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Chapter 1

Introduction

1.1 Background & Motivation

In many practical problems the spatial domain is much larger than the region of

interest. When this happens it is useful to study a smaller domain containing

the region of interest and simply assume that the outer domain extends to infin-

ity [1]. This is particularly useful in numerical modelling and simulation, where

resources are limited by memory and processing power [2]. These models and

simulations have important roles in ultrasonic non-destructive evaluation/testing

(NDE/NDT), a method of inspection using high frequency acoustic/elastic waves,

often used in safety critical industries such as nuclear power and aerospace [3, 4].

One method of numerical simulation is the Finite Element Method (FEM), a

process whereby a complicated region is reduced to a collection of smaller, simpler

shapes, such as triangles, tetrahedrals, hexahedrals, etc., and within which the

solution is described by a set of basis functions [5]. The problem can then be

solved over each element and, by extension, over the whole domain. In order to

simulate infinite domains, appropriate boundary conditions must be employed, at
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the interface between the interior spatial domain and the outer (infinite) domain,

that absorb without reflection any wave radiating from the interior domain [6]. A

number of such boundary conditions have been developed for this purpose, each

with their own advantages and disadvantages. These include Absorbing Boundary

Conditions [7], Perfectly Matching Layers [8] and Infinite Elements [9].

1.1.1 Ultrasound

Acoustic waves with a frequency greater than 20kHz, the upper range of human

hearing [10], can be classed as ultrasonic. These high frequency oscillating acoustic

pressure waves are often found in use by animals and insects, such as dolphins,

bats and moths, as a method of navigation and to locate predators or prey [11–14].

Ultrasound is also used within the field of medicine, most notably for obstetric

sonography, wherein real-time images can be generated to monitor the health and

development of a foetus in utero without any adverse effects and to aid in treatment

of both foetus and mother [15–19]. It is also used as a medical imaging tool for

other diagnostic purposes, including visualisations of organs such as the heart in

echocardiograms and intravascular imaging [20–24]. While medical ultrasound is

commonplace today, it took almost four decades from its inception in the 1920s

until it began to flourish, with Professor Ian Donald of Glasgow playing no small

part in its growth in the field [25–27]. Today the technology is used safely in a

wide range of medical applications from ultrasound mammography in breast cancer

imaging [28–31], assessment of osteoporosis [32–35], characterisation of abdominal

aortic aneurisms [36–39], focused drug delivery for neurological conditions such

as Parkinson’s, Alzheimer’s and glioblastoma [40–43], tissue characterisation in

the vascular system to aid in the treatment of atherosclerosis and prevention of

ischemic strokes [44–47], histotripsy, a method of mechanical tissue fractionation
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using high intensity ultrasound pulses [48–51], and lithotripsy, whereby ultrasonic

waves are used to break up kidney stones or other hard masses so that they may be

easily passed through the body [52–55]. Ultrasound has even found use in dentistry,

where it may be used for simple scaling of the teeth to cleaning inaccessible surfaces

during root canal treatment, assessment of maxillofacial fractures, and implant

dentistry [56–59].

Another use for the technology was advanced by the threat of the First World

War and the use of submarines in combat for the first time. An early form of

SONAR, an acronym for SOund Navigation And Ranging, was in use by 1915

with British submarines fitted with Fessenden oscillator hydrophones to detect

enemy vessels [60, 61]. While SONAR is still widely used in defence and civil

applications, the study of ultrasound has even led to the development of acoustic

cloaking techniques to effectively make vessels invisible to ultrasound waves [62–

64].

Other modern applications include ultrasound assisted extraction (UAE) in

the food, pharmaceutical, cosmetic and bioenergy industries [65–68], wastewater

treatment [69–72], sanitary treatment of fresh produce to reduce the risk of mi-

crobial contamination such as E. coli and salmonella in the food industry [73–76],

and the development of guidance systems for unmanned aerial vehicles (drones)

with applications to the power industry [77].

1.1.2 Non-Destructive Evaluation

Non-destructive evaluation (NDE), sometimes referred to as non-destructive test-

ing (NDT), is the collective name for a number of techniques used to inspect safety

critical structures such as nuclear power stations [78], oil pipelines [79], aerospace

components [80], turbine blades [81], and many more. They are deployed to de-
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tect defects, take measurements of thickness, and characterise the internal geom-

etry of the structure. There are many types of NDE techniques, each with their

own strengths and weaknesses, from the most basic visual inspection, to thermal

imaging, electromagnetic testing, X-ray radiography, computed tomography and

shearography testing [82,83]. Ultrasonic NDT, using high frequency elastic waves,

is a popular method by which components can be inspected to ensure reliability

without compromising their functionality. In recent years, this method has grown

in popularity due to being relatively inexpensive and the portability of the neces-

sary equipment, which can often be reduced to a hand-held device. Other benefits

include the potential for automating processes and the possibility of real-time re-

sults [84].

1.1.3 Infinite Domains

By infinite domains, we refer to spatial domains that have infinite length or area or

volume. In real world modelling, infinite domains appear in many situations, and

in others it is convenient to consider a large domain to be infinite. The problem

arises in many fields including acoustics [85], geophysics [86], oceanography [87],

meteorology [88], gas dynamics [89], hydrodynamics [90] and electromagnetics [91].

For instance, in earthquake engineering, the infinite domain would be the earth and

the region of interest would be a much smaller region around a structure or seismic

source; in underwater acoustics the infinite domain could be the ocean, while the

region of interest is a smaller region around a submarine or other submerged body;

and in aerospace problems, the infinite domain may be atmospheric air while the

region of interest relates only to the flow around an airplane wing [92]. In cases

such as this it is necessary to employ a boundary condition on the exterior of the

computational domain to prevent outgoing waves reflecting back into the region
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of interest.

A number of methods exist to deal with these reflections within numerical

simulation, such as Absorbing Boundary Conditions (ABC) [7], Boundary Element

Methods (BEM), Perfectly Matching Layers (PML) [8] and Infinite Elements (IE)

[9]. A review of Finite Element Method (FEM) techniques for time-harmonic

acoustics, and in particular for boundary conditions such as absorbing boundary

conditions, infinite elements and absorbing layers, is carried out in [93, 94], while

[95–97] also examine PMLs for time-harmonic acoustics with FEM. FEM methods

for modelling the elastic wave equation with PMLs in both the time and frequency

domain are presented in [98–101]. FEM has been used extensively in the modelling

of ultrasound devices and systems [102–108], with many Finite Element Analysis

software packages available, including PZFlex [109].

Three main categories of Absorbing Boundary Conditions can be considered:

low order local ABCs, high order local ABCs and exact nonlocal ABCs. Low

order local ABCs are the classical ABCs proposed in the 1970s and 1980s and

are still in use today [110, 111]. They can be considered a generalisation of the

Sommerfeld radiation condition, but are only effective with low order operators

as the product-nature of the operators generate higher order derivatives making

implementation impractical at higher orders. High order local ABCs are derived

in the same way as low order local ABCs but with the introduction of an auxiliary

variable in the transformed plane leading to no derivatives beyond second order

and no normal derivatives of the auxiliary variables [112]. Exact nonlocal ABCs

have the property that the solution obtained in the finite domain is identical to

that in the unbounded domain, but the cost is an integral operator that couples

all points on the boundary, making it powerful in frequency dependent problems,

but difficult in the time-dependent case [113].
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Boundary Integral Methods and Boundary Element Methods apply surface el-

ements on the boundary of a finite domain, meaning they are often more efficient

than domain-based methods due to the reduction of dimensions. An overview

of the development of these techniques is provided in [114] alongside historical

biographies of its chief proponents. BEMs are especially suited to problems in

unbounded domains, since the problem is reduced to the physical boundary with-

out the need for the introduction of an artificial boundary. However, BEMs often

produce matrices which are dense and nonsymmetrical, resulting in large solution

times and memory requirements for computational solutions.

The PML technique (first presented by Berenger [8]) is based on the use of

an absorbing layer, with the matching medium designed to absorb without reflec-

tion and prevent any wave travelling back into the computational domain. While

Berenger dealt with electromagnetic waves, Chew and Liu [115] proved there exists

a fictitious elastic PML half-space in solids which completely absorbs elastic waves

in spite of the coupling between compressional and shear waves. This was achieved

by interpreting the PML as coordinate stretching in the frequency domain. In the

same year, Lyons et al. [116] demonstrated the accuracy and future potential of the

PML in a finite element formulation. The work of Liu and Tao [117] and Qi and

Geers [118] extended the PML to simulate acoustic wave propagation in absorp-

tive media and demonstrated its excellent absorbing ability. The PML was also

shown to be effective in numerically solving the Helmholtz equation by Turkel and

Yefet [119] and developed further for time harmonic elastodynamics by Basu and

Chopra [120]. More recently, the performance of the PML has been improved with

the use of adaptive meshing [121,122]. Further work has included development of

higher order PMLs [123] and formulation for the Finite Difference Time Domain

(FDTD) simulation of acoustic scattering with PMLs [124].
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An alternative approach is to use Infinite Elements at the boundary rather than

truncating the finite element mesh. These Infinite Elements essentially extend

the element domain to infinity, and are based on the shape functions used in the

interior elements; the shape function is multiplied by an appropriate decay function

to achieve the desired behaviour at infinity. The IE method is discussed in detail

by Bettess [9] while Astley [125] provides a review of IE formulations with various

element types and assesses their accuracy. Infinite Elements have been applied

to the acoustic wave equation in the frequency domain [126–133] and in the time

domain [134–137], as well as to the elastic wave equation in the time domain [138],

while [139,140] also explored transient infinite elements.

1.2 Outline of the Thesis

The aim of this thesis is to devise a new boundary condition for unbounded elas-

todynamic wave problems for use in the finite element modelling of ultrasound

devices and systems. To do so the coordinate stretching transformation of a per-

fectly matching layer will be combined with infinite element test functions for what

is believed to be the first time, and applied to both the acoustic and elastic wave

equations. The problem of a radiating sphere will be examined in the frequency

domain, while a three dimensional formulation capable of modelling elastodynamic

waves in a volume will be examined in the time domain using the special case of

a semi-infinite waveguide. Three types of infinite element will be assessed with

a particular stretching function, the form of which has not been optimised. The

original material in this thesis is as follows:

1. In Chapter 2 the problem of a vibrating sphere in the frequency domain is

considered in order to provide an exact solution with which to assess the
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accuracy of the new PML+IE formulation. The inertia and resistance are

derived from the acoustic response in order to be used as a measure of ac-

curacy. A variational formulation is used to introduce the infinite elements

while, in section 2.3.1, a coordinate stretching function introduces the per-

fectly matching layer to the derivation for the first time. Three types of

infinite element are considered: the unconjugated Burnett element, the con-

jugated Burnett element and the Astley-Leis element. It is shown that the

infinite element only formulation can be derived via a particular choice of

PML stretching function. An error measure is introduced as the difference

between the PML+IE formulation and the exact solution for both inertia

and resistance and integrated over a range of wavelengths for a number of

acoustic modes. Finally, a set of stretching function parameters is assessed to

show that it is possible to achieve greater accuracy using the new PML+IE

formulation than by using the IE only method.

2. In Chapter 3 a method for studying elastodynamic waves in a three dimen-

sional, heterogeneous volume is constructed with a PML+IE formulation

at its boundary. For the present work, this method is used to conduct a

numerical study of a semi-infinite one dimensional rectangular homogeneous

waveguide, thereby allowing an empirical comparison of the method to an in-

finite element only approach. Section 3.3 introduces the elastodynamic wave

equation. Fourier transforms in time are taken in order to introduce the

coordinate stretching transformation. The variational formulation is again

followed with the assumption that the material is locally isotropic. The prob-

lem is discretised with traditional hexahedral finite elements modelling the

inner domain and infinite element test functions introduced in the exterior
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domain. Two scenarios are considered: the case with constant PML stretch-

ing in all three directions and the case with stretching in only one direction.

Mass lumping and diagonalisation is performed in order to provide an ex-

plicit scheme for implementation. A reflection coefficient is then defined and

used to compare the new PML+IE formulation with the FE only implemen-

tation and used to find values for the PML stretching function parameters

that maximise the reduction in the reflected wave.
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Chapter 2

A Combined Perfectly Matching

Layer and Infinite Element

Formulation for Unbounded Wave

Problems in the Frequency

Domain

In this chapter, we will consider a scalar problem and propose a Perfectly Matching

Layer [8] and Infinite Element [9] combination (PML+IE) for waves in a fluid.

We will assess its performance by calculating the pressure exterior to a vibrating

sphere in the frequency domain. The aim of this new PML+IE concept is to

create an element that is able to absorb long-wavelength waves at all angles of

incidence and also to converge to the correct low-frequency limit. The spherical

radiator is considered as it has an exact solution and so a robust assessment of

the new technique can be made. It allows a comparison to be made between the
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PML+IE solution and the IE only solution via the surface inertia and resistance

in the near field across a range of kR values (wavenumber × radius of sphere).

Results indicate that for certain modes there is a marked improvement (in the

difference between the exact and approximate solutions) at lower frequencies for

the PML+IE combination.

2.1 Geometry and Governing Equations

We consider the exterior Helmholtz problem with the geometry shown in Figure

2.1 as in [125] where Γ is an arbitrarily shaped radiating surface, Ωi is the inner

domain, modelled by conventional Finite Element Method techniques, and Ωe is

the outer domain, modelled by IE/PML combinations.

The complex pressure amplitude p(x, k) satisfies the Helmholtz equation [125]

∇2p+ k2p = 0 in Ωe (2.1)

where it is assumed that p is time harmonic, p = p(x, k)eiωt, with boundary

conditions

∇p · nR = −ρa(θ, φ) on ΓR, (2.2)

∇p · nX = −ikp+ ε on ΓX , (2.3)

where ε = O
(

1
X2

)
as X → ∞, and where ΓR is the boundary of Ωi, ΓX is the

boundary of Ωe with radius X, nR and nX are vectors normal to the surfaces of

Ωi and Ωe, respectively, k is the wavenumber, and θ and φ are the angles shown

in Figure 2.1. Equation (2.2) is the kinematic condition on ΓR for a steady time

harmonic normal acceleration a(θ, φ)eiωt with fluid density ρ, and equation (2.3)
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(a) Geometry of the exterior problem. The radius R of the domain
Ωi is fixed and the domain is meshed by standard finite elements.

(b) Ordering of infinite element nodal parameters on the boundary
of the meshed region Ωi.

Figure 2.1: A schematic showing the domain Ωe where the Perfectly Matching
Layer and Infinite Element formulation is applied.
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is the Sommerfield radiation condition [141] in three dimensions.

2.2 The Exact Solution

For r > R, that is in the exterior domain Ωe, any wave satisfying the Sommerfield

radiation condition given by equation (2.3) can be expanded as an infinite series

of multipole terms [125]

p(x, k) =

(
α1(θ, φ)

r
+
α2(θ, φ)

r2
+
α3(θ, φ)

r3
+ · · ·

)
e−ikr (2.4)

which we will see later in equation (2.24). Alternatively it can be regarded as

consisting of outwardly propagating separable modes [142] of the form

p(x, k) =
∞∑
µ=1

∞∑
ν=1

Aµνh
(2)
µ−1(kr)Yµν(θ, φ), (2.5)

where h
(2)
µ−1 is the spherical Hankel function of the second kind of order µ− 1, and

where

Yµν(θ, φ) = P ν−1
µ−1 (cos θ)e±i(ν−1)φ,

wherein P ν−1
µ−1 denotes the Legendre function of order ν − 1 and degree µ− 1.

For the axisymmetric case, the double summation in equation (2.5) reduces to

p(x, k) =
∞∑
µ=1

Aµh
(2)
µ−1(kr)Pµ−1(cos θ). (2.6)

From equation (2.2), the boundary condition becomes

∂p

∂r
= −ρ∂u

∂t
,
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where u is the velocity since a(θ, φ) is the acceleration. So we have

∞∑
µ=1

AµPµ−1(cos θ)h
(2)′
µ−1(kr)keiωt = −ρ∂u

∂t
.

Integrating with respect to t gives

u =
i

ρc

∞∑
µ=1

AµPµ−1(cos θ)h
(2)′
µ−1(kr)eiωt,

where c = ω/k. Then the specific acoustic impedance of degree (multipole order)

µ, defined by Z̄µ = p/u, is given by

Z̄µ = −iρc
h

(2)
µ−1(kr)

h
(2)′
µ−1(kr)

.

The quantities acoustic resistance, R̄(k, θ), and acoustic reactance, X̄(k, θ), are

defined by the relation Z̄ = R̄(k, θ) + iX̄(k, θ) [142]. We define the normalised

acoustic impedance by Zµ = Z̄/ρc, thus, by extension, the normalised acoustic

resistance, Rµ, and the normalised acoustic reactance, Xµ, are given by

Rµ =
R̄µ

ρc
= Re

{
−
ih

(2)
µ−1(kr)

h
(2)′
µ−1(kr)

}
= Im

{
h

(2)
µ−1(kr)

h
(2)′
µ−1(kr)

}
(2.7)

and

Xµ =
X̄µ

ρc
= Im

{
−
ih

(2)
µ−1(kr)

h
(2)′
µ−1(kr)

}
= Re

{
−
h

(2)
µ−1(kr)

h
(2)′
µ−1(kr)

}
. (2.8)

for each multipole order µ.

We introduce the acoustic response, as in [125], defined by p/a. From the

definition of specific acoustic impedance, we have Z̄ = iωp/a since a = iωu. Then

p

a
=

R̄

ikc
+
X̄

kc
=
X̄

kc
− i R̄

kc
= S̄ − i R̄

kc
, (2.9)

14



where

S̄ =
X̄(k, θ)

kc

is called the acoustic inertia and

Rµ = −k
ρ

Im
(p
a

)
. (2.10)

To obtain the specific acoustic inertia we follow the process outlined in [143] util-

ising recurrence relations in Chapter 10 of [144] for the spherical Hankel function

of the second kind given by

h
(2)′
µ−1(kr) =

µ− 1

kr
h

(2)
µ−1(kr)− h(2)

µ (kr)

to give

Zµ =
−i

(µ− 1)/kr − h(2)
µ (kr)/h

(2)
µ−1(kr)

.

Then from the limiting form of Bessel functions for small arguments [144] we have

h(2)
µ (kr) =

(kr)µ

(2µ+ 1)!!
+ i

(2µ− 1)!!

(kr)µ+1

where 0 < k � 1, and where !! denotes the double factorial defined as

(2k − 1)!! =
k∏
i=1

(2i− 1).
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Then

h
(2)
µ (kr)

h
(2)
µ−1(kr)

=

(kr)µ

(2µ+ 1)!!
+ i

(2µ− 1)!!

(kr)µ+1

(kr)µ−1

(2µ− 1)!!
+ i

(2µ− 3)!!

(kr)µ

=
((kr)4µ + (2µ− 1)!!2(2µ− 3)!!(2µ+ 1)!!) (2µ− 1)!!2(kr)2µ

(2µ+ 1)!!(2µ− 1)!!(kr)2µ+1 ((kr)4µ−2 + (2µ− 3)!!2(2µ− 1)!!2)

− i ((kr)2 − (2µ+ 1)(2µ− 1)) (2µ− 1)!!2(kr)2µ

((kr)4µ−2 + (2µ− 3)!!2(2µ− 1)!!2) (2µ+ 1)(2µ− 1)(kr)2

≈(2µ− 1)!!2(2µ− 3)!!(2µ+ 1)!!(2µ− 1)

(2µ+ 1)(2µ− 3)!!2(2µ− 1)!!2(kr)

+ i
(2µ+ 1)(2µ− 1)(2µ− 1)!!2(kr)2µ

(2µ− 3)!!2(2µ− 1)!!2(2µ+ 1)(2µ− 1)(kr)2

≈2µ− 1

kr
+ i

(
(kr)µ−1

(2µ− 3)!!

)2

.
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Therefore, for small arguments,

Zµ =− i

µ− 1

kr
− 2µ− 1

kr
− i
(

(kr)µ−1

(2µ− 3)!!

)2

=−
i

(
−µ
kr

+ i

(
(kr)µ−1

(2µ− 3)!!

)2
)

(
−µ
kr

)2

+

(
(kr)µ−1

(2µ− 3)!!

)4

=
(kr)2µ(2µ− 3)!!2 + iµkr(2µ− 3)!!4

µ2(2µ− 3)!!4 + (kr)4µ−2

≈
(

(kr)µ

µ(2µ− 3)!!

)2

+ i
kr

µ
.

Then, from equation (2.9), we have that S∗, the asymptotic behaviour of S̄, is

given by

S∗ = Re
(p
a

)
= Re

(
Z̄

iω

)
= Re

(
Zρc

iω

)
=
ρr

µ
,

so then the specific inertia is given by

Sµ =
S̄

S∗
=

µ

ρr
S̄. (2.11)
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Therefore, from equations (2.8), (2.9) and (2.11), the normalised specific inertia is

given by

Sµ = Re

{
−µh(2)

µ−1(kr)

(kr)h
(2)′
µ−1(kr)

}
. (2.12)

We will use these exact solutions for specific resitance and inertia, given by

equations (2.7) and (2.12), respectively, to compare with the numerical values

given by our PML+IE formulation.

2.3 The Variational Formulation in the Frequency

Domain

In this chapter the variational formulation of the problem is presented with the

introduction of a perfectly matching layer coordinate transformation. The discrete

problem is then derived and a selection of basis functions and test functions in

the radial and transverse directions are introduced with three forms of infinite

element. From the discrete problem, the acoustic response is derived as a numerical

measure with which to assess the accuracy of the PML+IE formulation contrasted

with the IE only formulation in comparison to the acoustic response of the exact

solution. Finally, the particular case for the perfectly matching layer coordinate

transformation z = r is examined and shown to replicate the infinite element only

case of [125].

Multiplying equation (2.1) by a test function w(x, k) and integrating over Ωe

gives ∫
Ωe

(w∇2p+ k2wp)dΩe = 0.
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Applying the divergence theorem, we have

−
∫

Ωe

(∇w · ∇p− k2wp)dΩe +

∫
Γ

w∇p · ndΓ = 0,

and incorporating the boundary conditions given by equations (2.2) and (2.3) gives

∫
Ωe

(∇w · ∇p− k2wp)dΩe +

∫
ΓX

w(ikp− ε)dΓX −
∫

ΓR

w(ρa)dΓR = 0,

since n = −nX on ΓX . That is

∫
Ωe

(∇w · ∇p− k2wp)dΩe +

∫
ΓX

(ikwp− wε)dΓX − ρ
∫

ΓR

wadΓR = 0. (2.13)

2.3.1 Perfectly Matching Layer Coordinate Transforma-

tion

We introduce the stretching function z ∈ C defined by

z(r) =

∫ r

R

λ(s)ds,

so that ∂z(r)/∂r = λ(r). At present, the choice of the function λ(r) is arbitrary.

In practice, it will be used to adjust and improve the performance of the PML

element. Then ∂/∂z = 1/λ(r)∂/∂r = 1/z′(r)∂/∂r and so

∇z =

(
1

z

∂

∂θ
,

1

z sin θ

∂

∂φ
,

1

λ(r)

∂

∂r

)
,

=

(
r

z

(
1

r

∂

∂θ

)
,
r

z

(
1

r sin θ

∂

∂φ

)
︸ ︷︷ ︸

= r
z
∇θφ

,
1

z′(r)

∂

∂r

)
.
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Also,

dΩz = z2 sin θdzdθdφ,

=
(z
r

)2

z′r2 sin θdrdθdφ,

=
(z
r

)2

z′dΩe,

=
( z
R

)2

z′drdΓR,

since dΩe = r2 sin θdrdθdφ and dΓR = R2 sin θdθdφ. Now equation (2.13) becomes

∫
Ωz

(
∇zw · ∇zp− k2wp

)
dΩz +

∫
ΓX

(ikwp− wε) dΓX

− ρ
∫

ΓR

wadΓR = 0

which gives

∫
Ωz

[(r
z

)2

∇θφw · ∇θφp+
1

(z′)2

∂w

∂r

∂p

∂r
− k2wp

]( z
R

)2

z′drdΓR

+

∫
ΓX

(ikwp− wε) dΓX − ρ
∫

ΓR

wadΓR = 0. (2.14)

2.3.2 Formulation of the Discrete Problem

A trial solution

p(x, k) =
m∑
µ=1

n∑
ν=1

qµνfν(r, k)gµ(θ, φ) (2.15)

is proposed where qµν are unknown coefficients (ν = 1, . . . , n;µ = 1, . . . ,m),

gµ(θ, φ) are transverse basis functions (µ = 1, . . . ,m), and fν(r, k) are wavenum-

ber dependent radial basis functions (ν = 1, . . . , n) as in Figure 2.1b. This can be
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written as a single summation of N = (n×m) terms

p(x) =
N∑
α=1

q∗αf
∗
α(r, θ, φ, k) (2.16)

where

x = (r, θ, φ, k), q∗α = qµν , and f ∗α(r, θ, φ, k) = fν(r, k)gµ(θ, φ). (2.17)

The correspondence between α and µ and ν is defined by

µ

ν

1 2 · · · j · · · n

1

2

3

...

i

...

m



1 2 · · · j · · · n

n+ 1 n+ 2 · · · n+ j · · · 2n

2n+ 1 2n+ 2 · · · 2n+ j · · · 3n

...
...

...

(i− 1)n+ 1 . . . . . . . . . . . (i− 1)n+ j · · · in

...
...

...

(m− 1)n+ 1 . . . . . . . . . . . (m− 1)n+ j · · · nm



.
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Selecting test functions w∗α(r, θ, φ, k) forms a set of algebraic equations for the

unknowns q∗α. Substituting equation (2.16) into equation (2.14) gives

∫
Ωz

[(r
z

)2

∇θφw
∗
α ·

N∑
β=1

q∗β∇θφf
∗
β +

1

(z′)2

∂w∗α
∂r

N∑
β=1

q∗β
∂f ∗β
∂r

− k2w∗α

N∑
β=1

q∗βf
∗
β

]( z
R

)2

z′drdΓR

+

∫
ΓX

(
ikw∗α

N∑
β=1

q∗βf
∗
β − w∗αε

)
dΓX

− ρ
∫

ΓR

w∗αadΓR = 0,

which gives

N∑
β=1

(∫
Ωz

[(r
z

)2

∇θφw
∗
α · ∇θφf

∗
β +

1

(z′)2

∂w∗α
∂r

∂f ∗β
∂r
− k2w∗αf

∗
β

]

×
( z
R

)2

z′drdΓR + ik

∫
ΓX

w∗αf
∗
βdΓX

)
q∗β

= ρ

∫
ΓR

w∗αadΓR +

∫
ΓX

w∗αεdΓX . (2.18)

Even though f ∗α and w∗α can be chosen independently, it is assumed that they have

the same transverse basis so that

w∗α(r, θ, φ, k) = wν(r, k)gµ(θ, φ). (2.19)
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Substituting equation (2.19) into equation (2.18), we get for each α = 1, . . . , N

(with µ, ν relating to α and µ′, ν ′ relating to β)

N∑
β=1

(∫
Ωz

(
1

z2

∂gµ
∂θ

∂gµ′

∂θ
wνfν′ +

1

z2 sin2 θ

∂gµ
∂φ

∂gµ′

∂φ
wνfν′

+
1

(z′)2

∂wν
∂r

∂fν′

∂r
gµgµ′ − k2wνfν′gµgµ′

)( z
R

)2

z′drdΓR

+

∫
ΓX

ikwνfν′gµgµ′dΓX

)
q∗β

= ρ

∫
ΓR

wνgµadΓR +

∫
ΓX

wνgµεdΓX

which yields

N∑
β=1

(∫ X

R

(
1

R

)2

z′wνfν′dr

∫
ΓR

(
∂gµ
∂θ

∂gµ′

∂θ
+

1

sin2 θ

∂gµ
∂φ

∂gµ′

∂φ

)
dΓR

+

∫ X

R

(( z
R

)2 1

z′
∂wν
∂r

∂fν′

∂r
− k2

( z
R

)2

z′wνfν′

)
dr

∫
ΓR

gµgµ′dΓR

+ ikwν(X)fν′(X)

∫
ΓX

gµgµ′dΓX

)
q∗β

= ρwν(R)

∫
ΓR

gµadΓR + wν(X)

∫
ΓX

gµεdΓX ,

which can be written as

A∗αβq
∗
β = h∗α. (2.20)

Now noticing that dΓX = (X/R)2 dΓR, we can write this as

A∗αβ = B
(1)
νν′C

(1)
µµ′ +B

(2)
νν′C

(2)
µµ′ , (2.21)
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where

B
(1)
νν′ =

∫ X

R

( z
R

)2
(

1

z′
∂wν
∂r

∂fν′

∂r
− k2z′wνfν′

)
dr

+ ik

(
X

R

)2

wν(X)fν′(X), (2.22a)

C
(1)
µµ′ =

∫
ΓR

gµgµ′dΓR, (2.22b)

B
(2)
νν′ =

∫ X

R

(
1

R

)2

z′wνfν′dr, (2.22c)

C
(2)
µµ′ =

∫
ΓR

(
∂gµ
∂θ

∂gµ′

∂θ
+

1

sin2 θ

∂gµ
∂φ

∂gµ′

∂φ

)
dΓR. (2.22d)

and

h∗α = ρwν(R)

∫
ΓR

gµadΓR + wν(X)

∫
ΓX

gµεdΓX . (2.22e)

2.3.3 Selection of Radial Basis Functions (f) and Test Func-

tions (w)

In each case, the basis functions (with radial basis function/Infinite Element order

ν) are defined as [125]

fν(r, k) =

(
R

r

)ν
e−ik(r−R), ν = 1, . . . , n. (2.23)

So the trial solution given by equation (2.15) becomes

p(x) =
m∑
µ=1

n∑
ν=1

qµνfνgµ,

=
m∑
µ=1

gµ

n∑
ν=1

qµν

(
R

r

)ν
e−ik(r−R),

= eikR

(
m∑
µ=1

qµ1gµR

r
+

m∑
µ=1

qµ2gµR
2

r2
+ · · ·+

m∑
µ=1

qµngµR
n

rn

)
e−ikr, (2.24)
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which is of the form of the multipole expansion in equation (2.4) taking

m∑
µ=1

eikRqµνgµR
ν ≡ αν(θ, φ)

and truncating after n terms.

