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Abstract

The study of the motion of solids in fluids has always triggered interest in the

scientific and research communities. This rich, dynamic behaviour dates back to the

foundations of modern mechanics. However, understanding the dynamic behaviour

of falling or rising objects in a viscous fluid under the effects of gravity, buoyancy,

and the hydrodynamic/aerodynamic force in the fluid has long been a major issue

in both the engineering and scientific communities.

This research is subdivided into three categories: firstly, an experimental investi-

gation of heavy plates freely falling in three-dimensional (3D) space by determining

the transition between zigzag and tumbling. Secondly, the determination of numer-

ical uncertainty and, finally, investigating the dynamics of a free-falling plate with

initial speeds.

In the first part, the free-falling of heavy plates both in air and water was inves-

tigated experimentally to determine the transition from zigzag to tumbling motions

with different ranges of Re and I∗, a state-of-the-art technique is used to reduce the

errors and inaccuracies during measurements, where the motion of the falling tra-

jectories is calculated in 3D space using Qualisys. The 3D falling kinematics of the

rectangular plate during descent were quantified by tracking the real-time centre of

mass on the body during descent and measuring trajectories, speed, and azimuthal

rotation. In the same way, the mapping of heavy plates was expanded to learn more

about how they fall with bistability. It was concluded that the motion is similar to

the three-dimensional dynamics of freely-falling bubbles with erratically wobbling

behaviour and zigzag motion, but the motion changes with different oscillations of

both vertical and horizontal velocity depending on the initial angle of release, but

the vertical velocity is stochastic and does not depend on the initial release angle.

As the Re increases, the frequency and pattern of oscillation increase with a decrease

in aspect ratio and a high lift compared to previous literature.
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The second part investigated the tumbling motion of a freely falling plate nu-

merically, where the measured trajectory and forces were validated using both the

experimental and numerical data available in previous literature. Using the grid

convergence index method, the numerical uncertainty of the plate in free fall is cal-

culated at each point during the free fall. The numerical results adopted in this

study provided realistic results of tumbling plate dynamics and correctly predicted

the trajectories, forces, and torque but with phase shifts.

The third part investigates the dynamic motion of a tumbling plate with differ-

ent initial speeds. All previous experimental and computational investigations of

freely falling plates, such as the influence of aspect ratio, density ratio, turbulence,

Reynolds number, or the aerodynamics of multiple free-falling plates, and shape

optimization, were carried out. The freely falling plate with initial speed was never

explored. In the last part, the effect of initial speed on the tumbling motion of the

body under the influence of gravity, including the falling paths, speeds, and forces,

was studied numerically for the first time. Thus, it was observed that trajectories

move to the left or right with different initial speeds, but the movement is stochastic

and not dependent on initial speed. It was also observed that the measured hori-

zontal velocity is different as the oscillation moves to the left or right with the same

vertical velocity. The phase movement to the left looks similar to the double period

motion in previous literature, while the phase movement to the right is a single

periodic tumbling. Furthermore, a new triple period oscillation was observed and

reported for the first time with a high frequency and low decent angle, horizontal,

and vertical velocities.
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Chapter 1

INTRODUCTION

This chapter will provide a brief overview of the issues of freely falling, free rising,

and fixed plate autorotation and the topic this thesis aims to address. In addition,

the research aims and objectives with regard to research gaps and novelty will be

discussed in detail. Finally, the thesis structure will be described.

1.1 Background

The rich dynamics and origins of non-straight paths of free-falling (Andersen et al.

(2005a,b); Wang et al. (2013); Vincent et al. (2016); Lau et al. (2018)), free rising

(Fernandes et al. (2007); Zenit and Magnaudet (2008); Horowitz and Williamson

(2010)), or fixed and free autorotating body (Smith (1971); Iversen (1979); Lugt

(1980); Mittal et al. (2004)) through a viscous liquid have always piqued the scientific

and research community’s interest. The final motion is as a result of complicated

natural phenomena that exhibit complex dynamics. This topic has many similarities

with winged-seed dispersal (Var (2011)), meteorology (Augspurger (1986)), particle

sedimentation (Allen (1984)), insect flapping flight (Wang (2004)), autorotation

phenomena (Iversen (1979); Lugt (1983)), windborne-debris flight (Baker (2007)),

Deepsea installation (Fernandes et al. (2011)), and freely falling or rising motion of

other objects in quiescent fluids (Zenit and Magnaudet (2008); Ern et al. (2011);

Filella et al. (2015); Zhou et al. (2017)). This rich, dynamic behaviour dates back

to the foundation of modern mechanics, which honoured great scientists such as

Sir Isaac Newton, Albert Einstein, Galileo Galilei, James Clerk Maxwell, Gustav

2
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Kirchhoff, and others.

The study of the motion of solids in fluids was first studied by Sir Isaac Newton

in 1726. In his novel publication in the same year, he proposed the classical law

of motion, the law of universal gravitation, and Kepler’s laws of planetary motion

from his mathematical description of gravity, and then used the same principles to

account for the trajectories of cornets, tides, the precession of equinoxes, and other

classical phenomena. He also described many experimental works on the motion of

solids in fluids, such as the measurement of the resistance of a ship and the release of

hog bladders from the top of the cupola of St. Paul’s church in London. He noticed

that the bladders did not always fall straight down but instead flutter in the air.

Also, James Maxwell, a famous Scottish scientist in 1853, pointed out that when

a slip of paper is released in the air, its motion, although undecided and wavering

at first, sometimes becomes regular; its general path is not in a vertical direction

but inclined to it at an angle which remains nearly constant; and its fluttering ap-

pearance will be found to be due to a rapid rotation around a horizontal axis. The

direction of deviation from the vertical depends on the direction of rotation. He

attributed the effect to some accidental peculiarities in the form of paper, but with

a few experiments on a rectangular slip of paper two inches long and one wide,

the direction of rotation is determined not by the irregularities of the paper but by

the initial circumstances of the projection and symmetry of the paper slip, which

significantly increases the distinctness of the phenomenon. Kirchhoff (1869) theo-

retically considered the motion of a solid body in an inviscid fluid and demonstrated

that a renormalized added mass tensor can quantify the inertial interaction of the

liquid with the moving solid and that a set of ordinary differential equations can

describe the motion of the body. In 1964, Willmarth et al. (1964) were the first to

visualise the motion of a freely falling plate. Using the non-dimensional moment of

inertia and Reynolds number, they set out a benchmark for the mapping of flight

regimes. Smith (1971) investigated the trajectory modes of freely falling discs and

plates experimentally and found that different regimes can distinguish the trajec-
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tory. After that, a considerable amount of research studies was carried out. The

majority of studies attempt to predict a falling object’s trajectory modes as well as

the transition between them (Field et al. (1997); Belmonte et al. (1998); Andersen

et al. (2005a); Lee et al. (2013); Lau et al. (2018); Esteban et al. (2020); Zhou et al.

(2021)).

Understanding the dynamic behaviour of falling or rising objects in a viscous fluid

under the effect of acceleration due to gravity, buoyancy, and the hydrodynamic force

in the fluid has been a major issue in both engineering and scientific communities for

centuries. A thin circular disc or rectangular flat plate, for example, determined by

the non-dimensional moment of inertia I∗ and the Reynolds number Re, can fall in

a variety of ways, including steadily, planar fluttering (zigzag), tumbling, spiraling,

and chaotic. Phase maps on which regimes for different falling styles are divided

have been built in some studies, as shown in Figure 1.1.

In summary, the trajectories of freely falling plates can be stable or unstable.

The stable trajectory corresponds to vertically falling, while the unstable trajectory

includes fluttering, tumbling, and chaotic motion. The dynamic behaviour of falling

plates as a function of two parameters, I∗ (dimensionless moment of inertia) and

Re (Reynolds number), as seen in Figure 1.1, shows that at Re < 102 plates will

typically fall steadily without any dominant secondary motion. However, when Re

is increased, the plates will either have side-to-side oscillating motion or tumbling

motion depending on the moment of inertia. The dashed lines represent the bifurca-

tion between the different motion classifications; the boundary between the periodic

oscillating motion regime and the tumbling motion regime is approximately constant

at I∗ = 0.2 for Re < 103.
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Figure 1.1: Phase diagram showing the dynamical behaviour of falling object as a
function of the two parameters Re (Reynolds number) and I∗ (dimensionless moment
of inertia) (Lee et al. (2013))

.

1.2 Research Aims and Objectives

The free-falling of heavy plates in both air and water is investigated in this thesis

by determining the transition from zigzag to tumbling motions and extending the

mapping of descent with different Re and I∗ ranges. Furthermore, validation of a

thin rectangular plate freely falling in viscous fluid from previous literature is car-

ried out using commercial software STAR-CCM+ to determine the effect of initial

speed on the motion of the tumbling plate, and the uncertainty of the numerical

measurement is analysed. This research work pursues the following objectives:
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• Using the state-of-the-art techniques, the transitions from zigzag to tumbling

motions of freely falling heavy plates in three-dimensional viscous fluid at the

range of Reynolds number 270 to 23000, dimensionless moment of inertia up

to 23, and aspect ratio 5-39 will be investigated experimentally, by extending

the mapping of heavy plates from previous literature of Lau et al. (2018) to

better understand the falling trajectories and bistability.

• Develop a numerical model to investigate the 2D/3D motion of a falling plate

by using CFD techniques to validate the experimental model of (Andersen

et al. (2005a)) and numerical model of (Jin and Xu (2008)); and estimate the

numerical uncertainty and errors of tumbling rectangular plate during free-fall.

• Develop a numerical model to investigate the motion of a free-falling plate

numerically with an initial velocity.

1.3 Research Gap and Novelty

Several experimental and numerical studies using free-falling thin objects have been

conducted over the last decades to establish that the transition from falling to flight

are related to a variety of different plate densities and fluid viscosities (Auguste

et al. (2013); Wang et al. (2013); Lau et al. (2018)). Different studies focused

on recording the trajectories and determining the free-falling and freely rising body

positions using high-speed digital video and PIV (Andersen et al. (2005a); Fernandes

et al. (2007); Lee et al. (2013); Esteban et al. (2020)). Advances in experimental

approaches have enabled the visual tracking of a moving object using digital cameras

in recent years. Knowledge of the position and orientation’s time history provides

vital information on body movement, such as the instantaneous forces, velocities,

and torques experienced by the falling or rising body. However, at high Reynolds

numbers, it is critical to quantify the quasi-three-dimensional motion of a falling

body because the rotation due to revolution can be considerable as the body rapidly

moves back and forth due to the Magnus effect (Zhong et al. (2011)). In this research,
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the motion of a freely falling heavy rectangular plate was investigated experimentally

and determined the transition between zigzag falling and tumbling with a range of

Reynolds numbers from 270 to 23000, a dimensionless moment of inertia up to 23,

and an aspect ratio of 5-39, to further understand the dependence of the initial

angle of release on the bistability of the plate, the phase portraits of the mapped

region across different regimes of I∗ and Re at different aspect ratios were extended.

Furthermore, errors and inaccuracies during measurement are reduced by capturing

the motion of the freely falling trajectories in 3D space, and the centre of mass is

acquired at constant intervals by tracking the makers on the body during descent in

real-time. The rectangular plate’s three-dimensional (3D) falling kinematics were

measured to calculate its speed, azimuthal rotation, and paths as it falls.

Furthermore, it is apparent that the dynamics of falling bodies have been studied

using direct numerical simulation in a number of studies (Pan et al. (2002); Auguste

et al. (2013); Wu and Lin (2015); Zorzi et al. (2015)), but mesh sensitivity studies

have not been thoroughly investigated. The development of an efficient and reliable

mesh sensitivity module with a special emphasis on the dynamics of falling body

applications appears essential. Most literature looks at independence but not sen-

sitivity. This research will investigate and show the estimation of the errors of the

falling plate numerically based on the trajectory of the falling mode and velocities.

It is, therefore, of great interest to investigate the motion of a freely falling plate and

predict the motion and determine the numerical uncertainty at each point during

the free fall by using the grid convergence index methodology based on the Richard-

son extrapolation (RE) method (Richardson and Glazebrook (1911)). However, the

CFD community currently accepts no standard method for evaluating numerical

uncertainty. The Richardson extrapolation method is chosen because of its wide

recommendation for discretization error estimation, and the method has been in-

vestigated by many researchers (Celik et al. (2008)). The uncertainty analysis is

centred on Richardson Extrapolation (RE) (Richardson (1927)). The RE gives a

confidence level of only 50%. For this reason, a variety of different methods are em-
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ployed to predict the uncertainty with a 95% confidence interval. Specifically, the

Grid Convergence Index (GCI) method of Roache (1998), as well as the approaches

of Xing and Stern (2010), and Stern et al. (2001), hereafter referred to as the FSRE

(Factors of Safety for Richardson Extrapolation) and CF (Correction Factor) meth-

ods, respectively.

Finally, in all the previous experimental and numerical analysis of freely falling

plates, a lot of parametric studies were carried out, such as the effect of aspect ratio

(Wang et al. (2013)), density ratio (Wang et al. (2016)), turbulence (Esteban et al.

(2020)), Reynolds number (Andersen et al. (2005a,b)), or aerodynamics of multiple

free-falling plates (Kushwaha and De (2020)) and shape optimization (Vincent et al.

(2020)). The dynamics of falling plate with initial speed was never investigated.

This research investigated numerically for the first time to determine the effect

of initial speed on the freely tumbling body under the influence of gravity. The

whole trajectories of all the falling rectangular plates is analysed with their falling

velocities, accelerations, and forces.

1.4 Thesis outline

This thesis has six chapters, including:

Chapter 2. (Critical Reviews) Presents different literature reviews that docu-

ment important, relevant research on experimental, numerical, and theoretical stud-

ies on falling, rising, and fixed autorotation of plate problems challenges and research

gap and finally, a summary of the approach to investigate the initial velocity prob-

lem.

Chapter 3. (Methodology) provides experimental, numerical, and uncertainty

methodologies with a discussion of the approaches and laboratory set-up. The nu-

merical simulation of falling bodies using the dynamic fluid body interaction DFBI

model in Star-CCM+. This includes a description of the fluid domain and bound-

ary conditions, the type of mesh and numerical discretisation schemes used, and the

various sensitivity studies for spatial and temporal discretisation, solution schemes,
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and turbulence modelling approaches. Finally, the method of determining the nu-

merical uncertainty by using the Richarson extrapolation method is discussed.

Chapter 4. Presents experimental results with a phase diagram showing the

transition between a zigzag motion to tumbling of the free-falling heavy rectangular

plate in air and water with different initial angles of release.

Chapter 5. The verification and validation of the CFD model are presented

with results against existing experimental and numerical measurements to show the

tumbling case and to assess the accuracy of the simulation and determine the local

uncertainty and errors during measurement. Both mesh and time study results

were presented. The sensitivity to initial velocity results also presented with vortex

shedding and wake structures.

Chapter 6. Summaries the main conclusions of the research and Future re-

search.



Chapter 2

CRITICAL REVIEW

This chapter briefly describes the early discoveries of the falling body, narrowing

down to the subject of this thesis. The existing literature review that documents

relevant research on experimental, numerical, and theoretical studies on falling, ris-

ing, and fixed/free auto-rotation of plate problems challenges and research gap and

finally a summary of the approach to investigate the initial velocity problem and

numerical uncertainties of measurements.

2.1 The Historical Background of Falling, Rising

and Fixed Plate Dynamics.

The rich dynamics phenomena of freely falling plates in air or water is a classical

problem (Maxwell (1853)) and is also one of the central problems of fluid mechanics

and aerodynamics, which have attracted a lot of research and have been studied

for decades by the scientific community. In the mid-seventeenth century, Galileo

Galilei dropped two metal balls from the leaning tower of Pisa and showed that

they fall at the same rate despite the balls having different masses. In another

version of the experimental determination of falling bodies, astronaut David Scott

dropped a hammer and a feather on the moon and observed that they both hit the

surface at the same time. Furthermore, Maxwell (1854) was the first to consider

qualitatively the study of the motion of an object falling freely through air over 200

10
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years. Extensive experiments, numerical simulations, and theoretical analyses have

been done to study how a body falls and how it changes between stable, fluttering,

and tumbling, as well as critical conditions, flow structures, and dynamic behaviors.

In addition to free-falling bodies, fixed auto-rotating bodies have been exten-

sively studied. Fixed-axis auto-rotation and freely falling tumbling plates have some

similarities, but there are significant differences between the two phenomena. Ri-

abouchinsky (1935) distinguished for the first time between auto-rotating plates

with fixed axes and those with freely moving axes. The most important difference

is that fixed-axis auto-rotation involves only the rotational degree of freedom of the

plate, and thus the coupling between translation and rotation is absent. Therefore,

it is not clear how results from the two different types of auto-rotation are related

(Andersen et al. (2005a)).

The dynamics of a rising body in a fluid under the action of buoyancy, such as

a bubble, is more complicated than that of solid bodies under the action of gravity

because of the shape and coupling motion between the flow-induced stresses and

surface tension and interfacial properties (Fernandes et al. (2007)). Leonardo Da

Vinci (1452 - 1519) observed bubbles rising in water in a spiral motion about 500

years ago. The motion of a buoyant particle in a flow is a complex two-way coupled

problem. The particle moves through the fluid in response to the flow fluctuations,

and this motion, in turn, exerts a back-reaction on the flow (Mathai et al. (2018)).

2.2 Experimental study of Freely Falling Plates

Often due to the lack of accurate theoretical models to predict the dynamics of a

falling object, as well as the fact that simulation of multi-particle flow is computa-

tionally expensive and can only be performed using high-performance computing,

which explains why the dynamics of free-falling objects are investigated experimen-

tally. Early experimental work on the 2D/3D motion of rigid flat plates falling in

a viscous fluid was mainly focused on the qualitative measurement and falling pat-

tern of thin plates or discs in viscous fluid using sophisticated optical techniques
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such as high-speed video cameras, particle image velocimetry (PIV) and the stereo-

scopic vision methods. Willmarth et al. (1964) investigated the freely falling motion

of discs in a viscous fluid for the first time and reported three falling patterns as

steady falling, fluttering, and tumbling, and constructed a phase diagram between

the Reynolds number Re and dimensionless moment of inertia I∗ showing the falling

pattern. Smith (1971) also investigated the motion of a falling rectangular plate

experimentally and constructed the phase diagram. Field et al. (1997) reported the

experimental observations of falling discs in water and glycerol mixed and found

four types of motion, mapping them out in a phase diagram. At the same time, the

complex behaviour was reduced to a series of one-dimensional maps. Heisinger et al.

(2014) dropped discs repeatedly in water to obtain the probability density functions

of four falling motions as depicted by Field et al. (1997). Mahadevan et al. (1998)

investigated the tumbling of rectangular cards dropped in still air with their long

axis horizontal and observed a scaling law for the dependence of rotational speed.

Xiang et al. (2018) investigated the 2D trajectory mode of freely falling plates and

visualised the corresponding wake patterns, and then compared them with the phase

diagram of Smith (1971). They extended the phase diagram of Re and I∗ to dis-

tinguished the transition between the regimes. Belmonte et al. (1998) conducted

quasi-2D experiments with thin flat strips to examine the transition from fluttering

to tumbling. In their research, the transition was determined by the Froude number

Fr (similar to the non-dimensional moment of inertia), and the transition occurred

at Fr = 0.67 ± 0.05.

Andersen et al. (2005a,b) recorded the trajectory of a falling thin aluminium

plates freely falling using high-speed digital video in a quasi-two-dimensional flow

and obtained their instantaneous kinematics and aerodynamic forces and torque.

Mahadevan et al. (1998) performed an experiment using long rectangular strips cut

from reflective plastic shimstock to determine the average tumbling frequency. While

Wang et al. (2013) experimentally measured the tumbling motion of a freely falling

plate with an aspect ratio ranging from 2 to 10 using a high-speed video camera and
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demonstrated the influence of aspect ratio on the tumbling motion, for some aspect

ratio ranges, a double period rotation with period-doubling is observed. Yaginuma

and Itō (2008) determined the drag coefficient of a freely falling cone with a vertex

angle of 600 experimentally at an intermediate Reynolds number range from 90 to

8 × 103 the drag was determined based on the terminal velocity of the cone. The

method was then used on the simple geometry of a flat plate to study the fall of

a rigid card in a fluid initially at rest. The different forces and torques applied by

the fluid on the card were analysed by broad-side on fall, where the plate falls in

its horizontal position, and found to be unstable for small initial angles, and also a

fluttering regime with growing amplitude was observed.

