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Abstract: 

Periodically distributed wall-mounted hot blocks located at the bottom of a layer of liquid with 

a free top interface are representative of a variety of technological applications in several fields 

(including, but not limited, to mechanical engineering, materials science, and the energy sector; 

related examples being power plants, solar energy collectors, nuclear reactors, energy storage 

systems and furnaces or crucibles). All these systems tend to create patterns in their 

surrounding fluid that are reminiscent of the classical modes of Rayleigh–Bénard or 

Marangoni–Bénard convection. In the present thesis, these subjects are investigated giving 

much emphasis to understanding how ensemble properties arise from the interplay of localized 

effects, i.e., different sources of heat. In particular, the problem is addressed from both 

numerical and experimental points of view. First numerical simulations are used to get relevant 

information about the dynamics of discretely heated systems for the case of opaque fluids 

(liquid metals) for which experiments are not possible, then the case of a transparent oil is 

considered. Through the used numerical framework, the emerging planforms are identified, 

and the statistics of the associated heat transport mechanisms are put in relation with the 

spatially averaged behavior of the underlying thermal currents. It is shown that in some cases, 

all these features can be directly mapped into the topography at the bottom of the layer. In other 

circumstances, these systems contain their own capacity for transformation, i.e., intrinsic 

evolutionary mechanisms are enabled, by which complex steady or unsteady patterns are 

produced. It is shown that self-organization driven by purely surface-tension or mixed 

buoyancy–Marangoni effects can result in ‘quantized states’, i.e., aesthetically appealing 

solutions that do not depend on the multiplicity of wall-mounted elements. The problem is also 

investigated experimentally considering an oil with temperature-dependent properties. By 

means of a concerted approach based on the application of a thermographic visualization 

technique, multiple temperature measurements at different points and a posteriori computer-

based reconstruction of the spatial distribution of wavelength, it is shown that tuning of the 

physical topography at the bottom and the difference of temperature between the liquid and the 

external (gaseous) environment can still be used to enable internal feedback control over the 

spontaneous flow behavior. For a fixed geometry and temperature difference, variations in the 

emerging pattern can also be produced by changing the thickness of the liquid layer, which 

indirectly provides evidence for the additional degree of freedom represented by the relative 

importance of buoyancy and Marangoni effects. As a final variant, the case where the fluid 

container is inclined to the horizontal direction is also considered and it is shown that this fluid-

dynamic system is prone to develop a rich set of patterns, which include spatially localized 

(compact) cells, longitudinal wavy rolls, various defects produced by other instabilities and 

finger-like structures resulting from an interesting roll pinching mechanism.  
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Chapter 1:Introduction: 
In many different types of thermal convection, the nature of the force driving fluid motion and 

the direction of the prevailing temperature gradient can have a paramount importance in 

determining the properties of the flow. As an example, the different outcome in terms of 

convective structures and related hierarchy of bifurcations when the cases of temperature 

difference parallel or perpendicular to gravity are examined is one of the main reasons for the 

existence of a fundamental dichotomy in the literature, i.e. the distinction between Rayleigh-

Bénard (RB) convection (Busse, 1994) and the equivalent buoyancy flow in laterally heated 

systems (the so-called Hadley problem) (Gelfgat, 2020; Melnikov and Shevtsova, 2005; 

Kaddeche, Henry, and Benhadid, 2003). A similar concept holds if variations of density are 

replaced with gradients of surface-tension: the different orientation of the imposed temperature 

difference with respect to the free interface (temperature gradient perpendicular or parallel to 

it) gives rise to two different variants of surface-tension driven convection, generally known as 

Marangoni-Bénard (MB) (Kawamura, Ueno, and Kurosawa, 2002) and thermocapillary (or 

simply Marangoni) flow (Shevtsova, Nepomnyashchy and Legros, 2003; Lappa, 2007; Lappa 

and Ferialdi, 2017; Nadjib, Adel, Djamel and Abderrahmane, 2018). 

These well-established paradigms have instigated much research leading to a significant 

amount of knowledge. Most of this success has come from the remarkable simplicity of the 

related kinematic and thermal boundary conditions (smooth surfaces and uniform temperature 

distributions) and the associated possibility to conduct experiments in well-controlled 

conditions. At the moment, the results are spread in myriad papers and those who wish to get 

in touch with the field may consider some relevant books where such knowledge has been 

collected in a structured way (Koschmieder 1993; Getling 1998; Colinet, Legros & Velarde 

2001; Lappa 2009, 2012). It should be remarked, however, that although studies on these 

fundamental modes of convection and the related hierarchy of bifurcations are not showing any 

obvious sign of reaching a limit yet (relevant investigations being still produced at a constant 

rate), the need to place part of these efforts in a more practical context has stimulated the 

development of ‘alternate’ lines of inquiry. 

This endeavor, which has not yet been fully explored, has been produced essentially by the 

ambition (and/or concrete need) to increase the translational applicability of this type of 

research to technological problems where fluid motion can be brought about by many 

mechanisms working ‘in parallel’ (i.e., coexisting). This typically happens in circumstances 

where the thermal boundary conditions are not uniform, the solid boundaries delimiting the 

fluid are not flat and point-like, spot-like or finite-size (extended in the three-dimensional 

space) sources of energy are present, which result in a complex distribution of differently 

oriented gradients of temperature. 
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Figure 1: Three-dimensional view of the fluid layer hosting an array of square bars resting on 

the bottom wall (hot blocks), uniformly spaced along the x and z (horizontal) directions 

(spacing, width and height can be systematically varied). 

Along these lines, fluid systems with a discrete distribution of heat sources have received 

appreciable attention in recent years by virtue of their omnipresence in engineering. Relevant 

examples at a relatively small scale are represented by the electronic boards of computers and 

other electronic devices. These systems typically consist of memories and CPUs able to 

generate heat, which can be regarded as independent finite-size sources of thermal energy. In 

these cases, natural convection is generally regarded as cheap and convenient cooling strategy 

because it does not require auxiliary electromechanical equipment. Although, the fluid in 

contact with such hot elements is typically air, cases exists where these components and other 

electronics are submerged in thermally conductive dielectric liquids as in this way the cooling 

efficiency can be increased. Liquids are also used as electrical insulators in high voltage 

applications where they prevent rapidly extinguish electric discharges. Other relevant examples 

of systems with localized sources of heat include power plants, solar energy collectors, nuclear 

reactors, energy storage systems and furnaces or crucibles (Widawski, Rawiso and François, 

1994; S. Khan, 2017; Ismagilov, Rosmarin, Gracias, Stroock, and Whitesides, 2001). Some 

relevant examples are shown in Figures 2-5. 

 



21 
 

 

Figure 2: Battery-based  energy storage systems (APR Energy, 2018). 

 

Figure 3: Fossil fuel-based power generators (APR Energy, 2018). 

In the majority of cases, buoyancy convection is the dominant mechanism of natural 

convection. As explained before, however, for cooling purposes liquids can also be used. Often 

these exhibit a free surface. i.e., an interface where they are in contact with a gas. In these 

situations, surface-tension driven (thermocapillary, i.e., Marangoni) convection is also 

produced. Given its relevance to several technological applications (see again Figures 2-5), the 

overarching aim of the present thesis is to explore the dynamics of thermal convection in 

systems with localized sources of heat. To do so a ‘general’ model is considered (see Figure 

1), which consists of a layer of liquid with a free interface at the top and a set of three-

dimensional blocks (rods) of square cross-section (parallelepipedal shapes) regularly arranged 

at its bottom along two perpendicular horizontal directions (thereby resembling the squares of 

a checkerboard or the elements of a structured grid). 
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As explained before, this simple problem is representative of, or it is intended to model a variety 

of technological systems at different scales (electronic boards, energy storage systems, power 

plants, nuclear reactors, etc.). The problem is addressed here by means of numerical 

simulations and experiments. With regard to the numerical simulations, both cases with 

buoyancy convection and mixed (hybrid) buoyancy-Marangoni convection are considered. For 

the latter case, no results exist in the literature (as illustrated in chapter 2, most of the existing 

results for fluid systems with discrete sources of heat are for buoyancy convection only). 

Obviously, in addition to the purely theoretical implications represented by the inclusion of a 

new driving force (surface tension effects) in this specific line of research, the present thesis 

also aims to build new information potentially supporting the introduction of new technologies 

in other fields with respect to those highlighted in the preceding text. Indeed, micro-patterned 

surfaces delimiting a liquid in contact with an external gas are critical to the development of 

moulds or scaffolding for forming ordered microstructures. They can be used as model 

substrates for a variety of applications in surface science and are at the root of several lab-on-

chip devices. A relevant example is represented by the preparation of porous polymer 

membranes for innovative processes where the biggest challenge is represented by the need to 

control both the size distribution and the relative positions of the pores (Ismagilov, Rosmarin, 

Gracias, Stroock and Whitesides, 2001). They also find application in controlled release of 

drugs or other bioactive species (Zhao et al., 2001) and enhanced cell culturing (Wang, Yu, 

Mei and Xue, 2017). Last but not least, engineered surfaces with topographies that scale 

favorably at small length scales can be used for the production of nanocrystals or to assemble 

microscopic particles into regular lattices; in these applications, the ability to control the fluid-

dynamic conditions is the key to obtain desired deposition conditions or to generate lattices 

with well-defined properties. 

 

Figure 4: Electronic board with related CPUs and memories (Parm, 2009). 
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Figure 5: Bars or nuclear fuel in nuclear reactor (water being used as cooling fluid) (ANS 

Nuclear Cafe, 2014). 

The present thesis is structures as follows: In Chapter 2 after a brief survey of the existing 

literature for the classical modes of convection represented by Rayleigh-Bénard (RB) and 

Marangoni-Bénard (MB) convection in layers uniformly heated from below, an exhaustive 

review is elaborated for thermal convection in systems with localized sources of heat 

(discretely heated systems). Chapter 3 is dedicated to a presentation of the equations 

governing the behavior and evolution of these types of convection, together with the related 

boundary conditions. The related numerical method is discussed in Chapter 4, together with a 

validation study and a mesh refinement analysis. Chapter 5 includes a description of the 

experimental facilities and tools used to conduct the experiments performed with water, oil 

and other transparent liquids considered in this thesis.  

Chapter 5 is concerned with numerical results obtained for the cases of liquid metals. These 

liquids are opaque and therefore, numerical simulation is the only way to study the properties 

of convection generated by localized sources of heat. In Chapter 6, the numerical treatment is 

extended to the case of oil, for which the dynamics become much more complex. In Chapter 

8 and 9, the main outcomes of the experiments conducted using the methods described in 

Chapter 7 are analyzed. 
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Chapter 2: Literature Review 
As already outlined in Chapter 1, thermal Convection is a type of heat transfer mechanism in 

which heat is transferred from one place to another due to movement of the fluid induced by 

“natural” forces. In the presence of gravity, a fluid expands when heated and becomes less 

dense due to which it starts to rise upward. In the presence of a free surface, fluid moves along 

the interface from the hot side to the cold side as, in general, surface tension is a decreasing 

function of temperature. Fluid flow properties are determined by various parameters, but the 

two most important factors are the nature of force which drives fluid motion and the direction 

of the temperature gradient. Different convective structures emerge depending on whether the 

temperature gradient is parallel or perpendicular to the gravity. Additional details are briefly 

reported in the following two sections for the cases where convection is induced by gravity and 

surface tension, respectively (Sects. 2.1 and 2.2). Thereafter, the existing literature for 

discretely heated systems or systems with a topography (the main subjects considered in the 

present thesis) is also reviewed (Sects. 2.3 and 2.4). 

2.1 Rayleigh-Benard Convection: 

2.1.1 Primary mode of convection: 
Rayleigh Benard Convection (RBC) is a type of natural convection occurring in a plane 

horizontal layer of fluid heated from below. The simplest pattern which can occur in RBC 

consists of straight and parallel rolls. Most of studies have also discussed the stability of the 

quiescent state of nonconfined fluid layer when heated from below. In that case, a fluid layer 

with a horizontal extent that is large as compared to vertical depth has been typically 

considered. The temperature on the bottom surface of the fluid layer is increased and 

accordingly its density decreases. Fluid over hot fluid has high density due to which it starts to 

break down and an overturning process is enabled. Driving forces and dissipation of energy 

are the main factors behind the emerging flow structures which are known as dissipative 

structures.  

When fluid is heated from below then buoyancy forces of the hot fluid side cause instability 

which is then counteracted by viscous forces and thermal diffusion of the fluid. In theoretical 

investigation of that configuration three different possible boundary conditions were 

considered which are (a) stress-free isothermal horizontal boundaries, (b) no-slip isothermal 

horizontal boundaries and (c) stress-free thermally insulated upper and no-slip isothermal lower 

boundary. Actually, Ra depends on the height of the fluid layer and in all these three conditions 

it was 657, 1707 and 669, respectively. In these cases, instability was driven by two 

dimensional perturbations of diffusive state and fluid motion produced a regular and organized 

set of parallel rolls which were aligned along an arbitrary direction.  

Jeffreys (1926) was the first person who conducted a stability analysis for a fluid layer which 

was confined between two well-conducting parallel plates. He obtained Racr=1707 where Racr 

is the critical Rayleigh number (see Sect. 3.2 for the definition of Ra) i.e., the minimum value 

of the characteristic parameter needed to obtain convection. In 1958 Malkus and Veronis used 

nonlinear equations describing the fields of motion and temperature for stress-free condition 

and concluded that there are infinite number of steady-state finite amplitude solutions which 

satisfy these equations (Malkus and Veronis, 1958). 
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They also explained the relation between Prandtl number and the amplitude of the convection. 

They said for large Prandtl numbers the amplitude of the convection can be determined by 

distortion of the distribution of temperature and by the self-distortion of disturbances. But when 

Pr number becomes less than unity then self-distortion factor plays dominant role in 

determination of the amplitude. According to these studies expected nondimensional diameter 

of the emerging convective cells is the half of critical wavelength which depends on the 

horizontal wavenumber at the onset. Horizontal size of these cells in no-slip conditions was 

found very close to the height of the fluid layer but larger in diameter in case of stress-free 

conditions. Marginal stability curve for Rayleigh-Benard convection is shown in Fig 6, where 

regions are defined on the basis of wavenumber (q) and marginal Rayleigh number. Fig 7 is 

showing the shadowgraph image of two-dimensional convection for Pr=1, where Rayleigh 

number is twice of critical Rayleigh number. This figure actually shows the implementation of 

theoretical findings by Malkus and Veronis in real experimentation, where it can be seen that 

apart from the irregularities in fluid motion and defects in convective pattern, the velocity field 

of roll convection appears nearly two-dimensional. 

 

Figure 6: Marginal stability curves for Rayleigh-Benard Convection in an infinite layer. 

(Pellew and Southwell, 1940) 
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Figure 7: Shadowgraph image of two-dimensional convection (Pr=1 and Ra=2Racr). (Plapp 

and Bodenschatz, 1996). 

2.1.2 Secondary Convective Modes: 
The simplest convective pattern which can occur in RBC is the straight and parallel rolls for 

dimensional whose horizontal length is twice of the depth of the fluid layer. But this convective 

pattern becomes more complicated when Ra starts to increase. For every Ra which is higher 

than Racr, there is a range of the wavenumbers for which the convective rolls can exist. In Fig 

8, schematic diagram of rolls in RBC is shown where it can be seen that for a laterally unlimited 

domain, the fluid motion is regular and organized as a set of horizontal parallel rolls. But not 

all of these rolls exist in stable state because there is a set of secondary instabilities which 

restrict the domain for which stable convection exists. Busse and co-workers described all these 

possible secondary instabilities which can occur in RBC when infinite layers are bounded from 

below and above by isothermal solid walls. They analysed stability of two-dimensional rolls 

with respect to three dimensional disturbances. Convective rolls were found unstable for Pr 

number less than 5 with respect to an oscillatory instability which was investigated in the case 

of free boundaries. They presented an expression which can be used to predict ideal straight 

rolls in a convection process (Clever and Busse, 1974). They predicted different modes of 

secondary instabilities which are Eckhaus, cross-roll, knot, zigzag and others. 

∑𝑎𝑚,𝑛
(𝑖)

exp⁡(𝑖𝑚𝑞𝑥)𝐺𝑛
(𝑖)(𝑦)

𝑚,𝑛
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Figure 8: Schematic diagram of rolls in RBC: for a laterally unlimited domain, the fluid 

motion is regular and organized as a set of horizontal parallel rolls. (Clever and Busse, 1974). 

Busse balloon is the region defined by wavenumber and other control parameters where 

convective rolls are found stable and its form depends on the Prandtl number. In primary mode, 

primary onset of convection remains same while secondary instabilities take different shapes 

according to different Prandtl numbers. Inside this balloon periodic structure of the rolls is 

stable but becomes destabilized by secondary instabilities on crossing the defined boundaries. 

According to three-dimensional sketch of Busse balloon shown in Fig 9, possible instabilities 

are identified on the basis of wavenumber, Prandtl number and the ratio of Rayleigh to Critical 

Rayleigh number. 

 

Figure 9: Sketch of Busse balloon in three dimensions: Ra, Prandtl number and wavenumber. 

The various solid curves mark boundaries outside of which two-dimensional convecting rolls 

of wavenumber q are stable. (Clever and Busse, 1974). 
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Eckhaus instability with a long wavelength modulation of the form 𝑒𝔦𝑞𝑥 . 𝑒𝔦𝑆𝑥𝑥 is known as the 

simplest instability of secondary instabilities. In this expression, q is the wavenumber of the 

pattern while Sx is the floquet wavenumber along the axis of the rolls. 𝔦 is an imaginary unit 

number whose value is √−1.⁡Presence of iota in exponential function indicates that waves or 

patterns could be analysed from both real and imaginary axes. On the other hand, 𝑥 represents 

the direction of the plane in which the roll pattern exists and to be analysed. If a roll pattern is 

near Eckhaus boundary at some Ra and q, then due to decrement in Ra evolution of this 

instability produces another roll pair with increment in wavenumber. This instability is a slow 

growing instability due to which in some cases cross-roll instability will occur before it due its 

short wavelength and fast-growing ability.  Fig 10 is showing the snapshot of a totem structure 

where cross-roll instability was found for Pr=1 and ratio of Rayleigh to critical Rayleigh 

number was 1.7.  

 

Figure 10: Snapshot of a totem structure (cross-roll instability, Pr=1.09, Ra/Racr=1.7). (Plapp 

and Bodenschatz, 1996).  

Busse and Whitehead (1971) performed an experiment on the stability of convection rolls in a 

high Prandtl number fluids. They concluded that in cross-roll instability rolls emerge at right 

angles to the original pattern of rolls. They also concluded that when Ra becomes higher than 

23000 then convective rolls become unstable for all wavenumbers and replaced by three-

dimensional stationary convection which named as bimodal convection.  

When Ra increases then wavenumber in cross-roll instability becomes higher than critical 

wavenumber due to which a steady boundary layer type structure appears, and its evolution 

produce a new form of convection which is known as bimodal Convection. Sketch of Bimodal 

convection is shown in Fig 11. Bimodal convection was found more efficient in term of heat 

transportation than two dimensional rolls due to its small wavelength factor.  
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Figure 11: Sketch of Bimodal Convection. (Busse and Whitehead, 1971). 

Busse continued his investigations on instabilities of convection rolls for different Prandtl 

numbers.Busse and Clever (1979) considered moderate Prandlt number in their investigations 

on instabilties of convective rolls and presented knot instability which were found a more 

efficient convective heat transport. Knot instabaility acts same like cross-roll instability but has 

smaller wavenumber along axis of the rolls. When Ra becomes higher than 30000 then plumes 

evolve along currents of rising and descending liquids and streamers feed these plumes by 

evolving in the thermal boundary layers. In shadowgraph of this convection process these 

features were found like knots due to which this instability were named as knot instability. It 

disappers where Prandlt number in fluids becomes small or large.  

Skewed Varicose instability is modulated by following expression 𝑒𝔦𝑞𝑥. 𝑒𝔦𝑆𝑥𝑥+𝔦𝑆𝑧𝑧 where Sx, 

and Sz were found less than wavenumber. Fig 12 is showing the snapshot of skewed varicose 

instability which was found by Plapp and Bodenschatz for Pr=1.07, Ra=3.26Racr. According 

to Clever and Busse investigations this instability produces a shearing effect across the rolls 

due to which roll pair splits in two parts by creating two different defects in the roll pattern. 

Then these defects remove a roll pair from its original pattern and decrease the wavenumber. 

Angle of SV instability relative to original roll pattern was found close to 45o. SV instability 

disappears in the limit of high and small Prandtl numbers.   

 

Figure 12: Snapshot of Skewed Varicose instability (Pr=1.07, Ra=3.26Racr). (Plapp and 

Bodenschatz, 1996). 
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Busse and Clever (1987) performed numerical analysis and showed that Oscillatory instability 

appears as a short wavelength propagating along the rolls which is described by following 

expression 𝑒𝔦𝑆𝑧𝑧 . 𝑒𝔦𝑡 where  is the angular frequency of the wave. They performed numerical 

analysis on three-dimensional time dependent solutions which bifurcate from two-dimensional 

convection rolls at the onset of the oscillatory instability. When Ra increases then this 

bifurcation factor causes forward and backward periodic shifting and deformation of the 

convection rolls. This instability does not destroy the convection roll structure but simply adds 

a wave which propagates along the rolls.  

Clever and Busse (1991) calculated oscillatory instabilities of long ,straight and parallel rolls 

and found them in the form of travelling waves (See Fig.13, where Snapshot of travelling wave 

related to OS instability is shown which was produced by Plapp and Bodenschatz). They also 

concluded that with no-slip boundary conditions in the limit of low Pr number when Ra 

becomes 1854 then thermal convection of the rolls in fluid layer which is heated from below 

starts to convert into travelling waves. For Pr<0.02 they found travelling wave convection in 

stationary state with respect to a moving frame of reference.  

 

Figure 13: Snapshot of travelling wave related to OS instability (Pr≅1 and Ra/Racr ≅ 6). 

(Plapp and Bodenschatz, 1996). 

2.1.3 Spoke pattern convection: 
According to the discussion in previous section, different possible secondary instabilities which 

can exist become more complex when the Rayleigh number becomes higher. These instabilities 

occur in different modes at different Pr numbers. In primary mode two-dimensional but time-

dependent rolls were found but according to Busse balloon,  time dependence factor exists at 

low Pr and Ra then due to secondary instabilities rolls at high Pr and Ra were found in three-

dimensional time-dependent states. In 1970 Ruby Krishnamurti performed an experiment on 

the transition to turbulent convection. In that experiment he used different fluids with different 

Pr numbers from 1 to 10000. The main objective was to analyze the Rayleigh number at which 

steady convective flow changes to time-dependent flow. In final results he found a systematic 

increase in related critical Ra when Pr number becomes higher (Krishnamurti, 1970). 

Busse and Whitehead (1974) performed experimental study on transition from steady bimodal 

convection to time-dependent convection. They found that oscillatory instability of bimodal 
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cells introduces standing waves which are similar to those which occurred in low Pr number 

convection (Busse and Whitehead, 1974). In their experimental results it was observed that 

oscillations occur in the form of standing waves on the boundary of short-wavelength 

components of bimodal convection but disappear on long-wavelength components.  

Busse and Clever (1989) studied three-dimensional convection flows which were induced by 

knot instability of two-dimensional convection rolls and their final solution showed knot-like 

structure superimposed on the basic convection rolls (Busse and Clever, 1989). After both 

studies a notable similarity was found in oscillatory form of knot and bimodal convection. In 

both convections mechanism of transition from steady to time-dependent state was due to 

emergence of hot and cold blobs from hot and cold boundary layers. 

Busse and Whitehead (1974) discussed oscillatory instability of bimodal convection but also 

found another instability which was Collective Instability. Collective instability introduced 

spoke-pattern convection which was characteristic for turbulent large Prandtl number 

convection. Spoke pattern convection was observed when a fluid layer was heated from below 

and Ra became higher than 30000 (See Fig. 14). In that case Pr number was greater than 10. 

Upper and lower boundaries of the fluid layer were unstable which caused eruption of hot and 

cold fluid sheets which moved radially inwards towards central plumes.  

 

Figure 14: Shadowgraph image of spoke pattern convection in a layer of silicon oil for Pr=63. 

(Busse and Whitehead, 1974). 

When amplitude of oscillation of a cell on basic roll becomes large then it starts to combine 

with neighbouring cell on the same roll. Knots structure present at the intersection of bimodal 

cells with basic rolls gravitates towards a common centre of the basic rolls and produce spoke 

structure. Boundaries with short wavelength produce spoke pattern but continue to oscillate at 

roughly the same frequency. Spoke pattern convection exists at Ra>30000 but starts to fluctuate 

when Ra becomes higher than 106.  Wavelength in spoke pattern convection is a distance 

between centres of two spokes with same sign. Wavelength has inverse relation with Pr number 

of the fluid. M. Lappa performed numerical simulation in which Ra was set to 50000 and Pr 

was changed from 7 to 15.  
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In spoke pattern convection process of eruption of thermal blobs from the boundary layer and 

their transport in the form of plumes was already seen in knot convection which existed due to 

instability of two-dimensional convection rolls. It means that oscillatory knot convection can 

be considered as initial stage of spoke pattern convection at moderate Pr number.  

2.2 Marangoni-Benard Convection: 
In Rayleigh-Benard convection section, it already has been discussed that in buoyancy-driven 

convection flows patter formation process is driven by a vertical temperature gradient. This 

section explains another significant class of patterns in which convective phenomenon 

originates from another kind of driving force which arises as consequence of the dependence 

of surface tension on temperature. When temperature gradient is applied perpendicular to the 

free surface of the fluid layer then this type of convection is known as Marangoni-Benard 

Convection. Benard first time observed the hexagonal pattern resembling the architecture 

created by bees for their honeycomb (Benard, 1900). 

Block (1956) provided experimental demonstration on the role of surface tension in formation 

of these planforms. He observed convective cells at Ra<Racr when thermogravitational 

mechanism was not active. Pearson did theoretical investigations on the linear stability analysis 

of flows in which he used same mathematical framework which was already employed in RBC. 

Fig 15 is showing Marginal stability curve for pure Marangoni-Benard Convection in infinite 

layers. He neglected gravitational term in momentum equation and replaced upper boundary 

conditions for velocity and temperature with those modelling a Marangoni stress and heat 

exchange with ambient (Pearson, 1958).  

 

Figure 15: Marginal stability curve for pure Marangoni-Benard Convection in infinite layers. 

Nield (1964) provided important evidence of the fact that surface tension forces are main 

drivers of Marangoni instability in layers with depth of millimetres. Ma number scales linearly 

with the depth of the fluid layer but Ra shows cubic dependence on the depth. Pearson’s linear 

stability analysis showed that system becomes unstable above Ma=79.607, where Ma is the so-

called Marangoni number (see Sect. 3.2 for its definition), but Davis proved that system is 
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unconditionally stable below Ma=56.77 (Davis, 1968). Presence of convective cells induced 

by this type of flow on the free surface of the liquid layer can be detected by different 

experimental techniques. Experimental results of surface tension driven convection are more-

sparse as compared to Rayleigh Benard Convection. In Fig 16, shadowgraph and schlieren 

images produced through optical visualization method are showing photographs of final results 

of surface cells observed over free surface of silicon oil.  

 

Figure 16:. Photographs of surface cells in silicon oils over free surface provided by different 

optical visualization methods: (a) Shadowgraph image (b) Schlieren image (Lappa, 2009). 

High Pr number fluids were used in experiments when the disturbances were responsible for 

the onset of convection saturates their amplitude then pattern was characterised by hexagonal 

cells. Fig 17 is showing the thermographic image of the fluid layer with free surface. 

Comparison between velocity and temperature fields related to this pattern is shown in fig 18 

which were obtained through computer simulations. This structure is known as typical feature 

of Marangoni Benard Convection which can also be observed in RBC at specific conditions.  

 

Figure 17: Thermographic image of surface cells in silicon oils over free surface (digitally 

enhanced) (Lappa, 2009). 
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Figure 18: Hexagonal cells due to Marangoni-Benard convection, observable on free surface 

of silicon oil of 1 cSt covered by layer of air, having depth of 1mm and horizontal extension 

Lx=Lz=2cm with Ma=200: (a)velocity field (b) temperature distribution (numerical 

simulation, Lappa, 2009). 

Convective cells over free surface become more stable with increment in Marangoni number 

(Echebarria and Pérez-García, 2001). For moderate supercriticalities 
𝑀𝑎−𝑀𝑎𝑐𝑟

𝑀𝑎𝑐𝑟
≅ 1 , size of 

hexagon cells decreases with Ma. At certain Ma number a new secondary pattern emerges in 

which hexagonal cells are replaced by square convective cells which become new persistent 

dominant feature of the flow. Transition from hexagon to square cells arises due to local change 

in topology in which vertices of initial hexagon cells become fourfold (Bestehorn, 1996). 

During transition, an edge which separates two vortices shrinks to zero length and two vortices 

coalesce to form intersection of four edges. As the vertices coalesce the angle between adjacent 

edges changes from 120 to 90. Initially this process produces pentagon cells which then convert 

into square cells. This means transition from hexagon to square cells is mediated by occurrence 

of pentagonal cells. Fig 19 is showing an example of convective pattern in the form of square 

cells (due to Marangoni-Benard convection) observed on the free surface of silicon oil which 

was covered by layer of air. 
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Figure 19: Square cells due to Marangoni-Benard convection, observable on free surface of 

silicon oil of 1 cSt covered by layer of air, having depth of 1mm and horizontal extension 

Lx=Lz =2cm with Ma=400: (a)velocity field (b) temperature distribution (numerical 

simulation, Lappa, 2009). 

 

Figure 20: Fraction of cell class Pi as a function of (Ma-Macr)/Macr. Pi is defined as the ratio 

between number of cells of a given planform and number of complete cells. After 

experiments of (Eckert,1998) for Pr=102. 

2.3 Buoyancy flow in discretely heated systems: 
Incropera (1988) studied convection and heat transfer in electronic equipment cooling and 

suggested that engineers should determine an efficient method for heat transfer from electronic 

devices, to maintain the thermal environment in electronic components. He also explained that 

this problem involves two types of components which are internal and external components. 

In these components heat transfer occurs by conduction through different materials and 

interfaces which separates devices from package surfaces and convection mechanism exists 

from surface to coolant.  

For design analysis of these components and assessment of thermal performances, a model 

with horizontal flow over wall mounted cubes was developed in which these cubes act as heat-

producing sources. Many researchers have tried to evaluate the related heat transfer 

coefficients, which are important for durability and reliability of microprocessors and 

memories. In electronic components, heat transfer coefficients depend on various geometrical 
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factors which are size of the chip, its position with respect to other electronic components and 

the channel height.  

Conjugate heat transfer process involves temperature variations within solids and fluids due to 

thermal interaction between solid and fluid. Heating or cooling process of a solid object by the 

flow of air indicates conjugate heat transfer process. This process actually involves coupling 

of conduction in solid objects and convection in fluids and provide heat transfer path from heat 

source to the fluid. In most of studies of natural convection heat transfer from discrete heat 

sources this phenomenon was ignored, and idealised thermal conditions were applied at the 

interface of solid and fluid. 

Heindel, Ramadhyani and Incropera (1995) developed two-dimensional (2-D) and three-

dimensional (3D) conjugate models to predict flow and heat transfer within a discretely heated 

cavity. They also performed experimental measurements in which they used small heat sources 

and obtained flow visualization which were compared with numerical predictions (Heindel, 

Ramadhyani and Incropera, 1995). In this study they focused on investigations of coupled 

conduction and natural convection transport from an array of discrete and isoflux heat sources 

which were placed to one vertical wall of a cavity. Isothermal and adiabatic conditions were 

applied on opposite vertical wall and horizontal walls, respectively. Two different fluids water 

(Pr=5) and fluorocarbon (Pr=25) were simulated in calculations. The main objective of this 

study was to explain the nature and extent of 3-D effects on both flow and heat transfer. Fig 21 

is showing schematic of the geometry which was modelled in 3-D numerical predictions. On 

vertical wall 3×3 array of discrete sources was mounted on a substrate of different thermal 

conductivity. An isoflux condition was imposed at the back of each heat sources. 