We will examine three choices of radial test functions (Infinite Elements) wν(r, k),

ν = 1, . . . , n:

(i) unconjugated Burnett [145]

wν(r, k) =

(
R

r

)ν
e−ik(r−R) ≡ fν(r, k), (2.25a)

(ii) conjugated Burnett [146]

wν(r, k) =

(
R

r

)ν
eik(r−R) ≡ conj{fν(r, k)}, (2.25b)

(iii) Astley-Leis [135]

wν(r, k) =

(
R

r

)ν+2

eik(r−R) ≡
(
R

r

)2

conj{fν(r, k)}. (2.25c)

Substituting each of these into (2.22a) and (2.22c) in the limit X →∞ then gives
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(i) unconjugated Burnett

B
(1)
νν′ = lim

X→∞

∫ X

R

( z
R

)2
{

1

z′

[
ν

(
R

r

)ν−1(
−R
r2

)
e−ik(r−R) − ik

(
R

r

)ν
e−ik(r−R)

]

×

[
ν ′
(
R

r

)ν′−1(
−R
r2

)
e−ik(r−R) − ik

(
R

r

)ν′
e−ik(r−R)

]

− k2z′
(
R

r

)ν
e−ik(r−R)

(
R

r

)ν′
e−ik(r−R)

}
dr

+ ik

(
X

R

)2(
R

X

)ν
e−ik(X−R)

(
R

X

)ν′
e−ik(X−R)

= lim
X→∞

∫ X

R

e−2ik(r−R)
( z
R

)2
{

1

z′

[
νν ′

R2

(
R

r

)ν+ν′+2

− k2

(
R

r

)ν+ν′

+
ik

R

(
R

r

)ν+ν′+1

(ν + ν ′)

]
− k2z′

(
R

r

)ν+ν′
}

dr

+ ik

(
R

X

)ν+ν′−2

e−2ik(X−R) (2.26a)

B
(2)
νν′ = lim

X→∞

∫ X

R

(
1

R

)2

z′
(
R

r

)ν (
R

r

)ν′
e−2ik(r−R)dr

= lim
X→∞

∫ X

R

(
1

R

)2

z′
(
R

r

)ν+ν′

e−2ik(r−R)dr (2.26b)
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(ii) conjugated Burnett

B
(1)
νν′ = lim

X→∞

∫ X

R

( z
R

)2
{

1

z′

[
ν

(
R

r

)ν−1(
−R
r2

)
eik(r−R) + ik

(
R

r

)ν
eik(r−R)

]

×

[
ν ′
(
R

r

)ν′−1(
−R
r2

)
e−ik(r−R) − ik

(
R

r

)ν′
e−ik(r−R)

]

− k2z′
(
R

r

)ν+ν′
}

dr + ik

(
X

R

)2(
R

X

)ν+ν′

= lim
X→∞

∫ X

R

( z
R

)2
{

1

z′

[
νν ′

R2

(
R

r

)ν+ν′+2

+ k2

(
R

r

)ν+ν′

+
ik

R

(
R

r

)ν+ν′+1

(ν − ν ′)

]
− k2z′

(
R

r

)ν+ν′
}

dr

+ ik

(
R

X

)ν+ν′−2

(2.27a)

B
(2)
νν′ = lim

X→∞

∫ X

R

(
1

R

)2

z′
(
R

r

)ν (
R

r

)ν′
dr

= lim
X→∞

∫ X

R

(
1

R

)2

z′
(
R

r

)ν+ν′

dr (2.27b)

27



(iii) Astley-Leis

B
(1)
νν′ = lim

X→∞

∫ X

R

( z
R

)2
{

1

z′

[
(ν + 2)

(
R

r

)ν+1(
−R
r2

)
eik(r−R) + ik

(
R

r

)ν+2

eik(r−R)

]

×

[
ν ′
(
R

r

)ν′−1(
−R
r2

)
e−ik(r−R) − ik

(
R

r

)ν′
e−ik(r−R)

]

− k2z′
(
R

r

)ν+ν′+2
}

dr + ik

(
X

R

)2(
R

X

)ν+ν′+2

= lim
X→∞

∫ X

R

( z
R

)2
{

1

z′

[
(ν + 2)ν ′

R2

(
R

r

)ν+ν′+4

+ k2

(
R

r

)ν+ν′+2

+
ik

R

(
R

r

)ν+ν′+3

(ν − ν ′ + 2)

]
− k2z′

(
R

r

)ν+ν′+2
}

dr

+ ik

(
R

X

)ν+ν′

(2.28a)

B
(2)
νν′ = lim

X→∞

∫ X

R

(
1

R

)2

z′
(
R

r

)ν+2(
R

r

)ν′
dr

= lim
X→∞

∫ X

R

(
1

R

)2

z′
(
R

r

)ν+ν′+2

dr (2.28b)

2.3.4 The Transverse Discretisation

In practice, the transverse discretisation for infinite elements is chosen to be con-

ventional isoparametric Finite Element Method polynomials. Here, to investigate

accuracy, we choose the transverse basis functions using the separable exact solu-

tion of the Helmholtz equation on a sphere from equation (2.6). The result is the

same as in [125] and for the axisymmetric case,

gµ(θ, φ) = Pµ−1(cos θ), µ = 1, . . . ,m. (2.29)
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Then from equation (2.22b)

C
(1)
µµ′ =

∫
ΓR

Pµ−1(cos θ)Pµ′−1(cos θ)dΓR,

=

∫ 2π

0

∫ π

0

Pµ−1(cos θ)Pµ′−1(cos θ)R2 sin θdθdφ,

=2πR2

∫ π

0

Pµ−1(cos θ)Pµ′−1(cos θ) sin θdθ,

and using the substitution u = cos θ, we have

C
(1)
µµ′ = 2πR2

∫ 1

−1

Pµ−1(x)Pµ′−1(x)dx.

Then by the orthogonality of Legendre polynomials [142],

C
(1)
µµ′ =2πR2 2

2(µ− 1) + 1
δµµ′ ,

=
4πR2

2µ− 1
δµµ′ . (2.30)

From equation (2.22d)

C
(2)
µµ′ =

∫
ΓR

dPµ−1

dθ

dPµ′−1

dθ
R2 sin θdθdφ,

and again using the substitution x = cos θ,

C
(2)
µµ′ = 2πR2

∫ 1

−1

dPµ−1(x)

dx

dPµ′−1(x)

dx

(
1− x2

)
dx.

The associated Legendre polynomial (P 1
µ−1) of order 1 satisfies

P 1
µ−1 = −

(
1− x2

) 1
2 dPµ−1/dx

29



[144] (Chapter 8) and so using the orthogonality of that function, we get

C
(2)
µµ′ =2πR2

∫ 1

−1

P 1
µ−1(x)P 1

µ′−1(x)dx,

=2πR2 2(µ′ − 1 + 1)!

(2(µ′ − 1) + 1)(µ′ − 1− 1)!
δµµ′ ,

=4πR2 µ′!

(2µ′ − 1)(µ′ − 2)!
δµµ′ ,

=4πR2µ
′(µ′ − 1)

2µ′ − 1
δµµ′ . (2.31)

So C(1) and C(2) are diagonal and so equation (2.20) becomes



A(1) 0 · · · 0

0 A(2) ...

...
. . . 0

0 · · · 0 A(m)





q(1)

...

...

q(m)


=



h(1)

...

...

h(m)


where

A
(µ)
n×n = B

(1)
νν′C

(1)
µµ +B

(2)
νν′C

(2)
µµ , (ν, ν ′ = 1, . . . , n), (2.32)

q
(µ)
n×1 = [qµ1, qµ2, . . . , qµn]>, and h

(µ)
n×1 = hµ[1, . . . , 1]>, µ = 1, . . . ,m. By letting

ε→ 0 in equation (2.22e) and since wν(R, k) = 1 then using equation (2.29),

hµ = ρ

∫
ΓR

Pµ−1(cos θ)a(θ)dΓR, µ = 1, . . . ,m. (2.33)

Using the block structure of A then we have that

q(µ) =
(
A(µ)

)−1
h(µ).
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That is

q(µ)
ν = hµ

n∑
j=1

(
A(µ)

)−1

νj
, ν = 1, . . . , n. (2.34)

Then from equations (2.16) and (2.17), we have

p =
N∑
α=1

q∗αf
∗
α =

m∑
µ=1

n∑
ν=1

q(µ)
ν fνgµ.

From equation (2.9) we have for each multipole order µ,

pµ =

(
Sµ − i

Rµ

kc

)
a(θ),

so then

gµ

n∑
ν=1

q(µ)
ν fν =

(
Sµ − i

Rµ

kc

)
a(θ).

Multiplying by ρ and gj and integrating over ΓR gives

ρ

∫
ΓR

gjgµ

n∑
ν=1

q(µ)
ν fνdΓR = ρ

∫
ΓR

(
Sµ − i

Rµ

kc

)
gja(θ)dΓR.

We will calculate the acoustic response on the surface of the sphere, that is where

r = R. Since fν(r = R) = 1, and q
(µ)
ν , Sµ, and Rµ are independent of θ (and φ),

then we have

ρ
n∑
ν=1

q(µ)
ν

∫
ΓR

gjgµdΓR =

(
Sµ − i

Rµ

kc

)
ρ

∫
ΓR

gja(θ)dΓR

=

(
Sµ − i

Rµ

kc

)
hj,
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from equation (2.33). By the orthogonality of the Legendre polynomials we have

from equation (2.30) that

∫
ΓR

gjgµdΓR =


4πR2

2µ− 1
j = µ

0 otherwise.

So then

ρ
4πR2

2µ− 1

n∑
ν=1

q(µ)
ν = hµ

(
Sµ − i

Rµ

kc

)
, (2.35)

and so from equation (2.34)

Sµ − i
Rµ

kc
=ρ

4πR2

2µ− 1

n∑
ν=1

q
(µ)
ν

hµ
,

=ρ
4πR2

2µ− 1

n∑
ν=1

n∑
j=1

(
A(µ)

)−1

νj
,

=
ρ4πR2

2µ− 1
Ā(µ)

where

Ā(µ) =
n∑

j,ν=1

(
A(µ)

)−1

νj
. (2.36)

By equation (2.11) we have that

Sµ =
4µπR

2µ− 1
Re
{
Ā(µ)

}
, (2.37)

and from equations (2.7) and (2.10)

Rµ = −4πkR2

2µ− 1
Im
{
Ā(µ)

}
. (2.38)
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2.3.5 The Case z = r

Choosing the PML stretching function to be z(r) = r yields the infinite element

form of the solution given in [125]. Here we carry out the procedure with each

(infinite element) test function in turn.

(i) Unconjugated Burnett: from equation (2.26a)

B
(1)
νν′ = lim

X→∞

∫ X

R

e−2ik(r−R)
( r
R

)2
{
νν ′

R2

(
R

r

)ν+ν′+2

− k2

(
R

r

)ν+ν′

+
ik

R

(
R

r

)ν+ν′+1

(ν + ν ′)− k2

(
R

r

)ν+ν′
}

dr

+ ik

(
R

X

)ν+ν′−2

e−2ik(X−R)

= lim
X→∞

∫ X

R

e−2ik(r−R)

{
νν ′

R2

(
R

r

)ν+ν′

− 2k2

(
R

r

)ν+ν′−2

+
ik

R

(
R

r

)ν+ν′−1

(ν + ν ′)

}
dr

+ ik

(
R

X

)ν+ν′−2

e−2ik(X−R)

If the order of the radial basis function satisfies ν 6= 1, or ν ′ 6= 1, then the

last term tends to zero and

B
(1)
νν′ =

1

R

(
νν ′
∫ ∞
R

(
R

r

)ν+ν′

e−2ik(r−R) 1

R
dr

+ ikR(ν + ν ′)

∫ ∞
R

(
R

r

)ν+ν′−1

e−2ik(r−R) 1

R
dr

− 2(kR)2

∫ ∞
R

(
R

r

)ν+ν′−2

e−2ik(r−R) 1

R
dr

)

=
1

R

(
νν ′Iν+ν′ + ikR(ν + ν ′)Iν+ν′−1 − 2(kR)2Iν+ν′−2

)
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where

Ij =

∫ ∞
R

(
R

r

)j
e−2ik(r−R) 1

R
dr.

If ν = ν ′ = 1 then

B
(1)
11 = lim

X→∞

∫ X

R

e−2ik(r−R)

{
1

R2

(
R

r

)2

− 2k2 +
2ik

R

(
R

r

)}
dr + ike−2ik(X−R)

(2.39)

= lim
X→∞

1

R

(∫ X

R

(
R

r

)2

e−2ik(r−R) 1

R
dr + 2ikR

∫ X

R

(
R

r

)
e−2ik(r−R) 1

R
dr

− 2k2R

∫ X

R

e−2ik(r−R)dr

)
+ ike−2ik(X−R)

=
1

R
(I2 + 2ikRI1) + lim

X→∞

(
−2k2

∫ X

R

e−2ik(r−R)dr + ike−2ik(X−R)

)
=

1

R
(I2 + 2ikRI1) + lim

X→∞

(
−2k2

[
e−2ik(r−R)

−2ik

]X
R

+ ike−2ik(X−R)

)

=
1

R
(I2 + 2ikRI1) + lim

X→∞

(
−ike−2ik(X−R) + ik + ike−2ik(X−R)

)
=

1

R
(I2 + 2ikRI1 + ikR) .

Now using integration by parts we have

I2 =

[
−R

2

r
e−2ik(r−R) 1

R

]∞
R

−R
∫ ∞
R

(
R

r

)
e−2ik(r−R)2ik

1

R
dr

=1− 2ikRI1.

So then

B
(1)
11 =

1

R
(1− 2ikRI1 + 2ikRI1 + ikR)

=
1

R
(1 + ikR) .
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Similarly from equation (2.26b) we have

B
(2)
νν′ = lim

X→∞

∫ X

R

(
1

R

)2(
R

r

)ν+ν′

e−2ik(r−R)dr

=
1

R
Iν+ν′ ∀ν, ν ′ ≥ 1.

(ii) Conjugated Burnett: from equation (2.27a) we have

B
(1)
νν′ = lim

X→∞

∫ X

R

( r
R

)2
{
νν ′

R2

(
R

r

)ν+ν′+2

+ k2

(
R

r

)ν+ν′

+
ik

R

(
R

r

)ν+ν′+1

(ν − ν ′)− k2

(
R

r

)ν+ν′
}

dr + ik

(
R

X

)ν+ν′−2

= lim
X→∞

∫ X

R

{
νν ′

R2

(
R

r

)ν+ν′

+
ik

R

(
R

r

)ν+ν′−1

(ν − ν ′)

}
dr + ik

(
R

X

)ν+ν′−2

= lim
X→∞

[
νν ′Rν+ν′−2

−(ν + ν ′ − 1)rν+ν′−1
+

ik(ν − ν ′)Rν+ν′−2

−(ν + ν ′ − 2)rν+ν′−2

]X
R

+ ik

(
R

X

)ν+ν′−2

If ν 6= 1, or ν ′ 6= 1, then

B
(1)
νν′ =

νν ′

(ν + ν ′ − 1)R
+
ik(ν − ν ′)
ν + ν ′ − 2

=
1

R

(
νν ′

ν + ν ′ − 1
+
ikR(ν − ν ′)
ν + ν ′ − 2

)
.

If ν = ν ′ = 1, then

B
(1)
11 = lim

X→∞

[
−1

r

]X
R

+ ik

=
1

R
(1 + ikR) .
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And similarly from equation (2.27b)

B
(2)
νν′ = lim

X→∞

∫ X

R

(
R

r

)ν+ν′
1

R2
dr

= lim
X→∞

[
Rν+ν′−2

−(ν + ν ′ − 1)rν+ν′−1

]X
R

=
1

R

(
1

ν + ν ′ − 1

)
∀ν, ν ′ ≥ 1.

(iii) Astley-Leis: from equation (2.28a)

B
(1)
νν′ = lim

X→∞

∫ X

R

( r
R

)2
{

(ν + 2)ν ′

R2

(
R

r

)ν+ν′+4

+ k2

(
R

r
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+
ik

R

(
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r

)ν+ν′+3

(ν − ν ′ + 2)

]
− k2

(
R

r

)ν+ν′+2
}

dr

+ ik

(
R

X

)ν+ν′

= lim
X→∞

∫ X

R

{
(ν + 2)ν ′

R2

(
R

r

)ν+ν′+2

+
ik

R

(
R

r

)ν+ν′+1

(ν − ν ′ + 2)

}
dr

+ ik

(
R

X

)ν+ν′

= lim
X→∞

[
(ν + 2)ν ′Rν+ν′

−(ν + ν ′ + 1)rν+ν′+1
+
ik(ν − ν ′ + 2)Rν+ν′

−(ν + ν ′)rν+ν′

]X
R

+ ik

(
R

X

)ν+ν′

=
1

R

[
(ν + 2)ν ′

ν + ν ′ + 1
+
ikR(ν − ν ′ + 2)

ν + ν ′

]
.

Note that if ν = ν ′ = 1, then

B
(1)
11 =

1

R
(1 + ikR) ,

as was found above for the previous two cases. Similarly, from equation
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(2.28b)

B
(1)
νν′ = lim

X→∞

∫ X

R

(
R

r

)ν+ν′+2
1

R2
dr

= lim
X→∞

[
Rν+ν′

−(ν + ν ′ + 1)rν+ν′+1

]X
R

=
1

R

(
1

ν + ν ′ + 1

)
∀ν, ν ′ ≥ 1.

2.4 Perfectly Matching Layer & Infinite Element

Combination

We have seen that the case z(r) ≡ r reduces to the infinite element solution

of [125]. We now look at a particular PML+IE formulation informed by the choice

of stretching function in the elastodynamic case (see Chapter 3). We take

z(r) = r +
4iβ

5k
(r −R)

5
4 +

α

2
(r −R)2 +

4iαβ

9k
(r −R)

9
4 (2.40)

where α and β are constants that may be used to fine tune the PML+IE. We

examine each infinite element formulation in turn in order to assess the possible

advantages of this PML+IE combination.

We first define the following error functions:

εµ,ν1 (kR, α, β) = |SPML+IE
µ (kR, α, β)− Sexactµ (kR)|, (2.41)

εµ,ν2 (kR) = |SIEµ (kR)− Sexactµ (kR)|, (2.42)

εµ,ν3 (kR, α, β) = |RPML+IE
µ (kR, α, β)−Rexact

µ (kR) |, (2.43)

εµ,ν4 (kR) = |RIE
µ (kR)−Rexact

µ (kR)|, (2.44)
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where Sexactµ and Rexact
µ are given by equations (2.12) and (2.7), respectively,

SPML+IE
µ and SIEµ are given by equation (2.37), and RPML+IE

µ and RIE
µ are given

by equation (2.38). Here the superscript PML+IE refers to the choice of PML

stretching function given by equation (2.40), while IE refers to the choice z = r,

replicating the infinite element only formulation.

Then we may define an overall error function, Q(α, β), that takes account of

the total error integrated across an appropriate range of kR values and across a

range of modes. Therefore,

Q(α, β) =
N∑

µ,ν=1

∫
(εµ,ν1 (kR, α, β)− εµ,ν2 (kR) + εµ,ν3 (kR, α, β)− εµ,ν4 (kR)) d(kR),

=
N∑

µ,ν=1

∫
(εµ,ν1 (kR, α, β) + εµ,ν3 (kR, α, β)) d(kR)

−
N∑

µ,ν=1

∫
(εµ,ν2 (kR) + εµ,ν4 (kR)) d(kR),

=
N∑

µ,ν=1

∫
(εµ,ν1 (kR, α, β) + εµ,ν3 (kR, α, β)) d(kR)− Eµ,ν . (2.45)

We can then numerically calculate Eµ,ν for the first few modes of µ and ν for

illustrative purposes. Then we can plot Q(α, β) against α and β respectively in

order to find (α∗, β∗) such that

(α∗, β∗) = arg min
α,β

Q(α, β).

In order to show an advantage of the PML+IE formulation over the IE only for-

mulation, Q(α, β) must be negative.

For clarity a summary of the equations that feed into the calculation of equation

(2.45) are now provided in the pseudo code below.

38



1. Choose a form for z(r) (and hence its derivative z(r). Here equation (2.40)

is employed.

2. Choose an Infinite Element form. For illustration we choose the Unconju-

gated Burnett form.

3. Calculate

• B(1) using equation (2.26a)

• B(2) using equation (2.26b)

• C(1) using equation (2.30)

• C(2) using equation (2.31)

4. Calculate Aµ using equation (2.32)

5. Calculate ¯A(µ) using equation (2.36)

6. Calculate

• SPML+IE
µ using equation (2.37)

• SIEµ using equation (2.37) (with z = r i.e. α = β = 0)

• RPML+IE
µ using equation (2.38)

• RIE
µ using equation (2.38) (with z = r i.e. α = β = 0)

7. Calculate

• Sexactµ using equation (2.12)

• Rexact
µ using equation (2.7)

8. Calculate

• ε1 using equation (2.41)
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• ε2 using equation (2.42)

• ε3 using equation (2.43)

• ε4 using equation (2.44)

9. Calculate Q using equation (2.45)

2.5 Results

2.5.1 Unconjugated Burnett formulation

In order to show that the PML+IE formulation has an advantage over the IE only

formulation, it is necessary to find values for α and β such that the error function,

Q(α, β) given by equation (2.45), is negative, thereby showing better agreement

between the PML+IE formulation and the exact solution than between the IE

only formulation and the exact solution. To do so, the Eµ,ν term must first be

calculated as this does not depend on α or β and so need only be calculated once.

Taking first the unconjugated Burnett infinite element, for kR ∈ [0.01, 0.42],

directed by a particular interest in large wavelength problems wherein this param-

eter space provided greatest scope for improvement in a numerical solution, and

with N = 3 giving the first few modes of µ and ν where there is least attenuation

and therefore where the boundary will have most effect, we have from equation

(2.45),

Eµ,ν ≈
3∑

µ,ν=1

∫
(εµ,ν2 (kR) + εµ,ν4 (kR)) d(kR),

≈2.77063.

Figure 2.2 shows the error function given by equation (2.45) for the PML+IE
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formulation with the unconjugated Burnett infinite element, with β = 0.01 in-

formed by numerical experimentation, X = 10 (a susfficiently large boundary due

to computational restrictions), kR = 0.1, . . . , 0.4, and m,n = 1, . . . , 3, with vary-

ing α. As stated, for the PML+IE formulation to show advantage over the IE

only formulation, Q(α, β) must be negative. From the figure, it can be seen that

there are a range of values for α in [−1, 1] that give a negative value for Q(α, β).

In figure 2.2a, it can be seen that the choice α = −0.7 would not result in a neg-

ative value for Q(α, β), while figure 2.2b shows that all positive values between 0

and 1 result in better agreement between the PML+IE formulation and the exact

solution. Figures 2.2c and 2.2d look more closely at the ranges for α that could

provide greatest improvement, that is between −0.1 and −0.01, and between 0.01

and 0.1. From figure 2.2c, the value that produces the largest negative value for

Q(α, β) is α = −0.07.

Figure 2.3 shows the error function given by equation (2.45) for the PML+IE

formulation with the unconjugated Burnett infinite element, with α = −0.07,

X = 10, kR = 0.1, . . . , 0.4, and m,n = 1, . . . , 3, with varying β. It can be seen

that any of the values for beta between −1 and 1 results in a negative value for

Q(α, β), meaning that the PML+IE formulation outperforms the IE only formu-

lation overall. Figures 2.3a and 2.3b show that β closer to zero results in a more

negative Q(α, β). Figures 2.3c and 2.3d examine values for β < |0.1|, with β = 0.01

resulting in Q(α, β) = −2.494, the lowest value for the range of β values explored.

Figure 2.4 shows the specific inertia for the exact solution, Sexactµ given by

equation 2.12), and the numerical values of the specific inertia for the PML+IE

formulation with the unconjugated Burnett infinite element, SPML+IE
µ , and the

infinite element only formulation, SIEµ , given by equation (2.37), plotted against

kR, with α = −0.07 and β = 0.01, for varying modes of µ and ν. There is very
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(a) α = −1, . . . , 0 (b) α = 0, . . . , 1

(c) α = −0.1, . . . ,−0.01 (d) α = 0.01, . . . , 0.1

Figure 2.2: Plots of the error Q(α, β) given by equation (2.45) for the PML+IE
formulation using the unconjugated Burnett element with varying α and β = 0.01.
A negative value for Q(α, β) indicates that the PML+IE formulation has more
agreement with the exact solution than does the IE only formulation.

little difference between the PML+IE formulation and the IE only formulation for

specific inertia for any of the modes shown, although in figure 2.4e, the PML+IE

formulation does agree with the exact solution for more kR values than does the

IE only formulation.

Figure 2.5 shows the exact specific resistance, Rexact
µ given by equation (2.7),

and the numerical values of the specific resistance for the PML+IE formulation

with the unconjugated Burnett infinite element, RPML+IE
µ , and the infinite element

only formulation, RIE
µ , given by equation (2.38), plotted against kR, with α =

−0.07 and β = 0.01, for varying modes of µ and ν. As with the inertia in figure 2.4,

there is little difference to be seen between the PML+IE and IE only formulations
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(a) β = −1, . . . , 0 (b) β = 0, . . . , 1

(c) β = −0.1, . . . ,−0.01 (d) β = 0.01, . . . , 0.1

Figure 2.3: Plots of the error Q(α, β) given by equation (2.45) for the PML+IE
formulation using the unconjugated Burnett element with varying β and α =
−0.07. A negative value for Q(α, β) indicates that the PML+IE formulation has
more agreement with the exact solution than does the IE only formulation.

for the nodes shown in figure 2.5, with both being a good approximation to the

exact solution, except in the cases µ = 2, ν = 3 (figure 2.5d) where the inertia in

the PML+IE formulation briefly becomes negative around kR = 0.35. In figure

2.5e, both the PML+IE and IE only formulations do not show as good agreement

with the exact solution, however, the PML+IE formulation does lie closer to the

exact solution for the majority of the range of kR values shown.

