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Abstract 

Current established bacterial identification techniques (cell culture and 

genetic analysis), are often costly and time-consuming processes. The ability to 

rapidly identify bacteria offers utility in a number of important areas, especially 

where pathogens could be left in a natural environment for a prolonged period of 

time, on various different backgrounds after their initial release. The 2015 UK 

National Security Strategy and Strategic Defence and Security Review (NSS SD) lists 

an attack on the UK or its Overseas Territories by another state or proxy using 

chemical, biological, radiological or nuclear (CBRN) weapons as a tier 2 threat; 

therefore, methods to identify biological warfare agents (BWAs) are a major priority 

for bio-defence. 

Vibrational spectroscopy is a rapid, cheap and non-destructive technique that 

has previously been used to identify bacteria. This project uses varying temperature 

and humidity levels to represent a hot dry climate and assess the impact upon the 

bacteria using vibrational spectroscopy. The main focus of the project looks at the 

effect that substrate and environmental conditions have on the spectral signature of 

bacteria. The bacteria chosen for this study include surrogates of BWAs and bacteria 

that are commonly found in the environment.  

The results of the project demonstrate that Fourier Transform Infrared 

spectroscopy is the optimal method for bacterial identification when compared with 

Raman for identifying samples found on complex matrices. Supervised and 

unsupervised multivariate analysis (MVA) of the data was performed using principle 
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component analysis (PCA) and discriminant function analysis (DFA) to show 

separation of Gram-type, bacterial strain and time point. This project shows the 

development of a methodology that can be used on a handheld spectrometer where 

the spectral contribution from a complex matrix is removed to provide a bacterial 

spectrum. This methodology has great promise for rapid, in situ identification of ‘real 

world’ BWA samples.  
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1.1 Abstract 

The use of biological warfare agents (BWAs) is a threat that is often addressed 

in national strategies, including the UK national security strategy, used to assess the 

current risks faced by a nation. Current methods used to identify these agents are 
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often laborious, destructive to the fungus, bacterium or virus, located centrally rather 

than in the field and are time consuming. Ideally, the situation requires a technique 

that can rapidly detect and identify the pathogenic agent allowing the 

implementation of the most appropriate treatment and hazard management 

procedures more quickly. Moreover, in situ detection and rapid identification of 

bacteria reduces the effect of terrorism and subsequent consequences of such an 

attack. Analytical techniques, such as mass spectrometry (MS) and vibrational 

spectroscopy (infrared (IR) and Raman), have been explored as potential approaches 

for the rapid field-deployable identification of BWAs. This review provides a critical 

insight into current techniques used for bacterial identification using historical 

evidence and discusses the potential of novel vibrational spectroscopic approaches 

in combatting the threat of BWAs. 

 

1.2 Introduction 

The use of bacteria in warfare is not a new concept and examples date back 

to 1400 BC where infected animals were used to spread disease in enemy camps. [2] 

The use of animals, decaying bodies and blood to cause disease within enemy camps 

was common in Europe as recently as the early 20th century. Figure 1 illustrates, in 

chronological order, some of the most significant incidents where biological warfare 

agents (BWAs) have been employed and can be split into three prominent epochs: 

1400 BC-1914, 1914-1945 and post World War II.  
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Pre World War I
•Hitties used infected animals to spread tularaemia to thier enemies14th Century BC
•Greek, Persian and Roman empires polluted water supplies with dead animals800-146 BC

•Human bodies were used to pollute water in Italy by Barbossa1155
•Mongals used dead bodies to spread plague during the siege on the city of Caffa1346
•Lithuanian armies used plague infected bodies to infect the town of Carolstein1422
•Leprocy infected blood is mixed with wine by Spaniards and sold to the French1495
•Saliva from rabies infected dogs was used by Polish armies1650
•French and English troops used the smallpox virus against Native Americans1763
•The area surrounding Mantua was flooded by Napoleonic armies to aid the spread of Malaria1797

•Smallpox and yellow fever clothing is sold to spread the diseases during the American Civil war1863
•The Hague conventions outlaw 'poison or poisoned arms' use but not bacterial weapons1899 and 1904

World War I and II
•Diseases caused in humans and animals include cholera, plague, anthrax and glanders1914-1918
•Creation of the Geneva Protocol bans the use of chemical and biological agents in war1925
•Unit 731 (Japan) tests BWAs on human and animal subjects resulting in thousands of deaths1932
•Development of the Pingfan Institute (Japan), the first large scale biological warfare complex1937
•Diseases during the second world war include anthrax, plague, glanders and typhus1939-1945
•Research into BW begins in UK government facilities at Porton Down, now part of DSTL1940

•Japan uses grains, wheat and plague infected fleas to spread the disease within China1940/41

•BWA research service was created at Fort Detrick (US) including production and testing facilities
•Experiments using B. anthracis begin on Gruinard Island by British scientists1942

Post World War II
•Vietnam, Korea and Afghanistan were accused of using BWAs, but claims were unsubstantiated1950-1980
•Creation of the BTWC ordered countries to cease the production of BWAs1972
•Iraq begin to develop a wide-ranging collection of BWAs, under the control of Saddam HusseinPost 1974
•Outbreak of anthrax in Sverdlovsk, Russia as a result of an accidental leak at a secret facility 1979
•Followers of Bhagwan Shree Rajneesh cult contaminate food in two Dallas restaurants1984
•Aum Shrinkyo carry out a numer of chemical and biological attacks in Japan1995
•"Anthrax letters attacks" carried out in America resulting in 5 deaths2001
•Documents are found at Tanark farms, Afghanistan, showing plans for mass production of BWAs2001
•Letters sent to the Department of Transportation and the White House contained traces of ricin2003
•Anthrax found in heroin causing 47 confimed cases of infection with 13 deaths2009
•Infected meat causes outbreak of anthrax in Bangledesh resulting in over 300 cases of infection2010
•B. anthracis accidentally sent from Utah to Australia, South Korea, Canada and 17 states2015

Figure 1 Timeline detailing cases involving bacteria that can commonly be used as biological warfare agents, some of 
which are the offensive use of the agents. Information compiled from [1-13] 
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Prior to the commencement of the World War I and II, the use of BWAs 

remained fairly primitive in methodology; however, with the growth in knowledge of 

microbial pathogenicity and transmission as well as subsequent advancements within 

the field, specific virulent microbial agents have been exploited for offensive use. The 

authors would like to highlight [1-3], for more detailed information on the finer details 

of case studies and the history of BWAs. Also of particular interest is ‘A Higher Form 

of Killing’ [11,12] as it covers the historical use of both chemical and biological weapons 

compiling MoD documentation and information from Dr Rex Watson, the then 

Director of Porton Down. The UK national security strategy is a system that classifies 

risks such as biological and chemical attacks based on a three-tier system where the 

risks are categorised based on likelihood and impact. [18] The threat level for biological 

warfare currently within the UK is classed as a tier two threat. Current tier one threats 

include the likes of a cyber-attack or a natural disaster such as severe flooding while 

tier three threats include public disorder and severe heatwaves. 

The modern concept of using bacteria as BWAs paradoxically came about as 

a reaction to their inclusion in the Geneva protocol, 1925, which highlighted their 

potential application for use in warfare. [19] The Japanese biological warfare offensive, 

led by Shirō Ishii initiated a research centre in 1935 where work to begin setting up 

the institute, referred to as the Pingfan Institute, was authorised in 1937 and was the 

first biological warfare complex in the world. At the Pingfan Institute mice, guinea 

pigs, sheep, horse and humans were all used as test subjects for the weapons being 

produced there. American investigators examined human remains and found that a 

number of different agents had been used causing diseases such as: anthrax (Bacillus 



5 | P a g e  
 

anthracis), plague (Yersinia pestis) and glanders (Burkholderia mallei) to name a few. 

The institute, and all documents held there, were deliberately destroyed prior to 

Russian armies arriving in 1945. [11] Although the scale of production at the site has 

never been confirmed, in 1949 Russia estimated production levels for the institute 

being around 8 tonnes of bacteria per month which in comparison to the scale of the 

American’s efforts seems minimal as the site at Vigo in Indiana was capable of 

producing around 100 tonnes a month. [20]  

During the early days of BWA development, Japanese production and testing 

was far superior to the Anglo-American efforts. Sir Maurice Hankey spearheaded the 

British biological program which was largely developed at the specialist laboratory at 

Porton Down. He began his work consulting with the Medical Research Council in 

1934 with initial work focusing on “the practicality of biological warfare and to make 

recommendation as to the countermeasures which should be taken to deal with such 

an eventuality”. [21] However, this soon changed and by 1938 emphasis had turned to 

offensive weapon development once German research into BWAs, particularly the 

work surrounding anthrax, began to surface.  The main focus of the British biological 

warfare unit surround B. anthracis and its potential use as a BWA, this was due to its 

ability to form spores. [22] Spores are able to survive in harsh, nutrient deficient 

conditions for prolonged periods of time, a very useful property for BWAs to have, 

and hence their prevalence in current bioterrorism. Prolonged survival within nature 

can lead to outbreaks of disease after the initial attack once it is reintroduced to a 

nutrient rich environment, such as a human or animal host. [23] In 1948, the UK 

Ministry of defence (MoD) began trails on Gruinard Island, an island off the west 
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coast of Scotland, to test the persistence of B. anthracis spores and its potential for 

use as a BWA. [24] The study involved collecting soil samples annually between 1948 

and 1968 and testing the effect of harsh environmental conditions over time on the 

virulence of the bacteria. The results of the study found that despite these 

parameters, the bacteria collected from the island compared to a laboratory strain of 

B. anthracis showed no loss of virulence.  This Scottish island remained off limits to 

public access and has only relatively recently (1990) been decontaminated; however, 

due to the history of the island the population of Gruinard Island is still zero. 

In 1969, it was suggested by Britain that a biological weapons convention 

should be created to prohibit the stockpiling and production of these agents. [19] The 

convention was finally implemented in 1972, when countries including Britain, the 

United States and the Soviet Union eventually signed. [4] A source of controversy 

arose due to evidence that the Soviet Union continued with their large-scale BW 

research program due to an accidental leak of B. anthracis in 1979 in Sverdlovsk, that 

resulted in 68 fatalities and hundreds of casualties. [25]  

 

1.3 Microbiology theory 

There are two main types of cells, prokaryotic and eukaryotic. Bacteria are 

prokaryotic cells while animals, plants and fungi are eukaryotic cells. Prokaryotic cells 

are defined as “simple organisms with no nucleus or organelles” and “the DNA 

present in the cell is not organized into chromosomes”. [26] Eukaryotic cells are 
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defined as “organisms that have a nuclear compartment that contains its genetic 

information”. [27] Figure 2 shows the structural differences in prokaryote and 

eukaryote cells. [28] 

There are two main types of cells, prokaryotic and eukaryotic. Bacteria are 

prokaryotic cells while animals, plants and fungi are eukaryotic cells. Prokaryotic cells 

are defined as “simple organisms with no nucleus or organelles” and “the DNA 

present in the cell is not organized into chromosomes”. [26] Eukaryotic cells are 

defined as “organisms that have a nuclear compartment that contains its genetic 

information”. [27] Figure 2 shows the structural differences in prokaryote and 

eukaryote cells. [28] 

There are a number of other features that differ depending on cell type, 

including size, generation time and the ratio of the components of the cell. Typically, 

prokaryotic cells (bacteria) are smaller cells, at around 1 µm, with a generation time 

of between 20 mins and 10 hours, while eukaryotic cells (yeast and animal) are much 

Figure 2: Adapted figure showing examples of prokaryotic and eukaryotic cells. The cells shown are 
not drown to scale. [26] 
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larger, measuring between 10 and 100 µm with a generation time of 2-20 hours. The 

weight percentage of DNA, RNA, proteins, lipids and carbohydrates differs not only 

between pro and eukaryotes but also within the cell type, with variations seen 

between yeast and animal cells. Generally animal cells have higher weight 

percentages of DNA, RNA, proteins and lipids, with lower levels of carbohydrates 

compared to yeasts and bacteria. [29] A table with the proportion of macromolecules 

found within an Escherichia coli (E. coli) cell are shown below in Table I. This project 

focuses solely on the use and interrogation of prokaryotic cells, and therefore 

eukaryotic cells will not be discussed. 

Table I:  Macromolecules commonly found within E. coli represented as percentages within a dry cell. [29] 

CELL COMPONENT PERCENTAGE OF DRY CELL MASS 
PROTIENS 55 
RNA 21 
LIPIDS 9 
POLYSACCHARIDES 5 
DNA 3 
LIPOPOLYSACCHARIDES 3 

 

Bacterial classification is primarily carried out using a differential staining 

technique known as Grams. Named from the German microbiologist, Dr Hans 

Christian Gram, the technique exploits key structural differences in the cell wall.  

Gram hypothesised that differing concentrations of fats, proteins and sugars within 

the cell wall. Gram-positive bacteria, which have a thick cell wall packed with PDL, 

produce a blue-to-purple colour as the crystal violet-iodide adheres very well to the 

peptidoglycan. [30] Gram-positive bacteria include Bacillus, Clostridium, 

Staphylococcus and Streptococcus. [31] Gram-negative bacteria have a thinner cell 
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wall containing less PDL and an outer membrane covered in LPS, making it difficult 

for the crystal violet-iodine to adhere to the cell. Thus, the crystal violet-iodine is 

easily washed away prior to the application of a Safranin, a red dye, which gives 

gram-negative bacteria a red appearance. This is a result of the lipids in the cell wall 

being dissolved by the crystal violet-iodine. [30] Gram-negative bacteria include 

Escherichia, Salmonella and Pseudomonas. [31] Gram staining is a very simple method 

that can be used to easily narrow down the potential identity of a bacterium, but 

does not provided a conclusive result as to its exact identity.  

Another preliminary method of identification is to look at a bacterium’s 

shape. Bacteria are single cell microbes that can vary in shape and are generally 

classified into one of five different groups which are shown in Figure 3. [32] Commonly 

encountered warfare agents such as Bacillus anthracis (B. anthracis) and Clostridium 

botulinum (C. botulinum), which cause the diseases anthrax and botulism 

respectively, are found to have a rod shape. [31]  

 

Gram staining and shape are features of a bacterium that can be used for 

preliminary indication but again cannot be used for the conclusive classification of 

Figure 3: The five shapes that bacteria can take from left to right: Rod (Bacillus), Spherical (Streptococcus), 
Spiral (Borrelia), Comma (Vibro) and Corkscrew (Campylobacter).  
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bacteria. [33] However, both Gram staining and shape can be used to rule out 

suspected bacteria in the case of an attack. If a particular bacterium is alleged to have 

been used, these techniques can immediately rule out the agent if the characteristics 

do not correlate to the known profile of that bacterium.  

An interesting feature of some bacteria is their ability to form endospores 

which changes the spectral profile of a bacterium.  Endospores enable a bacterium 

to survive in harsh, nutrient-deficient environments that what would otherwise be 

difficult for vegetative bacteria to survive. Endospores have an adjusted structure 

that has two membranes with a thin layer of spore-specific peptidoglycan that differs 

to the forms that can be found in the bacteria’s vegetative state. [34] This layer of 

peptidoglycan can be identified by analytical techniques to indicate which form of 

bacteria you are working with, giving an indication as to what kind of environment a 

bacterium has been exposed to. It is the ability of B. anthracis to produce these 

endospores that makes it possible to find viable spores on Gruinard island some 24 

years after they were deposited [24], making it a good biological warfare agent due to 

its persistence and robustness combined with high levels of pathogenicity.  

B. anthracis is ideal to use as a BWA due to its ability to produce endospores 

that can remain inactive for many years, making them able to survive in extreme 

conditions. The bacterial spores only become active again when they return to a 

nutrient-rich environment, such as that of a human or animal host via ingestion, 

inhalation or cutaneous contact. As the spores enter the host their structure changes 

from the inactive to the active form of the bacteria. The bacteria rapidly replicate, 
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increasing the toxicity of the bacterium, causing severe illness or, in cases of 

inhalation, death, with fatality rates above 90%. When the body or carcass of a victim 

of anthrax poisoning is left to decompose naturally, the Bacillus anthracis form spores 

that can become airborne and infect a new host or can be ingested by other animals, 

continuing the cycle. [35]  

 

1.4  Notable Anthrax Case Studies 

B. anthracis is commonly the agent of choice when it comes to BW and was 

one of the agents chosen by Japanese cult Aum Shinrikyo. [36] Aum Shinrikyo is a 

Japanese apocalyptic cult that carried out a series of chemical and biological attacks, 

mainly taking place in Japan, between 1990 and 1995. During this time a total of 

seven biological attacks took place, three using botulinum toxin with the other four 

using B. anthracis. [36] All of the attacks used a spray mechanism for the dissemination 

of agents, which was considered one of the primary reasons the attack failed; 

although the failure was also associated with the use of vaccine or inactive strains of 

the agents. Samples collected from the scene in 1993, were only then analysed six 

years later, demonstrating the common delay associated with analysis of BWAs. [37] 

None of the biological attacks carried out by Aum Shinrikyo caused any causalities, 

however had the attacks been more successful slow detection and identification 

rates in currents techniques could have resulted in higher casualty and fatality rates 

due to longer exposure, delays and ill-informed treatment procedures.  
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Less than a decade later, an unrelated attack was carried out via the postal 

system in America on a number of US media and government offices using 

B. anthracis (causative agent of anthrax). [38] The attacks resulted in 22 casualties, 

including 5 fatalities. Letters were sent to the media and state senators containing 

solid and aerosolised forms of B. anthracis respectively. [38] Identification of the 

substance was confirmed as B. anthracis by employing standard cell culture 

techniques, using samples collected from the letters and envelopes. Blood samples, 

bronchial washings and pleural fluid were collected from patients were also analysed 

using polymerase chain reaction (PCR) and gamma phage lysis [39] Part of this 

methodology requires a three day incubation period, which resulted in a delay 

between the attack and identification of the bacterial agent. [40] Prolonged 

identification of BWAs has many serious implications, including delays in effective 

treatment, which highlights the need for a rapid and reliable technique to allow 

appropriate treatment to be administered and precautions to be implemented to 

avoid the spread of infection.  Note that detection and identification are quite 

different: detection is used to establish that a threat has happened and to direct the 

most appropriate protective action to be taken on site; by contrast, identification is 

unequivocal and used for epidemiological purposes so that the most appropriate 

political response can be made (we note that George Bush Jr was President of the 

USA at the time).  During the 2001 USA bioterrorism attack, DNA typing using 

amplified fragment length polymorphism  was used to establish that a derivative of 

the virulent Ames strain (a laboratory strain for research, developing vaccines and 

tests) was the BWA employed. [41] 
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1.5  Issues with BWA Identification 

For effective detection of BWAs, bacteria found in the field that require 

analysis, are likely to have been exposed to different environmental conditions and 

will be found on a variety of varying surfaces. All of these factors will affect the 

integrity of the bacterial samples, in turn affecting our ability to correctly identify and 

classify the bacterial species. This is one important factor that needs to be considered 

when developing a new technique for identification and classification of bacteria, 

specifically when considering rapid in situ characterisation of BWAs. The following 

section looks at current issues that exist in BWA detection and classification 

techniques. 

There are a number of factors that govern whether a person will be infected 

by a BWA during an attack including the amount of time a person is exposed to the 

agent and the concentration of the organism they are exposed to. It is said that on 

average a human adult will inhale 10-100 L of air per minute, for B. anthracis to cause 

infection, 8000-10000 spores are needed. [17] So exposure at a concentration of 100 

spores/L would take 10 minutes to inhale enough spores to cause infection. At a 

concentration of 1000 spores/L it would take just one minute for someone to be 

exposed to the same bacterial load. The previous two exposure times are calculated 

using the minimum inhalation volume and an infectious dose of 10000 spores and 

assuming no removal of spores. [17] In reality, an average healthy human may be 

infected more rapidly due to a larger air intake per minute; however, this provides a 

useful guide to the environmentally relevant detection limits that an identification 
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technique should be able to attain. High sensitivity (low limit of detection) and the 

ability to detect and identify bacteria rapidly are the two main features required to 

combat the low concentrations and short exposure times that cause infection. 

Furthermore, as bacterial warfare may occur in a variety of environments and 

settings, it is crucial that the method of detection is robust enough to be applied in a 

variety of scenarios, at a rate that is sufficient to minimise the effect caused during 

an attack. This will depend on the agent used, its concentration and the location 

where the attack takes place, however there is a desire to develop a method that 

allows for real-time analysis of samples. [42] 

It is also important that the technique is able to discriminate between bacteria 

of similar genotypes accurately, and crucially between pathogenic and 

non-pathogenic strains. A review carried out in 2012 discusses various methods used 

to identify B. anthracis in environmental samples, including biochemical and nucleic 

acid based methods, and showed that identification with existing methods is 

particularly difficult due to the genetic similarity of B. anthracis to non-pathogenic 

environmental Bacillus spp. [12] The literature agrees that there is a desperate need 

for a novel rapid identification technique that is able to provide discriminatory 

information. [13,15] Some of the specific traits highlighted for a new technique include 

high sensitivity and specificity, small and portable instrumentation, a long shelf-life 

and rapid measurement times to name a few, with others shown in Figure 4. The 

latter of these attributes could be considered the most important, with 15 minutes 

considered a desirable analysis time. [14] High sensitivity and specificity allows for 

accurate and precise identification of the agents used to allow the optimum 
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treatment and hazard management procedures to be implemented, in turn reducing 

the effect of an attack. Rapid detection times are important for ensuring that the 

number of people exposed to the agent can be minimised. The ability to identify 

bacteria on any complex matrix would allow the technique to recognise areas that 

are contaminated and what type of bacteria are there. 
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Figure 4 Diagram showing the ideal properties for a new biodetector/ identification method for use on BWAs. 
Compiled from  [12,13, 14,15, 16,17] 
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1.6  Techniques Currently used for BWA Identification 

Traditional methods used for bacterial identification, specifically cell culture 

and genetic analysis, are both costly and time-consuming processes largely 

associated with their extensive sample preparation. [14] Enzyme based tests, such as 

the catalase test, can also be used to classify a bacterium at a very high taxonomic 

level by establishing how the bacterial culture interacts with oxygen, and thus may 

infer whether the bacteria are aerobic, anaerobic, facultative anaerobic or 

microaerophilic organisms. During the catalase test, if the culture produces a foam 

when added to hydrogen peroxide, then the catalase enzyme is present. Tests such 

as this will take place during cell culture, which will be reliant upon a successful and 

sufficient period of culture, which in some instance may take more than seven days 

to show any sign of growth. [43] This will significantly impact the time taken to identify 

the bacterial species.  However, tests like this lack sufficient discriminatory ability to 

separate closely related species unless many biochemical tests are performed in 

parallel. [44] 

Polymerase chain reaction (PCR) technologies are commonly used for analysis 

of bacteria including BWAs. [45] When using PCR combined with a microarray-based 

assay, very high sensitivity and specificity values (up to 96 and 98% respectively) were 

produced within 3 hours from a set of 186 blood culture samples containing a variety 

of different genus. [46] Further development of PCR technologies has been focused 

upon reducing the time taken for identification. Research using real-time PCR has 

shown it is possible using pag and cap genes to detect a single B. anthracis spore in 
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100 L air within an hour. [47] Real-time PCR differs from conventional PCR as it 

monitors the fluorescent signal produced by the nucleic acids as the PCR process is 

occurring as opposed to after the PCR process has ceased. [48] Although this is faster 

than the conventional PCR method, it was initially far from the optimal detection time 

of under 15 minutes. [14] Other research groups that have been using real-time PCR 

brought identification times to just seven minutes with Erwinia herbicola cells by 

using an Advanced Nucleic Acid Analyser (ANAA). [49] Moving forward from 

identification of bacterial cells, the detection of bacterial spores is a more challenging 

process due to their nucleic acid being encased in a resistant shell (spore coat) 

meaning that the spores need to be disrupted prior to analysis, elongating the 

analysis time. In order to address this the development of a minisonicator allows for 

the disruption of bacterial spores in 30 seconds, dramatically reducing the time for 

the overall process bringing detection down to 15 minutes. [50] Although this reduces 

analysis times, this advancement does not address issues with instrument portability 

and benefit of little or no sample preparation.  

Despite the advancements that have been shown, it is apparent from 

reviewing current techniques for bacterial identification, that there are a number of 

limitations in the currently available methods, particularly in terms of the need for 

optimum laboratory-based working environments (which for PCR need to be very 

clean in order to reduce contamination), speed of identification, cost and lack of 

portability. A method of identification would require improvements in these 

attributes in order to address sufficiently the requirements of a technique 

appropriate for BWA identification in the field. Equally as important are high 
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sensitivity and specificity to ensure that there is a balance between ease of use and 

quality of results. Crucially, for any new detection method we need to ensure that 

the number of false alarms is low but maintains high detection rates high to minimise 

potentially lethal exposure. Although there have been significant improvements in 

the ‘gold standard’ techniques (such as PCR), it is important to consider alternative 

approaches that may provide the attributes of an ideal technique for bacterial 

identification. Table II details the current and potential techniques that can be used 

for bacterial identification and compares the number of ideal properties each 

technique possesses, including FTIR and Raman spectroscopy.  

The cost effectiveness of a technique depends on the specificity of a result 

and the cost of instrumentation and reagents, where in this case specificity relates to 

strain level identification. FTIR, Raman and mass spectrometry all have portable 

instrumentation that are cheaper than their benchtop equivalents, making them 

suitable in situ analysis. By having these cheaper, portable instruments the 

techniques become more cost effective, particularly for IR and Raman analysis where 

there is very little cost associated with an individual test following the initial outlay 

for the instrumentation. The only costs associated with these techniques are the 

regents used to clean them between samples. Mass spectrometry requires solvents 

for dissolving samples in, however these tend not to be too costly. Cell culture and 

enzyme tests often require multiple tests to be performed in order to get a result as 

specific as the instrument-based techniques, therefore they are not particularly cost 

effective as they require multiple reagents and equipment. Ease of use relates to how 

simple a method or technique is to use, from preparing a sample to collecting the 
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data, or visually inspecting the results of the tests. Mass spectrometry and PCR 

require a sample to be prepared prior to analysis using solvents or primers, making 

them more complex than a technique such as Raman or FTIR.  

Table II Table of the ideal properties of a technique to identify of BWAs and how these correlate with the 
different techniques used for identification. 
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1.7 Spectroscopy fundamentals 

Vibrational spectroscopy is an analytical technique widely implemented in the 

field of biological sciences [85,87,90], which is able to rapidly determine the chemical 

composition of a given sample. It has been extensively applied to identify the 

presence of bacteria, and also discriminate between bacterial species and strains at 

high rates of sensitivity and specificity. Since a number of proof-of-concept studies in 
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the 1980’s, the number of papers published in this field has significantly increased 

(Figure 5), largely due to Dieter Naumann’s pioneering work on Fourier transform 

infrared (FTIR) spectroscopy for bacterial characterisations at the Robert Koch 

Institute, Berlin, Germany. [82] 

Figure 5 Web of science results for the number of papers published when conducting a search for 'Bacteria* 
identification' AND either 'Raman' or 'Infrared' in the topic [51] 

 

Vibrational spectroscopy is a non-destructive technique that can derive highly 

specific chemical information with minimal sample preparation and fast analysis 

times and thus may be well suited towards bacterial identification. Moreover, the 

development of handheld instrumentation allows the possibility of portable 

vibrational spectroscopic analysis which further contributes towards this technique 

being ideal and translatable for use in the identification of BWAs in situ. [52]  

Vibrational spectroscopy is a term widely used to describe the techniques used to 

measure the interaction of electromagnetic radiation with matter, and encompasses 
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the techniques of Raman and infrared (IR) spectroscopy. [46] This is based on the 

principle that this interaction causes the molecular bonds present in the sample to 

vibrate at discrete frequencies. Every compound produces a unique spectrum based 

on the composition and structure of the sample, with a spectrum often acting as a 

‘fingerprint’ for a sample. [44,53] Although both techniques present similar information 

regarding the sample, IR and Raman are considered to be complementary techniques 

as some bonds which are observed in an IR spectrum will often not appear in a Raman 

spectrum, and vice versa. This is based on the mutual exclusion principle [45] and is 

due to the fact that both techniques rely on distinctly different principles: for a 

vibrational mode to be detected by Raman it will exhibit a change in molecular 

polarizability, while those modes considered to be IR active will demonstrate a 

change in dipole moment.  

One issue that initially hindered the application of infrared spectroscopy for 

any biological analysis was spectral collection time, which heated the sample and 

caused degradation. It was only after the end of the Second World War that collection 

times were reduced down from hours to minutes [54,55], with now a days Fourier 

transform (FT) systems achieving excellent infrared spectral quality in seconds by 

using a Michelson interferometer and Triglycine Sulfate (TGS) detector. [56] Since then 

Deuterium Triglycine Sulfate (DTGS) has become the detectors of choice as it is cheap, 

good sensitivity and doesn’t require any cooling before use unlike a Mercury 

Cadmium Telluride (MCT) detector. [57] Spectra can be acquired using a number of 

different sampling modes, that can be tailored the sample type, allowing flexible and 

optimised sampling. The sampling modes that have previously been used in the 
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analysis of bacteria are reflectance, transmission and attenuated total reflectance 

(ATR) and for a period diffuse reflectance absorbance approaches. [58] Transmission 

FTIR analysis works with wet samples that often require samples to undergo drying 

onto an IR transparent substrate during sample preparation as water absorbs 

strongly in the mid-IR (which is common in FTIR), which is a very easy process but 

adds time to the process. By contrast, an advantage of ATR is that limited drying of 

the sample is needed and an intimate contact between the sample and the ATR 

crystal (a highly refractive IR substrate), so measurements are quicker. Limited 

sample preparation is a key property to consider when trying to translate a technique 

for in situ analysis of samples.  

Raman spectroscopy was first illustrated in 1928 by Sir Chandrasekhara 

Venkata Raman [59] and this built on previous predictions by Smekal in 1923. [60] 

Raman spectroscopy is based on light scattering and there are two general types of 

scattering types. Elastic scattering, also referred to as Rayleigh scattering, involves 

the excitation of a photon that is promoted to a virtual state before dropping back to 

the ground state with no overall energy loss or gain; this method usually results in 

the redirection of the light and the efficiency of Rayleigh scattering approximates 

to1/λ4. By contrast, Raman scattering involves a change in energy of the incident light 

and is often referred to as inelastic light scattering. Stokes and anti-Stokes are 

examples of inelastic scattering that occur equidistantly from the Rayleigh line; in a 

Raman spectrum the x-axis refers to the wavenumber shift (units cm-1) from the laser 

or Rayleigh line and is related to the vibrational frequency of the band, the y-axis is a 

measure of the energy of the vibration. Stokes scattering is found at a lower energy 



23 | P a g e  
 

than the Rayleigh line with anti-Stokes found at a higher energy level. [66] Stokes and 

anti-Stokes represent Raman scattering as the molecule gains or loses energy, 

respectively and a particular vibrational mode will have the same vibrational 

frequency and so will be equidistant from the Rayleigh line as Stokes would be (e.g. 

for a benzene ring) 1000 cm-1 and anti Stokes this occurs at  1000 cm-1. Both 

phenomena are considerably much rarer than elastic scattering, with as few as 1 in 

106-8 photons being inelastically scattered. Stokes scattering is on the whole more 

common (ca. 10-fold), as most molecules naturally exist in the ground state at room 

temperature. [75] Raman spectroscopy differs from infrared in that IR promotes 

photons into a vibrational state, whereas Raman promotes the molecule to a virtual 

state before the molecule then returns to either a vibrational (Stokes Raman) or 

ground state (anti-Stokes Raman) with the release of a photon. 

 

1.7.1 Electromagnetic spectrum 

The electromagnetic spectrum represents all types of radiation, ranging from 

low frequency radio waves up to high frequency gamma rays (γ-rays). Figure 6 shows 

the different region of the electromagnetic spectrum with the corresponding 

frequencies, highlighting the mid infrared region. Rotational spectroscopy occurs in 

the far infrared and microwave region of the spectrum, as little energy is required for 

rotations to occur. [61]  Vibrational spectroscopy uses the principles of the interaction 

of light with matter to identify a compound as the light causes the molecular bonds 

to vibrate. Vibrational spectroscopy is a term widely used to describe the techniques 
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of Raman and Infrared (IR) spectroscopy, which are primarily concerned with 

molecular/bond vibrations in the mid and near regions of the IR spectrum. The 

wavenumber range commonly interrogated in IR spectroscopy is 4000-400 cm-1 where 

fundamental vibrations are detected. The near-infrared region is home to 

combination bands and overtones due to the higher frequency and higher energy 

radiation. Overtones are secondary bond vibrations that occur due to anharmonicity, 

allowing transitions over multiple electronic states from the ground state. These 

transitions cause weaker vibrations that occur at a higher wavelength than the 

fundamental bond vibration. The far-infrared region comprises low energy vibrations 

and rotations. 

 

 

 

 

 

 

 

Frequency is a measure of the number of cycles per unit time, while 

wavelength is the distance between two peaks within a wave, shown in Figure 7. [62] 

When considering spectroscopy, it is important to consider the relationship between 

a number of different variables including frequency and wavelength.  

Figure 6: Electromagnetic spectrum with the key Mid-infrared region highlighted with the corresponding 
wavenumber range.  
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One key equation to consider for vibrational spectroscopy explores the energy 

emitted or absorbed by considering the frequency of the radiation (𝜈).  

ℎ𝜈 =  |𝐸 − 𝐸 |               (2.1) 

E1 and E2 are the energies that the transition has occurred between, 𝜈 is the 

frequency of the radiation and ℎ is Planck’s constant = 6.63 𝑥10 . Taking this into 

accounts, the relationship between wavelength and frequency can be expressed as  

    𝜆 =                  (2.2) 

where 𝜆 is the wavelength, 𝜈 is the frequency of the radiation and 𝑐 is the speed of 

light. Wavenumber can be converted into wavelength using  

𝜈 =  =                                       (2.3) 

where 𝜈 is the wavenumber, 𝜈 is the frequency, 𝜆 is the wavelength and 𝑐 is the 

speed of light. 

Figure 7: Schematic depicting a wave, defining the measure of wavelength by 
showing the distance between two peaks. 
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1.7.2 Vibrational spectroscopy fundamentals 

Every compound produces a unique spectrum based on the composition of a 

sample and different structural arrays, with a spectrum often acting as a ‘fingerprint’ 

for a sample. [63] This is due to the fact that different bonds vibrate at different 

wavelengths and the number of vibrational modes a molecule will exhibit is down to 

the linearity of the molecule. As such the following two simple equations are used 

 

3𝑁 − 5        𝐿𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠    (2.4) 

3𝑁 − 6        𝑁𝑜𝑛 − 𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠   (2.5) 

 

where N is the number of atoms with linear molecules using Eq. 2.4 and 

non-linear molecules using Eq. 2.5. [64]  For example, considering a CO2 molecule 

which has a centre of inversion and four types of vibrational modes (asymmetric 

stretching, symmetric stretching and two bending modes), the asymmetric stretch 

and both bends will be IR-active as a change in the dipole moment occurs and it 

therefore cannot be Raman active. The symmetric stretch is Raman-active as there is 

a change in the polarizability of the molecule; the symmetric stretch will therefore be 

absent from an IR spectrum. [65,66] 
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IR and Raman are often considered to be complementary techniques, as 

bonds that are not seen in the former will often appear in the latter and vice versa, 

so long as there is a centre of symmetry; this is the mutual exclusion principle. [67] 

However, this is not the case for all molecules, as for non-symmetric molecules 

multiple vibrational modes will be detected by the different techniques with some 

being detected by both IR and Raman.  Raman-active molecules exhibit a change in 

the polarizability of the molecule [68] while IR works on the basis that if there is a 

change in the dipole moment the molecules will be IR-active. [64] Figure 8 below 

shows the fundamental differences between IR and Raman spectroscopy, which is 

that IR is an absorbance technique while Raman is a scattering technique. [69] 

For a diatomic molecule, the potential energy (PE) of a harmonic vibration is 

calculated using   

Figure 8: Adapted Jablonski diagram showing electronic transitions for Stokes, Anti-Stokes and Rayleigh 
scattering in Raman spectroscopy.  
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𝑃𝐸 =   𝐾𝑋                     (2.6) 

 Plotting the PE generated using Eq. 2.6 for increasing nuclear distances 

produces a symmetrical parabola. A molecule transition from one energy state to 

another occurs at discrete energy levels. These transitions are measured using 

vibrational spectroscopy. In reality, an anharmonic oscillator is a more accurate 

model to represent the potential energy required for a molecular transition. Figure 9 

shows visually the difference between harmonic and anharmonic oscillations when 

considering the PE and internuclear distance.  [70] 

As the energy levels of a harmonic oscillator are equidistant the energies are 

calculated using 

Figure 9: Potential energy (PE) level diagram illustration the difference between a harmonic and an anharmonic 
oscillator including the dissociation energy. ν represents the energy levels where ν = 0 is the energy level where 

fundamental transitions occur from.  
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           𝐸 =  𝑣 +  ℎ𝜈  (2.7) 

Where 𝑣  = 0, 1, 2….. For anharmonic transitions the PE is not linearly 

proportional to the increasing internuclear distance. With this, as the energy levels 

increase the energy between the levels required for transition to occur reduces, 

meaning the energy levels are not equidistant as they are in a harmonic oscillator. As 

the energy levels increase the energy level tends towards that required to cause 

dissociation of a molecule. Due to these differences, the energy equation is modified 

for this, with the x 𝜈  term of Eq. 2.8 accounting for the anharmonicity of the 

molecule. The modified energy equation to incorporate anharmonicity is as follows 

 𝐸 = ℎ𝜈 𝑣 +  − ℎx 𝜈 𝑣 +          (2.8) 

Anharmonicity accounts for presence of overtones and combination bands, 

which are forbidden using the harmonic model where only fundamental transitions 

are allowed. Fundamental transitions (∆ν = ± 1) represent the majority of peaks 

observed within a spectrum. Combination bands and overtones (∆ν = ± 2) can also 

be present within a spectrum and are the result of a molecular transition through 

multiple quantised energy levels. As these types of transitions are less likely, 

especially when considered with fundamental transitions, the intensity of the peaks 

in a spectrum are far less intense than fundamental transitions. Figure 10 shows the 

difference between fundamental bands, overtones and hot bands. [70] Overtones 

occur when a molecule is excited by more than one energy level, for example from 

ν=0 to ν=2 which would be the first overtone, with the second overtone being a 

transition from ν=0 to ν=3 and so on. Combination bands are the result of multiple 
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fundamental vibrations occurring at the same time. Another type of band that can 

contribute to a spectrum is termed a hot band [17]. Hot bands occur when an already 

excited molecule transitions further to a higher energy level, for example, if a 

molecular transition from ν=1 to ν=2 occurs.  