In addition to the 2D dynamics of falling rectangular objects, the flow-visualization

experiments for 3D discs were performed together with the measurement of the

Strouhal numbers. Veldhuis and Biesheuvel (2007) experimentally investigated the

numerical work of Jenny et al. (2004) on the instability and the transition of the

motion of solid spheres falling or ascending freely in a Newtonian fluid and verified

some of the conclusions of the work. Apart from determining stable falling, flut-

tering, tumbling, and chaotic trajectories and mapping them, it is also essential to

study the transition phase between the falling mode. Field et al. (1997) reported

experimental observations of falling discs in water and glycerol mixed and found

the instabilities of chaotic trajectories within the envelope of flight map between

fluttering and tumbling. Bi et al. (2018) experimentally investigated freely falling

annular discs and found an additional two falling modes and plotted a new phase

diagram indicating the boundary between hula-hoop and helical motions. Zhong

et al. (2011) experimentally investigated the falling pattern of thin discs using the

stereoscopic vision method and identified a new falling pattern of spiral and transi-

tional states. Zhong and Lee (2012) visualized the wake structure of circular discs

falling vertically in quiescent water and found the evolution of the wake to be like

the flow patterns behind a fixed disc of Re 40-200, a regular bifurcation occurs at

critical Reynolds number. While Willmarth et al. (1964) investigated the motion of
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steady and unsteady discs and found that the diverse motion of the discs exhibits

a systematic dependance on the Re and I∗, in addition the relationship between Re

and I∗ along the boundary shows the separation between stable and unstable pitch

oscillation of the discs. Ern et al. (2009) describes the dynamic model that predicts

the zigzag motion of a disc and an oblate spheroid falling freely in a viscous liq-

uid over a continuous range of aspect ratios and Reynolds numbers. By combining

the findings and the scaling laws provided by a recent series of experiments. Ern

et al. (2011) also reviewed and provided an overview on investigating the homoge-

nous bodies with simple geometry bodies such as plates and circular cylinders whose

span is much larger than any other characteristic dimension and axisymmetric bod-

ies such as spheroids and discs of various thicknesses freely rising or falling. Zhong

et al. (2013) experimentally studied the free-fall motion of a thin circular disc in

still water and focused on the planar zigzag motion. The Reynolds number effects

were studied by keeping the dimensionless moment of inertia and aspect ratio con-

stant. By studying the flow pattern of the disc using dye visualisation and particle

image velocimetry, they found the flow separation and vortex shedding to change

with Reynolds number. Lee et al. (2013) investigated the free-fall motion of a thin

disc with a small dimensionless moment of inertia experimentally and concluded the

transition from two-dimensional zigzag motion to three-dimensional spiral motion

occurs due to the growth of three-dimensional disturbance. The effect of the initial

condition (release angle) was investigated. Two kinds of transition were observed: a

zigzag-spiral and a zigzag-spiral-zigzag intermittence was reported. Zhong and Lee

(2012) visualised the wake structure of circular discs falling in a quiescent fluid with

a Reynolds number range from 40-200 and confirmed a regular bifurcation at the

first critical Reynolds number, which leads to a transition from an axisymmetric

wake structure to a plane symmetric one. Zhong et al. (2011) experimentally inves-

tigated the time evolution of a thin disc freely falling with six degrees of freedom

motion and found that the dimensionless moment of inertia decreases. In addition,

the trajectory of the falling disc transits from planar to nonplanar and new freely
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falling motions such as spiral and transitional states were identified for small dimen-

sionless moment of inertia values. And finally, the phase diagram corresponding to

different flow regimes was plotted. Esteban et al. (2020) experimentally investigated

the dynamics of freely falling thin discs settling through turbulence. The 3D falling

patten of the disc is studied using an orthogonal arrangement of two high-speed

cameras while the turbulence is generated using a random jet array arrange in co-

planar configuration. They observed a severe increase in the mean descent velocity

with increasing magnitude of the turbulence velocity fluctuations up to 20% of the

velocity in quiescent flow for the disc with higher I∗. A new falling descent was

reported as the disc fall through turbulence that didn’t happen when they fall in

still water.

Moffatt (2013) suggested investigations into disc falling in a viscous fluid by con-

sidering some factors such as roughness, wavy edge, and a hole on the disc, and the

belief that having these factors may change the wake and thus influence the insta-

bilities of the falling discs. Vincent et al. (2016) investigated the falling dynamics

of a thin disc with a central hole experimentally and determined the effect of the

central hole on the disc’s motion for a wide range of Reynolds number, moment of

inertia, and inner to outer diameter ratio. They found that by increasing the hole

ratio, the disc transition changed from tumbling to chaotic and then fluttering at

values of the moment of inertia not predicted by the falling mode of the whole disc.

Blay Esteban et al. (2018) investigated the effect of edge geometry on the descent

motion of freely falling planar particles such as discs and polygons with identical

frontal area but different numbers of edges. Both disc and polygon parameters I∗

and G∗ are design to fall in the category of previous identified fluttering regime, but

during the experimental studies several modes of secondary motion was observed

for the same particle and conditions. The discs and heptagons are observed to dis-

play planar zigzag motion. Bi et al. (2018) experimentally investigated freely falling

annular discs and found an additional two falling modes and plotted a new phase

diagram indicating the boundary between hula-hoop and helical motion. Zhou et al.
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(2021) experimentally investigated an eccentric annular disc with a hole falling in

water with Re between 4000 and 21000 and found new dynamic behaviours and

complex paths during the descent. They also classified the motion into fluttering,

chaotic, tumbling, and transition motions, and also identified a new stable descend-

ing motion. The three descent modes of eccentric discs were mapped out in the 2D

phase space of e∗ and I∗. In the end, it was decided that eccentricity is an important

parameter to use when describing how eccentric discs fall.

2.3 Theoretical study of Freely Falling Plates

Most of the theoretical model is based on quasi-steady assumptions of Kirchhoff

equations (Kirchhoff (1869)) for an incompressible, inviscid, irrotational fluid set of

ordinary differential equations which generalise Euler’s equation (Whittaker (1937))

that describes the motion of a solid body in a vacuum. Aref and Jones (1993)

found chaotic behaviour in the Kirchhoff equations, while Tanabe and Kaneko (1994)

investigated the behaviour of falling paper in a two-dimensional fluid by introducing

a phenomenological model and including lift and friction terms. With the increase in

friction coefficient, five falling patterns were discovered. At the same time, Belmonte

et al. (1998) modified Tanabe and Kaneko (1994) model to include lift, gravity, and

inertia drag to describe the tumbling and fluttering motions. Jones and Shelley

(2005) investigated the characteristics of the frequency for a fluttering plate, and a

linear relationship with the square root of the Froude number was derived.

Recently Vincent et al. (2020) investigated the two-dimensional effect of platform

geometry on tumbling flight by designing wings of different platforms and length-to-

width ratios, and drive theoretical prediction of the performance, which was tested

experimentally, and they concluded the advantage and limitations of the theoretical

approach on the design of efficient tumbling wings aerodynamically.
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2.4 Numerical study of Freely Falling Plates

Theoretical progress is in part hindered by the lack of simultaneous measurements of

instantaneous forces and flows around a falling object (Pesavento and Wang (2004)).

An accurate and efficient simulation of freely falling, freely rising or fixed autoro-

tation bodies is challenging, but nonetheless, numerical simulation due to control

boundary conditions and initial conditions has an advantage over experiments but

requires the development of specific mathematical algorithms to solve the coupling

of body-fluid problems. A falling body exerts a complex dynamical interaction be-

tween the fluid and the body, which is governed by Navier Stokes and the equations

for rigid body dynamics, determining the motion of the body, this problem being

2D in the case of rectangular plates or 3D in the case of planar particles such as

discs. Recent advancements in computational fluid dynamics capabilities have al-

lowed for better resolution of the flow field, which has led to a deeper understanding

of the physics of bodies during free fall (Wu and Lin (2015)). However, the numeri-

cal simulation of freely falling objects is challenging since it requires simulating the

moving solid boundaries with the flow. Haeri and Shrimpton (2012), in their review

paper, introduced available methods based on the Navier Stokes equations for the

simulation of particle flow and classified the methods into two general categories

based on the treatment of the underlying mesh, namely fixed mesh methods and

body conformal mesh methods. They further discussed the fixed mesh method into

immersed boundary methods and fictitious domain methods. However, the fictious

domain methods comprise of immersed boundary methods (IBM) and distributed

Lagrangian methods (DLM), which are used numerically to simulate falling/rising

bodies of arbitrary shapes in a viscous fluid. While Maxey and Patel (2001) pro-

posed a force coupling method as a simple and efficient DNS model for multi-particle

flows, it was originally developed to simulate spherical particles but was later ex-

tended to simulate ellipsoid particles by Liu et al. (2009). Hu (1996) and Johnson

and Tezduyar (1996, 1999) have developed a numerical procedure based on a finite

element technique applied to moving unstructured grids to simulate the motion of
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a large number of solid particles in a liquid flow. Hu (1996) used the generalised

Galerkin finite element formulation to incorporate both the fluid and the particle

equations of motion into a single variational equation of the Newtonian fluids. An

arbitrary Lagrangian-Eulerian technique was adopted to deal with the motion of

moving particles while eliminating the hydrodynamic forces and moments acting

on the solid in the formulation. Johnson and Tezduyar (1996, 1999) investigated a

new 3D finite element flow simulation numerically for fluid-particle interaction and

applied time-dependent behaviour for multiple falling spheres in a liquid-filled tube,

and the capabilities are based on flow simulation of a stabilised space-time formula-

tion of moving boundaries and interfaces, by automatically remeshing the structured

layers of the elements around the sphere when needed. Uhlmann (2005) presented

an improved method for computing incompressible viscous flow around a suspended

rigid particle using a fixed and uniform computational grid. In addition, to avoid

complicated interpolations and transformations of the force density on the boundary

points, Wu and Lin (2015) developed a modified direct-forcing immersed-boundary

pressure correction method to solve the freely falling behaviour of elliptical object

with a small fixed aspect ratio of 0.125 in two-dimensional Navier Stokes equations,

a phase diagram of the behaviour is established based on two-dimensional parame-

ters i.e Re and I∗. They also found out that the initial inclination angle is likely to

influence the falling speed especially in the chaos phase. Wang et al. (2016) investi-

gated the 2D rectangular plate falling freely in water numerically using an immersed

boundary-lattice Boltzmann flux solver in a moving frame and constructed different

phase diagrams using density ratio against aspect ratio and validated the numerical

results. They also analysed the vortical structures in the modes and decomposed

them into three typical stages of initial transient, deep gliding, and pitching up. Pan

et al. (2002) numerically simulated an ellipsoid body moving in a narrow channel

using a Lagrangian multiplier based fictitious domain method. They observed that

during descent the ellipsoid moves to the centre of a channel and continues to move

with its broad side perpendicular to the main stream direction. while Fonseca and
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Herrmann (2005) used a constrained-force technique to study the settling motion of

an oblate ellipsoid particle and attempted to reproduce the motion observed by Field

et al. (1997). Andersen et al. (2005a) investigated a rectangular plate falling in water

experimentally and validated the experiment results numerically. In their numerical

simulation to avoid singularities at the edge of the rectangular plate, a plate with an

elliptical cross-section was used. The instantaneous fluid forces and velocities were

measured and compared. Discrepancies where found to be mainly due to a geometry

difference. But later, Jin and Xu (2008) used an applied gas-kinetic scheme to study

the trajectories and instantaneous forces of falling rectangular plates numerically and

also shows that the inconsistency between the numerical and experimental results of

Andersen et al. (2005a) is due to a numerical algorithm, not geometric shape. Jones

(2003) modelled the separated flow of an inviscid fluid around a moving flat plate us-

ing an integral boundary representation for the complex-conjugate velocity field. In

addition, they systematically derived a system of governing evolution equations for

the problem, which ensured that all the necessary boundary conditions were auto-

matically satisfied. Wang et al. (2016) numerically studied a two-dimensional falling

rectangle plate with different solid-to-water density ratio and thickness-to-length ra-

tio using the recently developed immersed boundary-lattice Boltzmann flux solver in

a moving frame developed by Wang et al. (2015). A phase diagram documenting the

different falling styles of the plates was constructed, and various instantaneous and

mean kinematic properties of the plates and hydrodynamic forces were analyzed.

Kolomenskiy and Schneider (2010) studied the dynamics of falling leaves numeri-

cally using a Fourier pseudo-spectral method with volume penalization to impose

no-slip boundary conditions. Simulations were performed for different values of the

Reynolds number, and comparisons with other numerical methods were made. Lau

et al. (2018) also examines the transition of stable falling to tumbling for freely

falling heavy plates in two dimensions using the immersed boundary method at a

Reynolds number of up to 500 and dimensional moment of inertia up to 10. The

study found that, depending on the initial angle of release, a plate may settle into
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a stable falling or tumbling descent. Michelin and Llewellyn Smith (2009) proposed

a 2D vortex method coupled motion for a sharp-edge solid body in inviscid flow

using the potential flow theory in high Reynolds flow. Zorzi et al. (2015) conducted

a statistical analysis using the nonintrusive spectral projection method on the ef-

fect of fillet radii on the dynamics of a falling plate. In the stochastic simulations,

the fillet radius of the plate was considered a random variable characterised by a

uniform probability density function. In this way, some uncertainties in the plate’s

trajectory are determined and the mean trajectories and the error bar for the 95%

for both the fluttering and tumbling regimes are plotted.

More recently, Kushwaha and De (2020) numerically investigated the aerody-

namics of multiple freely falling plates in a quiescent medium. The non-vertical

descent motion of the plates shows a wide range of dynamical behaviour that de-

pends not only on the shape but also on the relative initial orientation of the release.

The collision between the plates and the subsequent movement through the vorticity

field caused a significant difference with that of single plate trajectory behaviour.

Rana et al. (2020) investigated the 2D motion of a freely falling plate in water nu-

merically using the diffuse interface immersed boundary method. The range of I∗

For chaotic motion is found to extend with the increase in initial inclination angle.

Also, fluttering and tumbling motions converge on a variety of initial states. They

also found that the plate’s solid-to-fluid density ratio changed how the chaotic mo-

tion changed into a flutter or a tumble.

3D planar bodies such as discs are investigated numerically. Chrust et al. (2013)

numerically presented a comprehensive parametric investigation of freely falling ho-

mogenous thin disc and showed the problem to depend on two independent param-

eters, Galileo number G∗ and non-dimensionless inertia of the disc. Dušek et al.

(2016) numerically investigated the transition of freely falling homogenous and in-

finitely thin discs and mapped the regimes based on the Galileo number, which

expresses the ratio between gravity and viscosity and the non-dimensionalized mass

characteristic of the disc. Auguste et al. (2013) numerically investigated the dy-
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namics of discs over a wide range of solid-to-fluid inertia ratios falling under gravity

in a fluid medium at rest at infinity. By varying the density and thickness, the

disc transition from a straight vertical path to a planar fluttering regime is found

to exhibit complex dynamics. Jenny et al. (2004) numerically developed a spectral-

spectral element method and investigated the transition of chaos of a sphere falling

or ascending under the action of gravity in a Newtonian fluid. The results show that

for all density ratios, the vertical fall or ascension becomes unstable via a regular

axisymmetric breaking bifurcation. Shenoy and Kleinstreuer (2010) used a finite-

volume method to determine the motion of a freely falling cylinder with a different

aspect ratio in the zigzag regime, and the aspect ratio significantly changes the

structure of the vortices shed by the disc and thus alters the fluid-induced forces.

Deloze et al. (2010) studied the motion of a circular cylinder freely falling in a chan-

nel under the action of gravity using the automatic chimaera method implemented

in the Navier-Stokes solver. Two parameters are considered for the descent of the

cylinder diameter to the channel ratio and the fluid to particle density ratio, while

the varying parameters are the initial position and the Galileo number. They found

that the presence of the wall accelerates the oscillation motion while the initial po-

sition has no influence on the amplification of the transverse oscillations.

Finally, apart from the rigid body, flexible bodies falling freely are also studied

numerically. Alben (2010) use inviscid simulation to analyse the dynamics of falling

flexible sheets in two-parameter space while shedding vortex sheets according to the

Kutta condition, using sheet density and bending rigidity. The sheet trajectories

show persistent circling, quasiperiodic flapping, and more complex repeated pat-

terns. For small bending rigidity, the motion becomes less regular. In contrast, at

intermediate bending rigidity, trajectories show a well-defined falling angle relative

to the vertical. Furthermore, at a larger sheet density and bending rigidity, the

overall motion is more horizontal. Zhu (2007) simulated an inhomogeneous flexi-

ble filament freely falling in a viscous fluid with a low Reynolds number using the

immersed boundary method. The work showed examples of filaments falling and
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flexing and identified a sideways drifting motion. In addition, the results indicate

unstable filament motion depends more firmly on the bending modulus than the

mass density. A Hopf bifurcation takes place at the second critical Reynolds num-

ber as the wake structure becomes unsteady.

2.5 Dynamics of Freely Rising Object

In addition to the motion of free-falling objects, the motion of rising objects is also

extensively studied. Fernandes et al. (2007) investigated the motion of freely rising

axisymmetric rigid bodies under the action of buoyancy in a low-viscosity fluid. They

found that beyond a critical Reynolds number, which depends on the aspect ratio,

both the body velocity and the orientation start to oscillate periodically. Ellingsen

and Risso (2001) investigated the rise of a bubble in still water and described the

bubble shape, which was found to be similar to an oblate ellipsoid. In addition,

they determined the trajectory of the bubble to start oscillating on an almost plane

zigzag and then progressively transform into a helix, and the influence of surfactants

to be negligible. Fernandes et al. (2005) investigated the zigzag path of a freely ris-

ing light-flat cylinder experimentally in water. They found that for thick bodies,

both the axis and the velocity oscillate almost in phase, whereas for thin bodies,

they are rather in quadrature. Zenit and Magnaudet (2008) experimentally studied

the conditions at which the paths of freely rising bubbles of aspect ratio 2.36 to 2.0,

becoming oscillatory using silicon oil with viscosities ranging from 0.5 to 9.4 times

that of water and Reynolds number 70 to 470. It was found that the dominant

parameter that triggers the instability is the bubble shape and not the Reynolds

number since vorticity generated at the bubble surface is almost independent of

the Reynolds number and mainly depends on the bubble aspect ratio. And finally,

Saffman (1956) investigated a freely rising gas bubble in water and showed oscil-

latory behaviour when the bubble size exceeds a critical diameter. The rectilinear

trajectory behaviour was becoming unstable with planar zigzag and helical motion.
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2.6 Dynamics of Free and Fixed-axis Auto-Rotation

The dynamics of free/fixed plate tumbling or auto-rotating is complex. Studies on

freely tumbling plates date back to Maxwell (1853), who described tumbling qual-

itatively. Dupleich (1949), in his well-known extensive experimental investigation,

studied the rotation of an elongated rectangular paper cut out of pasteboard falling

freely in the air and measured the descent angle and the average tumbling frequency.

Smith (1971) performed an experimental study on the autorotation of a fixed-wing

to uncover the mechanism and dynamics of the autorotation phenomenon with dif-

ferent Reynolds and Strouhal numbers. Lugt (1980) studied the autorotation of an

elliptical cylinder numerically using Navier-Stokes equations and predicted angular

velocity using potential flow theory. However, later, Iversen (1979) analysed the

lift and drag coefficients for autorotating plates with different aspect ratio values

and Reynolds numbers. Skews (1990) conducted a series of tests to determine the

autorotation of a rectangular plate with a thickness to chord ratio varying from

0.1 to 1.0. The plate spanned the entire width of the wind tunnel in two dimen-

sions. The results show significant differences from predictions of infinite aspect

ratio plates inferred from finite aspect ratio tests given by Iversen (1979). They

found tip-speed ratios to be independent of thickness ratio, at approximately the

Lugt (1980) value over the full range of thickness ratios. Also, drag coefficients were

found to be independent of the thickness ratio. Also, there appears to be a critical

thickness ratio above and below, in which the lift coefficients are constant but are

of different magnitudes. Var (2011) studied falling maple seeds and characterised

the falling flight as helical motion. Their investigation shows a seed with a torn

wing that gyrates in a similar manner as a full-winged seed, and also a seed with

only a sliver of leading-edge can gyrate, and thus the gyrating motion appears not

to fully depend on the aerodynamic forces. Varshney et al. (2013) measured the

three-dimensional falling kinematics of parallelograms and quantified their descent

speed, azimuthal rotation, tumbling motion, and cone angle, and showed that par-

allelograms exhibit coupled motion of autogeneration and tumbling, similar to the



2.7. SUMMARY, LIMITATIONS AND CONCLUSIONS 24

motion of tulip seeds. During the descent, the card has negligible horizontal drift

and can maintains a steady cone angle. To extract the instantaneous forces and

torques, they calculated the accelerations from the kinematic data and then applied

the Newton-Euler equations, and the analyses show that regardless of the change

of geometry angle of attack during tumbling, the magnitude and direction of the

aerodynamic forces remain nearly steady.

