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Abstract 

 

Throughout the maritime industry, there has been relatively high number of shipping-related 

incidents. Therefore, numerous international, local and Classification Society based 

legislations have been developed in order to regulate shipping and reduce accidents. These 

policies not only dictate ship design methodologies but also inspection and maintenance 

activities of vessels. These policies on inspection and maintenance have generally increased 

the cost of shipping in the world. As a result, there has been substantial research on the risk 

and cost aspects of maintenance in the maritime industry. However, no research has put 

emphasised risk and technical aspects of maintenance with the business and cost related aspects 

of maintenance in one unified platform. Therefore, this PhD has developed an overall 

methodology in order to combine cost and business oriented aspects of a shipping company 

with their risk and technical aspects. 

 

This methodology is called Business Oriented Probability-based Maintenance (BOPM). In this 

methodology, company business aspects and Maintenance Performance Indicators (MPIs) have 

been used to modify and personalise maintenance and repair cost values, risk factors (human 

risk, environmental risk, cost of failure and loss of operation), and component/sub-system 

performance reading limits. Performance limits from OEM reports modified by company 

specific inputs are then used to determine probabilistic performance values based on the 

monitored live values received from vessels. Subsequently, these probabilistic values are 

placed in a Probabilistic Analysis Unit (PAU) within the BOPM platform to predict the future 

performance values for each component/sub-system within the system. This PAU model uses 

an innovative Dynamic Bayesian Network (DBN) with first order Markov Chains to predict 

the future probabilistic pattern of each system monitored from the vessel.  

 

Afterward, net cost analysis is performed using cost values modified by company MPIs inside 

utility and decision nodes added to the DBN model in order to provide cost-based decisions on 

the performance of each component and schedule specific maintenance or repair dates if 

required. In the other section of the BOPM risk values are combined with their probability of 

failure using a Fuzzy Set Theory (FST) in order to determine a final relevant risk value for each 

component/sub-system. Finally, obtained risk values are combined with decisions from the 

cost-based DBN Decision Analysis Unit (DAU) to prioritise tasks that are intervening with 
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each other. The overall methodology was approved and validated by both industrial experts 

and using results and conclusions made from the INCASS EU FP7 project that I was also 

involved in. 

 

Three similar systems from three vessels have been used as the case studies in order to analyse 

the effectiveness of the BOPM platform and validate its results. These vessels are two chemical 

tanker sister ships and one general cargo vessel. Three similar system types from each vessel 

have been used namely the Lub-oil system, Fuel-oil system and Turbocharger. Having two 

sister ships operating in different environments has also created the possibility of evaluating 

the effects of environment on performance of each system.  

 

Using the overall BOPM analysis platform, relative probabilistic performance and availability 

of all the sub-systems/components within the main observed systems were predicted for four 

future time slices. This was then compared with actual observed performance value and it was 

noted that the overall methodology has an accuracy of 97.8%. Subsequently, using the 

decision-making part of the methodology, future maintenance tasks were recommended. This 

was then compared with the maintenance logs of all three vessels and it was observed that they 

were not simply matching but also exceeding their recommendations and saving the company 

an extra $467. Finally, the results obtained also proved that the overall results and scope of the 

thesis have helped to meet and exceed the overall goals and targets of the company. 

 

Keywords: Business-oriented Probability-based Maintenance (BOPM), Dynamic Bayesian 

Network (DBN), Markov Chain, Net cost analysis, Decision-making, Risk factors, 

Maintenance Performance Indicators (MPIs), Technical and business aspects 
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CHAPTER 1-INTRODUCTION 

 

1.1 Chapter Introduction 

 

This chapter contains introductory information and a general outline of the overall dissertation. 

The chapter will provide brief information on the content of other chapters of the thesis in order 

to clarify the overall flow of this dissertation.  

 

1.2 General Background 

 

Shipping is the most important type of transportation for goods in the world as approximately 

90% of all goods are transported via the sea (ICS, 2015). A United Nations Conference on 

Trade and Development (UNCTAD) has estimated that shipping contributes to 5% of world 

trade at around US$380 billion. With the advancement of globalisation shipping trade has 

quadrupled in the past 40 years (from 8 thousand billion tonne-miles in 1968 to 32 thousand 

billion tonne-miles in 2008). This trend is still growing, as the graph on Figure 1 demonstrates 

(UNCTAD, 2014). 

 

 

Figure 1 - World Seaborne Trade 2000-2014 (UNCTAD, 2014) 

 

The Information Handling Services (IHS) insight company has also predicted an exponential 

increase in seaborne trade up to 2030 (Figure 2). This can drastically change the economy of 
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some countries like Greece where they own beneficial dead weight tonnage of 258,484 

(15.415% of total world dwt) for a population of approximately 11 million people (ICS, 2015).  

 

 

Figure 2 - Word Seaborne Trade Prediction up to 2030 (ICS, 2015) 

 

General aspects of modern shipping and the maritime industry have been changing in the past 

decade. These changes have been mainly influenced by the public perception of global 

warming and pollution problems. This has also resulted in the introduction of tougher safety 

and environmental legislation to be adopted by the shipping industry. The European 

Community Shipowners’ Association (ECSA) has introduced various reports on helping ship 

owners to adapt to the future of the shipping industry such as their 2013 CO2 Emission 

Monitoring proposal (ECSA, 2013). The International Maritime Organisation (IMO), which is 

the main regulatory body for most of the shipping and maritime industry in the world, has 

introduced numerous rules and regulations (some mandatory and some optional) on the safe 

operation of sea-going vessels and other offshore structures. Such regulations will minimise 

accidents and lessen environmental impacts from hazardous and pollutant substances for the 

environment (ECSA, 2013).  

 

These regulations can be characterised as operational, design, construction, 

decommissioning/recycling and maintenance areas. For example, well-known regulations and 

guidance have been introduced by the IMO including: the Guidance on Ship Recycling 2006, 

Pollution Prevention Equipment 2006, Ballast Water Management Convention 2004, Survey 

of Machinery Installation 2004, General Operators Certificate for GMDSS 2015, MSI 

(Maritime Safety Information) Manual 2015, Condition Assessment Scheme (CAS) and 

various MARPOL (Marine Pollution) protocols (IMO, 2016). The CAS scheme creates 

mandatory condition monitoring, assessment and renewal surveys of category 2 (20000dwt and 
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above) and 3 (30000dwt and above) oil tankers of at least 15 years of age (ABS, 2016). 

MARPOL, or the International Convention for the Prevention of Pollution from Ships, first 

appeared as part of the IMO safe shipping protocol in 1973. This protocol now has six main 

annexes: Regulations for the Prevention of Pollution by Oil (1983), Regulations for the Control 

of Pollution by Noxious Liquid Substances in Bulk (1983), Prevention of Pollution by Harmful 

Substances Carried by Sea in Packaged Form (1992), Prevention of Pollution by Sewage from 

Ships (2003), Prevention of Pollution by Garbage from Ships (1988) and Prevention of Air 

Pollution from Ships (2005) (IMO, 2016).  

 

All ship operators and owners of offshore structures should also follow guidance from at least 

one of the IACS (International Association of Classification Societies) members. This will 

allow the operators to insure their vessels and cargo in addition to enabling operation within 

different water regions and ports around the world. IACS provide more technical and detailed 

guidance on safe operation and maintenance of vessels. There are various generalised rules 

which all operators must follow including guidelines on risk assessment, coating surveys, hull 

condition monitoring, hull repairs and further guidelines on training and survey and condition 

monitoring techniques. General rules and guidelines from both regulatory bodies and 

classification societies prove the importance of maintaining a safe and environmentally friendly 

operational profile of sea-worthy vessels (IACS, 2017).  

 

Further regulations on maritime pollution were agreed within Chapter 4 of Annexe VI from 

MARPOL, adopted in 2011 and enforced in 2013, that all new ships must improve their 

efficiency by 10% and reduce CO2 emissions by 20% by 2020 (MARPOL, 2011). The 

efficiency values should also improve by 20% before the end of 2025 and by 30% by 2030 

(ICS, 2015). Finally, CO2 emissions should be reduced by half by 2050 throughout the entire 

shipping industry (ICS, 2015). This can be achieved both through better ship design and better 

maintenance programmes in order to maintain the overall performance and efficiency of the 

vessel during its lifecycle.  

 

Another important regulation that proves the importance of safe operation and maintenance of 

the shipping industry is called SOLAS (International Convention for the Safety of Life at Sea, 

1974). This regulation does not simply request for safe construction and implementation of 

safety equipment on vessels but also requires regular ship surveys and maintenance of vessels 
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to meet with both IMO and relevant flag state compliances (IMO, 2016). This regulation has 

14 chapters:  

 General provisions 

 Construction  

 Subdivision and stability  

 Machinery and electrical installations plus fire protection  

 Fire detection and fire extinction  

 Life-saving appliances and arrangements  

 Radio-communications  

 Safety of navigation  

 Carriage of cargoes  

 Carriage of dangerous goods  

 Nuclear ships  

 Management for the safe operation of ships  

 Safety measures for high-speed craft  

 Special measures to enhance maritime safety and security  

 Additional safety measures for bulk carriers  

 Verification of compliance  

 Safety measures for ships operating in polar waters.  

 

As Figure 4 demonstrates, these safety regulations aid overall improvement of the safety 

of maritime shipping significantly (Maritime-Executive, 2014). 
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Figure 3 - Overall Maritime Crew Fatalities for the 1994-2014 Time-period (Maritime-Executive, 2014) 

 

In brief, shipping is a large part of the world economy and plays a large role in transportation 

of goods, people and raw materials worldwide. Future trends in this industry illustrate a 

substantial growth in its marketplace. However, further regulations on ship safety, 

environmental impact and emissions creates some challenges for operators. This, in turn, 

heightens the operational costs of vessels. One of the best ways to enhance the safety of the 

vessel in operation and reduce unwanted costs is an effective maintenance programme. This is 

further emphasised with an increase in restrictions on periodic surveys by regulatory bodies 

and the IACS.  

 

In general, the introduction of tougher regulations, mentioned previously, can increase the 

overall cost of shipping in the world. Therefore, it is crucial for companies to enhance their 

productivity and performance in order to sustain a profitable outcome. Three major types of 

production and asset performance metrics are used in industry including: Return on net assets 

(RoNA), Return on capital employed (RoCE) and economic value added (EVA). This shows 

the importance of efficient production processes and reliable equipment. However, long term 

production processes and environmental factors may significantly reduce their performance 

due to the appearance of wear, corrosion and fatigue. As a result, it is vital to have an 

appropriate maintenance and inspection strategy available to prevent any production losses. 

The European Federation of National Maintenance Societies (EFNMS) defines the term 

maintenance as  (EFNMS, 2014): "All actions, which have the objective of retaining or 

restoring an item in or to a state in which it can perform its required function. The actions 
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include the combination of all technical and corresponding administrative, managerial, and 

supervision actions." This proves the importance of maintenance on sustainability of all 

engineering companies. Maintenance itself can be relatively expensive. Therefore, it is 

important to develop an optimum and cost-effective methodology for the maintenance of the 

plant in order to minimise its effect on the profitability of the company. In general, it is 

important to recognise maintenance as a profit-making factor of each company rather than an 

unwanted expenditure. Positioned in this theoretical and factual ground, and with particular 

focus on both the safety and profit-making aspects of maintenance in the maritime industry, 

this thesis will introduce an innovative approach of combining both technical (safety) aspects 

of maintenance with the business goals (profit) of the company in a unified maintenance 

methodology for the shipping industry. 

 

 

1.3 Thesis Layout 

 

The overall dissertation consists of eight distinctive chapters. These chapters start with a 

general overview of the maintenance and all different types of methodologies available in the 

industry. Subsequently, it introduces the reader to in-depth information on the main 

methodology created with its results based on the case studies obtained from three different 

ship types. Figure 4 illustrates the overall chapter flow of this thesis which starts with a 

statement of the research question, the aim and objectives; it has been designed to follow these 

objectives throughout its methodology development, case studies, results and discussion to 

help answer the research question. 

 

Before the introduction of the methodology in response to the research question, an in-depth 

critical review of the present research in the area has been performed in the literature review 

chapter. This literature review starts with the presentation of different maintenance task types: 

Corrective, preventive, predictive, proactive and self-maintenance. It also explains which 

particular sectors and in which period of time each of the maintenance task types have been 

employed. 
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Figure 4 - Overall Dissertation Flowchart 

 

The second section of the literature review starts with the introduction of the different 

maintenance strategies and concepts used throughout the industry. The first maintenance 

concept that is introduced is reliability-centred maintenance (RCM), which is becoming a norm 

in the maritime industry and other industrial sectors. Then, risk-based maintenance (RBM) is 

explained, especially from an offshore oil and gas industry perspective. Subsequently, 

condition-based maintenance (CBM) is discussed due to the introduction of the more advanced 

condition monitoring tools in the industry. Next, total productive maintenance (TPM) used in 

the manufacturing industry is described within its relevant industrial area. Finally, business-
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centred maintenance (BCM) has been studied to add a business view and an aspect on 

maintenance strategy compared with the other more risk- and reliability-based methods.  

 

The third section of the literature review looks into various types of tools used within 

maintenance policies in order to help maintenance managers assess the performance and cost 

aspects of vessels and produce overall maintenance tasks and scheduling. This starts with an 

introduction of failure analysis, reliability assessment and probability analysis tools that help 

end users understand the current condition of the system and predict its future. The major tools 

and models are evaluated for failure analysis, reliability assessment and probability analysis 

include: FMECA (failure mode, effect and criticality analysis), fault tree analysis (FTA), 

Bayesian belief network (BBN), probability distribution function (PDF), neural networks, 

Markov chains and Monte Carlo simulations. Then, decision-making tools are researched from 

the available literature for maintenance in the industry. These tools help users to choose the 

best decision for a maintenance plan from various available choices. The major decision-

making tools introduced in this literature review are: Fuzzy set theory (FST), analytical 

hierarchy process (AHP), analytical neural process (ANP), multi-criteria decision making 

(MCDM) and strengths, weaknesses, opportunities and threats (SWOT) analysis.  

 

Subsequently, risk analysis tools are introduced from the literature in order to analyse and 

define the overall risk within systems and their failures. These risk analysis methods are: as 

low as reasonably practicable (ALARP), proportional hazard modelling (PHM), hazard 

identification (HAZID) and hazards and operability (HAZOP). Finally, condition monitoring 

tools developed in the industry are studied within the literature review section. These tools help 

scientists evaluate the overall condition of systems using condition monitoring systems and 

their data. The condition monitoring tools explained in the literature review are: Auto 

regressive (AR) model, Fourier transform, wavelets transform, time-frequency (TF) and Morlet 

wavelet filtering.  

 

The next section of the literature review identifies the maintenance performance measurement 

techniques used in the industry. These techniques help users to determine the overall 

effectiveness of the developed maintenance programme and pinpoint its weak areas. The 

majority of maintenance performance measurement models explained in this literature review 

are: Maintenance key performance indicators (MPIs), overall equipment effectiveness (OEE), 

maintenance performance reporting, reliability, availability, maintainability and supportability 
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(RAMS), quality function deployment (QFD), balanced scorecard (BSC) and benchmarking. 

The final section of the literature review looks into different inspection, monitoring and data 

acquisition techniques used within the industry. These tools are categorised into four major 

areas of electromagnetic testing (alternating current field measurement (ACFM), time of flight 

and saturated low frequency eddy current (SLOFEC) and pulsed eddy current (PEC)), wave 

and vibration frequency monitoring (piezo-electric sensors, signal processing theory, and 

digital signal processors, acoustic emission monitoring, ultrasonic thickness measurements 

(UTM), impulse excitation technique (IET) and infrared cameras), structural surface and 

material property analysers (British Maritime Technology Hull Roughness Analyser 

(BAHRA), barnacle adhesion strength measurements and ellipsometry), and visual inspections. 

 

Chapter four of the dissertation will represent the developed business-oriented probability-

based maintenance (BOPM) model. This model has subsections of company goals, 

manufacturers performance limits, cost data, previous preventive maintenance (PM) reports, 

criticality classification of components, probabilistic analysis unit and decision-making unit. 

Criticality classification of the components and sub-systems are undertaken by creating risk 

matrices on three major risk areas of human risk, loss of operation and environmental risk. 

These risk values are then added together using the fuzzy logic technique created within the 

MATLAB environment. This will result in overall relative risk factor per component/sub-

system, where they can be used in conjunction with probability and net cost analysis decision 

results to prioritise tasks that are intruding upon each other. 

 

The probability analysis unit of the methodology starts by treating missing data areas from 

within data obtained from the ship operator partner. The Markov Chain Monte Carlo (MCMC) 

simulation model has been created within an SPSS environment to perform the missing data 

treatment task. Then, using manufacturers’ limits and input from the operator on the limits 

these data are turned into probabilistic values to be used for overall performance analysis and 

as a future prediction model for the methodology using Bayesian tools.  

 

Subsequently, these probabilistic values are analysed within a Dynamic Bayesian Network 

(DBN) with first order Markov chains to determine overall performance of the system at the 

moment and predict its future performance alterations. This model can also demonstrate the 

influence between each component or sub-system and the overall system. The result of this 

analysis is then further developed within the decision-making unit where utility and decision 
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nodes are used to implement net cost analysis to produce maintenance task decisions. These 

decisions, obtained from the cost benefit analysis, are then combined with overall relative risk 

factors to prioritise maintenance tasks and produce final maintenance scheduling decisions. 

 

The case study chapter of the thesis consists of three major systems: Lube-oil system, fuel oil 

system and turbochargers for three different ships. Two of these vessels are sister chemical 

tankers of 16500 dwt with seven-cylinder MAN B&W engines and one is a multi-purpose 

general cargo vessel of 9500 TDW with an eight-cylinder Wartsila engine. The overall 

structure of each major system with their performance limits and cost data are shown in chapter 

five. The general Bayesian network designs of each system with their utility and decision nodes 

are also illustrated in this chapter of the thesis.  

 

The results chapter of the dissertation shows the main probabilistic analysis results of the DBN 

models illustrated in the case study chapter. Additionally, it will demonstrate the graphical 

representation of the cost benefit evaluation of the networks using utility and decision nodes. 

Finally, the component and sub-system criticality classification results for all the evaluated 

parts will be tabulated in order to be used for final decision-making. 

 

The discussion chapter of the thesis will evaluate and generate final suggestions on the 

maintenance scheduling of the overall vessels using performance, net cost and criticality 

classification results. This section will also illustrate the comparison between different 

component and sub-system performance values of the two sister chemical tankers. This will 

give further insight into the effects different environmental conditions have on similar ship 

machinery and equipment used on both vessels. Finally, the overall benefits of using BOPM 

methodology in the maritime sector will be discussed with its benefits and weaknesses. 

 

The conclusion chapter of the dissertation will state the overall flow and achievements of all 

previous chapters. It will also summarise the overall results and discussion of the case studies 

to give an overall view of the methodology implementation. At the end of this chapter, future 

recommendations and research on further strengthening the overall methodology will be 

discussed in order to take this work to the next level of appropriate implementation in shipping 

companies. 
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1.4 Chapter Summary 

 

In summary, this chapter has given a comprehensive introduction to the importance of 

maintenance and development of an efficient maintenance methodology. This methodology is 

called BOPM. This chapter also described the overall flow of the dissertation in achieving this 

efficient maintenance model. The next chapter will highlight the overall research question with 

the aim and objective of answering the question through development of the methodology. 
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2 CHAPTER 2-AIMS & OBJECTIVES 

 

2.1 Chapter Introduction 

 

This chapter contains the research question as well as the main aim and objectives of the overall 

PhD thesis. 

 

2.2 Research Question 

 

The research question of this PhD thesis can be described as the following: 

 

Is it possible to combine shipping company costs and general safety aspects with technical 

vessel aspects in order to achieve a more optimum maintenance programme that meets both 

business and technical goals of the company? 

 

2.3 Aim & Objectives 

 

The main aim of this dissertation is to answer the research question stated previously by 

introducing an innovative BOPM maintenance methodology which can be implemented on 

ship machinery systems. The objectives relevant to the mentioned aim can be formulated as: 

 

1) A critical review and investigation of previous studies on business-oriented and reliability-

based maintenance techniques and researching about company reliability and probability 

models, cost benefit analysis and other relevant tools implemented in the maritime industry 

and other relevant industries 

2) Identification of the best tools and methodology and finding the overall gaps in the 

maintenance sector 

3) Development of an overall innovative BOPM framework with an outline of the sub-

sections 

4) Development of reliability and probabilistic tools that can observe the overall condition of 

the system in order to predict its future condition 
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5) Introduction of a decision support system including a net cost analysis, which can produce 

maintenance scheduling for the observed system 

6) Identification of component criticality classification to be used on task prioritisation for 

better maintenance 

7) Check of the overall validity of sections of the methodology with progress of the INCASS 

FP7 EU project and compare outcomes 

8) Implementation of the overall methodology with its tools on three main systems from three 

different ship case studies (two chemical tankers and one general purpose cargo vessel), 

discuss the results, compare with experts’ opinions and recommend future research and 

improvements 

 

2.4 Chapter Summary 

 

This chapter represented the main research question that has been answered using the aims and 

objectives of the overall PhD thesis. The next chapter of the dissertation will demonstrate a 

comprehensive literature review, identifying the industry norm concerning maintenance in 

order to provide initial information concerning achieving the overall thesis aim. 
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3 CHAPTER 3-MAINTENANCE LITERATURE REVIEW 

 

3.1 Chapter Introduction 

 

This chapter represents a comprehensive literature review concerning maintenance in the 

industry. It includes maintenance task types, maintenance policies and methodologies, 

maintenance-related tools, maintenance performance measurements and inspection and data-

gathering tools. This chapter also critically reviews all maintenance-related areas and gives an 

overall opinion of the gaps in the relevant literature. 

 

Maintenance tasks are usually classified into three types: Corrective, preventive and predictive, 

all of which are mentioned in this section. However, having a general policy and maintenance 

system is important to gather these classification tasks to obtain maintenance schedules. These 

policies are mentioned in the next section of this chapter. Each of these policies would require 

further tools to obtain the data and make the final decisions on maintenance tasks. These tools 

are categorised into: probabilistic, reliability, risk analysis, condition monitoring and decision-

making categories. Section 5 of this chapter explains different versions of these tools in more 

detail. Section 6 introduces performance measurement systems that are essential for evaluating 

the effectiveness of the maintenance policy used. Subsequently, data gathering and inspection 

systems crucial for obtaining information for maintenance tools are described in Section 7. 

Finally, Section 8 identifies the overall gaps in maintenance systems and suggests possible 

future research on each identified gap. Figure 6 illustrates the overall structure of the literature 

review in more detail.  

 

It was from the mid-1990s that the introduction of more automated systems and much-restricted 

safety regulations provided a spark for progress in maintenance research. Preventive and 

predictive methodologies can be used as a beneficial option even on these small sized 

organisations. This proves insufficient research available concerning maintenance of slender-

sized companies. Both preventive and predictive methodologies also require further 

development especially in the field of prognostics on predictive maintenance. The prognostic 

technique is a methodology of predicting the future pattern of failures based on diagnostic data. 

This method goes one step forward from predictive methodology as it not only predicts when 
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a failure would occur, it also demonstrates the failure pattern of specific machinery. 

Additionally, no generic approach has been developed in the field of prognostic systems. 

 

Most of the maintenance policies mentioned in this critical review do not link the business 

aspects fully into the tactical and the technical levels of their decision-making process. 

Research shows that any simplifications on RCM methodology can have devastating effects on 

performance of the maintenance system in a company. However, some organisations are still 

cutting corners in their RCM process to save money in the short-term. This proves that there 

are gaps between top management and the tactical team of organisations for maintenance. 

Value-driven maintenance (VDM) is a part of RCM that tries to consider the business aspects 

of a maintenance methodology but it requires good knowledge of burden to importance ratio 

(BIR). In condition monitoring systems, there are numerous ways of obtaining data using 

methodologies such as vibrational analysis which can be sent via ethernet or internet 

connections to the central servers and maintenance managers. However, these systems use 

various software languages.  

 

This could have the effect of creating a problem concerning the overall picture of the whole 

system and waste time in the decision-making process. Condition monitoring and CBM would 

usually be more effective if it is combined with any other maintenance policy such as RBI. 

Therefore, the critical literature review has been divided into five major sections: maintenance 

classifications, maintenance management systems and policies, maintenance related analysis 

tools and systems, maintenance performance measurements, and inspection and monitoring 

tools and methodologies. Each section, at the end, has a discussion on overall points observed 

and possible gaps and improvements recommended. Finally, the overall major gaps and 

recommendations concerning the subject of maintenance are illustrated in the observation 

section of this chapter. Figure 5 demonstrates the overall section and sub-section layout of the 

critical literature review part of this thesis.  
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Figure 5 - Overall Maintenance Literature Review Flowchart 
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3.2 Maintenance Classification 

 

Maintenance tasks are usually classified into three types: Corrective, preventive and predictive, 

each of which is mentioned in this section. There is a fourth, new, more advanced maintenance 

task classification that is developed and used on automated systems called self-maintenance 

but it is not fully developed and cannot be adopted in the majority of industrial sectors. It is 

important to have a general policy and maintenance system to organise these classification 

tasks to obtain maintenance schedules. These policies are mentioned further in the next section 

of this chapter. Each of these policies would require further tools to obtain the data and make 

the final decision on maintenance tasks. These tools are categorised into: probabilistic, 

reliability, risk analysis, condition monitoring and decision-making. Section 5 of this chapter 

explains different versions of these tools in more detail.  

 

3.2.1 Corrective 

 

Corrective maintenance, which is also known as reactive maintenance, works on a basis of a 

“fix it after it’s broken” strategy (Pintelon & Herz, 2008). This first generation was mainly 

used until WWII as a quick and dirty way of repairing parts (Arunraj & Maiti, 2007). Corrective 

maintenance is usually carried out when the actual failure has occurred in order to bring the 

system back to its designed condition (Hameed, et al., 2010). Due to the severity of risks caused 

by component failures, it is important to use a combination of corrective and other maintenance 

procedures together (Crocker & Kumar, 2000). In general, corrective maintenance is less 

economical than other maintenance classifications (Pun, et al., 2002) and it can be expensive 

in the long run as failures are more expensive than frequent replacements (Tsang, et al., 2006). 

In more advanced versions of corrective methodologies, Wang, et al. (2014) have created more 

comprehensive corrective actions with more detail on the failures using failure propagation 

models (FPM) and failure propagation graphs (FPG). 

 

3.2.2 Preventive  

 

This second generation of maintenance technique has been used since around the 1970s 

(Arunraj & Maiti, 2007). Preventive maintenance activities are scheduled maintenance tasks 

designed to prevent failures in the system (Hameed, et al., 2010). There are two major types of 

preventive maintenance: scheduled maintenance and condition-based maintenance. The 
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preventive technique has been created to prevent failures but the preventive maintenance task 

itself could initiate failures. Therefore, it is important to have preventive planning 

methodologies, e.g., RCM ready to prevent any of these maintenance failures and optimise 

preventive maintenance (Selvik & Aven, 2011). It is important to have a maintenance-planning 

concept unified inside the company in order to evaluate the cause of failures and take 

appropriate preventive action in a short time-period (Sharma, et al., 2006). Meller & Kim 

(1996) mention that periodic preventive maintenance can reduce overall operational costs in 

the long run. Having a preventive maintenance strategy rather than a corrective one can 

significantly enrich the company returns by preventing any unwanted failures occurring and 

creating devastating financial and reputational drawbacks.  

 

In recent years, different reincarnations of the maintenance tasking techniques have been 

produced in the literature. Non-cyclical preventive planning and component replacement of 

multi-state systems have been developed by Fitouhi & Nourelfath (2013). Lynch, et al. (2013) 

also focus on the spare inventory sub-systems inside a preventive maintenance methodology. 

Different sectors have thorough research on this maintenance classification such as research on 

preventive scheduling issues of reusable rocket engines by Chen, et al., (2013). Percy, et al. 

(1997) developed a technique of preventive maintenance using limited data. Another 

maintenance technique that is usually used in conjunction with preventive tasking is 

opportunity-based maintenance (OBM). This technique can reduce maintenance costs by 

creating an opportunity to replace flawed parts during the maintenance of other critical and 

essential parts of a scheduled maintenance plan (Samhouri, 2009). One of the OBM techniques 

found in the literature is the method introduced by Jhang & Sheu (1999) called opportunity-

based age replacement policy, which categorises failures into two different sub-categories: 

minor and severe. Another type of preventive maintenance methodology uses component 

values instead of simply pure cost factors to obtain an effective maintenance action plan (Liu, 

et al., 2014). This creates a more dynamic preventive methodology based on the reliability of 

the system components.  

3.2.3 Predictive 

 

Since the mid-1970s, due to the introduction of automation, more complete and complex 

predictive methodologies, condition monitoring and decision support systems have been 

developed and widely used (Sharma, et al., 2006). Maintenance procedures from this 
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generation were focused on the practice of computer-based predictive and proactive 

maintenance methods (Hameed, et al., 2010). Sia & Ho (1997) developed a computerised 

proactive maintenance system using a prediction-based performance model. Predictive 

maintenance techniques can monitor damage initiations in order to predict the appropriate 

maintenance action for the near future (Al-Najjar, 2006). This maintenance classification can 

be cost-effective in the long run but it is crucial to justify the cost savings and investment 

advantages of its remote monitoring systems (Tetrault, 2012).  

 

Numerous forms of predictive methodologies have been created in the industry in the past 20 

years. One of the first automated predictive maintenance methodologies was introduced by 

Lewin (1995), which used the application of principal component analysis (PCA) on an 

automated predictive maintenance strategy. Another industrial application of predictive 

maintenance is illustrated in a study by Li, et al. (2014) which explores historical, correlated 

and continuous monitoring data in order to create a predictive maintenance action scheme for 

the rail network. Further literature for this maintenance classification is shown in the section 

for maintenance methodologies. 

 

3.2.4 Self-maintenance 

 

This new and futuristic maintenance technique is mainly developed on the basis of using 

robotic technology. Self-maintenance enabled systems can screen, detect and repair their own 

failures (Lee & Wang, 2008). Lee, et al. (2011), in their research, clarify the biological human 

immune system inspiration behind this methodology, where Prognostics and Health 

Management (PHM) is transformed into Engineering Immune Systems (EIS).  

 

3.2.5 Major Observations on Maintenance Task Classification  

 

In brief, corrective maintenance cannot be a feasible option on complex industrial systems 

created by the introduction of automation. Having a preventive or predictive policy instead of 

a corrective system may cost more at the beginning but it would be more cost-effective in the 

long run. Condition monitoring is one of the major aspects of more recent preventive and 

predictive maintenance methodologies. Predictive is generally better than preventive as it can 

optimise the maintenance scheduling depending on the actual demand and system behaviour 
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rather than simply having a pre-scheduled maintenance plan from preventive techniques. 

Preventive maintenance task classification can predict the failure and schedule maintenance 

beforehand. This method can also delay any unwanted scheduled maintenance if not needed 

and save the company money. The next section will review literature on different maintenance 

policies that use the maintenance tasks discussed in this section. 

 

3.3 Maintenance Management Systems and Methodologies 

 

This section will review the literature on different maintenance policies such as RCM, CBM, 

Asset Management, RBI, TPM and (BCM introduced and improved over the past 20 years. 

The overall relationship with maintenance task classifications and maintenance policies can be 

seen in Figure 6. This shows the relationship between maintenance task classifications and 

industry-wide developed maintenance policies and strategies. 

 

 

Figure 6 - Maintenance Task to Maintenance Policy/Concept Relationship 
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3.3.1 Reliability Centred Maintenance (RCM) 

 

The Electric Power Research Institute (EPRI) states that Reliability Centred Maintenance 

(RCM) is: “A systematic consideration of system functions, the way functions can fail, and a 

priority-based consideration of safety and economics that identifies applicable and effective 

PM tasks. The main focus of RCM is therefore on the system functions and not on the system 

hardware” (EPRI, 1998). RCM can save costs by focussing upon important system functions 

and eliminating unnecessary actions. It can create a balance between reliability and cost. 

Sometimes, too many maintenance intervals could raise maintenance-induced failures. The 

main goal of RCM is to create an optimum preventive maintenance (PM) programme. To do 

so, the likelihood, severity and consequences of the failures must be known. The FAA airline 

industry was the first industry to introduce RCM in the 1950s. This methodology was 

introduced due to the fact that periodic maintenance on the items without dominant failure 

modes would be less effective on the overall reliability of the system (Kennedy, 2009).  

 

Rausand (1998) states that a generic RCM methodology can be implemented in 12 steps: 

System selection and definition, functional failure analysis (FFA), critical item selection, data 

collection and analysis, failure mode, effect and criticality analysis (FMECA), selection of 

maintenance actions, determination of maintenance intervals, preventive maintenance 

comparison analysis, treatment of non-MSIs, implementation, and in-service data collection 

and updating the study preparation. On the other hand, Eisinger & Rakowsky (2001) cite that 

RCM methodology, in general, has four major steps: system preparation, system analysis, 

decision-making, and maintenance planning.  

 

However, BS EN 60300-3-11:2009 declares five major steps for RCM methodology: 1) 

Initiation and planning (objective identification, analysis content development, knowledge and 

expertise determination, and clarification of the operational system of items); 2) Functional 

failure analysis (field data collection and analysis, functional system classification, and 

FMEA/FMECA); 3) Task selection (failure consequence analysis, policy selection, and task 

interval identification); 4) Implementation (task detail description, task prioritisation, task 

interval rationalisation, and preliminary age estimation); and 5) Continuous improvement 

(maintenance effectiveness evaluation, HSE monitoring, and age survey implementation) (BSI, 

2009). Rausand 1998 defines a clearer path for the RCM methodology lacks the final step of 

overall continuous improvements recommended by the BSI. Therefore, BSI is a more up-to-
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date version of the RCM methodology but further clarification on each step and, maybe, more 

categorisations and in-depth steps, similar to Rausand’s 1998 version, is recommended.  

 

Anything about maintenance of a plant, especially on RCM, involves age and types of 

machinery, replacement cost and other health and safety costs. It is usually cheaper to replace 

components before they fail. Therefore, it is important to have a decent maintenance and 

replacement schedule. Thus, the machinery states (decreasing failure rate (DFR), constant 

failure rate (CFR) and increasing failure rate (IFR)) should be known (Abdul-Nour, et al., 

1998). An effective RCM methodology has the main advantage of predicting failure (predictive 

maintenance) before it occurs. This can lower the expenditure as the cost of unwanted repairs 

is usually much higher than planned repairs and replacements (McGowin, 2006).  

 

Reliability-based approaches are used in various industries and extensive research activities 

have been conducted on it over the past two decades. Sun & Soares (2006) looked into the 

implementation of RCM policy into a corroded structure of floating production storage and 

offloading (FPSO) hulls. Utne (2010) used RCM as a useful tool for the maintenance 

management of deep-sea wind farms. RCM provides information on asset structure and 

working patterns, failures that could occur, consequences and how to stop them by maintenance 

activities (Utne, 2010). Heo, et al. (2014) created an innovative method of particle swarm 

optimisation (PSO) for optimising RCM methodology used in electrical power transmission 

components. All of the above studies, in their own way, have tried highlight the importance of 

failure prediction of RCM methodology on different sectors. Abdul-Nour (1998) states the 

importance of determination machinery sets, i.e., DFR and CFR. However, in a proper failure 

classification and failure consequence determination as mentioned by Utne 2010, it would be 

useless as there should be a clear explanation of what each failure means before there can be 

more mathematical representaion of each machinery state on possible failures.  