 

 

1.7.3 IR history 

Infrared radiation was first discovered in 1800 by Sir William Herschel who 

was conducting research observing the solar system. [63] Prior to Herschel’s work, heat 

and light were thought of as separate phenomena, but it has since become common 

to consider light and heat simultaneously. Herschel’s son became the first person to 

make infrared radiation visible and reported the first multichannel spectrometer. 

One issue that hindered the development of infrared spectrometers was collection 

Figure 10: Examples of the differences between fundamental transitions, overtones and hot bands. 
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time; it was only after the end of the Second World War that collection times were 

reduced down to 20 minutes. Modern Fourier transform systems have further 

reduced collection time down to seconds using the Michelson interferometer, shown 

in Figure 11, to produce high quality spectra. [71] One of the first commercially 

produced double beam spectrometers was made by Perkin Elmer in 1950.  

 

1.7.4 IR instrumentation setup and sampling modalities 

A typical FTIR setup will produce spectra in either transmittance or 

absorbance. There are also other techniques that can be used, such as diffuse and 

specular reflection. However, the modalities that will mainly be used in this project 

are attenuated total reflection (ATR) and diffuse reflectance (DRIFTS). The main 

difference between transmission and ATR are shown in Figure 12. [72] 

Figure 11: Schematic of a Michelson interferometer 
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For transmission the IR beam passes through the sample, in ATR the IR beam 

is reflected internally and only penetrates the surface of the sample by typically 1-

10 µm, depending on the wavelength and incident angles. [73] For this reason, ATR 

calls for an intimate contact between the crystal and the sample. For powdered 

samples, it sometimes requires the use of a clamp to ensure there is sufficient 

contact. For solid samples that require a higher depth of penetration than can be 

achieved with ATR, diffuse reflectance can be a suitable alternative. Diffuse 

reflectance allows for bulk analysis of a sample, rather than simply surface analysis 

that is achieved with ATR, shown in Figure 13. [74] 

Figure 13: Schematic of diffuse reflectance spectroscopy when analysing a substrate. 

Figure 12: Adapted schematic showing the difference in techniques between transmission/absorbance 
and ATR.[23] 
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1.7.5 Raman history 

Raman spectroscopy was first discovered in 1928 by Sir Chandrasekhara 

Venkata Raman. [75] Elastic scattering, also referred to as Rayleigh scattering, involves 

the excitation of a photon that is promoted to a virtual state before dropping back to 

the ground state with no overall energy loss or gain. Stokes and anti-Stokes are 

examples of inelastic scattering that occur equidistantly from the Rayleigh line, with 

Stokes scattering found at a lower energy than the Rayleigh line and anti-Stokes 

found at a higher energy level. [66] Stokes and anti-Stokes are both inelastically 

scattered, with Stokes scattering producing more intense peaks as the electron is 

promoted from the ground state, at which most molecules naturally exist. Stokes is 

therefore the scattering often used for analysis. [75] Raman spectroscopy differs from 

infrared in that IR promotes electrons into a vibrational state, whereas Raman 

promotes it to virtual state before it falls back to either a vibrational or ground state, 

with the release of a photon. Figure 8 shows the electronic transitions that take place 

in Raman spectroscopy, representing the three different scattering types previously 

mentioned.  [69] 

Figure 14 shows a schematic of a standard Raman spectrometer fitted with a 

microscope and a 532 nm laser. [77] Instruments can be fitted with one or multiple 

lasers depending on the individual requirements of a research group. Different lasers 

are used depending on the samples that are being analysed, with lasers ranging from 

244 nm in the UV-Visible region up to 1064 nm in the Near-infrared region. 
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Fluorescence is often one of the major considerations when it comes to which laser 

will be used. Visible lasers are often swamped by a fluorescent background, masking 

the already weak Raman peaks. UV-visible and near-infrared lasers such as 244, 785 

and 1064 nm lasers are less affected by this. Raman instruments also have a number 

of other parameters that can be altered to change the spectra that are acquired. The 

grating that an instrument is fitted with will affect the resolution of the spectra. A 

300 mm-1 grating will produce spectra with a lower resolution than those acquired 

using a 2400 mm-1 grating. Filters affect the amount of light reaching the surface of 

the sample with a range of different filters used in this project. Changing the amount 

of light that reaches the sample is important for a number of reasons. Firstly, certain 

types of sample can be degraded or burned by using a high laser power. Also, the 

quality of the spectra is affected as some samples produce small peaks that can also 

be masked when high laser powers are used. On the contrary certain sample types 

will require more intense radiation to produce molecular bond vibrations which are 

observed in the Raman spectra. With the Renishaw InVia systems the pinhole can be 

in or out which alters the laser beam from a line to a spot which can help with sample 

that are suffering from damage cause by too much laser power as the Raman laser is 

dispersed over a larger area. [78] 

Discussed in the subsequent chapter, in section 3.2.3, no standard set of 

parameters could be used for spectral acquisition across all of the substrates chosen 

for use within this project. Therefore, all of the parameters discussed in the previous 

paragraph can be found in the figure legend for all of the spectra collected during this 
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project, these spectra are discussed within Chapters 3 and 4 as well as 

Appendix A and B. 

  

1.8 Instrumentation 

The following section discusses all of the instrumentation used throughout 

the course of this project including microbiology, IR and Raman instrumentation. The 

section has annotated photographs of the individual instruments and discusses the 

purpose of the instrument and, in the IR and Raman sections, the reasoning behind 

why that instrument was used for each particular study. 

1.8.1 Microbiology instrumentation 

Figure 14: Schematic of a standard Raman spectrometer fitted with a microscope and a 532 nm laser. 
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Discussed within this section is the Bioscreen C instrumentation used for 

growth curve analysis to give an indication of the way that the bacterial strains used 

within this PhD project grow.  

 

1.8.1.1 Bioscreen C instrumentation 

For growth curve analysis Bioscreen C can be used for the automated analysis of 

up to 100 wells, for any desired length of time. Bioscreen C analyses bacterial growth 

rate in liquid media. While the instrument is automated, there are a number of 

variables that can be altered to allow experiments to be individually tailored. Some 

of these parameters include temperature, length of experiment, frequency of data 

collection and if the samples are to be shaken. Optical density (OD) measurements 

are collected from the plate and plotted against time. This allows standard growth in 

broth to be mimicked using small amount of sample to understand more about how 

a bacterium grows in a given environment. The instrumentation used for this is shown 

in Figure 15. 
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1.8.2 FTIR Instrumentation 

Within this project four IR spectrometers, three based at the university of 

Strathclyde (UoS) and one at the university of Manchester (UoM), have been used for 

spectral acquisition. The systems include two benchtop FTIR spectrometers with an 

ATR accessory, one handheld FTIR using a diffuse reflectance attachment and one HT-

IR system. It will be stated within the relevant research chapters which instrument 

has been used for the acquisition of the data. 

 

Figure 15: Photographs with labelling of the Bioscreen C instrumentation with a close up of 
the sample holder/ analysis area. 
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1.8.2.1 Shimadzu 8400S benchtop spectrometer 

The Shimadzu 8400S benchtop FTIR spectrometer, based at the University of 

Strathclyde, was initially used in this project to acquire data from the prechosen set 

of substrates. The Shimadzu is a research grade instrument capable of achieving a 

spectral resolution of 0.85 cm-1 with a peak-to-peak signal-to-noise (S/N) ratio of 

20 000. [79] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Photographs with labelling of the Shimadzu 8400S benchtop spectrometer with a 
close up of the sample analysis compartment setup for transmission analysis. 
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1.8.2.2 Agilent Cary 660 benchtop spectrometer 

The Agilent Cary 660 benchtop FTIR spectrometer, based at the University of 

Strathclyde, has been used in this project to acquire the majority of the data in all 

studies. These studies include building a substrate library, developing a methodology 

to remove substrate contribution and bacterial identification. The Agilent is a 

research grade instrument capable of achieving a spectral resolution of 0.06 cm-1 with 

a peak-to-peak S/N ratio of 16 000. In terms of the S/N ratio the Agilent and Shimadzu 

are fairly comparable, however the Agilent has a significantly better spectral 

resolution. [80] 
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Figure 17: Photographs with labelling for the Agilent Cary 660 benchtop spectrometer and Pike ATR 
accessory 



40 | P a g e  
 

1.8.2.3 Bruker Equinox 55 with a HTS XT microplate reader attachment 

A benchtop, research grade FTIR spectrometer, based at the university of 

Manchester, was used only within the environmental conditioning study as a method 

of rapid analysis to assess the effect that the environment has on the bacterial 

spectrum. A 96-well Silicon (Si) plate, that can hold 1-20 µl of sample, was used. [81]  

In comparison to the other benchtop instruments, the equinox has a spectral 

resolution of 0.2 cm-1. [82] 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18: Photographs and labels for the Bruker Equinox 55 spectrometer and 

HTS-XT microplate reader attachment. 
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1.8.2.4 Agilent 4300 handheld spectrometer 

A handheld FTIR spectrometer, based at the University of Strathclyde, was 

predominantly used with a diffuse reflectance attachment to acquire data for the 

environmental conditioning study. A diamond attenuated total reflection (Di ATR) 

attachment was used for comparing between the spectra produced with each 

accessory. For this reason, the diffuse reflectance attachment is shown in Figure 19 

with a gold reflectance reference cap attached. 
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1.8.3 Raman instrumentation 

Within this project three Raman spectrometers, one based at The University 

of Central Lancashire and two at The University of Manchester, have been used for 

spectral acquisition. The systems use a range of lasers including 532, 633 and 785 nm, 

with some systems fitted with multiple laser types. It will be defined within the 

following chapters the instrument and laser used for data collection.  

 

1.8.3.1 Horiba LabRam spectrometer 

The Horiba LabRam system, based at the University of Central Lancashire 

(UCLan) was fitted with two lasers - 532 nm and 785 nm - both of which were used 

for spectral acquisition of data from the substrates. For spectral acquisition of data 

from the bacterial samples, only the 785 nm laser was used as this was the only laser 

that could be used with all substrates explored within this project. This aspect of the 

project is discussed in section 3.2.3. Figure 20 below shows the external and internal 

set-up of the LabRam system indicating where the light source, laser sources, charge 

coupled device (CCD) detector, microscope and stage can be found. All data from this 

set up was acquired using a x50 long working distance (LWD) objective and therefore 

is the objective shown. The x50 LWD objective was used as this is the highest 

magnification optic available for use within this project. 
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Figure 20: Photographs and labels for the Horiba LabRam Raman spectrometer 
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1.8.3.2 Renishaw InVia spectrometers 

There were two Renishaw InVia systems used within this project, both based 

at the University of Manchester. One of the systems was fitted with both a 532 and 

a 633 nm laser, while the other system had a 785 nm laser. Figure 21 and Figure 22 

show the outside and inside set up of the InVia systems, with the only difference 

between the two being the laser attachments. The figures indicate where the laser 

sources, microscope and stage can be found. All data from these set ups were 

acquired using a x50 LWD objective and therefore this is the objective shown in both 

of the figures. Figure 22, fitted with a 785 nm laser, shows a calcium fluoride (CaF2) 

disk with a bacterial sample prepared on it. 
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Figure 21: Photographs with labels of the Renishaw InVia Raman microscope fitted with 532 and 633 nm lasers 
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1.9 Bacterial Identification using Vibrational Spectroscopy 

Research published in Science in 1952 highlighted the power of IR 

spectroscopy for the successful discrimination between different species of bacteria, 

including the ability to distinguish between different strains of Bacterium 

tularense. [83] Since this point, research has expanded in this field, moving towards 

investigating a plethora of pathogens, some with specific interests, aiming to push 

the capabilities of new identification techniques towards strain level 

identification. [84,85] One key study that pushes this further looked at quantifying 

metabolism in single E. coli cells based on the organism’s composition of carbon and 

nitrogen components using stable isotopic labelling. [86] Continuing research into 

bacterial identification has led to the creation of a number of new research fields, 

particularly metabolomics which looks to identify the key individual components that 

are responsible for differentiation, with IR and Raman being characterised as 

metabolic fingerprinting techniques. [87,88] 

Pioneering research published by Dieter Naumann and his research group at the 

Robert Koch Institute, Berlin, spearheaded FTIR spectroscopy as an approach that 

could be applied to BWAs.  This work was able to first typify a bacterial IR spectrum, 

and assign tentative molecular assignments to the spectrum; as illustrated in Figure 

23. Naumann and colleagues concluded that a typical bacterial spectrum can be split 

into five main regions. [89] A typical FT-IR spectrum from bacteria (and indeed any 

biological samples) is described as having: 
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(A) The higher wavenumber region of 3000-2800 cm-1 which contains C-H 

stretches from CH3 and CH2 bonds found in fatty acids. 

The fingerprint region of the spectrum from 1800-700 cm-1 is then split into 4 regions:  

(B) 1800-1500 cm-1 is often heavily dominated by Amide I and II stretches but 

also covers C=O stretches and DNA/RNA related information 

(C) The region of 1500-1200 cm-1 contains a mixture of features resulting from 

fatty acid components, protein and phosphates bands. A subsection of this 

region from 1500-1400cm-1, looks again at fatty acids stretches including CH2 

and CH3 bonds.  

(D) The lower wavenumber region with vibrations at 1200-900cm-1 mainly 

contains information from carbohydrates found with the cell wall.  

(E) The 900-700cm-1 region generally consists of many overlapping weak 

signals that are very characteristic of a sample with this region commonly 

being referred to as the “true fingerprint region”. 

The research also showed that FTIR, coupled with cluster analysis, was able to 

successfully classify bacterial strains from different genera, and also identify 

unknown clinical isolates (Staphylococcus aureus and Streptococcus faecalis) at 

similarity rates as high as 98.4% ± 0.9% when using FTIR. [89] 

Following on from the work carried out by Helm et al. in 1991 it is now 

understood that an infrared spectrum from biological material can be characterised 

further into 7 key regions [84] : The region of 4000-3100 cm-1 represents broad OH/NH 
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stretches from proteins which are very strong in wet samples, as water will dominate 

this region of the spectrum. The other key region is around 1230 cm-1, which focuses 

on the double bond asymmetric stretch of a phosphate band. This band become very 

important when considering the differences in Gram-positive and Gram-negative 

bacteria as large amounts of phosphate groups can be found in Gram-positive strains, 

as these contain large amounts of teichoic acids and lipoteichoic acids which are rich 

in phosphates. 

 

 

 

 

 

 

 

 

The spectral regions in figure 23 are present in all bacteria and any differences 

are usually subtle quantitative levels of the various molecular vibrations, 

representing the different levels of nucleic acids, proteins, lipids and metabolites in 

cells. This means that simple visible inspection of spectra is not possible. FTIR in 

combination with multivariate analysis (MVA) is a powerful technique which is used 

Figure 23 Figure showing a typical spectrum collected from a bacterium, split into the different regions as 
identified by Helm, et al. 1991: 69-79. [63] (A) has C-H stretches from CH3 and CH2 bonds, (B) has Amide I and II, 

C=O stretches and DNA/RNA information, (C) has fatty acid components, protein and phosphates bands, (D) has 
carbohydrates found within the cell wall, (E) is the “true fingerprint region” 
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to analyse complex infrared spectra and has been employed to differentiate and 

identify bacteria. [90] Early studies by Naumann and colleagues [91] established that 

using second derivative data from only the 1425-1485cm-1 range, attributed to CH, 

CH2 and CH3 vibrations, resulted in clear differentiation between Gram-positive and 

Gram-negative bacteria. These authors suggested that the grouping was due to 

differing structure and cell wall composition of Gram-negative bacteria causing 

spectral difference in the fatty acid region of the spectra. At the other end of the 

taxonomic scale Naumann and co-workers established that highly specific 

fingerprint-like patterns can be derived from IR spectra of bacteria, that in turn can 

be used to characterise the microorganism under investigation to subspecies level, 

and even down to strain level. [91] 

In a later review written by Maquelin, it was also suggested that as IR and 

Raman are complementary techniques that the fingerprint produced by combining 

the data from the two types of vibrational spectroscopy would create a highly specific 

fingerprint that would further enhance the diagnostic capabilities of these analytical 

techniques. [92] Similar to Naumann’s breakdown of a bacterial FTIR spectrum the 

review highlighted key regions of a Raman spectrum. It was shown that 

2700-3100cm-1 and 1450cm-1 was characteristic of CH stretching and deformation 

while 1660cm-1 and 1250cm-1 correspond to amide I and amide III respectively. The 

Raman aspect of this study also showed well resolved peaks that correspond to 

DNA/RNA base ring vibrations, such as tryptophan, tyrosine and phenylalanine, that 

are not as commonly seen in FTIR data. FTIR spectra are often heavily dominated by 

broad amide peaks, masking smaller bands. 
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Work by Timmins et al. [93] used both pyrolysis mass spectrometry (PyMS; for 

a review see “Pyrolysis mass spectrometry and its applications in biotechnology”) [94] 

and FTIR spectroscopy to differentiate multiple strains from 3 different species of 

Candida (C. albicans, C. dubinienis and C. stellatoidea). Both PyMS and FTIR are rapid 

techniques (~2 min and ~10 s respectively) and analysis of these 29 clinical isolates of 

Candida resulted in classification of these yeast into three clusters based on the three 

different species.  

As discussed in the introduction to this review, and also highlighted in a 

review by Clemens et al., there is an essential need for a new technique for BWA 

identification. We believe that vibrational spectroscopy possesses the attributes of 

an ideal analytical technique for BWA identification including, rapid acquisition times, 

robustness and portability, as well as the ability to identify samples found on complex 

matrices. [15] The effect of environmental conditioning on bacteria has also been 

investigated using FTIR spectroscopy on BWA surrogates, as well as environmental 

bacteria in a variety of environmental conditions. [95] Temperature and humidity were 

cycled from 30-44°C with a change in humidity from 40-14% to recreate conditions of 

a hot dry climate, derived from MoD standards. MVA of the data was able to 

distinguish six different bacterial species with sensitivities and specificities as high as 

88% and 97.6%, respectively, when using support vector machines (SVM). Using the 

same processing method on the environmentally conditioned data, sensitivities and 

specificities as high as 100% were achieved for three of these bacterial strains. 

Principal component analysis linked to linear discriminant analysis (PC-LDA) of the 

environmentally conditioned dataset shows visually that the conditioned bacteria 
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were projected next to the pre-conditioned data for each strain, as well as showing 

good separation between the three bacterial strains. High sensitivities and 

specificities are key when developing an alternative technique, more so when 

developing an alternative for BWA identification as (i) false negatives could led to the 

spread of harmful bacteria, potentially infecting others and cause an outbreak of 

disease, whilst (ii) false positives could led to inappropriate precautionary action 

being taken.  

The work above has illustrated how FTIR and Raman, along with other 

physicochemical techniques that are used for whole organism fingerprinting (e.g. 

PyMS), can be used to classify and identify bacteria and fungi with high sensitivity and 

specificity. PyMS has been used by Goodacre et al. to detect Bacillus spores from 

these spore-forming bacteria where the marker was a pyridine ketonium ion which 

was a pyrolysis product from dipicolinic acid (DPA; pyridine-2,6-dicarboxylic acid). [85] 

The study found characteristic markers using both PyMS and diffuse reflectance 

absorbance FTIR (two vibrational modes from the constrained pyridine ring vibration 

between 1447-1439 cm-1 were found to be discriminatory) that can be used to 

discriminate between spores and vegetative cells based on the presence or absence 

of DPA; a compound that is unique to the spore coat of Bacillus and Clostridium 

species. Combining information from different techniques provides a better overall 

profile of the sample, which can help when trying to differentiate between closely 

related strains.   

 



53 | P a g e  
 

1.9.1 The Detection of Bacterial Spores using Spectroscopy 

The ability for BWAs to form spores has resulted in a large proportion of 

research using spectroscopy to identify BWA that are based on spore forming 

bacteria; the most obvious one being B. anthracis as the causal agent of anthrax, 

although other members of this genus including B. cereus and B. subtilis are common 

food-poisoning agents and so could be used to deliberately contaminate food. 

Research by Foster et al. has shown that identification of spores is possible using FTIR 

when combined with exploratory analysis achieving a 100% success rate of 

identifying their physiological state (vegetative or sporulated) with a 67% rate for the 

correct identification of the 9 different bacterial strain. [96] Other research groups 

have also examined the identification of spore forming bacteria with an extensive 

study carried out using IR on various strains of Bacillus. [97-99] In one of these studies, 

differentiation of bacteria based on vegetative or sporulated was investigated and 

was able to show that there are differences in the spectra produced from sporulated 

bacteria between different spore production batches despite experimental 

consistency. [97] Alterations were particularly evident between 1200-900 cm-1, with 

significantly less batch-to-batch variation observed in vegetative cells. The study also 

found clear peak differences between spores and vegetative cells with a quartet of 

peaks in the region of 700 cm-1 found exclusively in spores and not in vegetative cells, 

thought to be associated with calcium dipicolinate trihydrate (CaDP·3H2O). The 

spectra produced from sporulated bacteria also exhibited minor shoulders and peaks 

at 1232, 1307 and ~1735 cm-1 that the authors attributed to a very small 
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concentration of vegetative cells/debris. The main additional peak found in 

vegetative cells that is often greatly reduced in intensity or completely lacking in 

spores is the peak at around 1739 cm-1 of the ester C=O stretch from lipids, which 

again are lacking in the spore coat compared to the cell wall of vegetative Bacillus 

species. [87] 

Further research using infrared spectroscopy identified the presence of 

CaDP·3H2O in the spore form of the bacteria. [98] The work reaffirmed that the peak 

around 1739 cm-1 is found in both spores and vegetative samples. The peak is much 

smaller on spectra collected from spores and is often only present as a result of very 

low concentrations of vegetative cells being found in the samples. Further analysis of 

the quartet of peaks, thought to be as a result of CaDP·3H2O, located at 659, 701, 725 

and 766 cm-1 showed the specific vibrational modes responsible for them. 701 and 

766 cm-1 were both found to relate to the CaOH bend and water CaO torsions. [88] The 

peaks at 725 cm-1 was linked with OCO bend and a ring CCC bend while 659 cm-1 is 

linked with out of plane ring torsions and C-C torsions. [88] It was also shown that 

strain level discrimination of Bacillus endospores using chemometrics was possible 

using principal component analysis (PCA). [99] Using PCA, it was possible to 

discriminate down to the strain level of Bacillus spores with an 85% success rate. This 

research not only showed the discriminatory power of IR spectroscopy for bacterial 

spores, but also identified the peaks that correspond to calcium dipicolinate 

trihydrate found in sporulated bacteria.  

Raman spectroscopy has also been used to identify and discriminate various 

bacterial spores, identifying the differences between vegetative and sporulated 
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bacteria. [100] The characteristics peaks used for differentiation were found at 661, 

822, 1018, 1396, 1448 and 1575 cm-1 and like for IR can also be attributed to the 

presence of CaDPA in sporulated bacteria. Also, the work was able to show how the 

peaks in a Raman spectrum changed depending on the length of time the bacteria 

were left to sporulated, especially as DPA is released upon the transformation from 

spore to vegetative biomass. Peaks associated with CaDPA, two phenylalanine peaks 

at 622 and 1004 cm-1 and three tyrosine peaks at 643, 827 and 853cm-1, can be used 

to monitor incubation time and were found to change during sporulation. [100] This 

study also investigated the effect that the conditions used to culture the samples 

could have on the spectra produced and classification of bacterial strains. The results 

show that sample culture methods do have an effect on the spectra. This is perhaps 

not surprising as Raman and indeed IR are phenotypic characterisation methods and 

so measure the result of the response of the bacterial genome to its changing 

environment. 

 

1.9.1.1 Enhancing Raman Scattering for Low-Level Detection of the DPA 

Spore Biomarker 

Prior to normal Raman scattering on bacteria Nelson and Sperry in the late 

1980s developed deep Ultraviolet Resonance Raman (UVRR) spectroscopy for 

bacterial characterisation. These authors published a series of papers that illustrated 

that UVRR can be used to gain information about Gram type, [101] as well establishing 
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that using excitation at 242 nm reproducible UVRR spectra could be obtained that 

can be used to identify bacteria. [102] UVRR spectroscopy has also been used to 

characterise endospore forming Bacillus and Brevibacillus. [103] Studies showed that 

UVRR spectroscopy was a useful tool for characterising bacteria, with a number of 

benefits over conventional Raman spectroscopy. This included less interference from 

background fluorescence which in turn increases the sensitivity of the spectra and 

leads to fewer stages of pre-processing, as well as a resonance enhancement (ca. 102) 

from aromatic molecules found in bacteria.  

Surface enhanced Raman scattering (SERS) is a further approach that can be 

employed to aid in identifying bacterial species (for a review see “Characterisation 

and identification of bacteria using SERS” [104]). By exploiting the enhancement effect 

of metallic nanoparticles with nanoscale roughness, a significant increase in the 

scattering intensity can be observed, which allows for more rapid detection at much 

lower bacterial levels that traditional spontaneous Raman spectroscopy. [105]  It has 

been shown that the addition of a silver colloid solutions to pure DPA allowed 

unequivocal detection of this spore biomarker at a concentration as low as 1 

ppm. [106] Further work showed that a combination of SERS and MVA based on 

discriminant analysis was able to identify DPA directly in Bacillus spores. [107] As this 

method did not selectively extract DPA from spore the uniformity of the cell wall in 

Gram-positive bacteria was seen to be a major contributing factor to spectral 

reproducibility; however, overall the research presented a technique that could be 

used in the next generation of BWA analysis. An alternative approach presented by 

the same group developed SERS for identifying DPA from Bacillus spores: this 
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involved using a portable Raman spectrometer, nitric acid to extract DPA from spores, 

and when this extract was coupled with silver colloids the acidic conditions also 

enabled suitable aggregating which sped up sampling and enabled results to be 

obtained in seconds rather than minutes. [108] These authors reported excellent 

reproducibility and a very low limit of detection (LoD) down to 5 ppb for DPA which 

at the time was significantly lower than the limits obtained from previous studies 

using SERS and was equivalent to ca. 1,000 spores which is below the infective dose 

for anthrax. In a very recent collaboration between Bell’s group and Goodacre’s 

group, SERS on meso-droplets supported on superhydrophobic wires was shown to 

allow for exquisitely sensitive detection of DPA down to levels of 10-6 mol dm-3 which 

is equivalent to just 18 spores and 2 orders of magnitude better than any previous 

measurements for detecting this spore biomarker. [109] 

As an alternative to SERS another area of promising research has looked at 

the use of coherent anti-stokes Raman scattering (CARS). CARS is a non-linear Raman 

method than can be used to tune into and enhance specific vibrational frequencies. 

CARS is at least two orders of magnitude more efficient than standard Raman 

spectroscopy and can lead to 100 times faster sensing and detection of BWA ideal for 

rapid in situ analysis. [110] Bacterial spores can be detected using a single femtosecond 

laser shot and it is possible to discriminate 104 spores showing the sensitivity of the 

technique. [111] 

It is evident that enhanced spectroscopic techniques are versatile approaches 

to bacterial identification and discrimination with high levels of sensitivity and 
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specificity, and it is perhaps not surprising that this field has concentrated on the 

detection of bacterial spores. Although some enhanced spectroscopic techniques, 

such as SERS, are portable, like conventional spectroscopic techniques they often 

require additional consumables (metal nanostructures) and sample preparation prior 

to analysis. More conventional spectroscopic methods do not require preparation of 

samples so direct analysis can be carried out allowing true in situ analysis, which could 

provide the ideal technique for BWA classification and identification, but these may 

lack the signal boost that SERS, CARS and UVRR offer. 

Dipicolonic acid (DPA) is a key characteristic marker of spores from both 

Bacillus and Clostridium species. It is unique to bacterial spore and plays an important 

role in the controlling water content of the spore coat and thereby helps the spore 

survive harsh environments. [112] However, as this is a general mechanism DPA is not 

species specific and so is found in all bacterial spores and not just B. anthracis. 

Therefore, developing a technique that relies solely on DPA for spore identification 

for BWA detection would be very problematic as there would be many false positives 

from environmental spore forming bacteria. However, within a military context any 

indication that a cloud contains large levels of DPA is a good indication of potentially 

threating actions.  

 

1.10 Data processing 

Once the data has been collected it has to undergo a number of data 

processing steps. Within the biospectroscopy community there is no set 
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methodology for data processing. The protocol used will heavily depend on the types 

of samples that are to be analysed, the technique used to collect the data and will 

also depend on the laboratory conducting the analysis. The steps used to process the 

data, the order in which they are performed, the importance of sharing this 

information is an area often discussed within the field of biophotonics. [113,114,115,116] 

However, the importance of developing a universal method for data processing, 

particularly a set order for pre-processing, has been acknowledged. This is starting to 

be addressed as some research groups, such as Prof. Roy Goodacre’s, have made 

their codes used for processing in the cluster-toolbox-v2.0 which is freely available 

and can be found at: https://github.com/biospec. The protocols chosen for use in this 

project were dependant on the data being analysed. All processing of the data 

collected during this study was processed using MATLAB unless otherwise stated as 

there are instances where instrument software has been used rather than MATLAB 

for ease and consistency of analysis. The codes used for all data analysis performed 

as part of this project were a combination of in-house written code, the IRootLab 

toolbox and the cluster 2 toolbox created by Prof. Roy Goodacre’s research group.  

 

1.10.1 Pre-processing 

Before any form of multivariate analysis can be performed it is necessary for 

the data to undergo a number of quality control measures due to the spectral 

variability caused by variation in sample thickness, atmospheric changes in water and 

CO2 and instrumental variation that causes changes in the baseline. Between every 



60 | P a g e  
 

stage of analysis, and prior to any form of processing or analysis, a visual inspection 

is performed to ensure that there are no obvious outliers that are vastly different 

from the bulk of the data. This ensures that there are no spectra built into a 

discriminatory model that have obvious spectral deformations that are not due to 

biochemical changes. Visual inspection is not used to remove spectra that show slight 

changes that are due to biochemical changes, as these spectra are important for 

developing a model with a high level of robustness. The following section discusses 

the processes used with the data collected during the course of this project, including 

noise reduction, vector normalisation and extended multiplicative signal correction, 

before moving on to discuss the multivariate analysis methods that have been used 

on the processed data.  

 

1.10.1.1 Noise Reduction (NR) 

Noise reduction (NR) is key for removing noise that is present in the spectra 

to ensure that this does not contribute to the separation of the data when it comes 

to the multivariate analysis stage. Principal component analysis (PCA)-based noise 

reduction is the style of NR used within this study. PCA-based noise reduction is an 

orthogonal linear transformation that creates a principal component (PC) for each of 

the data points. [113] These data points are then organised based on the most variance 

explained down to the PCs that explain the least, which will generally contain only 

noise and no biochemical information. When the information is reconstructed, the 

PCs containing noise are not included, thus removing noise from each individual 
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spectrum. Caution must be used when selecting the number of PCs to use for the 

smoothing process, as the greater the number of PCs removed the higher the amount 

of smoothing seen in the data. Therefore, using too many PCs for smoothing may see 

small but significant peaks lost due to over-smoothing of the data. [117] 

 

1.10.1.2 Vector Normalisation (VN) 

Vector normalisation (VN) is a very important part of spectral processing, 

especially when working with samples that may vary in thickness, such as dried 

samples and tissue biopsies. [71] This is because variations in thickness can lead to a 

variation in peak intensities between similar spectra. The reason VN is used is to 

reduce the amount of variation between the different spectra. The principle behind 

VN creates an average absorbance by squaring the intensities of every data point, 

adding them together before performing the square root of the value. This value 

becomes known as the vector length and is equal to 1. Each spectrum is then scaled 

using the vector length. [64] 

 

1.10.1.3 Extended Multiplicative Signal Correction (EMSC) 

Extended Multiplicative Signal Correction (EMSC) is another type of 

normalisation that can be used on spectral data and is commonly used with 

biochemical datasets. This method of normalisation uses polynomial smoothing and 
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is often the favoured method used to process datasets that have a non-linear 

background. [118] As well as issues with the baseline, the method can also be used for 

processing interference and scaling issues. [119] Therefore, EMSC was used as a 

processing method for the data collected using the microplate reader to overcome 

the variation in baseline caused by differing path lengths.  [120] VN is a filtering method 

which removes unwanted noise and other variations from the spectrum while EMSC 

is a model-based method where the information is filtered but not lost. [119] 

 

1.10.1.4 Derivative 

The bands observed in a typical FTIR spectrum will have a series of broad 

bands rather than sharp, defined peaks as a number of vibrations are represented 

within the same region of the spectrum. In an attempt to overcome this problem, 

derivatisation is commonly used to deconvolute the broad bands and produce a 

number of individual peaks. [113] For converting to the derivative to be successful, a 

high S/N ratio is required. Spectra with a low S/N ratio will contain higher levels of 

noise which, when derivatised, will be enhanced along with the rest of the spectrum. 

Performing a first derivative shows the gradient of the spectrum while a second 

derivative shows the change in gradient. As a result too much noise will mask 

important biological information as noise has sharper peaks and more sudden 

changes than that of a biological peak. For this reason, derivative analysis is more 

likely to be used with IR spectra than with Raman spectra, as Raman by nature is a 

much noisier technique. When it comes to interpreting the spectra produced after 
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derivatisation, first derivate spectra find the peak maximum now on the baseline, 

which makes interpreting them more difficult and therefore, second derivative is 

generally the more favoured method to use with IR spectra. [64] 

 

1.10.2 Multivariate Analysis (MVA) 

Once the data has been processed using one or more of the methods 

discussed above, the data is ready to be interrogated using multivariate analysis 

(MVA). MVA can be classed as either supervised of unsupervised. Unsupervised 

analysis simply looks for natural variations within the data and splits it into groups 

based upon this information. Supervised analysis requires the number of groups to 

be known, with the data generally being assigned to one of these groups. As with pre-

processing, there is a vast array of analysis methods, therefore the only ones that are 

discussed below are the ones that have been used within this project.  

 

1.10.2.1 Principal Component Analysis (PCA) 

Principal component analysis (PCA) is an unsupervised form of MVA, meaning 

that no information or identifying knowledge about the sample is provided prior to 

the analysis being performed.  