2.7 Summary, Limitations and Conclusions

This study focuses on three different problems. The first experimentally investigates

the transition from zigzag to tumbling of heavy plates falling in air and water at

a range of Re and I∗, by introducing a new methodology of capturing the trajec-

tories of the freely falling plate. In recent years, the measuring of falling plates

using high-speed video cameras has been done using several methods. Some of the

methods capture the difference in the number of image pixels of the moving plate

and the homographic mapping of the motion vector from the image plane to the

global coordinate plane. The systematic random errors produced by the existing

methods lower the accuracy and convenience in determining the falling trajectory

and velocities. Different errors can occur because of determining the falling time

with a stopwatch and measuring the distance between measurements due to object

sizes and shapes. In this research, we present a new method of capturing the mo-

tion of a freely falling plate using the Qualisys system, where the motion of the

plate is measured in 3D space by capturing the falling trajectories of the reflective

maker attached to the plate. The cameras measure and reconstruct the cameras

measures and reconstructs the 3D motion in real-time at up to 1500-3000 frames

per second. The cameras comprise industrial-grade components and combine with

world-class highest pixels rate with low-latency output and sub-millimeter accuracy

at distances of ±35m. In addition, we investigated the transitions from zigzag to

tumbling motions of the freely falling heavy plates in the range of Reynolds number

270 to 23000, dimensionless moment of inertia up to 23 and aspect ratio 5-39. it
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is desirable to extend the mapping of heavy plates from previous literature of Lau

et al. (2018) to further understand the falling trajectories and bistability, since both

experimental and numerical investigation of heavy plates at large Re, I∗ and γ∗

remain scarce.

The second problem is to validate the experimental model of previous literature

and show the numerical uncertainty during the falling body. Predicting numeri-

cal models of fluid structural interaction has long been a significant interest in the

research community, with great challenges posed by accuracy, stability, and com-

putational cost. Since there is no overall best practice model universally applicable

to select turbulence flows, this research will choose the best model to predict the

instantaneous fluid forces and trajectories of falling plate numerically. Most of the

research that has been studying the fluid-structure interaction of falling objects nu-

merically and focusing on selecting the best method to predict the instantaneous

fluid forces, trajectories, and vortex shedding, which play a vital role in the motion

of the object, fails to show the errors and uncertainty of this numerical simulation.

This research will investigate and show the error estimation of the falling plate nu-

merically based on the trajectories and velocities of the falling mode. It is, therefore,

of great interest to investigate the motion of a freely falling plate using a turbulence

model to predict the motion and determine the numerical local uncertainty estima-

tion of the falling mode at each point during the free-fall using the grid convergence

index methodology based on the Richardson extrapolation (RE) method (Richard-

son and Glazebrook (1911)). However, the CFD community currently accepts no

standard method for evaluating numerical uncertainty. The Richardson extrapola-

tion method is chosen because of its wide recommendation for discretization error

estimation, and the method has been investigated by many researchers (Celik et al.

(2008)).

Finally, from the previous studies, it should be noted that the case of freely

falling objects is very sensitive to perturbations or initial conditions. Therefore,

investigating the effect of initial velocity on the trajectories and descent velocity of



2.7. SUMMARY, LIMITATIONS AND CONCLUSIONS 26

freely falling bodies numerically or experimentally to our knowledge has not been

studied in previous literature, despite the extensive research carried out on the

motion of discs, plates, polygons, and wavy-edge particles falling freely or fixed in

quiescent fluid and particles falling in background turbulence.



Chapter 3

METHODOLOGY

This chapter discusses the experimental, numerical, and uncertainty techniques, as

well as the methodology and laboratory setup. Developed a numerical technique

for solving the Navier-Stokes equations in the simulation of a falling body using

DFBI in STAR-CCM. This includes a description of the fluid domain and bound-

ary conditions, the type of mesh and numerical discretisation schemes used, as well

as the various sensitivity studies for spatial and temporal discretisation, solution

schemes, turbulence modelling approaches, and non-dimensional parameter deter-

mination discussed. Finally, the Richarson extrapolation approach for assessing

numerical uncertainty is explained.

3.1 The Experimental Set-up, Apparatus, and Mea-

surement Procedure

To capture the real-time dependent motion of a heavy plate falling with six degrees

of freedom in air and water, the motion of the falling rectangular plate was recorded

using a Qualisys camera with a marker attached to the falling rectangular plate.

Figure 3.1 to Figure 3.4 show the experimental set-up and arrangement of the appa-

ratus, which comprises a Qualisys camera (Oqus system), a stand with clamps and

a release mechanism.

A calibration was performed to capture the motion of the body using a towing

27
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tank of size 76m ×4.6m ×2.5m and an in-air drop of size 15m ×7m ×3.5m in

the Kelvin hydrodynamic laboratory at the University of Strathclyde, Glasgow,

United Kingdom. For both setups, first the Oqus cameras were connected, and the

Qualisys DHCP server interface was connected to the power ports and data ports

while running. However, before capturing the motion on the Qualisys systems, the

computers were calibrated and prescribed precisely where the cameras were with

respect to each other and the environment around them, including force plates, so

that the maker data would be captured accurately. Reflection was cleared in the

laboratory within the volume of interest to make sure the cameras are not picking up

phantom markers caused by reflective surfaces or direct light sources. The L-frame

device shown in Figure 3.3 was used to define the global coordinate systems X,Y and

Z axes of the laboratory volume during the calibration, by using a calibration wand.

The wand was twisted until it clicked into place, both shown in Figure 3.3. A project

folder was created. Underwater makers of 14mm diameter with a mass of 15g shown

in Figure 3.6 and retro-reflective sheet are placed on the rectangular plate with a

bone length tolerance of 5mm, and at least three cameras must capture the maker

to create a 6Dof rigid body of the local origin system of x,y and z of the rectangular

plate as shown in Figure 3.7 and Figure 3.8. The measured separation between the

two makers is kept in the range 95mm - 150mm for the QTM tracking to accept the

possibility that the calculated markers may be the pair specified for the rigid body

by setting the exposure time at 200 - 300 microseconds with a maker threshold

of 20, with a capture rate of 100Hz. The position of the centre of mass x,y and z

and the three Euler angles roll(θ), pitch(ϕ) and yaw(ϑ) were tracked throughout the

descent of the rectangular plate as shown in Figure 3.5. The experimental matrix

used is presented in Table 3.1.
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Figure 3.1: Schematic of the underwater experimental set-up with (a) qualisys cam-
era above and (b) below the Water Surface
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Figure 3.2: Schematic of the in-air experimental set-up with (a-b) qualisys camera
above.
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Figure 3.3: (a) Release mechanism clamped to the beam with wand and (b) L-frame
for setting out the laboratory coordinate system.
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Figure 3.4: (a) Underwater and (b) in-air release mechanism with a plate attached.

The 6DOF tracking function in Figure 3.5 uses the rigid body definition on the

plate to compute the Porigin Equation (3.1) of the positional vector on the origin of

the local coordinate system in the laboratory global coordinate system, and R, the

rotational matrix, which describes the rotation of the plate during descent.

The rotation matrix(R) can be used to transform a position Plocal (x1,y1,z1)

in the local coordinate system, which can be translated and rotated to the global

laboratory position as Pglobal (X,Y,Z). The following equation is used by the QTM



3.1. THE EXPERIMENTAL SET-UP, APPARATUS, AND MEASUREMENT PROCEDURE33

Figure 3.5: Global and local coordinate system of the rectangular plate.

to transform the position of the plate from the laboratory global coordinate system.

P global = R× P local + P origin (3.1)

the plate rotational angle is calculated from the individual rotational matrix

(Rx,Ry,Rz) by expressing in the three rotational angles of roll(θ), pitch(ϕ) and

yaw(ϑ) Equation (3.2) to Equation (3.4). The rotation is around the X,Y,and

Z-axis positive rotation is clockwise when looking in the direction of the axis. In

addition, the three rotational matrixes are written as:

Rx =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 (3.2)

Ry =


cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ

 (3.3)
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Rz =


cosϑ − sinϑ 0

sinϑ cosϑ 0

0 0 1

 (3.4)

The rotational matrix of the plate (R) is then calculated by multiplying the three

rotational matrixes. The roll is applied first, followed by pitch and then finally yaw.

Rx.Ry.Rz =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (3.5)

Rx.Ry.Rz =


cosϕ. cosϑ − cosϕ. sinϑ sinϕ

cos θ. sinϑ+ cosϑ. sin θ. sinϕ cos θ. cosϑ− sin θ. sinϑ. sinϕ − cosϕ. sin θ

sin θ. sinϑ− cos θ. cosϑ. sinϕ cosϑ. sin θ + cos θ. sinϕ. sinϑ cos θ. cosϕ

 (3.6)

The equation below calculates the rotational angles from the rotational matrix:

pitch(ϕ) = arcsin(r13) (3.7)

roll(θ) =
arccos(r13)

(cos θ)
(3.8)

yaw(ϑ) =
arccos(r11)

(cos θ)
(3.9)

The range of pitch angle is -900 to 900 because of the arcsin function, while the

range of the arcos function is 00 to 1800, but the range of roll and yaw are -1800

to 1800 since r23 and r12 can be expanded with the element of the rotation matrix

R, since the roll and yaw will have the opposite sign compared to the elements and

cosϕ is always positive when ϕ is within ±900.
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Table 3.1: Experimental test matrix

Experimental

Set-up
Plate Name Drop Angle (Degree)

Number of

Drops
Dynamics

0 5 10 15 20 25 30 35 40 45

A1 X X X X X X X X X X 150 Fluttering

A2 X X X X X X X X X 150 Fluttering

C1 X X X X X 75 Fluttering

C2 X X X X X X X X X X 150 Fluttering

D1 X X X X X X X X 135 Fluttering

D2 X X X X X X X X 120 Fluttering

D3 X X X X X X X 120 Fluttering

D4 X X X X X X X 105 Fluttering

In - Air

D5 X X X X X X X 105 Fluttering

A1 X X X X X X 30 Fluttering
Underwater

A2 X 5 Tumbling

3.2 Under-water Drop Set-up and Kinematics

The first test was conducted in the Kelvin Hydrodynamic Laboratory towing tank

filled with water of density 996kg/m3 with a kinematic viscosity of 1.02 × 10-6 m2

s-1, a drop length of 2m as shown in Figure 3.1, a release mechanism clamped on the

top of the towing tank, used in holding the plates and dropping the plates below the

water surface with a well-controlled initial condition and with zero initial velocity

to allow a couple of turning points with a room temperature of 200. Four cameras

were used to capture the motion of the falling body, with each plate dropped five

times and measurements recorded. The plate was fished out with a magnetic clamp,

and the tank was kept undisturbed for at least 10 - 15mins for the water to be still.

The plates were mounted on the release mechanism with vacuum, which can be seen

in Figure 3.4. An aluminium plate with a density of 2700 kg/m3, with the same

thickness but a different aspect ratio, was used.

The experiments were recorded with four cameras mounted at the top of the
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towing tank facing directly downward, located at a distance of 2m, the plates X,Y

and Z is the laboratory frame, in which ”X” and ”Y” form the horizontal plane and

”Z” corresponds to the vertical axis. ”xyz” is the rectangular plate frame with ”x” the

diagonal axis, ”y” the chord direction, and ”z” normal to the plate plane as shown

in Figure 3.7. The plate descent is measured by capturing the centre of mass of

the plate throughout, and two different plates were tested to show fluttering and

tumbling behaviour released at different angles of 50 - 450 for fluttering and 00 For

the tumbling plate. Figure 3.5 shows the Euler angles and the frame of reference of

X,Y and Z in the laboratory frame and x,y and z the local rectangular plate frame.

For the fluttering case above 300 The plate moves out of range of the four cam-

eras. A total of 35 trajectories were recorded as shown in Table 3.1, where some

were discarded. The 6DOF real-time output of the trajectories and orientations

of the plates was extracted from the QTM system. The velocities were calculated

based on the distance and time of the free-fall, while a low-pass filter was used to

filter out high-frequency noise of the measured data to obtain smooth instantaneous

velocities and angles, and the average translating and angular velocity were calcu-

lated from the smooth instantaneous velocities (Wang et al. (2013)). At the same

time, a statistical method is applied to calculate the sample mean and 95% confi-

dence interval.

To determine the motion of a heavy plate falling in water, each drop is kept

consistent with a different initial angle and plate aspect ratio. To create a project

folder, two plates were name A1 & A2 as shown in Table 3.2.

Table 3.2: Underwater experimental parameters with a different initial angle of
release and number of drops.

SN Dimension(mm) Angle(Deg) Number of Drop Motion Aspect Ratio γ∗

1 80 ×2.03× 650 5 - 30 30 Fluttering 39.0

2 15 ×2.03× 650 0 5 Tumbling 7.3

Total 35
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Figure 3.6: (a) Underwater fluttering, and (b) tumbling plates with makers attached.
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Figure 3.7: Schematic of qualisys cameras capturing the motion of falling plate
underwater

3.3 In-Air Drop Set-up and Kinematics

To determine the bistability of falling cards in-air, an experiment was conducted to

capture the real-time dependence of the freely falling cards with 6DOF, record the

trajectories, and check their dependence on the initial angle of release. Six cameras

were used to capture the motion of the falling body with each plate drop 15 times,

and the release was kept consistent by checking the position and orientation on the

QTM. The different cards used for the experiment are machined into different sizes

as shown in Table 3.3. Figure 3.2 shows a schematic of the experimental setup. The

motions are captured with a Qualisys camera shown in Figure 3.8 at a frame rate

of 1500 - 2500.

The six cameras mounted at the top of the roof beam facing directly downward,
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located at a distance of 3.5m as shown in Figure 3.2, the cards X,Y and Z is the

laboratory frame, in which ”X” and ”Y” form the horizontal plane and ”Z” corresponds

to the vertical axis. ”xyz” is the cards frame with ”x” the diagonal axis, ”y” the chord

direction, and ”z” normal to the plate plane as shown in Figure 3.8. The cards

descent is measured by capturing the centre of mass of the card throughout, and

six different cards were tested to show bistability behaviour released at different

angles, as shown in Table 3.1. The cards used in the present study are made up of

cardboard with different chord lengths as well as different thicknesses. A card with

sufficient stiffness was chosen to avoid bending.

The experiment was conducted in a closed room away from windows and ven-

tilators to reduce the effect of wind. The cards were dropped from a releasing

mechanism of the launching platform at a drop height of 2m. The launching plat-

form is designed at sufficient length to control initial conditions and with zero initial

velocity to allow a couple of turning points and also eliminate the ground effects as

much as possible. At the top of the platform, a releasing mechanism with a vacuum

attached to hold the card. The release mechanism can move up and down by a

motor at the top to change the initial angle of release from 00 - 900. To determine

the motion of cards falling in air, each drop is kept consistent with a different initial

angle and plate aspect ratio, as shown in Table 3.3.
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Table 3.3: In-air experimental parameters with a different initial angle of release
and number of drops.

Name L(mm) H(mm) W(mm) Mass(g) Angle (Deg)
Number of

Drops

Aspect Ratio

γ∗

C1 595 3 15.0 4 0 - 20 75 5.0

C2 595 3 20.0 5 0 - 45 150 6.7

A1 595 3 45.0 13 0 - 45 150 15.0

A2 595 3 65.0 18 0 - 40 150 22.0

D1 539 3 87.3 22 0 - 35 135 29.1

D2 539 3 85.7 21 0 - 35 120 28.6

D3 539 3 90.0 22 0 - 30 120 30.0

D4 572 5 85.7 24 0 - 30 105 17.1

D5 542 5 90.0 24 0 - 30 105 18.0

Total = 1065

Figure 3.8: Schematic of qualisys cameras capturing the motion of falling plate in-
air.
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To create a project folder, different project names were created, as shown in

Table 3.3, and a total of 1065 trajectories were recorded, where some were discarded.

The 6DOF real-time output of the trajectories and orientations of the cards were

extracted from the QTM system, the velocities were calculated based on the distance

and time of the free fall, and a low pass filter is used to filter out high-frequency

noise of the measured data to obtained smooth instantaneous velocities and descent

angles, while the average translating and angular velocity are calculated from the

smooth instantaneous velocities (Wang et al. (2013)). At the same time, a statistical

method is applied to calculate the sample mean and 95% confidence interval.

3.4 Numerical Method Used for the Validation

The depth and scope of fluid dynamics research using CFD simulation are increas-

ing due to the improvement of computational fluid dynamic theory and numerical

methodology. The accuracy of the numerical simulation of the flow field is also im-

proving (Li et al. (2019)).

Dynamic/morphing mesh, arbitrary mesh interface (AMI), overset mesh and

sliding grid interface are the four most common methods used in simulating moving

bodies in engineering and research applications such as rotating turbine, floating

and oscillatory bodies and falling plates in fluids (Zorzi et al. (2015); Verma and

Hemmati (2020); ). This analysis was carried out with commercial software Star-

CCM+ , version 13.4.011. In the software, there are three ways to simulate a moving

body: morphing/remeshing, overset mesh, and sliding grid interface methods. With

the morphing mesh approach, due to the requirement of remeshing operation, a

huge amount of computational time is needed, and because of mesh deformation,

the approach becomes unstable (Casalone et al. (2020)). But by using an overset

mesh, no remeshing operation is needed, nor does the quality of the mesh decrease

since the body moves within the fluid domain unaltered. To model the tumbling

mode with high accuracy,an overset meshes, also called Chimera or overlapping grids,

are used to discretise the computation domain and idealise the motion of the plate
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in an effective way. Two regions are created: a background region and an overset

region, as shown in Figure 3.11, where the free surface refinement is also extended in

the background grid. The overset grids are attached to the floating body and move

with it freely depending on the motion response. The background region is fixed

in space, and the overset mesh can move freely relative to the background region.

The governing equations are discretised on the overset mesh boundaries and are

solved simultaneously for all the cells in the overlapping region; that is, the coupling

between the meshes are implicit.

The 2D motion is modelled using a one-cell-thick 3D mesh instead of 2D mesh,

and this choice is possible using Simcenter Star-CCM+ (Zorzi et al. (2015)). A

Quad dominant surface remesher method with a trimmed cell was used for both the

fluid and rotating domains to produce a high-quality grid mesh generation.

The fluid domain had a refined mesh size with a volumetric control custom size of

10%, while the rotating domain had a volumetric control custom size of 50%, to have

better dimensional control of the cells. Both the fluid and the rotating domain are

imposed with an absolute value so that if the base size value decreases, the number of

the cells on the grid increases, which leads to better flow discretization and reduces

minor numerical errors. Figure 3.11. shows the view of the mesh generated for both

the rotating and fluid domains for different mesh sizes. To capture the near-wall

flow accurately, the rotating domain with a plate no-slip boundary condition is used.

By solving the coupled systems of Navier-Stokes equations with Newton’s law, you

can also figure out how the plate moves in a viscous fluid.

3.4.1 Numerical Setup

In this section, the relevant details regarding the numerical setup are discussed.

The section will provide details of the numerical simulation; flow solvers; rigid body

motion equation; computational domain and grid set up; boundary conditions; and

time step selection for both the tumbling cases.
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3.4.2 Rigid Body Motion Equation

For the rigid body dynamics, the unsteady fluid structural interaction behaviour

of the plate is modelled in Simcenter Star-CCM+ by coupling the computational

fluid dynamics with the rigid body dynamics. For the fluid part, the 2D Reynolds

Averaged Navier-Stokes (RANS) CFD models are used to simulate the unsteady

and non-uniform sequential coupling with the CFD code. At the same time, the

rigid body dynamic (RBD) solver allows more detailed modelling of the falling body.

Using the applied body forces and moments, the translation and rotation of the plate

were calculated based on the laws of linear and angular momentum conservation

given as Equation (3.10).

F = m
δv

δt
(3.10)

Where the mass of the plate is m, v is the velocity on the centre of mass, F the

resultant force acting on the body, and t is the time.In addition, the body rotational

velocity in the local coordinate system with the plate centre of mass can be written

as Equation (3.11):

M = Iω̇ + ω × Iω (3.11)

Since the falling plate case is in 2D, the equation above can be written as Equa-

tion (3.12):

M = Izzω̇ (3.12)

Where M, I, ω are the resultant moment acting on the body due to fluid force,

tensor of the moment of inertia, and the angular velocity of the rigid body.
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3.4.3 Flow Solver

The motion of an object immersed in a fluid is governed by the mutual interaction

of the fluid and solid phase, known as fluid-solid interaction (FSI). The fluid exerts

a hydrodynamic force on the object while, at the same time, the object disturbs the

flow. In addition, the 2D flow governing equations for the freely falling plates are

considered in compressible. Also, the volumetric mass and the kinematic viscosity of

the continuous phase are considered constant to simplify the mathematical formula-

tion. Since these flow governing equations are based on the principles of continuity

(mass conservation) and momentum conservation, the Navier-Stokes equations for-

mula is given as Equation (3.13) and Equation (3.14):

▽.u = 0 (3.13)

σu

σt
+ (u.▽)u = − 1

ρf
▽ .p+ ν▽2u (3.14)

To also capture the dynamic forces on the plate, it is important to know the

pressure field around the plate from the solved flow equations above. u is the

velocity, t the time, p static pressure, ρf density of the fluid and v the kinematic

viscosity.

3.4.4 Computational Domain and Boundary Conditions

In fluid dynamic simulations of a tank test, it is not advisable to use the real di-

mensions of the tank for a computational domain. Using the real tank size would

be a waste of computational resources and bring no benefit to accuracy (Casalone

et al. (2020)).

In addition, when solving the fluid governing equation, i.e. Navier-Stokes equa-

tion and continuity equations, suitable initial and boundary conditions need to be

applied depending on the physics of the problem to be solved. Figure 3.9 and Fig-

ure 3.10 shows a view of the computational domain and boundary conditions. The
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selection of the boundary is based on Hærvig et al. (2017) and Zorzi et al. (2015).

But numerical boundary conditions can be put into two groups: Neumann (value is

fixed) and Dirichlet (gradient is fixed).

