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Abstract

The properties of Bose-Einstein condensates can be studied and controlled ef-

fectively when trapped in optical lattices formed by two counter-propagating

laser beams. The dynamics of Bose-Einstein condensates in optical lattices are

well-described by a continuous model using the Gross-Pitaevskii equation in a

modulated potential or, in the case of deep potentials, a discrete model using

the Discrete Nonlinear Schrödinger equation. Spatially localised modes, known

as lattice solitons in the continuous model, or discrete breathers in the discrete

model, can occur and are the focus of this thesis. Theoretical and computational

studies of these localised modes are investigated in three different situations.

Firstly, a model of a Bose-Einstein condensate in a ring optical lattice with atomic

dissipations applied at a stationary or at a moving location on the ring is presented

in the continuous model. The localised dissipation is shown to generate and

stabilise both stationary and traveling lattice solitons. The solutions generated

include spatially stationary quasiperiodic lattice solitons and a family of traveling

lattice solitons with two intensity peaks per potential well with no counterpart in

the discrete case. Collisions between traveling and stationary lattice solitons as

well as between two traveling lattice solitons display a dependence on the lattice

depth.
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Abstract iii

Then, collisions with a potential barrier of either travelling lattice solitons or

travelling discrete breathers are investigated along with their dependence on the

height of the barrier. Regions of complete reflection or of partial reflection where

the incoming soliton/breather is split in two, are observed and understood in

terms of the soliton properties. Partial trapping of the atoms in the barrier is

observed for positive barrier heights due to the negative effective mass of the

solitons/breathers.

Finally, two coupled discrete nonlinear Schrödinger equations can describe the

interaction and collisions of breathers in two-species Bose-Einstein condensates

in deep optical lattices. This is done for two cases of experimental relevance: a

mixture of two ytterbium isotopes and a mixture of Rubidium (87Rb) and Potas-

sium (41K) atoms. Depending on their initial separation, interaction between

stationary breathers of different species can lead to the formation of symbiotic

localised structures or transform one of the breathers from a stationary one into

a travelling one. Collisions between travelling and stationary discrete breathers

composed of different species are separated in four distinct regimes ranging from

totally elastic when the interspecies interaction is highly attractive to mutual

destruction when the interaction is sufficiently large and repulsive.
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Chapter 1

Introduction

This thesis investigates the theory, simulations and applications of Bose-Einstein

Condensates (BECs) in optical lattices, and in particular, localised modes in this

setting. What follows in this chapter is a brief review of BECs and BECs in

optical lattices.

1.1 Bose-Einstein Condensates

Bose-Einstein Condensates were predicted by Bose in 1924 [1], saying that pho-

tons of the same energy were indistinguishable, and Einstein, who extended this

idea to atoms [2, 3], resulting in Bose-Einstein statistics. This consequently pre-

dicted that when cooling an ensemble of bosons to low temperatures (near abso-

lute zero), the bosons will collectively condense into the lowest quantum state.

This transition to a macroscopic occupation of a single quantum state is known

as Bose-Einstein condensation.

This transition can be characterised by the phase-space density nλ3
dB, where λdB

is the deBroglie wavelength of the atoms and n is the number density. As the

1
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temperature is lowered, the deBroglie wavelength of the atoms gets bigger. When

nλ3
dB ∼ 1 (i.e. when the wavelength becomes comparable to the spacing between

the atoms), the waves of the atoms overlap and Bose-Einstein condensation oc-

curs.

Effects attributed to BEC were observed early on in different areas, for example,

in studies of liquid Helium [4]. Due to the strong interactions of atoms in a liquid

(as opposed to a dilute gas), only a small amount of atoms would condense to the

lowest state. It would be 90 years until the first BEC was realised experimentally,

when the needed cooling technology was finally available. With laser cooling,

clouds of atoms can be cooled down to temperatures of a few hundreds of micro-

Kelvins. The atoms, held in a magnetic or optical trap, can then be evaporatively

cooled to temperatures as low as a few nano-Kelvins by lowering the trap depth

to allow the most excited atoms to leave and the ones left to rethermalize. Bose-

Einstein condensation was first observed in 1995 with experiments on vapours of

rubidium and sodium [5, 6], and the groups involved earned the 2001 Nobel Prize

for this work [7, 8].

1.1.1 BECs in Optical Lattices

This thesis is concerned with BECs trapped in optical lattices (see [9] for a re-

view), in which we have a periodic potential. The periodic potentials are formed

from the interference patterns of two or more laser beams. Here, only one-

dimensional lattices are considered, caused by two identical laser beams coun-

terpropagating so that they overlap. The distance between the lattice minima,

or the lattice spacing, is given by d = λL/2, with λL as the laser wavelength and

a typical resulting periodic potential is given by V (x) = E0 sin2(πx/d) with E0

as the potential depth.
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When trapped by an optical lattice, BECs have similarities with solid-state sys-

tems (i.e. electrons in crystal lattices). An advantage here is that there is almost

complete control of the parameters (e.g. potential depth and lattice spacing) of

the potentials created from the lattice. Compared to studying cold atoms in op-

tical lattices, there are several advantages in using BECs. The low temperatures

mean that the BEC will often be in the lowest levels of the potential wells without

need for further cooling. Also, the high atomic densities mean that the effects due

to atom-atom interactions become more important, enhancing the nonlinearity.

If the potential wells in the lattice are sufficiently deep, the atomic density at the

minima will increase. If the wells are close enough that the condensate atoms can

tunnel through to the other wells, the condensate spreads throughout the lattice

to the other sites. The nonlinearity, however, increases as the atomic density

increases, since it occurs due to the atom-atom interaction. An interesting result

of this is the onset of self-localisation leading to the formation of lattice solitons

[10, 11].

Solitons are localised solutions of nonlinear wave equations. First observed by

John Scott Russell in the waters of the Union Canal near Edinburgh in 1834 [12],

solitons are present in a wide variety of nonlinear media. In the case without a

lattice, bright solitons, which are localised peaks in the wavefunction, are formed

with attractive BECs1 (as demonstrated experimentally in [13, 14]). These are

the result of the interplay between the dispersion and nonlinearity. In a lattice,

bright solitons can exist for both repulsive and attractive BECs. Bright lattice

solitons have been experimentally obtained with repulsive BECs [15]. This is

because the dispersion relation is changed due to the periodic potential, making

anomalous dispersion possible, characterised by a negative effective mass.

1Dark solitons, localised dips, are formed with repulsive BECs, but in this thesis we will
only concentrate on bright solitons. For an experimental example, see [16].
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The evolution of the wavefunction of a BEC in an optical lattice is well described

by the Gross-Pitaevskii (GP) equation, which is a nonlinear Schrödinger equation

with an extra term that accounts for the external potential, which is, in our case,

periodic. This situation may also be investigated using the discrete nonlinear

Schrödinger equation (DNLS), which is relevant for deep potentials. The equiva-

lent of lattice solitons here are known as discrete breathers (due to the oscillating

real and imaginary parts of the wavefunction). In this thesis, lattice solitons are

examined in the GP equation, and discrete breathers in the DNLS equation.

1.2 Arrays of Optical Waveguides

The results in this thesis can be generalized to the analogous situation of light

travelling through arrays of optical waveguides. A well-known example of an

optical waveguide is an optical fibre. In optics, a typical waveguide is one in

which a core region is surrounded with a material with a lower refractive index.

In a waveguide array, in which identical waveguides are equally spaced, the re-

fractive index has a periodic profile. The light sees this as a periodic potential,

like atoms see an optical lattice. If the waveguides are close enough to each other,

the light fields from each waveguide overlap, and light can travel from one waveg-

uide to another. This diffraction was studied theoretically in 1965 [17] and first

realised experimentally using gallium arsenide waveguide arrays in 1973 [18]. It

was not until 1988 [19] that it was shown that in nonlinear waveguide arrays,

light could localise. This happens when the on-site nonlinarity is balanced with

the linear diffraction. The optical beam is then trapped in a few waveguide sites

creating an optical soliton. This was first realised experimentally in aluminium

gallium arsenide waveguide arrays ten years later in 1998 in Glasgow [20].
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This system can be described by the same equations as those of BECs in optical

lattices. In this thesis we concentrate on BECs in optical lattices. However, the

results should apply to the analogue of light in arrays of optical waveguides. A

review of this can be found in [21].

1.3 Outline

The thesis is structured as follows. The continuous and discrete models that

describe BECs in optical lattices are introduced in chapter 2, along with some of

the basic concepts relating to localisation.

In chapter 3, we present a model of a BEC in a ring optical lattice with atomic

dissipation using the GPE with angular coordinates. The localized dissipation

can be applied at a stationary or moving location on the ring and is shown to

generate and stabilise stationary and travelling lattice solitons. Interesting results

presented here include stationary quasiperiodic lattice solitons and travelling lat-

tice solitons with two intensity peaks per potential well that cannot be described

in the discrete model. We then investigate collisions between stationary and

travelling lattice solitons and between two travelling lattice solitons.

In chapter 4, the collision of travelling lattice solitons with potential defects in

the form of Gaussians in the lattice is investigated. The collisions’ dependence

on the height of the barrier is studied.

In Chapter 5, the dynamics of breathers in two-species BECs are investigated.

Coupled DNLS equations are used to describe the situations of mixtures of Yt-

terbium isotopes and a mixture of 87Rb and 41K. It is shown that the interaction

between static breathers of different species can produce symbiotic breathers com-

posed of both species or can change one of the static ones into a travelling one,
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depending on the initial distance between the two breathers. Collisions between

static and travelling breathers composed of different species are then investigated

and separated into four regimes that depend on the interspecies interaction. These

regimes range from elastic when the interspecies interaction is large and attac-

tive to mutual destruction with a large, repulsive interaction. Finally, collisions

of travelling lattice solitons in the continuous GP equation are investigated that

support the results found in the DNLS equation.



Chapter 2

Theoretical Models

In this chapter, the theoretical models used in the thesis to describe BECs in opti-

cal lattices are introduced. First of all, the Gross-Pitaevskii equation is examined.

A normalised, one-dimensional version of the Gross-Pitaevskii equation is then

derived. The band structure and examples of localisation in this model from the

literature are briefly discussed. Finally, the Discrete Nonlinear Schrödinger equa-

tion is derived and examples of localisation, along with methods used to induce

this, are discussed.

2.1 The Gross-Pitaevskii Equation with a Peri-

odic Potential

The many-body Hamiltonian for N interacting bosonic atoms with atomic mass

m and unnormalised spatial coordinates r = (X, Y, Z) in the second quantisation

is [22]:

7
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Ĥ =

∫
drΨ̂†(r)

[
− ~

2m
∇2 + Vext(r)

]
Ψ̂(r)+

1

2

∫
drdr′Ψ̂†(r)Ψ̂†(r′)V (r− r′) Ψ̂(r′)Ψ̂(r)

(2.1)

where Ψ̂†(r) and Ψ̂(r) are the boson creation and annihilation field operators

respectively, Vext is the confining potential, and V (r′ − r) is the two-body inter-

atomic potential.

Making use of a mean-field description based on the Bogoliubov approximation

[23], the bosonic field operator Ψ̂(r) is given as:

Ψ̂(r, T ) = Ψ(r, T ) + Ψ̂′(r, T ) (2.2)

Here, Ψ(r, T ) is described as the“macroscopic wavefunction of the condensate”,

at unnormalised time T , defined as the expectation value of the field operator

(i.e. Ψ(r, T ) =
〈

Ψ̂(r, T )
〉

). The remaining operator, Ψ̂′(r, T ), represents the

non-condensate part, and is assumed to be negligible. Then, from the Heisenberg

equation of motion i~∂Ψ̂/∂T = [Ψ̂, Ĥ] for the field operator, we obtain

i~
∂Ψ̂(r, T )

∂T
=

[
− ~

2m
∇2 + Vext(r) +

∫
dr′Ψ̂†(r′, T )V (r′ − r) Ψ̂(r′, T )

]
Ψ̂ (2.3)

In the case of a dilute ultracold gas with binary collisions at low energy, the

interatomic potential can be described by a delta-function interaction potential,

V (r′ − r) = gδ (r′ − r), where

g = 4π~2a/m (2.4)
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with a being the s-wave scattering length [22]. Employing this and replacing Ψ̂

with the classical field Ψ, Eq. (2.3) becomes

i~
∂Ψ(r, T )

∂T
=

[
− ~

2m
∇2 + Vext(r) + g|Ψ(r, T )|2

]
Ψ (2.5)

which is the Gross-Pitaevskii equation. In a typical optical lattice experiment,

the external potential Vext(r) is given by

Vext(r) = E0 sin2

(
πX

L

)
+

1

2
m
(
ω2
XX

2 + ω2
⊥(Y 2 + Z2)

)
(2.6)

in which the first term describes the periodic potential arising from the optical

lattice with E0 as the potential depth and L as the lattice period, and the sec-

ond term describes the harmonic trapping potential, with ωX and ω⊥ the trap

frequencies in the X direction and Y -Z directions respectively.

Assuming that the external potential Vext is constant, the GP equation conserves

both the number of particles N :

N =

∫
|Ψ(r, T )|2dr, (2.7)

and the energy of the system E:

E =

∫
dr

[
~

2m
|∇Ψ|2 + Vext|Ψ|2 +

1

2
g|Ψ|4

]
. (2.8)

In Eq. (2.8), the three terms on the right hand side represent, from left to right,

the kinetic energy, the potential energy and the interaction energy.
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2.2 Scattering length and Feshbach resonances

Assuming the BEC is dilute, binary collisions dominate, defined by the s-wave

scattering length a. This may have both negative and positive values, representing

attractive or repulsive interactions respectively. 87Rb, 23Na, 168Yb, 170Yb and

174Yb are examples of atomic species that form repulsive BECs, while 85Rb, 7Na

and 176Yb form attractive ones.

However, it is possible to control the atomic interactions by applying an external

magnetic field B. Atoms can form bound states, or molecules, during the colli-

sions. The external magnetic field can be used to control the energy difference

between the atomic and molecular states providing their magnetic moments are

different. The energies of the molecular and atomic states are equal at a so-called

Feshbach resonance (see [24, 25] for a review).

Due to this, the s-wave scattering length can be varied by changing the external

magnetic field. The value of the scattering length as a function of the external

field B is given as [26, 27]:

a(B) = ã

(
1− ∆

B −B0

)
(2.9)

where ã is the scattering length far from resonance, ∆ is the width of the resonance

and B0 is the resonance position.

2.3 The 1D Gross-Pitaevskii Equation - The Con-

tinuous Model

The Gross-Pitaevskii equation can be reduced so that it is effectively one dimen-

sional. With ω⊥ � ωX , the trap is elongated in the X direction, providing what
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can be referred to as a “cigar-shaped BEC”. The wavefunction is separated into

longitudinal (in the X direction) and transverse (in the Y -Z plane) components

and expressed as

Ψ(X, Y, Z;T ) = U(Y, Z)ψ(X,T ) (2.10)

Due to the tight confinement in the Y -Z plane, it is assumed that U(Y, Z) =

A⊥ exp
[
−mω⊥

2~ (Y 2 + Z2)
]
, which is the ground state of the two-dimensional quan-

tum harmonic oscillator.

Substituting Eq.(2.10) and Eq.(2.6) into Eq.(2.5) gives

i~U
∂ψ

∂T
= − ~

2m
U
∂2ψ

∂X2
− ~

2m
ψ∇2

⊥U

+E0 sin2

(
πX

L

)
Uψ +

1

2
mω2

XX
2Uψ +

1

2
mω2

⊥(Y 2 + Z2)Uψ

+g|U |2|ψ|2Uψ (2.11)

where ∇2
⊥ = ∂2/∂Y 2 + ∂2/∂Z2 is the transverse Laplacian operator.

From the expression for U(Y, Z) we get:

∇⊥U =
∂U

∂Y
+
∂U

∂Z

= −mω⊥
~

(Y + Z)U , (2.12)

∇2
⊥U = −mω⊥

~

(
U +

∂U

∂Y
+ U +

∂U

∂Z

)
= −2mω⊥

~
U +

m2ω2
⊥

~2
(Y 2 + Z2)U , (2.13)

⇒ − ~2

2m
∇2
⊥U +

1

2
mω2

⊥(Y 2 + Z2)U − ~ω⊥U = 0 (2.14)
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Then, applying the transformation ψ → ψ exp (−iω⊥T ) and using Eq. (2.14), Eq.

