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Abstract

High-density surface electromyography (HD sEMG) is a recent development in the field of

neurorehabilitation allowing simultaneous recording of many, spatially differentiated motor unit

action potentials (MUAPs). The available literature on studies using HD sEMG is reviewed as

a preamble to the experiment. Only one of these is related to prosthetic control and this utilised

only a very crude approximation of HD sEMG31. Information relating to muscle physiology,

electromyography (EMG) and wavelet analysis is also discussed to facilitate understanding of

the methods.

Using two 64-channel HD electrode-arrays, muscle activation during four different hand move-

ments (and a negative control) were recorded from the extensor digitorum superficialis and

flexor digitorum communis of five subjects.

Relative wavelet packet energy (RWPE) is the scale-dependent relative energy distribution of

a signal at each frequency band after decomposition with the wavelet packet transform and

has been previously applied to sEMG with some success29. Wavelet packet analysis is carried

out offline on the 128-channel recordings and the relative spectral energy density is calculated

for each hand movement. Mean values and standard deviations are shown for visualization.

Three-way ANOVA is computed for interaction effects between movement, location and firing

frequency. Some significant interactions are found (p ≈ 0), but many interactions are not

significant suggesting modifications to the experimental design would have to be made for

application to prosthetic control.
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Chapter 1

Introduction

1.1 Background and aim of the study

High-density electromyography is a relatively new technology in the field of the biosignal anal-

ysis. A 2-dimensional array of electrodes is employed to locate the spatial distribution of

bioelectrical sources. This complements the temporal analysis used by more conventional elec-

tromyographical recording methods, allowing extra dimensionality to the data.

The aim of this research project is to characterise hand movements using the extrinsic muscu-

lature of the wrist. It is hoped that this could lead to useful information for the design of a

myoelectrically controlled prosthetic arm.

Wavelet packet analysis allows the rapid decomposition of data into equally spaced frequency

bases. It is hoped that the merging of these two state-of-the-art techniques will allow neural

drive to be characterised in a novel way.

The merging of wavelet analysis and high-density electromyography has only been carried out

in a single study to date19 and this was for a very different purpose. In fact, the application

of high-density electromyography to the field of neuroprosthetic is a rare occurrence in itself.

These studies will be discussed in the following chapters.

1.2 Organisation of the thesis

This project has been divided up into chapters, the contents of which will be quickly sum-

marised:

Chapter 2 is concerned with surface electromyography. This information is necessary for an
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understanding of the concepts employed in the research, both of my own project and of the

literature discussed. It culminates with a brief mention of the parameters associated with

high-density electromyography, the subject of chapter 3.

Chapter 3 is a literature review of the papers concerned with high-density electromyography.

The research aims within these studies is quite different to my own, yet the concepts used are

still very relevant as they can be generalised to any signal acquisition with high-density arrays.

Chapter 4 explores some of the major themes in wavelet analysis and a comparison to Fourier

analysis, a similar signal processing technique, is made.

In Chapter 5 the paramters that have been considered when designing the experiment are

discussed. These are based upon the concepts explored in chapters 2, 3 and 4.

Chapter 6 explains the methods employed in the study itself, including acquisition of HD sEMG

data, signal processing to obtain time-domain information and statistical analysis to ascertain

the validity of the results.

Chapter 7 presents the results of the experiment. These results are discussed in Chapter 8.

Some suggestions are made as to the limitations of the experimental design limitations and

ways of overcoming these are posited.

Finally chapter 9 summarises and concludes the report. There are several appendices containing

(respectively) a glossary of terms and anacronyms, more detailed results and the MATLAB

scripts written for the data analysis.

2



Chapter 2

Surface electromyography

2.1 Introduction

Electromyography is defined by the Concise Oxford English Dictionary (2001) as ’the recording

of the electrical activity of muscle tissues by means of electrode’. Although its existence has been

known for centuries, electromyography (EMG) has only gained widespread clinical use since the

1960s52. Primarily it is used to characterise motor functioning, yet the ability to extract signals

of muscle intention from the surface makes it a useful tool for control of prosthetic limbs9

My project uses a recent adaptation of EMG which utilises many, evenly spaced electrodes

attached to the skin to gain a substantial amount of information about the electromyographic

signals beneath. An explanation of how this is achieved is discussed in this chapter. However,

to understand this we must first look at how such signals are created and how they can be

recorded.

2.2 Muscle physiology

2.2.1 The neuromuscular system

The signal properties of EMG are determined by the physiology of the neuromuscular system.

Thus a brief discussion of this is necessary to understand how signals are created. For a more

detailed discussion of the topic please refer to Vander’s Human Physiology 55.

The evolution of a nervous system allowed animals to move in response to environmental stimuli.

Hence one of the primary functions of the central nervous system (CNS) is motor output7.

Motor neurons, or motoneurons, have their bodies in the spinal cord and through individual
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Figure 2.1 – A representation of the muscle physiology at decreasing scales. Picture from
MedicalNanoTec.com, ©2011.

axonal projections convey information from the central nervous system to skeletal muscles7.

They constitute about 60% of the neuronal projections to skeletal muscle16.

2.2.2 Muscle fibres

Skeletal muscle is composed of individual cells or muscle fibres. The muscle fibres are responsible

for motile force and are innervated by α-motoneurons which connect via specialised synapses

called neuromuscular junctions. The branched endings of these are called motor end plates and

transmit the signal across a physical gap, to the muscle fibre, by release of a simple molecule

called acetyl choline5. The membrane of the muscle fibre has a delicately controlled (resting)

potential difference across it of about 70 mV62, i.e. it is maintained in an electrically polarized

state. Within the muscle fibre are bundles of myofibril, containing two interlaceing biopolymers:

actin and myosin, which give it contractile properties16. Figure 2.1 gives a representation of

the different scales within the muscle fibre.

2.2.3 Motor units

Many muscle fibres are innervated by a single α-motoneuron. The set of muscle fibres, along

with their stimulatory motoneuron, are referred to as a motor unit2. Thus the motor unit (MU)

is the functional unit of the neuromuscular system19.

In primates, the size of motor units (MUs), i.e. the number of muscle fibres they contain, varies

considerably5. Small muscles used for low-force, fine-control movement, such as in the hand

have MUs with about 10-100 fibres. Whereas larger muscles which produce more force, such as

4
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Figure 2.2 – The triphasic shape of the MUAP is brought about through a sudden depo-
larization stage followed by a more gradual repolarization stage.

the biceps, may have MUs with about 100-1000 fibres8. Due to their separate innervation, it is

usually assumed that MUs have weak or none existent interaction with each other26. However

there is evidence to suggest that interneurons within the spinal cord allow motoneurons to

inhibit one another51.

2.2.4 Motor unit action potentials

In a similar fashion to propagation of action potentials along an axon, signals are transmitted

along the muscle fibre through electrochemical potential changes mediated by voltage-gated ion

channels. A change in muscle fibre membrane potential (over a certain threshold) triggers the

transient opening of nearby ion channels8. As a results adjacent sections are depolarized, thus

the voltage change (i.e. the signal) is effectively propagated as a triphasic wave, as shown in

figure 2.2. Due to the active nature of this process (i.e. energy is used) the signal characteristics

are conserved. Thus, where v is the propagation velocity, the signal, s, can be represented by

the following function of time, t, and space, z 62:

s(z) = s(vt) (2.1)

The propagating signal is called a motor unit action potential, or MUAP. A refractory period,

which prevents ion-channels from reopening within a certain time period, ensures unidirectional

propagation.

Calcium ions, released from a specialised compartment within the muscle fibre called the sar-

colemma during the MUAP cause the muscle fibre to contract, or twitch5. This twitch will be

simultaneous with that of other muscle fibres within the MU, producing a gross response.

As neural stimulation (neural drive) increases, the firing rates of active motoneurons are in-

creased, thus more acetyl choline is released from the motor end plates. When the increase in

MUAP firing rate increases sufficiently muscle fibre twitches can combine, producing a larger

contraction8, as shown in figure 2.3. Thus, by temporal recruitment, a larger force is gener-

ated52
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Figure 2.3 – MUAPs have a much smaller duration than the muscle fibre twitch response.
A succession of MUAPs, with a rate of about 35 Hz or above will results in a temporal
summation of contraction, leading to a higher force. Picture from Datta et al.8 ©2007,
The Open University.

The refractory period means only a single MUAP can occur along a specific muscle fibre within

a certain time period. Thus the size of the MUAP is not affected by neural drive. The shape of

the MUAP is constant for each muscle fibre; the consequences of this on the EMG signal will

be explored later.

2.2.5 Motor unit recruitment

As well as increased temporal recruitment, neural drive is mirrored by spatial recruitment of

more active motor units52. Motor units are believed to be recruited in a specific order, relating

to their thresholds of excitation57. Smaller MUs with slower firing rates tend to be recruited

(and derecruited) first, whereas the larger, faster firing (and therefore easier fatigued) MUs are

reserved for higher forces and require a greater neural drive23.

To sustain a contraction, each MU twitches at a roughly constant rate, however each rate is

set slightly different so that simultaneously active MUs tend to fire asynchronously. A break

down in asynchronicity has drastic consequences on the movement, as is seen with Parkinsons

disease8. It also has consequences for the identification of individual MUAPs24 as will be

discussed in the following chapter.
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2.2.6 Volume conduction effects

The tissues of the body are capable of transmitting charge, to varying degree. This means that

aspects of the voltage change caused during MUAP propagation are radiated through the tissues

to the surface50. The 3-dimensional version of Ohm’s law, often referred to as the principle of

volume conduction, relates the dissipation of current within a field around a point of injection.

The voltage at any point,Vj , can be approximated with knowledge of the source current, Ii,

distance from the source, rij , and the electrical conductivity of the medium between source

and observation, σ, using the following function62:

Vj =
1

4πσ
rij (2.2)

This shows an inverse relationship between distance and surface energy. As the tissues surround-

ing MUs are inhomogeneous, they have different impedances to current flow, most noticeably

subcutaneous fat. This results in a low-pass filtering effect, meaning the high-frequency detail

of individual MUAPs is lost, making them appear more similar at the surface26. There appears

to be high variation as to the degree of MUAP feature attenuation between subjects21.

2.3 Electromyography

Now that the underlying physiology has been explained we are in a position to look at EMG

itself. The different types of EMG will be examined and the advantages and limitations of each

will be discussed.

2.3.1 Intramuscular EMG

Intramuscular (or indwelling) electromyography (iEMG) is the most favoured approach for the

electrodiagnotic study of muscles50. It involves the insertion of a small electrode directly into

the muscle, either as a needle or wire. The close proximity to the MU gives a very clear signal

with little waveform attenuation from volume conductor effects41. The small recording area of

the electrode limits the number of MUs in the signal, thus their individual contributions can

be distinguished by waveform33.

The downside of iEMG is its invasive nature which causes discomfort with risk of injury and

infection to subjects. These factors usually preclude its application on children, athletes and

those in long-term therapy58. It can also hinder the maintenance of steady MU discharge

pattern33. The disadvantage of their limited reception is that signals do not represent all muscle
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fibres within the MU24. Consequentially it is impossible to replicate the recording conditions

in subsequent sessions and the reproducibility of results, along with the clinical tracking of

pathologies, is compromised33.

2.3.2 Surface EMG

An alternative to iEMG is the recording of MUAPs by placement of electrodes on the surface

(sEMG). Due to a larger pickup area (consequence of electrode width and source distance)

these will monitor the activity of a much larger number of MUs, i.e. its spatial selectivity is

reduced47. As discussed earlier, however, volume conduction effects lead to signal distortion.

The effects of volume conduction on the sEMG have been extensively modelled through in

silico simulation to try and quantify the tissue parameters affect the acquired signal (e.g. by

Roeleveld et al.48).

The sEMG has most of its spectral power below 400-500 Hz. To meet the Nyquist criterion for

accurate sinewave detection a sampling rate of 1 kHz or above is required52.

2.3.3 Monopolar recording

A signal that is recorded independently with each electrode (or from a single electrode) is called

a monopolar signal. It is a combination of all of the MUAPs within range and the contributions

of each MU are difficult to separate62.

2.3.4 Non-propagating components

A monopolar-recorded MUAP will have the triphasic form shown in figure 2.2 which propagates

from the motor endplate to the tendon. However two monophasic positive deflections also occur,

one at the start and one at the end of the MUAP. These are non-propagating, with constant

waveform. They are caused by generation effects at the motor end plate region and extinction

effects at the muscle fibre-tendon boundary62. Due to their location in relation to the MUAP

they are often referred to as far-field phenomena. Fortunately, they can be removed by use of

a spatial filter, as will be discussed later.

2.4 Interference

The extraction of useful information from sEMG is hindered by several sources of interference:

noise, signal artefacts and superimposition.

8
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2.4.1 Noise

Noise is a certainty in any sEMG signal and has many causes, including: impedance between

the electrode and the skin and amplifier noise. These sources are usually assumed to be white,

Gaussian noise and can drown out low-amplitude signal components. An important factor in

signal quality is the ratio of signal energy to noise, referred to as the signal-to-noise ratio (SNR).

2.4.2 Signal artefacts

Signals from other sources can also be recorded in the sEMG signal. These include other bioelec-

trical phenomena, such as the electrocardiogram, impedance spikes, due to relative movement

between the electrode and the skin (electrode motion artefact), and electromagnetic compo-

nents induced by nearby electrical equipment or wiring (powerline interference) producing a

single frequency at around 50 Hz52.

2.4.3 Superimposition

From the definition of linear space37:

Any two elements x, y ⊂ L uniquely determine a third element x+ y ⊂ L, called the sum of x

and y, i.e. the addition of two vectors creates a third vector.

Similarly, two waveforms occupying the same temporal and spatial space will combine to form a

new waveform. This is the principle of linear superposition59. If these potentials are of similar

polarity then their values are summed (constructive interference).

For every x ⊂ L there also exists an element −x, (its negative) such that x+ (−x) = 0.

Thus wave-potentials of opposite polarity are subtracted from one another (destructive inter-

ference). In the context of EMG, superposition of potentials is referred to as superimposition,

as the waves are effectively superimposed upon one another.

2.4.4 The interference signal

The sEMG signal is composed of many different motor unit contributions which are super-

imposed upon each other and, unfortunately, noise resulting in constructive and destructive

interference. These processes therefore result in loss of information. Recordings from the sur-

face are known as the interference signal. As the number of MUAPs is always greater than the

number of MUs the signal is underdetermined, which is to say that decomposition has multiple

solutions3.
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Figure 2.4 – Spatial filters are the weighted sums of various spatial arrangements of
electrodes, causing high-pass filtering in the spatial domain. Adapted from Farina et al.15,
©2008, The American Physiological Society.

2.5 Multichannel sEMG

Several electrodes placed equidistance from each other (multichannel sEMG) makes it possible

to study the spatial distribution of the underlying muscle and MUs52. An output can be derived

from the voltage differential between two or more channels, with the effect of removing signal

components common to each. A technique known as spatial (high-pass) filtering62.

2.5.1 Spatial filtering

Spatial filters are able to remove common features between both signals, which can help reduce

artefact. They have the added advantage of increasing the spatial selectivity of recording, i.e.

reducing cross-talk between MUs9. The weighted summation of the signals is performed in

an amplifier stage47. Two nearby electrodes result in bipolar recording, which is the classic

configuration (or montage) for rejecting the common mode62. This is the simplest spatial filter

and with electrodes having weighting coefficients of +1 and -147 (see figure 2.4). The triphasic

MUAP waveform becomes quadraphasic with bipolar recording and far-field phenomena are

supressed62 as shown in figure 2.5.

The use of bipolar montages or higher order derivatives, such as double differential, Laplacian

and quadripolar montages (see figure 2.4, considerably reduces the detection volume of each

electrode, effectively diminishing the number of MUs contributing to each channel, enabling

much finer discrimination54, e.g. see figure 2.6. This is due to enhanced high-pass (spatial)

filtering which supresses the lower spatial frequencies revealing the high-frequency details within

the signal. The suppression of far-field phenomena is an important consequence of all spatial

filters.62.
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Figure 2.5 – A MUAP recorded with monopolar or bipolar montage. The dotted lines rep-
resent the location of far-field phenomena, note these are supressed in the bipolar derivation
and the waveform is altered. Figure from Zwarts et al62., ©2003, Wiley Periodicals.

