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Abstract 
The offshore wind industry has evolved significantly over the last decade, contributing 

considerably to Europe’s energy mix. For further penetration of this technology, it is essential 

to reduce its costs to make it competitive with conventional power generation technologies. To 

this end, optimising the design of components while simultaneously fulfilling design criteria is 

a crucial requirement for producing more cost-effective strategies. Traditional design 

optimisation techniques rely on the optimisation of design variables against constraints such as 

stresses or deformation in the form of limit states and to minimise an objective function such 

as the total mass of a component. Although this approach leads to more optimal designs, the 

presence of uncertainties, for instance, in material properties, manufacturing tolerances and 

environmental loads, requires more systematic consideration of these uncertainties. A 

combination of optimisation methods with concepts of structural reliability can be a suitable 

approach if challenges such as the approximation of the load effect concerning global input 

loads and computational requirements are addressed accordingly. 

In this study, a reliability-constrained optimisation framework for offshore wind turbine 

(OWT) support structures is developed, applied, and documented for the first time. First, a 

parametric finite element analysis (FEA) model of OWT support structures is developed, 

considering stochastic material properties and environmental loads. The parametric FEA model 

is then combined with response surface and Monte Carlo (MC) to create an assessment model 

in the Six Sigma module in ANSYS, which is then further integrated with an optimisation 

algorithm to develop a fully coupled reliability-constrained optimisation framework. The 

framework is applied to the NREL 5MW OWT and OC3 sub-structure. Results indicate that 

the proposed optimisation framework can effectively reduce the mass of OWT support 

structures meeting target reliability levels focusing on realistic limit states. At the end of the 

optimisation loop, an LCOE comparison is done to see the effect of mass reduction on the wind 

turbine cost.  

The study expanded with a scaling-up approach and investigated the technical feasibility of 

increasing the system’s power and size in deeper water depth for bottom-fixed support 

structures. Additionally, parametric equations have been developed to estimate the wind 

turbine rating and weight considering water depth in the conceptual design stage. 
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Furthermore, the sensitivity analysis was performed on the latest reference support structure of 

the IEA 15MW turbine to see the effect of water depth between 30m to 60m. The results 

showed the influences of water depth on the current structural response of the monopile. It 

revealed that utilising the proposed support structure is not feasible for water-depth above 50m 

as the analysis did not fulfil design criteria. 

Keywords: Optimisation, Extra-Large Monopiles, Offshore Wind Turbines, Water-depth 

Sensitivity, 3D FE Analysis 
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1. Introduction 
 

1.1. Background 

During the last decade, renewable energy has grown significantly to achieve global targets for 

reduced greenhouse gas emissions while ensuring energy security. As a result, wind energy has 

emerged as one of the most attractive clean and renewable energy sources. Europe and North 

America significantly contribute to offshore wind farms, with more than two-third of the 

world's wind power capacity located in these locations. By 2050, it is predicted that wind 

energy will supply between 15% to 20% of the world's electricity demands (Nghiem & Pineda, 

2017; UK ETO, 2024). 

 

1.1.1.History 

The Persians and Chinese used the earliest recognized wind-powered grain mills and water 

pumps in 500–800 A.D (Sahin, 2004). The oldest human construction that still exists and was 

used for energy production from wind is located in Nashtifan village, Iran, dating back over a 

thousand years (Figure 1-1). The modern era of using wind energy started in the 16th century 

in Europe. Historiographers believe that at the peak of the windmill era, 18th century, over 1000 

mills were operating in the Netherlands. This used wind power on an industrial scale, especially 

considering that the Holland province has a land area of only 1,030 mi².  
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Figure 1-1 The oldest windmills existing in Nashtifan village, Iran 

The first time wind energy was used for electricity production was in 1885 in Denmark at the 

high school of Askov. However, the idea of locating wind turbines offshore emerged shortly 

after 1930 when it was proposed that wind turbines be attached to towers. Although these ideas 

were never implemented, they were a brilliant start. William E Heronemus, a professor at M.I.T 

University, introduced the concept of large offshore wind turbine platforms to produce 

electrical energy in 1972, approximately 40 years after the original idea (Sahin, 2004).  

In 1990, 18 years after the initial concept, a company called 'World Wind' developed and 

installed the first offshore wind turbine at sea. This OWT was in Nogersund, 250 metres 

offshore in 7 metres of water depth in the north part of Sweden, and it had a rated power of 220 

KW3. 

The United Kingdom joined the leading group of countries testing offshore wind energy, and 

by the year 2000, the first wind park with a rated power of 4 MW had been built in Blyth, east 

of England. This park includes two Vestas wind turbines of 2 MW each, located 800 metres 

offshore in water depths ranging from 6 to 11 metres. 

As offshore wind energy technology matures, offshore wind farms gradually begin to flourish. 

By 2030, the EU will invest nearly 20 billion Euros in the wind power market, with 60 per cent 

allocated for offshore wind (Nghiem & Pineda, 2017; UK ETO, 2024). 
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1.1.2.Development of offshore wind energy 

Foundations supporting fixed and floating offshore wind turbine structures have become a 

subject of interest to the offshore wind industry as offshore wind energy exploration has 

accelerated in waters and, more recently, deeper waters, owing to their importance in offshore 

wind turbine structure stability. Offshore wind farm foundations are exposed to complex 

loadings, including axial force from the turbine support structure and cyclic loads from extreme 

sea states. Therefore, such foundations must be designed to withstand a large number of wind 

and hydrodynamic load cycles of varying direction, amplitude, and frequency that occur over 

the typical design life of a project, which is about 25 years (Sahin, 2004). 

The design of OWTs is challenging since the required accuracy of the reliability estimations 

and structural response is brutal to achieve. In addition, the combination of aerodynamic 

effects, hydrodynamic loading, and structural dynamics complicates the design and analysis 

process. However, the high target reliability levels required for OWT support structures are 

specified by standards to withstand the nonlinear ocean load effect and harsh environmental 

conditions.  

Currently, DNVGL-ST-0126 (DNV GL, 2016) provides guidelines on offshore wind turbine 

support structures and design requirements. The design procedures in this study are primarily 

based on the DNVGL guidelines and the most recent related studies. However, as we know, 

references are developed following other industry-recommended codes and standards as 

required. Because the offshore wind industry's pace of innovations and technology is so fast, 

the updates are critical in keeping up with the enhancements in technology and understanding 

the system's structural simulations, interpretation, and response. Since the initial publication of 

DNVGL guidance on offshore wind turbine structures in 2004, DNV has released updated 

revisions in 2007, 2009, 2010, 2011, 2013, 2014, 2016 (DNV GL, 2016) and the most recent 

one in 2022. Following the 2013 merger of Germanischer Lloyd (GL) and Det Norske Veritas 

(DNV), all standards are currently undergoing co - ordination. 

 

1.2. Problem statement 

The design of OWTs is challenging since the required accuracy of the reliability estimations 

and structural response is difficult to achieve (Wang & Kolios, 2017a). In addition, the 

combination of aerodynamic effects, hydrodynamic loading, and structural dynamics 
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complicates the design and analysis process. One of the main obstacles to the mass deployment 

of wind farms is the cost, which should be feasible in construction and maintenance (Kuhn, 

2001). However, the high target reliability levels required for OWT support structures are 

specified by standards to withstand the nonlinearity of the open sea load effect and the 

challenging environmental conditions. Therefore, target reliability is a crucial factor that helps 

designers devise a balance between material utilisation and failure risk. 

In addition to the higher costs brought on by the offshore location, support structures need to 

be specifically designed for the site to guarantee a 20-year or more operational lifetime. As a 

result, the Levelized Cost of Energy (LCOE) for OWT in 2013, for example, was 215 $/MWh, 

two times higher than the energy cost for a land-based turbine(Wilkes et al., 2016) . On the 

other hand, the contribution of support structures for OWT accounts for 20-25% of the capital 

cost (Arshad & O’Kelly, 2013). Therefore, lowering the cost of the support structure through 

optimisation is a beneficial way to reduce the LCOE of offshore wind and make this solution 

less reliant on subsidy programmes. The amount of material that could be saved for a monopile 

support structure might be between 15 and 25 per cent (OREC, 2018). 

Then again, offshore wind turbines (OWTs) are becoming larger and more efficient in recent 

years. Since 2014, the average annual increase in turbine capacity has been 16 per cent, and 

turbines installed in 2019 had an average rated capacity of 7.8 MW, which is 1 MW higher 

than the previous year (Walsh, 2019). The industry is thirsty for larger platforms and wind 

turbines, and their designs are continuously optimised to make them feasible in the market. In 

the last decade, the applicability for monopiles was just in water depths around 30m or less 

(Al-Sanad et al., 2021). Currently, it is becoming more frequent to hear about extra-large 

monopiles (diameters up to 9.5 m and piece weights up to 1,500 tonnes) as viable alternatives 

to jacket substructures. 

 

1.3. Aim and objectives 

This package of study covers three different sections in field of offshore wind support structure. 

All of them are trying to find a solution to push the technology of monopiles into larger, 

optimised in weight and applicable in deep water depths. In following categorised section, the 

aim and objectives of each part is explained, and it is recommended to be read before following 

chapters. 
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Study  Aim Objectives 

1. Reliability-

Constrained 

Optimisation 

Framework 

This section aims to develop 

a framework that uses a 

parametric Finite Element 

Analysis (FEA) model of a 

bottom fixed OWT support 

structure and integrates this 

with Genetic Algorithm 

(GA) and reliability 

assessment techniques to 

optimise and reduce the 

support structure's overall 

mass while satisfying 

multiple criteria imposed by 

design standards. (Please see 

Figure 1-2) 

• Combining FEA, GA and 

reliability assessment of 

the candidate design 

models. 

• Finding an OWT's 

optimum support structure 

considering the target 

reliability constraints. 

• The cost analysis and 

comparisons are carried 

out between the reference 

OWT design and the 

optimised design. 

• The levelized cost of 

energy (LCOE) is 

estimated for both initial 

and optimised designs to 

see how a lighter structure 

can affect the LCOE for 

an offshore wind farm 

2. Scale-up 

approach and 

weight 

estimation 

formula 

Furthermore, a scaling-up 

approach will be proposed 

as the industry compass for 

the future is for larger 

structures in deep water. 

 

• Upscale the 5MW NREL 

and OC3. 

• Considering different 

reference turbines, 

comparing them and using 

them on top of developed 

support structures.  

• Build FE Model and 

evaluate in ULS and FLS 

to see if they can fulfil the 

standard criteria. 
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• Prepare a wind turbine 

dataset in different sizes 

and capacities and add 

currently-developed 

monopiles to create a data 

set to find a preliminary 

equation to estimate the 

weight of support 

structures.  

3. Deep water 

depth sensitivity 

of large 

monopiles 

Sensitivity analysis needs to 

be performed on a reference 

monopile support structure.  

• The largest reference 

turbine is adopted (IEA 

15MW). The FE 

parametric model must be 

created to evaluate the 

structural response in 

different water depths in 

fatigue and ultimate limit 

states. 

These aim and objectives are the hot subjects in the current offshore wind industry to push the 

technology. 

The flow chart of proposed framework for reliability-constrained optimisation is presented in 

Figure 1-2. It starts with defining the systema and limit states following the stochastic variables. 

After performing optimisation using FEA and GA, the candidate designs assess with reliability 

constraints, comparing the resulted reliability indexes with DNV’s target reliability, the final 

optimum design generates. 
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Figure 1-2 Proposed framework for reliability-constrained optimisation 

1.4. Technology Readiness Level (TRL) 

Technology readiness level (TRL) is a good measuring structure developed by NASA in the 

60s in order to identify the required steps to get technology operational. It is a scale from 0 to 

7, measuring the distance from an idea (0) to the business (7). However, there are other 

classifications, for example 1-9 levels, from other certification institutions as well. Figure 1-3 

shows the details of this measuring structure. The framework proposed in this thesis and 

approach can be categorized in level 1 in the conceptual design study stage. 