(2.11) becomes:

i~U
∂ψ

∂T
=

(
− ~2

2m
∇2
⊥U +

1

2
mω2

⊥(Y 2 + Z2)U − ~ω⊥U
)
ψ

− ~
2m

U
∂2ψ

∂X2
+ E0 sin2

(
πX

L

)
Uψ +

1

2
mω2

XX
2Uψ

+g|U |2|ψ|2Uψ

= − ~
2m

U
∂2ψ

∂X2
+ E0 sin2

(
πX

L

)
Uψ +

1

2
mω2

XX
2Uψ

+g|U |2|ψ|2Uψ (2.15)

The resulting equation is then mutliplied through by U∗ = U and integrated over

the Y and Z directions, while assuming
∫∫∞
−∞ |U |

2 dY dZ = 1, to obtain:

i~
∂ψ

∂T
= − ~

2m

∂2ψ

∂X2
+ E0 sin2

(
πX

L

)
ψ +

1

2
mω2

XX
2ψ

+g|ψ|2ψ
∫∫ ∞
−∞
|U |4 dY dZ (2.16)

Since |U |2 = A2
⊥ exp

[
−mω⊥

~ (Y 2 + Z2)
]
, and using the definite integral∫∞

−∞ exp (−aX2) dX =
√
π/a,

∫∫ ∞
−∞
|U |2 dY dZ = A2

⊥

∫ ∞
−∞

exp
(
−mω⊥

~
Y 2
)

dY

∫ ∞
−∞

exp
(
−mω⊥

~
Z2
)

dZ

= A2
⊥
π~
mω⊥

= 1

⇒ A⊥ =

√
mω⊥
π~

(2.17)
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which allows us to work out

∫∫ ∞
−∞
|U |4 dY dZ = A4

⊥

∫ ∞
−∞

exp

(
−2mω⊥

~
Y 2

)
dY

∫ ∞
−∞

exp

(
−2mω⊥

~
Z2

)
dZ

=
mω⊥
2π~

(2.18)

Substituting this into Eq.(2.16), and assuming that the lattice momentum 2π/L

is much greater than the trapping frequency ωX , allows us to obtain a 1D GP

equation, expressed as:

i~
∂Ψ(X,T )

∂T
=

(
− ~

2m

∂2

∂X2
+ E0 sin2

(
πX

L

)
+ g1D|Ψ|2

)
Ψ , (2.19)

where the one-dimensional atom-atom interaction parameter is given by g1D =

gmω⊥
2π~ = 2~ω⊥as.

In this thesis, for convenience, we use dimensionless variables. Equation 2.19 is

rewritten by normalising u =
√
L/2NΨ, x = 2X/L, t = T/T0 and V0 = E0/Er,

where T0 = mL2/4~, Er = 4~2/mL2 is the recoil energy and N is the number of

atoms (see [11] for similar normalisations). The resulting equation is given by:

i
∂u(x, t)

∂t
=

(
−1

2

∂2

∂x2
+ V0 sin2

(πx
2

)
+ β|u|2

)
u . (2.20)

The nonlinear parameter β = Nω⊥asmL/~ is positive for repulsive condensates

and negative for attractive ones. In this thesis, only repulsive BECs (β > 0) such

as 87Rb are considered. We will see that they generate bright lattice solitons.
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2.3.1 Band Structure of BECs in the Continuous Model

Before introducing nonlinear features such as solitons in the continuous model,

it is useful to discuss the linear theory of a non-interacting atoms in periodic

potentials. A single atom in a periodic potential V (x) = V (x+ d) is governed by

the Schrödinger equation:

(
−1

2

∂2

∂x2
+ V (x)

)
ψ(x) = Eψ(x) (2.21)

in our normalised units.

From Bloch’s theorem [28], the solutions to Eq. (2.21) can be written as a product

of a plane wave and a function with the same periodicity as the potential V (x):

ψn,q(x) = eiqxun,q(x) (2.22)

where

un,q(x) = un,q(x+ d) (2.23)

Indices n and q refer to band index and quasimomentum, respectively. Waves of

the form of ψn,q(x) in Eq. (2.22) are known as Bloch waves, with un,q(x) as Bloch

functions. Substituting Eq. (2.22) into Eq. (2.21) gives a Schrödinger equation

for un,q(x) like so:

− 1

2

(
−q2 + 2iq

∂

∂x
+

∂2

∂x2

)
un,q(x) + V (x)un,q(x) = En,qun,q(x) (2.24)

Since un,q(x) and V (x) are periodic, they can be expressed as Fourier series:
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un,q(x) =
∑
l

cl,n,qe
ilGx (2.25)

V (x) =
∑
r

Ure
irGx (2.26)

where G = 2π/d is the reciprocal lattice vector. Substituting these expressions

into Eq. (2.24) allows us to rewrite the kinetic term as

− 1

2

(
−q2 + 2iq

∂

∂x
+

∂2

∂x2

)
un,q(x) =

∑
l

1

2
(q + lG)2 cl,n,qe

ilGx (2.27)

and the potential term as

V (x)un,q(x) =
∑
l

∑
r

Ure
i(l+r)Gxcl,n,q (2.28)

For an optical lattice, the potential can be expressed as

V (x) = V0 sin2 (πx/d) = V0/2− V0/4e
iGx − V0/4e

−iGx (2.29)

From this, one can see that there are only 3 non-zero terms in Eq. (2.26), which

are U0,n,q = V0/2 and U1,n,q = U−1,n,q = V0/2. Using these expressions into

Eq. (2.24) allows the Schrödinger equation to be written in matrix form as

Hl,l′cl,n,q = En,qcl,n,q (2.30)

where Hl,l′ is an l by l tridiagonal matrix with the terms
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Figure 2.1: Plot of energy band structure of an optical lattice with (a)V0 = 0,
(b)V0 = 5, (c)V0 = 10 and (d)V0 = 15. The energies of the Bloch bands En,q
are plotted against quasimomentum q in the first Brillouin zone (from −π/2

to π/2 in our normalisation) for different band numbers n.

Hl,l′ =


1
2

(q + lG)2 + V0
2
, if l = l′

−V0
4
, if |l − l′| = 1

0, otherwise

(2.31)

For a given value of q, the eigenvalues of Hl,l′ give the eigenenergies En,q in the

nth energy band. Solving this numerically allows the eigenenergies to be plotted

against q. The lowest energy bands are plotted in Fig. 2.1 for different values of

potential depth V0. For V0 = 0 (i.e. no lattice), there are no gaps between the

energy bands as the particle is “free”. As V0 is increased, the size of the band

gaps increases and the size of the energy bands decreases.

2.3.2 Localisation of BECs in Optical Lattices: the Con-

tinuous Model

With an optical lattice, bright solitons can be formed in both repulsive and at-

tractive BECs. In this thesis, only repulsive atom-atom interactions are used (i.e.
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Figure 2.2: Examples of lattice soliton solutions found in the first bandgap
(ie between the first two bands) of the energy-band structure. (a) is taken from
[11], and (b) is taken from [10]. In (b), µ represents the frequency and φ the

wavefunction of the BEC, with the different normalisations from [10].

β > 0). In the case of optical lattices, solitons can exist with energies in the band

gaps shown in Fig. 2.1. For this reason, they are referred to as “gap solitons” in

the literature. In this thesis, the more general term, “lattice solitons”, is used for

cases of localised modes in the GP equation (continuous model). Time oscillating

solutions of Eq.(2.20) at frequency E are of the form u(x) exp(−iEt). Examples

of this type of solution, found in [11] and [10], are shown in Fig. 2.2. It should

be noted that the solutions presented in Fig. 2.2 represent the real components

at t = 0. The real and imaginary components of the solutions oscillate with

frequency E, while the density distribution should remain constant. The spatial

amplitude u(x) can be obtained from the equation

Eu =

[
−1

2

∂2

∂x2
+ V0 sin2

(πx
2

)
+ β|u|2

]
u (2.32)

In the band gaps, if one imposes that u(x) decreases exponentially at the bound-

aries, or ends, of the lattice, the lattice soliton solutions can be obtained numer-

ically via a simple relaxation method.

With an added momentum, lattice solitons can travel across the lattice. In [29], it

was shown that as long as the soliton does not have an amplitude that is above a
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critical value, it can move freely across the lattice. An approximation of a moving

lattice soliton in the repulsive case was given in [29] as:

u(x) = 1.291 A exp

[
i
p(x− c)

2

]
cos

[
π(x− c)

2

]
sech

[
A(x− c)

2

]
(2.33)

with A as the amplitude, p the momentum and c the location of the centre of the

soliton.

2.4 Discrete Model: The Discrete Nonlinear

Schrödinger Equation

Another model often used to describe BECs in optical lattices is the discrete

nonlinear Schrödinger equation (DNLSE), which is valid if the potential wells are

deep and well-separated. It is assumed that the wavefunctions are well confined

into the potential minima and only the first energy band is considered. The

following ansatz [30] can be used in the GP equation:

Ψ =
∑
n

ψn(T )φ(~r − ~rn) , (2.34)

where φ is an on-site wavefunction and ~rn is the location of the n-th lattice site.

When the atomic interactions are weak, the on-site ground state wavefunction can

be replaced by the ground state harmonic oscillator wavefunction in the off-axis

direction and a Wannier function [31] of the lowest band in the axial direction to

account for tunneling. Consequently, |ψn(T )|2 may be interpreted as the number

of atoms in the n-th lattice site as a function of time and
∑

n |ψn|2 = N .
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Substituting the ansatz (Eq. 2.34) into the GP equation (Eq. 2.5) and dropping

all terms mixing different lattice sites except for the ones that describe tunneling

between neighbouring sites (see [30]), one obtains

i~ψ̇n = −J (ψn−1 + ψn+1) +
(
λ|ψn|2 + εn

)
ψn (2.35)

where J =
∫

d3~rφ(~r − ~rn)
(
−~2
2m
∇2 + V

)
φ(~r − ~rn+1) is the hopping integral de-

scribing the tunneling of the atoms and is proportional to the intersite tunneling

rate γ = J/~, while εn =
∫

d3~rφ(~r − ~rn)
(
−~2
2m
∇2 + V

)
φ(~r − ~rn) is the on-site

chemical potential, and λ = g
∫

d3~r|φ(~r)|4 describes the atom-atom interaction.

A scaled model for use in simulations can be found by defining:

zn =

√
1

N
ψ∗n exp

(
−i ετ

~γ

)
(2.36)

τ = γT (2.37)

to obtain:

i
d

dτ
zn = Λ|zn|2zn − (zn−1 + zn+1) , (2.38)

which is known as the one-dimensional Discrete Nonlinear Schrödinger (DNLS)

equation, where

Λ =
λN

~γ
. (2.39)

Here the atomic distribution over the lattice is normalized to unity:

∑
n

|zn|2 = 1 . (2.40)
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2.4.1 Discrete Breathers in DNLS

Self-localisation also occurs in the discrete model. The discrete counterpart of

lattice solitons are known as discrete breathers. They have the name “breather”

due to the oscillation of the real and imaginary parts, which also occur in the

continuous lattice solitons, as discussed earlier. In the literature, there are two

methods of forming these that are relevant to this thesis. One of which is evolution

from an initially Gaussian wavepacket [30] of the form

zn =

√
1√

2πσ2
exp

(
−(n− n̄)2

4σ2

)
eipn (2.41)

where σ is the width, p the momentum and n̄ the centre site of the wavepacket.

Other initial conditions that are sufficiently close to a localised solution would

also work. For example, in [32], initial conditions of all atoms placed in one site

evolve towards breather states. In this thesis, just the Gaussian wavepacket is

used.

Since a breather has exponential rather than Gaussian tails, during the reshaping

process, atoms are expelled from the wavepacket, sometimes creating a noisy

background.

This was investigated in [30], in which the dynamical phase diagram was stud-

ied. Three different regimes were found characterised by the values of the mo-

mentum p and nonlinearity Λ of the wavepacket: the diffusive regime, in which

the wavepacket spreads across the lattice, the self-trapping regime, where the

wavepacket stays localised, and one in which moving breathers are formed which

travel along the lattice. Very different results have been obtained in [33] and a

new dynamical phase diagram was obtained in [34]. Nonetheless, for wavepackets

with large initial widths σ, one of the boundaries between the regimes in [30]
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Figure 2.3: (a) Plot of Λs for σ = 5, as defined in Eq. (2.42). This is
the relation between nonlinearity Λ and momentum p which gives a travelling
breather that loses almost no energy in its reshaping process. An example of
this is shown in (b), with Λ = 0.423 and cos p = −0.6 (represented by the red

dot in (a)).

was found to give mobile breathers that lose almost no energy when reshaping

from the initial Gaussian [33]. This is when the nonlinearity and momentum are

related like so:

Λs = −2
√
π

σ
exp

(
− 1

2σ2

)
cos p (2.42)

This line is plotted in Fig. 2.3 for σ = 5, along with an example of a moving

breather formed with this relation. It is seen that since the reshaping is minimal,

the resulting breather has a very small background.

One way of removing or cleaning up the backgound is by applying atomic dissi-

pations at the boundaries of the lattice, as in [35] and [33]. For a lattice with M

sites, the DNLS with boundary dissipations is given as:

i
d

dτ
zn = Λ|zn|2zn − (zn−1 + zn+1)− iγzn(δn,1 + δn,M) (2.43)
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Figure 2.4: Example of discrete breather formed from an initial condition of
a Gaussian wavepacket, taken from [33], showing amplitude rj at site j. The
wavepacket evolves according to Eq. 2.43. The top five lines show the evolution
of a Gaussian wavepacket without dissipation and show the density profile at
times, from top to bottom, 100 (black), 200 (red), 400 (green), 800 (blue) and
1600 (purple). The line at the bottom of the image shows the density profile
at time 80000 with dissipation acting on the lattice boundaries, in this case at

j = ±4000

where γ is the dissipation rate which acts on sites 1 and M. Localised dissipation

has been demonstrated experimentally in [93] in which an electron beam was

used. In that experiment, the electron beam was pointed at a specific site to

remove atoms from it.1

In the case of Eq. 2.43, with stationary breathers generated from Gaussian wavepack-

ets, the mass that is shed from the initial wavepacket is removed at the boundaries

so that it does not stay in the background [33]. With the breather far away from

the dissipations, the effect of the losses gets less with time as the system progresses

towards a clean breather solution. See for example Fig. 2.4, taken from [33], in

which a breather is shown to survive for long time-scales while dissipation is still

acting on the lattice. The breather is not removed by the dissipation because it

is far away from the boundaries that the dissipation acts on.

1An investigation of using this localised dissipation to produce localised structures for at-
tractive BECs in an optical lattice was presented in [94]. In this thesis, we focus on repulsive
BECs.
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Figure 2.5: Example of discrete breather formed from boundary dissipation.
Initially, all sites have the same amplitude with phases randomly distributed
between 0 and 2π. After a transient time of 500 time-steps (not shown), dis-
sipation is turned on at τ = 0. The nonlinearity is set to Λ = 80 and the

dissipation rate at the boundaries is given by γ = 0.8

For travelling breathers, the dissipation should be placed at the site in the lattice

furthest from the breather. In this case, the dissipation site will change as the

breather moves along the lattice. This has a similar effect to the stationary

breather in that the background is lowered due to this.

Breathers have also been shown to be formed when applying dissipation to random

distributions or initially flat condensates with random phase variables [33, 35].

Both stationary and mobile breathers have been shown to form from this. An

example is shown in Fig. 2.5. Here we can see the formation of a stationary

breather from this method. In this example, a travelling localized structure with

a lower density peak also forms to the left of the stationary one. This is eventually

removed by the dissipation and the final solution is a single stationary breather.