Figures 2.2 and 2.3 suggest that Q(α, β) is a non-convex function of α and

β and therefore finding the global minimum (α∗, β∗) would require the use of a

global optimisation methodology. This is a nontrivial task and so, due to time

constraints, such an investigation was not undertaken. The aim of the thesis
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(a) µ = 1, ν = 2 (b) µ = 1, ν = 3

(c) µ = 2, ν = 2 (d) µ = 2, ν = 3

(e) µ = 3, ν = 2 (f) µ = 3, ν = 3

Figure 2.4: Plots of the specific inertia for the exact solution, Sexactµ given by
equation (2.12) (solid line), and the numerical values of the specific inertia for the
infinite element only formulation, SIEµ (dashed), and for the PML+IE formulation
using the unconjugated Burnett element, SPML+IE

µ (dotted) given by equation
(2.37) with (α, β) = (−0.07, 0.01), where kR is plotted on a logarithmic scale.

was to investigate whether or not a PML+IE scheme could be constructed for

this elasticity model and whether or not there was any advantage in doing so in

terms of the errors that arise. We have shown that it is indeed possible to have

a PML+IE formulation for this setting and also that there is a reduction in the
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(a) µ = 1, ν = 2 (b) µ = 1, ν = 3

(c) µ = 2, ν = 2 (d) µ = 2, ν = 3

(e) µ = 3, ν = 2 (f) µ = 3, ν = 3

Figure 2.5: Plots of the specific resistance for the exact solution, Rexact
µ given by

equation (2.7) (solid line), and the numerical values of the specific resistance for the
infinite element only formulation, RIE

µ (dashed), and for the PML+IE formulation
using the unconjugated Burnett element, RPML+IE

µ (dotted) given by equation
(2.38) with (α, β) = (−0.07, 0.01), where kR is plotted on a logarithmic scale.

error. So Figures 2.2 and 2.3 should be viewed as being merely illustrative of the

level of benefit in using the PML+IE approach and they also convey the non-

convex nature of Q(α, β). The evaluation of equation (2.45) involves a series of

nested functions stemming from equations (2.12) and (2.26a) and is therefore quite

involved. One can observe a sharp peak in Figure 2.2a and the cause of this has
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yet to be identified: exhaustive numerical tests have been undertaken to confirm

the veracity of the numerical implementation of these equations. These limited

observations suggest that automating the identification of the optimal parameter

set will be a difficult task and so this is left for a future study.

2.5.2 Conjugated Burnett formulation

Now taking the conjugated Burnett infinite element, for kR ∈ [0.01, 0.42], with

N = 3, we have

Eµ,ν ≈
3∑

µ,ν=1

∫
(εµ,ν2 (kR) + εµ,ν4 (kR)) d(kR),

≈4.13463.

Figure 2.6 shows the error function given by equation (2.45) for the PML+IE

formulation with the unconjugated Burnett infinite element, with β = 0.01, X =

10, kR = 0.1, . . . , 0.4, and m,n = 1, . . . , 3, with varying α. Once again, a negative

value for Q(α, β) would indicate an advantage of the PML+IE formulation over

the IE only formulation. The plots are less monotonic than with the unconjugated

Burnett infinite element of figure 2.2, although from figure 2.6a and 2.6b, the

largest negative values still seem to occur around α = 0. Taking a closer look at

this range in figures 2.6c and 2.6d, the best value for α would appear to be 0.07.

Figure 2.7 shows the error function given by equation (2.45) for the PML+IE

formulation with the unconjugated Burnett infinite element, with α = 0.07, X =

10, kR = 0.1, . . . , 0.4, and m,n = 1, . . . , 3, with varying β. In figures 2.6a and

2.6b, it is again clear that there is a range of values for β that will give a negative

value for Q(α, β) within this range, but the best value again lies close to zero.

From figures 2.6c and 2.6d, the value that gives the largest negative Q(α, β) is
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(a) α = −1, . . . , 0 (b) α = 0, . . . , 1

(c) α = −0.1, . . . ,−0.01 (d) α = 0.01, . . . , 0.1

Figure 2.6: Plots of the error Q(α, β) given by equation (2.45) for the PML+IE
formulation using the conjugated Burnett element with varying α and β = 0.01.
A negative value for Q(α, β) indicates that the PML+IE formulation has more
agreement with the exact solution than does the IE only formulation.

β = 0.01.

Figure 2.8 shows the specific inertia for the exact solution, Sexactµ , and the

numerical values of the specific inertia for the PML+IE formulation with the con-

jugated Burnett infinite element, SPML+IE
µ , and the infinite element only formula-

tion, SIEµ , plotted against kR, with α = 0.07 and β = 0.01, for varying modes of µ

and ν. Despite the error and Q(α, β) being negative for all the values of α and β

examined, the PML+IE formulation does not, at a glance, appear to outperform

the IE only formulation for the modes shown with kR in the range shown, however,

the difference in figures 2.8c and 2.8d is small compared with the difference in the

modes with lower µ values.
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(a) β = −1, . . . , 0 (b) β = 0, . . . , 1

(c) β = −0.1, . . . ,−0.01 (d) β = 0.01, . . . , 0.1

Figure 2.7: Plots of the error Q(α, β) given by equation (2.45) for the PML+IE
formulation using the conjugated Burnett element with varying β and α = 0.07.
A negative value for Q(α, β) indicates that the PML+IE formulation has more
agreement with the exact solution than does the IE only formulation.

Figure 2.9 shows the specific resistance for the exact solution, Rexact
µ , and the

numerical values of the specific resistance for the PML+IE formulation with the

unconjugated Burnett infinite element, SPML+IE
µ , and the infinite element only

formulation, SIEµ , plotted against kR, with α = 0.07 and β = 0.01, for varying

modes of µ and ν. Similar to the inertia, the resistance in the PML+IE formulation

does not appear to outperform the IE only formulation, and in fact appears worse

in figures 2.9c-2.9f, however, the difference here is much smaller than that in the

inertia.
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(a) µ = 1, ν = 2 (b) µ = 1, ν = 3

(c) µ = 2, ν = 2 (d) µ = 2, ν = 3

(e) µ = 3, ν = 2 (f) µ = 3, ν = 3

Figure 2.8: Plots of the specific inertia for the exact solution, Sexactµ (solid line),
given by equation (2.12), and the numerical values for the specific inertia for the
infinite element only formulation, SIEµ (dashed), and for the PML+IE formula-
tion using the conjugated Burnett element, SPML+IE

µ (dotted), given by equation
(2.37), with (α, β) = (0.07, 0.01), where kR is plotted on a logarithmic scale.

2.5.3 Astley-Leis formulation

Finally, taking the Astley-Leis infinite element, for kR ∈ [0.01, 0.42], with N = 3,

we have
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(a) µ = 1, ν = 2 (b) µ = 1, ν = 3

(c) µ = 2, ν = 2 (d) µ = 2, ν = 3

(e) µ = 3, ν = 2 (f) µ = 3, ν = 3

Figure 2.9: Plots of the specific resistance for the exact solution, Rexact
µ (solid

line), given by equation (2.7), and the numerical values of the specific resistance
for the infinite element only formulation, RIE

µ (dashed), and for the PML+IE
formulation using the conjugated Burnett element, RPML+IE

µ (dotted), given by
equation (2.38), with (α, β) = (0.07, 0.01), where kR is plotted on a logarithmic
scale.

Eµ,ν ≈
3∑

µ,ν=1

∫
(εµ,ν2 (kR) + εµ,ν4 (kR)) d(kR),

≈0.788019.
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Figure 2.10 shows the error function given by equation (2.45) for the PML+IE

formulation with the Astley-Leis infinite element, with β = 0.01, X = 10, kR =

0.1, . . . , 0.4, and m,n = 1, . . . , 3, with varying α. The error Q(α, β) for the Astley-

Leis infinite element bears a resemblence to that of the unconjugated Burnett

infinite element, with positive values appearing in figures 2.10a and 2.10b. As

with each of the other types of infinite element, the best value for α has appeared

close to zero. From figure 2.10c the optimum value for α in this case is −0.02.

(a) α = −1, . . . , 0 (b) α = 0, . . . , 1

(c) α = −0.1, . . . ,−0.01 (d) α = 0.01, . . . , 0.1

Figure 2.10: Plots of the error Q(α, β) given by equation (2.45), for the PML+IE
formulation using the Astley-Leis element with varying α and β = 0.01.

Figure 2.11 shows the error function given by equation (2.45) for the PML+IE

formulation with the Astley-Leis infinite element, with α = −0.02, X = 10, kR =

0.1, . . . , 0.4, and m,n = 1, . . . , 3, with varying β. This is the first infinite element

to give a positive value for Q(α, β) when varying β, as can be seen in figures 2.10a

and 2.10b, however, these also show once again that the optimum value for β lies
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close to zero. From figures 2.10c and 2.10d it is apparent that the value that gives

the best error Q(α, β) and therefore the best improvement in PML+IE over IE

only formulation is β = 0.01.

(a) β = −1, . . . , 0 (b) β = 0, . . . , 1

(c) β = −0.1, . . . ,−0.01 (d) β = 0.01, . . . , 0.1

Figure 2.11: Plots of the error Q(α, β) given by equation (2.45), for the PML+IE
formulation using the Astley-Leis element with varying β and α = −0.02.

Figure 2.12 shows the specific inertia for the exact solution, Sexactµ , and the nu-

merical values of the specific inertia for the PML+IE formulation with the Astley-

Leis infinite element, SPML+IE
µ , and for the infinite element only formulation, SIEµ ,

plotted against kR, with α = −0.02 and β = 0.01, for varying modes of µ and ν.

From figures 2.12a-2.12d and 2.12f, it can be seen that both the PML+IE and IE

only formulations show good agreement with the exact solution. In figure 2.12e,

both formulations differ slightly from the exact solution, but agree with each other

very well, so it is not apparent that one formulation performs any better than the

other for inertia.
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(a) µ = 1, ν = 2 (b) µ = 1, ν = 3

(c) µ = 2, ν = 2 (d) µ = 2, ν = 3

(e) µ = 3, ν = 2 (f) µ = 3, ν = 3

Figure 2.12: Plots of the specific inertia for the exact solution, Sexactµ (solid line),
given by equation (2.12), and the numerical values of the specific inertia for the
infinite element only formulation, SIEµ (dashed), and for the PML+IE formulation
using the Astley-Leis element, SPML+IE

µ (dotted), given by equation (2.37), with
(α, β) = (−0.02, 0.01), where kR is plotted on a logarithmic scale.

Figure 2.13 shows the specific resistance for the exact solution, Rexact
µ , and the

numerical values of the specific resistance for the PML+IE formulation with the

Astley-Leis infinite element, RPML+IE
µ , and the infinite element only formulation,

RIE
µ , plotted against kR, with α = −0.02 and β = 0.01, for varying modes of
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µ and ν. As with the inertia for the Astley-Leis element, it can be seen from

figures 2.13a-2.13d and 2.13f, that both the PML+IE and IE only formulations

show good agreement with the exact solution. In figure 2.13e, both formulations

differ slightly from the exact solution, agreeing with each other rather well, until

around kR = 0.35, where the PML+IE formulation becomes closer to the exact

solution than does the IE only formulation.

2.6 Conclusion

A new absorbing boundary layer has been formulated for unbounded wave prob-

lems by combining the Perfectly Matching Layer of Berenger [8] and the Infinite

Element of Bettess [9]. Derivations have been presented using the unconjugated

Burnett, the conjugated Burnett and the Astley-Leis infinite elements. The modal

response of a spherical radiator in the frequency domain has been calculated with

the new PML+IE method and the results have been contrasted with the IE only

method. Finally, a particular choice of the PML stretching function has been

presented for use with each type of test function and it has been demonstrated

that the PML+IE technique can have an improvement at low wavenumbers in the

approximation to the exact solution. This chapter represents a first attempt to

combine the PML and IE formulations and it is clear that there is much room for

improvement beyond the choice of PML made in equation (2.40).
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(a) µ = 1, ν = 2 (b) µ = 1, ν = 3

(c) µ = 2, ν = 2 (d) µ = 2, ν = 3

(e) µ = 3, ν = 2 (f) µ = 3, ν = 3

Figure 2.13: Plots of the specific resistance for the exact solution, Rexact
µ (solid

line), given by equation (2.7), and the numerical values of the specific resistance
for the infinite element only formulation, RIE

µ (dashed), and for the PML+IE
formulation using the Astley-Leis element, RPML+IE

µ (dotted), given by equation
(2.38), with (α, β) = (−0.02, 0.01), where kR is plotted on a logarithmic scale.
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Chapter 3

A Combined Perfectly Matching

Layer and Infinite Element

Formulation for the Three

Dimensional Elastodynamic Wave

Equation

3.1 Motivation

In the previous chapter, Berenger’s Perfectly Matching Layer (PML) and Bettess’

Infinite Element (IE) schemes were combined to create a new type of element for

unbounded acoustic wave problems. In this chapter, the PML and Astley-Leis IE

schemes are combined within a finite element framework for elastodynamic wave

problems. Where the new element formulation was previously assessed through its

use in the calculation of the acoustic modal response of a spherical radiator in the
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frequency domain, the present formulation is assessed through its use in a three-

dimensional elastic waveguide in the time domain, using a reflection coefficient as

a measure of accuracy.

3.2 Background

A time domain finite element formulation for elastic wave propagation in an

unbounded two-dimensional anisotropic solid using a Perfectly Matching Layer

(PML) was proposed in [147], while a PML/Infinite Element (IE) combination

was derived in [148] for the scalar wave equation in the time domain and for the

frequency domain in [149]. The present work is believed to be the first finite el-

ement implementation of a combined PML/IE formulation for the vector elastic

wave equation in the time domain. In addition, mass lumping and diagonalisa-

tion are used to produce an explicit time domain formulation. The formulation

is presented in a pseudo-one-dimensional way by considering a semi-infinite rect-

angular waveguide for ease of exposition, however, it could naturally extend to

reflect fully three-dimensional problems by having PML+IE boundary conditions

at all domain boundaries.

In section 3.3, the geometry and governing equations of the problem are in-

troduced and attention is restricted to a locally isotropic material. The system is

taken into the frequency domain, through Fourier transforms, in order to introduce

the PML stretching, which is frequency dependent. A variational formulation is

followed before introducing a finite element discretisation. In section 3.4 the PML

stretching function is assumed to be spatially independent. With this assumption,

the velocity and stress equations are derived for both finite and infinite elements.

The global velocity equations are described by recombining the elemental descrip-
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tions. In section 3.5 the PML stretching function has coefficients dependent only

on the spatial variable x1. The velocity and stress equations for the finite elements

are found to be the same as in section 3.4, while infinite integral terms appear in

the infinite element equations. An analysis of these integrals for particular forms

of the stretching function coefficients is presented before the velocity and stress

equations for the infinite elements are derived. Finally, an explicit scheme in the

time domain for the global velocity equations is described by recombining the finite

and infinite element equations. Section 3.7 presents the results for both the con-

stant stretching case and the spatially dependent stretching case, in comparison

with the finite element only method for a steel waveguide. A reflection coefficient

is devised as a measure of accuracy and is used to explore possible values for the

stretching function parameters.

3.3 Geometry and Governing Equations

Consider the problem of a semi-infinite rectangular waveguide with the geometry

shown in Figure 3.1 where ΓX is a notional face at x1 = X1 which will later be

allowed to tend to infinity, ΩF is the inner domain, modelled by conventional Finite

Element Method techniques, and ΩI is the outer domain, modelled by Perfectly

Matching Layer (PML)/Infinite Element (IE) combinations.

The governing elastodynamic equations are [150]

ρ
∂vi
∂t

=
3∑
j=1

∂σij
∂xj

, (3.1)
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Figure 3.1: The geometry of the semi-infinite rectangular waveguide. The interior
domain ΩF is of fixed length L1 and is meshed using standard finite elements. The
exterior domain ΩI is the semi-infinite part of the domain and uses the PML/IE
combination. The face ΓX at x1 = X1 is a notional face that will later be allowed
to tend to infinity.

where

σij =
3∑

k,l=1

Cijkl
∂uk
∂xl

.

That is

∂σij
∂t

=
3∑

k,l=1

Cijkl
∂vk
∂xl

, (3.2)

with stress free boundary conditions on all faces except ΓX where the Sommer-

feld radiation condition is employed. Taking Fourier transforms in time of equa-

tions (3.1) and (3.2), then switching to stretched coordinates x̃j gives (assuming

vi(x, 0) = 0 and σij(x, 0) = 0)

−iωρv̂i =
3∑
j=1

∂σ̂ij
∂x̃j

, (3.3)

−iωσ̂ij =
3∑

k,l=1

Cijkl
∂v̂k
∂x̃l

. (3.4)
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Then using the transformation

∂

∂x̃j
=

1

sj

∂

∂xj
(3.5)

where

sj(xj) =


1 in ΩF

αj(xj)
(
1 + i

ω
βj(xj)

)
in ΩI

(3.6)

yields

−iωρv̂i =
3∑
j=1

1

sj

∂σ̂ij
∂x̃j

, (3.7)

−iωσ̂ij =
3∑

k,l=1

Cijkl
sl

∂v̂k
∂x̃l

. (3.8)

Now multiplying both sides of equations (3.7) and (3.8) by a test function w

and integrating over the whole domain Ω = ΩF ∪ ΩI gives

∫
Ω

−iωρv̂iwdΩ =

∫
Ω

3∑
j=1

1

sj

∂σ̂ij
∂xj

wdΩ, (3.9)

and

∫
Ω

−iωσ̂ijwdΩ =

∫
Ω

3∑
k,l=1

Cijkl
sl

∂v̂k
∂xl

wdΩ. (3.10)

Now applying the divergence theorem to equation (3.9) and noting that all the

boundaries of Ω are stress-free except ΓX ,

∫
Ω

−iωρv̂iwdΩ =

∫
ΓX

3∑
j=1

1

sj
σ̂ijwdΓX −

∫
Ω

3∑
j=1

1

sj
σ̂ij

∂w

∂xj
dΩ. (3.11)
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Now substitute equation (3.8) into the ΓX integral in equation (3.11) giving

∫
Ω

−iωρv̂iwdΩ =

∫
ΓX

3∑
j,k,l=1

1

−iωsj
Cijkl
sl

∂v̂k
∂xl

wdΓX −
∫

Ω

3∑
j=1

1

sj
σ̂ij

∂w

∂xj
dΩ. (3.12)

Then by the Sommerfeld radiation condition

∇v̂i = −ik̄v̂i + ε on ΓX (3.13)

where ε = O (1/X2
1 ) and where k̄ indicates that a choice of k̄ can be made as either

the wavenumber of a compression wave or a shear wave, equation (3.12) becomes

∫
Ω

−iωρv̂iwdΩ =

∫
ΓX

3∑
j,k,l=1

Cijkl
sjsl

(
1

c̄
v̂k +

ε

−iω

)
wdΓX −

∫
Ω

3∑
j=1

1

sj
σ̂ij

∂w

∂xj
dΩ.

(3.14)

For an isotropic material with stiffness tensor C given by (switching to Voigt

notation)

C =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


,
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so from equation (3.8)

−iωσ̂11 =
λ+ 2µ

s1

v̂1,1 +
λ

s2

v̂2,2 +
λ

s3

v̂3,3, (3.15)

−iωσ̂22 =
λ

s1

v̂1,1 +
λ+ 2µ

s2

v̂2,2 +
λ

s3

v̂3,3, (3.16)

−iωσ̂33 =
λ

s1

v̂1,1 +
λ

s2

v̂2,2 +
λ+ 2µ

s3

v̂3,3, (3.17)

−iωσ̂23 =
µ

s2

v̂3,2 +
µ

s3

v̂2,3, (3.18)

−iωσ̂13 =
µ

s1

v̂3,1 +
µ

s3

v̂1,3, (3.19)

and

−iωσ̂12 =
µ

s1

v̂2,1 +
µ

s2

v̂1,2. (3.20)

Then letting v̂ = (p̂, q̂, r̂), equation (3.14) gives

∫
Ω

−iωρp̂wdΩ =

∫
ΓX

{
λ+ 2µ

s2
1

(
p̂

c̄
+

ε

−iω

)
+

λ

s1s2

(
q̂

c̄
+

ε

−iω

)
+

λ

s1s3

(
r̂

c̄
+

ε

−iω

)
+

µ

s1s2

(
q̂

c̄
+

ε

−iω

)
+
µ

s2
2

(
p̂

c̄
+

ε

−iω

)
+

µ

s1s3

(
r̂

c̄
+

ε

−iω

)
+
µ

s2
3

(
p̂

c̄
+

ε

−iω

)}
wdΓX

−
∫

Ω

{
σ̂11

s1

∂w

∂x1

+
σ̂12

s2

∂w

∂x2

+
σ̂13

s3

∂w

∂x3

}
dΩ, (3.21)
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∫
Ω

−iωρq̂wdΩ =

∫
ΓX

{
µ

s2
1

(
q̂

c̄
+

ε

−iω

)
+

µ

s1s2

(
p̂

c̄
+

ε

−iω

)
+

λ

s1s2

(
p̂

c̄
+

ε

−iω

)
+
λ+ 2µ

s2
2

(
q̂

c̄
+

ε

−iω

)
+

λ

s2s3

(
r̂

c̄
+

ε

−iω

)
+

µ

s2s3

(
r̂

c̄
+

ε

−iω

)
+
µ

s2
3

(
q̂

c̄
+

ε

−iω

)}
wdΓX

−
∫

Ω

{
σ̂21

s1

∂w

∂x1

+
σ̂22

s2

∂w

∂x2

+
σ̂23

s3

∂w

∂x3

}
dΩ, (3.22)

∫
Ω

−iωρr̂wdΩ =

∫
ΓX

{
µ

s2
1

(
r̂

c̄
+

ε

−iω

)
+

µ

s1s3

(
p̂

c̄
+

ε

−iω

)
+
µ

s2
2

(
r̂

c̄
+

ε

−iω

)
+

µ

s2s3

(
q̂

c̄
+

ε

−iω

)
+

λ

s1s3

(
p̂

c̄
+

ε

−iω

)
+

λ

s2s3

(
q̂

c̄
+

ε

−iω

)
+
λ+ 2µ

s2
3

(
r̂

c̄
+

ε

−iω

)}
wdΓX

−
∫

Ω

{
σ̂13

s1

∂w

∂x1

+
σ̂23

s2

∂w

∂x2

+
σ̂33

s3

∂w

∂x3

}
dΩ, (3.23)

Now discretise by letting p =
∑N

j=1 φj(x1, x2, x3)pj(t), for example, then

p̂ =
N∑
j=1

φj (x1, x2, x3) p̂j (ω) ,

q̂ =
N∑
j=1

φj (x1, x2, x3) q̂j (ω) , (3.24)

r̂ =
N∑
j=1

φj (x1, x2, x3) r̂j (ω) ,

σ̂1 =
N∑
j=1

φj (x1, x2, x3) γ̂1j (ω) ,

... (3.25)

σ̂6 =
N∑
j=1

φj (x1, x2, x3) γ̂6j (ω) ,
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(converting to Voigt notation meaning that σ̂1 ≡ σ̂11, σ̂2 ≡ σ̂22, σ̂3 ≡ σ̂33, σ̂4 ≡

σ̂23 = σ̂32, σ̂5 ≡ σ̂13 = σ̂31, σ̂6 ≡ σ̂12 = σ̂21) where subscript j refers to the nodes

in the finite element discretisation and where the φj are basis functions defined as

φj (x1, x2, x3) =


Nj(x1, x2, x3) in ΩF

fj(x1, ω)gj(x2, x3) in ΩI

(j = 1, . . . , N) (3.26)

and the test function w is replaced by a series of test functions θi of compact

support, defined as

θi (x1, x2, x3) =


Ni(x1, x2, x3) in ΩF

wi(x1, ω)gi(x2, x3) in ΩI

(i = 1, . . . , N). (3.27)

Defining the test function in this way, means that there are now N test functions

and equations (3.21)-(3.23) must be satisfied for all i = 1, . . . , N . Therefore, with

the definitions given in equations (3.24)-(3.27), equations (3.21)-(3.23) become

N∑
j=1

{∫
ΩF

−iωρNiNjdΩF p̂j

+

∫
ΩF

{
1

s1

∂Ni

∂x1

Nj γ̂1j +
1

s2

∂Ni

∂x2

Nj γ̂6j +
1

s3

∂Ni

∂x3

Nj γ̂5j

}
dΩF

}
=

N∑
j=1

{
1

c̄

(∫
ΓX

(
λ+ 2µ

s2
1

+
µ

s2
2

+
µ

s2
3

)
wifjgigjdΓX p̂j

+

∫
ΓX

λ+ µ

s1s2

wifjgigjdΓX q̂j +

∫
ΓX

λ+ µ

s1s3

wifjgigjdΓX r̂j

)
+

ε

−iω

∫
ΓX

(
λ+ 2µ

s2
1

+
µ

s2
2

+
µ

s2
3

+
λ+ µ

s1

(
1

s2

+
1

s3

))
wigidΓX

−
∫

ΩI

{
1

s1

∂wi
∂x1

fjgigj γ̂1j +
1

s2

wifj
∂gi
∂x2

gj γ̂6j +
1

s3

wifj
∂gi
∂x3

gj γ̂5j

}
dΩI

−
∫

ΩI

−iωρwifjgigjdΩI p̂j

}
(i = 1, . . . , N) (3.28)
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N∑
j=1

{∫
ΩF

−iωρNiNjdΩF q̂j

+

∫
ΩF

{
1

s1

∂Ni

∂x1

Nj γ̂6j +
1

s2

∂Ni

∂x2

Nj γ̂2j +
1

s3

∂Ni

∂x3

Nj γ̂4j

}
dΩF

}
=

N∑
j=1

{
1

c̄

(∫
ΓX

(
µ

s2
1

+
λ+ 2µ

s2
2

+
µ

s2
3

)
wifjgigjdΓX q̂j

+

∫
ΓX

λ+ µ

s1s2

wifjgigjdΓX p̂j +

∫
ΓX

λ+ µ

s2s3

wifjgigjdΓX r̂j

)
+

ε

−iω

∫
ΓX

(
µ

s2
1

+
λ+ 2µ

s2
2

+
µ

s2
3

+
λ+ µ

s2

(
1

s1

+
1

s3

))
wigidΓX

−
∫

ΩI

{
1

s1

∂wi
∂x1

fjgigj γ̂6j +
1

s2

wifj
∂gi
∂x2

gj γ̂2j +
1

s3

wifj
∂gi
∂x3

gj γ̂4j

}
dΩI

−
∫

ΩI

−iωρwifjgigjdΩI q̂j

}
(i = 1, . . . , N) (3.29)

N∑
j=1

{∫
ΩF

−iωρNiNjdΩF r̂j

+

∫
ΩF

{
1

s1

∂Ni

∂x1

Nj γ̂5j +
1

s2

∂Ni

∂x2

Nj γ̂4j +
1

s3

∂Ni

∂x3

Nj γ̂3j

}
dΩF

}
=

N∑
j=1

{
1

c̄

(∫
ΓX

(
µ

s2
1

+
µ

s2
2

+
λ+ 2µ

s2
3

)
wifjgigjdΓX r̂j

+

∫
ΓX

λ+ µ

s1s3

wifjgigjdΓX p̂j +

∫
ΓX

λ+ µ

s2s3

wifjgigjdΓX q̂j

)
+

ε

−iω

∫
ΓX

(
µ

s2
1

+
µ

s2
2

+
λ+ 2µ

s2
3

+
λ+ µ

s3

(
1

s1

+
1

s2

))
wigidΓX

−
∫

ΩI

{
1

s1

∂wi
∂x1

fjgigj γ̂5j +
1

s2

wifj
∂gi
∂x2

gj γ̂4j +
1

s3

wifj
∂gi
∂x3

gj γ̂3j

}
dΩI

−
∫

ΩI

−iωρwifjgigjdΩI r̂j

}
(i = 1, . . . , N) (3.30)

Now in order to progress, some decisions must be made about the stretching func-

tion. Two scenarios will be considered: the first has constant stretching in all three

directions, that is, s1 = s2 = s3 ≡ s; while the second scenario has stretching in
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only one direction, with a spatial dependency retained, that is, set s2 = s3 ≡ 1 and

s1 remains a function of x1. Note however that in both cases s is still a function

of frequency.

