measure meat and meat products,
reflectance is usually converted to absorbance (A) by logarithm transform, lin-
earising the relationship between the concentration of an absorbing compound
and the absorption spectrum [107], as shown in Equation (6.2).

A = log10

( 1
R

)
. (6.2)

Once the spectral information on the steak is acquired, ultimate pH (pHu)
is determined with a Testo 205 pH meter. The colour of the M. longissimus
lumborum is measured in the L*a*b* scale with a Minolta CR-410 colourimeter
after allowing the surface to bloom for 45 min, where L* represents the lightness,
a* is the green-red indicator, and b* is the blue-yellow indicator. Steaks are then
sealed in plastic bags, transported at 4 oC to the laboratory, and stored overnight
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at 3 oC. On the following day (3 days post mortem), steaks are cooked on a
clam-shell grill until the internal temperature reached 71 oC, measured using a
stainless thermometer (Hanna HI-98509 Check-temp 1). Once cooked, a 50 ×
10 mm slice of steak is sheared orthogonal to the muscle fibre axis using a Lloyd
TA-plus texture analyser fitted with a flat blunt-end blade. Then, the peak force
is extracted from the force deformation curve as the SSF.

As mentioned above, 10 replicate spectra are acquired for each sample and
they are plotted in Figure 6.1. It is shown in the plot that excessive noise exists in
the extreme parts of the spectra, which is illustrated by dotted lines. Removing
the noise results in 495 – 1600 nm as the working spectra plotted in solid lines.
The median spectrum of 10 replicates is used to represent the spectral profile of
each steak, followed by transforming the reflectance to absorbance.

Fig. 6.1 A plot of 10 replicate spectra (350 – 1800 nm) collected from the M. longissimus
thoracis of one carcass in data set A, showing the noise at the extremes of the spectra.

The performance of SVM is compared with PLSR, where both experiments
are carried out using Matlab. Similar to the data set construction method used
for PLSR in [97], steak samples are split into calibration (training) and validation
(test) data sets. Being sorted in ascending order separately for each trait, every 4th
sample is then selected into the validation set, with the intervening three samples
being allocated to the calibration set, as recommended in [209]. Accordingly, 75%
of the whole data set is assigned to the calibration set and the remaining 25% is
assigned to the validation set. In this way, it makes sure that the validation set is
a representative of the calibration set with similar mean and standard deviation
(SD). After the calibration data used for modelling are defined, the number of
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PLS components is then chosen based on the full leave-one-out cross-validation,
where each sample is removed, predicted, and replaced in a sequential manner
[210].

For VIS-NIR spectral data, the high dimensionality could increase the com-
putational complexity for SVM regression [18]. Therefore, feature selection and
reduction before SVM is expected, in order to reduce the data dimensionality by
mapping the data to a new space where the differentiability is higher in a subset
of transformed features than in any subset of the original data [4]. The feature
reduction technique used in the experiment is principal component analysis (PCA)
and the number of reduced dimensionality is decided by trial and error. With
reduced dimensionality, it is easy for SVM to construct the prediction model from
the calibration set. The grid-search is conducted with four-fold cross-validation to
optimise the regression model.

6.2.2 Data set B

Data set B is acquired on beef samples using both VIS-NIR spectroscopy and HSI
system. A total of 858 cattle are collected in four commercial abattoirs across
Scotland. In each abattoir, over 200 beef samples are randomly selected in the
production line. Allowing for 48 hours of ageing, an approximate 2.5 cm piece of
steak sample containing the M. longissimus thoracis is removed from each carcass.
After blooming for 2 min, hyperspectral images of steak samples are collected
using a push-broom HSI system (Gilden photonics) with wavelength ranging from
400 to 862.90 nm at a spectral resolution of about 2.5 nm. Figure 6.2 shows a
schematic diagram of the imaging system.

The HSI system, which consists of an 12-bit Andor Luca electron multiplying
charge-coupled device (EMCCD) camara and a Specim V8E spectrograph, could
acquire the high spatial and spectral resolution information of the investigated
object. Samples are illuminated with an Armley 150 W halogen lamp and the
exposure time is set as 6 ms. For each pixel, light is reflected from the target
sample onto the entrance slit (width of 30 µm and length of 11.84 mm) and
dispersed into a spectrum by the grating in the spectrograph. With the help of
a Zolix KSA 11-200S4N motorised stage set at a scanning speed of 10 deg/s for
the screw, the HSI system could achieve the undistorted hyperspectral image in
the push-broom way, which only scans a single line of the investigated target at a
time. The push-broom technique allows rapid and stable image acquisition, which
is ideal for production line measurement in meat industry.
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Fig. 6.2 Schematic diagram of the HSI system: components 1-5 refer to the EM-
CCD camera, spectrograph and lens, halogen lamp, sliding track and scanning tray,
respectively.

Before the image collection starts, a spectral calibration procedure has to be
conducted at two extreme illuminating conditions, using a white tile that reflects
nearly 100% of the radiation at all working wavelengths and also the cap of lens
to get a dark image. These steps make sure that the sample reflectance can be
separated from the system response [112]. The following equation shows how the
calibrated reflectance image is achieved,

R = I −B
IW −B

, (6.3)

where R is the calibrated reflectance image at one spectral band, I is the raw
image at that band, B is the dark reference image and IW is the white reference
image.

After the hyperspectral image collection, VIS-NIR spectra of data set B are
collected by a VIS-NIR spectrometer (ASD Labspec Pro) with wavelength from
350 nm to 2500 nm. The spectrometer is fitted with an internally-illuminated fibre
optic probe (active scanning diameter ⊘ = 68 mm). Due to the fact that only
a small area can be collected by the VIS-NIR spectrometer at a time, similarly,
scans are replicated in 10 random places for each steak to capture the maximum
variation across the sample.