When spectra are collected there is a large amount of data points per 

spectrum. PCA has four main goals: to extract the most important information from 
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the data, reduce the dimensionality of the dataset while retaining all important 

information, simplify the dataset and finally produce visual outputs that relate to the 

differences in the data. [121] A simple way to understand this principle is by comparing 

a group of people, who are a collection of three-dimensional (3-D) data points, to a 

photograph of them, which is two-dimensional (2-D). A photograph retains all of the 

key information about the people such as variances in gender, hair colour and eye 

colour, while reducing and simplifying the amount of information contained in that 

dataset. Scores plots and loadings plot would also be available alongside this as a 

visual descriptive of the data. The scores plot shows how each data point differs from 

the others data points while the loadings plot shows what is responsible for the 

separation. Figure 24 below shows a photograph that has a group of people in it, 

between whom there are similarities and differences, with a mocked up PCA plot.  

The most discriminating PC in this case would be gender and would therefore 

be explained by PC1. The second most discriminating factor may then be hair colour 

or eye colour and would be explained in PC2. As the PC number increases the 

significance of the information gained decreases. This leads to irrelevant background 

information to be brought into the model. Thinking back in spectral terms, this would 

be the likes of noise and spectral artefacts. For this reason, it is important to restrict 

the number of PCs used when building a model to ensure the model is unaffected by 

unwanted background information. 
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PCA looks for the natural variance in a set of data and produces a number of 

outputs. The outputs produced from PCA include three variables: scores, loadings 

and percentage explained values. All three variables can be plotted to provide visual 

information; plotting of both the scores and loadings variables have been discussed 

previously. Scores plots describe the contribution of the chosen PCs to each of the 

individual spectra within a given dataset. The first PC represents the largest amount 
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Figure 24: Photograph representing a 3-D system (top) with a mocked up PCA plot showing 
example separation when using PC1 and PC2 considering the data produced from the 

photograph as a dataset. 
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of variance with the second PC being orthogonal to the first. Loadings represent the 

correlation between each individual datapoint across a wavenumber range and the 

chosen principal component. [121] 

Plotting the percentage explained variable, commonly referred to as a scree 

plot, allows you to visualise the relation between the PC and the percentage variance 

explained. This is commonly used as a guide to judge how many PCs are required to 

explain 95% of the total variance of your dataset. The number of PCs needed to 

explain 95% variance is heavily dependent upon the dataset however, with Raman 

datasets usually requiring more PCs as there is generally a higher level of noise within 

the data. When working with biological datasets, scores plots and loadings plot are 

usually considered together, as the loadings are used to explain the biochemical 

changes behind the differences observed in the scores plot.  

 

1.10.2.2 Multiblock Principle Component Analysis (Multiblock PCA) 

Due to the complexity of some datasets, standard PCA alone is not sufficient 

to fully interrogate the data and highlight the underlying variance within the dataset. 

There are three main types of multiblock PCA: hierarchical PCA (HPCA), consensus 

PCA (CPCA) and generalized PCA (GPCA). [122]  Within this research project both HPCA 

and CPCA were used to compare which showed the best split of the data. Within all 

forms of multiblock PCA a number of different variables are generated in addition to 

those produced with PCA. The data is first split into blocks which are used to generate 
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both block loadings and blocks scores. The block scores are then combined to create 

a new super block. PCA is performed on the super block to produce a super weight, 

which is normalised to one, as well as a new super score. This process is repeated 

until there is convergence of the super score. HPCA works in the same way as CPCA, 

however, HPCA differs in the normalisation step of the analysis where this time it is 

the super score that is normalised to one rather than the super weight. [123] 

Multiblock PCA allows you to group data into different blocks and look for the 

variances between these new groups. By combining data from different groups into 

new blocks, some variance can be removed to allow for subtler differences to be 

detected.  

To give an example of this, consider a dataset comprised of spectra collected 

from five bacterial strains at four different time points. By creating blocks for each 

time point, combining all of the bacterial strains, the separation caused by the 

difference in bacterial strain is removed and allows for the effect of aging to be 

shown. As part of this PhD project, an environmental conditioning study will be 

carried out that will look at both of these factors and will assess how much of an 

impact aging has on the bacterial spectrum.  

 

1.10.2.3 Discriminant Function Analysis (DFA) 

Discriminant Function Analysis (DFA) is classed as a supervised technique as, 

unlike with PCA, some sample knowledge is used in the analysis. Group classifications 
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are provided to allow the algorithm to know how many groups need to be classified, 

making the clustering of groups more defined in comparison to PCA data. DFA uses 

the optimal hyperplane to explain the variation between different data points. These 

differences are what become discriminant functions (DFs). [124] The algorithms used 

for the PCA and DFA analysis were from the cluster 2 toolbox mentioned in section 0. 

Once significance between the DFs is identified, classification will follow and the DFA 

will use the prior knowledge of the number of groups to classify each of the data 

points.  When carrying out DFA, there are a number of assumptions that are made 

about the dataset. These include assuming a normal distribution, that there are no 

obvious outliers and that the number of independent groups is at most n-2, where n 

is sample size. The maximum number of DFs that can be used for analysis is X-1, where 

X is the number of groups as this is the number of degrees of freedom. [125] 

Importantly, the number of samples per group can be unbalanced without affecting 

the analysis, while other types of analysis such as Multiblock PCA requires equal sized 

groups.  As with PCA, DFA produces scores plots and loadings plots as visual outputs 

to explain the variance observed within the dataset.  

PC-DFA allows for data to be split into testing sets and training sets, whereby 

the training set is used as the model and the test set is blindly projected into it. This 

allows for unknown spectra to be classified. Error ellipses can be plotted around the 

data and used for calculating sensitivity and specificity values associated with the 

different groups. Sensitivity and specificity values are calculated using  

                           Sensitivity =  

   
                               (2.8) 
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                           Specificity =  

   
                                  (2.9) 

Where: 

True positives are the number of samples correctly identified as their species. 

True negatives are the number of samples correctly identified as being not their 

species. 

False positives are the number of samples that the model has incorrectly identified 

as being a species which they are not. 

False negatives are the number of samples that the model has incorrectly identified 

as not being a member of their species. [64] 

 

1.11 Conclusions and Future Work 

There are a number of key qualities a technique used for BWA identification 

should have including: portability to allow for in situ use, rapid data acquisition, high 

sensitivities and specificities, a low limit of detection of the pathogenic organism as 

well as the ability to detect and identify bacteria found on complex matrices.  

Research into alternative techniques for identification and classification of 

bacteria has shown that the process can be improved by using MS techniques and 

traditional microscopy techniques. However, one of the downfalls found in these 

techniques is that currently the instrumentation required is not portable, limiting the 

application of the technique. Vibrational spectroscopy has the potential to be an 
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all-round more powerful technique due its ability to make the technique portable, as 

well as additional attributes such as speed of acquisition. The technique is able to 

identify Gram type and can differentiate different types of bacteria down to the 

specific strain.  

Before any alternative techniques can be considered as a replacement for 

current techniques, or a complementary tool to enhance the process of bacterial 

identification, there is a need for additional research. Specifically, bacterial 

identification using both real world samples recovered from warfare situations, or 

from laboratory cultures but in non-ideal conditions, needs to be explored. Using 

non-ideal growth conditions would provide the opportunity to assess the effect of 

environmental stress on bacteria, and the subsequent effect this has upon the 

spectral fingerprint of the sample. This will more closely mimic the physical state of 

the bacteria that are found in BW settings.  
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Chapter 2 

Bacterial Preparation, Construction of Substrate 

Library and Method Development for Substrate 

Removal using Vibrational Spectroscopy 

 

2.1  Introduction and Aims 

This chapter discusses research that has focused on assessing the most 

appropriate parameters (such as spectral range, resolution and number of co-added 

scans) to use with each technique, infrared and Raman, by investigating the set of 

substrates selected for this project in collaboration with technical experts at the 

Defence Science and Technology Laboratories (DSTL).  

The first section of this chapter discusses the development of a database of 

substrate spectra using infrared and Raman. It is important to have these reference 

spectra available to fundamentally understand the characteristics of each of the 

substrates to ensure that appropriate compensations can be made for any spectral 

contributions that arise. A range of spectral parameters were trialled such as internal 

reflection element (IRE) type for Attenuated Total Reflection – Fourier Transform 
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Infrared (ATR-FTIR) Spectroscopy and laser wavelength for Raman in order to 

quantify which parameters were ideal for analysis conducted in further studies. 

Small amounts of sample and low sample thicknesses can lead to the 

substrate contributing to the overall spectrum produced by a sample, when 

considering the penetration depth associated with an ATR-FTIR IRE. This means 

identification of surface deposited samples may be skewed or not possible. 

Developing a method to remove the infrared spectral contribution from substrates 

would eliminate the need for samples to be recovered from a surface to then undergo 

complex sample preparation prior to analysis, allowing in situ analysis of samples to 

take place. Removing substrate contribution would allow for samples at low 

concentrations or with sparse coverage to still be identified in situ. The second 

section of this chapter investigates two different methods that can be used to remove 

the spectral contribution relating to a substrate to produce absorbance spectra of 

either glucose or ovalbumin. The use of glucose and ovalbumin as surrogates is 

important when considering the end goal of using the method for in-situ 

identification of surface deposited bacteria.  

 

2.2 Materials and Methods 

2.2.1 Substrate Study  

The eight different substrates used in this study: lino, jacket, boot, clean filter, 

dirty filter, metal tile, concrete and a MirrIR slide are shown in Figure 1. The 
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substrates were chosen by Dstl as surfaces of interest, with MirrIR added as a 

standard substrate used commonly with ATR-FTIR.  

Spectra were collected from five different locations, three spectra per 

location, across the surface of the substrates (see figure 1) to ensure the substrate as 

a whole was represented in the spectrum as some of the substrates are not 

completely homogenous, a factor which is key to be considered. Spectral libraries 

were built for both ATR-FTIR and Raman spectroscopy. The ATR-FTIR study used 

different Internal Reflection Elements (IREs) while the Raman study used lasers of 

different wavelengths to optimise the ideal parameters for analysis. As such, an 

overall average spectrum to represent each substrate has been produced for each 

different parameter and is shown in the respective sub-sections within this chapter, 

depending on if ATR-FTIR or Raman was used.  
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Figure 1: Photograph’s of the substrates chosen for use in this study L-R: (A) boot, (B) MirrIR slide, (C) 
clean filter, (D) jacket, (E) dirty filter, (F) metal tile, (G) concrete and (H) lino. 
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2.2.2 ATR-FTIR 

ATR-FTIR spectra were initially collected from a Shimadzu FTIR 8400 S in 

absorbance mode, using a DiZnSe IRE accessory, over a range of 4000-750 cm-1 with 

a resolution of 4 cm-1 and 32 co-added scans. Further ATR-FTIR analysis was carried 

out at the University of Strathclyde using a newly installed Agilent Cary 600 series 

spectrometer with a Pike MIRacle ATR DiZnSe IRE accessory attached. Spectra were 

collected using 32 co-added scans, 4 cm-1 resolution over a range of 4000-600 cm-1. 

Both the DiZnSe and the Ge IRE were used to allow further comparative analysis to 

observe which accessory was most suited for future studies. Prior to spectral 

collection the IRE was cleaned using Virkon and ethanol (Sigma Aldrich, UK) with a 

background collected between each section of the substrate analysed. Background 

scans were collected with a resolution of 4 cm-1 and 32 co-added scans. The area 

analysed was dependent on the size of the IRE in the ATR accessory which has a ~2 

mm diameter. To produce each spectrum the substrate was clamped to ensure there 

was an intimate contact between the substrate and the IRE, see Figure 2. For each 

spot three spectra were collected to act as technical replicates before the slide was 

removed so that the IRE could be cleaned and a new background collected before the 

next spot was analysed. 
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2.2.3 Raman 

Raman spectra from the substrates were acquired initially at the University of 

Central Lancashire (UCLan) using a Horiba Jobin-Yorn LabRAM HR800 confocal Raman 

system fitted with two lasers; 785 nm (400 mW at source) and 532 nm (300 mW at 

source). Different combinations of parameters, such as filter, accumulations and 

acquisition time, were explored in order to optimise a set of parameters that could 

be used for spectral acquisition across all substrates. Two different gratings were 

available for use with this instrument, 300 mm-1 and 600 mm-1 with the spectral 

resolution increasing respectively. [1] The parameters used for acquiring these spectra 

were a 20 s acquisition time with 2 accumulations, utilising a 300 mm-1 grating and 

Figure 2: Schematic showing the set up for spectral collection using ATR-FTIR for building the substrate library. 
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x50LWD objective as a static scan. The filter used was dependent on the substrate 

that was being examined with the optimum filter being either 0.1, 1, 10 or 25%. The 

spectral range examined when using 785 nm for clean filter, concrete, dirty filter and 

lino spanned from 70-1600 cm-1, for boot it was 70-1700 cm-1 and for jacket, metal 

tile and a MirrIR slide ranged from 200-1600 cm-1. The spectral range examined when 

using 532 nm for clean filter, concrete and dirty filter spanned from 70-1600 cm-1, for 

boot it was 70-1700 cm-1 and for a MirrIR slide the range was 200-1600 cm-1. Prior to 

any spectral collection all Raman instruments were calibrated using a Silicon 

standard. 

Raman spectra were also collected at the University of Manchester (UoM) 

using a Renishaw InVia system with a 633 nm laser (17mW at source) fitted. This 

system also had two gratings, 600 and 1200 mm-1, available for use. A x50LWD 

objective was used with a 1200 mm-1 grating. As with previous spectral collection 

there was no optimal set of parameters with different acquisition times, number of 

accumulations, amount of light filtered depending on the substrate being examined. 

This information is included in the caption for each figure which can be found in 

Appendix A. A multipoint map with 10 µm space between spots and depth profile 

with 1 µm between each acquisition were acquired for each substrate to try and 

understand more about the structure, homogeneity and consistency of each 

substrate. Outliers from the dirty filter spectral map were removed before mean and 

standard deviation (SD) spectra were generated. As previously mentioned, all lasers 

were calibrated using a silicon standard. The spectral range examined when using 633 

nm for boot, clean filter and dirty filter and spanned from 70-1600 cm-1. 
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2.2.4 Development of Substrate Removal Methodology 

 Glucose Study 

A proof-of-principle study was carried out to develop an easy to use method 

of substrate removal that can be applied to different samples types such as simple 

sugars and protein rich bacterial samples. D-glucose (glucose) was used in this study 

which is a simple sugar. The principle behind the substrate removal method used for 

this study is to use the Beer-Lambert Equation 

     Abs = −𝑙𝑜𝑔   (3.1) 

where, 𝐼  the intensity of the light before going through the sample and 𝐼  is 

the intensity of the light after going through the sample. Eq. 3.1 is used to manually 

remove the spectral components that belong to the substrate and generate an 

absorbance spectrum for the material on the surface, in this particular case glucose, 

based on the differing intensities. 

A single channel environmental spectrum was collected using the DiZnSe IRE 

before to a substrate was clamped to the IRE. The spectrum collected from the 

substrate was also collected as a single channel spectrum. The substrate was 

unclamped and moved before a new sample spectrum was acquired. This was 

repeated until ten sample spectra had been acquired. The same protocol was used 

to collect the data required for a substrate that had been contaminated with glucose. 

This provided a dataset of 20 spectra per substrate, ten as standard substrate spectra 

and ten as contaminated substrate spectra where the contaminant was glucose. 
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Spectra were then exported from the IRsolution software as .txt files and opened 

within MATLAB to allow for the Beer-Lambert substrate removal to be performed.  

To fully assess how well the method performed, the individual spectra were 

ranked using the following grading system: ‘Very good’, ‘Good’, ‘Adequate’, ‘Poor’ 

and ‘Very poor’. The basis for the judgement was based on the vibration seen in the 

spectra produced when the substrate has been removed. Ibrahim et al., discussed 

the key vibrations produced by glucose. [2] Key vibrations highlighted in a glucose 

spectrum include C-C, C=O, O-H and C-H. The definitions of each category of this 

grading system are based on these vibrations and can be seen in Table I. This included 

making sure that the key vibrations were present in the spectra produced for glucose 

in this study. 

Table I: Four class grading system devised for ranking absorbance spectra generated after substrate removal 
using the Beer-Lambert method with glucose, including a description of each grade 

Grade Description 
Very good Key vibrations present with no peak inversions 

Good Some vibrations missing and/or inversions in the lipid region. 

Adequate 
Some vibrations missing and/or inversions in the fingerprint region 

where the amide, nucleic acids and carbohydrates are found.  

Poor 
Some vibrations missing and/or inversions in the lipid region and 

the amide region.  

Very poor 
Some vibrations missing and/or inversions in any region of 

spectrum (excluding CO2 peaks). 
  

For this grading system distortion of the spectra due to the baseline is not 

considered as none of the spectra have been corrected in this manner. It is widely 

accepted that the key region for identifying a bacterial spectrum is the ‘fingerprint 

region’ which ranges from 1800-800 cm-1. For this reason, any spectra showing 
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inversion within this region along with inversions in the high wavenumber region are 

immediately classed as ‘Very poor’. To assess if all glucose vibrations are present in 

the spectrum, Ibrahim et al., peak table was used. [1] 

During the drying of the glucose in this study there were a number of 

problems with the viscosity of the glucose. There were also problems with the 

glucose solution not being dry enough to withstand compression for analysis using 

the ATR-FTIR, particularly with non-porous surface such as lino. It was found that 

around four hours in an oven at 37°C was enough to dry the glucose so that it was 

not damaged during analysis and also to avoid the sample crystallising as shown in 

Figure 3. Single channel spectra were collected using 32 co-added scans, 4 cm-1 

resolution over a range of 4000-750 cm-1. The spectra were collected from 10 

different spots across each of the eight different substrates. The ten spectra were 

then averaged to create a representative spectrum for the substrate. A solution of 

0.15 M glucose was then applied to each of the substrates before they were placed 

in a 37C oven to dry for around four hours.  
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Once the samples had dried individual spectra were collected from ten 

different spots using the Shimadzu FTIR 8400 S spectrometer in single channel mode 

was used using an ATR accessory. Prior to spectral collection and between spots the 

ATR accessory was cleaned using Virkon/Trigene and ethanol (Sigma Aldrich, UK) and 

a background collected, using the same settings as previously discussed. For each 

substrate, the area where the glucose had been spotted was clamped down to ensure 

there was an intimate contact between the glucose and the IRE, see Figure 4.  

 

 

 

 

 

Figure 3: Photograph showing crystallised glucose on a lino 
section of dimensions shown in Figure 1H. 
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Once the spectra were exported from the Shimadzu software (IRsolution) and 

opened within MATLAB, as mentioned previously, the Beer-Lambert substrate 

removal stage was performed. For this, both standard substrate and substrate with 

Figure 4: Photograph A shows the FTIR setup with the ATR attachment installed. Photograph B shows a 
piece of concrete clamped to the ATR attachment. Below these is a schematic (C) showing the setup for 

ATR-FTIR spectral collection from glucose and ovalbumin samples prepared on a substrate. 

A B 

C 
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glucose spectra were opened in MATLAB. Spectra from ten spots across the substrate 

surface were collected, opened in MATLAB and averaged to create a single 

representative spectrum to later be removed. The averaged substrate spectrum was 

then removed individually from the spectra obtained from the substrate 

contaminated with glucose, using Eq. 3.1, to produce ten glucose spectra per 

substrate. For an example of this using spot 1, the averaged substrate spectrum was 

first divided by the spectra acquired from spot 1 of the glucose contaminated sample. 

This creates a new variable which is the single channel data for spot 1 with the 

substrate contribution removed, theoretically pure glucose. This variable then had 

the function -log performed on it to generate another new variable, which when 

plotted represented the absorbance spectrum for spot 1. This method was also used 

with ovalbumin, a more complex compound also found within bacteria. The spectra 

produced during both of these studies using this method can be seen in the sections 

2.3.3.1, 2.3.3.2 and Appendix A.  

 

 Ovalbumin Study  

A study using ovalbumin (Sigma Aldrich) rather than glucose was carried out 

to compare the ability of the Beer-Lambert removal method developed in section 

2.2.4.1. The study used ovalbumin, a more complex compound than glucose, to first 

test the Beer-lambert method before trailing an alternative method where the 

substrate was removed within the software. This would reduce the complexity of the 



97 | P a g e  
 

methodology as the Beer-lambert method requires the data to be exported from the 

software and manipulated in MATLAB. A comparison of the processes used in the 

Beer-Lambert method and the software-based method can be seen in Figure 5. 

 

 

 

 

 

 

 

 

 

Similarly, with the glucose study, to assess how well each of the methods 

performed, the individual spectra were ranked again with grading system: ‘Very 

good’, ‘Good’, ‘Adequate’, ‘Poor’ and ‘Very poor’. The definitions of each category of 

this grading system are slightly different to those for the glucose study as the key 

regions for ovalbumin are different.  Velusamy highlights that the key area of an 

ovalbumin spectrum is the Amide peaks found within the fingerprint region. [3] For 

this reason, the Amide I and II peaks (1800-1500 cm-1) are key for determining the 

Collect air 
background

Collect single 
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clean 
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Collect single 
channel 

spectrum of 
sample

Export 
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into MATLAB

Generate 
absorbance 
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Lambert 
equation
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background

Collect absorbance 
spectrum of clean 
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Collect absorbance 
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(A) Beer-Lambert removal method  

(B) Software based removal method  

Figure 5: Flow charts showing the process followed for the Beer-Lambert removal method (A) and the 
software-based removal method (B). 
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spectral quality of the spectrum. The definitions for the ovalbumin grading system 

are shown in Table II. 

Table II: Four class grading system devised for ranking the absorbance spectra generated after substrate 
removal in the ovalbumin study, for both methods, including a description of each grade 

 

This second method again used ATR-FTIR analysis with a DiZnSe IRE but rather 

than collecting single channel data and using the Beer-Lambert equation to manually 

generate absorbance spectra, absorbance spectra we collected after the instrument 

had been backgrounded to a clean section of substrate. This way the Agilent software 

(Resolutions Pro) automatically performed the removal of the substrate to produce 

an absorbance spectrum of the compound on the surface, in this case ovalbumin.  

Two methodologies were used in this study, the first of which was the same 

as that used in the glucose study, however this time the Agilent Cary 660 system and 

Resolutions Pro software were used instead of the Shimadzu 8400S system and 

IRsolution software. The second method used for this study is slightly different. Two 

sets of substrates were required for the method, one set of standard substrates (the 

Grade Description 
Very good All vibrations present with no peak inversions 

Good 
Some vibrations missing and/or inversions in the region lipid region 

or the nucleic acid/carbohydrate regions 
Adequate Some vibrations missing and/or inversions in the Amide region.  

Poor 
Some vibrations missing and/or inversions in the lipid region and 

the nucleic acid/carbohydrate regions.  
No inversions in the Amide region. 

Very poor 
Some vibrations missing and/or inversions in any region of 

spectrum (excluding CO2 peaks).  
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uncontaminated set) and a set that had a solution of ovalbumin applied (the 

contaminated set). A solution of 50-100 mg/ml ovalbumin was applied to each of the 

substrates before they were placed in a 37C oven to dry for around three and a half 

hours. As described within section 2.2.4.1, an air background was taken with the 

DiZnSe IRE attached before the uncontaminated substrate was clamped to the IRE 

and another spectrum taken. This is where the method differs from the glucose 

method. Within the method discussed in section 2.2.4.1 this spectrum is taken as an 

absorbance spectrum while here it remains in single channel mode. This became the 

reference background within the software. The uncontaminated substrate was 

removed and replaced with the one contaminated with ovalbumin. A single spectrum 

was obtained before the substrate was moved to a new spot. This spectrum was 

collected in absorbance mode and is a representative spectrum of ovalbumin with 

the background removed. This method was repeated until 10 absorbance spectra had 

been collected.  Absorbance spectra were collected using 32 co-added scans, 4 cm-1 

resolution over a range of 4000-750 cm-1. The spectra were collected from 10 

different spots across each of the eight different substrates.  

 

2.3 Results 

2.3.1 ATR-FTIR Substrate Study Results 

A spectral database has been compiled from each of the eight different 

substrates chosen for this study. All of the spectra generated and the corresponding 
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tentative peak assignments, for this dataset can be seen in Appendix A: Figures 1-14 

and Tables 1-7. Therefore, shown within this chapter are a representative selection 

of spectra for the ATR-FTIR study. Figure 6 and Figure 7 show a 5-spot overlay (3 

replicates per spot), the mean and mean with SD cloud for clean filter using both the 

DiZnSe and Ge IRE. The corresponding tentative vibrations that have been assigned 

to the peaks can be found in Table III.   
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Figure 6: Collection of spectra collected from clean filter acquired using a DiZnSe IRE 
starting with an overlay of 15 spectra (A) a mean spectrum (B) and a mean spectrum shown 

in red surrounded by a grey standard deviation cloud (C) 
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Figure 7: Collection of spectra collected from clean filter acquired using a Ge IRE starting 

with an overlay of 15 spectra (A) a mean spectrum (B) and a mean spectrum shown in red 
surrounded by a grey standard deviation cloud (C). 

A 

B 

C 



103 | P a g e  
 

Table III: Wavenumbers and corresponding peak assignment for the average clean filter spectrum collected 
using ATR-FTIR with Ge and DiZnse IRE. [3,4,5,6] 

Wavenumber cm-1 Tentative peak assignment 
Ge DiZnSe 

808, 841, 899, 972  808, 841, 899, 972 νC-O-C, νCC alicyclic, aliphatic chains 
997, 1302 997, 1302 νCC alicyclic, aliphatic chains 

1103 1101 νC-S aromatic 
1167 1165 νC=S 
1255 1255 Amide III 
1360 1360 νC-(NO2) 
1377 1375 δCH3 
1458 1454 νCC aromatic ring chain vibrations 

2839, 2870, 2920, 
2951 

2837, 2868, 2916, 
2951 

νC-H 

 

The spectra collected during this study, shown here and in Appendix A, 

demonstrate the complexity of the spectral signature for each substrate, with some 

substrates exhibiting more spectral features in their fingerprints than others due to 

differences in their structure. Of particular interest are the clear differences that have 

been detected using ATR-FTIR between the clean and dirty filter, simply by visually 

inspecting the spectra. An overlay of the averaged spectra (Figure 8) show a visible 

difference between the substrates at 668, 1647 and 3371 cm-1. These differences may 

represent O-H bonds a result of moisture being trapped within the dirty filter as it has 

been used and exposed to the environment as opposed to the clean filter which is a 

new and unused filter. However, these peaks can also relate to amide stretches, 

which would be present in environmental bacteria found on the used filter. It is likely 

that these peaks are a combination of both O-H and amide stretches. The fact that 

ATR-FTIR can detect these differences highlight its potential use for the identification 

of bacteria found on complex substrates. 
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This substrate study was key for understanding the spectral feature present 

within the substrates alone without the added complexity of a sample. A method to 

remove the spectral contribution can be developed but only once the structure of the 

substrates is first understood. Two different IREs (Ge and DiZnSe) were trialled in this 

study to assess the most optimal IRE by comparing the spectra produced by the same 

substrate from the different IREs. By changing the IRE from Ge to DiZnSe there was 

an observable change in the intensity of the peaks produced and a slight wavenumber 

shift. However, generally the same bonds were observed irrespective of IRE. The 

DiZnSe IRE produced the more intense spectra which were at least an order of 

magnitude more intense in terms of absorbance, making smaller peaks within the 

spectrum more prominent. This increased intensity, which highlight the less intense 

Figure 8: Averaged clean filter and dirty filter spectra acquired with a DiZnSe attachment to 
show the differing spectral features 
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peaks makes it ideal for future analysis where there are going to be contributing 

factors that may affect cause small but significant vibrations to be missed. Based on 

this factor, DiZnSe was chosen as the IRE to use in further analysis. 

 

2.3.2 Raman 

As with ATR-FTIR a spectral database has been compiled from each of the 

different substrates chosen for this study. However, one major difference is the 

spectra collected using Raman had to be cut prior to baseline corrected to remove 

regions containing no chemical vibrations which in turn enhance the peaks found 

within the spectra. The range which the spectra were cut to depended on the 

substrate. For clean filter, dirty filter, concrete and lino were cut to have the range 

70-1600 cm-1. Boot spectra are shown over the range 70-1700 cm-1 while jacket metal 

tile and MirrIR have the range 200-1600 cm-1. An overlay of the spectra collected from 

10 different points across a substrate has been produced for all eight substrates. The 

spectra were then averaged, and the corresponding peak assignments complied into 

tables per substrate. To give an idea of intra-substrate variability the SD was plotted 

around the mean for each substrate. For each substrate, an overlay, a mean and a 

mean with SD cloud have been grouped together with a new one produced for each 

laser type. As with the ATR-FTIR data a representative selection of spectra and peak 

assignments presented within this chapter (Figure 9, Figure 10 and Table IV) with the 

remaining Raman data located in Appendix A: Figures 15-28 and Tables 8-17. 
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Due to issues with fluorescence, stray light, burning of samples etc. a full 

spectral library for all substrates using the 532nm laser was not possible. In an 

attempt to overcome some of these issues a 633nm laser was tested as a comparison 

to see if a full library could be compiled using a second laser. However, similar 

problems were encountered with this laser also. For the acquisition, a multipoint map 

and depth profile were performed for each substrate. Once the Raman spectra had 

been acquired (using Renishaw InVia system) the spectra were exported from WiRE 

software into .txt format. The data was then cut and baseline corrected in Labspec  

software to ensure consistency between the data collected from the different lasers. 

Averaged spectra and peak assignments for 633nm data collected from boot, clean 

filter and dirty filter can be seen below in Appendix A: Figure 30-32. Similar 

fluorescence and interference problems that were encountered with the 532 nm 

laser were experienced with the 633 nm laser, therefore there are no spectra for the 

remaining five substrates.  
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Figure 9: Collection of spectra collected from clean filter acquired using a 785nm laser 
starting with an overlay of 15 spectra (A) a mean spectrum (B) and a mean spectrum shown 

in red surrounded by a grey standard deviation cloud (C). 

A 

B 

C 



108 | P a g e  
 

 

Figure 10: Collection of spectra collected from clean filter acquired using a 532nm laser 
starting with an overlay of 15 spectra (A) a mean spectrum (B) and a mean spectrum 

shown in red surrounded by a grey standard deviation cloud (C). 

A 

B 
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Table IV: Wavenumbers and corresponding peak assignment for the average clean filter spectrum collected 
using a 532 and 785nm laser. [3,4,5,6] 

Wavenumber cm-1 
Tentative peak assignment 

532nm 785nm 
105, 172 106,174 Lattice vibrations 

249, 319, 395 249, 319, 399 δCC aliphatic chains 
450 455 νS-S, νSi-O-Si 
528 529 νS-S, νSi-O-Si, νC-I, νC-Br, νC-Cl 

806, 899, 940, 970 809, 901, 942, 974 νC-O-C, νCC alicyclic, aliphatic chains 
840 843 νC-O-C, νO-O, νCC alicyclic, aliphatic chains 

998, 1035 999, 1038, 1044 νC-O-C, νCC alicyclic, aliphatic chains 
1152 1105, 1153 νC-O-C asymmetric 

1165, 1304 1170, 1306 νCC alicyclic, aliphatic chains 
1218, 1228, 1254, 1221, 1256, 1297 Amide III 
1330, 1359, 1372 1330, 1361, 1374 νC-NO2 

1436, 1459 1437, 1461 δCH2/δCH3 asymmetric 

 

When considering which of the three laser types used within this study is best 

suited to the substrate set, the ability to compile a full spectral library was taken into 

consideration. Both the 532nm and 633nm lasers failed to produce spectra for all 

eight of the substrates used within the study as they were affected by a number of 

issues such as florescence. However the 785 nm laser was able to produced a full 

spectral library.  

As the 532 and 633nm lasers suffered significantly from florescence, and 

other interference, it was difficult to get detailed spectra from all of the substrates. 

However, using a 785nm allowed for a full spectral library to be built for the 

substrates proving to be the optimal laser. Due to this it was necessary to optimise 

the parameters for spectral collection to get the most information possible, as a 

result showing that there is no standard set of parameters that are optimal for use 



110 | P a g e  
 

across all of the substrates. As mentioned in section 2.2.3, the parameters used for 

each substrate are included in the caption for the corresponding figures found within 

Appendix A. However, with ATR-FTIR a standard set of parameters can be used across 

all substrates, for all sample types, to produce detailed and reproducible spectra. This 

factor makes the technique well suited for this kind of analysis, especially when 

considering the end goal of the project is to develop a robust and universal method 

that can be used on any sample/substrate combination.  

 

2.3.3 Substrate Removal Results 

Due to the ability to adjust which section and depth of a sample needs to be 

analysed in Raman spectroscopy it is possible to focus only on the sample onto a 

substrate therefore removing the need to generate a method of substrate removal.  

While this property of Raman in theory appears to give it an advantage over FTIR, 

practically it was found that trying to focus the instrument correctly for each 

substrate type provided an additional challenge. As ATR-FTIR has a fixed penetration 

depth there needs to be a way to remove the spectral contribution from a substrate 

as it is likely this will also contribute to the spectral profile of a sample. As part of the 

substrate removal study both glucose and ovalbumin were used as surface deposited 

samples. Glucose and ovalbumin were used as they have relatively simple structures 

and can both be found within bacteria. Comparatively, ovalbumin has a more 

complex structure than glucose, therefore glucose was used in the preliminary study 

with ovalbumin being used in the latter developmental studies. 
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Glucose Study Results 

The key vibrations that should be observed when interpreting a glucose 

spectrum are discussed by Ibrahim et al., where the majority of peaks found within 

the fingerprint region with only lipid vibrations and OH stretches found outside of 

this region. [1] The vibrations which are discussed by Ibrahim et al., are used to assess 

the quality of spectra produced after the substrate contribution has been removed. 

A single representative spectrum for each substrate was removed from the spectra 

collected from each glucose spot using the Beer-Lambert Equation, discussed in the 

previous section, to produce an absorbance spectrum, totalling ten absorbance 

spectra per substrate. This was repeated for all substrates with the overlays of the 

resulting spectra, and corresponding mean spectra shown in 

Appendix A: Figures 29-35. Figure 11 shows a representative example for absorbance 

spectra generated from lino. The tentative peak assignments for all substrates can be 

found in Table V. 
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Figure 11: Spectra generated using the Beer-Lambert equation on single channel spectra collected 
from lino with glucose applied, showing an overlay of 10 absorbance spectra (A) and the mean 

absorbance spectrum shown in red, surrounded by a grey standard deviation cloud (B). 

A 

B 
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Table V: Wavenumbers and corresponding peak assignment for the glucose spectra generated from all of the 
substrates focusing on the fingerprint region only [1] 

 

This study has shown that it is possible to remove spectral contributions from 

the substrate from a spectrum to produce an absorbance spectrum that has 

vibrations characteristic of glucose. However, the spectra show there are problems 

with how well the method works depending on the substrate that is being removed, 

with generally the more porous of the substrates performing worse. This is likely to 

Wavenumber (cm-1) Tentative 
peak 

assignment 
Boot 

Clean 
filter 

Concrete 
Dirty 
filter 

Jacket Lino 
Metal 

tile 
MirrIR 
slide 

770 772 772 774 772 770 770 770 δCCO+, δCCH 
845, 
897 

841, 
899 

868  
841, 
897 

845, 
897 

843, 
897 

839 δCH 

914    914 914 914  
νCO+, νCCH+, νasy 
ring of pyranose 

988 991 990 991 999 988 988 988 νCO+, δCCO 

1099 1101 
1020, 
1102 

1028, 
1101 

1019, 
1096 

1101 
1022, 
1099 

1103 νCO 

1009, 
1071, 
1144 

1032, 
1078, 
1144 

1072, 
1144 

1074, 
1148 

1007, 
1040, 
1074, 
1144 

1009, 
1071, 
1144 

1009, 
1071, 
1146 

1011, 
1074, 
1148 

νCO+, νCC 

1198, 
1221 

 1198 1206 1223 
1202, 
1221 

1202, 
1230 

1200 
νCH+, δOH in 

plane 

1276        
δOH in plane, 

δCH 
1318 
1341 

1318    
1314 
1341 

1320 
1317 
1339 

δCCH, δOCH 

1362, 
1418 

 1373 1375  
1362, 
1418 

1362, 
1418 

1362, 
1418 

δOCH+, δCOH+, 
δCCH+ 

1456    1456 1456 1456 1456 
δCH2+, δOCH+, 

δCCH 

  1539  
1539, 
1559 

1539, 
1559 

  Amide II 



114 | P a g e  
 

be as a result of the sample no longer solely sitting on the surface, with the bulk of 

the sample found outside of the penetration depth of the IR beam.  