 

Onoufriou & Frangopol (2002) looked into the application of a reliability-based inspection 

approach on bridge structures. Due to the cost of implementation of RCM, Hipkin & De Cock 

(2000) looked into managers’ points of view on RCM. Major issues of the RCM methodology 

adopted by numerous organisations have been identified by Gabbar, et al. (2003) to be 

threefold: It is time and resource consuming; not enough suitable information is available; and, 

there are many human and management factors. Reliability and maintainability analysis is the 

major part of a typical RCM methodology and that is why probabilistic risk assessment (PRA) 
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is used within the RCM (Gabbar, et al., 2003). As a consequence Richet et al. (1995) discuss 

the implementation of RCM methodology in 15 different foundries. The approach of Gabbar 

(2003) only looks into the use of probabilistic risk assessment on fixing RCM shortcomings 

and does not mention a useful way for decreasing cost by different cost analysis methods and 

maintenance performance analysis techniques.  

 

Numerous computerised additions have been developed for RCM. Fonseca & Knapp (2000) 

have created an innovative computerised RCM methodology that has a unique process design 

software (ASPEN Plus) that is connected to the RCM module. This model has an availability 

structure section to obtain information from the RCM and data analysis modules in order to 

perform dynamic maintenance scheduling, availability assessment and risk analysis. Pujadas 

& Chen (1996) have created specialised computerised RCM methodology for the US defence 

industry. In a recent study, Mkandawire, et al. (2015), looked into assessing the effectiveness 

of an RCM methodology used on electrical power transformers. They used the key 

performance indicators (KPIs) of the RCM methodology with a trending profile of the mean 

time to the first failure and average annual repair costs to analyse the performance of the RCM 

model used. This study further highlights the importance of updating the overall maintenance 

methodology with company KPI imputes. A similar case has also been made in a study by 

Tang, et al. (2017), where they analyse an innovative way of defining and incorporating the 

use of maintenance-significant items (MSIs) within an RCM platform. Both Mkanawire (2015) 

and Tang (2017) looked into importance of company KPIs and MPIs on improving the overall 

effectiveness of the RCM platform results. These methodologies, including, Fonseca and 

Knapp’s (2000) model, use different software packages to determine their results. Each 

software package requires their own installations and may not work in different computer 

environments specifically in shipping where most people may use tablets. Therefore, Java 

based software packages can be more useful as they can be installed in different computer 

environments.  

 

In the past, a quick and easy version of RCM methodology called streamlined RCM (SRCM) 

has been used in the industry. The retroactive SRCM process starts with current maintenance 

tasks rather than the first step of defining the functions of the system. This system does not 

focus on plant performance improvement and only considers PM tasks. Another type of SRCM 

methodology is the use of generic lists of failure modes. This is where an off-the-market system 

used in a similar type of organisation is bought and implemented. The final method of SRCM 
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is the critical only method where only critical components are analysed. This method can be 

rather dangerous as it skips some important steps of true RCM methodology (Moubray, 2001).  

 

Different reincarnations of RCM methodology have also developed in the industry. The 

RIMAP project has introduced an appropriate framework for enhancing the performance of the 

reliability-based maintenance inspection (RBMI) (Schroder & Kauer, 2004). RBMI is not 

simply a decision-making strategy for maintenance planning; it can also be used to determine 

the most critical components of the system. Stand-by safety systems should be inspected 

periodically as it is rather difficult to detect their failures (Khan, et al., 2004). The CIBOCOF 

(Centrum voor Industrieel Beleid Onderhouds Concept Ontwikkelings Framework, or in 

English, Centre for Industrial Management Maintenance Concept Development Framework) 

has been developed for the customisation of maintenance concepts (Waeyenbergh & Pintelon, 

2006).  

 

Value-driven maintenance (VDM) is another type of RCM methodology that uses performance 

goal-setting and measurement for plant management. The main principle of VDM 

methodology is called experience-based reliability-centred maintenance (EBRCM). EBRCM 

incorporates the integration of the feedback data, decision logic, fault modes, effects and 

criticality analysis (Rosqvist, et al., 2009). Selvik & Aven (2011) presented an updated version 

of RCM called reliability and risk centred maintenance (RRCM), which decreases the 

uncertainties. Turan et al. (2011) created an innovative new RCM technique based on criticality 

analysis called reliability- and criticality-based maintenance (RCBM). Lazakis (2011) added 

total productive maintenance (TPM) onto managerial aspects of the previous RCBM technique. 

RBMI and RRCM both use criticality classification to improve the technical results of the 

RCM, whereas VDM also adds company values and goals into the RCM methodology. 

However, Lazakis’s (2011) RCBM update uses both criticality components and managerial 

aspects for the RCM. However, full integration of company MPIs and technical aspects are not 

developed within his methodology. The next section will discuss the condition monitoring 

systems and maintenance policies that can be used in conjunction with RCM.  

 

 

 



43 

 

3.3.2 Condition-based Maintenance (CBM) 

 

A condition-based maintenance (CBM) strategy is developed in order to optimise maintenance 

activities by performing them when needed and also before the occurrence of the failure. CBM 

is based on the performance and monitored parameters of the system components, and is more 

effective in optimising maintenance activities (Tian, et al., 2011). A CBM strategy 

implemented in the manufacturing industry can use one of the three approaches of time domain, 

frequency domain and time-frequency domain (Bleakie & Djudjanovic, 2013). CBM schedules 

maintenance tasks according to data acquired by condition monitoring systems (Hameed, et al., 

2010). This method can be more expensive than most preventive methodologies but is 

becoming more effective due to improvements in detection systems (cheaper systems) 

(Pintelon & Herz, 2008). Condition monitoring is part of CBM (Utne, 2010). Deterioration of 

machinery conditions could have external causes such as harsh operational conditions, bad raw 

materials, inefficient maintenance and external shocks. As a result, all of the above should be 

monitored. Product characteristics and the condition of the manufacturing process should also 

be taken into account (Al-Najjar, 2006). All of the above research represents the importance of 

data analysis techniques to be used in conjunction with condition monitoring systems in order 

to predict the future of each system. However, none of these techniques show how these 

conditional data can be used with cost analysis and company goals and in conjunction with 

other systems to develop effective maintenance scheduling.  

 

Four major types of condition monitoring techniques are used for CBM in the industry: 

Vibration monitoring, thermal imaging, engine performance measurement and oil analysis 

(Tsang, et al., 2006). Multi-sensor and multi-parameter condition monitoring are two of the 

earliest stages of fault diagnosis for the manufacturing industry. The first stage of this technique 

is to detect important variables such as power, vibration and pressure of the machinery. Then, 

its diagnostic features are extracted from a maintenance action table (Zhou, et al., 2000). 

Preventive maintenance, in general, can be done either using statistical reliability data or using 

sensor-based monitoring systems (condition-based) (Pillay, et al., 2001). Current prognostic 

approaches of CBM are divided into three major groups: model-based, data-driven and hybrid  

(Lee & Wang, 2008). Williams & Hirani (1997) have created a multi-level condition based 

preventive maintenance strategy based on risk interval inspection. Williams 1997’s technique 

adds more analysis on using the condition monitoring data to develop maintenance scheduling. 

However, his technique is only risk-based and it is preventive technique. Therefore, it does not 



44 

 

include the cost elements and does not update schedules and predict their component future 

like more advanced predictive methods.  

 

McGowin (2006) has created a report on condition based maintenance and condition 

monitoring techniques used in the wind farm industry. He has mentioned that unwanted failures 

can also cause consequential damage to other more expensive equipment inside the wind 

turbine. His technique mentions an important aspect of dependability and interconnectivity 

between the performance of different components within a system. Condition monitoring can 

provide data collection for the new designs implemented into the turbine machinery. Vibration 

analysis is one of the most common condition monitoring techniques, specifically for rotating 

machinery. In general, there are two types of condition monitoring equipment: portable and 

on-line. Periodic condition monitoring equipment is less expensive than continuous condition 

monitoring equipment (McGowin, 2006). Another piece of research on the implementation of 

CBM on wind turbines, carried out by Cross & Ma (2014), solved the non-linearity issue of the 

CBM process using an innovative parametric representation method. Lazakis, et al. (2016) have 

discussed an innovative DSS system to be used with online database, machinery analysis 

system and hull condition monitoring tools in order to minimise the risks of failure within 

commercial ships as part of the INCASS FP7 EU project. This study incorprates a dynamic 

Bayesian network (DBN) tool to implement its machinery condition analysis and future 

perfromance predictions.  

 

Hontelez, et al. (1996) evaluated the relationship between condition-based inspection planning 

and deterioration processes on civil structures. Srinivasan & Parlikad (2013) discussed the 

benefits of using condition monitoring and CBM in the maintenance of civil structures. Hifi 

and Barltrop (2012) have developed an innovative method of combining RCM with condition 

monitoring for the maintenance and inspection of ship structures. They also created a central 

statistical database where subscribers can safely put their sensitive data. A further developed 

and improved version of the previous database and condition monitoring system was developed 

as part of the Inspection Capabilities for Enhanced Ship Safety (INCASS) EU FP7 project, 

where machinery probability analysis and a database system were added to the central database. 

The machinery database in this paper was developed using the combination of object-oriented 

and graph style databases within a catalogue data model using EXPRESS data schema (Taheri 

et.al., 2015). Another ship based condition-monitoring system, developed by Chen, et al. 
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(2014), explored the possibility of using condition monitoring on the planetary gearbox of 

communication antennas onboard ships.  

 

Advanced condition monitoring (ACM) has been implemented by Tetrault (2012) for tackling 

large monitoring data of marine engines in order to use integrated algorithms to process critical 

data rapidly. Rao, et al. (2003) has looked into vibrational condition monitoring of the power 

station components. Rodseth, et al. (2007) have covered the idea of using computer-based 

condition monitoring (CBCM) maintenance methodologies. These intelligent systems 

continuously monitor the degradation of the system components. As a result, it has continuous 

and autonomous flow modification and system enhancement that results in almost zero 

downtime. A CBM methodology can do this by having a degradation analysis from online 

sensors in order to monitor the health of the system. Liu, et al. (2013) have used X control chart 

in conjunction with CBM methodology. Vibration and oil analysis are the two major sensors 

and analysis criteria used for this CBM methodology (Lee, et al., 2006).  

 

3.3.3 Asset Management 

 

Asset management is defined by the PAS standard as: “Systematic and coordinated activities 

and practices through which an organisation optimally and sustainably manages its assets and 

asset systems, their associated performance, risks and expenditures over their life cycles for 

the purpose of achieving its organisational strategic plan.” (BSI, 2008). Key principles and 

attributes of asset management on achieving organisational goals are holistic, systematic, risk-

based, optimal and sustainable advantages. The main and central types of assets are the physical 

assets that other asset types such as financial, human, information and intangible assets are 

integrated into. Concerning physical asset management, it is important to find the trade-off 

between short-term cost factors and long-term risk factors. Therefore, it would be beneficial to 

divide the whole asset management process into different levels of complex components, sites, 

networks, functional systems, portfolios, etc. (BSI, 2008). Muller (2012) has identified asset 

management tasks to be: 1) Entire lifecycle assets management by asset history, economic and 

technical data; 2) Maintenance governance of the asset; and 3) Information and data collection 

of the history and prognosis of asset health for decision-making. Holland, et al. (2005) have 

directed widespread research on the connection between BP and its suppliers through its asset 

management system. This study has been carried out at the business level only. Muller (2012) 
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asset management system is more based on actual prognostics and technical information of 

assets, whereas Holland (2005) version based on the BP system is more business oriented. It 

would be more useful according to the BSI (2008) definition of asset management that both 

business and technical aspects to be considered with an equal importance.  

 

Enterprise resource planning (ERP) is a type of asset management system and is becoming a 

norm on maintenance practices of most industries (Mathew, et al., 2006). ERP was first 

developed in the 1990s for integrating various functional (operations, marketing, finance) 

information systems with their business side across the company. This created a rationalised 

business to production systems across the organisation (Gupta & Kohli, 2006). Hoch & 

Dulebohn (2013), in their paper, focussed on the human resource management aspect of ERP, 

whereas Huin, et al. (2003) have developed a multi-flow small and medium-sized enterprise 

(M_SME) system using the combination of artificial intelligence and ERP. However, Aslan, et 

al. (2012) have questioned the implementation of off-the-shelf ERP systems. Yeh & Xu (2013) 

have created a critical success strategies (CSSs) system as a supplement for ERP. Reithofer & 

Naeger (1997) have introduced a bottom-up planning methodology for modelling ERP.  

 

A maintenance strategy must have a smooth material flow from the suppliers to production 

lines to customers for high maintenance management performance. There should also be an 

effective information flow between maintenance process and management, life cycle cost, 

purchase, quality and production (Kans & Ingwald, 2008). Therefore, life cycle control (LCC) 

and life cycle analysis (LCA) are important approaches that should be used in medium to large 

asset management systems. Computerised versions of these two approaches are also created in 

the industry such as continuous acquisition and life cycle support (CALS) of the continuous 

analysis process of ship structures created by Kawamura & Sumi (2005). Ingwald & Al-Najjar 

(2006) have, additionally, studied the connection between the LCC and vibrational 

maintenance strategy whereas, Mitropoulou, et al. (2011) have performed LCA on the hazards 

of earthquake reinforced concrete structures. Ribeiro, et al. (2013) have introduced a 

comprehensive LCC (C-LCC) system for the injection moulding of plastic parts production. 

Generally, all of the above life-cycle assessment models create overall platforms in order to 

maintain the performance of the asset during its life cycle at the highest possible level. 

However, all of the above approaches would still need other types of maintenance 

methodologies to achieve their goals. Therefore, both LCC and LCA are considered more as 
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management tools to help all the stakeholders achieve the best asset performance, but the actual 

procedures of achieving this can vary immensely.  

 

3.3.4 Computerised Maintenance Management Systems (CMMS) 

 

Any computerised maintenance programme has to have the following characteristics in order 

to be effective: High modularity, plug & play, open standards, ease of configuration, generic 

solution for module configuration, generic interfaces for modules/data, platform independence, 

modern software architecture, possible remote software updates, access and security, and be 

self-starting and stable. Software and hardware are the basis of all CMSs. Communication 

hardware for the CMS is categorised into two different areas: Networking (Ethernet networks 

with TCP/IP, and WLAN) and real time data (analogue and digital hardware signals). The main 

purposes of the software technologies for the CMS include data exchange and communication, 

database storage and data evaluation. Data exchange and evaluation itself can be categorised 

into two criteria: Real time data (RTD) and long-term data (LTD). Some well-known examples 

of CMS systems include: Gram & Juhl TCM System, Mita WP4000 System, DMT WindSafe 

System, B &KV’s 3652 System, WT_U project based System, CONMOW project based 

System and SIEMENS’ Monitoring and Safety System (Hameed, et al., 2010).  

 

The main advantages of using CMMS include CBM support for failure evaluation, spare parts 

tracking, acceleration of the fault report, facilitation of intra-company communication, 

historical information access facility, more effective information types for maintenance 

managers, capital expenditure information, and asset healthcare status report (Labib, 2004). 

However, there are several drawbacks concerning CMMS systems used recently in the market. 

CMMS systems such as enterprise resource planning (ERP) usually acquire a large amount of 

data but do not provide enough output and results. They also lack any decision support system. 

Finally, most recent and advanced models of CMMS systems lack user friendliness (Labib, 

2004).  

 

Work orders and maintenance plans can be generated by CMMS. By interacting seamlessly, 

user intervention is minimised, and the process should have flexibility. Feedback from the 

CMMS should adjust parameters and settings.  (Mathew, et al., 2006).  
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Leger, et al. (1999) illustrate the main framework of a CMMS with all its different domains 

and connections to each other through a unique system. For predictive and proactive 

maintenance strategies such as CBM it is crucial to have a CMMS system in place in order to 

make condition monitoring of data sharing possible (Kans & Ingwald, 2008). There are several 

IT integration tools available in the market for corporate data sharing and communication such 

as computer integrated manufacturing open system architecture (CIMOSA), the general 

reference architecture model (GERAM), the common information model (CIM) and the open 

system architecture for enterprise application integration (OSA-EAI). Kans & Ingwald, (2008) 

suggest the use of a common database at three levels: data integration, information system and 

business process. The IEC 62264, and MIMOSA’s OSA-EAI and OSA-CBM are the major 

standards supporting this common database. 

 

Integration of CMMS and enterprise asset management (EAM) can simplify the number of 

data requirements and collection methodologies (Moore & Starr, 2006). Mathew, et al. (2006) 

introduced an integration method between condition monitoring and maintenance management 

such as data acquisition, condition assessment, maintenance prediction, and work order 

notification. This framework exchanged data inside a standardised protocol called the 

machinery information management open systems alliance (MIMOSA). Moore & Starr (2006) 

describe the relationship between condition monitoring alarms and decision-makers as an 

arrangement of maintenance activities which are getting harder each time because of the 

complexity of modern organisational facilities and advancements in condition monitoring 

techniques. In CMMS systems, if a failure occurs by machinery exceeding a threshold, the 

alarm will be raised.  

 

Sitton (2005) talks about the software packages used in risk based inspection programs that are 

called inspection data management systems (IDMS). Most well-known software packages 

created for this purpose include UltraPIPE by Berwanger, Inc., PCMS® by Conam Inspection, 

EMPRV by Shell and IDM by ExxonMobil. Loures, et al. (2006) looked into two different 

approaches of control monitoring maintenance (CMM) and development cycle methodology 

(DCM). Discrete events systems (DES) are usually solved in four sections of planning, real-

time scheduling/supervision, co-ordination and local control. This model uses a hierarchical 

system of different levels, where it has a top-down approach and is a connection between lower 

and higher levels. Lee, et al. (2006) discuss another specified CMMS system called the 

integrated weapon system database (IWSDB) which integrates strategic, management and 
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operational data for the defence industry. Labib (1998) mentions it is a world-class 

manufacturing (WCM) strategy that can use CMMS to implement its decision module. 

Kawamura & Sumi (2005) practiced the use of the STEP AP218 standard for data exchange 

model, graphical representation model and text files format for data exchanges on an express 

data management (EDM) tool.  

 

Several information management systems have been developed by classification societies such 

as NK-SHIPS (from Class NKK), Nauticus (from DNV-GL), ABS SafeShip, ShipRight (from 

Lloyds’ Register) and VeriStar (from Bureau Veritas) (Kawamura & Sumi, 2005). Hamada, et 

al. (2002) discuss the implementation of the ship inspection control, plan, do, check, action 

(PDCA) methodology for quality control of the inspections and CIM on integrated information 

systems developed for a ship inspection support system. Gabbar, et al. (2003) developed a 

CMMS to extract asset component and operational information, and send it to the RCM 

module. This paper introduces a dynamic integrated RCM-CMMS methodology in order to 

alter the maintenance tactics according to the plant condition.  

 

The maintenance model used by Fernandez, et al. (2003) contains a three-dimensional 

structured query language (SQL) system. Decision making grid (DMG) is a visual tool used 

here for the decision support module of the maintenance framework, which monitors the 

downtime and failure frequency of system components for its analysis. Subsequently, DMG 

gives each component a boundary level and criteria for its ranking. BSI (2009) is also 

emphasised in the implementation of computerised systems such as supervisory control and 

data acquisition (SCADA) for the information system development of asset management 

systems. E-maintenance is part of the integration of e-business and e-manufacturing.  

 

The PROTEUS European project has worked on creating a unique e-maintenance software 

platform. Maintenance implementation can face major problems due to lack of training, 

operator conception, resources, involvement of parties, long-term vision and momentum (Han 

& Yang, 2006). Finally, as part of the INCASS FP7 European project an overall platform of 

ship inspection, condition monitoring, maintenance scheduling, decision-making and central 

database with online data gathering function was created that covered both structural and 

machinery aspects of vessels used within the project. This intelligent CMS system allows the 

prediction of failures before occurring and makes best decisions based on the performance and 
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overall condition of the system using real-time data gathered by its central database (Dikis et. 

al., 2016).  

 

3.3.5 Risk-based Inspection (RBI)  

 

Risk-based Inspection (RBI) is an inspection optimisation technique that uses risk as the basis 

of scheduling inspection and maintenance. RBI determines risk on high-risk components by 

multiplying the likelihood of failure to its consequences. It eliminates unnecessary inspections 

(Patel, 2005). RBI was first emphasised by the regulations presented by ASME and API. RBI 

can be implemented in three different ways: Qualitative, semi-quantitative and quantitative. 

Depending on the accuracy and time limit requirements, any of these methods can be used. 

RBI can be either implemented on plants with a run-to-failure inspection method where it can 

increase safety and reduce unwanted shutdowns or on facilities with traditional preventive 

maintenance systems where RBI can decrease inspection costs (Ablitt & Speck, 2005). RBI is 

the recommended method for the new generation of computer-aided maintenance procedures. 

RBI itself is categorised into two main phases: Risk assessment and maintenance planning. The 

most important phase is the risk assessment (Arunraj & Maiti, 2007). However, this can also 

mean that the risk will always be prioritised compared with the cost and other management 

factors of the maintenance. 

 

The computational process required for RBI of offshore structures was quite high until the 

representation of the generic RBI approach (Straub, et al., 2006). RBI was first used on fixed 

offshore platforms to evaluate fatigue, especially on welded steel structures. Subsequently, it 

was adapted to the floating platforms, FPSOs, semi-submersibles, tankers and any structures 

subject to high corrosion (Swanson, 2001). Four main areas must be covered by RBI (Ablitt & 

Speck, 2005): 1) What components are more likely to fail; 2) Where should inspection be 

focused on; 3) Which types of non-destructive techniques (NDT) should be implemented; and 

4) What time interval has to be used? However, this definition by Ablitt (2005) does not include 

another useful step of criticality analysis in order to prioritise most critical components and 

maintenance tasks. Dong & Frangopol (2015) have introduced a new probabilistic of assessing 

the risk of flexural failure based on corrosion and fatigue on hull structure of VLCC ships. 

Using this risk-based technique they can evaluate lifetime optimum inspection and repair 

planning for the vessel.  
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The main savings achieved from implementation of RBI are failure avoidance, production loss 

avoidance, early repair warnings, early detection, inspection interval optimisation, better 

design criteria for future projects, and less expensive inspection technique selection (Patel, 

2005). Ku, et al. (2005) have implemented their RBI methodology on risk assessment and 

reliability analysis of offshore structures. Combining a reliability analysis aspect like RCM 

inside the RBI methodology introduced by Ku (2005) can also implement a better prediction 

element concerning avoidance of unwanted maintenance tasks when compared with only a 

risk-based approach, as used by Dong (2015). The first stage of any RBI planning for an 

offshore structure is collection of information on the following areas: Previous surveys and 

inspection reports, drawing documents, up-to-date weight reports, MeteOcean data, weld 

profile control, inspection philosophy, risk acceptance criteria, consequences, inspection 

techniques, and repair philosophy  (Rouhan, et al., 2004).  

 

Wu & Syau (1995) have introduced n-service inspection (ISI) for analysis of the probability of 

failure of structures. The RIMAP project has created an EU-wide RBI methodology for 

maintenance of different types of plants (Kauer, et al., 2004). Another specialised RBI 

methodology, developed by Hu & Zhang, (2014), is called risk-based opportunistic 

maintenance (RBOM). This technique uses the failure of one component as an opportunity to 

create a preventive system on other components using a global optimisation algorithm. This 

method also decreases cost and risk of failure based on the performance of the nearby 

components. However, none of the RBI methodologies introduced in this section include the 

cost factors and company goals concerning achieving the most optimum maintenance platform. 

 

3.3.6 Total Productive Maintenance (TPM) 

 

Total productive maintenance (TPM) was first introduced in Japan in the 1970s. This technique 

has various benefits such as helping to create a complete preventive maintenance system, 

increasing component effectiveness and employment of everyone working on the plant. This 

method unifies the operation and maintenance tasks of the company and everyone involved. 

This has numerous advantages such as everyone becoming multitasked, which improves the 

flexibility and skills of employees; enhancing feelings of pride in operators involved in 

maintenance; reduces delays; and promotion of team working skills  (Ben-Daya, 2000). TPM 
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is one of the most effective types of preventive maintenance methodologies, which helps 

companies to eradicate waste and interruptions, and achieve the best performance from their 

machinery. TPM identifies six major losses for organisations: Equipment failure, adjustments, 

minor stoppages, reduced speed, process errors and rework/scrap. TPM methodology 

implementation highly depends upon the structure and philosophy of the organisation.  

 

Rodrigues & Hatakeyama (2006) have produced eight pillars for TPM: 1) Equipment and 

process improvement; 2) Autonomous maintenance (self-management and control); 3) Planned 

maintenance; 4) Education and training; 5) Early management of new equipment; 6) Process 

quality management; 7) Effective involvement of administration on TPM; and 8) Safety and 

environmental management. TPM uses autonomous maintenance (AM) and focus 

improvement (FI) to eliminate unwanted breakdowns. Typical failure modes in manufacturing 

systems include hydraulic failure, electronic failure, human failure, software failure and 

electrical failure. TPM has five general points: Equipment effectiveness enhancement, PM 

strategies for the whole system, various department involvement, full involvement of all 

personnel (from employee to the manager), and improvement on design and function of 

equipment. The word “total” in TPM has three meanings: Effectiveness, maintenance and 

participation. The ceneral steps and methodologies of TPM explained by Ben-Daya (200) and 

Rodrigues (2006) do not clearly indicate how each step can be implemented even though both 

studies represent similar outlines of TPM. 

 

Total asset management (TAM) on TPM has seven steps (Sharma, et al., 2006): 1) Primary 

cleaning; 2) Mitigations for cause and effects; 3) Standards; 4) General inspection; 5) 

Autonomous inspection; 6) Organisation and tidiness; 7) Full implementation. TPM can be 

divided into two main areas. The first area is production equipment management; this method 

helps to improve asset utilisation and profitability of the plant. The second area is authorisation 

and enablement of employees, which can help to decrease the plant costs and maximise 

profitability by uniting the operators and mechanics and making them work towards the same 

goal (Ben-Daya, 2000). TPM enhances product quality by creating an appropriate connection 

between manufacturing and maintenance. Not all of the implementation steps mentioned by 

Sharma (2006) can be used in every type of industry as, in the marine industry, full autonomous 

inspection plus general organisation and tidiness will not be possible in all cases. 
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Overall equipment effectiveness (OEE) is used as a major measure of the effectiveness and 

machinery performance. TPM using OEE can help create an environment for assessing losses 

and prioritising maintenance schemes. TPM can improve six major losses: Breakdown, setup 

and adjustment, idling and minor stoppage, reduced speed, quality defects and rework, and 

start-up losses (Tsarouhas, 2007).  

 

Puns, et al. (2002) discuss another TPM methodology called effectiveness-centred maintenance 

(ECM) which is useful for businesses of various natures as it uses an integrated approach. It 

identifies failure modes, prioritises the important ones and assesses their maintenance options 

using statistical and mathematical tools extensively. As a result, it uses RCM analysis with the 

concept of total quality management (TQM). This means that ECM is more comprehensive 

than other methodologies as it contains staff participation, quality improvement, performance 

measurement and maintenance strategy development. Integration of the TPM and TQM 

concept has been further investigated by Singh, et al. (2013) on CNC machinery. These last 

three research papers do indicate different methods for regulating each step of TPM in order to 

achieve the final results. However, these three methodologies have highlighted the importance 

of using other maintenance tools and methodologies in conjunction with TPM in order to 

achieve full maintenance methodology.  

 

3.3.7 Business-Centred Maintenance (BCM) 

 

Business-centred maintenance (BCM) and profit-centred maintenance (PCM) are other 

maintenance methods, which eliminate unnecessary practices to save money and expenditure 

on maintenance (Pun, et al., 2002). These business- and profit-oriented approaches actually 

originate from TPM (Hughes, 2001). Jones, et al. (2008) discuss an example of BCM through 

the application of business-driven reliability (BDR) using the cost of unreliability (CoUR) in 

refineries.  

 

Albonico, et al., (2014) have also looked into the implementation of capital maintenance, which 

estimates the capital loss pattern due to maintenance scheduling. Peters (2015) identifies the 

benefits and drawbacks of using profit and customer-centred contract maintenance. He 

discusses the importance of using external maintenance expertise from contractors in addition 

to the in-house maintenance regime in order to increase the effectiveness of the maintenance 
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plan and even make relative profit from maintenance scheduling. Using external expertise, as 

mentioned by Albonico (2014), could create irregularities as each expert can have a different 

opinion. In brief, BCM only takes the business side of maintenance into account and ignores 

more risk and technical aspects. Therefore, another maintenance approach has to be combined 

with BCM in order to broaden its appeal.  

 

3.3.8 Major Observations on Maintenance Management Systems and Methodologies 

 

Reliability-centred maintenance (RCM) methodology, mentioned in this section, uses system 

reliability and availability analysis in order to optimise the maintenance planning strategy of 

the asset. This method mainly uses a preventive strategy as its methodology; however, it can 

also contain predictive aspects. Other improved versions of RCM methodology have been 

created, such as VDM, in order to add different aspects and viewpoints to the strategy such as 

the business aspect. Criticality and risk analysis are other major aspects that are considered in 

the latest versions of RCM due to increasing concerns and costs of possible failures and 

disasters. This upsurge of safety concerns has reduced the viability of using shorter and quicker 

versions of RCM such as SRCM. 

 

Another effective maintenance methodology, condition-based maintenance (CBM), uses 

different types of monitoring and analysis technologies such as vibration monitoring in order 

to predict and prevent unwanted breakdowns. CBM is usually implemented on machinery and 

internal parts but it could also be performed on structural sections using both online sensors 

and automated robotic systems. Due to the advancement in computer modelling systems more 

cutting-edge CBM techniques such as ACM and CBCM are being developed for the industry. 

Therefore, online monitoring systems are becoming more common-place on CBM. Prognostic 

approaches are also used within CBM concepts to predict the future failure patterns that are in 

development for more critical components in order to raise the competitiveness. 

 

Asset management systems, discussed here, can use other maintenance strategies, combined 

with goals and business aspects of the organisation, in order to achieve predetermined goals by 

lowering both risk and cost elements. Risk and cost elements are two relatively contradicting 

elements so a trade-off between them should be defined. ERP and LCC are different types of 

asset management systems that, in conjunction with their computerised models, can create an 
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effective connection between supply, marketing, spares, manufacturing, management and 

maintenance sections of a medium to large sized asset. A CMMS is important in the 

maintenance planning of more complex and modern systems as it can control and analyse both 

real-time and long-term data using both Ethernet networks and online systems. CMMS can be 

integrated into any other maintenance methodology. There are numerous off-the-shelf CMMS 

systems, developed by other companies, to be used by different types of industrial sectors but, 

still, some companies prefer to develop their own specialised CMMS model. 

 

Risk-based maintenance (RBM) is another commonly used methodology that uses risk analysis 

techniques (qualitative, quantitative and semi-quantitative) to develop optimum inspection 

plans for maintenance of plant. Risk assessment on RBI would require results from previous 

surveys. Various standards are created in order to regulate the RBI methodologies used in 

different sectors such as offshore oil & gas. Total productive maintenance (TPM) is more 

focused on the effectiveness of management systems of assets especially in the product 

manufacturing industry. TPM believes in self-efficiency and automation of all quality control 

processes. This method can be integrated with other maintenance strategies such as RCM in 

order to increase their effectiveness. Overall equipment effectiveness (OEE) is the main 

measure of effectiveness that is being used to determine the progress of the TPM. BCM and 

PCM methodologies mostly focus on the cost elements of an asset which could be damaging 

in risk-oriented sectors such as nuclear power plants. All the policies mentioned in this section 

would require analysis methodologies in order to achieve their effectiveness. Therefore, the 

next section will talk about some of the most well-known analysis tools used in the maintenance 

sector. 

 

3.4 Maintenance-related Analysis Tools and Systems 

 

This section discusses different maintenance tools and systems used in maintenance policies. 

These tools are categorised into four major areas: Failure, reliability and probability analysis 

tools, decision-making systems, risk analysis tools, and condition analysis tools. 
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3.4.1 Failure Analysis, Reliability and Probability Tools 

 

A criticality analysis such as FMECA would be useful to enable managers to prioritise tasks. 

FMECA can rank assets by determining the consequences, probabilities, and likelihood of asset 

failures. This method creates a risk priority number (RPN) in order to obtain factors for ranking 

asset failures. RPNs could be determined by converting qualitative data into quantitative 

values. However, it could create some uncertainties (Moore & Starr, 2006). Another important 

factor in machinery maintenance is component criticality. In order to analyse this factor, FMEA 

techniques should be used. The criticality of each component is analysed on four principles 

(Abdul-Nour, et al., 1998): 1) Effect of the machine downtime on the production process (EM); 

2) Utilisation rate of the machine (UR); 3) Safety and environmental incidences (SEI) of 

machine failures; and 4) Technical complexity of the machine and requirements for external 

maintenance resources (MTC). Figure 8 demonstrates an example FMECA table used in 

industry. Various companies are able to develop FMECA models according to the IACS 

requirements for shipping companies, one of which has been developed by NPD Solutions, 

2016, an example of which is illustrated in Figure 7. These steps for criticality assessment by 

Abdul-Nour (1998), themselves, can have further steps and different methodologies can be 

used to define them. This can create further uncertainties for defining the criticality of different 

components/sub-systems within the main system.  

 

 

Figure 7 - Example of FMECA (NPD-Solutions, 2017) 
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Defence Standard 00-45 also requires the FMECA to be implemented to identify all asset 

failure modes  (New, 2012). Selvik & Aven (2011) use an RCM-adjusted FMECA worksheet 

and RCM logic diagram in their methodology. FMECA on the RCM process can indicate 

manufacturing process problems using appropriate field operational failure data and root cause 

analysis. Critical to quality (CTQ) failures can be identified easily if the data collection and 

FMECA document are described separately as it is quantitative rather than qualitative. The 

basics of FMECA include component identification of the system, data collection from the 

functional structural diagram of the system, failure modes generation, physical requirement 

description and criticality concept development  (Igba, et al., 2013). Ahmad, et al. (2012) have 

practiced a methodology that uses the FMECA as the prior classification of data and for 

determination of external factors. Another issue highlighted by these two studies in this 

paragraph is the change of qualitative results into quantitative values for criticality which, on 

its own, creates further uncertainties and irregularities for the final outcomes.  

 

Fault tree analysis (FTA) is one of the most commonly used system reliability tools for 

maintenance regimes. Top event (TE) is the starting point for the FTA and failure sequence 

follows the TE. Therefore, FTA is a top-down approach. Each basic failure event in FTA has 

a predetermined probability value assigned by statistical data (Shalev & Tiran, 2007). 

Numerous types of data inputs can be used on FTA such as non-repairable, repairable, test 

intervals, frequency and on-demand data. Non-repairable, repairable and test interval all have 

set durations whereas frequency is interval-free (Turan, et al., 2003). Therefore, it is important 

to define parameters that eliminate the interval element. FTA can have dynamic gates in order 

to analyse complex maintenance strategy elements (BSI, 2006). Lampis & Andrews (2008) 

illustrate that uncertainties can be an issue in fault tree constructions.  