Each steak is divided into 2 halves after data collection, labelled and vacuum
packaged. One half is aged for an additional 5 days at -1 oC and the other half is
aged for an additional 12 days under commercial conditions. Thus, steak samples

6.2 Materials and methods 99



are aged for 7 days and 14 days in total. Before the quality reference measurement,
samples are defrosted at the ambient temperature for 24 hours. On the next day,
ultimate pH is determined with a calibrated Hanna meat pH meter (HI 99163),
followed by the tenderness measurement. Steaks are cooked on a clam-shell grill
until the internal temperature reaches 71 oC. Once cooked, a slice of steak is
sheared orthogonal to the muscle fibre axis using a Tenderscot tenderometer
(Pentland Precision Engineering Ltd) and the peak force is extracted as SSF
during the shearing process. In summary, there are four beef quality parameters
in total for each steak from data set B, which are pH7, pH14, SSF7 and SSF14
respectively.

Similar to data set A, excessive noise can be also noticed in the extreme parts
of VIS-NIR spectra for data set B as shown by dotted lines in Figure 6.3. After
removing the noise, the working wavelength for VIS-NIR spectra (plotted by solid
lines) is 501 – 2200 nm and the median spectrum is used to represent the sample
spectral profile.

Fig. 6.3 A plot of 10 replicate spectra (350 – 2500 nm) collected from the M. longissimus
thoracis of one carcass in data set B, showing the noise at the extremes of the spectra.

There are originally 250 spectral bands for each acquired hyperspectral image.
However, due to the fact that the camera and the spectrograph do not have
the same spectral range, not all bands contain useful information. By removing
redundant data in the hyperspectral image, 200 spectral bands are left for the
following analysis, with working wavelength ranging from 399.62 nm to 862.90
nm.
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In order to improve the regression performance and processing speed, a region
of interest (ROI) with size of 200 × 100 is selected from the lean part on each
hyperspectral image, illustrated in Figure 6.4 (a) and (b). Even though most of
fat area is discarded after ROI selection, there are still a few pixels that have
different spectral features from pure lean pixels, i.e. dead pixels. In this context,
an iterative pixel removal process [211] is applied to the ROI to exclude these
dead pixels. For all spectra in the ROI, the Euclidean distances to the median
spectrum and the standard deviation of these distances are calculated. Then
those pixels with distances higher than five standard deviations are removed from
the ROI. It is assumed that 100 times iterations should be enough for removing
dead pixels in the current experiment. After these pre-processing steps, a median
reflectance spectrum in Figure 6.4 (c) can be achieved.

Fig. 6.4 HSI spectral feature extraction process. (a) The original hyperspectral image,
b) the cropped hyperspectral image after ROI selection, and (c) the median reflectance
spectrum of the ROI after the iterative pixel removal process.

For both VIS-NIR spectra and HSI spectra, reflectance needs to be converted
to absorbance as mentioned previously in Equation (6.2). Similarly, samples in
data set B are also split into two sets, where 75% is used for calibration and 25%
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is used for validation. PCA is applied for dimensionality reduction and a four-fold
cross-validation is adopted by SVM to optimise parameters for the calibration set
to avoid over-fitting.

6.2.3 Data set C

Data set C is used for testing the performance of SSA as an optimal pre-processing
step in de-noising HSI spectra of beef. Therefore, in order to save computing
time, a subset from data set B is chosen for the experiment. There are over 200
samples in data set C, which are all from one abattoir. HSI data collection, quality
reference measurement and spectra extraction steps are the same as described in
Section 6.2.2. The only difference is that SSA is applied on the extracted HSI
spectra for further noise removal. The algorithm of SSA can be found in Chapter
4.

There are two important parameters that affect the performance of SSA, which
are the window length L and the eigenvalue grouping (EVG). The window length
determines the number of decomposed series after SSA, while the eigenvalue
grouping defines how many decomposed series are used for reconstruction in order
to remove noise. In the experiment, only the first decomposed series is used for
spectrum reconstruction and then the only parameter to be adjusted is the window
length L. As an example, SSA is applied to the same spectrum shown in Figure
6.4 (c) with the window length set as 5, and the result is shown in Figure 6.5.
Even though a subtle difference can be noticed in the plot, it is demonstrated that
SSA does improve the prediction performance in the result section. After effective
feature extraction by SSA, reflectance spectra are converted to absorbance spectra.
Data splitting method is the same as data set B, and PCA is also applied before
model construction by SVM.

Fig. 6.5 The original median spectrum and the SSA processed median spectrum.
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6.2.4 Data set D

Data set D is acquired on lamb samples using the HSI system. A total of 80 lamb
samples are purchased from a commercial abattoir in Scotland, regardless of sex,
age and breed groups. Storing at 3±2 oC for 7 days after being slaughtered, left
lamb loins are removed from packaging. Allowing blooming for 2 min, hyperspec-
tral images are collected using the HSI system (Gilden photonics) mentioned in
Section 6.2.2.

Right after imaging, ultimate pH is determined by probing into the lamb
sample directly using a calibrated Hanna pH meter with a glass electrode (HI
99613). The surface colour is measured in the L*a*b* scale with a Konica Minolta
CR-410 colourimeter, where the machine is set to take three scans and the average
value is calculated as the final reading. Then, each lamb sample is labelled, vacuum
packaged and frozen at -30 oC to prevent from further ageing. The tenderness
measuring standard defined by Meat Industry Research Institute of New Zealand
(MIRINZ) named as MIRINZ shear force (SF) [212] is measured as the tenderness
reference for data set D. On the night before tenderness measurement, samples
are placed in plastic bags and sub-merged in a water bath until reaching an
internal temperature of 70 oC and then chilled in the fridge. On the following
day, ten sub-samples with 10 mm × 10 mm cross section are prepared parallel
with the muscle fibre axis. All sub-samples are then sheared orthogonal to the
fibre axis with a Tenderscot tenderometer (Pentland Precision Engineering Ltd).
As suggested by the MIRINZ protocol, a wedge shape tooth blade is attached in
the tenderometer for imitating the chewing behaviour of human beings. Similarly,
the peak force is extracted during each shear process and the average value of ten
measurements is considered as the final MIRINZ SF to minimise error. In total,
there are 5 lamb quality related parameters for each sample, which are pHu, L*,
a*, b* and MIRINZ SF.