Figure 3.9: Computational domain with overset boundary conditions for tumbling
case with 450 drop angle

Figure 3.10: Computational domain with overset boundary conditions for tumbling
case with 00 drop angle
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As shown in Figure 3.9 and Figure 3.10 the top face of the domain has a pressure

outlet Neumann condition. A pressure of 0 Pa is imposed on on the domain’s top

face. The body-fluid interface, i.e., the plate, is specified with a wall condition and

set as a no-slip condition due to the friction effect. In addition, velocity inlet is

applied to the bottom and lateral faces of the computational domain as a Dirichlet

condition. A symmetry plane was applied to the face of the fluid domain to put the

imaginary plane of symmetry in the simulation. An overset interface was created

between the fluid domain and the rotating domain, and this boundary condition

allows mesh overlap.

3.4.5 Physical Modelling and Grid Generation

The numerical computation in this study was performed using the state-of-the-art

commercial CFD software Simcenter Star-CCM+. In the software, the flow is solved

accurately using the finite volume method (FVM) to discretize the integral form of

the Navier-Stokes equation. In the finite volume method, the solution domain is

subdivided into a finite number of small control volumes, which corresponds to the

cells of the computational domain. At the same time, continuity and momentum are

linked via a predictor-corrector scheme. Accuracy and expediency in CFD solutions

depend not only on numerical methods but also on the grid generation process.

In addition, uniform grids have many advantages over non-uniform grids in terms

of accuracy and faster convergence (Ghoreyshi et al. (2015)). The 2D motion is

modelled using a one-cell-thick 3D mesh instead of 2D mesh, and this choice is

possible using Simcenter Star-CCM+ (Zorzi et al. (2015)). A quad mesh with a

dominant surface remesher method and trimmed cell mesher was used for both the

fluid and rotating domains to produce a high-quality grid mesh generation. In order

to simulate the motion of a freely falling plate numerically, the DFBI translation

and rotation with the overset mesh boundary method is used. This approach is

particularly suitable for freely falling objects because of the larger rotating angles,

while a fine mesh restricted only in the object region is required (Zorzi et al. (2015)).
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The DFBI method simulates the motion of the rigid body in response to the forces

exerted by the physics continuum. Simcenter Star-CCM+ calculates the resultant

force acting on the rigid body and solves the governing equations of motion to find a

new position of the rigid body. The 6DOF/3DOF body is required to interact with

the physics continuum to calculate the fluid forces and moments acting on it. The

geometric mesh model shown in Figure 3.11. consists of a fixed fluid region with an

overset rotating region.

((a)) Extra-fine mesh ((b)) Fine mesh

((c)) Medium mesh ((d)) Coarse mesh

Figure 3.11: 450 drop angle Star CCM+ mesh configuration (a) extra-fine mesh (b)
fine mesh (c) medium mesh (d) coarse mesh for tumbling case

A base size is selected as a parameter to set the mesh size for the surface mesh.

Each cell size in the computational domain and rotating domain is set as a function

of the percentage of the base size. If the base size value is decreased, the number of
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cells on the grid increases and the grid becomes finer Table 3.4 shows the mesh size

and the expansion ratio used.

Table 3.4: Number of cells, base size and mesh expansion ratio.

Mesh Cells Number Expansion Ratio Base Size(m)

Extra-Fine 147896
√
2 0.025

Fine 82052
√
2 0.035

Medium 49468
√
2 0.042

Coarse 32272
√
2 0.07

3.4.6 Selection of Time Step

The Courant-Friedrichs-Lewy (CFL) number is sometimes used to determine the

time step for time-accurate simulations as well as conditions to assess the conver-

gence of the simulation flow in an explicit time integration scheme, and it should

have an average value of 1 in all the cells to keep the flow movement by about one

cell size per time step. If a second-order scheme is applied for time integration, then

the average Courant number should be less than 0.5 (Tezdogan et al. (2016)).

The CFL number can be defined at the ratio of the physical time step (t) to the

mesh convection time scale, relates to the mesh cell dimension (x) to the mesh flow

speed (U) as shown in Equation (3.15) below:

CFL =
U∆t

∆x
(3.15)

Generally, for implicit unsteady simulations, the time step is determined by the

flow properties rather than the Courant number (Tezdogan et al. (2016)). But in

this research, an implicit unsteady approach was used for the CFD simulation for

better numerical stability (Rana et al. (2020)). A falling pate is an unsteady prob-

lem, and time-derivative terms must be discretized. In Star-CCM+, two different

temporal schemes are used: first-order and second-order schemes. The second-order
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scheme was used in the simulation with a convective term of the second-order up-

wind scheme, which calculates the face value by summing the upstream value found

by the linear interpolation of the gradients. The Venkatakrishnan limiter is imple-

mented (Venkatakrishnan (1995); Zorzi et al. (2015)). Also, the momentum and

the continuity equations are linked by a predictor-corrector SIMPLE. While the

pressure-velocity incompatibility for the collocated variable arrangement is solved

by the Rhie-Chow interpolation. Table 3.5. shows the different time steps used for

the validation and initial velocity cases.

Table 3.5: Time steps simulation for validation and initial velocity case.

Time(s) Study

Fine 7.50E-04

Medium 1.00E-03

Coarse 2.00E-03

Validation

Medium 2.50E-04 Initial Velocity

3.4.7 Studies on Turbulence Model

Presently, one of the biggest problems in CFD is the correct prediction of the bound-

ary layer and the transition flow (Gamboa (2010)). There are four types of tur-

bulence models used: Spalart-Allmaras (Spalart and Allmaras (1992)), k -epsilon

(Jones and Launder (1972)), k -Omega (Menter (1994)), Reynolds Stress Turbulence

(Sarkar and Lakshmanan (1991)). The first three models are eddy viscosity models,

and all the models use wall laws to calculate the boundary layer characteristics.

The semi-empiric wall laws were developed assuming the flow is fully turbulent.

However, some flows have a low Reynolds number, and there is a significant part of

the boundary layer that is in the laminar regime. Therefore, predicting the results

numerically can fail (Gamboa (2010)).

Rumsey and Spalart (2009) investigated the behaviour of widely used Spalart-

Allmaras and Menter shear-stress transport turbulence models k -omega (SST) at
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low Reynolds numbers, and under the condition of relaminarization, they used a

2D zero-pressure-gradient flow over a flat plate from subsonic to hypersonic Mach

numbers, 2D airfoil flow from subsonic to supersonic Mach number, 2D subsonic

sink flow, and 3D subsonic flow over an infinite swept wing. They concluded that

these models are intended for fully turbulent high Reynolds number computations,

so using them for transitional low Reynolds number or relaminarizing flow is not

appropriate. Jones and Launder (1972) presented a new model of turbulence in

which the local turbulence viscosity is determined from the solution of transport

equations for turbulence kinetic energy and energy dissipation rate. The model is

developed for regions where the Reynolds number is low and is applied to pre-

dict the boundary layer partially becoming a laminar region as it flows to the

wall, in which longitudinal accelerations are so strong. Eça and Hoekstra (2008)

studied the numerical calculation of the resistance coefficient of an infinitely thin

plate as a function of Reynolds number using seven eddy-viscosity models, the one-

equation models of Menter and Spalart-Allmaras; the two-equation model proposed

by Wilcox (1998) turbulent/non-turbulent, baseline and shear-stress transport vari-

ant two-equation model. The study compares the numerical results with the ITTC

(1957) line, Schoenherr Karl (1932) lines, and the lines suggested by Martín (1999)

and Fonseca and Herrmann (2005). They concluded that none of the turbulence

models selected are able to model the transition from laminar to turbulence, but

the k -omega model shows better results. Firooz and Gadami (2006) investigated a

turbulence flow around a two-dimensional wing at a different angle of attack near

and far from the ground for fixed and moving ground conditions with Reynolds av-

eraged Navier-Stokes equations, using a realisable k -epsilon model with enhanced

wall treatment and the Spalart-Allmaras model, and concluded that both turbulence

models have good agreement with the experimental data. Sørensen (2008) predicted

the laminar to turbulence transition flow over airfoil and rotor and offers an alter-

native to the conventionally fully turbulence models. Gamboa (2010) investigated

flow around a wing sail airfoil numerically by determining the best turbulent and
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discretization model for the flow, which includes laminar and turbulent transition

and also determined the numerical uncertainty using the grid convergence index,

and concluded k -omega Gamma-Re-Theta model agreed well with the experimental

results to predict both lift and drag coefficients. Jin and Xu (2008);Wu and Lin

(2015);Zorzi et al. (2015) investigated the dynamics of a free-falling plate numeri-

cally and predicted the flow to be laminar.

Despite this, industrial engineers and academic researchers needed ways to simu-

late turbulent fluid flow to optimise the design for the real world. Various empirical

or semi-derived turbulence models have been created to find the best model to fit

experimental results. Prandtl. (1925) introduced the first turbulence model using

the mixing length concept to compute the eddy viscosity. However, the model did

not contain any partial differential equations (PDEs) and is therefore known as

zero-equation or algebraic Terziev et al. (2019). In practice, an n-equation model

refers to the number of additional PDEs introduced to close the Reynolds Average

Navier-Stokes (RANS) equation (Wilcox (2006)). In addition, Prandtl. (1925) also

created the one equation model using PDE to express the turbulent kinetic energy,

k, thereby creating the first conceptual leap one equation turbulence model (Terziev

et al. (2019)). Primarily, this allowed the local flow properties to be dependent on

antecedent events. Driest (1956) later devised viscous damping by modifying the

mixing length model, which has been virtually applied to all the algebraic closures

since (Wilcox (2008)). Another zero-equation model is that of Baldwin and Lomax

(1978).

This study compared the numerical results with the experimental data using the

k-ω (SST Gamma-Re-Theta variants) and compared the results with experimental

data of Andersen et al. (2005a) and the numerical results of Jin and Xu (2008).

As stated previously, the three turbulence models are eddy viscosity models often

used in CFD’s studies, while the last model is known as second-moment closure

models and is considered to be one of the complex turbulence models in Star-CCM+

(Gamboa (2010)).
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3.4.8 k-ω, two-equation model

The k-ω model is a two-equation model that is an alternative to the k-ϵ model. The

transport equation solves the turbulence kinetic energy k, as the k-ω model and

a quantity called ω, which is defined as the specific dissipation rate, that is, the

dissipative rate per unit turbulent kinetic energy (ω α ϵ⁄k) in order to determine

the turbulence eddy viscosity.

One advantage of the k-ω model over k-ω is its improved performance for

boundary layers under adverse pressure gradients. Perhaps the most significant

advantage is that it may be applied throughout the boundary layer, including the

viscous-dominated region,without further modification. Furthermore, the standard

k-ω model can be without requiring the computation of the wall distance.

There are mainly four model variants in STAR-CCM+: Standard k-ω, SST

(Shear Stress Turbulence) k-ω, SST k-ω detached eddy model and finally the Gamma-

Re-Theta. In this research, the SST k-ω variant Gamma-Re-Theta with low y+ range

of 1.4, which solve the viscous sublayer at a low Reynolds number, will be used. For

the model variants, the two transport equations are the same (Gamboa (2010)).

Ux
δk

δx
+ Uy

δk

δy
= νtS

2 +▽×
[(

ν +
νt
δk

)]
− β*ωk (3.16)

Ux
δω

δx
+ Uy

δω

δy
= αS2 +▽×

[(
ν +

νt

δω ×▽

)]
− β*ω2 + F ω

1

ω
▽ k ×▽

ω (3.17)

Thus, even though the transportation equations remain the same for all the k-

ω variants, the eddy viscosity term of the computation for the SST is calculated

differently. The term is obtained with the following expressions:

νt =
a1k

max(a1ωF 2Ω)
(3.18)
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Where a1 = 0.31

F 2 = tanh arg22 (3.19)

tanh arg22 = max

(
2
√
k

0.09ωd2 ,
500ν

wd2

)
(3.20)

With this constant: β* = 0.09, β1 = 0.075, βk1 = 1
0.85

, δw1 = 2, α2 = 0.4404, β2

= 0.082 and δk2 = 1.17

The Gamma-Re-Theta transition model is a correlation-based transition model

that is specifically formulated for unstructured CFD’s codes. Evaluation of momen-

tum thickness Reynolds number is avoided by relating this quantity to vorticity-

based Reynolds number. In addition, a correlation for the transition onset momen-

tum thickness Reynolds number defined in the free stream is propagated into the

boundary layer by a transport equation. Also, an intermittency transport equation

is further used in such a way that the source terms attempt to mimic the behaviour

of algebraic engineering correlations.

The Gamma-Re-Theta model, as originally published, is incomplete since two

critical correlations were claimed to be proprietary and hence omitted. One jus-

tification for the omission is that the model provides a ‘’Framework” for users to

implement their correlations.

For the Gamma-Re-Theta simulation, all the numerical results obtained with

the model using the Flength default correlations; Ca1 = 1, Ca2 = 0.03, Ce2 = 50, Cθt

= 0.03, δθt = 2

The model constant values used for this research are the constants set as default

values in (Siemens (2020)) and the numerical analysis of wing sail aerodynamics

(Gamboa (2010)).
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3.5 Non-Dimensional Parameters

Freely falling objects are characterised by six in the case of 2D and seven in the

case of 3D dimensional parameters (Andersen et al. (2005a); Wang et al. (2013)),

such as span length w, chord length c, thickness h, density of object ρs, the density

of fluid ρf, the kinematic viscosity of the fluid v, and acceleration due to gravity g.

The non-dimensional parameters are form as; thickness ratio β*, aspect ratio γ∗ ,

density ratio ϵ*, the dimensionless moment of inertia I∗ , Reynolds number Re and

then non-dimensional velocity V*. However, the non-dimensional moment of inertia

is related to the density ratio and thickness ratio. We use the dimensional and

non-dimensional parameters found in (Willmarth et al. (1964); Smith (1971); Field

et al. (1997); Mahadevan et al. (1998); Jones and Shelley (2005); Jin and Xu (2008);

Hirata et al. (2009); Wang et al. (2013); Andersen et al. (2005a,b)). In addition, the

kinematic parameters are the descent angle θ, average translating velocity V̄ and

the average angular velocity ω. From the above, the parameters of density ratio,

aspect ratio, and thickness ratio can be determined as follows:

ϵ* =
ρs

ρf
(3.21)

γ* =
w

h
(3.22)

β* =
h

w
(3.23)

The dimensionless moment of inertia and the non-dimensional moment of inertia

is determined as:

I∗ =
32l

πρfl4w
=

8ϵβ(1 + β2)

3π
(3.24)

The moment of inertia is of a rectangular object is determined as:
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I =
ms(l2 + h2)

12
(3.25)

Where the mass of the object is defined as ms. The non-dimensional moment of

inertia under a very low thickness ratio (β ≪ 1) can be reduced to:

I ≈
8ϵβ

3π
αϵβ (3.26)

The value ϵ β is the modified Froude number introduced by Jones and Shelley

(2005) and the square of the Froude number proposed by Belmonte et al. (1998).

To determine the 2D terminal falling velocity VT of an object, at intermediate

Re is defined in Equation (3.27):

V T =
√

(ρs/ρf − 1)hg (3.27)

The above equation for the terminal velocity is estimated by balancing the

buoyancy-corrected gravity given as (ρs - ρf)lhg with quadratic drag of ρfwcVT
2

However, Smith (1971), Willmarth et al. (1964) and Andersen et al. (2005a) used

the measured values of the average descent speed from the experiment to determine

the Reynolds number Re. While the 2D terminal Reynolds number ReT based on

terminal velocity VT is defined by Wang et al. (2013).

Therefore, the Reynolds number and the terminal Reynolds number is deter-

mined as:

Re =
V̄ l

ν
(3.28)

ReT =
V Tl

ν
(3.29)

The present research will also follow the convention of Willmarth et al. (1964);

Smith (1971); Andersen et al. (2005a) to determine the Reynolds number by using

measured values of the average descent speed from the experiment.
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In addition, the non-dimensional velocity is determined as Equation (3.30):

V * =
V̄

V T
(3.30)

While the non-dimensional rotating frequency is determined as Equation (3.31):

f * =
ωl

2πV̄
(3.31)

The non-dimensional time, x and y coordinate, force and torque are determined

as:

T * = t
V

I
(3.32)

X* =
x

l
(3.33)

Y * =
y

l
(3.34)

F i
∗ =

F i

m*g
(3.35)

M i
∗ =

M i

m*gl
(3.36)

m* = (ρs − ρf)lh (3.37)

The lift and drag coefficient CL, the drag coefficient CD and the moment coeffi-

cient is determined as CM are defined as:

CL =
L

1
2
ρfV̄ 2lw

(3.38)
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CD =
D

1
2
ρfV̄ 2lw

(3.39)

CM =
M

1
2
ρfV̄ 2l2w

(3.40)

3.6 Brief Background Studies on Numerical Uncer-

tainties

Due to the significant advancements in computational fluid dynamics and a con-

tinued increase in publications numerically, it is important to detect, estimate, and

control the numerical uncertainties and errors during simulations. ‘’As the famous

scientist Albert Einstein stated, as far as the laws of mathematics refer to reality,

they are not certain, and as far as they are certain, they do not refer to reality."

Our ability to accurately simulate complex fluid flow is limited by our mathematical

and numerical approximations" (Freitas (2002)). The first conference on the tur-

bulence boundary layer was held at Stanford to address numerical uncertainty and

to identify the fundamental, predictive capabilities of CFD codes, and the meeting

was sponsored by the mechanic’s division of the USA Air Force Scientific Research

(Kline et al. (1969)). At the same time, quality-control measures were issued in

1986 by (Roache et al. (1986)) and the first journal was published. However, to be

effective in the design and analysis of engineering systems or scientific research, it

is important to know the level of accuracy in each simulation, but unfortunately,

it is not uncommon practise in both the engineering and scientific communities to

estimate errors in numerical simulation. The perception is that estimating numeri-

cal errors is time-consuming and difficult, and the trends are more important than

the magnitude of the results. As a result, the implementation of large-scale results

based on inaccurate simulation in the engineering and scientific communities can be

far more expensive (Freitas (2002)).
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Freitas (2002), in his research on the issue of numerical uncertainty, pointed out

that there are inherent inaccuracies in any numerical simulation of any continuum

problem. The inherent inaccuracies are as a result of approximating a continuous

system by a finite-length, discrete approximation. At the same time, this process is

based on the idea that the size of the grid and the assumptions are measured by the

conditions of consistency and convergence.

3.6.1 GCI Studies

Despite the potential offered by computational fluid dynamics software, there are

some problems associated with it. First, the discretization of the continuum in-

troduces numerical error, while the numerical turbulence models that solve the

Navier-Stokes equation require experimental data in order to validate the numerical

results. The errors can be minimised but require extra computational effort and

money (Gamboa (2010)).

In numerical computing, typically, three distinct sources of error are defined. The

first of these, termed modelling error, represents the difference between the exact

solution of the governing equations and real fluid flows. Secondly, the iterative error,

which results from the nonlinearity of the governing equations and the manner in

which they are treated (Eca and Hoekstra (2014)). Finally, the discretisation error,

which results due to the mapping of the continuous governing equations onto discrete

nodes in space and/or time. This study will focus on the latter category of error by

examining the solution from three distinct viewpoints.

The numerical uncertainty of the solution is determined by employing a variety

of methods on different aspects of the numerical solution. Firstly, numerical uncer-

tainties in "local" quantities are assessed, following the standard approach taken by

the vast majority of researchers. To elaborate, the uncertainty of the numerically

computed values of the translation and rotational velocities with varying grid and

time spacing are predicted. Following this, the trajectory of the plate is examined

in detail, and the uncertainty associated with its prediction is computed. Both of
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the above parameters are compared against experimental data. Following this, the

global descent point from the centre of mass of the plate is extracted at each point

in time, equally spaced between the time the plate is released and the time the

plate collides with the bottom boundary. At each time interval, the global centre

of mass point is sampled and extracted for uncertainty analysis. Different sampling

densities used for the tumbling case from the validation of experimental results of

Andersen et al. (2005a) and numerical results of Jin and Xu (2008) are used for

this work. This data is processed via the method of Phillips and Roy (2017) to

determine the proximity to the asymptotic range at each time interval. The above

procedure is applied to the trajectories and velocities. This is done in view of the

fact that Terziev et al. (2020) found that different parameters within the computa-

tional domain may behave in different manners in relation to the asymptotic range.

It is therefore worthwhile to explore any potential differences between the aforemen-

tioned parameters by examining their convergence properties.

The uncertainty analysis is centred on the Richardson Extrapolation (RE) (Richard-

son (1927)). However, RE gives a confidence level of only 50%. For this reason,

a variety of different methods are employed to predict the uncertainty with a 95%

confidence interval. Specifically, the Grid Convergence Index (GCI) method Roache

(1998), as well as the approaches of Xing and Stern (2010), and Stern et al. (2001),

hereafter referred to as the FSRE (Factors of safety for Richardson Extrapolation)

and CF (Correction Factor) methods, respectively.