 

Figure 21: Numerical and Experimental geometry and nomenclature (Heindel, Ramadhyani 

and Incropera, 1995). 



37 
 

In governing equations for fluid and solid regions, the steady-state heat transfer was considered 

with constant thermal physical properties. Resistance between substrate and heater was 

negligible while Boussinesq approximation was considered in this case.  Initial grid studies 

were performed in fluid region before conjugate calculations process, to ensure the boundary 

layers were satisfactorily resolved. Grid size was changed from 30×68 to 40×96 and average 

heat transfer rate on each heated surface was changed by 2%. But 30×68 grid size provided a 

good compromise between computational effort and accuracy in fluid region. But for conjugate 

calculations grid size in fluid region was changed to 29×80. 

In experimental setup, test cell was consisted of 3×3 array of copper elements flush mounted 

in fiberglass substrate. Opposite cold plate and Lexan spacer plate were compressed between 

two aluminium clamping plates. Dimensions of each heater was 12.7mm× 12.7𝑚𝑚 ×9.5mm. 

Cold copper plate was actually used for data collection and flow visualisation and due to large 

thermal conductivity, it was almost isothermal and maintained at 15℃. For flow visualisation, 

pliolite particles with small diameters were used in deionised water and it was assumed that 

these particles closely follow the fluid motion.   

 

Figure 22: Schematic of the experimental test cell assembly nomenclature (Heindel, 

Ramadhyani and Incropera, 1995). 

Range of modified Ra for water and fluorocarbon was 105 ≤ 𝑅𝑎 ≤ 108 and 105 ≤ 𝑅𝑎 ≤ 109, 

respectively. In numerical predictions, they found that thermal conductivity ratio of 

substrate/fluid has a significant effect on the shape of the vertical velocity profile in a discretely 

heated cavity. When substrate/thermal fluid conductivity ratio was 4.7 then thermal spreading 

process occurred through substrate and energy entered the fluid through substrate/fluid 

interface below the heater array. Fluid motion starts when this transport causes buoyancy forces 

below the heater. When fluid reaches near third row then buoyancy forces adjacent to heat 

source increase fluid momentum due to which velocities exceed the value predicted by 

nonconjugate model. When substrate/fluid thermal conductivity ratio increases then fluid flow 
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becomes more two dimensional while heat transfer remains uninfluenced by 3-D edge effects 

and thermal spreading in x-direction.  

At low values of Rs (which is substrate/fluid thermal conductivity ratio measured by solid 

thermal conductivity/ fluid thermal conductivity ), large spikes were found in heat flux near 

the edges of each heater. When Rs value becomes higher, then these spikes are smoothed out 

by substrate conduction which leads to lower heater temperature than predicted by 2-D model. 

As Rs value increases then variations in local heat flux and temperature along solid/fluid 

interface start to decrease. Flow visualisation confirmed the flow patterns predicted by 

conjugate models and values of average surface temperatures were in excellent agreement with 

experimental data.  

 In second part of this study, numerical investigations were performed on coupled conduction 

and natural convection transport from an array of discrete sources which was placed to one 

vertical wall of the cavity. Opposite vertical wall and horizontal walls were assumed to be 

isothermal and adiabatic, while Pr number and heater/fluid thermal conductivity were set to 25 

and 2350, respectively (Heindel, Ramadhyani and Incropera, 1995).  

 

Figure 23: Schematic of discretely heated cavity nomenclature (Heindel, Ramadhyani and 

Incropera, 1995). 

Main objective of this study was to analyze the effect of modified Rayleigh number and 

substrate/fluid thermal conductivity ratio Rs. Prandtl number was fixed at 25, while Aspect 

ratio of the cavity geometry was set to 7.5(AR=Cavity height/Width of cavity fluid region). 

Thermal conductivity of heater and heater/fluid region were 148W/ mK and 2350, respectively.  
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In Calculations, range of modified Rayleigh number was set to 104 ≤ 𝑅𝑎𝐿𝑧 ≤ 109  and 

substrate/fluid thermal conductivity was used between 0.1 to1000. 𝑅𝑎𝐿𝑧  is the modified 

Rayleigh number which was calculated by following expression 𝑅𝑎𝐿𝑧 = 𝑔𝛽𝑞𝐿𝑧
4/𝑘𝑓𝛼𝑓𝑣 

where q is the local heat flux applied to the heater, Lz represents vertical heater length and 𝑘𝑓 

is thermal conductivity of the fluid. 

Modified Rayleigh number was changed by altering the power supply to each heat source and 

its effect on fluid flow were shown in the form of streamlines. At modified Rayleigh 

number=10000, flow was found unicellular and weak with 8.2 dimensionless streamlines 

factor. In this case fluid flow produced a thick boundary layer which covered a small core of 

nearly stagnant flow above the center of the enclosure. In Fig 24(b), you can see that when 

modified Rayleigh number was increased to 109 then boundary layers became thin and core 

region started to increase in size. Flow became more complex due to additional recirculation 

zones and multiple cells in the central region of the cavity. At modified Rayleigh 

number=10000, fluid and solid regions showed vertical isotherms and heat transfer in fluid 

region was dominated by conduction When modified Rayleigh number was increased to 109 

then central region of the fluid was found stratified with thin hot and cold boundary layers. 

Each heater face appears isothermal due to their higher thermal conductivity, but their 

temperature varies from heater to heater. 

 

Figure 24: Dimensionless streamlines at (a)𝑅𝑎𝐿𝑧 = 104 ; (b) 𝑅𝑎𝐿𝑧 = 109 and isotherms at 

(c)𝑅𝑎𝐿𝑧 = 104 ; (d)𝑅𝑎𝐿𝑧 = 109 for Pr=25, Rh=2350 and Rs=10 nomenclature (Heindel, 

Ramadhyani and Incropera, 1995). 
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Next step was to analyse the effect of substrate/fluid thermal conductivity ratio on fluid flow, 

for that modified Rayleigh number was fixed to 106. At Rs=0.1, flow below third row was 

found non-existent with stagnant core region near top of the cavity. 

 At this stage dimensionless streamline factor was 47. In fig 25(b), you will see that when 

substrate/fluid thermal conductivity ratio was increased to 1000 then fluid flow was also 

observed below third row with core descending toward the center of the cavity.  Isothermal hot 

and cold walls were found in the cavity with stagnant core in the center of the fluid region. At 

lower substrate/fluid thermal conductivity ratio, lower region of the cavity was found 

isothermal. Each heater face was isothermal due to high thermal conductivity. But lower fluid 

region was no longer isothermal when Rs ratio was increased to 1000. When substrate/fluid 

thermal conductivity ratio increases then maximum dimensionless temperature starts to 

decrease because more thermal spreading occurs throughout the substrate before energy is 

transferred to the fluid. At Rs=1000, fluid isotherms were found almost diagonally symmetric. 

 

Figure 25: Dimensionless streamlines at (a)𝑅𝑠 = 10−1 ; (b) 𝑅𝑠 = 103  and isotherms at 

(c)𝑅𝑠 = 10−1 ; (d)𝑅𝑠 = 103 for Pr=25, Rh=2350 and 𝑅𝑎𝐿𝑧 = 106 nomenclature (Heindel, 

Ramadhyani and Incropera, 1995). 
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In Convection cooling process heat is transferred from the hot object by the flow of the 

surrounding fluid. Surrounding fluid can either be air or any suitable liquid. During cooling 

process heat causes expansion of the fluid and makes it less dense. Then due to density 

differences fluid starts to flow and heat is transferred into the surrounding fluid in the form of 

thermal energy. Effectiveness of cooling process depends on various factors which are 

temperature difference between the hot object and surrounding fluid, viscosity of the fluid, 

shape, and size of the hot object. In Natural convective cooling process heat is transferred from 

the hot object by surrounding air without any use of fan or blower. 

Meinders, Van Deer Meer and Hanjalic (1997) performed experimental investigation in which 

they measured local heat fluxes and heat transfer coefficients of packed array of wall mounted 

cubical protrusions in vertical channel flow. They analysed temperature distribution of the 

surface which was heated internally through various heated elements and calculated local heat 

convective fluxes. In their investigation they considered a rectangular channel of width 50mm 

and height 500mm. Nine cubical protrusions of size 15 were placed on vertical wall at half of 

the channel hight. Space between these cubes was 15mm. Measurements were performed at 

different Reynolds numbers, 795, 2086, 3278 and 5066 which was set according to bulk 

velocity and cube height. First 6 cubes were packed in an array and used to calculate local heat 

transfer coefficients. Remaining cubic protrusions were used to identify the location of the 

obstacles and to provide an appropriate environment for in situ calibration. These cubes were 

made of internal copper cubical core of size 12.5mm with an epoxy mantle of 1.5mm.  

 

Figure 26: Schematic diagram of test configuration and composed temperature measurement 

(Meinders, Van Deer Meer and Hanjalic, 1997).  
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Cubical protrusions were placed on the bottom surface of the channel and its other five faces 

were exposed to air. So infrared imaging system was used to analyse temperature distribution 

on these five faces. For high thermal radiations, surface of the cube was coated with a paint 

whose emissivity was 0.95. For better infrared temperature measurements Liquid crystal 

method was used as a second technique in this experiment. Five different liquid crystals were 

mixed which provided five different temperature events. 

Two different calibration methods were used to obtain correct temperature measurement at the 

very sharp colour changes from green to red. In first method heated surface was brushed with 

mixture of same liquid crystal. In second method copper element was used and fixed at constant 

temperature with tolerance of 0.05℃.  

At large Reynolds number flow recirculation is a common process due to which in this 

experiment local heat transfer phenomenon were found dominating at lateral and top faces of 

the leading element. At side faces vortex tube separation minimized convective heat transfer. 

In this experiment they found non-uniformity in local heat transfer coefficients due to vortex 

structure of flow-fields around the elements. Flow separates and reattaches at the top and side 

faces which produces arch-shaped vortices and gives rise to significant difference in heat 

transfer coefficients. Buoyancy effect also played an important role and showed significant 

effect on heat transfer coefficients for lowest Reynolds numbers. Asymmetric heat transfer 

distribution was found between the space of these elements which was due to vertical fluid 

motion.  

In immersion cooling technique, IT components and other electronics are submerged in 

thermally conductive dielectric liquids and heat is transferred from the system by circulating 

liquid into direct contacts with the hot components. Dielectric liquids are also used as electrical 

insulators in high voltage applications where they prevent rapidly extinguish electric 

discharges. But researchers found that indirect liquid cooling has failed to meet harsh thermal 

requirements due to poor thermal conductance at solid-solid interface. In late 90’s direct 

cooling with inert dielectric liquids was suggested as the solution for computers. But this idea 

couldn’t gain much importance due to lack of the understanding of transport phenomenon. 

Zhang, Tso and Tou (1999) performed three-dimensional numerical analysis of natural 

convection cooling on 3×3 array of discrete heat sources which were placed on one vertical 

wall of a rectangular enclosure which was filled with various liquids and cooled by opposite 

wall (Zhang, Tso and Tou, 1999). Main objective of this study was to cover a wider range of 

Rayleigh (Ra=104to 108) and Prandtl (Pr=5 to 130) numbers and to analyse the effect of the 

enclosure aspect ratio (AR=1 to 20).   

Fig 27 is showing the schematic sketch of considered rectangular enclosure in which 3×3 array 

of discrete and iso-flux heat sources was installed on one of the vertical walls and its opposite 

wall was considered isothermal at low temperature. All other walls were considered adiabatic.  

Simulations were performed by considering water, FC-72, FC-77, and ethylene glycol with 

Pr=5, 9, 23 and 130, respectively. Modified Rayleigh number was varied from 104to 108.  
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Figure 27: Enclosure Geometry (Zhang, Tso and Tou, 1999). 

In result section, they considered various parameters and explained the 3-D nature of the fluid 

flow with temperature fields and explained the effects of modified Rayleigh number and 

enclosure aspect ratio on fluid flow. Enclosure aspect ratio was measured by ratio of height of 

enclosure along z-axis/ depth of enclosure along y-axis. At Ra=107, Pr=9 and AR=7.5, w-

component in velocity profile was found higher than other two components and represented 

the primary fluid motion in enclosure. But the strength of this higher velocity component was 

weak at the bottom of the region which proved that fluid is practically stagnant. Near and 

adjacent to heated wall, buoyancy forces cause fluid flow and then fluid accelerates from 

bottom and produces primary flow in vertical direction. Maximum velocities were found across 

heater array at the mid-section of all three columns where Z (dimensionless coordinate in z-

direction) was 3. Near ceiling zone (Z=6.5) two main opposite streams were found in enclosure 

because near ceiling, rising plume started to decelerate and fluid diverged towards both sides 

ceiling and cold wall. 

Maximum Surface temperature on heater, is one of the most important parameters in 

electronics cooling applications which could be found at the top row of these simulations where 

fluid motion is weak but bulk fluid temperature is high near ceiling. But at the bottom row 

scenario was totally opposite with low bulk fluid temperature. For Ra <105 , W-velocity 

component showed direct relation with the modified Rayleigh number. When modified 

Rayleigh number increases then w-velocity component becomes more stronger because 

buoyancy forces start to dominate the fluid motion and convective heat transfer becomes more 

effective. When modified Rayleigh number becomes higher than 107  then this velocity 

component starts to diverge in enclosure central region and takes a shape of paired rotating 

cells whose strength were found less than main helical cells. 
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Simulations were also performed with different enclosure aspect ratio, A=1, 1.5, 2, 5, 7.5 and 

20. Numerical results were obtained to find the effect of enclosure aspect ratio on fluid flow in 

which range of modified Rayleigh number was set 105 to 107. In numerical results, it was 

found that row-averaged Nusselt number is maximum when aspect ratio is increased from 3 to 

20 but Nusselt number starts to decrease when aspect ratio becomes less than 3. It was also 

observed that averaged Nusselt number is lower at the top row and higher at the bottom row. 

This factor showed that regardless of lowest averaged Nusselt number at the top row, highest 

heater surface temperature occurs at the top row.  Prandtl number showed negligible effect on 

fluid flow  and heat transfer. It means water would also be applicable to dielectric liquids.  

In previous studies, most of the researchers studied natural convection cooling by assuming an 

array of discrete heat sources in vertical enclosure. Main challenge of numerical simulations 

with inclined or horizontal surface of discrete heat sources was that around horizontal 

orientation field is essentially of Rayleigh-Benard type. Then in 1993, Mukutmoni and Yang 

reported evolution of Rayleigh-Benard convection from stable bimodal convection to unstable 

convection and motivated other researchers to study interactions of thermal and internal fluid 

flow fields in which discrete heat sources were assumed in an inclined rectangular cavity 

(Mukutmoni and Yang, 1993). In 2004  Tso, Jin, Tou and Zhang presented experimental data 

which then used for numerical simulations. Main objective of their studies was to analyze flow 

patterns and temperature contours at different inclination angles. They also discussed the role 

of Prandtl number in inclined orientations (Tso, Jin, Tou and Zhang, 2004).  

In this study they considered a rectangular cavity which was filled with liquid and can be 

rotated about x-axis for different inclination angles. An array of 3×3 discrete heat sources was 

placed on one of its sidewalls while its opposite wall was assumed to be uniform cold surface. 

All other sides were insulated from the surrounding. Fig 28 is showing the geometrical and 

physical model which was considered in this study. 
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Figure 28: Physical configuration: (a) heaters position; (b) side view; (c) inclined position 

(Tso, Jin, Tou and Zhang, 2004). 

In this study, Range of Rayleigh number was extended to as low as 100. Different and better 

mesh sizes were used due to complex flow fields for different inclined angles. From 0° to 135° 

inclined angles, grid size was 40 × 20 × 80  which was increased to 60 × 30 × 120  when 

inclined angle became greater than 135°. 

Fig 29 is showing the arrangement of thermocouples in supposed experimental setup for this 

study in which you can see that a substrate plate was used to provide a support for holding 3×3 

array of discrete heat sources with free copper blocks which were placed at 3.2mm apart. Thin 

square plate resistive heaters were used to provide heating to each block. Heater walls and other 

side walls were bonded with sponge to reduce heat loss whose thermal conductivity was 0.038 

Wm/k. Degassed and Deionized water was used in these experiments. Equal power was 

supplied to all heaters and power inputs were recorded by HP data acquisitions system 

interfaced to a PC. Universal protractor and balance were used to put the cavity at any required 

angle.  
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Figure 29: Arrangement of the thermocouples in Experimental Setup (Tso, Jin, Tou and 

Zhang, 2004). 

In result section, they explained the effect of inclination to flow pattern evolution, to distortion 

of temperature field and to local heat transfer rate. When angle of inclination was zero (∅ =

0°) then the flow field looked very complex in multicellular form. Even in this case velocity 

magnitude was very small due to which it did not affect the temperature field. At vertical 

orientation (∅ = 90°) two dimensional but unicellular flow structure was observed which then 

converted into three-dimensional multicellular flow pattern when angle of inclination was 

further increased to (∅ = 180°)at horizontal direction. Toroidal convection occurred at low Ra 

because hot fluid rises in central region due to buoyancy forces and then turns outward, towards 

cold walls where it is cooled and turns downward. On the bottom wall, imposed restrictions 

force the fluid to turn radially inward where it receives heat when passes above the heat sources. 

When Ra increased then bimodal convection occurred in which flow pattern was consisted of 

two rolls rotating clockwise at the short side of the enclosure. R-B convection occurred at very 

high Ra in which the convection pattern took the form of four-roll pattern.  

 

Figure 30: Flow and temperature field for Y-Z plane at X=0 for water in horizontal 

orientation: (a)toroidal convection 𝑅𝑎 ≈ 4.6 × 105; (b)bimodal convection𝑅𝑎 ≈ 4.6 × 106; 

(c)R-B convection𝑅𝑎 ≈ 2.5 × 107 (Tso, Jin, Tou and Zhang, 2004).  
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Distortion in temperature field occurred when angle of inclination approached horizontal 

orientation (∅ = 180°) and increased at the top rows of heaters. From vector plots, it was 

observed that there is a sharp velocity increase from fringe to the heater but at the heater 

velocity magnitude was constant. Some fluid was pushed from fringe to heater which produced 

span-wise motion which was weak but found negligible at the heater. Velocity profile showed 

two peaks at the heaters which corresponded to the two local high temperature regions and 

proved the distortion in temperature field. Regarding heat transfer rate, it is obvious that 

horizontal orientation is best for heat transfer because in horizontal orientation lowest Nu 

number among the three rows was higher than other orientations. They also concluded that the 

liquids whose Pr is higher than , the effects of Pr are negligible. 

In previous studies, most of the researchers considered cases, in which they used a set of heated 

elements on horizontal adiabatic wall which was interacting with air or other fluids. These 

cases can be performed in different conditions for example different cavity aspect ratios, 

variable horizontal or vertical size of elements or different boundary conditions can be used for 

top and bottom walls. Bazylak and Djilani performed computational analysis of heat transfer 

in which an array of distributed heat sources was placed on bottom wall of a horizontal 

enclosure (Bazylak, Sinton and Djilani, 2006). Main purpose of their study was to analyse the 

effect of an infinite array of distributed heat sources in a horizontal air-filled plenum for which 

Rayleigh number was used between 0.1 to 10,000 with dry air temperature difference from 

10℃ to 160℃.  

Periodic boundary conditions were applied on side walls. Top wall was set at constant 

temperature while bottom wall was considered with zero heat flux boundary condition. They 

found that heat transfer rate increases as the spacing length between the sources increases. They 

also noticed transition from conduction-dominated regime to convection-dominated regime 

when source length was used from 0.1H (H is the height of plenum) to 1.8H and Rayleigh 

number was between 500 to 2000. At this transition region, Rayleigh-Benard cell structure 

starts to change when source size is decreased.  

In conduction-dominated regime weak and more cells were found which then replaced by 

stronger cell pairs in convection-dominated regime. When Ra was increased from 5800 to 8100 

then Rayleigh-Benard cell developing structure changed from cell pairs over heat  sources to 

cell pairs over each individual heat source and this factor showed sudden reduction in heat 

transfer.  

In recent years, it has been seen that most of the people are moving towards urban areas due to 

recent developments in technology and a lot of other facilities which are rare in rural life. This 

factor increased the release of hazardous material in urban areas. Due to which understanding 

of the wind flow and dispersion of hazardous material into the environment is becoming an 

important topic day by day. In 2021, Basheer A. Khan and Arun K. Saha performed direct 

numerical simulation on turbulent flow and heat transfer over a heated cube which was placed 

in a matrix of unheated cubes (Khan and Saha, 2021).  

This type of flow was actually modelled to study heat transfer and flow characteristics in the 

design of printed circuit board. Main objective of this research was to investigate instantaneous, 
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and time average flow characteristics and heat transfer phenomenon associated with the cube 

at different blockage ratios. In their numerical simulations the size of the computational domain 

was 4H × 4H ×h. H was the size of the cube and h was representing height of the channel. 

Three different blockage ratios were considered by varying channel height and wall-normal 

height.  

 

 

                                      (a)                                                                            (b) 

Figure 31: (a) Schematic diagram of the matrix of wall mounted cubes (b) Computational 

domain over which simulation is performed (Khan and Saha, 2021). 

Air is used as a working fluid in cooling process of electronic components that’s why the 

Prandtl number in these simulations was set to 0.712. No-slip boundary conditions were applied 

at all walls while for pressure, zero normal derivative of pressure was applied at each wall. 

For temperature, periodic boundary condition was applied only in transverse direction. In result 

section, they explained the effect of Blockage ratio on temperature filed and heat transfer. They 

concluded that when blockage ratio increases then higher fluctuating field in the form of finer 

vertical structures leads to higher momentum and heat transport. Lowest heat transfer was 

observed on the rear surface of the cube which starts to increase with increment in blockage 

ratio. Heat transfer on the top surface was found to be almost unaffected while side surfaces of 

the cube showed higher heat transfer with increment in blockage ratio. They found a strong 

relation between Nu number, wall shear stress and friction factor with blockage ratio. All these 

factors showed direct relation with the increment in blockage ratio. On other hand relative 

increase in overall heat transfer was found maximum (24.3%) between lower blockage ratios 

(0.0735 and 0.125).  Main factors behind heat transfer improvement with increase in blockage 

ratio were increased Reynolds shear stresses and turbulent heat fluxes.   
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2.4 Marangoni flow in layers with a Topography: 
Most of existing studies for Marangoni-Benard convection have considered flat boundaries 

with a uniform temperature. In 2001 Ismagilov et al. performed some experiments, in which 

first time he used periodically patterned plates on bottom wall and used infrared imaging 

technology to observe the emerging pattern form different surface structures of imposed 

topography. Actually, the main objective of this study was to analyse the competition of 

intrinsic and topographically imposed patterns in Marangoni-Benard Convection (Ismagilov, 

2001). In Marangoni-Benard Convection systems, convection starts when critical value of 

Marangoni number is exceeded. But in this study the depth of fluid layer was not uniform that’s 

why convection was supposed to be exist for all non-zero values of Marangoni number. When 

dimensions of intrinsic convection cells were changed to below the period of lattice of posts, 

the structure of the convective cells changed from triangles to hexagons, but area of these cells 

was smaller than original triangles. When same dimensions were changed close to lattice 

spacing then square lattice of posts was observed.  

 

Figure 32: (a) and (b) IR images of convection cells over patterned surfaces undergoing 

transition in size to (a) smaller length scale (b) larger length scale than scale of imposed 

system. (c) Dependence of square cells on intrinsic size of cells (Ismagilov, 2001).  
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Chapter 3: Mathematical Model and Numerical Method: 

3.1 The geometry: 
As anticipated in the first chapter, the hallmark of the present study is the consideration of a 

‘patterned’ surface delimiting the considered liquid from below, where the attribute ‘patterned’ 

is used to describe both the physical morphology of the boundary and its thermal features. Put 

simply, this fixed imposed topography consists of wall-mounted hot rods with square cross-

section (having side length horiz ) and thickness vert . Successions of such box-shaped blocks, 

evenly distributed in space, are implemented along both the x and z (horizontal) directions. As 

shown in Fig. 33, this results in a horizontal wall displaying a regular distribution of NxM 

elements protruding vertically (along the y axis) into the liquid. Depending on the specific 

perspective taken by the observer, this distribution might also be seen as a set of staggered 

solids, arranged in N distinct ‘rows’ or M ‘columns’, respectively (a kind of wall ‘roughness’ 

with well-defined geometrical properties).   

For the sake of completeness, two disjoint situations are considered in which the floor (the 

portions of flat bottom boundary between adjoining elements) are either adiabatic or set at the 

same temperature Thot of the blocks (hot floor case). This actually enriches the problem with 

an additional degree of freedom (with respect to those enabled by the possibility to change the 

spacing among the rods, their number and size).   

 

Figure 33: Sketch of the fluid layer with series of square bars evenly arranged on the bottom 

wall along two perpendicular directions.  
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Figure 34: Three-dimensional view of the fluid layer hosting an array of square bars resting 

on the bottom wall (hot blocks), uniformly spaced along the x and z (horizontal) directions 

(spacing, width and height can be systematically varied). 

Not to increase excessively the overall problem complexity, however, the free interface 

separating the liquid from the overlying gas is assumed to be flat and undeformable. This 

simplification holds under the assumption that the Galileo and Capillary numbers take 

relatively small values (the related rationale can be found, e.g., in Lappa, 2019bc and references 

therein). These can be defined as Gac=Vr/gd2 and Ca=Vr/, respectively, where  is the 

liquid dynamic viscosity, g is the gravity acceleration, d is the characteristic depth of the fluid 

layer,  is the difference between the density of the liquid  and that of the overlying gas, 

 is the surface tension and Vr is a characteristic flow velocity, which can be expressed as 

Vg=gTTd2/ or VMa=TT/

 

depending on whether buoyancy or Marangoni effects are 

dominant (T and T being the thermal expansion coefficient and the surface tension derivative 

with respect to temperature, respectively; T being a characteristic temperature difference). 

For Gac<1 or Ca<1, the non-dimensional deformation  experienced by a free surface under 

the action of viscous forces can be estimated in terms of order of magnitude as =O(Gac) or 

=O(Ca), respectively. Following a common practice in the literature,  can therefore be 

neglected provided Gac<<1 and/or Ca<<1 (see again Lappa, 2019bc and references therein). 
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3.2 The governing equations: 
In line with earlier studies on the classical MB and RB systems, the thesis relies on the self-

consistent framework of continuum mechanics where, vital information on thermal convection 

in liquids (and the related hierarchy of instabilities) is obtained through solution of the balance 

equations for mass, momentum and energy properly constrained by the assumption of 

incompressible flow and the related Boussinesq approximation. The Boussinesq 

approximation is used to solve non-isothermal flows, such as natural convection problems, 

without having to solve for the full compressible formulation of the Navier-Stokes equations. 

This approximation is considered valid when density variations are small as this factor 

reduces the nonlinearity of the problem. It assumes that variations in density are very small, 

which don’t affect the flow field but on the other hand it gives rise to buoyancy forces. In 

more practical terms, this approximation is typically used to model liquids around room 

temperature. If compressible inertial effects cannot be neglected, then in that case density 

becomes dependent on temperature and pressure in that case the Boussinesq approximation 

would not be appropriate or needed. Moreover, more efficient exploration of the space of 

parameters is obtained by putting such equations in non-dimensional form, that is, length, time 

and the primitive variables (velocity V, pressure p and temperature T) are scaled here by 

relevant reference quantities.  In particular, the following compact form:  

 

 =V 0           (1) 

 

  2 ˆPr Pr
V

p VV V RaT n
t




= − −  +  + ,       (2) 

 

  2T
VT T

t




+  =                (3) 

 

corresponds to the following choices: Cartesian coordinates (x, y, z), time (t), velocity (V), 

pressure (p) scaled by the reference quantities d, d2/, /d and 2/d2, respectively (where  

is the liquid thermal diffusivity).  Moreover, the temperature (T) is scaled by T, that is, the 

difference between the temperature of the hot solid elements and the ambient temperature Tref 

(temperature of the external gas). 

Obviously, Pr is the well-known Prandtl number (defined as ratio of the fluid kinematic 

viscosity =/ and the aforementioned thermal diffusivity  which is the thermal conductivity 

divided by density and specific heat at constant pressure 
𝑘

𝜌𝐶𝑝
), and Ra=g𝛽𝑇∆𝑇𝑑

3/𝑣𝛼⁡is the 

standard Rayleigh number. By setting Ra to 0, obviously, excluded are any processes that 

depend on buoyancy effects. In the present circumstances, fluid convection is also produced 

by gradients of surface tension, that is, thermocapillary effects. The related driving force can 

be accounted for through a dedicated equation, which expresses separately the balance of shear 

https://www.comsol.com/multiphysics/nonisothermal-flow
http://en.wikipedia.org/wiki/Natural_convection
https://www.comsol.com/multiphysics/navier-stokes-equations
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stresses at the free surface of the layer. Neglecting the shear stress in the external gas, such 

relationship in non-dimensional form simply reads: 

 TMa
n

V
S

S −=



          (4) 

where n is the direction perpendicular to the free interface (planar in this case), 
S  is the 

derivative tangential to the interface and Vs is the surface velocity vector. Moreover, Ma is the 

Marangoni number defined as Ma= TTd/. A related number, measuring the relative 

importance of buoyancy and Marangoni effects, is the so-called dynamic Bond number, 

namely, Bodyn=Ra/Ma. 

An adequate characterization of the overall problem also requires the introduction of proper 

non-dimensional geometrical parameters to be used to account for the spatial distribution of 

the cubic elements and their aspect ratio. These are:    
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Similarly, the aspect ratios of the entire fluid domain are defined as: 
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where Lx and Lz are the related (dimensional) horizontal extensions. Indicating by N the number 

of elements along z and by M the corresponding number along x, the nondimensional distance 

between adjoining elements can therefore be expressed as 

 

x x x
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Accordingly, each element indexed as (i, k) can be mathematically represented in the physical 

(non-dimensional) space as: 
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and on its boundary with the fluid, after assuming.  

 

V =0 (no slip conditions) and T=1        (9) 

 

Along the portions of floor (at 𝑦 = 0) separating adjoining elements, as anticipated in Sect. 2.1, 

adiabatic or constant temperature conditions are set, i.e.  

 

0
T

y


=


           (10a) 

or  

 

T=1           (10b) 

 

Biot number which determines how quickly the heat is transferred from the surface of the body 

to its interiors is defined by the ratios of interparticle diffusional resistance to the convective 

mass transfer resistance (𝐵𝑖 =
ℎ

𝑘
𝐿). In this studies, Heat exchange of the liquid with the external 

gaseous environment at the free surface is modeled through the classical Biot number, i.e.: 

 

T
BiT

y


= −


          (11) 

 

The lateral boundaries of the fluid domain are considered no-slip and adiabatic or periodic 

boundary conditions (PBC) are assumed there. At the initial time t=0, the flow is quiescent and 

at the same temperature as the ambient, i.e., T=0. As time increases its temperature rises as a 

result of the heat being exchanged with the heated elements until equilibrium conditions are 

reached.    
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In the present work, such heat exchange is quantified through the ‘ad hoc’ introduction of 

different versions of the Nusselt numbers tailored to account separately for the thermal 

behavior of the lateral, top or total surface of each heated element, i.e. 
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Accordingly, space averaged values are introduced as: 
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Chapter 4: 

4.1 The projection method: 
The set of equations (1)-(3) with the related boundary conditions (eqs. (4) and (8)-(11)) have 

been solved numerically using a primitive-variable technique pertaining to the general category 

of “projection” or “fractional-step” methods. This class of techniques rests on the specific 

interrelation that is established in incompressible flows between pressure and velocity. Unlike 

compressible flow where pressure is generally determined using the gas state equation (and 

therefore it depends on density and temperature determined solving the continuity and energy 

equations, respectively), for incompressible flow p is only a function of another varying 

physical quantity, i.e., the fluid velocity V. In order to understand how this apparently 

innocuous observation can be used to develop an effective time–marching procedure for the 

determination of both p and V, it is worth starting from the simple realization that both 

unknowns appear in the momentum equation (which can therefore be taken as the starting point 

for the illustration of the methodology). This equation can be manipulated and split into sub-

equations, which combined with the incompressibility constraint can lead to ‘new’ 

mathematical entities do not present in the original formulation, particularly suitable for the 

definition of a ‘working’ algorithm. The first step along this logical process consists of 

neglecting the pressure term in the momentum equation:  
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*

2Pr Pr g
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t


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      (18b) 

 

where t is the time integration step. Although affected by this severe approximation, notably 

this equation expresses indirectly the conservation of vorticity. Indeed, there would be no 

difference in the derived equation obtained by taking the curl of either eq. (2) or eq. (18a) 

because, by definition, the curl of the gradient of a function is always zero. Put differently, this 

means that the vorticity associated with V* is identical to the vorticity that the effective 

(complete) field would possess. This observation naturally leads to introduce the next step, 

which is the stage where V* is made ‘complete’ by enriching it with the previously neglected 

gradient of pressure, i.e.    