 

Figure 1-3 Technology Readiness Levels 

Start Point 
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1.5. Thesis structure  

The research objectives are defined in the previous section. According to the aims and 

objectives of the thesis, an overview of the research is as follows: 

• Literature review 

o Fixed-bottom support structures 

o Optimisation strategies  

o Reliability-based methods 

o Extra-large support structures and scaling up 

o Cost analysis and LCOE  

• Modelling, finite element analysis and deterministic optimisation  

o Geometry, a numerical model of OWT support structure 

o Load calculations, DLCs and FE analysis 

o Verification through the codes and validation of the FE model 

o Definition of optimisation strategy 

o Design variables, objective function and constraints  

o Deterministic optimisation approach regarding FLS and ULS  

• Reliability-constrained design optimisation framework 

o Stochastic variables as uncertainties 

o Safety levels and reliability criteria 

o Defining the RCD framework using reliability assessment, regression, response 

surface and Monte Carlo simulation 

o Validation of reliability assessment with FORM 

o Fatigue assessment of the optimised design using the DNV approach and DEL 

• Scaling up and water depth sensitivity  

o Scale up factor 

o 3D Geometry, the numerical model of extra-large OWT  

o Estimation of monopile mass using preliminary parametric equation 

o Water depth sensitivity  

• Results and Discussion 

• Conclusions 

o Summary  

o Statement of contributions 

o Future work 

Figure 1-4 shows a flow chart describing the sections that have been done in this study. 

According to the aims and objectives of the thesis, an overview of the research is as follows: 
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Figure 1-4 The project outline 
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2. Literature Review 

 

2.1. Introduction 

According to climate change policies, international protocols focus on minimizing greenhouse 

gas emissions, especially in the last decade. The world has realized that the challenges 

generated by oil reliance and rising carbon emissions must be addressed. The reduction of fossil 

fuel reserves and the ever-increasing demand for energy worldwide have caused fast growth in 

renewable energy sources. As a result, we live in an era of energy policy reversal, with intense 

political and industrial debates to implement renewable energy as the primary energy source. 

With the start-up of the first offshore wind farm in 1991, new opportunities and challenges 

have arisen in this sector. Wind turbines' rated power, size and efficiency are increasing while 

their Levelized Cost of Energy (LCOE) decreases. According to WindEurope's Central 

Forecast, the EU will have deployed 323 GW of cumulative wind energy capacity by 2030, 

including 253 GW onshore and 70 GW offshore (Borkow & Gabbay, 2018). Figure 2-1 shows 

the yearly average usage of different energy sources in Europe up to 2019, indicating the 

increase in wind energy contribution in the last decade. 
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Figure 2-1 The yearly average usage of different sources of energy in Europe (Walsh, 2019) 

Most wind farms are currently in-land, but the vast area, higher wind shear, and lower social 

impact on the marine environment have directed the wind industry to move offshore (Shittu et 

al., 2020). For this reason, offshore wind energy presents a considerable capacity. 

2.1.1.Offshore wind foundations 

Most offshore wind farms are situated in water about 10 metres deep on the continental shelf, 

about 10 kilometres off the coast. Regarding the design of the wind turbine system and the 

wind farm construction, offshore wind production is significantly more complex than onshore. 

Offshore wind turbines must be above the highest wave crests and have strong support 

structures connected to the seabed by foundations. In addition, complicated installation 

processes and maintenance, submarine cable and other electricity transmission systems are 

required. This is the main reason that offshore structure costs double or more than an onshore 

one (Muskulus & Schafhirt, 2014). Offshore wind turbines with fixed foundations are primarily 

found in depths less than 50 metres.  

Over the last decade, there has been a surge of attention to floating offshore wind turbines since 

the wind resource is significant for water depths greater than 50 m. Yet, floating support 

structures are not as mature as fixed-bottom structures. At the moment, bottom-fixed offshore 

wind turbines are not an economically feasible option for resource exploitation in deep seas. 

But, many coastal countries, including Japan, the United States, and western European 

countries with an Atlantic seaboard, have limited coastal maritime borders to water depths of 

less than 50 metres (Al-Sanad et al., 2021). Therefore, optimising bottom fixed structures is 

still one of the favourite research subjects in the offshore wind industry. 
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2.1.2.Pros and cons of offshore wind farms 

Many countries, mainly in Europe, cannot establish onshore wind farms due to geographical 

constraints and population concentration. This is evident in Denmark and Netherlands, which 

are nearly flat, low ground elevation, and densely populated. These conditions are not met 

offshore because of large continuous areas with no barriers to high wind speeds. 

Another key reason for the construction of offshore wind farms is the higher wind velocity in 

an open sea. Wind velocity typically increases by about 20% in areas 10 kilometres or more 

from land (Parveen et al., 2021). Offered that wind energy increases in proportion to the cube 

of the velocity factor, wind energy can be up to 70% greater than wind speed onshore.  

Economically optimised offshore wind turbines are calculated to produce approximately 50% 

more power than onshore wind turbines (Wu et al., 2019). The water surface is relatively rigid 

in low and stable intensity winds. Still, as wind speed increases, a large percentage of wind 

energy is consumed to create waves, increasing the roughness of the water's surface. When the 

wave cycle is finished, the roughness of the water gradually decreases. We can see that the 

roughness of the water surface changes with wind velocity, but when offshore roughness is 

compared to onshore roughness, it is evident that offshore roughness is lower than onshore, 

meaning higher wind speed. 

In contrast to onshore, where sunlight heats the upper part of the land surface, which becomes 

much warmer, sunlight penetrates below the water's surface. On land, particularly in 

comparison to offshore, this causes a temperature difference between the air and the surface, 

which is much greater, potentially causing the wind to flow more irregularly. As a result, the 

fatigue load caused by the wind load profile will be much lower, and the wind turbine life will 

be much longer with a less turbulent flow. Although exact calculations are still unavailable, a 

wind turbine designed for an onshore installation with a 20-year life cycle could be utilised for 

an offshore structure with a 25 to 30-year life cycle (Wu et al., 2019). 

Although the acquisition cost of offshore wind turbines has dropped over previous years still, 

the high cost of construction is the primary factor behind the slow development of offshore 

wind energy usage. The cost of the foundation and the cost of the electrical connection to the 

shore are the two main factors resulting in the high price. In addition, complex environmental 

loads make the design process expensive. 
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2.1.3.Types of foundation 

As discussed, the cost of foundations in an offshore wind farm is about 25—50% depending 

on the foundation type (Wu et al., 2019). This can hint at how selecting the type of foundation 

can ultimately affect the LCOE. Figure 2-2 depicts typical bottom-fixed support structures for 

offshore wind turbines in various water depths. This section reviews different types of bottom-

fixed OWT support structures. 

 

Figure 2-2 Typical fixed bottom support structure options at different water depths (Arshad & O’Kelly, 2013)  

2.1.3.1. Gravity base  

The gravity base foundations of offshore wind turbines are primarily designed based on their 

weight. Therefore, they must be sturdy enough to withstand extreme moments while leaving 

support structures standing upright on the seabed. The gravity base is a reinforced concrete 

coffer structure that is simpler to build than other types and has a low load-bearing capacity. 

Thus, this foundation is more appropriate for seabed composed of dense clay, sandy soil, and 

rock because they require a sufficient load-bearing capacity to support the self-weight, 

operational and environmental loads acting on the foundation structures. Gravity base 

foundations are typically located in water depths less than 10m. Most offshore wind turbines 

implemented gravity base foundations throughout the early days of offshore wind 

development, such as the Tunø Knob wind farm in Denmark. However, the gravity-based 
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foundation has recently become more popular after strict regulations about the installation 

process noise. An excellent example is the Fecamp wind farm on French coasts with more than 

25m water depth. However, the rock and hard clay soil composition on wind farm sites is a 

primary driver in choosing this type of foundation. 

2.1.3.2. Monopile 

A monopile foundation comprises a single steel tube pile penetrating the seabed by giant 

hammers. It is still the most common type of offshore wind turbine support structure installed 

today, owing to its simplicity of fabrication and installation. The general characteristics of 

OWT monopile are D = 6 - 9 m, L = 20 - 30 m, and L/D = 4 - 5, where D and L are the diameter 

and length of the monopile, respectively (Al-Sanad et al., 2021; Shittu, Mehmanparast, Shafiee, 

et al., 2020). The monopile accounts for over 80% of all OWT foundations currently used in 

Europe (Figure 2-3). The cost of foundations for most offshore systems is about a quarter of 

the entire cost (OREC, 2018).  

 

Figure 2-3 Number of foundations grid-connected by substructure type in Europe in 2020 (OREC, 2018) 

Both horizontal and vertical loads are applied to a monopile support structure. Horizontal loads 

are transferred to the soil by mobilising the soil's lateral resistance through bending, whereas 

vertical loads are carried by pile wall friction and tip resistance. The pile diameter must be 

large enough to tolerate these loads. The monopile concept has some limitations. As the depth 

of the water increases, the diameter required to provide adequate stiffness must be more 

prominent (Kallehave et al., 2015). Due to steel plate sizes, pile driving capacity, and 
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fabrication limitations, the installation of extra large-diameter piles can be difficult (Trojnar, 

2020).  

2.1.3.3. Jacket structure 

The jacket (or lattice) foundation is a frame structure made of steel tubular members typically 

prefabricated on land by welding. The structure is then transported to the location and piled 

into the seabed. Jacket foundations are relatively cost-effective in terms of steel utilisation, but 

fabrication, storage and installation can be expensive, significantly increasing the overall cost 

(Gualtieri et al., 2019). Furthermore, even though jacket foundations have been used in 

intermediate water depths of 25-60m recently, complex force distribution, easy fatigue and 

high maintenance costs make a severe challenge to the type of structure. 

2.1.3.4. Tripod 

Tripod foundations consist of three medium-diameter steel pipe piles positioned at an equal 

distance, the notch supporting the upper tripod truss structure. As a unit, a tripod truss can bear 

upper loads applied to the tower and deliver stresses and moments to the three steel piles. The 

tripod foundation is steady but a bit heavy comparing the monopile and suitable for 20 to 45 

metres of water depths. However, the high manufacturing and installation cost are the barriers 

compared to the other types of foundations. 

2.1.3.5. Suction bucket 

Suction pile or bucket foundations are classified as single-bucket caisson foundations and 

multi-bucket caisson foundations. This type suits soft and medium clay seabed and wind 

turbines in varying depths. The installation cost of a suction bucket foundation is less than that 

of an equivalent offshore pile foundation due to the unique installation method used. In 

addition, suction bucket foundations have a silent installation process and are easier to 

manufacture and transport to the sea. As a result, suction bucket foundations have become 

more attractive in offshore wind turbines in recent years (Gao et al., 2021). However, the main 

disadvantage of a suction bucket foundation is the installation process's complexity and 

applicability limitation in soil type. 