The aforementioned procedures begin by expanding the discretisation error (ϵ)

for a particular grid size h as a Taylor series Equation (3.41):

ε = fex − f1 =
∞∑

p=pf

αhpf = αpfhpf +Higherorderterms (3.41)

where fex is the exact solution, i.e. the solution for a grid size of h = 0, f1 is the

solution obtained on the grid of size h, is a constant, while pf is the formal order

of accuracy, pf = 2. Here, the discretisation error is the difference of the exact, or

extrapolated solution (fex) and the fine solution (f1). Assuming that higher-order
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terms in the Taylor series may be neglected, one may write Equation (3.42):

ε ≈ αpfhpf (3.42)

Alternatively, the formal order of accuracy may be replaced by the observed

order of accuracy (p) Equation (3.43):

p = ln

(
f3 − f2
f2 − f1

)
/lnr (3.43)

where f2, f3 are the medium and coarse solutions, obtained by magnifying the

grid size h by some constant cator r ≫ 1. Then, the discretisation error becomes

Equation (3.44):

ε(p) = (f2 − f1)/(rp − 1) (3.44)

UGCI = FS × |ε(p)|/(rp− 1) (3.45)

where UGCI Is the uncertainty according to the Grid Convergence method, above

the value of FS is typically set as FS = 1.25 provided three solutions are available

(f1,f2,f3). Alternatively, Stern et al. (2001) developed the correction factor approach

(CF), which modifies the error as Equation (3.46):

εCFp = C × (f 2 − f 1)/(r
p − 1) (3.46)

where C = ((rp - 1) / (rpf - 1)). The uncertainty according to the correction

factor method UCF then becomes Equation (3.47):

H UCF =


[9.6(1− C)2 + 1.1]× εCF when|1− C| < 0.125

[2[|1− C|] + 1]× εCF when|1− C| ⩾ 0.125
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A third approach was devised by Xing and Stern (2010), which uses the ratio of the

observed and formal orders of accuracy (P = Ppf). Based on the value of P, a new

uncertainty estimate is arrived at (UFSRE) Equation (3.48):

UCF =


(16.4P − 14.8)× |εp| whenP > 1

(2.45− 0.85P )× |εp| otherwise ⩾ 0.125

These methods will be used to assess the numerical uncertainty of the present solu-

tions in local terms. The latter are also considered through the approach of Phillips

and Roy (2012), who presented a modification of the method of Cadafalch et al.

(2002). In essence, this approach uses the solution field to determine a new factor

of safety, based on the average distance to the asymptotic range, broadly defined as

the formal order of accuracy, pf = 2. The first step is to modify the observed order

of accuracy to admit oscillatory solutions Equation (3.49):

p = ln

(∣∣∣∣∣f3 − f2
f2 − f1

∣∣∣∣
)
/lnr (3.49)

Then, the local deviation from the formal order of accuracy δp is given as Equa-

tion (3.50):

△p =

[
1

N

N∑
i=1

min(|pf − pi|, 4pf), 0.95pf

]
(3.50)

Where (pi) is the (modified) observed order of accuracy at the node i. The

final step is to determine the distance between δp and pf, p* Equation (3.51) and

Equation (3.52).

p* = pf −△p (3.51)

FS(p*) =

[
F0 − (F0 − F1)

(
p∗
pf

)]
(3.52)
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Then, the factor of safety as a function of p* maybe expressed by: where F0 =

3, and F1 = 1.1. The uncertainty may be estimated by replacing the observed order

of accuracy, p, in the GCI form.

3.7 Summary and Conclusions

This chapter describes the experimental, numerical, and uncertainty techniques, as

well as the methodology and laboratory setup. The trajectories and orientations of

different plates were investigated to determine the transition from zigzag to tum-

bling motions of freely falling heavy plates in three-dimensional viscous fluid. The

plates varied in dimensions and densities, which resulted in both periodic and tum-

bling motion. The procedure for setting up the experiment was described in detail,

where Oqus Qualisys cameras with makers of negligible mass were used to locate

the centre of mass of the plate by estimating the trajectories and orientation. Each

plate was dropped multiple times to capture the real-time six degrees of freedom

in air and water by using the Qualisys camera, where the data was processed in

order to estimate the trajectory and orientation. This resulted in the estimation

of a mean path for each drop, where statistical methods were applied to find the

95% confidence interval of the mean. The bistability of resulting trajectories was

investigated for each plate, by changing the initial angle of release.

Different numerical models used in simulating the dynamics of a falling body

were discussed. To model the tumbling mode with high accuracy, overset mesh,

also called Chimera or overlapping grids, was chosen for implementation, as this

approach did not require re-meshing , nor did the quality of the mesh decrease since

the body moves within the fluid domain unaltered. The basic theory behind a CFD-

simulation was covered, along with the Transition SST-model used for turbulence

modelling. Mesh and time-step independence studies were carried out in order to

ensure independent results of the numerical model. Non-dimensional parameters

of a freely falling object such as span length , chord length, thickness, density of

object, the density of fluid, the kinematic viscosity of the fluid, and acceleration due
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to gravity are discussed.

A brief background study on numerical uncertainty in computational fluid dy-

namics is discussed, since the discretization of the continuum introduces numerical

error, while the numerical turbulence models that solve the Navier-Stokes equation

require experimental data in order to validate the numerical results. The numeri-

cal uncertainty of the solution is determined by employing a variety of methods on

different aspects of the numerical solution. Firstly, numerical uncertainties in local

quantities are assessed, following the standard approach taken by the vast majority

of researchers. However, the uncertainty of the numerically computed values of the

trajectories, translation, and rotational velocities with varying grid and time spacing

is discussed.



Chapter 4

EXPERIMENTAL STUDY ON FALLING PLATE

PROBLEM

This chapter experimentally examines the sensitivity of the initial angle of release,

with experimental results and phase diagrams showing the transition and bistability

between a zigzag motion to tumbling of the free-falling heavy rectangular plate in

air and water.

4.1 Sensitivity to Initial Orientation

Initial conditions strongly affect the dynamic process of the transition from one state

to another in the motion of a freely falling plate. However, transitions and insta-

bilities are unresolved problems in fluid mechanics and are always directly related

to the evolution of the disturbance (Lee et al. (2013)). In the case of a falling thin

rectangular plate, Andersen et al. (2005a) show that initial conditions have signif-

icant importance in the case of apparent chaotic motion. While Lau et al. (2018)

show the effect of initial conditions on the motion of a heavy rectangular plate freely

falling, the motion changes from stable to tumbling as the angle of release changes.

In the case of freely falling discs, initial conditions are important for the transition

from zigzag to spiral (Lee et al. (2013)). Since experimental investigation on heavy

plates at large, I∗ remain sparse, the transition from stable falling to tumbling needs

to be investigated. As a result, this study builds on the previous work of Lau et al.

64
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(2018).

4.2 Trajectories

Flow instability is related to Re and I∗ in the general problem of 2D freely falling

rectangular plate (Andersen et al. (2005a)), or cylinder (Mathai et al. (2017)), and

3D disc (Auguste et al. (2013)). This research considers the dynamics of a heavy

plate freely falling since the coupling interaction of a heavy plate freely falling ap-

pears to be wobbling (Lau et al. (2018)). Apart from the three dimensionless pa-

rameters Re, I∗ and β*, the initial release angle, translational velocity, and angular

speed also influence the falling dynamic (Wu and Lin (2015)). From Table 4.1 to

Table 4.9, various plates are shown with different Re, I∗ , β*, and θ.

4.2.1 Stable Falling Motion

When a heavy plate falls freely, wakes are formed at the tips and behind the plate.

With lighter plates, the forces generated by the wakes begin to induce oscillation

on the plate but will have negligible influence on the dynamics of the body (Lau

et al. (2018)). Steady falling plates look like a needle falling in honey with small

oscillation angles and almost fall straight downward, but sometimes it falls steadily

with small oscillation due to vortex shedding and the dynamic occurs in smaller Re

≤ 50∼ 100 (Wu and Lin (2015)).

4.2.2 Fluttering Motion

The periodic motion of fluttering freely-falling plate is complex, the motion usually

occurs at large Re > 200 and small I∗ < 0.12 (Wu and Lin (2015)). While Zigzag

motion is common for freely falling bodies, in previous studies zigzag motion, oc-

curred at Re ∼ 150 and I∗ range from 10-3 to 10-1. Often, a vertical descending disc

will periodically oscillate with altitude of variations, but there are still no detailed

measurements of the six degrees of freedom(Lee et al. (2013)).
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4.3 Phase Diagrams

The trajectories of falling objects can be represented in a phase diagram depending

on Re, I∗, m*, ρ*, and β*. Smith (1971) for the first time plotted a phase diagram

for a rectangular plate with different β* from 0.2 to 0.04 and confirmed with Re

the plate falls steadily without any periodic motion, depending on I∗ and at higher

Re the plate flutters and tumble. However, at I∗ less than 0.1 and even with

higher Re exhibiting fluttering without any tumbling. Belmonte et al. (1998) found

that at a critical value of I∗ = 0.4 a transition will occur, and the plate motion

will change from fluttering to tumbling. In a quasi-two-dimensional experiment

by Andersen et al. (2005a) rectangular plates with different β* and I∗ exhibits

different behaviour, from the experiment a plate will flutter at I∗ = 0.16 and β*

= 1⁄14 and tumble at I∗ = 0.29 and β* = 1⁄8, in addition to tumbling and

fluttering chaotic behaviour was added for the first time at I∗ = 0.39 and β* = 1⁄6,

but confirmed the chaotic behavior due to laboratory noise. Wu and Lin (2015)

numerically investigated the dynamics of a falling ellipse at a fixed aspect ratio and

plotted the falling styles of steady, fluttering, tumbling, chaotic, and a transition

between fluttering and tumbling using Re and I∗ . For the first time Lau et al.

(2018) investigated numerically the dynamics of heavy plates with Re up to 500

and I∗ up to 10 and extended the phase plot from thin rectangular plates to heavy

plates.

4.4 Experimental Uncertainty Determination

In most experiments, certain quantities are measured before determining other val-

ues based on the measured data. The first step in assessing an experiment’s depend-

ability is to assess the measurement uncertainties associated with each measured

quantity. Measuring uncertainty is usually caused by the tools used, but it can

also be caused by the experimenter’s limitations or randomness in the effect being

studied.
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Figure 4.1 shows the fifteen experimental results of freely falling plates in-air

to be very similar. There are, however, some trajectories that deviate significantly

from the mean trajectory. Statistical measures can be used to quantify the difference

between the different free falls.

In the dynamics of freely falling plates, the total uncertainty of the trajectory is

projected to rise with time due to the time-dependent motion of the freely falling

plate. Limits corresponding to 95% confidence intervals are of importance for quan-

tifying the variance between the recorded trajectories and the orientations. Equa-

tion (4.1) gives the limits to be calculated, where x̄ is the sample mean value, n is

the number of samples equal to 10 for an in-air drop and 5 for an underwater drop,

s is the sample standard deviation, and t/2 is the critical value of the t-distribution.

However, the t-distribution is used instead of the normal distribution because of the

sample sizes.

x̄− tα/2
s√
n
< x0 < x̄+ tα/2

s√
n

(4.1)

where:

x̄ =
1

N

n∑
i=1

xi (4.2)

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (4.3)
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Figure 4.1: Experimental results showing trajectories

The results presented in Figure 4.2 and Figure 4.3 shows the calculated sample

mean and the 95% confidence interval of trajectory and orientation. The results

show that the 95% confidence interval increases with time as expected. Even though

some of the trajectories presented in Figure 4.1 differ, the experiments generally show

the same trajectory.
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((a))

((b))

Figure 4.2: (a) Experimental results showing the 95% confidence interval of (a)
trajectories (b) orientation Roll
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((a))

((b))

Figure 4.3: Experimental results showing the 95% confidence interval of orientation
(a) pitch (b) yaw
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4.5 Results and Discussions

In this section, the experimental results are presented, showing the effect of release

angle on the dynamics of a freely falling heavy plate in a three-dimensional viscous

fluid. The experiment was performed with a range of Reynolds numbers Re ∼

22000 and a non-dimensionless moment of inertia up to 23 as shown in Table 4.1

to Table 4.9 with different release angles. The results show zigzag, fluttering and

tumbling case as analysed with phase diagram from the different vertical falling

velocities as shown.

4.5.1 Underwater Case

Figure 4.4: Trajectories of underwater fluttering plate at angles of 50 to 300 with
different interval of 50 and show how oscillations vary with angle.

Figure 4.5: Horizontal velocity (Vx) of underwater fluttering plate at angles of 50

to 300 with different interval of 50 and show how oscillations vary with angle.
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Figure 4.6: Vertical velocities (Vz) of underwater fluttering plate at angles of 50 to
300 with different interval of 50 and show how oscillations vary with angle.

Figure 4.7: Rotational velocities (ω) of underwater fluttering plate at angles of 50

to 300 with different interval of 50 and show how oscillations vary with angle.
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Table 4.1: A1 & A2 measured average horizontal velocities(Vx), vertical velocities
(Vz), and angular velocity, (ω) underwater drop.

Drop Angle (Deg) Vx(mm/s) Vz(mm/s) ω(rad/s) I∗ Re

5 153.19 -136.80 0.41 0.058 1230

10 145.49 -127.60 0.36 0.058 1147

15 350.62 -114.49 1.17 0.058 1029

20 324.72 -113.17 1.02 0.058 1018

25 344.72 -112.14 1.10 0.058 1010

A1

30 294.24 -111.60 0.96 0.058 1003

A2 0 189.13 -160.00 5.75 0.32 270

Figure 4.4 shows the trajectories of the fluttering behaviour of plates dropped at

different initial angles, while Figure 4.5 to Figure 4.7 show the horizontal, vertical,

and rotational velocities. The results above show a large oscillation angle, this

type of motion often happens at a smaller dimensionless moment of inertia, I∗

< 0.12 and a large Reynolds number, Re > 200 as shown in Table 4.1 and also

reported by Wu and Lin (2015). When the plate release angle increases from 50

- 300 the periodic oscillation amplitude of the horizontal velocity increases nearly

twice as much, as shown in Figure 4.5 and Table 4.1. However, the vertical velocity

decreases as the initial angle of release increases and produces different average

falling velocities, as shown in Figure 4.6 and Table 4.1. As the plate flutters side-to-

side periodically when it descends, with alternating gliding at a low angle of attack

and fast rotational motion at the turning point shown from Figure 4.7, the motion of

the plate reaches its extreme maximum incline angle as the angular velocity equals

zero; it was found that as the release angle increases, the Reynolds number Re

reduces, showing a linear relationship between θ drop and Re shown in Table 4.1.

A pure planar zigzag–fluttering motion was also observed from Figure 4.4 at 50 -
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100 initial drop angle. The plate glides with an initial long gliding up to 1.4m drop

length, before translating to a pure zigzag motion. The long gliding disappears as

the angle of release increases above 100, a similar gliding was reported by Heisinger

et al. (2014), as a coin falls in water. Furthermore, as the release angle increases

from 300 bistability occurs and the fluttering motion changes to tumbling, but the

tumbling motion was not reported as the motion of the plate moved out of the area

of interest. Therefore, the experimental setup needed more cameras 6-8 to capture

the tumbling motion above 300 release angles. Therefore the current results did not

present the motion of tumbling plate for the above studies.

Figure 4.8: Measured plate trajectory:(a), horizontal velocity:(b), vertical veloc-
ity:(c), angular velocity:(d), and phase plot:(e) of underwater tumbling plate at
angles of 00

Figure 4.8 shows the trajectory and velocity components as a function of time

for the tumbling plate released at 00 angle with the horizontal. Tumbling motion
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occurs at large dimensionless moments of inertia, I∗ ≥ 0.35 and large Reynolds

numbers, Re ≥ 200, and sometimes it occurs at the initial angle of release (Lau

et al. (2018)) and chaotic regime (Wu and Lin (2015)). Experimental findings with

falling discs suggest that tumbling motions are found at I∗ = 102 (Heisinger et al.

(2014)), whereas the results with fixed autorotating tumbling motion of flat plates at

I∗ = 101 (Smith (1971)). However, in this current research, a tumbling motion was

observed at a dimensionless moment of inertia, I∗ ≤ 0.35 with Reynolds number Re

= 270, as shown in Table 4.1. The periodic motion of the tumbling plate alternates

between short and long gliding segments, with a more pronounced double tumbling

period-two structure but with less angular velocity as compared to Andersen et al.

(2005a) tumbling plate. The tumbling plate rotates slowly with angular velocity up

to 15 rad/s as shown in Figure 4.8 with the centre of mass elevating following long

gliding, but it elevates with short gliding segments with the vertical velocity. The

tumbling motion shows unequal translational distances between adjacent rotations

as the plate tumbles down. Andersen et al. (2005a) and Wang et al. (2013) were

the first to report the period-two tumble motion. Andersen et al. (2005a) reported

the double period-tumble motion for large aspect ratio λ > 15 , small dimensionless

inertia I∗ < 0.5 and Reynolds numbers Re = 737 which is composed of a sliding

phase with a fast rotational phase. While Wang et al. (2013) reported period-tumble

rotations for some range of aspect ratio and double frequency was observed from

Fourier analysis. However, a period to tumble motion was observed at I∗ = 0.3

and Re = 270 in the present research, which is less than what was reported by

Andersen et al. (2005a) and Wang et al. (2013). Similarly, the difference between

the two modes of fluttering Figure 4.4 and tumbling Figure 4.8 (a) are; fluttering

plate periodically changes its rotational directions and has a cumulative rotational

angle less than 1800 while tumbling plate rotates 3600 in whole period. Moreover,

the influence of different initial release angles on the average descent horizontal,

vertical, and rotational velocities with dimensionless moment inertia and Reynolds

number is not recorded for angles above 00 due to the limitations of the experimental
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setup.

4.5.2 In-Air Case

The trajectories of a falling plate in Figure 4.9 show a clear periodic zigzag motion,

similar to the motion observed by Ellingsen and Risso (2001) for a rising air bubble

in still water and Horowitz and Williamson (2010) motion of rising or falling spheres.

Similarly, Horowitz and Williamson (2010) separated the motion of rising or falling

spheres into vibration (flutter or wobble) and rectilinear (vertical) motion, while Lau

et al. (2018) distinguished wobbling from flutter in terms of lift. However, when the

vertical velocity (Vy) and the rotational velocity (Pitch) increase from different re-

lease angles as shown in Table 4.2 the wobbling motion also increases periodically

and vigorously in a zigzag trajectory within a vertical plane with a large amplitude.

Horowitz and Williamson (2010, 2008) linked these oscillatory motions to the peri-

odic vortex shedding of the sphere as it rises.

Table 4.2: A1 measured average horizontal velocities(Vx), vertical velocities (Vy),
and angular velocities (pitch) in-air drop.

Drop Angle (Deg) Vx(mm/s) Vy(mm/s) Pitch(rad/s) I∗ Re

0 71.32 -1659.72 2.03 7.51 6129

5 68.56 -1716.35 1.82 7.51 6129

10 61.39 -1598.76 1.69 7.51 6129

15 143.31 -1674.43 2.94 7.51 6129

20 172.24 -1707.34 3.59 7.51 6129

25 27.07 -1814.45 5.68 7.51 6129

30 230.62 -1752.32 4.87 7.51 6129

35 259.28 -1766.99 5.64 7.51 6129

40 232.05 -1776.28 4.80 7.51 6129

A1

45 277.05 -1836.63 6.27 7.51 6129
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((a))

((b))

Figure 4.9: A1 Different measured plate trajectories:(a), Time histories of transla-
tional velocities:(b,c,d), rotational velocities:(e,f,g) of in-air zigzag plate at angles
of 00 to 450 with different interval of 50 and showing how oscillations vary with
different drop angle.

The trajectories shown in Figure 4.9 are for different release angle of 00 - 450 they

all exhibit the same resulting zigzag motion but tumble as the angle increases above

450 showing the transition from zigzag to tumbling motion. Thus, tumbling motion
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results are not reported in the current research. Both translational and rotational

velocities in Figure 4.9 shows the motion to be extremely periodic as shown from the

measured time histories but with slightly constant Re and I∗ . The vertical velocity

as shown in Table 4.2 to Table 4.9 changes but is not dependent on the angle of

release, with horizontal velocity increasing but dropping at 250 release angles. Lau

et al. (2018) reported a change in Re and I∗ when the angle of release changes, with

vertical velocity increasing as the angle of release increases.

Table 4.3: C1 measured average horizontal velocities (Vx), vertical velocities (Vy),
and angular velocities (pitch) in-air drop.

Drop Angle (Deg) Vx(mm/s) Vy(mm/s) Pitch(rad/s) I∗ Re

0 47.00 -1701.87 3.37 23.33 2127

5 53.37 -1706.10 3.27 23.33 2133

10 69.00 -1700.71 4.82 23.33 2126

15 78.46 -1659.26 4.98 23.33 2074

C1

20 117.95 -1711.37 7.75 23.33 2139
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((a))

((b))

Figure 4.10: C1 Different Measured plate trajectories:(a), Time histories of trans-
lational velocities:(b,c,d), rotational velocities:(e,f,g) of in-air zigzag plate at angles
of 00 to 200 with different interval of 50 and showing how oscillations vary with
different drop angle.
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Table 4.4: A2 measured average horizontal velocities (Vx), vertical velocities (Vy),
and angular velocities (pitch) in-air drop.