Figure 2.6 – A longitudinal array of surface electrodes with several spatial filters applied.
The top two are double differential with different electrode inputs (note the inter-electrode
distances remain the same). Details are enhanced with higher derivatives making MUAPs
more easily identifiable. Figure from Reucher et al.47, ©1987, IEEE.
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2.5.2 The linear array

Linear arrays are multiple electrodes aligned along a single axis. They can measure the spatial

differentiation of the sEMG signal in 1-dimension (figure 2.6). Due to the conservation of

waveform during MUAP propagation, when applied in a direction parallel to the muscle fibres,

each electrode records a signal that changes little in shape but is shifted in time. Thus, by

cross-correlation, linear arrays are capable of measuring the muscle fibre conduction velocity

(MFCV) of the MUAP21. MFCV estimation requires a linear array with a minimum of three

evenly spaced electrodes62. The location and configuration of the neuromuscular junction has

also been found with linear arrays40. When they are aligned perpendicular to the muscle fibres

they are able to capture a great deal of topographical information relating to differentiation

of MUs by position, size and depth33 58. More will be said on linear arrays in the following

chapter.

2.5.3 The two-dimensional montage

A large disadvantage of linear arrays is that they can only offer topographical information on a

single dimension40. The expansion of electrode configuration into a second dimension can give a

number of advantages, by utilising the properties of linear arrays both parallel and perpendicular

to muscle fibre direction. It also allows MUs at different sites to be recorded simultaneously49.

Studies have managed to achieve results with 2-dimensional montages that were previously

only within the realms of invasive techniques. For example, A cruciate arrangement of two

perpendicular linear arrays, was used to detect pathologically enlarged MUs whilst accounting

for depth effects49.

2.5.4 High-density arrays

A newly developing technique within the field of sEMG uses an array of many small, equally

separated electrodes inserted into a flexible medium, which allows it to conform to the contours

of the surface (e.g. see figure 2.7). High-density (HD) sEMG is the subject of the next chapter

where the various arrays that have been used will be discussed in detail. The main advantage

of HD arrays are they have a much higher rate of spatial sampling.

2.5.5 Spatial sampling

Spatial sampling refers to the number of sampling points that occur within a given spatial

period. Analogous to sampling in time, to gain adequate resolution in the spatial domain,

12
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Figure 2.7 – An example of an early high-density sEMG array as developed by Blok et
al.2 ©2002, American Institute of Physics.

the density of the electrodes must meet the spatial version of the Nyquist criterion2. Two of

the defining parameters of a HD array are, therefore, the inter-electrode distance (IED) and

electrode diameter as these dictate the spatial sampling rate41. Examples of these are given in

chapter 3, tables 3.2 and 3.3.

For accurate sEMG detection, it is suggested that (for the direction parallel to muscle fibres)

a maximum IED of 5 mm should be adhered to in order to meet the spatial Nyquist criterion.

This is based on a temporal Nyquist limit of 800 Hz (see section 2.3.2) and a muscle fibre

conduction velocity (MFCV) of 4 m/s2. As electrode size decreases however, the electrode-

skin impedance will, unfortunately, increase2. Several methods of overcoming this have been

attempted, as will be discussed in the following chapter.

2.6 Summary

This chapter has introduced the concept of surface electromyography. In order for the challenges

faced by this technique to be appreciated, the physiology of the motor units were discussed.

Different configurations of surface electrodes were discussed, the most advanced of which is the

high density array. This is the subject of the next chapter which aims to give a systematic view

of the available literature. In order to appreciate the technicalities of design the concepts of

spatial filtering, spatial sampling and spatial selectivity were introduced.
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Chapter 3

High-Density Surface

Electromyography: a review of

the literature so far

3.1 Introduction

As the title to the chapter suggests this section will be a literature review surrounding the use

of high-density surface electromyography (HD sEMG). HD sEMG has been discussed in detail

in the previous chapter (see chapter 2 section). For this study I will be referring to the use of a

two-dimensional (2D) array of electrodes with high spatial density. Generally I have limited this

review to studies using more than two electrodes in each dimension as these are more relevant

to my own research. However, where necessary for clarity, studies using linear arrays, having

a single column of monopolar or bipolar (i.e. two columns of monopolar) electrodes may be

mentioned. As a further note, many of the terms refered to within this chapter are defined in

the Glossary (Appendix I).

3.1.1 Span of the field

This is a relatively recent technology. Although first applied by Masuda et al. in 198840 it did

not really take off in terms of research until the new millennium. A timeline of the literature is

shown in table 3.1. Due to such brevity I am in the fortunate position of being able to review

the majority of research completed in this field. As the timeline shows, I was able to find about

30 papers on HD sEMG, dating from 1988 to the present. These were found by searching for
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studies and reviews concerning HD sEMG on various search engines (most noticeably ISI Web

of Knowledge and Google Scholar), examining those which were referred to in other papers

and by searching for papers citing references to HD sEMG studies. Keywords used were ’high-

density’ or ’HD’ combined with either ’surface electromyography’, ’surface EMG’ or ’sEMG’.

Note that these search engines are not case sensitive. The inclusion of other words, such as

’multichannel’ included too many false-positive results pertaining to sub-HD techniques. The

majority of studies relate to the application of HD sEMG to pre-existing problems. There are

also several reviews with some mention of HD sEMG which have also been included.

3.1.2 Review structure

The first section of this review will provide general information on HD sEMG. The experimental

setups have been summarized, along with electrode array specifications, recording parameters

and muscles used in tables 3.2 and 3.3. The second section will therefore discuss the HD

electrode arrays that have been used.

In the penultimate sections, the studies will be broadly categorised in terms of experimental

aim. Within these, they will be subcategorised by signal analysis technique and method of

validation. Due to the number of different applications to which HD sEMG has been applied,

categorization is not very clear cut, meaning many studies fall into more than one category.

As this is a very new and rapidly advancing field, methodological validity will be an overriding

theme of this review.

3.1.3 Research groups

Two major research supergroups feature prominently in the literature, within which occurs

much co-authoring and sharing of hardware and techniques. Reference to these research syndi-

cates enables me to subcategorise the relevant literature in an alternative way where appropri-

ate.

The first group, based largely in the Institute of Neurology, part of the University Medical

Centre Nijmegen, in The Netherlands, most noticeably includes Kleine, Blok, Stegeman, Zwarts,

van Dijk, Roeleveld, Drost and Lapatki, each of whom have authored and co-authored many

papers relating to sEMG. This group (of which I will refer to as the ’Dutch research syndicate’)

is largely composed of researchers with medical backgrounds and this is represented in their

techniques which require a high level of knowledge of MU physiology.

The second group is largely focussed around the Laboratory for Engineering of the Neuromus-

cular system (LISiN) at Politecnico di Torino in Italy. Most noticeably it includes Merletti,
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Farina, Holobar, Zazula and Gazzoni. The members of this group (of which I will refer to as the

’Italian research syndicate’) largely come from engineering backgrounds which is represented in

their more mathematically complex, fully automated approach.

3.2 Challenges of HD sEMG

This section will discuss the advantages that HD sEMG offers over more conventional forms

of sEMG. Following this it will explain some of the concepts necessary for an understanding

of this review, these are: the interference signal and the importance of validating results. The

interference signal was discussed in chapter 2, therefore only brief recapitulation is necessary.

3.2.1 Advantages

Every paper on the subject extols the virtues of HD sEMG, so it is not hard to find the

hypothetical advantages. The most obvious advantage is the non-invasive nature, which makes

it much more suitable for use on children and athletes than intramuscular electromyography

(iEMG)15. There may also be the additional advantage of being able to safely measure stronger

contractions without risk of tissue damage15;18. Unlike iEMG it is possible to reproduce the

same results in subsequent studies with HD sEMG39 giving a large advantage to long term

studies and assessment. The detection volume, i.e. the area of tissue within range of the

electrodes, is much larger than conventional sEMG or iEMG. This causes more motor units

(MUs), the functional unit of muscular activation, and muscle fibres are observable. A further

consequence of this is the addition of topographical information which can be extracted. These

spatial advantages will be discussed in more detail later.

3.2.2 The interference signal

HD sEMG has been used for many purposes, as table 3.1 shows. However, the ’philosopher’s

stone’ of sEMG, that which more effort has been channelled towards than any other, is the

extraction of individual MU contributions from the surface recorded signal.

The sEMG signal is composed of many different MU contributions, and unfortunately noise,

which are superimposed upon each other resulting in constructive and destructive interference.

These processes therefore result in loss of information in the surface recorded ’interference’

signal, as discussed in chapter 2. The problem is compounded by the high-pass filtering effect

of the tissues between the MUs and the surface which causes MUAPs to appear more similar.

Fortunately, spatial information gained from multiple recording sites, using HD sEMG, can

16



MSc Thesis Thomas Harrison

be used to resolve superimpositions and thus extract individual MU components from the

interference signal33, a process termed decomposition. Although this refers to the extraction

of MUAPs from any signal, in this review it will specifically imply HD sEMG decomposition,

unless otherwise stated. A large portion of this review and previous reviews on HD sEMG have

been devoted to this subject.

3.2.3 Validation of results

Any system hoping to further scientific knowledge must be able to prove, beyond reasonable

doubt, that its results are legitimate. Confidence must be inferred through scientific method-

ology. Many of the studies reviewed try to validate their techniques through the use of ex-

perimental clues, by using computer simulations and by comparison of results with those of

other techniques. Results can be evaluated with respect to known parameters of the underlying

physiology to gain some clue as to their validity. The input values are unknown so concrete

evidence is impossible. Only indirect measures are achievable, most of which are subjective and

qualitative at best. By comparing results to literature values, a rough estimate of accuracy can

be obtained. Such an analysis can only be regarded as qualitative.

A knowledge of the underlying physiology can be used to predict the transfer functions between

MU firings and surface recordings, allowing systems to be modelled in silico. This is a very

popular method of validation on the subject, especially from the Italian research syndicate.

Unfortunately it is very difficult to estimate the relevance of such results to real scenarios,

especially as emerging patterns seem to be less definite when the same algorithm is applied to

real signals26. Whilst none of these methods is infallible, the inclusion of two or more modes

of validation creates a high level of verisimilitude in the accuracy of the results.

3.3 Existing Reviews

As mentioned there are several reviews which touch upon HD sEMG already in existence.

Roeleveld and Stegeman50 provide an insightful review of how sEMG (noticeably HD sEMG)

has led to a increased understanding of MUs. As the authors are both affiliated with the Dutch

research syndicate, discussion of such is mainly limited to studies using the device designed

within the group by Blok et al.2;10;33;35;36;34. Mention of the arrays predating this by Masuda

& Sadoyama40 and Pruchi46 are curiously absent. However, a more comprehesive review by

Zwarts et al.62 (also part of the Dutch syndicate), just one year later, does make mention of

these previous HD arrays, although the focus still lies primarily with the Blok et al. version.

Both of these, relatively similar, studies provide details on the application of this array to signal
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decomposition. An area previously thought possible only through intramuscular EMG (iEMG).

The remaining two reviews are much more recent and, interestingly, both by members of the

Italian research syndicate. The first, in 2008, is by Merletti et al.41 and gives by far the most

in-depth review of decomposition techniques using HD arrays. A distinction is made between

partial and complete decomposition. Complete decomposition requires that all MUs contribut-

ing are isolated with every firing instance accounted for. Muscle fibre membrane properties

which can be estimated with partial decomposition are discussed. However, it strongly sug-

gests that complete decomposition be attempted as knowledge of MU behaviour can augment

such muscle fibre properties enabling the study of neural and muscular adjustments in MU

properties. Mention is also made of the various techniques that have been applied to the de-

composition problem in which blind-source techniques, whereby the underlying physiology of

the MU is ignored, are advocated. The latest review by Farina14 is largely concerned with the

problems that can arise with using sEMG signal amplitude to infer details of neural activation.

It is suggested that changes in MU firing behaviour correlate much more accurately with neural

drive. Of course, complete decomposition is required for inference to be meaningful.

3.4 HD array design

As discussed in chapter 2, HD sEMG is specified by the electrode configuration. This section

discusses how the parameters of the array affect performance. Many of the concepts that were

introduced in the previous chapter are used within the section.

3.4.1 Number of channels

That which elevates HD sEMG above other forms of electromyography is the huge number of

’vantage points’ (i.e. channels) by which the signal can be observed. More electrodes therefore

decrease the likelihood that two different MUs have the same sEMG representation. The use

of multiple electrodes, as discussed in the previous chapter, also increases spatial sampling and

spatial filtering.

3.4.2 Spatial sampling

Spatial sampling determines the degree to which spatially distributive features can be segmented

(the spatial sampling frequency). Analogous to temporal sampling frequency it is inversely

proportional to the interelectrode distance (IED).
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3.4.3 Spatial filtering

The use of bipolar or higher derivative montages (see chapter 2 section) increases the spatial se-

lectivity of each electrode, effectively diminishing the detection volume (i.e. the number of MUs

contributing to each channel), enabling much finer discrimination54. It is this spatiotemporal

information which allows decomposition of surface potentials.

3.4.4 Spatial density

From this it would seem that a smaller IED is preferable. Unfortunately increasing the spatial

density must either result in a smaller total detection area, thus losing global topographical

information of the muscle, or more electrodes, creating an exponentially large dataset. Tables

3.2 and 3.3 show that the most common IED used is 5 mm.

The array specifications must be appropriate for the task and studies generally settle on a

compromise between size and density. Masuda and Sadoyama40 found that an IED of 2.54

mm was able to give vastly superior results to the analysis of innervation zone location and

configuration over previous research. They posit that solid electrodes are required for such a

high spatial density.

3.4.5 Array size

Array sizes can vary dramatically, from the relatively massive 256 channels used by Pruchi46

to the comparatively tiny 16 channels of Garćıa et al.18. Interestingly the earlier arrays are

predominantly larger than more recent designs (see tables 3.2 and 3.3). The Dutch and Italian

research syndicates seem to have their own preferences.

The use of a 2D array allows the selection of channels with the highest signal-to-noise ratio

(SNR), a ’go where the action is’ approach38. Many studies, such as the decomposition tech-

niques of Kleine et al.33;35;36;34, limit the number of channels used to process the signal, in order

to reduce the complexity of the task, to a single (bipolar) column (parallel to muscle fibres) or

row (perpendicular to muscle fibres).

Due to the conservation of charge during propagation, a column of channels aligned with the

muscle fibres (columns) will produce a very similar profile but with a latency inversely pro-

portional to the muscle fibre conduction velocity (MFCV). Some studies have exploited this

fact to calculate the MFCV using cross-correlation values between channels within a row (per-

pendicular to muscle fibres)10;13;21;46. It was found that a single row can supply most of the

topographical information relating to differentiation of MUs by position, size and depth33;58.
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Kleine et al.35 found that use of single (bipolar) rows gave very little performance loss, for

decomposition, when compared to use of all channels. The same experiment found that single

columns resulted in significant performance deterioration.

3.4.6 Attachment

One major limitation of the older arrays (pre-2004) was the method of attachment. Most

were secured by some sort of strap, producing uneven contact and allowing slight changes of

electrode position. Thus a significant improvement to array design was the self-adhesive aspect

of Lapatki et al.38, a feature that was quickly incorporated into other studies, e.g. Grø̈nlund

et al.21, Holobar et al.24). The downside of adhesive arrays is that adjustment of position is

impossible after attachment38.

3.4.7 Electrode size

Higher density requires a significantly reduced area size compared to sEMG. The advantage of

using small electrodes is greater spatial filtering, thus fewer MUs contributing to the interference

signal54;42. The disadvantages include weaker signals and higher impedance. It is suggested

that the use of an adhesive array with gel-filled cavities provides much lower electrode-to-skin

impedance15. This design is limited, however, to fairly large IEDs usually of about 8 mm. Blok

et al.2 sought to overcome this problem by using serrated (electrode) contact surfaces, thus

increasing the surface area of contact without altering the detection area. Some studies (e.g.

Masuda & Sodoyama40) applied electro-conductive paste to the skin before recording. Unfor-

tunately this can increase the likelihood of shorting between electrodes. Prutchi46 incorporated

a buffering system which enabled impedance control of individual channels.

3.5 Decomposition techniques

This section will discuss the various attempts that have been made to decompose the sEMG

signal using a HD array. The difficulties will be discussed and a common technique called spike-

triggered averaging will be mentioned. The decompositions will be divided into fully automated

algorithms and those that require interaction. The section will finish with a discussion into

methods that have been used to try and validate techniques.
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3.5.1 Difficulties

To recap, decomposition refers to the resolution of the EMG interference signal to the indi-

vidual MUAP contributions and their identification with respect to underlying MUs27. This

is complicated by the underdetermined nature of the signal. The constructive and destructive

nature of superimpositions create a very large set of possible solutions to Laplace’s equation

for a bounded inhomogeneous medium, given only surface potentials58. As stated previously,

the spatial extension of data from a 2D array can help to reduce the number of solutions.