2.1.3.6. Floating foundation 

Better wind conditions can be found in deeper water zones, typically at depths of more than 70 

metres (Guo et al., 2022). Therefore, designing a new concept of foundation support structures, 

such as floating solutions, became necessary to reach deeper seas. Compared to the typical 

support structures still in use today, the floating idea for a foundation reduces the amount of 



34 

 

material required to make the entire substructure (compared to some concepts), reduces the 

complicated installation process on the seabed, and helps decommission much simpler. Three 

floating types developed recently in this sector are Spar buoy, Tension leg and Barge. The 

floating turbine base is kept in place by anchors installed into the seabed. Offshore floating 

foundations will probably be the most in demand in the future because of the capacity to 

produce energy far from the shore. Yet, it is still quite expensive because of the 

new technology, and some issues remain regarding the maintenance of the structure during its 

lifetime. Therefore, more research is required to investigate the technology and reduce the costs 

associated with its substructures. However, the stability of the turbine is a huge concern, either. 

Figure 2-4 summarises all common types of foundations in the offshore wind industry. 

 

Figure 2-4 Summary of common types of foundations in offshore wind 

2.1.4.Discussion and comparative analysis 

After explaining all existing foundations for offshore wind energy, it is hard to find the best 

substructure due to the necessary knowledge of the local conditions in which it would be 

installed and the project's budget. So, no specific foundation type is equally suitable for all 

locations (Guo et al., 2022). Because of the massive costs involved in designing and 

manufacturing such structures, foundation design is the main topic in offshore wind turbines. 

Because the foundation can account for around 25% of the total cost of an offshore wind farm, 

evaluating the design could lead to a significant cost reduction (Ishtiyak et al., 2021). Although 

not a unified solution, the monopile is the best, cheapest, most dependable, and most flexible 
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option compared to the other alternatives. With the extra-large monopiles concept, such 

advantages take on a new and improved scale. 

This study focuses on the monopile foundation due to its advantages and popularity compared 

to other types of foundations. The following section explains the design problem of an offshore 

wind support structure, particularly a monopile. 

 

2.2. Support structure design problem 

Offshore wind turbines are complex and strictly coupled systems, and their design presents 

specific challenges (P. Schaumann, C. Böker, A. Bechtel, 2011; Petrini et al., 2010; Quarton, 

1998). The force vectors continuously rotate due to the blades' rotation, causing periodic 

fluctuations, primarily at the 1P (single blade passage) and 3P (rotor) frequencies. The 

aerodynamic forces are substantially influenced by the wind speed experienced by the blades, 

which is an irregular environmental state characterised by turbulence and spatiotemporal 

correlations at different scales. Hydrodynamic loads are a second source of irregular excitations 

for offshore turbines that must be considered while studying structural response. The 

stochastic, unstable nature of environmental loads, combined with the wide range of 

conceivable environmental conditions encountered during the turbine's lifecycle, creates 

different problems for estimating both ultimate and fatigue loads. It is commonly thought that 

a stationary stochastic process may characterise the environment on short timescales. This is 

based on observing a spectral gap for wind speed (Isaac Van der Hoven, 1957), while for 

offshore wind, it is a bit different (Heggem et al., 1998). The long-term distribution of 

environmental loads is extremely site-dependent and must be analysed using long-term data or 

climate model simulations. Load analysis for wind turbine constructions is currently strictly 

regulated (e.g., (DNV GL, 2014; IEC, 2005)). 

2.2.1.Design rules  

The structural design of an OWT can be accomplished using the following significant 

approaches, according to the DNV standard (DNV GL, 2014): 

• Partial Safety Factor (PSF) approach with a linear combination of loads. 

• PSF approach with a direct simulation of load effects at the same time. 

• Design aided by testing. 

• Probability-based approach. 
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Based on a separate assessment of the load effects in the structure due to the applied loads, the 

PSF technique is used in the DNV standard. As a result, the PSFs utilised in various activities 

ensure structural reliability by guaranteeing that the limit states are not exceeded when the 

partial coefficients are implemented. In this study, the DNV method has been used, and since 

the load effects are not independent, direct simulation of combined load effects at the same 

time has been utilised for design. 

It should be noted that structural components shall be designed to (DNV GL, 2014): 

• Sustain loads likely to occur during all temporary, operating and damaged 

circumstances if necessary; 

• Maintain adequate structural safety throughout the structure's design life; 

• Maintain a sufficient level of protection for both employees and the environment; 

• Hold enough ductile resistance; 

• Minimizing stress concentration; 

• Durability during design life. 

2.2.2.Limit states 

The limit states that can be considered when designing offshore wind turbines are listed: 

• Fatigue Limit State (FLS) corresponds to the failure of the structure because of cyclic 

loading; 

• Ultimate Limit State (ULS) corresponds to the structure's maximum load-

carrying capacity for supporting actions and impacts that may occur during its 

deployment and lifecycle; 

• Serviceability Limit States (SLS) correspond to the maximum criteria or the capacity 

of the structure to continue to be able of the required use.  The SLS for offshore steel 

structures is related to the structure's deflections and vibrations, which can cause 

deformations; 

• Accidental Limit State (ALS) is the maximum load-carrying capacity for (uncommon) 

accidental loads such as fire, explosions, and collisions. 

2.2.3.Types of loads 

Based on the standards mentioned in section 1.1.2, the following will present the loads typically 

considered in the design of offshore wind turbines, depending on the case study, conditions 

and assumptions (DNV GL, 2010a). 
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Permanent loads: this type of load refers to loads that will not change in magnitude or 

direction during a time. The mass of the turbine and the hydrostatic pressure acting on the 

monopile are considered permanent loads.  

Environmental loads: Environmental phenomena can be a source of loads which damage the 

structure installed in the sea. Unlike permanent loads, these loads may vary in direction and 

value during the time under consideration. The site location in the study determines the 

definition of these loads. The main environmental loads such as waves, current, wind and soil 

conditions will be studied during this study. 

Accidental loads: Collision impact, large breaking wave, fire, or explosion can cause technical 

failures, accidents, or unusual operations. These loads are infrequent but dangerous. In this 

study, accidental loads are not considered because the number of accidental events that should 

be considered to provide accurate and reasonable analysis is unavailable. 

Deformation loads are generated by unfavourable events to which the structure is subjected, 

such as the settlement of the support structure due to soil deformations or changing temperature 

loads. Once again, data availability concerning temperatures and soil conditions is challenging. 

It must be noted that the analysis of the inconsistent settlements of the structure depends on the 

soils’ structure and condition, i.e. if it is well compact in sedimentary layers or as a mixture of 

different sediments. Even with the data used in further analysis of the soils’ stiffness, the study 

of the structure settlement is not the primary purpose of this research. However, if such analysis 

is required, particularly for complex soil configurations, there are interesting works on soil-

structure interaction in the literature, such as (Porter et al., 2012). 

Dynamic loads: Considering the cyclic excitation effect in offshore structures is vital. These 

loads generate a dynamic structural response, resulting in vibrations that can cause 

serviceability damage or total collapse. In addition, waves, wind, earthquake or rotor frequency 

modes could cause dynamic structure response. 

Variable function loads: Caused by the installation process, maintenance, or personnel 

weights are another type of load not considered in this study due to the lack of information.  

2.2.4.Structural modelling and soil-pile interactions 

A structural structure model is required to estimate the structural behaviours of OWT support 

structures when subjected to complicated loading and soil-structure interaction, which is 

necessary for evaluating the structural reliability of OWT support structures. 
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There are two main categories for the structural designs employed in OWT  1) the 1D beam 

model and 2) the 3D FEA model, which typically models OWT support structures as shell 

elements and, in some cases, solid elements. 

Global responses, including frequencies and deflections, can be calculated with relative 

accuracy using the 1D beam model, which also increases efficiency in the computing process. 

However, it cannot accurately capture local behaviour, such as the local stress concentrations. 

Although the 3D FEA model is more computationally complex than the 1D beam model, it 

gives more precise results. With advanced processors, the 3D FEA model has recently seen 

broad applicability to wind turbine structures, including blades (Wang et al.,2016) and support 

structures (Gentils et al. 2017), because of its high fidelity. 

The soil-structure interaction can significantly impact the structural behaviour of OWT support 

structures because the foundation of the OWT support structure is embedded in the soil. 

Consequently, soil-pile interaction must be considered precisely to have accurate structural 

response results. 

Soil modelling techniques can be divided into two broad categories: (i) the p-y method and (ii) 

the finite element method. The p-y approach uses a soil model composed of distributed 

equivalent springs, the stiffness of which is calculated using the p-y curve. As a result of its 

processing efficiency, the p-y method has been widely adopted for modelling the soil in OWT 

support structure reliability analyses (Carswell et al., 2015; G. Kim et al., 2015). Nevertheless, 

this method was designed for oil and gas industry pipes and is therefore inadequate for 

modelling the soil behaviour of OWT support structures, which diameters are substantially 

larger. Thus, the FEA model of the soil is recommended to capture the soil's behaviour with 

precision. Soil is usually presented in FEA models employing three-dimensional brick 

elements. The material model for soil is generally based on one of the Drucker-Prager model 

(Drucker and Prager, 2016) or the Mohr-Coulomb model (Labuz & Zang, 2012). Soil 

interaction using the p-y method and FEA model is compared and studied in the PISA (Pile 

Soil Analysis) project (Byrne B & RA McAdam, 2017; Byrne et al., 2020; Zdravkovic et al., 

2020) led by the University of Oxford researchers. The PISA design technique takes into 

account wind turbine loading conditions and larger diameter monopile geometries to facilitate 

location-specific optimisation of turbine substructures.  The steel used for the monopile may 

be reduced by as much as 30 percent in the embedded portion of the pile. The results showed 



39 

 

that the FEA model matches well with experimental data, but at a fraction of the computational 

cost. Because of its accuracy, the FEA model is increasingly used for soil modelling. 

It is essential that scouring phenomena around the foundation be taken into account while 

modelling soil-structure interaction. A scour is a region of eroded soil around the base of a 

structure induced by waves and currents. The scour can be controlled in p-y curve soil models 

by eliminating the appropriate springs (Abhinav & Saha, 2017). However, using FEA to 

simulate the soil, scour can be accounted for by changing the soil's shape close to the 

foundation (Porter et al., 2012). The stiffness, natural frequency, and fatigue reliability of OWT 

support systems have all been impacted by scouring (Van der Tempel et al., 2004). 

 

2.3. Optimisation strategies  

Like any complex project, the modelling, simulating, and optimizing of an OWT are 

prerequisites. Structural optimisation has progressed almost in lockstep with the improvement 

of structural analysis.  Developing a design problem with a reliable analytical approach allows 

for discovering optimal solutions and implementing semi-automated and algorithmic solutions 

(Arora et al., 2012). The application of these methods has grown significantly as the cost of 

computational resources has decreased, expanding possibilities for designing structures and 

systems. Unlike a human designer and manual optimisation, which is frequently restricted to a 

short number of design iterations, computer-aided optimisation can search through a 

considerable number of different cases and will investigate non-clear solutions. Figure 2-5 

shows the difference between manual and computer-aided optimisation strategies. 
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Figure 2-5 Comparison of manual and computer-aided optimisation 

In the review by (Muskulus & Schafhirt, 2014), six characteristic challenges in designing a 

wind turbine structure were discussed: nonlinearities, complex environment, fatigue as a design 

driver, technical analysis software, tightly coupled and interrelated systems, and multiple 

influencing variables and constraints. Although OWT analysis has been rigorously regulated, 

many studies have developed a framework to design and optimise large offshore structures 

(Gentils et al., 2017; Stieng & Muskulus, 2020). These analyses should be built on a numerical 

wind turbine model, which is (1) as accurate as possible and (2) subject to an understanding of 

the stochastic methods characterizing the environmental loads. These complexities lead to a 

multidisciplinary design optimisation problem. In the following sections, optimisation under 

various conditions will be discussed. 