3.4 Constant stretching

3.4.1 The velocity equations

In this case the aim is to simplify the integrals involved and so it is assumed that

sj is independent of xj, that is, s1 = s2 = s3 ≡ s. Then multiplying throughout

equations (3.28)-(3.30) by s gives

N∑
j=1

{∫
ΩF

−iωρNiNjdΩF sp̂j

+

∫
ΩF

{
∂Ni

∂x1

Nj γ̂1j +
∂Ni

∂x2

Nj γ̂6j +
∂Ni

∂x3

Nj γ̂5j

}
dΩF

}
=

N∑
j=1

{
1

c̄

(∫
ΓX

(λ+ 4µ)wifjgigjdΓX
1

s
p̂j

+

∫
ΓX

(λ+ µ)wifjgigjdΓX
1

s
q̂j +

∫
ΓX

(λ+ µ)wifjgigjdΓX
1

s
r̂j

)
− ε

iωs

∫
ΓX

(3λ+ 6µ)wigidΓX

−
∫

ΩI

{
∂wi
∂x1

fjgigj γ̂1j + wifj
∂gi
∂x2

gj γ̂6j + wifj
∂gi
∂x3

gj γ̂5j

}
dΩI

+

∫
ΩI

iωρwifjgigjdΩIsp̂j

}
(i = 1, . . . , N) (3.31)
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N∑
j=1

{∫
ΩF

−iωρNiNjdΩF sq̂j

+

∫
ΩF

{
∂Ni

∂x1

Nj γ̂6j +
∂Ni

∂x2

Nj γ̂2j +
∂Ni

∂x3

Nj γ̂4j

}
dΩF

}
=

N∑
j=1

{
1

c̄

(∫
ΓX

(λ+ 4µ)wifjgigjdΓX
1

s
q̂j

+

∫
ΓX

(λ+ µ)wifjgigjdΓX
1

s
p̂j +

∫
ΓX

(λ+ µ)wifjgigjdΓX
1

s
r̂j

)
− ε

iωs

∫
ΓX

(3λ+ 6µ)wigidΓX

−
∫

ΩI

{
∂wi
∂x1

fjgigj γ̂6j + wifj
∂gi
∂x2

gj γ̂2j + wifj
∂gi
∂x3

gj γ̂4j

}
dΩI

+

∫
ΩI

iωρwifjgigjdΩIsq̂j

}
(i = 1, . . . , N) (3.32)

N∑
j=1

{∫
ΩF

−iωρNiNjdΩF sr̂j

+

∫
ΩF

{
∂Ni

∂x1

Nj γ̂5j +
∂Ni

∂x2

Nj γ̂4j +
∂Ni

∂x3

Nj γ̂3j

}
dΩF

}
=

N∑
j=1

{
1

c̄

(∫
ΓX

(λ+ 4µ)wifjgigjdΓX
1

s
r̂j

+

∫
ΓX

(λ+ µ)wifjgigjdΓX
1

s
p̂j +

∫
ΓX

(λ+ µ)wifjgigjdΓX
1

s
q̂j

)
− ε

iωs

∫
ΓX

(3λ+ 6µ)wigidΓX

−
∫

ΩI

{
∂wi
∂x1

fjgigj γ̂5j + wifj
∂gi
∂x2

gj γ̂4j + wifj
∂gi
∂x3

gj γ̂3j

}
dΩI

+

∫
ΩI

iωρwifjgigjdΩIsr̂j

}
(i = 1, . . . , N) (3.33)

Now define the basis functions as functions of a local coordinate system (ξ, η, ζ)
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which is centred on the node j and so

Nj′(ξ, η, ζ) =
1

8
(1 + ξξj′)(1 + ηηj′)(1 + ζζj′) in ΩF (3.34)

fj′(x1, ω) =

(
L1

x1

)
e−ik̄(x1−L1) in ΩI (3.35)

gj′(η, ζ) =
1

4
(1 + ηηj′)(1 + ζζj′) in ΩI (3.36)

where (ξj′ , ηj′ , ζj′) are the local coordinates of node j′.

Now introduce a parameterisation in terms of these local coordinates of the

finite and infinite elements. In ΩI this parameterisation is only used in the x2 and

x3 directions. The mappings are shown in figures 3.4 and 3.6.

Figure 3.2: The global node numbering scheme (in ΩF ) is illustrated where n1, n2,
and n3, are the number of nodes in the x1, x2, and x3 directions respectively. The
numbering sequence begins at the bottom front corner of the waveguide (position
1 above) where (x1, x2, x3) = (0, 0, 0) and traverses the x1 direction first, the x2

direction second, and the x3 direction third.

The test functions are now chosen as

Ni′(ξ, η, ζ) =
1

8
(1 + ξξi′)(1 + ηηi′)(1 + ζζi′) in ΩF (3.37)

wi′(x1, ω) =

(
L1

x1

)3

eik̄(x1−L1) ≡
(
L1

x1

)2

conj {fj′} in ΩI (3.38)

where the choice of wi′ is based on the Astley-Leis infinite element [125]. So the
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Figure 3.3: The global node numbers for a finite element e (in ΩF ) are shown,
where k, l, and m are indices rather than coordinates, and where n1, n2, and n3,
again denote the number of nodes in the x1, x2, and x3 directions respectively.

Figure 3.4: The mapping of the finite elements (in ΩF ) in global coordinates
(x1, x2, x3) to local coordinates (ξ, η, ζ) with node numbering indicated as shown.
The local node numbering i′ = 1, . . . , 8, is used in the figure on the left.

basis function at node i corresponding to the vertex labelled 1 in the left-hand

element in figure 3.4 corresponds to (ξ, η, ζ) = (−1,−1,−1) in the right-hand

element in figure 3.4.

Now with the mappings given as above, choose

ξ(x1) =
2

∆x1

(
|x1 − x1j′ | −

∆x1

2

)
, (3.39)

η(x2) =
2

∆x2

(
|x2 − x2j′ | −

∆x2

2

)
,
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Figure 3.5: The global node numbers for an infinite element e (in ΩI) are shown,
where l and m are indices rather than coordinates, and where n1, n2, and n3, again
denote the number of nodes in the x1, x2, and x3 directions respectively.

Figure 3.6: The mapping of the infinite elements (in ΩI) in global coordinates
(x2, x3) to local coordinates (η, ζ) with node numbering indicated as shown. The
local node numbering i′ = 1, . . . , 4, is used in the figure on the left and the x1

direction (the infinite element direction) points out of the plane of the page.

and

ζ(x3) =
2

∆x3

(
|x3 − x3j′| −

∆x3

2

)
.

Hence the Ni′ have value 1 at node i′ and value 0 at all other nodes, and the

Ni′ form a continuous function whose support is in the elements of which node i′
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Figure 3.7: Local coordinate ξ is plotted as a function of global coordinate x1.
The other local coordinates η(x2) and ζ(x3) follow similarly.

is a vertex. Hence, from equation (3.37)

∂Nj′

∂ξ
=
ξj′

8
(1 + ηηj′) (1 + ζζj′) , (3.40)

and from equation (3.39)

∂ξ

∂x1

=
2

∆x1

.

Then

∂Nj′

∂x1

=
∂Nj′

∂ξ

∂ξ

∂x1

=
2

∆x1

∂Nj′

∂ξ
. (3.41)

Similarly

∂Nj′

∂x2

=
2

∆x2

∂Nj′

∂η
,

∂Nj′

∂x3

=
2

∆x3

∂Nj′

∂ζ
,

∂gj′

∂x2

=
2

∆x2

∂gj′

∂η
,

∂gj′

∂x3

=
2

∆x3

∂gj′

∂ζ
,

(3.42)

and similarly

∂η

∂x2

=
2

∆x2

and
∂ζ

∂x3

=
2

∆x3

. (3.43)
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The integrals over the finite part of the domain, ΩF , are then split into integrals

over each finite element, ΩFE, and the integrals over the infinite part of the domain,

ΩI , are split into integrals over each infinite element, ΩIE. These integrals will later

be recombined such that
∑

FE

(∫
ΩFE

dΩFE

)
=
∫

ΩF
dΩF and

∑
IE

(∫
ΩIE

dΩIE

)
=∫

ΩI
dΩI . Equations (3.41)-(3.43) will therefore be needed to evaluate the integrals

over the finite elements or infinite elements.

So, switching to the local coordinate system as shown in figure 3.4, from the

left-hand side of equations (3.31)-(3.33) with s = 1, define for each finite element

(in ΩF )

A
(F )
1i′ =

8∑
j′=1

{
−iωρ

∫
ΩFE

Ni′Nj′dΩFE p̂j′

+

∫
ΩFE

{
∂Ni′

∂x1

Nj′ γ̂1j′ +
∂Ni′

∂x2

Nj′ γ̂6j′ +
∂Ni′

∂x3

Nj′ γ̂5j′

}
dΩFE

}
(i′ = 1, . . . , 8),

(3.44)

A
(F )
2i′ =

8∑
j′=1

{
−iωρ

∫
ΩFE

Ni′Nj′dΩFE q̂j′

+

∫
ΩFE

{
∂Ni′

∂x1

Nj′ γ̂6j′ +
∂Ni′

∂x2

Nj′ γ̂2j′ +
∂Ni′

∂x3

Nj′ γ̂4j′

}
dΩFE

}
(i′ = 1, . . . , 8),

(3.45)

A
(F )
3i′ =

8∑
j′=1

{
−iωρ

∫
ΩFE

Ni′Nj′dΩFE r̂j′

+

∫
ΩFE

{
∂Ni′

∂x1

Nj′ γ̂5j′ +
∂Ni′

∂x2

Nj′ γ̂4j′ +
∂Ni′

∂x3

Nj′ γ̂3j′

}
dΩFE

}
(i′ = 1, . . . , 8),

(3.46)
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and from the right-hand side of equations (3.31)-(3.33) (taking the negative in

order to emphasise the similarity with the finite element case), define for each

infinite element (in ΩI)

A
(I)
1i′ =

4∑
j′=1

{
−iωρ

∫
ΩIE

wi′fj′gi′gj′dΩIEsp̂j′

− 1

c̄

(
λ+ 4µ

s
p̂j′ +

λ+ µ

s
q̂j′ +

λ+ µ

s
r̂j′

)∫
ΓX

wi′fj′gi′gj′dΓX

− ε

−iωs
(3λ+ 6µ)

∫
ΓX

wi′gi′dΓX

+

∫
ΩIE

{
∂wi′

∂x1

fj′gi′gj′ γ̂1j′ + wi′fj′
∂gi′

∂x2

gj′ γ̂6j′ + wi′fj′
∂gi′

∂x3

gj′ γ̂5j′

}
dΩIE

}
(i′ = 1, . . . , 4),

(3.47)

A
(I)
2i′ =

4∑
j′=1

{
−iωρ

∫
ΩIE

wi′fj′gi′gj′dΩIEsq̂j′

− 1

c̄

(
λ+ 4µ

s
q̂j′ +

λ+ µ

s
p̂j′ +

λ+ µ

s
r̂j′

)∫
ΓX

wi′fj′gi′gj′dΓX

− ε

−iωs
(3λ+ 6µ)

∫
ΓX

wi′gi′dΓX

+

∫
ΩIE

{
∂wi′

∂x1

fj′gi′gj′ γ̂6j′ + wi′fj′
∂gi′

∂x2

gj′ γ̂2j′ + wi′fj′
∂gi′

∂x3

gj′ γ̂4j′

}
dΩIE

}
(i′ = 1, . . . , 4),

(3.48)
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A
(I)
3i′ =

4∑
j′=1

{
−iωρ

∫
ΩIE

wi′fj′gi′gj′dΩIEsr̂j′

− 1

c̄

(
λ+ 4µ

s
r̂j′ +

λ+ µ

s
p̂j′ +

λ+ µ

s
q̂j′

)∫
ΓX

wi′fj′gi′gj′dΓX

− ε

−iωs
(3λ+ 6µ)

∫
ΓX

wi′gi′dΓX

+

∫
ΩIE

{
∂wi′

∂x1

fj′gi′gj′ γ̂5j′ + wi′fj′
∂gi′

∂x2

gj′ γ̂4j′ + wi′fj′
∂gi′

∂x3

gj′ γ̂3j′

}
dΩIE

}
(i′ = 1, . . . , 4).

(3.49)

The integrals that must be evaluated are then (using equation (3.43))

∫
ΩFE

Ni′Nj′dΩFE =

∫ 1

−1

∫ 1

−1

∫ 1

−1

1

8
(1 + ξξi′)(1 + ηηi′)(1 + ζζi′)

× 1

8
(1 + ξξj′)(1 + ηηj′)(1 + ζζj′)

× ∆x1∆x2∆x3

8
dξdηdζ

=
∆x1∆x2∆x3

512

∫ 1

−1

(1 + ξξi′) (1 + ξξj′) dξ

×
∫ 1

−1

(1 + ηηi′) (1 + ηηj′) dη

×
∫ 1

−1

(1 + ζζi′) (1 + ζζj′) dζ

=
∆x1∆x2∆x3

512

[
ξ +

ξ2

2
(ξi′ + ξj′) +

ξ3

3
ξi′ξj′

]1

−1

×
[
η +

η2

2
(ηi′ + ηj′) +

η3

3
ηi′ηj′

]1

−1

×
[
ζ +

ζ2

2
(ζi′ + ζj′) +

ζ3

3
ζi′ζj′

]1

−1

=
∆x1∆x2∆x3

512

(
2 +

2ξi′ξj′

3

)(
2 +

2ηi′ηj′

3

)(
2 +

2ζi′ζj′

3

)
=

∆x1∆x2∆x3

64

(
1 +

ξi′ξj′

3

)(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
, (3.50)
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and using equations (3.42), (3.37) and (3.40),

∫
ΩFE

∂Ni′

∂x1

Nj′dΩFE =

∫ 1

−1

∫ 1

−1

∫ 1

−1

2

∆x1

∂Ni′

∂ξ
Nj′

∆x1∆x2∆x3

8
dξdηdζ

=

∫ 1

−1

∫ 1

−1

∫ 1

−1

ξi′

8
(1 + ηηi′)(1 + ζζi′)

× 1

8
(1 + ξξj′)(1 + ηηj′)(1 + ζζj′)

× ∆x2∆x3

4
dξdηdζ

=
∆x2∆x3

32
ξi

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
. (3.51)

Similarly,

∫
ΩFE

∂Ni′

∂x2

Nj′dΩFE =
∆x1∆x3

32
ηi

(
1 +

ξi′ξj′

3

)(
1 +

ζi′ζj′

3

)
, (3.52)

and

∫
ΩFE

∂Ni′

∂x3

Nj′dΩFE =
∆x1∆x2

32
ζi′

(
1 +

ξi′ξj′

3

)(
1 +

ηi′ηj′

3

)
. (3.53)

That takes care of equations (3.44) to (3.46) and using equations (3.35), (3.36),
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(3.38) and (3.43), for equation (3.47) gives

∫
ΩIE

wi′fj′gi′gj′dΩIE = lim
X1→∞

∫ X1

L1

(
L1

x1

)4

dx1

∫ 1

−1

∫ 1

−1

1

4
(1 + ηηi′) (1 + ζζi′)

× 1

4
(1 + ηηj′) (1 + ζζj′)

× ∆x2∆x3

4
dηdζ

=
∆x2∆x3

64

(
2 +

2ηi′ηj′

3

)(
2 +

2ζi′ζj′

3

)
lim

X1→∞

[
− L4

1

3x3
1

]X1

L1

=
∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
lim

X1→∞

(
− L4

1

3X3
1

+
L1

3

)
=

∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
L1

3
. (3.54)

Also

∫
ΓX

wi′fj′gi′gj′dΓX = lim
X1→∞

wi′(X1)fj′(X1)

∫ 1

−1

∫ 1

−1

gi′gj′
∆x2∆x3

4
dηdζ

=
∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
lim

X1→∞

(
L1

X1

)4

=0, (3.55)

and

∫
ΓX

wi′gi′dΓX = lim
X1→∞

wi′(X1)

∫ 1

−1

∫ 1

−1

gi′
∆x2∆x3

4
dηdζ

=
∆x2∆x3

4
lim

X1→∞

(
L1

X1

)3

eik̄(X1−L1)

=0, (3.56)
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and, by differentiating equation (3.38),

∫
ΩIE

∂wi′

∂x1

fj′gi′gj′dΩIE = lim
X1→∞

∫ X1

L1

(
L1

x1

)4(
ik̄ − 1

x1

)
dx1

×
∫ 1

−1

∫ 1

−1

gi′gj′
∆x2∆x3

4
dηdζ

=
∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
× lim

X1→∞

[
−ik̄L

4
1

3x3
1

+
L4

1

4x4
1

]X1

L1

=
∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
× lim

X1→∞

(
−ik̄L

4
1

3X3
1

+
L4

1

4X4
1

+
ik̄L1

3
− 1

4

)
=

∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)(
ik̄L1

3
− 1

4

)
. (3.57)

Finally, from differentiating equation (3.36), from equations (3.42) and (3.43), and

following a similar derivation to that in equation (3.54),

∫
ΩIE

wi′fj′
∂gi′

∂x2

gj′dΩIE =
L1

3

∫ 1

−1

∫ 1

−1

∂gi′

∂η
gj′

∆x3

2
dηdζ

=
L1

3

∆x3

8
ηi

(
1 +

ζi′ζj′

3

)
, (3.58)

and

∫
ΩIE

wi′fj′
∂gi′

∂x3

gj′dΩIE =
L1

3

∆x2

8
ζi′
(

1 +
ηi′ηj′

3

)
. (3.59)

Then from equations (3.44)-(3.46) with the integrals given by equations (3.50)-
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(3.53), for each finite element

A
(F )
1i′ =

8∑
j′=1

{
−iωρ∆x1∆x2∆x3

64

(
1 +

ξi′ξj′

3

)(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
p̂j′

+
∆x2∆x3

32
ξi′
(

1 +
ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
γ̂1j′

+
∆x1∆x3

32
ηi′

(
1 +

ξi′ξj′

3

)(
1 +

ζi′ζj′

3

)
γ̂6j′

+
∆x1∆x2

32
ζi′

(
1 +

ξi′ξj′

3

)(
1 +

ηi′ηj′

3

)
γ̂5j′

}
(i′ = 1, . . . , 8),

(3.60)

A
(F )
2i′ =

8∑
j′=1

{
−iωρ∆x1∆x2∆x3

64

(
1 +

ξi′ξj′

3

)(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
q̂j′

+
∆x2∆x3

32
ξi′
(

1 +
ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
γ̂6j′

+
∆x1∆x3

32
ηi′

(
1 +

ξi′ξj′

3

)(
1 +

ζi′ζj′

3

)
γ̂2j′

+
∆x1∆x2

32
ζi′

(
1 +

ξi′ξj′

3

)(
1 +

ηi′ηj′

3

)
γ̂4j′

}
(i′ = 1, . . . , 8),

(3.61)
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A
(F )
3i′ =

8∑
j′=1

{
−iωρ∆x1∆x2∆x3

64

(
1 +

ξi′ξj′

3

)(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
r̂j′

+
∆x2∆x3

32
ξi′
(

1 +
ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
γ̂5j′

+
∆x1∆x3

32
ηi′

(
1 +

ξi′ξj′

3

)(
1 +

ζi′ζj′

3

)
γ̂4j′

+
∆x1∆x2

32
ζi′

(
1 +

ξi′ξj′

3

)(
1 +

ηi′ηj′

3

)
γ̂3j′

}
(i′ = 1, . . . , 8),

(3.62)

and from equations (3.47)-(3.49) with integrals given by equations (3.54)-(3.59),

for each infinite element

A
(I)
1i′ =

4∑
j′=1

{
−iωρ∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
L1

3
sp̂j′

+
∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)(
ik̄L1

3
− 1

4

)
γ̂1j′

+
L1

3

∆x3

8
ηi′

(
1 +

ζi′ζj′

3

)
γ̂6j′

+
L1

3

∆x2

8
ζi′
(

1 +
ηi′ηj′

3

)
γ̂5j′

}
(i′ = 1, . . . , 4), (3.63)
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A
(I)
2i′ =

4∑
j′=1

{
−iωρ∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
L1

3
sq̂j′

+
∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)(
ik̄L1

3
− 1

4

)
γ̂6j′

+
L1

3

∆x3

8
ηi′

(
1 +

ζi′ζj′

3

)
γ̂2j′

+
L1

3

∆x2

8
ζi′
(

1 +
ηi′ηj′

3

)
γ̂4j′

}
(i′ = 1, . . . , 4), (3.64)

A
(I)
3i′ =

4∑
j′=1

{
−iωρ∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
L1

3
sr̂j′

+
∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)(
ik̄L1

3
− 1

4

)
γ̂5j′

+
L1

3

∆x3

8
ηi′

(
1 +

ζi′ζj′

3

)
γ̂4j′

+
L1

3

∆x2

8
ζi′
(

1 +
ηi′ηj′

3

)
γ̂3j′

}
(i′ = 1, . . . , 4). (3.65)

The assumption is made that the stress components at a local node i′, given

by γ̂ni′ for n = 1, . . . , 6, is equal to the stress components at local node j′, given by

γ̂nj′ for n = 1, . . . , 6, when nodes i′ and j′ belong to the same element. Therefore

γ̂ni′ = γ̂nj′ ≡ ψ̂n i′, j′ ∈ Ωe

where Ωe is either a finite or infinite element. Then γ̂ni′ , the stress components

at a local node i′, can be replaced by ψ̂n, the stress component for the element

under consideration. Now expanding the summations in equations (3.60)-(3.65)

with (ξi′ , ηi′ , ζi′) and (ξj′ , ηj′ , ζj′) given as in figure 3.4 for the finite elements and
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in figure 3.6 for the infinite elements yields,

8∑
j′=1

(
1 +

ξi′ξj′

3

)(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
p̂j′

=



1

27
(64p̂1 + 32p̂2 + 16p̂3 + 32p̂4 + 32p̂5 + 16p̂6 + 8p̂7 + 16p̂8) i′ = 1,

1

27
(32p̂1 + 64p̂2 + 32p̂3 + 16p̂4 + 16p̂5 + 32p̂6 + 16p̂7 + 8p̂8) i′ = 2,

1

27
(16p̂1 + 32p̂2 + 64p̂3 + 32p̂4 + 8p̂5 + 16p̂6 + 32p̂7 + 16p̂8) i′ = 3,

1

27
(32p̂1 + 16p̂2 + 32p̂3 + 64p̂4 + 16p̂5 + 8p̂6 + 16p̂7 + 32p̂8) i′ = 4,

1

27
(32p̂1 + 16p̂2 + 8p̂3 + 16p̂4 + 64p̂5 + 32p̂6 + 16p̂7 + 32p̂8) i′ = 5,

1

27
(16p̂1 + 32p̂2 + 16p̂3 + 8p̂4 + 32p̂5 + 64p̂6 + 32p̂7 + 16p̂8) i′ = 6,

1

27
(8p̂1 + 16p̂2 + 32p̂3 + 16p̂4 + 16p̂5 + 32p̂6 + 64p̂7 + 32p̂8) i′ = 7,

1

27
(16p̂1 + 8p̂2 + 16p̂3 + 32p̂4 + 32p̂5 + 16p̂6 + 32p̂7 + 64p̂8) i′ = 8,

8∑
j′=1

ξi′
(

1 +
ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
=


−8 i′ ∈ {1, 2, 5, 6},

8 i′ ∈ {3, 4, 7, 8},

8∑
j′=1

ηi′

(
1 +

ξi′ξj′

3

)(
1 +

ζi′ζj′

3

)
=


−8 i′ ∈ {1, 4, 5, 8},

8 i′ ∈ {2, 3, 6, 7},

8∑
j′=1

ζi′

(
1 +

ξi′ξj′

3

)(
1 +

ηi′ηj′

3

)
=


−8 i′ ∈ {1, 2, 3, 4},

8 i′ ∈ {5, 6, 7, 8},
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4∑
j′=1

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
p̂j′ =



1

9
(16p̂1 + 8p̂2 + 4p̂3 + 8p̂4) i′ = 1,

1

9
(8p̂1 + 16p̂2 + 8p̂3 + 4p̂4) i′ = 2,

1

9
(4p̂1 + 8p̂2 + 16p̂3 + 8p̂4) i′ = 3,

1

9
(8p̂1 + 4p̂2 + 8p̂3 + 16p̂4) i′ = 4,

4∑
j′=1

ηi′

(
1 +

ζi′ζj′

3

)
=


−4 i′ ∈ {1, 4},

4 i′ ∈ {2, 3},

4∑
j′=1

ζi′
(

1 +
ηi′ηj′

3

)
=


−4 i′ ∈ {1, 2},

4 i′ ∈ {3, 4},

and therefore, for each finite element, for example

A
(F )
11 =

ρ∆x1∆x2∆x3

216
(−iω) (8p̂1 + 4p̂2 + 2p̂3 + 4p̂4 + 4p̂5 + 2p̂6 + p̂7 + 2p̂8)

+ χ0,2
1

∆x2∆x3

4
ψ̂1 + χ1,2

1

∆x1∆x3

4
ψ̂6 + χ0,4

1

∆x1∆x2

4
ψ̂5, (3.66)

with similar expressions for A
(F )
12 , . . . , A

(F )
18 , and for each infinite element, for ex-

ample

A
(I)
11 =

ρ∆x2∆x3L1

108
(−iωs) (4p̂1 + 2p̂2 + p̂3 + 2p̂4)

+
∆x2∆x3

4

(
ik̄L1

3
− 1

4

)
ψ̂1 + χ1,2

1

∆x3L1

6
ψ̂6 + χ0,2

1

∆x2L1

6
ψ̂5, (3.67)

with similar expressions for A
(I)
12 , . . . , A

(I)
14 . For computational speed we want to

derive an explicit scheme to solve the discretised elastodynamic equations. Equa-

tions (3.60) to (3.62) form the discretised version of the left hand side of equations
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(3.31) to (3.33) and in their current form will lead to an implicit set of algebraic

equations in the unknowns. Deriving an explicit scheme would then require the

inversion of a very large coefficient matrix which could only be conducted numer-

ically and would be computationally expensive. One approach is to approximate

this matrix by a diagonal one whose inversion can then be conducted by hand

calculation. This approximation is made by performing mass lumping”, that is

to say, summing the entries within a row of the velocity coefficient matrix and

replacing the diagonal entry with this sum, setting all other entries to zero. This

approximation is predicated on the assumption that there are no sharp changes in

the velocities and so adjacent nodes have very similar values and hence one can

approximate the value at one node by the value at its neighbour. Then for each

finite element

A
(F )
1i′ =

ρ∆x1∆x2∆x3

8
(−iωp̂i′)

+ χ0,2
i′

∆x2∆x3

4
ψ̂1 + χ1,2

i′
∆x1∆x3

4
ψ̂6 + χ0,4

i′
∆x1∆x2

4
ψ̂5 (i′ = 1, . . . , 8),

(3.68)

A
(F )
2i′ =

ρ∆x1∆x2∆x3

8
(−iωq̂i′)

+ χ0,2
i′

∆x2∆x3

4
ψ̂6 + χ1,2

i′
∆x1∆x3

4
ψ̂2 + χ0,4

i′
∆x1∆x2

4
ψ̂4 (i′ = 1, . . . , 8),

(3.69)

A
(F )
3i′ =

ρ∆x1∆x2∆x3

8
(−iωr̂i′)

+ χ0,2
i′

∆x2∆x3

4
ψ̂5 + χ1,2

i′
∆x1∆x3

4
ψ̂4 + χ0,4

i′
∆x1∆x2

4
ψ̂3 (i′ = 1, . . . , 8),

(3.70)
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and for each infinite element

A
(I)
1i′ =

ρ∆x2∆x3L1

12
(−iωsp̂i′)

+
∆x2∆x3

4

(
ik̄L1

3
− 1

4

)
ψ̂1 + χ1,2

i′
∆x3L1

6
ψ̂6 + χ0,2

i′
∆x2L1

6
ψ̂5 (i′ = 1, . . . , 4),

(3.71)

A
(I)
2i′ =

ρ∆x2∆x3L1

12
(−iωsq̂i′)

+
∆x2∆x3

4

(
ik̄L1

3
− 1

4

)
ψ̂6 + χ1,2

i′
∆x3L1

6
ψ̂2 + χ0,2

i′
∆x2L1

6
ψ̂4 (i′ = 1, . . . , 4),

(3.72)

A
(I)
3i′ =

ρ∆x2∆x3L1

12
(−iωsr̂i′)

+
∆x2∆x3

4

(
ik̄L1

3
− 1

4

)
ψ̂5 + χ1,2

i′
∆x3L1

6
ψ̂4 + χ0,2

i′
∆x2L1

6
ψ̂3 (i′ = 1, . . . , 4),

(3.73)

where

χm,ni′ = (−1)ϕ with ϕ =

⌈
i′ +m

2n

⌉
, (3.74)

and where d·e denotes the ceiling function.