3.5.2 Spike-triggered averaging

MUAP extraction is usually undertaken by spike-triggered averaging33;35;36;34, in which an

averaged response to a stimulus is taken which can be used to locate future responses (Farina

et al. 2008). This technique relies on the following assumptions32:

1. The delay between trigger and response is fixed

2. The response is independent of other signals.

3. The response waveform is conserved.

4. There are sufficient trigger events to extract a representative response.

Unfortunately, when applied to sEMG, some of these assumptions may be violated during tem-

porary synchronization of MUs32 or from feedback inhibition within the spinal cord23. This

has consequences on the accuracy of estimations of MU properties based on sEMG features

extracted using spike-triggered averaging. In the following decomposition techniques, the as-

sumption of waveform conservation is extended. For decomposition to be at all possible it is

assumed that surface potentials from the same source show less variance that those of different

sources.

3.5.3 Interactive techniques

Classification of decomposition techniques leads to the very broad divide, into those requiring

interaction by the operator and those which have automated algorithms, which tends to reflect

the backgrounds of the researchers. Most noticeably those affiliated with the Dutch research

syndicate tend to favour interactive techniques, where medical knowledge must be applied to

the decomposition process, and those affiliated with the Italian research syndicate tend to strive

towards a fully-automated process, making the technique accessible to the inexperienced.
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Template matching is a technique used extensively in iEMG decomposition. It involves the

sequential detection of action potentials from the signal which are classified in accordance to

their waveform similarity. Those within specified similarity limits are viewed as temporally

separated firings of the same MU. When this technique is applied to HD arrays it must take

account of waveform and time differences of the same MUAP in different channels. Whilst

increasing computational costs, such spatiotemporal variation compensates in some way for

the removal of waveform detail as signals radiate through the tissues. A HD sEMG template

matching technique was developed by Kleine et al.33 and used in many subsequent studies by

affiliates of the Dutch research syndicate2;11;35;36;34;38.

The template construction procedure consists of the following stages: peak detection, clustering

and spike triggered averaging, with many opportunities for manual adjustment. The paper by

Kleine et al. from 2007 gives the most detail into these stages: Initially, a single row of channels

is chosen at the operators discretion, based largely on SNR and likely superimpositions. Peaks

are detected automatically but the threshold for a peak is specified by the user. Thus experience

of sEMG signals can help separate MUAPs from noise. Next, an algorithm, based on Wards

clustering, groups peaks by waveform similarity until a user defined number of groups remains.

The number of groups is based on an estimation of the probable MU population contributing

to the signal. The results are displayed as histograms of the inter-spike intervals (ISI) and

knowledge of physiologically probable firing behaviour is applied by the user to merge, split

or delete clusters as appropriate. Clusters are then used to form templates in these channels.

Spike-triggered averaging is used to define MUAP firing times and the templates are expanded

to include all channels. Channels are inspected visually and those of poor quality are excluded.

Multichannel MUAP templates are sequentially subtracted from each sampling point in a peel

off procedure. Subtractions giving maximal signal reduction are assumed to correlate to a firing

instance and the subtraction is saved. An advantage of this approach is that subtraction of an

MUAP from a complex waveform (i.e. a superimposition) could reveal the presence of a smaller

MUAP. This occurs for every template though the entire signal until subsequent iterations bring

no further signal reduction. Finally, the signal is reconstructed from the templates and firing

instances and is cross-correlated with the interference signal for validation. More will be said

on validation later.

When the number of active MUs was kept low this seemed able to decompose as much as 97%

of the interference signal33. That is to say that 97% of the MUAPs identified were matched to

a MU. However, sporadically firing MUs, such as from one at the lower-limit of its recruitment

range, would preclude the generation of a template and be viewed as signal artefact. Similarly,

low amplitude MUAPs were indistinguishable from background noise. As the highest amplitude

MUAPs were subtracted first, a slight bias towards these was reported35.
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3.5.4 Automatic techniques

There appear to be two studies which have developed entirely automated template-matching

techniques. Gazzoni et al.19 uses template matching for HD sEMG decomposition. It should

be noted that Gazzoni is heavily affiliated with the Italian research syndicate and this appears

to represent the groups first attempt at decomposition using HD arrays. Possibly reflecting the

groups less clinical background this is an automatic procedure. Wavelet analysis was used to

select candidate templates whilst multi-channel Adaptive Resonance Theory (MART) artificial

neural networks (ANN), consisting of a set of parallel ART2 neural networks (one per channel),

allowed for spatial variation in the templates. This technique had limited application, however,

as it was unable to resolve superimpositions.

The techniques mentioned so far rely on a priori information regarding the underlying physiol-

ogy of MUAPs. However, by exploiting another of the assumptions of spike-triggered averaging,

this information can be ignored. Or at least that is the theory behind blind-source separation

(or blind-identification) which assumes that firings from individual motor units are statisti-

cally independent of each other and that signals are stationary. No assumptions about firing

behaviour are made, thus sporadic MUAPs can also be detected41.

Garćıa et al.18 developed a blind-identification algorithm, based upon independent component

analysis (ICA), to create the templates. ICA uses the most significant eigenvectors of the

dataset to find the features of most important variance. In simulations independent components

correlated well with firings from different MUs. However it was limited in that it did not account

for spatial differentiation41.

Holobar and Zazula26 modelled the interference signal as a mixture of linear time-invariant

(LTI) responses in a multiple-input-multiple-output (MIMO) system. By filtering the signal

through an inverse correlation matrix, resolution of the convolutive effect of volume conduction

is attempted. Results from simulations implied noise resistance and an ability to resolve super-

impositions and short-term MU synchronicity. Based upon this model, the convolution kernel

compensation (CKC) method of decomposition was developed24;25;27. It does not attempt to

identify the underlying convolutive transfer function thus reducing the computational burden

of the previous method41. It assumes that the firings of any particular MU are sufficiently

sparse that any synchronization is likely to be transitory27. Using this method on a number

of subjects the discharge patterns of up to 20 MUs were automatically identified24. In simu-

lations, identification probability was determined largely by surface energy. That is, small or

deep MUs were considered noise. Simulations also showed that MUs which were at their lower

limit for recruitment, and therefore contributed only a few peaks to the sEMG signal, were

considered signal artefact. The limits of active MU pool size were also simulated. Higher forces
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increase the probability of transient synchronicity between MUs as more MUs become active

and firing rates increase. Transient MU synchronicity, could result in a false template, however,

precluding the application to higher forces25. It is quite interesting that these seem to be the

chief sensitivity problems of the interactive technique of Kleine et al.27, suggesting that these

are limitations to HD sEMG decomposition in general rather than to specific techniques.

3.5.5 Validation of results

One of the main reasons for the slow uptake of HD sEMG into clinical usage for MU analysis is

the lack of performance validation24. As previously discussed several studies make subjective

estimates of their reliability, based on knowledge of the underlying physiological parameters.

Kleine et al.34 suggest clues on the completeness of firings resolved, the regularity of firings

and MUAP waveforms. Holobar et al.24 made similar assumptions, looking at linearity of

recruitment and derecruitment thresholds (using ramped force), the discharge rates at these

thresholds, and the amount of signal energy accounted for by identified MUAPs (the signal to

interference ratio, SIR). It was also noted that the number of MUs identified remained the same

during repeats for every muscle investigated.

Kleine et al., looked at interoperator agreement36, to see if the subjective nature of interactive

techniques limited performance. Two novices were given identical training in the technique

(see Kleine et al.33) and asked to independently decompose the same raw data (from Kleine

et al.35). Despite a tolerance of 2ms on firing instances, complete agreement occurred on only

around 35% of MUAPs. Agreement was however quite high (the majority being in 90-100%

agreement) for fully decomposed MUAPs. It was felt that this gave a good upper limit on

decomposition performance. The possible flaw in this line of reasoning is that the authors have

presumed that agreement on results is proof of accuracy. In fact this is only proof of precision

(i.e. reproducibility). They do not seem to have considered that intrinsic errors could render

the algorithm incapable of achieving correct results.

A major hindrance to performance validation is the lack of a gold standard for HD sEMG

decomposition33. This is not the case with iEMG, the gold standard for which is generally

assumed to be the 1954 method of Buchthal et al.36. Direct comparison to this more clinically

accepted method has been used as a means of evaluating reliability. Holobar et al.,24;25 recorded

concurrent iEMG with HD sEMG, using the EMGLAB decomposition tool developed by McGill

et al. (2005) to decompose the iEMG signal interactively. It was found that the methods tended

to identify different pools of MUs. Despite this, the match between firing instances of those

identified with iEMG and sEMG (with a tolerance of 0.5 ms) was as high as a 98%24. The study

was later extended to include more muscles25. Again, different techniques revealed different

MU pools. The average agreement on those simultaneously identified ranged from 84% in the
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biceps brachii to 92% in the abductor digiti minimi. This high agreement on firing patterns gives

heavy credence to these being accurate representations of MU behaviour, especially considering

the tried-and-tested nature of iEMG. A discussion into the validity of this interactive, and thus

subjective, approach, however, is beyond the scope of this review.

A number of the automatic decomposition techniques were tested with simulated sEMG record-

ing15;19;24;25;27;26. As the solution is actually known the algorithm can be directly verified,

however the degree to which these techniques can apply to real situations introduces another

source of uncertainty.

3.6 Other experimental aims

3.6.1 Motor unit number estimation

Using the same clustering technique of Kleine et al.33, but without the complete decomposition

procedure, van Dijk et al.54 used the spatiotemporal properties of a HD array to alleviate

the problems of alternation during motor unit number estimation (MUNE). See tables 3.2

and 3.3 for details. MUNE involved the sequential increase of muscular activation, through

external stimulation, to infer the total MU population size from the recruitment curve. This

was based upon the incremental counting technique of McComas described in 1971 (van Dijk et

al.54). Alternation occurs when MUs have an activation threshold very close to the stimulation

level and so will ’alternate’ between a state of activation and inhibition. They posit that

the difference in shape between the mean MUAP and the compound muscle action potential

can give a quantitative assessment of validity. Such comparison showed that some MUAP

profiles were under or over represented in the MUNE, thus the value obtained may not be truly

representative of the entire MU population.

3.6.2 Topographical information

Where HD sEMG excels over other forms of EMG is in the amount of topographical information

that can be obtained fairly simply . The innervation zone is the area where the motor-neuron

synapses with the muscle fibres. All MUAPs originate from these structures. Please refer to

the previous chapter for a more detailed description. By using HD sEMG to locate MUAP

foci, Masuda & Sodoyama40 found that around 70% of MUs had only a single innervation zone

region, whilst some had more complex patterns. They estimated that the length of innervation

zones along the muscle fibres was as much as 60 mm over the whole muscle, a finding that agrees

with histological studies by Aquilonius et al. However, their findings suggest the innervation
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zone of individual motor units to be much longer than histological studies by Có’øers and

Telerman-Toppet had predicted. Much more recently Guzmán et al.22 used a HD array to find

the IZ location and adjusted this for anatomical variation. They assumed validity based on

agreement with the results of another recent study (exact figures not specified).

3.6.3 Prosthetic control

An approximation of HD sEMG has been applied to the field of prosthetic control by Zhou

et al.61 and Huang et al.30 These did not use what I have defined as a true HD array, rather

an extremely large number of single channel electrodes arranged in a 2D grid. As a result the

IED was quite high and not fixed. Targeted muscle reinnervation involves rerouting peripheral

motor nerves for an amputated limb to a now-redundant muscle, using the muscle as a natural

amplifier. EMG controlled prosthetic limbs using this muscle gained a much more useful method

of control61. Following on from this study, an algorithm was developed to extract an optimal

configuration of electrodes which could provide a similar quality of control but with considerably

fewer electrodes. They found that 11 electrodes arranged in a configuration determined by the

algorithm could differentiate 16 movement commands with 93% accuracy on average, or 77-87%

accuracy with just 5 electrodes. It was also found that arrangements based upon anatomical

heuristics, making it much more accessible to clinicians30, performed only 4.3% worse.

3.6.4 Propagation

MUAPs should propagate along the muscle fibre with spatiotemporal stability. (See previous

chapter for more information). Changes in propagation properties can thus be important factors

in assessment of neuromuscular disorders. Of particular clinical usefulness is the conduction

velocity along the muscle fibre. After decomposition this constitutes second most common line of

research with HD sEMG. In fact, the second study using a 2D HD array was the development

of a system to automatically detect the MVCV46, the results of which were comparable to

literature values. This was a very sophisticated design, but the design was not taken up by

other researchers.

One of the problems of calculating MFCV with electrodes arrays is that that misalignment of

the column with the muscle fibre will lead to an overestimation in distance travelled by the

MUAPs and thus in propagation velocity. Not only this but fibres not parallel to the surface

will have a similar effect. Gŕ’ønlund et al.21 developed a technique to accommodate for this by

first estimating the muscle fibre orientation relative to the electrode alignment. This relied on

linear least absolute deviation regression to fit a 3D function to each MUAP, using amplitude

for an estimate of depth. It assumed that amplitudes were monotonic and above background
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noise and MFCV was constant. The algorithm was largely tested on simulated signals. It

appeared able to differentiate individual MUs, from a very low pool, based on their MFCV.

However, due to the lack of a dedicated decomposition function, estimates tended to degenerate

when many MUs were active. Validation was carried out through simulation and comparison

with a visually based estimation of the underlying muscle fibre orientation.

The spatiotemporal properties of HD arrays were exploited to look at how MFCV can vary

locally in time and globally in space by Farina & Fala13. This was the only study using

dynamic movements and hoped to track MFCV changes resulting from fatigue. The extra

channels reduced variability of the estimates allowing smaller changes to be identified. The

accuracy was estimated from the standard deviation of residuals from a regression line fit to

the data.

3.7 Conclusion

The literature on HD sEMG was discussed. In doing so the advantages of using the a HD array

were explored. This topic was chosen for review as my own research involved HD sEMG. In

order to fully understanding of the techniques involved new concepts were defined and previously

defined terms were reiterated. There was a strong distinction between procedures that aimed

to be fully automated and those that required manual interaction. Such a choice would have

ramifications on the feasibility of application of the technique into a clinical setting, where

training may be necessary if operator skill is required. Two major research groups have emerged.

One, with memebers of largely medical backgrounds, appears to favour an interactive approach,

whereas the other, composed mainly of engineers, seems to favour automated techniques.

Despite the obvious potential of HD sEMG it has yet to make the transition into regular clinical

practice. The reasons for this relate to the difficulty in validating the results, the lack of a gold

standard to compare performance against is a large factor in this. Validation was thus a strong

theme of this chapter. Validation was either through computer simulation, the physiological

relevance of the procedure or comparison to known parameters of results from a simlutaneous

expereiment with different techniques. Evidence for accuracy is higher in those experiments

which use multiple methods of validation. The relative costs of HD arrays and the multichannel

amplifiers needed to process the signals were not mentioned in any of the papers, however some

reference was made to the technical expertise necessary for its application.
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Table 3.1 – A timeline of the literature. Shaded rows denote literature reviews.
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Table 3.2 – The experimental parameters used within thie review, part 1
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Table 3.3 – The experimental parameters used within thie review, part 2
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Chapter 4

Signal analysis

4.1 Introduction

Signal processing is a large part of sEMG. The conventional way of investigating the frequency

content of a signal uses Fourier analysis. However, a new method of analysis, with many of the

same assumptions, emerged in the early 1980s, called wavelet analysis20. This is based upon

the similarity of signal features to wavelets (brief oscilatory waveforms) of different duration.

A few years later this was adapted for signal processing by Stephane Mallet. Wavelets offer an

elegant alternative to Fourier analysis with some significant advantages as will be discussed in

this chapter. Before this, however, I would like to give a brief overview of Fourier analysis in

order for a better understanding of Wavelets to be made. Although Fourier and wavelet analysis

can be applied to many fields, in relevance to my own research I will be largely discussing these

techniques in the application of time-based, 1-dimensional signals.

4.2 Fourier analysis

Joseph Fourier was a 19th century physicist who demonstrated that any periodic function can

be written as a linear combination of sine and cosine functions at different frequencies: the

Fourier series.