 

V= V* - p           (19) 
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where  is a constant. This second step is needed on the one hand to make V* ‘physical’ 

(reintroducing the effect of the gradient of pressure), and on the other hand to force the final 

(complete) velocity to satisfy the continuity equation (not yet involved in the algorithm). This 

final stage is accomplished by substituting the formally corrected velocity through eq. (19) into 

eq. (1). If  is set equal to 1/t, this operation formally closes the problem from a numerical 

point of view as an additional mathematical identity is obtained by which the (otherwise 

unknown) pressure can be obtained:  

 

*2 1
p V

t
 = 


         (20) 

 

If the physical boundary conditions expressed by eqs. (4) and (8)-(9) are used for eq. (18), the 

resulting velocity V needs not to be corrected on the boundaries, which means that eq. (2) can 

be solved with homogeneous Neumann conditions for the pressure (leading to the so-called 

CPPE Consistent Pressure Poisson Equation approach, (Gresho, 1991)). The logical sequence 

of steps is therefore: solution of eq. (18) with the physical boundary conditions for the velocity, 

solution of eq. (20) with Neumann homogeneous conditions for the pressure, and final 

determination of the velocity field exploiting eq. (19).  

It is also worth recalling that the elegant compactness of these equations and the related 

algorithm relies on some well-known theorems, which make sure the problem is well-posed 

from a mathematical point of view. According to the so-called “theorem of the inverse 

calculus”, in a simple connected domain a vector field can be made uniquely determined (fixed) 

by assigning its divergence, curl (its ‘vorticity’ if the considered vector is the fluid velocity) 

and normal component at the boundary (Ladyzhenskaya, 1969). Equations (18)-(20) guarantee 

that 
1

0
n

V
+

 =  and 
1 *n

V V
+

  =   , i.e. the divergence and curl of the velocity field are the 

same that would be obtained through solution of the original set of equations, making this 

theorem implicitly satisfied (along these lines it is also worth recalling that the boundary 

conditions set for the velocity in this work always imply that the component of the velocity 

perpendicular to the boundary is assigned, i.e. it is zero). The decomposition of the velocity 

field implemented through eq. (19) may also be regarded as a spin-off of the Hodge or 

Helmholtz decomposition theorem (Helmholtz, 1858), which states that any vector field (V* in 

the present case) can always be decomposed into the gradient of a scalar function (p) and a 

solenoidal part, i.e., Vn+1. Additional information on this class of methods can be found in Refs 

(Guermond, 1996; Guermond and Quartapelle, 1998; Strikwerda, Lee, and Numer, 1999; 

Guermond, Minev, and Shen, 2006). 

Using a time explicit approach like that indicated in eqs. (18)-(20), the energy equation can be 

integrated in a segregated manner just after the velocity field has been determined, which 

means that the buoyancy term at the right-hand side of eq. (19) is also implemented in an 

explicit way (i.e., it must be evaluated at the time n).  In the present work, convective terms 

have been treated using the QUICK scheme while standard central differences have been used 
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to discretize the diffusive terms. Given the delicate role played by the coupling between 

pressure and velocity (see, e.g. (Choi, Nam, and Cho, 1994; )) a staggered arrangement has 

been used for the primitive variables, that is, while pressure occupies the center of each 

computational cells, the components of velocity are located at the center of the cell face 

perpendicular to the x and y axes, respectively (see, e.g., Lappa, 1997). 

4.2 Validation: 
The validation has been articulated into distinct stages of verification. More precisely, the 

coherence of the model has been verified through comparison with existing linear stability 

analyses (LSA) and earlier non-linear calculations conducted by other authors. Given the nature 

of the specific subject being addressed, both the classical problems of Marangoni-Bénard and 

buoyancy convection have been considered.   

The outcomes of the validation exercise based on the comparison with the LSA for the classical 

MB problem are summarized in Fig. 35. In particular, Fig. 35a shows the evolution in time of 

the maximum velocity of the fluid for different values of the Marangoni number, while the 

corresponding ‘growth rate’ (determined as the logarithm of the slope of the branch of the 

velocity profile with constant inclination) is reported in Fig. 35b. The latter also includes the 

value of the critical Marangoni number (for the onset of convection from the initially thermally 

diffusive and quiescent state) determined through extrapolation to zero of the disturbance 

growth rates. As the reader will easily realize, this value matches with a reasonable 

approximation (less than 1.5%) that obtained with the LSA approach (Pearson, 1958). The 3D 

pattern emerging for a value of the Marangoni number slightly larger than the critical one is 

shown in Fig. 36 (presenting the classical honeycomb structure of MB convection). 

 

   

 

Figure 35: Profile of maximum velocity as a function of time (a) and related growth rate (b) 

as a function of the Marangoni number (Pr=10, layer uniformly heated from below with 

aspect ratio A=11.5, Bi=1, mesh 150x25).  
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For the sake of precision, it should be noted that the definition of the Marangoni number used 

here for comparison with the LSA is slightly different with respect to that introduced in Sect. 

2.2. While in the present work the T appearing in the expression of Ma is the difference 

between the temperature of the hot surfaces and that of the ‘ambient’ (the gas located at a 

certain distance from the liquid surface, assumed not be disturbed and maintain a constant 

temperature in time), the LSA considers the effective temperature difference which would be 

established in the absence of convective effects between the top and bottom geometrical 

boundaries of the liquid layer, i.e. the uniformly heated bottom wall and the free interface. 

Therefore, the Marangoni number shown in Fig. 35 is related to that defined in Sect. 2 through 

a scaling factor, which in the current theoretical framework is (Thot-Surface)/ ( Thot-Tref), i.e., in 

non-dimensional form Bi/(Bi+1) (Eckert, Bestehorn, and Thess, 1998).  

 

 

 

Figure 36: Temperature and velocity pattern on the free surface (Pr=10, layer aspect ratio 

Ax= Az=11.5, Ma=125, Bi=1, mesh 150x25x150, PBC). 

These simulations confirm that (as expected) the only effect of a Bi0 is to shift the critical 

Marangoni number (MaLSA80 for Bi=0) and change the growth rates of unstable modes, while 

the hexagonal planform (Fig. 36) is still a stable attractor for the nonlinear governing equations. 

As a second step of code verification, pure buoyancy convection examined which originates 

from a heated element with rectangular shape encapsulated in (located on the bottom of) a 

square cavity with adiabatic bottom boundary and cold (isothermal) top and lateral walls. 

Assuming the same conditions originally investigated by Biswas et al. (Biswas, Mahapatra, 

Manna and Roy, 2016), Four representative conditions were tackled corresponding to distinct 

aspect ratios of the heater and different values of the Rayleigh number (see Figs. 37 and Table 

I). As witnessed by these data, a very good agreement holds in terms of Nusselt number. 
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As a concluding remark for this section, it’s helpful to recall that the computational kernels 

underpinning the present algorithm have already been used extensively in earlier studies of the 

present authors (concerned with various realizations of buoyancy and surface-tension driven 

convection, see, e.g., Lappa, 2019bc). Accordingly, they were also validated through 

comparison with other relevant benchmarks and test cases (this information is not duplicated 

here for the sake of brevity).   

Table 1: Comparison with the results by Biswas et al. (2016) (see Fig. 7 in their work), 

square cavity with heater located on adiabatic bottom and other (lateral and top) walls at 

constant (cold) temperature (Pr=25.83, different values of Ra and the heated element aspect 

ratio). 

 

horiz vert
bar

horiz

A



=  

Ra average

sideNu  

(present) 

average

topNu  

(present) 

average

barNu  

(present) 

average

barNu  

Biswas et al. 

0.64 0.3 104 5.56593 4.2414 4.8381 4.8 

0.33 1.0 104 4.8209 3.8613 4.5010 4.5 

0.64 0.3 105 10.0709 7.7318 8.6032 8.65 

0.33 1.0 105 10.5065   6.0701 9.0277 9.1 

a) b) 
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c) d) 

Figure 37: Temperature and streamlines in a square cavity with heater located on adiabatic 

bottom and other (lateral and top) walls at constant (cold) temperature  (Pr=25.83, different 

values of Ra and the heated element aspect ratio); a) horiz =0.33, Abar=1.0, Ra=104 (grid 

70x70); b) horiz =0.33, Abar=1.0, Ra=105 (grid 100x100); c) horiz =0.64, Abar=0.3, Ra=104 

(grid 70x70); d) horiz =0.64, Abar=0.3, Ra=105 (grid 100x100). 

4.3 Mesh refinement and related criteria: 
In order to ensure the judicious use of the available computational resources and, at the same 

time, produce results which can be trusted, it is known that good practice consists of conducting 

a thorough and extensive analysis of the sensitivity of the emerging solutions to the used mesh.  

Towards the end to reduce the computational cost of the grid independence study itself, in 

particular, here such a parametric assessment has been initially conducted considering the 

equivalent 2D configuration (assumed to have infinite extension along the third direction z) for 

the same parameters investigated in Sect. 4. Such a strategy rests on the realization that since 

the 3D geometry illustrated in Fig 34 consists of periodically positioned items along both the 

x and z directions (i.e., a rotation by 90 would not change the physics of the problem), a 2D 

framework should be regarded as a relevant approach for a preliminary estimation of the 

needed numerical resolution. As sensitive parameters for such investigation, in particular, both 

kinematic and thermal quantities were considered, namely, the maximum of the velocity 

components along x and y, and the spatially averaged (over the considered set of blocks) 

Nusselt number defined through eq. (15) and (16). The outcomes of such a parametric 

investigation for a representative case (Pr=10, N=3, Ma=5000, Ra=10000, Bi=1.0, horiz=1.0, 

vert=0.3) are summarized in Table II. 
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Table 2: Grid independence study (2D configuration, aspect ratio=horizontal 

length/depth=10, Pr=10, N=3, Ma=5000,Ra=10000,Bi=1.0). 

Grid umax vmax average

sideNu
 

average

topNu
 

77x18 90.2574 53.7327 2.0597 1.3410 

100x23 96.5027 53.6714 2.0018 1.2998 

130x31 96.5020 53.6701 2.0015 1.2998 

169x39 97.2471 53.5684 2.0003 1.2901 

 

As a fleeting glimpse into a such a table would confirm, a resolution with 30 points along the 

vertical direction and 130 points along the horizontal one can be considered more than enough 

for the considered combination of Ma, Ra and Bi for Pr=10 (all the percentage variations falling 

below 1% for a further increase in the mesh density).  

To double-check that such a resolution can also capture properly the small-scale details of 

surface-tension driven convection at high values of the Marangoni number (known for its 

ability to give rise to “high-wavenumber excitations”, (Thess and Orszag, 1995); see also Sects. 

4.2 and 4.3), dedicated 3D simulations have been performed considering MB and mixed 

Marangoni-Rayleigh-Bénard convection for resolution exceeding the 130 points in the 

horizontal direction. Given the disordered nature of the convective structures emerging in this 

case, a quantitative assessment of the pattern (on increasing the number of points) has been 

conducted in terms of (spatial) spectrum of the surface temperature distribution. 

a) b) 

Figure 38: Spectrum of the surface temperature distribution for increasing number of grid 

points in the horizontal direction (Pr=10, Ax=Az=10, Bi=1.0, solid lateral walls, spectrum for 

a temperature profile at x=5): a) Pure MB flow (Ma=5x103), b) Hybrid convection 

(Ma=5x103, Ra=104).
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The related results shown in Fig. 38a and 38b for the pure MB and hybrid convection cases, 

respectively, confirm that, although a variation can be detected in the shape of the spectrum for 

small wavenumbers (this depending on the specific line along which the temperature profile is 

measured and on the random position where extended convective structure are formed in the 

fluid domain when a new simulation is run), all the spectra align perfectly in the range of high 

values of the wavenumber. Most importantly, the extension of the spectrum does not change 

on increasing the density of the mesh, neither in terms of amplitude distribution (vertical 

coordinate), nor in terms of horizontal extension (i.e., the maximum value of k). These 

observations give us confidence that a resolution of 5x105 nodes is also sufficient to avoid 

unresolved regions in the 3D fluid domain, i.e., it is enough to capture the non-trivial small-

scale behavior of surface-tension-driven convection for the considered value of the Marangoni 

number (a denser mesh does not result in the realization of smaller scale kinematic or thermal 

features).   
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Chapter 5: Topographically Controlled Marangoni–Rayleigh–

Bénard Convection in Liquid Metals: 

5.1 Thermal convection in liquid metals: 
This chapter is entirely dedicated to a specific problem, that is, the numerical simulation of 

convection generated by a discrete set of heat sources in liquid metals. This initial section 

explains why this category of liquids has also been considered in this thesis. Liquid metals can 

be used in place of water to cool nuclear reactors given their high thermal conductivity. Thereby 

they are another example of the various technological cooling problems discussed in Chapter 

1.  However, there is also another important reason for which they are considered in this thesis.  

Before being solid, many materials pass through a liquid state and the properties that they 

display in the final solid state often depend on the convective phenomena that are established 

in their liquid state. This concept applies to a variety of manufacturing and materials science 

applications. Whilst there is a plethora of materials that are of industrial relevance and 

importance due to the related technological applications and impact on world’s societies, 

silicon and other semiconductor materials have attracted a significant increasing interest 

especially during the late 20th and early 21st century. This interest partly stems from the 

abundance of these materials (especially silicon) on the surface of our planet. However, it also 

originates from some of the remarkable physical properties that these substances display, 

through which over the last 50 years specific technological applications have been enabled 

(leading to what nowadays is often referred to as the ‘silicon age’). 

Single crystals of these substances are of great importance in the electrical and op-to-electronic 

industries due to their ‘purity’. A single crystal, often also referred to as a mono-crystalline 

material is a pure crystal lattice. The purity of these mono-crystalline materials is essential in 

electronics applications as the purer the material, the better its performances will be. Vice versa, 

for the use of semiconductors in microprocessors, which operate on the quantum scale, the 

presence structural or chemical defects in the crystal lattice can prevent these materials from 

reaching the expected targets in terms of electronic performances. 

These simple arguments explain why the convective processes that dictate the crystalline 

evolution of these substances have become a subject of great interest from both the engineering 

and physics standpoints. Convection within the melt can deeply influence microstructure 

formation in solidifying materials through its intrinsic transportation mechanisms of heat, mass 

and momentum and related studies show no obvious sign of reaching a limit yet. Given the 

difficulties in observing directly semiconductor melts and liquid metals due to their opacity, 

most of such studies are being based on alternate methods such as theoretical analysis and 

numerical simulations (Kaddeche, Henry, Putelat, and Hadid, 2002) . By virtue of them, it has 

been clarified that the branch of convection known as natural (buoyancy) convection, which is 

driven by gravity as a result of thermally induced density inhomogeneities in the liquid, plays 

a crucial role in such dynamics. 
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Landmark fundamental studies on the behaviour of buoyancy convection in liquid metals date 

back to 1981 when this subject was investigated given its relevance to other (natural) problems 

such as the motion of liquid iron in Earth’s core and the ensuing generation of a magnetic field. 

Considering a physical domain as simple as an infinite layer of liquid metal uniformly heated 

at the bottom and cooled at the top, (Busse and Clever, 1981), (Clever and Busse, 1981) 

revealed that Rayleigh-Bénard (RB) convection in such systems is initially steady and then it 

undergoes bifurcation to an oscillatory flow as the Rayleigh number is increased. It was shown 

that the instability leads to the emergence of waves that travel in the fluid along a horizontal 

direction. These waves were also found numerically by (McLaughlin and Orszag, 1982 and 

Lappa, 2005). It has been shown that superposition of these waves can also produce peculiar 

states known as ‘standing waves’, i.e., solutions where the disturbances do not travel in the 

fluid but grow and shrink in time at fixed spatial positions. 

Another line of inquiry has originated from the realization that if the fluid is not de-limited by 

a solid wall at the top, i.e., it displays a free liquid-gas interface (which is often the case in most 

of the technological processes used for the production of the aforementioned single crystals, 

Lappa, 2005), another source of convection is represented by surface tension and related 

gradients. Surface tension of many liquids (including semiconductor melts and liquid metals) 

depends on temperature. If the fluid is subjected to a temperature difference, this results in fluid 

motion, generally referred to as Marangoni-Bénard (MB) convection when the fluid is 

uniformly heated at the bottom. Unlike RB flow, which typically manifests in the form of 

parallel rolls extended in the horizontal direction (playing the role of substrate for the 

propagation of the aforementioned waves when a certain temperature difference is exceeded), 

Marangoni-Bénard convection is known for its ability to produce patterns with the hexagonal 

symmetry. In the case of liquid metals, these hexagonal cells are featured by rising currents 

along their boundary and a central column of descending fluid (a structure known as an 

“inverted hexagon” to distinguish it from the companion case in which these cells form in oils 

and display fluid rising at the center, see, e.g., Thess and Bestehorn, 1995; Parmentier, Regnier, 

Lebon and Legros, 1996; Boeck and Thess, 1999. On increasing the related characteristic 

(Marangoni) number, this topology can be taken over by different patterns, such as stationary 

two-dimensional rolls either with the roll axes parallel to the short domain boundary or in two 

different oblique orientations. Time-dependent solutions are also possible, namely three-

dimensional (3D) travelling waves. 

All of these phenomena can have a detrimental impact on the quality and purity of the 

crystalline materials discussed before. That is why, in general, attempts are made to control 

these flows and the related hierarchy of bifurcations through magnetic fields or other methods 

such as the application of vibrations ( and all references therein). 

Most surprisingly, despite all these valuable studies, very few pieces of literature have appeared 

where an attempt has been made to ‘control’ these forms of convection through alteration of 

their ‘boundary conditions’, i.e., by using containers with walls that display a given topography 

and/or a structured thermal inhomogeneity. The problem of planform selection in such 

conditions has long been a theoretical puzzle. 
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As a first step in this direction, the present chapter is devoted to the numerical investigation of 

hybrid buoyancy-Marangoni convection in a layer of liquid metal cooled at the top by an 

adjoining gas phase and heated at the bottom by a discrete distribution of heating elements 

(cubic blocks). The main objective is an understanding of the relationships existing between 

the imposed thermal forcing and the properties of the emerging flow. 

Not to increase excessively the dimensionality of the space of parameters (but without loss of 

generality) a fixed horizontal extension of the fluid domain is considered (assumed to be a layer 

with identical length along x and z, namely Ax=Az=10). As the blocks have a square cross-

section (horiz=1), this naturally implies that the discrete distribution of blocks can be directly 

mapped into a square matrix having dimensions NxN where N can be set as an input parameter 

for the simulations. As another degree of freedom, a variable thickness has been considered for 

the blocks, with vert spanning the range 0.5vert0.7. 

Moreover, the response of these systems has been examined for three distinct values of the 

Prandtl number Pr1, namely Pr=0.01, 0.1 and 1 (the first two being representative of liquid 

metals or semiconductor melts, the last one corresponding to the companion case of molten 

salts). 

With the selected number of points, each simulation has taken a time ranging between one and 

four weeks. 

In the following, for the sake of clarity, the results are presented in three segregated sections, 

where the influence of each of the considered degrees of freedom is examined while keeping 

all the other parameters fixed. Accordingly, starting with the default case corresponding to pure 

silicon (Pr=0.01) with a 3 × 3 distribution of elements (N=3), the variations are induced by a 

change in the height of the blocks and/or a variation in the considered boundary conditions. As 

illustrated in Section 2, the floor can be adiabatic or set at the same temperature of the blocks 

(hot floor), the lateral boundary can be solid and adiabatic or treated as a cyclic (or periodic) 

boundary condition (PBC). 

 

5.2 Silicon Melt with Variable Block Height: 

Figure 39 provide a first glimpse of the related patterning behavior in terms of 3D structure of 

the temperature field. It can be seen that, in general, regardless of the considered boundary 

conditions at the bottom and at the domain side, a distribution of hot spots can be identified at 

the free surface. Comparison of the results for a fixed value of vert (aligned along columns in 

Figure 39) is instrumental in showing that a replacement of the adiabatic condition at the 

bottom with a hot floor generally leads (as expected) to an increase in the average temperature 

of the system and the temperature of the surface spots. Replacement of the solid lateral wall 

with PBC does not seem to have a big influence if the floor is adiabatic, whereas it can lead to 

a slightly more disordered pattern if PBCs are considered. 



67 
 

 

Figure 39: Three-dimensional (3D) Temperature snapshots (Pr=0.01, 3 × 3 configuration): (a) 

adiabatic floor with PBC, (b) adiabatic floor with lateral SW, (c) hot floor with lateral PBC, 

(d) hot floor with lateral SW; (i) vert=0.5, (ii) vert=0.6, (iii) vert=0.7. 

An increase in the vertical block extension, obviously makes the temperature of the surface 

spots higher as the distance between the top of the blocks and the free interface becomes smaller 

(see the results aligned along rows in Figure 39). 

These results are naturally complemented by those reported in Figures 40 and 41. The former 

shows the corresponding temperature maps in a transversal section (plane xy), the latter 

concerns the velocity field. These confirm the trends discussed before in terms of expected rise 

in the temperature when the hot floor is considered, or the height of the blocks is increased. 
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Figure 40. Temperature distribution snapshots in the plane z=5 (Pr=0.01, 3 × 3 

configuration): (a) adiabatic floor with PBC, (b) adiabatic floor with lateral SW, (c) hot floor 

with lateral PBC, (d) hot floor with lateral SW; (i) vert=0.5, (ii) vert=0.6, (iii) vert=0.7. 
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Figure 41. Snapshots of the streamlines of the velocity field projected on the z=5 plane, 

colored according to the corresponding distribution of temperature (Pr=0.01, 3 × 3 

configuration): (a) adiabatic floor with PBC, (b) adiabatic floor with lateral SW, (c) hot floor 

with lateral PBC, (d) hot floor with lateral SW; (i) vert=0.5, (ii) vert=0.6, (iii) vert=0.7. 

In particular, as qualitatively substantiated by Figure 41, the velocity field can be more complex 

than the corresponding temperature distribution. As the reader will realize by inspecting this 

figure (showing the lines tangent to the projection of the instantaneous velocity field on the 

z=Az/2 midplane, colored according to the corresponding distribution of temperature), the 

topology of such streamlines is quite intricate with vorticity being present in the form of more 

or less extended eddies both in the regions above the blocks and in the space between them 

(the former being reduced as vert is increased). 
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5.3 Silicon Melt with Variable Number of Blocks 

The next figure of the sequence (Figure 42) shows the 3D structures obtained when the number 

of blocks is increased from 3 × 3 to 5 × 5 while keeping their height fixed to 0.6. 

 

Figure 42. 3D Temperature snapshots (Pr=0.01, vert =0.6): (a) adiabatic floor with PBC, (b) 

adiabatic floor with lateral SW, (c) hot floor with lateral PBC, (d) hot floor with lateral SW; 

(i) 3 × 3 array (ii) 5 × 5 array. 

The most remarkable change clearly occurs in terms of multiplicity of the surface spots. 

However, significant modifications can also be detected in the distribution of temperature in 

the transversal sections (Figure 43). When the number of blocks is increased, the amount of 

heat being released in the fluid per unit time clearly increases causing an ensuing rise in the 

average system temperature. Along these lines, it can be seen that when the configuration with 

5 × 5 blocks is considered, the differences between the cases with adiabatic and hot floor 

become less evident. 
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Figure 43. Temperature distribution snapshots in the plane z=5 (Pr=0.01, vert =0.6): (a) 

adiabatic floor with PBC, (b) adiabatic floor with lateral SW, (c) hot floor with lateral PBC, 

(d) hot floor with lateral SW; (i) 3 × 3 array (ii) 5 × 5 array. 

Finally, Figure 44 shows that an increase in the number of blocks also affects the topology of 

the streamlines; nevertheless, these retain their behavior with fluid rising from the top of the 

blocks towards the free interface and moving down in the regions between the blocks. 
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Figure 44. Snapshots of the streamlines of the velocity field projected on the z=5 plane, 

colored according to the corresponding temperature distribution (Pr=0.01, vert =0.6): (a) 

adiabatic floor with PBC, (b) adiabatic floor with lateral SW, (c) hot floor with lateral PBC, 

(d) hot floor with lateral SW; (i) 3 × 3 array (ii) 5 × 5 array. 

Most remarkably, taken together all these figures also lead to the conclusion that (in terms of 

patterning behavior) in the presence of a distribution of cubic blocks, thermal convection in a 

small-Pr fluid can retain neither the classical structure with elongated two-dimensional rolls 

typical of RB convection, nor the hexagonal-cell based topology of classical MB convection. 

Regardless of whether the floor is adiabatic or set at the same temperature of the blocks, the 

blocks create a kind of ‘blockage’ or act as barriers (or perturbing elements) that can break the 

two-dimensional rolls and prevent the system from developing a pattern with the honeycomb 

symmetry. On the other hand, varying the number of blocks can also have a non-negligible 

impact on the temporal response (time-dependence) of the flow. Before treating this specific 

aspect, the next sub-section is concerned with the influence of another significant parameter, 

i.e., the Prandtl number itself. 
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5.4 Effect of the Prandtl Number 

As witnessed by Figure 45, on varying the Prandtl number for a fixed number (N=3 in this 

case) and given height of the blocks (δvert =0.6), significant changes can be induced in the 

system in terms of patterning behavior. This is more evident when the configuration with hot 

floor is considered and/or the Prandtl number is increased. 

 

Figure 45. 3D Temperature snapshots (vert =0.6): (a) adiabatic floor with PBC, (b) adiabatic 

floor with lateral SW, (c) hot floor with lateral PBC, (d) hot floor with lateral SW; (i) Pr=0.01 

(ii) Pr=0.1 (iii) Pr=1. 

For both Pr=0.1 and Pr=1 and hot floor condition (Figure 45(c, ii), (c, iii), (d,ii) and (d,iii)), the 

rising columns of hot fluid inside the layer no longer simply reflect the underlying distribution 

of hot blocks. In place of nine plumes evenly spaced along the x and z axes, a set of 4 × 4 

thermal pillars are obtained. 

As the reader will realize by taking a look at Figures 46 and 47, the increase in the visible 

number of columns of rising hot fluid (the aforementioned pillars) is due to a change in the 

process leading to plume formation. When the floor is hot and the Prandtl number is 0.1 or 1, 

plumes originate from the top corners of each block rather than from its center as it was for 

Pr=0.01. This should be ascribed to the increased ability of the vertical walls of the blocks to 

produce convection in such conditions. 
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Figure 46. Temperature distribution snapshots in the plane z=5 (vert =0.6): (a) adiabatic floor 

with PBC, (b) adiabatic floor with lateral SW, (c) hot floor with lateral PBC, (d) hot floor 

with lateral SW; (i) Pr=0.01 (ii) Pr=0.1 (iii) Pr=1. 
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Figure 47. Snapshots of the streamlines of the velocity field projected on the z=5 plane, 

colored according to the corresponding temperature distribution (vert =0.6): (a) adiabatic 

floor with PBC, (b) adiabatic floor with lateral SW, (c) hot floor with lateral PBC, (d) hot 

floor with lateral SW; (i) Pr=0.01 (ii) Pr=0.1 (iii) Pr=1. 
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5.5 Time-Dependence and Related Effects 

This section is dedicated to treat an aspect that has been glossed over until now, namely the 

behavior of these systems from a temporal point of view. 

In this regard, it is worth starting from the simple remark that, in all cases relatively similar 

dynamics have been observed, namely a flickering behavior of the plumes or ‘pillars’ discussed 

before due to localized oscillations of the vortical structures supporting them. In general, these 

localized oscillations have been observed to be relatively chaotic for the considered values of 

the Rayleigh and Marangoni number. The related spectra for Pr=0.01 can be seen in Figure 48. 

 

Figure 48. Frequency spectra for 3 × 3 (left) and 5 × 5 array (right) for adiabatic floor with 

lateral SW and vert =0.6 (the red straight line indicates the Kolmogorov scaling; the spectra 

refer to the temperature signal measured by a probe located above one of the heated blocks, at 

y=0.8). 

 

Some meaningful information can be gathered from this figure as follows. 

A range of frequencies can be identified where the spectrum follows the so-called Kolmogorov 

law (highlighted using a red straight line in the figure). Roughly speaking, this law states that 

a range of wavenumbers exists in space [k1, k2], where the energy density of the flow E scales 

as k−5/3 (where k denotes the wavenumber). In a completely equivalent way (because in terms 

of vorticity the local flow velocity turnover cycle depends on the length scale) the same law 

can be formulated stating that a range of frequencies exist in time where the energy density of 

the flow E scales as −5/3 (where  denotes the angular frequency, see, e.g., (De, Eswaran and 

Mishra, 2017)). This is a well-known outcome of a theory originally elaborated by 

Kolmogorov, 1942; where it was postulated that, while the large scales of a flow are not 

isotropic because they are influenced by the specific geometry of the considered domain and 

the nature of the forces driving it, the memory of this geometrical and directional information 

is progressively lost while energy cascades from large to smaller scales. In other words, a range 

of scales should exist where small-scale turbulent motions are statistically isotropic (i.e., no 

preferential spatial direction can be identified) before the kinetic energy reaches a scale where 

it is finally converted into internal energy (heat) due to dissipative (frictional) effects. 
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Cross comparison of Figure 48a,b leads to the conclusion that if the number of blocks is 

increased, the spectra are very similar, although, the latter seems to align with the Kolmogorov 

law over a slightly larger interval. 

Along these lines, Figure 49 reveals that an increase in the Prandtl number can make the 

spectrum slightly more energetic in the range of high frequencies, which, in agreement with 

the observations reported in the earlier sections, can be explained considering the excitation of 

smaller scale features in the flow. 

 

Figure 49. Frequency spectra for Pr=0.01 (left), Pr=0.1 (right) for adiabatic floor with lateral 

SW and δvert =0.6 (the red straight line indicates the Kolmogorov scaling; the spectra refer to 

the temperature signal measured by a probe located above one of the heated blocks, at y=0.8).  

5.6 Heat Exchange Effects 
In line with the approach implemented by Biswas (Biswas, Mahapatra, Manna, and Roy, 2016) 

and other authors, further characterization of these systems can be obtained through evaluation 

of the Nusselt number on the basis of Equations (13) – (18). 

Relevant information about the dependence of average

sideNu , average

topNu  and average

barNu on Pr, N and δvert, 

has been summarized in Tables 3–5, respectively. 
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 Table 3 . As a function of Pr, N, vert and the considered boundary conditions. 

 

 

Table 4. As a function of Pr, N, vert and the considered boundary conditions.