Now substituting for s(ω) in equations (3.71)-(3.73) using equation (3.6) and

taking inverse Fourier transforms in time of equations (3.68)-(3.73) gives, for each

84



finite element

A
(F )
1i′ =

ρ∆x1∆x2∆x3

8
ṗi′

+ χ0,2
i′

∆x2∆x3

4
ψ1 + χ1,2

i′
∆x1∆x3

4
ψ6 + χ0,4

i′
∆x1∆x2

4
ψ5 (i′ = 1, . . . , 8),

(3.75)

A
(F )
2i′ =

ρ∆x1∆x2∆x3

8
q̇i′

+ χ0,2
i′

∆x2∆x3

4
ψ6 + χ1,2

i′
∆x1∆x3

4
ψ2 + χ0,4

i′
∆x1∆x2

4
ψ4 (i′ = 1, . . . , 8),

(3.76)

A
(F )
3i′ =

ρ∆x1∆x2∆x3

8
ṙi′

+ χ0,2
i′

∆x2∆x3

4
ψ5 + χ1,2

i′
∆x1∆x3

4
ψ4 + χ0,4

i′
∆x1∆x2

4
ψ3 (i′ = 1, . . . , 8),

(3.77)

and for each infinite element

A
(I)
1i′ =

ρ∆x2∆x3L1

12
α (ṗi′ + βpi′)

− ∆x2∆x3

4

(
L1

3c̄
ψ̇1 +

1

4
ψ1

)
+ χ1,2

i′
∆x3L1

6
ψ6 + χ0,2

i′
∆x2L1

6
ψ5 (i′ = 1, . . . , 4),

(3.78)

A
(I)
2i′ =

ρ∆x2∆x3L1

12
α (q̇i′ + βqi′)

− ∆x2∆x3

4

(
L1

3c̄
ψ̇6 +

1

4
ψ6

)
+ χ1,2

i′
∆x3L1

6
ψ2 + χ0,2

i′
∆x2L1

6
ψ4 (i′ = 1, . . . , 4),

(3.79)
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A
(I)
3i′ =

ρ∆x2∆x3L1

12
α (ṙi′ + βri′)

− ∆x2∆x3

4

(
L1

3c̄
ψ̇5 +

1

4
ψ5

)
+ χ1,2

i′
∆x3L1

6
ψ4 + χ0,2

i′
∆x2L1

6
ψ3 (i′ = 1, . . . , 4).

(3.80)

3.4.2 The stress equations

Now from the stress equation (3.10) with equations (3.15)-(3.20)

∫
Ω

−iωσ̂1wdΩ =

∫
Ω

{
λ+ 2µ

s1

∂p̂

∂x1

+
λ

s2

∂q̂

∂x2

+
λ

s3

∂r̂

∂x3

}
wdΩ, (3.81)∫

Ω

−iωσ̂2wdΩ =

∫
Ω

{
λ

s1

∂p̂

∂x1

+
λ+ 2µ

s2

∂q̂

∂x2

+
λ

s3

∂r̂

∂x3

}
wdΩ, (3.82)∫

Ω

−iωσ̂3wdΩ =

∫
Ω

{
λ

s1

∂p̂

∂x1

+
λ

s2

∂q̂

∂x2

+
λ+ 2µ

s3

∂r̂

∂x3

}
wdΩ, (3.83)∫

Ω

−iωσ̂4wdΩ =

∫
Ω

{
µ

s2

∂r̂

∂x2

+
µ

s3

∂q̂

∂x3

}
wdΩ, (3.84)∫

Ω

−iωσ̂5wdΩ =

∫
Ω

{
µ

s1

∂r̂

∂x1

+
µ

s3

∂p̂

∂x3

}
wdΩ, (3.85)∫

Ω

−iωσ̂6wdΩ =

∫
Ω

{
µ

s1

∂q̂

∂x1

+
µ

s2

∂p̂

∂x2

}
wdΩ. (3.86)

Then with the solution expressed in terms of the basis function expansion in equa-

tions (3.24) and (3.25), with the basis functions and test functions given by equa-

tions (3.26) and (3.27), assuming as before that s = 1 in ΩF and s1 = s2 = s3 ≡ s
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in ΩI , and multiplying throughout by s, from equations (3.81)-(3.86)

N∑
j=1

{∫
ΩF

−iωNiNj γ̂1jdΩF

−
∫

ΩF

{
(λ+ 2µ)Ni

∂Nj

∂x1

p̂j + λNi
∂Nj

∂x2

q̂j + λNi
∂Nj

∂x3

r̂j

}
dΩF

}
=

N∑
j=1

{∫
ΩI

{
(λ+ 2µ)wi

∂fj
∂x1

gigj p̂j + λwifjgi
∂gj
∂x2

q̂j + λwifjgi
∂gj
∂x3

r̂j

}
dΩI

−
∫

ΩI

−iωwifjgigjsγ̂1jdΩI

}
(i = 1, . . . , N), (3.87)

N∑
j=1

{∫
ΩF

−iωNiNj γ̂2jdΩF

−
∫

ΩF

{
λNi

∂Nj

∂x1

p̂j + (λ+ 2µ)Ni
∂Nj

∂x2

q̂j + λNi
∂Nj

∂x3

r̂j

}
dΩF

}
=

N∑
j=1

{∫
ΩI

{
λwi

∂fj
∂x1

gigj p̂j + (λ+ 2µ)wifjgi
∂gj
∂x2

q̂j + λwifjgi
∂gj
∂x3

r̂j

}
dΩI

−
∫

ΩI

−iωwifjgigjsγ̂2jdΩI

}
(i = 1, . . . , N), (3.88)

N∑
j=1

{∫
ΩF

−iωNiNj γ̂3jdΩF

−
∫

ΩF

{
λNi

∂Nj

∂x1

p̂j + λNi
∂Nj

∂x2

q̂j + (λ+ 2µ)Ni
∂Nj

∂x3

r̂j

}
dΩF

}
=

N∑
j=1

{∫
ΩI

{
λwi

∂fj
∂x1

gigj p̂j + λwifjgi
∂gj
∂x2

q̂j + (λ+ 2µ)wifjgi
∂gj
∂x3

r̂j

}
dΩI

−
∫

ΩI

−iωwifjgigjsγ̂3jdΩI

}
(i = 1, . . . , N), (3.89)
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N∑
j=1

{∫
ΩF

−iωNiNj γ̂4jdΩF −
∫

ΩF

{
µNi

∂Nj

∂x2

r̂j + µNi
∂Nj

∂x3

q̂j

}
dΩF

}

=
N∑
j=1

{∫
ΩI

{
µwifjgi

∂gj
∂x2

r̂j + µwifjgi
∂gj
∂x3

q̂j

}
dΩI

−
∫

ΩI

−iωwifjgigjsγ̂4jdΩI

}
(i = 1, . . . , N), (3.90)

N∑
j=1

{∫
ΩF

−iωNiNj γ̂5jdΩF −
∫

ΩF

{
µNi

∂Nj

∂x1

r̂j + µNi
∂Nj

∂x3

p̂j

}
dΩF

}

=
N∑
j=1

{∫
ΩI

{
µwi

∂fj
∂x1

gigj r̂j + µwifjgi
∂gj
∂x3

p̂j

}
dΩI

−
∫

ΩI

−iωwifjgigjsγ̂5jdΩI

}
(i = 1, . . . , N), (3.91)

N∑
j=1

{∫
ΩF

−iωNiNj γ̂6jdΩF −
∫

ΩF

{
µNi

∂Nj

∂x1

q̂j + µNi
∂Nj

∂x2

p̂j

}
dΩF

}

=
N∑
j=1

{∫
ΩI

{
µwi

∂fj
∂x1

gigj q̂j + µwifjgi
∂gj
∂x2

p̂j

}
dΩI

−
∫

ΩI

−iωwifjgigjsγ̂6jdΩI

}
(i = 1, . . . , N). (3.92)

Proceeding as before in treating these equations element by element in the local

coordinate system (ξ, η, ζ) with local node numbering (i′, j′), then, given the choice

of basis functions in equations (3.34)-(3.36) and test functions in equations (3.37)

and (3.38), from the left-hand side of equation (3.87) with the integrals in equations
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(3.50), (3.51), and (3.57)-(3.59), define for each finite element

B
(F )
1i′ =

8∑
j′=1

{
∆x1∆x2∆x3

64

(
1 +

ξi′ξj′

3

)(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
(−iωγ̂1j′)

− (λ+ 2µ)
∆x2∆x3

32
ξj′
(

1 +
ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
p̂j′

− λ∆x1∆x3

32
ηj′

(
1 +

ξi′ξj′

3

)(
1 +

ζi′ζj′

3

)
q̂j′

−λ∆x1∆x2

32
ζj′

(
1 +

ξi′ξj′

3

)(
1 +

ηi′ηj′

3

)
r̂j′

}
(i′ = 1, . . . , 8).

Again, since time derivatives of γnj′ will otherwise result, in order to provide an

explicit scheme the assumption is made that γ̂ni′ = γ̂nj′ ≡ ψ̂n when i′, j′ are nodes

of the same element, then expanding the summations over j′ gives

B
(F )
1 =∆x1∆x2∆x3(−iωψ̂1)

− (λ+ 2µ)
∆x2∆x3

4
(−p̂1 − p̂2 + p̂3 + p̂4 − p̂5 − p̂6 + p̂7 + p̂8)

− λ∆x1∆x3

4
(−q̂1 + q̂2 + q̂3 − q̂4 − q̂5 + q̂6 + q̂7 − q̂8)

− λ∆x1∆x2

4
(−r̂1 − r̂2 − r̂3 − r̂4 + r̂5 + r̂6 + r̂7 + r̂8).

Therefore

B
(F )
1

∆x1∆x2∆x3

=− iωψ̂1 −
λ+ 2µ

4∆x1

(−p̂1 − p̂2 + p̂3 + p̂4 − p̂5 − p̂6 + p̂7 + p̂8)

− λ

4∆x2

(−q̂1 + q̂2 + q̂3 − q̂4 − q̂5 + q̂6 + q̂7 − q̂8)

− λ

4∆x3

(−r̂1 − r̂2 − r̂3 − r̂4 + r̂5 + r̂6 + r̂7 + r̂8). (3.93)

89



Then in the same way, from equations (3.88)-(3.92),

B
(F )
2

∆x1∆x2∆x3

=− iωψ̂2 −
λ

4∆x1

(−p̂1 − p̂2 + p̂3 + p̂4 − p̂5 − p̂6 + p̂7 + p̂8)

− λ+ 2µ

4∆x2

(−q̂1 + q̂2 + q̂3 − q̂4 − q̂5 + q̂6 + q̂7 − q̂8)

− λ

4∆x3

(−r̂1 − r̂2 − r̂3 − r̂4 + r̂5 + r̂6 + r̂7 + r̂8), (3.94)

B
(F )
3

∆x1∆x2∆x3

=− iωψ̂3 −
λ

4∆x1

(−p̂1 − p̂2 + p̂3 + p̂4 − p̂5 − p̂6 + p̂7 + p̂8)

− λ

4∆x2

(−q̂1 + q̂2 + q̂3 − q̂4 − q̂5 + q̂6 + q̂7 − q̂8)

− λ+ 2µ

4∆x3

(−r̂1 − r̂2 − r̂3 − r̂4 + r̂5 + r̂6 + r̂7 + r̂8), (3.95)

B
(F )
4

∆x1∆x2∆x3

=− iωψ̂4 −
µ

4∆x2

(r̂7 − r̂1 + r̂2 − r̂8 + r̂3 − r̂5 + r̂6 − r̂4)

− µ

4∆x3

(q̂7 − q̂1 + q̂8 − q̂2 + q̂5 − q̂3 + q̂6 − q̂4), (3.96)

B
(F )
5

∆x1∆x2∆x3

=− iωψ̂5 −
µ

4∆x1

(r̂7 − r̂1 + r̂8 − r̂2 + r̂3 − r̂5 + r̂4 − r̂6)

− µ

4∆x3

(p̂7 − p̂1 + p̂8 − p̂2 + p̂5 − p̂3 + p̂6 − p̂4), (3.97)

B
(F )
6

∆x1∆x2∆x3

=− iωψ̂6 −
µ

4∆x1

(q̂7 − q̂1 + q̂8 − q̂2 + q̂3 − q̂5 + q̂4 − q̂6)

− µ

4∆x2

(p̂7 − p̂1 + p̂2 − p̂8 + p̂3 − p̂5 + p̂6 − p̂4). (3.98)

Then from the right-hand side of equation (3.87) (again taking the negative to

emphasise the parallels with the finite element case), with the integrals in equations

(3.54) and (3.57)-(3.59), define for each infinite element

B
(I)
1i′ =

4∑
j′=1

∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
L1

3
(−iωsγ̂1j′)

− (λ+ 2µ)
∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)(
−ik̄L1

3
− 1

4

)
p̂j′

− λL1

3

∆x3

8
ηj′

(
1 +

ζi′ζj′

3

)
q̂j′ − λ

L1

3

∆x2

8
ζj′
(

1 +
ηi′ηj′

3

)
r̂j′ (i′ = 1, . . . , 4).
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Again, expanding the summation over j′ and summing over i′ = 1, . . . , 4 gives

B
(I)
1 =− iω∆x2∆x3L1

3
sψ̂1 − (λ+ 2µ)

∆x2∆x3

4

(
−ik̄L1

3
− 1

4

)
(p̂1 + p̂2 + p̂3 + p̂4)

− λ∆x3L1

6
(q̂3 − q̂1 + q̂2 − q̂4)− λ∆x2L1

6
(r̂3 − r̂1 + r̂4 − r̂2), (3.99)

and similarly from equations (3.88)-(3.92) we have

B
(I)
2 = −iω∆x2∆x3L1

3
sψ̂2 − λ

∆x2∆x3

4

(
−ik̄L1

3
− 1

4

)
(p̂1 + p̂2 + p̂3 + p̂4)

− (λ+ 2µ)
∆x3L1

6
(q̂3 − q̂1 + q̂2 − q̂4)

− λ∆x2L1

6
(r̂3 − r̂1 + r̂4 − r̂2), (3.100)

B
(I)
3 = −iω∆x2∆x3L1

3
sψ̂3 − λ

∆x2∆x3

4

(
−ik̄L1

3
− 1

4

)
(p̂1 + p̂2 + p̂3 + p̂4)

− λ∆x3L1

6
(q̂3 − q̂1 + q̂2 − q̂4)

− (λ+ 2µ)
∆x2L1

6
(r̂3 − r̂1 + r̂4 − r̂2), (3.101)

B
(I)
4 = −iω∆x2∆x3L1

3
sψ̂4 − µ

∆x3L1

6
(r̂3 − r̂1 + r̂2 − r̂4)

− µ∆x2L1

6
(q̂3 − q̂1 + q̂4 − q̂2), (3.102)

B
(I)
5 = −iω∆x2∆x3L1

3
sψ̂5 − µ

∆x2∆x3

4

(
−ik̄L1

3
− 1

4

)
(r̂1 + r̂2 + r̂3 + r̂4)

− µ∆x2L1

6
(p̂3 − p̂1 + p̂4 − p̂2), (3.103)

B
(I)
6 = −iω∆x2∆x3L1

3
sψ̂6 − µ

∆x2∆x3

4

(
−ik̄L1

3
− 1

4

)
(q̂1 + q̂2 + q̂3 + q̂4)

− µ∆x3L1

6
(p̂3 − p̂1 + p̂2 − p̂4). (3.104)

Now assuming, from equation (3.6), a form for the stretching function of

−iωs = −iωα + αβ,
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then taking inverse Fourier transforms in time of equations (3.93)-(3.98) gives, for

each finite element,

B
(F )
1

∆x1∆x2∆x3

=ψ̇1 −
λ+ 2µ

4∆x1

(p7 − p1 + p8 − p2 + p3 − p5 + p4 − p6)

− λ

4∆x2

(q7 − q1 + q2 − q8 + q3 − q5 + q6 − q4)

− λ

4∆x3

(r7 − r1 + r8 − r2 + r5 − r3 + r6 − r4), (3.105)

B
(F )
2

∆x1∆x2∆x3

=ψ̇2 −
λ

4∆x1

(p7 − p1 + p8 − p2 + p3 − p5 + p4 − p6)

− λ+ 2µ

4∆x2

(q7 − q1 + q2 − q8 + q3 − q5 + q6 − q4)

− λ

4∆x3

(r7 − r1 + r8 − r2 + r5 − r3 + r6 − r4), (3.106)

B
(F )
3

∆x1∆x2∆x3

=ψ̇3 −
λ

4∆x1

(p7 − p1 + p8 − p2 + p3 − p5 + p4 − p6)

− λ

4∆x2

(q7 − q1 + q2 − q8 + q3 − q5 + q6 − q4)

− λ+ 2µ

4∆x3

(r7 − r1 + r8 − r2 + r5 − r3 + r6 − r4), (3.107)

B
(F )
4

∆x1∆x2∆x3

=ψ̇4 −
µ

4∆x2

(r7 − r1 + r2 − r8 + r3 − r5 + r6 − r4)

− µ

4∆x3

(q7 − q1 + q8 − q2 + q5 − q3 + q6 − q4), (3.108)

B
(F )
5

∆x1∆x2∆x3

=ψ̇5 −
µ

4∆x1

(r7 − r1 + r8 − r2 + r3 − r5 + r4 − r6)

− µ

4∆x3

(p7 − p1 + p8 − p2 + p5 − p3 + p6 − p4), (3.109)

B
(F )
6

∆x1∆x2∆x3

=ψ̇6 −
µ

4∆x1

(q7 − q1 + q8 − q2 + q3 − q5 + q4 − q6)

− µ

4∆x2

(p7 − p1 + p2 − p8 + p3 − p5 + p6 − p4), (3.110)

and taking inverse Fourier transforms in time of equations (3.99)-(3.104) gives, for
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each infinite element,

B
(I)
1 =

∆x2∆x3L1α

3

(
ψ̇1 + βψ1

)
− (λ+ 2µ)∆x2∆x3

4

(
L1

3c̄
(ṗ1 + ṗ2 + ṗ3 + ṗ4)

−1

4
(p1 + p2 + p3 + p4)

)
− λ∆x3L1

6
(q3 − q1 + q2 − q4)

− λ∆x2L1

6
(r3 − r1 + r4 − r2) , (3.111)

B
(I)
2 =

∆x2∆x3L1α

3

(
ψ̇2 + βψ2

)
− λ∆x2∆x3

4

(
L1

3c̄
(ṗ1 + ṗ2 + ṗ3 + ṗ4)

−1

4
(p1 + p2 + p3 + p4)

)
− (λ+ 2µ)∆x3L1

6
(q3 − q1 + q2 − q4)

− λ∆x2L1

6
(r3 − r1 + r4 − r2) , (3.112)

B
(I)
3 =

∆x2∆x3L1α

3

(
ψ̇3 + βψ3

)
− λ∆x2∆x3

4

(
L1

3c̄
(ṗ1 + ṗ2 + ṗ3 + ṗ4)

−1

4
(p1 + p2 + p3 + p4)

)
− λ∆x3L1

6
(q3 − q1 + q2 − q4)

− (λ+ 2µ)∆x2L1

6
(r3 − r1 + r4 − r2) , (3.113)

B
(I)
4 =

∆x2∆x3L1α

3

(
ψ̇4 + βψ4

)
− µ∆x3L1

6
(r3 − r1 + r2 − r4)

− µ∆x2L1

6
(q3 − q1 + q4 − q2), (3.114)

B
(I)
5 =

∆x2∆x3L1α

3

(
ψ̇5 + βψ5

)
− µ∆x2∆x3

4

(
L1

3c̄
(ṙ1 + ṙ2 + ṙ3 + ṙ4)

−1

4
(r1 + r2 + r3 + r4)

)
− µ∆x2L1

6
(p3 − p1 + p4 − p2) , (3.115)

B
(I)
6 =

∆x2∆x3L1α

3

(
ψ̇6 + βψ6

)
− µ∆x2∆x3

4

(
L1

3c̄
(q̇1 + q̇2 + q̇3 + q̇4)

−1

4
(q1 + q2 + q3 + q4)

)
− µ∆x3L1

6
(p3 − p1 + p2 − p4) . (3.116)

For the infinite elements, both velocity and stress time derivatives appear so

closer inspection is required of the system in order to find an explicit form. It

must also be remembered that since the velocity equations will be recombined

at a global level, whatever manipulation is done to the finite element equations
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must also be done to the infinite element equations and vice versa. The system of

equations (3.78)-(3.80) and (3.111)-(3.116) can be written in matrix form as

M1ṗ = M2p (3.117)

where

M1 =



C1 0 0 0 0 0 0 0 0 0 0 0 C2 0 0 0 0 0
0 C1 0 0 0 0 0 0 0 0 0 0 C2 0 0 0 0 0
0 0 C1 0 0 0 0 0 0 0 0 0 C2 0 0 0 0 0
0 0 0 C1 0 0 0 0 0 0 0 0 C2 0 0 0 0 0
0 0 0 0 C1 0 0 0 0 0 0 0 0 0 0 0 0 C2
0 0 0 0 0 C1 0 0 0 0 0 0 0 0 0 0 0 C2
0 0 0 0 0 0 C1 0 0 0 0 0 0 0 0 0 0 C2
0 0 0 0 0 0 0 C1 0 0 0 0 0 0 0 0 0 C2
0 0 0 0 0 0 0 0 C1 0 0 0 0 0 0 0 C2 0
0 0 0 0 0 0 0 0 0 C1 0 0 0 0 0 0 C2 0
0 0 0 0 0 0 0 0 0 0 C1 0 0 0 0 0 C2 0
0 0 0 0 0 0 0 0 0 0 0 C1 0 0 0 0 C2 0
D2 D2 D2 D2 0 0 0 0 0 0 0 0 D1 0 0 0 0 0
D3 D3 D3 D3 0 0 0 0 0 0 0 0 0 D1 0 0 0 0
D3 D3 D3 D3 0 0 0 0 0 0 0 0 0 0 D1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D1 0 0
0 0 0 0 0 0 0 0 D4 D4 D4 D4 0 0 0 0 D1 0
0 0 0 0 D4 D4 D4 D4 0 0 0 0 0 0 0 0 0 D1


, (3.118)

with

C1 =ρ
∆x2∆x3L1

12
α,

C2 =− ∆x2∆x3L1

12c̄
,

D1 =
∆x2∆x3L1

3
α,

D2 =− ∆x2∆x3L1(λ+ 2µ)

12c̄
,

D3 =− ∆x2∆x3L1λ

12c̄
,

D4 =− ∆x2∆x3L1µ

12c̄
,
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and where

M2 =



E1 0 0 0 0 0 0 0 0 0 0 0 E2 0 0 0 E3 E4
0 E1 0 0 0 0 0 0 0 0 0 0 E2 0 0 0 E3 −E4
0 0 E1 0 0 0 0 0 0 0 0 0 E2 0 0 0 −E3 −E4
0 0 0 E1 0 0 0 0 0 0 0 0 E2 0 0 0 −E3 E4
0 0 0 0 E1 0 0 0 0 0 0 0 0 E4 0 E3 0 E2
0 0 0 0 0 E1 0 0 0 0 0 0 0 −E4 0 E3 0 E2
0 0 0 0 0 0 E1 0 0 0 0 0 0 −E4 0 −E3 0 E2
0 0 0 0 0 0 0 E1 0 0 0 0 0 E4 0 −E3 0 E2
0 0 0 0 0 0 0 0 E1 0 0 0 0 0 E3 E4 E2 0
0 0 0 0 0 0 0 0 0 E1 0 0 0 0 E3 −E4 E2 0
0 0 0 0 0 0 0 0 0 0 E1 0 0 0 −E3 −E4 E2 0
0 0 0 0 0 0 0 0 0 0 0 E1 0 0 −E3 E4 E2 0
F2 F2 F2 F2 −F3 F3 F3 −F3 −F4 −F4 F4 F4 F1 0 0 0 0 0
F5 F5 F5 F5 −F6 F6 F6 −F6 −F4 −F4 F4 F4 0 F1 0 0 0 0
F5 F5 F5 F5 −F3 F3 F3 −F3 −F7 −F7 F7 F7 0 0 F1 0 0 0
0 0 0 0 −F9 −F9 F9 F9 −F8 F8 F8 −F8 0 0 0 F1 0 0
−F9 −F9 F9 F9 0 0 0 0 F10 F10 F10 F10 0 0 0 0 F1 0
−F8 F8 F8 −F8 F10 F10 F10 F10 0 0 0 0 0 0 0 0 0 F1


,

(3.119)

pT =

[
p1 p2 p3 p4 q1 q2 q3 q4 r1 r2 r3 r4 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

]
,

(3.120)
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with

E1 =− ρ∆x2∆x3L1

12
αβ,

E2 =
∆x2∆x3

16
,

E3 =
∆x2L1

6
,

E4 =
∆x3L1

6
,

F1 =− ∆x2∆x3L1

3
αβ,

F2 =− ∆x2∆x3(λ+ 2µ)

16
,

F3 =
∆x3L1λ

6
,

F4 =
∆x2L1λ

6
,

F5 =− ∆x2∆x3λ

16
,

F6 =
∆x3L1(λ+ 2µ)

6
,

F7 =
∆x2L1(λ+ 2µ)

6
,

F8 =
∆x3L1µ

6
,

F9 =
∆x2L1µ

6
,

F10 =− ∆x2∆x3µ

16
.

In order to provide an explicit scheme, matrix M1 must be diagonalised. To do

so, the entries must first be nondimensionalised. The first equation of the system

(3.117) will be considered, with rows two to twelve following similarly. So

C1ṗ1 + C2ψ̇1 = E1p1 + E2ψ1 + E3ψ5 + E4ψ6, (3.121)
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then taking the scalings

p1 = c̄p̃1, t = T t̃, ψi = µψ̃i

so

∂p1

∂t
=
∂(c̄p̃1)

∂(T t̃)
=

c̄

T

∂p̃1

∂t̃
=

c̄

T
p̃′1,

∂ψi
∂t

=
∂(µψ̃i)

∂(T t̃)
=
µ

T

∂ψ̃i

∂t̃
=
µ

T
ψ̃′i,

where ′ denotes ∂/∂t̃. Then

C1
c̄

T
p̃′1 + C2

µ

T
ψ̃′1 = E1c̄p̃1 + E2µψ̃1 + E3µψ̃5 + E4µψ̃6. (3.122)

Now the coefficients have dimensions

C1
c̄

T
=
ρ∆x2∆x3L1αc̄

12T
∼
[
ML−3L3LT−1

T

]
=
[
MLT−2

]
,

C2
µ

T
= −∆x2∆x3µ

12c̄T
∼
[
L3ML−1T−2

LT−1T

]
=
[
MLT−2

]
,

E1c̄ = −ρ∆x2∆x3L1αβc̄

12
∼
[
ML−3L3T−1LT−1

]
=
[
MLT−2

]
,

E2µ =
∆x2∆x3µ

16
∼
[
L2ML−1T−2

]
=
[
MLT−2

]
,

E3µ =
∆x2L1µ

6
∼
[
L2ML−1T−2

]
=
[
MLT−2

]
,

E4µ =
∆x3L1µ

6
∼
[
L2ML−1T−2

]
=
[
MLT−2

]
.

Then for diagonalisation,

∣∣∣C1
c̄

T

∣∣∣� ∣∣∣C2
µ

T

∣∣∣
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that is,

α� µ

ρc̄2
(3.123)

and it can be noted that if c̄ is taken to be the shear wavespeed, cs, then this

condition becomes α� 1. So equation (3.122) becomes

C1
c̄

T
p̃′1 = E1c̄p̃1 + E2µψ̃1 + E3µψ̃5 + E4µψ̃6

and redimensionalising gives

C1ṗ1 = E1p1 + E2ψ1 + E3ψ5 + E4ψ6,

which is just equation (3.121) without the ψ̇1 term but the nondimensionalisation

provided the condition on α given in equation (3.123).