4.2.1 Fourier transforms

The Fourier transform extended Fourier’s ideas to represent non-periodic signals in terms of

their frequency content. It first translates the function, such as a signal in the time domain,

31



MSc Thesis Thomas Harrison

into a frequency domain function. The Fourier coefficients of the transformed signal represent

the contributions of sinusoids at each frequency20. The inverse Fourier transform reverses the

process, allowing the conversion from the frequency to the time domain. The Fourier transform,

F (ω), of a function, f(t), and its inverse (together called the Fourier transform pair) are as

follows6:

F (ω) =

∫ ∞
−∞

f(t)e−iωtdt←→ 1

2π

∫ ∞
−∞

F (ω)eiωtdω (4.1)

Noticable advances in the field of Fourier analysis include the discrete Fourier transform (DFT),

the fast Fourier transform (FFT) and the windowed Fourier transform (WFT) or short time

Fourier transform (STFT).

The DFT allows the application of Fourier analysis on a discrete number of sample points (i.e.

any digitally sampled signal). It is discrete in time and frequency. The DWT, X[n], of the

function of discrete time x[n] , where n is an arbitrary sample point, are calculated as follows:

X[k] =

L−1∑
n=0

x[n]kck+1e
−i 2π

N kn, k = 0, 1, , N − 1 (4.2)

4.3 Wavelets

This section introduces the notion of the wavelet, explaining the definitions and parameters.

The notion of energy is discussed in the construction of the scalogram.

4.3.1 Basis functions

Wavelets are similar to sinusoids in that they oscillate about the x-axis, integrating to zero.

However the oscillations are damped (to zero) thus the function is localized in time or space45.

Like Fourier analysis, the starting point for wavelet analysis is to represent the signal as a

linear combination of a pair of orthogonal basis functions60. However wavelet analysis offers

a huge advantage over Fourier in that there a many wavelet pairs to choose from, each with

different morphologies. The exact pair chosen depends upon a number of factors including: the

signal properties, the application and the computational complexity4. A wavelet must fulfil the

conditions of admissibility and regularity. Mathematically it must meet the following criteria:

1. It must have finite energy
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Figure 4.1 – Four different wavelet: (A) the db2 and (B) db5 wavelets, invented by Ingrid
Daubechie, and two biothogonal wavelets, (c) bior1.3 and (d) bior1.5. Image taken from
www.SpringerImages.com ©2011

E =

∫ ∞
−∞
|ψ(t)|2dt <∞ (4.3)

2. If ψ̂(f) (is the Fourier transform of ψ(t) then:

Cg =

∫ ∞
0

|ψ̂(t)|2

f
df <∞ (4.4)

Where Cg is the admissibility constant, which implies ψ̂(0) = 0, i.e. it must have no

zero-frequency component.

3. Complex wavelets must be real and should vanish for negative frequencies.

Some examples of wavelets are shown in figure 4.1.

The main advantage wavelets have over sinusoids is they are localised in space, whereas sinusoids

are considered to be infinitely long56. As a consequence, signals transformed into the wavelet

domain are much more sparse and so much better at representing discontinuities and sharp

spikes in the signal20. For example, a saw-tooth signal sampled at 256 Hz would require 256

sinusoids to represent the discontinuities. However it could be compactly represented by only

16 wavelets4 (see figure 4.2). This effective localization with just a few pertinent coefficients

makes it particularly useful in signal coding1.

4.3.2 Dimensions

Rather than transforming signals into their frequency content, wavelet analysis uses a notion

called scale. This refers to the size of the wavelet in relation to the signal. Coarse-scale
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Figure 4.2 – Representation of a sawtooth signal with 16 scaled and time-shifted versions
of the db4 wavelet. Image taken from Bruce et al.,4 ©1996, IEEE

wavelets cover a large portion and capture the larger trends, fine-scale wavelets are much more

localised and capture the sharper details, e.g. see figure 4.2. This suggests that scale is inversely

proportional to frequency. In fact the frequency associated with a wavelet of arbitrary scale a

is given by:

f =
fc
a

(4.5)

Where fc is the mother wavelet’s characteristic frequency1. The other dimension used is the

location b within the signal. In terms of signal analysis this is analogous to time. The terms

a and b will be used to represent arbitrary scales and locations, respectively, in the rest of the

chapter.

4.3.3 Energy

Before any wavelet transforms are dicussed the concept of (spectral) energy must be introduced.

Like the spectrogram of STFT, the signal is characterised by the energy of features at each scale

and location, i.e. its energy density surface, or scalogram. Such energy is defined as1:
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E(a, b) = |T (a, b)|2, (4.6)

where T (a, b) is the wavelet transform function of a continuous time signal, as discussed in the

next section. The scale dependent energy distribution (the relative energy at a specific scale)

is given by1:

E(a) =
1

Cg

∫ ∞
−∞
|(a, b)i(t)|2db (4.7)

4.4 Wavelet transforms

The different Fourier transforms are mirrored by analogous wavelet transforms. This section

will discuss a few of these, starting with the continuous wavelet transform.

4.4.1 The continuous wavelet transform

The wavelet transform of a continuous signal is defined by the following equation:

Ta,b =
1√
a

∫ ∞
−∞

x(t)ψ∗
(
t− b
a

)
dt (4.8)

Where ψ∗(t) is the complex conjugate of the analysing wavelet function ψ(t) and a and b are

its dilation and location factors, respectively.

4.4.2 The discrete wavelet transform

The continuous wavelet transform also has a discrete time version. This is derived through

power-of-two scaling and dilating in discrete steps60. The discretization leads to a wavelet of

the form1:

φm,n =
1√
am0

φ

(
t− nb0am0

am0

)
(4.9)

Which defines the orthonormal wavelet basis, where φm,n is known as the mother or analysing

wavelet and m and n are integers controlling wavelet dilation and translation, respectively. The

analysing wavelet is used to analyse the data at different resolutions, using the equation:
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Figure 4.3 – The signal is decomposed through iterations of the scaling wavelet and the
analysing wavelet. New details are assumed to contain redundancy due to the preservation
of the details from the initial decomposition. Picture from www.originlab.com, ©2011

ψ =

N−2∑
k=−1

(−1)kck+1φ(2x+ k) (4.10)

Where ψ(x) is the scaling function for the analysing wavelet and ck are the wavelet coefficients.

The wavelet coefficients must satisfy linear and quadratic constraints.

The coefficients {c0, , cn} act as a filter and are used to produce two transformation matrices20.

One (the scaling function, ψ) acts in a similar way to a low-pass filter and serves to smooth

the signal to highlight the broad-scale trends. The other (the analysing wavelet) works as

a high-pass filter to reveal fine-scale details of the signal. Together they form a quadrature

mirror filter pair. The signal is cycled through the quatrative mirror filter pair, splitting its

bandwidth in halve with each iteration. This is known as multi resolution analysis56. Efficient

down-sampling operations means that at each iteration, half of the data can be discarded, as

shown in figure 4.3.

4.4.3 The wavelet packet transform

The wavelet packet transform (WPT) is a generalization of the DWT that involves the multi-

resolution decomposition with a quadrature mirror filter pair1. However, both approximation

and a detail coefficients are kept at each stage. The optimal WPT coefficient is selected to

minimize the amount of entropy within the decomposed signal. The most common criterion for

selection is the Shannon entropy measure. The decomposition tree structure for the wavelet
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Figure 4.4 – A visual representation of the wavelet packet decomposition process. The raw
signal, S, is successively divided into high (details, D) and low (approximations,A) scales,
doubling the number of scale bands with each iteration. Picture from www.mathworks.com,
©2011

packet transform is shown in figure 4.4.

4.5 summary

This chapter has briefly discussed some of the techniques applicable to signal processing. Fourier

transforms were examined and it was explained how, to some extent, they have been super-

seded by wavelet analysis. Wavelets are transient, oscillatory signals that can be used as basis

functions for the continuous wavelet transform, its discrete time counterpart, and the wavelet

packet transform. Although this chapter has not gone into wavelets with any depth, this should

provide sufficient information for the experiment to be explained.
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Chapter 5

Design considerations

5.1 Introduction

The aim of this section is to explore the parameters and techniques which have to be taken

into account in the experimental methods. This includes both the setup and the processing of

data. Realistic limitations will have to be taken into account during the design, these include

the equipment. The first section explores the acquisition of data, section 2 discusses the signal

processing techniques applicable and section 3 considers a suitable method for determining

statistical significance from the results.

5.2 Data acquisition

5.2.1 Wrist movement

Currently myoelectrically controlled prosthetic hands usually have two or fewer electrodes,

giving only one degree of freedom at most30. Clearly this is unsuitable for recreating the

complexity of movement the human hand displays. Furthermore the electrodes usually require

activation of physiologically unintuitive muscles, e.g. wrist flexion and extension for hand

opening and closing (referred to on as ’hand’ grips for the rest of this report).

It is hypothesized that the additional option of being able to open and close the forefinger and

thumb (together: ’pinch’ grip) individually would be both a significant improvement to the

repertoire of the amputee and represent a suitable challenge for the device to distinguish this

movement from the anatomically similar hand grip.
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5.2.2 Extrinsic hand musculature

Hand and pinch opening, i.e. extension of the finger, or fingers, and thumb both involve many

of the same muscles, as do hand and pinch closing. In particular the opening of the fingers

is actuated by the extensor digitoturm communis and the closing is actuated by the flexor

digitorum profundis and superficialis. It is the simultaneous activation of other extrinsic wrist

muscles (muscles for hand control located in the wrist) that creates the different overall move-

ment.Unfortunately the flexor digitorum profundis is not a superficial muscle, it is separated

from the surface by other muscles (i.e. it is electromyographically occluded), as shown in figure

5.1. The volume conduction effect (as discussed in chapters 2 and 3) dictates that signal quality

will deteriorate with depth. The flexor digitorum superficialis is an intermediate layer (with

some surface exposure) thus make a more feasible target.

5.2.3 Electrode placement

To characterise the chosen movements, arrays will be placed over the extensor digitorum com-

munis (the superior surface as the arm is rested neutrally with elbow flexion of 90◦) and flexor

digitorum superficialis (the inferior surface). It will be roughly aligned with the muscle fibres,

which run, approximately, diagonally from the tip of the elbow to the thumb. As we are not

estimating muscle fibre conduction velocity, or the location of innervation zones the accuracy of

alignment is not of particular relevance (see chapter 2 for an explanation). It will be the pattern

of activation within the detection volume that is used to distinguish between movements. This

requires that the electrodes are in the same positions for each movement.

5.2.4 Array parameters

HD sEMG allows the topographical pattern of activation to be defined with high spatial se-

lectivity. This should allow the movements to be distinguished by much smaller (consistant),

spatial differences in muscle (or MU) recruitment. The study is limited to only one size of

2-dimensional array: a 64-channel (13×5) array with interelectrode distance of 8 mm in both

directions. This may be insufficient for an estimation of MFCV however it should provide the

spatial resolution necessary for gross anatomical features to be identified. This array is self-

adhesive with gel-filled, Ag-AgCl lines cavities as electrodes. Both of these are recommended

for the removal of movement artefact13.
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Figure 5.1 – Mid-wrist musculature (cross-section). Picture taken from Wikipedia.org,
©2011.

5.2.5 Recording parameters

The sEMG spectrum has most of its useful information within the 5 to 400 Hz range. A 3dB

bandwidth of 10 to 500 Hz proved satisfactory in preliminary testing (results not shown). The

Nyquist criterion requires a sampling rate of at least 1000 Hz. In practice a better signal is

recorded with much higher frequencies, however more data is needed to represent a given signal

length. A 2048 Hz sanpling rate was decided upon as a compromise between precision and data

size.

5.3 Signal processing

As chapter 3 suggests, HD sEMG requires a great deal of signal processing to be interpreted

correctly. Results gained must also be evaluated for significance through statistical analysis.

However, the techniques used must be appropriate to the experiment, therefore it is necessary

to consider how the muscle can be characterised.
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5.3.1 Muscle characterization

Many of the terms and ideas used in this section were discussed in chapter 2, the reader may wish

to refer to this chapter where appropriate. Increased neural drive is coupled to a recruitment of

greater numbers of MUs (usually with faster firing rates)23 and an increase in the firing rates

of the individual MUs themselves7. These properties lend themselves to the characterization

of muscular activation through discharge rate. Indeed many decomposition studies rely on the

ISI for MUAP identification2;10;33;35;36;34.

Whilst signal amplitude has generally been proposed for multichannel control of prosthetic

limbs30;43;44;53 there are drawbacks to this approach: MUAP waveforms are unaffected by neural

drive8, correlation relies on the positive summation between simultaneous MUAPs. However

interference is destructive as well as constructive, thus superimposition cannot be relied upon

to increase signal amplitude. Various MU properties, such as slight variation in timing, have

been shown to effect amplitude cancellation in rectified sEMG32.

5.3.2 Wavelet analysis

The time-frequency properties of the wavelets lend themselves to the analysis of non-stationary

signals. It is therefore unsurprising that many sEMG studies have opted for wavelets over more

traditional Fourier techniques.

Flanders suggests that the Daubechies family of orthonormal wavelets are particularly well

suited to the sEMG due to their morphological similarity to MUAPs17. The triphasic db2

wavelet (figure 4.1) is the simplest and has been used in various sEMG studies28;29.

There appears to be only a single study applying wavelet analysis to HD sEMG19 (as discussed

in chapter 3). It is suggested that the system (Gazzoni et al.) developed generates a wavelet

tailored to individual MUAPs. This would seem to make needless work, thus for this experiment

the db2 wavelet has been chosen.

5.3.3 Wavelet transform

The continuous wavelet transform (or its discretised version) is superior to the STFT due its

scale-varying window properties where discontinuous, non-stationary signals are to be analysed.

However, it was decided in the preceding sections that, given the simplicity of the experiment,

recording of the signal initiation and termination would be avoided. The time-frequency prop-

erties of the CWT would therefore be redundant.

A recent study by Hu et al.,28 uses the wavelet packet transform to decompose the signal
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into discrete scales. The relative energy of the signal at each of these scales was then found,

giving the relative wavelet packet energy (RWPE). This was hypothesised as representing the

probability of this scale (frequency) being present in the signal and so used as a basis for

feature detection. Due to the (relative) simplicity of this technique, and the reported success

RWPE will be used to characterise the signal in my experiment. This will be carried out for

every channel, offline, using MATLAB 7.10 (The Mathworks, Inc). The various scripts created

for this are in Appendix III. In keeping with their design decomposition was carried out to 4

orders, giving 16 scales (as discussed in chapter 4). Lower orders were experimented with in

preliminary tests (results not shown) but segmentation of the low scales was insufficient for

movement discrimination (i.e. almost the entire signal energy was in just one frequency band).

5.4 Statistical analysis

Statistical analysis gives an estimate of the degree to which we can trust the results. Thus

rigorous testing is required before any inferences can be made. Factors to be considered when

choosing an appropriate test are discussed in this section.

5.4.1 Variables

The independent variables will be the movement that is performed and the spatial activation

pattern. This last factor can be split into the spectral frequency content (which is used as a

measure of muscle activation) and the spatial location of the recording site. Thus independent

variables are: movement, scale and channel. Note that scale has been discretised through

wavelet packet decomposition meaning scale and channel are of interval level data sets only.

Movement is categorical as it cannot be ranked. As discussed in the last section these will be

quantified though RWPE, at each scale and channel, for every movement, for all individuals.

5.4.2 Method

Due to the large 3-dimensional data sets for each condition, and the number of variables, 3-

way analysis of variance will be used to investigate whether variance between movements (over

each channel) is statistically greater than variance within each movement. ANOVA has the

advantage of being able to investigate the interaction effects between all of the variables, thus

an idea of the correlation between them can be inferred.

Each subject used will have a unique physiology in terms of their forearm size, thus it is ex-

pected that the arrays will have a different relative spatial density. It is also likely that subjects
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will display individual interpretations of the movements. Based on these assumptions it is felt

that a comparison between individuals would introduce too many confounding variables, ren-

dering such comparison meaningless. Therefore each individual will have their results analysed

individually.

Statistical analysis will be performed with MATLAB 7.10 (The Mathworks, Inc), using the

RWPE coefficeints generated in the signal processing stage. To help find significance in the

results each movement will be repeated 10 times.

A 20 s rest period between repetitions was used to delay the onset of fatigue which could affect

the results. Ideally a longer rest would have been preferred, but due to constraints on the

subjects’ time, a 20 s rest was chosen (thus keeping the entire experiment within a 1 hour

limit without reducing the number of repeats). Fatigue has been shown to affect MU firing

properties. To compensate for the effects of fatigue each subject will carry out their sequence

of movements in a different order.