Pr N vert 

Adiabatic 

Floor, 

Lateral 

PBC 

Adiabatic 

Floor, 

Lateral 

SW 

Hot Floor, 

Lateral 

PBC 

Hot Floor, 

Lateral 

SW 

0.01 3 0.5 1.9812 2.0203 0.3864 0.2839 

0.01 3 0.6 1.7447 1.7915 0.3351 0.2613 

0.01 3 0.7 1.6406 1.6601 0.3313 0.3038 

0.01 5 0.6 0.6150 0.6175 0.3691 0.3662 

0.1 3 0.6 2.2188 2.1873 0.2822 0.2850 

1.0 3 0.6 2.4194 2.4497 0.3880 0.4203 

Pr N vert 

Adiabatic 

Floor, 

Lateral 

PBC 

Adiabatic 

Floor, 

Lateral 

SW 

Hot Floor, 

Lateral 

PBC 

Hot Floor, 

Lateral 

SW 

0.01 3 0.5 1.5137 1.5138 1.0898 0.9938 

0.01 3 0.6 1.5025 1.4941 1.1511 1.1057 

0.01 3 0.7 1.4867 1.4908 1.2336 1.2357 

0.01 5 0.6 1.2531 1.2374 1.2176 1.2283 

0.1 3 0.6 1.3962 1.4032 1.0314 1.0317 

1.0 3 0.6 1.5760 1.5952 0.8291 0.9107 
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Table 5: 
average

barNu as a function of Pr, N, vert and the considered boundary conditions. 

 

 

 

 

 

 

 

 

 

 

The most striking effect that can be seen in these tables concerns the weakening of heat 

exchange when the adiabatic floor is replaced with a (hot) isothermal boundary. This change, 

which occurs regardless of the considered value of Pr, N or δvert, can be ascribed to the rise in 

the average temperature of the liquid when the floor is hot (clearly visible in Figures 40, 43 

and 46). As a result of such an increase, the difference between the temperature of the liquid 

and the top or lateral surfaces of the blocks becomes smaller, thereby lowering the related 

Nusselt numbers. As similar mechanism is responsible for the decrease in average

barNu  when vert is 

increased for fixed Pr, N and assuming the adiabatic floor. Although average

topNu does not change 

much, making the blocks taller leads to an appreciable shrinkage in the values of average

sideNu  owing 

to the larger amount of heat that is released accordingly in the surrounding fluid and the ensuing 

increase in temperature. The same arguments also apply to the cases with a larger number of 

N. Yet for the case with adiabatic floor, if N is increased from 3 to 5 while keeping the other 

parameters unchanged, the Nusselt numbers become smaller and approach the values obtained 

in the corresponding situations with the hot floor. This is due to a three-fold effect, namely the 

increase in the average temperature of the system, the weakening of temperature gradients 

present in the liquid and the ensuing damping of convection driven by such gradients. 

As a concluding remark for this section, it is also worth noting that, on increasing the Prandtl 

number, the average heat exchange occurring between the blocks and the surrounding fluid (as 

quantified by average

barNu ) becomes more intense, and the simplest way to justify this dependence 

is to consider a decrease in the thickness of the thermal boundary layers formed along the 

horizontal and vertical surfaces of the hot blocks. 

Pr N vert 

Adiabatic 

Floor, 

Lateral 

PBC 

Adiabatic 

Floor, 

Lateral 

SW 

Hot Floor, 

Lateral 

PBC 

Hot Floor, 

Lateral 

SW 

0.01 3 0.5 1.8254 1.8514 0.62085 0.5205 

0.01 3 0.6 1.6735 1.7041 0.5751 0.5096 

0.01 3 0.7 1.6001 1.6155 0.5688 0.5491 

0.01 5 0.6 0.8027 0.800 0.6187 0.6198 

0.1 3 0.6 1.9768 1.9567 0.5026 0.5046 

1.0 3 0.6 2.1714 2.1984 0.5178 0.5645 
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5.7 Discussion and Conclusions 
In this section some additional insights into the considered problem are sought through 

comparison with ‘companion problems’, not necessarily linked to thermal convection driven 

by buoyancy of Marangoni effects. 

As already discussed in the introduction of this thesis, a first quite relevant exemplar can be 

found in the field concerned with the cooling of printed circuit boards and the assessment of 

the related thermal performances (Liu and Phan-Thien, 2000; Chuang, Chiang and Kuo, 2003; 

Rahman, Alim S. Saha and Chowdhury, 1970; Tyacke and Tucker, 2012). These problems are 

generally modeled considering the horizontal flow over a matrix of wall-mounted ‘cubes’, 

some of which behave as heat-producing sources. The professional and researchers involved 

in this field are typically interested in evaluating the local heat transfer coefficients owing to 

their strong connection with the lifespan and reliability of microprocessors and memories. In 

turn, these coefficients are highly dependent on geometrical factors such as the size of the 

considered chip, its relative position with respect to other electronic components, and the 

‘channel height’ (i.e., the distance between the upper and lower printed circuit boards). Models 

based on a staggered arrangement of finite-size squared elements, however, are not an 

exclusive prerogative of this specific area. Parallelepipedic items fully submerged in a 

(mathematically reconstructed) urban atmospheric boundary layer, can also be used to model 

the interaction of wind with an array of buildings (Nakayama, Takemi and Nagai, 2011) or 

with a set of power generators (power plants, (Lappa, 2019a)). In these cases, the elements are 

typically staggered in the downstream direction and periodically arranged in the streamwise 

and/or spanwise directions. Taken together, all these efforts have shown that flow interruptions 

created in flow passages at periodic intervals can result in a variety of fluid-dynamic effects. 

These include flow separation at the sharp leading top of each element, flow recirculation 

originating from side edges with subsequent flow reattachment along these faces, arc-type 

vortices formed in the wake of any upstream cube, horseshoe-type vortices in front of the 

downstream cubes and other flow instabilities causing vortex shedding at the side faces of the 

elements (and ensuing small-scale turbulence in the near wake region (Meinders and Hanjali, 

1999). 

Although the physics of the problem examined in the present chapter is quite different, referring 

to this companion category of phenomena is useful because such studies have shown that a 

variation in the gap between two items can produce significant changes in the heat transfer 

process. In those cases such modifications are essentially due to the different ‘level of 

blockage’ that is induced in the flow when the spacing among the protuberances is altered. The 

resulting flow physics is made extremely complex by the interplay of the horizontal flow with 

the related solid boundaries and the ensuing generation of a large number of (mutually 

interacting) vortex systems, and regions of relatively stagnant fluid. This complex physics, in 

turn, significantly affects the heat transfer mechanisms. 

Obviously, the concept of blockage is not applicable directly to the present conditions, where 

the heated elements (regardless of whether the dominant driving force is buoyancy or 

thermocapillary) represent the source of convection rather than factors hindering it. Moreover, 

the role of the cold ‘wind’ entering the domain hosting the hot elements is taken on by the heat 

exchange with the external gaseous environment through the top free liquid/gas interface 

(which acts as an extended heat sink for the entire system). Another interesting observation is 
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that, despite these differences in the characteristic directions of fluid flow and heat transfer, 

some useful similarities can still be identified by simply replacing the notion of blockage with 

that of ‘heat island’ (visible in Figure 43). Just like portions of stagnant fluid can contribute to 

weaken heat exchange effects in a fluid blowing through a set of warm solid blocks, regions of 

stagnant heat (due to the excessive proximity of adjoining hot elements) can hamper the 

mechanism producing natural convection thereby causing a decrease in the Nusselt number. 

Additional affinity can also be identified in the tendency of both categories of systems to 

develop turbulence or relatively chaotic solutions in some circumstances, i.e., large values of 

the Reynolds and Marangoni numbers, respectively (both account for the strength of 

horizontally directed flow). In the wind-obstacles problem, such complex states are essentially 

the outcome of purely hydrodynamic effects and related bifurcations (Lappa, 2019a; Yaghoubi 

and Velayati, 2005; Coceal, Dobre, Thomas and Belcher, 2007; Leonardi and Castro, 2010; 

Basara, 2015; Saeedi and Wang, 2015; Blackman and Perret, 2016 and Khan and Saha, 

2021).In addition, if hybrid buoyancy-Marangoni convection induced by hot blocks in liquid 

metals is considered, the frequency spectra still align with the Kolmogorov law in a certain 

range of frequencies. 

Some general conclusions on the basis of the findings presented in Sections 5.2-5.5 and the 

analogy with the companion category of phenomena discussed in the present section, can 

therefore be drawn as follows. Though quite limited in terms of depth and scope due to the 

extremely long time required by the simulations, the present work has shown that a topography 

at the bottom of a layer of liquid metal coupled with a thermal inhomogeneity can deeply alter 

the flow with respect to the patterns which would be produced in the equivalent conditions 

without blocks. The presence of obstructions prevents the layer from forming the horizontally 

extended rolls or the hexagonal cells, which would be typical of RB and MB convection, 

respectively. 

While the outcomes of an increase in the height of the blocks are generally limited to a rise in 

the temperature of the hot spots produced by rising thermal currents that meet the free surface, 

an increase in their numbers can make the average temperature of the entire fluid layer much 

higher. As a result, the difference between the configuration with adiabatic and isothermal (at 

the same temperature of the blocks) floor becomes less evident. 

On increasing the Prandtl number in the range from 0.01 to 1 even more interesting 

phenomenon are enabled. Owing to a shift in the location of the regions from which thermal 

plumes originate (from the center of the top surface of blocks to their edges), the perfect 

correspondence between the disposition of hot blocks at the bottom and the set of hot spots on 

the free surface is lost. In such conditions the multiplicity of surface spots overcomes that of 

the underlying matrix of heat sources. 

Regardless of the considered value of the Prandtl number or the boundary conditions at the 

bottom and at the lateral boundary, in place of the traveling waves known to be the typical 

outcome of the first Hopf bifurcation for both RM and MB classical forms of convection in 

liquid metals, unsteadiness is due to small oscillations in time of the thermal pillars. Analysis 

of the related frequency spectra has revealed that a range of frequencies exists where the 

spectrum aligns with the prediction of the Kolmogorov theory for isotropic homogeneous 

turbulence and that the extension of such a range depends on the specific conditions considered. 
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Future studies shall be devoted to determine the minimum height of the blocks for which the 

formation of classical hexagonal cells or traveling waves is prevented, assess the system 

response when the horizontal size of the blocks is varied continuously in a given range, analyze 

all these behaviors also for other values of the Marangoni and Rayleigh numbers, and 

eventually exploit relevant turbulence models (such as those elaborated by De, Eswaran and 

Mishra, 2017) to reduce the otherwise prohibitive computational times required by DNS). 
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Chapter 6: Topographically Controlled Marangoni–Rayleigh–

Bénard Convection in Oil: 
Having completed the treatment for small values of the Prandtl number (0.01Pr1) in Chapter 

5, in this chapter the case of a high-Pr fluid is considered, that is a transparent oil. Without loss 

of generality the analysis is restricted to Pr=10 (a value representative of a vast category of 

high-Prandtl number fluids) and unit Biot number (Bi=1). Moreover, a square layer with 

relatively large aspect ratio (horizontal extension/depth) is considered, i.e., Ax=Az=Ahoriz=10; 

accordingly set x=z (hereafter simply referred to as horiz,  i.e. the heated solid elements have 

a square basis) and N=M (i.e. the number of elements along x reflects the corresponding 

distribution of elements along the z direction, and vice versa).   

As a key to unlocking the puzzle about the relationship between the emerging pattern and the 

imposed boundary conditions, it was decided to vary parametrically the number of square rods 

present in the regular array (NxN from 3x3 to 9x9 passing through intermediate states 5x5 and 

7x7). Not to increase excessively the dimensionality of the space of parameters, the vertical 

extension of the rods is fixed to y=0.3 (hereafter simply referred to as vert, corresponding to 

30% of the overall depth of the liquid layer), while three distinct values are selected for horiz 

(namely, 0.1, 0.55 and 1.0). This allows us to change the spacing among the elements while 

retaining the same overall number NxN. As anticipated in Sect. 3.1 (Chapter#3), as an 

additional degree of freedom, the portions of flat surface (at the bottom) separating adjoining 

elements are considered adiabatic (thermally insulated) or isothermal (at the same temperature 

as the heated elements). Moreover, no-slip conditions (finite-size horizontal extension) or 

periodic boundary conditions (to mimic an infinite layer) are imposed at the lateral boundaries.    

Since in the absence of observational information to properly constrain the model parameters, 

considering asymptotic conditions in which a new problem reduces to already known 

paradigms is beneficial, this chapter also examines the cases with uniform heating, or a single 

heat source (heated bar) located in the geometric center of the physical domain (these two 

models being obviously opposite extremes with respect to the situations mathematically 

described by eq. (8) (Sect. 3.2). Moreover, towards the end to assess the separate influence of 

buoyancy and Marangoni effects, the simulations are conducted by setting Ma and Ra to their 

intended values and ‘switching off’ alternately one of them (the complementary situations with 

Ma=0 or Ra=0 being obviously instrumental in discerning the pure gravitational or surface-

tension driven phenomena). To limit the otherwise prohibitive scale of the problem thus 

defined, the ratio of the Rayleigh and Marangoni numbers (Bodyn) is fixed to 2, i.e. Ra=104 and 

Ma=5x103 (assuming a realistic Pr=10 oil with kinematic viscosity =6.5x10-7 m2/s, thermal 

diffusivity =6.5x10-6 m2/s, density 0.97x103 kg/m3, thermal expansion coefficient T=10-3 

K-1, surface tension derivative T = 6x10-5 N/mK, this would correspond to a layer with depth 

d3.5 mm and a T1 K).  
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In the present thesis T accounts for the temperature difference between the bottom plate and 

the ‘ambient’ (gas) temperature (see Chapter 4). Using the same definition of the Marangoni 

number traditionally adopted in the frame of LSA and similar studies on MB convection, the 

MaLSA corresponding to the present value 5000 would be 2500, which is very close to the case 

that (Thess, 1995; Thess and Orszag, 1995) examined in the limit as Pr→ (this interesting 

observation will be further developed later).  

All the simulations have been run for a time sufficiently long to allow the Nusselt number to 

reach asymptotic (time-independent) values for the cases where the flow is stationary 

(generally a period corresponding to 4 times the thermally diffusive time based on the depth of 

the layer, i.e., t=d2/). The equations have been integrated with a non-dimensional time step 

2.5x10-6 (therefore requiring more than one million of steps for each case). For time-dependent 

solutions, the simulations have been extended to a non-dimensional time t=10. Given the 

density of the mesh (5x105 grid points), three continuous months of calculations have been 

required using an 8-core workstation to produce all the results reported in the following 

subsections.   

6.1 The purely buoyant case: 
Following the approach outlined above, a first sub-set of numerical findings for the purely 

gravitational situation (no surface tension effects being considered) are presented in Figs. 50-

52. These refer to the situation with adiabatic floor. In particular, Fig. 50 relates to the simplest 

possible case, i.e., the configuration with a single block located at the center.   
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Figure 50: Temperature and velocity fields for pure buoyancy convection (Ra=104, Ma=0, 

Bi=1) and single block with horiz=1 (otherwise adiabatic floor): temperature and streamlines 

distribution at the free interface (left); and Isosurfaces of temperature (blue=0.11, green=0.22, 

red=0.41) shown in combination with two representative bundles of streamlines (right). The 

bowl shape of the temperature Isosurfaces reflects the toroidal structure of the single annular 

roll established in the cavity; hot fluid is transported from the center towards the lateral walls 

at the interface, while relatively cold fluid moves in the opposite direction along the bottom 

wall. 
sideNu 6.32, topNu 5.12 and 

barNu 5.78.     

In agreement with the observations reported in earlier works (see, e.g., the numerical 

investigation by Sezai, 2000), the reader will recognize in this figure the classical convective 

structure with hot fluid rising just above the top surface of the heated block, reaching the top 

of the boundary (the free surface exchanging heat with the external gas in present case, as 

opposed to the solid cold wall considered by Sezai, 2000), then spreading radially outward 

towards the sidewalls where it finally turns downward and moves back in the radial direction 

towards the source where it was generated.  

Following up on the previous point, Fig. 51 provides a first glimpse of all the considered 

geometrical configurations and the related (surface temperature) patterns after transients have 

decayed away when the number of blocks is increased from one to larger numbers. 
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 As a property common to many different cases, it can be noticed that for a relatively ‘dilute’ 

distribution of blocks (i.e., a not too high value of N), each of them contributes to the emergence 

of a well-defined plume similar to that obtained for N=1. This is witnessed by the visible 

presence of a ‘set’ of distinguishable approximately circular spots on the free surface. Each of 

these warm areas corresponds to the localized region where a current of rising hot fluid meets 

the liquid/gas interface (where heat exchange with the external environment takes place).  

 

 

Figure 51: Survey of patterns (surface temperature distribution) obtained by varying N in the 

range between 3 and 9 for horiz=1, 0.55 and 0.1 (pure buoyancy convection, adiabatic floor). 

The significance of these figures primarily resides in their ability to make evident that for 

relatively large spacing of the heated elements, the plumes are independent, i.e., they do not 

interact and do not coalescence. However, they also reveal that if the spacing is reduced (by 

increasing N), at a certain stage, non-trivial planforms are produced, i.e. patterns with well-

defined properties which do not simply reflect the (a-priori-set) order of the underlying grid of 

hot blocks.  

In particular, for horiz=1, i.e., unit horizontal extension of the element side (first row of Fig. 

51), a perfect 1:1 correspondence can be established between sources and plumes for both N=3 

and N=5. The change from these obvious behaviors to more interesting ones occurs for N=7. 

For this value of N, as a result of plume interaction the number of recognizable hot spots at the 

free surface decreases. More precisely, as opposed to situations with smaller N, for which the 

location of rising currents is simply consistent with the related distribution of heat sources, an 

external observer looking at the free surface of the configuration with N=7 would naturally be 

induced to map the set of plumes into an array with lower dimensions, i.e., a 5x5 matrix.  
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When N is finally increased to N=9, the percentage decrease in the number of plumes is even 

larger in comparison to the multiplicity of the underlying (9x9) grid of sources. In fact, only 

five plumes can be detected along each sidewall parallel to the x or the z axes (Fig. 51, first 

row, last panel). In the central area, the patterning behavior is slightly more complex than in 

other cases as some plumes undergo complete coalescence resulting in a kind of (hot) circuit 

embracing the aforementioned central cold plume. In turn, this plume is surrounded by a set of 

other four descending currents slightly displaced in the radial direction along the main 

diagonals of the domain (Fig. 52a).   

 

 a) 

 b)

 c) 

 

Figure 52: Isosurfaces of vertical velocity component (green=-3,5, red=3.5, pure buoyancy 

convection, adiabatic floor, N=9): a) horiz=1; b) horiz=0.55; c) horiz=0.1.  
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A similar scenario still holds when elements with a different (smaller) transverse extension are 

considered (i.e., situations for which horiz <1). As yet made evident by Fig. 51 (second row), 

on increasing N, coalescence of vertical (rising) currents is still enabled as a given threshold is 

exceeded. Thereby there is evidence that, just like the parent form of convection with uniform 

heating at the bottom (Rayleigh-Bénard convection), these systems still contain their own 

capacity for transformation, which requires only the right conditions for activation (in 

particular, the smaller horiz, the higher the required value of N to make this ability effective). 

Along these lines, Fig. 52b illustrates in detail the 3D structure of the emerging pattern for a 

9x9 grid of elements and horiz=0.55. Such a figure is useful as it clearly shows that, once plume 

merging mechanisms are excited, the effective topology of the thermal plumes sensitively 

depends on horiz.  

For N=9 and horiz=0.55, a single cross-shaped cold current pops up in the center of the domain. 

It is surrounded by four thermal pillars. These four hot ‘blobs’, in turn, are encapsulated in a 

polygonal circulation system consisting of a discrete set of cold (descending) currents. Along 

each sidewall, a total of 5 well-defined hot plumes can be discerned, which may be regarded 

as another distinguishing mark with respect to the pattern reported in Fig. 52a.  

When horiz is finally reduced to 0.1, the morphology of the 3D pattern becomes even more 

intricate. In this case, seven rising plumes are established along each wall (in such a way that 

by looking at the pattern from above, an observer would get the illusion of a ‘square’ circuit). 

A more internal ring (yet with square shape) of descending plumes (4 along each direction) 

separates the external hot circuit from a more internal (yet hot) one with three plumes along 

each side and an embedded (central) single descending current.  

Following up on these observations, very interesting aspects concern the symmetries, which are 

broken or retained. In such a context it is worth recalling briefly that the considered square 

configuration with a free surface has the symmetries of the dihedral group D4, that is, the group 

of symmetries of a regular polygon with 4 vertices.  These include the reflections S0, S1, S2, 

and S3 (where the generic Sk is the reflection about the line through the center of the square 

making an angle of k/4 with one of its sides, e.g., the x axis in this case). The chosen 

disposition of the blocks allows to keep these symmetries, whereas the up-down symmetry is 

not valid because of the free upper surface and the presence of blocks.  

It is interesting to see that all the buoyant cases (Fig. 51) keep all the symmetries of the 𝐷4 

group. The related patterns are also all steady. This suggests that no bifurcation occurs in this 

case when the size of the blocks is increased and that there is a continuous evolution between 

the cases with different sizes of blocks, even when the correspondence between the blocks and the 

surface distribution of hot spots is lost, for example for the 7 × 7 case when 𝛿ℎ𝑜𝑟𝑖𝑧 is changed 

from 0.55 to 1. In terms of wavenumbers of the dominant structures in the flow, while for the 

trivial cases it can be simply expressed as 2N/Ahoriz, the wavenumbers present in the pattern 

for the other cases (determined through analysis of the surface temperature distribution) are 

k2.5 and k3.14 for N=9 and horiz=1 (also for horiz=0.55), k1.88 and k5.65 for N=9 and 

horiz=0.1. 
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Having completed a description of the emerging  patterns in terms of spatial features, next step 

involves characterization of these solutions in terms of heat exchange (for which the parameters 

introduced ‘ad hoc’ in Sect. 3.1 were used here). These are reported in an ordered way as a 

function of N in Figs. 53a, 53b and 53c for horiz =1.0, 0.55 and 0.1, respectively.  

As a fleeting glimpse into these figures would confirm, though the trends are all monotonic, 

swaps are possible in the relative importance of nusselt numbers average

sideNu  and 
average

topNu , which 

require some proper explanations or interpretations. In this regard it is convenient to start from 

the simple remark that the decreasing behavior of the different curves (being perfectly 

monotonic for all cases) should be regarded as a consequence of a thermal saturation effect, 

i.e. the obvious tendency of the fluid to acquire (on average) an increasingly larger temperature 

as the number of heating elements (‘heaters’) grows  (Figs. 54). Such an increase obviously 

tends to weaken the temperature gradients between the elements and the fluid, thereby causing 

a general decrease in the magnitude of the Nusselt number.  
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a) 

 

 b)

c) 

 

Figure 53: Nusselt number as a function of N for the configurations with adiabatic floor and 

adiabatic lateral solid walls (pure buoyancy convection, the splines are used to guide the eye): 

a) horiz =1; b) horiz =0.55; c) horiz =0.1. 

 



91 
 

 

a) 

 

b) 

 

c) 

 

 

Figure 54: Lateral view (plane xy) for horiz =1 and different values of N (pure buoyancy 

convection, adiabatic floor and adiabatic lateral solid walls): a) N=5; b) N=7; c) N=9. 

This mechanism is also responsible for the inversion in the relative importance of average

sideNu  and 

average

topNu for horiz = 1.0 as N exceeds a given threshold (in Fig. 53a, 
average

topNu < average

sideNu  or 

average

sideNu <
average

topNu for N  5 or N >5 , respectively). The simplest way to elaborate a relevant 

interpretation is to consider the emergence of ‘heat islands’, which for horiz =1 tend to be 

formed in the thin (interstitial) regions located between adjoining elements as N is increased. 

As an example, see Fig. 54c, for N=9 the temperature in these regions becomes almost identical 

to that of the elements. In other words, for these specific conditions, the entire set of rods 

(though physically disjoint) formally behave as they were a single uniformly heated block 

(having constant thickness and the same horizontal extension of the entire liquid domain). 

Accordingly, average

sideNu drops to a value that is almost negligible.  

Although the condition with unit horizontal extension of the elements (horiz =1) is the only one 

for which average

sideNu  becomes almost zero for N=9 (Fig. 53a), a similar justification can be 

invoked for the inversion in the relative importance of 
average

topNu  and average

sideNu  in the range N5 

when horiz  is decreased (
average

topNu < average

sideNu  or average

sideNu <
average

topNu for horiz  0.55 or horiz 

<0.55 , respectively). A rationale for this trend can directly be rooted in the realization that 

while for horiz  0.55 large thermal plumes originate from the top of the heated elements giving 

rise to vertically extended regions of fluids (Figs.55ab) where the temperature is relatively 

uniform and close to that of the heat sources (causing a significant weakening of 
average

topNu  with 

respect to average

sideNu ), for horiz =0.1, such ‘heat islands’ are weaker and, accordingly, the 

gradient between the top surface of the elements and the overlying fluid is higher (Fig. 55c).   
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a) 

 

b) 

 

c) 

 

 

 

Figure 55: Lateral view (plane xy) for N=7 and different values of horiz (pure buoyancy 

convection, adiabatic floor and adiabatic lateral solid walls): a) horiz =1; b) horiz =0.55; c) 

horiz =0.1.   

Obviously the aforementioned thermal saturation effect is enhanced if the portions of adiabatic 

floor located among adjoining elements are replaced with equivalent portions of isothermal 

(hot) wall. Such a swap in the thermal boundary condition at the bottom causes an appreciable 

decrease in the block Nusselt number (this being quantitatively substantiated by the data 

summarized in Table 6, where the values of Nu can be compared for different thermal behaviors 

of the floor and equivalent geometrical conditions, i.e. same values of N and horiz for some 

representative cases).  

Table 6: Comparison between the Nusselt number obtained for configurations with adiabatic 

and hot bottom wall (Ra=104, Ma=0).   

 

N horiz Floor average

sideNu  average

topNu  
average

barNu  

3 1 Adiabatic 3.436 2.394 2.963 

3 1 Isothermal 0.331 0.403 0.364 

7 0.1 Adiabatic 8.390 15.915 8.968 

7 0.1 Isothermal 1.158 6.49 1.568 
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a) 

b) 

 

Figure 56: Isosurfaces of vertical velocity component (green=-3,5, red=3.5, pure buoyancy 

convection, adiabatic lateral solid walls): a) N=7, horiz =0.1 hot floor, b) N=7, horiz =0.1, 

adiabatic floor. 

Notably, the differences are not limited to a variation in the magnitude of the heat exchange 

taking place between the elements and the fluid. The changes can be substantial and affect the 

entire structure of the flow especially if one considers configurations with small horiz. This 

conclusion is supported by cross-comparison of the patterns in Figs. 56. Moving on from the 

case with adiabatic floor to that with hot floor, it can be seen that, although some localized 

plumes originating from the hot blocks still manifest as independent flow features, in the latter 

case the overall pattern tends to take a configuration very similar to that with three main plumes 

along each wall, which is obtained when the equivalent (classical) RB configuration is 

considered (this being shown in Fig. 57).  Although the shape of the plumes in Fig. 56a is less 

regular (their border is relatively jagged), they occupy the same positions shown in Fig. 57d.    
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a) b) 

 

c) d) 

 

Figure 57:  Classical Rayleigh-Bénard convection (Ra=104, Ma=0, Bi=1, adiabatic lateral 

solid walls, no blocks along the bottom): a) combined view of surface temperature and 

velocity distribution; b) surface distribution of velocity component along x; c) Isosurfaces of 

vertical velocity (green=-3,5, red=3.5), d) sketch showing the location of the main plumes, to 

be compared with Fig. 56a. 

6.2 Mixed convection with Marangoni effects  
 

The present section continues the previous investigation by probing the additional role played 

by surface tension and related gradients induced by temperature differences at the liquid/gas 

interface (i.e., cases with Ra0 and Ma 0 are examined).  

As a first meaningful example of these results, Fig. 58 immediately leads to an important 

finding or observation, which needs to be highlighted suitably here. It shows the increased 

complexity of Marangoni-Rayleigh-Bénard convection with respect to the equivalent purely 

buoyant counterpart. Three main surface spots relatively extended in the horizontal direction 

play a dominant role in the temperature field (resembling a flower with three large ‘petals’, see 

Fig. 58a).  
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Most importantly, unlike the regular convective structure depicted in Fig. 57, the flow is no 

longer steady and regularly organized. Rather it is relatively disordered in space with many 

‘spokes’ (loci of points where the surface velocity undergoes a kind of ‘discontinuity’, which 

manifest as ‘folds in the fabric of the petals’, see Fig. 58b). The spokes apparently emanate 

from the hot spots and move irregularly in space as time passes. The more involved nature of 

the flow can also be gathered from the surface temperature spectrum (at a fixed time) presented 

in Fig. 58c, where alignment with a k-3 law can be noticed in a certain range of wavenumbers 

(This interesting aspect will be discussed in Sect. 6.3 when dealing with the case of pure 

Marangoni convection).       

 

a) b) 

 

 c) 
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d)  e) 

Figure 58: Marangoni-Rayleigh-Bénard convection (Bodyn= 2, adiabatic lateral solid walls, no 

blocks along the bottom, t=4.8): a) combined view of surface temperature and velocity 

distribution; b) surface distribution of velocity component along x; c) Isosurfaces of vertical 

velocity component (green=-3,2, red=11.3); d) profile of temperature along x for z=6.57; e) 

Surface temperature spectrum (z=6.57).  

Figure 58 (placed just after Fig. 57 to make evident the striking differences with respect to the 

equivalent RB convection) logically paves the way for the next analysis, which goes back to 

the situation with adiabatic bottom wall and an increasing number of evenly spaced heated 

elements (still for Bodyn fixed to 2). In this regard, the same deductive approach followed, which 

already has undertaken in Sect. 6.1 allowing both N and horiz to span relatively wide ranges.   
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Figure 59: Survey of patterns (surface temperature distribution) obtained by varying N in the 

range between 3 and 9 for horiz=1, 0.55 and 0.1 (mixed convection, adiabatic floor). 

The case with N=1 is not discussed given its analogy with the convective structure already 

described for pure buoyancy flow. The reader specifically interested in the mixed Marangoni-

buoyancy flow generated by a single source may consider some relevant works in the literature 

(e.g., Bratukhin et al., 2000) [88]. Here results were limited to reporting the values for 
sideNu , 

topNu and 
barNu  which for N=1 read 7.38, 7.31 and 7.35, respectively (as expected, these 

values are slightly larger than those reported in the caption of Fig. 50).  

The results for N1 is collected in Fig. 59 (the analogue of Fig. 51). By inspecting this figure, 

one may say (in a broad outline) that the observable trend is formally similar to that already 

seen for pure buoyant convection (from a spatial point of view). Put simply, for relatively small 

values of N, the flow still manifests itself in the form of separate convective cells at the free 

surface. However, some non-negligible distinguishing marks can be identified. Although these 

cells resemble those obtained in the pure buoyant case, their shape becomes ‘square’ (as 

opposed to the more rounded morphology seen in Fig. 51). Notably, for relatively small N these 

patterns are steady just like those found for pure buoyancy; nevertheless, on decreasing the 

space between the elements, at a certain stage, more complex spatio-temporal phenomena are 

enabled. 
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 Interestingly, these emerge as fascinating ordered flows, where, in analogy with the purely 

buoyant situation, a direct connection between the heat sources at the bottom and planform 

visible at the top can no longer be recognized. At the same time, like the flow reported in Fig. 

58, however, these convective structures also display an appreciable time dependence (this 

aspect will be described later however the reader being also referred to the extended discussion 

reported in Sect. 5). 

Interestingly, the D4 symmetries, i.e., the mirror reflections with respect to the middle and 

diagonal vertical planes can still be recognized for the smallest number of blocks (for all the 

cases with 3 × 3 and 5 × 5 blocks and even for cases with 7 × 7 blocks for 𝛿ℎ𝑜𝑟𝑖𝑧 = 0.1 and 0.55), 

and these cases are steady. For larger numbers of blocks, the underlying block pattern is no 

longer visible, but, unlike the buoyant cases, these cases have also lost the D4 symmetries, and 

they are oscillatory, which imply that a Hopf bifurcation has occurred. 