Similarly, hyperspectral images of lamb samples need to be calibrated first
using Equation (6.3). Then redundant bands are removed, leaving 170 spectral
bands with working wavelength ranging from 469.47 nm to 862.90 nm. Also, ROI
with size of 200 × 100 pixels (approximately 100 × 50 mm2) is mainly selected
from the lean part and the iterative pixel removal process mentioned for data set
B is applied. Finally, a median spectrum is achieved as illustrated in Figure 6.6.
Reflectance is then converted to absorbance and SSA is applied to absorbance
spectra for further feature extraction.

Eighty lamb samples are then split into the calibration set (75%) and the
validation set (25%), where prediction models are learnt from the calibration set
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Fig. 6.6 HSI median reflectance spectrum extraction process for lamb. (a) Pseudo
colour image of one lamb sample, with ROI marked by the white frame, and (b) the
median reflectance spectrum of the ROI after the iterative pixel removal process.

and verified on the validation set. In this way, the ability of HSI for predicting
quality of unknown lamb samples could be tested.

6.3 Results and discussion

In this section, results of four objectives mentioned in Section 6.1 are shown.
For all experiments, the performance of prediction is evaluated by the coefficient
of determination (R2), root mean squared error (RMSE) as well as the ratio of
performance deviation (RPD). Equations are given below,

R2 = 1−

n∑
k=1

(yk − fk)2

n∑
k=1

(yk − ȳ)2
, (6.4)

RPD = SD

RMSE
= SD√√√√ n∑

k=1
(yk−fk)2

n

, (6.5)

where yk is the measured quality trait value, fk is the predicted value, ȳ is the
mean of measured trait value and n is the number of samples. The coefficient of
determination ranges from 0 to 1, where 0 represents a poor correlation between
predicted trait values and measured trait values and 1 stands for a high degree of
correlation. For RPD, values higher than 2 indicates that the calibration model is
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suitable to use and values higher than 3 indicate a model adequate for analytical
purposes [20].

6.3.1 SVM for predicting beef quality based on VIS-NIR
spectroscopy

The ability of SVM for predicting quality parameters, including surface colour,
ultimate pH and SSF, using VIS-NIR spectroscopy, is tested on data set A.
Results are given in this section, as well as results from PLSR for comparison.
The influence of animal gender on beef quality prediction is also investigated.

Table 6.1 shows the mean, range and SD of measured values of quality param-
eters analysed in data set A for the calibration and validation sets, respectively.
SVM models are developed and cross-validated on the calibration set and tested
on the validation set without carrying out any spectral pre-treatment on the data.

Table 6.1 Summary statistics of all quality attributes for 234 carcasses in data set A.

Trait Calibration set Validation set
n Mean Range SD n Mean Range SD

L* 175 37.38 30.64 – 45.39 2.54 59 37.30 27.65 – 44.32 2.78
a* 175 24.55 18.06 – 32.05 2.41 59 24.46 14.88 – 31.40 2.67
b* 175 9.05 3.70 – 13.99 1.96 59 9.01 2.74 – 13.95 2.06
pHu 175 5.52 5.20 – 6.74 0.23 59 5.52 5.18 – 6.49 0.23
SSF 175 123.37 72.77 – 329.39 42.46 59 123.61 69.83 – 312.00 44.75

In Table 6.2 and Table 6.3, results from the calibration set and the validation
set using both SVM and PLSR approaches are given for comparison. The number
of principal components used for SVM and the number of partial least squares
components used for PLSR are denoted as PC and PLSC in tables. It can be seen
that, for calibration results, SVM always shows a better performance than PLSR,
where R2

val for SSF is more than double of that with PLSR.

Table 6.2 Performance of VIS-NIR spectroscopy for predicting instrumental meat
quality in beef M. longissimus thoracis of data set A, using SVM and PLSR in the
calibration set with noise-removed spectra (495 – 1600 nm).

Trait Calibration using SVM Calibration using PLSR
PC R2

cal RMSEcal PLSC R2
cal RMSEcal

L* 10 0.83 1.05 11 0.83 1.04
a* 45 0.70 1.34 10 0.55 1.60
b* 25 0.67 1.13 10 0.64 1.17
pHu 50 0.90 0.07 13 0.77 0.11
SSF 10 0.89 14.66 5 0.16 38.79
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Table 6.3 Performance of VIS-NIR spectroscopy for predicting instrumental meat
quality in beef M. longissimus thoracis of data set A, using SVM and PLSR in the
validation set with noise-removed spectra (495 – 1600 nm).

Trait Validation using SVM Validation using PLSR
PC R2

val RMSEval RPDval PLSC R2
val RMSEval RPDval

L* 10 0.80 1.27 2.19 11 0.76 1.37 2.03
a* 45 0.64 1.71 1.56 10 0.60 1.71 1.56
b* 25 0.54 1.42 1.45 10 0.53 1.43 1.44
pHu 50 0.74 0.12 1.92 13 0.67 0.13 1.77
SSF 10 0.20 42.40 1.06 5 0.08 43.39 1.03

The prediction of quality attributes in beef M. longissimus thoracis using VIS-
NIR spectroscopy by other researchers are shown in Table 6.4. Results obtained
by SVM in the current experiment are similar to (or even higher than) those in
Table 6.4 for predicting L*, which means the lightness L* can be successfully
predicted by SVM. For the prediction of a* and b*, results achieved by SVM have
an RPD value between 1.45 and 1.56, which are much higher than those from
[98, 99]. For the prediction of pHu, R2 and RPD in the present study are only
lower than those presented in [98], probably due to the fact that the research in
[98] was conducted on 30 bulls, and meat from young bulls commonly has high
ultimate pH [97]; thus a greater number of high pH readings in a data set aid in
the development of a robust calibration model.