The following grading process, based on Table I,  was performed on each of 

the eight substrates used in the study. The ten spectra collected per substrate were 

individually graded with an overall grade attributed to the substrate, the results of 

this can be seen in Table VI. 

 

Table VI: Assessment of the performance of the Beer-Lambert substrate removal technique for analysing glucose 
on substrates. The table provides the number of spectra achieving each grade for that substrate before giving 

the substrate an overall rating. 

 
Very 
good 

Good Adequate Poor 
Very 
poor 

Overall 
grade 

Boot 0 0 10 0 0 Adequate 

Clean 
filter 

0 0 4 0 6 Very poor 

Concrete 4 0 0 0 6 Very Poor 

Dirty 
filter 

0 0 0 0 10 Very poor 

Jacket 10 0 0 0 0 Very good 

Lino 10 0 0 0 0 Very good 

Metal tile 0 0 10 0 0 Adequate 

MirrIR 10 0 0 0 0 Very good 

 

Based on this grading system for glucose found on the substrate collection, 

three substrates scored a ‘Very good’ rating, two scored an ‘Adequate’ rating with 

the final three scoring a ‘Very poor’ rating. Overall the Beer-Lambert method of 
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substrate removal worked well with 72.5% of the individual spectra scoring a rating 

of ‘Adequate’ or higher. Despite this the spectra for the more porous substrates like  

clean filter, concrete and dirty filter (Appendix A: Figures 30, 31 and 32) show that 

there is some intra-substrate variation.  

When considering the relative standard deviation (RSD) across the glucose 

spectra generated using this method, it can be seen that the RSD is significant in some 

of the substrates. The large RSD seen in the spectra from these substrates is likely to 

be down to distortions within the baseline. The areas of highest and lowest RSD 

across all of the substrates is shown in Table VII. 

 

Table VII Table detailing the highest and lowest relative standard deviations (RSDs), with  
the correlating wavenumbers, for the glucose spectra generated from all of the substrates 

Highest RSD 
Substrate 

Lowest RSD 
Wavenumber RSD (%) Wavenumber RSD (%) 

1631.83 103.56 Boot 1751.42 2.59 
1406.15 72202.20 Clean filter 1558.54 20.42 
1381.08 41.82 Concrete 1560.46 1.86 
1217.12 92170.00 Dirty filter 1026.16 35.28 
962.51 20.28 Jacket 1220.98 2.62 

1010.73 23.35 Lino 1506.46 1.32 
981.80 12162.20 MirrIR 1541.18 4.14 
952.87 45.29 Tile 3088.14 9.10 
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 Ovalbumin Study 

In an attempt to overcome some of the issues discussed previously with 

regards to the removal of the substrate contribution an alternative method was 

trailed. The Beer-Lambert method requires the unprocessed spectra to be converted 

and exported from the instrument software before being imported into MATLAB for 

processing. The second method trailed kept the processing in the software. This 

method was chosen to keep the methodology as simple as possible. This is important 

when considering the overall end goal of the project in developing a methodology 

that can be used for in situ analysis of samples on handheld instrumentation. This 

would make the method more user friendly, reduce the equipment required and 

speed up the overall process of analysis. The performance of this method is evaluated 

in Table XII in the same way that the spectra generated using the Beer-Lambert 

method are evaluated in Table IX, both based on the quality of the spectra produced. 

To quantitatively assess the absorbance spectra generated for the substrate removal 

for each method mean and standard deviation were calculated and are shown with 

the overlay for each substrate for each method. The key region of the spectrum 

assessed for the ovalbumin data is the fingerprint region (900-1800cm-1) as identified 

by Velusamy. [2] 

While only a representative set of spectra for both the Beer-Lambert (Figure 

12) and software-based removal method (Figure 13) are shown within this chapter, 

spectra from all substrates across both studies are discussed. All other spectra 
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generated using the Beer-Lambert method (method 1) can be seen in Appendix A: 

Figures 36-42 with the corresponding peak assignments shown in Table VIII. 

The spectra generated from the software-based removal method (method 2) 

used in this study can be seen here in Appendix A: Figures 43-49 with the 

corresponding peak assignments shown in Table XI.  

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Spectra generated using the Beer-Lambert based method of substrate removal 
to generate absorbance spectra from clean filter with ovalbumin applied, showing an 

overlay of 10 absorbance spectra (A) and the mean absorbance spectrum shown in red, 
surrounded by a grey standard deviation cloud (B). 

A 

B 
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Table VIII: Wavenumbers and corresponding peak assignment for the ovalbumin spectra generated from all of 
the substrates focusing on the fingerprint region only for the Beer-Lambert method of substrate removal. [3,4,5,6] 

 

 

 

 

 

 

 

 

Wavenumber (cm-1) Tentative 
peak 

assignment 
Boot 

Clean 
filter 

Concrete 
Dirty 
filter 

Jacket Lino 
Metal 

tile 
MirrIR 
slide 

700, 
743, 779 

663, 
698 

604, 667 648, 
669, 
698, 
744 

 631, 
663, 
716, 
738 

621, 
700 

646 Out of plane NH, 
OCN bend 

887     885   C-O-C ring 
1055, 
1070 

989, 
1051, 
1074, 
1111 

1074 1049, 
1074,  

 1053, 
1072, 
1113 

1080  CO, CC, COH and 
COC 

deformation 

 1157 1155 1159  1126, 
1155 

1155  CN and CC 
stretch 

 1236 1232 1236  1221, 
1288 

1232 1243 Amide III  

1309 1311  1309  1306 1313 1309 Amide II  
 1344  1338  1348   CN, CO  
 1367  1365     C-H bend 

1390 1392  1396  1394 1392 1390 C=O stretch of 
COO-  

 1441  1439, 
1473 

 1451 1444 1444 CH deformation 

1529 1535 1535 1541 1549 1531 1531 1529 Amide II 
1631 1632 1631 1635 1641 1633 1631 1631 Amide I β sheet 

structure 



119 | P a g e  
 

Table IX: Assessment of the performance of the Beer-Lambert based substrate removal technique for analysing 
ovalbumin on substrates. The table provides the number of spectra achieving each grade for that substrate 

before giving the substrate an overall rating. 

 
Very 
good 

Good Adequate Poor 
Very 
poor 

Overall 
grade 

Boot 0 0 0 0 10 Very poor 

Clean 
filter 

0 10 0 0 0 Good 

Concrete 0 10 0 0 0 Good 

Dirty 
filter 

0 10 0 0 0 Good 

Jacket 0 0 0 0 10 Very poor 

Lino 0 0 10 0 0 Adequate 

Metal tile 0 0 0 0 10 Very poor 

MirrIR 0 10 0 0 0 Good 

  
Based on the grading system for ovalbumin found on the substrate collection, 

four substrates scored a ‘Good’ rating, one scored an ‘Adequate’ rating with the final 

three scoring a ‘Very poor’ rating, as shown in Table IX. Overall the Beer-Lambert 

method of substrate removal worked well with 62.5% of the individual spectra scored 

a rating of ‘Adequate’ or higher. In comparison to the glucose study that used this 

method it performed better with the more porous substrates that previously showed 

a large amount of intra-substrate variation, such as the concrete, clean filter and dirty 

filter all achieving a good rating.  

When considering the relative standard deviation (RSD) across the ovalbumin 

spectra generated using the manual Beer-Lambert removal method, it can be seen 

that the largest RSD for all of the substrates, is over 100%. In most cases the highest 

amount of RSD at a given wavenumber is in the tens of thousands. These vast 
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numbers are caused as a result of very low absorbances within the mean spectrum, 

often close to zero, with large SDs. The cause of such low absorbances may be as a 

result of a changing baseline across the 10 ovalbumin spectra that also gets averaged 

when generating a mean spectrum. When considering the lowest amount of RSD, no 

substrate has higher than 1.5% RSD (boot), with three substrates having less than 1% 

RSD at a given wavenumber. The wavenumber with the lowest RSD for ovalbumin 

spectra produced with Method 1 is the same in six out of the eight different 

substrates. Both the significant reduction in the lowest RSD values, and the increased 

consistency of the corresponding wavenumbers, show an improvement on the data 

generated using this method on glucose spectra. However, the areas that have the 

highest RSD show a significantly higher amount of RSD when compared to glucose. 

The areas of highest and lowest RSD across all of the substrates is shown in Table X. 

 

Table X Table detailing the highest and lowest relative standard deviations (RSDs), with  
the correlating wavenumbers, for the ovalbumin spectra generated from all of the substrates  

using the manual Beer-lambert method (Method 1) 

Highest RSD 
Substrate 

Lowest RSD 
Wavenumber RSD (%) Wavenumber RSD (%) 

3027.68 29351.55 Boot 3748.92 1.50 
2967.89 34195.40 Clean filter 3748.92 0.67 
1504.12 8754.06 Concrete 3748.92 1.13 
3268.73 38898.01 Dirty filter 3748.92 1.32 
2829.05 3473.36 Jacket 1698.97 1.40 
1907.24 4168.90 Lino 3748.92 0.74 
3511.72 9956.64 MirrIR 3735.42 0.68 
1475.27 12265.78 Tile 3748.92 1.21 
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The first method to manually remove the spectral features caused by the 

substrate used the Beer-Lambert equation to manually subtract these features from 

the absorbance spectra. This method was used with both glucose and ovalbumin. The 

spectra produced using this method were graded using the system detailed in Table 

I and Table II. From this for glucose 72.5% of spectra scored an ‘Adequate’ or better 

rating with ovalbumin scoring slightly lower at 62.5%. This showed that the method 

worked well with most of the spectra containing the key spectral features.  The less 

absorbent substrates, specifically boot, lino and metal tile, tend to produce spectra 

with a higher SNR. However, the Beer-Lambert method appears to be less 

reproducible when working with absorbent substrates such as the filters, concrete 

and jacket, producing less intense spectra that are more difficult to interpret and 

spectra also being heavily affected by water vapour. MirrIR, a non-absorbent slide 

generally produces smooth spectra but has a large interference below 1000cm-1.   

A substrate-based method of removal was used to assess if the methodology 

could be made simpler with the overall end goal of the project in mind. Removing the 

step of having to transfer data from the instrument software to MATLAB to manually 

perform a ratio step increases the time taken for sample identification and increases 

the amount of computer power needed. By performing the removal in the instrument 

software, the processing speed increases with the spectra generated able to be 

immediately projected into a pre-built model allowing for the identification of the 

sample. 
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For each substrate only the positive peaks, within the fingerprint region, have 

been assigned wavenumbers and a tentative peak assignment shown in Table XI 

below. Wavenumbers and peaks have been assigned to the single MirrIR spectrum, 

yellow line in Appendix A: Figure 45A, that shows positive peaks. 

Figure 13: Spectra generated using the software-based method of substrate removal to 
generate absorbance spectra from lino with ovalbumin applied, showing an overlay of 10 

absorbance spectra (A) and the mean absorbance spectrum shown in red, surrounded by a 
grey standard deviation cloud (B). 

A 

B 
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Table XI: Wavenumbers and corresponding peak assignment for the ovalbumin spectra generated from all of the 
substrates focusing on the fingerprint region only for the software-based method of substrate removal. [3,4,5,6] 

Wavenumber (cm-1) Tentative 
peak 

assignment 
Boot 

Clean 
filter 

Concrete 
Dirty 
filter 

Jacket Lino 
Metal 

tile 
MirrIR 
slide 

 669 660 669, 
698 

 663, 
738 

662, 
679, 
700 

656 Out of plane NH, 
OCN bend 

     889   C-O-C ring 
 1054, 

1111 
1078 1073, 

1109 
 931, 

1053, 
1072, 
1113 

1080 1074 CO, CC, COH and 
COC deformation 

 1163  1163  1126, 
1155 

1155 1155 CN and CC stretch 

 1236 1232 1236  1223, 
1288 

1232 1244 Amide III 

 1315  1311  1306 1313 1313 Amide II 
 1340  1336  1348   N-C, C-O 
 1365  1365     C-H bend 
 1395  1394  1394 1394 1398 C=O stretch of COO-  
 1439, 

1473 
 1441, 

1473 
 1452 1448 1450 CH deformation 

1516 1539, 
1572 

1545 1539 1543 1529 1519, 
1533 

1533 Amide II 

1630 1639 1631 1639 1649 1633 1633 1636 Amide I β sheet 
structure 
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Table XII: Assessment of the performance of the software-based substrate removal technique for analysing 
ovalbumin on substrates. The table provides the number of spectra achieving each grade for that substrate 

before giving the substrate an overall rating. 

 
Very 
good 

Good Adequate Poor 
Very 
poor 

Overall 
grade 

Boot 0 0 0 0 10 Very poor 

Clean 
filter 

0 0 0 10 0 Poor 

Concrete 1 0 0 0 9 Very Poor 

Dirty 
filter 

0 0 0 10 0 Poor 

Jacket 0 0 0 10 0 Poor 

Lino 0 0 10 0 0 Adequate 

Metal tile 0 0 0 0 10 Very Poor 

MirrIR 1 0 0 0 9 Very Poor 

 

Based on the grading system for ovalbumin found on the substrate collection, 

one substrate scored an ‘Adequate’ rating, three scored a ‘Poor’ rating with the 

remaining four substrates scoring a ‘Very Poor’ rating, as shown in Table XII. Overall 

the software-based method of substrate removal worked very poorly as only 15% of 

the individual spectra scored a rating of ‘Adequate’ or higher with almost half of 

individual spectra scoring a ‘Very poor’ rating. In comparison with the Beer-Lambert 

based method of removal, the quality of the absorbance spectra produced using this 

method are of a poorer quality. This could be due to the fact that the reference 

background spectrum for the non-contaminated substrate is not an average of 

multiple spots across the substrate as with the Beer-lambert method. 
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When considering the relative standard deviation (RSD) across the ovalbumin 

spectra generated using the software-based method, it can again be seen that with 

all of the substrates, there is a significant RSD when considering the wavenumber 

with the highest RSD. When considering the areas of lowest RSD in comparison to the 

manual Beer-Lambert based method (Method 1), the RSD is much larger than found 

in Method 1. The areas of highest and lowest RSD for the absorbance spectra 

generated with Method 2 can be seen in Table XIIITable VII. 

Table XIII Table detailing the highest and lowest relative standard deviations (RSDs), with  
the correlating wavenumbers, for the ovalbumin spectra generated from all of the substrates  

using the software-based remoaval method (Method 2) 

Highest RSD 
Substrate 

Lowest RSD 
Wavenumber RSD (%) Wavenumber RSD (%) 

1500.34 1519.86 Boot 2856.04 4.45 
2973.68 11476.40 Clean filter 1700.90 21.21 
2163.73 1201.47 Concrete 1816.61 53.39 
993.15 8355.09 Dirty filter 1637.26 43.68 

1616.05 1871.46 Jacket 1477.20 3.51 
3671.78 1724.60 Lino 3808.70 15.86 
2316.08 730.58 MirrIR 1706.68 39.53 
997.01 6185.21 Tile 1617.97 18.86 

 

From the results presented in both Table IX and Table XII, this it can be seen 

that the software-based method did not perform as well as the Beer-Lambert method 

did when generating absorbance spectra for ovalbumin with only 15% of the 

individual spectra scoring an ‘Adequate’ rating or higher. A comparison of both of the 

methods used to generate absorbance spectra for ovalbumin can be seen in Table 

XIV. This shows that the Beer-Lambert method outperformed the software-based 

method for half of the eight substrates (clean filter, concrete, dirty filter and a MirrIR 

slide). The software-based method of removal only outperformed the Beer-Lambert 
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method with one of the eight substrates (jacket), with the methods performing to 

the same level for the boot, lino and metal tile substrates.  

 

Comparison of Substrate Removal Methods  

Two methods of substrate removal have been explored, both using 

ovalbumin, however, only one of these methods can be taken forward for use in 

further studies. As shown in Table VI, Table IX and Table XII the individual spectra 

have been graded to assess how well the method of removal worked. Table VI and 

Table IX show the results from the Beer-Lambert method for glucose and ovalbumin 

respectively while Table XII details the software-based method results with 

ovalbumin. Following this a direct comparison of the results generated from 

ovalbumin deposited on the substrates can be seen in Table XIV. The table compares 

the results from the Beer-Lambert method and the software-based method before 

concluding the optimal method based on the quality of the absorbance spectra 

produced. 
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Table XIV: Assessment of the performance of the Beer-Lambert and Software based substrate  
removal techniques for ovalbumin. The table provides the overall grade for each substrate with the final  

column detailing the best method for each substrate. 

 Overall substrate grade 
Overall method 

performance 
Beer-Lambert 

method 
Software based 

method 
Boot Very poor Very poor Equal 

Clean filter Good Poor Beer-Lambert method 
Concrete Good Very Poor Beer-Lambert method 

Dirty filter Good Poor Beer-Lambert method 
Jacket Very poor Poor Software based method 
Lino Adequate Adequate Equal 

Metal tile Very poor Very Poor Equal 
MirrIR Good Very Poor Beer-Lambert method 

 

Based on the results shown in Table XIV, along with the spectra presented 

within this chapter and Appendix A, it is clear that using the Beer-Lambert based 

method is the more most optimal. Therefore, the Beer-Lambert method was the 

method chosen to remove unwanted spectral features resulting from the substrate. 

Despite the fact that the Beer-Lambert method has a slightly longer methodology due 

to the multi-step analysis it is still a fast method of substrate removal, producing 

absorbance spectra, of a good quality within 10 minutes of beginning analysis. 
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2.4 Conclusions 

The substrate study was an important building block in understanding the 

spectral signature that is representative of each substrate prior to further analysis 

that will involve analysing surface deposited bacteria on these surfaces. 

From the ATR-FTIR analysis, the type of IRE used in the ATR accessory (Ge or 

DiZnSe) only seemed to affect the intensity of the spectral features with the DiZnSe 

IRE often producing spectra that are more than twice as intense as those acquired 

using the Ge IRE. For this reason, DiZnSe was chosen as the accessory to carry forward 

for future analysis to ensure that minor peaks and changes that could be used for 

discrimination are detected. 

Raman analysis of the substrate set showed significant changes to the spectral 

fingerprint when using different lasers. Using the 532 nm and 633 nm lasers 

fluorescence often dominated the spectra, masking peaks produced by the 

substrates, making it difficult to compile complete substrate libraries for these lasers. 

Due to the existing fluorescence profile, spectra acquired with a 532 nm or a 633 nm 

laser are heavily affected while spectra acquired with a 785nm laser are only 

marginally affected by fluorescence. [4] As spectra produced using the 785 nm often 

less affected by fluorescence, more detailed spectra are produced and therefore a 

complete set of reference substrate spectra were obtained for a substrate library. 

Due to the issues with fluorescence the 532 nm and 633 nm lasers were ruled out for 
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further analysis, leaving the 785 nm laser the optimal laser to be used for bacterial 

identification studies.  

The proof of principle work that has been carried to assess the optimal 

substrate removal procedure for use with ATR-FTIR has considered two different 

approaches. The study allowed for the development of a robust and adaptable 

methodology that has the ability to be transferred to handheld instrumentation to 

analyse complex sample types. The study has shown that the optimal method for 

removing substrate contribution was to use manually remove the substrate using the 

Beer-Lambert equation.  
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Chapter 3 

Downselection of Spectroscopic Technique for 

Bacterial Identification: FTIR vs Raman 

3.1.  Introduction and Aims 

The main focus of this study was to conclude the optimal technique for the 

spectroscopic analysis of bacteria. This chapter discusses the analysis that has been 

conducted using vibrational spectroscopy and the ability for it to be used as a tool for 

bacterial identification and classification. This study aims to build on previous 

knowledge of the optimal modality for bacterial classification of surface deposited 

samples to identify the optimal vibrational technique. By evolving the methodology 

to identify more chemically complex samples compared to glucose and ovalbumin 

the work is developed towards the ultimate end goal of developing a method for use 

with handheld instruments for in-situ analysis of samples.  

This chapter is split into three main sections with the first discussing bacterial 

identification of samples prepared on a MirrIR slide (Kevley Technologies, Ohio, USA) 

and analysed using ATR-FTIR and Raman spectroscopy. Understanding the 

characteristics and behaviour of the bacterium chosen for use in this project is 

important for developing an appropriate experimental procedure that can be applied 

to each individual study. The procedure tries to replicate the non-ideal setting that 

would be used by an untrained microbiologist preparing samples to use in warfare. 
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This chapter looks at how each bacterium grows and discusses the standard sample 

preparation method developed for use within the project, for example growing 

samples on a general nutrient agar rather than specialist agars. The chapter then 

moves on to answer one of the main aims of the overall project by assessing which 

spectroscopic technique performs best. Based on the findings from the previous 

chapter the DiZnSe IRE was used with ATR-FTIR and a 785 nm laser chosen for Raman 

analysis, section 3.5.  

The chapter then moves on to discuss the results that were obtained during 

this study. Discussion follows of the processing method used on the data. The order 

of pre-processing was assessed before deciding which order of derivatisation is 

optimal for the dataset. The results generated during this process are discussed prior 

to concluding the optimal order of processing.  

The chapter concludes by discussing the findings from the main and 

secondary studies detailing the optimum technique and methodology that was 

carried forward for future analysis of environmentally conditioned samples. 

 

3.2.  Materials and Methods 

3.2.1.  Bacterial Culture 

Seven different bacterial strains, supplied by the Defence Science and 

Technology Laboratories (DSTL), were used in this study. The strains are shown in 

Table I and represent a combination of Gram-positive and Gram-negative bacteria 
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that are often used to represent Biological Warfare Agents (BWAs). The Bacillus 

thuringiensis var. kurstaki (BTK) provided was isolated from Dipel insecticide. Bacillus 

thuringiensis var. kurstaki HD-1 cry- (BTK-) is a new strain produced at DSTL in 2014 

which has lost the insecticidal genes. Bacillus thuringiensis var. kurstaki HD-1 cry+ 

(BTK+) is the parent strain used to produce the cry- strain. The bacteria were cultured 

on Nutrient Agar plates (Agar pre-mixed nutrient agar powder from Oxoid, 

‘Lab-Lemco’ powder 1 gl-1; Yeast extract 2 gl-1; Peptone 5 gl-1; Sodium chloride 5 gl-1; 

Agar 15 gl-1, Petri dished from BRAND (TM)) filled with 25 ml and incubated for 24 

hours at either 30 or 37°C (see Table I). No specialist agars or broths were used for 

growth during this project. 

Table I: The bacterial strains used during this project with the American Type Culture Collection (ATCC) notation, 
where available. The table also includes properties such as Gram type, if the bacterium has the ability to form 

spores, incubation temperature and the abbreviations they are referred to as throughout this thesis 

Bacterial Strain 
Gram 
Type 

Forms 
Spores 

Incubation 
Temperature (°C) 

Bacillus atrophaeus (B.Atrop) + Yes 37 

Bacillus thuringiensis (BT) ATCC 29730 + Yes 37 

Bacillus thuringiensis var. kurstaki (BTK) + Yes 37 

Bacillus thuringiensis var. kurstaki HD-1 cry- (BTK-) + Yes 37 

Bacillus thuringiensis var. kurstaki HD-1 cry+ (BTK+) + Yes 37 

Eschericha coli MRE 162 (E. coli) - No 37 

Pseudomonas fluorescens (PF) ATCC 13525 - No 30 

 

3.2.2.  Streak Plating 

Streak plating [1] was used for growing the bacteria and yields enough biomass 

to create the concentrations desired for use within this project. A single 10µL 
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inoculation loop (Greiner) of bacteria from the stock solution was added to an agar 

plate and spread using the streak plating method shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

To begin preparing samples a loop containing a small amount of bacterial 

biomass is spread across the top ¼ of the plate, using a side to side motion, to spread 

the biomass out evenly across the agar. The plates were then rotated 90 

anti-clockwise before three streaks were made horizontally across the plate starting 

from the left-hand side of the plate where the bacteria had been streaked. The plates 

were then rotated a further 90 anticlockwise. At this point the plastic loop was 

flipped so that the opposite side can be used to spread the bacteria.  Flipping the loop 

between the second and third stage enhances the chance of forming single cell 

colonies as there is no biomass on that side of the loop. A further three streaks were 

made starting again at the left-hand side of the plate finishing at the right. The plates 

were rotated a final 90° anti-clockwise before a squiggle is made from the left to the 

Figure 1: Showing the four different stages involved in the 'streak plating' technique. The first stage is the 
application of the bacteria to the agar plate spreading it across the top section (1), the bacteria then has three 

streaks going across it using a loop (2). The loop is then slipped before creating more streaks through the 
bacteria (3) before the final step of creating a wave through the bacteria along with some individual spots (4). 

1 

2 

3 

4 
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right of the plate through the bacteria. A few dots were made in the centre of the 

plates to enhance the chance of creating a single cell colony.  

The plates are then placed down on the top of the lid so that the agar was 

upside down to avoid contamination from condensation found on the plate lid. The 

plates are then taped with micropore tape and are ready to be stored in an incubator 

set to the desired temperature for bacterial growth. A control plate was also 

incubated along with the prepared plates, made from the same batch of agar, 

containing no bacteria, as a further check for contamination as no growth should be 

observed on the control plate. The plates were incubated for 24 hours to allow for 

growth of the bacteria to ensure that there was sufficient biomass that could be 

collected and prepared for analysis.  

 

3.2.3.  Optical Density Calculations 

Typically for most bacterial strains, harvesting all the biomass from a single 

plate that had been incubated for 24 hours provided a starting concentration that 

was too concentrated for detection with the spectrophotometer, as ideally the 

concentration should fall within the linear range of 0.3-0.9 absorbance units (abs). 

This meant that the bacterial solution was diluted by a factor of ×10 or ×20 to give a 

concentration that was detectable. Measurements from the spectrophometer were 

collected at 600 nm as the light is scattered by the cells, not absorbed.[2]  The optical 

density (OD) of a solution correlates to the total concentration of the sample, taking 

into account both living and dead cells. To produce a concentration within the ideal 
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range for analysis with the spectrophotometer a ×20 dilution was required. To 

produce a 1 ml sample, 50 µl cell solution and 950 µl of 0.9% NaCl (Acros Organics) 

were combined and mixed in an Eppendorf. The sample was vortexed to ensure that 

it was homogenous, transferred to a 1ml cuvette and analysed with a 

spectrophotometer. Prior to the sample being analysed, 1ml of 0.9% NaCl was 

analysed with the spectrophotometer to give a reading of 0, demonstrating the 

instrument was correctly calibrated.  

A ×20 dilution produced a reading that is 1/20th of the actual concentration 

of the solution. So, for example an OD reading of 0.1 collected from a ×20 dilution 

means that the starting OD of the cell solution was 2. Once this information was 

acquired the samples were made up to the desired concentration or OD. Eq 4.1, 

Eq 4.2 and Eq 4.3 show the process that was used to make up these solutions. 

 

                                                𝑫𝒊𝒍𝒖𝒕𝒊𝒐𝒏 𝒇𝒂𝒄𝒕𝒐𝒓 =
𝑨𝒄𝒕𝒖𝒂𝒍 𝑶𝑫 (𝑨𝒃𝒔)

𝑫𝒆𝒔𝒊𝒓𝒆𝒅 𝑶𝑫 (𝑨𝒃𝒔)
                                            (4.1) 

             𝑽𝒐𝒍𝒖𝒎𝒆 𝒐𝒇 𝒔𝒂𝒎𝒑𝒍𝒆 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 (µ𝒍) =
𝟏𝟎𝟎𝟎

𝑫𝒊𝒍𝒖𝒕𝒊𝒐𝒏 𝒇𝒂𝒄𝒕𝒐𝒓
          (4.2) 

𝑽𝒐𝒍𝒖𝒎𝒆 𝒐𝒇 𝟎. 𝟗% 𝑵𝒂𝑪𝒍 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 (µ𝒍) = 𝟏𝟎𝟎𝟎µ𝒍 − 𝑽𝒐𝒍𝒖𝒎𝒆 𝒐𝒇 𝒔𝒂𝒎𝒑𝒍𝒆 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅(µ𝒍)  (4.3) 

 
 

 

3.2.4.  Growth Curve Analysis 

Growth curve calculations were carried out on all bacterial strains used within 

this project to understand how each individual bacterium grows. For this analysis, a 
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100 well honeycomb plate (Steri) is used with samples pipetted into each of the wells 

(Figure 2). For each new bacterial strain, the first well of each column is filled with 

200 µl of nutrient broth to act as a control. 200 µl of bacterial sample, which has been 

prepared to a standard OD of 0.1, was then pipetted into each of the 5 wells below 

the control on the honeycomb plate. The other wells below this were filled with the 

sample bacterial strain. For each bacterium investigated a total of six wells were 

filled, one with nutrient broth and five with the bacterium. The remaining four wells 

of the column were left empty. Figure 2 shows a typical Bioscreen C plate set up 

where seven bacterial strains are being examined.  

 

 

 

 

 

 

 

The parameters used with the Bioscreen C allowed for growth data to be 

collected over a 48-hour period, after an initial five minutes of preheating with OD 

values recorded every ten minutes. There was constant shaking of the plate, set up 

on the Bioscreen C instrument as part of the methodology, to avoid the formation of 

a biofilm on the samples. Once the data were acquired, the five samples were 

Figure 2:  Set up for Bioscreen C honeycomb plate where filled orange circles 
indicate wells filled with bacterial samples while filled blue circles indicate wells 

filled with nutrient broth, white circles indicate empty wells 
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averaged to provide one growth curve per bacterial strain to indicate the length of 

time the strains need to complete all stages of development. 

 

3.2.5.  Sample Preparation 

The seven bacterial strains supplied by DSTL shown in Table I were all 

prepared in the same manner once they had been grown at their optimal 

temperatures. Three separate plates were cultured per bacterial species to show the 

level of reproducibility between culture cycles. As such each plate is referred to as a 

‘batch’. Preparing samples in this way allows for an assessment of the batch-to-batch 

variation. The following method was applied to each plate for preparing the samples: 

Bacteria were collected using plastic loops and suspended in 1ml of 0.9% NaCl. The 

cells were then ‘washed’ by spinning the samples in a centrifuge set to 5000g for five 

minutes at 4°C. The supernatant was then removed leaving a pellet of bacterial 

biomass, before the cells were re-suspended in 1ml of 0.9% NaCl solution. Once the 

NaCl was added the samples were vortexed to ensure the samples were homogenous 

prior to spotting. Ten 2µL spots per bacterium were spotted onto a low-e slide per 

batch (Figure 3) and air dried before being stored in a petri dish in the fridge at 2-8°C 

prior to analysis. Samples were prepared using the same method for both Raman and 

IR analysis. For Raman analysis data was only collected from two of the three batches 

due to limited access to the Raman instrumentation. However, based on the analysis 

of the ATR-FTIR dataset there is no evidence of batch-to-batch variation observed 

across the three batches in the PCA scores plots shown in Figure 15A. Therefore, 
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analysis of all three batches simply for batch variance was not needed with Raman. 

Also due to the limited access to the Raman instrument based at UCLan, analysis of 

samples was performed over a number of months. 

 

 

 

 

3.2.6.  Data Pre-Processing and Analysis 

After the acquisition of spectral data, the data undergo several pre-processing 

steps before analysis. Pre-processing the data allowed for background correction and 

the removal of any artefacts, such as cosmic rays in Raman, or distortions caused by 

water vapour in FTIR. This ensures that the differences detected using multivariate 

analysis (MVA) were genuine changes arising from biochemical differences between 

samples. The following section discusses the pre-processing steps and MVA that were 

performed on the data. The section first discusses the pre-processing and analysis 

methods for ATR-FTIR data and is followed by Raman pre-processing and analysis. 

 

 

 

1                  2                  3   

Figure 3:  Schematic of bacterial samples deposited onto a MirrIR slide.  
The number denote the different batch that the sample belongs to. 
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3.2.6.1.  FTIR Pre-Processing and Analysis 

For all FTIR data collected during the bacterial identification study the same 

set of pre-processing parameters were used with the data. Following this, data were 

analysed using both unsupervised and supervised MVA methods in the form of PCA 

and DFA respectively. The set of steps carried out for processing FTIR data once it has 

been acquired can be seen in Figure 4.  
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Pre-processing of the data was performed using in-house written/open 

source code that was used as a standard protocol for data analysis within the 

research group. The order in which the processing is performed is discussed later in 

this chapter. However, once the pre-processing had been performed the dataset was 

cut to the fingerprint region. Following this MVA, PCA and DFA, was performed. 

When performing PCA, the number of PCs retained will always differ depending on 

DFA (3DFs)
Pre-Processed, Non-Derivative

PCA (15PCs)

Pre-Processed, Non-Derivative

Multivariate Analysis

Cut data to the fingerprnt region only 
(900-1800 cm-1)

Vector Normalisation 
(9 smoothing windows)

PC based Noise Reduction (15 PCs)

Pre-processing

FTIR data analysis process

Figure 4: Data processing flowchart for processing the data collected 
during FTIR analysis in the bacterial identification study. 
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the dataset, however, for this project enough PCs were retained to explain at least 

95% of the total variance of the dataset. As mentioned previously it is important 

before any MVA is carried out that the data is pre-processed. Data that remains 

unprocessed before MVA will lead to results that can be skewed. Unprocessed data 

often affected by noise and instrument error as well as distorted baselines. For this 

reason, noise reduction followed by baseline correction is performed on the data to 

ensure that any separation seen after MVA is performed is not due these distortions.  

Assigning peaks to the loadings produced from PCA and DFA is affected by the order 

of derivatisation. Data that is non-derivative and 2nd derivative data is straightforward 

for assigning peaks, as where the peak appears in the loadings plot correlates to 

where a peak in the original spectrum. This means that a tentative peak assignment 

for the bands causing the vibration can be made. However, assigning peaks within 1st 

order derivative data is more difficult as the process of derivatisation causes the 

original maximum point of a peak to become located along the base line at zero. 

Therefore, the tentative assignments are assigned to where the value is zero between 

peaks, rather than the maximum of a peak, in the loadings plot. This way the cause 

of the separation seen in the PCA and DFA plots, and shown in the respective 

loadings, can be linked back to biological information within the sample. For a visual 

representation see Figure 5. [3] 
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3.2.6.2.  Multivariate Analysis (MVA) 

Once data has been processed to correct for differences in noise, background 

and other non-biochemical differences, multivariate analysis (MVA) can be used to 

identify inter and intra-group differences that are caused by biochemical differences. 

Principal Component Analysis (PCA) and Linear Discriminant Function Analysis (DFA) 

are the two methods of MVA that have been used across all the data collected within 

this project. As well as the method and order of pre-processing, the number of 

Principal Components (PCs) and Discriminant Functions (DFs) used will also affect the 

separation of the data. Using too many PCs will then affect the separation seen in the 

PCA and DFA plot and can lead to overfitting of the DFA model. This is because more 

Figure 5: Schematic showing an example of an absorbance spectrum (blue) and the corresponding 1st order (red) 
and 2nd order (green) derivatives. 
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noise gets introduced into the model when more PCs are used.  Generally, the noisier 

a dataset is will mean that a higher number of PCs will be required to explain 95% of 

the variance. As such Raman datasets will require a higher number of PCs than the 

FTIR datasets. 

 

3.2.6.3.  Raman Pre-processing and Analysis 

The Raman data collected during the bacterial identification study also had to 

undergo a set pre-processing steps prior to any MVA. These pre-processing steps 

were different to those used with FTIR but are used to address similar distortions and 

artefacts within the baseline and those that are caused by noise. Wavelet denoising 

was used as this method of noise removal is more suited to Raman data due to its 

ability to deal with low frequency data points caused by fluorescence. [4] Following 

this, the data was then analysed using PCA and DFA, the same as the whole process 

is shown in Figure 6. Raman, by nature, produces significantly noisier spectra in 

comparison to FTIR as Raman is a scattering technique that causes inherently weaker 

vibrations in comparison to FTIR vibrations. Derivatisation, and in turn the 

deconvolution of peaks causes, an enhancement of all peaks in a spectrum, both 

biological peaks and background noise. [3] As Raman spectroscopy produces spectra 

with a lower signal to noise ratio (S/R) derivatisation of the data was not performed. 
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The pre-processing steps were performed using IRootLab toolbox [5] as part of 

the standard processing procedure established within our research group. As with 

the FTIR data analysis, 20 PCs were used for PCA analysis to try and account for 

around 95% of the variance.  