Again, the relationship between the pattern and the multiplicity of heated elements sensitively 

depends on the horizontal extension of the elements (horiz) as further illustrated in the 

following. 

In particular, as shown in Fig. 60 for horiz = 1.0, the steady and very ordered distribution of 

small surface square cells for N=5 (simply reflecting the underlying 5x5 matrix of elements 

periodically positioned on the bottom, Fig. 60 (left)), is taken over for N=7 (central panel of 

Fig. 60) by an aesthetically appealing convective configuration with four large approximately 

square cells located in the corners of the domain and a more complex internal circulation 

structure where the surface fluid is driven towards a central sink (this being witnessed by the 

distribution of the surface velocity component along x in the second row of Fig. 60). This 

special point (knot) with four-fold topology corresponds to a kind of ‘singular’ vertex where 

the fluid (reaching it along different horizontal directions) is finally pushed towards the bottom 

of the layer. As yet visible in Fig. 60(center), all the other knots have a smaller topological 

order p=3. The corresponding surface temperature distribution (reported in the third panel of 

the first row of Fig. 59) essentially consists of a single thermal loop formed by many plumes 

surrounding a central colder region that culminates in a central peak where the surface 

temperature attains its smallest possible value (this point occupies the same position of the 

aforementioned knot with topological order 4). This flow is weakly unsteady. 

On increasing N to 9 (Fig. 60 (right panel)), the dynamics are still unsteady and, most 

interestingly, besides a few minor differences, significant changes can be noticed neither in the 

topological properties of the velocity field, nor in the temperature distribution; importantly, 

this indicates that a kind of saturation has been enabled by which the flow is no longer sensitive 

to the multiplicity of the sources at the bottom. 
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Figure 60:  Surface vector plot (first row) and distribution of velocity component along x 

(second row) for horiz =1 and different values of N (mixed convection, adiabatic floor and 

adiabatic lateral solid walls): (left) N=5 (steady flow); (center) N=7 (unsteady flow); (right) 

N=9 (unsteady flow).    

These results obviously further support the realization that once a certain value of N is 

exceeded, these systems contain their own capacity for transformation, which can promote the 

emergence of planforms with well-defined (non-trivial) features. However, comparison with 

the classical case with uniform heating at the bottom (Fig. 60) also leads to the remarkable 

conclusion that, although at a certain stage a kind of asymptotic condition or regime is attained 

in terms of textural behavior, localized heating at fixed positions can contribute to make the 

emerging flow more regular (from both spatial and temporal points of view) with respect to the 

pure Marangoni-Rayleigh-Bénard paradigm.    
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a) 

 

b) 

 

Figure 61: Isosurfaces of vertical velocity component (left, green=-3,2, red=11.3) and surface 

vector plot (right) for N=9 and different values of horiz (mixed convection, adiabatic floor 

and adiabatic lateral solid walls): a) horiz =0.55 (unsteady flow, k1.88); b) horiz =0.1 

(unsteady flow, k5.66).  

The next figure of the sequence (Fig. 61a and 61b) simply indicates that, like the purely 

thermogravitational case discussed in Sect. 6.1, the threshold to trigger flow self-organization 

is shifted to higher values of N as horiz becomes smaller. The factor N must indeed be increased 

to N=9 for horiz=0.55 and 0.1 to see again interesting dynamics. In these cases, the lines 

bounding the convective cells visible on the free surface yet organize themselves to form 

fascinating networks. 

In line with earlier observations about the topological order of the central vertex for the 

configurations with horiz=1.0, it is worth noticing that many of these lines originate from some 

special knots which behave as the centers of closed polygonal multi-cell structures that 

resemble the shape of a “flower”. As an example, two of such structures can be recognized in 

Fig. 61a (highlighted by the red rings). 
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 Although partial overlap among these sub-patterns is possible, the above-mentioned special 

knots can be uniquely identified through the topological order p of the radial spokes which 

emanate from them. For horiz =0.55 this order is pmax = 5 (in such a context it’s important to 

recall that for standard MB patterns with the classical hexagonal or square cells, pmax would 

take values pmax = 3 or pmax = 4, respectively, see, e.g., Nitschke and Thess, 1995; Bestehorn, 

1996; Eckert et al., 1998; Kvarving et al., 2012). The dominant wavenumber (yet determined 

through analysis of the surface temperature distribution) in this case is k1.88. 

From a temporal point of view, the flow unsteadiness essentially stems from localized effects, 

which consist of a ‘flickering’ (back and forth) motion of the spokes along directions 

approximately perpendicular to them; this is shown by the sequence of snapshots contained in 

Fig. 62. However, this is not the only mechanism responsible for the unsteady nature of 

convection. The overall time-dependent behavior is characterized by two apparently disjoint 

temporal scales, one related to the just-mentioned localized oscillation of the spokes (which 

display slightly different scales according to the considered cell, refer to the figure caption) and 

another due to a more general process by which all the cells undergo a slow adjustment in time. 

The latter results in minor changes in cell position and shape, which leads to a displacement of 

the aforementioned knots (the centers of the ‘flowers’).  

 

 

 

Figure 62: Snapshots of surface temperature for N=9 and horiz =0.55 (mixed convection, 

adiabatic floor and adiabatic lateral solid walls): t=to, +, to+2 (=0.05, to=5.65). The black 

arrows indicate the istantaneous direction of motion of the spokes. Some cells are arrow-free 

(e.g., those located in the lower-left corner) as the related spokes evolve over timescales 

slightly larger (their displacement being not appreciable in the shown timeframe).  

 

 



102 
 

 

  

Figure 63: Isosurfaces of vertical velocity component (left, green=-3,2, red=11.3) and surface 

vector plot (right) for the hot floor case (mixed convection, adiabatic lateral solid walls), N=7 

and horiz =1 (unsteady flow, average

sideNu 0.329, 
average

topNu 1.154, average

barNu  0.704).  

Notably, when the system has entered the specific regime where the surface pattern is no longer 

a trivial (1:1) manifestation of the underlying topography, a switch in the thermal boundary 

condition at the bottom (from adiabatic to isothermal) has a weak impact. These observations 

are quantitatively substantiated by Fig. 63 (N=7 and horiz =1); apart from some minor 

modification (compare Fig. 66 with Fig. 60(center)), the flow has the same structure and 

topology.  
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a)

b) 

c) 

 

Figure 64: Isosurfaces of vertical velocity (green=-3,2, red=11.3) component (a), surface 

vector plot (b) and temperature distribution in the xy midplane (c) for the hot floor case 

(mixed convection, adiabatic lateral solid walls), N=7 and horiz =0.1 (steady flow, average

sideNu

1.398, 
average

topNu 8.525, average

barNu  1.947).  

Vice versa, the variation is dramatic if the swap in the thermal boundary condition is 

implemented for systems which have not entered yet the self-organization regime, see Fig. 64 

(N=7 and horiz =0.1). As implicitly revealed by this figure, in place of the trivial array of 

perfectly aligned spots which would be obtained for N=7 with the adiabatic floor condition 

(Fig. 59, third row, third panel), a planform with well-defined properties is produced. Notably, 

it possesses all of the symmetries pertaining to the aforementioned D4 group, i.e., the mirror 

reflections with respect to the vertical planes x=Ahoriz/2, z=Ahoriz/2, x=z and z=Ahoriz-x and 

related combinations. 

In this regard, some additional insights follow naturally from a cross-comparison of Fig. 64 

with Fig. 58, i.e., the case with uniform heating at the bottom and no rods. It can be argued that 

the utilization of a discrete and ordered set of relatively small protuberances at the bottom 

would still be effective in turning otherwise disordered and unsteady Marangoni-Rayleigh-

Bénard convection into a spatially regular and steady flow. Notably, in this case the topological 

order of the central knot is even increased with respect to the preceding cases (pmax=8), while 

other knots do not exist at all. Figures 64a and 64b are naturally complemented by Fig. 64c, 

where evidence is provided that the perfect symmetry of the flow (and the ensuing increase in 

the topological order of the central knot) is supported by a kind of synchronization between 

specific heated blocks and the location of the dominant thermal plumes.  
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Apparently, specific blocks play the role of ‘catalysts’ in generating rising currents, thereby 

stabilizing the flow, which becomes essentially steady.  A further understanding of all these 

modes of convection can be gained by considering the related behavior in terms of heat 

exchange between the hot elements and the fluid. Following the same approach implemented 

in Sect. 6.1, this subject is further developed solely for the situations with adiabatic floor and 

solid sidewalls for which the majority of the present results have been obtained (Fig. 65).  

Correlation of Fig. 65a and 53a (horiz=1.0 cases) is instrumental in revealing that (as expected) 

the presence of an additional mechanism of convection located at the free surface causes an 

appreciable rise in the values of 
average

topNu .  Vice versa, no significant variations can be seen in

average

sideNu  both in terms of magnitude and trend (compare again Fig. 53a and 65a). 

 

 a) 
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b)

c) 

 

Figure 65: Nusselt number as a function of N for the configurations with adiabatic floor and 

adiabatic lateral solid walls (Mixed convection, the splines are used to guide the eye): a) 

horiz =1; b) horiz =0.55; c) horiz =0.1.    

The increase in 
average

topNu is still appreciable for smaller values of horiz. For horiz =0.55 (Fig. 

65b), 
average

topNu  is now located above the corresponding average

sideNu  line as opposed to the 

situation seen in Fig. 53b. For horiz =0.1 (Fig. 65c) a big gap separates 
average

topNu  and average

sideNu

. Like the equivalent situation with only buoyancy flow (Fig. 53c), the reason for the proximity 
average

barNu  to average

sideNu  resides in the fact that the top area of each element is very small with 

respect to its total lateral area (which, as made evident by eq. (14) contributes to make average

barNu

 average

sideNu ).  
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6.3 Microgravity Conditions 
A separate discussion is needed for the Ra=0 circumstances, the surface expression of which 

in the classical situation with uniform heating (and no topography) would be the canonical 

Marangoni-Bénard (MB) convection. It is worth recalling that, strictly speaking, this kind of 

flow can be obtained only in microgravity conditions (where the influence of buoyancy forces 

can be completely filtered out). In normal gravity, situations approaching those for which pure 

MB convection is obtained can be mimicked by reducing the ratio Ra/Ma as much as possible 

(typically by decreasing the depth of the considered layer), i.e., if Bodyn0. The results 

presented in this section could therefore be applied in principle to experiment performed on an 

orbiting platform (such as the International Space Station) or on Earth in ‘microscale’ 

conditions (layer depth significantly smaller than 1 mm). This subject has received significant 

attention over the years (though not being comparable to that attracted by the companion 

problem represented by RB convection). Other studies worthy of mention in addition to those 

reported in the introduction and the book by Colinet et al. (2001) are those by Thess and 

Bestehorn, 1995 and Bestehorn, 1996) , who concentrated on the evolution of the emerging 

planforms, showing that the well-known hexagonal symmetry of the cells (underpinned by a 

threefold organization of the vertices, i.e. p=3) is spontaneously taken over for larger values of 

Ma by a fourfold vertex topology (p=4) resulting in square-shaped convective cells. Given the 

amount of literature available on this specific subject, these references are obviously selective 

samples of existing valuable investigations. However, studies concerned with the regime where 

this form of convection becomes disordered in both time and space are relatively rare (Thess 

and Orszag, 1994 and 1995; Thess et al., 1995 and 1996) and used for some conclusive 

arguments elaborated in Sect. 6.4. In the present section, focus would be on describing the 

dynamics found in the present conditions by setting Ra=0, a first example of which can be seen 

in Fig. 66. 

 

a) b) 
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c) 

 

d)

e) 

Figure 66: Marangoni-Bénard convection (Ra=0, Ma=5x103, Bi=1, adiabatic lateral solid 

walls, no blocks along the bottom, t=6.42): a) combined view of surface temperature and 

velocity distribution; b) surface distribution of velocity component along z; c) Isosurfaces of 

vertical velocity component (green=-3,2, red=9.2); d) profile of temperature along z for 

x=7.0; e) Surface temperature spectrum (line x=7.0).  

This figure naturally complements Fig. 58 by revealing that the thermal structure with three 

main hot spots (the three-lobe windmill) seen for the Marangoni-Rayleigh-Bénard system 

(uniform heating at the bottom) is taken over for pure Marangoni-Bénard convection by a 

slightly different pattern with four main spots arranged in a butterfly-like configuration. It is 

also worth noticing that the flow retains its unsteady nature (as it was in the presence of 

buoyancy) and many spokes can yet be detected in the velocity field (their number largely 

exceeding that seen in the presence of buoyancy, Fig. 66b). Despite these topological 

differences, however, the surface (spatial) temperature spectrum still aligns perfectly with the 

aforementioned k-3 law (see Sect. 6.2).  
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Selected examples of the dynamics obtained with discrete distribution of blocks on an adiabatic 

floor are collected in Figs. 67 and 68. In particular, the former refers to the results for horiz =1 

for which the trend is relatively similar to that already reported for mixed flow. As a given N 

is exceeded, the flow self-organizes in a peculiar pattern that does not change (in terms of 

topology of the network of spokes) if N is further increased. 

 

a) b) c) 

 

Figure 67: Combined view of surface temperature and velocity distribution for horiz =1 and 

different values of N (microgravity conditions, adiabatic floor and adiabatic lateral solid 

walls): a) N=5 (steady flow); b) N=7 (unsteady flow); c) N=9 (unsteady flow).    

In terms of symmetries, considerations very similar to those already developed in Sect. 6.2 

could be given. For the sake of brevity, re-emphasizing that the loss of symmetry with respect 

to the aforementioned D4 group still manifest itself in conjunction with transition to time-

dependent convection, which indicates that this should be seen as a bifurcation of the flow.  

Once again, the non-trivial states are somehow ‘quantized’, in the sense that they do not depend 

on the multiplicity of wall-mounted elements. Moreover they are rather similar to those 

collected in the first row of Fig. 59 and this apparently innocuous observation goes some way 

to reinforce the idea (already supported by correlation of the results discussed in Sect. 6.1 and 

6.2) that for these circumstances the main pattern-controlling factor is transferred from the 

number of elements mounted on the bottom wall to intrinsic convective disturbance 

amplification mechanisms of the Marangoni flow.  

Comparison with the equivalent cases in the presence of buoyancy (Sect. 6.2), however, also 

leads to the remarkable realization that buoyancy does play a non-negligible (important) role 

in some cases, especially when the horizontal size of the elements is decreased (compare, e.g., 

Fig 68a with Fig. 61a and Fig. 68b with Fig. 61b). In particular, for horiz =0.55, the number 

and extension of spokes (and cells) undergoes a remarkable increase in the absence of 

buoyancy. Vice versa, for horiz =0.1 in place of the complex network visible in Fig. 61b, one 

gets a relatively simple pattern with 5 triangular cells concurring in a single central knot (with 

topological order p=5, Fig. 68b).   
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     a) 

 

    b) 

 

Figure 68: Combined view of surface temperature (left) and surface distribution of velocity 

component along x for N=9 (pure surface-tension-driven convection, adiabatic floor and 

adiabatic lateral solid walls): a) horiz=0.55 ( average

sideNu 0.756, 
average

topNu 2.205, average

barNu

1.182), b) horiz=0.1 ( average

sideNu 5.359, 
average

topNu  18.253, average

barNu 6.351).   
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Figure 69: Temperature distribution for N=7 and horiz=0.1 (pure surface-tension-driven 

convection, hot floor and adiabatic lateral solid walls, unsteady flow with a localized oscillon, 
average

sideNu 1.578, 
average

topNu 10.517, average

barNu  2.265). (green=-3,2, red=9.2). 

Consideration of a representative hot floor case is also instructive (Fig. 69). Without buoyancy, 

the ability of the heated protuberances with small transverse extension (horiz) to exert an 

influence on the emerging pattern and its spatio-temporal behavior is relatively limited. In place 

of the perfect (and steady) arrangement of cells observed in Fig. 64 for N=7, horiz=0.1 and 

Bodyn=2, the pattern with four large thermal spots found for MB flow is recovered when Bodyn=0 

(Fig. 69). It is evident, however, that despite the number of spots is identical to that obtained 

in the classical case with smooth and uniformly heated boundary (Fig. 66), the presence of 

blocks on the bottom can still exert a certain influence by making the pattern more regular with 

respect to that seen in Fig. 66 (a smaller number of spokes or discontinuities can be detected in 

Fig. 69).   

Continuing with a focused review of the literature on classical MB convection, it’s worthy to 

remark that oscillatory behaviors relatively similar to that shown in Fig. 69 have also been 

observed in other studies dealing with classical MB convection. As an example, while 

investigating the possible existence of multiple solutions (states which depend on the initial 
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conditions) for slightly supercritical conditions, Kvarving et al., 2012) found that the final state 

of MB convection may be dominated by a steady convection pattern with a fixed number of 

cells, or the same system may occasionally end up in a steady pattern involving a slightly 

different number of cells, or it may display a peculiar convective configuration where most of 

the cells are stationary, while one or more cells undergo a localized oscillatory behavior (a cell 

being continuously destroyed and re-formed as time passes).  

This is what can also be seen in Fig. 69, where the oscillations display a strongly confined 

nature. In line with the dynamics visible in Fig. 66 and 68a, the cell does not disappear. Rather 

it apparently undergoes a localized instability, which results in a series of ripples originating 

from the central segment where the two cells aligned along the NW-SE diagonal meet. All 

these spokes are embedded inside a single cell, while the rest of the pattern is seemingly not 

affected by them.  

These observations can be used as a cue to recall another related concept, that is, the notion of 

‘oscillon’, already used in previous works. In Lappa and Ferialdi (2018) , it was loosely defined 

as the spontaneous localization or confinement of oscillatory phenomena to a limited subregion 

of an otherwise stationary pattern in a translationally invariant system. Although the present 

system is no longer perfectly isotropic like the classical MB, the present results show that in 

the presence of a repetitive topography or thermal forcing, this definition or concept can still 

be considered relevant.   

As a concluding remark for this section, in line with similar considerations elaborated for the 

companion circumstances with pure buoyancy or mixed buoyancy-Marangoni convection, next 

step focuses on the heat exchange behavior. Along these lines, for the purpose of quantifying 

the variation undergone by such effects, Fig. 70 and Tables 7, 8 and 9 show the behavior of the 

related Nusselt number for various cases. The major outcome of Fig. 70 (through critical 

comparison with the equivalent Figs 53a and 65a) resides in the indirect confirmation that most 

of the increase of 
average

topNu for horiz =1 (adiabatic floor case) and relatively small values of N 

when surface-tension effects are added to buoyancy (by which 
average

topNu  becomes almost equal 

to average

sideNu ), essentially stems from the Marangoni effect itself.  

Table 7: Comparison between the Nusselt number obtained for configurations with adiabatic 

bottom wall in different circumstances (N=9, horiz =0.55). 

 

Ra Ma average

sideNu  average

topNu  
average

barNu  

104 0 1.008 1.655 1.198 

104 5x103 1.051 2.004 1.331 

0 5x103 0.756 2.205 1.182 
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Table 8: Comparison between the Nusselt number obtained for configurations with adiabatic 

bottom wall in different circumstances (N=9, horiz =0.1).   

 

Ra Ma average

sideNu  average

topNu  
average

barNu  

104 0 5.479 12.361 6.009 

104 5x103 5.887 15.587 6.634 

0 5x103 5.359 18.253 6.351 

 

Tables 7 and 8 indicate that in the absence of buoyancy-induced plumes, i.e. for Ra=0, a 

significant increase in 
average

topNu takes place also for other values of horiz. This can be ascribed 

to the absence of the heat islands, which buoyancy would otherwise induce above the hot 

blocks. Table 9 finally confirms that, though heat exchange is weakened with respect to the 

equivalent configuration with the adiabatic floor, such enhancement still holds if an isothermal 

floor is considered.       

Table 9: Comparison between the Nusselt number obtained for configurations with hot 

bottom wall in different circumstances (N=7, horiz =0.1). 

 

Ra Ma average

sideNu  average

topNu  
average

barNu  

104 0 1.158 6.49 1.568 

104 5x103 1.398 8.525 1.947 

0 5x103 1.578 10.517 2.265 
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Figure 70: Nusselt number as a function of N for the configurations with pure surface-

tension-driven convection, horiz =1, adiabatic floor and adiabatic lateral solid walls (the 

splines are used to guide the eye). 

 

6.4. Discussion 

6.4.1 The strongly non-linear regime of MB flow 
A critical discussion of earlier studies in companion fields (and related theoretical outcomes) 

is used in this section to elaborate some additional arguments for the interpretation of the 

observed dynamics.  

In particular, as a first level of this specific abstraction hierarchy, the main outcomes of the 

existing literature were considered where models were specifically introduced to characterize 

chaos in MB systems. More specifically it’s useful to consider the line of inquiry originating 

from the studies by Thess and Orszag, 1994 and 1995, where the so-called ‘strongly nonlinear 

regime’ of MB flow was examined (enabled when the Marangoni number based on the 

temperature difference between the bottom wall and the free surface exceeds a value of 2000). 

These authors studied this problem under the assumption of infinite value of the Prandtl number 

(because it leads to convenient simplifications in the governing equations) and revealed that 

the dynamics typical of this regime have a ‘signature’ that makes them very peculiar even when 

they are compared with akin phenomena such as turbulence in buoyancy flow (i.e. notable 

differences also exist with regard to the “hard Rayleigh-Bénard turbulence” originally analyzed 

by Castaing et al. 1989).  

As assumed by this model, MB flows in high-Pr fluids are dominated by viscous effects, while 

the temperature isolines become strongly deformed. Moreover, it considers the thermal 

diffusivity everywhere negligible with the exception of thin thermal layers.  
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In agreement with the numerical results presented in Sects. 6.2 and 6.3 (see, e.g., Fig. 58d and 

66d), earlier simulations based on such approach have shown that the temperature field consists 

of parabolic regions separated by increasingly sharp transition layers at the cell boundary, 

where the temperature gradient experiences a discontinuity (as an example, Thess and Orszag, 

1994, 1995 could reveal such discontinuities through evaluation of the second derivative of the 

surface temperature).  

The existence of such discontinuities also led researchers to naturally identify an analogy with 

the slow dynamics of the Burgers equation; in this regard, it’s necessary to recall that the 

specific mathematical properties of this equation are known to produce shock discontinuities 

(as shown by Figs. 58, 60, 66, 68 and 69, such discontinuities also manifest in the present 

results, where they appear in the form of spokes emanating from specific points). 

Some variants have also been elaborated where in place of an infinite Prandtl number, 

investigators considered the Ma→ idealized asymptotic state. Also, this condition was found 

to be advantageous because in this limit the thickness of the surface Marangoni layer tends to 

zero, thereby allowing for two-dimensional models to be developed. Notably, in such a 

theoretical/mathematical context, (Thess et al. 1995,1996) and Colinet et al. (2001) could 

reduce the original 3D problem to a 2D nonlinear evolution equation involving only free 

surface quantities “under the perspective that any statistical quantity related to the three-

dimensional velocity field could be considered a function of the two-dimensional surface 

temperature only”.     

The most important outcome of all this focused theoretical effort resides in the connection that 

has been established between the formation of the discontinuities of the temperature gradient 

(that emerge in a random way causing the splitting of large convective cells into smaller ones) 

and the instability of the surface thermal boundary-layer.  

The present results obtained through solution of the original equations in their complete form 

essentially demonstrate that these concepts are also applicable to situations where the Prandtl 

number takes a finite value. The discontinuities manifest as spokes in the velocity field, 

corresponding to the presence of ripples in the temperature distribution, which, in turn, are 

produced as a result of instability of the surface temperature boundary layer. The adherence of 

the present results to this interpretation is further witnessed by the peculiar scaling (in terms of 

wavenumbers) displayed by the surface temperature distribution, which in these cases (see 

Figs. 58e, and 66e) follows the same universal spectrum E(k)  k-3 predicted by Thess et al. 

(1995, 1996) and Colinet et al. (2001).  

Notably, the spatial surface spectrum of temperature for layers uniformly heated from below 

aligns very well with that predicted by such models not only in the circumstances where flow 

is produced by surface tension alone, but also in the cases where buoyancy is significant (which 

leads to the conclusion that for Bodyn =2 and Bodyn =0, the (spatial) scaling properties of the 

surface turbulence are essentially the same).   
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6.4.2 Quantized states and Buoyancy effects 
Although comparison with other existing numerical simulations for high values of Ma 

conducted in the limit as the Prandtl number tends to infinite or assuming an infinite value of 

the Marangoni number (boundary-layer model) shows that the related dynamics are in good 

agreement with those depicted in Sect 6.2 and 6.3, however, it should not be forgotten that the 

present problem is different, in the sense that while in some circumstances ‘quantized’ states 

are produced (i.e. ‘typical’ solutions where the pattern becomes independent from the 

properties of the bottom), in other cases non-trivial states emerge which do depend on the 

underlying morphologically and thermally textured wall (i.e. the size and spacing of the 

blocks).   

The present dynamics are made more complex or intriguing by the existence of what in this 

thesis has been called self-organization regime. Again, comparison with the literature can help 

to shed some additional lights on such behaviors. In this regard, it is certainly worth considering 

the earlier experimental investigation by Ismagilov et al. (2001).    

As outlined in the introduction, by means of infrared imaging, Ismagilov et al. (2001) revealed 

that when the convective cells typical of MB convection form under the same conditions that 

would produce ‘standard’ MB convection, but over a periodically patterned surface (uniformly 

heated), a specific kind of complexity is produced that is not possible when the bottom wall is 

perfectly planar and with no corrugations. More precisely, they found a kind of competition 

between the ‘intrinsic spatial periodicity’ of the flow (i.e., the wavelength of the planform that 

would be produced in the absence of topography) and the geometrical properties of the 

considered wall. This was found to result in a non-smooth (jerky) behavior consisting of a set 

of discrete states, i.e., the ability of the fluid system to undergo abrupt transitions between 

different planforms (commensurate with the imposed shape of the bottom boundary) as the 

ratio of the intrinsic (wavelength) and perturbing length scales (size and morphology of the 

bulges) was changed.   

This trend is consistent with that which have been observed in the present study (where the 

same pattern has been found for conditions differing in terms of number and spacing of 

elements, Figs. 60 center and right panels, 63, 67 center and right panels and 68a). Here, 

however, the patterned nature of the bottom wall has not been limited to the presence of bulges 

(the cubic elements in present case). Some control on the flow has also been exerted through 

the related thermal properties (i.e., through thermal forcing). Assuming the portion of floor 

between adjoining elements to be adiabatic, it has been observed that new types of planforms 

can be produced which reflect neither the ordered distribution of elements at the bottom 

(through a trivial 1:1 correspondence), nor states which would be typical of standard MB 

convection. 

In this regard, comparison of mixed buoyancy/Marangoni (Sect 6.2) and pure MB flow (Sect. 

6.3) has proved effective in allowing discerning the role played by buoyancy in such processes. 

This adds new information to the study by Ismagilov et al. (2001) where, owing the small 

thickness of the layer (100 cSt silicone oil with depth 0.8 mm), buoyancy was almost 

negligible (Bodyn = gTd2/T  0.1).  
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Another important difference concerns the degree of supercriticality. In Ismagilov et al. (2001) 

circumstances were considered for which the emerging planform of standard MB convection 

would correspond to the classical pattern with the honeycomb symmetry. Here, conditions 

enabling the so-called ‘strongly nonlinear dynamics’, originally examined by Thess and Orszag 

(1994 and 1995), have been investigated. 

As widely illustrated in Sects. 6.1 and 6.2, for Ma= 5x103 and Bodyn =2, buoyancy enhances the 

role of thermal forcing through the generation of warm plumes that originate from the top 

surface of the heated elements. With a few exceptions (Fig. 68b), this effect contributes to make 

the emerging unsteady solutions and related pattern more regular than the corresponding flow 

in the absence of buoyancy. As a result, buoyancy can strengthen the system abilities to produce 

a new zoo of patterns. 

 

6.4.3 Temporal scaling laws and Confinement effects 
 

This final subsection is dedicated to a couple of aspects that have been glossed over until now, 

namely, the spatio-temporal behavior of the flow and the influence of the lateral confinement 

(the sidewalls, which, as already shown in earlier valuable fundamental studies, can play a non-

negligible role in the dynamics of Marangoni-Rayleigh-Bénard convection, see, e.g., Dauby 

and Lebon, 1996; Medale and Cerisier, 2002). As further developed in the following, these two 

features are intimately connected in the present problem. 

In order to implement such discussion and obtain some statistically meaningful data (i.e., 

insights which display a sufficiently high level of generality), three representative cases were 

considered, all pertaining to the sub-region of the space of parameters where self-organization 

is effective. These are the two configurations with adiabatic boundary (N=7, horiz=1) and (N=9, 

horiz=0.55), respectively and the one with isothermal floor (N=7, horiz=0.1). The analysis is 

developed considering the temporal evolution of the Nusselt numbers  average

sideNu , 
average

topNu  and 

velocity signals (velocity component along the horizontal direction u as a function of time) 

provided by numerical probes located above the heated blocks (at an intermediate position 

between the top of the block and the free surface of the layer). In particular, the Nusselt number 

is characterized in terms of FFT (i.e., frequency spectrum), that is, a further understanding of 

the observed phenomena is gained by considering a fine-grained micromechanical perspective 

able to provide information on the small spatial scales of the flow. In addition, an explicit 

strategy was used to uncover features that could not be revealed by the macrophysical approach 

(based only on the spatial properties of the patterns) developed in Sect. 6.4. As a first example 

of this inquiry, Fig. 71 shows the FFTs of the Nusselt number for the mixed and Marangoni 

(microgravity) convection cases with N=9, horiz=0.55 whose patterns have been reported in 

Figs 61a and 68a, respectively.  
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a) b) 

Figure 71: Frequency spectrum for the Nusselt number (Bi=1, adiabatic floor, solid sidewalls, 

N=9 and horiz =0.55): a) average

sideNu  b) 
average

topNu [Mixed flow (red line), Pure Marangoni flow 

(blue line)]. 

It can be seen that, despite the differences in the patterning scenario (see again Figs. 61a and 

68a), the spectra of the Nusselt numbers for Ra=0 (blue line) and Ra0 (red line) are relatively 

similar, a minor difference being evident only for 
average

topNu (the spectrum being less energetic 

for the mixed flow case in line with the arguments developed before about the stabilizing role 

played by the thermal plumes generated by the different heated elements). Another key 

observation concerns the presence of peaks in the spectra of both average

sideNu  and 
average

topNu in the 

very low frequency range only for the case of mixed convection. This apparently innocuous 

difference reflects an important feature that have not been discussed so far, i.e., the slow re-

adjustment in time, in terms of shape and position of the cells, which takes place in the presence 

of gravity (i.e., it is no longer a typical feature of the pure Marangoni flow for which the main 

source of unsteadiness is represented by the emergence of spokes and their flickering behavior).  
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                     a) 

 

b)    c) 

Figure 72: Mixed convection for N=7, horiz =1 and adiabatic floor: a) combined view of 

surface temperature and velocity distribution for the case with periodic lateral boundary 

conditions (four snapshots equally spaced in time, =1.0); b) related surface temperature 

spectrum (line x=3.55 at t6); c) combined view of surface temperature and velocity 

distribution for the case with solid sidewalls (snapshot at t=5.25).    

As anticipated at the beginning of this discussion, at this stage, it is also worth highlighting that 

an additional important factor influencing the considered phenomena is represented by the solid 

sidewalls. Simulations conducted replacing the solid vertical boundaries with PBC have indeed 

confirmed that the lateral confinement contributes significantly to the perfection of some of the 

stable and highly ordered structures reported in Sects. 6.2 and 6.3. 