The thirteenth row of the system (3.117) will now be considered, with rows

fourteen to eighteen following similarly. From row thirteen,

D2 (ṗ1 + ṗ2 + ṗ3 + ṗ4) +D1ψ̇1 = M2,13 · p,

and nondimensionalising as before gives

D2
c̄

T
(p̃′1 + p̃′2 + p̃′3 + p̃′4) +D1

µ

T
ψ̃′1 = M2,13 · p̃.

For diagonalisation, it is required that

∣∣∣D1
µ

T

∣∣∣� ∣∣∣D2
c̄

T

∣∣∣ ,
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that is

α� λ+ 2µ

4µ
. (3.124)

For physical considerations in mechanics, (λ + 2µ)/µ is equivalent to the ratio of

(cp/cs)
2, that is to say, the ratio of the pressure wavespeed to the shear wavespeed.

In steel for example cp/cs ≈ 6000/3000 = 2 which is a fairly typical ratio. So

α� λ+ 2µ

4µ
=

1

4

(λ+ 2µ)/ρ

µ/ρ
=

1

4

(
cp
cs

)2

≈ 1

as before. So the matrix M1 in equation (3.118) is now a diagonal matrix (with

all diagonal entries non-zero) and hence it is trivially invertible. Then using Eu-

ler’s method, from equation (3.78) with consideration to the diagonalisation just

performed, an explicit form can be given by

A
(I)
1i′ = C1

p
(t+1)
i′ − p(t)

i′

δt
− E1p

(t)
i′ − E2ψ1 + χ1,2

i′ E4ψ6 + χ0,2
i′ E3ψ5, (3.125)

and similarly for the other velocity components

A
(I)
2i′ = C1

q
(t+1)
i′ − q(t)

i′

δt
− E1q

(t)
i′ − E2ψ6 + χ1,2

i′ E4ψ2 + χ0,2
i′ E3ψ4, (3.126)

and

A
(I)
2i′ = C1

r
(t+1)
i′ − r(t)

i′

δt
− E1r

(t)
i′ − E2ψ5 + χ1,2

i′ E4ψ4 + χ0,2
i′ E3ψ3. (3.127)

The convergence of this numerical scheme requires a Courant-Friedrichs-Lewy
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(CFL) like condition and this is given by

δt < min∆xj/cp

where the the compressional wavespeed is given by cp =
√

(λ+ 2µ)/ρ. The phys-

ical need for this condition is that time it takes for the wave to travel to adjacent

spatial grid points (so ∆x/cp) must be greater than the discrete time used in the

numerical algorithm (δt) to update the values at each grid point. If this is violated

then the numerical scheme becomes unstable and the solution blows up.

The stress equations can also now be formulated, with respect to the nondi-

mensionalisation, from equations (3.111)-(3.116), using Euler’s method to give

B
(I)
1 =D1

ψ
(t+1)
1 − ψ(t)

1

δt
(3.128)

− F2(p1 + p2 + p3 + p4)− F3(q3 − q1 + q2 − q4)− F4(r3 − r1 + r4 − r2),

(3.129)
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and similarly for the other stress components we have

B
(I)
2 = D1

ψ
(t+1)
2 − ψ(t)

2

δt
(3.130)

− F5(p1 + p2 + p3 + p4)− F6(q3 − q1 + q2 − q4)− F4(r3 − r1 + r4 − r2),

(3.131)

B
(I)
3 = D1

ψ
(t+1)
3 − ψ(t)

3

δt
(3.132)

− F5(p1 + p2 + p3 + p4)− F3(q3 − q1 + q2 − q4)− F7(r3 − r1 + r4 − r2),

(3.133)

B
(I)
4 = D1

ψ
(t+1)
4 − ψ(t)

4

δt
− F8(r3 − r1 + r2 − r4)− F9(q3 − q1 + q4 − q2), (3.134)

B
(I)
5 = D1

ψ
(t+1)
5 − ψ(t)

5

δt
− F10(r1 + r2 + r3 + r4)− F9(p3 − p1 + p4 − p2), (3.135)

and

B
(I)
6 = D1

ψ
(t+1)
6 − ψ(t)

6

δt
− F10(q1 + q2 + q3 + q4)− F8(p3 − p1 + p2 − p4). (3.136)

3.4.3 The final solution

The stress equations are calculated on an element by element basis therefore, from

equations (3.105)-(3.110), applying Euler’s method and rearranging to give an
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explict form, for each finite element

ψ
(t+1)
1 =ψ

(t)
1 + δt

(
λ+ 2µ

4∆x1

(p7 − p1 + p8 − p2 + p3 − p5 + p4 − p6)

+
λ

4∆x2

(q7 − q1 + q2 − q8 + q3 − q5 + q6 − q4)

+
λ

4∆x3

(r7 − r1 + r8 − r2 + r5 − r3 + r6 − r4)

)
, (3.137)

ψ
(t+1)
2 =ψ

(t)
2 + δt

(
λ

4∆x1

(p7 − p1 + p8 − p2 + p3 − p5 + p4 − p6)

+
λ+ 2µ

4∆x2

(q7 − q1 + q2 − q8 + q3 − q5 + q6 − q4)

+
λ

4∆x3

(r7 − r1 + r8 − r2 + r5 − r3 + r6 − r4)

)
, (3.138)

ψ
(t+1)
3 =ψ

(t)
3 + δt

(
λ

4∆x1

(p7 − p1 + p8 − p2 + p3 − p5 + p4 − p6)

+
λ

4∆x2

(q7 − q1 + q2 − q8 + q3 − q5 + q6 − q4)

+
λ+ 2µ

4∆x3

(r7 − r1 + r8 − r2 + r5 − r3 + r6 − r4)

)
, (3.139)

ψ
(t+1)
4 =ψ

(t)
4 + δt

(
µ

4∆x2

(r7 − r1 + r2 − r8 + r3 − r5 + r6 − r4)

+
µ

4∆x3

(q7 − q1 + q8 − q2 + q5 − q3 + q6 − q4)

)
, (3.140)

ψ
(t+1)
5 =ψ

(t)
5 + δt

(
µ

4∆x1

(r7 − r1 + r8 − r2 + r3 − r5 + r4 − r6)

+
µ

4∆x3

(p7 − p1 + p8 − p2 + p5 − p3 + p6 − p4)

)
, (3.141)

ψ
(t+1)
6 =ψ

(t)
6 + δt

(
µ

4∆x1

(q7 − q1 + q8 − q2 + q3 − q5 + q4 − q6)

+
µ

4∆x2

(p7 − p1 + p2 − p8 + p3 − p5 + p6 − p4)

)
, (3.142)
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and from equations (3.129)-(3.136), for each infinite element

ψ
(t+1)
1 =ψ

(t)
1 +

δt

α

(
−3(λ+ 2µ)

16L1

(p1 + p2 + p3 + p4)

+
λ

2∆x2

(q3 − q1 + q2 − q4) +
λ

2∆x3

(r3 − r1 + r4 − r2)

)
, (3.143)

ψ
(t+1)
2 =ψ

(t)
2 +

δt

α

(
− 3λ

16L1

(p1 + p2 + p3 + p4)

+
λ+ 2µ

2∆x2

(q3 − q1 + q2 − q4) +
λ

2∆x3

(r3 − r1 + r4 − r2)

)
, (3.144)

ψ
(t+1)
3 =ψ

(t)
3 +

δt

α

(
− 3λ

16L1

(p1 + p2 + p3 + p4)

+
λ

2∆x2

(q3 − q1 + q2 − q4) +
λ+ 2µ

2∆x3

(r3 − r1 + r4 − r2)

)
, (3.145)

ψ
(t+1)
4 =ψ

(t)
4 +

δt

α

(
µ

2∆x2

(r3 − r1 + r2 − r4) +
µ

2∆x3

(q3 − q1 + q4 − q2)

)
,

(3.146)

ψ
(t+1)
5 =ψ

(t)
5 +

δt

α

(
− 3µ

16L1

(r1 + r2 + r3 + r4) +
µ

2∆x3

(p3 − p1 + p4 − p2)

)
,

(3.147)

and

ψ
(t+1)
6 =ψ

(t)
6 +

δt

α

(
− 3µ

16L1

(q1 + q2 + q3 + q4) +
µ

2∆x2

(p3 − p1 + p2 − p4)

)
.

(3.148)

Now for the velocity equations, for each finite element, for example from equa-

tion (3.75),

A
(F )
1i′ =

ρ∆x1∆x2∆x3

8
ṗi′ + χ0,2

i′
∆x2∆x3

4
ψ1 + χ1,2

i′
∆x1∆x3

4
ψ6 + χ0,4

i′
∆x1∆x2

4
ψ5,
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which leads to an explicit form (using Euler’s method) of

A
(F )
1i′ =

ρ∆x1∆x2∆x3

8

p
(t+1)
i′ − p(t)

i′

δt

+ χ0,2
i′

∆x2∆x3

4
ψ1 + χ1,2

i′
∆x1∆x3

4
ψ6 + χ0,4

i′
∆x1∆x2

4
ψ5,

while for each infinite element, for example from equation (3.125),

A1i′ =
ρ∆x2∆x3L1α

12

p
(t+1)
i′ − p(t)

i′

δt
+
ρ∆x2∆x3L1αβ

12
p

(t)
i′

− ∆x2∆x3

16
ψ1 + χ1,2

i′
∆x3L1

6
ψ6 + χ0,2

i′
∆x2L1

6
ψ5.

Now recombining the elements in order to calculate the velocities at a global level

gives

b(F )
n

ρ∆x1∆x2∆x3

8

p
(t+1)
n − p(t)

n

δt

+ b(I)
n

(
ρ∆x2∆x3L1α

12

p
(t+1)
n − p(t)

n

δt
+
ρ∆x2∆x3L1αβ

12
p(t)
n

)

=

b
(F )
n∑
k=1

F (F ) +

b
(I)
n∑
l=1

F (I)

where b
(F )
n is the number of finite elements that share global node n as a vertex,

b
(I)
n is the number of infinite elements that share global node n as a vertex, F (F ) is

the combination of stress terms used in A
(F )
1i′ when global node n is local node i′

in a finite element, and F (I) is the combination of stress terms used in A
(I)
1i′ when
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global node n is local node i′ in an infinite element. So

(
b(F )
n

ρ∆x1∆x2∆x3

8
+ b(I)

n

ρ∆x2∆x3L1α

12

)
p(t+1)
n

=

(
b(F )
n

ρ∆x1∆x2∆x3

8
+ b(I)

n

ρ∆x2∆x3L1α

12
(1− βδt)

)
p(t)
n

+ δt

b
(F )
n∑
k=1

F (F ) +

b
(I)
n∑
l=1

F (I)


and letting

W (F ) = b(F )
n

ρ∆x1∆x2∆x3

8
, W (I) = b(I)

n

ρ∆x2∆x3L1α

12
, (3.149)

then

p(t+1)
n =

(
1− βδt W (I)

W (F ) +W (I)

)
p(t)
n

+
δt

W (F ) +W (I)

b
(F )
n∑
k=1

F (F ) +

b
(I)
n∑
l=1

F (I)

 , (3.150)

and in the same way, for the other components of velocity

q(t+1)
n =

(
1− βδt W (I)

W (F ) +W (I)

)
q(t)
n

+
δt

W (F ) +W (I)

b
(F )
n∑
k=1

F (F ) +

b
(I)
n∑
l=1

F (I)

 , (3.151)

r(t+1)
n =

(
1− βδt W (I)

W (F ) +W (I)

)
r(t)
n

+
δt

W (F ) +W (I)

b
(F )
n∑
k=1

F (F ) +

b
(I)
n∑
l=1

F (I)

 . (3.152)
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3.5 Retaining a spatial dependency

3.5.1 The velocity equations

Since attention is restricted to a waveguide problem then the PML will only stretch

the coordinates in the x1 direction. So we set s2 = s3 ≡ 1. Then from equations

(3.28)-(3.30),

N∑
j=1

{∫
ΩF

−iωρNiNjdΩF p̂j

+

∫
ΩF

{
1

s1

∂Ni

∂x1

Nj γ̂1j +
∂Ni

∂x2

Nj γ̂6j +
∂Ni

∂x3

Nj γ̂5j

}
dΩF

}
=

N∑
j=1

{
1

c̄

(∫
ΓX

(
λ+ 2µ

s2
1

+ 2µ

)
wifjgigjdΓX p̂j

+

∫
ΓX

λ+ µ

s1

wifjgigjdΓX q̂j +

∫
ΓX

λ+ µ

s1

wifjgigjdΓX r̂j

)
+

ε

−iω

∫
ΓX

(
λ+ 2µ

s2
1

+ 2µ+
2(λ+ µ)

s1

)
wigidΓX

−
∫

ΩI

{
1

s1

∂wi
∂x1

fjgigj γ̂1j + wifj
∂gi
∂x2

gj γ̂6j + wifj
∂gi
∂x3

gj γ̂5j

}
dΩI

−
∫

ΩI

−iωρwifjgigjdΩI p̂j

}
(i = 1, . . . , N) (3.153)
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N∑
j=1

{∫
ΩF

−iωρNiNjdΩF q̂j

+

∫
ΩF

{
1

s1

∂Ni

∂x1

Nj γ̂6j +
∂Ni

∂x2

Nj γ̂2j +
∂Ni

∂x3

Nj γ̂4j

}
dΩF

}
=

N∑
j=1

{
1

c̄

(∫
ΓX

(
µ

s2
1

+ λ+ 3µ

)
wifjgigjdΓX q̂j

+

∫
ΓX

λ+ µ

s1

wifjgigjdΓX p̂j +

∫
ΓX

(λ+ µ)wifjgigjdΓX r̂j

)
+

ε

−iω

∫
ΓX

(
µ

s2
1

+
λ+ µ

s1

+ 2λ+ 4µ

)
wigidΓX

−
∫

ΩI

{
1

s1

∂wi
∂x1

fjgigj γ̂6j + wifj
∂gi
∂x2

gj γ̂2j + wifj
∂gi
∂x3

gj γ̂4j

}
dΩI

−
∫

ΩI

−iωρwifjgigjdΩI q̂j

}
(i = 1, . . . , N) (3.154)

N∑
j=1

{∫
ΩF

−iωρNiNjdΩF r̂j

+

∫
ΩF

{
1

s1

∂Ni

∂x1

Nj γ̂5j +
∂Ni

∂x2

Nj γ̂4j +
∂Ni

∂x3

Nj γ̂3j

}
dΩF

}
=

N∑
j=1

{
1

c̄

(∫
ΓX

(
µ

s2
1

+ λ+ 3µ

)
wifjgigjdΓX r̂j

+

∫
ΓX

λ+ µ

s1

wifjgigjdΓX p̂j +

∫
ΓX

(λ+ µ)wifjgigjdΓX q̂j

)
+

ε

−iω

∫
ΓX

(
µ

s2
1

+
λ+ µ

s1

+ 2λ+ 4µ

)
wigidΓX

−
∫

ΩI

{
1

s1

∂wi
∂x1

fjgigj γ̂5j + wifj
∂gi
∂x2

gj γ̂4j + wifj
∂gi
∂x3

gj γ̂3j

}
dΩI

−
∫

ΩI

−iωρwifjgigjdΩI r̂j

}
(i = 1, . . . , N) (3.155)

The basis functions are defined as before in equations (3.34)-(3.36), the test

functions as in equations (3.37) and (3.38), and the mappings from the global

coordinates again as shown in Figures 3.4 and 3.6. With the dimensionless s1(x1, ω)
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given by equation (3.6), then from the left-hand side of equation (3.153) define

for each finite element (in ΩF ) A
(F )
1i′ , A

(F )
2i′ , and A

(F )
3i′ as before by the expressions

given in equations (3.44)-(3.46). The finite element case then is identical to that

presented in section 3.4. From the right-hand side of equation (3.153) (again taking

the negative to emphasise the similarity to the finite element case) with s1 given

by equation (3.6), define for each infinite element (in ΩI)

A
(I)
1i′ =

4∑
j′=1

{
−iωρ

∫
ΩIE

wi′fj′gi′gj′dΩIE p̂j′

− 1

c̄

((
λ+ 2µ

(s1(X1))2 + 2µ

)
p̂j′ +

λ+ µ

s1(X1)
q̂j′ +

λ+ µ

s1(X1)
r̂j′

)∫
ΓX

wi′fj′gi′gj′dΓX

− ε

−iω

(
λ+ 2µ

(s1(X1))2 + 2µ+
2(λ+ µ)

s1(X1)

)∫
ΓX

wi′gi′dΓX

+

∫
ΩIE

{
1

s1

∂wi
∂x1

fjgigj γ̂1j′ + wi′fj′
∂gi′

∂x2

gj′ γ̂6j′ + wi′fj′
∂gi′

∂x3

gj′ γ̂5j′

}
dΩIE

}
(i′ = 1, . . . , 4), (3.156)

A
(I)
2i′ =

4∑
j′=1

{
−iωρ

∫
ΩIE

wi′fj′gi′gj′dΩIE q̂j′

− 1

c̄

((
µ

(s1(X1))2 + λ+ 3µ

)
q̂j′ +

λ+ µ

s1(X1)
p̂j′ + (λ+ µ)r̂j′

)∫
ΓX

wi′fj′gi′gj′dΓX

− ε

−iω

(
µ

(s1(X1))2 +
λ+ µ

s1(X1)
+ 2(λ+ 2µ)

)∫
ΓX

wi′gi′dΓX

+

∫
ΩIE

{
1

s1

∂wi′

∂x1

fj′gi′gj′ γ̂6j′ + wi′fj′
∂gi′

∂x2

gj′ γ̂2j′ + wi′fj′
∂gi′

∂x3

gj′ γ̂4j′

}
dΩIE

}
(i′ = 1, . . . , 4), (3.157)
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A
(I)
3i′ =

4∑
j′=1

{
−iωρ

∫
ΩIE

wi′fj′gi′gj′dΩIE r̂j′

− 1

c̄

((
µ

(s1(X1))2 + λ+ 3µ

)
r̂j′ +

λ+ µ

s1(X1)
p̂j′ + (λ+ µ)q̂j′

)∫
ΓX

wi′fj′gi′gj′dΓX

− ε

−iω

(
µ

(s1(X1))2 +
λ+ µ

s1(X1)
+ 2(λ+ 2µ)

)∫
ΓX

wi′gi′dΓX

+

∫
ΩIE

{
1

s1

∂wi′

∂x1

fj′gi′gj′ γ̂5j′ + wi′fj′
∂gi′

∂x2

gj′ γ̂4j′ + wi′fj′
∂gi′

∂x3

gj′ γ̂3j′

}
dΩIE

}
(i′ = 1, . . . , 4), (3.158)

where the X1 in the argument of the s1 indicates that it is being evaluated on ΓX

where x1 = X1.

The integrals that must be evaluated are then given by equations (3.50)-(3.59)

with the exception of equation (3.57) which takes the slightly different form of

∫
ΩIE

1

s1

∂wi′

∂x1

fj′gi′gj′dΩIE = lim
X1→∞

∫ X1

L1

1

s1

∂wi′

∂x1

fj′dx1

∫ 1

−1

∫ 1

−1

gi′gj′
∆x2∆x3

4
dηdζ

=
∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
× lim

X1→∞

∫ X1

L1

1

s1

(
L1

x1

)4(
ik̄ − 1

x1

)
dx1, (3.159)

in a similar manner to the integration in equation (3.57). Since the aim is to

perform an inverse Fourier transform in time later on, ω (or iω) must be taken

outside the integral. So

s1(x1) = α1(x1)

(
1 +

i

ω
β1(x1)

)
= α1(x1)

(
ω + iβ1(x1)

ω

)

therefore

1

s1(x1)
=

ω

α1(x1) (ω + iβ1(x1))
=

ω2 − iωβ1(x1)

α1(x1) (ω2 + (β1(x1))2)
=

1− iβ1(x1)/ω

α1(x1) (1 + (β1(x1))2/ω2)
.
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Now assuming

ω � β1(x1) (3.160)

then a Taylor series expansion (of order 1) can be used to give

1

s1(x1)
≈ 1

α1(x1)

(
1− i

ω
β1(x1)

)(
1− (β1(x1))2

ω2

)
=

1

α1(x1)

(
1− i

ω
β1(x1)− (β1(x1))2

ω2
+

i

ω3
(β1(x1))3

)

Then in equation (3.159)

∫ X1

L1

1

s1

(
L1

x1

)4(
ik̄ − 1

x1

)
dx1 =

∫ X1

L1

1

s1

(
L1

x1

)4(
iω

c̄
− 1

x1

)
dx1

=

∫ X1

L1

(
iω + β1(x1)− i

ω
(β1(x1))2 − 1

ω2
(β1(x1))3

)
1

α1(x1)c̄

(
L1

x1

)4

dx1

−
∫ X1

L1

(
1− i

ω
β1(x1)− (β1(x1))2

ω2
+

i

ω3
(β1(x1))3

)
1

α1(x1)x1

(
L1

x1

)4

dx1

= I∗1 + iωI∗2 −
i

ω
I∗3 −

1

ω2
I∗4 −

i

ω3
I∗5

where

I∗1 = lim
X1→∞

∫ X1

L1

(
β1(x1)

c̄
− 1

x1

)
1

α1(x1)

(
L1

x1

)4

dx1 (3.161)

I∗2 = lim
X1→∞

∫ X1

L1

1

α1(x1)c̄

(
L1

x1

)4

dx1 (3.162)

I∗3 = lim
X1→∞

∫ X1

L1

(
(β1(x1))2

c̄
− β1(x1)

x1

)
1

α1(x1)

(
L1

x1

)4

dx1 (3.163)

I∗4 = lim
X1→∞

∫ X1

L1

(
(β1(x1))3

c̄
− (β1(x1))2

x1

)
1

α1(x1)

(
L1

x1

)4

dx1 (3.164)

I∗5 = lim
X1→∞

∫ X1

L1

(β1(x1))3

α1(x1)x1

(
L1

x1

)4

dx1 (3.165)
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and so from equation (3.159) we have

∫
ΩIE

1

s1

∂wi′

∂x1

fj′gi′gj′dΩIE =
∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
×
(
I∗1 + iωI∗2 −

i

ω
I∗3 −

1

ω2
I∗4 −

i

ω3
I∗5

)
. (3.166)

Note that the I∗j are just constants but it must be ensured that the limits exist. To

evaluate them, a choice for the dependency on x1 of α1 and β1 has to be made. This

will be discussed shortly. Now from equations (3.156)-(3.158) with integrals given

by equations (3.54)-(3.56), (3.58), (3.59) and (3.166), for each infinite element

A
(I)
1i′ =

4∑
j′=1

{
−iωρ∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
L1

3
p̂j′

+
∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)

×
(
I∗1 + iωI∗2 −

i

ω
I∗3 −

1

ω2
I∗4 −

i

ω3
I∗5

)
γ̂1j′

+
L1

3

∆x3

8
ηi′

(
1 +

ζi′ζj′

3

)
γ̂6j′

+
L1

3

∆x2

8
ζi′
(

1 +
ηi′ηj′

3

)
γ̂5j′

}
(i′ = 1, . . . , 4), (3.167)
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A
(I)
2i′ =

4∑
j′=1

{
−iωρ∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
L1

3
q̂j′

+
∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)

×
(
I∗1 + iωI∗2 −

i

ω
I∗3 −

1

ω2
I∗4 −

i

ω3
I∗5

)
γ̂6j′

+
L1

3

∆x3

8
ηi′

(
1 +

ζi′ζj′

3

)
γ̂2j′

+
L1

3

∆x2

8
ζi′
(

1 +
ηi′ηj′

3

)
γ̂4j′

}
(i′ = 1, . . . , 4), (3.168)

A
(I)
3i′ =

4∑
j′=1

{
−iωρ∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
L1

3
r̂j′

+
∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)

×
(
I∗1 + iωI∗2 −

i

ω
I∗3 −

1

ω2
I∗4 −

i

ω3
I∗5

)
γ̂5j′

+
L1

3

∆x3

8
ηi′

(
1 +

ζi′ζj′

3

)
γ̂4j′

+
L1

3

∆x2

8
ζi′
(

1 +
ηi′ηj′

3

)
γ̂3j′

}
(i′ = 1, . . . , 4). (3.169)

As before, the assumption is made that the stress components at a local node

i′, given by γ̂ni′ for n = 1, . . . , 6, are equal to the stress components at local node

j′, given by γ̂nj′ for n = 1, . . . , 6, when nodes i′ and j′ belong to the same element.

Therefore

γ̂ni′ = γ̂nj′ ≡ ψ̂n i′, j′ ∈ Ωe
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where Ωe is either a finite or infinite element. Then γ̂ni′ , the stress components

at a local node i′, can be replaced by ψ̂n, the stress component for the element

under consideration. Now expanding the summations in equations (3.167)-(3.169)

as before and mass lumping for the velocity coefficieints yields, for each infinite

element

A
(I)
1i′ =

ρ∆x2∆x3L1

12
(−iωp̂i′) +

∆x2∆x3

4

(
I∗1 + iωI∗2 −

i

ω
I∗3 −

1

ω2
I∗4 −

i

ω3
I∗5

)
ψ̂1

+ χ1,2
i′

∆x3L1

6
ψ̂6 + χ0,2

i′
∆x2L1

6
ψ̂5 (i′ = 1, . . . , 4), (3.170)

A
(I)
2i′ =

ρ∆x2∆x3L1

12
(−iωq̂i′) +

∆x2∆x3

4

(
I∗1 + iωI∗2 −

i

ω
I∗3 −

1

ω2
I∗4 −

i

ω3
I∗5

)
ψ̂6

+ χ1,2
i′

∆x3L1

6
ψ̂2 + χ0,2

i′
∆x2L1

6
ψ̂4 (i′ = 1, . . . , 4), (3.171)

A
(I)
3i′ =

ρ∆x2∆x3L1

12
(−iωr̂i′) +

∆x2∆x3

4

(
I∗1 + iωI∗2 −

i

ω
I∗3 −

1

ω2
I∗4 −

i

ω3
I∗5

)
ψ̂5

+ χ1,2
i′

∆x3L1

6
ψ̂4 + χ0,2

i′
∆x2L1

6
ψ̂3 (i′ = 1, . . . , 4). (3.172)

For the infinite elements, when taking inverse Fourier transforms in time, the

terms with ω on the denominator in equations (3.170)-(3.172) will result in inte-

grals, which would rather be avoided. Therefore, a form must be found for the

stretching function s1, such that the integrals in equations (3.163)-(3.165) tend to

zero in the limit as X1 →∞. In what follows it has been assumed that such a form

has been found in order to maintain as general a derivation as possible. However,

it would be wrong to blindly assume that this is possible so first an example is

presented where a particular form has been chosen for the stretching function in

order to show that these conditions can be satisfied.
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Generalising the form found in [147], α1 and β1 are taken to be of the form

α1(x1) =1 + ᾱ (x1 − L1)m (3.173)

β1(x1) =β̄ (x1 − L1)n (3.174)

where ᾱ and β̄ are independent of x1 with a form to be determined and m,n

are constants. It is noted in [147] that this is a form that has been found to be

effective despite a lack of rigorous methodology. Given that the aim is to eliminate

integrals I∗3 , I
∗
4 , I

∗
5 , which all contain higher powers of β1 on the numerator, with

β3
1 the highest power, and α1 on the denominator, it seems prudent to choose

m,n, such that m > 3n. Therefore the choice of m = 1, n = 1/4 is made.