2.3.1.Optimisation under static loads 

 In recent years, structural optimisation has concentrated heavily on identifying the best 

solution(s) to static problems using finite element methods. The common application is to 

reduce the weight of a structure by modifying the parameters that define its geometry, such as 

the diameters and thicknesses of structural parts. In parallel, the rigidity and stiffness of a 

design shall be considered by doing a modal analysis. The objective function describes the 

level to which the structure succeeds in achieving this aim as a single numerical value (e.g., 

the global weight of the structure). This value is fixed and predetermined concerning the 
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geometrical characteristics of the construction. Optimizing under static loads simplified the 

loads applied to the structure. Overall, the nonlinear mathematical structures are challenging 

to address, and estimates and reductions to simpler issues are used as much as possible. 

However, when both the objective function and the constraint equations are linear, the problem 

can be addressed using linear programming optimisation methods respectively (J Nocedal & 

SJ Wright, 2006).  

2.3.2.Optimisation under transient loads 

This type of optimisation is less established than static optimisation. The standard method is 

restraint-based, and unlike the static condition, the constraints must be followed at every 

interval, i.e., the problem consists of an infinite amount of constraint equations (Muskulus & 

Schafhirt, 2015). In order to create the applicable method, the time dependence is frequently 

removed by taking into account an integrated constraint (e.g., the integral sum of constraint 

violation across time), which must be zero for a feasible solution. Instead, the constraint is 

assessed at all critical points, which are the local minima of the constraint function that reflect 

the instants in time when the constraint is most likely to be broken (Nagendra et al., 1991). The 

Equivalent Static Loads (ESL) approach simplifies the problem by breaking it down into a 

series of static optimisation problems for which analytical gradients are easily produced, and 

then merged to approximate the actual sensitivities (Park et al., 2007). Other advantages of this 

method include that it can be implemented with most structural analysis software packages and 

that static response optimisation may be conducted with the ESL. 

2.3.3.Time series and Fatigue-constrained optimisation 

Until this section, the constraints have been considered general, consisting of limits determined 

by material yield stress (ULS), buckling, manufacturing methods, etc. However, the need to 

analyse and limit fatigue damage to the structure is a significant class of restrictions. Time 

domain analysis refers to evaluating the structural response and fatigue damage accumulation 

over time in the context of fatigue analysis for offshore wind turbines. Fatigue is a major 

concern in the design and operation of offshore wind turbines due to the dynamic and harsh 

environmental conditions they are subjected to. Damage Equivalent Loads (DEL) is a concept 

used in time domain analysis to assess the cumulative fatigue damage caused by dynamic loads 

on the turbine structure. DEL is a simplified representation of the complex load history, 

condensing the fatigue damage contribution into a single equivalent load level (Rychlik, 1987). 

Time domain analysis for DEL involves the following steps: 
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• Load Data Acquisition: Similar to the previous explanation, relevant environmental and 

operational data are collected over a specified period. This includes wind speed, wave 

height, tidal conditions, turbine operational states, and control parameters. 

• Load Reconstruction: The acquired data is used to reconstruct the time-varying loads acting 

on the turbine structure. This includes the aerodynamic loads on the rotor blades, 

gravitational and inertial loads, wave-induced loads on the support structure, and other 

dynamic loads. 

• Load Combination: Different load components are combined according to the DLCs. For 

example, extreme wind, turbulence, or loads during specific operational states can be 

considered separately. 

• Fatigue Analysis: The reconstructed load time series is applied to a detailed structural 

model of the wind turbine. Through numerical simulations, the response of the structure, 

such as bending moments, stresses, or strains, is computed for each load case. 

• Rainflow Counting: Rainflow counting is performed on the response time series to identify 

the fatigue-dominant load cycles. Rainflow counting extracts the stress or strain ranges 

from the response data, considering both the amplitude and direction of the cyclic loading. 

• DEL Calculation: The fatigue damage contribution of each load cycle is evaluated using a 

fatigue damage model, typically based on Palmgren-Miner's rule method. DEL is then 

determined as the equivalent constant-amplitude load that would cause the same cumulative 

damage as the original load history. 

Finally, it is typically analysed for specific spots (e.g., welded joints) using numerical formulas 

that estimate the hotspot stresses based on several nodal stress histories and geometry (DNV 

GL, 1987). However, since many structures behave linearly for minor displacements, 

frequency domain analysis and semi-empirical fatigue damage assessment can be performed 

as an alternative to time-domain simulation, often by employing a model established by fitting 

an extensive set of computer simulations (Dirlik, 1985). 

2.3.4.Optimisation based on simulation 

Optimization based on simulation for offshore wind structures concerns using computational 

models and simulations to improve the design and performance of offshore wind turbines and 

their supporting structures. This approach allows designers to evaluate different design options, 
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assess system behaviour under various operating conditions, and identify optimal solutions that 

meet performance criteria and minimize costs. The steps that outline this process are:  

1. Define Objectives and Constraints 

2. Create Simulation Models 

3. Design Variable Selection 

4. Define Design Constraints 

5. Define Objective Functions 

6. Optimization Algorithm Selection 

7. Perform Simulation-Based Optimization 

8. Evaluate and Validate Results 

9. Iterative Improvement 

10. Final Design Candidate 

Optimization based on simulation allows for systematically exploring design options, enabling 

designers to find solutions that evaluate performance, cost, and other relevant factors for 

offshore wind structures. As a result, it can lead to improved efficiency, reduced costs or 

weight, and enhanced overall performance of offshore wind turbines and their supporting 

systems. 

Various simulation-based optimisation methods can be used in such scenarios where the 

objective function or issue constraints are not accessible for efficient assessment (Murray et 

al., 2010). Approaches are based on meta-models, such as general response-surface methods 

(Cheng & Li, 2009). In addition, neuronal networks, genetic algorithms, and stochastic search 

and optimisation approaches are prominent methodologies (Kolios, 2010). 

2.3.5.Probabilistic Optimisation 

The optimisation approaches described above assume a deterministic, objective function. A 

probabilistic explanation of variability, uncertainty, and error causes (both from external effects 

and internal faults) is often a more natural approach. The two complimentary methodologies 

of reliability-based and robust design optimisations allow for incorporating uncertainty and 

unpredictability in the design process (Psarropoulos & Tsompanakis, 2008). Because they 

involve structural analyses, these methods are at least an order of magnitude more complicated 

than "classic" structural optimisation methods. They are linked to the frequent practice of 

grouping environmental situations into a discrete set of load cases (Kuhn, 2001) as well as the 

subject of how partial safety factors are calibrated (Veldkamp, 2006). 
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2.4. Optimisation algorithms 

In engineering optimisation, the selection of the optimisation algorithm is an essential element 

that depends on the nature of the problem and the characteristics of its design space. In wind 

turbine performance optimisation, choosing the optimisation algorithm is crucial since the 

results depend on the algorithm's accuracy and sensitivity to local minima. Consequently, the 

methods used to address optimisation problems in wind turbine design have evolved. Initially, 

the majority of approaches were derived directly from the Blade Element Momentum (BEM) 

theory, mainly from the BEM theory of (Wilson et al., 1976). However, in the 1990s, (Selig 

MS & Coverstone-Carroll VL, 1996) were among the first to propose a GA-based wind turbine 

blade design technique. Furthermore, meta-heuristic algorithms are preferred in optimising 

wind turbine support structures because of their robustness and consistency (Gentils et al., 

2017). 

(Rodrigues et al., 2017) classify optimisation algorithms into two categories: Calculus-based 

approaches and meta-heuristic algorithms. The following sections describe the common types 

of algorithms researchers in the offshore wind industry have used. 

2.4.1.Genetic algorithm (GA) 

The genetic algorithm (GA) was most explored among the various meta-heuristic algorithms. 

The following section discusses the use of GA and why it is preferable among other algorithms 

in our case study. Because of its consistency and durability, genetic algorithms have become 

the most preferred evolutionary algorithm. However, evolutionary algorithms are time-

consuming and require adding a regularization term for constraints to the objective function, 

which might reduce their sensitivity to local minima. 

A genetic algorithm uses natural selection to favour the best solutions among a population (set) 

of individuals (individuals) through time (generations). Figure 2-6 shows the schematic of the 

GA optimisation process. Populations consisting of individuals with high "fitness" values, as 

measured by the objective function chosen for the optimisation process, have a higher chance 

of "reproducing" and hence of producing a new generation than do populations consisting of 

individuals with low "fitness" values. A single string represents each individual, and the search 

is guided through the generations by operators representing reproduction, crossing, and 

mutation, just like in a DNA chain.  
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Figure 2-6 Schematic of genetic algorithm optimisation (Diveux et al., 2001a) 

A GA's primary characteristic is its ability to operate directly on structural objects directly 

without derivation and function continuity limitations (Sineglazov et al., 2016). It has inherent, 

implicit parallelism and enhanced global optimisation capabilities that employ probabilistic 

optimisation methods and do not require specific rules. It can automatically obtain and guide 

the optimum search space and adaptively alter the search direction. When applied to a group 

of individuals, the genetic algorithm uses randomization technology to explore a coded 

parameter space efficiently. 

Genetic algorithms are extensively used for the design optimisation of OWTs. (Hall, 2012) 

provided an optimisation framework based on evolutionary algorithms for FOWT 

substructures. First, a frequency-domain model assessed the performance of the FOWT in 

terms of six-degree-of-freedom motions. The evolutionary algorithm was then used to 

investigate the design space and identify local optimums that minimise root-mean-square 

(RMS) nacelle acceleration and cost. (Banzo & Ramos, 2011) utilised geometric programming 

to solve an optimisation model based on cost, loss, and reliability for a single main substation 

and validated this strategy with a small wind farm. (Gentils et al., 2017) developed a structural 

optimisation model for an offshore wind turbine substructure based on coupled parametric FE 

model and genetic algorithms by minimising the mass of the support structure under 
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multicriteria constraints. Using the proposed model, they optimised the support structure's 

components (tower, transition piece, grout, and monopile) and reduced the weight of the 

support structure by deterministic optimisation. (Karimi et al., 2017) introduced a multi-

objective design optimisation approach for floating wind turbines with a design space spanning 

three stability classes of floating wind turbine substructure, spar, TLP, and semisubmersible, 

employing nine design parameters. The 5MW FOWTs were analysed using FAST and 

WAMIT. A multi-objective genetic algorithm optimisation strategy was used to evaluate and 

compare. In the study of (Pasamontes et al., 2014), a genetic algorithm was utilised to optimise 

the structural design of the Upwind jacket support structures from the OC4 project. Each design 

was assessed using a comprehensive wind turbine simulation for a load situation in the time 

domain. 

The population-based search of a GA provides a population of optimal solutions, which is 

crucial if a large portion of the design space yields optimal outcomes without a clear optimum. 

In addition, GA is superior at exploring non-linear, non-derivable, non-continuous domains 

and is less sensitive to the initial condition (Fernandes et al., 2014; Grasso & Grasso, 2012; 

Shahrokhi & Jahangirian, 2007). Other examples of studies that used a genetic algorithm to 

optimise the performance of wind turbines: (Diveux et al., 2001b; Eke & Onyewudiala, 2010; 

Giguère & Selig, 2000; Wang & Tang, 2011). In general, GA is unique in its approach and 

offers several advantages over other optimisation approaches, such as: 

• Global Search Capability: Genetic algorithms are well-suited for global optimisation 

problems, where the goal is to find the best solution across an ample search space. GAs 

use a population-based approach that maintains a diverse set of candidate solutions, 

allowing them to explore the search space more comprehensively than many other 

optimisation algorithms that rely on a single solution or a limited set of solutions. 

• Robustness to Local Optima: Genetic algorithms are less likely to get trapped in local 

optima, suboptimal solutions in a restricted search space region. Due to their ability to 

maintain diversity in the population, GAs can escape local optima and continue 

searching for better solutions in other areas of the search space. 