Drop Angle (Deg) Vx(mm/s) Vy(mm/s) Pitch(rad/s) I∗ Re

0 89.57 -1634.45 1.80 5.19 8853

5 72.23 -1637.54 1.65 5.19 8870

10 90.40 -1638.53 1.82 5.19 8875

15 93.39 -1521.46 1.84 5.19 8241

20 89.27 -1613.73 1.72 5.19 8741

25 131.10 -1633.00 2.63 5.19 8845

A2

30 135.33 -1540.32 2.40 5.19 8343

Zigzag motion is common for freely falling bodies. Previous studies showed

that zigzagging occurs for thin discs when the Reynolds number Re 150 and the

dimensionless moment is in the range from I∗ = 10-3 - 10-1 (Zhong et al. (2013)).

However, flat bodies are known to present far more spectacular path instabilities

than spheres or discs; furthermore, path instabilities have much larger effects on

the dynamics of flat bodies than spheres; in many experimental studies of disc or

sphere, aspect ratios of approximately 10 are considered to represent flat bodies

(Zhou et al. (2017)). Figure 4.13 and Figure 4.14 show a flat plate falling with

different angles of release. The trajectories of the falling plate observed are periodic

with oscillatory planar zigzag motion, I∗ was same for same aspect ratio, but Re

differs at different drop angles as shown in Table 4.1 to Table 4.9, the amplitude of

the horizontal displacement increases with Re as shown in Table 4.7 to Table 4.9.

After initial transient, the body’s periodic trajectory is practically vertical, while

the horizontal drift is less than 7 rad as shown in Figure 4.13 and Figure 4.14, and

the angular velocity of the zigzag plane’s in Figure 4.4 to Figure 4.14 showing a

potential rotation that is more than 10 - 80 times lower than the major oscillation

frequency. As the Reynolds number Re is increased to maximum in Figure 4.14

the frequency and pattern of oscillation increase, but with high lift as compared
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to the stable motion of Lau et al. (2018) and Willmarth et al. (1964). They both

classified the wobbling rectilinear motion as stable falling and distinguished it from

flutter in terms of lift, however, due to the increase in lift as shown in Figure 4.10,

Figure 4.13 and Figure 4.14. The research studies considered the trajectories as

periodic zigzag motion, similar to motions reported by Fernandes et al. (2005);

Horowitz and Williamson (2008, 2010); Filella et al. (2015) as the inclination of

the axis and velocity of oscillation are almost in phase, but the results shown in

Figure 4.11(a) and Figure 4.12(a) show the inclination of the axis and velocity of

oscillation to be out of phase. At a higher Reynolds number, the amplitude of

the transitional motion increased. These properties of zigzag motion are similar to

those in the cases of Belmonte et al. (1998) and Andersen et al. (2005a) where the

amplitude of oscillation increases as I∗ becomes larger.
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((a))

((b))

Figure 4.11: A1 (a) temporal evolutions of the inclination angles with respect to the
Horizontal Velocity (b) phase portraits showing different trajectories
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((a))

((b))

Figure 4.12: C2 (a) temporal evolution of the inclination angles with respect to the
Horizontal Velocity (b) phase portraits showing different trajectories. showing how
oscillations and Phase portraits vary with different Re and I∗
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Table 4.5: C2 measured average horizontal velocities(Vx), vertical velocities (Vy),
and angular velocities (pitch) in-air drop.

Drop

Angle (Deg)
Vx(mm/s) Vz(mm/s) Pitch(rad/s) I∗ Re

0 100.18 -1707.03 3.4 17.20 2845

5 59.88 -1757.43 0.51 17.20 2929

10 88.71 -1650.08 2.59 17.20 2750

15 46.81 -1142.38 1.02 17.20 1904

20 116.95 -1710.45 4.24 17.20 2851

25 24.17 -523.64 0.78 17.20 873

30 13.99 -206.77 0.66 17.20 345

40 25.20 -339.69 1.19 17.20 566

C2

45 113.78 -1682.15 6.33 17.20 2804

Table 4.6: D1 measured average horizontal velocities (Vx), vertical velocities (Vy),
and angular velocities (pitch) in-air drop.

Drop

Angle (Deg)
Vx(mm/s) Vz(mm/s) Pitch(rad/s) I∗ Re

0 111.51 -1700.32 1.57 3.86 12370

5 112.07 -1707.02 1.40 3.86 12419

10 162.12 -1682.43 2.37 3.86 12240

15 222.79 -1661.68 2.93 3.86 12089

30 241.05 -1880.75 2.85 3.86 13686

D1

35 314.58 -1960.72 4.07 3.86 14264
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((a))

((b))

Figure 4.13: D3 different measured plate trajectories:(a), time histories of transla-
tional velocities:(b,c,d), rotational velocities:(e,f,g) of in-air zigzag plate at angles
of 00 to 300 with different interval of 50 and showing how oscillations vary with
different drop angle.
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The body horizontal and vertical velocities at different initial angles of release

show the velocity in the horizontal direction oscillates at more than three times the

frequency of the vertical velocity, and the oscillation amplitude is smaller in the yaw

angle of rotation. However, the motion exhibits periodic pitching and translational

oscillations. Furthermore, an increase in I∗ results in greater rotational oscillation,

and above 7.75 rads rotational velocity, the plate topples and exhibits a tumbling

behavior. The duration of tumbling and fluttering is considered longer for heavy

plates, as also reported by Lau et al. (2018).

Table 4.7: D3 measured average horizontal velocities(Vx), vertical velocities (Vy),
and angular velocities (pitch) in-air drop.

Drop

Angle (Deg)
Vx(mm/s) Vz(mm/s) Pitch(rad/s) I∗ Re

0 140.26 -1693.19 1.75 3.74 12699

5 140.10 -1657.97 2.02 3.74 12435

10 172.76 -1682.13 2.52 3.74 12616

15 239.63 -1709.00 3.36 3.74 12818

20 305.98 -1697.28 4.12 3.74 12730

D3

30 214.37 -1787.81 3.10 3.74 13409

Table 4.8: D5 measured average horizontal velocities(Vx), vertical velocities (Vy),
and angular velocities (pitch) in-air drop.

Drop

Angle (Deg)
Vx(mm/s) Vz(mm/s) Pitch(rad/s) I∗ Re

0 114.16 -1730.73 1.68 6.25 12980

5 130.14 -1686.96 1.91 6.25 12652

10 194.80 -1513.22 2.68 6.25 11349

15 236.27 -1652.24 3.40 6.25 12392

25 137.67 -1773.49 1.28 6.25 13301

D5

30 180.79 -1910.81 1.89 6.25 14331
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Table 4.9: D4 measured average horizontal velocities(Vx), vertical velocities (Vy),
and angular velocities (pitch) in-air drop.

Drop

Angle (Deg)
Vx(mm/s) Vz(mm/s) Pitch(rad/s) I∗ Re

0 91.59 -1761.02 1.54 6.56 12577

5 141.90 -1717.47 2.00 6.56 12266

10 137.27 -1595.49 2.13 6.56 11394

15 226.90 -1693.14 3.53 6.56 12092

D4

30 230.88 -2006.70 3.12 6.56 14331

In the general falling problem of a 2D flat plate (Andersen et al. (2005a); Lau

et al. (2018)), cylinder (Chrust et al. (2010); Chrust (2012); Chrust et al. (2013))

or 3D disc (Zhong and Lee (2012); Auguste et al. (2013); Esteban et al. (2020)),

flow instability is connected to Re and I∗ . Similarly, early investigation on heavy

plates leads to the findings of bistability, where stable falling and tumbling are both

possible due to the initial angle of release (Lau et al. (2018)). An extendend Re and

I∗ phase diagram corresponding to different falling plates shown in Figure 4.15, the

phase diagram represents different experimental results of steady falling, fluttering,

tumbling, chaotic, helix, and spiral motions from different literature on light plates

(a) and extension on the current heavy plate results showing a periodic zigzag regime

(b).
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((a))

((b))

Figure 4.14: D4 different measured plate trajectories:(a), time histories of transla-
tional velocities:(b,c,d), rotational velocities:(e,f,g) of in-air zigzag plate at angles
of 00 to 300 with different interval of 50 and showing how oscillations vary with
different drop angle.
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Furthermore, in the present findings both vertical, horizontal and rotation ve-

locities are stochastic and they do not depend on the initial release angle. Similarly

bistability depends on the initial angle of released from zigzag to tumbling motion,

where trajectories on fluttering and tumbling are independent of initial angle of re-

lease as reported by (Andersen et al. (2005a); Wu and Lin (2015); Zorzi et al. (2015))

for thin rectangular plate but Lau et al. (2018) reported a changes with heavy plate

from stable to tumbling depending on the initial angle of released.

Figure 4.15: Phase diagram showing current and previous results of Re & I∗ (b)
regime map of light plate I∗ < 1 and (a) heavy plate with I∗ > 1 results are plotted
together with current and previous reference results.
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The phase portrait shown in Figure 4.15 looks similar to the stable vertical falling

trajectory results of Lau et al. (2018) with small oscillation of Vx and OmegaPT.

However, the results shown in Figure 4.13 and Figure 4.14 show nearly twice the

results presented by Lau et al. (2018) with a high oscillation angle. As Re increases,

because of the lower viscous effect, the frequency and pattern of oscillation become

much more zigzag. Thus, as the motion cycles around the stationary point, at (0,0)

in Figure 4.11(b) and Figure 4.12(b), the gravitational force restores the rectilinear

paths, which look similar to what was reported by Lau et al. (2018). In comparison

to the present results, the stable trajectories reported by Lau et al. (2018) produce

relatively low lift with insignificant flight characteristics. Therefore, the current

research concludes the wobbling motions as zigzag since the lift is higher as compared

to the results of Lau et al. (2018).

Table 4.10: Summary of non-dimensional parameters from previous literature and
present investigations.

Reference I∗ Re β*

Dupleich (1949) 0.6 - 26 600 - 35000 0.8 - 6

Andersen et al. (2005a) 0.16 - 0.48 700 - 1800 15 - 30

Hirata et al. (2009) 3 - 150 1800 - 6400 2 - 20

Wang et al. (2013) 9.2 - 12.3 4500 - 6400 2 - 10

Lau et al. (2018) 0.10 - 20 80 - 12000 10 - 110

Present 0.058 - 23.33 270 - 22000 5 - 39

Table 4.10 provides a summary of non-dimensional parameters from previous

literature and current research. The experimental results lie within the findings of

Lau et al. (2018) as shown from Table 4.1 to Table 4.9. Lau et al. (2018) reported

that when I∗ increases with respect to the horizontal axis, the vertical velocity in-

creases while horizontal and rotational velocities decrease, which is also similar to

Dupleich (1949) and Wang et al. (2013) findings. However, in the present findings

both vertical, horizontal, and rotational velocities are stochastic and are not depen-

dent on the initial angle of release. Similarly, bistability is shown to depend on the
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initial angle of release from zigzag to tumbling motion, whereas the trajectories of

fluttering and tumbling are independent of the initial angle of release, as reported

by Andersen et al. (2005a); Wu and Lin (2015); Zorzi et al. (2015) for light plates.

In addition Lau et al. (2018) reported that beyond the upper boundary (red

dot), plates will never tumble at any release angle, and below the lower boundary

(red dot), a plate will develop into tumbling and will not fall steadily. In the present

research, as shown in Figure 4.15, some plates fall in zigzag motion without tumbling

in the lower boundaries of the phase diagram.

Finally, Lau et al. (2018) shows the relationship between I∗ , Re and θ0 to deter-

mine the bistability and the critical angle that will set plates from stable falling to

tumbling, and shows a steeper initial angle of 580, 750, and 510 is required for heavy

plates to change it’s trajectory from stable falling to tumbling, in the current study

a critical initial angle of 200, 300, 350 and 450 as shown in Table 4.1 to Table 4.8 is

required to make the plate to tumble.



Chapter 5

NUMERICAL MODELLING OF FALLING

PLATE PROBLEM

This chapter presents preliminary studies carried out with the aim of developing

and validating the numerical results with existing experimental and numerical results

from Andersen et al. (2005a) and Jin and Xu (2008). The numerical setup presented

in chapter 3 methodology is used for the model setup to determine the trajectories,

translational and rotational velocities. A mesh and time independence analysis is

carried out to show the sensitivity of a freely falling plate with measurement of

uncertainty to estimate the solution error due to temporal discretization. Finally,

this research extends this work to include the numerical investigation of a freely

falling plate with an initial speed by using the validated results to investigate the

falling trajectories, velocities, and forces.

5.1 Background

The accuracy of the numerical CFD method is of great interest in the academic

community for several reasons. However, one issue that remains challenging is that of

grid generation, on which the solution of the governing partial differential equations

is to be obtained. To capture the physics of free falling plates numerically, the

computational mesh must be refined. Although grid sensitivity studies are frequently

analysed in academia but the outcomes are not always understood by researchers,

92
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in industrial applications, on the other hand, a single mesh analysis is considered

due to the perception that error estimation is difficult and time-consuming (Terziev

et al. (2020)). Uncertainties in the physical properties appear to have lower relevance

compared to the uncertainties in the turbulence modes used to estimate the Reynolds

stresses (Fokken et al. (2019)).

Computational models play an ever-growing role in predicting the behaviour of

real-world systems or physical phenomena (Groen et al. (2021)). In addition, scien-

tific computing is based on a mathematical model in the form of coupled systems

of nonlinear partial differential equations systems (Roy and Oberkampf (2011)).

However, computational models have undergone an extraordinary increase in so-

phistication over the years, but often the models are simple representations of the

real world and can behave differently for some reason. Another source of discrep-

ancy between experimental and numerical data can exist due to assumptions and

simplifications made in the numerical simulation to reduce the computational cost,

but sometimes make them less accurate. Unfortunately, most numerical simula-

tions of physical systems are rife with sources of uncertainty such as geometric,

initial/boundary conditions, structural, and parametric. The main difference be-

tween an experimental and a numerical simulation is that numerical simulations are

considered deterministic, while experiments are inherently affected by uncertainty

(Salvadori (2019)).

In recent years, the estimation of CFD errors and uncertainties has reached a

certain level of maturity. However, the decision to use CFD must be firmly based on

a realistic expectation of its performance, cost, and effort required (Martín (1999)),

note that using CFD does not necessarily ensure accurate results (Baker et al.

(1997)) despite this, the use of numerical simulation is gaining more acceptance in

the research and engineering community due to its growing accuracy and accessi-

bility. Verification in CFD is needed to demonstrate that relevant physics of the

problem are being properly addressed, while validation is needed to demonstrate suc-

cessful model problems for which either experimental data or reliable semi-empirical
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correlations are available (Chen and Srebric (2002)). Schwer (2009) provided a flow

chart of verification and validation activities and outcomes, as shown in Figure 5.1 .

Figure 5.1: Verification and validation activities and outcomes. Guide figure)

When compared to analytical methods, computational methods have greater ca-

pability of addressing significant complex physical phenomena, and many processes
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of immense practical importance such as the turbulent motion of a fluid cannot be

described analytically (Terziev et al. (2020)). On the other hand, due to the equiv-

alence between the continuum form of the governing partial differential equations

and their discrete approximation in CFD simulation, errors and uncertainty can be

classified into five categories.

1. Physical approximation errors are those due to uncertainty in the formula-

tion of the model and deliberate simplifications of the model, which can be

as a result of difference between the exact solution of the equation describing

the fluid flow by satisfying the conservative laws and the actual flow. These

errors deal with continuum model only, often modeling is required for turbu-

lence quantities, transition, and boundary conditions. However, for a laminar

flow the Navier Stokes equations are sufficiently accurate but to account for

cases where turbulence modelling is important, additional models are required

(Terziev et al. (2020)). Even when a physical process is known to a higher level

of accuracy, a simplified model may be used within CFD code for convenience.

2. Iterative convergence error exists because of the iterative methods used in CFD

simulations which have a stopping point eventually, that arises as a result of

the nonlinearity of the governing equations.

3. Errors in Computer Programming: Programming errors are "bugs" and mis-

takes that occur during the programming or writing of code. They are the

programmers’ responsibility. These types of errors are discovered by perform-

ing verification studies on subprograms and the entire code, reviewing the lines

of code, and performing validation studies on the code. Before releasing the

code, the programming errors should be fixed.

4. Usage errors occur when the code is applied in an inefficient or incorrect man-

ner. Usage errors can manifest as modelling and discretization errors. The

user configures the models, grid, algorithm, and inputs used in a simulation,

which determines the simulation’s accuracy. There may be obvious errors,
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such as attempting to compute a known turbulent flow using an inviscid flow

assumption. A converged solution may be obtained; however, the simulation’s

conclusions may be incorrect. Errors may not be as obvious, such as incorrect

selection of turbulence model parameters for separated flows with shocks. The

number of options available in a CFD code increases the possibility of usage

errors. The accumulation of experience and proper training reduces usage er-

rors. In order to speed up the simulation at the expense of accuracy, the user

may intentionally introduce modelling and discretization errors. This may be

appropriate in the conceptual stage of a design study where more general in-

formation with less accuracy is required. Even in the later stages, there may

be insufficient computational resources to simulate at the appropriate grid

density. The level of accuracy associated with the results must be understood.

Through proper training and analysis, usage errors should be manageable. In

addition to the CFD code, usage errors can occur in the CAD, grid generation,

and post-processing software.

5. Grid convergence study is effective way to determine amount of discretization

error in a CFD solution. Discretization errors occur when governing flow equa-

tions are represented as algebraic expressions in a discrete domain of space.

Grid or mesh is a discrete spatial domain; the time step demonstrates the tem-

poral discreteness. As the number of grid points increases and the size of the

grid spacing tends to zero, a consistent numerical method will approach the

continuum representation of the equations and have zero discretizibility error.

The level of discretization error is determined by the flow features as resolved

by the grid. Errors may arise as a result of the grid’s representation of discon-

tinuities (shocks, slip surfaces, interfaces, etc.). Interpolation errors occur at

zonal interfaces where one zone’s solution is approximated on the boundary of

another zone. The difference between the partial differential equation (PDE)

and the finite equation is the truncation error.

The numerical validation used in this research is based on Richardson extrapola-
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tion by expressing the error as an expanded power series with integer powers of grid

spacing (∆x) or time step (∆t) as a finite sum, assuming the solutions lie within

asymptotic range, it is admissible to take only the first term into account, leading

to the so-called grid triplet study (Terziev et al. (2019)).

Four types of conditions that govern whether a numerical solution is convergent

or divergent as both grids spacing, or time step are refined can be summarized as:

1. Monotonic convergence: 0<R<1

2. Oscillatory convergence: R<0; |R|>1

3. Monotonic divergence: R>1

4. Oscillatory divergence: R<0; |R|>1

However, for conditions 3 and 4, neither error nor uncertainty can be estimated.

Where R is the convergence ratio.the value of R can be defined as:

Rk =
ε21

ε32
(5.1)

Where ε21 is the difference between medium (f2) and fine (f1) solutions, and

ε32 is the difference between the coarse (f3) and medium (f2) mesh solutions. The

solutions of (f1),(f2) and (f2) are obtained by systematically coarsening the mesh

or time parameter with a refinement ratio of r =
√
2, recommended by Procedures

(2008), while the validation is carried out against the experiment results and error

is calculated using:

E = (EFD − CFD)/(EFD × 100) (5.2)

5.2 Determination of Local Error and Uncertainty

After describing the error and uncertainty estimation methods above, the local error

and uncertainty is estimated using Terziev et al. (2019) by defining Richardson and

oscillatory nodes as:
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• Richardson nodes: (f3 - f2) × (f2 - f1) > 0

• Oscillatory nodes: (f3 - f2) × (f2 - f1) > 0

Also both convergence nodes and divergent nodes are computed. Terziev et al.

(2019) use the local accuracy order to produce a global average. However, Phillips

and Roy (2017) also provided a similar framework and modified first, as shown

Equation (3.49). Absolute value of the numerator quotient is taken. The accu-

racy ranking at each location is not directly used. Phillips and Roy (2017) and

Terziev et al. (2019) both defined the global deviation from formal accuracy (pf =

2) in Equation (3.50), which can be interpreted as the mean local deviation of the

observed and theoretical accuracy orders. To avoid skewing the average, the maxi-

mum deviation is restricted to 4pf, Phillips and Roy (2017) and Terziev et al. (2019)

both considered pf multiplicative factors of 2, 4, 6, and 8 when deriving p, but the

choice was unimportant. To avoid zero values, the observed order of accuracy is

limited to 95% of pf, after calculating p, one can calculate the global distance from

Equation (3.51) and estimate the uncertainty as:

Uncertainty = FS(p*)

∣∣∣∣∣f2 − f1
rp∗ − 1

∣∣∣∣∣ (5.3)

5.3 Reference Model of Tumbling Plate

This PhD research’s numerical simulation considers an experimental model of a

tumbling rigid plate developed by Andersen et al. (2005a) and Jin and Xu (2008).