Chapter 3

Effect of Local Dissipations on

Stationary and Travelling Lattice

Solitons in Ring Bose-Einstein

Condensates

3.1 Continuous Model with Localized Dissipa-

tions

The situation investigated in this chapter is that of a BEC in an optical lattice in

a one-dimensional ring trap, as realised for example in [36–39] (see Fig. 3.1(a)).

Experimentally, a ring optical lattice can be achieved by superposing two counter-

rotating orbital angular momentum beams, creating an “optical ferris wheel” [36]

or by using counter-propagating laser beams in a circular wave-guide.

24
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Figure 3.1: (a) BEC lattice soliton in an optical lattice ring-trap. The arrow
identifies the position where localized losses are applied. (b) An array of optical
waveguides in a ring configuration. The dark cylinder represents an output

coupler capable of removing light from the array.

As said in the introduction, many of the results in this thesis can be extended to

the purely optical case of light travelling through arrays of optical waveguides.
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The equivalent case in nonlinear optics to the ring lattices is a cylindrical array

of optical waveguides (see Fig. 3.1(b)).

For this chapter, the scaled values introduced in Section 2.3 are used, as in

Eq. 2.20. In the case of a ring lattice, the length scale x is changed to that

of the ring angle θ = 2πx/ML ranging from 0 to 2π radians, with M being the

number of potential wells in the ring along the azimuthal direction. Using this in

Eq. 2.20 gives the following expression:

i
∂u(θ, t)

∂t
=

(
− π2

2M2

∂2

∂θ2
+ V0 sin2

(
Mθ

2

)
+ β|u|2 − iρ(θ)

)
u , (3.1)

with the term ρ(θ) added to account for the loss due to atomic dissipation, which

has been used in the discrete case to generate breathers or lower the background

[35]. As said in Chapter 2, extremely precise methods for removing atoms in

a particular position of a BEC in optical lattices have been implemented with

the use of narrow electron beams [93]. The intensity of such electron beams can

control the number of atoms that are removed from one or more potential wells

of the optical lattice. In our examples, the dissipation is applied at the furthest

point in the ring (i.e. an angular distance of π radians) from the intensity peak

of the lattice soliton. For example, with the stationary solitons that are generally

generated at θ = π, the dissipation is applied at θ = 0 = 2π. In the optical case

(see Fig. 3.1(b)), the equation is the same but the time variable t is replaced by

the propagation variable z.

Equation 3.1 is normalised so that at t = 0, before any atoms are lost due to

dissipation, ∫
|u(t = 0)|2dθ = 1 . (3.2)
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The chapter is structured as follows. In Section 3.2, the generation of stationary

lattice solitons (SLS) as well as the effect of dissipation on them is detailed and

compared to solutions found by other numerical methods in [10, 11]. Travelling

lattice solitons (TLS) are generated and investigated in Section 3.3. Finally,

collisions between travelling and stationary lattice solitons in a ring trap are

investigated in Section 3.4 while collisions between two travelling lattice solitons

are studied in 3.5.

3.2 Lattice Solitons with Stationary Localized

Dissipations

As discussed in chapter 2, it has been shown in the DNLS that stationary and

moving breathers can be formed from initially Gaussian wavepackets [30, 33]. For

the model in this chapter, the following general form is used:

u =
M2

γ1/2π9/4
exp

{(
−(θ − θc)2

2γ2

)}
(3.3)

with θc being the position of the centre of the wave-packet and γ the width. With

the nonlinear coefficient fixed at β = 1, the initial width was changed and several

localised solutions were found in the case of zero losses (i.e. the conservative

case).

Typically, the Gaussian wavepacket would reshape into a solitonic shape. The

atomic mass expelled from the wavepacket forms a noisy backround. The peak

fluctuates in height as it interacts with the background. As the width is increased,

the background becomes more “noisy”, sometimes with a smaller amplitude “soli-

ton” appearing close to the main one. The small amplitude peaks however do
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not survive in the long term. A typical example of this, with γ = 1, is shown

in Fig. 3.2. The profile of the solution is shown in Fig. 3.2(a), with the localised

peak in the centre and a noisy background, and the fluctuation of the peak is

shown in (b). Due to the fluctuation of the height and noisy background, this is

not technically a soliton because the shape is not perfectly preserved. Nonethe-

less, the localised peak survives for very long time scales. The example shown in

Fig. 3.2 still maintains its average height by t = 1000000. When the width of the

initial Gaussian condition is too large, no soliton is formed and the condensate

disperses on the background. Similarly, if the width is too small (smaller than a

single potential well), there is no self-localisation either.

Figure 3.2: (a) Localised mode formed from initital Gaussian wavepacket
with γ = 1 and with no dissipations. The dotted line is the lattice V with
V0 = 10 (see scale on right). The peak oscillates as it interacts with the
nonvanishing background. The oscillation of the central peak is shown in (b)

With dissipation applied to the above situation, we get less noisy backgrounds,

since the mass expelled from the packet escapes at the location of the losses. In

all the examples in this section, the dissipation acts on ∼ 4 potential wells with

the maximum loss 0.5 at θ = 0 = 2π. Here, we find much more stable soliton

solutions, many of which are very similar to that shown in [11] but found with

very different numerical methods. In Fig. 3.3, an SLS generated from a Gaussian
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of unit width (γ = 1) is presented. An image of a similar soliton solution from

[11] was shown in Fig. 2.2(b).

Figure 3.3: Stationary lattice soliton formed from applying dissipation to an
initially Gaussian wavepacket. The dotted line is the lattice V with V0 = 10
(see scale on right). The shape of the soliton is very similar to ones shown in

[11], one of which was presented in Fig. 2.2(a).

Figure 3.4: (a) Real (black) and imaginary (red) parts of peak of SLS
u(x = π) against time. Oscillations are sinusoidal with frequency E and a
π/2 phase difference so that u(x, t) = u(x) exp(−iEt). (b) Atomic density of
u against time with dissipation. The atomic density decreases until the effects

of dissipation are negligible.

This SLS is of the usual form u(x, t) = u(x) exp(−iET ), with the real and imag-

inary parts sinusoidally oscillating, or “breathing”, with frequency E. This is

shown in Fig. 3.4(a), with the real and imaginary parts oscillate with a phase
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difference of π/2 (i.e. sine and cosine). This is the continuous analog to the re-

sults in the discrete model [33, 35], in which solutions of the conservative system

are produced via dissipation. A reason for this is shown in Fig. 3.4(b), in which

the total density
∫
|u|2dθ is plotted against time t. Here, it is shown that, after

decreasing as expected initially, the atomic density eventually becomes constant

so that the effect of the dissipation is negligible. This is because the density at

the area where the dissipation acts on (in this case ∼ 4 potential wells around

θ = 0 = π) has been removed, and, with ρ(x)u ≈ 0, Eq. (3.1) is virtually the

conservative GP equation.

The effect of dissipation on the soliton and background can be seen clearly in

Fig. 3.5, which shows the decay of the backround leading to the typical exponen-

tial tails associated with lattice solitons. In the larger lattice, this effect is less

obvious, due to the distance from the dissipation to the soliton (see Fig. 3.5 (b)).

Making the dissipation broader so that it acts on most of the potential wells in

the lattice (in this case ∼ 150 out of 160) can help to reveal the SLS tails faster

(see green line in Fig. 3.5 (b)).

The eventual shape and frequency of the soliton is affected by changing the initial

width of the Gaussian γ: the wider the Gaussian, the more atoms are lost due to

dissipation and the lower the final peak amplitude of the resulting lattice soliton.

The frequency of the oscillations of the real/imaginary parts of the solitons, along

with the gradient of the exponential tails of the soliton, is larger if the number

of atoms (or peak amplitude) is larger. For example, the soliton from [11] in

Fig. 3.3(b) has a smaller frequency than the soliton in Fig. 3.3(a) and thus has

a smaller peak amplitude. The peak intensity, gradient and frequency of lattice

soliton generated from Gaussians of various widths with localised dissipations are

presented in Table 3.1.
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Figure 3.5: Intensity distribution of stationary lattice solitons obtained from
initial single Gaussian wavepackets with localised dissipation to get rid of excess
noise. The curves correspond to t=0 (black), t=20000 (red), and t=100000
(blue) in a lattice of 20 potential wells (a) and 160 potential wells(b). Time
t=0 is the point at which dissipation is turned on. In (b), we also show the
intensity distribution after increasing the number of potential wells where the
dissipation acts on from ∼ 4 to ∼ 150 at t = 100000 and then running the

simulation for another 100000 time units (green).

Sometimes, different types of soliton solutions are formed. For example, with

γ = 1.3 and γ = 1.8, the result is that of asymmetric lattice solitons with two

high-peaks next to each other. An example is shown in Fig. 3.6, with γ = 1.3.

The intensity of each peak oscillates, as is shown in Fig. 3.6(b). The oscillations

of the real/imaginary parts of each of the two peaks have different frequencies -
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Table 3.1: Values of parameters used in the simulations

γ Peak Intensity Gradient of tails Frequency Nature of Solution
0.5 1.258 0.420 4.05 SLS
0.7 1.167 0.410 3.97 SLS
0.9 1.012 0.398 3.89 SLS
1.0 0.923 0.392 3.83 SLS
1.2 0.765 0.367 3.72 SLS
1.3 0.651 0.355 3.62 QLS
1.6 0.539 0.332 3.55 SLS
1.8 0.377 0.289 3.46 QLS
2.0 0.362 0.287 3.43 SLS

Figure 3.6: (a) Quasiperiodic lattice soliton generated by applying dissipation
to an initial Gaussian with width γ = 1.3. (b) Variation in time of intensity
of smaller peak (red line) and larger peak (black line). (c)Variation in time of
real part of peak of larger amplitiude (black line) and smaller amplitude (red

line). (d) Logarithmic plot of same solution in (a).
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the oscillations of the real part of each peak is plotted in Fig. 3.6(c). As well as

this, the gradients of the exponential tails on each side are also different. This is

shown in Fig. 3.6(d), with the logarithmic plot of the same solution. The values

of peak intensity, frequency and gradient of the tails of the quasiperiodic lattice

solitons (QLS) in Table 3.1 are those associated with the highest peak in each

case. Note that this is similar to the quasiperiodic discrete breathers obtained in

the DNLSE (see [40]).

Another type of solution, shown in Fig. 3.7, is a symmetric one with two main

peaks (as in [10]). The two peaks are in-phase with each other, oscillating at the

same frequency, as opposed to the previous quasiperiodic example in Fig. 3.6.

This lattice soliton has been found by using localized dissipations and by shifting

the initial wavepacket by L/2 (half a potential well). This is the equivalent of

using a potential of V = V0 cos2(Mθ/2) (rather than V = V0 sin2(Mθ/2)) so

that the initial gaussian wavepacket is centered between two potential wells. The

nonlinearity is set to a higher value of β = 10, corresponding to a higher number

of atoms or a larger scattering length. With β = 1, the double peak relaxes to

the single peak solution quickly.

Another initial condition that can be used in analogy with what has been done

in the DNLSE (see [33, 35] and the example in Fig. 2.5) is that of a homogenous

distribution of atoms across the optical lattice with random phases. In the ex-

ample shown in Fig. 3.8, the code runs a transient without dissipations for 1000

time-steps. After this, dissipation is turned on. There is a first localisation to two

peaks, (see Fig. 3.9(a)). The amplitudes of the peaks fluctuate and eventually, at

long time scales (around t = 35000), the peak on the left moves closer to the other

so that only one potential well separates them (see Fig. 3.9(b)). To observe this

behaviour, the nonlinearity has been increased to β = 50.
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Figure 3.7: A higher order soliton solution with two peaks, similar to one
shown in Fig. 2.2(b) from [10]

3.3 Lattice Solitons with Traveling Localized Dis-

sipations

As discussed earlier, in the discrete model, traveling breathers have been shown

to be formed from initially Gaussian wavepackets with an additional momentum

[30, 33, 34]. To replicate this in the continuous case and stabilise a travelling

lattice soliton (TLS), an initial distribution made of a “Gaussian of Gaussians”

is used (see Fig. 3.10 (a)). In the DNLSE where each potential well corresponds

to a single lattice point, this distribution would reduce to a normal Gaussian

shape (see dashed line in Fig. 3.10 (a)). Since this is the continuous model,

each of these points is represented by a Gaussian in each potential well. With

the addition of an initial momentum p (here set to cos(p) = −0.95), a travelling

peak is formed in the continuous model. Dissipation is applied to this at the

point in the ring furthest away from this, similar to what is described in [33]
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Figure 3.8: Space-time evolution of atomic density u(x, t) with Λ = 50 and
dissipations set so the maximum loss is 0.5. The initial condition is that of a

“flat” equal amplitude wavefunction with random phases.

Figure 3.9: Intensity distribution of localised solution obtained from applying
dissipation to an initially flat wavefunction at t = 10000 (a) and t = 100000

(b).

for the DNLSE. Since the atomic density peak is travelling, the point at which

dissipation is applied moves too.

In the example shown in Figures 3.10 and 3.11, we have β = 1.0, V0 = 10,
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Figure 3.10: (a) Initial condition of TLS. Note that this would be an ordinary
Gaussian shape in the discrete model (shown by the blue dashed line) (b)

Space-time evolution of atomic density u(x, t) of TLS with β = 1.

Figure 3.11: (a) Intensity distribution of TLS at t = 10150 (black), t =
10220 (blue) and t = 10290 (b) Close-up of intensity distribution at t = 10150
(black, thin) with the periodic potential (red, thick), showing the two peaks-

per-potential well.

and cos(p) = −0.95 and dissipations given by ρ = 0.5 over 4 lattice wells. At

the beginning of the simulation, a certain amount of atoms remain stationary

after the travelling peak is formed. This can be seen in Fig. 3.10 (b), with the

high amplitude stationary part of the wavefunction visible until t ≈ 100, when

these atoms are removed due to the moving dissipation. At long time scales, the

peak shapes into a TLS and travels at a constant speed (shown in Fig. 3.11(a)).

Without the dissipation, the atoms that do not travel with the moving peak
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eventually spread across the lattice, giving a larger background noise. As the

moving peak travels and interacts with the background, it gets smaller in height

as it loses atoms to the background. By t ≈ 1600, the height has decreased by

half. In contrast, with the dissipation the TLS survives to longer time scales,

still at the same height by t ≈ 40, 000. The fact that dissipation helps instead of

hinders the formation of a TLS is even more surprising since, at difference with

the stationary lattice solitons, TLS require the presence of a background in order

to overcome the unavoidable Peierls-Nabarro barriers [33, 41]1. The presence of

the localized dissipation is then twofold: on one side it removes enough stationary

background noise to help with the localization of the TLS and on the other it

moves with the traveling background thus maintaining it to the level necessary

for the motion and stability of the TLS.

Using the same initial condition shown in Fig. 3.10(a), simulations were run for

different values of potential depth V0. For each of the values of V0, a different

TLS is formed, with a different peak amplitude, width and speed. What is found

is that, for lower values of V0, the resulting TLS is smaller in height, larger in

width and travels with a higher velocity. The opposite is true for higher values

of V0. The values of peak intensity, full width at half maximum (FWHM) and

velocity (measured in number of potential wells per unit t) of the TLSs found are

shown in Table 3.2.

The TLSs formed from this are “higher-order” ones, with two peaks per potential

well (see Fig. 3.11(b)). Due to this shape, they have no equivalent solution in the

discrete model.

If dissipations are turned off after a certain amount of time (in the examples here,

they are turned off at t ≈ 20000), the background noise begins to grow again and

1The Peierls-Nabarro barrier is an effective potential generated by the discreteness of the
lattice and can be interpreted as the energy needed for the localised modes to travel.
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Table 3.2: Attributes of TLSs with two peaks per potential well found for
different values of V0

V0 Peak Intensity FWHM/potential wells Velocity/potential wells per unit t
7.0 0.043 13.4 0.711
7.5 0.055 11.5 0.703
8.0 0.070 10.1 0.688
8.5 0.083 7.50 0.656
9.0 0.095 6.56 0.625
9.5 0.106 5.47 0.582
10.0 0.114 0.547 0.547

the TLS either slows to a halt or is absorbed into the background. In the example

in Fig. 3.12, with β = 1.0, V0 = 11, and cos(p) = −0.95, the TLS slows to a halt.