• Handling Non-differentiable and Discrete Problems: Genetic algorithms are well-suited 

for optimising problems involving non-differentiable or discrete variables. Unlike 

gradient-based approaches, GAs do not require objective function or constraint 

derivatives, making them suitable for problems with complex or discontinuous fitness 

landscapes. GAs can also handle problems with discrete variables, as they operate on a 
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population of solutions that can undergo discrete changes through genetic operators 

such as mutation and crossover. 

• Flexibility and Adaptability: Genetic algorithms are highly flexible and adaptable. They 

can be easily customized to suit specific problem requirements by adjusting population 

size, mutation rate, and crossover strategy. They can also be combined with other 

optimisation techniques or problem-specific heuristics to enhance performance. 

• Parallelism: Genetic algorithms can be parallelized to take advantage of modern 

computing capabilities, allowing for efficient search space exploration and faster 

convergence. This makes them well-suited for parallel and distributed computing 

environments. 

• Exploratory Capability: Genetic algorithms can experimentally find novel and 

unexpected solutions. They can generate diverse solutions in the population, allowing 

for discovering non-obvious and innovative solutions that other optimisation 

approaches may not discover. 

• Robustness to Noisy Environments: Genetic algorithms are robust to noisy or uncertain 

environments, where the objective function evaluations may be loud or subject to 

uncertainties. The population-based nature of GAs can help mitigate the effects of 

noise, as the best solutions can still be identified even if some individuals in the 

population have noisy fitness values. 

2.4.2.Gradient-based approach (GBA) 

Gradient-based approach (GBA) is a technique used in optimisation algorithms for finding the 

optimal solution to a mathematical problem, typically an unconstrained or constrained optimisation 

problem. The key idea behind GBA is to leverage the gradient, the vector of partial derivatives of 

a function concerning its variables, to guide the search for the optimal solution. In the other word, 

the calculus-based algorithm relies on the gradient calculation of the objective function to find the 

sensitivity of each design variable. Regarding computation time and choice of objective 

functions, gradient-based approach algorithms have been compared to genetic algorithms. 

However, they are primarily utilised for quicker results but are susceptible to the initial 

condition and, therefore, not robust (Obayashi, 1996). In GBA, the optimisation algorithm 

iteratively updates the solution by taking steps toward the negative gradient, as the negative 

gradient points towards the steepest decrease in the function's value. This process continues 

until a stopping criterion, such as a certain number of iterations or a slight change in the 

objective function value, is met. 
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Several optimisation algorithms use gradient-based approaches, such as gradient descent, 

conjugate gradient, Newton's, and stochastic gradient descent (SGD). These algorithms may 

have different variations and adaptations depending on the specific problem and requirements. 

GBA has several advantages, including its ability to efficiently handle large-scale problems, 

fast convergence rate, and ease of implementation. However, it also has limitations, such as 

sensitivity to the initial conditions, getting stuck in local optima, and potential convergence 

issues in ill-conditioned problems. 

Overall, GBA is a powerful and widely used approach in optimisation algorithms, and it plays 

a crucial role in various fields, including machine learning, computer vision, operations 

research, and engineering, among others. 

 

2.4.3.Sequential Quadratic Programming (SQP) 

The sequential quadratic programming (SQP) algorithm is considered one of the efficient 

techniques for resolving constrained nonlinear optimisation problems. An iterative method 

seeks to find the optimal solution by approximating the problem as a sequence of quadratic 

programming subproblems at each iteration. In comparison to other algorithms, the SQP 

technique has the benefits of good convergence, high calculation efficiency, and excellent limit 

and boundary searchability.  The SQP approach reformulates the overall problem into a 

quadratic programme (QP) subproblem and approximates the Hessian matrix using a modified 

version of the Broyden–Fletcher–Goldfarb–Shanno procedure. 

The key idea behind SQP is to iteratively update the solution by solving a sequence of quadratic 

programming subproblems. These smaller optimisation problems can be solved more 

efficiently than the original nonlinear constrained optimisation problem. At each iteration, SQP 

generates a search direction by solving a quadratic programming subproblem and then takes a 

step in that direction to update the solution. The algorithm continues iteratively until a stopping 

criterion is met, such as a certain level of accuracy or a maximum number of iterations. 

The primary advantage of SQP approaches is their ability to handle complex nonlinear 

problems with rapid ultimate convergence. The major downside of the SQP approach is that it 

can only accomplish fast convergence in the case of accurate gradients and typically requires 

a substantial amount of storage space. Furthermore, the necessity of obtaining these gradients 

analytically before iterating to a solution, a technique employing SQP for case studies with 
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many variables and constraints might involve highly complex calculations, and its sensitivity 

to the initial conditions will cause a convergence issue in ill-conditioned problems.  

2.4.4.Other algorithms 

Several algorithms, such as Particle Swarm Algorithm (PSA) and Ant Colony Optimisation 

(ACO), are widely used to optimise offshore wind turbines. 

The particle swarm algorithm (PSA) was inspired by studying the predatory behaviour of bird 

flocks and schools of fish. It simulates the behaviour of flocks of birds flying for food. A 

collective effort among birds guarantees that the group achieves its objective. A bird represents 

each solution to the optimisation issue, referred to as a particle. All particles employ a fitness 

function to decide if their current position is favourable or unfavourable. PSO is utilised for 

offshore wind turbine blade design. (Liao et al., 2012) optimised wind turbine blades using 

PSO and comparing optimised blades with reference design showed that this strategy is feasible 

for OWT. 

Ant Colony Optimisation (ACO) algorithm is developed to solve discrete optimisation 

problems. Furthermore, the programme simulates the behaviour of an actual ant colony as it 

looks for food (Eroĝlu & Seçkiner, 2012). These methodologies are commonly utilised in wind 

farm layout design instead of the optimal design of the offshore wind turbine supports 

(Salcedo-Sanz et al., 2014). 

 

2.5. Discussion of optimisation models 

As discussed, the wind turbine's complexity and environmental characteristics require a 

comprehensive design optimisation issue for the structural design and optimisation of the 

turbine (Martins & Lambe, 2013; Rodon et al., 2003). In addition, the system is strongly 

coupled, so optimising specific elements of the turbine separately would result in inefficient or 

infeasible solutions. For example, in the early stages of offshore wind turbine deployment, it 

was attempted to isolate the impacts of wind and waves on turbines. However, it has been 

demonstrated that this results in unacceptably significant inaccuracies in fatigue damage 

estimations (Kuhn, 2001). 

In design optimisation for large wind turbines, static analysis is still prominent. A solitary static 

load case Enhancing the investigation, (Lavassas et al., 2003) employed 18 different static load 
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cases, indexed by wind velocity and defined by the wind turbine producer, to validate their 

design for a 1 MW tower.  (Uys et al., 2007) employed a similar procedure and load to improve 

the tower concerning diameters and the number of stiffeners for a 1.3-megawatt wind turbine. 

The optimal design was accomplished using the fewest resources, reducing costs. (Perelmuter 

& Yurchenko, 2013) present the optimisation of a circular tower with a more refined approach 

that uses dynamic sensitivity factors and accounts for turbulence-induced load changes. Their 

optimal tower for a 5-MW onshore turbine is 140 metres and weighs 340 tonnes, nearly the 

same as the 87.6-meter tower of the NREL model 5-MW offshore wind turbine (Jonkman et 

al., 2009). (Gentils et al., 2017) also studied the deterministic optimisation approach to make 

the lighter 5MW monopile support structure and reduce 20% weight using finite element 

analysis tools. 

Several researchers have used frequency-domain analysis for wind turbines. (Häfele, 2019) 

studied monopile design and optimisation with a genetic algorithm and a semi-analytical wind 

turbine model, assuming a stiff rotor and no aerodynamic damping. (Long & Moe, 2012) 

explored the construction of lattice towers in the frequency domain, utilising the (Dirlik, 1985) 

approach to quantify fatigue damage. Linear dashpots provided aerodynamic damping. The 

main advantage of frequency domain analysis is its performance, despite nonlinearities and 

approximate fatigue calculations. It can check several thousand load cases in minutes, making 

it ideal for early design.  

Simulation in the time domain provides a realistic examination of wind turbines. Standards 

approve this method for certification analysis (DNV GL, 2016; IEC, 2019). The European 

Opti-OWECS study found that integrating wind turbine design improves cost efficiency. All 

wind turbine components must be designed together, and installation, operation, and 

maintenance must be considered (Kuhn, 2001). (Yoshida, 2006) employed customised 

dynamics to test the tower design's structural integrity using time-domain simulations and a 

genetic algorithm. However, for complex support structures like jackets or 3D monopiles, the 

number of load scenarios is limited, and with less-than-real-time simulation ratios, this strategy 

is quite time-consuming.  

(De Morais et al., 2021) proposed a comparison model to simulate the structural response of 

wind turbine towers subjected to high winds created as a spatially correlated field, utilizing the 

MATLAB codes for frequency-domain (FDA) and time-domain (TDA) analysis. The FDA 

implemented the approach performed as well as the standard direct TDA integration method in 
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the tested case in terms of performance and computational processing time. However, the 

performance of the analysis was not predicted with the existence of a 3D model and 

optimisation algorithms.  

Overall, the mathematical expression of structural optimisation is that of a non-linear 

programming issue (Arora et al., 2012) and therefore needs a simpler structural model to solve 

the difficulties. Moreover, optimisation problems for offshore structures are mostly non-

convex and multi-modal (Clauss & Birk, 1996), making them less robust and more likely to 

end in local optimum (Saka et al., 2016). Thus, a meta-heuristic algorithm (MHA) such as GA 

should be chosen.  

 

2.6. Reliability-based methods review 

In this section, reliability methods used in the offshore and marine renewable energy industry 

are categorised and analysed in terms of how they can be used for offshore wind turbine 

systems, their advantages and disadvantages, and their ability to be improved. Trends and new 

ways to overcome problems that have not yet been solved are also discussed. 

2.6.1.Reliability method classifications 

Several forms of Reliability Assessments (RA), such as mechanical, electrical, and software, 

can be conducted at various points in the engineering process, including during the design and 

manufacturing phases. For instance, Stapelberg (2009) concentrates on reliability in 

engineering design, placing a boundary between conceptual, preliminary/schematic, and 

detailed design stages for reliability prediction, assessment, and evaluation. In addition, two 

levels, component and system, are specified for applying reliability.  

Depending on the quantity and quality of data availability, there are two primary classes into 

which the various dependability approaches can be arranged: qualitative and quantitative 

(Stapelberg 2009). Figure 2-7 is a chart that illustrates both classifications. Some qualitative 

reliability methods can be extended with some quantitative approximate methods and, 

therefore, can be used for quantitative reliability assessment. 
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Figure 2-7 Classification of the reliability methods 

2.6.1.1. Qualitative reliability approaches 

Data that is missing or insufficient prevents a quantitative assessment of reliability. However, 

relationships within the system are possible, including hazards, failure causes, events, failure 

modes, faults, effects, and consequences, and an estimate of reliability, failure probability, and 

consequence can still be obtained using qualitative methods. 

Prior to conducting any qualitative RA, the system structure and functions must be identified 

and classified (Rausand & Hyland 1994). A qualitative reliability assessment can be performed 

on this basis. The following briefly explains some of the most common methods, divided into 

sheet-based, table-based, and diagrammatic techniques. 

• Sheet-based qualitative approach: Engineers utilise them to assess potential threats to 

the design's operability, serviceability, reliability, safety, and availability (Rausand & 

Hyland, 1994). This method can investigate the relevant parameters based on distinct 

question sets at each stage. An example of this type is the checklist method. 