5.5 Summary

In this section factors important to the design of the experiment were discussed. These factors

included the movements to be chosen, the recording parameters, signal processing and statistical

analysis. The actual method used will be discussed in the following chapter.

43



Chapter 6

Methods

Information regarding the methods during the experiment are discussed in this chapter. The

decision on these design parameters were explored in the previous chapter. In the first section

acquisition of the HD sEMG is explained, in terms of the materials used and the recording

procedure. The techniques used to process and analyse the raw data are explained in the

subsequent section.

6.1 HD sEMG Acquisition

6.1.1 Subjects

Five healthy volunteers (age 24-30, one male and four females), without signs of muscular

disorder, gave their informed consent to participate in this study.

6.1.2 Equipment

The myoelectric signal was recorded with two high-density, flexible electrode arrays. Each array

consisted of 64 electrodes (Ag-AgCl-lined cavities) arranged in a 5 (columns) by 13 (rows)

matrix, with one corner electrode missing (OT Bioelettronica, Torino, Italy), as shown in

figure 6.1. The interelectrode distance was 8 mm and the electrode diameter was 2 mm. The

electrode cavities were filled with an electro-conductive paste (ac-cream, Spes Medica s.r.l.,

Battipaglia, Italy). Each array was connected with four electrically shielded, 16-channel cables

(AD1x16SD5, OT Bioelettronica, Torino, Italy). Cables were kept as separate as possible but

due to the confined space contact between them was unavoidable, this was most noticeable

at the electrode attachment ports. The 128 channels were amplified using a single-differential
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Figure 6.1 – The layout of the 64-channel HD array used for sEMG recording. The black
channels indicate the split between output ports. Note that columns run antiparallel to
each other. Array (ELSCH064R3S) and diagram supplied by OT Bioelettronica, Torino,
Italy, ©2011

configuration, whereby each channel had the signal from the channel immediately below it

in the column subtracted from it, with a 256-channel purpose-built amplifier (USB-EMG2,

OT Bioelettronica, Torino, Italy) resulting in 118 bipolar channels. Note that columns ran

antiparallel to each other as shown in figure 6.1. A hard-wired bandpass filter applied a 3db

bandwidth of 10-500 Hz. The gain was set to 1000 and the analogue-digital conversion was

performed at a sampling frequency of 2048 Hz at 12 bits of resolution. The signal was recorded

using custom-designed software for the amplifier (OT Biolab, OT Bioelettronics, Torino, Italy).

6.1.3 Setup

The area was initially prepared with a dermo-abrasive paste (everi, Spes Medica s.r.l., Batti-

paglia, Italy) to remove dead skin, a high source of impedance, and cleaned with alcohol to

remove any grease.

The arrays were mounted on double-sided adhesive foam pads which served to fix them to

the skin. The first array was then affixed over the muscle belly of the right flexor digitorum

superficialis and the second was affixed over the extensor digitorum communis. The columns

were aligned roughly parallel with the muscle fibres. Medipore tape (3M, Berkshire, UK) was

used for extra security and to prevent electrode-paste from escaping through electrode openings
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Figure 6.2 – Two foam covered blocks were used as armrests. The base of each was made
from wood and two metal rods maintained a fixed difference. The rods had various holes in
the ends so that the separation of the blocks could be adjusted for physiological variation
in arm length.

Figure 6.3 – A thermosetting acrylic sheet was cut and moulded around a hollow cylinder.
A slit allowed the finger tips to slide underneath a section, thus isometric extension and
flexion of the fingers was possible. A cord looped through the cylinder and provided iso-
metric resistance against thumb extension. During the experiment the device was mounted
to a rod in the desk (not shown).

and shorting the channels.

6.1.4 Protocol

The right arm was rest on two contoured custom-built foam blocks, one at the wrist and one at

the elbow (see figure 6.2). These negated the need for muscular support yet kept the electrodes

free of external pressures. It also made cable management easier.

Each subject used a custom-built manipulandum which allowed isometric resistance against the

movements which would be used (see figure 6.3).

Four movements were chosen for testing: opening and closing the entire hand (’hand grip’) and

opening and closing just the index-finger and thumb (’pinch grip’). These were explained to

the subjects in advance, through verbal and visual demonstration and instructions are included

with the consent form.
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Each movement was held for 5 s and repeated 10 times by all subjects. A 20 s rest period

between repetitions was used to delay the onset of fatigue which could affect the results. A one

minute rest period separated each set of movements in which the subjects were reminded of the

next movement. Each subject carried out their movements in a different order to randomize

the effects of fatigue. At the very start and end of the experiment, and between every different

movement set, each subject performed a 20 s negative control. During this the arm was kept as

relaxed as possible whilst the sEMG signal was recorded. The subjects were asked to perform

the movement at (roughly) between 30-50% of their maximum possible contraction.

6.2 Data analysis

Data analysis was carried out offline using Matlab 7.10 (The Mathworks, ) and consists of three

parts: Signal conversion, wavelet packet analysis and statistical analysis. Signal conversion and

wavelet packet analysis were merged into a single script (See Appendix III: GETSIG.M). Statis-

tical analysis consisted of two separate scripts: one to display descriptive statistics (Appendix

III: WPSTD.M) and the other to test for significance (Appendix III: WPANOVAN.M).

6.2.1 Signal conversion

This step was necessary to extract the data from the binary signal file and reorganise the data

to compensate for the antiparallel arrangement of channels. Channels that were corrupted

by interference were removed. The last channel from each column, which gave a meaningless

signal due to bipolar derivation (which results in one fewer leads per column) was also removed.

Note that to maintain consistency between conditions, corrupt channels were removed from all

results. The removal of inferior-quality channels is common to many HD sEMG designs (e.g.

see Chapter 3). This stage also had a function to display the remaining channels as a single

graph (in the correct order). This was repeated for every signal.

6.2.2 Wavelet Packet analysis

Once the signal had been reordered, wavelet packet decomposition was applied to each channel

iteratively. Decomposition was to the 4th order, dividing each signal into 16 compartments

according to scale (scale bins). Entropy type used was Steins unbiased risk estimator (SURE)

as it takes into account signal length, with the formula:

SURE =
√

2 log(si log2(si)) (6.1)
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Where SURE is the threshold for entropy and si is the signal length. The relative energy at

each scale (for every channel) was then found. This was repeated for every signal.

6.2.3 Statistical analysis

The first script takes the output from wavelet packet analysis and calculates the mean energy

values (for every channel at every scale) for the repeats of a single movement, by a single indi-

vidual. This was repeated for each movement type (including the controls) of each individual.

The standard deviation was also taken along with each mean value, using the adjusted formula.

The second script applied 3-way analysis of variance (ANOVA) on the results to see if variance

between different movements was significantly greater that variance within the same movement.

This was done on an individual-by-individual basis, as variation in individual physiology and

experimental setup would have introduced too many confounding variables for a statistical

comparison across individuals. The factors investigated for effect and interaction were scale,

channel and movement type. Significant rearrangement of the data was necessary to create the

(indexed) column vector format that MATLAB required.
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Chapter 7

Results

In this chapter the relative wavelet packet energy (RWPE) distributions are illustrated for the

movements made by each individual. Due to the amount of data generated (10 repeats × 5

movements × 5 subjects = 250 conditions) only the means and standard deviations for each

repeat are shown. The full data is available on request to those that are interested.

Unfortunately there seemed to be problems with the signals from the array placed over the

flexor digitorum superficialis (the ’flexor’ array). They were of very low amplitude yet the raw

signal showed some anatomical features, including similarity of signal between channels aligned

with the muscle fibre and an inversion of the signal around a point suggesting the location

of the motor end plates. Thus it was felt that the signal was valid. However, after starting

with 118 bipolar channels (59 for each array) a total of 15 channels had to be removed due

to significant corruption through artefact, leaving 103 channels. All of which were from the

flexor array. Wavelet packet decomposition was to the 4th order, thus there were 16 scale

bands. This meant each repeat is represented by 103x16 matrix of RWPE coefficients, which

was used to form a surface plot. This was a significant reduction in data size from the raw signal

which was approximately 103x10230 (samples). Channels 1-59 are taken from the array on the

upper surface of the arm (extensor array, which covered the extensor digitorum communis) and

channels 60-103 are from the flexor array. Based on these observations it was decided not to

reject the channels from this array, which accounts for the 15 omitted channels. The cause

of this drop in signal volume is unknown, however this array required an extra adaptor to be

plugged into the amplifier that was not needed for the other array.

The experiment aims to find discriminant features within each movement, allowing it to be dis-

tinguished from other movement by its spatial distribution RWPE features. Thus, this chapter

will be split into those space-frequency features that are common to more than one movement

(section 2) and those that are observed in just a single movement (section 3), helping to identify
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spatial or temporal features that may be applicable to pattern recognition. A complete statis-

tical analysis of the results was unavailable due to computational limitations, however several

movements (within individual) have been compared using 3-way ANOVA and reference to their

significance will be mentioned where appropriate. Such analysis is always between either hand

and pinch flexion movements or between hand and pinch extension movements. The descriptive

data is collated in the next section to avoid breaking up the text.

7.1 Graphs

This section contains the RWPE surface plots for each individual. Movement type is displayed

above each individual plot. The control conditions are displayed first so that a judgment of

baseline noise and unintentional MUAP firings can be made through visual inspection. A table

of results for the 3-way ANOVA carried out between select movements for individuals is also

included (table 7.1).

Figure 7.1 – Mean values and standard deviations for the (negative) control condition for
Subject 1. Controls were taken between each movement set, thus are representative of the
entire experimental duration

Figure 7.2 – Mean values and standard deviations for the (negative) control condition for
Subject 2. Controls were taken between each movement set, thus are representative of the
entire experimental duration
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Figure 7.3 – Mean values and standard deviations for the (negative) control condition for
Subject 3. Controls were taken between each movement set, thus are representative of the
entire experimental duration

Figure 7.4 – Mean values and standard deviations for the (negative) control condition
shown for Subject 4. Controls were taken between each movement set, thus are represen-
tative of the entire experimental duration

Figure 7.5 – Mean values and standard deviations for the (negative) control condition
shown for Subject 5. Controls were taken between each movement set, thus are represen-
tative of the entire experimental duration
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Figure 7.6 – The RWPE coefficients for subject 1. Mean values and standard deviations
for the (negative) control condition shown. Controls were taken between each movement
set, thus are representative of the entire experimental duration.
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Figure 7.7 – The RWPE coefficients for subject 2. Mean values and standard deviations
for the (negative) control condition shown. Controls were taken between each movement
set, thus are representative of the entire experimental duration.
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Figure 7.8 – The RWPE coefficients for subject 3. Mean values and standard deviations
for the (negative) control condition shown. Controls were taken between each movement
set, thus are representative of the entire experimental duration.
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Figure 7.9 – The RWPE coefficients for subject 4. Mean values and standard deviations
for the (negative) control condition shown. Controls were taken between each movement
set, thus are representative of the entire experimental duration.
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Figure 7.10 – The RWPE coefficients for subject 5. Mean values and standard deviations
for the (negative) control condition shown. Controls were taken between each movement
set, thus are representative of the entire experimental duration.
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H]

Table 7.1 – Results of a 3-way ANOVA between selected conditions

Subject Movement 1 Movement 2 Interaction (F) p > F

1 Hand close Pinch close 0.86 ∼ 1
2 Hand close Pinch close 0.61 ∼ 1
3 Hand close Pinch close 1.85 ∼ 0
3 Hand open Pinch open 0.84 ∼ 1
4 Hand close Pinch close 1.34 ∼ 0
4 Hand open Pinch open 1.17 ∼ 0
5 Hand close Pinch close 1.02 0.2584

7.2 Common features

The results in the preceding section show the mean values of the wavelet packet energy density

surface, respectively, and also the standard deviation for each mean. It should be pointed out

the RWPE is only the ratio of frequencies within a single channel. Inferences between the

relative amount of muscle activation cannot be made through direct comparison with other

channels. However, higher frequencies can indicate an increased neural drive. The movements

all share some common features:

1. Along the frequency axis a pattern of three local maxima emerges, with peaks at scales 7,

4 and 2 or 1. This is seen in all movements and to some extent in the control, occurring

in the means and in the standard deviation plots. The first scale-peak seems to be fairly

similar between movements. The second one seems to show more variation and may be a

better marker for pattern recognition (as discussed in the next chapter).

2. The dominant energies are mostly in the detail coefficients, at scale 1, which corresponds

to the higher frequencies. This is most obvious at the higher channels, which correspond

to the flexor array.

3. The majority of movements also show some scale 1-peaks in the low channels (1-20) in

many of the movements, although such peaks are generally lower in this (extensor) array

than in the flexor array. The range of RWPE coefficients in scale 1 is similar in each

flexor (roughly 30-60%) however it tends to be between 40-50% in the flexor array and

around 30% in the extensor array. The standard deviation at this scale band is generally

less than 4% of the total energy, which is roughly about 10-15% of the energy at this

scale. However considerable variance in standard deviation is seen between individuals

and movements for some channels.

4. The movement conditions seem to be much more similar to each other than to the con-

trol condition, where no movement was made. The high energies in scales 1 (highest

frequencies) suggest that this band may contain a great deal of noise.
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7.3 Discriminant features

This section will systematically discuss some of the features that distinguish particular move-

ments from each other. This will be done separately for each subject as inferences between

subjects are confounded by unavoidable extraneous variables (as discussed in chapter 5).

7.3.1 Subject 1

In the control condition (figure 7.1) there is more energy, in the high scales, in the flexor matrix

than the extensor. Similarly the range is larger at these scales, with this matrix, as shown by the

standard deviation. Their appears to be nothing obvious by which to differentiate movements

within subject 1 (figure 7.6). The results of a 3-way ANOVA between hand and pinch flexion

(table 7.1 suggest that the interaction between the three variables is not significant (p ≈ 1),

i.e. no significant inferences can be drawn from the relationship between the three factors,

suggesting that this setup would be unsuitable for a means of distinguishing the movement.

The hand and pinch flexion movement each show one channel with a relatively huge standard

deviation, several times larger than the other channels, suggesting a much larger spread of data.

The standard deviations seem to be higher in the flexor array for extension movements that

flexion movements, possibly suggesting that more variation in muscle activation is seen when

the extensors are the antagonistic muscles.

7.3.2 Subject 2

As with subject 1, figure 7.7 shows that the lowest scale dominates the signal in all subject

recordings, but especially in the flexor array. The responses from hand and pinch extension

movements appear very similar. This similarity is much more noticeable in the inferior array

(channels above 59). This pattern is also seen in the responses from hand and pinch flexion.

ANOVA showed that interactions between variables were not significant between hand and

pinch flexion movements (p ≈ 1).

7.3.3 Subject 3

Figure 7.8 shows several of the peaks seen in the hand flexion movement to be reduced in

magnitude during pinch flexion. ANOVA showed significant interaction between all factors

(p ≈ 0) for these movements suggesting that (for this individual) differentiation based upon

the spatial distribution of RWPE coefficients may be possible. Although there appeared to be

some variation in RWPE coefficients between extension movements, ANOVA (table 7.1) was

58



MSc Thesis Thomas Harrison

unable to find significant interactions (p ≈ 1).

7.3.4 Subject 4

Different patterns of energy distribution are observed at scales 1 and 4 for the hand and pinch

flexion movements from the extensor array, a shown in figure 7.9. The flexor array seemed to

be largely dominated by the lowest scale, for all movements however. Despite this, significant

interactions were found between the hand and pinch flexion (p ≈ 0) and also between hand

and pinch extension (p ≈ 0) using ANOVA (table 7.1). This strongly suggests that it may be

possible to find discriminant features capable of classifying these moves, for this individual.

7.3.5 Subject 5

The distribution of RWPE coefficients was very similar between flexion movements and between

extension movements (figure 7.9), although standard deviations showed that the range of RWPE

coefficients was quite small (figure 7.9). ANOVA (table 7.1) revealed that interactions between

the flexion movements was not significant (p = 0.2584)
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Chapter 8

Discussion

This chapter will evaluate the results found in the last chapter. Section 1 will discuss the

principle findings and what can be inferred from these. Section 2 will examine alternative

methods of prothetic control using HD sEMG (of which there is currently little published

work). Section 3 will discuss some of the limitations of the experiment, and how they relate

to the principle findings identified in section 1. Section 4 will suggest some ways in which the

experiment could be improved for future studies.