 

A study by Turan, et al. (2003) uses non-repairable and on-demand data input types for 

construction of fault tree of loss of life, collecting the data and assessment, and synthesising 

the possibility of loss of life. Contini (1995) has developed a hybrid fault tree system that can 

be analysed both top-down and bottom-up. Emmanouilidis, et al. (2006) use FTA to specify 

the component failures and their connections with the whole system. Trucco, et al. (2008) 

propose that FTA be integrated into human and organisational factors (HOF) within a risk 

analysis study. The directed acyclic graph (DAG), used in this study, consists of two parts, 

qualitative and quantitative evaluations. Liu & McDemid (1996) have developed a model-

oriented FTA system called fault tree support system (FTSS). These different studies show the 
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possible variations an FTA methodology can have and be used in different sectors. Therefore, 

it would be beneficial to have a study on determining the accuracy of each method relative to 

each other. 

 

Shalev & Tiran (2007) introduced a condition-based fault tree analysis (CBFTA) to combine 

condition-based predictive maintenance data with FTA in order to modify and optimise the 

failure probability and system reliability results of FTA. This method is different than other 

types of FTA methodologies such as dynamic tree analysis (DTA) and real time FTA as it uses 

measured data. The major benefits of using this tool include achieving more reliable and safer 

systems, more precise data for critical components especially at the design stage, more accurate 

data for MBTF and MTTR, facilitation of a predictive maintenance strategy selection process 

and ease of evaluation for the design with most net cost outcomes. Another study, carried out 

by Manno et al., (2014), created Boolean-driven Markov processes (BDMPs) inside a 

MATLAB toolbox to solve repairability issues of ordinary DFTA tools. This is another, more 

effective way of creating dynamic gates within DFTA. Lazakis (2011), in his thesis, introduces 

an innovative way of mixing Dynamic FTA with criticality assessment in a more advanced 

criticality-based maintenance approach. An example of a DFTA model used in this thesis is 

shown in Figure 8. However, all types of FTA methodologies have one major drawback: their 

weakness on representing the interconnectivities between the function of different components 

within a system. Another possible shortcoming of FTA is its dependability on using outsourced 

cost benefit analysis tools, which can increase the error between the results achieved from 

DFTA and their adaption to the outsourced net cost analysis tool.  

 

Figure 8 - FTA of the Water Sub-system of a Dive Support Vessel (Lazakis, 2011) 
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Bayesian networks do not always completely imply Bayesian statistics as conditional 

probability distribution (CPD) is often assessed using frequency calculations. Nevertheless, 

BBNs use Bayes’ rules for interferences and hierarchical Bayesian models. The probability of 

events resulting in one child could end up having dependency even though they are marginally 

independent. This effect is called explaining away which, in statistics, is referred to as 

Berkson’s paradox or selection bias. Bayesian networks can be viewed either from effect to 

cause (bottom-up) or from cause to effect (top-down) (Murphy, 2000). Weber et al. (2012) 

illustrate the increasing trend of BNN application on dependability structures and risk analysis. 

 

The qualitative part of the study, as with Trucco et al. (2008), determines casual dependencies 

between different events and their quantitative part using the combination of FTA and BBN 

methodologies together. Cai, et al. (2013) have also created a methodology that converts 

dynamic fault tree gates into dynamic BBN automatically. Poropudas & Virtanen (2011) use 

dynamic BBN on the decision-making process of their methodology. There are numerous ways 

to solve DBN problems using statistical models. One of the most well-known models is the use 

of a mixture of Gaussian outputs to solve issues with DBN such as filling out the missing data 

(Zhang & Dong, 2014). In another study by Liang, et al. (2017), the overall reliability of 

warships is determined using a dynamic Bayesian network and multilevel synthetic method 

with numerical simulations. They conclude that the DBN is a very effective tool for 

determining a precise reliability and performance profile of complex structures and their 

maintenance planning. This is also the case in a study by Zhu & Collette (2015), where they 

used DBN to analyse complex and dynamic fatigue cracking using lifecycle and condition 

monitoring data. They also used Markov Chain Monte Carlo (MCM) stochastic sampling as an 

option for inference of large data from a Bayesian network. All previous studies so far 

demonstrate the fact that DBN can be used instead of DFTA in probability analysis and future 

prediction scenarios. They also demonstrate that DFTA can easily be turned into a DBN 

network. However, DBN can easily demonstrate interdependencies between different 

components; also, by adding cost and decision nodes, maintenance engineers can have net cost 

analysis integrated directly within the DBN platform.  

 

For reliability indices, standard deviations of the distribution of the variables have been used. 

The dependence of reliability index is usually determined on three levels. The first and second 

levels are called the first order reliability method (FORM) and second order reliability method 

(SORM) respectively. Third level is the full probabilistic calculations using Monte Carlo 



60 

 

simulation (MCS). FORM and SORM would give results quickly but would not have the 

accuracy of MCS (Vhanmane & Patra, 2010). Kolios, et al. (2010) use FORM and SORM to 

calculate structural reliability.  

 

Weibull’s distribution method can be used for data collection and end-of-life analysis on RCM  

(Rausand, 1998). Tsang, et al. (2006) implemented Weibull’s distribution model as a 

foundation for their hazard rate function. Weibull’s hazard function and time-dependent 

stochastic covariates have also been used by Jardine, et al. (1997) to simplify the reliability 

analysis of the large amount of data gathered from monitoring systems. Guo, et al. (2009) 

identify Weibull’s model as the baseline of their reliability analysis system of the statistical 

field failure data for their wind turbine case study. Garbatov & Soares (2001) performed 

Weibull’s distribution on the stress distribution measurement of lifecycle condition and typical 

sea states on floating structures. This method can cause irregularities especially if the overall 

distribution of the faults does not follow Weibull distribution but some other types of 

distributions.  

 

The whole Markov technique can represent the reliability, maintainability, availability and 

safety behaviour of systems but state transition diagrams are used to graphically demonstrate 

Markov models (BSI, 2006). Hidden Markov models (HMMs) can represent the state of the 

interdependencies of the variables in dynamic BBNs (Murphy, 2000). In HMM, there is one 

discrete hidden node and one discrete or continuous observed node per section. Markov 

analysis has been used by Schea, et al. (2012) in order to realistically plot sea state time series 

for offshore wind farms as it can illustrate the persistence of the waves as well as their height 

distributions. Markov’s decision process has been used by Tian, et al. (2011) for approximating 

degradation processes in their CBM methodology. The HMM technique on its own will not 

help analysis of probabilities and maintenance scenarios but it can be added to BBN and FTA 

in order to create dynamic future perdition of the reliability and probabilistic results.  

 

Monte Carlo simulation helps to evaluate relevant system operational aspects using an 

analytical model. Monte Carlo simulation can be time-consuming but not when assessing the 

availability of predetermined maintenance strategies (Marquez & Iung, 2007). Weibull’s 

distribution model on the methodology developed by Guo, et al., (2009) uses the Monte Carlo 

simulation in order to analyse its uncertainties. Distribution of probabilities and consequences 

of events on the LNG tankers’ case study by Montewka, et al., (2012) have also been analysed 
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using Monte Carlo simulations. In a similar fashion to HMM, Monte Carlo simulations have 

to be used in conjunction with other tools in order to analyse the data input of the other 

reliability and probabilistic methods.  

 

3.4.2 Decision-making Tools 

 

Fuzzy logic uses fuzzy rules and grades each of the parameters of the system (IAEA, 2008). 

Fuzzy mathematical formulation usually uses trapezoidal fuzzy coefficients to help the 

evaluation of the likelihood of the failure modes by investigating all participant factors, 

calculating likelihood factors and comparing the resulted factors (Fonseca & Knapp, 2000). 

The DuoFuzz and Quadro-Dou Fuzz classification systems are used in order to classify faults 

based on user-defined parameters. NovClass is the name of the software developed in a paper 

by Emmanouilidis, et al., (2006) that monitors, analyses and diagnoses the conditional data. 

The rough set approach is similar to fuzzy set approach but uses boundary regions instead of 

members. Additionally, rough set covers the differing areas of non-precision and uses 

discernment analysis and Boolean reasoning methods. The information system for rough sets 

consists of universe (U), attributes (Ω), domain (V) and information function (f) (Gento, 2004). 

The approach of this study would not fit with every scenario as availability of information may 

vary.  

 

A study by Turan, et al. (2003) used Fuzzy Set Theory (FST) for analysing the loss of life on 

fishing vessels due to a variation in the design of the vessels. Rodseth, et al. (2007) used fuzzy 

reasoning on semi-quantitative analysis of human factors. Pan & Yun (1997) added fuzzy sets 

to FTA for system reliability analysis and Suresh, et al. (1996) discuss the application of fuzzy 

set theory on solving the uncertainties of FTA. Lihovd, et al. (1998) undertook fuzzy 

thresholding to perform calculations which assign a symptom strength (SS) factor for each 

diagnosis symptom on civil aircraft. Li & Nilkitsaranont (2009) solved the nonlinearity issue 

of the CBM methodology of a gas turbine by using fuzzy logic. Labib (2004) chose fuzzy logic 

for the decision making grid (DMG) of his Holonic Concept. In research undertaken by Khan, 

et al. (2004) fuzzy logic with triangular fuzzy numbers (TFNs) was used to connect qualitative 

results with numerical values. Heo, et al. (2012) implemented benefits, opportunities, costs and 

risks (BOCR) to fuzzy AHP to make decisions on the best hydrogen energy system 

infrastructure. These variations of applications of FST in different environments demonstrate 
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its adaptiveness on different scenarios. However, an important fact has to be taken into account 

when turning qualitative results into quantitative values as it can create uncertainties. 

Therefore, this method should only be used in conjunction with other methods and it should 

also be implemented as a complementary result in order to validate results obtained from other 

techniques in more complex systems with the conditional data available.  

 

An analytic hierarchy process (AHP) can solve the multi-criteria decision problem by pairwise 

comparison of each criterion by their weights using the two major approaches of eigenvector 

and geometric means solution. There are generally four major stages for AHP: 1) Decision 

matrix development; 2) comparison pairwise matrix construction; 3) relative weight 

identification from comparison matrix; and 4) computation of ranking based on the weights  

(Fernandez, et al., 2003). Ishizaka & Labib (2011) used weighting factors for both decision-

makers and stakeholders in their AHP decision making strategy. Labib, et al. (1998) 

represented an AHP for the maintenance decision-making when analysing machinery faults 

and criticality as an important part of preventive maintenance due to the fact that use of only 

fault and criticality analysis may not be an effective option in most cases. Therefore, the multi-

criteria decision analysis tool introduced in this paper works across three stages: 1) criteria 

identification for each piece of machinery; 2) prioritisation of each criterion by multiple-criteria 

evaluation method; and 3) criticality ranking of the machinery.  

 

 Labib (1998) used AHP to proper recording system results of previous maintenance actions as 

well as failure mode tree prioritisation for minimising the diagnostic phase of his model. AHP 

can also be used for value estimation of the value tree analysis (Hamalainen, 2002). Hauser & 

Tadikamalla (1996) used simulation on AHP in order to facilitate the judgment process. Liu, 

et al. (2012) introduced three different vulnerability levels into their AHP neural network 

analysis and decision-making. Magro and Pinceti (2009) used an AHP neural network for the 

demonstration of interdependencies within their analysis. The decision tree resulting from the 

AHP model of this study is shown in Figure 9. Finally, Paulson and Zahir (1995) created a 

methodology for solving uncertainty factors on AHP. The figure below contains an example 

of the AHP developed for intelligent pressure transmitter devices. Recent work by Lazakis and 

Olcer (2015) combined AHP with fuzzy multiple attributive group decision-making for 

improving overall maintenance decision-making on a ship diesel generator within previously 

developed reliability- and criticality-based maintenance. This AHP approach uses criticality 

values and general ranking which, in a similar way to the FMECA technique, can cause 
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uncertainties due to turning qualitative expressions into quantitative results. The best way of 

implementing an AHP technique is to create a neural network in similar fashion to a BBN. 

Therefore, the AHP technique used by Magro (2009) can be more effective. However, other 

techniques such as those used by Paulson (1995) and Lazakis (2015) have to be added in order 

to enhance the effectiveness of AHP by decreasing the uncertainties.  

 

 

Figure 9 - Decision Tree resulted from Analytic Heirarchy Process (AHP) (Magro & Pinceti, 2009) 

 

Rosqvist, et al. (2009) have introduced multiple criteria decision making (MCDM) for a 

decision logic system of VDM methodology. Moore & Starr (2006), in their paper, talk about 

the fuzzy version of MCDM evaluation methodology. Peres, et al. (2007) discuss a decision-

support data system. Lee, et al., (2012), in their research, focus on the use of fuzzy group AHP 

and rough set theory (RST) for selecting and evaluating a new service concept (NSC) by 

modelling MCDM. Mazza, et al. (2014) have developed an automatic MCDM tool for solution 

ranking of network loss scenarios. Agrell (1997) discusses the importance of having a 

redundancy concept within MCDM for operational research. Baserba, et al. (2012) have created 

customised multi-criteria decision analysis (MCDA) for appropriate design criteria option 

selection. Dhouib (2014) selected MCDA for the waste tyre logistic selection process. In 

summary, an MCDM method needs to incorporate other decision-making tools in order to work 

properly. This would mean that it could inherit their disadvantages.  
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Strengths, weaknesses, opportunities and threats (SWOT) usually illustrate internal factors 

(strength and weaknesses) and external factors (opportunity and threats from the market) on a 

single framework (Gorener, et al., 2012). SWOT can create the foundation for MCDM (Gao & 

Peng, 2011). Yuksel & Dagdeviren (2007) have developed a quantitative SWOT analysis using 

analytic network process (ANP) algorithms. Seker & Ozgurler (2012) have looked into the 

implementation of SWOT with AHP in the Turkish electronics industry (Figure 10). Gorener, 

et al. (2012) have introduced a SWOT analysis system that uses both AHP and MCDM. Chang 

& Huang (2006) have created a quantified SWOT analytical method and multiple-attribute 

decision making (MADM) for the determination of competing for strength of container ports 

in East Asia. Mohammadpur & Tabriz (2012) have performed SWOT analysis for a Petro 

Karan factory in Iran. They also used fuzzy logic for analysis of uncertainties. SWOT analysis 

can produce high uncertainty as it uses the correlation between qualitative and quantitative 

results and also requires the use of other decision-making tools.  

 

 

Figure 10 - Example of a SWOT Analysis in the Turkish Electronics Industry (Seker & Ozgurler, 2012) 

 

3.4.3 Risk Analysis Methodologies 

 

As low as reasonably practicable (ALARP) was introduced in the offshore industry in the UK 

following the Piper Alpha accident in 1988. ALARP considers that the likelihood of occurrence 

of failure affecting the reliability of safety protection should be less than 10-3 per platform year 
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(Wang, 2001) (Figure 11). The main aim of inspections on FPSOs and RBI methodology are 

ALARP principles for risk management and physical condition for maintenance in order to 

follow legislation and obtaining production availability (Goyet, et al., 2002). Net cost analysis 

concerning the cost of inspection analysis methodology used by Faber (2002) emphasises the 

importance of ALARP even further.  

 

 

Figure 11 - Example of an ALARP Principle (Wang, 2011) 

 

Proportional hazard modelling (PHM) is a technique of evaluating hazards of condition 

monitoring data (Tsang, et al., 2006). Jardine, et al. (1997) discuss the use of multiple 

regression types of analysis based on Cox’s PHM for analysing the monitored data. The 

HAZard IDentification (HAZID) model can help in the early identification of hazards and 

warnings (Paltrinieri, et al., 2013). McCoy, et al. (2000) developed an innovative way of 

enhancing the performance of HAZID models using case studies and feedback. The figure 

below demonstrates a HAZID model from industry.  

 

HAZard and OPerability (HAZOP) is a technique that has been used over the past 40 years for 

identification of hazards on complex manufacturing processes and systems (Marin & Toral, 

2013). Hu, et al. (2009) have developed a computer aided HAZOP model using fuzzy systems. 

Mohammadfam, et al. (2012) have looked into safety problems in a Tehran water treatment 

plant using the HAZOP model. Marin & Toral (2013) performed a HAZOP study on the safety 

of the Mexican oil & gas industry. A descriptive example of the HAZOP structure they used is 

demonstrated in Figure 12. Cagno, et al. (2002) have created Human HAZOP and multilevel 

HAZOP systems for process plants. The structural what-if technique (SWIFT) is an expert 
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brainstorming technique that asks the following questions: What if…?; Could someone…?; 

and, Has anyone ever…? (Maragakis, et al., 2009). It is more useful for high-level rather than 

smaller risk problems (DNV, 2001).  

 

 

Figure 12 - Structure of a HAZOP Model used in Oil & Gas Industry (Marin & Toral, 2013) 

 

3.4.4 Condition Analysis Tools 

 

Signal processing and feature extraction tools (AutoRegressive (AR) model, Fourier transform, 

wavelets transform, time-frequency (TF) and Morlet wavelet filtering) use condition-

monitoring modelling (Lee, et al., 2006). One of the most well-known time series models is 

called seasonal autoregressive integrated-moving average (SARIMA) (Liang, 2008).  

 

Zhou, et al. (2000) has introduced the implementation of fast Fourier transformation (FFT) on 

the Spiewak project. FFT spectrum analysis can identify te low-frequency vibrations better 

than other techniques as it focusses on the surface wave running across the components on a 

sonic speed rather than the direct motion of the structural components (McGowin, 2006).  
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Empirical modelling is one of the most commonly used methodologies for analysing the status 

of the plant using conditional data. For this model, an analytical neural network (ANN) is 

usually created to simplify analysis as it can complete numerous interconnected non-linear 

calculations at the same time such as: prediction of an output value, classification, function 

approximation and pattern recognition  (IAEA, 2008). ANNs can be used to recognise patterns 

and calculate non-linearity of fuzzy sets (Guo, et al., 2009).  

 

Wavelets transform has become predominantly popular on fault diagnosis systems over the 

past 10 years (Yan, et al., 2013). Caprioli, et al. (2007) have looked into the possibility of using 

wavelet technique on processing condition monitoring signals on recent time-frequency. 

Ovanesova & Suarez (2004) discuss the application of wavelet transform structural-crack 

growth detection and processing. Tang, et al. (2014) have developed an innovative fault 

diagnosis system using a Shannon wavelet support vector.  

 

3.4.5 Major Observations of Maintenance-related Analysis Tools and Systems 

 

Criticality analysis concerning FMECA can create a quantitative analysis of the importance of 

failures of different components. This technique contains types of components, their failure 

types and probabilities, effects of their failures, consequences of their failures and mitigation 

methods for the failure modes. Fault tree analysis (FTA) represents a tree-like representation 

of major failure events with their derivative of failure events. Using FTA facilitates the 

demonstration of probability failures caused by minor components and their influence on the 

overall system. FTA is only used on constant failure rate systems and a dynamic gate should 

be added using Markov chains or other methods in order to allow the calculation of the 

probability of time-variant failure events. 

 

The Bayesian Belief Network (BBN) undertakes a similar task to FTA except it uses nodes and 

neural networks to analyse the relationship between failures. BBN is slightly more complex 

than FTA but it can be more effective on systems with greater dependencies as it can create a 

connection from different nodes under two different major events. The dynamic feature can 

also be added to BBN just like FTA. Some studies have used both FTA and BBN and have 

created a connection between them. Weibull’s distribution, using density function, can simplify 

the demonstration of continuous probability distributions on a model such as adding a dynamic 
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gate on an FTA. Markov chains are statistical models that can create connection between 

different states of a system. Monte Carlo simulations are used when the exact result is rather 

difficult to achieve so it uses a scientific sampling technique in order to find the results. The 

Monte Carlo method can be useful in determining the statistical results and algorithms for 

Weibull’s distribution and Markov Chains. 

 

Fuzzy logic and fuzzy reasoning are useful when information is sparse, especially concerning 

decision-making processes. Fuzzy reasoning consists of different types such as fuzzy 

thresholding and BOCR. During the decision-making process it is crucial to rank different 

results, failures and decisions using a hierarchical process such as analytical hierarchy process 

(AHP). The whole AHP process can be included inside a larger decision-making process called 

multi-criteria decision-making (MCDM). MCDM includes various tools put together to 

simplify multi-attribute decision-making. Risk, like cost, is one of the major elements 

concerning maintenance strategy so risk analysis methodologies such as ALARP, HAZID, 

HAZOP and SWIFT are vital maintenance planning tools. ALARP is beneficial when creating 

a benchmark risk criteria for preventing disastrous failures. HAZID, HAZOP and SWIFT are 

useful in identifying risk elements and their consequences on the system. The large number of 

data obtained from condition monitoring systems can be overwhelming and it is essential to 

use different signal and data processing models such as AutoRegressive, FFT, ANN and 

wavelet transforms. The next section will introduce performance measurement techniques for 

evaluating the effectiveness of maintenance policies and tools described in previous sections. 

 

3.5 Maintenance Performance Measurements 

 

It is vital for companies to assess the effectiveness of their chosen maintenance policy 

throughout its life. This section will look into different methodologies used in industry for 

evaluating the performance of the selected maintenance system. 

 

3.5.1 Maintenance Key Performance Indicators (KPIs) 

 

Maintenance performance indicators (MPIs) are an important feature of maintenance 

performance measurement (MPM) in order to continuously improve the performance 

properties of an organisation. There are two types of indicator  (Parida & Chattopadhyay, 
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2007): 1) Leading: a performance driver for early indication, which is non-financial and 

statistical. 2) Lagging: outcome measures that provide a foundation for the performance after 

activity completion such as cost of maintenance and time between breakdowns. 

 

Every maintenance plan should be supported by its objectives. These objectives are 

strategically important in the eyes of low-level managers but are tactical in the eyes of high-

level managers. Maintenance objectives can be linked into company objectives using KPIs and 

MPIs  (Rosqvist, et al., 2009). Using maintenance KPIs helps the organisation to evaluate its 

state, measure/compare performance, identify pros/cons, progress control, objective definition, 

strategy planning, communication, motivation, expenditure update and benchmarking. There 

are two major types of indicators: external and internal. These types themselves fall into the 

three categories: economic, technical and organisational. There are also three major importance 

levels for these indicators (BSI, 2007). A full list of MPIs used in the industry can be found in 

(BSI, 2007).  

 

3.6.2 Maintenance Performance Reporting 

 

Performance reporting systems developed in the past can be set into four groups: Indicators, 

reference numbers, graphs (pie charts, multi-index profile and radar graphs) and more elaborate 

models (Pintelon & Puyvelde, 1997). More elaborate maintenance performance reporting 

models include Hibi, luck and the maintenance management tool (MMT) (Kutucuoglu, et al., 

2001).  

 

3.6.3 Overall Equipment Effectiveness (OEE) 

 

There are two main factors when evaluating the performance of a plant: Overall equipment 

effectiveness (OEE) and overall plant effectiveness (OPE). OEE can be calculated using the 

equation below  (Pun, et al., 2002): 

𝑂𝐸𝐸 = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 × 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 

Equation 1 

 

Other factors such as response time are also important for maintenance performance. The 

effectiveness of ECM implementation can usually be measured by the two indices of overall 
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system effectiveness (OSE) and individual system effectiveness (ISE)  (Pun, et al., 2002). OEE 

is used as a measure for effectiveness and machinery performance. OEE is an important 

measure used in TPM methodology that identifies all the equipment losses (Kennedy, 2009). 

Availability, productivity and quality are usually represented together using OEE in TPM 

methodology. These three measures also require the calculation of the following maintenance 

losses: Breakdowns, set-up, minor stoppage, reduced speed, scrap rate and start-up losses 

(Labib, 1999). TPM can help OEE by creating an environment for assessing losses and 

prioritising maintenance schemes. OEE itself is calculated in three areas of production, 

maintenance and product quality (Tsarouhas, 2007).  

 

3.6.4 Reliability, Availability, Maintainability and Supportability (RAMS) 

 

Reliability, availability, maintainability and supportability (RAMS) can be used to observe all 

steps of product development and quality measurements (Lundteigen, et al., 2009). Zerwick 

(1996) has represented a review of integrity of critical equipment (RICE) program using RAMs 

for the maintenance pressure vessels. Martorella, et al. (1999)  discuss the importance of RAMS 

within nuclear power plants. They have introduced a methodology that combines RAMs with 

RCM, on-line maintenance (OLM) and residual life management (RLM) systems. However, 

Martorell, et al. (2005) have added a criticality factor to RAMS in order to create a RAMS + 

C approach for nuclear power plants. Hwang (1996) has introduced the joint methodology of 

using RAMS and LCC for product performance evaluation.  

 

3.6.5 Balanced Scorecard (BSC) 

 

Tsang (1998) introduced a systematic maintenance performance management strategy using 

the balanced scorecard (BSC). There are three major performance categories for maintenance: 

Equipment performance measures (availability, reliability, OEE, etc.), cost performance 

measures (O&M labour, material cost, etc.), and process performance measures (planned and 

unplanned work ratio, schedule compliance, etc.) (Tsang, 1998). Wong, et al. (2009) have 

created an adapted BSC for evaluating various design parameters on different styles of 

buildings. Seyedhosseini, et al. (2011) used the BSC to analyse the performance of the 

production/service of auto part manufacturers.  
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3.6.6 Quality Function Deployment (QFD) 

 

Quality function development (QFD) is a technique that can be used to create a performance 

measurement system (PMS) for maintenance (Parida & Chattopadhyay, 2007). Kutucuoglu, et 

al. (2001) gathered different types of maintenance performance reporting systems in order to 

create a customised QFD system. Benner, et al. (2003) looked into the application of QFD food 

product development. Kuo, et al. (2009) developed an eco-quality function deployment (Eco-

QFD) environmental product design strategy using fuzzy grouping. A more widespread review 

of all the different QFD methodologies used in the past can be found in a paper by Chan & Wu, 

2002. Schmidt (1997) has established an integrated concept development (ICoDe) aspect in 

order to enhance the performance of QFD results. 

 

3.6.7 Benchmarking 

 

Benchmarking works by comparing the performance of one of piece of equipment with the 

best in class. This can also introduce areas for improvement (Madu, 2000). Corporative 

benchmarking can be used in order to assess the effectiveness of maintenance strategies 

compared with the market (Tsang, 1998). This technique can be effective when improving the 

efficiency and performance of an organisation by comparing its process map with other leading 

and successful businesses. Benchmarking itself can be integrated as one of the indicators of the 

MPI system. The schematic diagram of the linkage between MPIs and benchmarking is 

illustrated by Ahren & Parida, (2009).  

 

3.6.8 Major Observations on Maintenance Performance Measurements 

 

KPIs and MPIs describe the major goals and incentives of an organisation, MPIs can be used 

in order to determine the progress of the organisation towards it main goals and objectives. 

Organisational goals should be determined on both internal and external bases. OEE is a 

measure of effectiveness of an operation that is usually implemented through the TPM 

technique. RAMS analysis can be performed on a product of a company in order to determine 

its maintenance cost and performance including the use of spares. RAMS can be an on-going 
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process and can be integrated with the online maintenance system of the organisation. The BSC 

is a valuable tool for measuring the performance of actions such as maintenance from the 

design stage until decommissioning. QFD is similar to the BSC but it is three-dimensional and 

can include more analysis criteria. Benchmarking can be beneficial for comparing the 

performance of the company with similar organisations using other maintenance performance 

measurement techniques 

 

3.6 Inspection and Monitoring Tools & Methodologies 

 

This section will represent the inspection and monitoring tools used in industry for obtaining 

the data for maintenance policies and performance measurements or restoring equipment to 

design conditions. 

 

3.7.1 Electromagnetic Testing 

 

The oil and gas industry uses inspection techniques such as alternating current field 

measurement (ACFM), and time of flight and saturated low frequency eddy current (SLOFEC). 

These techniques would allow the company to identify any inner or outer cracks, defects and 

discontinuities within the materials. ACFM is a very cost effective technique and SLOFEC can 

work even with marine growth on the surface (Caldwell, 2012). Ming, et al. (2007) 

implemented alternating current field measurement (ACFM) for crack detection by analysing 

the reduction of magnetic flux. ACFM is also used in three different case studies by LeTessier, 

et al., 2002. Tehranchi, et al. (2011) used the magnetic flux inspection technique for detecting 

cracks using giant magneto-impedance (GMI). 

 

 Halleux, et al. (1996) used the eddy current technique to evaluate the thickness of circular non-

magnetic conductive tubes. Yamada, et al. (2008) performed low frequency eddy current 

testing for flaw detection on multi-layered aluminium plates. Rekanos, et al. (1997) used a 

neural network for conductivity profiling issues of low frequency eddy current probes. He, et 

al. (2011) introduced pulsed eddy current (PEC) non-destructive testing for flaw detection 

using a C-Scan image format. Gros (1995) implemented eddy current non-destructive testing 

on evaluation of low-impact damage to carbon fibre reinforced plastic (CFRP) structures.  
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3.7.2 Wave and Vibration Frequency Monitoring 

 

Recently, vibrational analysis equipment has become much cheaper than before due to 

advances in piezo-electric sensors, signal processing theory, and digital signal processors. 

There are two sets of well-known time-domain analysis signal processing equipment: auto-

correlation and Cepstrum. There are also numerous types of bearing checker equipment for 

vibration monitoring of wind turbines. Some of the most commonly used bearing checkers 

include: Pruftechnick’s VIBSCANNER, sock pulse method (SPM), SWANTECH and SKF’s 

spectral emitted energy (SEE) method, (ICP) accelerometers (McGowin, 2006). CORPAC is 

an important corrosion monitoring system that uses acoustic signals. This equipment can purify 

corrosion product noises from the process and other field noises  (Cole & Watson, 2005). 

Miettinen & Siekkinen (1995) used acoustic emissions to monitor the performance and sliding 

contact behaviour of seals. 

 

 Loutas, et al. (2009) discuss the use of acoustic emission monitoring for the conditional 

monitoring of gearbox components during operation. Ravindra, et al. (1997) implemented 

acoustic emission monitoring into evaluating the condition of metal cutting tools. Rabiei and 

Modarres (2013) selected acoustic emission monitoring as an appropriate technique for 

monitoring the crack growth on aluminium structures. Davies, et al. (1996) performed acoustic 

emission analysis on a cement-metal interface. Infrared thermography is a non-contact method 

that shows the heat changes within machinery. Spot radiometers are common thermography 

equipment used in industry. They are relatively cheap and easy to use but provide very 

diminutive measurements. They also only take measurements on circles, not dots as they only 

measure the average temperature from dots on an area and the size of the area is distance 

dependable  (Salva, et al., 2004).  

 

Jamalabadi (2013) implemented infrared cameras to evaluate thermal loading of thin carbon-

steel plates. Classification societies and international regulations are forcing companies to use 

enhanced survey programs (ESP) and measurement equipment such as ultrasonic thickness 

measurements (UTM) for corrosion analysis (Jaramillo, 2006). Ultrasonic guided waves were 

used by Raisutis, et al. (2010) in order to identify flaws within carbon fibre reinforced plastic 

(CFRP) products. Impulse excitation technique (IET) was performed by Swarnakar, et al. 

(2009) to determine the performance of ceramic coatings. Kazantsev, et al. (2002) investigated 

the radiographic detection technique for weld performance evaluations.  
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3.7.3 Structural Surface and Material Property Analysers and Visual Inspection 

 

Swain, et al. (2007) looked into the applications of the British Maritime Technology Hull 

Roughness Analyser (BAHRA) and barnacle adhesion strength measurements for testing 

performance of anti-fouling coatings on ship hulls. Ellipsometry is another type of surface 

analyser for analysing the film thickness of coatings (Keddie, 2001). Augmented reality (AR) 

can be used as an effective tool in order to display technical data easily to engineers and 

operators. AR is basically the overlapped real world with the virtual reality model. Due to the 

complexity of the pipe networks of FPSOs, it could be difficult for the engineer to simply use 

design information in order to carry out inspections and maintenance. Therefore, AR could 

facilitate the use of the design data as they are represented in virtual reality on the real images 

and videos of the site (Lee, et al., 2010). Lyu & Chen (2009) looked into the application of 

automated visual inspection in manufacturing plants. Shriwardhankar, et al. (2010) discuss the 

implementation of visual helium leak inspection techniques for checking the containment and 

sealing effectiveness of vertical shell and tube type heat exchangers.  

 

3.7 Overall Observations 

 

Both fault tree analysis (FTA) and Bayesian belief network (BBN) are useful tools for failure, 

reliability and probability analysis but not enough work has been done on comparing these two 

techniques in similar case studies. Time-dependency and dynamic parameters for both FTA 

and BBN are also not well-represented in the literature. Values estimated for these two 

maintenance analysis tools would create uncertainty factors. These uncertainties would have a 

serious effect on final decisions obtained from maintenance analysis. Moreover, both of the 

above tools should be able to face interdependencies between different failure systems. FMEA 

and SWIFT analysis tools are additional tools that can be used in conjunction with FTA and 

BBN but they are qualitative methods and turning their results into quantitative data and 

obtaining likelihood factors would create further uncertainty factors. Markov chains can also 

help in probabilistic analysis and can be used in partnership with other techniques but it could 

represent sequential dependencies. Dynamic gates on FTA and dynamic nodes structure on 

BBN would both require other methods such as Weibull’s distribution or Monte Carlo 

simulations to obtain their results.  
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However, not much research has been directed toward the preference and comparison of these 

statistical techniques used within the maintenance and reliability tools. All fuzzy techniques 

can be helpful in dealing with the uncertainties arising from the maintenance decision making 

process, although it is not fully understood which fuzzy technique should be used and in what 

specific situation. If multiple failures occur at the same time, there are different techniques such 

as MCDM and AHP to classify and compare different decisions in order to achieve the final 

unified decision. However, a further sensitivity analysis would be required to determine the 

effectiveness of the technique used. The concept of maintenance measurement is a rather new 

concept and most of the well-known performance measurement techniques are not fully tried 

in industry. QFD, BSC and benchmarking are commonly used in other types of performance 

measurement situations in industry but not fully developed to be used in maintenance 

performance cases. The most well established maintenance performance techniques include 

MPIs, OEE and RAMS, though there remains space for further improvement in both 

techniques. 

 

Even though maintenance has come a long way since the basic ‘fix it when it is broken’ 

methodology of the pre-world war era, it remains in need of improvement. This is due to the 

fact that manufacturing techniques and equipment used recently are becoming more complex; 

consequently, their maintenance and repairs are becoming more challenging. The main reasons 

behind these complexities include the progress of automation and computerised systems. 

However, both automation and computerised systems used for maintenance can also be 

considered a benefit concerning the simplification and efficiency of maintenance of these 

complex systems. In general, there remain some shortcomings that must be addressed. In this 

section, some of the future work required for resolving these issues will be discussed.  

 

A thorough research is required to identify suitable predictive and preventive policies for small 

to medium sized companies. Prognostic systems should be developed for quicker prediction of 

future degradation patterns of equipment. These prognostic systems are also effective within 

the whole system on real-life remote monitoring rather than singular components. This requires 

an adoption of a generic system in different industries. An integration methodology of company 

KPIs and MPIs should be created to minimise the gap between the business side of maintenance 

policy and its technical aspects. RCM methodology is a well-known maintenance policy but 

still requires more research and modifications. For example, more comparison of case studies 

is needed to compare shortened versions of RCM with more effective and full versions. VDM 
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is one of the most comprehensive RCM methodologies that require extensive research and 

application in industry. The main missing research area on VDM policy is burden to importance 

ratio (BIR).  