• Table-based qualitative approach: Focuses on hazards and failure modes (FM) can lead 

us to table-based qualitative methods. The goal is to recognise the potential hazards 

(HAZID) as well as their causes and effects. The typical examples in this type of study 

are SWIFT, HAZOP and FMEA. 
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• Diagrammatic qualitative approach: This method can be organised upward or 

downward in a diagram. The cause-and-effect diagram (often called a fishbone 

diagram) visually represents this form of top-down analysis. The right side of the fish 

represents an incident or failure at the top. Then, fish-bones representing several cause 

categories, including numerous components, are added to the design to facilitate a 

systematic evaluation of potential dangers (Rausand & Hyland, 1994). An Event Tree 

Analysis (ETA) or Fault Tree Analysis (FTA) are examples of this classification. 

2.6.1.2. Quantitative reliability approaches 

Quantitative methods are required in order to carry out an in-depth analysis of the reliability, 

which should include a rating of the risks and a prioritisation of where attention should be 

focused to incorporate necessary corrections or safety measures. These approaches will be 

categorised as analytical, stochastic and sophisticated (Rausand & Høyland 1994). 

• Analytical quantitative approach: Analytical methods for assessing reliability are based 

on interference between load and strength. The difference between the system's 

resistance and the operating load is called performance or limit state function (LSF). 

Some parameters utilised in these formulations are unpredictable and must thus be 

represented as stochastic or random variables. The performance function is used to 

illustrate the region of failure, which is the case when negative results are obtained. The 

LSF must be solved in a variety of methods in order to evaluate its reliability. The first-

order reliability method (FORM) and the second order reliability method (SORM) are 

frequently used to simplify the analytical expression when computing the reliability 

under the condition that the LSF must be positive. These methods use a first or second 

order Taylor expansion, respectively (Sundararajan 1995). In further sections, these 

methods will be discussed in more detail. 

• Stochastic quantitative approach: Surrogate modelling methods, such as kriging or 

stochastic response surface methods (SRSMs), on the other hand, only use an 

approximated LSF rather than the true one. Surrogate modelling methods meet all initial 

data points. They are thus a more accurate method for approximating the LSF, which 

is then solved for the PoF and reliability using FORM, SORM, or MCS. In contrast, 

SRSM only uses some sample points for interpolating and approximating the response 

surface. Aside from the benefit of reducing the computational effort for solving 

iterations by simplifying the simulation expressions, SRSMs can also link input and 

output variables (Chopra et al. 2013). 



54 

 

• Quantitative reliability methods can handle even more complex system conditions. For 

example, when there are multiple criteria within an analysis process, multi-attribute 

decision making (MADM), also known as multi-criteria decision analysis (MCDA), 

can assist in selecting the best option. In contrast, fuzzy set theory (FST) can deal with 

incomplete information or fuzzy data. 

2.6.2.Structural reliability assessment concept in offshore applications 

After understanding onshore and offshore conditions in previous sections, when it refers to 

wind turbines, offshore locations provide a better supply of steady and robust wind, as well as 

more available space, than onshore (Kaldellis & Kapsali, 2013). Support structures for offshore 

wind turbines are designed differently than those for onshore wind turbines. There are 

additional hydrodynamic loads on OWT support structures, which are absent in the onshore 

wind turbines. As different types of foundations were described, it was realized that significant 

uncertainties exist in the soil properties and environmental loads on the OWT support structures 

exposed to the harsh ocean environment. A Partial Safety Factor (PSF) is applied to loads and 

material properties in order to account for uncertainties. When the design process is simplified, 

it almost always results in excessively large or inadequately designed designs. An alternate 

approach to dealing with uncertainty is stochastic modelling, which uses appropriate 

distributions (e.g. normal, lognormal, Weibull, etc.) to model variables stochastically.  

Calibration of codes and standards based on reliability provides an efficient method for 

adjusting PSFs to account for specific load regimes and deployment locations, providing 

adequate safety and avoiding unnecessary generalisation of generic PSFs. This method has 

been widely adopted over the last decade and is based on publications such as Eurocode 

recommended guidelines (Eurocode 3, 2005) and background documentation (Mazzolani & 

Piluso, 1997) that explain the basic steps of the calibration process. Structural reliability 

analysis is an important component of the probabilistic design approach, as is PSF calibration. 

Structural reliability analysis predicts the likelihood of a structure's limit state being violated. 

The first principles, also known as failure modes with physics behind them, are used to 

formulate limit states. 

To mention a few typical failure modes, the main OWT support structures are vulnerable to 

fatigue failures such as buckling and scouring (Martinez-Luengo & Shafiee, 2019; Scheu et al., 

2019). 
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Wind and wave loads cause considerable cyclic loads on OWT support structures. As a result, 

fatigue reliability is often dominant in their design (Yeter et al., 2015). The fatigue analysis 

methods used in fatigue reliability assessment are roughly divided into two groups: 

1) S-N curve method (Dong et al., 2012), which is based on typical S-N data obtained 

through fatigue testing; 

2) The fracture mechanics method (Anderson, 2017) uses crack growth data from an initial 

defect.  

It is essential to create effective fatigue reliability evaluation models to improve the fatigue 

reliability of OWT support structures.  

So far, only a few review papers on wind turbine reliability have been published. (Greco et al., 

2013) conducted a database survey on wind turbine subsystem dependability. The poll offered 

a brief overview of each database and emphasised major findings that were judged useful. 

(Wen et al., 2020) evaluated probabilistic approaches for assessing wind power reliability and 

discussed the factors influencing wind power system reliability. (Pfaffel et al., 2017) conducted 

a review of wind turbine performance and dependability. The failure rates of various wind 

turbine components (subsystems) were reviewed and discussed, including the rotor, drive train 

system, yaw system, central hydraulic system, control system, power generation system, 

transmission, nacelle, and cooling system, meteorological measurement, and tower system. 

(Guo et al., 2022) address the reliability of OWT support structures and evaluations to facilitate 

the development of more cost-effective OWT support structures. 

The reliability index is widely used in reliability analysis to measure risks and thus assess the 

consequences of failure (Manuel et al., 2008). The problem's governing parameters are 

typically represented as random variables that can be gathered into a random vector X. The 

space D of random variables can be split into two sections for reliability analysis: 

• 𝐷𝑓 as failure region 

 𝐷𝑓 = {𝑋|𝑔(𝑋) ≤ 0} (2.1) 

 

• 𝐷𝑠 as safety region 

 
𝐷𝑠 = {𝑋|𝑔(𝑋) > 0} 

(2.2) 
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where 𝑔 is the performance function; the limit state surface, denoted by g(X) = 0, is defined as 

the boundary between the failure and safe zones. In its most basic form, the performance 

function 𝑔 is provided by: 

 
𝑔 = 𝑅 − 𝐸 

(2.3) 

In the performance function, 𝑅 is resistance, and 𝐸 is load effect, and the function is expressed 

in terms of stress, strain, modal frequency and displacement. 

2.6.3.Reliability assessment levels 

Structured reliability analysis approaches are classified into four levels based on the level of 

sophistication used to solve specific problems: Levels I, II, III, and IV (DNV GL, 2011). 

• Level I methods 

The level I approach, which always uses one characteristic value to define each uncertain 

variable, is the deterministic reliability method. The probability of failure is not explicitly 

computed in such practices, and variables' uncertainties are considered by applying a set of 

PSFs derived from design standards.  

• Level II methods 

In the Level II reliability analysis methodologies, each uncertain variable is often described by 

two values (i.e. mean and variance). Level II methods include the reliability index method, 

such as the First-Order Second-Moment (FOSM) (Wong, 1984). 

• Level III methods 

The joint probability distribution of unknown variables is used in Level III reliability analysis 

approaches. These methods use the probability of failure as a reliability index. FORM (First 

Order Reliability Method) (Gollwitzer & Rackwitz, 1988) and SORM (Second Order 

Reliability Method) (Kiureghian et al., 1987) and simulation methods, such as directional 

sampling and Monte Carlo Sampling (MCS) (Kukol et al., 2006), are examples of 

approximatively analytical techniques. DNV standards (DNV GL, 2016) have recommended 

using this reliability analysis as it achieves a satisfactory result. 

• Level IV methods 
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Level IV reliability methodologies compare an engineering economics prospect uncertainty 

analysis in parallel. Beyond Level III, it considers target reliability, maintenance, and costs in 

the failure's effects to maximise a structure's lifetime cost-benefits. 

Table 2-1 compares four reliability analysis methodologies based on whether to employ PSFs, 

some characteristic values for each stochastic variable, joint probability, and extra elements 

(goal reliability, costs, advantages of building, etc.) 

Level III methods are the most extensively utilised reliability analysis methodologies for OWT 

support structures (Lee et al., 2014a; Peeringa & Bedon, 2017). However, it is predicted that 

level IV methods will be used a lot in future as they can include the cost aspects in parallel with 

target reliability and maintenance. 

Table 2-1 Comparison of reliability assessment methods (Wang & Kolios, 2017b) 

SRA level PSFs used No. of characteristic values 

used for each stochastic 

variable 

Joint probability 

distributions used 

Examples 

I Yes One No PSF 

II No Two No FOSM 

III No Two or more Yes FORM, SORM, 

MCS 

IV No Two or more Yes Combination of 

FORM with the 

optimiser to 

achieve target 

reliability 

 

2.6.4.Structural reliability analysis using deterministic values 

The finite element solution effectively solves the engineering problem's mathematical model. 

However, a practical issue solution involves a physical (behavioural) model, a failure model, 

parameter selection, and safety coefficient selection. 

The requirement for safety coefficients is also widely accepted due to engineering's multiple 

sources of uncertainty. For example, natural randomness of problem characteristics like 

material resistance and environmental loads, modelling uncertainty (difference between failure 

models and failure tests), statistical uncertainty, decision uncertainty, and a human mistake can 

be the source of uncertainties (Maymon, 1993). 
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Structural reliability theory quantifies and analyses various uncertainties. Based on these 

uncertainties, structural reliability analysis calculates the failure probability. Figure 2-8 SRA 

approaches can help determine a project's characteristic values and safety coefficients. This is 

especially significant and vital in the construction of novel structures. 

 

Figure 2-8 Reliability analysis of a structure with random parameters 

𝑃𝑓  can be solved directly by sampling the problem's random variables according to the density 

𝑓𝑋(𝑥) and evaluating the limit state function at each sampled position using a crude Monte 

Carlo simulation or First or Second Order Reliability Methods (FORM and SORM). 

2.6.5.Reliability-based calibration of standards in offshore wind 

Empirical and experimental expertise in probabilistic principles has been developed through 

historical evolution. The systematic recording of this knowledge is advantageous for 

developing a technique that enables the design of novel structures to reach a desired level of 

reliability and for formulating applicable design codes and standards. 

This section starts with a study of offshore structure design standards. Following the 

presentation of the design safety level and reliability-based calibration of PSFs, the limitations 

of existing design standards are discussed. 

2.6.5.1. Offshore structures standards 

DNV-GL offshore: DNVGL-ST-0126 is provided for designing OWT support structures and 

covers the design, manufacture, installation, and inspection. It is consistent with IEC61400-3 

(IEC, 2019). DNV also published the standards for the design of floating wind turbines, 

DNVGL-ST-0119, the design of offshore substations, DNVGL-ST-0145. 
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IEC standard: IEC 61400-3 (IEC, 2019), which intends to provide an acceptable level of 

safety for OWTs against all hazards for the duration of their designed life. Generally, it is used 

in conjunction with the relevant ISO and IEC standards, particularly IEC 61400–1. For fixed 

and floating installations, IEC 61400-3-1 and IEC 61400-3-2 are referred to accordingly. 