8.1 Principle findings

The aim of this experiment was to see if hand movements could be characterised by the dis-

tribution of MUAP firing frequency patterns as recorded by HD sEMG. The similarity shown

between spectral distributions in the previous chapter, along with the rather limited statistical

analysis at present, suggest that the current experimental setup used would be largely unreliable

as a means of characterising hand movements. Further statistical analysis was unfortunately

prevented due to computational complexity of carrying out 3-way ANOVA on such a large data

set. Thus we must presume, at present anyway, that this subset of results is indicative of the

entire data set. Some significant interactions were found between certain movements, scales

and channels, e.g. subject 4, implying that it may be possible to extract specific discriminant

features using these methods. However development of the technique would be necessary for

the characterization of hand movements using HD sEMG and RWPE to be viable. Some sug-

gestions as to how the reliability of the technique could be improved will be discussed later in

this chapter.

The idea of using RWPE for the spectral analysis was taken from Hu et al.29 who used the
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technique to decompose a bipolar signal into distinguishable forearm actions. Rather more

success was reported than in this study, however. This may be due to the additional feature

extraction algorithm that was applied to the data to generate (what they called) RWPE features.

RWPE features were based on characteristic patterns within the signal, equivalent to the peaks

seen within channels in my results. However these features were averaged across subjects and

then merged if a correlation seemed likely (to compensate for its lack in a particular individual).

Due to the imprecise nature of the electrode placement in my experiment, and changes in

anatomy between individuals (which would alter the distribution of tissue beneath the array)

this option was not possible, therefore many repeats were taken to compensate for this. Despite

this the results have only presented occasional significance.

It may be possible to increase the significance of interactions between movement, scale and

channel by reducing the number of channels and/or the scales chosen. The fact that almost

all of the signal energy was at scale 1 (the highest frequency band) during the negative control

strongly suggests that this frequency was largely noise. The removal of this could help determine

a pattern in the remaining frequency bands. Similarly some channels may be better than others

at representing the underlying muscular activity involved in different movements. As we are

measuring gross anatomical features, rather than individual motor units, the inclusion of so

many channels may contain a great deal of redundant information. In particular the high scales

(9-16), which contained a very small proportion of the signal energy (if any) may have had a

blanketing effect on the ANOVA tests. I.e. the variance at these scales will be very low for

each channel and for each movement. Indeed, examination of the ANOVA tables (shown in

Appendix II) showed that variance between channels was not significant.

Pruning the selection down to a pertinent few may help achieve significant interaction between

the three terms. It would be fairly easy (although possibly not very quick) to rewrite the

MATLAB scripts to use a reduced number of scales (possibly only one or two would be needed)

and/or channels. The reduced complexity of the 3-way ANOVA may also make statistical

testing more feasible (in terms of computational demands). However there are inherent dangers

in searching for significance using post hoc-analysis, altering the experimental parameters to

suit the results. A way around this could be to try and repeat the experiment using the

new parameters, should significance be made available. One further problem with reducing

the number of channels is that either an algorithm would have to be created to select the

most pertinent channels or a subjective estimate would have to be made. The former would

represent a considerable challenge, whereas the second generates problems with reproducibility

and precludes the use to those without sufficient anatomical knowledge. These were the two

(successful) options used by Huang et al. to increase the efficacy of prosthetic control through

targeted muscle reinnervation30 as was discussed in chapter 3.
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8.2 Alternative research

The literature is very sparse on the subject of using HD sEMG for optimising prosthetic con-

trol. I was only able to find two studies using a fixed-distance, multidimensional electrode array

both by Nagata et al.43 44, although they were both summaries of proceedings from conferences,

rather than journal articles. The first of these used only one column of 16 electrodes (out of

the 96 channel grid) to increase the response time. Channels were selected through pretesting,

using all 96 channels, and then a canonical discriminant analysis was used to identify the EMG

patterns as the principle eigenvectors of the data. The second study also used canonical dis-

criminant analysis but the pretesting stage calculated the most pertinent channels for accurate

classification. Both of these techniques used signal amplitude, rather than firing rate, which

can cause problems when trying to infer neural drive (as discussed in chapters 2 and 5) as it

relies on spatial summation of different MUs rather than temporal summation within individual

MUs.

The other two studies relied on single channel electrodes arranged over the surface in a two-

dimensional array. The study by Huang et al.30, which was mentioned in the previous section,

has already been discussed in detail in chapter 3. The remaining study, by Tenore et al. is

another summary of proceedings from a conference53. This used principle component analysis to

characterise the movements by several time-domain features: amplitude, wavelength, absolute

mean and variance. An artificial neural network was used to for pattern recognition.

In terms of studies combining wavelet analysis with HD sEMG, only one was found. This was

by Gazoni et al.19 who used the continuous wavelet transform (see chapter 4) to extract MUAPs

from the sEMG interference signal. In this case the use of wavelets was described as a limiting

factor since it was not possible to represent the changes to an arbitrary MUAP waveform with

spatial distribution accurately with the wavelet basis function.

8.3 Limitations

As discussed in the results chapter, the experiment was limited by the multi-adaptor needed

for connection of the second (flexor) matrix. It is possible that the signal was damped within

this or the gain was somehow compromised using the multi-adaptor input port of the amplifier.

Testing of this equipment has not yet been carried out to determine the cause of this problem.

The data collated in the results section suggests that noise is the overriding feature of the signal.

Noise is generally of a higher frequency than the EMG spectra52 and the lowest scale (the highest

frequency band) tended to dominate the RWPE surface plots. This is especially prevalent in the

control conditions. The wavelet packet transform acts as a bank of quadrature mirror filters20
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(see chapter 4), breaking up the signal into separate scale bands. Thus it has innate abilities to

(roughly) filter out specific unwanted frequencies. As discussed in previous sections this limiting

factor could quite easily be removed through the omission of the lowest scale. Normalisation

would have to be made so the summation of the remaining RWPE coefficents equalled 100% of

the total signal energy.

Another method to reduce noise could be to try a different function for entropy selection during

wavelet decomposition. In this experiment SURE (Stein’s unbiased risk estimator) was used

as a criterion for setting the threshold of ’unwanted’ signal components. Altering the entropy

thresholding function may remove noise, which is generally considered to have high entropy12.

8.4 Future work

This experiment was based around characterising the spatial distribution of motor unit activa-

tion using their frequency content (i.e. firing rate) which is linked to neural drive8 (see chapter

2). As discussed in earlier sections of this chapter, neural drive to the motor system is displayed

by temporal recruitment (an increase in MU firing rate) and spatial recruitment14). As each

MU tends to fire at a different frequency23 (to prevent synchronous firing) both of these aspects

are frequency dependent. However, it may not be difficult to incorporate a function to compare

maps of the topographical muscular activation, based on signal amplitude. This could either

aid in the selection of useful channels for characterization by frequency, or could add another

dimension to the analysis. This last idea must be approached cautiously, however, as adding a

new continuous variable to the already overburdened ANOVA computation would be unlikely

to be successful without a significant removal of data from elsewhere.

8.5 Conclusion

This chapter discussed the results that were gained from the experiment and suggestions as

to how to overcome some of the limitations that were identified. Comparisons to other work

was carried out and some studies of HD electromyographic prosthetic control were mentioned.

Several relatively simple improvements to the analysis of results were suggested, however, due

to time constraints the efficacy of these cannot be tested.
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Chapter 9

Summary and Conclusion

9.1 Introduction

This final chapter attempts to summarise this report. The previous chapters are summarised

in the first section and the experiment is evaluated, with respect to the aim, in the latter.

9.2 Summary of chapters

Chapter 2 began with a brief overview of the anatomy of muscle, with emphasis on motor

units and their action potentials. This was necessary for an understanding of sEMG which

was explored in the succeeding sections, culminating in a description of HD sEMG. Several

important concepts were also introduced, including superimposition, spatial filtering and spatial

sampling. These concepts were explored further in chapter 3, which comprised a literature

review of papers concerning HD sEMG. The majority of papers reviewed were concerned with

decomposition, i.e. deconstructing the surface signal into component MUAPs. A distinction was

made between decomposition procedures requiring user-interaction and those that incorporated

fully-automatic algorithms.

Chapter 4 began with a brief discussion on Fourier analysis, the traditional methods for signal

processing. This led onto wavelet analysis, a more recent invention, which has several advan-

tages over Fourier. Most noticeably these include the ability to examine the signal at different

scales simultaneously and at different time locations. Continuous and discrete time wavelet

transforms were discussed along with the wavelet packet transform.

The concepts discussed in the previous chapters were used to justify the experimental methods

in chapter 5. The precise methodology was then outlined in chapter 6.
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Chapter 7 contains the experimental results. Each hand movement (from each subject) was

condensed to show just the means and standard deviations of RWPE coefficients for every chan-

nel and scale. ANOVA results were also shown for interaction effects between (within-subject)

experimental variables for several movement combinations. Unfortunately a comprehensive

analysis was impossible due to computational (and time) limitations.

The significance of the results was discussed in chapter 8. Some results showed significant

(within-subject) variance between movements whilst others did not. There were no similar

studies for comparison but several studies which contained relevant elements were mentioned.

Limitations of the experiments (and analysis) were posited and several avenues for further study,

including possible methods of increasing significance, were suggested.

9.3 Evaluation

The aim of this project was to investigate whether hand movements could be characterised by

the activation pattern seen in the extrinsic hand musculature (in the wrist) using HD sEMG. It

was theorised that firing frequency would represent muscle activation more reliably than firing

magnitude. Thus WP analysis was applied to the acquisition of spectral frequency information

at each (spatially distinct) channel.

Whilst several of the results suggested that such analysis could enable an accurate discrimination

of hand movement, a lack of consistency means that the method is probably too unreliable

without alteration. As discussed in chapter 8, however, several key changes to the analysis may

give substantial improvements to the reliability (i.e. the significance). Therefore, despite the

mixed success of this experiment, this research definitely does not appear to constitute a dead

end.
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Appendix I: Glossary of terms

ANN - See Artificial neural network.

ANOVA - See Analysis of variance

Artificial neural network - A computer model that is based on biological neural systems.
Through weighted connections it is able to adapt to new information.

Blind-identification - See Blind-source separation.

blind-source separation - A method for MUAP extraction where no assumptions are made
about the underlying MUAP physiology other than each MU displays statistical independence
(e.g. see Holobar et al., 2004).

CKC - See Convolution kernel compensation.

continuous wavelet transform - A real-time time-frequency analysis technique whereby (1
or 2D) signals are characterised by scale (frequency) and location (time or distance).

convolution kernel compensation - A blind-source separation technique using the products
of convolutions to represent MUAPs (e.g. see Holobar et al., 2007).

HD - See High-density

HD sEMG - See High-density surface electromyography.

high density array - A 2-dimensional array of densely spaced electrodes, of fixed interelectrode
distance, for use in sEMG.

high-density surface electromyography - sEMG perfromed with a high density array.

ICA - See Independent component analysis.

ICT - See Incremental counting technique.

IED - See Inter-electrode distance.

iEMG - See Intramuscular electromyography.

In silico - Performed on a computer or by computer simulation.

Incremental counting technique - A method for MUNE involving the successive activation
of MUs through artificially evoked responses.

Independent component analysis - Statistical technique using eigenvectors to reduce di-
mensionality of datasets whilst maintaining the most important (variance) features.

Innervation zone - The point at which the motoneuron synapses with the muscle fibre. See
also neuromuscular junction.

Inter-electrode distance - The distance by which the (centres) of two electrodes are sepa-
rated.

Inter-spike interval - A method of classifying MUAPs by the timing delay between consecu-
tive firings.

Intramuscular electromyography - An (invasive) means of recording electrical activity in
the muscle through the insertion of a needle.
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ISI - See Interspike interval.

IZ - See Innervation zone.

Lead - The theoretical channel that may be the outout of several a spatial filter.

Linear time invariant - A system is linear time invariant if the relationship between input
and output is linear and unaffected by a time delay.

LTI - See Linear time invariant.

MART ANN - See Multichannel adaptive resonance theory ANN.

MFCV - See Muscle fibre conduction velocity.

Motor unit - The functional unit of the muscle.

Motor unit action potential - The sudden, transient change in voltage across the muscle
fibre membrane accompanying signal propagation.

Motor unit number estimation - A method of estimating the total MU population within
a detection volume, also see Incremental counting technique.

MPS - See Multiple-point stimulation.

MU - See Motor unit.

MUAP - See Motor unit action potential.

Multichannel adaptive resonance theory ANN - Consists of a set of ART2 neural net-
works (one per channel in parallel to compare patterns between channels and output similarity.
Applied to MUAP decomposition by Gazzoni et al. (2004).

MUNE - See Motor unit number estimation

Muscle fibre conduction velocity - The propagation velocity of the electrochemical impulse
along the muscle fibre (usually averaged over entire fibre length unless otherwise specified).

Neuromuscular junction - The synapse of the motor neuron on the muscle.

Nyquist - The Nyquist criterion states a signal must be sampled at a minimum of twice the
highest frequency in its bandwidth to avoid low frequency artifacts (the Nyquist limit).

Rectified sEMG - An sEMG signal that has had negative amplitudes reversed in polarity.

Scalogram - A means of depicting the relationship between time and frequency for a signal
using wavelet analysis.

sEMG - See Surface electromyography.

Spatial filter - The weighted sum of a specific configurations of two or more electrodes, re-
sulting in a high-pass filtering effect in the spatial domain.

Steins unbiased risk estimator - A method for assigning criteria for the rejection of scales
during wavelet packet decomposition based upon the entropy at that scale.

SURE - See Steins unbiased risk estimator.

Surface electromyography - A technique for measuring neuromuscular potentials from the
surface of the body.

Targeted muscle reinnervation - A technique to reroute motor neurons to redundant muscles
following amputation (e.g. see Zhou et al., 2005).

TES - See Transcuteneous electric stimulation.

TMS - See Transcranial magnetic stimulation.
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Transcranial magnetic stimulation - The evocation of a muscular response though mag-
netically activating parts of the motor cortex.

Transcuteneous electric stimulation - The evocation of a muscular response though elec-
trical stimulation acoss the skin.

Underdetermined system - If there are N sources from M linear mixes and M¿N then the
underlying system is underdetermined, i.e. it has multiple solutions.

Wards clustering - Hierarchical clustering method based upon Euclidean distances (e.g.
Kleine et al., 2007).

Wavelet - A brief oscillatory waveform used as a basis function for wavelet analysis.

Wavelet packet transform - A function for sequentially dividing a signal by scale using
wavelets as high and low-pass filters.

WPT - See Wavelet packet transform.
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Appendix II: ANOVA tables

Table 1 – Results of 3-way ANOVA for Subject 1 for interactions between hand and pinch
flexion.

Table 2 – Results of 3-way ANOVA for Subject 2 for interactions between hand and pinch
flexion.

Table 3 – Results of 3-way ANOVA for Subject 3 for interactions between hand and pinch
flexion.
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Table 4 – Results of 3-way ANOVA for Subject 3 for interactions between hand and pinch
extension.

Table 5 – Results of 3-way ANOVA for Subject 4 for interactions between hand and pinch
flexion.

Table 6 – Results of 3-way ANOVA for Subject 4 for interactions between hand and pinch
extension.
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Table 7 – Results of 3-way ANOVA for Subject 5 for interactions between hand and pinch
flexion.
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Appendix III: MATLAB code

This appendix displays the MATLAB scripts used in the analysis of data.

GETSIG.M

This script extracts and reorganise the raw data and to calculate the RWPE for each channel.
Several options are built in, including different orders of wavelet packet decomposition.