 

 

 

DFA (3DFs)

PCA (20PCs)

Multivariate analysis

Wavelet denoise

Vector normalisation 

5th order polynomial

Pre-processing

Raman data analysis process

Figure 6: Data processing flowchart for processing the data collected 
during Raman analysis in the bacterial identification study. 
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3.3.  Results and Discussion 

The following section of the chapter discusses the results that have been 

obtained using the Bioscreen C instrument and will discuss the optimal growth 

temperatures for the bacteria. The results section then moves on to discuss the 

results acquired using ATR-FTIR and Raman. The ATR-FTIR results section first 

discusses the results from the pre-processing study and the optimal order for this. 

The chapter then discusses the optimal derivative state for the data which has already 

been pre-processed. This section of the chapter works to develop the optimal data 

processing order for ATR-FTIR data which is concluded at the end of the section with 

the process shown visually in Figure 4.  

The Raman section discusses the pre-processing methods used prior to the 

analysis of the data, discussing the issues experienced when using MirrIR with Raman 

before moving on to discuss the MVA results. A comparison of both techniques to see 

which was the most optimal for bacterial identification can be found at the end of 

this chapter.  

 

3.3.1.  Growth Curve Analysis 

Growth curve calculations were carried out on all bacterial stains used within 

this project to understand how each individual bacterium grows, the results of which 

can be seen in Figure 8 to Figure 13. 
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Figure 8: Growth curve graph for B. atrop grown at 37°C for 48 hours. 
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Figure 9: Growth curve graph for BT grown at 37°C for 48 hours. 

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0. 4. 8. 12. 16. 20. 24. 28. 32. 36. 40. 44. 48.

A
b

so
rb

an
ce

Hours

BTK Growth Curve @ 37°C

Figure 7: Growth curve graph for BTK grown at 37°C for 48 hours. 
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Figure 12: Growth curve graph for BT+ grown at 37°C for 48 hours. 
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Figure 10: Growth curve graph for E.coli grown at 37°C for 48 hours. 
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Figure 11: Growth curve graph for BTK- grown at 37°C for 48 hours. 
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 From the growth curve analysis carried out over a 48-hour period it was found 

that all strains went through the four stages of growth within this period. Within the 

growth curves shown from Figure 8 to Figure 13 all bacteria have reached their peak 

level of growth between 8-20 hours of growth depending on the bacterial strain. 

However, as these curves are based on liquid samples that are continuously shaking 

growth may be faster due to easier access to nutrients than bacteria grown on agar 

plates. [6] As agar plates were used within this project all plates for all bacterial strains 
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Figure 13: Growth curve graph for PF grown at 30°C for 48 hours. 
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Figure 14: Growth curve graph for PF grown at 37°C for 48 hours. 
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were grown for 24 hours to ensure there was sufficient biomass to carry out the 

experiments and to be consistent with standard protocol. [7] Figure 14 and Figure 13 

show the growth curves for P. fluorescens (PF) showing there was no growth at 37°C 

but there was growth at 30°C. It was also found that all except one of the bacterial 

strains used within this study could grow at 37°C. P. fluorescens (PF) was found to 

need a lower temperature to grow, therefore PF was grown at 30°C throughout this 

project. Bacteria were grown for 24 hours to ensure that each strain progressed 

through the lag and exponential growth phases and were in either the stationary or 

death phase. [8] The time that is required to reach each of these different stages of 

growth differs depending on the bacterium, however 24 hours was enough for each 

of the strains to be at this phase of its cycle. 

 

3.3.2.  ATR-FTIR 

Data collected using ATR-FTIR was used to assess which order of 

pre-processing was the optimal method for bacterial identification, these results are 

discussed first. Following this, once the data had been pre-processed, the data were 

converted to the 1st and 2nd derivative. The three sets of data (non-derivative, 1st 

order derivative and 2nd order derivative) were analysed using both unsupervised 

(PCA) and a supervised (DFA) forms of MVA. Four different combination of pre-

processing methods were trialled to see which was the optimal method for 
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maximising the information that can be gained from the data. The combinations are 

shown below in Table II, and are referred to by their Method number.  

Table II: Table showing the four different methods trialled for which order is optimal for pre-processing. 

 

The order in which the pre-processing methods were performed affected the 

variance shown in the data. The PCA and DFA plots, with the corresponding loadings 

and peak assignments, shown here are for Method 3 as this was chosen as the 

optimal method. The plots produced from Method 1, 2 and 4 can be found in 

Appendix B. It should be noted that the PCA and DFA plots shown in this chapter and 

Appendix B are chosen based on the clearest separation and clustering of the data.  

 

3.3.2.1.  Pre-Processed Data (Method 3) 

The separation and clustering shown in the PCA and DFA plots is affected by 

the order in which different processing steps are performed. Cutting the data last 

resulted in more defined boundaries between the different strains, except for the 

BTK strains as there is a large amount of overlap between these groups regardless of 

processing order. However, cutting the Discriminant Function Analysis data to the 

 Method 1 Method 2 Method 3 Method 4 

Step 1 CUT CUT 
Noise 
Reduction 

Vector 
Normalisation 

Step 2 
Noise 
Reduction 

Vector 
Normalisation 

Vector 
Normalisation 

Noise 
Reduction 

Step 3 
Vector 
Normalisation 

Noise 
Reduction 

CUT CUT 
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fingerprint region first resulted in tighter clustering of the bacterial strains. This may 

be due to less biological information to consider as the higher wavenumber range has 

been removed, as well as removing noisier regions of the spectrum near to the 

detector cut off. Cutting the data to the fingerprint region prior to pre-processing 

allows for more noise to be removed from the dataset, by discounting the variance 

caused by the higher wavenumber vibrations. The PCs and DFs responsible for 

showing the best separation across the Methods also changed. PC1 vs PC3 and DF1 

vs DF2, shown in Appendix B: Figure 1 and Figure 4, demonstrate the best separation 

in Method 1 and 2 where the data was cut before the pre-processing. However, when 

the data is cut last as in Method 3 and 4 it is PC2 vs PC3, shown in Figure 15A and 

Appendix B: Figure 7A, where the best separation is seen compared to PC1 vs PC3 

from Method 1 and 2 where the data has been cut first. The PCs used to plot the data 

will have an influence on separation seen in both the PCA and DFA plots. With 

Methods 3 and 4, PC1 shows the non-biochemical changes from within the dataset, 

whereas with Methods 1 and 2 biochemical changes are shown but are combined 

with the remaining noise that was not removed during pre-processing causing more 

overlap between the bacterial clusters, especially within the PCA plots. Thus, 

Methods 3 and 4 are more optimal. This is likely to be as a result of the data being 

cut to the fingerprint region after it has been pre-processed, so more noise within 

the dataset has been removed compared with Methods 1 and 2. 
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Figure 15: Figure showing a PCA plot using PC1 and PC3 (A) a DFA plot using DF1 and DF2 (B)  
and a the same DFA plot with a 95% confidence ellipse (C) from data pre-processed using Method 3. 
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Figure 16: Figure showing a PC1 loadings plot (A) and a PC3 loadings plot (B) from data pre-processed 
using Method 3. 
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Figure 17: Figure showing a DF1 loadings plot (A) and a DF2 loadings plot (B) from data pre-processed 
using Method 3. 
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Table III: Wavenumbers and corresponding peak assignments for PC1, PC3, DF1 and DF2 loadings from  
Method 3. [9,10,11,3,12,] 

 

The PCA and DFA plots that are produced using Method 1 and 2 show the 

same separation and clustering of the data. PC1 separates out the Gram-negative 

bacteria and B. atrop from the BT species and sub species. The PC1 loadings show the 

region of the spectrum that is responsible for the separation is the wavenumber 

range from 900-1250 cm-1. The peaks in this region are because of C-C, C-O, C-O-H 

vibrations and PO2 stretches (Appendix B: Table I and Table II). These peaks are found 

in Gram-negative bacteria PF and E. coli, due to their different cell structure. PC3 is 

responsible for the separation of PF and BTK from B. atrop, E. coli, BT, BTK+ and BTK- 

are all found in the centre of the plot with respect to PC3. A similar region of the PC2 

loadings for Method 3 and 4 are responsible for the separation as to those seen in 

the PC1 loadings for Methods 1 and 2. Again the loadings mainly show vibrations 

caused by PO2 stretches around 1050-1100 cm-1. PC3 is used across all four of the 

Wavenumber (cm-1) 
Tentative peak assignment 

PC2 PC3 DF 1 DF 2 

 980 912, 958,  
933, 957, 
1161 

νC-O, νC-C, νC-O-H, νC-O-C  

 1007   Phenylalanine 

 1039 1038  Phenylalanine C-H in-plane 

1063    νC-N, νC-C 

1084  1053, 1088 1084 νP=O (symmetric) PO−
2 

  1279 1279 Amide III band of proteins  

1388 1379, 1394 1379, 1468 1371 δ𝐶𝐻2 and δ𝐶𝐻3 

1514   1514 Tyrosine 

1506, 1539 1531, 1537  1504 Amide II 

1577 1579 1574, 1581 
1560, 1572, 
1577, 1591 

Aspartate and glutamate 
carboxylate stretching 

 1633, 1641   
Amide I β-pleated sheet 
structures 

   1655 Amide I α-helix 

  1682, 1695  
Amide I band components 
resulting from antiparallel Pleated 
sheets from β-turns of proteins 

1712  1703  νC=O of esters 
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methods, however the separation caused by it is different. While Methods 1 and 2 

separate the Gram-negative bacteria, this is not the case in Methods 3 and 4, where 

both Gram-negative bacteria are found in the positive region of the plot. BT and BTK 

are also found in the positive region of Figure 15 and Appendix B: Figure 7B.  

Meanwhile, B. atrop, BTK+ and BTK- are all located in the negative region of the plot. 

Unlike the PCA scores plots form Method 1 and 2, no groups are separated across the 

centre of the PCA scores plots generated in Method 3 and 4. PCA plots using PC1 are 

not shown within this chapter for Methods 3 and 4 as the separation shown within 

these plots is not as clear as when considering PC2 vs PC3. While PC1 explains the 

most variance within the dataset, when considering Methods 3 and 4 this is not the 

PC responsible for the separation of the bacterial strains and differing Gram types. 

Therefore, in this case PC1 may explain any remaining noise that was not removed 

from the dataset during pre-processing along with similarities between the different 

strains. This means that PC2 and 3 contain the biological information that differs 

between the bacterial strains and differing Gram types. As well as the visual 

separation changing depending on the processing order, the percentage variance 

explained within the first three PC’s also changes with around a 1.5% increase when 

the data is cut after the pre-processing has been performed, shown in Table IV. 

Table IV: Table showing the percentage variance explained for the first three PC’s for each of the four methods. 

 

 PC Method 1 Method 2 Method 3 Method 4 

P
er

ce
n

ta
ge

 
ex

p
la

in
ed

 (
%

) 

1 54.1 54 63.1 63 

2 20.3 20.2 21.4 21.3 

3 16.4 16.4 7.81 8.04 

1, 2 and 3 90.8 90.6 92.31 92.34 
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With a change in the percentage variance from the first three PCs also comes 

a change in the number of PCs required to explain 95% of the total variance. When 

the data is cut after processing, the number of PCs needed is reduced from five to 

four. This highlights that when the data is cut, to the fingerprint region in MATLAB, 

before performing the pre-processing steps more noise is retained in the dataset, 

therefore leading to a higher number of PCs needed to explain 95% of the variance 

within the data. A summary of this information is presented in Table V. 

Table V: Table showing the number of PC's required to explain at least 95% of the total variance with the 
percentage explained by those PC's also stated. 

 

When visually comparing DFA analysis to the PCA analysis, DFA shows more 

defined clustering of the bacterial groups with DF1 showing a very clear separation 

of Gram-positive and Gram-negative bacteria across all four methods (Figure 15B and 

Appendix B: Figure 1B, 4B and 7B). However, the separation shown by DF2 differs 

slightly depending on the order in which the pre-processing was carried out; not only 

if the data was cut first or not but also the order in which vector normalisation and 

noise reduction was performed. For Method 1, DF2 separates PF from E. coli as well 

as separating B. atrop and BTK+ from the other BT species and sub species (Appendix 

B: Figure 1B). None of these clusters were separated across the DF2 axis. However, 

Method 2 again separates the two Gram-negatives as well as B. atrop and BTK+ from 

the remaining BTK species and sub-species but BT was located in the centre of the 

 Method 1 Method 2 Method 3 Method 4 

Number of 
PCs 

5 5 4 4 

Percentage 
explained (%) 

95.67 95.43 96.47 96.45 
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plot separates across the DF2 axis (Appendix B: Figure 4B). In Method 3 and 4, DF2 

also separates PF from E. coli (Figure 15 and Appendix B: Figure 7B). However, they 

also separate B. atrop and BT, while other BTK species and sub-species are separated 

across the centre of DF2. Similar peaks can be seen in the loadings plots showing the 

wavenumbers that are responsible for the separation seen. For DF1, the wavenumber 

range from 900-1250 cm-1 is important as seen in PC1. The peaks in this region arise 

mainly due to C-C, C-O, C-O-H vibrations and PO2 stretches (Appendix B: Table I). For 

Method 3, in terms of DF2 loadings, the key vibrations responsible for separating PF 

and B. atrop form the other strains are also C-C, C-O, C-O-H vibrations and PO2 

stretches. Additionally, amide I, C=O ester stretches and aspartate and glutamate 

stretches are responsible (Table III).    

Considering the phylogenetic information, discounting the Gram-negative 

strains, you would expect BT and B. atrop to separate out from BTK and its 

sub-species. This is observed in DFA plots produced when using Method 3 and 4 but 

not Methods 1 and 2. By cutting the data to the fingerprint region after performing 

vector normalisation and noise reduction increases the percentage variance 

observed in the first three PC’s. By performing the cut after the processing, it 

increases the variance explained by around 1.5% depending on the order in which 

the normalisation and noise reduction is performed, shown previously in Table IV. 

This, coupled with the separation shown in the DFA plots has led to Method 3 being 

the optimal method chosen for pre-processing the data. Figure 18 shows the effect 

that pre-processing has on the bacterial dataset, using the order of Method 3. 
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Figure 18: Figure showing the effect that the pre-processing of the data has 
starting with the raw data (A) followed by noise reduction (B) then vector 

normalisation (C) and finally the cutting the data to the fingerprint region (D). 
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To test the ability of the DFA model a new dataset was created by splitting the 

existing data into a ~
2

3
 training set and a ~

1

3
 test set with the same number of samples 

from each bacterial strain. This data was projected into the model with a 95% 

confidence ellipse shown in Figure 19. Table VI shows the sensitivity and specificity 

values that were calculated using equations which are shown in Chapter 2 

section 8.2.3. 

 

 
Table VI: Table showing the sensitivity and specificity values calculated for the Method 3 dataset when using a 

95% confidence interval 

 B. atrop (1) BT (2) BTK+ (3) BTK- (4) BTK (5) E. coli (6) PF (7) 

Sensitivity 

(%) 
100 80 100 100 87.5 75 80 

Specificity 

(%) 
100 78.4 80 61.5 71.1 96.1 94.2 

 

Figure 19 PCDFA plot showing DF1 vsDF2 for Method 3 data split into a 
2

3
 training 

1

3
 test set. 
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While the separation seen visually in Figure 19 is not as clear as that in Figure 

17, the sensitivity and specificity values shown in Table VI highlight that the model 

works well for the majority of the strains examined in this study. These figure show 

that the model has a good level of classification across all of the bacterial stains used 

within the study and that the model only begins to struggle with the sub strains of 

BT, particularly BTK- and BTK, with these values highlighted in bold within Table VI.  

 

3.3.2.2.  Derivatisation of Data 

The final stage of pre-processing that is required before MVA is derivatisation. 

The following section shows the results produced from data that was processed using 

Method 3. The data was then categorised by having a 1st order or a 2nd order 

derivatisation performed or remaining non-derivative. The PCA plots, with 

corresponding loadings, for both the 1st and 2nd order derivatisation datasets can be 

seen in Appendix B: Figures 10, 11 and 13. The DFA plots for 1st and 2nd order 

derivatisation data can be seen in Figure 20. The corresponding loadings plots for this 

data is shown in Appendix B: Figure 12 and 14. The tentative assignments given to 

the peaks identified within the loadings plots for both 1st and 2nd order data can be 

seen in Appendix B: Table IV, V and VI. 
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The percentage variance explained by the first three PCs for the 

non-derivative, 1st order and 2nd order derivative data is shown in Table VII. From 

Table VII non-derivative data has 5-6% more variance explained in just three PC’s 

compared to either 1st or 2nd order derivatives of the same dataset. 

Figure 20 Figure showing a DFA plot using DF1 and DF2 for 1st order data (A) and a plot using DF1 and 
DF2 for 2nd order data (B). 

A 

B 
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Table VII: Table showing the percentage variance explained for the first three PC’s for pre-processed,  
1st order derivative and 2nd order derivative data. 

 PC number 
Pre-processed 

(Method 3) 
1st 

Derivative 
2nd 

Derivative 

P
er

ce
n

ta
ge

 
ex

p
la

in
ed

 (
%

) 1 63.1 63.9 55.1 

2 21.4 15 23.7 

3 7.81 7.77 7.2 

1,2 and 3 92.31 86.67 86 

 

Prior to MVA, the final step of data pre-processing was optimised. Following on 

from the pre-processing carried out using Method 3, 1st and 2nd order derivatisation 

was performed on the data. A comparison of the percentage variance explained from 

the first three PC’s was used as an indication of the optimal order along with the 

visual separation and clustering observed in the PCA and DFA plots. Table VII shows 

that performing either a 1st or 2nd order derivatisation on the data cause the 

percentage variance explained by the first three PC’s to drop from 92.31% to 86.67% 

and 86% respectively. The drop observed in the percentage variance explained can 

be explained by the fact that as derivatisation is performed the noise within the 

dataset becomes exaggerated along with the key biological peaks. Additional to this, 

when interrogating the PCA plots produced by the data for 1st and 2nd order 

derivatives (Appendix B: Figure 10 and 13A), along with the DFA plots shown in Figure 

20, the separation and the clustering of the bacterial strains and Gram type observed 

has no improvement on that shown in the pre-processed, non-derivative dataset 

from Method 3 (Figure 15).  

As with previous plots, the PCA and DFA plots for both 1st and 2nd order 

derivatisation shows separation of the Gram-negative strains from the Gram-positive 
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ones. However, both the PCA and DFA models struggle to clearly separate BT from 

BTK and its sub species. As discussed previously it is the C-C, C-O, C-O-H vibrations 

and PO2 stretches as well as Amide I, C=O ester stretches and Aspartate and 

Glutamate stretches are responsible for most of the separation observed in the plots 

(Appendix B: Table IV, V and VI).    By interrogating the BTK species and sub species 

independently it may be possible to interpret more biological information about the 

subtle differences between the strains. This could lead to a two-step approach in the 

identification of samples where all BTK and their sub-strains are grouped in the first 

discriminatory model. If identified as BTK than the data would then be projected into 

a second discriminatory model containing only BTK species for a more accurate 

classification. 

Gram-positive bacteria have a thick cell wall consisting of mainly 

peptidoglycan, while Gram-negative bacteria has multiple different layers to the cell 

wall including an outer membrane. It is these differences in cell structure that are 

most often detected in ATR-FTIR spectra by the first few PC’s. An interesting property 

of B. thuringiensis (BT) and their subspecies is the presence of parasporal crystals. [13] 

These parasporal crystals are δ-endotoxins which can be formed during the 

stationary growth phase. [14] This is a property that is not present in other Bacillus 

species, therefore B. atrophaeus will not have these. Within this project four species 

and sub-species of BT are used. However, one of the strains has lost an insecticidal 

gene (BTK-), with BTK+ being the parent strain used to create BTK-. The presence of 

these parasporal crystals is another component that may also be detected within the 

first few PC’s as it is a major difference between the different cell types. The 
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differences observed in the data shown within this chapter are shown to correlate to 

the changes in cell structure between species and Gram-type. This shows that the 

technique picks out significant biological changes making the technique ideal for 

future bacterial classification. 

The aim of this project was to develop a methodology that was optimal for 

bacterial identification with an overall end goal of making the methodology into one 

that is suited to in situ analysis of samples. A key feature of this is to keep the 

methodology as simple as possible with as few steps as possible between the 

collection of the data to the identification of a sample. Adding in an extra step of 

pre-processing before moving on to MVA of the data therefore is not ideal. This 

coupled with the lower percentage explained and the fact that there is no 

improvement in the separation and clustering of the data illustrate why it was chosen 

not to perform a derivatisation on any future data acquired.  

 

3.3.3. Raman 

Once the Raman data had been acquired it was analysed using PCA. However, 

as you can see from Figure 21 there is no separation or clustering of the data based 

on bacterial strain. Figure 21 shows this is not possible using any combination of the 

first three PCs. As there is no separation or clustering when using bacterial strain as 

the legend, two alternative labelling systems were used to investigate the data. The 

labelling systems chosen were to look at the batch from which the data was collected 
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and the month that the data was acquired in. The PCA plots from both systems can 

be seen in Figure 22 and Figure 23 respectively. The loading that relate to these 

figures can be seen in Figure 24.  

 

 

 

 

 

 

 

 

Figure 21: Figure showing a PCA plot using PC1 and PC2 (A) and a PCA plot using PC2 and PC3 (B) from 
Raman data collected with a 785 nm laser. 

A 

B 
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Figure 22: Figure showing a PCA plot using PC1 and PC2 (A) a PCA plot using PC1 and PC3 (B) and a 
PCA using PC2 and PC3 from Raman data collected with a 785 nm laser. The grouping system used in 

these data plots looks at the effect that the batch that the bacteria was prepared from has on the 
clustering of the data. 

A 

B 
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 PCA analysis with batch as the legends showed that there was some separation 

and clustering of the data. This shows that the most significant factor for the 

separation in this case is not due to bacterial strain. Using PC2 vs PC3 produced the 

best level of separation and clustering, showing separation of Batch 1 from Batch 2. 

All three of the batches were prepared and spotted onto the slide at the same time. 

However, due to the Raman data being collected using instrumentation at UCLan 

where access to the instrument was limited, analysis of the samples was carried out 

over a period of several months. Therefore, it is highly possible that some sample 

degradation may have occurred between measurements as the samples aged as all 

spots for each bacterium were analysed for batch one before moving onto batch two 

samples. Although the separation seen here in the plots appears to be based on the 

batch from which the samples were produced, what is much more likely to be causing 

the separation of the data is the month in which they were analysed. ATR-FTIR 

analysis of three batches showed that there is no variation between them. PCA 

analysis was performed where the month of analysis became the legend with the 

plots shown in Figure 23. Figure 23 also shows that there is a higher spread of the 

samples in April compared to June or July. The cause of this is likely to be due to the 

fact that larger changes are likely to occur as the freshly prepared samples begin to 

dry out. Figure 24 shows the loadings produced for the Raman dataset, showing that 

there are clear biological peaks that are causing the separation of the data. Therefore, 

the separation seen within PCA plots cannot be put down to instrumental changes 

caused by analysing samples on different days. 



169 | P a g e  
 

Raman has successfully been used by a number of different research groups for 

bacterial identification and speciation. Research has used spontaneous confocal 

Raman, ultraviolet resonance Raman (UVRR), tip-enhanced Raman spectroscopy 

(TERS) [15] and surface enhanced Raman spectroscopy (SERS) [16] for bacterial 

identification. This work has involved preparing samples on calcium fluoride (CaF2) 

windows for confocal Raman, suspension samples deposited onto a polystyrene well 

plate for UVRR, glass slides for TERS and an aluminium scanning electron microscopy 

(SEM) stub for SERS, all of which are considered ideal for Raman analysis. For all of 

these studies there is little to no influence on the spectral profile resulting from the 

substrate. A protocol paper published by Butler et al., discusses the different 

substrates that can be used for Raman, along with many other parameters that can 

affect a Raman spectrum, so that this information can be taken into account prior to 

the start of an experiment. [17] 

The most likely cause of the poor separation observed within this study when 

considering the Raman data is that samples were prepared on MirrIR slides. MirrIR is 

not classed as on optimal substrate for use with Raman analysis. However, the overall 

objective for this project is to provide a technique that can identify samples found on 

any surface. The fact that Raman is significantly affected by the MirrIR substrate, as 

well as struggling to provide spectra for some of the substrates discussed in Chapter 3 

section 3.2, indicates that Raman may not be the optimal technique to use for this 

project. 
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Figure 23: Figure showing a PCA plot using PC1 and PC2 (A) a PCA plot using PC2 and PC3 (B) from 
Raman data collected with a 785 nm laser. The grouping system used in these data plots looks at the 

effect that the month in which the data was acquired has on the clustering of the data. 

A 

B 
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Figure 24: Figure showing a PC1 loadings plot (A) a PC2 loadings plot (B) and a PC3 
loadings plot (C) from Raman data. 

A 

B 

C 
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PCA analysis based on batch number rather than bacterium type shows that 

there is also some separation of the samples when considering PC2 (see Figure 22). 

The clustering seen in is more likely to be caused by the fact that there was several 

months between analysing the batch 1 and 2 samples, therefore the batch 2 samples 

can be considered as aged. The June and July groups are likely to overlap as there is 

less time between the analysis time for these samples, therefore the changes caused 

by sample degradation are going to be less than those observed between April and 

June or July.  

The loadings shown for the PCA plots highlight a number of key vibrations that 

are responsible for the separation and clustering of the data. Based on the plots it is 

PC2 that is the most important loadings plot to consider as this is responsible for the 

separation of April from June and July. The key peaks found within the April data are 

the C=C torsion and ring torsion of phenyl (461, 537 and 561cm-1) and C-I/C-Br/C-Cl 

stretches (575 and 589 cm-1). June and July have many vibrations that are present 

and cause the separation from April. The most significant of these vibrations are 

peaks within the phosphodiester region (905, 976 and 987 cm-1), C-O/C-C/C-O-H/C-

O-C/P=O (symmetric) stretches (1046 and 1055 cm-1), C-N/C-C stretches (1068 cm-1) 

and CH2/CH3 vibrations (1341 cm-1). 

When considering the total amount of variance explained after PCA, a total of 

just over 67% of the variance is explained using the first three PCs for Raman analysis. 

When compared to FTIR, this is around 19% less than is explained by 1st and 2nd order 

FTIR data and 25% less than is explained by pre-processed FTIR data. This significant 
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drop in percentage explained is likely to be cause by both interference from the 

substrate and a higher level of noise. A summary of the percentage variance for FTIR 

(including 1st and 2nd order) and Raman is shown in Table VIII.  

Table VIII: Table detailing the method of data acquisition, the order of derivatisation and the  
percentage variance explained by the first three PC's both individually and cumulatively. 

 

DFA was performed using the bacterial strain naming system to see if a 

supervised form of MVA could detect the changes between the bacterial strains that 

are masked in PCA. The DFA plot with its corresponding loadings are shown in 

Figure 25 with the tentative peak assignments compiled in Table VII. 

 FTIR Raman 

Order of derivatisation None 1st 2nd None 

PC1 (%) 63.1 63.9 55.1 34.2 

PC2 (%) 21.4 15 23.7 22.8 

PC3 (%) 7.81 7.77 7.2 10.3 

Variance using first 3 PC’s (%) 92.31 86.67 86 67.30 
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Figure 25: Figure showing a DFA plot using DF1 and DF3 (A) DF loadings plot using DF1 (B) 
and DF loadings plot using DF2 (C) from Raman data. 

A 

B 

C 
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Table IX: Wavenumbers and corresponding peak assignments for PC1, PC2, PC3, DF1 and DF2 loadings from 
Raman PCA and DFA plots. [9,10,11,3,12,] 

 

 

DFA of the samples shows that despite the MirrIR slide having a significant 

impact on the spectral profile for each of the samples it is possible to see both 

separation and clustering of the seven bacterial strains used within the study. DF1 

Wavenumber (cm-1) Tentative peak 
assignment PC1 PC2 PC3 DF1 DF2 

 
461, 537, 
561 

458, 536   
C=C torsion and ring torsion 
of phenyl 

528 523 526   νS-S 

 575, 589 580   νC-I, νC-Br, νC-Cl 

1002   1002 623, 1001 Phenylalanine 

 698 698 808, 841  δCH out of plane 

642 830 855 830  Tyrosine 

658 655, 664 657 657  Guanine/Thymine 

   723  Adenine 

   755  Tryptophan 

  778  781 Cytosine/Uracil/Thymine 

 
905, 976, 
987 

940   Phosphodiester  

1015, 
1031 

1046 1016 1015  
νC-O, νC-C, νC-O-H, νC-O-C   
νP=O (symmetric) of PO−

2 

1077 1055  1078  νP=O (symmetric) of PO−
2 

 1068 1138 1068, 1158 1135 νC-N, νC-C 

   1093  νC-C, νC-O-C glycosidic link 

1253 1284 1284, 1293 
1268, 1275, 
1282 

 Amide III band of proteins 

1370, 
1450 

1341 1400, 1495 
1336, 1400, 
1459, 1477 
1484 

1341 δ𝐶𝐻2 and δ𝐶𝐻3 

  1503   δCH of phenyl ring 

  1533 1531 1535 Amide II 

  1620  1584, 1618 νC-C of phenyl ring 

    1593, 1603, νC=N, νNH2 adenine 

 
1660, 
1675 

1657, 
1664, 1670 

1656 
1606, 1625, 
1646, 1652, 
1660, 1696 

Amide I 

1663     νC=O Cytosine, uracyl 

    1681 
νC=O Guanine deformation 
N-H in plane 

 1701    νC=O Guanine 
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clearly separates the Gram-negative from the Gram-positive strains. From the DF1 

loading (Figure 25B), it is the out of plane C-H stretches found at 808 and 841 cm-1, 

Adenine (755 cm-1) and Tryptophan (723 cm-1) that cause the Gram-negative E. coli 

and PF to separate from the Gram-positive Bacillus strains. DF2 is responsible for 

separating B. atrop out in the negative region with respect to DF2 with BT, BTK+ and 

BTK- separating in the positive region with respect to DF2. The remaining bacterial 

strains can be found within the centre of the plot with respect to DF2. The vibrations 

that are key in separating B. atrop from the other bacterial strains are 

cytosine/uracil/thymine (781 cm-1), C-N/C-C stretches (1135 cm-1) and Amide II 

(1535 cm-1).  

The DFA results show that when a supervised form of MVA analysis is used the 

underlying factors that affect the dataset and thus impact the PCA analysis have less 

influence on the DFA separation and clustering. That is not to say that these factors, 

such as sample degradation and substrate influence, don’t have an impact on the 

separation of the data. If you were to compare the DFA plots from the ATR-FTIR and 

Raman datasets you can see that there is clearer separation of the different groups 

with the ATR-FTIR data. If these factors were to be removed from the Raman dataset 

it may be possible to see enhanced separation between the bacterial strains, 

particularly with respect to the Bacillus strains. 
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3.4. Conclusions 

Growth curve analysis of the seven bacterial strains chosen for use in this 

study showed that 24 hours is the optimal time for the samples to be grown at. The 

optimal temperature used for growth is 37°C for all strains except PF for which a 

lower temperature of 30°C is needed. 

Four different methods were trialled to see how the order that the 

pre-processing is performed effects the separation and percentage variance 

explained seen data from the same FTIR instrument. It was found that Method 3, 

where the data was noise-reduced followed by vector normalisation and cutting to 

the fingerprint region, was most optimal for this FTIR dataset as the PCA plot has the 

best separation seen across the four methods. A study to assess the impact that 

analysing data in their derivative form was performed. This study found that MVA 

performed on pre-processed but non-derivative data performed the best as 

separation of the groups was clearer. Also, this methodology is more optimal as it has 

one less analysis step and produces loadings plots that are easier to interpret. This 

method of pre-processing FTIR data is summarised in Figure 4. 

The results from the technique downselection study show that species-based 

separation can be observed using both FTIR and Raman spectroscopy using the 

semi-supervised technique of DFA. FTIR shows that separation can be seen between 

the groups regardless of derivative state, with a higher level of separation seen using 

the unsupervised method of PCA when compared with Raman. 
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Over 85% of the total variance can be explained using just the first three PC’s 

with any of the derivative forms of the FTIR data with this being over 90% for 

pre-processed, non-derivative data. However, with the Raman dataset the first three 

PC’s explain just over 67% of the variance, comparison is shown in Table VIII. Using a 

higher number of PCs for PCA and DFA analysis may improve the separation observed 

in the plots, however, by using more PCs the amount of noise included in the model 

will increase. As mentioned previously, the consequence of this is the loadings will be 

noisier with a higher chance that peaks will relate to non-biological features. 

Raman data shows the technique is significantly affected by non-ideal 

substrates, in this case a MirrIR slide. PCA shows no separation of the data based on 

bacterial strain. DFA shows clustering of bacterial strains, however the separation 

seen is less than in DFA analysis of FTIR data. When looking forward to future work 

and the importance for the technique to work well on non-ideal substrates, FTIR 

appears to be the more favourable technique. This is due to both its ability to work 

well across a wide range of substrates and a greater penetration depth which is useful 

for the more porous substrates. This, coupled with the higher percentage variance 

explained and better visual separation of the data, has led to FTIR being the technique 

chosen to focus future analysis on. 
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Chapter 4 

Method Development for in situ Analysis of Surface 

Deposited Bacteria Using DRIFTS and the Effects of 

Environmental Conditioning 

 

4.1  Introduction and Aims 

This study looks at surface deposited bacteria applied to a variety of surfaces that 

were exposed to varying temperatures. This study looks to further investigate the 

ability of vibrational spectroscopy to identify bacteria by considering the surface a 

bacterium is found on and the environment it has been exposed to. Ultimately this 

study aims to move the research away from the laboratory and tackle some of the 

issues that samples from a ‘real world’ setting might present. 

To do this, the first section of this chapter discusses the process of developing a 

suitable methodology for in situ analysis of samples using a handheld spectrometer. 

It is important to have reference spectra for the substrates available to fundamentally 

understand the characteristics of each of the substrates for every modality. For this 

reason, a set of spectra were acquired using Diffuse Reflectance Infrared Fourier 

Transform Spectroscopy (DRIFTS) for the five substrates used within this study. The 
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substrates used in this study were: boot, concrete, jacket, lino and metal tile. Both 

the clean and the dirty filter were removed from this study as they were not part of 

the original five chosen as the core substrates. MirrIR was also removed from the 

study as it was previously included simply for purpose of having a standard substrate 

for use with FTIR and Raman. These reference spectra are subtracted from spectra 

collected from surface deposited bacteria which is discussed later in this chapter.  

Development of a suitable method for use on a handheld spectrometer that can be 

used to identify surface deposited bacteria is the key aim of the overall project, the 

development of this method is discussed within this chapter. 

The main study discussed in this chapter looks at the effect that different 

temperature has on the spectral signature of a bacterium. An additional study using 

the same seven bacterial strains and five substrates used in the temperature study 

was carried out to assess the impact that an alternative environmental condition 

would have on the spectral profile. This study used solar radiation, at standard room 

temperature as an example of an alternative environmental factor that can have an 

impact on the profile of a bacterium. 
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4.2  Methods and Materials 

4.2.1 Substrate Preparation 

Substrates were not cleaned prior to analysis to ensure that they were 

representative of a ‘real world’ scenario, and were substrates that have the potential 

to be contaminated if a BWA were used. The substrates used in this study were 

supplied by DSTL with the exception of the metal tile which is commercially available. 

The substrates that would be coming into contact with the agent would not have 

been cleaned prior to their contamination and as such would have a level of 

background contamination already present. For this reason, it was important to not 

clean the substrates prior to analysis to assess how the method could work with this 

background contamination as well as the surface deposited bacteria. The seven 

bacterial strains were spotted onto different pieces of boot, jacket and lino. For 

concrete and tile, seven bacterial strains were again spotted onto the substrates 

however, only data from two bacterial strains is shown. Issues with the way the 

samples dried onto these surfaces meant that there was no biological information 

shown in the spectra obtained. The same method of preparation was used with all of 

the substrates and strains. For this, two different strains were applied to the same 

piece of substrate but importantly in different areas with the areas clearly labelled 

and no contact between strains. 
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4.2.2  DRIFTS 

As with Chapter 2 (section 2.1), it was important to compile a spectral database 

for the substrates to ensure that reference spectra are available for the removal. The 

first section of this chapter discusses the building of the spectral database for DRIFTS. 