With these parameters, with α1(x1) given by equation (3.175) and β1(x1) given

by equation (3.176), the integrals in equations (3.163)-(3.165) can be evaluated

in Mathematica [151] (before taking the limit as X1 → ∞). The results are

complicated, but for brevity, with terms ordered by magnitude,

∫ X1

L1

(β1(x1))3

α1(x1)x1

(
L1

x1

)4

dx1 ∼
β̄3

ᾱ5X
13/4
1

+ · · ·+ β̄3

ᾱ
ln(X1),∫ X1

L1

(β1(x1))3

c̄α1(x1)

(
L1

x1

)4

dx1 ∼
β̄3

ᾱ15/4X1

+ · · ·+ β̄3

ᾱ
ln(X1),∫ X1

L1

(β1(x1))2

α1(x1)x1

(
L1

x1

)4

dx1 ∼
β̄2

ᾱ2X
7/2
1

+ · · ·+ β̄2

ᾱ
,∫ X1

L1

(β1(x1))2

c̄α1(x1)

(
L1

x1

)4

dx1 ∼
β̄2

ᾱ2X
5/2
1

+ · · ·+ β̄2

ᾱ
,∫ X1

L1

β1(x1)

α1(x1)x1

(
L1

x1

)4

dx1 ∼
β̄

ᾱ5X
15/4
1

+ · · ·+ β̄

ᾱ
ln(X1),∫ X1

L1

β1(x1)

c̄α1(x1)

(
L1

x1

)4

dx1 ∼
β̄

ᾱ4X
15/4
1

+ · · ·+ β̄

ᾱ
ln(X1),

and the aim then is to have all but the last of these integrals to tend to zero in the
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limit as X1 →∞ for a given choice of ᾱ and β̄. Examining the possibilities where

ᾱ and β̄ either tend to zero, infinity or a nonzero constant in the limit, it quickly

becomes clear that no choice can be made to retain the last integral without also

retaining the second to last. Therefore the decision is made to have the β̄ term tend

to zero in the limit X1 → ∞, ensuring that only the parts of integrals I∗1 , . . . , I
∗
5 ,

involving α1 alone remain, that is I∗2 and part of I∗1 . To achieve this the dimensions

of ᾱ and β̄ must first be considered. By definition, α1 must be nondimensional

and β1 has dimensions [T−1], and therefore from equation (3.173), ᾱ ∼ [L−m], and

from equation (3.174), β̄ ∼ [L−nT−1]. It must also hold that β̄ tends to zero, while

ᾱ tends to a finite constant as X1 → ∞. So, in order to satisfy these conditions

choose

ᾱ =
¯̄α

Lm1

X1

X1 − L1

, (3.175)

β̄ =
c̄

(X1 − L1)n+1
, (3.176)

where ¯̄α is some constant parameter that can be used to fine tune the PML.

With α1, β1, given as in equations (3.173) and (3.174), and ᾱ, β̄, given as in

equations (3.175) and (3.176), and with m = 1, n = 1/4, the integrals I∗1 and I∗2

can be evaluated in Mathematica to give

I∗1 =
12¯̄α4 ln

(
¯̄α
L1

)
+ 12¯̄α4 ln(L1)− 25¯̄α4 + 48¯̄α3 − 36¯̄α2 + 16¯̄α− 3

12(¯̄α− 1)5
, (3.177)

I∗2 =
L1 (−11¯̄α3 + 6¯̄α3 ln( ¯̄α) + 18¯̄α2 − 9¯̄α + 2)

6(¯̄α− 1)4c̄
. (3.178)

Inverse Fourier transforms in time can then be taken in order to proceed.

Returning now to the more general case (assuming a form has been found for

the stretching function such that I∗3 , I
∗
4 , I

∗
5 tend to zero and I∗1 , I

∗
2 converge to a
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non-zero constant as X1 →∞) and taking inverse Fourier transforms of equations

(3.170)-(3.172) gives for each infinite element

A
(I)
1i′ =

ρ∆x2∆x3L1

12
ṗi′ −

∆x2∆x3

4
I∗2 ψ̇1

+
∆x2∆x3

4
I∗1ψ1 + χ1,2

i′
∆x3L1

6
ψ6 + χ0,2

i′
∆x2L1

6
ψ5 (i′ = 1, . . . , 4), (3.179)

A
(I)
2i′ =

ρ∆x2∆x3L1

12
q̇i′ −

∆x2∆x3

4
I∗2 ψ̇6

+
∆x2∆x3

4
I∗1ψ6 + χ1,2

i′
∆x3L1

6
ψ2 + χ0,2

i′
∆x2L1

6
ψ4 (i′ = 1, . . . , 4), (3.180)

and

A
(I)
3i′ =

ρ∆x2∆x3L1

12
ṙi′ −

∆x2∆x3

4
I∗2 ψ̇5

+
∆x2∆x3

4
I∗1ψ5 + χ1,2

i′
∆x3L1

6
ψ4 + χ0,2

i′
∆x2L1

6
ψ3 (i′ = 1, . . . , 4). (3.181)

3.5.2 The stress equations

Now the same treatment is applied to the stress equation (3.10). With the solution

expressed in terms of the basis function expansion in equations (3.24) and (3.25),

with the basis functions and test functions given by equations (3.26) and (3.27),

assuming as before that s = 1 in ΩF and s2 = s3 ≡ 1 in ΩI , from equations
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(3.81)-(3.86)

N∑
j=1

{∫
ΩF

−iωNiNj γ̂1jdΩF

−
∫

ΩF

{
(λ+ 2µ)Ni

∂Nj

∂x1

p̂j + λNi
∂Nj

∂x2

q̂j + λNi
∂Nj

∂x3

r̂j

}
dΩF

}
=

N∑
j=1

{∫
ΩI

{
λ+ 2µ

s1

wi
∂fj
∂x1

gigj p̂j + λwifjgi
∂gj
∂x2

q̂j + λwifjgi
∂gj
∂x3

r̂j

}
dΩI

−
∫

ΩI

−iωwifjgigj γ̂1jdΩI

}
(i = 1, . . . , N), (3.182)

N∑
j=1

{∫
ΩF

−iωNiNj γ̂2jdΩF

−
∫

ΩF

{
λNi

∂Nj

∂x1

p̂j + (λ+ 2µ)Ni
∂Nj

∂x2

q̂j + λNi
∂Nj

∂x3

r̂j

}
dΩF

}
=

N∑
j=1

{∫
ΩI

{
λ

s1

wi
∂fj
∂x1

gigj p̂j + (λ+ 2µ)wifjgi
∂gj
∂x2

q̂j + λwifjgi
∂gj
∂x3

r̂j

}
dΩI

−
∫

ΩI

−iωwifjgigj γ̂2jdΩI

}
(i = 1, . . . , N), (3.183)

N∑
j=1

{∫
ΩF

−iωNiNj γ̂3jdΩF

−
∫

ΩF

{
λNi

∂Nj

∂x1

p̂j + λNi
∂Nj

∂x2

q̂j + (λ+ 2µ)Ni
∂Nj

∂x3

r̂j

}
dΩF

}
=

N∑
j=1

{∫
ΩI

{
λ

s1

wi
∂fj
∂x1

gigj p̂j + λwifjgi
∂gj
∂x2

q̂j + (λ+ 2µ)wifjgi
∂gj
∂x3

r̂j

}
dΩI

−
∫

ΩI

−iωwifjgigj γ̂3jdΩI

}
(i = 1, . . . , N), (3.184)
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N∑
j=1

{∫
ΩF

−iωNiNj γ̂4jdΩF −
∫

ΩF

{
µNi

∂Nj

∂x2

r̂j + µNi
∂Nj

∂x3

q̂j

}
dΩF

}

=
N∑
j=1

{∫
ΩI

{
µwifjgi

∂gj
∂x2

r̂j + µwifjgi
∂gj
∂x3

q̂j

}
dΩI

−
∫

ΩI

−iωwifjgigj γ̂4jdΩI

}
(i = 1, . . . , N), (3.185)

N∑
j=1

{∫
ΩF

−iωNiNj γ̂5jdΩF −
∫

ΩF

{
µNi

∂Nj

∂x1

r̂j + µNi
∂Nj

∂x3

p̂j

}
dΩF

}

=
N∑
j=1

{∫
ΩI

{
µ

s1

wi
∂fj
∂x1

gigj r̂j + µwifjgi
∂gj
∂x3

p̂j

}
dΩI

−
∫

ΩI

−iωwifjgigj γ̂5jdΩI

}
(i = 1, . . . , N), (3.186)

N∑
j=1

{∫
ΩF

−iωNiNj γ̂6jdΩF −
∫

ΩF

{
µNi

∂Nj

∂x1

q̂j + µNi
∂Nj

∂x2

p̂j

}
dΩF

}

=
N∑
j=1

{∫
ΩI

{
µ

s1

wi
∂fj
∂x1

gigj q̂j + µwifjgi
∂gj
∂x2

p̂j

}
dΩI

−
∫

ΩI

−iωwifjgigj γ̂6jdΩI

}
(i = 1, . . . , N). (3.187)

Then, given the choice of basis functions in equations (3.34)-(3.36) and test func-

tions in equations (3.37) and (3.38), the integrals that will have to be evaluated

are given by equations (3.50)-(3.59) with the exception of equation (3.57) which
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has the slightly different form of

∫
ΩIE

1

s1

wi′
∂fj′

∂x1

gi′gj′dΩIE = lim
X1→∞

∫ X1

L1

1

s1

wi′
∂fj′

∂x1

dx1

∫ 1

−1

∫ 1

−1

gi′gj′
∆x2∆x3

4
dηdζ

=
∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
× lim

X1→∞

∫ X1

L1

1

s1

(
L1

x1

)4(
− 1

x1

− ik̄
)

dx1

=
∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζj′ζj′

3

)
×
(
I∗6 − iωI∗2 −

i

ω
I∗7 −

1

ω2
I∗8 −

i

ω3
I∗5

)
(3.188)

where

I∗6 = lim
X1→∞

∫ X1

L1

(
− 1

x1

− β1(x1)

c̄

)
1

α1(x1)

(
L1

x1

)4

dx1 (3.189)

I∗7 = lim
X1→∞

∫ X1

L1

(
−β1(x1)

x1

− (β1(x1))2

c̄

)
1

α1(x1)

(
L1

x1

)4

dx1 (3.190)

I∗8 = lim
X1→∞

∫ X1

L1

(
−(β1(x1))2

x1

− (β1(x1))3

c̄

)
1

α1(x1)

(
L1

x1

)4

dx1 (3.191)

and assuming as before that ω � β1(x1). Then, from the right-hand side of

equation (3.182) (taking the negative once more to emphasise the similarity to the

finite element case), define for each infinite element

B
(I)
1i′ =

4∑
j′=1

∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
L1

3
(−iωγ̂1j′)

− (λ+ 2µ)
∆x2∆x3

16

(
1 +

ηi′ηj′

3

)(
1 +

ζi′ζj′

3

)
×
(
I∗6 − iωI∗2 −

i

ω
I∗7 −

1

ω2
I∗8 −

i

ω3
I∗5

)
p̂j′

− λL1

3

∆x3

8
ηj′

(
1 +

ζi′ζj′

3

)
q̂j′ − λ

L1

3

∆x2

8
ζj′
(

1 +
ηi′ηj′

3

)
r̂j′ (i′ = 1, . . . , 4).

119



Again, in order to provide an explicit scheme, it is assumed that γ̂ni′ = γ̂nj′ ≡ ψ̂n

when i′, j′ are nodes of the same element, and then expanding the summation in

j′ yields

B
(I)
1 =− iω∆x2∆x3L1

3
ψ̂1

− (λ+ 2µ)∆x2∆x3

4

(
I∗6 − iωI∗2 −

i

ω
I∗7 −

1

ω2
I∗8 −

i

ω3
I∗5

)
(p̂1 + p̂2 + p̂3 + p̂4)

− λ∆x3L1

6
(q̂3 − q̂1 + q̂2 − q̂4)

− λ∆x2L1

6
(r̂3 − r̂1 + r̂4 − r̂2), (3.192)
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and similarly from equations (3.183)-(3.187)

B
(I)
2 =− iω∆x2∆x3L1

3
ψ̂2

− λ∆x2∆x3

4

(
I∗6 − iωI∗2 −

i

ω
I∗7 −

1

ω2
I∗8 −

i

ω3
I∗5

)
(p̂1 + p̂2 + p̂3 + p̂4)

− (λ+ 2µ)∆x3L1

6
(q̂3 − q̂1 + q̂2 − q̂4)

− λ∆x2L1

6
(r̂3 − r̂1 + r̂4 − r̂2), (3.193)

B
(I)
3 =− iω∆x2∆x3L1

3
ψ̂3

− λ∆x2∆x3

4

(
I∗6 − iωI∗2 −

i

ω
I∗7 −

1

ω2
I∗8 −

i

ω3
I∗5

)
(p̂1 + p̂2 + p̂3 + p̂4)

− λ∆x3L1

6
(q̂3 − q̂1 + q̂2 − q̂4)

− (λ+ 2µ)∆x2L1

6
(r̂3 − r̂1 + r̂4 − r̂2), (3.194)

B
(I)
4 =− iω∆x2∆x3L1

3
ψ̂4

− µ∆x3L1

6
(r̂3 − r̂1 + r̂2 − r̂4)− µ∆x2L1

6
(q̂3 − q̂1 + q̂4 − q̂2), (3.195)

B
(I)
5 =− iω∆x2∆x3L1

3
ψ̂5

− µ∆x2∆x3

4

(
I∗6 − iωI∗2 −

i

ω
I∗7 −

1

ω2
I∗8 −

i

ω3
I∗5

)
(r̂1 + r̂2 + r̂3 + r̂4)

− µ∆x2L1

6
(p̂3 − p̂1 + p̂4 − p̂2), (3.196)

B
(I)
6 =− iω∆x2∆x3L1

3
ψ̂6

− µ∆x2∆x3

4

(
I∗6 − iωI∗2 −

i

ω
I∗7 −

1

ω2
I∗8 −

i

ω3
I∗5

)
(q̂1 + q̂2 + q̂3 + q̂4)

− µ∆x3L1

6
(p̂3 − p̂1 + p̂2 − p̂4). (3.197)

For the infinite elements, before taking inverse Fourier transforms in time, as

before, a form must be chosen for the stretching function such that I∗7 , I
∗
8 tend

to zero and I∗6 converges to a non-zero constant as X1 → ∞. As before, an

example problem is presented, taking α1(x1) and β1(x1) to be given by equations
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(3.173) and (3.174), with ᾱ and β̄ given by equations (3.175) and (3.176), and with

m = 1, n = 1/4, in order to show that this goal can be achieved. Since I∗6 ≈ I∗1 ,

I∗7 ≈ I∗3 and I∗8 ≈ I∗4 , in the limit X1 →∞ we have I∗7 → 0, I∗8 → 0 and

I∗6 ≡ I∗1 =
12¯̄α4 ln

(
¯̄α
L1

)
+ 12¯̄α4 ln(L1)− 25¯̄α4 + 48¯̄α3 − 36¯̄α2 + 16¯̄α− 3

12(¯̄α− 1)5
. (3.198)

Now, once again returning to the more general case where it is assumed that

a form has been found for the stretching function such that I∗7 , I
∗
8 tend to zero

and I∗2 , I
∗
6 converge as X1 → ∞, by taking inverse Fourier transforms in time of
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equations (3.192)-(3.197), for each infinite element,

B
(I)
1 =

∆x2∆x3L1

3
ψ̇1 −

(λ+ 2µ)∆x2∆x3

4
I∗2 (ṗ1 + ṗ2 + ṗ3 + ṗ4)

− (λ+ 2µ)∆x2∆x3

4
I∗6 (p1 + p2 + p3 + p4)− λ∆x3L1

6
(q3 − q1 + q2 − q4)

− λ∆x2L1

6
(r3 − r1 + r4 − r2), (3.199)

B
(I)
2 =

∆x2∆x3L1

3
ψ̇2 −

λ∆x2∆x3

4
I∗2 (ṗ1 + ṗ2 + ṗ3 + ṗ4)

− λ∆x2∆x3

4
I∗6 (p1 + p2 + p3 + p4)− (λ+ 2µ)∆x3L1

6
(q3 − q1 + q2 − q4)

− λ∆x2L1

6
(r3 − r1 + r4 − r2), (3.200)

B
(I)
3 =

∆x2∆x3L1

3
ψ̇3 −

λ∆x2∆x3

4
I∗2 (ṗ1 + ṗ2 + ṗ3 + ṗ4)

− λ∆x2∆x3

4
I∗6 (p1 + p2 + p3 + p4)− λ∆x3L1

6
(q3 − q1 + q2 − q4)

− (λ+ 2µ)∆x2L1

6
(r3 − r1 + r4 − r2), (3.201)

B
(I)
4 =

∆x2∆x3L1

3
ψ̇4 −

µ∆x3L1

6
(r3 − r1 + r2 − r4)− µ∆x2L1

6
(q3 − q1 + q4 − q2),

(3.202)

B
(I)
5 =

∆x2∆x3L1

3
ψ̇5 −

µ∆x2∆x3

4
I∗2 (ṙ1 + ṙ2 + ṙ3 + ṙ4)

− µ∆x2∆x3

4
I∗6 (r1 + r2 + r3 + r4)− µ∆x2L1

6
(p3 − p1 + p4 − p2), (3.203)

B
(I)
6 =

∆x2∆x3L1

3
ψ̇6 −

µ∆x2∆x3

4
I∗2 (q̇1 + q̇2 + q̇3 + q̇4)

− µ∆x2∆x3

4
I∗6 (q1 + q2 + q3 + q4)− µ∆x3L1

6
(p3 − p1 + p2 − p4). (3.204)

As before, for the infinite elements, both velocity and stress time derivatives

appear so closer inspection of the system is required in order to find an explicit

form. It must also be remembered that since the velocity equations will be re-

combined at a global level, whatever manipulations are performed on the finite

element equations must also be performed on the infinite element equations and

vice versa. The system of equations (3.179)-(3.181) and (3.199)-(3.204) can be
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written in matrix form as follows,

M3ṗ = M4p (3.205)

where

M3 =



C1 0 0 0 0 0 0 0 0 0 0 0 C2 0 0 0 0 0
0 C1 0 0 0 0 0 0 0 0 0 0 C2 0 0 0 0 0
0 0 C1 0 0 0 0 0 0 0 0 0 C2 0 0 0 0 0
0 0 0 C1 0 0 0 0 0 0 0 0 C2 0 0 0 0 0
0 0 0 0 C1 0 0 0 0 0 0 0 0 0 0 0 0 C2
0 0 0 0 0 C1 0 0 0 0 0 0 0 0 0 0 0 C2
0 0 0 0 0 0 C1 0 0 0 0 0 0 0 0 0 0 C2
0 0 0 0 0 0 0 C1 0 0 0 0 0 0 0 0 0 C2
0 0 0 0 0 0 0 0 C1 0 0 0 0 0 0 0 C2 0
0 0 0 0 0 0 0 0 0 C1 0 0 0 0 0 0 C2 0
0 0 0 0 0 0 0 0 0 0 C1 0 0 0 0 0 C2 0
0 0 0 0 0 0 0 0 0 0 0 C1 0 0 0 0 C2 0
D2 D2 D2 D2 0 0 0 0 0 0 0 0 D1 0 0 0 0 0
D3 D3 D3 D3 0 0 0 0 0 0 0 0 0 D1 0 0 0 0
D3 D3 D3 D3 0 0 0 0 0 0 0 0 0 0 D1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D1 0 0
0 0 0 0 0 0 0 0 D4 D4 D4 D4 0 0 0 0 D1 0
0 0 0 0 D4 D4 D4 D4 0 0 0 0 0 0 0 0 0 D1


, (3.206)

with

C1 =
ρ∆x2∆x3L1

12
,

C2 =− ∆x2∆x3

4
I∗2 ,

D1 =
∆x2∆x3L1

3
,

D2 =− (λ+ 2µ)∆x2∆x3

4
I∗2 ,

D3 =− λ∆x2∆x3

4
I∗2 ,

D4 =− µ∆x2∆x3

4
I∗2 ,
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and where

M4 =



0 0 0 0 0 0 0 0 0 0 0 0 E1 0 0 0 E3 E2
0 0 0 0 0 0 0 0 0 0 0 0 E1 0 0 0 E3 −E2
0 0 0 0 0 0 0 0 0 0 0 0 E1 0 0 0 −E3 −E2
0 0 0 0 0 0 0 0 0 0 0 0 E1 0 0 0 −E3 E2
0 0 0 0 0 0 0 0 0 0 0 0 0 E2 0 E3 0 E1
0 0 0 0 0 0 0 0 0 0 0 0 0 −E2 0 E3 0 E1
0 0 0 0 0 0 0 0 0 0 0 0 0 −E2 0 −E3 0 E1
0 0 0 0 0 0 0 0 0 0 0 0 0 E2 0 −E3 0 E1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 E3 E2 E1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 E3 −E2 E1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −E3 −E2 E1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −E3 E2 E1 0
F1 F1 F1 F1 −F2 F2 F2 −F2 −F3 −F3 F3 F3 0 0 0 0 0 0
F4 F4 F4 F4 −F5 F5 F5 −F5 −F3 −F3 F3 F3 0 0 0 0 0 0
F4 F4 F4 F4 −F2 F2 F2 −F2 −F6 −F6 F6 F6 0 0 0 0 0 0
0 0 0 0 −F7 −F7 F7 F7 −F8 F8 F8 −F8 0 0 0 0 0 0
−F7 −F7 F7 F7 0 0 0 0 F9 F9 F9 F9 0 0 0 0 0 0
−F8 F8 F8 −F8 F9 F9 F9 F9 0 0 0 0 0 0 0 0 0 0


,

(3.207)

pT =

[
p1 p2 p3 p4 q1 q2 q3 q4 r1 r2 r3 r4 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

]
,

(3.208)
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with

E1 =− ∆x2∆x3

4
I∗1 ,

E2 =
∆x3L1

6
,

E3 =
∆x2L1

6
,

F1 =
(λ+ 2µ)∆x2∆x3

4
I∗6 ,

F2 =
λ∆x3L1

6
,

F3 =
λ∆x2L1

6
,

F4 =
λ∆x2∆x3

4
I∗6 ,

F5 =
(λ+ 2µ)∆x3L1

6
,

F6 =
(λ+ 2µ)∆x2L1

6
,

F7 =
µ∆x2L1

6
,

F8 =
µ∆x3L1

6
,

F9 =
µ∆x2∆x3

4
I∗6 .

In order to provide an explicit scheme, matrix M3 must be diagonalised. To do

so, the entries must first be nondimensionalised. The first equation of the system

(3.205) will be considered, with rows two to twelve following similarly. So

C1ṗ1 + C2ψ̇1 = E1ψ1 + E2ψ6 + E3ψ5, (3.209)

then taking the same scalings as before

p1 = c̄p̃1, t = T t̃, ψi = µψ̃i, (3.210)
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so that

∂p1

∂t
=

c̄

T
p̃′1,

∂ψi
∂t

=
µ

T
ψ̃′i, (3.211)

where ′ denotes ∂/∂t̃. Also, from equation (3.162), substituting x̃1 = x1/L1, so that

dx̃1/dx1 = 1/L1, that is, dx1 = L1dx̃1, and for the limits when x1 = L1, x̃1 = 1

and when x1 = X1, x̃1 = X1/L1, so that

I∗2 =
1

c̄
lim

X1→∞

∫ X1/L1

1

1

α1(L1x̃1)

(
1

x̃1

)4

L1dx̃1

=
L1

c̄
lim

X1→∞

∫ X1/L1

1

1

α1(L1x̃1)

(
1

x̃1

)4

dx̃1.

By definition α1 is nondimensional therefore I∗2 = L1Ĩ
∗
2/c̄ and

I∗2 ∼ [LTL−1] = [T ].

Similarly, from equation (3.161), using the substitution x̃1 = x1/L1 as before,

I∗1 = lim
X1→∞

∫ X1/L1

1

(
β1(L1x̃1)

c̄
− 1

L1x̃1

)
1

α1(L1x̃1)

(
1

x̃1

)4

L1dx̃1.

By definition β1 has dimension [T−1] therefore

I∗1 ∼
[
T−1TL

L

]
,

that is to say I∗1 is nondimensional. Then

C1
c̄

T
p̃′1 + C2

µ

T
ψ̃′1 = E1µψ̃1 + E2µψ̃6 + E3µψ̃5. (3.212)
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Now the coefficients have dimensions

C1
c̄

T
=
ρ∆x2∆x3L1c̄

12T
∼
[
ML−3L3LT−1

T

]
=
[
MLT−2

]
,

C2
µ

T
=− ∆x2∆x3I

∗
2µ

4T
∼
[
L2TML−1T−2

T

]
=
[
MLT−2

]
,

E1µ =− ∆x2∆x3I
∗
1µ

4
∼
[
L2ML−1T−2

]
=
[
MLT−2

]
,

E2µ =
∆x3L1µ

6
∼
[
L2ML−1T−2

]
=
[
MLT−2

]
,

E3µ =
∆x2L1µ

6
∼
[
L2ML−1T−2

]
=
[
MLT−2

]
.

Then for diagonalisation

∣∣∣C1
c̄

T

∣∣∣� ∣∣∣C2
µ

T

∣∣∣ ,
that is,

I∗2 �
ρL1c̄

3µ
. (3.213)

So equation (3.212) becomes

C1
c̄

T
p̃′1 = E1µψ̃1 + E2µψ̃6 + E3µψ̃5,

and redimensionalising gives

C1ṗ1 = E1ψ1 + E2ψ6 + E3ψ5,

which is just equation (3.209) without the ψ̇1 term but the nondimensionalisation

provided the condition on I∗2 given in equation (3.213).

The thirteenth row of the system (3.205) will now be considered, with rows
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fourteen to eighteen following similarly. From row thirteen,

D2 (ṗ1 + ṗ2 + ṗ3 + ṗ4) +D1ψ̇1 = M4,13 · p,

and nondimensionalising as before gives

D2
c̄

T
(p̃′1 + p̃′2 + p̃′3 + p̃′4) +D1

µ

T
ψ̃′1 = M4,13 · p̃.

For diagonalisation, it is required that

∣∣∣D1
µ

T

∣∣∣� ∣∣∣D2
c̄

T

∣∣∣ ,
that is,

I∗2 �
4L1µ

3c̄(λ+ µ)
. (3.214)

Then using Euler’s method, from equation (3.179) with consideration to the diag-

onalisation just performed, an explicit form can be given by

A
(I)
1i′ =C1

p
(t+1)
i′ − p(t)

i′

δt
− E1ψ1 + χ1,2

i′ E2ψ6 + χ0,2
i′ E3ψ5, (3.215)

and similarly for the other velocity components,

A
(I)
2i′ =C1

q
(t+1)
i′ − q(t)

i′

δt
− E1ψ6 + χ1,2

i′ E2ψ2 + χ0,2
i′ E3ψ4, (3.216)

and

A
(I)
3i′ =C1

r
(t+1)
i′ − r(t)

i′

δt
− E1ψ5 + χ1,2

i′ E2ψ4 + χ0,2
i′ E3ψ3. (3.217)
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The stress equations can also now be formulated, with respect to the diagonal-

isation, from equations (3.199)-(3.204), using Euler’s method to give

B
(I)
1 =D1

ψ
(t+1)
1 − ψ(t)

1

δt

− F1(p1 + p2 + p3 + p4)− F2(q3 − q1 + q2 − q4)− F3(r3 − r1 + r4 − r2),

(3.218)

and similarly for the other stress components we have

B
(I)
2 =D1

ψ
(t+1)
2 − ψ(t)

2

δt

− F4(p1 + p2 + p3 + p4)− F5(q3 − q1 + q2 − q4)− F3(r3 − r1 + r4 − r2),

(3.219)

B
(I)
3 =D1

ψ
(t+1)
3 − ψ(t)

3

δt

− F4(p1 + p2 + p3 + p4)− F2(q3 − q1 + q2 − q4)− F6(r3 − r1 + r4 − r2),

(3.220)

B
(I)
4 =D1

ψ
(t+1)
4 − ψ(t)

4

δt
− F8(r3 − r1 + r2 − r4)− F7(q3 − q1 + q4 − q2), (3.221)

B
(I)
5 =D1

ψ
(t+1)
5 − ψ(t)

5

δt
− F9(r1 + r2 + r3 + r4)− F7(p3 − p1 + p4 − p2), (3.222)

and

B
(I)
6 =D1

ψ
(t+1)
6 − ψ(t)

6

δt
− F9(q1 + q2 + q3 + q4)− F8(p3 − p1 + p2 − p4). (3.223)

3.5.3 The final solution

The stress equations can be calculated on an element by element basis, therefore,

for each finite element, the stress components are given by equations (3.137)-
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(3.142), while for each infinite element, from equations (3.224)-(3.229),

ψ
(t+1)
1 =ψ

(t)
1 + δt

(
3(λ+ 2µ)I∗6

4L1

(p1 + p2 + p3 + p4)

+
λ

2∆x2

(q3 − q1 + q2 − q4) +
λ

2∆x3

(r3 − r1 + r4 − r2)

)
, (3.224)

ψ
(t+1)
2 =ψ

(t)
2 + δt

(
3λI∗6
4L1

(p1 + p2 + p3 + p4)

+
λ+ 2µ

2∆x2

(q3 − q1 + q2 − q4) +
λ

2∆x3

(r3 − r1 + r4 − r2)

)
, (3.225)

ψ
(t+1)
3 =ψ

(t)
3 + δt

(
3λI∗6
4L1

(p1 + p2 + p3 + p4)

+
λ

2∆x2

(q3 − q1 + q2 − q4) +
λ+ 2µ

2∆x3

(r3 − r1 + r4 − r2)

)
, (3.226)

ψ
(t+1)
4 =ψ

(t)
4 + δt

(
µ

2∆x2

(r3 − r1 + r2 − r4) +
µ

2∆x3

(q3 − q1 + q4 − q2)

)
, (3.227)

ψ
(t+1)
5 =ψ

(t)
5 + δt

(
3µI∗6
4L1

(r1 + r2 + r3 + r4) +
µ

2∆x3

(p3 − p1 + p4 − p2)

)
, (3.228)

and

ψ
(t+1)
6 =ψ

(t)
6 + δt

(
3µI∗6
4L1

(q1 + q2 + q3 + q4) +
µ

2∆x2

(p3 − p1 + p2 − p4)

)
. (3.229)

Now for the velocity equations, for each finite element, for example from equa-

tion (3.75),

A
(F )
1i′ =

ρ∆x1∆x2∆x3

8
ṗi′ + χ0,2

i′
∆x2∆x3

4
ψ1 + χ1,2

i′
∆x1∆x3

4
ψ6 + χ0,4

i′
∆x1∆x2

4
ψ5,

which leads to an explicit form (using Euler’s method) of

A
(F )
1i′ =

ρ∆x1∆x2∆x3

8

p
(t+1)
i′ − p(t)

i′

δt

+ χ0,2
i′

∆x2∆x3

4
ψ1 + χ1,2

i′
∆x1∆x3

4
ψ6 + χ0,4

i′
∆x1∆x2

4
ψ5,
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while for each infinite element, for example from equation (3.215),

A1i′ =
ρ∆x2∆x3L1α

12

p
(t+1)
i′ − p(t)

i′

δt

+
∆x2∆x3I

∗
2λ

4
ψ1 + χ1,2

i′
∆x3L1

6
ψ6 + χ0,2

i′
∆x2L1

6
ψ5.