When stationary, there is a break in symmetry of the two peaks (Fig. 3.12(a)),

with one gradually becoming bigger than the other until there is only one peak in

the central potential well (Fig. 3.12(b)). This process takes place over a timescale

of t ≈ 7000.

Figure 3.12: Intensity distribution (black, thin) of TLS slowed to a halt with
periodic potential (red,thick). At t = 17000 (a) the symmetry of the two peaks
is broken, with one much bigger than the other. At t = 20000 there is only one

peak in the central potential well.
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Figure 3.13: Temporal evolution of the intensity distribution of the TLS
initiated via (3.4) for the case with localized, moving dissipations (ρ = −0.4)
(a) and without dissipations (ρ = 0) (b). Note that TLS is traveling along the
ring but each distribution has been shifted so to have the TLS maximum at

the same angular location).
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An approximate form of the amplitude of the TLS displayed in Fig. 3.10 and

Fig. 3.11 can be used as initial condition at time t = 0 and is given by

u(θ) = −7.66 A exp

[
i
pM(θ − π)

2π

]
sin [M(θ − π)] sech [AM(θ − π)] (3.4)

where A is a parameter that depends on the width of the TLS. For A = 1/(7.5π)

and p = −0.4 we obtain a fit of the TLS in Fig. 3.11 as accurate as few percent.

Having determined the approximate TLS shape in Eq. (3.4), one can use it as

an initial condition for the formation of the double peak TLS in the presence or

absence of dissipations. With dissipations ρ = 0.5, it is verified that the TLS

of Fig. 3.11 forms much faster when using the wavepacket (3.4) as the initial

condition instead of the Gaussian wavepacket. Figure 3.13 (a) shows that this

TLS survives for extremely long time scales with an extremely small loss of atomic

density or energy. The steady loss due to dissipation is so small that after one

million time units, the atomic density only decreases by 0.21%. This is similar

to what happens to the stationary lattice solitons in Section 3.2 when boundary

losses approached irrelevance at the tails of the lattice soliton.

Without localized dissipations, a traveling peak starting from (3.4) survives for

a long time (see Fig. 3.13 (b)). However, in the absence of dissipations, the

background noise eventually grows and absorbs the peak as shown in the last

stages of Fig. 3.13(b). These features demonstrate that localized dissipations

are necessary for both the formation and the stability of the double peak TLS

when starting from wavepacket distributions of atoms in the lattice with a given

momentum.

Localized traveling dissipation can be applied to TLS with one peak per potential

well by using the analytical approximation of [29]
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u(θ) = 8.11 A exp

[
i
pM(θ − π)

2π

]
cos

[
M(θ − π)

2

]
sech [AM(θ − π)] (3.5)

with A and p being the amplitude and the momentum of the TLS respectively.

These parameters are set to A = 0.3/(2π) and p = −0.5 and the amplitude of the

initial condition (3.5) and its temporal evolution in the ring are shown in Fig. 3.14

(a) and (b), respectively. It is important to note that with or without dissipation,

the inital condition (3.5) quickly develops a noisy background on which the TLS

travels while remaining well approximated by (3.5) in the potential wells where

atomic localization takes place. The dissipation clears up stationary noise, but

does not destroy the TLS with one peak per potential well. The atomic density

is only slightly affected by the dissipation, which decreases by ∼ 0.12% after one

million time units, even slower than the higher-order TLS.

As with the double-peaked TLSs, different TLSs with one peak per potential well

can be found with different values of V0. The values of peak intensity, full width

at half maximum (FWHM) and velocity of these TLSs found are shown in Table

3.3. As with the double-peaked TLSs, for higher (lower) values of the potential

depth, the TLS is smaller (larger) in height, larger (smaller) in width and has a

higher (smaller) velocity. The single-peaked TLSs are larger in height and travel

at much smaller (over ten times) velocities than the equivalent double-peaked

TLSs with the same potential depth.
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Figure 3.14: (a) Initial condition of TLS with one peak per potential well.
(b) Space-time evolution of atomic density u(x, t) of this TLS with β = 0.04.

3.4 Collisions of Travelling and Stationary Lat-

tice Solitons

In this section, the collisions of SLSs and TLSs with two peaks per potential well

are investigated. The SLSs are generated with the same method as the ones in

Section 3.2. The height of the soliton is varied by changing the width γ of the

initial Gaussian. The amount of atoms that pass through the SLS is dependent

on its height. The TLS used is the one generated for V0 = 10.
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Table 3.3: Attributes of TLSs with one peak per potential well found for
different values of V0

V0 Peak Intensity FWHM/potential wells Velocity/potential wells per unit t
9.0 0.147 6.09 0.0469
9.5 0.164 6.09 0.0414
10.0 0.195 5.08 0.0375
10.5 0.223 4.14 0.0336
11.0 0.243 4.14 0.0305

The temporal evolution of the atomic density of both lattice solitons at successive

collisions in the ring is shown in Fig. 3.15 for zero dissipation. In both examples in

this figure, the TLS starts at θ ≈ π/2 and the SLS is placed at θ ≈ 3π/2, which is

as far apart from each other as possible in the ring. The amount of atomic density

that passes through the stationary lattice soliton at each collision is determined by

its height. The higher the stationary lattice soliton, the less atomic density passes

through, as shown in the examples of Fig. 3.15. When the amplitude of the SLS

is low (≈ 0.45, shown in Fig. 3.15 (a)), the majority of the atomic density in the

TLS passes through the SLS at the point of collision (t ≈ 150), with only a small

amount being reflected. Every time there is a collision, the atomic density that

is reflected interferes with the TLS that had passed through the SLS previously.

This makes the TLS weaker and weaker as time goes on. When the amplitude of

the SLS is high (≈ 0.95 in Fig. 3.15 (a)), the majority of the atoms in the TLS

reflect off of the stationary one while a small amount tunnels through. The small

amount of atoms that tunnel through seem to have no major effect on the TLS,

which manages to survive longer than in the previous example.

In the discrete model, collisions between a stationary and travelling breather were

investigated in [42]. In that paper, the travelling breather survives bouncing off

of the stationary one multiple times, similar to our example in Fig. 3.15(b).
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Figure 3.15: TLS colliding with SLS with amplitude ≈ 0.45 (a) and ≈ 0.95
(b). Note that although the intensity of the SLS is the scale for the intensity
only goes up to 0.15, even though the intensity of the SLS is ≈ 0.45 in (a) and

≈ 0.95 in (b). This was done to show the TLS in more detail.
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3.5 Collisions of Travelling Lattice Solitons

Here, the collisions of two TLSs circling in the ring are investigated. In the first

example, in Fig. 3.16, the TLS with two peaks per potential well as described

in Section 3.3 and with β = 1 and V0 = 10 is used. Two identical TLSs are

positioned at opposite sides of the ring (≈ π radians apart), are made to travel

in the opposite directions (p = 0.5 and p = −0.5, respectively) and then collide.

Since dissipations would interfere with the process of collisons, dissipations are

set to ρ = 0 for both TLS. As demonstrated in Fig. 3.13 (b), the TLS with no

dissipations survives for a long time during which more than a hundred collisions

can take place. Here, the first couple of collisions are focused on to establish the

nature of the interaction of the TLS at short distances and for interferometric

properties. The collision from the two TLS results in two seemingly identical

TLS at the output (see Fig. 3.16 (a)).

In order to find out if the TLS have gone through one another or have reflected

each other, the wavefunction can be split in two by substituting u = u1 + u2,

where u1 represents the atoms of one TLS and u2 in the other, into Eq. (3.1) to

get:

i
∂u1(θ, t)

∂t
=

(
− π2

2M2

∂2

∂θ2
+ V0 sin2

(
Mθ

2

)
+ β|u1 + u2|2

)
u1

i
∂u2(θ, t)

∂t
=

(
− π2

2M2

∂2

∂θ2
+ V0 sin2

(
Mθ

2

)
+ β|u1 + u2|2

)
u2 (3.6)

It is found that, when the TLSs collide, some of the atomic density from each

TLS passes through the other while the remaining part is reflected. When this

happens, the reflected atomic density of each TLS merges with the transmitted

part of the other one. This happens in such a way that the two TLS that result
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Figure 3.16: Collision of “double-peaked” TLSs. The total density profile of
the collisions is shown in (a) while the density profile of the atoms from each

initial TLS is plotted in (b) and (c).

from the collision have approximately the same shape as the original ones, despite

containing a mixture of the atomic density from each of them. The results of the

numerical simulations of Eqs. (3.6) reproduce exactly those of the simulations of

Eq. (3.1) when cosidering u = u1 + u2. In this particular example, ∼ 79.5% of
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the atomic density of each TLS passes through the other one at each collision.

The evolution of the atomic density distributions of each initial TLS are plotted

in Fig. 3.16 (b) and (c) respectively, showing how each TLS splits at each col-

lision. The transmitted/reflected fractions of atomic density of the two TLS in

the collisions does not change when starting the collision process from a different

intial lcoation of the TLS. However, these fractions change with the depth of the

lattice potential as reported in Table 3.4.

Table 3.4: Percentage of atomic density reflected and transmitted in collisions
between 2 TLS with two peaks per potential well

V0 reflection transmission
7.0 11.8 88.4
7.5 12.6 87.4
8.0 13.7 86.3
8.5 15.1 85.0
9.0 16.8 83.2
9.5 18.6 81.5
10.0 20.4 79.6

Similar results of collisons occurs with the TLS with just one peak per potential

well. In Fig. 3.17, collisions of these TLS for V0 = 10 and β = 0.041 are shown.

Again, the TLS “swap” atomic density at each collision, with the shape of the

resulting TLS largely unchanged. Here, ∼ 77.0% of the atomic density in each

TLS stay with the “original” one at each collision, while the rest join the other

ones. Table 3.5 shows the dependence of the transmitted/reflected fractions of

atomic density in the collisions of TLS with a single peak per potential well when

changing the depth of the optical lattice.

Similar collisions of discrete breathers in the DNLS equation were investigated

in [42]. In this case, the lattice was not a ring lattice and the boundaries were

reflective. However, like here, the localised structures were allowed to collide

repeatedly and the result of each collision was two identical breathers. Whether
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Figure 3.17: Collision of the normal “single-peaked” TLSs. The total density
profile of the collisions is shown in (a) while the density profile of the atoms

from each initial TLS is plotted in (b) and (c).

the breathers passed through each other or reflected off of one another was not

investigated.
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Table 3.5: Percentage of atomic density reflected and transmitted in collisions
between 2 TLS with one peak per potential well

V0 reflection transmission
9.0 14.7 85.3
9.5 18.3 81.7
10.0 23.0 77.0
10.5 29.5 70.5
11.0 38.2 61.8

3.6 Conclusions

The effect of local dissipation on a BEC in a ring lattice was studied. It was

found that the dissipation can both generate and stabilize stationary and traveling

lattice sollitons. A TLS with two intensity peaks per potential well was introduced

that does not have a counterpart in the DNLSE. This can be generated, via an

initial Gaussian wavepacket (as in the discrete model) with dissipation. This

does not survive without losses in the long term, either being absorbed by the

background or slowing to a halt. Collisions of this TLS with different SLSs were

shown and it was found that the interaction and survival of the TLS depends on

the amplitude of the SLS. The collisions of two TLS in the ring was also analyzed.

It was found that some of the atoms in each TLS merge with the colliding one

while some are reflected in such a way that the shape of the resulting TLS’

intensities stays the same. This collisional property depends on the potential

depth of the lattice. The amount of atoms that are transmitted (reflected) during

the collision is smaller (larger) in deeper lattices and larger (smaller) in shallower

lattices.

A possible application of travelling solitons is interferometry. This was first sug-

gested in [42] in the presence of optical lattices and with the DNLSE. The possi-

bility of interferometry in the case of attractive BECs in a ring was proposed and

investigated in [43–45], in which the solitons collided with potential barriers. In
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the case of an optical lattice, collisions of TLSs with additional potential barriers

is investigated in the next chapter.



Chapter 4

Reflections of Moving Lattice

Solitons and Discrete Breathers

off of a Potential Barrier

4.1 Model

This chapter considers the collision of travelling lattice solitons (TLSs) and dis-

crete breathers (DB) with a Gaussian potential barrier. In Chapter 3, two types

of TLS were studied: one with one intensity peak per potential well, defined in

Eq. 3.5, and one with two, defined in Eq. 3.4. In this chapter, collisions of

both of these in the continuous model, and of DBs in the discrete model, with a

potential barrier are investigated. The potential barriers can be either positive

(i.e. a potential wall) or negative (i.e. a potential well) relative to the lattice.

When colliding with a barrier, atoms can either be reflected, transmitted or

trapped by the barrier. Without a lattice and with attractive BECs, it has been

shown that it is possible to produce two outgoing solitons from collisions with

51
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narrow barriers , similar to a beam splitter splitting the light of an optical in-

terferometer [43, 46, 47]. In the case of a ring trap [43–45] or a harmonic trap

[44, 48, 49] with a barrier, a Mach-Zehnder interferometer has been considered in

which the outgoing solitons can recombine at the barrier. With negative barriers

(i.e. potential wells), trapping can occur, as well as, counter-intuitively, reflection

[50, 51].

Optical lattices allow for the use of repulsive BECs to sustain travelling solitons.

With optical lattices and repulsive BECs, it has been shown that trapping of

atoms can occur for barriers with a positive height [52]. This is because a negative

effective mass soliton sees this barrier as a potential well rather than a wall. In

the regime of a wide barrier in a shallow optical lattice, the amount of atoms

reflected, transmitted and trapped by the barrier was measured against the height

of the barrier in [52]. Repeated regions of reflection, transmission and trapping

were found for positive heights of the barrier1. Similar results were found in the

discrete model with a wide barrier and an attractive nonlinearity [53].

In this chapter, we investigate the situation of a ring lattice with a Gaussian

potential barrier of the form

Vb = α exp

(
−(θ − π)2

γ

)
, (4.1)

with height α and width γ. We simulate the collisions of TLSs in the GPE and

of discrete breathers in the DNLSE against a barrier of this form. The GPE

model we use here is the same as that of Chapter 3 but with the extra Gaussian

potential term:

1The same was also found for attractive lattice solitons with positive effective mass and for
negative heights of the potential barrier in the same paper, but in this chapter we again only
concentrate on repulsive BECs.
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i
∂u(θ, t)

∂t
=

(
− π2

2M2

∂2

∂θ2
+ V0sin

2

(
Mθ

2

)
+ α exp

(
−(θ − π)2

γ

)
+ β|u|2

)
u .

(4.2)

Note that there is no dissipation used in the simulations in this chapter.

4.2 Collision of single-peaked TLSs with a po-

tental barrier

First we investigate the collision of single-peaked TLSs, defined in Eq. 3.5 (from

[29]), with the potential barrier Vb. Eq. 4.2 is numerically integrated for different

values of the barrier height α. The atoms in the TLS can do one of three things

as a result of the collision: bounce off the barrier (reflection), pass through the

barrier (transmission) or be trapped in the barrier (trapping). The fraction of

atoms that do each of these things is measured as R, T and S respectively. For a

deep lattice (V0 = 10) and thin barrier (γ = 0.3), R, T and S are plotted against

barrier height α in Fig. 4.1.

For α = 0 (i.e. when there is no barrier), R = S = 0 and all the atoms pass

through as one would expect. Full reflections occur for higher magnitudes of α.

An example of full reflection is shown in Fig. 4.2. When the TLS reflects off of

the barrier, it keeps its shape and velocity afterwards. The density distribution of

the TLS at t = 0 is shown in Fig. 4.2(a), while (b) shows the density distribution

after the collision (at t = 3850). Comparing the two, it can be seen that the TLS

keeps its shape after the collision. The evolution of the intensity in time, shown

in Fig. 4.2(c), shows that the TLS survives for multiple collisions of the barrier,

and that it does not change its velocity.



Chapter 4. Reflections of Moving Lattice Solitons and Discrete Breathers off of
a Potential Barrier 54

Figure 4.1: Ratio of atoms reflected (R, black line), transmitted (T , blue
line) and trapped (S, red line) by Gaussian potential barrier Vb with height α.