 

Another type of well-represented maintenance policy is CBM. Condition monitoring systems 

in CBM do not have a unified software language and the adaption of a more comprehensive 

and common language for all monitoring systems would save valuable time and effort in 

decision-making. RBI is another important maintenance policy that requires more research 

especially on the addition of extra sections such as reliability analysis to increase its 

performance. For all of the above maintenance policies, business and management sides can 

be added using a TPM approach. This proves the importance of discussing the effects of using 

the combination of more than one maintenance policy together. Most maintenance tools also 

require more development. More research is required concerning the application of dynamic 

BBN instead of DFTA in maintenance. Solving the time-dependent variable of the DBBN itself 

would require further study, as there are numerous statistical methods that can analyse this 

variable. Finally, additional exploration of maintenance performance measurements is needed, 

as research on the use of QFD, BSC and benchmarking techniques in maintenance techniques 

is sparse.  

 

3.8 Chapter Summary 

 

In summary, this chapter discussed the difference between three major maintenance 

approaches: Corrective, preventive and predictive. It stated all the different policies used in 

these three approaches. It then described the different tools used to obtain data for these policies 

and various ways of measuring their effectiveness. Finally, it stated the different types of 

inspection and monitoring tools used in industry. This would help companies to select the most 

appropriate methodology for their needs. This paper is only a brief review of most of the 

maintenance methodologies available in the industry as further in-depth studies will be required 

in order to obtain more knowledge on the procedures, pros and cons of each methodology.  
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4 CHAPTER 4-BUSINESS-ORIENTED PROBABILITY-BASED 

MAINTENANCE (BOPM) MODEL 

 

4.1 Chapter Introduction 

 

This chapter will represent the overall business-oriented probability-based maintenance 

(BOPM) methodology and all the analysis models and data clients included as part of the 

methodology. It will also present the overall connection of different tools with each other and 

how they work together to achieve the final maintenance scheduling decisions and the goals of 

the aim and objectives of this PhD thesis. 

  

4.2 Overall Business-oriented Probability-based Maintenance (BOPM) 

Structure 

 

The maintenance platform created for this thesis uses both cost analysis data and probabilistic 

risk-related classification of the components and sub-systems together with overall continuous 

performance assessment of them per their condition monitoring data together in one unified 

central platform. This platform uses condition monitoring data recorded previously from an 

on-board data-gathering campaign from the sensors in addition to logged data by the vessel 

crew to determine the overall performance of machinery equipment and sub-systems. These 

performance-related data are evaluated against the manufacturers’ requirement for the 

performance limits with additional input from the company side concerning the performance 

indicators. Subsequently, these evaluated data are further analysed by the main analysis unit of 

the platform, the probability analysis unit (PAU) to determine the overall performance of the 

sub-system and predict its future performance.  

 

Consequently, cost data, in addition to criticality assessment of the components and sub-

systems, are combined within the decision-analysis unit (DAU), as mentioned in section 4.10, 

to create suggestions for maintenance tasks for the analysed system. Past preventive 

maintenance reports and general maintenance scheduling of the vessel can also be used in 

decision-making in order to alter scheduling of coinciding and overlapping tasks. Figure 13 

demonstrates the overall structure of the BOPM platform and the interaction between different 

data sources and analysis units. This chapter of the dissertation will discuss each part of the 
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BOPM platform in detail. As a result, the following subsections of this chapter will demonstrate 

the overall sections of the methodology as follows: Company goals with MPIs (explained fully 

in Section 4.3), component-specific performance measures (explained fully in Section 4.4), 

past PMS reports (explained fully in Section 4.5), observed sensorial data (explained fully in 

Section 4.6), cost data (explained fully in Section 4.7), component criticality classification 

(explained fully in Section 4.8), probability analysis unit (PAU) (explained fully in Section 

4.9) and decision analysis unit (DAU) (explained fully in Section 4.10). 

 

 

Figure 13 – Business-oriented Probability-based Maintenance (BOPM) Methodology 

 

As Figure 14 represents the overall connection between analysis units (PAU and DAU) and 

data clients (OEM data, observed data, cost data and FST risk factors), the overall structure of 

the analysis models together can be represented as Figure 14. This figure shows how data 

treated for missing values are then turned into performance indicators using measurement 

limits modified by company MPIs to be used within the DBN tool. Subsequently, performance 

predictions generated from the DBN model are combined with utility and decision nodes to 

perform net cost analysis and produce maintenance decisions. Finally, overall prioritisation of 

intervening maintenance tasks using the relative risk factors produced from the FST tool from 
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MATLAB creates maintenance-scheduling decisions. The overall interactions between the 

analysis units and data clients are explained in more detail in sections 4.9 and 4.10. 

 

 

Figure 14 - Overall Analysis Flow of the BOPM Methodology 

 

4.3 Company Goals with Maintenance Performance Indicators (MPIs) 

 

In general, each major company, including ship operators, can have their own specific 

Maintenance Performance Indicators (MPIs) in order to help them achieve certain business, 

safety and reputational goals. For this methodology, company goals and their MPIs are adopted 

in two major sections. Firstly, overall cost data are altered based on company business aspects. 

This cost alteration has been performed mainly on cost of downtime per sub-system/system 

and repair prices. This is since business teams also measure the employee cost for both 

downtime and repairs on top of the actual vessel chartering costs and delaying penalties per 

journey. 
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This employee cost can be in three major groups: on board vessel crew, on-shore management 

personnel and repair/inspection crew costs (third party technicians). Downtime effects for the 

crew on-board the vessel is due to the fact that they still have to be paid while stationary. 

Onshore personnel cost is as a result of the time spent managing and finding the repair or 

replacement scenarios for the vessel. Finally, repair/inspection, specifically from a third party, 

must be measured according to where they are from and where the vessel is based. For this 

study an average cost of all cost aspects, mentioned previously, are adopted based on the 

average of Southeast Asia. 

 

Secondly, component specific measurement limits on every piece of machinery based on 

pressure, temperature, vibration, etc., have been adopted based on company history of the 

specific component, their experts’/engineers’ specific analyses on the identified limit from the 

manufacturer and, finally, on the operational performance and risk factor that has been set by 

the company-specific goals and MPIs. These MPIs are more specific KPIs targeting the 

technical aspects of the vessel lifecycle and its maintenance performance. These MPIs are 

shown on Table 1. The methodology and case studies of this thesis use these factors in addition 

to the recommended manufacturer limits to define the most optimum limits to be used for the 

probabilistic analysis section of the overall BOPM maintenance platform. 

 

Table 1 - Maintenance Performance Indicators (MPIs) 

 

Item Maintenance Performance Indicator (MPI) Measurement and Expectation Weightage

1
Technical Condition Index (TCI) to be adopted 

for all major ship machinery parts

Minimum 80%

12%

2
Fuel Consumption based on TCI 

recommendation

> 80% TCI

12%

3
Environmental Pollution based on TCI 

recommendation

> 80% TCI

12%

4 First Alarm on Component degradation > 80% TCI 12%

5 PMS Outstanding Task Percentage per month <30% 12%

6
Defects-average time between issuance and 

Closing

Routine <30 Days, Critical <10 

Days 7%

7
Spare parts-time between requisition and the 

delivery of the order

<60 days

6%

8 Spare parts-Percentage of the wriong delivery <3% 6%

9
Difference between actual and budget drydock 

cost

<5%

7%

10
Uschduled stoppage due to equipment 

melfunction

1 day per year

8%

11 Condition of class impossed to vessel <15% 6%
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The main observation that can be taken from the MPIs of Table 2 is the Technical Condition 

Index (TCI) value which is the percentage of the change of the condition compared with the 

design condition. This value is 80% for all different measurable aspects of the vessels including 

component performance degradation, fuel consumption and environmental pollution. This 80% 

TCI value was adopted on evaluation of the performance limits for component performance 

analysis on the PAU section of this BOPM methodology.  

 

Additionally, percentage difference of 3% for spare parts and 5% for the dry dock and repair 

costs were also adopted on top of the overall cost and was also imputed on the DAU section of 

the BOPM methodology. Finally, all MPI conditions were checked at the final decision stage 

together with evaluation of the effectiveness of the BOPM methodology to ensure that the 

methodology meets all MPI items. This means that the overall cost data and general risk indices 

are arranged in way to follow these MPIs. This is further explained in sections 4.7 and 4.8. 

 

4.4 Component-specific Performance Measures 

 

OEMs (original equipment manufacturers) and suppliers generally specify the normal working 

condition characteristics of the components and sub-systems inside machinery systems (which 

are lube-oil system, fuel-oil system and turbocharger for the case studies of this PhD thesis). 

In the case of ship machinery numerous data such as usual fuel consumption, oil consumption, 

heat generation, emission, power and other performance limits are defined overall. Then, more 

specific details such as recommended pressure, temperature and vibration limits of the 

equipment on different operational conditions such as engine RPM have also been recorded 

and presented to the ship owner. 

 

In some special cases, the manufacturers have also determined degradation patterns for 

components and maximum working limits to meet classification society requirements. 

Generally, classification societies recommend certain safety limits and inspection/maintenance 

schedules per system or component for ship machinery. This also influences the overall 

manufacturer’s specified limits and determines the final performance limits to be used for this 

study. These limits are further modified using company MPIs and experts’ opinions in some 

cases to alter the limits in order to meet company-specific goals on reducing the possibility of 

failures and increasing the overall effectiveness of each system within the vessel. This study 
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then uses these limits in conjunction with observed data to determine overall probabilistic 

performance of the component/sub-system to be used in analysis modules namely PAU and 

DAU. 

 

4.5 Past Preventive Maintenance (PM) Reports 

 

All past preventive maintenance schedules and reports, including any repairs or part exchanges 

done, would include any major overhauls and dry-docking activities. This would provide extra 

information on top of the recommendation made by probability analysis and decision-making 

units. Furthermore, any scheduled inspection, maintenance or repair activity logged on the 

PMS report from the manufacturer can clash timing-wise with the recommended maintenance 

time from the decision-making unit of the overall BOPM platform on other equipment within 

or in close proximity to the sub-system of the scheduled maintenance.  

 

Therefore, component risk-related classification must also be performed on the component that 

has been scheduled for maintenance in order to prioritise the maintenance tasks for within the 

overall maintenance plan of the vessel including maintenance plan determined by the BOPM 

platform. Additionally, PM reports can also give more information about any unwanted failures 

or any further degradation patterns on any components that may not yet have had an effect on 

the overall performance analysis.  

 

4.6 Observed Sensorial Data 

 

This section of the BOPM platform includes all the sensorial records on temperature changes, 

pressure changes and vibration acceleration measurements obtained from different 

components/sub-systems. Other operational conditions such as voyage data, environmental 

conditions, fuel types and engine load/speed are also stamped on the measured data. This 

produces an overall conditional profile of all the observed machinery and equipment within the 

vessel and this thesis’s case studies. Comparing these data with specified and adopted 

manufacturers’ limits, overall probabilistic performance of the components and sub-systems 

are measured. This is done by finding, statistically, how many times recorded data for each 

component or sub-system has passed the recommended limit compared with all other recorded 

time. Using these sensorial data with the measurement limits that are modified according to 

company MPIs can help to obtain performance indicators for each component’s/sub-system’s 
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measurements within a certain time-period. This can then be put into the probability analysis 

unit (PAU) of the BOPM to predict the future performance values of each component/sub-

system. 

 

4.7 Cost Data 

 

This section of the methodology includes all the following cost data for the equipment adopted 

by the company recommended changes: 

 

 Spare part prices 

 Repair costs 

 Capital loss from delays 

 Docking costs 

 Incident/failure costs (including loss of life, oil spill and any other types of harm to both 

crew, environment and major ship machinery) 

 

These cost values are adjusted using company MPIs and experts’ comments. These cost values 

can then be inserted into the decision-making unit (DMU) of the BOPM to implement net cost 

analysis and produce maintenance decisions. 

 

4.8 Risk Factor Classification 

 

This section of the methodology classifies all components and sub-systems on four major risk 

criteria. This is useful in the decision-making part of the methodology, when there are various 

clashing scheduled maintenance/repair activities on systems. The three major risk areas for 

component classifications are: 

1. Human risk factor 

2. Environmental risk factor 

3. Operational loss 

 

These factors are determined according to the failure causes they would have had if the system 

they are based upon failed completely due to the failure of those specific components or sub-

systems. For this study, general risk criteria and matrices recommended by ABS (American 
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Bureau of Shipping) (ABS, 2000) (Verzbolovskis, 2004) have been used. This further follows 

the UK government health and safety standards for marine risk assessment developed by DNV 

(det Norske Veritas) (HSE, 2001). The specific types of vessels and their overall cost data used 

in the case studies then adopt these matrices. More specific tabulated definitions of each of the 

risk matrices are demonstrated in the results chapter of this thesis. Consequently, these risk 

factors are then compared with the probability of the failure of the observed equipment or sub-

system to obtain overall risk factors for each risk criterion. This comparison and combination 

of overall risk factor for each criterion is completed using fuzzy logic theory.  

 

Fuzzy set theory (FST) was first introduced by Zadeh (Zadeh, 1965) for observation of vague 

linguistic factors from a more objective perspective. This method can alter fuzzy linguistic 

terms and interaction between linguistic terms into more numerical values. Therefore, any 

expression of linguistic terms such as minor failure cost level with the occasional occurrence 

probability of failure can have medium failure-consequence risk criteria for the case study of 

this thesis.    

 

There are various types of fuzzy membership functions that define the relationship between 

different linguistic statements used within the fuzzy logic created for the study. The main 

membership functions used in industry are: triangular, trapezoidal, Gaussian and Cauchy. After 

testing different membership functions and also due to having only two comparison axes from 

the fuzzy linguistic framework of the case studies for this thesis, triangular fuzzy membership 

function has been used. This triangular function is simpler to use and gives equally accurate 

results as other more complex membership functions. A general expression for the membership 

function can be presented as Equation 2 (Mentes & Helvacioglu, 2011): 

 

𝜇𝐴(𝑥) =

{
 
 

 
 

0          𝑥 < 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
    𝑎 ≤ 𝑥 ≤ 𝑏

𝐶 − 𝑥

𝑐 − 𝑏
    𝑏 ≤ 𝑥 ≤ 𝑐

0          𝑥 > 𝑐 }
 
 

 
 

 

Equation 2 

 

Where 𝜇𝐴(𝑥) is the membership function of fuzzified value x for the triplet min, medium and 

max values of (a,b,c). This can be further understood from Figure 15 (Mentes & Helvacioglu, 

2011). 
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Figure 15 - Triangular Fuzzy Format 

 

Fuzzy logic for the membership functions used between failure rate and risk factors are shown 

in Table 1. The overall combination of all risk factors is designed in a Simulink MATLAB 

environment using a fuzzy logic toolbox. Their overall design is shown in Figure 16. Final 

outcomes of fuzzy analysis will be shown in the results section of this thesis for all three vessel 

case studies and a sample of MATLAB outcomes are shown in Appendix D. 
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Figure 16 - Overall Model of Fuzzy Set Addition in a MATLAB Simulink Environment 
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4.9 Probability Analysis Unit (PAU) 

 

This section of the BOPM methodology demonstrates the overall probabilistic analysis unit. 

This unit uses the analysed performance indicators produced combining observed sensorial 

data with component performance limits modified by company MPIs to implement probability 

analysis to predict future performance of each component/sub-system. Then, it smooths the 

results by filling in the missing data using Markov Chain Monte Carlo (MCMC) simulation. 

This increases the effectiveness of the data set by making sure they all have equal observation 

times. Next, the static part of the BBN, developed for the particular case study, creates a 

connection between the main systems and other sub-systems and components within the 

system. Subsequently, this BBN model analyses the overall probabilistic performance of the 

system at a given time.  

 

Finally, by adding the first-order Markov chains to the Bayesian nodes and using data from 

one previous time slice and the current time slice, the resulting dynamic Bayesian network 

(DBN) model predicts the system performance for the next four future time slices. These time 

slices are determined by the amount of time in days, weeks or months that data have been 

gathered, divided by two in order to obtain two distinctive time slices. If the duration of the 

time slices is lower the general accuracy of the model would be higher as, in reality, the system 

can have some unpredictable behavioural changes where shorter time slices can capture that 

better. However, time slice duration can be shortened by some amount depending on how often 

data are gathered as the total amount of data gathered will also increase the accuracy of the 

probabilistic values and, in turn, the results of the BBN analysis. Additionally, over a very short 

duration of time, the overall system may not have any malfunctions or failures, which makes 

future analysis redundant as there would be no alteration between the past and present. Further, 

future study using more machinery systems and from more vessels can help to determine the 

minimum amount of data required for accurate analysis, but for the absolute minimum there 

should not be less than one data capture per week and overall analysis duration should not be 

more than one third of the year as the overall result of the first predicted time period would be 

past the one year mark where there could be various unwanted anomalies and irregularities in 

the machinery and overall vessel conditions may occur within this long period of study. Figure 

17 illustrates the overall flow of the analysis units used for both the probability analysis unit 

(PAU) and decision analysis unit (DAU) of the BOPM platform. 
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Figure 17 - BOPM Overall PAU and DAU Analysis Flow 

 

4.9.1 Markov Chain Monte Carlo (MCMC) Multiple Imputation 

 

For treatment of missing data, different methods, i.e., mean substitution (MS), expectation-

maximisation (EM) of maximum likelihood (ML) and multiple imputations are used. The 

chosen model with the highest accuracy is called Markov Chain Monte Carlo (MCMC) 

multiple imputation technique. This was tried using SPSS software to observe which type gave 

the closest prediction of the values compared with the actual observed value. For the purpose 

of this, a full set of real-time data with no missing values was used. Then, randomly, some of 

the data were deleted from the dataset in order to mimic the missing data scenario. 

Subsequently, different types of missing data treatment methods were used within the SPSS 

software environment. Finally, plotting the graph of the calculated results with the real data 
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was completed. The model with the closest values was chosen for the BOPM platform. This 

will be further explained with more graphical details in Section 2 of Chapter 6, the results 

chapter. 

 

The chosen model with the highest accuracy is called MCMC multiple imputation technique. 

Further study was generated for different iteration numbers as shown in Section 6.2 of Chapter 

6; it was observed that after five iterations there was no observable change in generated data. 

Therefore, it was decided that the MCMC multiple imputation missing data treatment model 

should have five iterations and then use the mean of the iterated data as the final data. This 

section will now briefly explain the mathematics behind the MCMC multiple imputation 

technique for the missing data treatment.  

 

For the MCMC model, a Gibbs sampler was used in order to ease the calculation load and make 

it similar to the way SPSS does its calculation. Gibbs sampler has high-dimensional series of 

univariate conditional distributions with simpler joint distribution (Ni and Leonard, 2005). If 

Y is the state to be iterated with n subsectors of Y=(Y1,Y2,…,Yn), then each iterative step of Y 

can be a time step of t. In this scenario for data augmentation purposes Ymis can be denoted as 

the missing data and then the parameter of the interest for the Gibbs sampler can be called Θ. 

Then, data can be iterated between the two steps of imputation step (I-step) and posterior step 

(P-step) which updates the missing parameters of the probability distributions. These steps are 

shown below: 

 

𝐼 − 𝑠𝑡𝑒𝑝:  𝑌𝑚𝑖𝑠
(𝑡+1) = 𝑝(𝑌𝑚𝑖𝑠|Θ

(𝑡), 𝑌𝑜𝑏𝑠, 𝐺) 

Equation 3 

𝑃 − 𝑠𝑡𝑒𝑝:  Θ(𝑡+1) = 𝑝(Θ|𝑌𝑚𝑖𝑠
(𝑡+1), 𝑌𝑜𝑏𝑠, 𝐺) 

Equation 4 

Where G is Gibbs sampler. However, this model only assumes independent and identical 

distributions and does not take into account that data are missing randomly. Therefore, the 

autoregressive integrated moving average is added to the time series as Equation 5. 

 

𝛷𝑝(𝐵)∆
𝑑𝑦𝑡 = Ω𝑞(𝐵)𝜀𝑡 

Equation 5 
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Where p is the order of the autoregressive part, d is the order of the differencing, q is the order 

of the moving average process, t is the time indices and B is the backshift operator which can 

be defined by Equation 6 (Ni and Leonard, 2005). 

 

𝐵𝑦𝑡 = 𝑦𝑡−1 

Equation 6 

 

Consequently, autoregressive (Φ) and moving average (Ω) operators can be represented as 

polynomial equations of the backshift operator as below: 

 

𝛷(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2…−𝜙𝑝𝐵

𝑝 

Equation 7 

Ω(𝐵) = 1 − 𝜔1𝐵 − 𝜔2𝐵
2…−𝜔𝑞𝐵

𝑞 

Equation 8 

From autoregressive integrated moving average equation, ∆ is the differencing operator and 𝜀 

is the white noise. These can be evaluated using Equations 9 and 10. 

 

∆𝑑= (1 − 𝐵)𝑑 

Equation 9 

𝐸 = 𝜀𝑡~𝑁(0, Σ) 

Equation 10 

Where Σ is the variance. Putting all the above equations back inside the main parameters of 

interest (Θ = (Φ,Ω,Σ,E)) from P-step, and the Gibbs sampler together, the following five main 

equations will be obtained for the iteration of the missing data through MCMC multiple 

imputation technique (Ni and Leonard, 2005): 

 

𝑌𝑚𝑖𝑠
(𝑡+1)

= 𝑝(𝑌𝑚𝑖𝑠|ɸ
(𝑡), 𝛺(𝑡), 𝛴(𝑡), 𝐸(𝑡), 𝑌𝑎𝑏𝑠, 𝐺) 

Equation 11 

ɸ(𝑡+1) = 𝑝(ɸ|𝑌𝑚𝑖𝑠
(𝑡+1), 𝛺(𝑡), 𝛴(𝑡), 𝐸(𝑡), 𝑌𝑎𝑏𝑠, 𝐺) 

Equation 12 

𝛺(𝑡+1) = 𝑝(𝛺|𝑌𝑚𝑖𝑠
(𝑡+1), ɸ(𝑡+1), 𝛺(𝑡+1), 𝐸(𝑡), 𝑌𝑎𝑏𝑠, 𝐺) 

Equation 13 

𝛴(𝑡+1) = 𝑝(𝛴|𝑌𝑚𝑖𝑠
(𝑡+1), ɸ(𝑡+1), 𝛺(𝑡+1), 𝐸(𝑡), 𝑌𝑎𝑏𝑠, 𝐺) 

Equation 14 
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𝐸(𝑡+1) = 𝑝(𝛴|𝑌𝑚𝑖𝑠
(𝑡+1)

, ɸ(𝑡+1), 𝛺(𝑡+1), 𝛴(𝑡+1), 𝑌𝑎𝑏𝑠, 𝐺) 

Equation 15 

 

4.9.2 Bayesian Belief Network (BBN) 

 

This section presents the overall static BBN probabilistic model used in the methodology. This 

model uses Bayes’ theorem as a connection between different probabilities. These connections 

can be expressed as conditional probability tables (CPTs). Figure 18 demonstrates a simple 

child to parent node BBN connections for “k” number of child nodes “c” to parent node “p”.  

 

 

Figure 18 - Simple Parent to Child BBN Representation 

 

Bayesian networks are formed as dynamic acyclic graphs (DAGs). Parent node “p” from Figure 

19 can have “m” numbers of probabilities with its “k” numbers of child nodes, which follows 

the expression (m = 2k). If “P” is probability value of each connection from parent node “p” to 

Child node “c”, the overall conditional probability table (CPT) of the BBN from Figure 19 can 

be represented as an equation set on Table 2. In this table “w” presents working state probability 

and f states failing state probability. Summation of these probabilities using Bayes’ theorem 

will result in the overall probability of the parent node “p”. This is represented by Equation 16.  

 

 

𝑷(𝒄𝒐𝒎𝒑) =∑(∑𝑷(𝒇𝒕𝒇(𝒊) ,  𝒇𝒕𝒇(𝒋)))

𝒌

𝒊=𝟏

𝒎

𝒋=𝟏

 

Equation 16 
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Table 2 - Overall BBN Model Probability Table Equational Flow 

𝑷𝟏 = {
𝒘:  𝟏𝟎𝟎
𝒇:    𝟎

; 

𝑷𝟐 = {
𝒘:  𝟏𝟎𝟎 −  𝒇𝒕𝒇𝟏
𝒇:        𝒇𝒕𝒇𝟏

; 

𝑷𝟑 = {
𝒘:  𝟏𝟎𝟎 −  𝒇𝒕𝒇𝟐
𝒇:        𝒇𝒕𝒇𝟐

; 

𝑷𝟒 = {
𝒘:  𝟏𝟎𝟎 − (𝒇𝒕𝒇𝟏 ∗  𝒇𝒕𝒇𝟐)

𝒇:        (𝒇𝒕𝒇𝟏 ∗  𝒇𝒕𝒇𝟐)
; 

𝑷𝟓 = {
𝒘:  𝟏𝟎𝟎 −  𝒇𝒕𝒇𝟒
𝒇:        𝒇𝒕𝒇𝟒

; 

𝑷𝟔 = {
𝒘:  𝟏𝟎𝟎 − (𝒇𝒕𝒇𝟏 ∗  𝒇𝒕𝒇𝟑)

𝒇:        (𝒇𝒕𝒇𝟏 ∗  𝒇𝒕𝒇𝟑)
; 

𝑷𝟕 = {
𝒘:  𝟏𝟎𝟎 − (𝒇𝒕𝒇𝟐 ∗  𝒇𝒕𝒇𝟑)

𝒇:        (𝒇𝒕𝒇𝟐 ∗  𝒇𝒕𝒇𝟑)
; 

𝑷𝟖 = {
𝒘:  𝟏𝟎𝟎 − (𝒇𝒕𝒇𝟏 ∗ 𝒇𝒕𝒇𝟐 ∗  𝒇𝒕𝒇𝟑)

𝒇:        (𝒇𝒕𝒇𝟏 ∗ 𝒇𝒕𝒇𝟐 ∗  𝒇𝒕𝒇𝟑)
; 

. 

. 

. 

𝑷𝒎 = {
𝒘: 𝟏𝟎𝟎 − (𝒇𝒕𝒇𝟏 ∗  𝒇𝒕𝒇𝟐 ∗  𝒇𝒕𝒇𝟑 ∗ … ∗  𝒇𝒕𝒇𝒌)

𝒇:       (𝒇𝒕𝒇𝟏 ∗  𝒇𝒕𝒇𝟐 ∗  𝒇𝒕𝒇𝟑 ∗ …∗  𝒇𝒕𝒇𝒌)
} 
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4.9.3 Dynamic Bayesian Network (DBN) Using Markov Chains 

 

Using BBN equations from previous sub-sections, reliability and cost analysis results from 

only one point in time would be obtained as it is a static method rather than dynamic with 

variable timing. To gain results from multiple time points including future prediction, a Markov 

Chain model can be added to the BBN model. This will change the BBN into a dynamic 

Bayesian network (DBN). In the Markov chain, results from two consecutive previous 

moments or slices in time are used to predict the result for the next time slice or time-period. 

Equation 17 demonstrates the steps of achieving future prediction through Markov chains. This 

model for a single node can be adapted easily to a Bayesian network. Figure 19 illustrates the 

change for simple two-child nodes and one parent node BBN networks into DBN network. 

 

𝑃𝑋(𝑛−1),𝑥(𝑛) = 𝑃{𝑋𝑡𝑛 = 𝑋𝑛|𝑋𝑡𝑛−1 = 𝑋𝑛−1} 

Equation 17 

 

 

Figure 19 - Example of Static to Dynamic BBN Conversion 

 

In simpler terms, the first transition from time “t” to “t+1” can be illustrated as Equation 18.  

 

𝑃(𝑤𝑡+1) = 𝑃(𝑤|𝑤𝑡)𝑃(𝑤𝑡) + 𝑃(𝑤|𝑓𝑡)𝑃(𝑓𝑡) 

Equation 18 

In all the case studies in this thesis, failure probability for times “t” and “t+1” is known. 

However, transition matrix, which is represented by “𝑃(𝑤|𝑓𝑡)” is not known at the beginning. 
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This can be calculated by Equation 19. On all equations, “w” represents the working condition 

and “f” represents the failing condition.  

 

𝑃(𝑤|𝑓𝑡) =
𝑃(𝑤𝑡+1) − (𝑃(𝑤|𝑤𝑡)𝑃(𝑤𝑡))

𝑃(𝑓𝑡)
 

Equation 19 

The equation above can be represented in matrix format, where the transition matrix is shown 

more clearly. This matrix is shown in Equation 20. 

 

𝑃𝑡+1 = [
𝑃(𝑤𝑡) 𝑃(𝑓𝑡)

𝑃(𝑤|𝑤𝑡+1) 𝑃(𝑤|𝑓𝑡+1)
] 

Equation 20 

 

Further steps of these calculations for next available time slices can be represented by Equation 

set 21.  

 

𝑃(𝑤𝑡+2) = 𝑃(𝑤|𝑤𝑡+1)𝑃(𝑤𝑡+1) + 𝑃(𝑤|𝑓𝑡+1)𝑃(𝑓𝑡+1) 

P(wt+3) = P(w|(wt+2), (wt+1))P(wt+2)P(wt+1) + P(w|(ft+2), (wt+1))P(ft+2)P(wt+1)

+ P(w|(wt+2), (ft+1))P(wt+2)P(ft+1) + P(w|(ft+2), (ft+1))P(ft+2)P(ft+1) 

. 

. 

. 

Equation 21 
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4.10 Decision-making Model 

 

A decision node is a node that connects the decision of an action that can change the results of 

the model. Utility nodes that represent a matrix of different cost possibilities are needed in 

order to add quantitative value to decisions to decide if the action with current probabilities is 

feasible. In general, the final decision of a BBN model can be represented as expected utility 

“EU”. In general, expected utility of decision node D can be calculated via Equation 22: 

 

EU(D|e) =∑𝑼𝟏(𝑿𝟏)𝑷(𝑿𝟏|𝐃, 𝐞) + ⋯+ (∑𝑼𝒏(𝑿𝒏)𝑷(𝑿𝒏|𝐃, 𝐞)))

𝑿𝒏

𝒎

𝒙𝟏

 

Equation 22 

 

 

Here, “X” is the predicted probability value matrices from DBN analysis and “U” are the 

relevant utility values for each X value. To add cost analysis and decision-making into the 

overall BBN created, utility and cost nodes can be created. In this thesis, due to limited 

information, the expected utility function is assumed without loss of generality to be linear. 

Utility nodes represent the monetary values associated with consequences and the cost of avoiding 

them. Decision nodes, on the other hand, facilitate the introduction of all types of scenarios for 

all different types of events. Utility and decision nodes together help the operator to analyse 

the effects of the different scenarios and decide upon the cheapest and most efficient option. 

Utility and decision nodes can be demonstrated inside a Bayesian network using Equation 15. 

 

4.11 Calculation Sequence 

 

This subsection will further clarify the data collection and analysis and overall methodology 

sequence of the BOPM. Initially, overall system/sub-system/components architecture for the 

systems studied for this thesis within the ships are created in order to identify which 

components and sub-systems require data to be collected from. Then, overall MPIs have to be 

determined using experts’ knowledge from the company. These MPIs can then be used to 

update both cost data and risk factors. Subsequently, cost data are determined including cost 

of failure, downtime, repairs, parts and labour for each component and failure types. Next, 

company past PM reports are evaluated with cost data and using experts’ knowledge on 

severity of each failure to determine risk factors.  
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Subsequently, using OEM data, company feedback and experts’ comments, overall satisfactory 

working condition limits for each component and sub-system are determined to be used for 

probability analysis. These OEM data also include overall life expectancy of components 

which are also used as an input of frequency for risk factors. Afterwards, real time data are 

obtained and the missing data are treated using MCMC within the SPSS environment. Then, 

these values are fed into the designed Dynamic Bayesian Networks within the Bayesia lab 

environment. Later, utility and cost nodes are added to perform net cost analysis of 

performance probability degradation results within the Bayesia Lab.  

 

Afterwards, using the cost benefit values, maintenance schedule estimates for the highly 

degraded sub-systems and components are determined. Finally, using risk factors maintenance 

tasks are prioritised especially in the case of the intersecting tasks. Overall flow of these 

analysis sequences are shown on Figure 20. Numbering on each box represents their sequences 

and arrows represent where each item of data or information flow or are given to other sections 

of the BOPM.  

 

  

Figure 20 - Analysis Sequence of BOPM 
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4.12 Chapter Summary 

 

This chapter demonstrated the main methodology of the thesis in detail. It started by 

introducing the main data clients to the analysis modules such as cost data, manufacturers’ 

limits, company goals and past PMS reports. It also demonstrated that input from the company 

was used to modify some of the performance limits and cost data in order to meet their specific 

business related KPIs. Then, components and sub-systems were ranked according to their 

importance and criticality through risk indices and a fuzzy set theory (FST) addition where it 

identifies one unique risk value for each of the components or sub-systems.  

 

Subsequently, observed data were treated for missing data using the MCMC multiple 

imputation technique and then their probabilistic performance degradation was evaluated from 

the modified manufacturers’ limits. Next, DBN with first order Markov chains were used to 

evaluate the overall performance of the system, component, and sub-system interaction and 

predict their future performance. Subsequently, utility and decision nodes were used to perform 

cost analysis and suggest decisions for maintenance plans. Finally, all maintenance tasks were 

prioritised according to their calculated criticality values and other PMS reports. In general, 

this methodology incorporates both company MPIs and modified cost values as business 

aspects with overall condition monitoring data that are evaluated by their limits also modified 

according to the company MPIs as the technical aspect to produce maintenance decisions. In 

brief, this model analyses both the performance predictions of each system within DBN models 

and combines it with net cost analysis and evaluated risk factors according to company MPIs 

to produce best possible maintenance scheduling recommendations by combining both 

technical (performance indices and risk factors) and business (net cost analysis and company 

MPIs inputs) aspects in a single platform.  
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5 CHAPTER 5-SHIP CASE STUDIES WITH DIFFERENT SHIP 

MACHINERY SYSTEMS 

 

5.1 Chapter Introduction 

  

In this chapter, data has been gathered from three different vessels. Two of these vessels are 

sister ship chemical tankers. This creates an opportunity for comparison between vessels, 

which will be explored in the discussion chapter. The other vessel type is a multi-purpose cargo 

ship. Three major machinery systems consisting of the lube-oil system, fuel-oil system and 

turbochargers from the three vessels are analysed using the BOPM methodology and platform. 

More information on vessels and system characteristics will be discussed in later sections of 

this chapter. Due to the confidentiality agreement, exact vessel information, vessel name and 

owners are not shown for the case studies. All of the the operational flowcharts and overall 

Bayesian Networks in this thesis are created and assessed by the experts from the industry. 

 

5.2 Ships 1 and 2 – Sister Chemical Tanker Vessels 

 

The sister chemical tankers have total lengths of 144.22 meters and total widths of 23 meters. 

They have Dead Weight Tonnage (DWT) of 16500 tonnes and use two-stroke MAN B7W 

engines. Further information on their engine characteristics is shown in Table 3. Ship number 

one of the sister vessels (Ship 1) has been operating on the west coast of Canada in relatively 

harsher seas and environment. However, sister ship number two (Ship 2) has been operating in 

South-east Asia with a much milder climate than Ship 1 with only some occasional tropical 

storms. Both vessels were approximately nine years old at the time of the data gathering 

campaign. 

 

Table 3 - Sister Chemical Tanker Engines Info 

Manufacturer MAN B&W 

Engine Type 7S35MC 

Number of Cylinders 7  

Engine Max Power 5.180 KW 

Engine Max Power RPM 173 RPM 
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5.3 Ship 3 – Multi-Purpose Cargo Vessel 

 

This multi-purpose cargo vessel has an overall length of 141.60 meters and width of 32.20 

meters. It has the overall capacity of 9500 DWT. Unlike the chemical tanker sister vessels, it 

uses an eight-cylinder two-stroke Wartsila engine where further information on the engine is 

illustrated in Table 4. This vessel has been operating on the Mediterranean Sea in a relatively 

mild environmental conditions and at the time of the data gathering campaign was 11 years 

old.  