Most studies using VIS-NIR spectroscopy to assess beef tenderness adopt
WBSF as the texture benchmark, while few published reports have attempted
to predict SSF in beef. Results from SVM in the present study are quite low
compared with those from WBSF-based studies, possibly due to the tight quality
specification of the commercial cattle used. The calibration SD in the current
data set is only 16.8% of the difference between maximum and minimum values
of the SSF parameter, indicating that the data set is lacking a sufficiently large
variation, which could be a possible reason for poor prediction.

As shown in [98], prediction results obtained in young bulls seem to be
quite favourable. Therefore, the prediction performance with different genders
is investigated in the present study using SVM as well. The splitting method
for calibration and validation data sets is the same as introduced previously, and
the associated mean, data range and SD of measured values for all parameters
analysed in both sets are compared in Table 6.5 – 6.7, respectively. Despite
occasional large differences in terms of the SD measurement caused by outliers,
data used for calibration and validation in each gender are statistically consistent
in terms of the mean and the data range covered. Moreover, the data distribution
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Table 6.4 Publications for predicting instrumental meat quality in beef M. longissimus
thoracis using VIS-NIR spectroscopy.

Sex Age Weight Trait R2
val RPDval(months) (kg)

Reference [98]

Bull 9 – 11 90 – 150

L*t0 (No blooming) 0.80 2.22
L*t60 (Blooming for 1 h) 0.75 2.07
a*t0 (No blooming) 0.23 1.14
a*t60 (Blooming for 1 h) 0.29 0.90
b*t0 (No blooming) 0.27 1.17
b*t60 (Blooming for 1 h) 0.46 1.37
pHu 0.91 3.17

Reference [99]

Steer 53 ± 0.5 813 ± 10.9

L* 0.59 1.24
a* 0.01 0.98
b* 0.35 1.16
pHu 0.41 1.12

Sex N/A 11.6 ± 0.2 442.5 ± 8.55

L* 0.87 2.17
a* 0.71 1.58
b* 0.90 2.51
pHu 0.47 1.26

Reference [100]
Steer 18 – 24 190 – 220 pHu 0.83 N/A

Reference [109]
Steer and
heifer 19.5 ± 0.9 335 ± 30.3 SSF3 (3 days post mortem) 0.31 1.25

SSF14 (14 days post mortem) 0.23 1.14

for heifers is very similar to that for steers, although young bulls appear to have
lower values in a*, b* and L*. In addition, mean ultimate pH values for three
genders are very close, whereas the associated mean SF values are quite different.

Table 6.5 Summary statistics of quality attributes for 75 heifers in data set A.

Trait Calibration set for heifers Validation set for heifers
n Mean Range SD n Mean Range SD

L* 56 37.68 32.61 – 45.39 2.35 19 37.36 30.64 – 42.89 2.67
a* 56 25.15 19.11 – 31.40 2.23 19 24.84 18.06 – 29.29 2.49
b* 56 9.50 5.24 – 13.54 1.66 19 9.35 5.18 – 12.52 1.79
pHu 56 5.46 5.23 – 5.87 0.12 19 5.44 5.20 – 5.63 0.10
SSF 56 122.59 77.56 – 312.00 43.14 19 119.62 77.50 – 223.88 38.03

Table 6.6 Summary statistics of quality attributes for 118 steers in data set A.

Trait Calibration set for steers Validation set for steers
n Mean Range SD n Mean Range SD

L* 88 37.69 32.22 – 44.32 2.35 30 37.64 32.11 – 43.91 2.53
a* 88 24.89 20.05 – 31.03 2.20 30 24.82 19.25 – 29.75 2.33
b* 88 9.29 4.97 – 13.99 1.85 30 9.24 3.80 – 13.95 2.09
pHu 88 5.50 5.20 – 6.37 0.19 30 5.50 5.18 – 6.15 0.19
SSF 88 114.25 69.83 – 258.85 33.10 30 114.67 69.83 – 258.85 37.17
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Table 6.7 Summary statistics of quality attributes for 41 young bulls in data set A.

Trait Calibration set for young bulls Validation set for young bulls
n Mean Range SD n Mean Range SD

L* 30 36.07 30.76 – 42.44 2.78 11 35.93 27.65 – 43.03 4.03
a* 30 22.48 18.73 – 24.90 1.77 11 22.73 14.88 – 32.05 4.11
b* 30 7.51 3.70 – 10.49 1.81 11 7.75 2.74 – 13.71 2.79
pHu 30 5.65 5.28 – 6.49 0.35 11 5.70 5.24 – 6.74 0.47
SSF 30 150.91 86.82 – 273.03 49.06 11 156.64 72.77 – 329.39 71.70

Prediction results using SVM on three noise-removed data sets with different
genders are shown in Table 6.8 – 6.10. For colour parameters and ultimate pH,
results agree with those in Table 6.2 and Table 6.3. However, the variation in these
results for SSF is high. First, the calibration SSF accuracy for heifers is the best
and achieves over 0.96 in R2 measurement, followed by 0.72 for steers, whereas the
result for young bulls is less than 0.3 due to large variations with the particular
data set. Second, the highest validation R2 of SSF achieved is approximately
0.27 from heifers, which is quite close to results from [109]. Results obtained
from steers are low (R2

val = 0.06), even though the calibrated R2 is over 0.7. In
contrast, the validation R2 for young bulls achieves 0.15, although the calibration
R2 is less than 0.3. In addition, comparing RPD from three gender groups, it
is noticed that the prediction performance of young bull quality traits is much
better than those of heifer and steer, especially in predicting colour parameters
including L*, a* and b*, which corroborates high prediction accuracies obtained
in bulls reported in [98].