From Fig. 4.1, it can be seen that, between the regions of total reflection or

transmission, there are regions with partial reflection and transmission. For these

regions, the TLSs “split” at the barrier, as in [43, 46, 47], forming two outgoing

TLSs. In Fig. 4.3, the aftermath of collisions which result in partial reflection

and transmission are shown. In the example with α = 0.035 (Fig. 4.3(a)), the

collision has resulted in two TLSs of different size, along with a small amount

of trapped atoms at the barrier. Trapping of atoms only happens for positive

values of α. As in [52], this is because of the TLSs negative effective mass. In

Fig. 4.3(b), with α = −0.045, we have a split in which the resulting two TLSs

are around the same size, and there is no trapping since α < 0.

Using a ring lattice allows us to consider a Mach-Zehnder interferometer, as in

[43–45]. The time evolution of the example in Fig. 4.3(b) is shown in Fig. 4.4, in

which the split TLSs are allowed to collide again at the barrier. Fig. 4.4 shows
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Figure 4.2: (a) Initial condition of TLS travelling in positive θ direction. (b)
TLS after collision with barrier at t = 3850. Here, it is seen that the TLS
has kept its shape after the collision. (c) Evolution of intensity distribution of
same collision. Here, it can be seen that the TLS survives multiple collisions

without changing velocity.

the time evolution of the example in Fig. 4.3(b). First, the TLS collides with

the barrier at θ = π at t ≈ 2700, splitting into two TLSs of approximately the

same height. Then, the TLSs continue to travel in opposite directions around the

ring, passing through each other at θ = 0 = 2π and t ≈ 5000, and then colliding

with the barrier again at t ≈ 7000. At this second collision, the TLSs recombine,
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Figure 4.3: Results of collisions in which the TLS is split so that there is
partial reflection and partial transmission. In (a), with a potential barrier of
height α = 0.035, the two resulting TLSs are of different size. Both TLSs are
travelling away from the barrier so that the smaller one on the left is moving
in a negative θ direction and the larger one on the right is moving in a positive
θ direction. In the center, at θ = π, there is a small amount of trapping,
which is stationary. In (b), with α = −0.045, the two resulting TLSs are of
approximately the same size. Again, both are travelling away from the barrier.

There is no trapping here, since α < 0.

producing a single TLS travelling in the opposite direction from the original one.

The TLSs lose atomic density to the background, so the resulting TLS from this

is not as large as the original. As it travels around the ring, however, it does

pick up more density from the background. This is shown in Fig. 4.4(b) and (c).

In Fig. 4.4(b), the TLS is shown soon after the collision at t = 8300. The peak

intensity is only ≈ 0.075, which is small compared to the original TLSs peak

intensity of ≈ 0.2. By t = 10100 (in Fig. 4.4(c)), the peak has almost doubled in

size.

For a shallower lattice of depth V0 = 2.5, there are a few differences. The fraction

of atoms reflected (R), transmitted (T ) and trapped (S) by the potential barrier

with various heights (α) is plotted in Fig. 4.5. As before, there is only trapping

for positive values of α. For this shallower lattice, however, the amount of atoms

that are trapped is much larger. The highest amount of atoms trapped is for

α = 0.06, which is shown in Fig. 4.6. A very large amount of atoms are trapped
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Figure 4.4: Multiple collisions with a barrier of height α = −0.045. In (a),
it is seen that the TLS splits in two at the first collision with the barrier. The
two resulting TLSs are close to equal in size (distribution of this is shown in
Fig. 4.3(b)) and pass through each other before colliding again and recombining
at the barrier. In (b), is it seen that just after the collision, at t = 8300, that
the TLS produced at the second collision is smaller than the original, with
more background noise. It absorbs more density as it travels, becoming larger

in height, as seen in (c), at t = 10100.

at the barrier during the collision. The TLS is trapped there for long time-scales,

as seen in Fig. 4.6(a). Some atoms are released into the background, but most of

the atoms remain with the TLS, as seen in Fig. 4.6(b), which shows the initial
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Figure 4.5: Fractions of atoms from TLS with one peak per potential well
reflected by (R, black line), transmitted by (T , blue line) and stuck in (S, red
line) a potential barrier with height α and γ = 0.3. Potential depth of optical

lattice is V0 = 2.5.

condition, and Fig. 4.6(c), which shows the TLS after it has been trapped for a

long time.

For negative values of α, the collisions are much simpler, with the TLS completely

(or mostly) transmitting the atoms for smaller values of α, and then completely

(or mostly) reflecting after a “cutoff” value, rather than the smooth transition

that is shown for the V0 = 10 plot in Fig. 4.1. A possible reason for this is the

higher nonlinearity of the TLS used for V0 = 2.5 (β = 0.59), compared to the one

for V0 = 10 (β = 0.04). The higher nonlinearity could mean that the atoms are

held together more strongly, making a split more difficult (as in [48] and [44]). As

α approaches this value (from both sides), the TLS stays in the centre for a short

amount of time before being reflected or transmitted. This is shown in Fig. 4.7,

where the collision is shown for α = 0.03028 (in (a)) and α = 0.03030 (in (b)).
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Figure 4.6: Collision of single-peaked TLS with potential barrier with α =
0.06 and β = 0.3. (a) shows the time evolution. The TLS is trapped in
the barrier and stays there for the duration of the simulation. The intensity
distribution is shown at t = 0 in (b), and t = 9960 in (c), showing that almost

the full TLS is trapped, with some atoms going into the background.

4.3 Collision of discrete breathers with a poten-

tial barrier

For the discrete model, we use the DNLSE with a Gaussian potential:
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Figure 4.7: Collision of single-peak TLS with potential barrier with (a) α =
−0.03028 and β = 0.3, and (b) α = −0.03030 and β = 0.3. In both cases, the
TLS stays in the centre for a short time before either completely transmitting

(a) or reflecting (b).

i
d

dτ
zn = Λ|zn|2zn − (z1,n−1 + z1,n+1) + α exp

(
−(n− nc)2

γ

)
(4.3)
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where again α is the height of the barrier, γ a measure of the width, and nc is

the location of the centre of the barrier, which here is set to nc = 64.

Figure 4.8: Ratio of atoms reflected and transmitted off Gaussian potential
with height α

For discrete breathers, the results are very similar to those of the single-peaked

TLS, their counterpart in the continuous model. The plot of fraction of atoms

reflected (R) and transmitted (T ) against height (α) shows this (Fig. 4.8). Again

for large values of α, there is complete reflection. An example of this is shown

in Fig. 4.9. Like the single-peaked TLS, the DB maintains its shape after the

collision. This is shown in Fig. 4.9(a) and (b), in which the intensity distibution

is shown after the first collision (in (a)) and after the second collision (in (b))

with the barrier. In (c), the evolution of the intensity is presented, showing that

the DB maintains its velocity too.

One major difference between the results of this DB and the earlier single-peaked

TLS is that there appears to be either no or a very small amount of trapping

here. Although trapping has been observed for attractive nonlinearities [53], this
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Figure 4.9: Full reflection of discrete breather with barrier with height α =
30.0. In (a), the breather is shown at τ = 0, travelling in the positive θ
direction. In (b), the breather is shown at τ = 88, just after the collision. The
time evolution is shown in (c), in which it is seen that the breather survives

multiple collisions, maintaining its velocity.

is somewhat expected. The discrete model is obtained in the limit of large V0. For

larger values of V0 in the continuous model, there is very little trapping of atoms

from single-peaked TLSs, the continuous counterpart of DBs. See, for example,

Fig. 4.1, with V0 = 10. One can imagine that for even larger values of V0, there

would be no trapping.
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Figure 4.10: Collision of discrete breather with barrier of height α = 1.345.
The time evolution is displayed in (a), in which it can be seen that the breather
splits into two. The two outgoing breathers pass through each other before
colliding at the barrier, where they recombine. (b) shows the two outgoing
breathers at τ = 88, which are approximately the same size. The recombined

breather is shown at τ = 178 in (c) and τ = 222 in (d).
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Again like the single-peaked TLS, there are regions with partial reflection and

transmission where the TLS is split. In Fig. 4.10, a case is presented, where like

the TLS in Fig. 4.4, the DB splits into 2 DBs roughly equal in height, before

recombining at the barrier (see evolution of intensity in Fig. 4.4(a)). Again, like

before the DB(s) lose density to the background during these collisions, so that

the resulting DB is smaller than the original one (see Fig. 4.4(b) and (c)).

4.4 Collision of double-peaked TLSs with a po-

tental barrier

In this section, the collision of TLSs with two intensity peaks per potential well

(as shown in the previous chapter) with the potential barrier are investigated for

V0 = 10. The dependence of the number of atoms reflected (R), transmitted (T )

and trapped (S) after the collision on the height α of the barrier is shown in

Fig. 4.11. The results of the collisions here are clearly different from the previous

examples. For one thing, there is trapping for both positive and negative α. Also,

full reflection of the TLS only occurs for positive values of α. For α < 0, there

are repeated regions of transmission and reflection. The reason for this behaviour

is unclear but we believe that it is the unusual form of the double peaked soliton

with a minimum in the centre that interferes with the potential barrier.

For the cases of full reflection, the TLS maintains its shape and velocity as before.

This is shown in Fig. 4.12. Again, in (a) and (b), the intensity distribution is

plotted before and after the collision and in (c), multiple collisions are shown in

which the TLS maintains its speed.
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Figure 4.11: Fractions of atoms from TLS with two peaks per potential well
reflected by (R, black line), transmitted by (T , blue line) and stuck in (S, red
line) potential barrier with height α and γ = 0.3. Potential depths of optical

lattice are V0 = 10 (a), V0 = 9 (b) and V0 = 8 (c).



Chapter 4. Reflections of Moving Lattice Solitons and Discrete Breathers off of
a Potential Barrier 66

Figure 4.12: (a) Initial condition of double-peaked TLS travelling in positive
θ direction. (b) TLS after collision with barrier at T = 250. As with the
previous examples, the TLS has kept its shape after the collision. (c) Evolution

of intensity distribution of same collision.

As with the previous examples, there are cases in which the TLS is only partially

reflected, splitting into two. In some of these cases, atoms are also trapped in

the centre (see Fig. 4.13, with α = 8.2). As with the other examples with deep

potentials, the amount of trapping is not significantly large. For an example with

no trapping, see Fig. 4.14, where, as before, the TLS is split into two TLSs of

nearly equal size which then recombine at the barrier. As before, the recombined
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Figure 4.13: Partial reflection and transmission after collision with α = 8.2.
A small amount of atoms are stuck in the barrier at the centre.

TLS is not as large in amplitude as the original, but grows as it travels along the

lattice, picking up atoms from the background.

4.5 Conclusions

In this chapter we have investigated collisions of TLSs and DBs with a potential

barrier in the form of a Gaussian and the dependence of the collision on the height

α of the barrier. First, the collision of the single-peaked TLS with the barrier

was investigated in a ring lattice with a deep periodic potential of V0 = 10.

For both positve and negative α, there was a smooth transition from complete

transmission to complete reflection, with small amounts of trapping for positive

α. Inbetween, the TLS was split into two outgoing ones, which allows us to

investigate them recombining at the barrier, like a Mach-Zehnder interferometer.

For the single-peaked TLS with V0 = 2.5, much more trapping is observed for

positive α, with almost the whole TLS being trapped in the barrier. Also, the
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Figure 4.14: Multiple collisions of double-peaked TLS with a barrier of height
α = −16.98. The evolution of the intensity distribution in time is shown in
(a). The TLS is split in two at the first collision. The intensity of the two
resulting TLSs is shown in (b) at T = 256. They pass through each other and
then collide again, recombining at the barrier. As seen in (c) at T = 560, the
TLS formed at this second collision is smaller and fatter than the original. As
it travels, it absorbs more density from the background, becoming larger in

height. This is seen in (d), at T = 690. long survival
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transition from complete transmission to complete reflection in much sharper for

negative α, possibly due to the larger nonlinearity.

The discrete breather had similar behaviour to the single-peaked TLS, but with

little to no trapping as expected for very deep lattice wells.

The double-peaked TLS had unusual behaviour, including repeated regions of

trapping, transmission and reflection for negative α, and complete reflection for

positive but not negative α. This behaviour is possibly due to the peculiar shape

of the double-peaked TLS which presents a minimum of the atomic density in its

centre. It is this minimum that interacts and interferes with the potential barrier

thus inverting some of the reflection/transmission behaviours observed for the

single-peaked TLS with respect to the sign of the barrier height.



Chapter 5

Discrete Breathers in

Two-Species Bose-Einstein

Condensates

In this chapter, the dynamics of discrete breathers in two-species Bose-Einstein

condensates is studied. The analogue to this in the optical case, is light of two

different wavelengths propagating through waveguide arrays but as with the rest

of the thesis, we focus on BECs in optical lattices here. With a second atomic

species in a BEC, there is a nonlinear interaction between atoms of different

species as well as ones of their own, leading to richer physics. The interaction

between the two species (henceforth described as the “interspecies interaction”)

has been shown to have many interesting effects, including phase separation [54,

55], and influence on the transport properties of a BEC in a lattice [56, 57]. With

repulsive interspecies interactions, symbiotic lattice solitons [58–60], i.e. two-

species solitons localized together in the same spot of the lattice, can be formed.

70
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Figure 5.1: (a) Two single-species breathers, far apart in the lattice. (b) Two
single-species breathers, overlapping in the centre of the lattice, giving rise to

the interspecies interaction.

There has been much work on symbiotic solitons and their stability [58–66]. An

interesting discovery is that an attractive interspecies interaction can split the two

solitons, rather counterintuitively [61]. They have been shown to form through

collisions of single-species solitons without a lattice [67], and collisions between

symbiotic breathers have also been studied [68].

In this chapter, we study the collisions of two single-species breathers, starting

far apart from each other in the lattice (as in Fig. 5.1(a)). The interaction of two

stationary breathers in close proximity to one another (as in Fig. 5.1(b)), each of

a different species, is also studied. The simulations are performed using experi-

mentally reachable conditions, with specific reference to two feasible experiments

of two-species BECs in optical lattices.

The first of these experiments of interest has been performed in Kyoto where

BECs of Yb atoms have been obtained separately with isotopes 174Yb [69], 170Yb

[70] and 168Yb [71]. A stable mixture of the isotopes 168Yb and 174Yb was obtained

[71], as well as a 174Yb and 176Yb mixture [72] which is unstable due to the

negative scattering length of the 176Yb component (see also [73]). The intra- and
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interspecies scattering lengths of ytterbium isotopes have been measured using

data from one- [74] and two-color photoassociation spectroscopy [75] and are now

well established. The rich isotope structure of ytterbium enables mass tuning of

the scattering length. It has been shown that, unlike in alkali-metal species in

which the resulting atom loss is significant, optical Feshbach resonances can be

used to effectively change the intraspecies scattering length [76–78]. This raises

hope for optical control of interactions between different isotopes, especially now

that their positions are known from inter-isotope photoassociation spectroscopy

[79]. Three bosonic isotopes of ytterbium, namely 168,170,174Yb, have positive

intraspecies scattering lengths of the order of a few nanometers leading to similar

stable condensates. Since the isotope shifts are small compared to the detuning

of the far off resonant trap (FORT), the potential seen by different isotopes is

basically identical. Consequently, given the mass ratios also close to one, this will

result in very similar tunneling rates.

Even though these three isotopes are similar in terms of the single-species scat-

tering length, the interspecies interactions of different pairs of isotopes differ dra-

matically. The interaction between a 170Yb and 174Yb atoms is described by a

large negative scattering length of -27.3 nm, while for 168Yb and 170Yb it is pos-

itive and equal to 6.2 nm. Halfway between these two is the case of 168Yb and

174Yb characterized by a negligible scattering length of 0.13(18) nm, where the

two condensate species should essentially ignore each other.