1 % A script to for the command 'GETSIG.M'
2 % Extracts EMG signal features acquired using EMG−USB2
3 % Also analyzes spectral energy using wavelet packets
4 % Written by Thomas Harrison with thanks to OTBioelettronica
5

6 while 2==2 % Conditional program loop
7 close all % Close all figures
8 clear all % Clear all variables
9

10 %% DATA ACQUISITION
11

12 % EXPERIMENTAL PARAMETERS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13

14 % Ask if default values of samp freq and gain are wanted
15

16 questr = 'Would you like to use default values (samp freq = 2048Hz, gain = 1000)?'
17 yesno = questdlg(questr, 'Sampling parameters', 'Yes', 'No', 'Yes');
18 switch yesno
19 case 'Yes'
20 fsamp = 2048; % Default sampling frequency
21 Gain = 1000; % Default gain
22

23 case 'No'
24 fsamp=input('Enter sampling frequency: '); % Input sample frequency ...

in Hz
25 Gain=input('Enter gain: '); % Input gain
26

27 end
28

29 Offset plot = 1; % Offset to separate plotted channels
30 Acquired Ch = 128; % Number of acquired channels
31 Plotted Ch = 128; % Number of channels that will be plotted
32

33 % Ask the user to choose a signal file
34 [file name, file path] = uigetfile('*.sig','Select the Signal file');
35 filename = [file path file name];
36

37 % SIGNAL INPUT −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 hh=fopen(filename,'r'); % Open file
39 Raw sig = []; % Matrix conditioning
40 Raw sig = fread(hh,[Acquired Ch, inf],'short'); % Extract bin file
41 fclose all;
42

43 clear hh filename
44

45 % SIGNAL CONVERSION −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
46 Sig = []; % Matrix conditioning
47 Sig = Raw sig*5/2ˆ12/Gain*1000; % Estimates the amplitude on the skin:
48 % 5 is the A/D input range in V
49 % 2ˆ12 take into account the resolution of the A/D
50 % Gain: provide the amplidute on the skin
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51 % 1000: convert the amplitude in mV
52 clear Raw sig
53

54 [nch Sig dur] = size(Sig); % Extract Matrix dimensions
55

56 t = linspace(1, Sig dur/fsamp, Sig dur); % Time vector in s
57

58

59 %% COLUMN CORRECTION
60 % To realign columns;
61 % correcting for HD−grid zig−zag positioning
62 % and removing last channel in each column
63

64 % COLUMN SPLITTING −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 % Last channel in each column is not extracted as bipolar derivation
66 % Alternate columns are flipped to align channels in spatial order
67

68 % Superior array
69 Sig1 = Sig(01:11,:); % Extract column 1
70 Sig2 = Sig(13:24,:); % Extract column 2
71 Sig2 = flipud(Sig2); % Flip column 2
72 Sig3 = Sig(26:37,:); % Extract column 3
73 Sig4 = Sig(39:50,:); % Extract column 4
74 Sig4 = flipud(Sig4); % Flip column 4
75 Sig5 = Sig(52:63,:); % Extract column 5
76

77 % Inferior forearm
78 Sig6 = Sig(65:75,:); % Extract column 1
79 Sig6 = Sig6([2 4 5 6 7 8 9 10 11],:); % Remove corrupted channels
80 Sig7 = Sig(77:88,:); % Extract column 2
81 Sig7 = Sig7([1 2 3 5 6 7 8 9],:); % Remove corrupted channels
82 Sig7 = flipud(Sig7); % Flip column 2
83 Sig8 = Sig(90:101,:); % Extract column 3
84 Sig8 = Sig8([1 4 5 6 8 9 10 11],:); % Remove corrupted channels
85 Sig9 = Sig(103:114,:); % Extract column 4
86 Sig9 = Sig9([1 2 3 4 5 8 9 10 11 12],:); % Remove corrupted channels
87 Sig9 = flipud(Sig9); % Flip column 4
88 Sig10 = Sig(116:127,:); % Extract column 5
89 Sig10 = Sig10([1 2 3 4 7 8 9 10 11],:); % Remove corrupted channels
90

91 % COLUMN MERGING −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
92 sig = zeros(103,Sig dur); % Create empty matrix
93 sig(01:11,:) = Sig1; % Insert column1
94 sig(12:23,:) = Sig2; % Insert column2
95 sig(24:35,:) = Sig3; % Insert column3
96 sig(36:47,:) = Sig4; % Insert column4
97 sig(48:59,:) = Sig5; % Insert column5
98

99 sig(60:68,:) = Sig6; % Insert column1 array2
100 sig(69:76,:) = Sig7; % Insert column2 array2
101 sig(77:84,:) = Sig8; % Insert column3 array2
102 sig(85:94,:) = Sig9; % Insert column3 array2
103 sig(95:103,:) = Sig10; % Insert column4 array2
104

105 clear Sig1 Sig2 Sig3 Sig4 Sig5 Sig6 Sig7 Sig8 Sig9 Sig10
106

107 %% WAVELET PACKET ANALYSIS
108

109 quest2 = 'Which wavelet packet decomposition order is required?';
110 wpord = questdlg(quest2,'Decomposition order','2nd','3rd','4th','4th');
111

112 switch wpord
113 case '2nd'
114 wpdord = 2;
115 enmat = zeros(64,4); % Create blank matrix
116

117 case '3rd'
118 wpdord = 3;
119 enmat = zeros(64,8); % Create blank matrix
120
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121 case '4th'
122 wpdord = 4;
123 enmat = zeros(64,16); % Create blank matrix
124 end
125

126 % Calculate the SURE threshold 'suren'
127 suren = sqrt(2.*log(Sig dur.*log2(Sig dur)));
128

129 % WP decomposition of Data matrix
130 % using db2 wavelet to decomp level 4 with SURE entropy
131 for i=1:103;
132 tmpsig = sig(i,:);
133 %suren = thselect(tmpsig,'rigrsure'); % Automatic SURE thr gen
134 T = wpdec(tmpsig,wpdord,'db2','sure',suren); % WP decomposition
135 E = wenergy(T); % Energy of packets
136 enmat(i,:) = E; % Insert energy coeffs
137 clear E T tmpsig % Remove unnec. variables
138

139 end
140

141

142 %% FURTHER PROCESSING
143

144 plotname = genvarname(file name); % Create string variable name from file name
145

146 plotname = plotname(1:7); % Shorten string to 9 characters
147

148 questr = ['Save details as ' plotname '?'];
149

150 namebutton = questdlg(questr, 'Name?', 'yes', 'no', 'yes');
151 switch namebutton
152 case 'yes'
153 % Keep automatic string name
154 case 'no'
155 plotname = input('Save figure and coefficients as? ','s');
156 % Enter new name
157 end
158

159 save(plotname, 'enmat'); % Save energy matrix (current ...
dir)

160

161

162 %% GRAPHICAL OUTPUT
163 % Surface plot of wp energy coefficients −−−−−−−−−−−−−−−−−−−−−−−−−−
164

165 surf(enmat); % Surface plot
166

167 h = gcf; % Assign figure handle
168

169 % Graph headings
170 title(['Surface plot of wavelet packet energy coefficients (' plotname ')']);
171 xlabel('Scale bin'); ylabel('Channel'); zlabel('% Energy');
172

173 % Set graph axes (16 x 103 x 75)
174 axis([0 16 0 103 0 75]);
175

176 saveas(h,plotname,'fig'); % Save figure (current dir)
177

178 %subplot(1,2,1), surf(enmat); % Place in subplot
179 %title('Surface plot of wavelet packet energy coefficients');
180 %xlabel('Scale bin'); ylabel('Channel'); zlabel('Energy');
181 %
182 % Channel−by−channel visualization −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
183 %
184 %for i = 1:103 % Plot the desired channels
185 % subplot(1,2,2), plot(t, sig(i,:)+Offset plot*(i));
186 % hold on
187 %end
188 %
189 %hold off
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190 %
191 % Plot graph of data
192 %title('EMG Data (all channels)');
193 %xlabel('Time (s)');
194 %ylabel('Signal amplitude (mV)');
195

196

197 %% REPEAT LOOP
198

199 % Ask if another iteration is required
200 K=menu('Would you like to process more data?','yes','no');
201 if K==1
202 continue
203 end
204 if K==2
205 disp('Thanks for using this program')
206 break
207 end
208

209 delete K
210

211 end
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COMPSTD.M

This script compares movements performed by each individual, using data generated with the
previous GETSIG.M script. It takes the mean values and standard deviations for each set of
repeats. Several menus are provided for accurate labeling of figures.

1 %% COMPSTD.M
2 % A script to compare 10 WPE matrices from the same movement
3 % All from the same individual
4 % Outputs will be 2 graphs:
5 % − mean value for each node
6 % − standard deviation for each node
7 % % N.B. WPE = wavelet packet energy
8 % Matrix enmat created with GETSIG.M
9 %

10 % Created by Thomas Harrison, 14/08/2011
11

12

13 %% Movement Classification
14

15 % Menu for movement classification
16 menuquestrg = 'Please pick the movement category from the options below';
17 menop1 = 'Hand flexion';
18 menop2 = 'Hand extension';
19 menop3 = 'Pinch flexion';
20 menop4 = 'Pinch extension';
21 menop5 = 'Control (no movement)';
22

23

24 %Menu to acquire movement type
25 movtyp = menu(['Movement 1:' menuquestrg],menop1,menop2,menop3,menop4,menop5);
26

27 if movtyp == 1
28 mov = menop1;
29 elseif movtyp == 2
30 mov = menop2;
31 elseif movtyp == 3
32 mov = menop3;
33 elseif movtyp == 4
34 mov = menop4;
35 elseif movtyp == 5
36 mov = menop5;
37 end
38

39 %% Subject classification
40

41 menuquestrg = 'Who was the subject?'; % Menu question string
42 menop1 = 'Radhika';
43 menop2 = 'Sibani';
44 menop3 = 'Claire';
45 menop4 = 'Mayank';
46 menop5 = 'Monica';
47

48 % Menu for chosing subect name
49 % Note actual name will not be displayed for confidentiality
50 subjnam = menu(menuquestrg,menop1,menop2,menop3,menop4,menop5);
51

52 % Give anonymous identifiers to subjects
53 if subjnam == 1
54 subj = 'Subject 1';
55 elseif subjnam == 2
56 subj = 'Subject 2';
57 elseif subjnam == 3
58 subj = 'Subject 3';
59 elseif subjnam == 4
60 subj = 'Subject 4';
61 elseif subjnam == 5
62 subj = 'Subject 5';
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63 end
64

65 %% Load files
66

67 qstring = ['Please load the 10 ' mov ' files from the same individual'];
68 button = questdlg(qstring, 'Load movement', 'Ok', 'Ok');
69 switch button
70 case 'Ok'
71

72 uiopen('LOAD'); % Open 1st file of movement
73 mov1 = enmat;
74

75 uiopen('LOAD'); % Open 2nd file of movement
76 mov2 = enmat;
77

78 uiopen('LOAD'); % Open 3rd file of movement
79 mov3 = enmat;
80

81 uiopen('LOAD'); % Open 4th file of movement
82 mov4 = enmat;
83

84 uiopen('LOAD'); % Open 5th file of movement
85 mov5 = enmat;
86

87 uiopen('LOAD'); % Open 6th file of movement
88 mov6 = enmat;
89

90 uiopen('LOAD'); % Open 7th file of movement
91 mov7 = enmat;
92

93 uiopen('LOAD'); % Open 8th file of movement
94 mov8 = enmat;
95

96 uiopen('LOAD'); % Open 9th file of movement
97 mov9 = enmat;
98

99 uiopen('LOAD'); % Open 10th file of movement
100 mov0 = enmat;
101

102 end
103

104 %% Name generation
105 % Automatically create a relevant name string based on subject and movements
106

107 name1 = genvarname(mov); % Create string variable name
108 name1 = name1([1 6:7]); % Shorten name1
109 name2 = genvarname(subj); % Create string variable name
110 name2 = name2([1:4 8]); % Shorten name2
111 name = [name2 ' ' name1]; % Concatenate name
112 clear name1 name2
113

114 questr = ['Save figure as ' name '?'];
115

116 namebutton = questdlg(questr, 'Name?', 'yes', 'no', 'yes');
117 switch namebutton
118 case 'yes'
119 % Keep automatic string name
120 case 'no'
121 name = input('Save figure as? ','s'); % Enter new name
122

123 end
124

125 %% 3D array
126 % Concatenate matrices into a 3−dimensional array
127 movcat = cat(3,mov1,mov2,mov3,mov4,mov5,mov6,mov7,mov8,mov9,mov0);
128 clear mov1 mov2 mov3 mov4 mov5 mov6 mov7 mov8 mov9 mov0
129

130 %% Discriptive data
131 % Creates and saves plots of data parameters
132
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133

134 % Create matrix of mean values
135 meancat = mean(movcat,3);
136 name1 = [name ' mean']; % Append name with function
137 save(name1, 'meancat'); % Save energy matrix (current dir)
138

139 % Create matrix of STD
140 % Note: this is sample adjusted (N−1)
141 stdcat = std(movcat,0,3);
142 name2 = [name ' std']; % Append name with function
143 save(name2, 'stdcat'); % Save energy matrix (current dir)
144

145 % Plot matrix of mean values
146 surf(meancat); axis([0 16 0 103 0 75]); view([50,30]);
147 title(['Mean WP energy values for ' mov ' performed by ' subj]);
148 xlabel('Scale bin'); ylabel('Channel'); zlabel('% Energy');
149 fig1 = gcf; % Assign figure handle
150 saveas(fig1,name1,'fig'); % Save figure 1 (current dir)
151 saveas(fig1,name1,'jpg'); % Save figure 1 as .jpeg
152

153 % Plot matrix of standard deviations
154 surf(stdcat); axis([0 16 0 103 0 25]); view([50,30]);
155 title(['STD of WP energy values for ' mov ' performed by ' subj]);
156 xlabel('Scale bin'); ylabel('Channel'); zlabel('% Energy');
157 fig2 = gcf; % Assign figure handle
158 saveas(fig2,name2,'fig'); % Save figure 2 (current dir)
159 saveas(fig2,name2,'jpg'); % Save figure 2 as .jpeg
160

161 close all
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WPANOVAN.M

This script loads up the data generated from GETSIG.M and arranges it in a way that MATLAB
can interpret for 3-way ANOVA. ANOVA is then carried out. Options allow different numbers
of moves to be compared (within the same individual).

1 %% WPANOVA.M
2 % A script to do the following:
3 % extract wp energy data from .mat files
4 % convert wp matrix into column vector
5 % place coefficients in the correct order, as follows:
6 % Column 1 = wp energy value (from enmat) = Variable 1
7 % Column 2 = scale bin = Variable 2
8 % Column 3 = channel = Variable 3
9 % Column 4 = hand movement = Variable 4

10 % [See diagram below for example]
11 % Run N−Way ANOVA on new matrix
12

13 % Diagram of column input:
14 % Energy Scale Channel Move
15 % [val] 1−16 1−128 1−5
16 % ... ... ... ...
17

18

19 %% Movement ...?
20

21 % Menu for number of input movements (variable 1)
22 questrg = 'How many movements would you like to compare?';
23 nomov = menu(questrg,'5','4','3','2');
24 if nomov == 1
25 nomov = 5;
26 elseif nomov == 2
27 nomov = 4;
28 elseif nomov == 3
29 nomov = 3;
30 elseif nomov ==4
31 nomov = 2
32 end
33

34 % Menu for movement classification
35 menuquestrg = 'Please pick the movement category from the options below';
36 menop1 = 'Hand Flexion';
37 menop2 = 'Hand Extension';
38 menop3 = 'Pinch Flexion';
39 menop4 = 'Pinch Extension';
40 menop5 = 'Control (no movement)';
41

42 for m=1:nomov
43 if m==1 % Generate name string for figures
44 mov1typ = menu(['Movement 1:' ...

menuquestrg],menop1,menop2,menop3,menop4,menop5);
45

46 if mov1typ == 1
47 mov1 = menop1;
48

49 elseif mov1typ == 2
50 mov1 = menop2;
51

52 elseif mov1typ == 3
53 mov1 = menop3;
54

55 elseif mov1typ == 4
56 mov1 = menop4;
57

58 elseif mov1typ == 5
59 mov1 = menop5;
60 end
61
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62 qstring = ['Please load the 10 ' mov1 ' files from the same individual'];
63 button = questdlg(qstring, 'Load movement 1', 'Ok', 'Ok');
64 switch button
65 case 'Ok'
66 % Choose directory for movement 1
67 dir name = uigetdir('D:\My Documents\BioLab\Tom');
68 cd(dir name); % Go to choses directory
69

70 uiopen('LOAD'); % Open 1st file of movement 1
71 mov1mat1 = enmat(:);
72

73 uiopen('LOAD'); % Open 2nd file of movement 1
74 mov1mat2 = enmat(:);
75

76 uiopen('LOAD'); % Open 3rd file of movement 1
77 mov1mat3 = enmat(:);
78

79 uiopen('LOAD'); % Open 4th file of movement 1
80 mov1mat4 = enmat(:);
81

82 uiopen('LOAD'); % Open 5th file of movement 1
83 %enmat(isnan(enmat)) = 0;
84 mov1mat5 = enmat(:);
85