The overall aim of this PhD project is to develop a methodology that is suitable for 

in situ analysis of surface deposited samples. With this in mind the methodology 

aimed to be robust, simple and easy to perform. This chapter aims to build a robust 

methodology, developed on a handheld instrument that was used to identify surface 

deposited bacteria found on complex matrices.  

Spectra were collected using 32 co-added scans with 4 cm-1 resolution over a 

range of 4000-600 cm-1 using the DRIFTS accessory fitted with a coarse Gold 

reflectance cap for background measurements. A background spectrum was 

collected prior to the collection of spectra from the substrate. Background scans were 

acquired using the same set of parameters as for sample measurements. With ATR 

the bacterial sample is in direct contact with the attachment therefore, a background 

is needed either between every individual spectrum or new area of the substrate. 

However, as the bacterial sample does not come into contact with the attachment 

when using DRIFTS, backgrounds can be collected less frequently. Consequently, a 

background spectrum was acquired every 10 minutes. Background spectra were 

collected to ensure that any changes occurring in the atmosphere during the course 

of analysis were taken into account and corrected for regularly. Spectra were 

acquired from four different areas of the substrate, with three technical replicates 
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collected per area, to create an average representative spectrum for each substrate. 

Spectra were then averaged to generate an average diffuse reflectance spectrum per 

substrate. To ensure that the best possible spectral quality and reproducibility was 

achieved the handheld spectrometer used for analysis was clamped in an upright 

position so that both hands were free, one to hold the sample in place against the 

accessory and the other to work the instrument. This setup for this can be seen in 

Figure 1. In a ’real world’ scenario the instrument would not be held up with a clamp. 

In this situation the surfaces that are being examined are likely to be bulky and 

unlikely to move. Smaller items that may move while being analysed can be held in 

place by a colleague.  

 

 

 

 

 

 

 

 

 

 

A B 

Figure 1: Figure showing the handheld spectrometer setup using a clamp to hold the spectrometer in place 
and the PDA raised for ease of use (A) along with a side view showing the attachment of the diffuse 

reflectance accessory with a coarse Gold reflectance cap fitted (B). 
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All seven of the bacterial samples provided by the Defence Science and 

Technology Laboratories (Dstl) were prepared to an Optical Density (OD) of 20, using 

the same method discussed previously in Chapter 3 (section 2.3). From these samples 

four spots, each of 2µl, were pipetted onto each of the substrates (boot, concrete, 

jacket, lino, tile). Two sets of samples were created, one of which acted as a control 

set. The control set were analysed at the end of the experiment with the non-control 

set analysed at the start and end as well as two intermediate time-points. These 

time-points were just after deposition, within the first 5 hours (T0), 24 hours after 

deposition (T1), 7 days after initial deposition (T2) and 14 days after initial deposition 

(T3), which was the final time point. Before the analysis of any samples, sets were 

placed into an incubator set to the temperature being used for the study (either 30, 

37 or 49°C) to dry ~1 hour. This allowed the bacterial deposits to dry enough for the 

substrates to be held vertically and the spots not move or drip into the accessory. 

Once the samples were dried the non-control samples were analysed while the 

control samples remained in the oven. Once the samples had been analysed they 

were stored in clear petri dishes before then being transferred back into the 

incubator. 

The control set of samples were only analysed at the end (T3) so that the samples 

are left intact, unaffected by any damage that may be caused to the samples by 

analysis. The samples also remained in the environment for a full 14-day period, 

ensuring that the samples are not exposed to any other environment, including solar 

radiation. Having a control set of samples ensures that any differences observed in 

the spectra are not as a result of the samples being repeatedly removed from a given 
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environment and exposed to a different one for the period of analysis time. It also 

reduces the chance of the samples getting contaminated or damaged, both of which 

would affect the spectra produced. 

Once the spectra have been collected they have the substrate background 

manually removed using the Beer-Lambert equation. This uses the methodology 

developed with samples of glucose and ovalbumin in Chapter 2 (section 2.4), this time 

using DRIFTS rather than ATR. Although the modality is different, the principle is the 

same as there has still been no compensation for the substrate background. 

Each environmental condition used five substrates, seven bacterial strains and 

four time-points. The substrate was prepared with four spots where three spectra 

were collected per spot. Each of the individual spectra were processed, using the 

Beer-Lambert equation, to produce an absorbance spectrum for every DRIFTS 

spectrum. 

 

4.3  Results and Discussion 

This section is split into clearly defined sections  where the first half of the 

section discusses the  data collected from the DRIFTS substrate study before moving 

on to discuss the environmental dataset.  
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4.3.1 DRIFTS 

This part of this DRIFTS section covers the substrate study that was essential 

for generating standard substrate spectra that were to be used in the DRIFTS 

environmental study. This involves discussing the key vibrations observed from the 

five substrates downselected for use within the environmental study.  

 

4.3.1.1 DRIFTS Substrate Library 

As with ATR-FTIR and Raman spectroscopy a spectral database has been 

compiled from each of the five different substrates down-selected for use within this 

study. An overlay of the spectra collected for boot and tile can be seen in Figure 2 as 

an example of the quality of spectra that can be achieved using the DRIFTS accessory 

on the handheld FTIR spectrometer with the wavenumbers and corresponding peak 

assignments for these substrates compiled into Table I. The spectra, and peak 

assignments, for the remaining substrates can be seen in Appendix C. 

Table I discusses the key vibrations present in the spectra acquired from boot 

and metal tile. The tile spectrum in the regions of 4000-3500 cm-1 and 1800-1400 cm-1 

is clearly affected by noise and water vapour. The peaks seen in the region of 

2500-3000 cm-1 of the tile spectra are more likely to be residues found on the surface 

of the substrate rather than being a part of the substrate itself, due to the incredibly 

low absorbance levels observed in Figure 2B. The vibrations that correlate to this 

range are caused by CH, CH2 and CH3 vibrations found in lipids. The residues may have 
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been deposited by the protective cover that is found on the tile to protect them from 

damage during transportation, or during the handling of the tile at any stage during 

the lifetime of the substrate. 

 

Table I: Table with the wavenumbers and corresponding tentative peak assignments for the  
average spectrum collected from boot and tile, acquired using DRIFTS [1,2,3] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wavenumber (cm-1) Tentative peak assignments 

976.6 νCC alicyclic, aliphatic chains 

1006, 1034, 1167, 1204, 1241, 1247 νC=S, νCC alicyclic, aliphatic chains 

1083, 1094, 1101, 1114, 1120, 1126, 

1134, 1140, 1146 
νC-O-C asymmetric 

1258, 1267, 1286 νCC alicyclic, aliphatic chains 

1336, 1387 νC-NO2 

1393, 1409, 1417, 1456,1465 νCH2, δCH3 asymmetric 

1549, 1554, 1565, 1582 Amide II 

1638, 1647, 1668, 1674, 1680, 1688 Amide I 

2851, 2857, 2900, 2920, 2930, 2956 νC-H 

3083, 3332 νO-H 
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Figure 2: Spectra collected using DRIFTS showing an overlay of 10 spectra for Boot (A) and Tile (B). 

A 
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4.3.1.2 DRIFTS Environmental Conditioning Study 

This DRIFTS study looks at the combined effect of the environment and the 

substrate that the bacteria has been deposited on. As with the glucose and ovalbumin 

studies discussed in Chapter 2 (section 2.4), the quality and variability of the 

absorbance spectra generated when using the Beer-Lambert equation vary with the 

substrate used. The more porous substrates such as boot, concrete and jacket 

produce less intense, noisier spectra than the non-porous substrates such as lino and 

tile. A general trend seen across all of the temperature studies, as well as all of the 

substrates, is that there is overcompensation. Overcompensation when using the 

standard substrate spectra causes features of the absorbance spectra to be inverted. 

Despite the features of the spectrum being inverted the biological features of a 

bacterial spectrum are still present. Although spectra were collected across the full 

spectral region (4000-600 cm-1), only the fingerprint region (1800-900 cm-1) was 

interrogated during MVA. When performing the Beer-Lambert substrate removal 

with the tile the region where the Amide I and II bands are found became distorted 

due to the effect of the noise/water vapour in this region. Due to the very limited 

spectral contribution from the substrate (Figure 2B), a representative bacterial 

spectrum can be seen without having to perform Beer-Lambert removal (Figure 3). 

For this reason, the analysis of data collected from tile was performed on the raw 

data cut to the fingerprint region. 
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One issue encountered during the analysis of bacterial samples prepared on 

some of the substrates used in the study is that the spots were easily damaged or 

struggled to stay attached to the surface of the substrate for the duration of the 

experiment. This was a common trend across the non-porous substrates of lino and 

tile. Another trend also seen is that with the higher temperatures more of the spots 

were damaged or became detached from the surface, as a consequence fewer 

bacterial strains were available to be examined during MVA. Despite this, there was 

always a minimum of four out of the seven strains with a mix of Gram-positive and 

Gram-negative bacteria which still allows for a good comparison. 

 Once the data had been processed and absorbance spectra produced for each 

DRIFTS spectrum, MVA could be performed. As with the glucose and ovalbumin 

spectra they were not pre-processed in any way before PCA and DFA were 

performed. It was chosen not to pre-process the spectra in the interest of developing 

Figure 3: Example of a spot of E. coli on tile, collected at T3 during the 49C study, showing a 
typical bacterial spectrum. 
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a methodology that can be translated for the analysis of in situ samples. To do this, 

the number of steps between collecting a spectrum and performing MVA where an 

identification can be made were kept to a minimum. This allowed the model’s ability 

to separate different bacterial strains to be tested. While pre-processing has 

previously been optimised for spectra collected using the benchtop instrument, there 

are a number of parameters for each of the processing steps which can be modified 

by the user, based on the quality of the spectra acquired.  In the interest of 

developing the simplest methodology for non-specialist users, pre-processing was 

kept to a minimum for the data acquired using DRIFTS. 

Prior to PCA and DFA being performed, the data were clustered into new 

datasets where all seven strains could be examined at the same time. For this the 

spectra were grouped based on the substrate that the bacteria had been deposited 

on. Data was not grouped by strain to look at the substrate for analysis as in a ‘real 

world’ scenario the substrate would be a known variable. Therefore, a database can 

be chosen based on substrate to enhance classification. PCA was carried out on all 

bacterial strains and time points for a single substrate. Plots for the first three PCs 

and DFs were generated to try and identify which PCs/DFs represents the most 

discriminatory information. A selection of key figures are shown within this chapter, 

further PCA and DFA figures can be found in Appendix C. Due to the amount of data 

being examined the clearest separation between the data is not always seen between 

the first two PCs/DFs. The plots chosen for inclusion in this chapter use different 

PCs/DFs depending on which show the clearest separation however, only data from 

the first three PCs/DFS are used as this represents the majority of the variance seen 
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within the datasets. PCA and DFA of the concrete dataset shows a varying amount of 

separation across the temperatures. Figure 4 shows PCA plots produced from spectra 

collected from concrete in the 37°C study where some separation and clustering can 

be seen based on strain (A) and a PCA plot produced from concrete in the 30°C study 

where the is no clear separation of data based on strain (B). 
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 Figure 4: PCA plots showing separation of bacterial strain for spectra collected from 
concrete during the 30°C study (A), from concrete during the 37°C study (B) and from 

concrete during the 49°C study (C). 
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From the plots shown in Figure 4 there is a varying level of both separation 

and clustering of the seven different bacterial strains across all three temperature 

environments. In Figure 4A there is very little separation, however there is some 

loose clustering of the strains with some overlap between groups of bacteria. 

Therefore, the plot can be split into three sets of clustering: E. coli and BT, B. atrop 

and BTK+ and BTK, BTK- and PF.  

When considering the data presented in Figure 4B and Figure 4C for the 37°C 

and 49°C studies, it can be seen that there is a slight horseshoe formation to the 

spread of the data. [4] This spread is caused by non-linearity between the groups of 

data so caution must be used when interpreting the results. Figure 4B sees B. atrop 

and BT separating from the remaining five bacterial strains. BTK seems to separate 

out best from the other strains. However, in this study there is an overlap of the 

Gram-negative bacteria which isn’t seen in the 30°C study. Figure 4C shows the best 

combined separation and clustering across the three studies. The plot can generally 

be split into four sections with PC1 and PC3 splitting the groups.  The clustering shows 

overlap of: BT and BTK, BTK+ and BTK-, B. atrop and E. coli with PF not overlapping 

with any other strain. As with the 30°C study there is no separation of the 

Gram-negative from the Gram-positive bacteria.  

This PCA analysis was then followed up by DFA to try to improve the split of 

the data seen. Figure 5 shows the corresponding DFA plots to those shown in Figure 

4, where there is a significant improvement in the data from both studies showing 

more clustering and separation based on bacterial strain. 
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 Figure 5: DFA plots showing separation of bacterial strain for spectra collected from concrete during the 
30°C study (A), from concrete during the 37°C study (B) and from concrete during the 49°C study (C). 
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The DFA plots across all three of the temperature studies shows clearer 

separation and much more defined clustering of the bacterial strains in comparison 

to the equivalent PCA plots. DF1 in Figure 5A separates BT and B. atrop from the other 

bacteria strains. Also separated is BTK-, PF and E. coli with the Gram-negative strains 

overlapping with each other which was not seen in the PCA plot shown in Figure 4A. 

BTK and BTK+ are in the centre of the plot with regards to DF1. DF2 then separates 

BTK and BTK+ from the other five strains. DF2 also separates BTK- from the Gram-

negative strains on the right of the plot.  

In Figure 5B and C there is no overlap or separation of the Gram-negative 

bacteria. Figure 5B uses DF1 and DF2 to separate the bacteria into four distinct 

clusters with overlap of some of the strains. PF and BTK, E. coli and BT, BTK- and 

B. atrop and BTK+ found on its own. DF1 separates BTK+, BTK- and B. atrop from the 

others strains with DF2 separating BTK+, E. coli and BT from the other four strains.  

As with Figure 5B, there are four defined clusters in Figure 5C, however this 

time it is PF that is the strain that does not overlap with the other bacterial strains. 

The three overlapping clusters are: BT and BTK, BTK- and BTK+ and E. coli and B. atrop. 

DF1 clearly separates PF, BT and BTK from the other four strains with DF2 separating 

PF from all of the other strains. DF2 can also be seen to be starting to split B. atrop 

from E. coli. The DF1 and DF2 loadings from each of the DFA plots shown in Figure 5 

can be seen in Figure 6, Figure 7 and Figure 8. 
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Figure 7: DFA loadings for the 37°C study showing DF1 loadings (A) and DF2 loadings (B). 
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B 

Figure 6: DFA loadings for the 30°C study showing DF1 loadings (A) and DF2 loadings (B). 
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The loadings for the species based study using DRIFTS can be seen in Figure 6, Figure 

7 and Figure 8 with a common trend observed across the three different temperature 

studies is that the loadings spectra generated to describe the separation seen in the 

DFA plots are significantly affected by noise with very few biological features 

protruding through. Tentative peak assignments were provided for the peaks that are 

classed as significant, based on intensity, and therefore should represent physical 

features rather than simply identifying noise. All peak assignments have been 

collected into a single table that represents peaks present in the spectra collected 

across the different temperature studies, see  

Table II. 

Figure 8: DFA loadings for the 49°C study showing DF1 loadings (A) and DF2 loadings (B). 
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Based on Figure 6 there are a number of different peaks represented by DF1 

that are not represented by DF2. These include C=O/C-O, Amide I, phosphate 

vibrations and peaks within the phosphodiester region. The key vibrations within 

these are the ones located in the low wavenumber region representing the 

differences in the phosphate groups which are causing the Gram-negative bacteria, 

and BTK-, to separate from the other strains. The one unique vibration detected in 

DF2 is a series of peaks found within the Amide II region. As previously discussed 

changes in the Amide II region relate to the outer membrane and LPS layer found 

within Gram-negative bacteria. 

As with the loadings plots for the 30°C (Figure 6) the loadings for the 37°C 

study show there are several key vibrations represented in DF1 that are not present 

in DF2 (Figure 7), as they are separating based on different bond vibrations. The bulk 

of the peaks fall within the Amide I region with C=O and CH vibrations also present. 

DF2 has fatty acid ester groups (1787 cm-1) and phosphodiesters vibrations 

(1111 cm-1) that are not seen in DF1. 

The loading plots for the 49ºC study, shown in Figure 8, have the most 

similarities between the groups being represented in the DF1 and DF2 loadings across 

the three temperature studies. Peaks attributable to Amide I, II and C=O are present 

in both DF1 and DF2 loadings plot as well as CH ring stretches and CH2 wagging. Figure 

8A has peaks at 1301 and 1262 cm-1 which are characteristic of Amide III vibrations. 

DF2 (Figure 8B) has fatty acid esters at 1797 and 1750 cm-1 as well as a CH2 bend of a 

methylene chain found in lipids at 1470 cm-1. No vibrations consistent with phosphate 
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groups are present in either of the loadings plots as there is no clear separation of the 

Gram-negative strains from the Gram-positive ones. Concrete is a non-homogenous, 

porous substrate that allows the samples absorb into the surface. Due to the 

penetration depth of the technique, and the strong spectral profile of the concrete 

(Appendix C), it is possible that not all of the bacterial signatures will be detected 

following removal of the spectral contribution from the substrate. 

 

Table II: Table with the wavenumbers and corresponding tentative peak assignments for the DF loadings plots 
from the data collected from all species deposited on concrete during the 30°C, 37°C and 49°C studies [1,2,3] 

Wavenumber (cm-1) Tentative peak assignments 

1111, 1128 Phosphodiester region, νCO, νCC, νCOH and νCOC 

1155 νC-O 

1224 Phosphate II (stretching PO2
- asymmetric vibrations) in 

β-form DNA 

1230 Asymmetric PO2
- stretching vibrations in DNA and RNA 

1262, 1301 Amide III 

1353, 1359, 1360, 1362, 1368, 1377, 

1390, 1394 
CH2 wagging 

1400, 1401, 1405, 1407, 1413, 1420 Ring stretch vibrations mixed with CH in-plane bending 

1470 CH2 bend of methylene chain in lipids 

1485, 1487, 1495, 1504, 1508, 1515, 

1519, 1543, 1551, 1554, 1560, 1573, 

1579, 1584, 1588 1593 

Amide II (NH bend coupled to CN stretch) 

1620, 1623, 1631, 1636, 1638, 1647, 

1675, 1677, 1685, 1687, 1690, 1696 
Amide I 

1700, 1702, 1711, 1718, 1735 νC=O 

1750, 1787, 1797 Fatty acid esters 

 

After the DFA analysis had been performed the dataset was split down into 

smaller datasets to allow for more exploratory analysis. The data was split into 

individual strains on each of the substrates meaning that bacterial strain, 

temperature and substrate are fixed variables with length of exposure being the only 
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variable examined. This allowed for the examination of the affect that the prolonged 

exposure to a given environment has on the spectral profile of a bacterium.  The 

splitting of the dataset was carried out across all substrates as well as all four 

environments, three different temperatures and a solar study. 

PCA and DFA have been carried out with all of the datasets; however, only the 

key figures are shown within the chapter. The figures show plots from a single strain 

on a given substrate, across all three of the temperature studies to show a 

comparison of the data as the temperature increases. PCA plots showing different 

separation abilities will be shown first, followed by the corresponding DFA that show 

an improvement in the clustering and separation ability. All other PCA and DFA plots 

from the remaining strains and environments are shown in Appendix C. 

Figure 9 shows a comparison of PCA plots produced from spectra acquired 

across the temperatures for BTK deposited on boot. Figure 10 shows a comparison 

of DFA plots produced from spectra acquired from BTK deposited on boot across the 

temperatures. There is a significant improvement in the separation of the data from 

the PCA to DFA plots, with consistent clustering for the four time-points across the 

three environmental conditions, with particularly distinct clustering for the 37°C 

dataset shown in Figure 10. 
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 Figure 9: PCA plots showing separation of time point for spectra collected from BTK deposited 
on boot during the 30°C study (A), the 37°C study (B) and the 49°C study (C). 
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 Figure 10: DFA plots showing separation of time point for spectra collected from BTK 
deposited on boot during the 30°C study (A), the 37°C study (B) and the 49°C study (C). 
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A general trend seen across all of environments in the PCA plots in Figure 9 is 

that there is no separation or clustering of the four time-points seen in any of the BTK 

datasets. However, when examining the DFA plots for the same datasets, shown in 

Figure 10, there is significantly enhanced separation of the time-points. For all three 

of the DFA plots shown in Figure 10 there is both clear separation and clear clustering 

of the time-points, highlighting the improved quality of separation achieved when 

performing DFA after PCA, ultimately highlighting the need for an extra stage of MVA 

to provide a classification result.  

DF1 is responsible for some of the separation seen in the DFA plots across all 

three temperatures. DF1 is responsible for the separation of T0 from the other 

time-points in Figure 10C, while in Figure 10B it is T2 that is separated out by DF1. 

Figure 10A shows that T0 and T3 are separated by DF1, with T1 and T2 falling in the 

centre of the plot with respect to DF1. DF2 separates T3 from the remaining time-

points in both Figure 10B and C. Along with this, T0 and T1 are also separated with 

respect to DF2 and the general separation of the groups is much clearer in Figure 10B, 

in comparison to the other plots in Figure 10. When analysing Figure 10A, DF3 is 

mainly responsible for separating T1 and T2 from each other, with the remaining two 

time-points spread across the plot with respect to this DF.  

When interrogating the loadings plots that relate to the DFA plots of Figure 

10, it can be seen that the spectra are heavily dominated by noise, as with the plots 

shown in Figure 6, Figure 7 and Figure 8. Tentative assignments have been given to 

the most significant peaks that are standing out from the noise.  
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Due to the degree of noise present in the loadings, a threshold was applied to 

limit the number of peaks identified for assignment. Only absorbances greater than 

0.05 were considered to be genuine biological variations, as opposed to noise 

contributions. Biological variations may exist in other regions of the spectrum, but 

are difficult to extract from the underlying noise. Performing noise reduction may 

help to enhance these underlying biological peaks, however, in this particular study 

it was key to keep the processing as simple as possible. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: DFA loadings plots from the 30°C BTK study showing DF1 loadings (A) and DF3 
loadings(B). 
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Figure 12: DFA loadings plots from the 37°C BTK study showing DF1 loadings (A) and DF2 loadings(B). 
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B 

Figure 13: DFA loadings plots from the 49°C BTK study showing DF1 loadings (A) and DF3 loadings(B). 
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In the 30°C study, DF1 (Figure 11A) separates out T0 to the right of the plot 

with T3 separating out to the left of the plot, and the remaining two time-points (T1 

and T2) are left in the centre of the plot with respect to DF1. DF3 (Figure 11B) splits 

T1 and T2 from each other, with T0 and T3 in the centre of the plot with respect to 

DF3. The only vibration that both of the DF loadings have in common is the Amide I 

vibration. DF3 has a number of peaks within the Amide II and a singular peak at 

1457 cm-1 representing an asymmetric CH3 vibration. The only unique peak found 

within the DF1 plot is found at 1420 cm-1 and represents C-H vibrations and ring 

stretching. Combined, DF1 and 2 (Figure 12) separate and cluster the data into the 

four individual time points. DF1 causes T2 to separate clearly from the other time 

points while DF2 separates T3 out from the other time points. When considering the 

peaks represented in the 37°C DF loadings, only peaks within the Amide I region are 

shown in the DF1 loadings, with Amide I and II vibrations represented in DF2. For the 

49°C study, DF1 (Figure 13A) separates out T0 from the other time points while DF2 

(Figure 13B) separates out T3. Both DF1 and DF2 have peaks within the Amide I and 

II region - these are the only peaks present in the DF1 loadings. Within the DF2 

loadings there are a number of other peaks represented. These include peaks in the 

Amide III and Phosphodiester regions as well as C=O and symmetric PO2
- vibrations. 
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Table III: Table with the wavenumbers and corresponding tentative peak assignments for the DF loadings plots 
generated from the data collected from BTK deposited on boot during the 30°C, 37°C and 49°C studies [1,2,3] 

Wavenumber (cm-1) Tentative peak assignments 

905.7, 959.8, 997.1, 1044 Phosphodiester region, νCO, νCC, νCOH and νCOC 

1075 νPO2
- symmetric 

1290, 1325 Amide III 

1420 Ring stretch vibrations mixed with CH in-plane bending 

1457 δCH3 asymmetric 

1511, 1521, 1541, 1551, 1553, 

1558, 1560, 1564, 1565, 1569, 

1573, 1575, 1577 

Amide II (NH bend coupled to CN stretch) 

1618, 1625, 1633, 1638, 1647, 

1655, 1662, 1666, 1668, 1672, 

1675, 1681, 1683, 1687, 1696 

Amide I 

1737 νC=O 

 

Figure 14 shows a comparison of PCA plots produced from spectra acquired 

from B. atrop deposited onto boot in the temperature studies, showing some good 

separation of the time-points apart from the 30°C data (A). The ideal growth 

temperature for B. atrop is 37°C which may explain why there is poorer separation of 

the time points at 30°C and better at 37 and 49°C. This would be due to bacteria not 

growing or growing very slowly which will result in smaller, less noticeable changes 

over time at 30°C. At 37 and 49°C the bacteria are likely to be growing therefore, a 

biological response is expected and would be more noticeable within the spectral 

profile. Figure 15 shows the accompanying DFA plots produced from spectra acquired 

from B. atrop deposited onto boot in the temperature studies. As with other studies, 

with DFA analysis there is an improvement in the separation of the data with tighter 

clustering of data points for each time-points compared with the PCA plots produced 

for the same dataset.  
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Figure 14: PCA plots showing separation of time point for spectra collected from B. atrop 
deposited on boot during the 30°C study (A), the 37°C study (B) and the 49°C study (C). 
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Figure 15: DFA plots showing separation of time point for spectra collected from B. atrop 
deposited on boot during the 30°C study (A), the 37°C study (B) and the 49°C study (C). 
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Unlike with the PCA plots produced from the BTK datasets, there is a general 

trend seen across all of environments for the B. atrop data shown in the PCA in plots 

in Figure 14 that there is a good level of separation with some clustering of the four 

time-points. In Figure 14 all of the time-points separate out, rather than a single time 

splitting to leave the other three clustered together. The exception to this is in Figure 

14A, where T2 clearly separates out from the other three time-points, while the other 

three time-points do not clearly separate. Figure 14B and C split all four of the time-

points into individual clusters. In Figure 14B, PC2 causes T1 and T2 to separate from 

the other two time-points which are located in the centre of the plot with respect to 

that PC. PC3 separates out T0 and T3, as well as splitting the T2 cluster in half. For 

Figure 14C, PC1 separates out T0 and T3 with the other two time-points in the centre 

of the plot with respect to PC1. PC3 is mainly responsible for separating T2 from the 

other time-points. The DFA plots shown in Figure 15 show enhanced separation of 

the time-points across the three different temperatures, with tighter clustering. 

Generally, DF1 is responsible for the separation of the early time-points (T0 and T1) 

from the later time-points (T2 and T3), except for Figure 15A where DF1 is responsible 

for splitting T2 from the rest of the time-points. DF2 appears to separate T0 and T2 

from T1 and T3 in Figure 15A and B. In Figure 15C, DF3 separates T2 and T3 from each 

other, with T0 and T1 generally sitting in the centre of the plot with respect to DF3. 

Again, the spectra are again heavily dominated by noise with some biochemical 

features protruding through the noise to illustrate what physical features are causing 

the separation. These have been tentatively assigned peaks and collated into Table 

IV. 
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Figure 16: DFA loadings plots from the 30°C B. atrop study showing DF1 loadings (A) and DF2 loadings(B). 
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B 

Figure 17: DFA loadings plots from the 37°C B. atrop study showing DF1 loadings (A) and DF2 loadings(B). 
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B 



214 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

Table IV: Table with the wavenumbers and corresponding tentative peak assignments for the DF loadings plots 
generated from the data collected from B. atrop deposited on boot during the 30°C, 37°C and 49°C studies [1,2,3] 

 

For the 30°C study, DF1 (Figure 16A) separates T2 from the other time points 

while DF2 (Figure 16B) separates T0, T1 and T3 from each other. In the DF1 loading 

the only significant peaks are within the Amide I region, while in DF2 peaks are also 

Wavenumber (cm-1) Tentative peak assignments 

905.7, 984 Phosphodiester region, νCO, νCC, νCOH and νCOC 

1429, 1437, 1454, 1467, Ring stretch vibrations mixed with CH in-plane 

bending 

1506, 1508, 1510, 1521, 1539, 1551, 1554, 

1558, 1562 
Amide II (NH bend coupled to CN stretch) 

1621, 1623, 1627, 1636, 1640, 1646, 1651, 

1653, 1655, 1657, 1664, 1666, 1670, 1672, 

1675, 1679, 1681, 1685, 1690, 1696 

Amide I 

1711 νC=O 

Figure 18: DFA loadings plots from the 49°C B. atrop study showing DF1 loadings (A) and DF3 loadings (B). 
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B 
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found within the Amide II region with peaks at 1551 and 1508 cm-1. DF1 (Figure 17A) 

separates the early time points (T0 and T1) from the later time points (T2 and T3). 

DF2 (Figure 17B) separates T0 and T2 from T1 and T3 for the data collected during 

the 37°C study. DF1 houses only peaks within the Amide I and II regions, however DF2 

also has peaks within the phosphodiester region and ring stretch vibrations. As with 

DF1 in the 37°C study, DF1 (Figure 18A) separates the early time points (T0 and T1) 

from the later time points (T2 and T3). DF3 (Figure 18B) separates T2 from T3, with 

T0 and T1 sitting in the centre of the plot with respect to this DF. As with the DF 

loadings from the 37°C, DF1 has only peaks within the Amide I and II regions.  This 

suggests that as the bacteria ages it is the Amide region that is most affected at 49°C 

as proteins are known to denature at higher temperatures. The DF3 loading shows 

that peaks are also present within the Amide region, as well as at 1711 to represent 

the C=O vibration and peaks at 1454 and 1429 cm-1 representing C-H vibrations and 

ring stretches. This suggests that at the final time point (T3) there is more C=O and 

C-H present in the spectral profile of B. atrop than at the remaining three time points. 

 

 

 

 

 

 



216 | P a g e  
 

4.4  Conclusions 

During the DRIFTS environmental conditioning study, it was shown that 

absorbance spectra from bacteria can be generated using the Beer-Lambert 

equation, however it can be seen that there is some overcompensation when 

removing the substrate contribution. Despite the overcompensation, key biological 

features are present and are detectable. The performance of this method is variable 

depending on the type of substrate used, with non-porous substrates generally 

performing better than porous ones. Due to the nature of the DFIRTS technique 

porous substrates will produce less intense spectra due to the loss of energy to the 

substrate. These results are also consistent with the conclusions made, with respect 

to the effect of the substrate, during the glucose and ovalbumin studies. The ability 

for the Gram-type to be determined varied depending on the environment the 

bacteria were left in. On the occasions where there was no clear separation based on 

Gram-type there was a good level of species-based clustering showing that the 

technique can identify differences between the species when collected from a 

complex substrate. Previous work shown in Chapter 3 (section 3), shows that there is 

no detectable difference between different batches of the same bacteria. While it is 

difficult to be certain where all of the biological information within the loadings plots 

lies, there are a number of peaks clearly protruding through the noise that have been 

tentatively assigned biological vibrations. As mentioned previously, performing some 

pre-processing on the data mainly in the form of noise reduction may enhance the 

biological feature within the spectrum. However, the key aspect to this study was to 



217 | P a g e  
 

develop a methodology that is rapid and user friendly, which required removing the 

pre-processing steps. The method then simply involved removing the substrate 

contribution from the bacterial spectrum before performing data analysis. With a 

model database set up containing multiple bacterial strains and substrates, this could 

lead to an identification of a sample within a number of minutes, perfectly suited to 

in situ analysis. 

The overall aim of this study was to develop a methodology that can be used 

to identify samples in situ so that there was no sample preparation involved, as well 

as being able to provide a rapid identification of a sample. This is particularly 

important when handling suspected biological warfare agents (BWAs) as quicker 

identification of a sample would allow for the correct treatment of patients to be 

implemented, in turn potentially reducing the number of fatalities caused by such an 

event. DRIFTS has shown that separation and clustering can be seen in data that has 

not been pre-processed. For this reason, DRIFTS is a suitable technique that can be 

used for the identification of surface-deposited bacteria. 
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Chapter 5 

Assessment of Effects of Environmental Conditioning 

on FTIR Spectra from Surface Deposited Bacteria using 

High Throughput Infrared Spectroscopy 

 

5.1  Introduction and Aims 

This chapter discusses research that has focused on assessing the effect of 

different environments on surface deposited bacteria. The temperatures used in the 

study were in the range 30°C to 49°C which are used to simulate an extremely hot 

dry climate as classified by the Ministry of Defence (MoD). [1] For this study the lower 

limit of 30°C was used for the environment as opposed to 32°C to ensure that the 

temperature range encompassed the optimal growth temperatures for all of the 

bacterial strains used within the study. An extreme hot dry climate is typical of 

regions such as the Middle East and Southwestern United States of America (USA), 

areas that have had cases involving the use of Biological Warfare Agents (BWAs) 

during the late 20th and early 21st Century and therefore are of particular concern 

and interest. 

The chapter begins by outlining the setup for the experiment before moving on 

to discuss the results obtained and assess the effect of exposure to different 
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environments and how these effects can be used to aid identification of samples. This 

study analysed bacteria prepared on a 96-well Silicon (Si) plate with data collected 

using a High Throughput - Fourier Transform Infrared Spectrometer (HT-FTIR). As part 

of the environmental study Multiblock PCA was performed on the dataset to analyse 

which of the different factors has the biggest impact on the separation of the data. 

After discussing the results of the HT-FTIR study a final section discusses the 

general trends that are common between both of the environmental studies 

considering the data discussed in Chapter 4 (section 3.1.2) and Chapter 5 (section 5). 

 

5.2 Sample Preparation 

For HT-FTIR analysis, carried out at the University of Manchester (UoM) using the 

Bruker Equinox 55 with a HTS XT microplate reader attachment, bacterial samples 

were prepared to an OD 20. From these samples, 12 per bacterial strain, were spotted 

in duplicate across two 96-well Si plates, with each well containing 20 µl of sample. 

As with the study carried out with DRIFTS, there was a control and non-control set of 

samples. Due to the nature of the instrument, this consisted of one 96-well Si plate 

of samples being a control plate, with a second used as a non-control plate. Bacteria 

were spotted onto the plate in a random order, with the order then remaining 

consistent across both plates and across all temperatures as well as in the solar study. 

The same protocol was used across all of the temperature and solar studies. 

Before the analysis of any samples, both plates were dried in an oven set to 50°C for 
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~20 mins, until all spots were dry. It is important for HT-FTIR that the samples are 

fully dry before analysis takes place as the water within the samples will completely 

dominate the spectrum acquired from a wet spot. 

 

5.3 Data Collection 

Once the samples were dried one plate was transferred to a desiccator for storage 

while the other plate was analysed for the T0 time point. Once the analysis of the first 

plate was completed the plates were swapped to allow for analysis of the second 

plate, again storing the previously analysed plate in the desiccator. Once both plates 

had been analysed they were stored in clear petri dishes before then being placed 

into the environment. 

For the study assessing the effect of temperature using HT-FTIR, the environment 

was an incubator set to the chosen temperature for the 30°C and 37°C studies, with 

an oven used for the 49°C study. As a consequence of using an incubator or an oven 

for the storage of samples, the plates were not exposed to any solar radiation other 

than when being transferred for analysis.  

For the solar study a slightly different set up was used as the temperature was 

not controlled. A steel, high sided rectangular box was used to store the plates before 

the LED lamp was attached to the side of the box which was then covered with foil, 

see Figure 1. The steel box was stored in a fume hood with the front closed, only 

being opened on the days where a plate was removed for analysis. This set up allowed 
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for the temperature around the samples to be kept as consistent as possible. The 

setup also ensured that the exposure to other solar radiation was very minimal while 

ensuring any stray radiation from the lamp was directed towards the samples as the 

steel sides and foil reflect the light onto the samples. A temperature and humidity 

monitor was stored alongside the samples within the steel box to track the conditions 

that the samples were exposed to alongside the solar radiation. Prior to a study being 

carried out with bacterial samples, the box was set up with the lamp and humidity 

monitor to assess any temperature change caused by the lamp. The study found that 

there was no significant temperature change caused by the use of the lamp, therefore 

no compensation or extra considerations were required during this study. 
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 Figure 1: Figure showing the set up used for the Solar study where the box is covered with foil (A), the box is 
uncovered with lamp attached to the side of it and a temperature and humidity monitor (B) and the box is 

uncovered with lamp attached to the side of it and switched on (C). 