 

Table 4 - Multi-Purpose Cargo Vessel 

Manufacturer Wartsila 

Engine Type 8L46D 

Number of Cylinders 8  

Engine Max Power 13.2 KW 

Engine Max Power RPM 105 RPM 
 

 

5.4 Data-gathering Campaign 

 

Having three different vessels creates an opportunity for validating the methodology and 

ensuring that it works for various ship types. Additionally, having two sister ships that operate 

in different environmental conditions creates an opportunity to compare the reliability of each 

individual system from the same manufacturer and determine the influence of the 

environmental and operational conditions on each system. Finally, having numerous ships 

evaluated through the same platform makes it possible to save time by developing a central 

database and maintenance scheduling system for the operator.  

 

The first four months of the data have been used as the datum point, so the next eight months 

predicted from the model can be compared with existing data. The data obtained also include 

operational conditions such as sea state, engine RPM, engine load, weather, ship’s speed and 

total operational hours. Additionally, log books of any maintenance, inspection or repairs were 

obtained in order to validate any decision-making results made by the model. The next sections 

of this chapter will demonstrate overall flow diagram and BBN networks of three major ship 

machinery systems from these vessels.  
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5.5 Lube-oil System 

 

The main engine lube-oil system for all three vessels has a very similar design outline. The 

structural flow diagram of the lube-oil system for the three vessels is demonstrated in Figure 

21. On average the marine diesel engine lube-oil system, oil gathered in the oil sump at the 

bottom of the engine, is pumped out using screw type pumps. Then, it is passed through two 

oil filters and a purifier and fed back to the engine. Finally, lube-oil is gathered at the bottom 

of the engine to start the cycle again.  

 

 

Figure 21- Lube-Oil System Structural Flow Diagram 

 

The main conditional data obtained from this system for all vessels include oil sump level, 

lube-oil pump pressure, lube-oil pump motor amp, purifier flowrate, purifier motor amp, filter 

1 and filter 2 flowrates. Using the manufacturers’ limits with recommendations from the ship 

operator, the ideal working condition limits for each of the above readings were obtained for 

all three vessels. Tables 5 and 6 demonstrate the obtained limits for the sister ships and multi-

purpose cargo vessel respectively to be used for calculating the probabilistic performance value 

that can be implemented on the BBN model within the PAU section of the BOPM platform in 

order to provide future performance predictions. 
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Table 5 - Ships 1 and 2 Lube-oil System Limits 

Component/Sub-System Measurement Type Limits Unit 

Lube-oil Pump Pressure 5.4 to 5.5 bar 

Lube-oil Pump Motor Current 5 to 5.5 Amp 

Lube-oil Sump Oil Consumption 18 to 22 Ltrs/day 

Filter 1 Flowrate Min 1.98 Kg/cm² 

Purifier Flowrate Min 2 Kg/cm² 

Purifier Motor Current 5 to 5.5 Amp 
 

Table 6 - Ship 3 Lube-oil System Limits 

Component/Sub-System Measurement Type Limits Unit 

Lube-oil Pump Pressure 5.6 to 5.8 bar 

Lube-oil Pump Motor Current 5 to 5.5 Amp 

Lube-oil Sump Oil Consumption 24 to 26 Ltrs/day 

Filter 1 Flowrate Min 2 Kg/cm² 

Purifier Flowrate Min 2.1 Kg/cm² 

Purifier Motor Current 5 to 5.5 Amp 
 

Using the flow diagram of Figure 21 and measurement types from Tables 6 and 7, the dynamic 

Bayesian network (DBN) of the lube-oil system for all three ship types can be generated. This 

was done on Genie BasiaLab software and the final DBN model of the lube-oil system without 

utility and decision nodes is shown in Figure 22, which are firstly used to predict the future 

probabilistic performance values. The design of the overall system has been checked both 

through the INCASS FP7 EU project and further validated by Jamal Ghotbazadeh, an expert 

from the Norbulk company.  
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Figure 22 - Lube-oil System DBN Network without Utility and Decision Nodes 
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Subsequently, for the cost analysis and decision-making of the methodology for the lube-oil 

system all failure scenarios and repair jobs are evaluated for each component/sub-system. 

Then, their cost values are obtained from the operators’ spare system and previous maintenance 

job logs. Tables 7 and 8 illustrate the costs of repair and if not repaired cost failures including 

downtime for sister ships and multi-purpose cargo vessel respectively by adding decision and 

utility nodes to the previous DBN structures. These repair costs are based on average repair 

rates of engineers from the Far East. Additionally, downtime costs are calculated by the average 

chartering cost of the vessel per day.  

 

Table 7 - Ships 1 and 2 Lube-oil System Cost Data 

Component/Sub-
system Failure Type Repair Type 

Repair Cost 
($) 

Failure Cost 
($)  

Lube-oil Pump Pump Failure Pump Overhaul 1800  8600  
Lube-oil Pump Motor Motor Failure Motor Repair 800  3600  
Lube-oil Sump  Leakage Overhaul 1600  8000  
Filter 1 Blockage Filter Change 180 780  
Purifier Purifier Failure Overhaul 3300 14000  
Purifier Motor Motor Failure Motor Repair 2400 6400  
Filter 2 Blockage Filter Change 180 780  

 

Table 8 - Ship 3 Lube-oil System Cost Data 

Component/Sub-
system Failure Type Repair Type 

Repair Cost 
($) 

Failure Cost 
($) 

Lube-oil Pump Pump Failure Pump Overhaul 2200  8900 

Lube-oil Pump Motor Motor Failure Motor Repair 800  3600 

Lube-oil Sump  Leakage Overhaul 2400  8400 

Filter 1 Blockage Filter Change 180 820 

Purifier Purifier Failure Overhaul 3800 15200 

Purifier Motor Motor Failure Motor Repair 2700 7000 

Filter 2 Blockage Filter Change 180 820 

 

Using these two cost tables and the DBN network from Figure 22, the complete DBN of the 

Lube-oil systems for all three vessels including utility and decision nodes can be developed in 

Genie BiasiaLab environment as illustrated in Figure 23. In this system, each measured reading 

corresponds to only a single failure cause.  
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Figure 23 - Lube-oil System DBN Network with Utility and Decision Nodes 
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5.6 Fuel System 

 

The main engine fuel-oil systems for all three vessels have very similar design outlines. 

However, the sister vessels use seven-cylinder engines whereas the multi-purpose cargo ship 

uses an eight-cylinder engine. The operational structure flow diagrams of the fuel-oil system 

for all three vessels are demonstrated in Figures 24 and 25 respectively. In general, the fuel-oil 

system operation of a two-stroke marine engine starts by pumping fuel from a heated storage 

tank using a transfer pump into a purifier and service tank. From this point, the amount of daily 

required fuel is taken from the service tank to a heated settling tank then to the auto-filter. 

Finally, fuel is pumped to each cylinder of the engine using cylinder fuel pumps. 

 

 

Figure 24 - Ships 1 and 2 Fuel-oil System Operational Structure Flow Diagram   
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Figure 25 - Ship 3 Fuel-oil System Operational Structure Flow Diagram 

 

The main conditional data obtained from this system for all three vessels include storage tank 

temperature, transfer pump pressure, transfer pump motor current, purifier flowrate, purifier 

motor current, service tank temperature, settling tank temperature, auto-filter flowrate and 

cylinder fuel pumps pressures. Using the manufacturers’ limits with recommendations from 

the ship operator, the ideal working condition limits for each of the above readings was 

obtained for all vessels. Tables 9 and 10 demonstrate the overall obtained limits for the sister 

ships and the multi-purpose cargo vessel respectively to calculate probabilistic performance 

values that can be implemented on the BBN model within the PAU section of the BOPM 

platform. 
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Table 9 - Ships 1 and 2 Fuel-oil System Limits 

Component/Sub-System Measurement Type Limits   Unit 

Storage Tank Temperature 90 to 95 °C 

Transfer Pump Pressure 5.5 to 6 bar 

Transfer Pump Motor Amp 5 to 5.5 Amp 

Purifier Flowrate Min 7 Kg/cm² 

Purifier Motor Amp 5 to 5.5 Amp 

Service Tank Temperature 90 to 95 °C 

Settling Tank Temperature 90 to 95 °C 

Auto-filter Flowrate Min 5 Kg/cm² 

Cylinder Fuel Pumps Pressure  168 to 180 bar 
 

Table 10 - Ship 3 Fuel-oil System Limits 

Component/Sub-System Measurement Type Limits     Unit 

Storage Tank Temperature 90 to 95 °C 

Transfer Pump Pressure 5.6 to 6 bar 

Transfer Pump Motor Amp 5 to 5.5 Amp 

Purifier Flowrate Min 7.5 Kg/cm² 

Purifier Motor Amp 5 to 5.5 Amp 

Service Tank Temperature 90 to 95 °C 

Settling Tank Temperature 90 to 95 °C 

Auto-filter Flowrate Min 6 Kg/cm² 

Cylinder Fuel Pumps Pressure  174 to 190 bar 
 

Using the flow diagrams of Figures 24 and 25 with measurement types from Tables 10 and 11, 

the DBN of the lube-oil system for all three ship types can be generated. This was done on 

Genie BasiaLab software and the final DBN model of the lube-oil system without utility and 

decision nodes for the sister ships and multi-purpose cargo ship are shown in Figures 26 and 

27 respectively.  

 

Subsequently, for the cost analysis and decision-making of the methodology for the fuel-oil 

system, all failure scenarios and repair jobs were evaluated for each component/sub-system. 

Then, their cost values were obtained from the operators’ spare system and previous 

maintenance job logs. Tables 11 and 12 illustrate the costs of repair and, if not repaired, cost 
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failures including downtime for the sister ships and multi-purpose cargo vessel respectively by 

adding decision and utility nodes to the previous DBN structures. These repair costs are based 

on average repair rates of engineers from the Far East. Additionally, downtime costs were 

calculated by the average chartering cost of the vessel per day.  

 

Table 11- Ships 1 and 2 Fuel-oil System Costs 

Component/Sub-system Failure Type Repair Type 
Repair Cost 

($) 
Failure Cost 

($) 

Storage Tank Steamer Heater Failure Steamer Repair 1900 26000 

Fuel Transfer Pump Pump Failure Overhaul 8900 22000 

Fuel Transfer Pump Motor Motor Failure Motor Repair 3000 18000 

Purifier  Dirtiness Cleaning 800 18000 

Purifier Motor Motor Failure Motor Repair 6000 22000 

Service Tank Steamer Heater Failure Steamer Repair 1400 16000 

Settling Tank Steamer Heater Failure Steamer Repair 1400 16000 

Auto-Filter Blockage Clean/Change 400 1200 

Cylinder Fuel Pumps Pump Failure Overhaul 5000 20000 
 

Table 12 - Ship 3 Fuel-oil System Costs 

Component/Sub-system Failure Type Repair Type 
Repair Cost 

($) 
Failure Cost 

($) 

Storage Tank Steamer Heater Failure Steamer Repair 1900 28000 

Fuel Transfer Pump Pump Failure Overhaul 10000 24000 

Fuel Transfer Pump Motor Motor Failure Motor Repair 4000 20000 

Purifier  Dirtiness Cleaning 800 20000 

Purifier Motor Motor Failure Motor Repair 6000 24000 

Service Tank Steamer Heater Failure Steamer Repair 1400 18000 

Settling Tank Steamer Heater Failure Steamer Repair 1400 18000 

Auto-Filter Blockage Clean/Change 400 1300 

Cylinder Fuel Pumps Pump Failure Overhaul 6500 22000 
 

Using these two cost tables and DBN networks from Figures 26 and 27, the complete DBN of 

Lube-oil systems for the sister ships and multi-purpose cargo ship, including utility and 

decision nodes, can be developed in Genie BiasiaLab environment as illustrated in Figures 28 

and 29. In this system, as with the lube-oil system, each measured reading corresponds to only 

a single failure cause.  
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Figure 26 - Ships 1 and 2 Fuel-oil System DBN Network without Utility and Decision Nodes 
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Figure 27 - Ship 3 Fuel-oil System DBN Network without Utility and Decision Nodes
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Figure 28 - Ships 1 and 2 Fuel-oil System DBN Network with Utility and Decision Nodes 
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Figure 29 - Ship 3 Fuel-oil System DBN Network with Utility and Decision Nodes 
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5.7 Turbochargers 

 

The main engine turbochargers for all three vessels have very similar design outlines. The 

structural flow diagram of the turbocharger for the sister vessels and multi-purpose cargo vessel 

are demonstrated in Figure 30. In brief, turbochargers consist of two major sections, the 

compressor and the turbine. The compressor side sucks charge air in and compresses it, then 

sends it to be mixed with fuel in a manifold after passing through the scavenge air cooling 

system. The turbine side of the turbocharger provides the rotational power for the compressor 

side using rotational energy provided by the cooled exhaust gasses from the engine.  

 

 

Figure 30 - Turbocharger Operational Structure Flow Diagram 

 

Both turbine and compressor blades used in the turbocharger are attached to each other via 

connecting shaft and bearings. This system has a more complicated structure compared with 

the lube-oil and fuel-oil systems as it depends on several other inlet values for each failure type. 

This means that a single reading can correspond to various failure scenarios.
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In order to make decisions on the possibility of best action from the available failure types and 

repair actions, the costs and consequences of having/not having a maintenance action on each 

failure mitigation technique should be evaluated. These are shown as positive and negative 

nodes inside the DBN networks respectively. Further explanation of the methodology and 

decision-making of this type of DBN analysis will be discussed in the results and discussion 

chapters of the dissertation.  

 

The main conditional data obtained from this system for all vessels are the scavenge air in/out 

temperature, scavenge air in/out pressure, bearing vibration, air cooler in/out temperature, 

turbocharger exhaust out temperature, charge air pressure and exhaust back-pressure. Using 

the manufacturers’ limits with recommendations from the ship operator, the ideal working 

condition limits for each of the above readings was obtained for all three vessels. Tables 13 

and 14 demonstrate the overall obtained limits for the sister ships and multi-purpose cargo 

vessel respectively to be used for calculating probabilistic performance value that can be 

implemented on the BBN model within the PAU section of the BOPM platform. 

 

Table 13 - Ships 1 and 2 Turbocharger Limits 

Component/Sub-System Measurement Type Limits Unit 

Scavenge Air In Pressure Min 3.8 bar 

Scavenge Air Out Pressure Min 3.5 bar 

Scavenge Air In Temperature  175 to 180 °C 

Scavenge Air Out Temperature  80 to 78 °C 

Bearing  Vibration Max 3 a(g) 

Air Cooler In Temperature  48 to 50 °C 

Air Cooler Out Temperature  73 to 75 °C 

Exhaust Turbo Out Temperature 430 to 450 °C 

Charge Air  Pressure Low/High  5.3 to 5.5 bar 

Exhaust Back-Pressure Pressure Max 115 mmWC 
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Table 14 - Ship 3 Turbocharger Limits 

Component/Sub-System Measurement Type Limits Unit 

Scavenge Air In Pressure Min 3.9 bar 

Scavenge Air Out Pressure Min 3.5 bar 

Scavenge Air In Temperature  190 to 200 °C 

Scavenge Air Out Temperature  85 to 80 °C 

Bearing  Vibration Max 3 a(g) 

Air Cooler In Temperature  50 to 53 °C 

Air Cooler Out Temperature  76 to 78 °C 

Exhaust Turbo Out Temperature 435 to 450 °C 

Charge Air  Pressure Low/High  5.3 to 5.5 bar 

Exhaust Back=Pressure Pressure Max 125 mmWC 

 

 

Using the flow diagram of Figure 30 and measurement types from Tables 14 and 15, the DBN 

of turbochargers for all three ship types can be generated. This was done in Genie BasiaLab 

software and the final DBN model of the turbocharger without utility and decision nodes is 

shown in Figure 31. It can be noticed that, unlike previous systems, there are multiple 

coresponding failures for some of the readings. 

 

Subsequently, for the cost analysis and decision-making of the methodology for the 

turbocharger all failure scenarios and repair jobs with cost of testing for the measured readings 

with more than one corresponding failure type was analysed. Then, their cost values were 

obtained from the operators’ spare system and previous maintenance job logs. Tables 15 and 

16 illustrate the costs of repair and, if not repaired, cost failures including downtime for the 

sister ships and multi-purpose cargo vessel respectively. These repair costs are based on 

average repair rates of engineers from the Far East. Additionally, downtime costs are calculated 

by the average chartering cost of the vessel per day.  

 

Using these two cost tables and DBN network from Figure 31, the complete DBN of 

turbochargers for all three vessels including utility and decision nodes can be developed in the 

Genie BiasiaLab environment as illustrated in Figure 32. As mentioned earlier, some measured 

readings have multiple failure causes therefore test nodes had to be added to the overall network 

of turbochargers. This will be further explained in both the results and discussion chapters. 
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Table 15 - Ships 1 and 2 Turbocharger Costs 

Failure Point Test/Check Cost in $  Repair 
Cost in 

($)  
Total Fail Cost in 

($)  

T/C Contamination 
Dismantle 
and Repair 

3000 
Cleaning 
with 
dismantle 

3300 6000 

Fuel Injector 
Engine 
Performance 
Test 

1100 Change 2500 17500 

Exhaust Fouling Dismantle 1500 
Cleaning 
with 
dismantle 

3000 22000 

Air cooler 
Pressure 
Test 

100 Cleaning  1300 12000 

Rotor blade Dismantle 3000 Change 6000 26000 

Air filter N/A N/A Change 100 1100 

Exhaust duct Leak Test 100 Repair 2000 9000 

bearing N/A N/A Change 6000 26000 

Scavenge air leak N/A N/A Cleaning 1100 14000 

 

Table 16 - Ship 3 Turbocharger Costs 

Failure Point Test/Check 
Cost in 

($)  
Repair 

Cost in 
($)  

Total Fail Cost in 
($)  

T/C Contamination Dismantle 3000 
Cleaning 
with 
dismantle 

3300 7000 

Fuel Injector 
Engine 
Performance 
Test 

1100 Change 2800 19000 

Exhaust Fouling Dismantle 1500 
Cleaning 
with 
dismantle 

3000 24000 

Air cooler 
Pressure 
Test 

100 Cleaning  1300 13000 

Rotor blade Dismantle 3000 Change 7000 28000 

Air filter N/A N/A Change 100 1200 

Exhaust duct Leak Test 100 Repair 2000 10000 

bearing N/A N/A Change 7500 28000 

Scavenge air leak N/A N/A Cleaning 1100 15500 
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Figure 31 - Turbocharger DBN Network without Utility and Decision Nodes
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Figure 32 - Turbocharger DBN Network with Utility and Decision Nodes 
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5.8 Criticality Risk Matrices of the Vessels 

 

All risk factors mentioned in the methodology chapter were obtained from the ABS (American 

Bureau of Shipping) (ABS, 2000) with the addition of rules from DNV created for the UK 

Maritime Health and Safety Executive (HSE) (HSE, 2001) has been adopted to be used with 

the current case studies. Factor number five, failure rate, has also been added using general 

recommended operator reliability data for each system for 15 years or approximately 105 hours 

of operation. This is usually close to half of the effective life of an average vessel. Other risk 

factors from the previous chapter are also adopted per average repair costs, downtime and 

average accidents from each ship obtained from both cost data and experts’ judgments. Tables 

18 and 19 demonstrate the risk consequence matrices for human risk, environmental risk and 

operational loss respectively. Table 20 demonstrates classification of the probability of failure 

level on 105 operational hours.  

 

Table 17 – Health and Safety Consequence Matrix 

Health and Safety Factor Definition 

A _ Safe Will not result in injury 

B _ Insignificant Will not result in significant injury 

C _ Minor Injury May cause an average injury (less than a week in 

hospital with no further future treatment needed) 

D _ Major Injury May cause significant injury 

E _ Fatalities May cause death 
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Table 18 - Environmental Impact Consequence Matrix 

Environmental Impact Factor Definition 

A _ Insignificant No environmental consequences 

B _ Minor  Intra system influence with no economic 

consequence  

C _ Local From system to equipment influence with slight 

economic consequence  

D _ Major Out of system and equipment influence with 

possibility of settling within enterprise  

E _ Significant Accident has to be settled with local government 

(with both financial consequences and possible 

incarceration) 

 

 

Table 19 - Risk Consequence Matrix on Operational Loss 

Operational Loss Definition 

A _ Insignificant <= 2h operational loss 

B _ Minor  <= 2h-8h operational loss 

C _ Local <= 8h-24h operational loss 

D _ Major <= 24h-48h operational loss 

E _ Significant > 48h operational loss 
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Table 20 - Probability of Failure Levels 

Probability of Failure Level Probability of Failure per 100000 Hours of 

Operation 

5 _ Common Occurrence >0.4 

4 _ Occasional Occurrence 0.1 ~ 0.4 

3 _ Chance 0.02 ~ 0.1 

2 _ Infrequent 0.002 ~ 0.02 

1 _ Rare < 0.002 

 

 

Risk factors and probability failure levels can be multiplied together using the triangular fuzzy 

function and overall fuzzy calculation network shown in Figure 15 of Chapter 4. However, the 

fuzzy multiplication function of this model follows the general definition from Table 21. The 

final results of fuzzy multiplications for all of the observed components and sub-systems will 

be shown in the next chapter of the dissertation. Environmental risks are based on possibility 

of oil pollution, air pollution, noise and other wastes, which are highlighted and ranked by 

experts. 

 

In summary, these factors will then be used in the final decision-making process where two or 

more recommended maintenance actions through the PAU and DAU sections of analysis as 

part of the methodology are intersecting one another. Consequently, maintenance jobs with the 

highest risk factors will be prioritised relative to the other maintenance job recommendations 

and this will result in the final maintenance schedule for the vessel. Further, the calculation 

process using MATLAB is demonstrated with an example in Appendix D.  
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Table 21 - Overall Fuzzy Multiplication Definitions 

Probability of Failure Consequence of Failure 

5 >0.8 Medium Medium Medium High High 

4 0.1 ~ 0.8 Low Medium Medium Medium High 

3 0.02 ~ 0.1 Low Low Medium Medium Medium 

2 0.002 ~ 0.02 Low Low Low Medium Medium 

1 < 0.002 Low Low Low Low Medium 

  
A B C D E 
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5.9 Chapter Summary 

 

This chapter demonstrated the data obtained from three vessels, two of which are sister 

chemical tanker ships and one multi-purpose cargo ship. Three types of machinery systems 

were implemented for the data gathering campaign from the case study vessels. Two of these 

systems, namely the lube-oil system and fuel-oil, have only one failure type per each 

corresponding measured reading. However, turbochargers can have multiple failure scenarios 

for each corresponding measurement. Moreover, adopted criticality matrices of different risk 

factors with the probability of failure levels have also been shown in this chapter. The next 

chapter of the thesis will illustrate the probability, cost analysis, decision-making and criticality 

value results obtained using the BOPM methodology on case studies from this chapter. 
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6 CHAPTER 6-RESULTS 

 

6.1 Chapter Introduction 

 

This chapter will demonstrate the results using data from the previous chapter and use the 

overall BOPM methodology. However, this chapter will initially discuss the reasons for 

selecting the missing data treatment methodology and overall data representation limits for the 

measured results using sensitivity analysis and comparison graphs and tables. Subsequently, 

the overall performance probabilistic analysis and predicted cost results of the lube-oil system, 

fuel-oil system and turbochargers from all three ship case studies will be represented. Finally, 

the overall calculated risk values for all of the calculated sub-systems, components or failure 

types from the observed three ship systems will be shown. 

 

6.2 Missing Data Treatment 

 

Three major missing data treatment methodologies have been compared using data available 

from the vessels. These missing data methodologies include: mean substitution (MS), 

expectation-maximisation (EM) of the maximum likelihood (ML) and Markov Chain Monte 

Carlo (MCMC) multiple imputation techniques. For comparison of the performance of these 

methodologies, three measured data types have been chosen with no missing data.  

 

These three selected data types are: scavenge air inlet temperature from Ship 1, Turbocharger 

exhaust out temperature from Ship 2, and cylinder-eight fuel pump from Ship 3. These selected 

measurement types did not have any missing values for at least the first 200 days of recording. 

By observing the other obtained data types it has been found that the minimum number of 

missing data was 14 and the maximum was 48. Another important reason for selecting these 

three data types is that they are highly important for the general operation of the vessel, as also 

indicated by their criticality values. 

 

As a result, the missing data treatment comparison of these selected data types was done on the 

three scenarios of 50 missing data, 30 missing data and 15 missing data points. For this, data 

was randomly removed from all three selected data types and then treated with data treatment 
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options. Consequently, the results from missing data treatment options and the full set of real 

data have been compared based on their standard deviation and mean values. Furthermore, the 

overall data has been factorised into different sections based on the observed data and then, 

compared on bar charts, the number of data per missing data methodologies compared with the 

full data set. Tables 21, 22 and 23 demonstrate standard deviations, means and errors compared 

with the full data set for all three missing data treatment methodologies for all three of the 

selected data types in 50, 30 and 15 missing data scenarios. Subsequently, Figures 33 to 41 

illustrate comparison bar charts of the treated data sets compared with the full data set within 

determined data factors.  

 

In the tables the second column represents the standard deviation and mean values of full data 

without any missing values. Columns 3, 4 and 5 represent standard deviation, mean and errors 

compared with full data of using missing data treatment methodologies of MS, EM of the ML 

and MCMC multiple imputation respectively for 50 missing data. Columns 6, 7 and 8 do the 

same for the three types of missing data treatment methods for 30 missing data and columns 9, 

10 and 11 do the same for 15 missing data. On the bar charts, the Y-axis represents the number 

data values found on data value categories represented on the X-axis of each bar inside the 

chart. This is due to the fact that data are divided into categories in order to simplify the visual 

comparison of the accuracy of the missing data treatment methodologies.  

 

For scavenge air inlet temperature of ship 1, the standard deviation for full data was 1.6148. 

However, the standard deviation for 50 missing data case scenarios for MS, EM of the ML and 

MCMC multiple imputation data treatment techniques were 1.6888, 1.6450 and 1.6126 

respectively. In the case of 15 missing data of the Table 22 case scenario standard deviation 

for the previous missing data treatment techniques were 1.6718, 1.5986 and 1.6044 

respectively. In brief, the errors for 50 missing data for MS, EM of the ML MCMC multiple 

imputation data treatment techniques were 4.3863%, 1.8368% and 0.648% respectively, which 

proves that the MCMC multiple imputation technique has the lowest error. This error pattern 

was also repeated for the 15 missing data cases as the errors were 3.4127%, 1.01% and 0.1313% 

respectively. Comparing the above error values between the 50 missing data and 15 missing 

data scenarios, it can be concluded that the lower the number of missing data, the lower the 

error value from all three data treatment methodologies. 
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Table 22 - Missing Data Treatment Methodology Comparison for Scavenge Air-in Temperature for Ship 1 

  
  50 Missing Data 

30 missing data 15 Missing Data  

Data 
Distribution 
Information 

Full 
Data 

MS EM MCMC MS EM MCMC MS EM MCMC 

Standard 
Deviation 1.6148 1.6888 1.6450 1.6126 1.6491 1.5907 1.6085 1.6718 1.5986 1.6044 

Mean 177.66 177.89 177.74 177.68 177.79 177.68 177.66 177.85 177.67 177.67 

Error STDEV 
(%)  4.3863 1.8368 0.1313 2.0820 1.5138 0.3877 3.4127 1.0100 -0.6480 

Error Mean (%)   0.1293 0.0450 0.0113 0.0731 0.0113 0.0000 0.1040 0.0028 0.0056 

 

 

Figures 33, 34 and 35 illustrate comparison bar charts of full data compared with three different 

missing data treatment techniques for the scavenge air inlet temperatures of Ship 1 in the cases 

of 50, 30 and 15 missing data respectively. It can be seen that the dotted bar representing the 

MS technique on all three bar charts has a relatively higher difference in the number of values 

compared with solid full data bar. On the other hand, the diamond pattern bar representing the 

MCMC multiple imputation technique has the lowest difference in number of values compared 

with solid full data bar. Additionally, EM of the ML technique represented by the horizontal 

lone patterned bar fits right in the middle of previous techniques on accuracy scale. Therefore, 

MCMC is the most accurate technique followed by EM with MS having the lowest accuracy. 

Comparing the three bar charts it can also be noticed that lower missing data numbers increase 

the accuracy of all of the missing data treatment methodologies. 

 

Figure 33 - Data Treatment Comparison for Ship 1 with 50 Missing Data 
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Figure 34 - Data Treatment Comparison for Ship 1 with 30 Missing Data 

 

 

Figure 35 - Data Treatment Comparison for Ship 1 with 15 Missing Data 

 

For turbocharger exhaust out temperature of Ship 2, the standard deviation for full data was 

6.367. However, standard deviation for 50 missing data case scenarios for MS, EM of the ML 

and MCMC multiple imputation data treatment techniques were 6.2144, 6.3155 and 6.3712 

respectively. In the case of 15 missing data, in Table 23, case scenario standard deviation for 

the previous missing data treatment techniques were 6.2889, 6.3602 and 6.3677 respectively. 

In brief, the errors for 50 missing data for MS, EM of the ML and MCMC multiple imputation 

data treatment techniques were 2.4553%, 0.8149% and 0.0658% respectively, which proves 

that the MCMC multiple imputation technique has the lowest error. This error pattern was also 

repeated for the 15 missing data case as the errors were 1.2412%, 0.1074% and 0.0106% 
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respectively. Comparing the above error values between 50 missing data and 15 missing data 

scenarios, it can be concluded that the lower the number of missing data, the lower the error 

value from all three data treatment methodologies. 

 

Table 23 - Missing Data Treatment Methodology Comparison for Turbocharger Exhaust Out Temperature for 

Ship 2 

  
  50 Missing Data 

30 missing data 15 Missing Data  

Data 
Distribution 
Information 

Full 
Data 

MS EM MCMC MS EM MCMC MS EM MCMC 

Standard 
Deviation 6.3670 6.2144 6.3155 6.3712 6.2670 6.3388 6.3707 6.2889 6.3602 6.3677 

Mean 439.91 438.55 439.35 440.004 438.99 439.56 440 439.21 439.7 439.99 

Error STDEV (%)  2.4553 0.8149 0.0658 1.5961 0.4454 0.0581 1.2412 0.1074 0.0106 

Error Mean (%)   0.3094 0.1270 0.0225 0.2091 0.0792 0.0207 0.1578 0.0457 0.0198 

 

Figures 36, 37 and 38 illustrate comparison bar charts of full data compared with three different 

missing data treatment techniques for the turbocharger exhaust out temperature of Ship 2 in 

cases of 50, 30 and 15 missing data respectively. It can be seen that the dotted bars representing 

the MS technique on all three bar charts have a relatively higher difference in the number of 

values compared with the blue solid coloured full data bar. On the other hand, the diamond 

pattern bar representing the MCMC multiple imputation technique has the lowest difference in 

the number of values compared with the solid coloured full data bar. Additionally, EM of the 

ML technique, represented by the horizontal lone patterned bar, fits right in the middle of 

previous two techniques on the accuracy scale. Therefore, MCMC is the most accurate 

technique followed by EM with MS having the lowest accuracy. Comparing the three bar charts 

it can also be noticed that lower missing data numbers increase the accuracy of all the missing 

data treatment methodologies. 
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Figure 36 - Data Treatment Comparison for Ship 2 with 50 Missing Data 

 

 

Figure 37 - Data Treatment Comparison for Ship 2 with 30 Missing Data 

 

Figure 38 - Data Treatment Comparison for Ship 2 with 15 Missing Data 
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For cylinder-eight fuel pump pressure of Ship 3, the standard deviation for full data was 6.367. 

However, standard deviation for 50 missing data case scenarios for MS, EM of the ML and 

MCMC multiple imputation data treatment techniques were 4.5243, 4.6321 and 4.5754 

respectively. In the case of 15 missing data of Table 24 the standard deviation for the previous 

missing data treatment techniques were 4.5947, 4.5316 and 4.5213 respectively. In brief, the 

errors for 50 missing data for MS, EM of the ML and MCMC multiple imputation data 

treatment techniques were 2.3277%, 1.1178% and 0.3199% respectively, which proves that 

MCMC multiple imputation technique has the lowest error. This error pattern was also repeated 

for the 15 missing data case as the errors were 1.5334%, 0.1607% and 0.0670% respectively. 

Comparing the above error values between 50 and 15 missing data scenarios, it can be 

concluded that the lower the number of missing data, the lower the error value from all three 

data treatment methodologies. 

 

Table 24 - Missing Data Treatment Methodology Comparison for Cylinder-8 Fuel Pump Pressure for Ship 3 

    50 Missing Data 
30 missing data 15 Missing Data  

Data 
Distribution 
Information 

Full Data MS EM MCMC MS EM MCMC MS EM MCMC 

Standard 
Deviation 4.5243 4.6321 4.5754 4.5099 4.6137 4.5538 4.5148 4.5947 4.5316 4.5213 

Mean 179.87 179.53 179.8 179.913 179.62 179.81 179.89 179.68 179.83 179.87 

Error STDEV 
(%)  2.3277 1.1178 0.3199 1.9390 0.6474 0.2109 1.5334 0.1607 0.0670 

Error Mean 
(%)   0.1866 0.0378 0.0267 0.1353 0.0306 0.0156 0.1007 0.0178 0.0039 

 

Figures 39, 40 and 41 illustrate comparison bar charts of full data compared with three different 

missing data treatment techniques for the cylinder-eight fuel pump pressure of Ship 3 in cases 

of 50, 30 and 15 missing data respectively. It can be seen that the dotted bar representing the 

MS technique on all three bar charts have relatively higher difference in the number of values 

compared with the solid coloured full data bar. On the other hand, the diamond pattern bar 

representing the MCMC multiple imputation technique has the lowest difference in the number 

of values compared with solid coloured full data bar. Additionally, EM of the ML technique 

represented by the horizontal lone patterned bar fits right in the middle of the previous two 
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techniques on accuracy scale. Therefore, MCMC is the most accurate technique followed by 

EM with MS having the lowest accuracy. Comparing the three bar charts it can also be noticed 

that lower missing data numbers increase the accuracy of all the missing data treatment 

methodologies. 

 

 

Figure 39 - Data Treatment Comparison for Ship 3 with 50 Missing Data 

 

 

Figure 40 - Data Treatment Comparison for Ship 3 with 30 Missing Data 
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Figure 41 - Data Treatment Comparison for Ship 3 with 15 Missing Data 

 

 

Finally, for the selected MCMC multiple imputation technique, the difference in accuracy of 

the data treatment was compared for three, four, five, six and seven iterations. Results of these 

comparisons are highlighted in Table 26 and Figures 42, 43 and 44. In Table 26 Column 3 

represents standard deviation and the mean for full data whereas from Columns 4 - 8 standard 

deviations and mean values of the MCMC method with three to seven iterations are illustrated. 

On all figures, the x-axis represents the specific factorised data value categories and the y-axis 

represents the number of data available on each factorised data category. 