Another interesting mixture of heteronuclear BECs has been obtained in an ex-

periment of Thalhammer et al. [80], where 41K and 87Rb atoms are condensed

together in an optical lattice. A remarkable property of this mixture is that the

interspecies scattering length a1,2 describing the effective interaction of collid-

ing potassium and rubidium atoms can be tuned over a wide (both positive and

negative) range using a magnetic Feshbach resonance, while the single-species
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scattering length remains positive for either species. This mixture is an example

of one with a large tunneling rate ratio, in contrast to the ytterbium mixtures,

where this ratio is close to one.

The structure of this chapter is as follows. In Section 5.1 the derivation of the

model and an estimate of the parameters are provided. Interaction of stationary

breathers in close proximity to each other is described in section 5.2. Collisions of

traveling breathers and trapped states are described in Section 5.3 as a function

of the interspecies coupling parameter. Section 5.4 provides an explanation of the

different kind of collisions observed in the numerical simulations where inelastic

behavior is found in the mutually-repulsive case and elastic in the mutually-

attractive case. Finally, section 5.5 shows that the main results of the breather

collisions and interactions are robust to survive in a model where the spatial

variable is continuous rather than discrete.

5.1 Two Coupled Discrete Nonlinear Schrödinger

Equations

We follow the treatment described in [57] to study the behavior of the two-species

Bose gas with the use of the tight-binding approximation. With the addition

of a second atomic species in the lattice, the time-dependent Gross-Pitaevskii

equations describing the dynamics of the two species’ order parameters Ψi (where

i = 1, 2) read

i~Ψ̇i(~r) =

(
− ~2

2mi

∇2 + U(~r) +
∑
j=1,2

gi,j|Ψj(~r)|2
)

Ψi(~r) , (5.1)
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where the coefficients gi,j describe the effective mean-field intra- and interspecies

interactions and are given by

gi,j =
4π~2ai,j

2µi,j
, (5.2)

where µi,j = (m−1
i +m−1

j )−1 is the reduced mass of the atomic pair and ai,j is the

scattering length relevant in the scattering properties of the species’ atoms.

The external potential confining the BECs is due to two overlapping and counter-

propagating laser beams that create a standing wave in the axial direction and, as

a result, a periodic potential of depth V0,i. The Gaussian profile of the two laser

beams gives rise to an approximately harmonic off-axis confinement described by

the frequencies ωr,i. Thus the external potential reads

Vi = V0,i sin
2(kX) +

1

2
miω

2
r,i(Y

2 + Z2) . (5.3)

Note that real optical lattices also have a shallow harmonic potential superim-

posed in the axial direction, which we here assume to have negligible effects. We

also introduce the lattice strengths si = V0,i/ER,i, where Er,i = ~2k2/2mi is the

recoil energy calculated for the lattice wavelength. The axial on-site frequency of

the lattice is then ωi =
√
si~k2/mi.

Both order parameters obey the normalization condition
∫

d3~r|Ψi|2 = Ni, where

Ni denotes the total number of atoms of the i-th species in the lattice.

If the lattice is strong enough, i.e. the trap depth is sufficiently large, the con-

densate is well localized around potential minima. As in Section 2.4, for each of

the mixture’s order parameters we use the following ansatz [30, 57]:

Ψi =
∑
n

ψi,n(T )φi(~r − ~ri,n) , (5.4)
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where φi is an on-site wavefunction and ~ri,n is the location of the n-th lattice

site seen by the i-th species. As before, if the atomic interactions are weak, the

on-site ground state wavefunction can be replaced by the ground state harmonic

oscillator wavefunction in the off-axis direction and a Wannier function [31] of

the lowest band in the axial direction to account for tunneling. With two species,

|ψi,n(T )|2 can be defined as the number of i-th species atoms in the n-th lattice

site as a function of time, with
∑

n |ψi,n|2 = Ni.

As in Section 2.4, we substitute this ansatz into the Gross-Pitaevskii equations

(see [30, 57]) and get

i~ψ̇i,n = −Ji (ψi,n−1 + ψi,n+1)

+
(
λi,i|ψi,n|2 + λ1,2|ψ3−i,n|2 + εi,n

)
ψi,n (5.5)

where

Ji =

∫
d3~rφi(~r − ~ri,n)

(
−~2

2mi

∇2 + Vi

)
φi(~r − ~ri,n+1) (5.6)

is the hopping integral describing the tunneling of the i-th species which is

proportional to the intersite tunneling rate γi = Ji/~, and εi,n =
∫

d3~rφi(~r −

~ri,n)
(
−~2
2mi
∇2 + Vi

)
φi(~r − ~ri,n) is the on-site chemical potential. The self- and

mutual interaction is described by the parameters λi,i = gi,i
∫

d3~r|φi(~r)|4 and

λ1,2 = g1,2

∫
d3~r|φ1(~r)|2|φ2(~r)|2, respectively.

5.1.1 Normalization

Similarly to Section 2.4, in order to move towards a more standard and compu-

tationally efficient form of two coupled discrete nonlinear Schrödinger equation
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(DNLSE), we introduce

zi,n =

√
1

Ni

ψ∗i,n exp

(
−i εiτ

~γ1

)
(5.7)

τ = γ1T (5.8)

to obtain:

i
d

dτ
z1,n = Λ1,1|z1,n|2z1,n + Λ1,2

N2

N1

|z2,n|2z1,n

− z1,n−1 − z1,n+1 (5.9)

i
d

dτ
z2,n = Λ2,2|z2,n|2z2,n + Λ1,2|z1,n|2z2,n

− γ2

γ1

(z2,n−1 + z2,n+1) . (5.10)

In Eqs. (5.9-5.10) we have defined the following parameters:

Λi,i =
λi,iNk

~γ1

Λ1,2 =
λ1,2N1

~γ1

. (5.11)

Thus the atomic distribution of each species over the entire lattice is normalized

to unity: ∑
n

|zi,n|2 = 1 . (5.12)

To ensure that the energy and density in the system are conserved, we use a

symplectic fourth-order integrator of the Yoshida type [81, 82] (see Appendix

A.2). In these simulations of the discrete model we consider that lattice sites

outside the condensate are empty resulting in traveling breathers to ”bounce”

off at reflective boundaries. This is realized experimentally by fixing the size

of the condensate with external magnetic fields. This “bouncing” could also be

realised with a potential barrier, as in Chapter 4. The energy and density are

both conserved up to 9 decimal places at each integration time step.
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Table 5.1: Values of parameters used in the simulations

Pair s1 s2 γ2/γ1 Λ1,1 Λ2,2 Λ1,2
168Yb + 170Yb 3.19 3.27 0.96 5.28 1.368 2.51
170Yb + 174Yb 3.27 3.43 0.91 1.368 2.486 –12.24

87Rb + 41K 7 3.03 6.97 12.31 5.89 (free)

5.1.2 Estimate of the calculation parameters

In Sections 5.2, 5.3 and 5.4 we present results that model different Bose gas mix-

tures, notably mixtures of ytterbium isotopes and that of 41K+87Rb. At present,

the only ytterbium isotope mixture BEC obtained so far is that of 174Yb+176Yb

where, however, the 176Yb part instantly collapses because of its negative scatter-

ing length [72]. Thus we focus on ytterbium mixtures of isotopes whose scattering

length is positive, namely 168Yb, 170Yb and 174Yb. The latter two have already

reached BEC separately [69, 70] while the major technical difficulty in reaching

a 168Yb BEC is its low natural abundance of 0.13%.

To calculate the self nonlinear parameter, λi,i, it is sufficient to approximate the

on-site wavefunction φi,n(~r) with a harmonic oscillator ground state, which is

basically a Gaussian, to yield

λi,i = ai,i

√
2~mω2

rω

π
(5.13)

In the case of ytterbium mixtures the mutual interaction parameter λ1,2 can also

be estimated from the above formula as the masses of the two isotopes are very

similar and the two wavefunctions are well overlapped.

In the case of the 41K+87Rb mixture the two wavefunctions are differently shaped

(one is narrower than the other due to the difference in masses). The scattering

length of 87Rb is 5.25 nm [83] while for 41K it is 3.1 nm [84, 85]. The interspecies
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scattering length can be changed by the use of a convenient magnetic Feshbach

resonance [86] so that λ1,2 can be considered as a free parameter.

To estimate the tunneling rates γi, it is not sufficient to approximate the on-site

wavefunctions with Gaussians and one has to use the Wannier wavefunctions.

This is because the tunneling rate is mostly determined by the wings of the on-

site wavefunction which have an oscillatory-exponential rather than a Gaussian

tail. In this case the tunneling rate can be approximated as [87]

Ji = ~γi =
4√
π
Er,is

3/4
i exp(−2

√
si) . (5.14)

The parameters for the ytterbium isotopes considered here are as follows. The

lattice laser wavelength is 532 nm; the lattice frequencies for both species are

ωr = 2π × 100 Hz and ω = 2π × 15 kHz which are close to the experimental

realizations. For the sake of simplicity, we consider N1 = N2 = O(103) as it is

difficult to find initial conditions that would lead to a clear traveling breather at

larger densities. This is a general property of lattice solitons [88]. The results

apply, however, to larger values of Ni up to 105.

In the case of the 87Rb and 41K mixture we consider a lattice wavelength of

1064 nm and we take the (tunable) lattice depth to be V0 = 7Er,1 for rubidium

so that the same parameter for potassium is around V0 ≈ 3Er,2. This is done to

ensure that we can still use the tight-binding approximation (i.e. tunneling rates

to further sites are at least an order of magnitude smaller than γi, see table I in

[87]). On the other hand the tunneling rate needs to be large enough for traveling

breathers to exist.

The calculation parameters discussed above are shown in table 5.1.
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5.2 Breather interaction

As said in Chapter 2.4.1, initially Gaussian wavepackets can evolve via the single

species DNLSE into static breathers [30, 33, 34]. If the wavepacket is given a

momentum in a certain direction, traveling breathers that translate across the

lattice can also be formed. The general expression of the initial wavepacket is

given by Eq.2.41. For two species BECs, the terms in this are given the index i

to denote species, like so:

zi,n =

√
1√

2πσ2
i

exp

{(
−(n− n̄i)2

4σ2
i

)}
eipin (5.15)

As before, σi is the initial width of the Gaussian cloud, and n̄i is its position.

For the single species case, low nonlinearity and values of |pi| between zero and

π/2, corresponding to a positive cos pi, the cloud expands diffusively within the

lattice. Localization into static breathers is then observed when increasing the

repulsive self-interaction Λi,i. However, when the pseudomomentum crosses π/2

and the repulsive self-interaction Λi,i is not too large, traveling breathers are

formed (unless cos pi is exactly 1, in which case the breather is stationary) [30, 33–

35, 42, 89].

In this section, simulations are run starting from stationary breathers of 168Yb and

170Yb in separate positions. These are formed by running simulations of initially

Gaussian wavepackets with Λ1,2 = 0 and letting them reshape with dissipation

applied at the boundaries to get rid of the background (see [33] for a detailed

description of the effects of dissipation). The final stable single-species breathers

are of the “staggered” type and evolve in time as zi,n(τ) = exp{(−iµiτ)}(−1)nυi,n
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Figure 5.2: Density profiles of 170Yb (black solid line) + 168Yb (blue dashed
line) mixture for D = 0. (a) Initial density profile of 170Yb + 168Yb breathers.
(b) Logarithmic profile of this, which shows the exponential tails of the
breathers. (c) Density profile of 170Yb + 168Yb breathers at τ = 1000 af-
ter Λ1,2 is switched on. Note that the density profiles have changed when
forming the symbiotic breather. (d) Logarithmic profile of this, in which the

background of the 170Yb species can be seen more clearly.

where υi,n satisfies the stationary equations

µ1υ1,n − (υ1,n+1 + υ1,n−1)−
(
υ2

1,n + βυ2
2,n

)
υ1,n = 0 (5.16)

µ2υ2,n − γ2
γ1

(υ2,n+1 + υ2,n−1)−
(
αυ2

2,n + βυ2
1,n

)
υ2,n = 0

with β = Λ1,2/Λ1,1 and α = Λ2,2/Λ1,1. The breathers are spatially localized

(Fig. 5.2 (b), in which the exponential tails of the breathers are seen clearly in a
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Figure 5.3: Density profiles of 170Yb (black solid line) + 168Yb (blue dashed
line) mixture for D = 2. (a) Initial density profile of 170Yb + 168Yb breathers.
The wavefunctions of the two species still overlap significantly. (b) Density
profile of 170Yb + 168Yb breathers at τ = 1000 after Λ1,2 is switched on. Note
that the 170Yb is smaller and some of the background has become localized to

the left of the main breather.

logarithmic scale). Substituting the exponential ansatz

vi,n = Ai exp{(−qi|n|)} (5.17)

into equations (5.16), as in [60], it is found that the decay rates qi and frequencies

µi of the breathers are related via:

q1 = ln
(
µ1 +

√
µ2

1 − 4
)

(5.18)

q2 = ln

(
γ2
γ1
µ2 +

√(
γ2
γ1
µ2

)2

− 4

)
.

Following again [60], an effective Lagrangian is given by

L =
1

2

∑
n

(
µ1υ

2
1,n − 2υ1,n+1υ1,n −

1

2
υ4

1,n − βυ2
1,nυ

2
2,n + µ2υ

2
2,n − 2

γ2

γ1

υ2,n+1υ2,n −
α

2
υ4

2,n

)
(5.19)
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Substituting the exponential ansatz Eq. (5.17) into Eq. (5.19) and carrying out

the summation gives the effective Langrarian

2Leff = (µ1 − 2)A2
1coth(q1) + 2A2

1tanh(q1/2)− A4
1

2
coth(2q1)

−βA2
1A

2
2coth(q1 + q2) + (µ2 − 2γ2

γ1
)A2

2coth(q2)

+2γ2
γ1
A2

2tanh(q2/2)− α
2
A4

2coth(2q2) , (5.20)

from which variational equations are obtained via ∂Leff/∂(A2
1) = ∂Leff/∂(A2

2) =

0, which give the relation

A2
1 coth(2q1) + βA2

2 coth(q1 + q2) = 2 tanh(q1/2) +

(µ1 − 2) coth(q1) (5.21)

αA2
2 coth(2q2) + βA2

1 coth(q1 + q2) =
2γ2

γ1

tanh(q2/2) +(
µ2 −

2γ2

γ1

)
coth(q2) .

Solutions with both A1 and A2 different from zero and corresponding to symbi-

otic breathers may exist for β > 0. In contrast to [60], single-species staggered

breathers exist in the uncoupled case of β = 0. For this reason the existence

of symbiotic breathers for β < 0 cannot be excluded. It can however be stated

that symbiotic breathers that are more localized than the original single-species

interacting breathers, such as those generated in the numerical simulations below,

do not exist for β < 0. In the case of increasing values of qi, one can see from

Eqs. (5.21) that the fastest growing terms are those containing µi that depends

exponentially on qi, while the intensities A2
i grow only linearly with qi. Such

growth can only be compensated by a positive term containing coth(q1 + q2) on

the left hand sides of Eqs. (5.21) and corresponding to β > 0. It can then be con-

bluded that no symbiotic breathers corresponding to further localization of the

atomic density can form with negative β from the interaction of two staggered
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single-species breathers.

In the simulations presented in this subsection, the frequencies of the single-

species breathers for Λ1,2 = β = 0 are found to be µ1 = 2.1 and µ2 = 4.1.

The decay rates are then calculated using equations (5.18) to get q1 = 0.3 and

q2 = 1.3, respectively. Once the breathers are formed and the background noise

has vanished, we turned the dissipations off and measured values of q1 and q2

within a few percents from the predictions of (5.18).

To study the interactions of these breathers, Λ1,2 was set to the value of 2.51

and the initial distance D between the centers of two single-species breathers was

changed. With the stationary breathers centered on the same site at the start

of the simulation (D = 0), a symbiotic staggered breather is formed, with the

170Yb breather moving atomic density into the background (see Fig. 5.2 — in (c)

and (d) it is shown that the background of the 170Yb breather has increased from

around 10−6 to around 10−2). The density profile of the symbiotic breather is then

different from that of the two single-species breathers corresponding to Λ1,2 = 0.