As a first example of this influence, Figs. 72ab (N=7, horiz =1, adiabatic floor, see also Movie 

1) immediately reveals that, if the no-slip lateral walls are replaced by periodic boundary 

conditions (PBC), the pattern takes a relatively disordered spatio-temporal organization with 

respect to that obtained under confinement (reported for the convenience of the reader in Fig. 

72c). The well-defined ring of hot spots (cell) surrounding a central knot with topological order 

p=4 (clearly visible in Fig. 72c) can no longer be recognized in Fig. 72a. In place of a structure 

dominated by p=3 knots (and a single central p=4 point), a much more complex network of 

spokes is produced, with cells having a number of sides ranging between 3 and 6 (from triangles 
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to irregular hexagons) and knots with topological order much larger than that seen for the 

configuration with solid walls (increasing up to p=9 as witnessed by the presence of one or 

more flower-like structures with many petals).  

On a separate note, it is also worth highlighting that correlation of the related surface 

temperature (spatial) spectrum (Fig. 72b) with that obtained for the Marangoni-Rayleigh-

Bénard convection (Fig. 58c) indicates that, despite the larger number of spots and the 

dominant polygonal structure of the cells emerging in the discrete sources case with PBC, the 

two surface patterns follow essentially the same k-3 scaling predicted by the models for highly 

supercritical MB convection discussed in Sect. 6.4.1.  

As the same conclusions can be applied to the case N=9, horiz =0.55 with adiabatic floor, for 

the sake of brevity, it was decided to pass over the description of the related details (Movie 2). 

The next figure of the sequence (Fig. 73), however, refers to a case where the floor is not 

adiabatic (hot bottom wall). As the reader will easily realize by inspecting it (see also Movie 

3), in such a situation, the changes induced by a swap in the lateral boundary conditions are 

even more dramatic. While the flow arising with solid sidewalls was essentially steady (Fig. 

73c), when PBC are applied, this is taken over by completely different spatial and temporal 

convective mechanism. The p=8 multiplicity of the central knot is lost (a central knot even does 

no longer exist or make sense). The cross-shaped network formed by cell boundaries (Fig. 73c) 

is replaced by a much more complex topology (Fig. 73a). An interesting (peculiar) behavior 

can be seen where the fluid is pushed down (blue regions). These are characterized by the 

presence of several ripples.    
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                     a) 

 

b)    c) 

 

Figure 73: Mixed convection for N=7, horiz =0.1 and hot floor: a) combined view of surface 

temperature and velocity distribution for the case with periodic lateral boundary conditions 

(four snapshots equally spaced in time, =1.0); b) surface temperature spectrum (line 

x=3.52 at t=6); c) combined view of surface temperature and velocity distribution for the case 

with solid sidewalls (snapshot at t=3.44).    

Notably, the surface temperature distribution (Fig. 73b) still obeys the k-3 scaling found for the 

other cases. 

On the other hand, besides the spatial scaling law for the surface temperature spectrum 

(distribution of wavenumbers), all these cases with PBC also share another remarkable 

property, which needs to be pinpointed suitably here. Although, thermal ripples leading to 

localized splitting of cells are present in almost all cases (just like for the cases with solid 

sidewalls), the most significant contribution to time-dependence now comes from the 

continuous modification in the size, shape and positions of the cells.        

Unlike the discretely heated configurations under lateral confinement shown in Fig. 72c, where 

time-dependence occasionally manifests as defects that travel slowly in the pattern along the 

horizontal direction or localized ‘vibrating’ spokes that cause breaking of cells into two or more 
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parts, with PBC, the temporal behavior consists of cells that, ‘like boats drifting in open water’, 

continuously wander in an endless process. This peculiar motion, which closely resembles that 

found by Lappa and Ferialdi (2018) for slightly supercritical MB convection in viscoelastic 

fluids, affects the entire physical domain (Figs. 72a and 73a). The characteristic time with 

which cells move is smaller than the equivalent one corresponding to the aforementioned slow 

re-adjustment process induced by gravity in the presence of sidewalls. This observation is 

qualitatively and quantitatively substantiated by the velocity signals reported in Fig. 74a and 

74b for a sample case. 

a) 

b) 

c) 
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d) 

 

Figure 74: Signals provided by probes located above the heated blocks (y=0.65) for N=9, 

horiz =0.55 and adiabatic floor: a) Solid lateral walls (mixed convection); b) PBC (mixed 

convection), c) Solid lateral walls in microgravity conditions (Ra=0) , d) PBC in microgravity 

conditions (Ra=0).   

Following up on the previous point, this figure immediately shows that the simple (slow) 

adjustment of the cells on a relatively long time scale (Fig. 74a) for solid sidewalls is taken 

over for PBC by a faster process made visible by the increased number of valleys and 

mountains in the velocity signals (Fig. 74b). Localized (high frequency) oscillations 

superimposed on an otheriwse smaller-frequency signal are present in both cases. Obviously 

these correspond to the flickering of spokes repeatedly discussed before, which exists 

independently of the motion of cells. Most remarkably, the vibrating spokes are the only source 

of unsteadiness when pure Marangoni flow limited by sidewalls is considered (Fig. 74c). The 

last figure of the sequence (Fig. 74d) naturally complements the earlier observations by making 

evident that, even in the absence of buoyancy, pure Marangoni flow with PBC can yet display 

a progressive cell repositioning mechanism (which however occurs on a time scale larger than 

that visible in Fig. 74b). 
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a) b) 

 

Figure 75: Frequency spectrum for the Nusselt number (mixed convection, N=9, horiz =0.55 

and adiabatic floor): a) Solid lateral walls; b) PBC  [ average

sideNu  (black line), 
average

topNu (red line), 

related scaling law (blue line)]. The corresponding case for pure Marangoni flow (Ra=0) and 

solid sidewalls (not shown) displays a scaling behavior identical to that obtained for Ra=104.    

 

a) b) 

 

Figure 76: Frequency spectrum for the Nusselt number (mixed convection, PBC at the lateral 

boundaries): a) adiabatic floor, N=7, horiz =1; b) hot floor, N=7 and horiz =0.1 [ average

sideNu  

(black line), 
average

topNu (red line), related scaling law (blue line)].    
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To elucidate further the significance and implications of these findings, Fig. 75 reports the 

amplitudes of the different modes that contribute to the frequency spectrum of the element 

Nusselt numbers for the flows with both buoyancy and Marangoni effects (i.e., those 

corresponding to Figs. 74a and 74b, respectively).  

Cross comparison of the numerical results with physical lateral boundaries and PBC indicates 

that these obey different scaling laws. It can be seen that the continuous and relatively fast cell 

wandering allowed by the lack of sidewalls causes a switch from a -1 to a -3/2 dependence. 

Notably, both scaling laws can be considered universal, as witnessed by Fig. 76 where the 

spectra for different values of N, horiz  and thermal boundary condition at the bottom wall have 

been reported for the cases with PBC. 

 

6.5 Conclusions  
 

This chapter focused on investigations of the peculiar dynamics that a morphological alteration 

(topography) of the bottom wall consisting of periodically positioned cubic (hot) blocks can 

induce in an overlying layer of a high-Pr liquid (Pr=10) with an upper free surface.  

In articulating this problem, specific aim was to move beyond the idealized limitations of the 

classical RB and MB paradigms, which so much attention have attracted over several decades 

in terms of hierarchy of bifurcations and patterning behavior (up to the onset of chaos). In order 

to identify the correspondence between the geometrical and thermal characteristics of the 

bottom wall and the emerging flow in terms of textural, temporal and heat exchange properties, 

a systematic effort has been provided to map the complexity of such conditions into a 

corresponding zoo of patterns.  

Given the intrinsic nature of thermal convection induced by gravity, surface tension or both 

driving forces, fulfilling such objective has required a fully 3D approach based on the 

integration of the non-linear and time-dependent governing equations. 

Taking advantage of this framework, it also has been observed that the connection between the 

flow structure and the underlying structure is not as straightforward as one would imagine since 

a variety of factors can contribute to determine the related non-linear feed-back or coupling 

mechanisms. The relationship between a patterned boundary (intended as as repetition of 

sudden variations in its shape and related thermal attributes) and the flow field induced 

accordingly is just like the interrelation between two fundamental types of properties of any 

system in nature: characteristics that appear as a consequence of the interaction of the system 

with its environment (the larger system of which it is a part) through all its ‘boundaries’ and 

features that emerge as a result of mechanisms inherent within the system itself (its sensitivity 

to certain categories of fluid-dynamic disturbances). 
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Put together these aspects determine how the behavior of the considered system arises from 

detailed structures and interdependencies on a smaller scale. In particular, three distinct 

regimes, have been identified for the situation considered in the present work: trivial modes of 

convection where the surface pattern simply reflects (through a 1:1 correspondence) the 

ordered distribution of the underlying hot elements, states that display a notable degree of 

analogy with the ‘parent’ convective mechanisms (classical RB and MB flow) and a third 

category of flows represented by a kaleidoscope of possible solutions driven by intrinsic self-

organization abilities of the considered system (enabled when a given threshold in terms of 

number or horizontal size of the elements is exceeded).  

Although such a general classification has been found to hold for all the considered 

combinations of characteristic numbers (Ra0, Ma=0), (Ra=0, Ma0) and (Ra0, Ma0), 

significant differences have been observed depending on the involved driving forces. For pure 

buoyancy convection, transition from trivial patterns to more complex ones are essentially 

driven by thermal plume interaction mechanisms. Such processes result in shrinkage of the 

dimension of the matrix that can be used to map the distribution of surface spots, in comparison 

to the size of the underlying grid of hot elements. For Ra=104, only steady solutions exist. With 

the addition of surface tension effects (Bodyn=2), the complexity of the problem increases as 

unsteadiness enters the dynamics and points (vertices) with relatively high topological order 

pop up in the spatial network of surface spokes. These ‘knots’ behave as the centers of closed 

polygonal multi-cellular structures. Due to their existence, in general, the flow is more ordered 

(both in time and space) than the corresponding convective state that would be obtained 

assuming a flat and isothermal floor (Marangoni-Rayleigh-Bénard flow).  

Although surface-tension effects become dominant, buoyancy does still play a role in such 

phenomena. This has been revealed through direct comparison of microgravity and terrestrial 

conditions, leading to the realization that the hot blocks evenly spaced along the bottom can 

contribute to the regularity of the flow spatial organization through the creation of thermal 

pillars at fixed positions (still able to influence accordingly surface flow).  

The involved driving forces, however, are not the only influential factor driving the outcomes 

of the fluid-bottom-wall interaction. This process is also mediated by apparently secondary 

details such as the thermal behavior of the portion of floor between adjoining elements and 

(especially) the kinematic condition at the system side (its outer rim).    

If the adiabatic bottom wall (on which the hot blocks are placed) is replaced with an isothermal 

floor (at the same temperature as the blocks) and the distribution of elements is dilute and/or 

their horizontal extension is small, the intrinsic mechanisms of the parent forms (MB, RB) of 

convection tend to become dominant in determining the emerging planform. However, this is 

not a general rule, as in some cases the separated elements can still serve as ‘catalysts’ for the 

formation of well-defined and stable plumes. 

Replacement of the solid lateral wall with periodic boundary conditions has even more 

significant consequences, especially in terms of temporal dynamics. The triadic relationship 

between the hierarchy of involved driving forces, the lateral confinement and the system 

temporal response can be summarized as follows. For pure Marangoni convection 

(microgravity conditions) and solid lateral walls, unsteadiness essentially manifests itself in the 
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form of high frequency oscillations physically corresponding to the existence of vibrating 

spokes in the pattern, which cause localized cell breaking or coalescence effects. If buoyancy 

is also present, these high-frequency modes are complemented by long-period disturbances 

corresponding to the slow propagation of defects through the pattern (a slow displacement of 

the cell centers occurring on time scale comparable to the thermal diffusion time). For periodic 

boundary conditions, this slow process is taken over by a different phenomenon by which cells 

undergo a faster relocation in time, accompanied by significant changes in their size and shape. 

Moreover, the continuous and relatively fast cell wandering enabled in these cases causes a 

switch from the -1 law for the block Nusselt number frequency spectrum seen for solid lateral 

walls to a -3/2 dependence (in turn, both dependences seem to be universal as witnessed by the 

simulations conducted for different conditions, i.e. distinct values of N, horiz and thermal 

boundary condition at the bottom wall). 

In order to interpret this kaleidoscope of possible variants, a concerted approach has been 

implemented using the tools of computational fluid dynamics in synergy with existing models 

on the evolution of MB convection for highly supercritical Ma. Interestingly, it has shown that 

the pattern of surface temperature is forced to follow the k-3 spatial scaling originally identified 

by other authors (Thess and co-workers) regardless of the amplitude of buoyancy flow for Bodyn 

up to 2.   
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Chapter 7: Experimental facilities and tools: 

7.1 Geometrical Model: 
A sketch of the considered experimental setup used to produce the experimental results 

reported in this thesis is shown in Fig. 77. The fluid container consists of a square metal plate 

of aluminium having a size of 10 x 10 cm, on which solid walls of Perspex (1 cm tick and 2 

cm tall) have been mounted along the boundary, thereby leaving 8 x 8 cm of internal space to 

be occupied by the considered liquid (up to a total volume of 1.28x10-4 m3, corresponding to 

128 ml, in the absence of obstructions at the bottom). 

 

 

 

Figure 77: Three-dimensional view of the fluid container delimited by sidewalls of Perspex 

with series of bottom wall-mounted square elements evenly positioned along the sidewall 

directions (spacing, width and height can be systematically varied). 

The blocks are also made of aluminium (same material used for the bottom plate) and are 

mounted along the bottom wall in such a way to maintain their spacing regular along both the 

x and z horizontal directions. They are available with different horizontal and vertical sizes as 

follows: 
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Table 10: Block families 

 

Family Horizontal size  Vertical size Volume 

1a 8 mm 10 mm 640 mm3 

1b 8 mm 5 mm 320 mm3 

1c 8 mm 3 mm 192 mm3 

2a 10 mm 10 mm 1000 mm3 

2b 10 mm 5 mm 500 mm3 

2c 10 mm 3 mm 300 mm3 

 

7.2 Heating system : 

 

Figure 78: MS-H280-Pro Round ceramic coated Steel Hotplate. 

A commercial component is used to produce the required uniform heating at the bottom of the 

aforementioned fluid container, namely, a MS-H280-Pro Round ceramic coated Steel 

Hotplate/Stirrer by which the heating temperature can be increased up to 280 °C  in precise 1 

°C increments, other specifications being reported in Table 11. 
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Table 11: Specifications of MS-H280-Pro Round ceramic coated Steel Hotplate/Stirrer  

  

Parameter Value/range 

Work plate Dimension Φ 135 mm 

Work plate material stainless steel cover with ceramic  

Motor type Brushless DC motor 

Motor rating input 5 W 

Motor rating output 3 W 

Power 515 W 

Heating output 500 W 

Voltage 100-120/200-240V 50/60Hz 

Heating temperature range Room temp.-280, increment 1°C 

Control accuracy of work plate ±1 °C (<100°C) ±1%(>100 °C) 

External temperature sensor PT1000 (accuracy ±0.5 °C) 

Dimension [W x D x H] 150×260×80 mm  

Weight 1.8 kg 

 

7.3 Thermographic Camera: 

The distribution of temperature on the free surface of the considered liquid is observed using a 

FLIR C3-X Compact Thermal Imaging Camera (the related IR sensor has a resolution of 128 

x 96 px and thermal sensitivity of 70mK; moreover, it can detect and measure temperatures 

between -20°C and +300°C to an accuracy of ±3%). The overall inclination of the system is 

measured using a digital inclinometer with an accuracy of 0.01° (Neoteck NTK033-V). the 

following ranges are investigated: 0.5d0.75 cm corresponding to 0.86Bodyn1.94, 

moreover, Tair 211°C. 
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Figure 79: The distribution of temperature on the free surface is obtained using a FLIR C3-X 

Compact Thermal Imaging. The FLIR C3-X Compact Thermal Imaging Camera’s IR sensor 

has a resolution of 128 x 96px and thermal sensitivity of 70mK. It can detect and measure 

temperatures between   -20°C and +300°C to an accuracy of ±3°C/3%. 

In Figure 78, you can see that hot plate is placed on a solid wooden board which has screws on 

each corner. For flat fluid surfaces, screws were totally inside the board to provide plane surface 

to the hot plate. In case of inclined fluid layers, screws were moved out from one end of the 

board to produce inclination in fluid layer. Then inclinometer was used to measure the angle 

of inclination. For that, process was quite simple. Digital inclinometer provides accurate angle 

of inclination when it is placed on an inclined surface. 

Container was placed over the hot plate where you can see that hot blocks are perfectly placed 

and organized on the bottom surface of the fluid layer. Regarding measurement of the depth of 

fluid layer, Glass graduated measuring beaker was used. For example, for depth of 1cm the 

required volume of fluid layer should be 64cm3. By using measuring beaker exact fluid was 

measured and then poured into the container to provide accurate required depth of fluid layer. 

Finally thermographic camera was used to capture the convective pattern over free surface of 

the fluid layer.  
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Chapter#8: Thermographic Analysis of Topographically 

Controlled Thermal Convection in a Fluid with Temperature-

dependent Properties 

In the present chapter, thermal convection in a shallow layer of liquid with an array of metallic 

(aluminium) cubic elements evenly spaced along the bottom is investigated experimentally. 

The blocks protrude upwards and, although they are prevented from reaching the free surface, 

their vertical thickness, horizontal size and overall number can be varied parametrically. As a 

continuation of the studies presented in preceding chapters, this configuration is used with the 

two-fold intention to produce a kind of obstruction or blockage in the flow and, at the same 

time, to feed thermal convection with heat directly injected into the fluid at a certain distance 

from the (hot) floor.  

The present chapter takes inspiration from the earlier experimental investigation (based on a 

thermographic technique) by Ismagilov (Ismagilov, Rosmarin, Gracias, Stroock and 

Whitesides, 2001). Their simple and elegant analysis of MB convection (buoyancy effects 

being negligible in their study) revealed the existence of a non-trivial connection between a 

physical modulation of the bottom hot wall (implemented as bulges having various polygonal 

shapes or corrugations developing continuously along a fixed direction) and the symmetry 

properties of the emerging flow. On varying these features, the latter was found to undergo 

sudden transitions between different planforms, which were commensurate with the physical 

topography at the bottom but were differing in terms of ratio of the intrinsic flow wavelength 

and length scale of the bulges (this ratio being constrained to remain an integer number).   

This causality has been further explored in the preceding chapters of this thesis where the 

attention has been concentrated on bulges (blocks) having a cubic shape. Moreover, as a 

distinguishing mark with respect to (Ismagilov, Rosmarin, Gracias, Stroock and Whitesides, 

2001) much thicker layers of liquid have been considered, thereby allowing buoyancy to play 

a significant role. In these circumstances, solid protuberances have been found to prevent the 

flows from developing the classical rolls or inverted hexagonal cells typical of RB and MB 

convection in liquid metals (Chapter 6) and, similarly, to produce vigorous thermal plumes 

(thermals) able to interfere with classical surface-tension driven effects in silicone oils (Chapter 

7). Accordingly, it has been clarified that due to the presence of blocks, the set of possible 

solutions can be significantly modified, resulting in a zoo of possible behaviours, which seem 

to escape a possible simple definition or classification in the light of the exiting literature. In 

In the abovementioned studies, a possible classification has been attempted as follows: trivial 

modes of convection where the surface temperature distribution simply reflects (through a 1:1 

correspondence) the ordered arrangement of the underlying hot protuberances, patterns that 

display a notable degree of analogy with the ‘parent’ convective mechanisms (classical RB and 
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MB flow) and a third category of flows represented by a kaleidoscope of previously unknown 

states driven by intrinsic self-organization abilities of the considered system. 

The experimental investigation presented in this chapter builds on, but also tries to extend those 

chapters by expanding the set of non-dimensional parameters in terms of values of the Prandtl, 

Rayleigh and Marangoni numbers. In particular, given the intrinsic nature of the considered 

problem, a thermographic technique is used to visualize directly the thermally induced fluid 

currents originating from the top of the considered (disjoint) solid blocks with finite-size and 

study their influence of the emerging (spatially varying) patterns. Furthermore, different fluid 

depths are examined in order to change the relative importance of the buoyancy and Marangoni 

effects for a fixed geometry and temperature difference. Specific insights into the results are 

obtained using typical tools for the analysis of planform formation in non-linear systems and, 

accordingly, some effort is provided to interpret them, whenever possible, in the light of 

existing theories for pattern selection in canonical thermal convection systems. 

The blocks are also made of aluminium (same material used for the bottom plate) and are 

mounted along the bottom wall in such a way to maintain their spacing regular along both the 

x and z horizontal directions. They are available with different horizontal and vertical sizes as 

indicated in Table 12. 

Table 12: Block families 

 

Horizontal size Vertical size 

10 mm 10 mm 

10 mm 5 mm 

10 mm 3 mm 

 

The physical properties of the used fluid (Emkarate RL22H oil) as a function of the temperature 

are summarized in Fig. 80 (these figures also include the related fitting laws in the form of 

polynomial expressions).  
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a) b)  

c) d)  

e)  f)  
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g)    h)  

 

Figure 80: Physical Properties of Emkarate RL22H as a function of temperature as provided 

by the manufacturer: a) Dynamic viscosity  (exp. measurements); b) Density  (exp. 

measurements); c) Specific Heat at constant pressure Cp (exp. measurements); d) Thermal 

conductivity  (exp. measurements); e) Kinematic viscosity  (derived quantity, =/, 1 

cSt=10-6 m2/s); f) Thermal diffusivity  (derived quantity, =/Cp); g) Prandtl number 

(derived quantity, Pr= 
𝑣

𝛼
) , h) Surface tension  (exp measurements). 

These figures are instrumental in showing that the physical properties of the considered fluid 

display a variable degree of sensitivity on temperature depending on the considered property. 

Density, specific heat, thermal conductivity, and thermal diffusivity (Fig. 80b, 80c, 80d and 

80f, respectively) undergo a 10% percentage variation (or even smaller) over a range of 100 K. 

Nevertheless, the corresponding change in terms of viscosity is much more significant (see Fig. 

80a and 80e for the dynamic and kinematic viscosity, respectively).  

𝑃𝑟 =
𝑣

𝛼
           (21) 

Where 𝑣 and 𝛼 are the liquid kinematic viscosity and thermal diffusivity, respectively. The 

dependence of this parameter on temperature can be gathered from Fig. 80g where it is shown 

that for the considered oil a relatively high increase in the average temperature is equivalent to 

considering a fluid with a much smaller value of the Prandtl number (e.g., a value of the Prandtl 

Pr520 for T 20C is reduced to a value as small as Pr170 for T50C). 
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8.1 Shallow Blocks in shallow layer: 

As already explained to a certain extent before, the present chapter should be regarded as a 

sequel to the two earlier chapters based on numerical simulations, where the ability of an 

increasing number of blocks to induce multicellular states with varying degrees of complexity 

and self-organization was investigated for a fixed aspect ratio of the blocks, fixed values of the 

Prandtl, Marangoni and Rayleigh numbers and fixed layer thickness. Moreover, the physical 

properties of the liquid were assumed constant. Here, all these constraints are removed through 

a four-fold approach relying on a liquid with temperature-dependent physical properties (Fig. 

80), blocks with variable height (as shown in Table 12), increasing values of the temperature 

of the bottom plate (for a fixed value of the ambient gas temperature) and different liquid 

depths. 

In doing so, a logical process is implemented by which one influential factor is varied at a time, 

while the others are kept fixed. Such a specific hierarchy is obviously instrumental in the 

selective identification of specific system trends, which would remain otherwise out of reach 

due to the intertwined nature of many of these dependences. For the convenience of the reader, 

some of these can be briefly illustrated as follows. While a larger temperature difference 

contribute to increase directly (through a direct linear proportionality law) and indirectly 

(through the dependence of viscosity on temperature) both the Marangoni and Rayleigh 

number by a similar percentage (in such a way that their ratio, i.e. the dynamic Bond number 

remains almost constant), an increase in the liquid depth can cause a mismatch or disparity in 

the ensuing increase of these non-dimensional parameters (which display a linear and cubic 

dependence on the system size, respectively) thereby causing a significant variation of Bodyn.  

Also, the block size and aspect ratio have obviously an impact on the possible emerging 

solutions.  

In order to clarify these dynamics, in the following, an extensive parametric investigation is 

carried out. In particular, the following ranges are investigated: 15T30°C, 0.75d1.5 cm 

and  3 
y
 10 mm (see again Table 12), corresponding to O(1)Bodyn O(10), 5.3A10.6, 

0.3Abar1.0, 0.2y0.66 in terms of non-dimensional parameters. The temperature field is 

obtained from the infrared radiation emitted by the oil-gas interface. Moreover, the resulting 

images are digitized in order to allow the extraction of some relevant (quantitative) data using 

an appropriate Matlab based software. 

In particular, the discussion begins with the simplest possible situation, that is, the case with a 

shallow single block located in the center of the domain. Moreover, layers with the role of 

buoyancy increasing are considered  as the discussion progresses, that is, the analysis starts 

from the layer with thickness 0.75 cm.  
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Shallow Blocks in shallow layer 

Figure 81 provides a first glimpse of the dynamics observed for the block with height 3 mm 

located at the bottom of a layer with thickness 0.75 (Bodyn1.93) and increasing values of the 

temperature set for the bottom hot plate.  

 

a) b) 

c) d) 

e) f) 

 Figure 81: depth of the layer 0.75 cm (A=10.6, Bodyn1.93), N=1, block thickness 3 mm 

(y=0.4, Abar=0.3), variable temperature difference (Ra8.6x102xT, Ma4.4x102xT): a) 

T=15C, b) T=18C, c) T=21C, d) T=24C, e) T=27C, f) T=30C. Temperature 

maps show the descending currents as lines of colder (dark) material. 

It can be seen that for the smallest value of T considered (Fig. 81a), a multicellular 

configuration is obtained. This is indirectly proven by the distribution of hot spots visible along 

the free surface, each reflecting the presence of a convective structure with fluid rising 



137 
 

(vertically) at the center and descending at the lateral boundary of the cell (after it has 

exchanged heat with the external environment). Another key observation concerns the number 

and distribution of such cells. At first glance, indeed, the overall pattern might resemble that 

typical of classical MB convection. However, upon closer analysis, this figure also reveals that 

the influence of the central block is not negligible. This is qualitatively witnessed by the 

specific arrangement of spots visible in the central part of the domain. While five distinct 

cells/hot spots can be distinguished along each sidewall, a larger thermal feature occupies the 

geometrical center of the domain. The hallmark of this specific localized structure is not limited 

to its (slightly) larger size. Unlike all the other spots, a smaller concentric area is visible. It 

displays a temperature identical to that of the other regions separating adjoining spots (which, 

as explained before, correspond to the presence of fluids that after being cooled due to its 

interaction with the external environment tends to sink), which leads to the straightforward 

conclusion that a current of descending fluid is created just above the single block mounted on 

the bottom, i.e. a toroidal roll is formed just over the top surface of the block (see the sketch in 

Fig. 82).  

 

 

 

Figure 82: Sketch of the toroidal roll formed above the top surface of blocks. 

The next panel of Fig. 81 reveals that the symmetry of the arrangement of spots in Fig. 81a is 

lost as the temperature difference is increased. Although the central donut-like thermal feature 

is maintained, the surrounding pattern undergoes strong modifications. Initially, these consist 

of spot coalescence phenomena (Fig. 81b), which cause a decrease in the number of spots 

aligned along the external sidewalls and the formation of an almost circular circuit or ‘ring’ of 

spots encapsulating the central thermal feature. On a further increase of the temperature 

difference, also this specific scheme is lost in favour of a more disordered patterning behaviour 

(Figs. 81 c-f ).  
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a)  b) 

 

c)  d) 

 

e)  f) 

 

Figure 83: depth of the layer 0.75 cm, (A=10.6, Bodyn1.93), N=2, block thickness 3 mm 

(y=0.4, Abar=0.3), variable temperature difference (Ra8.6x102xT, Ma4.4x102xT): a) 

T=15C, b) T=18C, c) T=21C, d) T=24C, e) T=27C, f) T=30C. 

On increasing N to 2 (Fig. 83), the ability of the topography to influence the pattern strengthens 

as witnessed by the multiplicity of the thermal features linked to the underlying blocks by a 1:1 

correspondence. 
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 The thermal inhomogeneities induced at the free surface by the cubic elements at the bottom 

always manifest as warmer regions with a relatively large spatial extension in comparison to 

the other minor spots located in proximity to the walls. In turn, the number of these (see, e.g., 

Fig. 82a) is smaller than that visible in Fig. 81 for N=1 (3 spots aligned along each sidewall in 

place of 4). 

Overall, for not too high values of T, the pattern for N=2 obeys the D4 symmetry group 

(Chapter 6), that is, the set of reflections applicable to a regular polygon with 4 vertices. These 

include mirroring with respect to the lines perpendicular to the container sidewalls (parallel to 

the x and z axes shown in Fig. 81), which pass through the geometrical center of the domain 

and the analogous property with respect to the diagonal directions, i.e., the lines passing 

through diametrically opposite vertices. As a result, the center of the domain behaves as a 

special point (knot) with four-fold topology where the fluid (reaching it along four different 

horizontal directions) is finally pushed towards the bottom of the layer. The chosen disposition 

of the blocks within the container is compatible with these symmetries, which are retained by 

the emerging flow. Obviously, this concept cannot be extended to the up-down reflection, 

which is broken in any case because of the free upper surface and the presence of blocks 

(Chapter 7).  

Apart from interesting information about the symmetries which are retained or violated, the 

major significance of these findings resides in the confirmation they provide about the ability 

of hot protuberances to behave as ‘catalysts’, by forcing thermal plumes of buoyant nature to 

form at fixed positions. These behave as ‘pillars’, which can somehow ‘stabilize’ the pattern, 

i.e. make it much more regular with respect to those which would be produced with no 

topography. Suffice to recall that in the absence of topography, the pattern would be 

characterized by a disordered distribution of rolls with different orientations and/or convective 

cells emerging at different positions. Moreover, such a distribution would change on repeating 

the experiments in identical conditions.  

Along the same lines, frame-by-frame comparison of Figs. 83 and 81 also indicates that as N 

is increased, the transition to a disordered pattern is delayed to larger values of the T, which 

may be regarded as a further demonstration or verification of the stabilizing role that the bottom 

hot blocks can have on the emerging dynamics. This realization indeed finds its ultimate 

verification in the dynamics shown in Figs. 84, yet for a layer with depth 0.75 cm for N=3. 

 



140 
 

a)  b) 

 

Figure 84: Depth of the layer 0.75 cm, (A=10.6, Bodyn1.93), N=3, block thickness 3 mm 

(y=0.4, Abar=0.3) , variable temperature difference (Ra8.6x102xT, Ma4.4x102xT): a) 

T=15C, b) T=30C. 

Regardless of the considered value of T, a total of nine spots with well-defined square shape 

and highly ordered arrangement can be distinguished in this figure. This means that conditions 

are attained for which the features of the surface temperature field can be directly mapped into 

the topography at the bottom, i.e. they simply reflect the (a-priori-set) order of the underlying 

grid of hot blocks (while all the other minor spots are suppressed, a solution hereafter simply 

referred to as ‘saturated state’). However, a closer inspection of these figures also reveals that, 

although disordered patterns are no longer possible, on increasing the T, the D4 symmetry 

can still be broken due to some ‘localized effects’.  These manifest as localized star-shaped 

patterns (Fig. 84b).     

8.2 Tall Blocks in shallow layer 

A replacement of the blocks having thickness 3 mm with the 5 mm ones has a two-fold effect. 

For N=1, the central thermal feature that was displaying a donut shape in Fig. 81 (descending 

flow at the center) is replaced by a full spot (rising fluid at the center, Fig. 85). Moreover, 

(given the proximity of the top surface of protuberances to the free surface) the size of this 

central spot is appreciably larger (it can be argued that due to the limited space between the top 

surface of the block and the free liquid-gas interface the central toroidal roll described in Sect. 