 

It can be determined from these figures and the table generally that the accuracy change after 

five iterations does not change much. For example, from Table 25 it can be observed that 

standard deviation of the scavenge air in temperature data after three iterations is 1.60896, after 

four iterations is 1.61167, after five iterations is 1.61276 and after six iterations is 1.61276. It 

can be noticed that the difference between five and six iterations is much smaller than it is with 

three and four iterations. Standard deviation five and six iterations are also closer to full data 

value of 1.6147. This is also the case for the other two examples. A similar conclusion can be 

determined from Figures 42, 43 and 44, where five iteration results shown with the amber bar 

chart colour is relatively close to full data points shown by the blue bar chart colour. Therefore, 

it was decided to use five iterations for all of the data missing data treatments in order to 

minimise calculation efforts.  
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Table 25 - Comparison of Number of Iterations of MCMC Multiple Imputation Technique for 50 Missing Data 

Measurement 
Reading Type 

Data Distribution 
Information 

Full 
Data 

3 
Iterations 

4 
Iterations 

5 
Iterations 

6 
Iterations 

7 
Iterations 

Ship 1 
Scavenge Air 

In Temp. 

Standard Deviation 1.6147 1.60896 1.61167 1.61263 1.61276 1.62778 

Mean 177.66 177.71 177.69 177.68 177.68 177.68 

Ship 2 T/C 
Exhaust Out 

Temp. 

Standard Deviation 6.367 6.3758484 6.3731145 6.3711898 6.3711799 6.3711788 

Mean 439.905 440.534 440.21 440.004 440.004 440.003 

Ship 3 
Cylinder Fuel 
Pump Pres. 

Standard Deviation 4.52428 4.501574 4.505738 4.509856 4.509867 4.509869 

Mean 179.865 180.048 179.972 179.913 179.911 179.911 

 

 

 

Figure 42 - Comparison of Number of Iterations of MCMC Multiple Imputation Technique for 50 Missing Data 

for Ship 1 

 

 

Figure 43 - Comparison of Number of Iterations of MCMC Multiple Imputation Technique for 50 Missing Data 

for Ship 2 
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Figure 44 - Comparison of Number of Iterations of MCMC Multiple Imputation Technique for 50 Missing Data 

for Ship 3 

 

In summary, MCMC missing data treatment method with five iterations was the chosen method 

of dealing with missing data points for each reading  used within the PAU model to predict the 

future condition of each sub-system/component within the chosen machinery systems. The next 

section will demonstrate the full PAU and DAU analysis results in more detail. 

 

6.3 Overall Analysed Performance and Cost Probability Results 

 

This section will illustrate the overall calculated performance index prediction and cost 

predictions for the component and sub-systems for all three ship case studies for the three 

observed systems of lube-oil system, fuel-oil system and turbochargers. All data analysed 

follow the overall data treatment and analysis rules mentioned in the previous section. Time-

periods indicated by periods 1,2,3,4,5, and 6 are representative of Jan-Apr 2015, May-Aug 

2015, Sep-Dec 2015, Jan-Apr 2016, May-Aug 2016 and Sep-Dec 2016 three month observed 

time-periods respectively. These time-periods are all dependent upon the first month that the 

measurement started and can change accordingly. Some of the analysed results of the 

performance index values for the systems with negligible performance degradations are 

demonstrated in Appendices B and C.  

 

All the cost values shown on the graphs are actually net cost values where they represent the 

cost difference between maintenance and no maintenance. This represents whether undertaking 
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maintenance will be beneficial or not. Therefore, a positive cost benefit value would mean it 

would cost the company extra if they undertake maintenance. However, a negative value would 

mean that the benefit of undertaking maintenance is high and it would potentially save the 

company money (due to increase in performance of the overall system and/or elimination of a 

possible failure). Additionally, due to the relatively low observation time of less than two years, 

the overall effect of possible interest rates is assumed to be minimal and no discount factor has 

been used within the cost calculations.  

 

6.3.1 Lube-oil System  

 

The lube-oil system of Ship 1 only had two major sub-systems/components with major 

degradation in their overall performance. Lube-oil Filter 2 of Ship 1, as seen from Figure 45, 

observed performance index degradation from 91% to 76%. This means that, on average, 

during 76% of the observed period, Filter 2 was operating under satisfactory conditions 

determined by OEM reports and company MPIs. Using the DBN tool of the BOPM 

methodology, general degradation of the performance index was calculated for the next four 

time-periods. Comparing the predicted results with actual observed data, it was determined that 

the general error is relatively low.  

 

Using the utility and decision nodes of the DBN tool and monetary values determined from the 

company MPIs, cost data and experts’ opinions, the overall cost difference between the cost of 

having action compared with cost of failure was calculated for all the performance index values 

and plotted on the graph shown on Figure 46. It can be noticed that cost difference value after 

time-period three becomes negative. This means that, from a cost point of view, cost of 

possibility of failure is higher than the cost of maintenance or repair. This means that 

maintenance, or in this case replacement of filter, is recommended. Observed performance 

index cost values also results in similar determined outcomes as predicted values. This 

recommended result was compared with ship maintenance logs, and it was found that lube-oil 

filter 2 was replaced in February 2016. This proves the accuracy of the decision provided by 

the analysis. Similar analysis and prediction of performance index and cost data with 

comparison to observed values and maintenance logs was performed for all sub-

systems/components from all three vessels and three major machinery systems. 
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Figure 45 - Lube-oil Filter 2 Probabilistic Performance Prediction for Ship 1 

 

 

Figure 46 - Lube-oil Filter 2 Net cost Difference Prediction for Ship 1 

 

The lube-oil pump of Ship 1 had an observed degradation of its performance index from 92% 

to 76% (Figure 47). It was then determined that overall performance index at the end of the 

fourth predicted time-period will be 73.2%, which is relatively close to the 72.3% observed 

performance index. Using monetary values and calculated performance index values, the 

overall cost difference predictions were determined in Figure 48. It was observed that overall 

cost at the end of the fourth predicted time-period remained positive with a value of $710, 

which is very close to the observed value of $670. Therefore, no maintenance is needed for the 

next four time-periods or 16 months with the current degradation pattern.  
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Figure 47 - Lube-oil Transfer Pump Probabilistic Performance Prediction for Ship 1 

 

 

Figure 48 - Lube-oil Transfer Pump Net cost Prediction for Ship 1 
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Therefore, no maintenance is needed for the next four time-periods or 16 months with the 

current degradation pattern. However, these values are very close to zero and overall angle of 

deterioration is high, which means that there is high possibility of maintenance replacement 

being required after December 2016. This was later proved correct as on the PMS schedule of 

the ship, a replacement of lube-oil filter 1 was scheduled for late January 2017.  

 

 

Figure 49 - Lube-oil Filter 1 Probabilistic Performance Prediction for Ship 2 

 

 

Figure 50 - Lube-oil Filter 1 Net cost Prediction for Ship 2 
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overall performance index at the end of fourth predicted time-period will be approximately 

97.6%, which is the same as the observed performance index value. Using monetary values 

and calculated performance index values, the overall cost difference predictions were 

determined in Figure 52. It was observed that overall cost at the end of the fourth predicted 

time-period remained positive with a value of $4110. Therefore, no maintenance is needed for 

the next four time-periods or 16 months with the current degradation pattern. The predicted 

and observed values have the same outcome values at the end of the fourth predicted time-

period, which shows the accuracy of the tool. However, in between, especially at the first and 

second time-periods, there is a higher gap. This could be because of other deteriorations within 

the system or general operational conditions may have been slightly different than those 

predicted. 

 

 

Figure 51 - Lube-oil Purifier Probabilistic Performance Prediction for Ship 2 
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Figure 52 - Lube-oil Purifier Net cost Prediction for Ship 2 
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maintenance is needed for the next four time-periods or 16 months with the current degradation 
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go slightly higher than the observed values but overall have very close values. This can again 

be due to some further errors in the system that have affected the linearity of its deterioration.  
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Figure 53 - Lube-oil Filter 1 Probabilistic Performance Prediction for Ship 3 

 

 

Figure 54 - Lube-oil Filter 1 Net cost Prediction for Ship 3 
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Figure 55 - Lube-oil Filter 3 Probabilistic Performance Prediction for Ship 3 

 

 

Figure 56 - Lube-oil Filter 2 Net cost Prediction for Ship 3 

 

Thirdly, the lube-oil pump of Ship 3 had an observed degradation of its performance index 

from 98.7% to 93.6% (Figure 57). It was then determined that overall performance index at the 

end of fourth predicted time-period will be approximately 85.6%, which is decidedly close to 

the 85% observed performance index. Using monetary values and calculated performance 
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needed for the next four time-periods or 16 months with the current degradation pattern. 
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Figure 57 - Lube-oil Transfer Pump Probabilistic Performance Prediction for Ship 3 

 

 

Figure 58 - Lube-oil Transfer Pump Net cost Prediction for Ship 3 
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which is very close to 59.9% observed performance index. Using monetary values and 

calculated performance index values, overall cost difference predictions were determined in 

Figure 60. It was observed that overall cost at the end of the fourth predicted time-period 

remained positive with a value of $294, which is very close to observed value of $289. 

Therefore, no maintenance is needed for the next four time-periods or 16 months with the 

current degradation pattern. 

 

 

Figure 59 - Fuel-oil Purifier Probabilistic Performance Prediction for Ship 1 

 

 

Figure 60 - Fuel-oil Purifier Net cost Prediction for Ship 1 
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Secondly, the fuel-oil transfer pump of Ship 1 had an observed degradation of its performance 

index from 91.6% to 83% (Figure 61). It was then determined that overall performance index 

at the end of fourth predicted time-period will be approximately 80.8%, which is very close to 

81.2% observed performance index. Using monetary values and calculated performance index 

values, overall cost difference predictions were determined in Figure 62. It was observed that 

overall cost at the end of the fourth predicted time-period is still positive with a value of $823, 

which is relatively close to observed value of $862. Therefore, no maintenance is needed for 

the next four time-periods or 16 months with the current degradation pattern. 

 

 

Figure 61 - Fuel-oil Transfer Pump Probabilistic Performance Prediction for Ship 1 

 

Figure 62 - Fuel-oil Transfer Pump Net cost Prediction for Ship 1 
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Thirdly, cylinder-1 fuel-oil pump of Ship 1 had an observed degradation of its performance 

index from 92.9% to 91.1% (Figure 63). It was then determined that overall performance index 

at the end of fourth predicted time-period will be approximately 90.3%, which is relatively 

close to the 90.6% observed performance index. Using monetary values and calculated 

performance index values, overall cost difference predictions were determined in Figure 64. It 

was observed that overall cost at the end of the fourth predicted time-period is positive with a 

value of $2112, which is very close to the observed value of $2089. Therefore, no maintenance 

is needed for the next four time-periods or 16 months with the current degradation pattern. 

 

 

Figure 63 - Cylinder 1 Fuel-oil Pump Probabilistic Performance Prediction for Ship 1 

 

 

Figure 64 - Cylinder 1 Fuel-oil Pump Net cost Prediction for Ship 1 
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Fourthly, cylinder-4 fuel-oil pump of Ship 1 had an observed degradation of its performance 

index from 84.5% to 70% (Figure 65). It was then determined that overall performance index 

at the end of fourth predicted time-period will be approximately 62.15%. Using monetary 

values and calculated performance index values, overall cost difference predictions were 

determined on Figure 66. It was determined that from second period predicted time-period 

overall cost difference will be negative on both predicted and observed cost values. However, 

this negative value is relatively small at -$12. Therefore, if the time is not right, the maintenance 

of the system can be delayed as close to the third time-period as possible. This was the case as 

the maintenance log of the vessel proved that repair and overhaul of the cylinder-4 fuel-oil 

pump was carried out in June 2016.  

 

 

Figure 65 - Cylinder 4 Fuel-oil Pump Probabilistic Performance Prediction for Ship 1 

 

Figure 66 - Cylinder 4 Fuel-oil Pump Net cost Prediction for Ship 1 
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Fifthly, cylinder-1 fuel-oil pump of Ship 1 had an observed degradation of its performance 

index from 92% to 90.8% (Figure 67). It was then determined that overall performance index 

at the end of fourth predicted time-period will be approximately 89.7%, which is the same as 

the observed performance index value. Using monetary values and calculated performance 

index values, overall cost difference predictions were determined in Figure 68. It was observed 

that overall cost at the end of the fourth predicted time-period is positive with a value of $606. 

Therefore, no maintenance is needed for the next four time-periods or 16 months with the 

current degradation pattern. The predicted and observed values have the same outcome values 

at the end of the fourth predicted time-period, which shows the accuracy of the tool. However, 

in between, especially at the first and second time-periods, there is a larger gap. This could be 

due to the fact that other deteriorations within the system or general operational conditions may 

have been slightly different than those predicated. 

 

 

 

Figure 67 - Auto-filter Probabilistic Performance Prediction for Ship 1 
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Figure 68 - Auto-filter Net cost Prediction for Ship 1 

 

The fuel-oil system of Ship 2 also had five sub-systems/components with major performance 

deterioration. Firstly, cylinder-3 fuel-oil pump of Ship 2 had an observed degradation of its 

performance index from 98.3% to 95.4% (Figure 69). It was then determined that overall 

performance index at the end of fourth predicted time-period will be approximately 90.9%, 

which is very close to 90.7% observed performance index. Using monetary values and 

calculated performance index values, overall cost difference predictions were determined in 

Figure 70. It was observed that overall cost at the end of the fourth predicted time-period is 

positive with a value of $1710, which is very close to the observed value of $1695. Therefore, 

no maintenance is needed for the next four time-periods or 16 months with the current 

degradation pattern. 

 

 

Figure 69 - Cylinder 3 Fuel-oil Pump Probabilistic Performance Prediction for Ship 2 
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Figure 70 - Cylinder 3 Fuel-oil Pump Net cost Prediction for Ship 2 

 

Secondly, cylinder-5 fuel-oil pump of Ship 2 had an observed degradation of its performance 

index from 94.7% to 88.4% (Figure 71). It was then determined that overall performance index 

at the end of fourth predicted time-period will be approximately 90.9%, which is very close to 

90.7% observed performance index. Using monetary values and calculated performance index 

values, the overall cost difference predictions were determined in Figure 72. It was observed 

that overall cost at the end of the fourth predicted time-period remains positive with a value of 

$655, which is relatively close to the observed value of $717. Therefore, no maintenance is 

needed for the next four time-periods or 16 months with the current degradation pattern. 

Predicted values are slightly higher at the beginning of the prediction period and then go 

slightly lower than the observed values but, overall, have very close values. This can, again, be 

due to some further errors in the system that have affected the linearity of its deterioration. 

 

 

Figure 71 - Cylinder 5 Fuel-oil Pump Probabilistic Performance Prediction for Ship 2 
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Figure 72 - Cylinder 5 Fuel-oil Pump Net cost Prediction for Ship 2 

 

Thirdly, cylinder-6 fuel-oil pump of Ship 2 had an observed degradation of its performance 

index from 97.3% to 94.4% (Figure 73). It was then determined that the overall performance 

index at the end of fourth predicted time-period will be approximately 90.3%, which is fairly 

close to 90.8% observed performance index but with a slightly higher error than usual, which 

could be due to performance degradation on other relevant components that may have affected 

the overall degradation. Using monetary values and calculated performance index values, 

overall cost difference predictions were determined in Figure 74. It was observed that overall 

cost at the end of the fourth predicted time-period remained positive with a value of $1640, 

which is relatively close to the observed value of $1690. Therefore, no maintenance is needed 

for the next four time-periods or 16 months with the current degradation pattern. 
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Figure 73 - Cylinder 6 Fuel-oil Pump Performance Prediction for Ship 2 

 

 

Figure 74 - Cylinder 6 Fuel-oil Pump Net cost Prediction for Ship 2 
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could be because other deteriorations within the system or general operational conditions may 

have been slightly different than the predicated ones. In general, this system had a performance 

index with a relatively small degradation angle. 

 

 

Figure 75 - Settling Tank Heater Probabilistic Performance Prediction for Ship 2 

 

 

Figure 76 - Settling Tank Heater Net cost Prediction for Ship 2 
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determined in Figure 78. It was determined that from the third period the predicted time-period 

overall cost difference will be negative on both predicted and observed cost values. However, 

this negative value is relatively small at -$10. Therefore, if the time is not right, the maintenance 

of the system can be delayed as close to the third time period as possible. This was the case as 

the maintenance log of the vessel proved that replacement of the auto-filter was carried out in 

August 2016.  

 

 

Figure 77 - Auto-filter Probabilistic Performance Prediction for Ship 2 

 

 

Figure 78 - Auto-filter Net cost Prediction for Ship 2 
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The fuel-oil system of Ship 3 had four sub-systems/components with major performance 

deterioration. Firstly, cylinder-2 fuel-oil pump of Ship 3 had an observed degradation of its 

performance index from 98.2% to 96.5% (Figure 79). It was then determined that overall 

performance index at the end of the fourth predicted time-period will be approximately 93.5%, 

which is relatively close to 93% observed performance index. Using monetary values and 

calculated performance index values, the overall cost difference predictions were determined 

in Figure 80. It was observed that overall cost at the end of the fourth predicted time-period 

remains positive with a value of $1710, which is very close to the observed value of $1650. 

Therefore, no maintenance is needed for the next four time-periods or 16 months with the 

current degradation pattern. Predicted values are slightly higher at the beginning of the 

prediction period and then go slightly lower than the observed values but, overall, have very 

close values. This can again be due to some further errors in the systems that have affected the 

linearity of its deterioration. 

 

 

 

Figure 79 - Cylinder 2 Fuel-oil Pump Probabilistic Performance Prediction for Ship 3 
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Figure 80 - Cylinder 2 Fuel-oil Pump Net cost Prediction for Ship 3 

 

Secondly, cylinder-8 fuel-oil pump of Ship 3 had an observed degradation of its performance 

index from 95.4% to 91.4% (Figure 81). It was then determined that overall performance index 

at the end of fourth predicted time period will be approximately 84.6%, which is very close to 

the 84.9% observed performance index. Using monetary values and calculated performance 

index values, the overall cost difference predictions were determined in Figure 82. It was 

observed that overall cost at the end of the fourth predicted time-period is still positive with a 

value of $1075, which is very close to the observed value of $1105. Therefore, no maintenance 

is needed for the next four time-periods or 16 months with the current degradation pattern. 

 

 

Figure 81 - Cylinder 8 Fuel-oil Pump Probabilistic Performance Prediction for Ship 3 
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Figure 82 - Cylinder 8 Fuel-oil Pump Net cost Prediction for Ship 3 

 

Thirdly, the auto-filter of Ship 3 had an observed degradation of its performance index from 

96.6% to 92.2% (Figure 81). It was then determined that the overall performance index at the 

end of the fourth predicted time-period will be approximately 85.5%, which is the same as the 

observed performance index value. Using monetary values and calculated performance index 

values, the overall cost difference predictions were determined in Figure 82. It was observed 

that overall cost at the end of the fourth predicted time period is still positive with a value of 

$195. Therefore, no maintenance is needed for the next four time-periods or 16 months with 

the current degradation pattern. The predicted and observed values have the same outcome 

values at the end of fourth predicted time period, which shows the accuracy of the tool. 

However, in between, especially at first and second time-periods, there is a larger gap. This 

could be because other deteriorations within the system or general operational conditions may 

have been slightly different than the predicated ones. In general, this system had a relative 

performance index with a small degradation angle. 
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Figure 83 - Auto-filter Probabilistic Performance Prediction for Ship 3 

 

 

Figure 84 - Auto-filter Net cost Prediction for Ship 3 

 

Fourthly, the fuel-oil transfer pump of Ship 3 had an observed degradation of its performance 

index from 99.1% to 98.2% (Figure 85). It was then determined that overall performance index 

at the end of the fourth predicted time period will be approximately 96.2%, which is very close 

to the 96.5% observed performance index. Using monetary values and calculated performance 

index values, overall cost difference predictions were determined in Figure 86. It was observed 

that overall cost at the end of the fourth predicted time period is still positive with a value of 

$890, which is very close to the observed value of $910. Therefore, no maintenance is needed 

for the next four time-periods or 16 months with the current degradation pattern. 
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Figure 85 - Fuel-oil Transfer Pump Probabilistic Performance Prediction for Ship 3 

 

 

Figure 86 - Fuel-oil Transfer Pump Net cost Prediction for Ship 3 
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type must be tested first. In general, this method creates an overall prioritisation system and 

ranking of different failure scenarios and their test procedures. Thus, the utility and decision 

nodes of this system may also include test costs on top of the cost of failure and cost of 

repair/replacement.  

 

Using the above strategy and DBN networks presented in the case studies and methodology 

chapters, performance and cost predictions of each vessel is done in this sub-section. Initially, 

for Ship 1 it has been detected that there are three performance readings with major 

deterioration. The first two only have one possibility of failure for degradation, whereas the 

third has two failure possibilities from single performance deterioration.  

 

Firstly, deterioration on bearing vibration reading can only have one outcome - that of bearing 

replacement. Subsequently, the turbocharger bearing of Ship 1 had an observed degradation of 

its performance index from 98.3% to 95.7% (Figure 87). It was then determined that the overall 

performance index at the end of the fourth predicted time period will be approximately 94.2%, 

which is close to the 94.1% observed performance index. Using monetary values and calculated 

performance index values, the overall cost difference predictions were determined in Figure 

88. It was observed that overall cost at the end of the fourth predicted time period remained 

positive with a value of $6040, which is relatively close to the observed value of $6015. 

Therefore, no maintenance is needed for the next four time-periods or 16 months with the 

current degradation pattern. 

 

 

Figure 87 - Turbocharger Bearing Vibration Probabilistic Performance Prediction for Ship 1 
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Figure 88 - Turbocharger Bearing Change Net cost Prediction for Ship 1 

 

Secondly, the reduction in and out temperature difference of the scavenge air cooler, similar to 

the bearing, can only have one outcome - that of air cooler repair. Subsequently, the scavenge 

air temperature difference of Ship 1 had an observed degradation of its performance index from 

100% to 97.9% (Figure 89). It was then determined that, overall, the performance index at the 

end of the fourth predicted time period will be approximately 97.14%, which is very close to 

97.2% observed performance index. Using monetary values and calculated performance index 

values, overall cost difference predictions were determined in Figure 90. It was observed that 

overall cost at the end of the fourth predicted time period is still positive with a value of $4061, 

which is very close to the observed value of $4070. Therefore, no maintenance is needed for 

the next four time-periods or 16 months with the current degradation pattern. 

 

 

Figure 89 - Scavenge Air Temperature Difference Probabilistic Performance Prediction for Ship 1 
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Figure 90 - Air Cooler Repair Net cost Prediction for Ship 1 

 

Thirdly, reduction in the charge air pressure for the turbocharger can have two major possibilities, those 

of exhaust duct leak and air filter blockage. Overall observed performance reduction for the charge air 

pressure of Ship 1 was from 80.2% to 68.9% (Figure 91). It was then determined that the overall 

performance index at the end of the fourth predicted time period will be approximately 92.37%, 
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difference of failure compared with test was analysed for both failure possibilities. The cost 
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should be scheduled. After checking the maintenance schedule and the maintenance log of the 

vessel it was noticed that the air filter was changed at 8th January 2017. 
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Figure 91 - Turbocharger Charge Air Pressure Drop Probabilistic Performance Prediction for Ship 1 

 

 

Figure 92 - Exhaust Duct Leak Check Action Test Net cost Prediction for Ship 1 

 

 

Figure 93 - Air Filter Change Action Test Net cost Prediction for Ship 1 
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Unlike Ship 1, Ship 2 had three performance degradations that resulted in a single failure cause. 

However, it also had a performance degradation that resulted in one single separate failure 

cause. This performance reading was the scavenged air pressure drop which had an observed 

degradation from 98.3% to 96.4% (Figure 94). It was then determined that the overall 

performance index at the end of the fourth predicted time period will be approximately 94.1%, 

which is very close to the 94.3% observed performance index. Using monetary values and 

calculated performance index values, the overall cost difference predictions were determined 

in Figure 95. It was observed that the overall cost at the end of the fourth predicted time period 

remained positive with a value of $659, which is very close to the observed value of $667. 

Therefore, no maintenance is needed for the next four time-periods or 16 months with the 

current degradation pattern. 

 

 

Figure 94 - Scavenge Air Pressure Drop Probabilistic Performance Prediction for Ship 2 
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Figure 95 - Scavenge Air Receiver Repair Net cost Prediction for Ship 2 

 

Subsequently, the three performance readings that resulted in one single failure cause are due 

to low exhaust temperature, low charge air pressure and exhaust back-pressure. These 

performance readings determine the single failure cause of exhaust fouling. From Figure 96 

the observed performance degradation for low exhaust temperature went from 89.1% to 86.5%. 

Similarly, for low charge air pressure and exhaust back-pressure from Figures 97 and 98, the 

observed performance degradations went from 93.5% to 90.9% and 90.5% to 87.2% 

respectively. Using utility and decision nodes, the overall cost difference for exhaust 

dismantling and cleaning due to fouling was calculated to be negative after the predicted time 

period. At the end of the fourth time period it was observed to be negative at $195 (Figure 99). 

Therefore, exhaust cleaning is needed after the first predicted time period. The maintenance 

logs of the vessel, where exhaust duct overhaul for defouling was done in February 2016, 

proved this.  

 

Figure 96 - Turbocharger Low Exhaust Gas Temperature Probabilistic Performance Prediction for Ship 2 
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Figure 97 - Turbocharger Low Charge Air Pressure Probabilistic Performance Prediction for Ship 2 

 

 

Figure 98 - Turbocharger Exhaust Back-pressure Probabilistic Performance Prediction for Ship 2 

 

 

Figure 99 - Exhaust Fouling with Dismantle Action Net cost Prediction for Ship 2 
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Ship 3 had two performance readings each of which caused a single separate failure scenario. 

However, two other performance readings each had two relevant failure causes attached . The 

first performance degradation reading with a single failure cause was bearing vibration, which 

had an observed degradation from 99.1% to 97.2% (Figure 100). It was then determined that 

the overall performance index at the end of the fourth predicted time period will be 

approximately 95.8%, which is highly close to the 96% observed performance index. Using 

monetary values and calculated performance index values, the overall cost difference 

predictions were determined in Figure 101. It was observed that the overall cost at the end of 

the fourth predicted time period remained positive with a value of $7460, which is very close 

to the observed value of $7465. Therefore, no maintenance is needed for the next four time-

periods or 16 months with the current degradation pattern. 

 

 

Figure 100 - Turbocharger Bearing Vibration Performance Prediction for Ship 3 
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Figure 101 - Turbocharger Bearing Change Net cost Prediction for Ship 3 

 

The second performance degradation reading with a single failure cause was the scavenge air 

pressure drop, which had an observed degradation from 98.8% to 96.9% (Figure 102). It was 

then determined that the overall performance index at the end of the fourth predicted time 

period will be approximately 93.3%, which is relatively close to the 93.7% observed 

performance index. Using the monetary values and calculated performance index values, 

overall cost difference predictions were determined in Figure 103. It was observed that the 

overall cost at the end of the fourth predicted time period is still positive with a value of $1976, 

which is highly close to the observed value of $1997. Therefore, no maintenance is needed for 

the next four time periods or 16 months with the current degradation pattern. Predicted values 

are slightly higher at the beginning of the prediction period and then go slightly lower than the 

observed values but, overall, have very close values. This can again be due to some further 

errors in the system that have affected the linearity of its deterioration. 

 

 

Figure 102 - Scavenge Air Pressure Drop Probabilistic Performance Prediction for Ship 3 
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Figure 103 - Scavenge Air Receiver Repair Net cost Prediction for Ship 3 

 

Unlike the previous two performance readings, high exhaust temperature and high charge air 

pressure readings, together, had two simultaneous failure causes. This requires both failure 

causes to be tested in order of the most critical with the negative cost value first. From Figures 

104 and 105, high exhaust temperature had an observed degradation from 89.3% to 85.4% and 

high charge air pressure had an observed degradation from 91.3% to 88.4% respectively. The 

cost difference to dismantle the turbocharger for contaminant cleaning was positive at $135 

and $130 for the predicted and observed values respectively (Figure 106). However, the cost 

difference for engine performance test due to injection faults was negative from the third time 

period. This would mean that it is recommended to perform an engine test by the fourth time 

period first and if no fault is found then check for contaminants inside the turbocharger. 

However, on checking the maintenance log, it was found that an engine injection fault was 

detected later and it was scheduled for repair by the end of December 2016. This is slightly 

outside the recommended time by the BOPM methodology but still had a correct prediction as 

cost differences for predicted and observed performance values by the fourth time period were 

negative at $49 and $52 respectively, which are highly similar.  
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Figure 104 - Turbocharger High Exhaust Gas Temperature Probabilistic Performance Prediction for Ship 3 

 

  

Figure 105 - Turbocharger High Charge Air Pressure Probabilistic Performance Prediction for Ship 3 

 

 

Figure 106 - Engine Injection System Performance-test Action Test Net cost Prediction for Ship 3 
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Figure 107 - Turbocharger Dismantle due to Contaminants Action Test Net cost Prediction for Ship 3 

 

6.4 Results Comparison 

 

In this section, comparison of different performance readings from all three ships is shown. 

This can help operators to identify the most problematic components and sub-systems as the 

machinery systems are similar, specifically between ships 1 and 2. Consequently, it can also 

highlight the systems that have higher degradation and separate them for closer monitoring. 

Finally, this comparison will also recognise the effect of differing environmental conditions on 

different machinery components/sub-systems of sister ships 1 and 2. 

 

The first main machinery system compared in this section is the lube-oil (LO) system. In this 

system the LO filters on all three vessels should be monitored carefully (Figures 108 and 109). 

This is specifically the case for the sister ships, where both required a filter change. As those 

ships use similar LO filters, this can also highlight the possibility that their filter performance 

is worse than the different filter type used on the multi-purpose cargo vessel.  

 

0

100

200

300

400

500

600

700

800

900

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

N
et

 c
o

st
 $

Time-period

T/C Contaminant Dismantle TEST Action Cost 
Calculations Ship 3

Predicted

Observed



172 

 

 

Figure 108 – Lube-oil Filter 1 Performance Comparison 

 

 

Figure 109 – Lube-oil Filter 2 Performance Comparison 

 

The lube-oil pumps on all three vessels had some observable performance degradation. 

However, Ship 1 from the sister ships, which was operating in much harsher environments, had 

much higher degradation as seen in Figure 110. This further highlights the effect of the 

environmental and sea state conditions on the reliability of ship machinery systems.  
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Figure 110 – Lube-oil Pump Performance Comparison 

 

Other systems such as the lube-oil purifier (Figure 111) and lube-oil pump motor (figure 112) 

had much lower performance degradation observed on all three vessels. This is also the case 

for the lube-oil purifier motor and oil sump level observations.  

 

 

Figure 111 – Lube-oil Purifier Performance Comparison 
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Figure 112 – Lube-oil Pump Motor Performance Comparison 

 

The second main machinery system compared in this section is the fuel-oil (FO) system. In this 

system, even though there is no connection between different cylinder FO pumps within the 

system, looking at a comparison of results from a few chosen cylinder pumps such as cylinder 

FO pump 1 (Figure 113), cylinder FO pump 3 (Figure 114) and cylinder FO pump 4 (Figure 

115) it can be noticed that Ship 1 has the highest average degradation of cylinder FO pumps’ 

performance. This can again be due to the harsher environmental conditions that Ship 1 should 

deal with, especially compared with its sister ship 2. 

 

 

Figure 113 - Cylinder FO Pump 1 Performance Comparison 
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Figure 114 - Cylinder FO Pump 3 Performance Comparison 

 

 

Figure 115 - Cylinder FO Pump 4 Performance Comparison 

 

This higher performance degradation pattern for Ship 1 compared with the other ships can also 

be observed on FO purifier performance comparison, FO transfer pump performance 

comparison and service tank heater performance comparison graphs shown in Figures 116, 117 

and 118 respectively. 
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Figure 116 - FO Purifier Performance Comparison 

 

 

Figure 117 - FO Transfer Pump Performance Comparison 

 

 

Figure 118 - Service Tank Heater Performance Comparison 
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Conversely, auto-filter performance degradation is an exception from the previously observed 

scenarios. In this sub-system, Ship 2 had the highest degradation observed and Ship 1 had the 

lowest (almost non-existence) as demonstrated in Figure 119. This proves that, 

sometimes,unexpected degradations can still occur unrelated to the environmental conditions.  

 

 

Figure 119 – Auto-filter Performance Comparison 

 

As with the lube-oil system, the fuel-oil system also had several sub-system/components with 

minimal or non-existing performance degradations observed. A selected few of these types of 

systems are illustrated in Figures 120, 121 and 122 for the sub-systems/components of settling 

tank heater, storage tank heater and FO transfer pump motor respectively. 

 

 

Figure 120 - Settling Tank Heater Performance Comparison 
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Figure 121 - Storage Tank Heater Performance Comparison 

 

 

Figure 122 - FO Transfer Pump Motor Performance Comparison 

 

The third and the final system compared between the three vessels is the turbocharger. In this 

system where there can be multiple possibilities for each degradation reading, only the 

deprivation of the observed readings in respect to the satisfactory limits is compared. In 

general, by comparing Figures 123, 124 and 125 for the comparison of low charge air pressure, 

scavenge air temperature difference and low exhaust temperature respectively, it is noticed that 

Ship 1, in two positions, had the highest degradation observed whereas Ship 2 had only one. 
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Figure 123 - Low Charge Air Pressure Performance Comparison 

 

 

Figure 124 - Scavenge Air Temperature Difference Performance Comparison 

 

 

 

Figure 125 - Low Exhaust Temperature Performance Comparison 
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A relatively high bearing vibration (Figure 126) was observed on all three vessels; however, 

Ship 1 again had the highest unwanted bearing vibration. This also proves that environmental 

conditions have played an important role on general reliability of the system.  

 

 

Figure 126 - Bearing Vibration Performance Comparison 

 

Finally, exhaust temperature and high charge air pressure was only observed on Ship 3 (Figures 

127 and 128 respectively). This ship does not share engine type with the two sister vessels. 

Therefore, this type of degradation pattern that was caused by a problem in the ignition system 

is only specific to this engine type used in the Ship 3 multi-purpose cargo vessel. 

 

 

Figure 127 - High Exhaust Temperature Performance Comparison 
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Figure 128 - High Charge Air Pressure Performance Comparison 

 

In summary, comparison of performance degradation of different component/sub-system types 

from all three vessels proved that environmental and sea-state conditions faced by vessels in 

the operational areas can have noticeable effects on the reliability of these systems. However, 

this does not mean that some vessels may not have their own unique, unwanted failures.  