The presence of the interspecies interaction increases both the frequencies µi and

the exponential slopes qi of the breathers, making the breathers narrower and

more localized. The frequencies are increased to µ1 = 3.1 and µ2 = 5.3 and the

decay rates are both increased to q1 = 1.0 and q2 = 1.6. The measured values of

µi, qi and Ai satisfy the variational Eqs. (5.21) within less than one percent in

spite of the approximations made.

This behaviour keeps occurring when the initial distance between the breathers is

larger, but still small enough that the initial density profiles overlap significantly.

An example of this behavior is shown in Fig. 5.3, for D = 2. Here, it is seen that

less of the 170Yb atoms join with the symbiotic breather and more are expelled

into the background. A small traveling packet is then formed from the atoms in

the background. The reshaping process of the 168Yb breather is much the same
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Figure 5.4: Interaction between initially stationary breathers in the 170Yb
(black solid line) + 168Yb (blue dashed line) mixture for D = 8. (a) Evolution
of 170Yb part of the mixture. The majority of 170Yb atoms forms a traveling
breather while the remaining atomic density is absorbed by the 168Yb breather
to form a symbiotic breather. We only show the 170Yb part of the mixture since
the 168Yb evolution is rather straightforward, with the breather highly localized
in the center. (b) Density profile of the initial condition in a logarithmic scale,
showing the overlap at the tails. (c) Density profile of the 170Yb mixture at
τ = 1000. Note that the background is significantly higher than in the iniital

condition, allowing the breather to travel.

as with D = 0. The formation and evolution of a traveling breather out of the

interaction of two static breathers of separate species is presented in Fig. 5.4.

With D = 8, the initial density profiles of the breathers only overlap at the tails

(see Fig. 5.4(b)). The result of this is that only a small density of 170Yb atoms
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contributes to the symbiotic breather. As D is increased, more 170Yb atoms go

into the backeground to support the traveling breather and less in the symbiotic

one. A nonzero background is required for the traveling breather to exist [33].

Fig. 5.4(c) shows the logarithmic profile of the 170Yb condensate, in which it is

clear that the background is significantly higher than that of the initial condition.

It is important to stress that the motion of the traveling breather made of 170Yb

atoms is due to the interaction of the two species via Λ1,2 being different from

zero. In the case of no interaction (Λ1,2 = 0) both breathers remain stationary at

all times. No symbiotic breather has been observed to form via the interaction of

two single-species breathers for Λ1,2 < 0.

5.3 Collision of traveling and stationary breathers

In this section, the collision of breathers of different atomic species is investigated.

This is done by setting one or both of them in motion using the pseudomomentum

pi in the initial conditions given by (5.15). Experimentally, traveling breathers

can be constructed by accelerating the lattice confining the condensate. Such ac-

celerations were realized experimentally in [90] and were used to observe a lensing

effect on the condensate cloud. In the case of two different species in the same

lattice the difference in the masses will naturally lead to different pseudomomenta

of the clouds after acceleration to the same group velocity, thus making collisions

possible.

Fig. 5.5, shows three symplectic simulations of two colliding traveling breathers,

with carefully chosen parameters so that there would be a minimal amount of

sound-waves emitted from the initial Gaussian distributions. In all simulations

presented in Fig. 5.5 the breathers start from the same initial conditions but

with different values of the interspecies interaction parameter Λ1,2. The color
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Figure 5.5: Collision of two “clean” traveling breathers, with minimal sound-
waves. The initial conditions are Λ1 = Λ2 = 1.1, n̄1 = 16, n̄2 = 112, σ1 =
σ2 = 3 and cos p1 = cos p2 = −0.95 for all panels. Note that p1 = −p2 and
therefore the traveling breathers move in opposite directions. Λ1,2 is set to:
(a)0, (b)-20 and (c)30. In (a), the breathers ignore each other acting as if the
other species was not present. In (b), the breathers collide elastically. In (c),
the breathers are destroyed and a new symbiotic breather is created. The color
here represents the total density of the two species, unlike the other figures.
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represents the (normalized) atomic density |zn,i|2 with i = 1 for one species and

i = 2 for the other. The simulations start with two Gaussian wavepackets of the

form (5.15) with cos p1 = cos p2 = −0.95 and p1 = −p2 to form two colliding

traveling breathers.

In Fig. 5.5(a) when the interspecies interaction parameter Λ1,2 is set to zero, the

breathers follow the dynamics of single-species condensates and pass through each

other unaffected. When Λ1,2 is a non-zero value, the two species affect each other

when occupying the same lattice sites. This is shown in Fig. 5.5(b) and (c). At the

beginning of the simulations, when the breathers are far apart from one another

in the lattice, they follow the same path as in Fig. 5.5(a), until they collide. For

large negative values of Λ1,2, the breathers collide elastically, as shown in figure

5.5(b). In this example, Λ1,2 = −20 and the breathers become narrower when

they collide. In Fig. 5.5(c), Λ1,2 is changed to a positive value and the collision

is not elastic. At the collision, the breathers explode, emitting a large amount

of sound waves and a stationary symbiotic soliton composed of both species is

formed.

It is worth noting that elastic collision occurs when the interspecies interaction

parameter is negative, which would normally imply attractive interactions be-

tween the two species. Normally the two clouds try to achieve maximal overlap

in order to minimize energy [67], while in this case the tendency is to minimize

the overlap and retain separation of at least a few lattice sites. An explanation

of this phenomenon by using the negative effective mass of the discrete breathers

is provided in Section 5.4.1.

It should be noted that the single-species traveling breathers are not exact solu-

tions of the DNLS equation due to the emission of sound waves [91]. Nevertheless,

they survive well localized for extremely long timescales. For the simulations in
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Fig. 5.5, the parameters have been carefully chosen so that the amount of sound-

waves emitted from the breathers is minimal and find that, at the moment of

collision, the breathers have only lost less than 0.47% of their densities. Without

interactions between species, they also survive in simulations with timescales of

τ ≈ 106, which is much higher than the collision times considered here.

The following simulations use parameter values chosen from table 5.1 to model

mixtures of ytterbium isotopes and that of 41K+87Rb in realistic configurations.

In these simulations, although the initial condition emits large amount of noise, it

is found that the main dependance of the collision from the interaction parameter

Λ1,2 remains that displayed in Fig. 5.5.

Fig. 5.6 shows numerical simulations of two colliding breathers in the 170Yb +

174Yb mixture that display similar results to that of Fig. 5.5(b). Note that for all

following simulations, the dynamics of each species is shown in separate panels,

unlike Fig. 5.5. For example, the left column in Fig. 5.6 shows the 170Yb species,

while the right column shows the 174Yb species. In Fig. 5.6(a), at about τ ≈ 90 the

two breathers collide elastically, as in Fig. 5.5(b) since the interspecies scattering

length is large and negative.

Figure 5.6(b) shows a similar situation, except that now one of the breathers

(174Yb) is at first stationary (cos p2 = −1). After the collision the initially travel-

ing breather (almost) stops while the other, up to now stationary, starts traveling.

One could argue that this is a manifestation of a form of conservation of momen-

tum. Again, as in Fig. 5.5, the elastic behaviour occurs even though the 170Yb and

174Yb pair is described by a large negative scattering length of a1,2 = −27.3 nm,

which, under normal circumstances, stands for attraction between the atoms of

the two species.

Compared to the examples in Fig. 5.5, there is a much larger amount of sound

waves emitted from the breathers in Fig. 5.6 due to the parameter values used
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Figure 5.6: Collisions of two breathers in the 170Yb (Species 1) + 174Yb
(Species 2) mixture characterized by a large negative interspecies scattering
length of -27.3 nm. The Gaussian parameters for the initial condition in (a) are
n̄1 = 16, n̄2 = 112, σ1 = σ2 = 3 and cos p1 = cos p2 = −0.95. For (b), the phys-
ical situation is the same as in Fig. 5.6 (a), except that n̄2 = 64 and cos p2 = −1
to make a stationary breather. In (a), 2 traveling breathers collide elastically.
In (b).A traveling breather transfers large part of its (pseudo)momentum to a

stationary one and nearly stops.

from Table 5.1. For example, in Fig. 5.6(a), the 170Yb (174Yb) breather loses

1.83% (15.5%) of its density from the sound waves. Small amplitude sound waves

do not affect the main collision in a significant way since the central part of each

breather acts as an effective barrier to the sound waves emitted by the breather of

the other species. Sound waves that would normally expand over the entire lattice

are now confined to a region limited by the central parts of the two breathers.

The scattering of sound waves due to discrete breathers is investigated in detail

in [91].
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Figure 5.7: Inelastic collisions of ytterbium isotopes. In (a), a traveling
(170Yb, species 1) and stationary breather (168Yb, species 2) collide for a posi-
tive interspecies scattering length of 6.2 nm. The initial condition parameters
are n̄1 = 16, n̄2 = 64, σ1 = 5, σ2 = 3, cos p1 = 0.8, cos p2 = 1.0. As in
Fig. 5.5(c), the traveling breather is destroyed and a new symbiotic soliton is
created. In (b) we have the same physical situation as in Fig. 5.6 (a), except
that the parameter Λ1,2 describing the interspecies has now been increased to
4, corresponding to a positive interspecies scattering length of 8.9 nm. In this
regime, the two breathers tunnel through each other. Note that a small part
of each breather is trapped inside the other forming double-species traveling

breathers.

A qualitatively different behavior from the above and similar to that in Fig. 5.5(c),

is found in the case of the 168Yb+170Yb pair described by a positive (repulsive)

scattering length of a1,2 = +6.2 nm. Due to the large intraspecies interaction of

168Yb it is difficult to construct a clear traveling breather and therefore only sta-

tionary 168Yb breathers that are initially stationary can be formed. This situation

is presented in Fig. 5.7(a). As in Fig. 5.5(c), at the time of impact (τ ≈ 40) the two



Chapter 5. Discrete Breathers in Two-Species Bose-Einstein Condensates 91

breathers literally explode emitting a large amounts of sound waves and forming

a double-species symbiotic stationary breather. In this state, the two component

wavefunctions are well overlapped. Moreover, the final breather is much narrower

than any of the original breathers before the collision. The frequency of oscilla-

tion of the two final co-located and co-existing breathers is species dependent. In

the case displayed in Fig. 5.7(a) the frequency of the 168Yb breather is about 1.5

times that of the 170Yb breather located on the same site.

To further explore these phenomena simulations were run for the physical situa-

tion described in Fig. 5.6(a) of the 170Yb+174Yb mixture but with the interaction

parameter Λ1,2 increased to 4 corresponding to an interspecies scattering length

of a1,2 = 8.9 nm. Such an increase can potentially be achieved using an optical

Feshbach resonance. In this situation, interspecies interaction is now positive.

The collision is shown in Fig. 5.7(b). Yet another collision behavior is found with

these parameters: the two breathers mainly tunnel through each other but at each

collision a fraction of the atomic species in one soliton becomes trapped inside

the other. Moreover, the breathers appear to accelerate or decelerate for a brief

time during the strong interaction. In this simulation, we allow the breathers

to collide with each other for a second time, after one has “bounced” off at the

reflective boundary. The result is a stationary symbiotic breather.

Quite different results are obtained for the 41K+87Rb mixture, characterized by

a large tunneling rate ratio of γ2/γ1 ≈ 6.97. This, together with the large self-

interaction of Rb, changes the physics dramatically.

In Fig. 5.8, collisions of a traveling breather and a self-trapped state of rubidium

atoms is shown. Within the range of the simulation parameters that simulates

possible experimental realizations, it has proved not possible to initiate a traveling

breather state with the Rb condensate due to its large self-interaction. The

interspecies interaction parameter is Λ1,2 = 3 for Fig. 5.8(a) and Λ1,2 = −9
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Figure 5.8: A collision of a traveling (41K, species 2) and a stationary breather
(87Rb, species 1), with the interspecies interaction parameter Λ1,2 = 3 (a) and
Λ1,2 = −9 (b). The initial condition parameters are n̄1 = 64, n̄2 = 12, σ1 = 0.5,
σ2 = 3, cos p1 = 1, cos p2 = −0.9. In (a), the traveling breather tunnels almost
completely through the self-trapped state, while in (b), the traveling breather
bounces elastically from the self-trapped state with only a minor proportion

tunneling through.

for Fig. 5.8(b). In both cases the rubidium breather acts only as a potential

barrier, through which some of the incoming potassium soliton can either reflect or

tunnel. This behavior, which contrasts with the phenomena seen in the simulation

with ytterbium, can be attributed to the drastically different tunneling rates of

potassium and rubidium.
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5.4 The collision mechanism

In this section, the dependence of the result of the collisional process with re-

spect to the interspecies interaction Λ1,2 is investigated. By treating the discrete

condensate wavefunctions as distributions the mean lattice site is defined

〈ni〉 =
∑
n

n |zi,n|2 , (5.22)

and its standard deviation,

〈∆ni〉 =

(∑
n

(n− 〈ni〉)2 |zi,n|2
)1/2

. (5.23)

These two parameters describe the global behavior of the condensate. In fact, if

a breather splits or is destroyed in a collision, the standard deviation increases

dramatically. To assess the local behavior, i.e. looking for a new breather created

in a collision, the site with the largest number of atoms, nmax,i is found, along with

an estimate of the new breather’s width (Full Width Half Maximum, FWHM)

by counting the adjacent sites which contain at least half the number of atoms of

those in the site of the maximum.

Figure 5.9 shows the parameters 〈ni〉, nmax,i, 〈∆ni〉 and the FWHM as a function

of the mutual interaction parameter Λ1,2. For each value of Λ1,2 a simulation

was performed up to τ = 150, just past the collision. The initial conditions and

interaction parameters are the same as in Fig.5.6, except for the scanned Λ1,2 and

the tunneling ratio γ2/γ1, which is set to 1.

Four different regimes can be identified from Fig. 5.9. On the left, for Λ1,2 lower

than about −2.0, two traveling breathers collide elastically and remain basically

unaffected by the collision. This is the situation shown in figure 5.6. Then, there

is a transition point at Λ1,2 ≈ −1.5 where the each breather splits into two as
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Figure 5.9: The collision outcome as a function of the interspecies interaction,
Λ1,2. The top panel displays the mean and the peak site per species, the center
panel the standard deviation per species, and the bottom panel the FWHM
per species as defined in the text. Symplectic simulations corresponding to the

170Yb+174Yb mixture.
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they collide. This results in a sudden increase of 〈∆n〉 for each species. Note that

this increase differs between the two species; for 174Yb it’s maximum is located

at Λ1,2 ≈ −2 as opposed to Λ1,2 ≈ −1 for 170Yb, quite probably as a result of the

different self-interaction parameters.

For small, but positive values of Λ1,2 (i.e. less than 6) the two breathers tunnel

through each other. Note that 〈∆n〉 remains low in this regime (about 15 sites,

growing slowly to 20) which means that the breathers are not destroyed. This

is shown in Fig. 5.7(b) for Λ1,2 = 4. As the two breathers tunnel through each

other, a part of their wavefunction is trapped inside the other soliton; this effect

grows as the interspecies interaction increases leading to a slow increase in the

standard deviation of the atomic density distributions.

A rather sudden change takes place at about Λ1,2 = 6. The system becomes

visibly sensitive to small changes in the mutual interaction. This is the regime

where the collision results in the destruction of the two breathers. Fig. 5.7 is

an example of such a case. The process is chaotic, yet in many cases leads to

the creation of a double-species symbiotic breather manifested by its very low

FWHM.

5.4.1 Discussion

The presented results can be reasonably explained by using one of the key phe-

nomena at the base of lattice solitons: the negative effective mass. The dynamics

of a lattice soliton in an external potential are exactly opposite to what one would

expect - a lattice soliton attempts to climb potential hills and in itself is a bal-

ance between its negative effective mass that tries to make it collapse and its

repulsive self-interaction that prevents it [30, 61]. In fact, the variational model
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of a wavepacket used in Trombettoni et al. [30] shows that the wavepacket center

obeys a Newton-like dynamics when p ≈ 0 and exactly the contrary when p ≈ π.

This ‘contrary’ behavior of the solitons seems to be the key to the explanation

of these findings. The totally elastic collision encountered when the interspecies

interaction is highly attractive would be caused by the fact that the solitons ‘see’

each other as potential walls rather than wells.