Table 6.8 Performance of VIS-NIR spectroscopy for predicting instrumental meat
quality in heifer of data set A using SVM with noise-removed spectra (495 – 1600 nm).

Trait PC Calibration for heifers Validation for heifers
R2

cal RMSEcal R2
val RMSEval RPDval

L* 20 0.78 1.12 0.74 1.46 1.83
a* 35 0.73 1.21 0.29 2.21 1.13
b* 15 0.52 1.34 0.45 1.39 1.29
pHu 35 0.64 0.08 0.47 0.08 1.25
SSF 2 0.96 9.85 0.27 40.91 0.93

6.3.2 Comparison between VIS-NIR spectroscopy and HSI
in predicting beef eating quality

The ability of VIS-NIR spectroscopy and HSI in predicting beef eating quality is
compared on data set B. Statistics of the calibration set and the validation set are
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Table 6.9 Performance of VIS-NIR spectroscopy for predicting instrumental meat
quality in steer of data set A using SVM with noise-removed spectra (495 – 1600 nm).

Trait PC Calibration for steers Validation for steers
R2

cal RMSEcal R2
val RMSEval RPDval

L* 25 0.87 0.92 0.89 1.01 2.50
a* 35 0.73 1.15 0.59 1.46 1.60
b* 30 0.75 0.96 0.50 1.47 1.42
pHu 20 0.90 0.06 0.59 0.12 1.58
SSF 2 0.72 22.58 0.06 40.35 0.92

Table 6.10 Performance of VIS-NIR spectroscopy for predicting instrumental meat
quality in young bull of data set A using SVM with noise-removed spectra (495 – 1600
nm).

Trait PC Calibration for young bulls Validation for young bulls
R2

cal RMSEcal R2
val RMSEval RPDval

L* 4 0.81 0.21 0.94 0.98 4.11
a* 25 0.98 0.30 0.63 2.57 1.60
b* 4 0.51 1.27 0.54 1.97 1.42
pHu 10 0.63 0.22 0.71 0.29 1.62
SSF 2 0.30 41.22 0.15 63.92 1.12

given in Table 6.11. As can be seen, both sets have similar mean, SD and range
for four quality traits.

Table 6.11 Summary statistics of all quality attributes for 858 carcasses in data set B.

Trait Calibration set Validation set
n Mean Range SD n Mean Range SD

SSF7 644 139.57 46.97 – 369.21 46.53 214 139.54 68.71 – 304.80 45.74
SSF14 644 141.04 60.77 – 316.40 43.93 214 141.05 68.13 – 297.51 43.53
pH7 644 5.58 5.34 – 6.37 0.11 214 5.58 5.42 – 6.25 0.10
pH14 644 5.63 5.43 – 6.46 0.11 214 5.63 5.46 – 6.33 0.11

Prediction results for VIS-NIR spectroscopy and HSI for both calibration and
validation set are shown in Table 6.12 and Table 6.13 respectively. The number
of principal components is tested from 5 to 50 in a step of 5, and the best result
is given here. Comparing values of R2 in Table 6.12 and Table 6.13, for the
majority of parameters, HSI offers better prediction performance than VIS-NIR
spectroscopy. Even though for SSF14, VIS-NIR spectroscopy yields slightly higher
R2 than HSI, its RPD is still lower than that of HSI.

Results shown here seem not quite robust since the current research aims to
develop a tool on the production line with 2-day post mortem beef to predict
eating quality at 7 days and 14 days post mortem, which may result in lower
prediction accuracy. During the ageing process, meat quality parameters could
be affected by biochemical and structural changes. Even though that is the case,

6.3 Results and discussion 109



Table 6.12 Performance for predicting instrumental meat quality in beef M. longissimus
thoracis of data set B, using VIS-NIR spectroscopy and HSI in the calibration set, with
noise removed spectra.

Trait Calibration with VIS-NIR spectra Calibration with HSI spectra
PC R2

cal RMSEcal PC R2
cal RMSEcal

SSF7 25 0.35 39.14 45 0.39 37.80
SSF14 25 0.47 34.91 50 0.59 30.61
pH7 20 0.59 0.07 40 0.74 0.18
pH14 5 0.42 0.09 45 0.70 0.06

Table 6.13 Performance for predicting instrumental meat quality in beef M. longissimus
thoracis of data set B, using VIS-NIR spectroscopy and HSI in the validation set, with
noise removed spectra.

Trait Validation with VIS-NIR spectra Validation with HSI spectra
PC R2

val RMSEval RPDval PC R2
val RMSEval RPDval

SSF7 25 0.10 43.86 1.04 45 0.11 43.37 1.05
SSF14 25 0.19 39.76 1.09 50 0.18 39.56 1.10
pH7 20 0.35 0.08 1.25 40 0.43 0.08 1.25
pH14 5 0.36 0.09 1.22 45 0.44 0.08 1.38

preliminary results do prove that HSI is more promising in predicting beef eating
quality than VIS-NIR spectroscopy. One thing worth of noting is that the HSI
system used in the experiment is in visible range, which means that prediction
results might be higher if an NIR HSI system is used.

6.3.3 SSA for improving HSI-based beef eating quality
evaluation

Data set C is a subset of data set B and it is used for testing the performance of
SSA as a pre-processing step for hyperspectral images. Statistics of data set C
are shown in Table 6.14. Some samples have been exempted from the experiment
for predicting ultimate pH because of missing value, resulting in different sample
numbers for SSF and pH.

Table 6.14 Summary statistics of all quality attributes for 211 carcasses in data set C.