BS EN 1993-1-1:2005 + A1:2014 Eurocodes 3: The European Commission developed the 

Eurocodes as a set of standards (Eurocode 3, 2005). These standards permit using probabilistic 

techniques in design, allowing additional design optimisation. In addition, the steel structure 

design standard BS EN 1993-1-1:2005 + A1:2014 is suited to the design of offshore structures. 

API RP-2A: In 1969, the API (American Petroleum Industry) established a recommended 

practice for planning, designing, and constructing fixed offshore platforms. In 1989, a revised 

version was produced in a Load Resistance Factor Design (LRFD) format and made publicly 

available in 1993. This standard is currently in its 22nd edition, published in November 2014. 

ABS guides: The ABS onshore guide includes design, fabrication, installation, and inspection 

standards for fixed-bottom OWT installations, whereas the ABS offshore guide provides 

the criteria for floating OWT installations. ABS (American Bureau of Shipping) has created 

both guides sources of classification and design guides for the offshore industry. 

2.6.5.2. Safety levels in design 

Different standards (such as ISO, IEC, and DNV GL) use a safety class system to ensure 

structural safety. The structures are assigned a safety class based on the consequences of 

failure. A nominal annual probability of failure is typically used to set the target safety level 

for each safety class. 

According to DNV GL (DNV GL, 2016), there are two safety classes for OWTs: 1) normal 

safety class, which concerns when a failure poses a risk of personal injury and/or 

environmental, economic, or social consequences, and 2) special safety class, which applies 

when the safety requirements are agreed upon by the customer and the designer and/or are 

determined by local guidelines. 

Table 2-2 Safety level and failure classifications 

Failure classification 
Failure consequence  

Minor Major 

I – Redundant structure 𝑃𝑓 = 10−3 (𝛽 = 3.09) 𝑃𝑓 = 10−4(𝛽 = 3.71) 
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II – Significant warning 

before failure occurrence in 

a non-redundant structure  

𝑃𝑓 = 10−4(𝛽 = 3.71) 𝑃𝑓 = 10−5(𝛽 = 4.26) 

III – No warning before 

failure occurrence in a non-

redundant structure  

𝑃𝑓 = 10−5(𝛽 = 4.26) 𝑃𝑓 = 10−6(𝛽 = 4.75) 

 

Table 2-2 overviews permissible annual failure probabilities based on DNV Classification Note 

30.6 (DNV GL, 1992). For the design of OWT support structures, DNVGL-ST-0126 (DNV 

GL, 2016) recommends that a nominal annual probability of failure of 10−4 should be used as 

the target safety level. This goal safety level reflects that OWT support structures are unmanned 

and designed to meet regular safety standards. 

2.6.5.3. Calibration of PSFs using reliability assessment 

Several methods can achieve reliability-based calibration. The adjustment of design values is 

one of those methods. In this approach, all fundamental variables must be assigned by design 

values. The structure is supposed to be safe if the limit states are not reached when the design 

values are introduced into the analysis model. According to the performance function, this 

matter can be stated as: 

 
𝑅𝑑 ≥ 𝐸𝑑  

(2.4) 

 

that means the design load effects, 𝐸𝑑 should not exceed the corresponding resistance, 𝑅𝑑. Load 

effect and resistance can be defined as (Eurocode 3, 2005): 

 
𝑅𝑑 = 𝑅{𝑋𝑑1, 𝑋𝑑2, … , 𝑏𝑑1, 𝑏𝑑2, … , 𝜃𝑑1, 𝜃𝑑2, … } 

(2.5) 

 
𝐸𝑑 = 𝐸{𝐹𝑑1, 𝐹𝑑2, … , 𝑏𝑑1, 𝑏𝑑2, … , 𝜃𝑑1, 𝜃𝑑2, … } 

(2.6) 

where 𝐹𝑑𝑖 is design value for load i and 𝑋𝑑𝑗 is design value for material strength j. Geometrical 

properties and model uncertainties are denoted by b and 𝜃 in expressions. The design values of 

resistance 𝑅𝑑 and load effects 𝐸𝑑 should be defined such that the following equations are 

fulfilled: 
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𝑃(𝑅 < 𝑅𝑑) = Φ(−𝛽𝑡𝛼𝑅) 

(2.7) 

 
𝑃(𝐸 > 𝐸𝑑) = Φ(+𝛽𝑡𝛼𝐸) 

(2.8) 

where t is the target reliability index and 𝛼𝑅 and 𝛼𝐸 are the FORM sensitivity factors. Equations 

(2.7) and (2.8) could be used to calculate the design values (such as 𝑋𝑑1 and 𝐹𝑑1). Finally, the 

relevant PSF is obtained by dividing a variable's design value by its characteristic or 

representative value. 

An alternative method of reliability-based calibration of PSFs defined in (Wang & Kolios, 

2017c) commences with some unconstrained partial factor format. It requires that the partial 

factors be chosen so that the structure's reliability is as close to some qualified value as possible. 

According to (ISO, 1998), partial factor format can be expressed as: 

 𝑔(
𝑓𝑘1

𝛾𝑚1
,
𝑓𝑘2

𝛾𝑚2
, … , 𝛾𝑓1𝐹𝑘1, 𝛾𝑓2𝐹𝑘2, … ) ≥ 0 

(2.9) 

where 𝑓𝑘𝑖  and 𝛾𝑚𝑖  are the characteristic strength and partial factor of material i, respectively 

and 𝐹𝑘𝑗  and 𝛾𝑓𝐽 are the representative value and partial factor for load j, respectively. The next 

stage is to establish a representative set of j test elements that address 1) different types of 

actions, 2) different types of structural dimensions, 3) various types of materials, and 4) various 

kinds of limit states. 

The set of representative structural elements can be designed for a given set of partial factors 

(𝛾𝑚1, 𝛾𝑚2,…, 𝛾𝑓1, 𝛾𝑓2,…). Each element will thus have a level of reliability that differs more 

or less from the target level. The average deviation DA can be stated using the reliability index 

as: 

 𝐷𝐴 = ∑[𝛽𝑘(𝛾𝑚𝑖, 𝛾𝑓𝑗) − 𝛽𝑡]
2

𝑛

𝑘=1

 
(2.10) 

where 𝛽𝑘  is the reliability index for element k in the result of a design using a set of partial 

factors (𝛾𝑚1, 𝛾𝑚2,…, 𝛾𝑓1, 𝛾𝑓2,…). The optimal choice of partial factors is achieved by 

minimising the aggregated deviation DA provided in Eq. (2.10). Weighted factors may be 

utilized if not all elements are considered equally important. 
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Several research papers have been published on the reliability-based calibration of PSFs for 

OWT support structures. (Tarp-Johansen & Sørensen, 2006) calibrated the fatigue safety 

factors for OWT support structures based on their reliability. If wave loads dominate the fatigue 

loads on the support structure instead of wind loads, then slightly larger fatigue safety factors 

are required. (Velarde et al., 2020) provided a system for reliability-based calibration of fatigue 

safety factors for OWT concrete support structures and applied it to a standard gravity-based 

foundation. The results suggested that the reliability-based calibration of PSFs has the potential 

to reduce offshore wind energy costs. (Morató et al., 2017) conducted a reliability analysis and 

then calibrated PSFs based on the results. The calibrated PSFs were applied to a standard 

turbine and its supporting structures. Reliability based on calibrated PSFs reduced failure 

probabilities for most difficult design situations to relatively low levels. 

Even though the suitable reliability of OWT support structures can typically be obtained using 

design standards, the applicability of these standards to unique and innovative structures 

presents challenges. This results from the fact that design guidelines primarily apply to specific 

structures and are typically described at a high level, providing limited background information 

on the methodologies employed (Kolios & Brennan, 2009). In this respect, the reliability-based 

design method can produce enough results for designing innovative and specialised OWT 

support structures. Furthermore, the estimation of PSFs independently is possible by reliability-

based adjustment methods (Morató et al., 2017) that can eliminate the unintended 

conservatism.  

Stochastic wind and wave variation development needs statistical models, specifically 

statistical distributions and proper methods. Weibull, Rayleigh, Lognormal and Poisson are 

commonly used for wind modelling, while Lognormal, Weibull, and Gumbel are used for 

waves. The findings from the research are that the best distribution choice depends on the site, 

so it is important to conduct fit testing and handbook recommendations. 

 

2.7. Extra-large support structures in deeper sea 

Since the first commercial wind turbine's introduction in the 1980s, wind turbine capacity 

ratings and dimensions have increased rapidly. The primary motivation for this development 

is to have a view on future of big turbines in deep seas. In contrast to onshore turbines, which 

may be limited in size owing to operational and capacity restrictions, the design of offshore 
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wind turbines will expand as long as it is technically feasible and economically viable (Wiser 

& Bolinger, 2010). As a result, wind turbines' rated power, size, and efficiency increase while 

their Levelized Cost of Energy decreases. Only in 2019, Europe connected 3,623 MW of net 

offshore wind generating capacity, breaking the previous year's record (Walsh, 2019). In recent 

years, offshore wind turbines (OWTs) are becoming increasingly robust and reliable. Since 

2014, the average annual increase in turbine capacity has been 16 per cent. As illustrated in 

Figure 2-9, turbines installed in 2019 had an average rated capacity of 7.8 MW, which is 1 MW 

higher than the previous year.  

 

Figure 2-9 The yearly average of installed OWT rated capacity in MW (Walsh, 2019) 

2.7.1.Scaling up  

As discussed in previous sections, onshore wind turbines generally employ concrete 

foundations, but OWT foundation types vary significantly depending on sea depth. Far off the 

shore, where ocean depths exceed 30 metres, favourable wind conditions can often be 

encountered. In 2021, Siemens Gamesa launched the largest OWT, with a rated power of 

14MW and a rotor diameter of 222m (Gamesa et al., 2020). General Electric (GE) is supposed 

to install a 12MW Haliade-X platform in parallel, and they have some prototypes in 14MW 

OWTs under development. The industry is thirsty for larger platforms and wind turbines, and 

their designs are continuously optimised to make them feasible in the market. There are always 

new technologies to allow for larger sizes, but there is no control over the market demand and 

state regulations. For instance, Siemens Gamesa optimises the rotor blade diameter of the 

"Quantum Leap" turbine by 10% to produce more rated power from the same platform 

technology (Gamesa et al., 2020). Despite some belief that larger wind turbines are not always 



64 

 

better, the market proves that extra-large turbines have been demanded in the industry every 

year (Aldersey-Williams et al., 2020). 

Multiple studies have already investigated wind turbines and substructure scaling. Linear 

scaling equations for wind turbines established as part of the Upwind project (Sieros et al., 

2012) are frequently employed as a starting point, such as in the work of (Leimeister et al., 

2016; Leimeister & Kolios, 2021), among others, which upscaled the 5 MW OC4 semi-

submersible to 7.5 MW by scaling the floater dimensions with the square root of the power 

rating ratio between turbines. They discovered that the scaled-up systems had greater pitch 

stability and longer natural periods than the original design. (George et al., 2014) adopted a 

similar strategy, enlarging the 5 MW OC4 to 7.5 MW and 10 MW by increasing the mass-to-

cubic-root-of-mass ratio between turbines while maintaining a consistent platform height to 

support assembly in European drydocks. (Kikuchi & Ishihara, 2019) scaled up a 2 MW wind 

turbine used in the Fukushima FORWARD project to 5 MW and 10 MW by scaling the support 

structure with the cube root of the mass ratio between turbines and then scaling the column 

distance to maintain the static balance between overturning moment and pitch restoring 

moment. 