For the case of a freely-falling tumbling plate, the plate thickness is taken to be h =

8.1 × 10-4m , with the plate width-to-thickness ratio of β = L⁄h =1/8. The density

of the plate ρs = 2700 kgm-3 and the density for the fluid ρf = 1000 kgm-3, the fluid

viscosity is v=0.00089 m2 s-1. The centre of gravity of the plate is located at (x0,y0)

= (0,0) with an initial release angle of 450 & 00 with respect to the horizontal axis

with initial speed. A rectangular tumbling plate with a dimensionless moment of

inertia I∗ = 0.29 and Re = 837 was used.
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5.4 Initial Speed Effects of Freely Tumbling Plate

Numerically, the dynamics of the falling plate with an initial velocity were investi-

gated, keeping the plate release angle at 00. Since there is no experimental data to

validate the results, verification of the results is carried out using Richardson extrap-

olation. A number of research studies were conducted to determine the trajectory

of projectile motion because moving projectiles through the air with an arbitrary

initial velocity and slope has been a matter of debate over the past two decades. In

addition to the study of projectile motion, the aerodynamics of windborne debris

flight are also being studied.

However, experimental and numerical studies on the motions of freely falling

plates in a viscous fluid with an initial speed have not been studied in detail. Lau

et al. (2018) studied freely falling heavy plates and showed that the initial angle of re-

lease can influence the motion from steady falling to tumbling, while Andersen et al.

(2005a) numerically studied free-falling thin rectangular plates and investigated the

effect of initial conditions, showing changes in absolute velocities and trajectories.

While Esteban et al. (2020) investigated experimentally discs falling in turbulence,

the discs showed an increase in the mean descent velocity with new trajectories not

discovered in previous studies. In this research, we investigated numerically the 2D

freely falling motion of a rectangular plate with an initial velocity in the range I∗

and Re of tumbling as shown in Table 5.5.

5.5 Mesh and Time Independence Analysis

The presence of complex flow regimes during the motion of a freely falling plate

and the errors generated from the computational techniques make the numerical

modelling of falling plates a challenging task. To achieve a desired level of accuracy

during numerical simulation, mesh and time-step independence analyses need to be

carried out. However, the computational power and numerical accuracy of the solu-

tion play a very important role in deciding the selection of a computational model,
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including a suitable turbulence model. In addition, since a mesh-independent so-

lution is entirely dependent on the type of mesh created to capture the fluid flow,

therefore, mesh-independent solutions are produced by eliminating the effects of sev-

eral factors, such as rounding, iterative, and discretization errors. Refining the mesh

is considered as a remedy for reducing errors by many researchers (Almohammadi

et al. (2013)). Once a solution is both mesh and time-independent, then it can be

compared with available experimental data. In this research, both mesh and time

independence analysis were carried out to investigate the sensitivity of the unsteady

motion of a freely falling plate for different cell counts and time. The computational

method that is widely used for solving the unsteady Reynolds average Navier-Stokes

equations in computational fluid dynamics is the finite volume method, and the

method has proven its superiority in many applications provided that the mesh in-

dependence solution is achieved (Almohammadi et al. (2013)). Rana et al. (2020)

studied the effect of mesh and time resolution on the trajectory of fluttering and

tumbling plates. It was confirmed that time resolution is strongly sensitive to the

unsteady dynamic while the mesh is weakly dependent on perious literature.

The step towards achieving a mesh and time-independent solution is to first

obtain a mesh convergence solution with an iterative convergence solution. The

former can be obtained by monitoring the plots of the trajectories and the veloc-

ities as shown in Figure 5.2 to Figure 5.7. While the latter is obtained by the

set tolerance in the residuals as shown in Figure 5.8 to Figure 5.11. However, the

mesh converged solution and the iterative converged solutions are performed using

the same mesh, and when the solutions do not change as the mesh is refined, then

the mesh independent solution is considered to be achieved. The same applies to

time-independent.

5.6 Results and Discussions

In this section, the obtained results are presented and compared against experiment

and numerical measurements of previous literature. The uncertainty of numerical
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measurement is presented to show the accuracy and efficiency of the numerical

method used for both mesh and time studies, and finally initial velocity case of

tumbling plate with initial speed presented. The discussions of the findings are also

presented.

5.7 Comparison Between Experiment and Numeri-

cal Simulations

The first step taken in this chapter is to present the mesh and time studies results and

compare the results with measured experimental and numerical results from previous

literature, error is determined using Equation (5.2) which is used in validating the

results. In order to determine the discretization errors, numerical simulations using

overset grids have been performed with different grid sizes, refined systematically by

increasing the number of cells as shown in Table 3.4 and also time step in Table 3.5.

However, in unsteady simulation deciding on an adequate choice of time-step is of

critical important, since if the time step is large the numerical simulation becomes

unstable or gives an unrealistic results in the case of freely falling plates, in addition,

numerical noise may manifest as seen in numerical simulation of Jin and Xu (2008) if

time-step is not selected correctly. The numerical result is compared with quasi-two-

dimensional experiment and numerical study of rectangular falling plate Andersen

et al. (2005a), Jin and Xu (2008), Kolomenskiy and Schneider (2010) and Wu and

Lin (2015).

5.7.1 Mesh Convergence Study

Figure 5.2 to Figure 5.7 shows the result of the trajectory, horizontal velocity, vertical

velocity, angular velocity and phase plot performed with different grid seizes, one

can see from these results that mesh used is sufficient to obtained grid independent

studies with good convergence since the results of fine mesh with cells number 82052

did not change with coarse mesh with cells number 32272 as shown. Furthermore,
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the results shows that fine mesh with 82052 cells is grid independent, since the

results obtained with an extra-fine mesh with cells number 147896 did not change

with mesh expansion.

Figure 5.2: CFD mesh study simulation at 450 drop showing trajectories of tumbling
plate at β = 1/8



5.7. COMPARISON BETWEEN EXPERIMENT AND NUMERICAL SIMULATIONS103

Figure 5.3: CFD mesh study simulation at 450 drop showing horizontal velocities
(Vx) of tumbling plate at β = 1/8

Figure 5.4: CFD mesh study simulation at 450 drop showing vertical velocities (Vy)
of tumbling plate at β = 1/8
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Figure 5.5: CFD mesh study simulation at 450 drop showing rotational velocities
(Vz) of tumbling plate at β = 1/8

Figure 5.6: CFD mesh study simulation at 450 drop showing Vx versus Vy of tum-
bling plate at β = 1/8
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5.7.2 Time Convergence Study

The accuracy of time-step was assessed using the fine mesh Figure 5.7 to Figure 5.11

shows the results of trajectories, horizontal velocities, vertical velocities and rota-

tional velocities of the plate freely falling, using different time-step a good conver-

gence is achieved with a time-step of 7.5E-4s. Even though an analysis with a smaller

time-step could reveal slightly different results as shown Figure 5.7 to Figure 5.11.

Figure 5.7: CFD time study simulation at 450 drop showing trajectories of tumbling
plate at β = 1/8
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Figure 5.8: CFD time study simulation at 450 drop showing horizontal velocities
(Vx) of tumbling plate at β = 1/8

Figure 5.9: CFD time study simulation at 450 drop showing vertical velocities (Vy)
of tumbling plate at β = 1/8



5.7. COMPARISON BETWEEN EXPERIMENT AND NUMERICAL SIMULATIONS107

Figure 5.10: CFD time study simulation at 450 drop showing rotational velocities
(Vz) of tumbling plate at β = 1/8

Figure 5.11: CFD time study simulation at 450 drop showing Vx versus Vy of
tumbling plate at β = 1/8
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5.7.3 Experimental and Numerical Results

Figure 5.12 to Figure 5.15 compared the present CFD simulation results with Jin

and Xu (2008), the trajectory shows same pattern but with a phase shift compared

to numerical results, the discrepancy may be expected due to Jin and Xu (2008)

simulation result with initial fluttering behaviour and only the tumbling part was

presented and compared with the experimental results.

Figure 5.12: Trajectories of tumbling plate at β = 1/8 validation against previous
literature

Figure 5.12 compared the present CFD simulation results with Jin and Xu (2008)

numerical results, the trajectory shows same pattern but with a phase shift compared

to numerical results, the discrepancy may be expected due to Jin and Xu (2008)

simulation result with initial fluttering behaviour and only the tumbling part was

presented and compared with the experimental results.
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Figure 5.13: Horizontal force of tumbling plate at β = 1/8 validation against previous
literature

Figure 5.14: Vertical force of tumbling plate at β = 1/8 validation against previous
literature
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Figure 5.15: Torques of tumbling plate at β = 1/8 validation against previous
literature

Table 5.1: Comparison of experimental and numerical tumbling plate average trans-
lational and angular velocities

Investigations Vx(m/s) Vy(m/s) Vz(rad/s)

Andersen et al. (2005a). Experimental 0.159 -0.115 14.5

Jin and Xu (2008) Numerical 0.151 -0.118 15.0

Present numerical simulations 0.160 -0.110 14.0

Table 5.2: The error between experimental and numerical data is presented in the
table

Investigations Vx(m/s) Vy(m/s) Vz(rad/s)

Andersen et al. (2005a). Experimental 0.159 -0.115 14.5

Present numerical simulation 0.160 -0.110 14.0

Error 3.82% 4.44% 3.51%

Figure 5.12, Figure 5.13 and Figure 5.15 show the dimensionless fluid forces,

torque and moment and compared with Jin and Xu (2008) numerical results, the
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curve trend of Fx, Fy and torque with dimensionless time T* results fit well with

the previous literature, but noise was observed in the numerical results of Jin and

Xu (2008) the author did not give any explanation on why the noise was observed,

however, the measured Fx and Fy shows the curve trend of both top and bottom

amplitude of the dynamic oscillations as a function of dimensionless time T* the

forces Fx & Fy minimum and maximum values of oscillations corresponding to

validated results with the peaks showing some difference. In addition, a phase

shift was observed in Figure 5.12, Figure 5.13 and Figure 5.15. Jin and Xu (2008)

attributed the small phase error between experimental and numerical results due

to smaller angular velocities difference between the present model and numerical

model.

The error estimation against experimental results of Andersen et al. (2005a) is

presented in Table 5.2 and shows that the method can predict the translational and

angular velocities of the tumbling plate considering the percentage error of 3.51%

to 4.44% which is between the acceptable margins of 5%-10%.

5.8 Uncertainty Study of Mesh and Time Conver-

gency

The numerical uncertainties are measured via the grid convergence index (GCI)

method, since is one of the standard ways of reporting numerical uncertainties.

Three grid sizes are used in determining the uncertainty of GCI method which re-

quires systematically reducing the mesh and time-step size with a refinement ratio

of
√
2 as recommended by Procedures (2008). The GCI method assumes that all

the three solutions are close to asymptotic range, the proximity to the asymptotic

range is typically determined by the convergence ratio shown in Equation (3.49).
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5.8.1 Mesh Uncertainty Study

The measured numerical solution for the Mesh study local uncertainty and extrapo-

lation of the free-falling plate trajectories and velocities are discussed with the factor

of safety and the order of convergence. To obtain the uncertainty convergence of

the mesh, results are summarized in Table 5.3. To obtain the solutions of the grid

convergence study the smallest time step of 7.5E-4s is used while coarsening the grid

with
√
2 as shown in Table 3.4 . The results in Figure 5.17 and Figure 5.18 shows

that fine, medium and coarse mesh having oscillatory and monotonically converged

nodes with negligible divergent. However, Table 5.4 shows the measured percent-

age convergent nodes of 90% - 99% X and Y position with 98% translational and

rotational velocity convergence.

The factor of safety in Figure 5.19 shows the convergence study of mesh, as part

of procedure for the GCI requirement to show whether the suggested FS of 1.25

agrees with Phillips and Roy (2012, 2017), none of the nodes is asymptotic base on

the criteria of Equation (3.52) therefore refinement for mesh study is not required.
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Table 5.3: 450 drop mesh study computed uncertainty of X&Y position with hori-
zontal, vertical and rotational velocities

X

position

Y

position

Vx

velocity

Vy

velocity

Vz

velocity

Number of monotonically

convergent nodes
674 3980 3487 3480 3677

Monotonically convergent nodes

percentage of total
16.17% 95.49% 83.66% 83.49% 88.22%

Number of oscillatory

convergent node
3114 163 616 614 440

Oscillatory convergent nodes

percent of total
74.71% 3.91% 14.78% 17.73% 10.56%

Total number of convergent

nodes
3788 4143 4103 4094 4117

Percentage convergent

nodes
90.88% 99.40% 98.44% 98.22% 98.78%
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Figure 5.16: Mesh study of 450 drop computed uncertainty of (a) fine, (b) medium
and (c) coarse mesh trajectory
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Figure 5.17: Mesh study of 450 drop numerical convergence computed uncertainty of
(a) X position state of each node, (b) Y position state of each node, (c) Vx position
state of each node, (d) Vy position state of each node, (e) Vz position state of each
node
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Figure 5.18: 450 drop computed error of trajectory of tumbling plate mesh study

Figure 5.19: 450 drop mesh study computed factor of safety
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5.8.2 Time Uncertainty Study

To obtain the local uncertainty and extrapolation convergence of time studies of the

measured trajectories and velocities are discussed with the factor of safety and the

order of convergence. To obtain the uncertainty of time the results are summarized

in Table 3.5 with different time steps, the fine mesh in Table 3.4 i used to determine

the time convergence. The results in Table 5.4 shows that unsteady simulation of

falling plate numerically is subject to greater uncertainty with time rather than

mesh study, divergent nodes from 0s - 1.2s as shown in Figure 5.21 was observed.

However, Table 5.4 shows the measured percentage convergent nodes of 75% - 84%

X & Y position, 73% to 75% translational and rotational velocity.

The factor of safety in Figure 5.23 showing less than what was recommended by

Phillips and Roy (2012, 2017), therefore a smaller time step is required to achieved

convergences for the trajectories (X & Y). in addition, due to divergent nodes in

the time study high error is seen in the trajectory measurement of Figure 5.22.

However, convergent is archived for horizontal, vertical and rotational velocity with

GCI requirement showing values above 1.25 as recommended by Phillips and Roy

(2012, 2017) shown in Figure 5.23.
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Table 5.4: 450 drop time study computed uncertainty of X&Y position with hori-
zontal, vertical and rotational velocities

X

position

Y

position

Vx

velocity

Vy

velocity

Vz

velocity

Number of monotonically

convergent nodes
2313 694 348 448 349

Monotonically convergent nodes

percentage of total
74.00% 22.20% 11.13% 14.33% 11.16%

Number of oscillatory

convergent node
41 1947 2004 1835 2036

Oscillatory convergent nodes

percent of total
1.31% 62.28% 64.10% 58.70% 65.13%

Total number of convergent

nodes
2354 2641 2352 2283 2385

Percentage convergent

nodes
75.30% 84.49% 75.24% 73.03% 76.30%
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Figure 5.20: Time study of 450 drop computed uncertainty of (a) fine, (b) medium
and (c) coarse trajectories

Figure 5.21: Time study of 450 drop numerical convergence computed uncertainty of
(a) X position state of each node, (b) Y position state of each node, (c) Vx position
state of each node, (d) Vy position state of each node, (e) Vz position state of each
node
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Figure 5.22: 450 drop computed error of trajectory of tumbling plate time study

Figure 5.23: 450 drop time study computed factor of safety
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5.9 Initial Velocity Case

5.9.1 Mesh Study 00 drop freely falling with No speed

Figure 5.24: CFD mesh study simulation at 00 drop showing trajectories of tumbling
plate at β = 1/8
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Figure 5.25: CFD mesh study simulation at 00 drop showing horizontal velocities
(Vx) of tumbling plate at β = 1/8

Figure 5.26: CFD mesh study simulation at 00 drop showing vertical velocities (Vy)
of tumbling plate at β = 1/8
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Figure 5.27: CFD mesh study simulation at 00 drop showing rotational velocities
(Vz) of tumbling plate at β = 1/8

Figure 5.28: CFD mesh study simulation at 00 drop showing Vx versus Vy of tum-
bling plate at β = 1/8
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In order to ensure a stable and accurate solution for the initial speed case, the time

step is reduced to 2.5E-4s to satisfy the CLF ≤ 0.5. The mesh study dependence

was performed using a finer and coarse mesh as shown in Figure 5.24 through to

Figure 5.28. The medium mesh is used for the initial velocity case since from the

above results for unsteady aerodynamics of falling plates is not sensitive to the mesh

study and convergence is reach with medium mesh.

5.9.2 Uncertainty Measurement of Tumbling Plate at 00

Since experimental results for the 0 degree drop are not available to validate the

numerical results, a grid convergence index (GCI) based on the Richardson extrap-

olation approach is used to estimate the solution errors as shown in Figure 5.30

with order of convergence Figure 5.31. The trajectories and velocities as shown in

Figure 5.32 , with the factor of safety Figure 5.33 are performed based on three

mesh levels with a refinement ratio of
√
2 the assume error of the grid is deter-

mined based on Equation (3.43), the order of convergence is calculated based on

Equation (3.49) with the discretization error Equation (3.50). In addition, the un-

certainty was estimated by replacing the observed order of accuracy, p, in the GCI

from Equation (3.43). The results of the mesh sensitivity study shown in Figure 5.24

through to Figure 5.28 shows that the mesh converged with medium mesh. The un-

certainty measurement in Table 5.5 shows a percentage convergent node of 61% -

75%.

The factor of safety in Figure 5.33 satisfied the procedure for the GCI require-

ment to show whether the suggested FS of 1.25 agrees with Phillips and Roy (2012,

2017),but in Figure 5.30 some nodes diverged with some converging, the measured

order of accuracy in Figure 5.31 and Figure 5.32 showing good convergence but

with high uncertainty in Y position as shown in Figure 5.34, therefore refinement

for mesh study is not required.
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Table 5.5: 00 drop time study computed uncertainty of X & Y position with hori-
zontal, vertical and rotational velocities mesh study

X

position

Y

position

Vx

velocity

Vy

velocity

Vz

velocity

Number of monotonically

convergent nodes
1421 1994 1234 1319 1238

Monotonically convergent nodes

percentage of total
31.88% 44.73% 27.69% 29.59% 27.78%

Number of oscillatory

convergent node
1763 883 1705 1429 1582

Oscillatory convergent nodes

percent of total
39.56% 19.81% 38.25% 32.06% 35.49%

Total number of convergent

nodes
3184 2877 2939 2748 2820

Percentage convergent

nodes
71.44% 64.55% 65.94% 61.66% 63.27%
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Figure 5.29: Time study of 00 drop uncertainty measurement of fine, medium and
coarse trajectories

Figure 5.30: Time study of 00 drop numerical convergence uncertainty measurement
of (a) X position state of each node, (b)Y position state of each node, (c)Vx position
state of each node, (d) Vy position state of each node, (e)Vz position state of each
node
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Figure 5.31: 00 drop order of accuracy measurement of X & Y position mesh study

Figure 5.32: 00 order of accuracy measurement of Vx & Vy Velocity Mesh Study
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Figure 5.33: 00 drop time study computed factor of safety

Figure 5.34: 00 drop error measurement of trajectory of tumbling plate time study
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5.10 Initial Velocity Numerical Results

Despite the extensive work carried out on the tumbling motion of rectangular plates,

discs, and leaves freely falling or fixed in quiescent fluid, little is known about the

motion of tumbling plates with initial speed. The free-falling motion of a thin

rectangular plate with initial speed is investigated, and the motions are classified

into three phases: the initial phase, the transition phase, and the periodic tumbling

oscillation phase.