Trait Calibration set Validation set
n Mean Range SD n Mean Range SD

SSF7 159 131.46 46.97 – 299.54 48.18 52 130.73 69.41 – 285.62 45.69
SSF14 159 132.23 63.35 – 291.56 42.91 52 131.32 73.61 – 239.82 39.91
pH7 154 5.63 5.44 – 6.37 0.13 51 5.63 5.46 – 6.34 0.14
pH14 154 5.69 5.46 – 6.46 0.14 51 5.69 5.48 – 6.41 0.14

By trial and error, the number of principal components is set to 30. In
that case, the data dimensionality has been reduced dramatically while enough
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features have been preserved. The prediction performance has been focused on the
external validation set and results comparing original spectra and SSA processed
spectra for the validation set are shown in Table 6.15. The window length L

is tuned to achieve the best performance for each quality trait. As highlighted
in bold, except for limited improvement on SSF14, SSA could always stand out
prominently, which demonstrates that it is an excellent feature extraction and
de-noising pre-processing procedure for HSI spectral profiles.

Table 6.15 Performance comparison of original HSI spectra and SSA processed spectra
in data set C for predicting beef eating quality attributes.

Trait Original HSI spectra SSA processed HSI spectra
R2

val RPDval L R2
val RPDval

SSF7 0.19 1.10 2 0.33 1.21
SSF14 0.10 1.03 2 0.11 1.02
pH7 0.42 1.25 3 0.45 1.28
pH14 0.28 1.12 7 0.34 1.21

If both the number of principal components and the window length L of SSA
are adjusted by conducting a grid search, the regression performance with the
validation set can be improved even further. Chosen parameters and results for
SSA processed HSI spectra are shown in Table 6.16.

Table 6.16 Best performance of SSA processed HSI spectra in data set C for predicting
beef eating quality attributes.

Trait PC L R2
val RPDval

SSF7 30 2 0.33 1.21
SSF14 20 6 0.20 1.10
pH7 45 2 0.58 1.43
pH14 45 3 0.49 1.36

As can be seen, for predicting ultimate pH values, both R2 and RPD indicate
that HSI could be a promising tool for the meat industry. However, results for
predicting SSF are not very satisfying, which might be due to the fact that SSF is
not a standard quantitative metric of meat tenderness, regardless of inconsistent
measurements within the ground truth. Similar results have been achieved by
other researchers as well. Referring to Table 6.4, SSF has been predicted using
VIS-NIR spectroscopy in [109], giving R2 of 0.31 (RPD = 1.25) and 0.23 (RPD =
1.14) for SSF3 and SSF14 respectively. But, it should be noted that comparison
between studies are not fully reliable due to different samples used. Nevertheless,
the potential of HSI in providing additional information that could help to improve
prediction of meat quality attributes should not be denied.
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6.3.4 Prediction of lamb quality using HSI

Data set D contains hyperspectral images of 80 lamb samples and it is used for
testing the ability of HSI to predict lamb quality attributes. Summary statistics
for all quality attributes for data set D are given in Table 6.17, where SF represents
MIRINZ SF for short.

Table 6.17 Summary statistics of all quality attributes for 80 lamb samples in data set
D.

Trait Calibration set Validation set
n Mean Range SD n Mean Range SD

pHu 60 5.59 5.46 – 5.90 0.07 20 5.61 5.48 – 6.08 0.12
L* 60 41.47 36.69 – 46.64 1.83 20 41.83 38.74 – 49.63 2.31
a* 60 23.28 20.44 – 25.37 0.91 20 23.77 22.28 – 25.71 0.83
b* 60 7.77 5.89 – 9.15 0.58 20 7.85 7.02 – 9.17 0.57
SF 60 51.05 28.17 – 92.03 13.32 20 53.89 33.69 – 117.65 18.80

The number of principal components is tried from 5 to 50 in a step of 5, and
both raw HSI absorbance spectra and SSA processed absorbance spectra are tested.
Combinations of best prediction results are shown in Table 6.18, where ‘A’ stands
for raw absorbance spectra and ‘A + SSA’ means SSA processed absorbance
spectra.

Table 6.18 Performance of HSI for predicting instrumental lamb quality parameters of
data set D.

Trait Pre-treatment PC Calibration set Validation set
R2

cal RMSEcal R2
val RMSEval RPDval

pHu A 45 0.54 0.06 0.38 0.11 1.07
L* A 15 0.83 0.67 0.77 1.34 1.72
a* A + SSA 40 0.95 0.22 0.48 0.76 1.09
b* A + SSA 15 0.83 0.34 0.26 0.50 1.13
SF A + SSA 40 0.82 6.76 0.41 14.90 1.26

As the study is to test the ability of HSI in predicting unknown lamb quality
for on-line use, results of the external validation set are particularly important.
For the prediction of ultimate pH, R2

val is higher than those reported in [201]
using VIS-NIR spectroscopy (R2

val = 0.03 – 0.19). For colour parameters and
MIRINZ SF prediction, limited research has been found on lamb. Nevertheless,
results achieved in the current study agree with those predicted with beef samples
using VIS-NIR spectroscopy [20, 98, 99, 103, 213], whose average R2

val values are
0.76 and 0.44 for L* and a*. However, result of b* in the experiment is poorer than
that of others (R2

val = 0.57), which may be due to variation between different
samples. Similarly, the MIRINZ SF is compared with WBSF predicted by others
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on beef samples. It is found that the average R2
val of their research is 0.30, which

is lower than than the one in the current study (R2
val = 0.41). The RPD values of

the resulting models did not give as much information as R2. A possible reason is
that all lamb samples are purchased from the abattoir fulfilling market standards.
Therefore, the standard deviation of those quality traits is low and the range of
values is also limited.

In the present study some colour parameters are found to be more correlated
with the hyperspectral data, while ultimate pH and MIRINZ SF are less predictable.
As mentioned previously, ultimate pH and SF contribute to tenderness, juiciness
and flavour of lamb. However, as admitted by authors in [201], these complex
quality parameters could be affected by many factors during production process,
and their variation has multiple biological causes, which also lowers the prediction
performance with HSI.