86 uiopen('LOAD'); % Open 6th file of movement 1
87 %enmat(isnan(enmat)) = 0;
88 mov1mat6 = enmat(:);
89

90 uiopen('LOAD'); % Open 7th file of movement 1
91 %enmat(isnan(enmat)) = 0;
92 mov1mat7 = enmat(:);
93

94 uiopen('LOAD'); % Open 8th file of movement 1
95 %enmat(isnan(enmat)) = 0;
96 mov1mat8 = enmat(:);
97

98 uiopen('LOAD'); % Open 9th file of movement 1
99 mov1mat9 = enmat(:);

100

101 uiopen('LOAD'); % Open 9th file of movement 10
102 mov1mat0 = enmat(:);
103

104 end
105

106 end
107

108 if m==2 % Generate name string for figures
109 mov2typ = menu(['Movement 2:' ...

menuquestrg],menop1,menop2,menop3,menop4,menop5);
110

111 if mov2typ == 1
112 mov2 = menop1;
113

114 elseif mov2typ == 2
115 mov2 = menop2;
116

117 elseif mov2typ == 3
118 mov2 = menop3;
119

120 elseif mov2typ == 4
121 mov2 = menop4;
122

123 elseif mov2typ == 5
124 mov2 = menop5;
125 end
126

127 qstring = ['Please load the 10 ' mov2 ' files from the same individual'];
128 button = questdlg(qstring, 'Load movement 2', 'Ok', 'Ok');
129 switch button
130 case 'Ok'
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131 % Choose directory for movement 2
132 dir name = uigetdir('D:\My Documents\BioLab\Tom');
133 cd(dir name); % Go to choses directory
134

135 uiopen('LOAD'); % Open 1st file of movement 2
136

137 mov2mat1 = enmat(:);
138

139 uiopen('LOAD'); % Open 2nd file of movement 2
140 mov2mat2 = enmat(:);
141

142 uiopen('LOAD'); % Open 3rd file of movement 2
143 mov2mat3 = enmat(:);
144

145 uiopen('LOAD'); % Open 4th file of movement 2
146 mov2mat4 = enmat(:);
147

148 uiopen('LOAD'); % Open 5th file of movement 2
149 mov2mat5 = enmat(:);
150

151 uiopen('LOAD'); % Open 6th file of movement 2
152 mov2mat6 = enmat(:);
153

154 uiopen('LOAD'); % Open 7th file of movement 2
155 mov2mat7 = enmat(:);
156

157 uiopen('LOAD'); % Open 8th file of movement 2
158 mov2mat8 = enmat(:);
159

160 uiopen('LOAD'); % Open 9th file of movement 2
161 mov2mat9 = enmat(:);
162

163 uiopen('LOAD'); % Open 10th file of movement 2
164 mov2mat0 = enmat(:);
165

166 end
167

168 end
169

170 if m==3 % Generate name string for figures
171 mov3typ = menu(['Movement 3:' ...

menuquestrg],menop1,menop2,menop3,menop4,menop5);
172

173 if mov3typ == 1
174 mov3 = menop1;
175

176 elseif mov3typ == 2
177 mov3 = menop2;
178

179 elseif mov3typ == 3
180 mov3 = menop3;
181

182 elseif mov3typ == 4
183 mov3 = menop4;
184

185 elseif mov3typ == 5
186 mov3 = menop5;
187 end
188

189 qstring = ['Please load the 10 ' mov3 ' files from the same individual'];
190 button = questdlg(qstring, 'Load movement 3', 'Ok', 'Ok');
191 switch button
192 case 'Ok'
193 % Choose directory for movement 3
194 dir name = uigetdir('D:\My Documents\BioLab\Tom');
195 cd(dir name); % Go to choses directory
196

197 uiopen('LOAD'); % Open 1st file of movement 3
198 mov3mat1 = enmat(:);
199
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200 uiopen('LOAD'); % Open 2nd file of movement 3
201 mov3mat2 = enmat(:);
202

203 uiopen('LOAD'); % Open 3rd file of movement 3
204 mov3mat3 = enmat(:);
205

206 uiopen('LOAD'); % Open 4th file of movement 3
207 mov3mat4 = enmat(:);
208

209 uiopen('LOAD'); % Open 5th file of movement 3
210 mov3mat5 = enmat(:);
211

212 uiopen('LOAD'); % Open 6th file of movement 3
213 mov3mat6 = enmat(:);
214

215 uiopen('LOAD'); % Open 7th file of movement 3
216 mov3mat7 = enmat(:);
217

218 uiopen('LOAD'); % Open 8th file of movement 3
219 mov3mat8 = enmat(:);
220

221 uiopen('LOAD'); % Open 9th file of movement 3
222 mov3mat9 = enmat(:);
223

224 uiopen('LOAD'); % Open 10th file of movement 3
225 mov3mat0 = enmat(:);
226

227 end
228

229 end
230

231 if m==4 % Generate name string for figures
232 mov4typ = menu(['Movement 4:' ...

menuquestrg],menop1,menop2,menop3,menop4,menop5);
233

234 if mov4typ == 1
235 mov4 = menop1;
236

237 elseif mov4typ == 2
238 mov4 = menop2;
239

240 elseif mov4typ == 3
241 mov4 = menop3;
242

243 elseif mov4typ == 4
244 mov4 = menop4;
245

246 elseif mov4typ == 5
247 mov4 = menop5;
248 end
249

250 qstring = ['Please load the 10 ' mov4 ' files from the same individual'];
251 button = questdlg(qstring, 'Load movement 4', 'Ok', 'Ok');
252 switch button
253 case 'Ok'
254 % Choose directory for movement 4
255 dir name = uigetdir('D:\My Documents\BioLab\Tom');
256 cd(dir name); % Go to choses directory
257

258 uiopen('LOAD'); % Open 1st file of movement 4
259 %enmat(isnan(enmat)) = 0;
260 mov4mat1 = enmat(:);
261

262 uiopen('LOAD'); % Open 2nd file of movement 4
263 %enmat(isnan(enmat)) = 0;
264 mov4mat2 = enmat(:);
265

266 uiopen('LOAD'); % Open 3rd file of movement 4
267 %enmat(isnan(enmat)) = 0;
268 mov4mat3 = enmat(:);
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269

270 uiopen('LOAD'); % Open 4th file of movement 4
271 %enmat(isnan(enmat)) = 0;
272 mov4mat4 = enmat(:);
273

274 uiopen('LOAD'); % Open 5th file of movement 4
275 %enmat(isnan(enmat)) = 0;
276 mov4mat5 = enmat(:);
277

278 uiopen('LOAD'); % Open 6th file of movement 4
279 %enmat(isnan(enmat)) = 0;
280 mov4mat6 = enmat(:);
281

282 uiopen('LOAD'); % Open 7th file of movement 4
283 %enmat(isnan(enmat)) = 0;
284 mov4mat7 = enmat(:);
285

286 uiopen('LOAD'); % Open 8th file of movement 4
287 %enmat(isnan(enmat)) = 0;
288 mov4mat8 = enmat(:);
289

290 uiopen('LOAD'); % Open 9th file of movement 4
291 mov4mat9 = enmat(:);
292

293 uiopen('LOAD'); % Open 10th file of movement 4
294 mov4mat0 = enmat(:);
295

296 end
297

298 end
299

300 if m==5 % Generate name string for figures
301 mov5typ = menu(['Movement 5:' ...

menuquestrg],menop1,menop2,menop3,menop4,menop5);
302

303 if mov5typ == 1
304 mov5 = menop1;
305

306 elseif mov5typ == 2
307 mov5 = menop2;
308

309 elseif mov5typ == 3
310 mov5 = menop3;
311

312 elseif mov5typ == 4
313 mov5 = menop4;
314

315 elseif mov5typ == 5
316 mov5 = menop5;
317 end
318

319 qstring = ['Please load the 10 ' mov5 ' files from the same individual'];
320 button = questdlg(qstring, 'Load movement 5', 'Ok', 'Ok');
321 switch button
322 case 'Ok'
323 % Choose directory for movement 5
324 dir name = uigetdir('D:\My Documents\BioLab\Tom');
325 cd(dir name); % Go to choses directory
326

327 uiopen('LOAD'); % Open 1st file of movement 5
328 %enmat(isnan(enmat)) = 0;
329 mov5mat1 = enmat(:);
330

331 uiopen('LOAD'); % Open 2nd file of movement 5
332 %enmat(isnan(enmat)) = 0;
333 mov5mat2 = enmat(:);
334

335 uiopen('LOAD'); % Open 3rd file of movement 5
336 %enmat(isnan(enmat)) = 0;
337 mov5mat3 = enmat(:);
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338

339 uiopen('LOAD'); % Open 4th file of movement 5
340 %enmat(isnan(enmat)) = 0;
341 mov5mat4 = enmat(:);
342

343 uiopen('LOAD'); % Open 5th file of movement 5
344 %enmat(isnan(enmat)) = 0;
345 mov5mat5 = enmat(:);
346

347 uiopen('LOAD'); % Open 6th file of movement 5
348 %enmat(isnan(enmat)) = 0;
349 mov5mat6 = enmat(:);
350

351 uiopen('LOAD'); % Open 7th file of movement 5
352 %enmat(isnan(enmat)) = 0;
353 mov5mat7 = enmat(:);
354

355 uiopen('LOAD'); % Open 8th file of movement 5
356 %enmat(isnan(enmat)) = 0;
357 mov5mat8 = enmat(:);
358

359 uiopen('LOAD'); % Open 9th file of movement 5
360 mov5mat9 = enmat(:);
361

362 uiopen('LOAD'); % Open 10th file of movement 5
363 mov5mat0 = enmat(:);
364

365 end
366

367 end
368

369 end
370

371 clear enmat mov1typ mov2typ mov3typ mov4typ mov5typ
372 clear menop1 menop2 menop3 menop4 menop5 m menuquestrg
373

374 %% Concatenate energy vector
375 % Create single vector by concantenating all movement vectors
376 % This will constitute column 1 (Variable 1) in the final anovan matrix
377

378 energy = [mov1mat1;mov1mat2;mov1mat3;mov1mat4;mov1mat5 % Movement 1
379 mov1mat6;mov1mat7;mov1mat8;mov1mat9;mov1mat0
380 mov2mat1;mov2mat1;mov2mat3;mov2mat4;mov2mat5 % Movement 2
381 mov2mat6;mov2mat7;mov2mat8;mov2mat9;mov2mat0];
382

383 % Remove unnecessary variables
384 clear mov1mat1 mov1mat2 mov1mat3 mov1mat4 mov1mat5
385 clear mov1mat6 mov1mat7 mov1mat8 mov1mat9 mov1mat0
386 clear mov2mat1 mov2mat2 mov2mat3 mov2mat4 mov2mat5
387 clear mov2mat6 mov2mat7 mov2mat8 mov2mat9 mov2mat0
388

389 % For 3 or more moves
390 if nomov ≥ 3
391

392 energy2 = [mov3mat1;mov3mat1;mov3mat3;mov3mat4;mov3mat5 % Movement 3
393 mov3mat6;mov3mat7;mov3mat8;mov3mat9;mov3mat0];
394

395 % Remove unnecessary variables
396 clear mov3mat1 mov3mat2 mov3mat3 mov3mat4 mov3mat5
397 clear mov3mat6 mov3mat7 mov3mat8 mov3mat9 mov3mat0
398

399 energy = [energy; energy2]; % Add movement 3
400 clear energy2
401

402 end
403

404 % For 4 or more moves
405 if nomov ≥ 4
406

407 energy2 = [mov4mat1;mov4mat1;mov4mat3;mov4mat4;mov4mat5 % Movement 4
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408 mov4mat6;mov4mat7;mov4mat8;mov4mat9;mov4mat0];
409

410 % Remove unnecessary variables
411 clear mov4mat1 mov4mat2 mov4mat3 mov4mat4 mov4mat5
412 clear mov4mat6 mov4mat7 mov4mat8 mov4mat9 mov4mat0
413

414 energy = [energy; energy2]; % Add movement 4
415 clear energy2
416

417 end
418

419 % For 5 moves
420 if nomov == 5
421

422 energy2 = [mov5mat1;mov5mat2;mov5mat3;mov5mat4;mov5mat5 % Movement 5
423 mov5mat6;mov5mat7;mov5mat8;mov5mat9;mov5mat0];
424

425 % Remove unnecessary variables
426 clear mov5mat1 mov5mat2 mov5mat3
427 clear mov5mat4 mov5mat5 mov5mat6
428 clear mov5mat7 mov5mat8 mov5mat9
429

430 energy = [energy; energy2]; % Add movement 5
431 clear energy2
432

433 end
434

435 energy(isnan(energy)) = 0; % Remove NaNs
436

437 %% Create Scale vector
438 % References a scale value (decomposition bin) for each energy value
439 % Scales run from 1 to 16
440 % This will constitute column 2 (Variable 2) in the final anovan matrix
441

442 % Create matrix of (1 to 16) scales by 103 channels repeated by 10*nomov
443 scale = repmat(1:16,103,10*nomov);
444

445 scale = scale(:); % Convert to column vector
446

447

448 %% Create Channel vector
449 % References a channel to each energy value
450 % Channels run from 1 to 103
451 % This will constitute column 3 (Variable 3) in the final anovan matrix
452

453 % Create vector of (1 to 103) channels repeated by 16 scales * 10*nomov
454 channel = repmat(1:103,1,16*10*nomov);
455

456 channel = channel'; % Transpose into column vector
457

458

459

460 %% Create Movement vector
461 % References a movement to each energy value
462 % This is dependent upon the number of moves (nomov)
463 % This will constitute column 4 (Variable 4) in the final anovan matrix
464

465 % Create vector of (1 to nomov) moves repeated by 103 chan. * 16 scales * 10
466 movement = repmat(1:nomov,10*103*16,1);
467

468 movement = movement(:); % Convert to column vector
469

470 %% Execute 3−way ANOVA analysis on data
471 % Tests for variance across all factors equally
472 % With interactions between movement*scale and movement*channel
473 % Type III sum of squares:
474 % A term = R(B, AB) R(A, B, AB)
475 % B term = R(A, AB) R(A, B, AB)
476 % AB term = R(A, B) R(A, B, AB)
477
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478 varnames = {'Scale';'Channel';'Movement'}; % Assign variable names
479 modtyp = [1 0 0;0 1 0;0 0 1;1 1 1]; % Set interactions [A;B;C;A*B*C]
480

481 qstring = ['Carry out 3−way ANOVA on ' mov1 ' and ' mov2 '?'];
482 button = questdlg(qstring, 'ANOVA', 'Yes', 'No', 'No');
483 switch button
484 case 'Yes'
485 % % Parallel processing toolbox
486 % matlabpool open 4 % Open 4 cores
487 % ms.UseParallel = 'always' % Use parallel processing
488

489 clear qstring questrg % Clear unnec. variables
490 energy = single(energy); % Convert to single precision
491 [p,table,stats,terms] ...
492 = anovan(energy,{scale channel movement},modtyp,3,varnames);
493

494 % matlabpool close % Close cores
495

496 name1 = genvarname(mov1); % Create string variable name
497 name1 = name1([1 6:7]); % Shorten name1
498 name2 = genvarname(mov2); % Create string variable name
499 name2 = name2([1 6:7]); % Shorten name2
500 name = [name1 ' X ' name2 ' ANOVA3'];
501

502 if nomov ≥ 3
503 name3 = genvarname(mov3); % Create string variable name
504 name3 = name3([1 6:7]); % Shorten name3
505 name = [name ' X ' name3 ' ANOVA3'];
506 end
507

508 if nomov ≥ 4
509 name4 = genvarname(mov4); % Create string variable name
510 name4 = name4([1 6:7]); % Shorten name4
511 name = [name ' X ' name4 ' ANOVA3'];
512 end
513

514 if nomov == 5
515 name5 = genvarname(mov5); % Create string variable name
516 name5 = name5([1 6:7]); % Shorten name5
517 name = [name ' X ' name5 ' ANOVA3'];
518 end
519

520 questr = ['Save details as: ' name ' ANOVA3?'];
521 namebutton = questdlg(questr, 'Name?', 'yes', 'no', 'yes');
522 switch namebutton
523 case 'yes'
524 % Keep automatic string name
525 case 'no'
526 name = input('Save figure and coefficients as? ','s');
527 % Enter new name
528 end
529

530 save(plotname, 'enmat'); % Save energy matrix (current ...
dir)

531

532 case 'No'
533 disp('Thanks for using this program')
534 end
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