 

 

6.5 Different Time Intervals 

 

For this section, two-month intervals instead of four-month intervals were used. This would 

help to compare the result using different intervals in order to determine the best time intervals 

to be used. In this case, the overall results were plotted; they were very similar to predictions 

from four-month interval results in most cases. This can be seen from the comparison of results 

between Figures 129 and 130. These two graphs follow a similar degradation pattern. 
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Figure 129 - LO Filter 1 Ship 2 Four-Month Intervals) 

 

 

Figure 130 - LO Filter 1 Ship 2 (Two-month Intervals) 

 

In some cases, the pattern was slightly different but overall prediction accuracy was almost as 

good. This is the case for figures 131 and 132. These two have different patterns of degradation 

but overall results obtained at the end of each analysis are still very similar and have high 

accuracy compared with the observed values. However, four-month intervals still have higher 

accuracy compared with two-month intervals due to the fact that there are more data points 

available.  
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Figure 131 - AutoFilter Ship 3 (Four-month Intervals) 

 

 

Figure 132 - AutoFilter Ship 3 Two-month Intervals) 

 

In some other cases where cost data became negative in the middle of intervals, this was moved 

to the time intervals when two-month intervals were used. This is more obvious when 

comparing the results of Figures 133 and 134. In case of the two-month intervals, the decision 

of planning the maintenance will have more accurate data as the intervals are shorter. But, 

overall, the accuracy of results compared with observed values are slightly lower than the four-

month period results. 
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Figure 133 - Exhaust Fouling Dismantle Action Net cost Ship 2 (Four-month Intervals) 

 

 

Figure 134 - Exhaust Fouling Dismantle Action Net cost Ship 2 (Two-month Intervals) 

 

Finally, in some cases where, within two months, the overall probabilities were 100% but after 

that the probability values degraded, they would have a different graph type than the four-

month intervals where those degradations where considered. Figures 135 and 136 show an 

example where, in two months, there was no degradation observed and the overall probabilities 

were 100%. However, in these cases where there is a slight change in degradation from the 

100% starting point, the general degradation slope is very small and overall effect on 

maintenance planning of the system is negligible.  
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Figure 135 – Air Cooler Temperature Difference Ship 2 (Four-nonth Intervals) 

 

 

Figure 136 – Air Cooler Temperature Difference Ship 2 (Two-month Intervals) 
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best case scenario would be to use both types in order to both understand further future 

behaviour of the overall machinery using four-month intervals and, in case of some machinery 

with higher degradation and possible failures, to use smaller time intervals to observe their 

behaviour more closely and define the maintenance period more accurately. More results for 

two-months interval are shown in Appendix C. 
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6.6 Overall Analysed Risk Values 

 

After using the risk matrices from Tables 17, 18, 19 and 20 from Section 5.8 and general fuzzy 

multiplication technique represented in Section 4.7, the overall risk consequences value of all 

the studied sub-systems, components and failure types were determined. The results of this 

calculation are shown in Table 26. The next section of this chapter will demonstrate how these 

values can be used within the overall BOPM methodology to help with decision-making. 

 

Table 26 – Consequences of Different Risk for All Studied Sub-systems, Components and Failure Types 

Components/Sub-systems/Failures 
Human Risk 

Consequence 

Environmental 
Risk 

Consequence 

Operational 
Loss 

Consequence 

Probability 
of Failure 

Lube-oil Sump C C C 1 

Lube-oil Pump  B B C 3 

Lube-oil Pump Motor B B C 3 

Lube-oil Filter 1 A C A 5 

Lube-oil Filter 2 A C A 5 

Lube-oil Purifier B D D 2 

Lube-oil Purifier Motor B D D 2 

Fuel-oil Storage Tank C C B 1 

Fuel-oil Transfer Pump B B C 3 

Fuel-oil Transfer Pump Motor B B C 3 

Fuel-oil Purifier B C D 2 

Fuel-oil Purifier Motor B C D 2 

Fuel-Oil Service Tank B C A 1 

Fuel-oil Settling Tank B C A 1 

Auto Filter A C A 4 

Cylinder Fuel Pumps B B B 3 

Fuel System Injection B C D 1 

T/C Contamination B C C 3 

T/C Rotor Blade C C D 2 

T/C Main Bearing C C D 2 

Air Cooler D C E 3 

Scavenge Air Receiver D C D 3 

T/C Cooling Pipework C C B 3 

Exhaust Fouling B D B 4 

T/C Air Filter A B A 5 

 

It can be noticed that the lube-oil sump has human and environmental risk values. This is since 

any major oil leak from the engine oil sump can create a hazardous atmosphere for both people 

involved within the engine room and pollution of the surrounding environment. Operational 
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loss is also rather high as it would force the operator to stop the engine in the middle of the sea. 

However, it is relatively cheap to fix even though actual failure resulting in cleaning is high. 

Therefore, the overall cost of failure is medium. Probability of failure for this incident is 

extremely low as it is very easy to detect and observe plus the general conditions causing 

damage to the lube-oil sump body are rare and its overall structural rigidity is high. Hence, it 

had a failure probability value of approximately 0.8x10-3 per 100000 hours of operation.  

Conversely, the fuel-oil transfer pump has medium to low human and environmental risk 

values in case of failure as no hazardous chemical can leak because there are preventive 

systems in place and, generally, the pump is very well sealed with only some operational loss 

due to change to the secondary pump which may occur. However, the overall operational loss 

can be higher if the secondary pump was already out of order. Therefore, the overall operational 

loss risk value is higher than average. In contrast, cost of failure is high as it is expensive and 

time-consuming to detect the actual fault within the pump and can cause longer man-hours. 

Additionally, the overall cost of both repair and replacement of parts or the overall transfer 

pump on its own is somewhat high. Its probability of failure is medium as the transfer pump 

requires more service than most other components within the engine fuel-oil system. 

Consequently, if the servicing is not properly followed it can have a high failure probability of 

approximately 0.01 per 100000 hours of operation. 

Lube-oil filters have very low human risk factors as no apparent dangerous content can be 

exposed by their malfunction or blockage. They also have low operational loss and failure cost 

risk values as the general cost of change of filter is low and the speed of the replacement process 

and its parts availability within the ship is high. Although, environmental risk is medium as it 

can cause both small leakages within the overall lube-oil system and increase the overall engine 

emissions, probability of failure is the highest as they are blocked more frequently and require 

replacements more regularly with the probability of failure of approximately 0.5 per 100000 

hours of operation.  

 

Another type of example with a different pattern of risk values can be the turbocharger rotor 

blade. Human and environmental risk values for this component are above medium as it can 

cause blowout of the turbocharger. This can send both metal pieces to the surrounding areas 

and emit poisonous exhaust gases. Operational and failure cost risk values are even higher as 

it will cause major loss of power of the main engine. The turbocharger itself is expensive to 
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dismantle or repair/replace. Additionally, the particles from the blowout can cause damage to 

other parts and could further increase the cost factors. However, its overall probability of failure 

is rather low, which is approximately 0.015 per 100000 hours of operation. Table 27, below, 

represents the final calculated risk factors using the fuzzy set MATLAB model presented in 

Chapter 4 of this thesis.  

 

Table 27 - Calculated Overall Relative Risk Factors for All Components/Sub-systems/Failures 

Components/Sub-
systems/Failures 

Expected 
Consequence 

of Human 
Risk 

Expected 
Consequence 

of 
Environmental 

Risk 

Expected 
Consequence 

of 
Operational 

Cost 

Final 
Relative 

Risk 
Factor 

Lube-oil Sump 2 2 2 6 

Lube-oil Pump  3 3 3 9 

Lube-oil Pump Motor 3 3 3 9 

Lube-oil Filter 1 2.5 2.5 2.5 7.5 

Lube-oil Filter 2 2.5 2.5 2.5 7.5 

Lube-oil Purifier 2 3 3 8 

Lube-oil Purifier Motor 2 3 3 8 

Fuel-oil Storage Tank 2 3 1 6 

Fuel-oil Transfer Pump 3 3 3 9 

Fuel-oil Transfer Pump Motor 3 3 3 9 

Fuel-oil Purifier 2 3 3 8 

Fuel-oil Purifier Motor 2 3 3 8 

Fuel-oil Service Tank 1 2 1 4 

Fuel-oil Settling Tank 1 2 1 4 

Auto Filter 2 3 2 7 

Cylinder Fuel Pumps 3 3 3 9 

Fuel System Injection 1 2 2 5 

T/C Contamination 3 3 3 9 

T/C Rotor Blade 3 3 3 9 

T/C Main Bearing 3 3 3 9 

Air Cooler 4 4 2.5 10.5 

Scavenge Air Receiver 4 4 4 12 

T/C Cooling Pipework 3 3 3 9 

Exhaust Fouling 3 4 3 10 

T/C Air Filter 2.5 2.5 2.5 7.5 

 

From Table 27 it can be observed that the air cooler and scavenge air receiver have the highest 

calculated human and environmental risk probability to the probability of failure values of 4. 

This is because their human and risk values from Table 25 are high and their probability failure 

is above medium. The scavenge air receiver also has a very high operational loss probabilistic 

risk value. Thus, it has the highest overall relative risk factor of 12. The fuel-oil transfer pump 
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has a high overall relative risk factor of 9 due to the high probabilistic risk values on all three 

risk factor types. Lube-oil filters have exactly average probabilistic risk values, which resulted 

in the average final relative risk factor of 7.5. Fuel-oil service and settling tanks have the lowest 

values on all the probabilistic risk values, which resulted in the lowest overall calculated 

relative risk factor of only 4. This is because of very low probability of failure values combined 

with below average risk values that resulted in low calculated probabilistic risk values. 

 

6.7 Overall Maintenance Schedules 

 

Using the results and recommendations determined using DBN models and their cost analysis 

outcomes from Section 6.4, the overall maintenance plan required for each vessel for the 

observed main systems can be determined. For Ship 1 cylinder four fuel-oil pump and lube-oil 

filter two require maintenance at the January to March 2016 time period. However, looking at 

table 27, it can be noticed that the cylinder fuel-oil pump has a relative criticality risk factor 

value of 9 whereas lube-oil filter two has a relative criticality risk factor of 7.5. This is due to 

the higher overall risk and cost factors related to the fuel pump. Therefore, the cylinder fuel-

oil pump has priority compared with the lube-oil filter when considering maintenance task 

scheduling. The turbocharger in Ship 1 also requires the air filter to be checked by the October 

to December 2016 time period. If no blockage in the filter was detected, then within a month 

the exhaust duct leakage test should be scheduled.  

 

For Ship 2, the exhaust was due to be checked for fouling between October and December 

2015. If excessive fouling was detected, the whole exhaust should be dismantled and cleaned 

within a month. It was also found that the auto-filter for the fuel-oil system should be scheduled 

for maintenance. Finally, it was recommended to observe the performance readings for lube-

oil filter two of Ship 2 as the overall cost analysis predicted that there may be a filter change 

required around January to March 2017.  

 

For Ship 3, the first engine performance test should be carried between October and December 

2016. If any fault with the engine injection system was found it should be repaired within a 

month. If no fault was detected, then the turbocharger should be scheduled within two months 

for dismantlement and cleaning due to the presence of contaminants that cause high exhaust 

temperatures and high charge air pressure. In summary, the results presented here predict 
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overall maintenance tasks well before the company’s own predictions and the routine 

maintenance tasks. It also helps them save money. 

 

6.8 Chapter Summary 

 

This chapter started with an explanation and analysis of different missing data treatment 

techniques to justify the selection of the MCMC multiple imputation technique as the most 

suitable technique for this work. Then, performance degradation results from the BOPM 

methodology DBN tool for the components/sub-systems of three main systems from all three 

vessels were shown. Additionally, using utility and cost nodes, the cost difference between 

maintenance action and total failure were plotted to make possible maintenance action 

decisions.  

 

It was proven that the lube-oil and fuel-oil main systems only had performance readings that 

corresponded to single failure causes. However, the turbocharger main system had some 

performance readings that resulted in multiple failure scenarios and, in some cases, multiple 

performance readings corresponded to single or multiple related causes of failure. Therefore, 

cost analysis test scenarios were used in order to determine the maintenance scheduling for the 

turbocharger.  

 

Subsequently, the relative risk factors for all the observed sub-systems/components were 

determined based on their human risk, environmental risk, operational loss and cost of failure 

factors. These factors, combined with results obtained from DBN tools, can help prioritise the 

maintenance tasks that must be scheduled at a similar time period. In brief, since maintenance 

task requirements are predicted efficiently well before companies’ own predictions and routine 

PMs, BOPM methodology helps them both save money and not simply meet their MPI and 

KPI targets but also exceed them. The next chapter of the thesis will discuss, further, the results 

obtained from this chapter in addition to an overall discussion of all the previous chapters. 
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7 CHAPTER 7-DISCUSSION 

 

7.1 Chapter Introduction 

 

This chapter will discuss the outcomes of the four major chapters of this dissertation namely 

literature review, methodology, case studies and results and compare them with the general 

aim and objectives of the PhD title. This chapter will also clarify and summarise the general 

achievements of each chapter and how they interact with each other. 

 

7.2 Maintenance Critical Literature Review  

 

The major maintenance task classifications have shown to be those of the corrective, preventive 

and predictive styles. Corrective is an old methodology type of ‘fix it when it is broken’ and it 

does not fit with the overall aim of this thesis on preventing all unwanted breakdowns. 

Preventive fits some parts of the thesis objectives where scheduled maintenance prevents 

failures. However, it does not support the overall prediction of failure patterns and 

consideration of the monetary-related effects on overall maintenance task planning. Therefore, 

predictive maintenance task type is the most appropriate style, which allows alteration of 

maintenance task scheduling depending on performance and cost predictions of the system, 

sub-systems and components. This is directly in line with the aim and objectives of the 

business-oriented probability-based maintenance (BOPM) methodology of this PhD thesis.  

The main maintenance management systems and methodologies covered in the literature 

review of this dissertation include reliability-centred maintenance (RCM), condition-based 

monitoring (CBM), asset management, risk-based maintenance (RBM) and business-centred 

maintenance (BCM). The BOPM introduced in this PhD thesis follows the advantages of most 

of these methodologies without their shortcomings. Reliability and probabilistic analysis of the 

RCM method has been used in order to analyse and predict the overall performance of the 

system. However, RCM does not include business aspects in its methodology. This is more 

obvious in the 12 RCM methodology steps highlighted by Rausand (1998).  

 

The BS EN 60300-3-11:2009 standard has also introduced five standardised RCM steps, which 

still do not tackle this issue (BSI, 2009). Therefore, net cost analysis was added to the RCM 

methodology within the BOPM platform in order to cover the business aspects on the final 
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decision-making process. This is similar to the net cost analysis used on the BCM methods. In 

a similar work, but not to the full extent, Mkandawire, et al. (2015) use KPIs to evaluate the 

performance of their RCM methodology. However, they do not create a specific MPI checklist 

already integrated within their methodology. Therefore, they can only check the effectiveness 

of their methodology after maintenance planning and action has been concluded. However, 

BOPM incorporates the MPIs from the beginning within the methodology in order to improve 

the overall effectiveness of the maintenance scheduling. 

 

On the other hand, BCM only focusses on the cost and performance probabilistic aspects, 

which is also highlighted in a study by Peters (2015). The BOPM method goes further by 

adding risk matrices to the prioritisation of intertwining maintenance tasks on the same 

scheduled day/week in a similar way to RBM without its main drawback or gap of not including 

the business aspects as found from critical review of the available literature. The overall BOPM 

uses data obtained from on-board measurement systems and therefore it follows the main logics 

of the CBM technique. However, it also adds company business aspects and goals on top of 

the CBM condition monitoring analogies based on the on-board continuous measurement and 

readings (including pressure measurements and temperature readings). Consequently, BOPM 

follows all the advantages of the RCM, BCM, RBM and CBM methods together in one 

generalised package. Parts of the RCM methodology are used on the basis of previous 

reliability data for determining the probability of failure factors within the risk matrices. 

Probabilistic analysis units of BOPM also follow the performance degradation-related analysis 

required by RCM.  

 

BOPM uses company related goals and business aspects in a similar way to BCM to modify 

inputs within different sections of the methodology including modifications to net cost analysis 

data, OEM measurement limits and some of the risk factors. Finally, risk matrices and overall 

risk analysis are used as part of the RBM method with probabilistic analysis similar to the study 

by Dong & Frangopol (2015) used within the risk related task prioritisation section of the 

BOPM platform. Using all the advantageous parts of these separate maintenance policies helps 

BOPM to eliminate their disadvantages and achieve the main aim of this PhD thesis by 

considering both technical and business aspects on predicting a maintenance schedule for the 

overall system. 
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The literature review chapter of this dissertation highlights the main maintenance tools and 

systems used within other maintenance policies. The literature review chapter also covers all 

the pros and cons of each tool used in the industry. In order to achieve the main aim and 

objectives, the BOPM platform uses different types of maintenance-related tools available in 

the literature. After reviewing the relevant literature, BOPM has selected the Bayesian belief 

network (BBN) tool with first order Markov chain dynamic prediction pattern to predict the 

performance of the system. Cost and business aspects of decision-making of the performance 

prediction have been developed by the addition of cost and utility nodes to the finalised 

dynamic Bayesian network (DBN) tool. DBN allows interconnectivities between different 

components/sub-systems within the same system or even larger overall system to be identified 

in a much easier way than the traditionally used fault tree analysis (FTA) tools (Weber, et al., 

2012). In different studies, Liang, et al. (2017) highlight the fact that DBN is a very effective 

tool for defining an accurate reliability and performance profile of complex structures.  

 

Having utility and decision nodes added to the DBN eliminates requirements for a separate net 

cost analysis and decision-making tool which, in turn, reduces calculation efforts and increases 

overall accuracy (Poropudas & Virtanen, 2011). In order to obtain more unified and smooth 

data, the missing data treatment method was implemented to the methodology. Finally, risk 

analysis was performed using risk matrices and fuzzy logic in order to obtain overall risk values 

and help the final decision-making process with prioritisation of tasks. Prioritising tasks with 

the higher overall relative risk factors compared with others if they are scheduled for similar 

time periods did this. 

 

7.3 Business-oriented Probability-based Maintenance (BOPM) 

 

BOPM methodology uses inputs and data from different sources and combines it with its 

analysis tools to obtain final decisions and maintenance schedules. Raw data sources for this 

methodology include company goals in the form of company MPIs, past PMS reports, OEM 

component specific data, observed condition monitoring data from sensors and cost data. 

Company MPIs are used to modify both OEM related component/sub-system limits and cost 

analysis data regarding risk matrices’ creation. Expertise from engineers inside the company 

has been used to finalise these two types of data inputs. Finalised OEM related component/sub-
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system limits were then used as the main limits for obtaining performance indices within the 

probability analysis tool.  

 

Subsequently, company MPIs, past PMS reports and some of the cost data has been used in 

order to determine limits for the four main risk matrix criteria used for the analysis. These risk 

matrices are: human risk, environmental risk and operational loss. A fourth criterion, 

probability of failure, has been created in order to connect previous failure types together and 

calculate the final overall risk factor per failure type. The overall risk factor for each risk matrix 

relevant to the probability of failure is then calculated using triangular fuzzy logic. A triangular 

fuzzy membership function is the most useful function in this case as there are only two axes 

with a linear linguistic reasoning pattern. Therefore, it is simpler and more calculation-friendly 

with similar accuracy to more advanced membership functions for this case (Mentes & 

Helvacioglu, 2011). 

 

Afterward, condition-monitoring data obtained from the sensors need to be considered for 

missing data. It was observed that some sensorial readings had up to 25% missing data. 

Therefore, different missing data treatment methodologies were analysed to select the most 

accurate option. This missing data treatment allows smoother and more unified data for the 

performance index analysis. Then, the performance index value for each type of sensorial 

reading was put into the probability analysis and prediction tool, which uses the Bayesian belief 

network (BBN) tool with first order Markov chain dynamic prediction pattern (Vhanmane & 

Patra, 2010). One of the main advantages of using BBN is the ease of representation of 

interconnectivity and inter-relational pattern among different components and sub-systems 

within the system. The DBN tool also makes it easier to create different types of relationship 

between different components, sub-systems and readings without a need to create more 

complex and/or gate types used in fault tree analysis (FTA) that has been used traditionally in 

the industry. 

 

Additionally, the DBN tool can have both decision and utility nodes, which helps to perform a 

net cost analysis and decision-making. Therefore, cost data obtained can be used for final cost 

analysis and maintenance scheduling inside the BOPM platform. In brief, using the DBN tool 

with utility and decision nodes helps to achieve the major objectives of the thesis by combining 

both technical and business aspects inside a single platform to obtain maintenance scheduling. 

This includes adding company goals and MPIs within an innovative probabilistic analysis that 
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can then use the MPI-modified cost results to create decisions. Finally, in cases of intersecting 

maintenance, task overall risk values are combined with concluded decisions from the DBN 

tool in order to prioritise the tasks and achieve the final maintenance scheduling decisions. In 

general, the overall methodology of BOPM has been created using the literature and gaps found 

with a comparison of different techniques. Data obtained from vessels and knowledge obtained 

working within the INCASS EU FP7 project, helped to refine and validate the methodology 

specifically concerning the development of the dynamic connections using first order Markov 

chains (Taheri, et al., 2014). Experts from the project also helped to develop the overall network 

patterns by adding their opinion of how each system and its relevant network should be 

designed. 

 

In summary, BOPM helps ship operators to have full power by adding their inputs from 

business aspects and their expert opinion onto the overall performance analysis and decision-

making of the maintenance programme of their vessels. The DBN tool used in this platform 

can almost fully mimic the real machinery systems within the ship with added practicality of 

fast forwarding the engine performance to future time-periods and discover the problems that 

could occur. Therefore, engineers and maintenance managers can then predict and prevent 

failures from occurring. The net cost analysis part of the methodology can also help with overall 

decision-making so no maintenance has to be undertaken prematurely, which can reduce the 

overall costs of some unwanted inspection and repair tasks. 

 

7.4 Ship Case Studies with Different Ship Machinery Systems Overview 

 

Three vessels were chosen for these case studies. Two were chemical tankers that sailed in 

different environments as one sailed in the cold and choppy waters of the North Atlantic and 

the other worked within the more subdued tropical Pacific, experiencing occasional tropical 

storms. As the vessels were very similar it gives an opportunity to compare the effectiveness 

of different systems in different environmental conditions within a specific time period. The 

third vessel was a multi-purpose cargo vessel which proves that this methodology can work in 

any other ship and variety of sea-worthy vessel. Three different systems that were chosen for 

this thesis, all of which have similar general outlines with small differences such as the multi-

cargo vessel has an eight-cylinder engine whereas the sister chemical tanker vessels have seven 

cylinder engines. 
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The first two machinery systems chosen are the lube-oil and fuel-oil systems, where both have 

only one possibility of failure for each reading type. These two systems are essential for the 

sea-worthiness and overall health and safety of the vessels as no ship engine can work without 

fuel and consistent lubrication. Another important factor in selecting these two systems is their 

relatively simple operational profile, which makes it easier to verify the results obtained from 

the methodology. The third machinery system is the turbocharger. Turbochargers, unlike the 

other two systems, may have some readings that would result in multiple failures (as seen on 

Ship 1’s charge air pressure drop example in Section 6.4.3) or multiple readings into a single 

failure (as seen on Ship 2’s exhaust fouling example in Section 6.4.3). It could also have a 

scenario that multiple readings result in multiple, related failure patterns (as seen on Ship 3’s 

high charge air pressure example in Section 6.4.3). Therefore, extra test nodes with relevant 

utility and decisions have been added in order to compensate for those extra scenarios. The 

structures of the chosen machinery systems are represented in Figures 21, 24, 25 and 30 in 

Chapter 5 of this dissertation. These are designed using OEM reports and consulting with 

experts and knowledge learned by being involved in the INCASS EU FP7 project.  

 

Subsequently, all the failure scenarios in connection with the two condition monitoring 

readings were put into tables in order to create the overall DBN structures. Finally, cost values 

were added with the decision nodes in order to develop the finalised DBN models with net cost 

analysis and decision-making inside the BiasiaLab environment as shown in Figures 23, 28, 29 

and 32. The limits of the working conditions for each reading type were shown after adjustment 

with the company MPIs and experts’ input. These inputs were then considered using the risk 

matrix creation criteria and were combined with the ABS 2012 risk matrix criteria rules and 

recommendations.  

 

Each risk matrix criteria has five calculating factors with “a” showing the lowest risk and “e” 

showing the highest. These risk matrices were then combined in a fuzzy environment with the 

probability of failure levels in order to create their overall two-dimensional risk factors. 

Probability of failure itself is determined using the manufacturers’ estimation of failure and 

past PMS reports. They are factorised in five levels with “5” being the common occurrence 

and “1” being rare occurrence. At the end, a table was created demonstrating the connections 

between different risk factors and their probability of occurrence in order to help the 
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development of fuzzy wording. This can be used inside the triangular fuzzy model developed 

in Chapter 4 to determine the overall risk factors for each component/sub-system.    

 

7.5 Results Overview 

 

In the results section of Chapter 6, missing data treatment methods that were explained in 

Chapter 4 were put to the test using the data acquired from Chapter 5. Three different sets of 

readings that had full data with no missing data were used. These reading sets were chosen as 

they also represented a crucial role in their relevant machinery system. These readings were 

from different machinery systems and each from a different vessel in order to ensure the results 

obtained covered all involved aspects. Then, randomly, 15, 30 and 50 data were eliminated 

from each system to create mock missing data scenarios. These numbers were chosen as the 

lowest number of missing data from other systems with missing data was 14 and the highest 

was 48.  

 

The three most commonly used missing data treatment methodologies of Mean Substitution 

(MS), Expectation-Maximisation (EM) of the Maximum Likelihood (ML) and Markov Chain 

Monte Carlo (MCMC) multiple imputation were compared with the full data set and it was 

found that the latter technique has the closest data variation and pattern to the full data. Then, 

for the MCMC multiple imputation technique itself different scenarios of 3, 4, 5, 6 and 7 

iterations were compared with the full data, which found that after five iterations there is no 

significant change in accuracy. Zhu & Collette (2015) have also determined that for small 

reading data to be used in conjunction with a DBN tool, the MCMC technique has the highest 

accuracy. As a result, for all the missing data treatment of the results obtained from all the 

vessels, the MCMC multiple imputation technique with five iterations was used inside the 

SPSS environment.  

 

Using the DBN models with the utility and decision nodes designed in Chapter 5 and results 

obtained from missing data treatment, overall probabilistic performance and cost predictions 

were evaluated for all sub-systems and components involved. Some of these sub-systems and 

components did not have a significant reduction in their overall performance so were not shown 

within the main body of Chapter 6 but are demonstrated in the Appendices. In order to ensure 

the predictions were accurate the actual observed values were also plotted along the predicted 
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values. In general, few different types of graphical patterns and their accuracy with relevance 

to the observed data were detected. 

 

In some graphs, as in Figure 47 probabilistic performance predictions of Ship 1 lube-oil pump, 

there was a sudden reduction in the decreasing pattern and the angle of the graph. This would 

mean that the overall system has had its first bathtub curve reduction and overall speed of 

degradation is slowing down. Some graphs, however, only showed a uniform reduction in the 

speed of degradation such as those seen in Figures 51 (probabilistic performance predictions 

of Ship 2 lube-oil purifier) and 77 (probabilistic performance predictions of Ship 2 auto-filter). 

This either means that it has already passed the optimum degradation of the component or it is 

degrading fast towards a more settled step of degradation and, eventually, failure.  

 

There is also the possibility that the speed of degradation of the component is not high enough 

to be problematic and may settle into a single degraded state where it still works well for an 

extended time period. Finally, some graphs, e.g., Figure 79 (probabilistic performance 

predictions of Ship 3 cylinder-2 fuel-oil pump) demonstrated an increasing pattern of 

degradation which could mean that the component/sub-system is degrading fast towards a 

failure and there is a constant malfunctioning factor within the component/sub-system that 

stops the reduction in performance to be settled. 

 

In a relation between predicted and observed data, different graphical pattern types for data 

have been detected. In some cases, as in Figure 83 (probabilistic performance predictions of 

Ship 3 auto-filter), the difference between the values and reduction pattern of the predicted and 

observed graphs is very low which means there is a very low error on prediction. In some cases, 

predicted values are slightly lower (Figure 73 probabilistic performance predictions of Ship 2 

cylinder-6 fuel-oil pump) or higher (Figure 63 probabilistic performance predictions of Ship 1 

cylinder-1 fuel-oil pump) than the observed values but overall reduction follows a similar 

pattern. In some other cases, such as that in Figure 69 (probabilistic performance predictions 

of Ship3 cylinder-3 fuel-oil pump), prediction is slightly separated from the observed values, 

then merged together at the end. Finally, in some cases, the line representing the predicted 

values in the probabilistic performance graph would cross the line representing the probabilistic 

performance graph of observed values as seen in Figure 53 (probabilistic performance 

predictions of Ship 3 lube-oil filter 1).  
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All three scenarios, with a slightly higher error in the pattern, can be due to the presence of 

other concurring and relevant failures within or around the observed component/sub-system. 

However, by observing new values for the next time period and updating the predictions these 

errors can be significantly minimised.   

 

Using the cost prediction results for decision-making, the first two machinery systems had only 

one possibility of failure per reading. This can be seen in both Figures 46 (cost difference 

predictions of Ship 1 lube-oil filter 2) and 78 (cost difference predictions of Ship 2 auto-filter) 

for two separate machinery system components/sub-systems for two separate vessels. In both 

cases, a negative cost value was predicted after a certain time period where it would be 

beneficial to have maintenance scheduled for that time period. However, in the case of Figure 

78, the negative cost value is so low that the maintenance can be also scheduled for the 

following time period, if at all possible.  

 

In the case of the turbocharger, there were more complicated scenarios to be determined from 

some of the readings. In the case of the charge air pressure drop reading shown in Figure 91, 

there were the two failure possibilities of exhaust duct leakage and air filter blockage. After 

plotting a test cost difference to failure cost difference, it was found that the cost of air filter 

test becomes negative at a certain time period. Therefore, it is viable to test the air filter for 

blockages at that time and if no blockage is detected, then an exhaust duct leak test could be 

scheduled. In the case of the three different readings on Figures 96 (probabilistic performance 

predictions of Ship 2 turbocharger low exhaust gas temperature scenario), 97 (probabilistic 

performance predictions of Ship 2 turbocharger low charge air pressure scenario) and 98 

(probabilistic performance predictions of Ship 2 turbocharger exhaust back pressure scenario), 

there was only one possibility of failure, which was caused by the same failure scenario of 

exhaust fouling. This fouling was determined to be affecting the turbocharger more as its cost 

difference became negative after a certain time-period; as a result defouling of the exhaust duct 

is recommended (Figure 99 cost difference predictions of Ship 2 exhaust defouling). 

 

In the case of Figures 104 (probabilistic performance predictions of Ship 3 turbocharger high 

exhaust gas temperature scenario) and 105 (probabilistic performance predictions of Ship 3 

turbocharger high charge air pressure scenario), two failure possibilities have to be tested; those 

of the engine injection fault and turbocharger contaminants. After the cost analysis of the test 

was compared with failure, it was determined after a certain time period that the injection fault 
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had a negative cost compared with its test cost of performing an engine performance test. 

Therefore, it would be beneficial to implement an engine performance test within that time-

period and if nothing was found to be wrong then observation of the overall turbocharger 

performance and turbocharger dismantlement for contaminant cleaning should be scheduled.  

 

Finally, the risk factors and probability of failure for each component/sub-system was 

determined using the limits driven from the MPIs, past PMS reports, experts and ABS 2012 

document described in Chapter 5. In brief, ABS 2012 provides the overall platform on how 

different risk matrices for ships should be determined which, in the case of this study, include 

human risk, environmental risk, operational loss and cost of failure with the addition of 

probability of failure. Then, past PMS reports are used to determine the probability of failures 

and their categories within a risk matrix. Finally, other risk levels within each risk category are 

determined using the company’s MPIs and their expert input.  

 

Subsequently, fuzzy logic, shown in Chapter 4, was used to calculate the overall two-

dimensional risk factors and, eventually, final relative risk factor for each component. 

Consequently, the final relative risk factors were combined with the maintenance decisions 

made from the DBN net cost analysis in the case of Ship 1 where there were two 

components/sub-systems requiring maintenance at the same time. Therefore, the 

component/sub-system with the highest risk value was prioritised for maintenance. This is 

especially helpful if we consider all of the ship machinery systems and, also, in older ships 

where there can be multiple maintenance tasks required per time period. At the end, it was also 

noticed that Ship 1 had more general degradations compared with its sister, Ship 2. This could 

be due to the fact Ship 1 is operating in a much harsher environment in the North Atlantic 

region.  

 

In conclusion, it has been observed that BOPM has given probabilistic performance predictions 

with accuracies of 97.9%, 98.1% and 97.4% on average for the lube-oil system, fuel-oil system 

and turbocharger, respectively, from all three case study vessels. This results in an overall 

average accuracy of 97.8%, which is a relatively high accuracy for any predictive probabilistic 

model. Net cost analysis and decision-making parts of the methodology have also provided 

accurate results that matched the overall maintenance decisions of the company. However, 

there were two cases where the company had performed a scheduled maintenance task, as part 

of the manufacturer’s requirement that BOPM had identified that would not require 
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maintenance for some time. Both of the tasks were from Ship 3, one being the auto-filter change 

and the other was lube-oil filter-2. The company would have saved $212 and $253 respectively 

by cancelling those two replacement jobs. In conclusion, this methodology not only meets the 

overall requirements of the company goals based on their KPIs and MPIs but also surpasses 

their expectations by saving them more capita.  

 

7.6 Summary of Findings 

 

This section shows how all the points within the aim and using BOPM on three different 

machinery systems from three different sea-worthy vessels, meets the objectives of the PhD 

using the achievements: 

 

 In the literature review section of this dissertation, both historical and recent definitions 

of the maintenance subject were described first. Subsequently, the overall maintenance 

subject was studied in five major sections of maintenance classifications, maintenance 

management systems and policies, maintenance related analysis tools and systems, 

maintenance performance measurements, and inspection and monitoring tools and 

methodologies.  

 The maintenance management systems and methodologies section looked into all 

different types of maintenance policies developed in the industry including reliability-

centred maintenance, condition-based monitoring, risk-based maintenance and 

business-centred maintenance. This section also compared the pros and cons of each 

methodology with comparisons from the literature and presented a summary of major 

observations and overall gaps in these maintenance policies to be addressed by the 

BOPM platform. The main overall gap found was that none of the methodologies 

combined both the technical side of the maintenance with business aspects of the 

company in equal manner. 

 The maintenance-related analysis tools and systems section critically reviewed all 

reliability and probability analysis techniques such as failure mode, effect and criticality 

analysis, fault tree analysis, Bayesian Belief network and Monte Carlo simulations, 

with the summary of the major observations which are made at the end of this section. 

This helped to notify that some techniques such as BBN are better than FTA as they 

can represent interconnectivities between different components/sub-systems. BBN also 
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allows adoption of net cost analysis using utility and decision nodes without the need 

for an external tool, which minimises calculation efforts and decreases possibilities of 

decision-making errors. 

 The methodology chapter of this thesis demonstrated the overall BOPM platform 

including a description of each section of the methodology and the connections to each 

other for producing the final maintenance schedule.  

 This section started with a presentation of the company maintenance performance 

indicators (MPIs) used to adjust overall sensorial data limits and cost data with 

representation of the network models. Then, data clients, including component specific 

performance limits from OEM reports, were demonstrated to be used within the 

performance index evaluations inside the probability model. Afterwards, past PMS 

reports with cost data were used for both risk factor classifications and net cost analysis 

for decision-making.  

 The methodology chapter then used observed sensorial data such as dynamic inputs 

relevant to their MPI adjusted OEM limits to obtain performance index values to be 

used inside the probability model. Component and sub-system risk classification 

criteria were also explained, based on the four major areas of human risk, environmental 

risk, operational loss and cost of failure. A second dimension was added for these 

factors on the basis of the probability of failure using fuzzy logic and reasoning with a 

triangular membership function, so the overall relative risk factor for each 

component/sub-system can be defined.  

 At the end of the methodology chapter, the main analysis units were explained in the 

two major sections of probability analysis unit and decision analysis unit. PAU is based 

on the Bayesian belief network with first order Markov chain dynamic prediction.  

 The decision-making model used the utility and decision nodes added to the overall 

dynamic Bayesian network model, where it made it possible to perform net cost 

analysis to obtain maintenance scheduling decisions. This model was then 

complemented with relative risk factors for task prioritisation and producing final 

decisions. 