A 

B 

C 
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5.4 Data Analysis 

During the processing of the data, after all of the spectral acquisition had been 

completed, it was noted that during spotting of the bacterial samples, an extra 

sample of BTK had been spotted (13), and one less sample of BT (11). This was 

consistent across both Si plates, across all three temperatures and for the solar study. 

This did not affect the PCA and DFA analysis. However, for multiblock PCA to be 

performed, each of the bacterial strains require the same number of samples per 

group. To balance the groups, a 12th spot for BT was generated by averaging the other 

11 BT samples. A single spot was removed from BTK to leave 12 spots. As discussed 

in Chapter 4 (section 3.1.2) PCA/DFA plots shown within this chapter compare 

different PCs/DFs due to the fact that different datasets are being compared and the 

most discriminatory component/function may not be the same but will be found 

within the first three. 

 

5.4.1 Data Pre-Processing and Multivariate Analysis 

The processing method developed within Chapter 3 (section 2.6) for the 

pre-processing and multivariate analysis (MVA) of FTIR data was used within this 

chapter for the processing of the HT-FTIR dataset. The pre-processing of the data 

involves vector normalising (VN) the data, performing PCA-based noise reduction 

(NR) before cutting the data to the fingerprint region (1800-900 cm-1). Once the pre-

processing had been performed on this dataset MVA could be performed. This was 
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in the form of both PCA and DFA analysis as well as Multiblock PCA. Multiblock PCA 

was performed on the HT-FTIR dataset to try and explore further the effect that aging 

has on a bacteria sample when exposed to differing environmental conditions. As 

with other datasets, NR and VN and a cut to the fingerprint region were performed 

on the dataset prior to multiblock PCA. Additional to this, the data was also processed 

using extended multiplicative scatter correction (EMSC) and a fingerprint cut rather 

than NR and VN as a comparison of pre-processing techniques. The additional study 

where the data was pre-processed using EMSC was included as HT-FTIR data is more 

prone to suffer from scattering. 

For the DRIFTS dataset the data were handled in a similar manner to that of the 

glucose and ovalbumin dataset discussed within Chapter 2 (section 2.4). This involved 

manually removing the spectral contribution of the substrate from the bacterial 

spectrum to produce an absorbance spectrum of the bacterial data. Once this had 

been obtained it was cut to the fingerprint region and used for MVA in the form of 

PCA and DFA. Spectra were not pre-processed prior to MVA in the interest of keeping 

the methodology for identification as simple as possible. If the methodology were to 

be used in a ‘real world’ scenario the data would not need to be cut to the fingerprint 

region prior to MVA as the region of interest can be selected prior to spectral 

collection. The whole spectral range (4000-600 cm-1) was collected during this study 

for the purposes of having a complete spectral database. It should be noted that no 

outliers were removed from any of the models to test the robustness of the model. 

5.5 Environmental Conditioning Study 
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For the HT-FTIR study there are four different sections to consider and analyse 

the interactions and relationships both individually and between them. The four 

sections are made up of three different temperatures and a single solar radiation 

study. Data from each of the temperature studies and the solar study will be shown 

in individual sections where they will also be discussed. Following this, there will be 

a discussion of each of the temperatures individually before comparing and 

contrasting the results seen in the three environments. The HT-FTIR section will finish 

with an overall comparison of results collected from the four independent studies, 

including the solar study. 

HT-FTIR data was processed using the method discussed in Chapter 3 

(section 2.6) using vector normalisation and noise reduction, before cutting the data 

to the fingerprint region (1800-900 cm-1). Figure 2 shows a multigroup PCA, with all 

seven bacteria, for each of the three temperatures.  The multigroup PCA plots show 

both the bacterial strain and time point which make it clear which is the overriding 

factor causing the separation seen in the plot, without having to plot them 

separately. The plots shown were chosen based on the PCs that show the clearest 

separation and clustering of the data. Following this, DFA was performed on the same 

datasets with plots that show the best separation shown in Figure 3 for each of the 

temperatures. Figure 5 to Figure 7 goes on to show the loadings plots for the most 

discriminatory DFs shown in Figure 3. 
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Figure 2: Multigroup PCA plots from HT-FTIR data showing separation based on both the species and 
the ageing of bacteria, across all three temperature studies. (A) shows PC1 vs PC2 from the 30°C 
study, (B) shows the PC2 vs PC3 plot from the 37°C study and (C) shows PC1 vs PC3 from the 49°C 

study. 
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Figure 3: Multigroup DFA plots from HT-FTIR data showing separation based on both the species and 
the ageing of bacteria, across all three temperature studies. (A) shows PC1 vs PC3 from the 30°C 
study, (B) shows the PC2 vs PC3 plot from the 37°C study and (C) shows PC2 vs PC3 from the 49°C 

study. 
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In Figure 2A and C, PC1 is responsible for the split in the data caused by 

Gram-type. PC2 is responsible for the separation of E. coli from PF as well as BT and 

BTK from the other Bacillus species shown in Figure 2B. As PC1 is responsible for 

separation of Gram type, the loadings for the 30 and 49°C studies are included in this 

chapter (Figure 4). Figure 5 shows that the majority of the separation is caused by 

vibrations within the Amide I and II regions (1659, 1657, 1612, 1609 1584 and 

1582 cm-1) that are responsible for the separation of Gram type in both the 30 and 

49°C studies. In Figure 2A, PC2 mainly separates BT and E. coli from the other 

bacterial strains. PC3 clearly separates B. atrop from all other bacterial strains 

including the other Bacillus strains which can be seen in Figure 2B and C. Also shown 

in Figure 2C is the separation between BT, BTK and its sub-species with respect to 

PC3. The combination of PC1 and PC2 in Figure 2A and PC2 and PC3 in Figure 2B shows 

that there are seven individual clusters, one for each bacterial species, however in 

Figure 2C there is some overlap of the B. thuringiensis strains. The B. thuringiensis 

strains overlap as they are phylogenetically closer to each other than they do any of 

the other bacterial strains. When moving on to consider the separation observed in 

the DFA plots, shown in Figure 3, all three temperature studies show separation and 

clustering of the bacterial strains. The DFs responsible for the separation of bacteria 

based on Gram-type vary across the three temperature ranges. DF1 clearly separates 

Gram-negative from Gram-positive bacteria in Figure 3A, while in Figure 3C it is DF3 

that is used for the separation of Gram-type. DF2 shows this separation in Figure 3B, 

however the separation is less definitive than the split shown by the data collected 

from the other temperatures.  
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Figure 5: DFA loadings for the 30°C study showing DF1 loadings (A) and DF3 loadings (B). 

Figure 4: PC1 loadings for the 30°C study (A) and the 49°C study (B). 
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Figure 6: DFA loadings for the 37°C study showing DF2 loadings (A) and DF3 loadings (B). 

A 

B 

Figure 7: DFA loadings for the 49°C study showing DF2 loadings (A) and DF3 loadings (B). 
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In Figure 5A, showing DF1, the key peaks that cause the separation are found 

at the high wavenumbers relating to Amide I and II vibrations (1650-1545 cm-1). These 

peaks are the result of vibrations from the C=O for Amide I and a combination of 

C-N-H bending and C-N stretching for Amide II. [2] Other vibrations that are key for 

the DF separation are the peaks at 1398 and 1061 cm-1 correlating to CH3 vibrations 

and the vibrations of the phosphodiester region. Figure 5B shows DF3 which 

represents more biological features. Amide I and II and the phosphodiester region 

are still represented in DF3, however, the distribution of peaks is much more 

dispersed across the fingerprint region compared to DF1. Other key features used in 

the separation are C=O, Amide III and C=C and C-H vibrations. A key structural 

difference seen between Gram-positive and Gram-negative bacteria is the phosphate 

region of the spectrum encompassing the peaks at 1225, 1121 and 1103 cm-1 which 

causes the Gram-negative bacteria, as well as BTK- and BTK+, to separate out from 

the other Bacillus strains. The peak at 1225 cm-1 represents Phosphate II which covers 

asymmetric PO2
- stretching vibrations, while peaks at 1121 and 1103 cm-1 cover the 

symmetric P-O-C and PO2
- stretching.  

When interrogating the loadings shown in Figure 6 there are similarities 

between DF2 and 3. Key vibrations highlighted in both loadings plots are Amide I 

(1713, 1692 and 1657 cm-1) and the phosphodiester region (972, 947, 922 and 

916 cm-1) which can be linked to the separation of the bacterial strains. The CH2 

wagging is found exclusively with the bacteria found within the positive region of the 

DFA plot with respect to DF3. Different peaks within the Amide I and phosphodiester 

region point to possible shifts in peak position and structural changes. This can 
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explain why peaks relating to a particular vibration show up in both the positive and 

negative regions of a loadings spectrum. Amide I peaks are found in the negative 

region of the DF2 loading and in both positive and negative regions of DF3. The peaks 

found in the phosphodiester region can be found in both regions of the DF2 and the 

negative region of the DF3 loadings plot. The peaks seen within the Amide I and 

phosphodiester region are likely to be a result of structural differences found within 

the cell walls of the bacteria. DF2 highlights C=O, Amide II, Phosphate II and DNA/RNA 

bases as the key vibrations responsible for separation. Of particular interest are the 

peaks at 1711 and 1238 cm-1 which identify C=O and Phosphate II as the key 

vibrations for the split of the Gram-negative bacteria from the Gram-positive Bacillus. 

The phosphate bands are of particular interest when it comes to the separation 

shown as these relate to a fundamental difference within the cell wall. For this 

reason, they are often used to distinguish between Gram-positive and Gram-negative 

bacteria when using FTIR. [3] 

For the 49°C study the DFA loadings shown in Figure 7 highlight that the key 

vibrations causing the separation are in the same regions for both DF2 and 3. These 

vibrations include C=O, Amide I and III, CH, CH2 and CH3 as well as vibrations in the 

phosphodiester region. The key vibrations that differ between the two discriminant 

functions is shown in Figure 7B with the peak at 1572 cm-1 correlating to an Amide II 

vibration. Changes in the Amide II region link to the overall level of protein content 

within the cell. For Gram-positive bacteria this is fairly low compared to that of 

Gram-negative bacteria which is high due to the presence of an outer membrane and 

a Lipopolysaccharide (LPS layer). [4] As with the data from the previous temperature 
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studies, the separation seen is likely to be due to the variation in the structure of the 

cell wall and the protein content of the different bacterial strains that are both 

Gram-positive and Gram-negative. 

Along with a set of three temperature studies that span across 30-49°C, a 

solar study was carried out to evaluate the effect that another environmental 

variable has on a bacterial spectrum. Figure 8 and Figure 9 show the multigroup plots 

produced using PCA and DFA, along with the loadings plots that show the key peaks 

responsible for the separation seen in the DFA plot. 
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From Figure 8 it can be seen that the separation is again caused by Gram-type 

rather than the effect of the solar radiation. However, there are signs within the 

bacterial clusters that the time points are beginning to separate out particularly with 

B. atrop, E. coli and PF. Both of the PCA and DFA plots show clear separation and 

clustering of the bacterial strains with PC1 in Figure 8 showing separation of the 

Figure 8: Multigroup MVA plots from HT-FTIR data acquired during the solar study 
showing PC1 vs PC2 (A) and DF2 vs DF3 (B). 

B 
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Gram-negative strains (E. coli and PF) from the Gram-positive strains. Figure 8 shows 

that it cannot only separate the Gram-negative strains from the Gram-positive strains 

but also splits E. coli from PF. The PCA model then struggles with the separation 

within the Gram-positive strains. Figure 9A shows that there is a clearer separation 

of all strains regardless of Gram-type, however, there is still an overlap between BTKl 

and BTKx. A trend seen in the temperature study that is also observed in this study is 

that T0 can be seen to separate out the most out of all of the time-points. One 

possible cause for this separation could be differing levels of hydration when 

analysing samples at the T0 time point compared with T1, T2 and T3. For T0, the 

samples have only just been prepared, therefore have not had sufficient time to fully 

dry. This will change the biological peaks that can be seen within the loadings for the 

dataset, therefore causing the T0 data to separate out from the other three time-

points. In Figure 8 this trend is most prominently seen in B. atrop, in Figure 9A this 

trend is also seen in E. coli and PF. 
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When it comes to interrogating the loadings plots for the Solar study, the 

peaks highlighted by DF2 and DF3, shown in Figure 9, have some similarities. The 

peaks highlighted include C=O, Phosphate I and peaks within the phosphodiester 

region. However, there are some key differences found within the DF3 plot where 

Amide I, the symmetric stretch of P-O-C and CH3 are all identified. These phosphate 

vibrations may relate to the Gram-negative bacteria that is being separated out at 

the bottom of the plot with respect to DF3. The only unique vibration found in the 

DF2 loadings is the peak at 1121 cm-1 which represents symmetric stretching of a 

Figure 9: Loadings plots correlating to the DFA plot produced from the 
49°C study showing DF2 loadings plot (A) and a DF3 loadings plot (B). 

B 

A 
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phosphodiester band found in RNA. As discussed previously, the phosphodiester 

region is key in Gram-typing due to the differing levels of phosphate in Gram-positive 

and Gram-negative bacteria. The wavenumber and corresponding tentative peak 

assignments, from across the three temperature studies as well as the solar study, 

are shown collectively in Table I. 

 

 

Table I: Table with the wavenumbers and corresponding tentative peak assignments for the DF loadings plots 
generated from all species in the 30°C, 37°C, 49°C and solar study datasets acquired using HT-FTIR [5,6,7] 

Wavenumber (cm-1) Tentative peak assignments 

900.7, 916.2, 922, 925.8, 933.5, 947, 972, 976, 

1007, 1049, 1057, 1059, 1060, 1061, 1124 
Phosphodiester region, νCO, νCC, νCOH and νCOC 

1076 νPO2
-  symmetric 

1088, 1217 Phosphate I (stretching PO2
- symmetric 

vibrations) in β-form DNA 

1103 νP-O-C symmetric 

1121 Symmetric phosphodiester stretching band RNA 

1188, 1281 Amide III 

1225,1238 Phosphate II (stretching PO2
- asymmetric 

vibrations) in β-form DNA 

1325, 1329, 1333, 1337 CH2 wagging 

1377 Adenine, Thymine, Guanine, Cytosine (DNA/RNA 

bases) 

1379, 1381 δCH3 

1398 δCH3 symmetric 

1414, 1418 Ring stretch vibrations mixed with CH in-plane 

bending 

1495 νC=C, CH 

1528, 1537, 1545, 1558, 1566, 1572 Amide II (NH bend coupled to CN stretch) 

1616, 1618, 1622, 1624, 1626, 1639, 1655, 

1657, 1688, 1690, 1692, 1695, 1699 
Amide I 

1711, 1728, 1730, 1736, 1738, 1740 νC=O 
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As it is clear from the PCA and DFA plots shown in Figure 2, Figure 3, Figure 8 

and Figure 9A, the overriding factor for the separation is the Gram-type of the 

bacteria and not the effect of the environmental conditioning. This is a trend that is 

not exclusive to the temperature studies as it also seen in the solar study. Despite 

this, there are signs that the environment does have an effect on the spectra 

collected. This effect is more prominent in certain bacterial strains and in certain 

environments. From the plots it can be seen that the tightest clustering and best 

separation is seen at the lowest of these temperatures (30°C). As the temperature 

increases there is a trend that the Gram-negative bacteria (E. coli and PF) appear to 

be more affected by the changing condition than the Gram-positive strains. This may 

relate to the fact that Gram-negative bacteria are unable to form endospores to help 

them handle a non-ideal environment. Endospores occur in some Gram-positive 

bacteria and are restructured, inactive forms that are caused as a response to being 

exposed to a non-ideal condition. [8] For spore-forming bacteria, as expected the 

spectral profile changes. The main differences present in a vegetative spectrum is the 

Amide I peak at ~1735cm-1. [9] A spectrum collected from a spore lacks this shoulder 

but contains a unique and reproducible “quartet” of peaks between 600-800 cm-1 

that correlate to CaDP·3H2O. [10] When the endospore is reintroduced to a nutrient 

rich environment will revert back to its original structure, becoming active once again. 

It is for this reason identifying spore forming bacteria is important to prevent further 

infection occurring. 

To observe the full effect of the environmental conditioning, MVA of the 

individual bacterial strains was required. As with the data presented from the dataset 
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as a whole, only a selection of figures will be presented within this chapter. All other 

relevant figures can be found in Appendix D. This will include plots from all bacterial 

strains as this section discusses only two of the original seven strains used in the 

study. Figure 10 shows PCA plots from BT across all three temperature studies, 

showing a mix in the separation ability. Figure 11 shows the DFA plots that 

correspond to the PCA plots shown in Figure 10. It can be seen that there is a slight 

improvement in the separation ability with some clustering of time-points in some, 

but not all, of the studies.  
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A 

B 

C 

Figure 10: PCA plots showing separation based on the ageing of BT across the three temperature studies 
showing T2 separates out slightly in the 30°C study (A), no separation in the 37°C study (B) and some 

separation of T0 and T1 in the 49°C study (C). 
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A 

B 

C 

Figure 11: DFA plots showing separation based on the ageing of BT across the three 
temperature studies showing some separation of the time-points, with no clustering, in the 

30°C study (A), no separation or clustering in the 37°C study (B) and clustering of the 
time-points and some separation of T0 and T1 in the 49°C study (C). 
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PCA and DFA were performed for all bacterial strains with two bacterial 

strains (BT and BTKl) shown here. The separation seen in the PCA and DFA plot 

produced varied for the different strains. The effect that aging or exposure to a given 

environment has on a bacterium may not be uniform across the seven bacterial 

strains. Responses to aging or a non-ideal environment are likely to differ most 

significantly between Gram-positive and Gram-negative strains. However, within 

these two groups, it is also possible that bacteria will show signs of different 

mechanisms designed to respond to challenging conditions. Generally, PCA plots 

produced from the BT dataset shows poor separation of the time points, suggesting 

there is clear effect on the bacterial profile caused by either aging or temperature. 

However, the data from the 49°C study shows that the initial time point (T0) 

separates slightly from the other time points. One particular feature of BT that may 

affect the way it handles long term exposure to non-ideal/ harsh environments is the 

presence of parasporal bodies, discussed in Chapter 3 (section 3.2.2). The presence 

of these bodies may affect the efficacy of the endospores formed which in turn would 

affect how the exposure to an environment and the aging of a sample could impact 

its spectral profile. A further, more in-depth study of BT with more regular time points 

and other environmental conditions may provide more information about why this 

particular bacterial strain differs from the others. When considering the DFA analysis 

Figure 11A and C show that there is separation based on time point. Figure 11A shows 

that it is T2 that separates out the most from the other time-points while it is T0 and 

T1 that separate in Figure 11C.  
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Figure 12: DFA loadings plots from the most discriminatory DF/DFs for each study for BT. (A) 
shows DF1 for 30°C study, (B) shows DF1 for 49°C study and (C) shows DF2 for 49°C study. Note 
that no DF loadings are shown for the 37°C as there is no separation seen in the DFA plot for this 

dataset. 

A 

B 

C 
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The most important of the loadings plots to consider when looking at Figure 

11A is DF1 as this shows the separation of T2 from the other three timepoints. For 

this the key vibrations identified are all located at the higher end of the wavenumber 

range covering vibrations from C=O and CH/NH vibrations with most of the peaks 

being in the Amide I and II region (Figure 12A). This may be as a specific biological 

response within BT that occurs when aged for seven days within a 30°C environment. 

Again to fully explore exactly why the data shows this change further repeat 

experiments would be required to confirm if a specific structural change occurs 

within BT under these environmental conditions. 

 For the 49°C study both DFs are responsible for separation, and therefore 

have had tentative vibrations assigned to the peaks. In Figure 12B most of the peaks 

again are found at the higher end of the wavenumber range including the Amide I 

and II regions (1480-1720 cm-1). Figure 12C deals again with Amide I and II as well as 

the symmetric stretch of P-O-C and the CH3 stretch. 

 

Table II: Table with the wavenumbers and corresponding tentative peak assignments for the DF loadings plots 
generated from the BT dataset during the 30°C, 37°C and 49°C studies, acquired using HT-FTIR [2,3,4] 

Wavenumber (cm-1) Tentative peak assignments 

1103, 1115 νP-O-C symmetric 

1371 δCH and NH 

1404 δCH3 asymmetric 

1485, 1497, 1499, 1504, 1506, 1516, 

1520, 1531, 1535, 1539, 1557, 1558, 

1562, 1566, 1574, 1587 

Amide II (NH bend coupled to CN stretch) 

1618, 1626, 1628, 1635, 1638, 1657, 

1663, 1665, 1670, 1686, 1695, 1699 
Amide I 

1705, 1715 νC=O 
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In contrast to the plots shown in Figure 10, Figure 11 and Figure 12 for the BT 

dataset, Figure 13 and Figure 16 show PCA, DFA and loadings plots from BTKl where 

there is generally a good separation based on temperature. The separation can be 

seen across all three temperatures, with Figure 14, Figure 15 and Figure 16 showing 

that the DFA plots for this dataset have an improved separation with clustering of the 

time-points, particularly in Figure 14A. 
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Figure 13: PCA plots showing separation based on the ageing of BTKl across the three temperature studies 
showing some separation of the time-points, with no clustering, in the 30°C study (A), separation of the T0  

time point from the other time-points with no clustering in the 37°C study (B) and clear separation of the T0  
time-points from the other time-points in the 49°C study (C). 
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Figure 14: DFA plot showing very clear separation and clustering of the time point for BTKl in 
the 30°C study (A), followed by a DF1 loadings plot (B) and a DF2 loadings plot (C). 
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Figure 15: DFA plot showing separation of the T0 time point from the other time-points for 
BTKl in the 37°C study (A) followed by the DF1 loadings plot (B). 
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A general trend seen across the PCA and DFA plots produced from the BTKl 

dataset is that there is a better level of separation of the timepoints, showing that 

there is an effect on the bacterial profile produced from BTKl bacteria caused by 

either aging or temperature. When looking at the PCA plots produced by this dataset, 

shown in Figure 13, T0 separates out in all three of the temperature studies. This is 

likely to be based on the moisture content of the samples as the spectra are collected 

at the initial timepoint where they have had only a limited amount of time to dry. 

When considering the DFA analysis, Figure 14A shows clear separation and clustering 

Figure 16: DFA plot showing very clear separation and clustering of the time point for BTKl in 
the 49°C study (A), followed by the DF1 loadings plot (B). 

A 
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of the four time-points, showing that the aging of BTKl has a clear effect on the 

bacterial spectrum. Figure 14B and C show that T0 and T1 separates out from the 

remaining two time-points with some clustering. 

In the 30°C study DF1 is responsible for separation of the earlier time points 

(T0 and T1) from the later time points (T2 and T3). DF2 then separates T0 and T2 from 

T1 and T3 (Figure 14A). For both the DF1 and DF2 loadings (Figure 14B and C) in this 

study the key peaks are found at the higher end of the wavenumber range within the 

fingerprint region.  As such, the majority of the vibrations represented within the 

loadings are the same across DF1 and 2. These vibrations include C=O and Amide I, II 

and III stretches. The differing vibrations are the peaks at 1414 and 1425 cm-1 in the 

DF1 loading plot which represent C-H vibrations and ring stretches. The unique peak 

found within DF2 is found at 1231 cm-1 and represents the PO2
- vibration. Phosphate 

bands are important to consider as they are found within the cell wall of a bacterium. 

A change in phosphates may indicate a change within the cell wall and structure, 

which could be as a survival response to being exposed to a non-ideal, nutrient 

deficient environment by forming an endospore. [11] For the 37°C study, only DF1 is 

responsible for any of the separation shown, separating T0 from the remaining time 

points (Figure 15A). DF1 (Figure 15B) shows the majority of the same peaks that are 

shown within the DF1 and DF2 loadings from the 30°C study with the exception of 

PO2
-. However, the loading has some additional peaks, as the peaks present are 

spread across the whole of the fingerprint region. The same vibrations that are seen 

include C=O vibrations and Amide I, II and III stretches as well as ring stretches, while 

the additional vibrations include CH2 wagging and vibrations from the Phosphate I 
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band and the phosphodiester region. As with the 37°C, only one DF shows separation 

in the 49°C study. Again, DF1 separates T0 from the remaining time points (Figure 

16A). Previous vibrations such as C=O, Amide I and II, vibrations in the 

phosphodiester region and ring stretches are seen. A number of other vibrations are 

also represented in DF1 including PO2
- and asymmetric PO2

- vibrations, Phosphate II 

and COC, CC and COH vibrations (Figure 16B). 

 

Table III: Table with the wavenumbers and corresponding tentative peak assignments for the DF loadings plots 
generated from the BTK- dataset during the 30°C, 37°C and 49°C studies, acquired using HT-FTIR [2,3,4] 

Wavenumber (cm-1) Tentative peak assignments 

964.4, 972.1, 1032, 1043, 1046 Phosphodiester region, νCO, νCC, νCOH and νCOC 

1072, 1088 Phosphate I (stretching PO2
- symmetric 

vibrations) in β-form DNA 

1090 Phosphate II (stretching PO2
- asymmetric 

vibrations) in β-form DNA 

1192 νC-O-C, C-C, C-O-H, C-O-C 

1214 νPO2
- asymmetric 

1231, 1242 νPO2
- 

1261, 1263, 1281, 1283, 1290 Amide III 

1362, 1369, 1379 CH2 wagging 

1404, 1414, 1418, 1425, 1458, 1470, 1472 νC-H 

1487, 1489, 1495, 1504, 1506, 1514, 1516, 

1543 1555, 1558, 1560, 1564, 1570, 1593 
Amide II (NH bend coupled to CN stretch) 

1611, 1618, 1620, 1624, 1626, 1638, 1657, 

1665, 1666, 1668, 1672, 1674, 1682, 1692, 

1699 

Amide I 

1711, 1724, 1726, 1740, 1744, 1746 νC=O 
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5.6 Analysis of data using Multiblock PCA 

As there are a large number of variables to be considered and the separation of 

the data is not particularly clear with regards to the strain and age of the bacteria 

using standard PCA, Multiblock PCA was used to try to improve the separation caused 

by creating different groups referred to as ‘blocks’. Figure 17 and Figure 18 show the 

multiblock PCA score plots from blocking the datasets by time point. This disregards 

the differences caused by different bacterial strains and looks simply at the 

separation that is cause by the stage of aging of the bacteria. Successful separation 

of the time points here would allow for a spectrum to be aged regardless of the 

bacterial strain.  

 

Figure 17: Multiblock PCA plot showing separation of the 49°C dataset, based on time point not bacterial strain, 
showing the plot of PC1 vs PC2.Data in this plot has been pre-processed using noise reduction (NR) and vector 

normalisation (VN). 
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Figure 17 shows a multiblock PCA produced from the 49°C data that has been 

noise reduced, vector normalised and cut to the fingerprint region. It can be seen 

from Figure 17 that T0 and T0 control data is separating out from the remaining three 

time-points. However, the remaining data are severely overlapped. From Figure 18, 

as with Figure 17, the T0 and T0 control clearly separates out from the other time-

points.  While the other time-points still overlap, in the EMSC processed data the T3 

and T3 control samples are beginning to separate out from the intermediate time-

points. Bases on the PC1 loadings plots (Figure 19) the separation seen from PC1 in 

both of the PCA plots is caused by the Amide I and II vibrations. The lower 

wavenumber Amide II and the higher wavenumber Amide I vibrations are found 

within the T0 samples while the higher wavenumber Amide II vibrations and the 

lower wavenumber Amide I vibrations are found within T1, T2 and T3 samples. 

Figure 18: Multiblock PCA plot showing separation of the 49°C dataset, based on time point not bacterial 
strain, showing the plot of PC1 vs PC2.Data in this plot has been pre-processed using extended multiplicative 

scatter correction (EMSC). 
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Table IV: Table with the wavenumbers and corresponding tentative peak assignments  
for the PC1 loadings plot for multiblock PCA generated from the 49°C dataset processed 

with both VN/NR and EMSC [2,3,4] 

Wavenumber (cm-1) Tentative peak assignments 

1500, 1508, 1520, 1557, 

1566, 1572, 1580 
Amide II (NH bend coupled to CN stretch) 

1622, 1630, 1674, 1686, 

1697 
Amide I 

 

Figure 19: PC1 loadings plot for the 49°C multiblock PCA plot where data has been pre-processed 
using VN/NR (A) and EMSC (B). 

A 

B 
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This analysis shows that changes caused by aging has an effect of the bacterial 

profile, changes which can be detected regardless of bacterial strain. To take this 

further and test the extent to which the multiblock PCA can split based on time point, 

a further study with more bacterial strains and time points could be conducted. Due 

to the time and samples restrictions this study was not conducted within this PhD 

thesis. 

HT-FTIR is able to differentiate between spectra collected at various stages of 

aging within a range of environmental temperatures. The process of identification 

would require a two-step approach, using PCA first to identify bacterial strain and 

then using a strain-specific dataset to age the bacteria. However, the ability for the 

bacteria to be correctly aged is dependent on the strain identified, as the quality of 

the separation of the various time points is dependent on the bacterial strain. When 

performing multiblock PCA analysis it can be seen that the initial time points begin to 

separate from the other time points when grouping all bacterial strains together. This 

shows that the bacteria are affected by aging and the changes can be detected in a 

spectral profile regardless of bacterial strain. However, when considering the overall 

aim of the project HT-FTIR is not practical as it is currently only a laboratory-based 

technique.  
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5.7 Conclusions 

PCA and DFA were performed on datasets collected using both HT-FTIR and 

DRIFTS. The HT-FTIR study housed four individual studies (three different 

temperatures and a solar study) with DRIFTS having three different temperature 

studies. Multiblock PCA has also been performed on the four HT-FTIR datasets. 

This in turn has generated a large amount of visual outputs in the form of scores 

plots loadings plots and peak assignment tables. Shown within this chapter are a 

key selection of the results obtained during the course of the project with the 

remaining key figures and tables found in Appendix D. 

 

5.7.1 Comparison of HT-FTIR and DRIFTS Results 

When considering the effect of aging and exposure to an environment, the 

separation and clustering of data from different time points is generally more defined 

with DRIFTS than with HT-FTIR despite the corresponding loadings for DRIFTS 

containing a significant level of noise. This may be due to the different instruments 

and modalities that have been used to acquire the data. The differences in separation 

between DRIFTS and HT-FTIR are not thought to be the results of biological variations 

between the samples as they were grown and prepared in the same manner. 

Compared with other FTIR modalities, DRIFTS is generally a noisier technique which 

is seen in the standard absorbance spectra, and is also carried through to the 

absorbance spectra that have been produced. From both the HT-FTIR and the DRIFTS 
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studies, it is clear that there is separation and clustering of the bacterial strains when 

using either technique. The quality of the clustering and separation of the bacteria is 

generally enhanced by performing DFA analysis as well as PCA, rather than just using 

PCA alone to investigate the separation. Both techniques show that a good level of 

separation can be seen after performing individual strain analysis with respect to 

analysing the effect that aging has on the bacterial spectrum. A similarity seen across 

both of the techniques is that the effect of the aging differs depending on the 

bacterial strain that is being examined. This may be as a result of the Gram-type of 

the bacteria and their ability to form endospores as Gram-positive bacteria will from 

them while Gram-negative strains will not. The ability to form these spores will affect 

how a bacterium responds to being in a non-ideal environment with bacteria that do 

not form spores being more susceptible to damage and degradation. Another 

possibility, when considering BT, is the presence of parasporal bodies within the cells. 

These will also affect the cells ability to form spores. The variation in the separation 

seen within these studies highlights the importance of understanding how a 

bacterium’s spectral profile changes both over time and when exposed to differing 

environmental conditions. The ability for both of these techniques to identify the 

changes caused by environment and aging shows promise for the DRIFTS technique 

to be used for the in-situ analysis of surface deposited bacterial samples. 

Generally, when examining all bacterial strains together, HT-FTIR performs 

better at separating the Gram-positive from the Gram-negative strains. However, 

when examining the effect of aging on the bacteria for individual bacterial strains, it 

is DRIFTS that performs better. One of the key differences between the two 
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techniques is that more biochemical information can be interpreted from the 

loadings produced when using HT-FTIR compared to DRIFTS. However, DRIFTS 

spectra are unprocessed and collected from complex backgrounds, both of which will 

contribute to the quality of the spectra and loadings plots produced. 

Both modalities have shown that Gram-type and species are the overriding 

factors for separation rather than the effect of aging or environment. The DRIFTS 

study went one step further and also considered the effect that the surface from 

which a spectrum was collected may have on the resulting absorbance spectrum. It 

was found that there was a level of overcompensation with the more porous 

substrates, while the non-porous substrates encountered issues with the samples 

getting damaged more easily. Despite this there were good levels of separation, 

particularly based on time point when interrogating an individual bacterial strain. 

Across all studies, MVA of the datasets showed that with unsupervised 

analysis there was limited separation and clustering, while with supervised DFA 

analysis clustering and separation is much clearer. This is due to the fact that more 

information is initially given to the DFA model to support the analysis. This shows 

promise that there could one day be a methodology developed, using vibrational 

spectroscopy, to allow for in situ analysis of surface deposited bacterial samples 

found on complex matrices. 

When taking into consideration the overall aim of the project which is the 

development of a technique that can be used to identify surface deposited bacteria 

in situ, DRIFTS is the technique that has shown that it can address this. While HT-FTIR 
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has shown that it is capable of identifying strain and age for a variety of 

environmental conditions, the technique is currently only laboratory based and 

therefore cannot address in situ analysis, as well as not being able to collect data from 

different substrates. The DRIFTS modality used on a handheld instrument allows for 

the analysis of samples in any location and on any given surface. While the 

preliminary data shows that DRIFTS potentially has the capability to tackle the overall 

aim of the project it is acknowledged that the method is far from refined and 

therefore more research is required to make the technique and methodology fully 

translatable to allow in situ analysis. 
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Chapter 6 

Overall Conclusions and Scope for Future Work 

 

This chapter discusses the overall findings from the research that has been 

conducted during this project and the conclusions that can be drawn from them. The 

chapter looks at the information that has been concluded from each of the studies 

and an outlook to the future of in situ bacterial identification.  

The main objective for this research was to develop a method for in situ 

identification of surface deposited bacteria. Collectively the data from chapters 2,3 

and 4 show that buy using a handheld spectrometer using DRIFTS it is possible to 

collect spectra from surface deposited bacteria. To reach this overall conclusion four 

separate studies were conducted with the results of the previous study leading into 

the next to help direct the project towards the best method. 

The overall aim of the project is to develop a method of in situ identification of 

surface deposited bacteria on a given set of substrates. The data presented in 

chapter 2 shows the importance of understanding the composition of the substrates. 

To be able to develop a method where the spectral contribution from the substrate 

can be removed a database was compiled of reference spectra. In order to make the 

method as robust as possible a more extensive database of reference spectra would 

need to be developed. This database should include spectra from a variety of 

different compositions, ages and conditions. For the method to be translatable to 
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identify bacteria in a ‘real-world scenario’ spectra will be collected from any given 

surface. These substrates will have been subjected to a variety of different 

environmental conditions which will not only have an impact on the spectral profile 

of the bacterium but also on the profile of the substrate.  

One of the aspects to be considered when developing this method is the most 

suitable spectroscopic technique to use. During this study, it showed that ability to 

obtain Raman spectra was often dependant on the laser used.  The 785 nm laser 

performed better than the 532 nm and 633 nm lasers for collecting reference spectra 

as it was less affected by fluorescence. However, the quality of spectra acquired when 

using the 785 nm laser was variable depending on the substrate being interrogated. 

To develop this study further, a wider range of laser lengths, including from outside 

of the fluorescence region, such as 233 or 1064 nm, could be tested. An advantage 

of Raman is that the surface of a sample can be examined. Therefore, depending on 

the thickness of a sample, the substrate my not contribute to the spectrum at all. 

Despite this, due to the wide variety of parameters that can be used to obtain the 

most optimal Raman spectrum, the technique is not ideal for novice users that need 

to be able to collect the best spectrum at the first attempt given the scenario that he 

technique is likely to be used in.  

FTIR proved to be a more user-friendly technique that produces clear spectra 

from each of the eight substrates. For the FTIR aspect of the study Ge and DiZnSe IRE 

were tested to see which of them was optimal. It was found that DiZnSe produced 

much more intense spectra and was taken forward for further investigation. A strong 
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spectroscopic signature from the substrate is often considered problematic, 

however, it is important to have the most intense spectral profile when considering 

the possibility of a contaminant being found on the surface.  