6.4 Summary

In this chapter, firstly, VIS-NIR spectroscopy (350 – 1800 nm) is investigated for
predicting beef quality parameters, including colour, ultimate pH and SSF. Due to
the relatively high dimensionality of VIS-NIR spectra, PCA is applied for feature
extraction and data reduction, followed by SVM-based modelling and prediction.
Applying constructed models to external validation data sets, predictions of L*,
a*, b*, pHu and SSF in terms of R2 are obtained as 0.80, 0.64, 0.54, 0.74 and
0.20 on the validation set, respectively, where the corresponding RPD values are
2.19, 1.56, 1.45, 1.92 and 1.06. Although the predicted R2 values for SSF are
quite low in comparison with other published data, overall, results achieved by
SVM are higher than those achieved by PLSR. It indicates that the prediction is
strongly dependent on the data acquired, but SVM can play an important role in
quantitatively predicting beef quality with VIS-NIR spectroscopy. Besides, it is
found that quality traits of young bulls can be better predicted than those from
heifers and steers, especially for the lightness parameter L*, which indicates great
potential for improved quality prediction using additional clues such as carcass
gender.

Secondly, this chapter compares the ability of VIS-NIR spectroscopy (350 nm –
2500 nm) and HSI (400 nm – 862.90 nm) for predicting beef eating quality, including
SSF and pH at 7 days and 14 days post mortem. Results suggest that compared
with VIS-NIR spectroscopy, HSI may offer more additional information that could
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help to improve prediction of beef quality attributes, with an improvement for
both R2 and RPD in most cases.

Thirdly, in this chapter, a relatively new time series analysis method SSA is
proposed to pre-process the HSI spectra. By decomposing the original spectra and
reconstructing the spectra using the most significant components, SSA demon-
strates its ability in removing noise and improving the prediction accuracy for
HSI-based beef eating quality evaluation.

Last but not least, this chapter also employs the same HSI system to predict
quality parameters for lamb samples because of its superiority demonstrated
previously. The study has shown that HSI offers an alternative choice for non-
destructive measurement of lamb quality traits. Even though the prediction
performance for some complex quality traits is low and requires further improve-
ment, HSI is still proved to be superior to conventional VIS-NIR spectroscopy by
comparing with other studies. Most importantly, this part has provided a bench-
marking baseline for other researchers, since limited research has been conducted
in the area of HSI-based lamb quality prediction.
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Chapter 7
Conclusions and Future Work

7.1 Conclusions

The general objective of this thesis is to develop advanced spectral-spatial tech-
niques for effective analysis of hyperspectral images. These include various
approaches for image compression, feature extraction and data classification as
presented in Chapters 3, 4 and 5, respectively. The last main chapter focuses on
the practical applications of the HSI technology, i.e. evaluation of meat eating
quality. The main contributions of the thesis are summarised in detail as follows.

1. In Chapter 3, an improved three-dimensional (3D) discrete cosine transform
(DCT)-based approach is proposed for compressing the hyperspectral image,
making possible for faster transmission and easy storage of the data while not
degrading the performance of following data analysis. Using the quantisation
table adapted from video compression, support vector machine (SVM)-based
machine learning is applied for optimally predicting the inter-band correlation
parameter in the quantisation table, which is possible due to the regular
pattern presented in highly correlated spectral bands. The proposed method
is compared with another state-of-the-art compression technique named as
3D set partitioning in hierarchical trees (SPIHT), which is based on 3D
discrete wavelet transform (DWT). Comprehensive results show that the
proposed 3D DCT approach outperforms 3D SPIHT under both subjective
and objective evaluation metrics. Besides, a quality-assured evaluation
criterion using classification accuracy is tested on reconstructed hyperspectral
images from the two 3D compression approaches. The proposed method
is proved to be more suitable as the degradation on reconstructed image
quality is negligible with a bit rate of no less than 0.8 bpppb.
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2. Chapter 4 presents a de-noising and feature extraction technique for hy-
perspectral images, which can be treated as a pre-processing step before
hyperspectral image classification for improving the classification accuracy.
Two well known techniques, the curvelet transform and singular spectrum
analysis (SSA), are combined together for this purpose. Both as the multi-
scale geometric analysis, the curvelet transform provides a better represen-
tation of curves or edges in the image than the wavelet transform, leading
to a better separation between geometric details and background noise.
By transforming the hyperspectral image into the curvelet domain, noise
could be effectively reduced through the decomposition and reconstruction
processes of SSA in the spectral dimension. Compared with several typical
state-of-the-art spectral feature extraction techniques, the proposed method-
ology proves its superiority with the best classification performance. With a
further spatial post-processing step added, the classification framework with
the proposed spectral feature extraction technique is either comparable or
better than some recent spectral-spatial classification methods considering
the classification accuracy.

3. In Chapter 5, a novel classification framework for hyperspectral images
based on the joint bilateral filter and sparse representation classification
(SRC) is proposed. Employing the first principal component as the guidance
image for the joint bilateral filter, spatial features can be extracted without
blurring the edge information and the image quality is enhanced in bands
with low contrast. For this reason, the performance of joint bilateral filter
is proven to be better than that of the normal bilateral filter. Besides, the
spectral similarity-based joint SRC (SS-JSRC) is proposed to overcome the
weakness of the traditional JSRC method. By combining the joint bilateral
filtering and SS-JSRC together, the superiority of the proposed classification
framework is demonstrated by comparing with several typical spectral-spatial
classification approaches, with higher results in both classification accuracy
and kappa coefficient.

4. Chapter 6 focuses on investigating the feasibility of the hyperspectral imag-
ing (HSI) system for predicting meat eating quality. The study starts with
a similar system, the visible near-infrared (VIS-NIR) spectroscopy, to de-
termine the suitable analysis technique for multivariate data. Although
the prediction is strongly dependent on the acquired data, it is found SVM
is able to achieve better prediction performance than the commonly used
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partial least squares regression (PLSR). Therefore, SVM is chosen as the
data prediction technique through the study. Besides, the study also com-
pares the performance of VIS-NIR spectroscopy and HSI for predicting beef
eating quality. Results show that HSI is more promising in this context with
the help of the spatial information presented in the data. Additionally, the
aforementioned feature extraction technique SSA is also applied to the beef
HSI data. By effectively removing the noise presented in the data set using
SSA, the prediction accuracy for HSI-based beef quality evaluation can be
improved further more. Last, the same HSI technique is tested on lamb
samples for quality evaluation. Since limited research has been conducted
in the area of HSI-based quality prediction, the last part of the study offers
a useful comparison reference for other researchers.