 The BOPM platform with the combination of its analysis units (i.e., risk analysis unit, 

PAU and DAU) and data clients (company MPIs, observed sensorial data, component 

specific OEM limits) has made it possible to analyse the overall condition of the 

machinery systems within the ship and then combine it with company business factors 
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to predict its future performance and schedule maintenance tasks to both minimise risk 

and reduce cost. 

 For the case studies to be used to validate methodology by producing results, three main 

vessels, used as case studies, were introduced. The first two vessels were chemical 

tanker sister vessels that operated in different sea conditions and environments. The 

third vessel was a multi-purpose cargo ship with 11 years of operational history. Three 

major systems consisting of the lube-oil system, fuel-oil system and turbocharger were 

used from all vessels for the data gathering campaign. Adjusted OEM limits, based on 

company MPIs and overall operational flow, of each system were demonstrated in this 

chapter. 

 Having two sister ships made it possible to compare the reliance of similar components 

operating in different environmental conditions. Having a third different ship also 

proved that the methodology can work for any ship type. 

 The Bayesian network models of each system were developed using their operational 

flow charts. Subsequently, MPI-adjusted cost values of possible failures for each 

component/sub-system inside the selected machinery systems were tabulated to be used 

for net cost analysis and decision-making purposes. Finally, levels and factor limits 

within the risk criteria were finalised using the ABS (2012) report, cost limits, past PMS 

reports, company MPIs and information from experts. 

 The results chapter started with analysis of different missing data treatment methods 

using real full data obtained from the case study vessels. These missing data 

methodologies included mean substitution, expectation-maximisation of the maximum 

likelihood and Markov Chain Monte Carlo multiple imputation techniques. It was 

determined that the Markov Chain Monte Carlo multiple imputation technique with five 

iterations is the most suitable missing data treatment methodology. 

 The results chapter then illustrated both probabilistic analysis and net cost analysis 

results obtained from all vessels for each of the three machinery systems. It was shown 

that for the lube-oil and fuel-oil systems there is only one failure possibility arising 

from each degradation reading. However, in the turbocharger there some readings could 

correspond to multiple failure types or multiple readings resulting in single or multiple 

related failure types.  

 Subsequently, test cost values were compared with the cost of failure on these scenarios 

for performing the decision-making process. Afterward, using the net cost results, 

initial maintenance scheduling decisions were made for each system.  
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 Then, the final relative risk values were determined for each component/sub-system 

used within the chosen machinery systems. These were determined based on the limits 

calculated in the case study chapter and overall fuzzy logic methodology developed in 

the methodology chapter. Finally, the risk factors were combined with the decisions 

made from the DBN model with utility and decision nodes from the previous paragraph 

to achieve the final maintenance-scheduling programme, thus answering the research 

question.  

 These risk factors were used in the ordering of intersecting tasks scheduled because of 

the DBN decision-making model. It was proved that the methodology has 97.8% 

accuracy when predicting probabilistic performance values. It was also identified that 

in the case of Ship 3 two manufacturer-required scheduled maintenance tasks could 

have been avoided, saving the operator $467 overall. 

 Overall methodology meets company-approved KPIs and MPIs. 
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7.7 Possible Limitations 

 

There are several limitations when using the BOPM within the marine industry. One of the 

major limitations for this methodology is the requirement of a decent understanding and 

generation of system flow and network within the Bayesian statistical environment with 

representation of all interdependencies within components/sub-systems. This would require 

consultation with various marine experts.  

 

Furthermore, BOPM has numerous data clients and requires stringently-obtained and 

established data sources and classification. Even though the MCMC algorithm helps minimise 

missing data, there would still be some data to be present in order to commence the analysis 

processes. Some of the most important data that BOPM cannot work without include: major 

cost data, OEM data/reports, PMS reports and company MPIs.  

 

Subsequently, some learning algorithms can be used to more accurately find the relationship 

between different components within the system and find which order type of Markov chains 

they would follow as some systems may follow higher orders of Markov chains than first order. 

Finally, more automation of calculations using a uniquely developed program (possibly in the 

JAVA environment) can increase the overall speed of calculations and save valuable time on 

defining maintenance schedules for overall machinery systems of a vessel.  

 

7.8 Chapter Summary 

 

This chapter discussed the overall findings of the literature review and how they were related 

to the overall aim and objectives and, eventually, to the development of the BOPM 

methodology. It then explained the reason behind each section of the methodology and why 

each tool was used for a certain part of the analysis within the methodology compared with the 

overall aim and objectives of this PhD. Subsequently, it described the major motives for the 

selection of each case study and how their represented data were used for the results chapter 

and validation of the BOPM methodology. Finally, the results obtained from each of the case 

studies were discussed. This discussion of results also included the relationship between risk 

factors and DBN maintenance decisions to obtain the final maintenance-scheduling plan. This 

section also included the comparison of graphical representations and differences between 
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some of the outcomes. Additionally, the reason behind the selection of the determined missing 

data treatment method was illustrated. 
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8 CHAPTER 8-CONCLUSION AND FUTURE RESEARCH 

 

8.1 Chapter Introduction 

 

This chapter will show the overall summary of major points made in all previous chapters of 

this dissertation including the literature review, methodology, ship case studies and discussion 

in order to demonstrate the effectiveness of the business-oriented probability-based 

maintenance (BOPM) and how it addresses the aim and objectives of this PhD. Finally, a brief 

list of future work and research recommendations will be discussed. 

 

8.2 Overall Conclusion 

 

This section will give a summary of all the points made within the thesis on showing the 

advantages of using BOPM in the maritime industry based on existing gaps identified from the 

research. The overall aim of BOPM is to integrate business and technical aspects of maintaining 

a seaworthy vessel in the most optimum way possible considering both cost and risk of failure 

elements. This was achieved by developing the BOPM, which is explained in detail throughout 

this thesis and using eight major objectives. Next, bullet points will highlight a brief recap of 

the points made within the thesis to address these eight PhD objectives: 

 

 Using critical literature review, all the gaps from previous maintenance methodologies 

were identified and used to strengthen the overall BOPM methodology. 

 This critical review also helped to identify the most appropriate tools needed to create 

the different sections of the methodology. The overall BOPM platform has nine sub-

sections of which six fit with the data client criteria. These six data clients include 

company goals with MPIs, component-specific performance measurements including 

OEM data, risk factor classification, past PM reports, and cost data. The remaining 

three sub-sections are those of the analysis units, which consist of probability analysis 

unit, decision analysis unit, and final decisions and scheduling.  
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 All the above data clients, apart from risk factor classification, were gathered using the 

three main ship case studies and using experts’ knowledge from the industry. However, 

risk factors were determined by classification of the three major risk factors of human 

risk, environmental risk and operational risk based on both available numerical data 

and further input from industrial experts. Then, they were added together using 

probability failure per each failure type and triangular fuzzy functions. This resulted in 

the final risk factor per failure type. This would be later used in the final decision-

making and scheduling sub-section of the methodology.  

 Having both risk factors that incorporate company goals and company specific MPIs 

helps to integrate company business aspects with the overall maintenance and decision-

making process. This is further enhanced by modifying the OEM performance values 

and cost values in accordance with company goals, which are then used inside the two 

main analysis units of the BOPM, namely PAU and DAU.  

 Based on research, a dynamic Bayesian network was chosen for the overall probabilistic 

analysis as it can easily integrate complex interactions between different 

components/sub-systems within a system. Its dynamic abilities also allow the analysis 

of past and current performances of the system and predict its future. 

 Dynamic connections of the methodology were completed using first order Markov 

chains, which helps achieve distinctive time slices within each continuous performance 

value of each component/sub-system.  

 The DAU module of the BOPM was developed using utility and decision nodes within 

the already developed DBN model. This is due to the fact that research proves that 

having an integrated decision-making system with the probabilistic analysis in one 

single unit enhances the overall accuracy and decreases calculation efforts because it 

will eliminate any further assumptions, and external adoption algorithms would be 

required between the two different analysis tools. 

 The final decision and scheduling sub-section of the BOPM uses the final maintenance 

decisions made by the DAU sub-section and, in the case of intersecting maintenance 

schedules, to prioritise the more critical jobs with respect to those less critical using risk 

factors from the risk factor classification sub-section. This will result in the final fully 

organised maintenance schedule for the vessel. 
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 Validity and general performance of the BOPM platform was initially completed using 

experts and knowledge from the INCASS EU FP7 project. Then it was further proven 

using three different ship case studies containing two sister chemical tankers and one 

multi-purpose general cargo vessel.  

 Three major machinery systems from these three vessels were used for the study: Lube-

oil system, fuel-oil system and turbocharger. These three systems are vital for the 

survival of the engine which, in turn, is vital for the general operation, and navigation 

of the vessels on the open sea.  

 There were also major differences between the lube-oil system and fuel-oil system 

compared with the turbocharger. Both lube-oil and fuel-oil systems have only one 

failure possibility per performance or conditional reading. However, the turbocharger 

is more complex and can have four different possibilities for performance readings. In 

some cases one reading can result in one type of failure, in other cases one reading can 

result in multiple failures, or multiple performance readings can result in one failure 

type. Additionally, multiple but identical batches of performance readings may cause 

multiple but identical batches of failure types.  

 This methodology has proven able to tackle the probabilistic analysis and decision-

making process for all types of complex scenarios of failure to performance reading 

relations.  

 Comparing the predicted results with the observed values, it has been calculated that 

the BOPM had an overall accuracy of approximately 97.8%, which is much higher than 

more conventional techniques using FTA with an average accuracy of below 90%. 

Additionally, it was evaluated that the company would have saved $467 by simply 

delaying some of their maintenance jobs according to the recommendations from the 

BOPM.  

 Therefore, BOPM was successful when integrating the business and technical aspects 

of maintenance within the company and saved money in the long run. This is in 

accordance with the main aim and objectives of this PhD thesis. Additionally, it meets 

company-relevant KPI and MPI targets. 
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8.3 Future Research 

 

This section will represent recommendations made for future research based on the outcomes 

of this PhD thesis in bullet points: 

 

 One of the shortcomings of this PhD was the lack of enough data from other machinery 

systems, which would have helped to simulate the overall machinery systems of each 

ship to observe the wider scenario and create interconnections between different 

components within different systems. For example, gas inlet of the turbocharger used 

in the case study is directly connected to the injection system of the cylinders. 

Therefore, it would be beneficial to have the DBN of the overall engine so each failure 

can be identified more clearly and rapidly. 

 All analysed machinery systems can be put together as one major system called ship 

machinery where everything about the performance and degradation patterns can be 

observed in one single platform. This would also increase the efficiency of the overall 

system observation and create a possibility of defining a relationship between system 

degradation and fuel consumption. 

 Learning algorithms such as naive Bayes algorithm, Bayes net inference, Bayes net 

structure learning and Maximum A-posteriori (MAP) estimation techniques can be 

added to the DBN model in order to learn the overall behaviour of components/sub-

systems compared with their main system and identify interconnectivities between 

different components/sub-systems within the system. This would help to model the 

overall system in the most perfect way; furthermore, adding all systems inside a single 

platform will make it possible to find interconnections of components/sub-systems 

from different major systems in the vessel.  

 Additionally, learning algorithms can identify any special pattern in the dynamic 

pattern of the BBN analysis for each component/sub-system and determine if higher 

order Markov chains can be adopted. Some systems may follow higher order Markov 

chains than first order as their dynamic dependency may correlate to longer time periods 

than t=1. 

 Using programming languages such as JAVA, a more specialised platform can be 

created that would not require application of different software packages and create a 
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more automatic and rapid analysis system as used in the BOPM. This would even 

further enhance the accuracy of the methodology. 

 Creation of a broad automatic database system with online data gathering and 

imputation system can be beneficial in lowering the operational time required by 

inputting data manually.  

 Having an automatic database connected to the fully automatic analysis system for the 

BOPM can accelerate the overall maintenance management system specifically in the 

case of large companies with numerous vessels and machinery systems. 

 

8.4 Chapter Summary 

 

In conclusion, this chapter explained a summary of all the points and outcomes made within 

different chapters of this thesis and their connection with each other and overall aim and 

objectives of the PhD. It also recommended the possible future research and work that can 

improve the performance of the business-oriented probability-based maintenance platform. 
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APPENDIX A - EXAMPLE OF DBN CALCULATIONS USING BIASIALAB 

 

This appendix represents a sample calculation and methodology using purifier sub-system, part 

of the Lube-oil system from Ship 2. The figure below represents the DBN of this subsystem 

with its cost and decision nodes. 

 

 

Figure 137 - DBN of the Purifier Sub-system of the Lube-Oil System, Ship 2 

 

First observed value for the purifier flowrate probability of accepted values was 99.4%. This 

was then used as the input inside the Biasialab software as shown in the figure below as the 

condition t=0.  
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Figure 138 - Bayesia Lab Purifier Flow Rate t=0 Probability Input 

 

The second observed probability of accepted values for the purifier was 98.8%. This value 

should then be used within the equation 19:( 𝑃(𝑤|𝑓𝑡) =
𝑃(𝑤𝑡+1)−(𝑃(𝑤|𝑤𝑡)𝑃(𝑤𝑡))

𝑃(𝑓𝑡)
). This would 

give the matrix probability value of achieving 98.8% from 99.4% for this sub-system. This 

value was calculated to be 0.0356 or 3.56%. These were then put inside condition t=1, which 

represents the transition matrix inside the Biasialab as shown in the figure 139. 
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Figure 139 - Bayesia Lab Purifier Flow Rate t=1 Probability Input 

 

Subsequently, other probability values can be calculated within the Biasialab for this sub-

system as shown in the figure below. Asimilar procedure can be done for the Purifier Motor 

Amp as shown on Figures 140 to 143.  
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Figure 140 - Bayesia Lab Purifier Flow Rate Predicted Probability Results 

 

Figure 141 - Bayesia Lab Purifier Motor Amp t=0 Probability Input 
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Figure 142 - Bayesia Lab Purifier Motor Amp t=1 Probability Input 

 

Figure 143 - Bayesia Lab Predictied Probabilities of Purifier Motor Amp 
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Finally, overall conditional probabilities for overall Purifier sub-systems can be determined 

within Biasialab by creating connections between the previous nodes and determining their 

Conditional Probability Tables (CPT) of the previous nodes to the final sub-system as shown 

in the Figure below. In this case we assume the influence of each child node in respect to the 

parent purifier sub-system node is equal. Therefore, the probability of the purifier having 

acceptable values due to one failing and the other working will be 50%. Another assumption 

in this case is that these two child nodes are the only reasons for the failure of the main sub-

system. Therefore, if both fail, the main sub-system will also fail. 

 

 

Figure 144 - Bayesia Lab Purifier Sum of Conditional Probability Table 

 

Afterward, the overall probabilities of the sub-system in different time intervals are calculated 

as in the Figure 145. 
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Figure 145 - Bayesia Lab Purifier Predicted Probabilities 

 

The overall calculated results in respect to their actual observed values are then plotted in the  

Figure 146. 

 

 

Figure 146 - LO Purifier Predicted Probabilities (Performance indices) 
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At the end, cost values were input inside the cost nodes according to failure possibilities 

mentioned within their decision nodes. In this case, if the overall system does not have a failure 

and a system overhaul has been done, the overall cost will be the expenditure of the 

overhauling. If the system does not have a failure and no overhaul has been commenced, then 

the overall cost will be zero. Subsequently, if failure has occurred and overhaul was in its 

correct time, its overall cost will be the cost of the failure. However, if failure has occurred and 

no overhaul has been done on-time the overall final cost will also include the cost of another 

overhaul plus the failure cost. For both of the sub-systems, overall cost inputs are shown in 

Figures 147 and 148. Figure 149 below represents the graph of all calculated and observed 

values for overall costs for the main sub-system of purifier.  

 

 

Figure 147 - Bayesia Lab Purifier Flowrate Cost Input 
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Figure 148 - Bayesia Lab Purifier Motor Cost Input 

 

 

Figure 149 - Overall Purifier Net cost Results 
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APPENDIX B1-COMPONENT/SUB-SYSTEM PREDICTED AND OBSERVED 

PERFORMANCE INDEX VALUES FOR SHIP 1 SISTER CHEMICAL TANKER 

OPERATING IN WEST COAST CANADA 

 

Appendix B1.1 Lube-oil System of Ship 1 

 

 

Figure 150 - Sump Oil Level Probabilistic Performance Prediction for Ship 1 

 

 

Figure 151 - Lube-oil Pump Motor Probabilistic Performance Prediction for Ship 1 
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Figure 152 - Lube-oil Purifier Probabilistic Performance Prediction for Ship 1 

 

 

Figure 153 - Lube-oil Purifier Motor Probabilistic Performance Prediction for Ship 1 

 

80

82

84

86

88

90

92

94

96

98

100

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

P
er

fo
rm

an
ce

 I
n

d
ex

 %

Time-period

LO Purifier Ship 1

Predicted

Observed

80

82

84

86

88

90

92

94

96

98

100

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

P
er

fo
rm

an
ce

 I
n

d
ex

 %

Time-period

LO Purifier Motor Ship 1

Predicted

Observed



240 

 

 

Figure 154 - Lube-oil Filter 1 Probabilistic Performance Prediction for Ship 1 

 

Appendix B1.2 Fuel-oil System of Ship 1 

 

 

Figure 155 – Storage Tank Probabilistic Performance Prediction for Ship 1 
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Figure 156 – Settling Tank Probabilistic Performance Prediction for Ship 1 

 

 

Figure 157 - Fuel-oil Transfer Pump Motor Probabilistic Performance Prediction for Ship 1 
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Figure 158 - Fuel-oil Purifier Motor Probabilistic Performance Prediction for Ship 1 

 

 

Figure 159 - Cylinder Fuel-oil Pump 2 Probabilistic Performance Prediction for Ship 1 
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Figure 160 - Cylinder Fuel-oil Pump 3 Probabilistic Performance Prediction for Ship 1 

 

 

Figure 161 - Cylinder Fuel-oil Pump 5 Probabilistic Performance Prediction for Ship 1 
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Figure 162 - Cylinder Fuel-oil Pump 6 Probabilistic Performance Prediction for Ship 1 

 

 

Figure 163 - Cylinder Fuel-oil Pump 7 Probabilistic Performance Prediction for Ship 1 
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Appendix B1.3 Turbocharger System of Ship 1 

 

 

Figure 164 – Scavenge Air Pressure Difference Probabilistic Performance Prediction for Ship 1 

 

 

Figure 165 - Air Cooler Temperature Difference Probabilistic Performance Prediction for Ship 1 
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Figure 166 – High Charge Air Pressure Probabilistic Performance Prediction for Ship 1 

 

 

Figure 167 – Exhaust Back-pressure Probabilistic Performance Prediction for Ship 1 
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APPENDIX B2-COMPONENT/SUB-SYSTEM PREDICTED AND OBSERVED 

PERFORMANCE INDEX VALUES FOR SHIP 2 SISTER CHEMICAL TANKER 

OPERATING IN SOUTH-EAST ASIA 

 

 

Appendix B2.1 Lube-oil System of Ship 2 

 

 

Figure 168 – Sump Oil Level Probabilistic Performance Prediction for Ship 2 

 

 

Figure 169 – Lube-oil Pump Probabilistic Performance Prediction for Ship 2 
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Figure 170 - Lube-oil Pump Motor Probabilistic Performance Prediction for Ship 2 

 

 

 

 

Figure 171 - Lube-oil Filter 2 Probabilistic Performance Prediction for Ship 2 

 

80

82

84

86

88

90

92

94

96

98

100

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

LO Pump Motor Ship 2

Predicted

Observed

80

82

84

86

88

90

92

94

96

98

100

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

LO Filter 2 Ship 2

Predicted

Observed



249 

 

Appendix B2.2 Fuel-oil System of Ship 2 

 

 

Figure 172 – Storage Tank Probabilistic Performance Prediction for Ship 2 

 

 

Figure 173 – Service Tank Probabilistic Performance Prediction for Ship 2 
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Figure 174 - Fuel-oil Transfer Pump Probabilistic Performance Prediction for Ship 2 

 

 

Figure 175 - Fuel-oil Transfer Pump Motor Probabilistic Performance Prediction for Ship 2 
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Figure 176 - Fuel-oil Purifier Probabilistic Performance Prediction for Ship 2 

 

 

Figure 177 - Fuel-oil Purifier Motor Probabilistic Performance Prediction for Ship 2 
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Figure 178 – Cylinder Fuel-oil Pump 1 Probabilistic Performance Prediction for Ship 2 

 

 

Figure 179 - Cylinder Fuel-oil Pump 2 Probabilistic Performance Prediction for Ship 2 

 

80

82

84

86

88

90

92

94

96

98

100

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

P
er

fo
rm

an
ce

 I
n

d
ex

 %

Time-period

Cylinder FO Pump 1 Ship 2

Predicted

Observed

80

82

84

86

88

90

92

94

96

98

100

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

P
er

fo
rm

an
ce

 I
n

d
ex

 %

Time-period

Cylinder FO Pump 2 Ship 2

Predicted

Observed



253 

 

 

Figure 180 - Cylinder Fuel-oil Pump 4 Probabilistic Performance Prediction for Ship 2 

 

 

Figure 181 - Cylinder Fuel-oil Pump 7 Probabilistic Performance Prediction for Ship 2 
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Appendix B2.3 Turbocharger System of Ship 2 

 

 

Figure 182 – High Charge Air Pressure Probabilistic Performance Prediction for Ship 2 

 

 

Figure 183 – Scavenge Air Temperature Difference Probabilistic Performance Prediction for Ship 2 
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Figure 184 - Air Cooler Temperature Difference Probabilistic Performance Prediction for Ship 2 

 

 

Figure 185 – Bearing Vibration Probabilistic Performance Prediction for Ship 2 
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APPENDIX B3-COMPONENT/SUB-SYSTEM PREDICTED AND OBSERVED 

PERFORMANCE INDEX VALUES FOR SHIP 3 MULTI-PURPOSE CARGO 

VESSEL 

 

 

Appendix B3.1 Lube-oil System of Ship 3 

 

 

Figure 186 – Sump Oil Level Probabilistic Performance Prediction for Ship 3 

 

 

Figure 187 – Lube-oil Pump Motor Probabilistic Performance Prediction for Ship 3 
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Figure 188 - Lube-oil Purifier Probabilistic Performance Prediction for Ship 3 

 

 

Figure 189 - Lube-oil Purifier Motor Probabilistic Performance Prediction for Ship 3 
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Appendix B3.2 Fuel-oil System of Ship 3 

 

 

Figure 190 – Storage Tank Probabilistic Performance Prediction for Ship 3 

 

 

Figure 191 – Settling Tank Probabilistic Performance Prediction for Ship 3 
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Figure 192 - Service Tank Probabilistic Performance Prediction for Ship 3 

 

 

Figure 193 – Fuel-oil Transfer Pump Motor Probabilistic Performance Prediction for Ship 3 
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Figure 194 - Fuel-oil Purifier Probabilistic Performance Prediction for Ship 3 

 

 

Figure 195 - Fuel-oil Purifier Motor Probabilistic Performance Prediction for Ship 3 
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Figure 196 – Cylinder Fuel-oil Pump 1 Probabilistic Performance Prediction for Ship 3 

 

 

Figure 197 - Cylinder Fuel-oil Pump 3 Probabilistic Performance Prediction for Ship 3 
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Figure 198 - Cylinder Fuel-oil Pump 4 Probabilistic Performance Prediction for Ship 3 

 

 

Figure 199 - Cylinder Fuel-oil Pump 5 Probabilistic Performance Prediction for Ship 3 
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Figure 200 - Cylinder Fuel-oil Pump 6 Probabilistic Performance Prediction for Ship 3 

 

 

Figure 201 - Cylinder Fuel-oil Pump 7 Probabilistic Performance Prediction for Ship 3 
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Appendix B3.3 Turbocharger System of Ship 3 

 

 

Figure 202 – Low Charge Air Pressure Probabilistic Performance Prediction for Ship 3 

 

 

Figure 203 – Scavenge Air Temperature Difference Probabilistic Performance Prediction for Ship 3 
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Figure 204 – Air Cooler Temperature Difference Probabilistic Performance Prediction for Ship 3 

 

 

Figure 205 – Exhaust Back-pressure Probabilistic Performance Prediction for Ship 3 
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APPENDIX C1-COMPONENT/SUB-SYSTEM PREDICTED AND OBSERVED 

PERFORMANCE INDEX VALUES FOR SHIP 1 SISTER CHEMICAL TANKER 

OPERATING IN WEST COAST CANADA 

 

Appendix C1.1 Lube-oil System of Ship 1 

 

Figure 206 - LO Filter 2 Ship 1 Performance Indices 

 

 

Figure 207 - LO Filter 2 Ship 1 Net cost 
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Figure 208 - Sump Oil Level Ship Performance Indices 

 

 

Figure 209 - LO Pump Ship 1 Performance Indices 
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Figure 210 - LO Pump Ship 1 Performance Indices 

 

 

Figure 211 - LO Pump Ship 1 Net cost 
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Figure 212 - LO Motor Ship 1 Performance Indices 

 

 

 

Figure 213 - LO Purifier Motor Ship 1 Performance Indices 
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Figure 214 - LO Filter Ship 1 Performance Indices 

 

 

 

 

Appendix C1.2 Fuel-oil System of Ship 1 

 

 

Figure 215 - FO Purifier Ship 1 Performance Indices 
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Figure 216 - FO Purifier Ship 1 Net cost 

 

 

 

 

Figure 217 - FO Transfer Pump Ship 1 Performance Indices 
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Figure 218 - FO Transfer Pump Ship 1 Net cost 

 

 

 

 

Figure 219 - Cylinder FO Pump 4 Ship 1 Performance Indices 
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Figure 220 - Cylinder FO Pump 4 Ship 1 Net cost 

 

 

 

 

Figure 221 - Cylinder FO Pump 1 Ship 1 Performance Indices 
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Figure 222 - AutoFilter Net cost 

 

 

 

 

Figure 223 - Storage Tank Ship 1 Performance Indices 
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Figure 224 - Settling Tank Ship 1 Performance Indices 

 

 

Figure 225 - FO Transfer Pump Motor Ship 1 Performance Indices 
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Figure 226 - FO Purifier Motor Ship 1 Performance Indices 

 

 

Figure 227 - Cylinder FO Pump 2 Ship 1 Performance Indices 
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Figure 228 - Cylinder FO Pump 3 Ship 1 Performance Indices 

 

 

Figure 229 - Cylinder FO Pump 5 Ship 1 Performance Indices 
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Figure 230 - Cylinder FO Pump 6 Ship 1 Performance Indices 

 

 

 

Figure 231 - Cylinder FO Pump 7 Ship 1 Performance Indices 
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Appendix C1.3 Turbocharger System of Ship 1 

 

 

Figure 232 - Charge Air Pressure Drop Ship 1 Performance Indices 

 

 

Figure 233 - Exhaust Duct Leak Test Ship 1 Net cost 
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Figure 234 - Air Filter Change Test Action Ship 1 Cost Benefit 

 

 

Figure 235 - Bearing Vibration Ship 1 Performance Indices 
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Figure 236 - Bearing Change Ship 1 Net cost 

 

 

Figure 237 - Scavenger Temperature Difference Ship 1 Performance Indices 
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Figure 238 – Air Cooler Repair Ship 1 Net cost 

 

 

Figure 239 - Scavenge Air Pressure Drop Ship 1 Performance Indices 
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Figure 240 – Air Cooler Temperature Difference Ship 1 Performance Indices 

 

 

Figure 241 - High Charge Air Pressure Ship 1 Performance Indices 
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Figure 242 - Exhaust Back-pressure Ship 1 Performance Indices 
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Appendix C2.1 Lube-oil System of Ship 2 

 

 

Figure 243 - LO Filter 1 Ship 2 Net cost 
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Figure 244 - LO Purifier Ship 2 Performance Indices 

 

 

Figure 245 - LO Purifier Ship 2 Net cost 
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Appendix C2.2 Fuel-oil System of Ship 2 

 

 

Figure 246 - Cylinder FO Pump 3 Ship 2 Performance Indices 

 

 

Figure 247 - Cylinder FO Pump 3 Net cost 
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Figure 248 - Cylinder FO Pump 5 Ship 2 Performance Indices 

 

 

Figure 249 - Cylinder FO Pump 5 Ship 2 Net cost 
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Figure 250 - Settling Tank Heater Ship 2 Performance Indices 
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Figure 252 – Auto-filter Ship 2 Net cost 

 

 

Figure 253 - Cylinder FO Pump 6 Ship 2 Performance Indices 
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Figure 254 - Cylinder FO Pump 6 Ship 2 Net cost 

 

 

Figure 255 - Storage Tank Ship 2 Performance Indices 

1200

1400

1600

1800

2000

2200

2400

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

N
et

 c
o

st
 $

Time Period

Cylinder FO Pump 6 Cost Ship 2

Predicted

Observed

80

82

84

86

88

90

92

94

96

98

100

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6

P
er

fo
rm

an
ce

 I
n

d
ex

 %

Time Period

Storage Tank Ship 2

Predicted

Observed



291 

 

 

 

Figure 256 - Service Tank Ship 2 Performance Indices 

 

 

Figure 257 - FO Transfer Pump Ship 2 Performance Indices 
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Figure 258 - FO Transfer Pump Motor Ship 2 Performance Indices 

 

 

Figure 259 - FO Purifier Ship 2 Performance Indices 
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Figure 260 - FO Purifier Motor Ship 2 Performance Indices 

 

 

Figure 261 - Cylinder FO Pump 1 Ship 2 Performance Indices 
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Figure 262 - Cylinder FO Pump 2 Ship 2 Performance Indices 

 

 

Figure 263 - Cylinder FO Pump 4 Ship 2 Performance Indices 
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Figure 264 - Cylinder FO Pump 7 Ship 2 Performance Indices 

 

 

Appendix C2.3 Turbocharger System of Ship 2 

 

 

Figure 265 - Low Exhaust Temperature Ship 2 Performance Indices 
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Figure 266 - Low Charge Air Pressure Ship 2 Performance Indices 

 

 

Figure 267 - Exhaust Back-pressure Ship 2 Performance Indices 
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Figure 268 - Exhaust Fouling Dismantle Action Ship 2 Net cost 

 

 

Figure 269 - Scavenge Air Pressure Drop Ship 2 Performance Indices 
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Figure 270 - Scavenge Air Repair Ship 2 Net cost 

 

 

Figure 271 - High Charge Air Pressure Ship 2 Performance Indices 
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Figure 272 - Scavenge Air Temperature Ship 2 Performance Indices 

 

 

Figure 273 – Air Cooler Temperature Difference Ship 2 Performance Indices 
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Figure 274 - Bearing Vibration Ship 2 Performance Indices 
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Appendix C3.1 Lube-oil System of Ship 3 

 

 

Figure 275 - LO Filter 1 Ship 3 Performance Indices 
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Figure 276 - LO Filter 1 Ship 3 Net cost 

 

 

Figure 277 - LO Filter 2 Ship 3 Performance Indices 
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Figure 278 - LO Filter 2 Ship 3 Net cost 

 

 

Figure 279 - LO Pump Ship 3 Performance Indices 
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Figure 280 - LO Pump Ship 3 Net cost 

 

 

Figure 281 - Sump Oil Level Ship 3 Performance Indices 
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Figure 282 - LO Pump Motor Ship 3 Performance Indices 

 

 

Figure 283 - LO Purifier Ship 3 Performance Indices 
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Figure 284 - LO Purifier Motor Ship 3 Performance Indices 

 

 

Appendix C3.2 Fuel-oil System of Ship 3 

 

 

Figure 285 - Cylinder FO Pump 2 Ship 3 Performance Indices 
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Figure 286 - Cylinder FO Pump 2 Ship 3 Net cost 

 

 

Figure 287 - Cylinder FO Pump 8 Ship 3 Performance Indices 
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Figure 288 - Cylinder FO Pump 8 Ship 3 Net cost 

 

 

Figure 289 - AutoFilter Ship 3 Performance Indices 
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Figure 290 - AutoFilter Ship 3 Net cost 

 

 

Figure 291 - FO Transfer Pump Ship 3 Performance Indices 
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Figure 292 - FO Transfer Pump Ship 3 Net cost 

 

 

Figure 293 - Storage Tank Ship 3 Performance Indices 
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Figure 294 - Settling Tank Ship 3 Performance Indices 

 

 

Figure 295 - Service Tank Ship 3 Performance Indices 
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Figure 296 - FO Transfer Pump Motor Ship 3 Performance Indices 

 

 

Figure 297 - FO Purifier Ship 3 Performance Indices 
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Figure 298 - FO Purifier Motor Ship 3 Performance Indices 

 

 

Figure 299 - Cylinder FO Pump 1 Ship 3 Performance Indices 
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Figure 300 - Cylinder FO Pump 3 Ship 3 Performance Indices 

 

 

Figure 301 - Cylinder FO Pump 4 Ship 3 Performance Indices 
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Figure 302 - Cylinder FO Pump 5 Ship 3 Performance Indices 

 

 

Figure 303 - Cylinder FO Pump 6 Ship 3 Performance Indices 
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Figure 304 - Cylinder FO Pump 7 Ship 3 Performance Indices 

 

 

Appendix C3.3 Turbocharger System of Ship 3 

 

 

Figure 305 - High Exhaust Temperature Ship 3 Performance Indices 
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Figure 306 - High Charge Air Pressure Ship 3 Performance Indices 

 

 

Figure 307 - Engine Performance Test Action Ship 3 Net cost 
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Figure 308 - T/C Contaminant Dismantle Test Action Ship 3 Net cost 

 

 

Figure 309 - Bearing Vibration Ship 3 Performance Indices 
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Figure 310 - Bearing Change Ship 3 Net cost 

 

 

Figure 311 - Scavenge Air Pressure Drop Ship 3 Performance Indices 
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Figure 312 - Scavenge Air Repair Ship 3 Net cost 

 

 

Figure 313 - Low Charge Air Pressure Ship 3 Performance Indices 
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Figure 314 - Scavenger Air Temperature Difference Ship 3 Performance Indices 

 

 

Figure 315 - Air Cooler Temperature Difference Ship 3 Performance Indices 
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Figure 316 - Exhaust Back-pressure Ship 3 Performance Indices 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX D – ANALYSIS OF RISK FACTORS USING MATLAB SIMULINK 

FUZZY LOGIC TOOLBOX 

 

Using Matlab Fuzzy Logic tool box and membership function editor, connection between human risk 

factor and probability of failure has been created. Figure 317 demonstrates the membership function 

using the statements from Table 17. In this form, expressions A to E are represented by values 0 to 5.  
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Figure 317 - Human Factor Membership Function Based on Table 17 

 

Similarly, using Table 20, membership function failure probabilities are generated (Figure 318). In this 

membership function, statements 1 to 5 are represented by ranks of 0 to 5. 

 

 

Figure 318 - Failure Probability Membership Function Based on Table 20 
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Subsequently, using Table 21 where it shows the relationship between risk factor and failure probability, 

the membership function overall risk factor is represented as Figure 319. In this membership function, 

statements Very Low (VL), Low (L), Medium (M), High (h) and Very High (VH) are ranked from 0 to 

5.  

 

Figure 319 - Overall Membership Function Based on Table 21 

 

Finally, overall results were analysed by the fuzzy logic tool box. A represented result of human 

factor of C and failure probability of 2 with final score of 2.5 is shown in Figure 320. 
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Figure 320 - Human to Failure Rate Risk Probabilities Results 