8.1 is no longer formed).  
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a)   b) 

 

Figure 85: Depth of the layer 0.75 cm, (A=10.6, Bodyn1.93), N=1, block thickness 5 mm 

(y=0.66, Abar=0.5), variable temperature difference (Ra8.6x102xT, Ma4.4x102xT): a) 

T=15C, b) T=30C. 

For T =15 C (Fig. 85a), the ring of spots surrounding the central one displays 8 distinct 

features in place of the 6 observed in Fig. 81a. For larger T (Fig. 85b), this ordered 

arrangement is taken over by a relatively disordered distribution of rolls with inclined 

orientation, which tend to break into separated spots. 

a)  b) 

 

Figure 86: Depth of the layer 0.75 cm (A=10.6, Bodyn1.93), N=2, block thickness 5 mm 

(y=0.66, Abar=0.5), variable temperature difference (Ra8.6x102xT, Ma4.4x102xT): a) 

T=15C, b) T=30C. 

The next figure of the sequence (Fig. 86) is instrumental in showing that, moving on to the case 

with N=2, a stable pattern preserving the D4 symmetries is established over the entire interval 

of temperature differences considered. As a minor difference with respect to the equivalent 

dynamics depicted in Fig. 6, the aforementioned central ‘singular’ vertex with four-fold 

topology (collecting fluid moving horizontally towards it along the free surface, as explained 

in Sect. 4.1) is taken over by a small spot emerging at the center of the domain. 
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Additional insights follow naturally from a comparison of Figs.86b and 83f. The flow for a 

block thickness of 5 mm is much more regular and ordered at the same T, which indicates 

that for a fixed layer depth the stabilizing role played by the topography strengthens as the 

thickness of the blocks is increased. The same concept also applies to N=3 (Fig. 87). The 

location of spots is simply consistent with the related distribution of protuberances, and an 

external observer looking at the free surface in this case would naturally be induced to map the 

set of spots into an array having the same dimensions of the underling matrix of blocks (once 

again a saturated state condition). 

 

Figure 87: Depth of the layer 0.75 cm (A=10.6, Bodyn1.93), N=3, block thickness 5 mm 

(y=0.66, Abar=0.5), T=30C (Ra8.6x102xT, Ma4.4x102xT). 

8.3 Shallow Blocks in intermediate-depth layer 

Having completed a description of the emerging  patterns in terms of spatial features for the 

shallow layer case, now the companion situations with thicker layer are considered, these 

experiments being instrumental in clarifying the nonlinear processes of wavenumber selection 

at play in these systems. Along these lines, Fig. 88 refers once again to the archetypal N=1 

case. As the reader will realize by inspecting this figure, the most striking difference with 

respect to the analogous dynamics depicted in Figs. 81 and 85, for relatively small values of 

the T concern the size of the emerging thermal features, which increases considerably 

(compare e.g., Fig. 88a and 81a). Moreover, for small T the D4 symmetry is no longer a 

property of the pattern, this being replaced by a smaller degree of symmetry, namely, the 

reflectional invariance with respect to a line parallel to the z axis passing through the center of 

the domain (Fig. 88a). The significance of this figure, however, primarily resides in its ability 

to make evident that the distribution of wavenumbers is not independent from the T. As the 

vertical temperature difference grows, the number of convective becomes higher and 

accordingly the size shrinks (thereby indicating that an increase in T can cause a rise in the 

wavenumber, this concept will be re-examined later).  
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a)  b) 

 

Figure 88: Depth of the layer 1 cm (A=8, Bodyn3.44), N=1, block thickness 3 mm (y=0.3, 

Abar=0.3), variable temperature difference (Ra2.0x103xT, Ma5.9x102xT): a) T=15C, 

b) T=30C. 

For N=2, the pattern is very ordered (Fig. 89a), with four central spots encapsulated into an 

external ordered arrangement displaying 3 spots along each side. On increasing the T, 

however, the symmetry is broken (Figs. 89b). Finally, for N=3, the trivial aforementioned 

“saturated state” is recovered (simply reflecting the underlying distribution of elements, not 

shown). 

a) b) 

Figure 89: Depth of the layer 1 cm (A=8, Bodyn3.44), N=2, block thickness 3 mm (y=0.3, 

Abar=0.3), variable temperature difference (Ra2.0x103xT, Ma5.9x102xT): a) T=21C, 

b) T=27C (topological order of central knot p=4). 

8.4 Tall Blocks in intermediate-depth layer 

As the next logical step, in this section the focus is shifted to the scenario where the vertical 

size of the blocks is increased while retaining the same layer depth considered in Sect. 4.3. In 

such a treatment, however, the case N=1 is skipped as the related patterns are almost identical 

to that already shown in Fig. 88, which leads to the conclusions that for this depth the ability 

of a single block to influence the overall pattern is relatively limited.  
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a)  b) 

Figure 90: Depth of the layer 1 cm (A=8, Bodyn3.44), N=2, block thickness 5 mm (y=0.5, 

Abar=0.5), variable temperature difference (Ra2.0x103xT, Ma5.9x102xT): a) T=21C, 

b) T=30C.   

 

Figure 91: Depth of the layer 1 cm (A=8, Bodyn3.44), N=3, block thickness 5 mm (y=0.5, 

Abar=0.5), T=27C (Ra2.0x103xT, Ma5.9x102xT).   

On considering values of N larger than 1, however, some interesting, localized effects become 

evident (Figs. 90 and 91). The phenomena originally seen in Fig. 84 for a depth 0.75 cm, N=3 

and block thickness 3 mm also manifest in this case. In particular, as a result of an instability 

affecting the position of the inner colder spot located at the center of any square hot spot, some 

special knots appear in the domain, which can be uniquely identified through the topological 

order p of the radial spokes that emanate from them.  For N=2, notably, one of these special 

points is located just in the center of the domain (Fig. 90) and its topological order is p = 8. 

Remarkably, the p=8 multiplicity is still present for N=3 (Fig. 91), although the related knot 

no longer occupies the center of the domain. Owing to this asymmetry, knots with topological 

order p=6 are also present in addition to the standard one with p=4 (a similar effect can also be 

noticed in Fig. 84). 

 

 

 

 



145 
 

8.5 Shallow Blocks in thick layer 

This section and the next one (Sect. 8.6) are finally used to describe the dynamics for a layer 

with thickness 1.5 cm (doubled with respect to that considered in Sects. 8.1 and 8.2).  

In line with the trends highlighted in the earlier sections, by which an increase in the layer 

depth and or temperature difference causes a breakdown in the symmetry of the emerging 

pattern, Fig. 92 clearly shows that for a single block (N=1) with height 3 mm in a layer with 

depth 5 times this height, no specific spatial order exists over the entire range of Ts 

considered.  

As the vertical temperature difference is increased, the wavenumber becomes higher and some 

“spokes” separating spots having asymmetric square or hexagonal shape appear, thereby 

making the pattern similar to those reported by other authors for the case of pure buoyancy 

convection (see Sect. 5).  

a)  b) 

 

c)  d) 

Figure 92: Depth of the layer 1.5 cm (A=5.3, Bodyn7.75), N=1, block thickness 3 mm 

(y=0.2, Abar=0.3), variable temperature difference (Ra6.85x103xT, Ma8.8x102xT): a) 

T=15C, b) T=18C, c) T=27C, d) T=30C.    
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Figure 93: Depth of the layer 1.5 cm (A=5.3, Bodyn7.75), N=2, block thickness 3 mm 

(y=0.2, Abar=0.3), T=30C (Ra6.85x103xT, Ma8.8x102xT). 

For N=2 (Fig. 93) a trivial pattern with four large spots is obtained over the entire range of T 

considered, which leads to the conclusion that for this layer depth the system enters the 

saturated state condition for a smaller value of N (compare with Figs. 83 and 89). 

8.6 Tall Blocks in thick layer 

A scenario similar to that described in Sect. 8.5 still holds when the height of the block is 

increased. 

While Figs. 94 and 95 provide a glimpse of the more complex dynamics that are enabled when 

N=1 regardless of the thickness of the considered block (this being 5 mm and 10 mm in Figs. 

94 and 95, respectively), a saturated state is recovered as soon as N is increased to 2 (not 

shown).   

a)  b) 

Figure 94: depth of the layer 1.5 cm  (A=5.3, Bodyn7.75), N=1, block thickness 5 mm 

(y=0.33, Abar=0.5), variable temperature difference (Ra6.85x103xT, Ma8.8x102xT): a) 

T=15C, b) T=30C. 
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a)  b) 

Figure 95: Depth of the layer 1.5 cm  (A=5.3, Bodyn7.75), N=1, block thickness 10 mm 

(y=0.66, Abar=1), variable temperature difference (Ra6.85x103xT, Ma8.8x102xT): a) 

T=15C, b) T=30C. 

8.7 Discussion 

In order to interpret the present findings, a more detailed review of certain results appearing in 

the literature is beneficial (in addition to the information already reported in Chapter 2), in 

particular, a short excursus into the peculiar properties of RB convection in problems that lack 

the up-down reflection property may help to filter out those aspects which are typical of this 

form of convection with respect to those induced by the presence of blocks.   

As the reader will have realized at this stage, in the present case, such the up-down symmetry 

is broken due to the contribution of three independent factors, namely, 1) the strong dependence 

of some fluid properties on the temperature (as quantitatively substantiated in Fig. 3), 2) the 

presence of a free surface (as opposed to the no-slip conditions at the bottom) and 3) the 

existence of hot protuberances along the floor (the topography).  

Often hexagonal and asymmetric square convective cells have been observed in the literature 

even in circumstances where no topography was present in conditions where the first or the 

second factors were at play, relevant examples being the works by (Palm, 1960) and 

(Golubitsky, 1984) for the situation with temperature-dependent viscosity and by (Demircan 

and Seehafer, 2001) for the case of RB convection in layer with a free surface. In this regard it 

is also worth citing (Clever and Busse, 1996) , who found a pattern resembling that shown in 

Fig. 15b for a fluid layer delimited by solid walls both from above and from below (see Fig. 

4.25 in Lappa, 2009).  

Most interestingly, (Demircan and Seehafer, 2001) demonstrated by means of numerical 

simulations that, if stress-free conditions are considered at the horizontal boundaries in place 

of no-slip ones, square patterns appear in RB convection via the Skewed Varicose instability 

of rolls. In particular, square cells are made possible by the nonlinear interaction of modes with 

two different wavenumbers that are excited at the same time. These interacting modes can 

produce bifurcations leading to periodic alternation between a non-equilateral hexagonal 
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pattern and a square pattern or to different kinds of standing oscillations (Demircan and 

Seehafer, 2001). It is also worth recalling that this oscillatory behaviour of dynamical side 

swapping in square convection can also be found in Marangoni-Bénard convection (see, e.g., 

Ondarcuhu, 1993) and (Krmpotic et al., 1996), where it was still described as the nonlinear 

interaction between different critical modes). Re-examination of the present results in the light 

of this knowledge seems to indicate that, although the tendency to square convection is indeed 

present in some circumstances (the reader being referred once again to the saturated states 

shown in Figs, 84, 87 and 93), in general, the considered cases display the ability to give rise 

to more complex states or behaviours.  

As indicated by the present findings, on the one hand, thermals developing in the fluid due to 

the presence of blocks can dramatically limit the tendency of these systems to produce 

disordered patterns and multiple solutions, i.e., solutions that coexist in the space of phases and 

are selected depending on the initial conditions. On the other hand, however, features can be 

produced, which would not be a solution in the classical situation with no topography. In order 

to clarify this second aspect, in the following, in particular, the case N=1 is considered for 

which, as illustrated in Sect. 4,  the influence of the topography on the resulting pattern is 

mediated by the depth of the layer, the height of the blocks and the temperature difference (i.e. 

the central block displays a variable degree of success in influencing the overall dynamics 

depending on d, 
y
 and T, which provides a hint for the existence of interesting scaling laws). 

 

Figure 96: Wavelength as a function of the temperature difference between the bottom plate 

and the ambient for the layer with depth 7.5 mm (Bodyn1.93).   
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The impact of a single block on the distribution of non-dimensional wavelengths (made non-

dimensional using the layer depth) is quantitatively substantiated in the next three maps 

obtained for d = 0.75,1 and 1.5 cm (Figs. 96, 97 and 98 for Bodyn1.93, 3.44 and 7.75, 

respectively). These figures are used to reveal the non-trivial correspondence between the 

topography and the pattern; in particular, multiple occurrences of the same symbol for a fixed 

value of the temperature difference (e.g., along the vertical direction in Fig. 96) indicate the 

presence of coexisting convective structures with different horizontal extension. For 

completeness, quantitative data about the unobstructed layer are also included (the reader being 

referred to the “no block” symbol).  

A first key observation stemming from Fig. 96 (Bodyn1.93) concerns the visible similarities 

for the layer with and without topography.  Such common features (made evident by the 

overlapping symbols) clearly indicate that these are inherited from the parent forms of 

convection (the classical RMB problem).  

Comparison of the results with and without blocks, however, is also instrumental in showing 

that an additional branch of wavelengths (representative of another class of convective 

features) exists for the case with blocks (upper branch in Fig. 96). Notably, in general, an 

increase in the temperature difference results in larger convective structures only if this branch 

is considered, whereas no significant dependence of the wavelength on the temperature 

difference can be noticed for the lower branch.   

The required explanation for the perfect horizontal orientation of the lower branch can be 

elaborated in its simplest form on the basis of the argument that the although the aspect ratio 

of the fluid domain in this case is relatively large (A=10.6), it however is not infinite (which 

leads to the conclusion that the system is prevented from producing continuous changes in the 

wavelength of the modes of convection pertaining to the parent RMB flow).  

Interestingly, the presence of the blocks also allows the system to develop an ‘intermediate’ 

branch of wavelengths, which does not exist in the case with no topography. The use of 

different colours in this figure is also instrumental in revealing that a net distinction exists 

between the wavelength for blocks with 3 and 5 mm (upper branch). This implies that the 

anisotropy introduced by the central block, not only leads to the emergence of a new branch of 

localized states, but it also cause some readjustments in the general ability of the system to 

produce other localized convective features (thereby providing a justification for the different 

extension of the intermediate branch for different vertical size of the block). 
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Figure 97: Wavelength as a function of the temperature difference between the bottom plate 

and the ambient for the layer with depth 10 mm (Bodyn3.44).   

At first glance, when the depth of the layer is increased to 1 cm (Fig. 97, Bodyn3.44), the results 

obtained for blocks having a height of 5 mm and 3 mm are relatively close one another. 

Moreover, the (vertical) distance of the upper branch accounting for the presence of the central 

convective structure from the other branches becomes smaller.  On a separate note, it is also 

worth highlighting that, on increasing the T, the central spot displays a tendency to grow 

whereas the structures produced by standard RMB convection become smaller for T 27°C 

(the shrinkage being even more evident for the 5 m block case). 
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Figure 98: Wavelength as a function of the temperature difference between the bottom plate 

and the ambient for the layer with depth 15 mm (Bodyn7.75).  

As the layer depth is increased to 1.5 cm (Fig. 98, Bodyn7.75), the branch related to the spot 

above the single central block is no longer present. The ability of the block to influence the 

overall flow is relatively limited as also witnessed by the overlap of wavelengths obtained for 

the cases 3 mm and 5 mm. Relatively small structures appear only for T 27°C in the case 

5mm.  

As already discussed to a certain extent in Sect. 8.4, this variety of coexisting wavelengths 

tends to be mitigated as N is increased, until the convective features generated by the block 

becomes so dominant that they prevent the system from adapting to changes in the depth of the 

layer and/or height of the blocks, which explains why figures equivalent to Figs. 96-98 have 

not been produced in the present work for N=2 and N=3.  

Additional insights finally stem from comparison with Chapter 7 from which it can be inferred 

that consideration of a fluid with variable (temperature-dependent) physical properties can 

promote the emergence of self-organized states such as those shown in Figs. 53,56,59 and 60 

for smaller values of the parameter N. As a concluding remark, it should also be highlighted 

that, as in Chapter 7, time-dependent states (localized oscillations) have also occasionally been 

detected in the present chapter (e.g., for T larger than 27 C and 21 C in the 7.5 mm and 

10 mm depth cases, respectively). Although, the threshold is slightly dependent on the presence 
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of blocks, however only minor variations have been found in terms of patterning behaviour 

(consisting of minor modulations in the shape and size of the spots due to localized ‘vibrating’ 

spokes), which explains why this chapter has essentially dealt with ‘spatial’ rather than 

temporal aspects.  

 

8.8 Conclusions 

Complex patterns typical of canonical forms of convection such as MB and RB arise 

spontaneously as a result of the amplification (and ensuing saturation) of certain categories of 

disturbances which are selected out of the full spectrum of possible perturbations because of 

the symmetry that they satisfy and the isotropy and/or multidirectional translational invariance 

of the system where they are amplified. In contrast, as revealed by the present chapter, 

somehow ‘engineered’ patterns can be produced through the introduction of a given 

topography in the system. This can help to meet the desired objective through a two-fold 

influential process, namely, first (passive control) by limiting the accessibility of the flow to 

certain regions of the physical domain (breaking the in-plane isotropy of the fluid layer), second 

(active control) through the buoyancy-induced generation of thermals, which, by acting as 

‘pillars’ can force the pattern to develop nodes with relatively high topological order at fixed 

points, just like atoms positioned at lattice points in a crystal.   

The system response to a change in the topography (N) is mediated by a number of factors, 

including, the depth of the layer, the height of blocks, the temperature difference and the layer 

aspect ratio. By following a structured modus operandi aimed to unravel some specific 

interwoven aspects, in this chapter it has been shown that for N=1, features of the 

abovementioned classical forms of convection can still be clearly identified. For small and 

intermediate depths of the layer, these features correspond to the branches visible in the lower 

part of the figures (maps) providing the distribution of wavelength as a function of the 

temperature difference. In turn, the horizontal orientation of such branches indicates that, for 

the conditions considered in the present work, i.e. A=O(10), the layer is not sufficiently 

extended in the horizontal direction to allow a continuous variation of the wavelength with T 

(in other words, the size of the emerging convective structures represented by these branches 

is dictated essentially by the aspect ratio of the layer).    

The anisotropy introduced by the blocks leads to the emergence of another branch and some 

related re-adjustments in the other branches. The related ability of the wavelength to scale with 

the T may be regarded as evidence of the different nature of this convective feature, which is 

not constrained to obey the rules of standard RMB convection and represents a clear departure 

from convection in isotropic layers (it clearly draws from fluid motion originating from the hot 

vertical walls of the block, which allows it to escape the abovementioned rules). 
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On increasing the layer depth, as expected, the pattern-forming mechanism is transferred back 

to the parent form of convection. Remarkably, however, an increase in N has the opposite 

effect, i.e., the system gradually evolves towards topography-controlled solutions, whereas the 

properties of the parent forms of convection tend to be suppressed in favour of more system 

specific ones.  

For all the conditions considered in the present chapter, indeed, as N is increased from 1 to 2 

the convective features induced by the blocks become dominant with respect to those of the 

parent RMB convection in unobstructed layers regardless of the depth of the layer. Moreover, 

as already explained before, the thermal plumes generated above blocks act as pillars 

stabilizing the flow and reducing dramatically the set of allowed wavelengths until a single 

possible wavelength corresponding to L/3, i.e. a trivial state is obtained for N=3 over a wide 

range of conditions.  

A tendency opposing the emergence of such saturated states is represented by the ability of the 

planform to develop localized features, which can increase locally the topological order of 

certain knots and cause a breakdown in its symmetry, especially if a relatively small layer depth 

is considered.   
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Chapter#9: Patterning behavior of hybrid buoyancy-Marangoni 

Convection in inclined layers heated from below 

Alongside the interesting effects driven by gravity or surface tension in non-isothermal fluids 

when blocks are installed on the bottom wall, other exotic (poorly known) modes of convection 

can be enabled in a fluid layer when its container is inclined to the horizontal direction. Exotic 

modes of convection can be excited in these circumstances even if no blocks are present, i.e. 

the fluid layer is delimited from below by a hot plate and unbounded from above For the sake 

of completeness, this specific problem is considered in the present chapter.  

Apart from the fundamental importance that it has in the general kingdom of thermal 

convection, which naturally makes it a fundamental topic of interest to fluid physicists and 

other scholars, additional factors which make this problem a subject worthy of analysis are the 

various areas of applications it is somehow connected to. A first example is related to the field 

of crystals (growth from melt) where crystals of different materials are used for advanced 

electronic devices and typically produced through different processes (melting and re-

solidification of polycrystalline materials) performed in well-known conditions. It is known 

that even tilt angles as small as 0.5° can cause uncontrolled non-axisymmetric growth 

conditions in such processes and related detrimental effects (Markham and Rosenberger, 1984; 

Bachran et al., 1998; Mizev and Schwabe, 2009). 

Similar examples are related to the solidification of metal alloys, where inclination-induced 

shear flow can lead to serious morphological instabilities. In 2006 Forth and Wheeler 

investigated coupled convective and morphological instabilities in a simple model of the 

solidification of a binary alloy, which also includes shear flow mechanism (Forth and Wheeler, 

2006). Another relevant case is represented by phase change materials which are typically used 

in ‘energy-saving’ applications. These substances actually store energy during melting process 

and release it during solidification and can support during these repeated cycles of solid/liquid 

transition which corresponds to emergence of both buoyancy and surface-tension driven 

convection (Lappa, 2018).  

The configuration considered in this chapter is intended to mimic situations such as those 

occurring in the abovementioned technological applications and provide general insights into 

the dynamics of variable-depth systems supporting both buoyant and Marangoni effects. Such 

a configuration is shown in Fig. 99. In this case the closeness of free surface to the heated 

bottom in the areas where the depth of the fluid layer is smaller, is responsible for the 

emergence of a temperature inhomogeneity at the interface, thereby giving rise to fluid 

convection directly driven by the Marangoni effect. Fluid motion is also supported by 

buoyancy effects. Due to the inclination of the fluid layer, the horizontal component of gravity 
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can cause relatively warm fluid to flow up along the bottom wall (from left to right in Fig. 99) 

and in the opposite direction along the free interface.  

The magnitude ratio of buoyant and surface-tension-driven effects can be varied by changing 

the overall amount of fluid, i.e., its average depth. The larger the depth, the higher the relative 

importance of gravitational effects in comparison to surface tension ones. The most important 

implication of this observation is that relevant links also exist between this problem and a series 

of problems of meteorological, oceanographic, and geophysical interest (see, e.g., Lipps, 1971 

and Thorpe, 1987 for the atmosphere; Farrow and Patterson, 1993 for the hydrosphere and 

Richter, 1973 for analogous considerations about the mantle of our planet). 

It is also worth noting that, from a purely theoretical standpoint, the considered problem may 

be regarded as a specific realization of a more general category of phenomena where a ‘shear 

flow’ breaks the in-plane isotropy of the system (see, e.g., Weber, 1978). This effect can cause 

a deviation from the known dynamics of out-of-equilibrium systems, which are invariant with 

respect to translations in a direction parallel to the bottom boundary such as the canonical 

Rayleigh-Bénard and Marangoni-Bénard flows.  

In previous studies, former author considered fluid domains with uniform thickness and tilted 

with respect to the horizontal direction. In those cases, isotropy was lost due to the mismatch 

in the symmetry of the boundary conditions in relation to the applied body force (gravity). 

From all previous studies in last two decades, it can be concluded that depending on the 

inclination, the considered fluid, the size of the system and the applied temperature difference, 

many complexities and a rich variety of flow phenomena can take place. In addition, the 

emerging (gravitational) modes of convection in tilted enclosures can be broadly categorized 

into two groups: namely, transverse rolls and longitudinal rolls (LR). 

Based on existing literature on these subjects, it becomes also evident that in comparison to 

gravitational convection, studies on systems driven by surface-tension-driven effects where the 

isotropy of the classical heated-from-below configuration is broken, are much rarer and sparse. 

However, some interesting efforts exist for the case where the isotropy-breaking shear flow has 

been obtained by inclining the temperature gradient with respect to the liquid-gas interface 

rather than by inclining the layer itself. In that case, the temperature gradient results from the 

combination of heating from below and horizontal differential heating.  
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As an example, after the problem’s initial popularization by (Nepomnyashchy et al. 2001) and 

(Ueno et al. 2002), additional insights into these specific situations have been provided by 

Shklyaev and Nepomnyashchy, 2004), (Mizev and Schwabe, 2009) and (Patne et al. 2020). 

These studies showed that despite the shift in the driving force from buoyancy to Marangoni 

effects, the duality in terms of transverse and longitudinal modes of convection still holds in 

these cases.  

As shown in Fig. 99, the bottom of the cavity considered in this chapter has a constant 

temperature higher than that of the external gaseous environment (air) while the lateral walls 

are thermally insulated. The inclination of the container causes the liquid to redistribute its 

volume in such a way that its surface remains perfectly horizontal with respect to an external 

observer. In other words, on tilting the system at different angles, the liquid-gas interface will 

adjust its orientation in order to remain perpendicular to the gravity. In this regard, it should be 

briefly recalled that the lack of horizontal translational invariance (due to the inclination of the 

heated bottom wall such as in classical studies on inclined thermal convection) is reinforced in 

this case by the asymmetry produced in the geometry by its spatially varying depth, i.e., the 

system would not be isotropic even by replacing gravity with a force perfectly perpendicular 

to the bottom wall. Remarkably, this is the hallmark of the present configuration, that is, the 

major factor expected to expand the set of possible solutions with respect to those identified in 

earlier chapters.    

 

Figure 99: Sketch of the considered system.  

Fig 100 shows the sketches of the containers effectively used for the experiments. While one 

container has the square symmetry and characteristic internal size 8 cm (Fig. 100a, already 

presented in Chapter 5), the other has the cylindrical symmetry and an internal diameter of 13.3 

cm (Fig. 100b). While conducting experiments, the same conditions (same liquid depth, 

temperature of the bottom plate and overall system inclination) were applied to both containers 

in order to discern the role played in the considered dynamics (if any) by the solid lateral wall 
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and the aspect ratio of the fluid domain. The physical properties of the liquid used for the 

experiments (Emkarate RL22H oil) have already been provided in Chapter 8 (See Figs. 80).   

 

a) 

b) 

 Figure 100: Three-dimensional sketch of the fluid container delimited by sidewalls of 

Perspex: a) square container, b) cylindrical container. 

Introducing the average (or “equivalent”) depth of the layer (d) as ratio between the effective 

volume () of liquid present in the container and the area of the container base (corresponding 

to constant depth of the fluid when no tilt is applied), the classical Rayleigh and Marangoni 

numbers can be re-defined as:  

 

Ra=gTTd3/00         (21) 
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Ma=TTd/00         (22) 

 

where T accounts for a representative temperature difference, namely, the difference between 

the temperature of the bottom plate (Tplate) and that of the ambient (Tair), i.e. 
plate airT T T = − , 

(this temperature difference, much higher than that effective through the liquid, is used for 

practical purposes as the temperature of the free liquid-gas interface is not known a priori and 

behaves as a spatially varying quantity in the presence of convection); moreover, g and T are 

the gravity acceleration and the thermal expansion coefficient, 9.81 ms-2 and 7.7x10-4 K-1 of 

the considered fluid, respectively; T is the surface tension derivative coefficient (0.218 

mNm-1K-1 for the considered fluid, see Fig. 80). The subscript “0” refers to a reference 

temperature, which in the present thesis, for simplicity and without loss of generality, is 

assumed to be the temperature T0 of the environment (i.e., Tair).  As already discussed in 

Chapter 3, these two characteristic numbers can be further combined into a third non-

dimensional group, generally known as the dynamic Bond number: 

 

Bodyn=Ra/Ma=gTd2/T         (23) 

 

Although this should be regarded as a ‘derived’ parameter, the convenience in using it stems 

from its independence from the temperature difference and the immediate information it 

provides on the relative importance of buoyancy and surface-tension driven effects.  

9.1 Canonical states of thermal convection in the horizontal case 

 

Following a logical approach, first the simplest case is considered, i.e., the perfectly horizontal 

configuration (=0) for which convection is expected to emerge in the form of rolls or 

hexagonal cells according to whether buoyancy or surface-tension effects are dominant, 

respectively (Rayleigh-Marangoni-Bénard convection). In this regard the first set of figures, 

collected in Fig. 101 for the case with constant liquid depth 0.5 cm, is instructive as these 

figures show that the pattern-less state visible in the first panel (Fig. 101a) is taken over by a 

recognizable distribution of rolls and localized convective cells as soon as the critical threshold 

for the onset of convection is exceeded (Fig. 101b-d).  

 

 



159 
 

 a)   b) 

 c)   d) 

 

Figure 101: Surface temperature distribution for d=0.50 cm ( = 32 ml) and no inclination 

(A=16, Bodyn0.86, Ra2.5x102xT, Ma2.94x102xT): a) T=13C, b) T=18C, c) 

T=21C, d) T=27C. 

These are made evident by the rising (descending) currents of hot (cold) fluid as localized spots 

or strips with temperature higher (smaller) than the surrounding fluid.  
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 a)  b) 

   

 c)   d) 

  

Figure 102: Surface temperature distribution for d=0.75 cm ( = 48 ml) (A=10.6, Bodyn1.94, 

Ra8.6x102xT, Ma4.4x102xT): a) T=15C, b) T=21C, c) T=27C, d) T=33C. 

On increasing the depth of the layer, as expected the horizontal extension of the convective 

features grows accordingly (compare, e.g., each panel of Fig. 102 with the corresponding one 

in Fig. 101). Another key observation stemming from Fig. 102 concerns the complexity of the 

pattern and the number of convective features, which in qualitative agreement with other results 

in the literature, keep increasing with the T, i.e., it grows with the distance from the critical 

conditions.  

9.2 Convection in inclined square layer 
 

The simplest way to undertake a discussion of the situation where the layer is inclined to the 

horizontal is to start from the major remark that, unlike the canonical case considered in Sect. 

4.1, for zero the basic state is not in quiescent conditions. Rather it consists of a symmetry-

breaking shear flow induced by the horizontal component of the temperature gradient (see the 

related discussion in the introduction). 
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Following up on the previous point, Fig. 103 provides a first glimpse of the patterning behavior 

in such conditions when   3.5°.  

 

a)   b) 

 

c)   d) 

 

e)   f) 

 

Figure 103: Surface temperature distribution for d=0.50 cm ( = 32 ml) and   3.5° (A=16, 

Bodyn0.86, Ra2.5x102xT, Ma2.94x102xT): a) T=15C, b) T=18C, c) T=21C, d) 

T=24C, e) T=27C, f) T=30C. 
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The significance of this figure primarily resides in its ability to make evident that the inclination 

leads to two remarkable effects. The first concerns the hybrid (spatial) nature of the visible 

pattern. In place of the scattered distribution of spots occupying all the available space in Fig. 

101, the surface temperature exhibits in this case an almost feature-free region localized in the 

part of the physical domain where the depth of the layer is smaller.  

Moreover, the random distribution of rolls (in terms of direction in the xz plane) seen in the 

constant-depth case is taken over by a much more ordered arrangement where the convective 

features display a tendency to align with the z axis (the vertical direction in the figures, see, 

e.g., Fig. 103c).  

Notably, although these may immediately be classified as ‘longitudinal rolls’ (their axes being 

parallel to the tilt direction), their specific spatial configuration bares characteristic ingredients, 

which also need to be pinpointed suitably here. Their cross-extension, i.e., the typical size in a 

direction perpendicular to the roll axis undergoes remarkable variations along the z (tilt) 

direction, which indicates that the dimensional wavelength is not constant in the physical 

domain (these behaviors being quantitatively substantiated in Fig. 104, where this quantity has 

been plotted as a function of the z coordinate for a representative T). Moreover, as the T is 

increased, some other interesting changes show up. The length of the rolls along the z direction 

grows (compare, e.g., Fig. 103a and 103f, the reader being also referred to the data reported in 

Fig. 105).  