7.2 Future work

Followed by the conclusions of those innovative techniques proposed for hyper-
spectral image analysis in this thesis, the potential directions for future research
are pointed out in this section.

1. Hyperspectral image compression has always been an active research area,
and researchers have proposed various compression approaches successfully.
However, in particular for hyperspectral images, there is a lack of effective
evaluation criteria for reconstructed data. Future work can focus on ap-
plying combination of spatial and spectral information for saliency-enabled
object-based performance assessment of reconstructed hyperspectral images,
especially for quality-assured analysis. Besides, 3D DCT is achieved by ap-
plying 1D DCT sequentially in different dimensions. After applying the first
1D DCT in one dimension, the energy is contracted and useful information
is located in the low frequency area. By only applying the second 1D DCT
in the low frequency area, followed by the third 1D DCT applied in the
same way, the whole transform speeds up. Therefore, a more efficient 3D
DCT algorithm could be designed in the future.

2. The proposed curvelet-based feature extraction technique only employs
one-dimensional (1D) SSA for de-noising in the spectral domain. In the
future, two-dimensional (2D) SSA can be applied to the spatial domain
of the curvelet-transformed coefficients as 2D SSA is proven to be a more
effective feature extraction technique than 1D SSA recently. Furthermore, a
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simple square window is used for post-processing in the experiments, while
a shape-adaptive window could be designed for better performance.

3. For the proposed SS-JSRC method, the optimal classification is achieved by
looking for the minimum reconstruction residue. Some researchers have found
that histograms of sparse codes can be used for successful object detection
[214], where it is possible to apply this new feature for hyperspectral image
classification as well.

4. In the study of HSI-based meat quality assessment, the HSI system used is
in the visible range due to the limit of available experimental instrument.
For future work, the performance of near-infrared HSI systems should be
examined since many chemical bonds related to meat quality parameters are
located in the near-infrared wavelength range. Additionally, meat sample in
the current study are bought from commercial abattoirs with high quality
standards, which means the range of quality reference is limited. In order
to build a more robust regression model, a wider range of reference data
should be used in the future study.
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Appendix A
Hyperspectral Remote Sensing Data Sets

A.1 Moffett Field scene 1

The Moffett Field scene 1 data set [137], was taken by the airborne visible/infrared
imaging spectrometer (AVIRIS) at the jet propulsion laboratory from the national
aeronautics and space administration (NASA) [138]. It was acquired above the
Moffett Field area in California at the southern end of San Francisco Bay in 1997.
This image contains 224 continuous spectral bands of a hilly ridge and an urban
area, ranging from 400 to 2500 nm in the complete visible-near infrared-short
wave infrared (VIS-NIR-SWIR) spectrum[215]. The spatial area of this data set
covers 512 lines and 614 samples with a radiometric resolution of 12 bits. Since
there is no ground truth for this data set, only a sample band (band 100) is shown
in Figure A.1 for reference.

Fig. A.1 Band 100 of Moffett Field scene 1 data set.
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A.2 Indian Pines

The Indian Pines data set [10], also known as 92AV3C, was collected over the
Indian Pines test site in north-western Indiana, USA, in the early 1990s by AVIRIS
as well [138, 139]. The spatial size of this data set contains 145 × 145 pixels of an
agriculture area, with a spatial resolution of 18 m [138]. There are 224 spectral
reflectance bands covering from 400 to 2500 nm, where the nominal spectral
resolution is 10 nm and the radiometric resolution is 16 bits. The scene consists of
two-thirds agriculture, and one-third forest or other natural perennial vegetation,
with 16 classes in the original ground truth map [216]. However, some classes
have insufficient samples for training the classification model. As suggested by
other researchers [18, 64, 217], sometimes 7 out of 16 classes are discarded for
more consistent results, leaving 9 classes (2-3, 5-6, 8, 10-12 and 14) instead. One
random band image (band 168) and the original/reduced ground truth maps of
Indian Pines are shown in Figure A.2.

Fig. A.2 Band 168 of Indian Pines data set (left), the original 16 classes ground truth
map (middle) and the reduced 9 classes ground truth map (right), with number of
samples in parentheses.
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A.3 Salinas Valley

The Salinas Valley data set [140], was gathered at Salinas Valley, California in
1988 by AVIRIS at low altitude, leading to a high spatial resolution of 3.7 m per
pixel [138]. The full scene, which includes vegetables, bare soils and vineyard
fields, comprises 512 lines by 217 samples with 224 spectral bands. The spectral
resolution and the radiometric resolution of this data set are the same as Indian
Pines, which are 10 nm and 16 bits respectively. A random band (band 50) and
the ground truth map of Salinas Valley containing 16 classes are shown in Figure
A.3.

Fig. A.3 Band 50 of Salinas Valley data set (left) and the 16 classes ground truth map
(right), with number of samples in parentheses.
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A.4 Pavia University

The Pavia University data set [141], was collected using the reflective optics system
imaging spectrometer (ROSIS) during a flight campaign over Pavia district in
north Italy, with a spatial resolution of 1.3 m per pixel [175]. There are originally
115 bands with a spectral coverage ranging from 430 to 860 nm. However, 12
channels have been removed due to noise, leaving 103 bands with 610 × 340 pixels
per band. Nine classes of interest are provided in the ground truth map, including
urban, soil and vegetation features, as shown in Figure A.4.

Fig. A.4 Band 70 of Pavia University data set (left) and the 9 classes ground truth
map (right), with number of samples in parentheses.
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