The splitting behavior has been investigated in a slightly different context by

Matuszewski et al. [61] where the dynamics of two already overlapped stationary

solitons was analyzed. In our case splitting happens if the attractive interaction

is small enough to let the two breathers overlap briefly. Then the system becomes

unstable and each breather splits in two. It is also possible to look at this phe-

nomenon from a different angle. Due to its negative effective mass, the split of

the breather is quite similar to the case of a wavepacket encountering a potential

barrier where, depending on the barrier height (or the interaction between the

breathers) part of the wavepacket goes through while the rest is reflected.

In the repulsive interaction regime the breathers behave as if they saw each other

as potential wells. This is again an effect of their negative effective mass and,

consequently, reversed dynamics. Thus, for the collision’s duration, their speed

increases (at the cost of wavepacket spreading and of a reduction of their energy

due to atomic self-interaction).

The chaotic behavior when the interspecies interaction is large and repulsive

is probably caused by the system entering an unstable regime as predicted by

Gubeskys et al.[58]. The chaotic dynamics would then cause the destruction of

the original two breathers and possibly the creation of a stable intragap soliton.

It is beyond the capabilities of the discrete model to establish if it is possible for

an intergap soliton to emerge during the collision since the tight-binding approx-

imation is limited to the lowest band-gap by definition.
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Figure 5.10: Collision of two TLSs in the continuous case (5.24). Panels
(a) and (b) show collisions of TLS with one intensity peak per potential well
(defined in 3.5), while panels (c) and (d) show collisions of TLS with two peaks
per potential well (defined in 3.4). In both cases, a negative values of βi,i (-2 in
(a) and -18 in (c)) gives an elastic collision, while symbiotic solitons are created
with positive ones (2 in (b) and 20.4 in (d). These results are similar to those

displayed in Fig. 5.5(b) and (c) for the DNLS model.

5.5 Collisions of Travelling Lattice Solitons in

the Continuous Model

The DNLS model describes BECs in optical lattices in the limit of deep potential

wells. The interactions and collision mechanisms of breathers in two-species BECs

presented in Sections 5.2, 5.3 and 5.4 survive the tight-binding approximation.

Here, a scaled version of the one-dimensional Gross-Pitaevskii equation (similar



Chapter 5. Discrete Breathers in Two-Species Bose-Einstein Condensates 98

to Eq.2.20) extended to two-species BECs in optical lattices is:

iu̇i =

(
− ∂2

∂x2
+ V0 sin2

(πx
2

)
+
∑
j=1,2

βi,j|uj|2
)
ui , (5.24)

where ui is the wavefunction of the i-th species, V0 = 10 is the potential depth

scaled to the recoil energy, βi,i and β1,2 = β2,1 are the intra- and interspecies

interaction parameters respectively. The spatial variable x is now continuous and

the Laplacian term describes the momentum of the atoms in the lattice. It is

shown here that the collision mechanisms survive from the discrete to continuous

limit by simulating an optical lattice of 160 potential wells.

In Fig. 5.10 (a) and (b), collisions of two TLSs with one intensity peak per

potential well, as defined by Eq. 3.5, are shown. In (a), with β1,1 = β2,2 = 0.04

and an attractive interspecies interaction of β1,2 = −2, an elastic collision is

obtained by the numerical integration of Eq. (5.24). Likewise, inelastic collisions

take place with repulsive interactions as shown in Fig. 5.10(b), with βi,j = 2. The

inelastic collision here ends in the formation of a symbiotic lattice soliton.

Collisions of two TLSs with two intensity peaks per potential well, as defined

in Eq. 3.4, are shown in Fig. 5.10(c) and (d). Despite this TLS not having an

analogue in the discrete case due to its shape, the same basic results as both

the discrete breathers and single-peaked TLSs is observed. An elastic collision

is observed in (a), with β1,1 = β2,2 = 1.0 and a large attractive interspecies

interaction of βi,j = −18. Similarly, repulsive interactions give inelastic collisions,

shown in Fig. 5.10(d), with βi,j = 20.4. As with the single peak, the example

shown here produces a symbiotic lattice soliton.

The simulations of the continuous model (5.24) take at least six times as long

as those of the discrete model, even with the similar number of potential wells

(160 in the continuous compared to 127 in the discrete). It should also be noted
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that the numerical method used for the continuous case is not symplectic and

uses periodic boundary conditions that limit its application. In spite of these

limitations, the results of the continuous model simulations confirm those of the

DNLS model in the deep potential case as demonstrated in Fig. 5.10. For these

reasons, the DNLS model represent an accurate and trustworthy testbench for

the realistic investigation of the collision mechanism of breathers in two-species

BECs as shown for example in the exhaustive Fig. 5.9.

5.6 Conclusion

In this chapter, the behavior of interacting and colliding discrete breathers in

BECs composed of different atomic species in optical lattices has been studied.

We have found that the interaction depends on the initial distance of the two

breathers and led either to the formation of a symbiotic solitons or to the setup

in motion of one of the two breathers. The collision outcome depends both on the

tunneling rate ratios of the two species, as well as the interspecies interactions.

When the tunneling rates differ greatly, as in the 41K+87Rb mixture, one of the

breathers acts as an effective potential wall to the other and the whole process

can be viewed as a case of one-particle scattering on a potential wall.

In the case where the tunneling rates are comparable (like in the case of mix-

tures of ytterbium isotopes) we have identified four collision regimes. For large

negative scattering lengths the collision is elastic and the two traveling breathers

remain intact, with considerable momentum transfer between the two. For small

negative scattering rates, the breathers overlap briefly and split in two, as orig-

inally predicted in [61]. When the interspecies interaction is weakly repulsive,

the two breathers tunnel through each other unharmed for a wide range of inter-

species interacions. Finally, with the interspecies interaction sufficiently large, the
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dynamics becomes chaotic and the two breathers are destroyed with a possible

creation a new two-component soliton similar to an intragap soliton as predicted

in [58]. Feasible explanations to the above phenomena have been provided using

the concept of negative effective mass and the resulting reversed dynamics.

Interaction and collision properties of localized excitations in BECs in optical

lattices can have interesting applications in the realization of ultracold Bose-

Fermi mixtures where lattice solitons can be viewed as matter-wave counterparts

of quantum dots and antidots [92]. Changing the species interaction allows one

to tune the character of the collisions from fully elastic to fully inelastic and/or

tunneling with clear advantages in the manipulation of information in matter-

wave systems.



Chapter 6

Conclusions

Since the realisation of the first BEC in 1995, it was realised that many atoms

can display macroscopic phases, wave features and nonlinear interactions at very

low temperatures. This has lead to the re-discovery of every single phenomenon

of nonlinear and quantum optics in the atomic domain.

In this thesis we have focused on localisation and the formation and interaction of

solitons that were fist discovered in the nonlinear optics domain and later extended

to the BEC regimes via universality. New features such as higher order travelling

lattice solitons, boundary induced localisations, and interacting breathers in two

species BECs have been identified and, in an interesting turn of events, extended

from the BEC configurations to arrays of optical waveguides. In particular a

theoretical study of localisation in BECs in optical lattices has been presented,

in both a continuous model via the Gross-Pitaevskii equation, and a discrete

model via the Discrete Nonlinear Schrödinger equation. This was studied in

three different situations.

Firstly, in Chapter 3, a model of a BEC in a ring optical lattice with atomic

dissipation was studied in the continuous GPE with angular coordinates. The

101
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localized dissipation can be applied at a stationary or moving location on the

ring and was shown to generate and stabilise stationary and travelling lattice

solitons. It was seen that, in a similar way to the discrete case of the DNLSE [35],

localised modes could be found by applying localised atomic dissipation. Also, the

dissipation could clear noisy backgrounds (which would persist in a conservative

model) and stabilise the localized mode. A novel travelling lattice soliton with

two intensity peaks per potential well was presented in Section 3.3 of Chapter 3.

This cannot be reproduced in the discrete model due to its shape. Then, collisions

between stationary and travelling lattice solitons was investigated. It was found

that the amplitude of the SLS affected the interaction. Collisions between two

travelling lattice solitons, both with either one or two peaks per potential well,

were also investigated. During the collision, some of the atomic densities of each

TLS passed through and some was reflected. This was done in such a way that

the shape of the TLSs after the collision was the same. The fraction of atoms

that were reflected or transmitted was found to change with different potential

depths of the lattice.

In Chapter 4, collisions of travelling lattice solitons with a potential barrier in

the form of a Gaussian peak or trough was studied. Collisions of two different

types of TLS and of a discrete breather with the barrier were considered, along

with the dependence of the collision on the barrier height. For each of these,

regions were found corresponding to complete reflection, where the travelling

solitons reflected off the barrier, maintaining their shape and velocity. Regions

were also found in which the TLS was split in two. The ring lattice allowed us to

consider a situation similar to a Mach-Zehnder interferometer in which the two

split TLSs were allowed to recombine with the barrier. This situation has been

considered previously but without an optical lattice in [43]. The use of the lattice

allows for all these considerations to extend to the case of repulsive condensates.

Collisions of the double-peaked TLS with the barrier produced unexpected results,
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including trapping in regions in which there should be none, and repeated regions

of reflection and transmission, possibly from interference effects.

In Chapter 5, we investigated discrete breathers in two-species BECs, in which

the interaction between atoms of different species provides a further nonlinearity.

It was found that the interaction between two stationary breathers is dependent

on the distance between them. Results of this ranged from the formation of sym-

biotic breathers composed of both species, to the transformation of one of the

breathers from a stationary one into a travelling one. The collisions of breathers

were found to depend heavily on the interspecies interaction parameter. For two

breathers composed of different species and with similar tunneling rates, four

collision regimes were identified, ranging from elastic when the interspecies inter-

action is large and attactive to mutual destruction when the interaction is large

and repulsive. The results of the discrete regime were extended and verified in the

continuum case thus strengthening the feasibility of experimental observation.

Although the work presented in this thesis has covered a large number of continu-

ous and discrete lattice solitons, their stability and their interactions, the research

into localisation of atomic density in BECs in optical lattices or light in arrays of

optical waveguides is far from complete.

One method of supporting solitons in nonlinear media is that of localized gain

(for a review, see [95]). There is also great interest in parity-time symmetric

systems [96], for which, when applied to a BEC, localized gain and dissipations

are balanced (for recent reviews about nonlinear systems, see [97]). It should be

possible to implement this technique in the models described in this thesis, with

the gain being provided by an atom laser [98]. Indeed, such a setup is described

in [99] for a ring trap without a lattice.

Since the GPE and the DNLSE have been obtained under the mean-field approx-

imation, which is valid in the limit of large numbers of atoms, purely quantum
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effects arising from atom-atom correlation, such as the collapse and revival of the

matter wave field [100] or many-particle entanglement [101, 102], have not been

considered here. A detailed investigation of these effects is beyond the scope of

this thesis, although recent studies concerning localization of a BEC in an op-

tical lattice in the presence of localized dissipations and beyond the mean-field

approximation can be found in [32, 102, 103]. All these simulations confirm that

the fundamental result of self-localization via localized losses, originally obtained

in [35], survives in the quantum regimes beyond the mean-field approximation.

Discrete breathers in the DNLSE have been associated with negative temperature

states. A study of this was presented in [82]. It would be interesting to generalise

this to the continuous GPE and lattice solitons.

Other areas of interest include generalisations to fermions instead of bosons, dis-

ordered lattices, bound states, spin properties, quantum features, coupled trans-

port, interferometry and even analogues of solid state systems. These are just a

few areas of future research where our work can find new and useful applications.



Appendix A

Numerical Methods

Here the methods of numerical integration used in this thesis are described. In the

continuous case, a split-step method is used for Eq. 2.20 in which the linear terms

are integrated spectrally and the nonlinear terms using a second-order Runge-

Kutta method. The discrete model is integrated using a symplectic method.

Both these methods are detailed below.

A.1 Numerical Methods for Continuous Model

A.1.1 Runge-Kutta methods

Euler’s method is described as

yn+1 = yn + hf (tn, yn) (A.1)

Here, the solution is moved from t0 to t1 = t0 + h where h is the step-size, and is

determined by a single-step. This increases the error of the solution. The error (ie

105
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the difference between the exact solution and the one given by Euler’s method)

is O(h2).

The second-order Runge-Kutta method uses an intermediate step to reduce this

error. The values at this midpoint are used to evaluate the full step. This reduces

the error to O(h3) [104]. An example of a second-order Runge-Kutta method is:

k1 = hf (tn, yn)

k2 = hf

(
tn +

1

2
h, yn +

1

2
k1

)
yn+1 = yn + k2 (A.2)

A fourth order Runge-Kutta method can be given by generalising this approach

further, in which four evaluations are used for each term [105]:

k1 = hf (tn, yn)

k2 = hf

(
tn +

1

2
h, yn +

1

2
k1

)
k3 = hf

(
tn +

1

2
h, yn +

1

2
k2

)
k4 = hf (tn + h, yn + k3)

yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 (A.3)

This reduces the error further to O(h5) [104]. This can be generalised further but

the second-order and fourth-order Runge-Kutta methods are the most common

ones. The second-order Runge-Kutta method is used in the continuous model

in this thesis since the split step operation introduces a computational error of

similar size.
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A.1.2 Split-step method

The Gross-Pitaevskii (GP) equation, as used for the continuous model can be

written as:
∂u

∂t
= Lu+Nu (A.4)

where N is a nonlinear operator, describing the potential, nonlinear and dissipa-

tive terms, and L is a linear operator describing the spatial derivatives, or the

diffraction term. This can be integrated over a time-step dt to give

u (t+ dt) ≈ exp ((L+N ) dt)u(t)

≈ exp (Ldt) exp (Ndt)u(t) (A.5)

This is not an exact solution. An error is introduced due to the operators not

commutating. This can be minimised by rearranging the equation like so:

u (t+ dt) ≈ exp

(
L
2
dt

)
exp (Ndt)u(t) exp

(
L
2
dt

)
(A.6)

In Eq. A.6, a half step is first taken with L, the a full step is taken with N and

finally a second half-step is taken with L.

Splitting up the operators in such a way allows the separate parts of the equation

to be solved fairly easily. The linear parts can be solved spectrally by using fast

Fourier transforms to the frequency domain. The inverse Fourier transform is

then used to go back to the time domain. The nonlinear part of the equation

has no spatial dependence, and so can be solved using a Runge-Kutta method.

For this thesis, a second-order Runge-Kutta method (as in Eq. A.2) was sufficient

enough for this.



Appendix A. Numerical Methods 108

A.2 Symplectic Method for Discrete Model

With the wavefunction split into real and imaginary parts (i.e. z = a + ib), the

DNLSE can be written as

ȧn = −
(
a2
n + b2

n

)
bn − (bn + bn−1)

ḃn =
(
a2
n + b2

n

)
an + (an + an−1) (A.7)

from the Hamiltonian

H (a, b) =
∑
n

1

4

(
a2
n + b2

n

)2
+
∑
n

(anan+1 + bnbn+1) (A.8)

This system has two integrals of motion as it conserves both the energy H and

the density

D (a, b) =
1

2

∑
n

(
a2
n + b2

n

)
(A.9)

The Hamiltonian is split into two parts, ie H = H1 +H2, where

H1 =
∑
n

1

4

(
a2
n + b2

n

)2
(A.10)

and

H2 =
∑
n

(anan+1 + bnbn+1) (A.11)

The operators eτLA and eτLB can be found analytically (see [106]). From this

splitting we construct the second-order symplectic integrator, known as the leap-

frog or Verlet integrator (see, for example, [107]):

Y2 (τ) = e
τ
2
LAeτLBe

τ
2
LA (A.12)
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Yoshida [81] showed that with appropriate coefficients x1 = 1
2−21/3

and x0 =

−21/3x1 a fourth-order symmetric integrator can be constructed:

Y4 (τ) = Y2 (x1τ)Y2 (x0τ)Y2 (x1τ) (A.13)

We have used this algorithm when the conservation of energy and atomic density

is required.
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[100] M. Greiner, O. Mandel, T. Hänsch and I. Bloch, Nature (London) 419, 51

(2002).
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