Superimposed on these trends, most interestingly, in some cases, in place of the striped pattern, 

which one would expect in the ideal situations of parallel longitudinal rolls, tree-like shapes 

can be distinguished in the surface temperature distribution. These give an external observed 

the illusion of a roll with a fork-like structure (two strips originating from a single initial strip, 

see, e.g., Figs. 103d-f)). Regarding wavelength measurements, in first step the images were 

digitized using a Matlab based software. Using this software, the surface temperature 

distribution acquired using the thermographic camera was turned in to a matrix of values. This 

matrix then further processed to extract information about the pattern wavelength along 

different directions. The wavelength along a given direction is usually determined by taking 

the distance between two adjoining peans or valleys and dividing it by the depth of the liquid 

layer. This software can also be used to extract the profile of temperature along a given 

direction.  
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Figure 104: Transverse roll extension as a function of the longitudinal direction z for T = 

27°C (square container, A=16, d = 0.50 cm, Bodyn0.86,   3.5°).   

 

 

 

 

 

Figure 105: Longitudinal extension of the rolls as a function of T (square container, A=16, d 

= 0.50 cm, Bodyn0.86,   3.5°). 
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Given the complexity of such phenomena, which seem to escape a possible simple definition 

or classification within the framework of the past lines of research (still retaining, however, 

some affinities with the typical features and salient ingredients pertaining to such categories), 

in the following, a peculiar modeling and analysis hierarchy is implemented in order to ‘filter 

out’ already known facts and concentrate selectively on new mechanisms. More specifically, 

this modus operandi is based on the step-by-step variation of the distinct (independent) 

parameters controlling the various degrees of freedom of the considered system, these being 

the characteristic temperature T (whose effects have already been outlined before), the tilt 

angle , the volume of liquid and the shape and aspect ratio of the considered container. While 

the effect of the T has already been outlined before (see gain Fig. 105), the overall volume of 

liquid is expected to influence the dynamics through related value of the dynamic Bond number 

based on the average depth of the liquid, which accounts for the relative importance of 

buoyancy and surface-tension driven effects. Similarly, the shape and aspect ratio of the 

considered container may influence the pattern selection mechanism through confinement and 

other geometrical effects 

 As a first step of this analysis hierarchy, a larger value of the inclination angle is considered 

for the same conditions of Fig. 103 (same volume of liquid and set of temperature differences).  

As immediately made evident by Fig. 106, an increase in  can produce a mitigation of the 

aforementioned roll pinching mechanism (by which a single longitudinal roll can be split into 

two neighboring rolls with smaller wavelength). A slightly larger values of  has also another 

remarkable consequence; on average, it causes a small (non-negligible) growth of the 

transverse extension of the rolls (this effect will be clarified later in this chapter).  
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a) b) 

 

c) d) 

 

e) f) 

 

Figure 106: Surface temperature distribution for d=0.50 cm ( = 32 ml) and   5° (A=16, 

Bodyn0.86, Ra2.5x102xT, Ma2.94x102xT): a) T=15C, b) T=18C, c) T=21C, d) 

T=24C, e) T=27C, f) T=30C. 
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Figure 107: Profiles of temperature at different stations along the longitudinal direction z 

(square container, A=16, d = 0.50 cm, Bodyn0.86, T = 27°C,   5°). 

The reduced tendency of the system to support roll pinching mechanism is qualitatively 

substantiated in Fig. 107. On closer inspection, indeed, this figure reveals that the number of 

peaks visible at each station z remains almost constant throughout the longitudinal extension 

of the domain (until no well-defined peaks can be seen as a certain limiting value of z is 

exceeded, which corresponds to the transition from the patterned to the spot-free region).  

Towards the end of getting a better grasp on how all these dynamics are affected by the depth 

of the layer, the next set of figures refers to the case where the average depth of the liquid is 

0.75 cm (see Fig. 108, yet for   5°). Along these lines, taken together Fig. 108 and Fig. 106 

are instrumental in showing that an increase in the relative importance of buoyancy forces with 

respect to surface-tension driven effects (as witnessed by the related rise in the dynamic Bond 

number) can help to make the roll-pinching mechanism even less frequent in favor of a more 

regular (parallel) distribution of longitudinal rolls. As even a fleeting glimpse into Fig. 108 

would immediately reveal, in fact, the patterned surface now corresponds to the entire free 

liquid-gas interface of the fluid layer, i.e., no cell-free area can be identified in this case (a kind 

of “saturated state” is attained in terms of roll extension along the tilt direction z). 
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a)   b) 

 

c)   d) 

 

e)   f) 

 

Figure 108: Surface temperature distribution for d=0.75 cm ( = 48 ml) and   5° (A=10.6, 

Bodyn1.94, Ra8.6x102xT, Ma4.4x102xT) a) T=15C, b) T=18C, c) T=21C, d) 

T=24C, e) T=27C, f) T=30C. 
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Figure 109: Profiles of temperature at different stations along the longitudinal direction z 

(square container, A=10.6, d = 0.75 cm, Bodyn1.94, T = 27°C,   5°). 

Additional insights follow naturally from a cross-comparison of Fig. 109 and 107. It can be 

seen that the number of rolls sitting in the cavity is reduced in the d=0.75 cm case (as clearly 

demonstrated by the smaller number of recognizable peaks at any given station in comparison 

to the equivalent ones visible in Fig. 107 for d=0.5 cm). 
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Figure 110: Transverse roll extension as a function of the longitudinal direction z for T = 

27°C for different average fluid depths and inclinations (square container).   

All these trends are finally summarized in Fig. 110 in terms of roll extension along x  as a 

function of the longitudinal coordinate z for different values of the layer average depth and 

inclination.  

Having completed a description of the observed phenomena in the square geometry case, now 

the equivalent dynamics emerging in the cylindrical container are examined briefly. As already 

explained to a certain extent before, this practice finds its justification in the two-fold purpose 

of assessing the role played by the system aspect ratio (ratio of the horizontal and average 

vertical extension) and the shape of the side boundary.  

9.3 Convection in inclined cylindrical layer 

As the reader will immediately realize by inspecting Fig. 111, moving on from the case with 

square boundary to that with cylindrical sidewall (compare with Fig. 103), no significant or 

appreciable changes can be discerned in terms of patterning behavior. The flow still displays a 

set of coexisting rolls, which originate from the side where the fluid depth is larger and protrude 

into the pattern-less region located at the other end of the container.   
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a) b) 

 

c)  d) 

e)  f) 

  

Figure 111: Surface temperature distribution for d=0.50 cm (  70 ml) and   3.5° 

(A=26.6, Bodyn0.86, Ra2.5x102xT, Ma2.94x102xT): a) T=15C, b) T=18C, c) 

T=21C, d) T=24C, e) T=27C, f) T=30C. 

Although from a qualitative standpoint, the scenario is essentially the same, however, a 

discrepancy or departure from the equivalent dynamics shown in Fig. 103 can be identified. It 

is represented by the tendency of the rolls to assume an oblique configuration with respect to 

the tilt direction (North-West/South-East in the different panels of Fig. 111).  
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Moreover, as revealed by a closer (quantitative) assessment of the pattern in terms of 

wavelength, this difference in the prevailing roll orientation occurs in conjunction with an 

appreciable increase in the roll transverse extension (Fig. 112). 

a) 

b) 

 

Figure 112: Transverse roll extension analysis (d= 0.50 cm, Bodyn0.86, T = 27°C,   3.5°): a) 

Temperature as a function of the transverse coordinate x at z= 4 cm, b) Roll extension along x as a 

function of the longitudinal direction z.   
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On the one hand, these results indicate that the scenario does not depend significantly on the 

shape of the domain, on the other hand, they provide evidence that, if the geometrical aspect 

ratio is increased (A=26.6 as opposed to A=16), the pattern is allowed to “relax” in the 

horizontal direction, thereby causing an increase in the dimensional wavelength. Another (more 

obvious) outcome of the cylindrical nature of the outer solid boundary is the modulation of the 

longitudinal extension of the rolls along the x axis for any fixed value of T (the rolls closer to 

left and right side of the container having smaller longitudinal extension that those located in 

the center, as a result of they being all terminated at the same station z).      
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a)   b) 

 

c)   d) 

 

 

e)   f) 

Figure 113: Surface temperature distribution for d=0.50 cm (  70 ml) and   5° (A=26.6, 

Bodyn0.86, Ra2.5x102xT, Ma2.94x102xT): a) T=15C, b) T=18C, c) T=21C, d) 

T=24C, e) T=27C, f) T=30C. 

Fig. 113 naturally complements figure 111, where additional evidence is provided that, on 

increasing the inclination, the transverse wavelength can be made higher (especially for 

intermediate values of z).  
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Figure 114 and 115 complete this sequence by illustrating the behavior for larger average depth 

of the layer (Fig. 115 to be compared for analogous cicumstances with the findings about the 

square layer in Fig. 108).  

a)   b) 

 

c)  d) 

 

e)   f) 

 

Figure 114: Surface temperature distribution for d=0.75 cm ( = 104 ml) and   3.5° (A=17.7, 

Bodyn1.94, Ra8.6x102xT, Ma4.4x102xT) a) T=15C, b) T=18C, c) T=21C, d) T=24C, 

e) T=27C, f) T=30C. 
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a)  b) 

 

c)   d) 

 

e)   f) 

 

Figure 115: Surface temperature distribution for d=0.75 cm ( = 104 ml) and   5° 

(A=17.7, Bodyn1.94, Ra8.6x102xT, Ma4.4x102xT) a) T=15C, b) T=18C, c) 

T=21C, d) T=24C, e) T=27C, f) T=30C. 
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Figure 116: Transverse roll extension as a function of the longitudinal direction z for all the 

cases considered in the present work (T = 27°C).   

Figure 116 finally provides an ensemble perspective on the system response for all the cases 

considered in Sects. 9.2 and 9.3. A number of interesting functional dependences can be 

discerned accordingly. Besides the aforementioned tendency of the transverse wavelength to 

attain larger values as the inclination and/or the liquid average depth (volume) are increased 

(with the values for the cylindrical domain being generally located above the corresponding 

ones for the square container with smaller aspect ratio), some interesting non-monotonic 

behaviors can be spotted there. 

In the cylindrical case, for d=0.5 cm (Bodyn0.86) and   5° the wavelength curve is entirely 

located above the corresponding one for the square domain (refer to the red branches in Fig. 

116). The cylindrical case, however, displays a maximum for z = 7 cm, followed by a branch 

of decreasing behavior. Notably, an interval of the z coordinate can be identified accordingly 

where the wavelength for   5° is smaller than that attained for the same average liquid depth 

(d=0.5 cm) and   3.5° (z< 5.2 cm). The same concept applies to the curve for d=0.75 cm 

(Bodyn1.94) and   5°. Although, the wavelength is larger than the corresponding one for 

d=0.5 cm over almost the entire longitudinal extension of the fluid domain, this relationship is 

inverted in the range 5.7<z<7.7 cm. This curve even intersects the corresponding one for the 

square container for z 3.8 cm (refer to the blue branches in Fig. 116), which indicates that 
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circumstances exists where the wavelength in the cylindrical case can become smaller than the 

equivalent square-domain value (Bodyn1.94,   5° and z<3.8 cm).  

 

 

Figure 117: Profiles of temperature at different stations along the longitudinal direction z 

(cylindrical container, A=17.7, d = 0.75 cm, Bodyn1.94, T = 27°C,   5°).   

 

For the sake of completeness, Fig. 17 finally shows the distribution of temperature profiles in 

the cylindrical case for d = 0.75 cm and   5°. 

9.4 Discussion: 

It is a well-known concept that, regardless of whether the underpinning processes are different 

or not, systems that are driven out of equilibrium often display similar behaviors or patterns 

(Lappa, 2009). Therefore, in this section some effort is provided to emphasize on some prior 

research displaying some potential links with the results described in this chapter. In particular, 

the discussion is articulated along two different threads. Namely, first, the existing literature 

on surface-tension driven convection in horizontal layers with inclined temperature gradient is 

reviewed and then the existing studies on pure gravitational convection in inclined shallow 

enclosures with constant depth (geometries with a rectangular transverse section) is examined.  

In the former case, some resemblances can be seen about the existence of a symmetry breaking 

shear flow, which can deeply influence the effective patterning behavior.  In 2001, 

Nepomnyashchy performed a linear stability analysis, in which they provided a detailed 
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classification of the fundamental modes of surface-tension-driven convection in horizontal 

layers with an inclined temperature gradient (Nepomnyashchy, 2001). These were categorized 

as stationary longitudinal rolls, essentially driven by the same thermal effects that can produce 

classical MB convection, and transverse rolls for which shear plays a much more important 

role (Nepomnyashchy et al.2001). On the other hand, Hydrothermal waves were also identified 

in the case for which the horizontal component of the temperature gradient becomes so strong 

that it can obstruct the concurrent mechanisms driven by the vertical component. Due to lack 

of HTWs in the present experiments even for those cases where depth of the fluid layer is 

minimal, it can be concluded that present conditions are far from those for which these specific 

modes of convection can be excited. Another possible explanation could be rooted in another 

class of studies dealing with hybrid Marangoni-buoyancy convection in differentially heated 

liquid layers where the gradient of temperature is applied parallel to the free interface. In the 

literature, there is evidence that if buoyancy is sufficiently strong in comparison to surface-

tension driven effects then HTW is taken over by longitudinal rolls with axes parallel to the 

(horizontal) temperature gradient. 

In 2004, Nepomnyashchy and Shklyaev investigated thermocapillary flows under an inclined 

temperature gradient and provided useful information about the effective morphology of the 

emerging convection structures through non-linear numerical simulations (Shklyaev and 

Nepomnyashchy, 2004). For a sample liquid with Pr=7, they examined the morphological 

changes undergone by the compact cells typical of MB convection under the effect of a 

superimposed shear flow and showed that between the areas of the existence of the hexagonal 

patterns and the longitudinal rolls, there is a stability domain of “oblique rolls” , i.e. rolls 

inclined with respect to the direction of the horizontal temperature gradient. They also found 

states with half of the convective pattern consisting of oblique rolls with positive inclination 

angle and the other half displaying rolls with a negative inclination angle of the same modulus. 

In 2002, Ueno et al. performed an experimental investigation on thermocapillary convection in 

thin liquid layer with temperature gradient inclined to free surface. They used silicon oil of 2, 

5, 10 and 20 cSt as the test fluid. In this study, the temperature gradient was applied to the fluid 

layer with an inclination to the free surface. They found stationary longitudinal rolls and 

drifting cells in the convective pattern (Ueno et al. 2002). Later, Mizev and Schwabe conducted 

an experimental campaign to assess the role played in such dynamics by the depth of the layer 

(10 cSt silicone oil with a thickness d varying from 1.0 to 6.0 mm, Mizev and Schwabe, 2009). 

All these authors found that as the layer thickness increases the Bénard–Marangoni cells 

elongate along the direction of thermocapillary motion. When the longitudinal size of the cells 

reaches the horizontal size of the layer, a new flow structure appears in the form of LRs. More 

precisely, they also observed that for any depth of the layer in the considered range, while an 

increase in the horizontal component of the temperature gradient for a fixed vertical 
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contribution can cause a transition from drifting cells to LRs, vice versa, an increase in the 

vertical component of the temperature gradient for a fixed horizontal contribution leads to the 

opposite transition. 

Several similarities could be identified between these behaviors and the present results. 

However, it must mention that in present case in addition to the inclination of the temperature 

gradient with respect to the free interface, the depth of the liquid layer is not constant. The 

related discussion could be started from a simple remark that for inclined systems subjected to 

buoyancy only and relatively small angles of inclination such as those considered in the present 

work, these systems tend to develop stationary longitudinal rolls, i.e. rolls of essentially 

buoyant nature that aligns with the direction of the shear flow are the typical outcome of the 

primary instability of these systems. Only for the case where inclination is relatively large then 

the ground is left to transverse rolls where rolls exist with axes perpendicular to the shear flow 

essentially driven by shear (Chen and Pearlstein, 1989). In 1993 Fujimura and Kelly clarified 

that the transition angle essentially depends on the Prandtl number of the considered fluid, and 

it is less than 90 only if the Prandtl number is smaller than 12.47 (Fujimura and Kelly, 1993) 

which further indicates that longitudinal rolls should be regarded as the primary pattern forming 

process in oils and other fluids with relatively large values of the Prandtl number.  

The present findings, Fig 108 where buoyancy is dominant shows that such a trend (i.e. the 

tendency to favor LRs for small tilt angles) still holds although situations with non-constant 

depth of the layer have been considered. On the other hand, Figs 115 and 116 also provide a 

hint for another interesting connection with the dynamics described in the studies by (Shadid 

and Goldstein, 1990) and (Busse and Clever, 1992).  Former authors performed experimental 

analysis on a fluid with Pr=90 and concluded that for low to moderate angles of inclination and 

a sufficiently high value of the Rayleigh number, the longitudinal rolls can become unstable 

against a three-dimensional “wavy” instability. By means of numerical simulations, Busse and 

Clever could confirm that a three-dimensional “wavy” instability is the main mechanisms 

responsible for the emergence of the so-called undulations patterns (Busse and Clever, 1992). 

Convective patterns observed in Figs 108 and 115 clearly reveal that the tendency of the present 

system to develop oblique rolls characterized by sinusoidal spatial distortions as the aspect 

ratio is increased from 10.6 to 17.7 and the straight (parallel) sidewalls are replaced by a curved 

boundary.  

In Fig 103, it can be seen that the free surface of the inclined fluid layer leads to two remarkable 

effects where the surface temperature exhibits in that case an almost feature-free region 

localized in the part of the physical domain where the depth of the fluid layer is smaller. 

Moreover, the random distribution of rolls seen in the constant-depth case is taken over by a 

much more ordered arrangement where the convective features display a tendency to align with 

the z axis (the vertical direction in the figures, see, e.g., Fig. 103c). Then in next case, it was 
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also observed that an increase in  (Fig. 106) can produce a mitigation of the aforementioned 

roll pinching mechanism (by which a single longitudinal roll can be split into two neighboring 

rolls with smaller wavelength). In addition, it causes a small (non-negligible) growth of the 

transverse extension of the rolls (this effect will be clarified later in this chapter).   

9.4.1 Heat Sources Placed on Bottom Surface of Inclined Square Layer: 

Fig 118 is showing the first glimpse of the convective patterns over free surface of the inclined 

fluid layer when one block is mounted on its bottom. Also in this case, it can be clearly seen 

that fluid layer is characterized by a feature-free region where its depth is smaller. On the 

opposite side, the convective pattern consists of longitudinal rolls along with one full spot 

created just over the block located in the middle of the domain. An increase in the temperature 

difference causes a small growth in the transverse extension of the rolls which then proceed 

towards feature-free region. In other words, due to the increase of the temperature difference, 

these rolls start to align with z axis and extend towards the other side where depth of fluid layer 

is relatively small.  
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 a) b) 

c) d) 

e) f) 

Figure 118. Surface temperature distribution for d=0.50 cm ( = 32 ml), N=1 and   5° 

(A=16, Bodyn0.86, Ra2.5x102xT, Ma2.94x102xT): a) T=15C, b) T=18C, c) 

T=21C, d) T=24C, e) T=27C, f) T=30C. 
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On increasing N to 2, the fluid layer still produces feature-free regions where its depth is 

smaller; blocks located in this region appear as hot objects which are in direct contact with 

the external gaseous environment. Notably, they do not produce any convective features (see 

fig 119). By contrast, on the other side, the blocks (where fluid depth is relatively large) 

produce donut-shape spots and the surface also features some other hot spots along the 

sidewalls and in between the blocks. When the temperature difference is increased then hot 

spots specially between the blocks convert into rolls and tend to extend progressively towards 

the feature-free region and align themselves w.r.t z-axis. On increasing N to 3, an almost 

saturated state is obtained where only the blocks placed in proximity to the sidewall where 

the fluid depth is larger, produce donut shape features. The main reason for these different 

behaviors is the distance between the block’s top surface and free surface of the fluid layer 

which varies along z-axis due to inclination of the fluid layer (Fig 120). 
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a) b) 

c) d) 

e) f) 

Figure 119. Surface temperature distribution for d=0.50 cm ( = 32 ml), N=2 and   5° 

(A=16, Bodyn0.86, Ra2.5x102xT, Ma2.94x102xT): a) T=15C, b) T=18C, c) 

T=21C, d) T=24C, e) T=27C, f) T=30C. 
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a) b) 

c) d) 

e) f) 

Figure 120. Surface temperature distribution for d=0.50 cm ( = 32 ml), N=3 and   5° 

(A=16, Bodyn0.86, Ra2.5x102xT, Ma2.94x102xT): a) T=15C, b) T=18C, c) 

T=21C, d) T=24C, e) T=27C, f) T=30C. 
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In the following the same angle of inclination is considered, but the depth of the fluid layer is 

increased from 0.5cm to 0.75cm in order to analyze the effects of a change in depth on the 

convective pattern. Along these lines, Fig 121 shows the convective pattern when just one 

block is placed in middle of the domain. Initially, for a relatively small temperature 

difference, there’s feature-free region on the side where depth of the fluid layer is relatively 

small. In addition, a donut-shape hot spot is formed over the block. When the temperature 

difference is increased, however, the convective pattern shows that the feature-free region is 

taken over by full hot spots which exist along all side walls and around the block. At T=21 

and 24, an external observer would see that hot spots around the middle block have started to 

convert into rolls. Higher temperature differences cause growth in transverse extension of 

these rolls which then start to align themselves along z-axis and spread towards the opposite 

end. 
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a) b) 

c) d) 

 

e) f) 

Figure 121. Surface temperature distribution for d=0.75 cm ( = 48 ml), N=1 and   5° 

(A=16, Bodyn0.86, Ra2.5x102xT, Ma2.94x102xT): a) T=15C, b) T=18C, c) 

T=21C, d) T=24C, e) T=27C, f) T=30C. 
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A) B) 

c) d) 

e) f) 

Figure 122. Surface temperature distribution for d=0.75 cm ( = 48 ml), N=2 and   5° 

(A=16, Bodyn0.86, Ra2.5x102xT, Ma2.94x102xT): a) T=15C, b) T=18C, c) 

T=21C, d) T=24C, e) T=27C, f) T=30C. 

On increasing N to 2 (Fig. 122), donut shape hot spots can be seen over each block, 

coexisting with other hot spots distributed along all side walls. One particular change w.r.t to 

previous case is the emergence of a full hot spot in the middle of domain. At higher 

temperature difference (T=30), it can be seen that hot spots over entire free surface start to 
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interact with other spots, and then convert into rolls which further proceed towards the other 

side of the container. Finally, for the case with N=3, the following patterns confirm that the 

fluid layer is in a completely saturated state (Fig. 123).  

a) b) 

c) d) 

e) f) 

Figure 123. Surface temperature distribution for d=0.75 cm ( = 48 ml), N=3 and   5° 

(A=16, Bodyn0.86, Ra2.5x102xT, Ma2.94x102xT): a) T=15C, b) T=18C, c) 

T=21C, d) T=24C, e) T=27C, f) T=30C. 
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9.5 Conclusion: 

Hybrid Marangoni-buoyancy convection in a fluid domain with variable fluid depth and 

inclined temperature gradient with respect to the horizontal direction has been investigated in 

the attempt to enrich the current knowledge about the fluid-dynamic behavior of these systems. 

In particular, the unique examined configuration should be regarded as an intentional attempt 

to move beyond the models adopted so far by the community of theoretical physicists and 

engineers, which has essentially been based on the paradigm of a series of different idealized 

setups and has not yet branched out to heated systems with irregular transversal thickness. 

It has been shown that, in analogy with the companion cases represented by Marangoni 

convection in horizontal layers with temperature gradient inclined to the free liquid-gas 

interface and buoyancy convection in constant-thickness tilted enclosures, the preferred (or 

dominant) mode of convection for relatively small tilt angles is represented by longitudinal 

rolls. These manifest with a wavelength that increases with the layer depth. A relaxation in the 

lateral confinement can also contribute to increase their transverse extension, which indirectly 

proves that the sidewalls play role in the wavenumber selection mechanism in the considered 

range of aspect ratios. 

A coherent picture of the richness of possible scenarios in terms of roll transverse size, 

longitudinal extension, and orientation with respect to the tilt direction has been provided by 

varying parametrically the system influential factors, namely the temperature difference, liquid 

volume (average layer depth), inclination angle and the aspect ratio of the fluid container.  

It has been shown that the hallmark of the considered dynamics is a modulation of the 

abovementioned transverse wavelength along the longitudinal direction, which should be 

regarded as an important distinguishing factor with respect to the “similar” behaviors displayed 

by these modes of convection in systems with a constant depth, regardless of whether the main 

driving force is represented by thermocapillary or buoyancy. An increase in the temperature 

difference generally causes an increase in the longitudinal extension of the rolls.  

Future attempts shall be devoted to clarifying the nature of the interesting roll pinching 

mechanism (by which a single longitudinal roll can be split into two neighboring rolls with 

smaller wavelength), found in the case for which the lateral confinement is significant (small 

aspect ratio), and the layer depth is relatively small. Critical comparison with the existing 

literature has revealed that although most of existing results can be organized in well-studied 

universality classes, the interpretation of some experimental realizations is not always a 

relatively simple task. Factors contributing to the inherent complexity of this objective are the 

essentially counter-intuitive non-linear behavior displayed by these systems and the blending 

of convective modes (normally operating separately) due to nature of the specific problem 

considered here. Another open question relates to the influence of container shape. Although 

it has been proven here that the patterning behavior does not depend significantly on it 
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(longitudinal rolls being selected over the entire space of parameters) and that the main impact 

of a variation in the aspect ratio is limited to a modification of the transverse roll extension, 

additional care shall be put to discern separately the role played by the container aspect ratio 

and its shape. The latter might indeed be the root cause of the differences observed in terms of 

monotonic or non-monotonic nature of the curves providing the relationship between the roll 

wavelength and the longitudinal coordinate.   
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Conclusion: 

In this dissertation, the dynamics of gravitational and surface-tension driven flows were 

investigated in fluid systems with periodically distributed hot blocks mounted on the bottom 

wall. The main objective was to understand how ensemble properties arise from the interplay 

of localized effects, i.e., different sources of heat and/or the specific topography present at the 

bottom. This research problem was actually designed in order to represent a variety of 

technological applications (at different scales) where thermal inhomogeneities induce in the 

surrounding fluid patterns that are similar to or reminiscent of the classical modes of Rayleigh–

Bénard (RB) or Marangoni–Bénard (MB) convection. This subject has been addressed from 

both numerical and experimental points of view.  

From a numerical point of view, initially simulations were performed to analyse 

topographically controlled Marangoni-Rayleigh-Benard convection in liquid metals through 

solution of the governing equations for mass, momentum, and energy. According to the results 

described in chapter#6, a topography at the bottom of a layer of liquid metal coupled with a 

thermal inhomogeneity can deeply change the flow with respect to the patterns, which would 

be produced in the equivalent conditions without blocks. In particular, the presence of 

obstructions prevents the layer from forming the horizontally extended rolls or the hexagonal 

cells, which would be typical of RB and MB convection, respectively. It was also observed that 

the outcomes of an increase in the height of the blocks are generally limited to a rise in the 

temperature of the hot spots, which are produced by rising thermal currents that meet the free 

surface, but an increase in their number can make the average temperature of the entire fluid 

layer much higher.  

After examining the case of liquid metals, the role played by heat source location and 

multiplicity in topographically controlled thermal convection has been investigated 

numerically for the case of oils with almost constant (i.e., temperature-independent) viscosity 

(silicone oil). Three distinct regimes have been identified, namely, trivial modes of convection 

where the surface pattern simply reflects the ordered distribution of the underlying hot 

elements, states that display a notable degree of analogy with the ‘parent’ convective (RB and 

MB) mechanisms and a third category of flows represented by a kaleidoscope of possible 

solutions driven by intrinsic self-organization abilities of the considered system. For pure 

buoyancy convection, thermal plume interaction mechanisms cause transition from trivial 

patterns to more complex ones, where however the number of spots undergoes a decrease with 

respect to the dimension of the underlying grid of hot elements. When surface-tension effects 

are added, buoyancy can still play a role. This has been revealed through direct comparison of 

microgravity and terrestrial conditions, leading to the realization that the hot blocks evenly 
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spaced along the bottom can contribute to the regularity of the flow spatial organization through 

the creation of thermal pillars at fixed positions (when gravity is present). 

It has been shown that for pure Marangoni convection and solid lateral walls, unsteadiness 

essentially manifests itself in the form of high frequency oscillations physically corresponding 

to the existence of vibrating spokes in the pattern, which cause localized cell breaking or 

coalescence effects. If buoyancy is also present, these high-frequency modes are complemented 

by long-period disturbances corresponding to the slow propagation of defects through the 

pattern. For periodic boundary conditions, this slow process is taken over by a different 

phenomenon by which cells undergo a faster relocation in time, accompanied by significant 

changes in their size and shape. 

After examining the problem from a numerical point of view (in order to gain initial knowledge 

about the behaviours of these systems, which were still almost completely unknown), a 

thermographic technique has been used to investigate thermal convection in a shallow layer of 

liquid with an array of metallic (aluminium) cubic elements evenly spaced along the bottom. 

In this case, in order, to explore further the dynamic response of these systems, a relatively 

viscous oil with temperature-dependent properties has been considered. By doing so, it has 

been shown that system’s response to a change in the number of blocks N is mediated by a 

number of factors, including, the depth of the layer, the height of blocks, the temperature 

difference, and the layer aspect ratio. Wavelength analysis of the digitized thermal patterns has 

revealed that for N=1, features of the parent classical forms of convection can be clearly 

identified. For small and intermediate depths of the layer, the features inherited from the parent 

RMB convection correspond to the quantized branches visible in the lower part of the figures 

(maps) providing the distribution of wavelength as a function of the temperature difference. 

On increasing the layer depth, however, the pattern-forming mechanism is transferred back to 

the parent form of convection.  On the other hand, an increase in N has the opposite effect, i.e., 

the system gradually evolves towards topography-dominated solutions, whereas the properties 

of the parent forms of convection tend to be suppressed in favour of more system specific ones. 

Finally, a trivial (saturated) condition is obtained for N=3. 

Comparison of these findings with those presented in Chapter 7 has led to the conclusion that 

consideration of a fluid with variable (temperature-dependent) physical properties can promote 

the emergence of self-organized states for smaller values of the parameter N. 

Still using the same fluid (an oil with temperature-dependent viscosity, additional experiments 

have been conducted considering hybrid Marangoni‐buoyancy convection in a fluid domain 

inclined with respect to the horizontal direction. It has been shown that for relatively small tilt 

angles the dominant convection mode is represented by longitudinal rolls, which manifest with 

a wavelength that increases with the layer depth. In addition, a relaxation in the lateral 
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confinement can also contribute to increase their transverse ex‐ tension. Different types of 

scenarios in this type of convection mode actually depend on multiple factors including the 

temperature difference, liquid volume (average layer depth), inclination angle and the aspect 

ratio of the fluid container, regardless of whether the main driving force is represented by 

thermocapillary or buoyancy. An increase in the temperature difference generally causes an 

increase in the longitudinal extension of the rolls. The presence of block can break such 

longitudinal rolls and lead to interesting complex patterns.  

All the results presented in this thesis are intended to support the understanding of systems with 

multiple sources of heat and guide the design of the related cooling systems. 

Future work shall be devoted to considering other types of fluids (e.g., water that is typically 

used in nuclear reactors as cooling fluid) and, obviously, air (for which the dynamics are driven 

by buoyancy only). In terms of numerical studies, simulations can be performed by using 

different fluids and circular container (to provide variations in Pr number and aspect ratio) 

where boundary conditions similar to experimental work can be adopted. Another interesting 

factor could be the selection of two types of fluids in experimental studies which are 

immiscible. In that case, convection can be analysed over liquid-liquid interface instead of 

liquid-gas interface in the presence of hot blocks on the bottom surface. 
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