Now recombining the elements in order to calculate the velocities at a global level

gives

b(F )
n

ρ∆x1∆x2∆x3

8

p
(t+1)
n − p(t)

n

δt

+ b(I)
n

ρ∆x2∆x3L1

12

p
(t+1)
n − p(t)

n

δt

=

b
(F )
n∑
k=1

F (F ) +

b
(I)
n∑
l=1

F (I)

where b
(F )
n is the number of finite elements that share global node n as a vertex,

b
(I)
n is the number of infinite elements that share global node n as a vertex, F (F ) is

the combination of stress terms used in A
(F )
1i′ when global node n is local node i′

in a finite element, and F (I) is the combination of stress terms used in A
(I)
1i′ when

global node n is local node i′ in an infinite element. So

(
b(F )
n

ρ∆x1∆x2∆x3

8
+ b(I)

n

ρ∆x2∆x3L1

12

)
p(t+1)
n

=

(
b(F )
n

ρ∆x1∆x2∆x3

8
+ b(I)

n

ρ∆x2∆x3L1

12

)
p(t)
n

+ δt

b
(F )
n∑
k=1

F (F ) +

b
(I)
n∑
l=1

F (I)


and letting

W (F ) = b(F )
n

ρ∆x1∆x2∆x3

8
, W (I) = b(I)

n

ρ∆x2∆x3L1

12
, (3.230)
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then

p(t+1)
n =p(t)

n +
δt

W (F ) +W (I)

b
(F )
n∑
k=1

F (F ) +

b
(I)
n∑
l=1

F (I)

 , (3.231)

and in the same way, for the other components of velocity

q(t+1)
n =q(t)

n +
δt

W (F ) +W (I)

b
(F )
n∑
k=1

F (F ) +

b
(I)
n∑
l=1

F (I)

 , (3.232)

r(t+1)
n =r(t)

n +
δt

W (F ) +W (I)

b
(F )
n∑
k=1

F (F ) +

b
(I)
n∑
l=1

F (I)

 . (3.233)

3.6 Implementation

The new combined perfectly matching layer and infinite element formulation for

the elastodynamic wave equation was implemented in Fortran for the test problem

of a semi-infinite rectangular wave guide. A simple pseudocode is presented here.

BEGIN

Define number of nodes in each direction

Initialise variables

Set material properties

Set infinite element wavespeed parameter given by c̄

if constant stretching then

set stretching parameters α and β

if α violates conditions (3.123) or (3.124) then

STOP

end if

else if spatially dependent stretching then
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set stretching parameter ¯̄α

if I∗2 given by equation (3.178) violates conditions (3.214) or (3.213) then

STOP

end if

end if

Initialise velocities, nodal weightings and stresses at all nodes

Define the mass of a finite element as in equation (3.149)

if constant stretching then

Define the mass of an infinite element as in equation (3.149)

else if spatially dependent stretching then

Define the mass of an infinite element as in equation (3.230)

end if

for K = 1, . . . , N3− 1 do

. where N3 is the number of nodes in the x3 direction

for J = 1, . . . , N2− 1 do

. where N2 is the number of nodes in the x2 direction

for I = 1, . . . , N1− 1 do

. where N1 is the number of nodes in the x1 direction

Assign weights to all the nodes of the finite elements using the local

coordinate index as shown in figures 3.2-3.4

end for

Assign weights to all the nodes of the infinite elements using the local

coordinate index as shown in figures 3.5 and 3.6

end for

end for

for timesteps from 1 to 1400 do
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Increase the time by δt

for I = 1, . . . , NNOD do

. where NNOD is the total number of nodes in the waveguide

if constant stretching then

Update velocities at node I using equations (3.150)-(3.152)

else if spatially dependent stretching then

Update velocities at node I using equations (3.231)-(3.233)

end if

for I = 1, . . . , NNOD do

Set stresses to zero

end for

end for

Apply an initial sinusoidal wave in the x1 direction only for the first 35

timesteps

for K = 1, . . . , N3− 1 do

for J = 1, . . . , N2− 1 do

for I = 2, . . . , N1 do

Set elastic constants to be equal throughout the nodes

. this allows scope for heterogeneous materials

end for

Convert global node numbering to a local node index for the finite

elements

for I = 1, . . . , N1− 1 do

Calculate stresses on finite elements using equations (3.137)-(3.142)

end for

Convert global node numbering to a local node index for the infinite
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elements

if constant stretching then

Calculate stresses on infinite elements using equations (3.143)-

(3.147)

else if spatially dependent stretching then

Calculate stresses on infinite elements using equations (3.224)-

(3.228)

end if

end for

end for

Find a strand in the middle of the waveguide and find the maximum velocity

in the x1 direction and the position at which this occurs on the strand

Find the reflection coefficient at a specified node in the middle of the waveg-

uide and write to a file

end for

Find the runtime and write this to a file

END

3.7 Results

Having derived PML+IE formulations with constant stretching and spatially de-

pendent stretching, each case was implemented in an explicit finite element code

using Fortran. A comparison was then made between the PML+IE formulation

and the FE only implementation (without an inifinite boundary in the x1 direction)

using a reflection coefficient measure. The reflection coefficient, prefl, is defined

as the ratio of the reflected wave to the incident wave, measured at a node in the
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centre of the waveguide. It is given by

prefl =
p

(2)
max

p
(1)
max

, (3.234)

where, for a node in the middle of the waveguide at position x∗ = (a∆x1, b∆x2, b∆x3),

then

p(1)
max = max

t∈[ti−δtn,ti+δtn]
|p(t)| ,

p(2)
max = max

t∈[tr−δtn,tr+δtn]
|p(t)| ,

where ti is the number of timesteps taken for the incident wave to first reach this

node and tr is the number of timesteps taken for the reflected wave to return

to this node. The pmax values are calculated over a window in time of size 2δt

centred at time ti/r to ensure that the arrival time of the maximum amplitude of

the wavefront is accurately captured.

The reflection coefficient is used to find values of the stretching function pa-

rameters that maximise the reduction in the reflected wave. In the example below

a steel waveguide that has n2 = 5 nodes in width, n2 = 5 nodes in height and

n1 = 201 nodes in length (see Figure 3.2) is used, where the nodes are equally

spaced (that is ∆x1 = ∆x2 = ∆x3 = 1 × 10−5m). Each simulation was run for

1400 timesteps where the timestep was given by δt = 0.6∆x1/cp, and a = 99,

b = 3, ti = 99∆x1/(δtcE) and tr = (2(n1− 1)− 99)∆x1/(δtcE) where cE =
√
E/ρ,

with E denoting Young’s modulus.
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3.7.1 Constant Stretching

In the case of constant stretching in the PML function, there are two parameters to

optimise, namely α and β from equation (3.6). Figure 3.8 shows the first velocity

component (p) along a horizontal line in the centre of the waveguide at a fixed point

in time. This time is chosen as the point immediately after reflection from the end

of the waveguide for both the FE only formulation and the PML+IE formulation

with constant stretching with α = 1.0001 and β = 10. It can be seen that the

reflected wave has a greater amplitude for the FE only case (around 1) than for

the PML+IE case (close to 0.55), demonstrating that the PML+IE formulation is

successful in reducing the reflection from the boundary. The oscillations apparent

in this figure are artefacts of the coarseness of the mesh used.

Figure 3.8: Plot of the amplitude of p, the velocity in the x1 direction at a fixed
point in time, for a horizontal line of nodes in the middle of a n1 = 201 node long
waveguide (with n2 = n3 = 5) and with the parameters in equation (3.6) given by
α = 1.0001 and β = 10. The plot shows the time immediately after the wave has
reached the end of the waveguide and is reflected back into it.

The effect of the stretching function parameter α is assessed in Figure 3.9. Since

α appears in the infinite element weighting W (I) in equation (3.149), it is assumed
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Figure 3.9: The effect of the stretching function parameter α in equation (3.6)
on the reflection coefficient calculated via equation (3.234) for both the FE only
formulation (dashed line) and the PML+IE formulation (full line) with constant
stretching for a steel waveguide, n1 = 201 nodes in length, with the stretching
function parameter β = 10.

that it should be of the order ∆x1/L1 so that W (I) is similar to W (F ). However,

from the condition in equation (3.124) and given that the material parameters of

the test waveguide are those of steel, α > 1 must hold. Therefore small values close

to unity are tested and Figure 3.9 shows that the reflection coefficient increases as

α increases so the best choice for the stretching function parameter α is given by

a value close to 1 and so α = 1.0001 is chosen.

The effect of the other stretching function parameter β is assessed in Figure

3.10. Since β appears in the velocity update in equations (3.150)-(3.152), it is

assumed that the coefficient of p
(t)
n , q

(t)
n , and r

(t)
n , should be between 0 and 1.

From Figure 3.10, it is clear that smaller values of β produce the lowest reflection

coefficients and so β = 10 is chosen.

Taking the stretching parameters to be α = 1.0001 and β = 10, Figure 3.11

shows that for both the FE only formulation and the PML+IE formulation, the
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Figure 3.10: The effect of the stretching function parameter β (from equation
(3.6)) on the reflection coefficient (prefl given by equation (3.234)) for both the
FE only formulation and the PML+IE formulation with constant stretching for a
steel waveguide, n1 = 201 nodes in length, with the stretching function parameter
α = 1.0001.

Figure 3.11: The effect of the length of the waveguide on the reflection coefficient
(prefl given by equation (3.234)) for both the FE only implementation and the
PML+IE implementation with constant stretching for a steel waveguide with the
stretching function parameters in equation (3.6) given by α = 1.0001 and β = 10.
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greater the length of the waveguide, the smaller the reflection coefficient as is

expected. Figure 3.12 shows that the time taken to run the simulations increases

Figure 3.12: The effect of the length of the waveguide on the runtime for both the
FE only implementation and the PML+IE implementation with constant stretch-
ing for a steel waveguide with the stretching function parameters in equation (3.6)
given by α = 1.0001 and β = 10.

with the length of the waveguide, again as expected, but importantly showing

that there is little to no difference in runtime between the FE only formulation

and the PML+IE formulation. It also shows that the runtime scales linearly with

the length of the waveguide as expected.

Looking at Figures 3.11 and 3.12 together, it can be seen that the PML+IE

formulation can produce a reflection coefficient equal to that of the FE only for-

mulation by using less than half the number of nodes (memory) and taking around

the half the time to run the simulation.

3.7.2 Spatially Dependent Stretching

In the case of nonconstant stretching in the PML stretching function, in order to

proceed with the formulation, a choice was made for the form of the stretching
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function in equations (3.173) and (3.174), with equations (3.175) and (3.176), and

with m = 1 and n = 1/4. Therefore there is only one degree of freedom in the

parameters to explore, namely ¯̄α. Figure 3.13 shows the first velocity component

(p) along a horizontal line in the centre of the waveguide at a fixed point in time.

This time is chosen as the point immediately after reflection from the end of the

waveguide for both the FE only formulation and the PML+IE formulation with

spatially dependent stretching with ¯̄α = 2. It can be seen that the reflected wave

has a greater amplitude for the FE only case (around 1) than for the PML+IE

case (close to 0.55), demonstrating that the PML+IE formulation is successful in

reducing the reflection from the boundary.

Figure 3.13: Plot of the amplitude of p, the velocity in the x1 direction at a fixed
point in time, for a horizontal line of nodes in the middle of a n1 = 201 node long
waveguide (with n2 = n3 = 5) with ¯̄α = 2, m = 1 and n = 1/4. The plot shows
the time immediately after the wave has reached the end of the waveguide and is
reflected back into it.

The effect of the stretching function parameter ¯̄α on the reflection coefficient

is assessed in Figures 3.14 and 3.15. Since ¯̄α appears in the expressions given

by equations (3.177) and (3.178) it can be seen immediately that there will be a
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singularity where ¯̄α = 1. Away from this value, these expression are small and

have little impact on the system. Therefore values close to this singularity are

explored for ¯̄α, with values approaching one from the negative side (1−) shown

in Figure 3.14 and values approaching one from the positive side (1+) shown in

Figure 3.15. The values shown examine the behaviour of the reflection coefficient

when ¯̄α is as close to unity as possible without breaching the conditions given by

equations (3.214) and (3.213). It can be seen from both figures that values close

to one in fact produce larger reflection coefficients (for the case with m = 1 and

n = 1/4) so ¯̄α = 2 is chosen.

Figure 3.14: The effect of the stretching function parameter ¯̄α, given in equation
(3.175), on the reflection coefficient for both the FE only formulation and the
PML+IE formulation with spatially dependent stretching for a steel waveguide
of n1 = 201 nodes in length, with m = 1 and n = 1/4 in equations (3.175) and
(3.176).

With this value for ¯̄α, Figure 3.16 shows that for both the FE only formulation

and the PML+IE formulation, the greater the length of the waveguide, the smaller

the reflection coefficient as is expected. Figure 3.17 shows that the time taken to

run the simulations increases with the length of the waveguide, again as expected,
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Figure 3.15: The effect of the stretching function parameter ¯̄α, given in equation
(3.175), on the reflection coefficient for both the FE only formulation and the
PML+IE formulation with spatially dependent stretching for a steel waveguide of
201 nodes in length, with m = 1 and n = 1/4.

Figure 3.16: The effect of the length of the waveguide on the reflection coeffi-
cient for both the FE only implementation and the PML+IE implementation with
spatially dependent stretching for a steel waveguide with the stretching function
parameter in equation (3.175) given by ¯̄α = 2, with m = 1 and n = 1/4.

while showing there is little to no difference in runtime between the FE only

formulation and the PML+IE formulation.
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Figure 3.17: The effect of the length of the waveguide on the runtime for both
the FE only implementation and the PML+IE implementation with spatially de-
pendent stretching for a steel waveguide with the stretching function parameter in
equation (3.175) given by ¯̄α = 2, with m = 1 and n = 1/4.

Looking at Figures 3.16 and 3.17 together, it can be seen that the PML+IE

formulation can produce a reflection coefficient equal to that of the FE only for-

mulation by using less than half the number of nodes and taking around the half

the time to run the simulation.

In both the constant stretching case and the spatially dependent stretching

case, the reflection coefficient could not be improved beyond prefl = 0.645 for the

examples shown. In terms of CPU time, both cases exhibited very similar results,

with a runtime of around 2.8s for a waveguide with n1 = 201 nodes, increasing

linearly to around 6.25s in the constant stretching case and 5.75s in the spatially

dependent stretching case for a waveguide with n1 = 401 nodes.
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3.8 Conclusion

An Infinite Element has been successfully combined with a Perfectly Matching

Layer to produce a new boundary condition for unbounded wave problems in the

time domain. Through the example problem of a semi-infinite elastic waveguide

that is locally isotropic, a formulation has been devised for an explicit finite element

approach using the new PML+IE combination. Two cases have been considered:

the first where the PML stretching function has constant coefficients, and the

second where a spatial dependency is retained. Both cases have been implemented

in an explicit FE code and a comparison made to the FE only approach. By using

a reflection coefficient as a measure of accuracy, it has been found that in both the

case with constant stretching and the case with spatially dependent stretching, the

new combined PML+IE is successful in improving accuracy, reducing the reflection

coefficient by up to 20%. It has been shown that using finite elements only would

take double the memory and twice the CPU time to run to achieve the same

reflection coefficient as this new PML+IE formulation.

While it would be useful to make comparisons between the PML+IE formula-

tion and IE only or PML only formulations, it is not possible to simply switch off

one of these components in this formulation. In the case of the infinite element,

this is embedded in the formulation through the form of the test function wi in

equation (3.38), permeating the entire derivation. In the case of the PML, setting

the parameters α = 1, β = 0 in equation (3.6) would eliminate stretching, however

this would cause a singularity where α appears in a denominator, as in equations

(3.143)-(3.148).
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Chapter 4

Conclusions

4.1 Introduction

Infinte domains arise in a variety of real world situations, but when modelling these

domains, numerical methods are restricted by memory and processor limitations.

A number of boundary conditions exist to handle these unbounded domains, but

each has its own strengths and weaknesses. The focus of this thesis has been to

develop a new perfectly matching layer and infinite element combination for use in

unbounded wave problems, for both the frequency domain and the time domain,

in order to improve existing finite element techniques for modelling ultrasound

devices and systems. The combination of a coordinate stretching transformation

for the PML, and infinite element basis functions in the variational formulation

achieved this new method for the acoustic wave equation and the elastic wave

equation. A framework for assessing the impact of the stretching function choice

was also presented through comparison with the exact solution in the frequency

domain case, and with a reflection coefficient in the time domain case.

For the acoustic wave equation in the frequency domain, the problem of a
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vibrating sphere was considered. The existence of an exact solution provided a

measure with which to assess the accuracy of the new PML+IE method. The

acoustic response was used to derive the inertia and resistance which were then

used as a measure of accuracy. A variational formulation was used to introduce

the infinite elements through test functions, while a complex coordinate stretching

enabled the perfectly matching layer to be introduced in this derivation for the

first time. Three types of infinite element were then considered in turn: the un-

conjugated Burnett element, the conjugated Burnett element and the Astley-Leis

element. The infinite element only formulation was then shown to be a particular

case of the PML+IE formulation, achieved by choosing z = r for the stretching

function. The difference between the PML+IE formulation and the exact solu-

tion was introduced as an error measure for both the inertia and resistance, and

integrated over a range of wavelengths for a number of acoustic modes. A set

of stretching function parameters was then assessed to demonstrate that greater

accuracy can be achieved using the new PML+IE method than by using the IE

only method.

In the case of the elastodynamic wave equation, a three dimensional, heteroge-

neous volume was constructed with a new PML+IE formulation at its boundary.

The special case of a semi-infinite, locally isotropic, homogeneous waveguide was

then examined to allow an empirical comparison of the proposed method to the

infinite element only approach. To do so, Fourier transforms of the elastodynamic

wave equation were taken in time to introduce the complex coordinate stretching

function. The variational formulation was then followed as before, introducing the

infinite elements through test functions in the exterior domain, while the interior

was modelled by traditional hexahedral finite elements. The case with a constant

PML stretching function in all three directions was considered first, then the case
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with stretching in only one direction with a spatial dependency. Mass lumping and

diagonalisation were then necessary to allow an explicit scheme to be implemented.

A reflection coefficient was introduced to compare the new PML+IE method with

the FE only implementation and to find parameter values for the PML stretching

function that could maximise the reduction in the reflected wave.

4.2 Results

The use of a combined perfectly matching layer and infinite element formulation

for the acoustic wave equation was assessed via the exact solution of the acoustic

response of a breathing sphere, in particular the inertia and resistance in Chapter

2. By introducing the difference between the exact solution and the PML+IE

formulation as an error measure, the proposed combination was shown to have an

improvement upon the infinite element only formulation over a range of acoustic

modes for large wavelengths. In section 2.5, the error was plotted as a function of

the perfectly matching layer stretching function parameters for a range of values,

in turn, for the unconjugated Burnett element, the conjugated Burnett element

and the Astley-Leis element. For all three types of infinite element, a range of

values for the stretching function parameters was found to exist. This demon-

strated that the proposed new combined method could result in an improvement

in accuracy. Solution plots for the exact solution, the infinite element only solution

and the PML+IE solution were also generated for each type of infinite element

using the parameter values obtained, with plots produced for a number of acoustic

modes. From the values found for the overall error function Q(α∗, β∗) given by

equation (2.45), it is possible to quantify the improvement in accuracy by noting

that Q(α∗, β∗)+Eµ,ν is the difference between the PML+IE solution and the exact
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solution, while Eµ,ν is the difference between the IE only solution and the exact

solution. Therefore (Q(α∗, β∗) + Eµ,ν)/Eµ,ν gives a measure of the improvement

using each type of infinite element in the PML+IE formulations. Using this mea-

sure, the unconjugated Burnett element results in an improvement in accuracy

of around 90%, the conjugated Burnett element results in an improved accuracy

of around 91%, and the Astley-Leis element results in an increase in accuracy of

around 88%.

In Chapter 3, this new PML+IE formulation was shown to be possible for

the time dependent elastic wave equation. A case with constant stretching in

the perfectly matching layer and another with spatially dependent stretching were

considered. Both cases were implemented in an explicit finite element code and

compared to the FE only approach using a reflection coefficient. In the case

with constant stretching, there were two parameters to optimise in the perfectly

matching layer coordinate stretching function. Plots were created of the velocity

in the x1 direction (the infinite direction of the waveguide) at a fixed point in

time for a horizontal line of nodes in the centre of the waveguide. The plots

showed the timestep immediately after the wave reached the end of the waveguide

and was reflected back into it. The effect of the stretching parameters on the

reflection coefficient were then plotted to find optimal parameters. The effect

of the length of the waveguide on the reflection coefficient and on the running

time of the simulation were also plotted. The same process was followed for the

case with spatially dependent stretching in the x1 direction, but with only one

parameter to be optimised. In both cases, the new formulation was found to be

successful in improving accuracy, reducing the reflection by up to 20%. Using

the PML+IE formulations had very little difference in runtime to using FE only,

meaning implementation would not encumber processing. It was also found that
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a reflection coefficient equal that of the FE only case could be found with the

PML+IE formulations, using less than half the number of nodes and taking around

half the time to run.

4.3 Future Work

While the possibility of combining perfectly matching layers and infinite elements

was demonstrated, the benefits of this method were unable to be fully explored.

There are a number of avenues of exploration available to advance this work fur-

ther, including:

1. Optimisation of the form of the perfectly matching layer stretching func-

tion. The form taken in the frequency domain problem was informed by the

outcome of the time domain problem, but this is not necessarily the best

choice. Further exploration of the coordinate transformation could lead to

significant improvement in performance, both in terms of accuracy and in

terms of efficiency.

2. Comparison of PML+IE and other boundary methods within an explicit time

domain implementation. As there was no simple method of implementing

the PML only or IE only formulations in the time domain, the reflection

coefficient measure was used to give an indication of accuracy, however a

comparison to current techniques would help to benchmark any improvement

that may be gained using the new PML+IE formulation.

3. Other boundary conditions. In the elastodynamic case, all boundaries except

the infinite facing surface had stress-free conditions imposed. Further studies

could investigate the effects of different boundary conditions in the x2 and

x3 directions.
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4. Exploration of the method in other materials. The present study dealt only

with locally isotropic homogeneous materials. It would be interesting to

study the application of the PML+IE formulation in materials that are lo-

cally anisotropic, or again in materials that are heterogeneous, with changing

material constants.

4.4 Concluding Remarks

This thesis has presented a new combined perfectly matching layer and infinite

element formulation for the first time. It has been shown to be possible in both

the frequency and time domains and has been implemented in an explicit finite

element code. It is hoped that further work can be done to optimise the choice

of PML stretching function and to show an improvement over existing boundary

methods.
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Appendix A

The stiffness tensor

Given that

C =



C1111 C1122 C1133 C1123 C1131 C1112

C2211 C2222 C2233 C2223 C2231 C2212

C3311 C3322 C3333 C3323 C3331 C3312

C2311 C2322 C2333 C2323 C2331 C2312

C3111 C3122 C3133 C3123 C3131 C3112

C1211 C1222 C1233 C1223 C1231 C1212


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66


,

and for an isotropic material, the only nonzero entries are given by

C11 = C22 = C33 = λ+ 2µ,

C12 = C13 = C23 = C21 = C31 = C32 = λ,

C44 = C55 = C66 = µ,
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then, with v̂ = (p, q, r), for i = 1

Cijkl
sjsl

v̂k =
C1111

s1s1

p̂+
C1122

s1s2

q̂ +
C1133

s1s3

r̂ +
C1212

s2s2

p̂+
C1221

s2s1

q̂ +
C1313

s3s3

p̂+
C1331

s3s1

r̂

=
C11

s2
1

p̂+
C12

s1s2

q̂ +
C13

s1s3

r̂ +
C66

s2
2

p̂+
C66

s2s1

q̂ +
C55

s2
3

p̂+
C55

s3s1

r̂

=
λ+ 2µ

s2
1

p̂+
λ

s1s2

q̂ +
λ

s1s3

r̂ +
µ

s2
2

p̂+
µ

s2s1

q̂ +
µ

s2
3

p̂+
µ

s3s1

r̂,

for i = 2

Cijkl
sjsl

v̂k =
C2112

s1s2

p̂+
C2121

s1s1

q̂ +
C2211

s2s1

p̂+
C2222

s2s2

q̂ +
C2233

s2s3

r̂ +
C2323

s3s3

q̂ +
C2332

s3s2

r̂

=
C66

s1s2

p̂+
C66

s2
1

q̂ +
C12

s2s1

p̂+
C22

s2
2

q̂ +
C23

s2s3

r̂ +
C44

s2
3

q̂ +
C44

s3s2

r̂

=
µ

s1s2

p̂+
µ

s2
1

q̂ +
λ

s2s1

p̂+
λ+ 2µ

s2
2

q̂ +
λ

s2s3

r̂ +
µ

s2
3

q̂ +
µ

s3s2

r̂,

and for i = 3

Cijkl
sjsl

v̂k =
C3113

s1s3

p̂+
C3131

s1s1

r̂ +
C3223

s2s3

q̂ +
C3232

s2s2

r̂ +
C3311

s3s1

p̂+
C3322

s3s2

q̂ +
C3333

s3s3

r̂

=
C55

s1s3

p̂+
C55

s2
1

r̂ +
C44

s2s3

q̂ +
C44

s2
2

r̂ +
C31

s3s1

p̂+
C32

s3s2

q̂ +
C33

s2
3

r̂

=
µ

s1s3

p̂+
µ

s2
1

r̂ +
µ

s2s3

q̂ +
µ

s2
2

r̂ +
λ

s3s1

p̂+
λ

s3s2

q̂ +
λ+ 2µ

s2
3

r̂.
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