To remove the spectral contribution from the substrate it was the 

Beer-Lambert method that proved to be optimal. The method would have benefits 

over other methods by accessing a virtual database stocked with reference spectra. 

Glucose and ovalbumin were used as the samples for this study, however, developing 

the study using more complex sample types or even combinations of various 

compounds would further test the methodology to assess the areas in which the 

method could be improved. This would also give an indication of which sample types 

are most suited to this type of analysis. The main area in which this study needs to 

be developed is by adding more substrates to develop the database of surfaces that 

can be analysed, including a mix of porous and non-porous substrates. 

One of the fundamental aspects to this research was the successful 

identification of bacteria. Part of this considered the pre-processing and MVA that 

was to be performed on the data, specifically the order in which the data was 

processed. By not including the derivatisation step it makes the process easier and 

more user-friendly as it removes a step from the process as well as keeping the results 

easier to interpret. Non-derivatised loadings are easier to provide tentative 

assignments for, which in turn is then related to the structure of the sample being 

analysed. This allows conclusions about what is causing the separation of the data to 

be assigned to the structural differences within the samples. 
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To expand on this study more bacterial strains could be added. This would allow 

the model to be tested further to ensure that it can classify the bacteria correctly if 

more closely related strains were added.  

To build the most robust model possible for this technique, the study would 

benefit from additional bacterial strains, substrates and other environmental 

conditions. This study was based on the temperature ranges observed for a hot dry 

climate as defined by the MoD, as this is the environment where BWA samples are 

most likely to be found. However, that does not mean that they will exclusively be 

found in these environments. Databases of each of the different environments, as 

classified by the MoD, would need to be compiled to provide the most accurate 

classification possible. Other ways in which this study can be developed is to look at 

multiple factors that combine to define an environment, such as the effect of 

temperature and solar radiation. One final aspect of analysis that is important to 

consider in future studies is how well the instrument works in the given 

environments. The samples were stored within these environments, however, for 

analysis the samples and instrument were used at standard room temperature. 

Testing the equipment’s ability to work in different environments and the quality of 

spectra produced in these environments will give a true indication of suitability of the 

technique for translation to identify surface deposited samples, found on complex 

matrices, in situ in any given environment. 

This project has many different avenues which can be further developed to 

support and enhance the work carried out here. There are significant developments 
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to be made in this line of analysis and the development of a method that analyses 

surface deposited bacteria on complex matrices is the perfect starting point. There is 

a significant drive towards ensuring that both analysis of samples and the 

interpretation of results is both rapid and user-friendly. To make this possible, this 

project has involved moving away from bench top instruments to test handheld 

technology that can be taken to the sample, rather than the sample having to be 

brought into the lab to be analysed. Adding in other bacterial strains to the study 

begins the development of a reference database that will provide more accurate 

identification of the samples. Along with this, adding in additional substrates, as 

mentioned previously, will also aid with the identification of samples. To make both 

the bacterial and the substrate databases robust, spectra need to be incorporated 

from different grades of sample. This means that non-ideal samples need to be 

included to add extra information about the sample that is being identified. Including 

spectra from samples of varying ages and conditions, as well as manufacturers, will 

allow the database to be used to answer multiple questions about a given sample. 

Ultimately this research project has shown that classification of data obtained 

from surface deposited bacteria found on complex matrices using vibrational 

spectroscopy is possible. The optimal technique has been downselected and a 

methodology developed to allow for the in-situ analysis of samples. This shows great 

promise for the future analysis of all sample types, and is of particular interest for the 

safe analysis of BWAs in the field. 
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Appendix A 

ATR-FTIR Substrate Study Results 

Figure 1: Collection of spectra collected from Boot acquired using a DiZnSe IRE 
starting with an overlay of 10 spectra (A) a mean spectrum (B) and a mean 
spectrum shown in red surrounded by a grey standard deviation cloud (C) 

A 

B 

C 
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Figure 2: Collection of spectra collected from Boot acquired using a Ge IRE starting with an 
overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum shown in red 

surrounded by a grey standard deviation cloud (C) 

A 

B 

C 
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Figure 3: Collection of spectra collected from Concrete acquired using a DiZnSe IRE 
starting with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum 

shown in red surrounded by a grey standard deviation cloud (C). 

A 

B 

C 
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Figure 4: Collection of spectra collected from Concrete acquired using a Ge IRE starting 
with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum shown in 

red surrounded by a grey standard deviation cloud (C) 

A 

B 

C 
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Figure 5: Collection of spectra collected from Dirty filter acquired using a DiZnSe IRE 
starting with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum 

shown in red surrounded by a grey standard deviation cloud (C) 

A 

B 

C 
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Figure 6: Collection of spectra collected from Dirty filter acquired using a Ge IRE starting 
with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum shown in red 

surrounded by a grey standard deviation cloud (C). 

A 

B 

C 
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Figure 7: Collection of spectra collected from Jacket acquired using a DiZnSe IRE starting 
with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum shown in 

red surrounded by a grey standard deviation cloud (C). 

A 

B 

C 
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Figure 8: Collection of spectra collected from Jacket acquired using a Ge IRE starting with 
an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum shown in red 

surrounded by a grey standard deviation cloud (C). 

A 

B 

C 
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Figure 9: Collection of spectra collected from Lino acquired using a DiZnSe IRE starting 
with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum shown in red 

surrounded by a grey standard deviation cloud (C). 

A 

B 

C 
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Figure 10: Collection of spectra collected from Lino acquired using a Ge IRE starting with 
an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum shown in red 

surrounded by a grey standard deviation cloud (C). 

A 

B 

C 
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Figure 11: Collection of spectra collected from Metal tile acquired using a DiZnSe IRE 
starting with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum 

shown in red surrounded by a grey standard deviation cloud (C). 

A 

B 

C 
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Figure 12: Collection of spectra collected from Metal tile acquired using a Ge IRE starting 
with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum shown in red 

surrounded by a grey standard deviation cloud (C). 

A 

B 

C 
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Figure 13: Collection of spectra collected from MirrIR acquired using a DiZnSe IRE starting 
with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum shown in 

red surrounded by a grey standard deviation cloud (C). 

A 

B 

C 
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Figure 14: Collection of spectra collected from MirrIR acquired using a Ge IRE starting 
with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum shown in 

red surrounded by a grey standard deviation cloud (C). 

A 

B 

C 
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Table 1: Wavenumbers and corresponding peak assignment for the average spectra collected from each 
substrate using ATR-FTIR with both Ge and DiZnse IREs [1,2,3,4] 

Wavenumber (cm-1) Tentative 

Peak 

Assignments 
Boot Concrete 

Dirty 

filter 
Jacket Lino MirrIR 

Metal 

tile 

648 669, 712, 

758 
 663, 700, 

1001, 

1030, 

1034, 

1279, 1280 

696, 

697, 

835, 

960, 

962, 

658 982, 

1014, 

1066, 

1070, 

νC-S aliphatic, 

νCC alicyclic, 

aliphatic chains 

  808, 

972 
    νC-O-C, νCC 

alicyclic, 

aliphatic chains 

 868, 872 841, 

899 

876, 899  849,864  νC-O-C, νO-O,  

νCC alicyclic, 

aliphatic chains 

  997 1105, 1111  1093, 

1111 

1111, 

1115 

νCC alicyclic, 

aliphatic chains 

1032, 

1034, 

1203, 

1236, 

1240 

1027, 

1036 

1165, 

1167 

1159,1161, 

1203 
  1165, 

1167 

νC=S, νCC 

alicyclic, 

aliphatic chains 

   1053, 1057    νC-O-C, νCC 

alicyclic, 

aliphatic chains 

1082, 

1084 

1082 1103  1095, 

1099 
  νC-S aromatic, 

νC-O-C 

asymmetric 

    1196, 

1198 
  νC=S 

1144, 

1146 
      νC-O-C 

asymmetric 

  1255  1253  1253, 

1257 

Amide III 

1336, 

1338  
 1358, 

1359 

1315, 

1317, 

1334, 

1336, 

1361,1371 

1331, 

1333 
  νC-(NO2) 

1377 1388 1375, 

1377 

   1375 δCH3 
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 1400  1427 1425, 

1427 

1473 1466, 

1469 

δCH2, δCH3 

asymmetric 

1448, 

1452 
 1454, 

1456 

    νCC aromatic 

ring chain 

vibrations 

      1520, 

1523 

νC=C, Amide II 

1543, 

1549 
  1579    νC-(NO2) 

asymmetric, 

Amide II 

1637, 

1649 
 1647 1637, 1645 1647  1635, 

1658, 

1685, 

1687 

νC=N, Amide I 

1732    1730, 

1732 
 1722, 

1727 

νC=C, νC=O 

2852, 

2922, 

2924, 

2954, 

2956 

 2837, 

2839, 

2868, 

2875, 

2917, 

2920, 

2951 

2850, 

2916, 2918 

2850, 

2916, 

2918, 

2958, 

2960 

2850, 

2854, 

2922, 

2925, 

2956, 

2957 

2852, 

2854, 

2922, 

2925 

νC-H 

3082, 

3093, 

3294,  

  3294,     νO-H 

3316  3371, 

3387 

3333, 3338   3316, 

3355 

νO-H,  νN-H 
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Raman 

  

Figure 15: Collection of spectra collected from Boot acquired using a 532nm laser starting 
with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum shown in red 

surrounded by a grey standard deviation cloud (C). Parameters: 20 s acquisition time, 
2 accumulations, 10% filter.  

A 

B 

C 
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Figure 16: Collection of spectra collected from Boot acquired using a 785nm laser 

starting with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum 
shown in red surrounded by a grey standard deviation cloud (C). Parameters: 20 s 

acquisition time, 2 accumulations, 25% filter. 

A 

B 

C 
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Figure 17: Collection of spectra collected from Concrete acquired using a 532nm laser 
starting with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum 

shown in red surrounded by a grey standard deviation cloud (C). Parameters: 20 s 
acquisition time, 2 accumulations, 1% filter. 

A 

B 

C 
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Figure 18: Collection of spectra collected from Concrete acquired using a 785nm laser 
starting with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum 

shown in red surrounded by a grey standard deviation cloud (C). Parameters: 20 s 
acquisition time, 2 accumulations, 10% filter. 

A 

B 

C 
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Figure 19: Collection of spectra collected from Dirty filter acquired using a 532nm laser 
starting with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum 

shown in red surrounded by a grey standard deviation cloud (C). Parameters: 20 s 
acquisition time, 2 accumulations, 1% filter. 

A 

B 

C 
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Figure 20: Collection of spectra collected from Dirty filter acquired using a 785nm laser 
starting with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum 

shown in red surrounded by a grey standard deviation cloud (C). Parameters: 20 s 
acquisition time, 2 accumulations, 10% filter. 

A 

B 

C 
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Figure 21: Collection of spectra collected from Jacket acquired using a 785nm laser 
starting with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum 

shown in red surrounded by a grey standard deviation cloud (C). Parameters: 20 s 
acquisition time, 2 accumulations, 10% filter. 

A 

B 

C 
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Figure 22: Collection of spectra collected from Lino acquired using a 785nm laser starting 
with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum shown in red 

surrounded by a grey standard deviation cloud (C). Parameters: 20 s acquisition time, 
2 accumulations, 10% filter. 

A 

B 

C 
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Figure 23: Collection of spectra collected from Metal tile acquired using a 785nm laser 
starting with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum 

shown in red surrounded by a grey standard deviation cloud (C). Parameters: 20 s 
acquisition time, 2 accumulations, 1% filter. 

A 

B 

C 
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Figure 24: Collection of spectra collected from MirrIR slide acquired using a 532nm laser 
starting with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum 

shown in red surrounded by a grey standard deviation cloud (C). Parameters: 20 s 
acquisition time, 2 accumulations, 10% filter. 

A 

B 

C 
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Figure 25: Collection of spectra collected from MirrIR acquired using a 785nm laser starting 
with an overlay of 10 spectra (A) a mean spectrum (B) and a mean spectrum shown in red 

surrounded by a grey standard deviation cloud (C). Parameters: 20 s acquisition time, 
2 accumulations, 10% filter. 

A 

B 

C 
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Figure 26: Collection of spectra collected from Boot acquired using a 633nm laser starting with an 
overlay of spectra (A)a mean spectrum (B) and a mean spectrum shown in red surrounded by a grey 

standard deviation cloud (C). Parameters: 15 s acquisition time, 5 accumulations 10% filter. 

A 

B 

C 
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Figure 27: Collection of spectra collected from Clean filter acquired using a 633nm laser 
starting with an overlay of spectra (A) a mean spectrum (B) and a mean spectrum shown in 
red surrounded by a grey standard deviation cloud (C). Parameters: 5 s acquisition time, 5 

accumulations 100% filter. 

A 

B 

C 
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Figure 28: Collection of spectra collected from Dirty filter acquired using a 633nm laser 
starting with an overlay of spectra (A) a mean spectrum (B) and a mean spectrum shown in 
red surrounded by a grey standard deviation cloud (C). Parameters: 5 s acquisition time, 5 

accumulations 100% filter. 

A 

B 

C 
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Table 2 Wavenumbers and corresponding peak assignment for the Clean filter spectra collected 

 using a 633nm laser [1,2,3,4] 

Wavenumber cm-1 
Tentative peak assignment 

633nm 
 109, 123, 174 Lattice vibrations 

249, 319, 398 δCC aliphatic chains 

454 νS-S, νSi-O-Si 

528 νS-S, νSi-O-Si, νC-I, νC-Br, νC-Cl 

809, 898, 939, 973 νC-O-C, νCC alicyclic, aliphatic chains 

839 νC-O-C, νO-O, νCC alicyclic, aliphatic 

chains 

997, 1036 νCC alicyclic, aliphatic chains 

 1102, 1151  νC-O-C asymmetric 

1167, 1303 νCC alicyclic, aliphatic chains 

1218, 1253, 1294 Amide II 

1328, 1358, 1372 νC-NO2 

 1435, 1458  δCH2/δCH3 asymmetric 
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Table 3 Wavenumbers and corresponding peak assignment for the average spectra collected from each 
substrate using Raman with the 532, 633 and/or 785nm laser (where applicable) [1,2,3,4] 

Wavenumber (cm-1) Tentative 

Peak 

Assignments 
Boot Concrete Dirty filter Jacket Lino MirrIR 

Metal 

tile 

130, 143, 

147, 197 

153, 155 108, 109, 

123, 174 
 77, 

143 
  Lattice 

vibrations 

      219 νXmetal-O 

397 279, 282 249, 250, 

319, 324, 

398, 401 

379 260, 

362, 

398 

301, 

355, 

374 

 δCC aliphatic 

chains 

446, 476, 

484, 513 
 

454, 455 

435, 

458, 

474, 

487 

484 446 460, 

538, 

557 

νS-S, νSi-O-Si 

  
528, 530 

    νS-S, νSi-O-Si, 

νC-I, νC-Br, 

νC-Cl 

  
 

581  560, 

592 
 νC-I, νC-Br, 

νC-Cl 

  

 

 638, 

681, 

695, 

749 

792  νC-S aliphatic 

599, 609, 

635, 640, 

662 

712, 714 

640 

 618   νCC alicyclic, 

aliphatic 

chains 

903, 1036  806, 807, 

811, 839, 

898, 901, 

939, 942, 

970, 973, 

974, 997, 

998, 1001, 

1035, 1036, 

1038, 1044 

 955, 

1004 
 865 νC-O-C, νCC 

alicyclic, 

aliphatic 

chains 

  

840, 843 

    νC-O-C, νO-O, 

νCC alicyclic, 

aliphatic 

chains 

912  
 

800, 

887 
   νC-O-C  
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1104, 

1149 

1085, 

1087 
1102, 1105, 

1151, 1152, 

1154 

1052, 

1096, 

1114, 

1154 

1087, 

1146 

1095 1089 νC-O-C 

asymmetric 

1196  1165, 1167, 

1170, 1303, 

1306 

 1310  1303 νCC alicyclic, 

aliphatic 

chains 

1241, 

1243 
 1218, 1221, 

1253, 1256, 

1294 

1246, 

1293 

1256  1294 Amide III 

1321, 

1337, 

1369 

 1328, 1330, 

1332, 1356, 

1358, 1361, 

1369, 1372 

1338, 

1373 

1343 1371 1377 νC-NO2 

1396, 

1409, 

1413, 

1459, 

1471 

 
1433, 1437, 

1458, 1459, 

1461, 1472 

1397, 

1477 

1428, 

1437, 

1451 

 1457 δCH2/δCH3 

asymmetric 

  
1491  

   νCC aromatic 

ring 

vibrations 

   1543 1530  1537 Amide II 

  
 1584 

  1571, 

1589 

νN=N 

aliphatic 

1593, 

1594 
 

 
    νC=C 
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Substrate removal results 

Glucose study results: Beer-Lambert Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Spectra generated using the Beer-Lambert equation on single channel spectra collected 
from Boot with glucose applied, showing an overlay of 10 absorbance spectra (A) and the mean 

absorbance spectrum shown in red, surrounded by a grey standard deviation cloud (B). 

A 

B 
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Figure 30: Spectra generated using the Beer-Lambert equation on single channel spectra collected 
from Clean filter with glucose applied, showing an overlay of 10 absorbance spectra (A) and the 

mean absorbance spectrum shown in red, surrounded by a grey standard deviation cloud (B). 

A 

B 
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Figure 31: Spectra generated using the Beer-Lambert equation on single channel spectra collected 
from Concrete with glucose applied, showing an overlay of 10 absorbance spectra (A) and the 
mean absorbance spectrum shown in red, surrounded by a grey standard deviation cloud (B). 

A 

B 
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Figure 32: Spectra generated using the Beer-Lambert equation on single channel spectra collected 
from Dirty filter with glucose applied, showing an overlay of 10 absorbance spectra (A) and the 
mean absorbance spectrum shown in red, surrounded by a grey standard deviation cloud (B). 
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B 



304 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: Spectra generated using the Beer-Lambert equation on single channel spectra 
collected from Jacket with glucose applied, showing an overlay of 10 absorbance spectra (A) and 
the mean absorbance spectrum shown in red, surrounded by a grey standard deviation cloud (B). 

A 

B 
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Figure 34: Spectra generated using the Beer-Lambert equation on single channel spectra collected 
from Metal tile with glucose applied, showing an overlay of 10 absorbance spectra (A) and the 
mean absorbance spectrum shown in red, surrounded by a grey standard deviation cloud (B). 
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B 
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Figure 35: Spectra generated using the Beer-Lambert equation on single channel spectra collected 
from MirrIR slide with glucose applied, showing an overlay of 10 absorbance spectra (A) and the 

mean absorbance spectrum shown in red, surrounded by a grey standard deviation cloud (B). 

A 

B 
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Ovalbumin Study: Beer-Lambert Method (Method 1) 

 

Figure 36: Spectra generated using the Beer-Lambert based method of substrate removal to 
generate absorbance spectra from Boot with ovalbumin applied, showing an overlay of 10 
absorbance spectra (A) and the mean absorbance spectrum shown in red, surrounded by a 

grey standard deviation cloud (B). 
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B 
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Figure 37: Spectra generated using the Beer-Lambert based method of substrate removal to 
generate absorbance spectra from Concrete with ovalbumin applied, showing an overlay of 
10 absorbance spectra (A) and the mean absorbance spectrum shown in red, surrounded by 

a grey standard deviation cloud (B). 
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Figure 38: Spectra generated using the Beer-Lambert based method of substrate removal to 
generate absorbance spectra from Dirty filter with ovalbumin applied, showing an overlay of 
10 absorbance spectra (A) and the mean absorbance spectrum shown in red, surrounded by 

a grey standard deviation cloud (B). 
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Figure 39: Spectra generated using the Beer-Lambert based method of substrate removal to 
generate absorbance spectra from Jacket with ovalbumin applied, showing an overlay of 10 
absorbance spectra (A) and the mean absorbance spectrum shown in red, surrounded by a 

grey standard deviation cloud (B). 
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Figure 40: Spectra generated using the Beer-Lambert based method of substrate removal to 
generate absorbance spectra from Lino with ovalbumin applied, showing an overlay of 10 
absorbance spectra (A) and the mean absorbance spectrum shown in red, surrounded by a 

grey standard deviation cloud (B). 
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Figure 41: Spectra generated using the Beer-Lambert based method of substrate removal to 
generate absorbance spectra from Metal tile with ovalbumin applied, showing an overlay of 
10 absorbance spectra (A) and the mean absorbance spectrum shown in red, surrounded by 

a grey standard deviation cloud (B). 
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Figure 42: Spectra generated using the Beer-Lambert based method of substrate removal 
to generate absorbance spectra from MirrIR slide with ovalbumin applied, showing an 

overlay of 10 absorbance spectra (A) and the mean absorbance spectrum shown in red, 
surrounded by a grey standard deviation cloud (B). 

A 

B 
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Ovalbumin Study: Software-Based Method (Method 2) 

 

 

 

 

 

 

Figure 43: Spectra generated using the software-based method of substrate removal to 
generate absorbance spectra from Boot with ovalbumin applied, showing an overlay of 10 
absorbance spectra (A) and the mean absorbance spectrum shown in red, surrounded by a 

grey standard deviation cloud (B). 
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Figure 44: Spectra generated using the software-based method of substrate removal to 
generate absorbance spectra from Clean filter with ovalbumin applied, showing an overlay of 
10 absorbance spectra (A) and the mean absorbance spectrum shown in red, surrounded by 

a grey standard deviation cloud (B). 
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  Figure 45: Spectra generated using the software-based method of substrate removal to 
generate absorbance spectra from Concrete with ovalbumin applied, showing an overlay of 10 

absorbance spectra (A) and the mean absorbance spectrum shown in red, surrounded by a 
grey standard deviation cloud (B). 
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B 
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Figure 46: Spectra generated using the software-based method of substrate removal to 
generate absorbance spectra from Dirty filter with ovalbumin applied, showing an overlay of 
10 absorbance spectra (A) and the mean absorbance spectrum shown in red, surrounded by 

a grey standard deviation cloud (B). 
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Figure 47: Spectra generated using the software-based method of substrate removal to 
generate absorbance spectra from Jacket with ovalbumin applied, showing an overlay of 10 
absorbance spectra (A) and the mean absorbance spectrum shown in red, surrounded by a 

grey standard deviation cloud (B). 
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Figure 48: Spectra generated using the software-based method of substrate removal to 
generate absorbance spectra from Metal tile with ovalbumin applied, showing an overlay of 
10 absorbance spectra (A) and the mean absorbance spectrum shown in red, surrounded by 

a grey standard deviation cloud (B). 
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Figure 49: Spectra generated using the software-based method of substrate removal to 
generate absorbance spectra from MirrIR slide with ovalbumin applied, showing an overlay 
of 10 absorbance spectra (A) and the mean absorbance spectrum shown in red, surrounded 

by a grey standard deviation cloud (B). 
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B 
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Appendix B 

Pre-processing Data 
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Figure 1: Figure showing a PCA plot using PC1 and PC3 (A) and a DFA plot using DF1 and DF2 (B) from data 
pre-processed using Method 1. 
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Figure 2: Figure showing a PC1 loadings plot (A) and a PC3 loadings plot (B) from data pre-processed 
using Method 1. 
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Figure 3: Figure showing a DF1 loadings plot (A) and a DF2 loadings plot (B) from data pre-processed using 
Method 1. 
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Table 1: Wavenumbers and corresponding peak assignments for PC1, PC3, DF1 and DF2 loadings from  
Method 1. [5,6,7,2,8,] 

Wavenumber (cm-1) 
Tentative peak assignment 

PC1 PC3 DF 1 DF 2 
966, 993, 
1028 

1014 1173 1199, 1201 
νC-O, νC-C, νC-O-H, νC-O-C νP=O 
symmetric of PO−

2 

 1036   Phenylalanine C-H in-plane 

1065,1084  1041, 1086 1043, 1070 νP=O symmetric of PO−
2 

1225   
1221, 1269, 
1292, 1309 

Amide III band of proteins  

1385, 1392 1379, 1388 

1379, 1468, 
1419, 1460, 
1475, 1491, 
1498 

1377, 1444 δCH2 and δCH3 

  1508, 1568 
1510, 1543, 
1568 

Amide II 

1576, 1581  1574  
Aspartate and glutamate 
carboxylate stretching 

   1601, 1666 νC=O  

  1613 1612 Tyrosine and Tryptophan 

 1633   
Amide I β-pleated sheet 
structures 

 
1645, 1651, 
1660, 1668 

  Amide I 

 1682, 1695 1687  

Amide I band components 
resulting from antiparallel 
Pleated sheets from β-turns of 
proteins 

  1703  νC=O 
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Figure 4: Figure showing a PCA plot using PC1 and PC3 (A) and a DFA plot using DF1 and DF2 (B) from data 
pre-processed using Method 2. 
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Figure 5: Figure showing a PC1 loadings plot (A) and a PC3 loadings plot (B) from data  
pre-processed using Method 2. 
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Figure 6: Figure showing a DF1 loadings plot (A) and a DF2 loadings plot (B) from data  
pre-processed using Method 2. 
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Table 2 Wavenumbers and corresponding peak assignments for PC1, PC3, DF1 and DF2 loadings from  
Method 2. [5,6,7,2,8,] 

Wavenumber (cm-1) 
Tentative peak assignment 

PC1 PC3 DF 1 DF 2 
966, 993, 
1028 

1014 912, 960  
νC-O, νC-C, νC-O-H, νC-O-C  
νP=O (symmetric) of PO−

2 

 1036   Phenylalanine C-H in-plane 

   1061 C-N, C-C stretch 

1059, 
1084 

 1086  νP=O (symmetric) of PO−
2 

   1201 νPO−
2 (asymmetric) of PO−

2 

1225  1280, 1309 1225 Amide III band of proteins  

1383, 
1392 

1379, 1388 
1379, 
1468, 
1421, 1483 

1390, 
1441 

δCH2 and δCH3 

   1543 Amide II 

1579  1574 1599 
Aspartate and glutamate 
carboxylate stretching 

 1633, 1645   Amide I β-pleated sheet structures 

 
1645, 
1651, 1660 

 1664 Amide I 

   1657 Amide I α-helix 

 1682, 1695   
Amide I band components resulting 
from antiparallel Pleated sheets 
from β-turns of proteins 

  1707 1714 νC=O  
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Figure 7: Figure showing a PCA plot using PC1 and PC3 (A) and a DFA plot using DF1 and DF2 (B) from data 
pre-processed using Method 4. 
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Figure 8: Figure showing a PC1 loadings plot (A) and a PC3 loadings plot (B) from data pre-processed using 
Method 4. 
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Figure 9: Figure showing a DF1 loadings plot (A) and a DF2 loadings plot (B) from data pre-processed using 
Method 4. 
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Table 3: Wavenumbers and corresponding peak assignments for PC1, PC3, DF1 and DF2 loadings from  
Method 4. [5,6,7,2,8,] 

Wavenumber (cm-1) 
Tentative peak assignment 

PC2 PC3 DF 1 DF 2 
 980 1163 912, 931, 

1161 
νC-O, νC-C, νC-O-H, νC-O-C  

 1007   Phenylalanine 

 1039   Phenylalanine C-H in-plane 

1064    νC-N, νC-C stretch 

1084  1086 1065, 1084 νP=O (symmetric) of PO−
2 

  1280, 1311 1280 Amide III band of proteins  

   1408 νC=O (symmetric) of COO− 

1385, 
1392, 1441 

1379, 1394 1377, 1419, 
1460, 1468 

1360, 1371, 
1419 

δCH2 and δCH3 

1514   1516 Tyrosine 

1504 1529, 1537  1504, 1531, 
1537 

Amide II 

1577 1579 1568 1560, 1572, 
1579, 1589 

Aspartate and glutamate 
carboxylate stretching 

 1633, 1641  1633, 1643 Amide I β-pleated sheet structures 

 1651, 1658   Amide I α-helix 

  1678  Amide I band components 
resulting from antiparallel Pleated 
sheets from β-turns of proteins 

1712  1709 1709, 1720, 
1736 

νC=O  
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Derivative data 

 

 

 

 

 

  

Figure 10: Figure showing a PCA plot using PC1 and PC2 (A) and a PCA plot using PC1 and PC3 (B) from 
1storder derivative data. 

A 

B 
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Figure 11: Figure showing a PC1 loadings plot (A) a PC2 loadings plot (B) and a PC3 loadings plot (C) 
from 1st order derivative data. 
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Table 4: Wavenumbers and corresponding peak assignments for PC1, PC2 and PC3 loadings from  
1st order derivative data. [5,6,7,2,8,] 

Wavenumber (cm-1) 
Tentative peak assignment 

PC1 PC2 PC3 
906, 930, 
960, 975, 
990, 998 

904, 929, 
954, 972, 
984, 1036  

917, 927, 
938, 1012 

νC-O, νC-C, νC-O-H, νC-O-C 

  1003 Phenylalanine symmetric ring breathing 

1080 
1089, 1108, 
1119 

1058 vP=O (symmetric) of PO−
2 

 
1126, 1144, 
1158 

 νC-N, νC-C  

  1187 Deoxyribose 

1188, 1236  
1217, 1286, 
1296 

1225, 1288, 
1301, 1317 

Amide III band of proteins  

 1329 1338 CH2 wagging 

1388, 
1470, 1492 

1399, 1437, 
1451, 1482, 
1490, 1494 

1380, 1385, 
1391, 1409, 
1425, 1433, 
1464, 1472, 
1480, 1489, 

δCH2 and δCH3 

1546  
1519, 1522, 
1531 

Amide II 

 1560, 1576 1560, 1569 Ring base 

 1579, 1583 1579, 1583 νC-C of phenyl ring 

1598, 
1666, 1670 

 1610, 1650 Amide I  

1657   Amide I α-helix 

  1676 
Amide I band components resulting from 
antiparallel Pleated sheets from β-turns of 
proteins 

 1735 
1701, 1709, 
1713, 1739, 
1747 

νC=O  
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Figure 12: Figure showing a DF1 loadings plot (A) and DF2 loadings plot (B) from 1st order derivative data. 
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B 
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Table 5: Wavenumbers and corresponding peak assignments for DF1 and DF2 loadings from  
1st order derivative data. [1,2,3,4,5] 

Wavenumber (cm-1) 
Tentative peak assignment 

DF 1 DF 2 
904, 934, 956, 
973, 985, 1010, 
1017, 1163, 1169, 
1190 

916, 927, 942, 
952, 971 985, 995, 
1001, 1019, 1159, 
1171 

νC-O, νC-C, νC-O-H, νC-O-C  

1042, 1087, 1220 
1037, 1055, 1070, 
1077, 1086, 1212 

νP=O (symmetric) of PO−
2 

1130, 1140  νC-N, νC-C 

1285, 1302, 1317, 
1346 

1342 Amide III band of proteins  

1390, 1433, 1451, 
1480 

1392, 1407, 1422, 
1430, 1454, 1471, 
1476, 1486 

δCH2 and δCH3 

1529, 1539 1526 Amide II 

1589  νC-C of phenyl ring 

 1592 νC=N, νNH2 adenine 

 1601, 1611,1645 Amide I 

 1678 
Amide I antiparallel pleated sheets from 
β-turns of proteins 

1718 1708, 1733, 1748 νC=O 
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A 

Figure 13: Figure showing a PCA plot using PC1 and PC2 (A) PC1 loadings plot (B) and a PC2 
loadings plot (C) generated from the 2nd order derivative data. 

B 

C 
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Figure 14: Figure showing a DF1 loadings plot (A) and a DF2 loadings plot (B) generated 
from the 2nd order derivative data. 
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Table 6: Wavenumbers and corresponding peak assignments for PC1, PC2, DF1 and DF2 loadings from  
2nd order derivative data. [5,6,7,2,8,] 

Wavenumber (cm-1) Tentative peak 
assignment PC1 PC2 DF 1 DF 2 

952, 968 
950, 966, 
978, 994, 
1012 

952, 966, 
978, 1032 

920, 976, 986, 
994, 1014, 
1028 

νC-O, νC-C, νC-O-H, νC-O-C 

  1002  Phenylalanine 

  
1120, 1132, 
1150 

1124 νC-N, νC-C 

1074 1076, 1100 
1064, 1076, 
1098 

1048, 1084 νP=O (symmetric) of PO−
2 

 1276 
1184, 1210, 
1266, 1276 

 Amide III band of proteins  

1488 

1360, 1378, 
1400, 1418, 
1442, 1458, 
1472, 1482 

1360, 1380, 
1396, 1426, 
1444, 1474, 
1490 

1386, 1488 δCH2 and δCH3 

1516  1518 1516 Tyrosine 

1502, 1510, 
1524, 1532, 
1544, 1552, 1562 

1544, 1562 
1504, 1530, 
1562 

1504, 1528, 
1564 

Amide II 

1576 1570, 1588 1570, 1580 1574 
Aspartate and glutamate 
carboxylate stretching 

1594    νC-C of phenyl ring 

1636   1636 
Amide I β-pleated sheet 
structures 

1622, 1642, 
1648, 1656, 1666 

1626, 1642, 
1660 

1624, 1630, 
1648, 1668 

1604, 1656, 
1670 

Amide I 

1676, 1694   1684 
Amide I antiparallel pleated 
sheets from β-turns of 
proteins 

1700, 1708 
1700, 1726, 
1736 

1728, 1736 
1708, 1718, 
1726, 1738, 
1772 

νC=O 
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Appendix C 

DRIFTS Substrate Study  

 

Figure 1: Spectra collected using DRIFTS showing an overlay of 10 spectra for Concrete (A), 
Jacket (B) and Lino (C). 
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DRIFTS Environmental Conditioning Study 

 

 

  

A 

B 

C 

Figure 2: DFA plots showing separation of time point for spectra collected from BT 
deposited on boot during the 30°C study (A), the 37°C study (B) and the 49°C study (C). 
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Figure 3: DFA plots showing separation of time point for spectra collected from BTK-
deposited on boot during the 30°C study (A), the 37°C study (B) and the 49°C study (C). 
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Figure 4: DFA plots showing separation of time point for spectra collected from BTK+ 
deposited on boot during the 30°C study (A), the 37°C study (B) and the 49°C study (C). 
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Figure 5: DFA plots showing separation of time point for spectra collected from E. coli 
deposited on boot during the 30°C study (A), the 37°C study (B) and the 49°C study (C). 
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Figure 6: DFA plots showing separation of time point for spectra collected from PF 
deposited on boot during the 30°C study (A), the 37°C study (B) and the 49°C study (C). 
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Appendix D 

High Throughput - Fourier Transform Infrared Environmental 

Conditioning Study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: DFA plots showing separation based on the ageing of B. atrop across the three 
temperature studies showing T2 and T3 separating in the 30°C study (A), some separation of 
T2 in the 37°C study (B) and clustering and separation of all time points in the 49°C study (C). 
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Figure 2: DFA plots showing separation based on the ageing of BTK across the three temperature 
studies showing clustering of all time points in the 30°C study (A), clustering and some separation 

of time points in the 37°C study (B) and separation of T0 and T1 in the 49°C study (C). 
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C 

Figure 3: DFA plots showing separation based on the ageing of BTK+ across the three 
temperature studies showing separation of T2 in the 30°C study (A), some separation of time 

points in the 37°C study (B) and separation of T0 in the 49°C study (C). 
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Figure 4: DFA plots showing separation based on the ageing of E. coli across the three 
temperature studies showing separation and clustering in the 30°C study (A), some 

separation and clustering of time points in the 37°C study (B) and separation of T0 in 
the 49°C study (C). 
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Figure 5: DFA plots showing separation based on the ageing of PF across the three 
temperature studies showing separation and clustering in the 30°C study (A), some 

separation and clustering of time points in the 37°C study (B) and separation of T0 in the 
49°C study (C). 
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Multiblock PCA 

30°C Study 
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Figure 6: Multiblock PCA plots showing separation of the 30°C dataset that has been cut to the fingerprint 
region, based on time point not bacterial strain, showing the plot of PC1 vs PC2 for EMSC corrected data (A) and 

the PC1 vs PC2 plot for NR data (B). 
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37°C Study 
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A 

Figure 7: Multiblock PCA plots showing separation of the 30°C dataset that has been cut to the fingerprint 
region, based on time point not bacterial strain, showing the plot of PC1 vs PC2 for EMSC corrected data (A) 

and the PC1 vs PC2 plot for NR data (B). 