Table 5.6: Measured average horizontal velocity, vertical velocity and angular veloc-
ity with different initial speed

Initial velocity

(VI(m/s))

Average horizontal

velocity (Vx(m/s))

Average vertical

velocity (Vy(m/s))

Average angular

velocity (Vz(rad/s))

0 0.677 -0.134 11.455

1 0.875 -0.142 13.228

2 0.934 -0.133 12.709

3 0.933 -0.137 12.709

4 0.986 -0.134 13.115

5 1.002 -0.131 13.283

7 1.004 -0.138 12.598

8 1.044 -0.134 13.075

9 1.045 -0.134 13.075

10 1.050 -0.137 12.901

11 1.028 -0.127 15.269

12 1.055 -0.138 12.799

13 1.055 -0.138 12.799

14 1.047 -0.138 12.496

15 1.069 -0.133 13.080

20 1.113 -0.126 13.478

25 1.077 -0.130 13.300
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Table 5.7: Measured average fluid forces X & Y, fluid torque and angle of descent
with different initial speed

Initial velocity

(VI(m/s))

Average horizontal

force (Fx(N))

Average vertical

force (Fy(N))

Average torque

(M(N.m))

Average rotational

angle (θ(Deg))

0 0.002 0.001 8.602E-08 12.314

1 0.004 1.346E-06 3.991E-07 20.109

2 0.020 0.002 2.707E-07 8.298

3 0.020 0.002 2.707E-07 8.298

4 0.026 0.002 8.460E-07 8.833

5 0.032 0.002 8.992E-07 8.833

7 0.045 0.002 2.846E-07 9.722

8 0.050 0.002 7.995E-07 10.114

9 0.050 0.002 7.995E-07 10.114

10 0.056 0.002 7.945E-07 10.033

11 0.058 0.002 8.423E-07 9.112

12 0.062 0.002 8.159E-07 9.955

13 0.062 0.002 8.159E-07 9.955

14 0.086 0.003 3.112E-07 10.692

15 0.098 0.002 4.693E-08 12.379

20 0.137 0.002 8.615E-08 13.003

25 0.099 0.001 6.630E-08 12.445
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Table 5.8: Measured non-dimensional average horizontal velocity, vertical velocity,
fluid forces X & Y, fluid torque and frequency with different initial speed

Average

initial

velocity

(V∗
I)

Average

horizontal

velocity

(Vx∗)

Average

vertical

velocity

(Vy∗)

Average

horizontal

force

(Fx∗)

Average

vertical

force

(Fy∗)

Average

torque

(M∗)

Average

frequency

(F∗)

0 0.591 -0.817 0.022 0.010 3014.180 0.088

6 0.875 -0.862 0.050 0.001 13985.820 0.096

12 0.513 -0.807 0.151 0.018 32853.300 0.103

18 0.461 -0.835 0.233 0.020 9483.771 0.096

24 0.486 -0.813 0.299 0.020 29642.550 0.101

30 0.463 -0.796 0.363 0.019 31505.960 0.105

43 0.416 -0.839 0.514 0.020 9971.798 0.094

49 0.448 -0.814 0.570 0.021 28013.280 0.101

55 0.448 -0.814 0.570 0.021 28013.280 0.110

61 0.441 -0.833 0.639 0.021 27847.500 0.097

67 0.401 -0.774 0.664 0.026 29512.190 0.124

73 0.433 -0.843 0.705 0.022 28587.050 0.095

79 0.433 -0.843 0.705 0.022 28587.050 0.095

85 0.368 -0.837 0.982 0.029 13004.020 0.094

91 0.953 -0.810 1.120 0.017 1644.345 0.101

122 1.008 -0.769 1.569 0.020 3018.810 0.110

152 0.962 -0.792 1.137 0.011 2323.138 0.106
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Table 5.9: Measured non-dimensional average drag coefficient, lift coefficient, mo-
ment coefficient, X & Y position, dimensionless Moment of inertia and Reynolds
numbers with different initial speed

Average

initial

velocity

(V∗
I)

Average

drag

coefficient

(C∗
D)

Average

lift

coefficient

(C∗
L)

Average

moment

coefficient

(C∗
M )

Average

horizontal

position

(X∗)

Average

vertical

position

(Y∗)

Average

dimensionless

moment of

inertia

(I∗)

Average

Reynolds

number

(Re)

0 1.608 19.266 5.642E+12 0.010 53.771 -9E-06 977.49

6 2.156 0.026 1.216E+02 0.000 68.690 0.893 1031.54

12 5.751 33.777 5.543E+01 0.018 12.018 1.664 965.02

18 8.914 35.591 7.434E+00 0.020 14.359 2.057 998.60

24 10.247 37.323 5.778E+00 0.020 15.847 2.278 973.05

30 12.047 36.135 9.179E+00 0.0186 17.139 2.396 952.70

43 16.965 34.721 2.022E-01 0.020 19.896 2.541 1003.69

49 17.398 39.118 6.431E-01 0.021 20.755 2.619 973.26

55 17.398 39.118 6.431E-01 0.021 20.755 2.619 973.26

61 19.329 37.453 1.543E-01 0.021 21.440 2.658 996.17

67 20.918 54.109 1.450E-01 0.026 22.891 3.914 925.71

73 21.116 38.587 1.126E-01 0.022 22.115 2.702 1007.76

79 21.116 38.587 1.126E-01 0.0222 22.115 2.702 1007.76

85 29.873 51.444 6.211E-03 0.029 25.036 2.815 1001.17

91 32.671 32.589 1.650E-03 0.017 66.904 2.844 968.75

122 42.195 40.899 2.532E-03 0.020 68.147 2.899 919.59

152 32.665 21.876 7.839E-04 0.011 66.230 2.823 946.87

Figure 5.35 measured the trajectories while Figure 5.36 through to Figure 5.39

measured the horizontal velocity, vertical velocity, angular velocity, and phase plot

of a falling plate with initial speed. As the plate moves with initial speed and falls,

the trajectories glide to either the left or right direction with different initial speed,

but the movement is stochastic as compared to the trajectory of a falling plate with
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zero speed. It was also observed that the initial steady fall with fluttering in the

0m/s drop changes with different initial speed. At the same time, long gliding sec-

tion was observed before periodic tumbling with increased initial speed. Similarly,

the slope of the gliding sections with the particle nutation angle is considered lower

or higher depending on the initial speed as shown in Table 5.7 to Table 5.9 measured

average descent angle, but the nutation angle is higher with 1m/s initial speed. In

the transition phase, the plate rotates 3600 before fluttering and then tumbles in

either a left or right direction depending on the initial speed. It is also observed

that the long gliding in the transition phase with different initial speeds is caused

by the flow as shown in Figure 5.49 but the direction of gliding motion changes;

however, this research did not investigate the effect of vorticity on the trajectory

and gliding motion in the left or right direction due to the vortex formation. The

measured translational distances between freely falling plates with initial speed are

approximately equal to tumbling plates with different aspect ratios, as reported by

Wang et al. (2013).
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Figure 5.35: Computed trajectories of tumbling plate with different initial speed

Figure 5.36: Computed horizontal velocities of tumbling plate with different initial
speed
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Figure 5.37: Computed vertical velocities of tumbling plate with different initial
speed

Figure 5.38: Computed angular velocities of tumbling plate with different initial
speed
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Figure 5.39: Computed Vx* versus Vy* of tumbling plate with different initial speed

It was observed in Figure 5.41 the measured horizontal velocity is different as

the oscillation moves to the left or right with the same vertical velocity as shown

in Figure 5.25 The left-gliding horizontal velocity component as a function of time

looks similar to the vertical velocity component of different aspect ratio reported by

Andersen et al. (2005a). In addition, Figure 5.40 shows the tumbling trajectory of

the plate as it moved to the left or right. The trajectories are qualitatively similar,

but the phase plot in Figure 5.39 and Figure 5.43 shows a more pronounced period-

two tumble motion as the plate moves to the right; a similar phase plot was observed

with an elliptical cross-section reported by Andersen et al. (2005b).
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Figure 5.40: Computed left and right trajectories of tumbling plate with different
initial speed

Figure 5.41: Computed left and right horizontal velocity of tumbling plate with
different initial speed
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Figure 5.42: Computed left and right vertical velocity of tumbling plate with differ-
ent initial speed

Figure 5.43: Computed (a) left and (b) right of Vx* versus Vy* of tumbling plate
with different initial speed
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Figure 5.44 shows a period-three tumbling motion. In previous studies, Andersen

et al. (2005a,b) reported a period-two tumble motion for a large aspect ratio > 15

with fast rotational behaviour and the centre of mass fluctuating along its mean

trajectory, while Wang et al. (2013) reported a different pure rotational tumbling

motion with steady translational motion similar to a fixed auto-rotational plate

with its centre perpendicular. In this present research, we observed a period-three

tumbling motion with a fast rotational behaviour and the centre of mass fluctuating

along its mean trajectory, similar to Andersen et al. (2005a,b) reported period-

two tumbling motion. However, Wang et al. (2013) concluded that the distinction

between the two-motion is as a result of change in I∗ , as also reported by Lugt

(1983) who started that if I∗ is larger than 10 the motion of the tumbling plate is

closer to auto-rotation. The new triple-period oscillation observed in Figure 5.44

with a high frequency and low decent angle, horizontal, and vertical velocities as

shown in Table 5.7 and Table 5.8 as compared to freely falling tumbling with no

speed, for an aspect ratio γ∗ > 15 and I∗ < 0.5 reported by Andersen, Andersen

et al. (2005a,b).

Wang et al. (2013) reported a purely rotational tumbling motion with steady

translation motion and double period rotation identified through Fourier analysis

with aspect ratio γ∗ = 10, the phenomenon disappeared for a smaller aspect ratio.

It was also observed from Figure 5.44 a similar descent trajectory first reported by

Esteban et al. (2020) where a disc laterally moves about 10D of the disc and falls

chaotically with the influence of turbulence. Similarly, a long gliding is observed

from Figure 5.35 as initial speed is applied to the plate, with an initial phase of

fluttering, and then the plate tumbles to the left or right.
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Figure 5.44: Computed trajectories of tumbling plate with triple periods

Figure 5.45 shows the measured average kinematics of a freely tumbling plate

with different non-dimensional speeds. Table 5.8 and Table 5.9 present a summary

of the non-dimensional parameters. The results show a higher average descent angle

with a lower average rotational frequency and higher horizontal velocity and lower

vertical velocity values for the plate with the same aspect ratio as reported by Wang

et al. (2013), Dupleich (1949) and Hirata et al. (2009). Furthermore, Wang et al.

(2013) concluded that the average vertical velocity and the descent angle decrease

as a function of aspect ratio, while the average horizontal velocity increases and

the angular velocity and the non-dimensional frequencies increase as aspect ratio

increases. However, in the present studies, descent angles, horizontal velocities,

vertical velocities, rotational frequencies, and angular velocities are stochastic for a

plate with the same aspect ratio but with a different initial speed.

Figure 5.47 shows the plot of average force coefficients with different non-dimensional

speeds; the average drag and lift coefficients increase with different speeds. Wang

et al. (2013) also reported an increase in lift coefficient as aspect ratio increased
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but a decrease in drag coefficient as aspect ratio increased. Hirata et al. (2009) also

reported a decrease in drag coefficient as aspect ratio increased. In addition, the

observed translational amplitude of horizontal and vertical position in Figure 5.46

shows an increase in vertical amplitude with a random probability pattern that may

not be predicted precisely.

Finally, Figure 5.46 shows the measured average drag and lift coefficients with

X* & Y* positioning varying with different speeds, the drag coefficient increases as

the speed increases and reaches its maximum at an initial speed of 20m/s as shown

in Table 5.8 and Table 5.9, from Figure 5.35 the results of the measured trajectories

show a maximum speed at which a plate can reach before gliding. The increase of

drag coefficients at decreasing aspect ratios was initially reported by Wang et al.

(2013).

Figure 5.45: Computed average values of (a) decent angle (b) rotation frequency,
(c) horizontal velocity (d) vertical velocity versus initial speed
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Figure 5.46: Computed average values of (a) drag coefficients (b) lift coefficients (c)
X position (d) Y position versus initial speed

Figure 5.47: Computed average values of (a) horizontal forces (b) vertical force (c)
moment versus initial speed
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The phase plot in Figure 5.43 and horizontal velocity in Figure 5.41 and Fig-

ure 5.42, show a double period motion similar to motion presented by Andersen

et al. (2005a) and a single periodic tumbling present by Wang et al. (2013). Also

changes occur in descent angle, horizontal velocity, vertical velocity, and frequency

at the range of different initial speeds as shown in Figure 5.29, but the results are not

dependent on the initial speed. From the mean descent velocity of the rectangular

plate falling with initial speed in Table 5.7 and the dimensionless moment of inertia

and the Reynolds number in Table 5.9 with the phase diagram Figure 5.48 it was

confirmed that they lie within the Re - I∗ domain corresponding to a freely falling

tumbling plate.
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((a)) Phase diagram full

((b)) Phase diagram subplot

Figure 5.48: Phase diagram of falling tumbling plate with different initial speed
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5.10.1 Vortex Formation and Wake Structure

It is observed from previous studies by Andersen et al. (2005a) and Ern et al. (2011)

that the motion of a thin plate could be affected more easily by the surrounding

fluid, which will lead to complex trajectories such as periodic oscillation or tumbling

and will induce instantaneous vortex shedding. As plates fall in a viscous fluid, they

form a vortex around which the surrounding fluid alters the forces that act on them.

Andersen et al. (2005a) and Wan et al. (2012) show the vortex shedding and wake

pattern of a freely falling tumbling and fluttering plates, while Ern et al. (2011)

studied the lift generated from the boundary layer separation and vortex shedding

of freely rising or falling bodies in a viscous fluid. Zhong et al. (2013) experimentally

reported a different shedding pattern than that of kàrmàn vortex shed with a freely

falling plate of Reynolds number greater than 2000. In addition to a freely falling

body, fixed plate vortex shedding was studied extensively, Figure 5.49 shows the

vortex formation and wake structure of a tumbling plate with initial speed, (a) ∼

(c) shows the vorticity of the plate moving with initial speed before gliding, a long

gliding with centre of mass elevation seen in (h), and a short gliding without centre

of mass elevation in (h) ∼ (j). However, at the turning point seen in (e) ∼ (l) a

vortex pair is formed by breaking up as the plate turns, glides, and forms a wake.

As the plate glides and turns 3600 wakes develops and becomes unstable, breaking

up into vortices before gliding. Furthermore, movement of the plate left or right due

to vortex and wake formation is not discussed.
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Figure 5.49: The vorticity around a tumbling plate with 11m/s initial speed



Chapter 6

ACHIEVEMENTS, CONCLUSION AND FUTURE

WORK

This chapter summaries the research findings performed in this thesis. The comple-

tion of the aims and objectives is assessed and presented in chapters 4,5&6. Future

work is then suggested based on the findings of the thesis.

6.1 Against the Objectives

The study of the motion of solids in fluids has always triggered interest in the

scientific and research community. This rich, dynamic behaviour dates back to the

foundation of modern mechanics. However, understanding dynamic behaviour has

been a major issue in both engineering and scientific communities for centuries. This

thesis presented an investigation into three different studies.

Objective 1. Experimental investigation of heavy plates falling freely in a 3D

viscous fluid and determined the transitions from zigzag to tumbling motions of the

plates at the range of Reynolds number 270 to 23000, dimensionless moment of iner-

tia up to 23 and aspect ratio 5-39. The objective is to extend the mapping of heavy

plates from previous literature of Lau et al. (2018) and further understand the falling

trajectories and bistability, since both experimental and numerical investigation of

heavy plates at large I∗ , Re and γ∗ remain scarce.

• Using the state-of-the-art technique, experimentally, the transitions from zigzag

147
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to tumbling motions of freely falling heavy plates in three-dimensional viscous

fluid at the range of Reynolds number 270 to 23000, dimensionless moment of

inertia up to 23 and aspect ratio 5-39 was investigated. Because experimental

and numerical studies of heavy plates at large I∗ , Re and γ∗ remain scarce, it

is desirable to extend the mapping of heavy plates from previous literature.

The above objective was met in Chapter 2, Chapter 3 & Chapter 4, which

presented the critical literature review of thin and heavy plates freely falling, with

the experimental setup in Chapter 3 and research findings in Chapter 4.

Objective 2. The accuracy of the numerical CFD method is of great interest

in the academic community, to capture the physics of free-falling plates numerically.

The objective is to develop a numerical model and validate it against experimental

work of previous literature and determine numerical uncertainty since complex flow

regimes during the motion of a freely falling plate and the errors generated from

the computational techniques make the numerical modelling of a falling plates a

challenging task. But computational models are becoming more and more important

for predicting how things will behave when they are falling, staying still, or rising.

However, assumptions and simplifications made in numerical simulations can lead to

differences between experimental and numerical models, which can sometimes make

numerical models less accurate.

• Develop a numerical model to investigate the 2D/3D motion of a falling plate

by using a CFD technique to validate the experimental model of Andersen

et al. (2005a) and numerical model of Jin and Xu (2008); and estimate the

numerical uncertainty and errors of tumbling rectangular plate during free-fall.

The above objectives was addressed in Chapter 3, first a numerical model

using overset method was used and finally Chapter 5 shows the research findings

with good convergence in both mesh and time study, numerical errors were also

determined and concluded with a good measured percentage convergence of nodes

is achieved in both mesh and time study.
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Objective 3. A number of parametric studies have been carried out previously

to investigate the motion of a freely falling plate. Some authors take into account

the effect of aspect ratio Wang et al. (2013), density ratio Wang et al. (2016),

turbulence Esteban et al. (2020), Reynolds number Andersen et al. (2005a,b), or

aerodynamics of multiple free-falling plates Kushwaha and De (2020) and Shape

optimization Vincent et al. (2020). The falling plate with initial speed was never

investigated. The objective is to investigate the effect of initial speed on the freely

tumbling body under the influence of gravity.

• Develop a numerical model to investigate the motion of a free-falling plate

numerically with an initial velocity.

The above objective is met in Chapter 3, by numerically modelling the dynamic

of the tumbling plate using overset mesh, and Chapter 5 analysed the motion and

presented the research findings.

6.2 Conclusions

In the first part of this dissertation, the motions of heavy plates was investigated to

determine the sensitivity of the initial angle of release. It was concluded that the

motion is similar to the three-dimensional dynamics of freely falling bubbles with

erratically wobbling behaviour and zigzag motion, but the motion changes with dif-

ferent oscillations of both vertical and horizontal velocity depending on the initial

angle of release, but the vertical velocity is stochastic and does not depend on the

initial release angle. As the Re increases, the frequency and pattern of oscillation

increase with a decrease in aspect ratio and a high lift compared to previous litera-

ture. It was also observed that the initial release angle in the underwater case shows

double period motion, with a zigzag and fluttering motion with a reducing vertical

velocity depending on the initial angle of release. The motion is classified as periodic

zigzag motion with an inclination of the axis and velocity of oscillation almost out

of phase. However, in the present findings, both vertical, horizontal, and rotational
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velocities are stochastic and do not depend on the initial release angle. Similarly,

bistability depends on the initial angle of release from zigzag to tumbling motion,

whereas the trajectory of fluttering and tumbling is independent of the initial angle

of release, as reported from early findings on the aerodynamics of light plates falling

in viscous fluid. In addition, early conclusions from the phase diagram of heavy

plates report that plates above the upper boundary (red dot) will never tumble at

any release angle, and plates below the lower boundary (red dot) will develop into

tumbling and will not fall steadily. In the present research, plates fall steadily at

the lower boundaries. Finally, Lau et al. (2018) reported a critical initial angle of

580, 750 , and 510 that will set plates from stable falling to tumbling. However,

in the present study, a critical initial angle of 200, 300, 350 and 450 was reported

depending on the aspect ratio.

The second part describes the validation of numerical results against experimen-

tal and numerical findings in previous literature. The numerical results adopted in

this study provided realistic results of tumbling plate dynamics and correctly pre-

dicted the trajectories, forces, and torque but with phase shifts. The solution for

the local uncertainty of the tumbling plate with the factor of safety and the order

of convergence shows 90% - 99% X and Y position and 98% translational and ro-

tational velocity convergence in the mesh study, while 75% - 84% X & Y position,

73% to 75% translational and rotational velocity in the time study.

Finally, the third part investigated the motion of tumbling plates with different

initial speeds and concluded that the trajectories move to either the left or right

with different initial speeds, but the movement is stochastic and not dependent on

initial speed. It was also observed that the measured horizontal velocity is different

as the oscillation moves to the left or right with the same vertical velocity. The

phase movement to the left looks similar to the double period motion in previous

literature, while the phase movement to the right is a single periodic tumbling

present in previous literature. However, changes occur in descent angle, horizontal

velocity, vertical velocity, and frequency at a range of different speeds, and the results
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are not dependent on the initial speed. It was confirmed that the I∗ - Re domain

corresponds to a freely falling, tumbling plate. A new triple-period oscillation was

observed and reported for the first time with a high frequency, and low decent angle,

horizontal, and vertical velocities. The measured average drag and lift coefficients

with X* & Y* positioning vary with different speeds. The drag coefficient increases

as the speed increases and reaches its maximum at an initial speed of 20m/s. The

results of the measured trajectories show a maximum speed at which a plate can

reach before gliding.

The movement of a rigid body dropped in water and air has a wide range of

scientific and industrial applications. Predicting and estimating the potential flight

trajectories and impact energy of a piece of debris, such as a meteor shower falling,

is frequently of scientific interest. However, a better understanding of the unsteady

aerodynamic behaviour involved in falling debris flight is required, as is the devel-

opment of more complete numerical models for accurately simulating debris flight

trajectories in realistic conditions. Dropped objects are also a leading cause of fa-

talities and serious injuries in the offshore oil, gas, and renewable energy industries.

Objects may be dropped during lifting or any other offshore operation, and concerns

about health, safety, and the environment, as well as potential structural damage,

necessitate forecasting where and how a dropped object will move underwater and

in the air. The results presented above will aid in estimating potential flight trajec-

tories and determining the impact energy of drop objects.

6.3 Future Work

To reduce the limitation and expand the capabilities, in future work, further devel-

opment and more study are required for both freely falling heavy plates and thin

plates with initial speed:

• Establish relationship between I∗ , Re and initial speed

• Increase the drop length of the experiment to determined more oscillations,
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and determine the critical angle, by increasing the initial angles of release by

0.50 - 10

• For the underwater case more camaras are needed to capture the trajectories

of the moving object

350 for fluttering and 00 for tumbling.

• Experimental and numerical determination of flow fields around the plates for

the initial velocity case, to determine the effect of vorticity, velocity fields and

pressure fields on the dynamics of the plate

• The effect of shape and influence of aspect ratio & density ratio on the dy-

namics of free-falling plate with initial speed

• Experimental validation of free-falling plate with initial speed and expanding

the phase plot

• The physics of both double period and triple period needs to be investigated

extensively
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