2.7.2.The importance of water depth 

In the last decade, the applicability for monopiles was just in water depths around 40m or less 

(Al-Sanad et al., 2021). Currently, it is becoming more frequent to hear about extra-large 

monopiles (diameters up to 9 m and piece weights up to 1,500 tonnes) as viable alternatives to 

jacket substructures. On the other hand, larger turbines and deeper water will put a monopile's 

technological feasibility to the test, especially as wave loads significantly interfere with the 

turbine structure's dynamics. In addition, their diameter influences the hydrodynamic 

performance of bottom-fixed monopile OWTs. Using fewer conservative solutions for the 

OWT support structure will decrease the capital cost by 6–8% (Gilbert et al., 2015; Ivanhoe et 

al., 2020; Rezvanipour et al., 2020; Wang & Kolios, 2017c). 

The design of offshore wind turbine support structures has received much research attention. 

Muskulus and Schafhirt (Muskulus & Schafhirt, 2014) have reviewed the design problem's 

different aspects and challenges and the various methods demonstrated within the literature. 

They emphasize the importance of integrating fatigue and the high computational costs due to 

the numerous simulations required to deal with wind and wave conditions. (Morató et al., 2017) 

investigated the Design Load Cases (DLCs) mainly responsible for driving design loads to 
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lower overall analysis loads in iterative design processes. The primary factors for designing 

OWTs are water depth, the aerodynamic and hydrodynamic loadings, and loads due to 

controller and soil conditions. (Velarde & Bachynski, 2017) studied the utilization of DTU 

10MW monopiles in deeper waters using numerical methods. They noticed that the sea-states 

act an increasing role in fatigue damage with increasing sea depths. The hydrodynamic load is 

relatively small for shallow water sites (assuming the structure does not meet wave-breaking 

load); hence the design is mainly governed by the aerodynamic load. The hydrodynamic load's 

effect proliferates by increasing water depth. Wind-generated waves in the open ocean typically 

have a frequency range of 0.05–0.25 Hz e.g., (DNV GL, 2016). 

Along with the ocean currents, these waves are the primary contributors to the hydrodynamic 

loads. Generally, a single low-frequency wave governs the extreme load case, whereas high-

frequency waves affect the structure's fatigue design. (Ishtiyak et al., 2021) proposed a new 

concept of the support structure named 'bottom supported tension leg tower' (BSTLT) for 

utilizing in water depth of 50m. In this design, an OWT's tower is positioned over a transition 

piece hinged to a monopile and supported by tethers. There are some developments around this 

concept, but the main issue is the maintenance and applicability of the hinge itself in such a 

massive structure in salty water still exists.  

The bottom-fixed support structures are on-demand in the market (despite being expensive in 

manufacturing and installation). They also have to meet the natural frequency conditions and 

resist the forces on their body for water depths more than 30m. Then again, the floating OWT 

concepts with the spar-type Hywind and semisubmersible-type WindFloat are other options. 

However, the hull structure and ballast become bulky and pricy, although they are suitable for 

water depths above 60m. This matter made us investigate water depth sensitivity between 30m-

60m of the latest IEA 15MW reference turbine (Gaertner et al., 2020) to cover the demand in 

the current offshore wind industry. 

 

2.8. Cost analysis terminology 

Another factor influencing the effectiveness of structural optimisation for wind turbine 

constructions is the fact that its levelized cost of energy must be considered. This is generally 

true that many unknown (for example, market commodity fluctuations) costs and competition 

from other businesses are existed in these types of studies. The cost study aims to clarify the 
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benefits of the new offshore wind turbine design and identify potential design differences 

between the reference structure and the optimised one. The outcomes will provide design 

recommendations for future large offshore wind turbine generation. 

For a detailed study and understanding of the costs of the OWT support structure design, all 

variables affecting it must be simplified. A simplification of all the variables influencing the 

design of the OWT support structure is required for straightforward analysis and understanding 

of its costs. Water depth, manufacturing, transportation, weather downtime and steel price are 

the key criteria in this study which affect the design and, as a result, the cost of an OWT support 

structure. Water depth is vital as a deeper sea means larger and heavier substructures and 

foundations (Arshad & O’Kelly, 2013). Therefore, more costly manufacturing and installation 

costs. Distance to land may affect installation costs since the transport time will increase, but 

it is not a critical factor because it will only account for a small portion of the total cost. 

2.8.1.Cost breakdown and definitions 

The first step in this study is to break down the cost of the structure. In order to understand the 

breakdown of the system, it is necessary to know the offshore wind farm operation and 

financing terminology.  

Capital expenditure or CapEx is the amount of money spent on procuring, buying wind 

turbines, cables, and other key wind farm components, and sometimes also including the cost 

of constructing a project, for example, paying for installation vessels & additional installation 

costs. 

Operational expenditure of OpEx is the amount of money spent operating the project. As well 

as the obvious direct costs of running the site, some definitions include seabed leasing, 

transmission, and port facility costs.  

Capacity factor or CF is a key performance metric for any site. It is a factor which indicates 

how much of the total wind farm capacity we expect the wind farm to generate. For example, 

a 500MW wind farm with a capacity factor of 40% (0.4) will have an annual energy yield of 

(500x0.4x8760) = 1,752,000 MWh. This is before any electrical, wake, or other performance 

losses are applied. 

Discount factor or DCF is a company-specific factor used to weigh the value of future net 

revenue from investments. The higher the discount factor, the lower the value we allocate to 

future reserves in today's judgments. 



67 

 

Availability in the offshore wind can be defined in two ways. Time-based availability is the 

time that the wind farm is available to generate electricity, and it can be expressed as a factor, 

1.0 = 100% for a perfectly functioning wind farm. Yield-based availability is the same metric 

but for energy rather than time. If a wind farm captures all the potential energy in each period, 

its yield-based availability is 100% (or 1.0). 

 

2.9. Summary 

The chapter has presented various topics regarding modelling and optimising methods for 

offshore wind turbine support structures. Additionally, a list of optimisation algorithms and 

structural reliability assessments was stated. These topics are discussed to provide a viewpoint 

on which approaches and models to choose for a given task and gaps in the topic. 

Some of the gaps in previous research are as follows. First, offshore wind turbine modelling 

and designing procedures involved many uncertainties, and most optimisation studies were 

based on the deterministic process. Including reliability constraints with stochastic variables 

can fill this issue. However, some reflections on reliability-based optimisation utilized 1D 

models of monopile and simplified them. Developing a 3D geometry to simulate the actual 

condition can cover this problem.  The lack of investigations regarding the soil interaction and 

feasibility of structures in the water depth between 30m to 60m is also noticeable for extra-

large monopiles. Much less work has been done concerning modifying PSFs of fixed-bottom 

OWT support structures using numerical methods. However, reliability-constrained 

optimisation (RCO) design is one of the complementary approaches and frameworks that 

integrate uncertainty and randomness in the design process without the complexity of RBDO 

and the hybrid method (Psarropoulos & Tsompanakis, 2008) in order to optimise the geometry 

and check the PSF in parallel contemplating target value of reliability. 

This study focuses on a framework that uses a parametric model of finite element analysis of 

OWT support structures and integrates this with the Genetic Algorithm (GA) to optimise and 

reduce the support structure's overall mass while satisfying multiple criteria imposed by the 

design standards. This framework strategy in combining FEA, GA and reliability assessment 

of the candidate design models allows us to achieve OWT's optimum reliable support structure 

considering the target reliability constraints. The study is completed with the cost analysis and 

comparison of LCOE of initial and optimised models. 
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Follow up with the 3D model of the most recent reference wind turbine (IEA 15MW) in the 

water depth sensitivity section. The simulations in water depths of 30m, 40m, 45m, 50m and 

60m are performed, and numerical results in different water depths are studied and discussed 

in maximum equivalent stress, fatigue damage, 1st natural frequency and global buckling 

capacities. The study concludes with the feasibility of structure and water depth sensitivity. A 

brief discussion about the manufacturing limitations and installation challenges of extra-large 

monopiles is presented at the end of that section.  

In this chapter, offshore wind foundations, support structure design principles, optimisation 

strategies, reliability assessment methods and extra-large structures have been presented and 

discussed. Even though these subjects are broad in their terms, this chapter intends to provide 

a concise description of relevant findings. The following is a summary of each section's primary 

inferences: 

• Selecting the best support structure is mainly determined by the local conditions and 

project budget, and there is no particular foundation ideal type for all locations. Yet, in 

contrast to the other options, the monopile is the cheapest, more reliable, and most 

adaptable. Statistics demonstrated that more than 80% of current substructures are 

monopile worldwide. 

• The structural design of OWT support structures is complicated due to harsh 

environmental conditions. Therefore, the relevant standards recommend several design 

principles by considering different limit states and design load cases. In addition, 

selecting appropriate DLCs, applied load types, and soil interaction methods can 

maximise the accuracy of the design approach. 

• Optimisation under various conditions is discussed. Genetic algorithms are extensively 

used for the design optimisation of OWTs. Probabilistic optimisation based on 

reliability is one of the best methodologies in case studies for considerable uncertainties 

in material properties and environmental loads. 

• As well as optimisation, focusing on scale-up and water depth sensitivity is essential in 

the current situation of the offshore wind industry as the demand for renewable energy 

is rising every day. In parallel with the market demands, the manufacturing technology, 

installation and transportation facilities are changed with more capacities, leading us to 

reduce the LCOE of offshore wind turbines. 

 



69 

 

 

 

 

 

 

 

3. Numerical Methods of Structural 

Reliability Analysis 

 

3.1. Introduction 

This chapter will explain the numerical methodologies for structural and reliability evaluations. 

Calculating the probability of failure equation is complex by the integral solution of the joint 

probability distribution function. Consequently, limit state function approximations can be 

utilised to overcome this challenge. Methods for Level III reliability analysis will be discussed 

analytically in the following parts, which will be implemented later in this thesis. There will be 

a discussion of both deterministic and probabilistic formulations. Then, the Stochastic 

Response Surface Method (SRSM) and multivariate regression approaches will be 

presented. Then again, the finite element model will be developed, including applying the 

corresponding loads in the proposed optimisation framework. Finally, the validation of the 

FEA model will be performed. 

3.2. Numerical methods 

3.2.1.Deterministic Methods 

The approaches and algorithms addressed in this section concern the deterministic processing 

of limit state functions using a geometrical approximation of the stochastic variables. The 

moments of random variables define them. The First-order Second Moment Reliability Method 
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(FOSM) will be introduced as the basis for the First Order Reliability Method (FORM). The 

reference (Wong, 1984) provides an analytical description of these methods. 

The multiple variables contributing to the probability of failure estimation have generated 

several methods to simplify this procedure. First and second-order employment of Taylor series 

expansion is a typical method for linearizing the limit state equations using the First and Second 

Order Moment techniques, respectively. However, FOSM, also known as the mean value, first-

order second-moment method (MVFOSM), is a simple method that cannot yield accurate 

findings for very low failure probability or nonlinear limit state functions (Lee et al., 2014b).  

To overcome the above challenge, The safety index approach, a geometrical solution, converts 

the problem to a mathematical optimisation problem of finding the point of the limit state 

surface with the shortest distance to the origin of the standard normal space. The Hasofer and 

Lind (HL) algorithm is proposed in (Hasofer et al., 1974), which converts the vector of design 

stochastic variables X into a vector of standardised independent variables U. The design point 

in U-space shows the place with the highest probability density and is referred to as the Most 

Probable Failure Point (MPP). The converted limit state surface g(U)= 0 can be reached with 

first or second order estimations, and thus First and Second Order Reliability Methods 

(FORM/SORM) are appropriately considered. The interpretation of the preceding approach is 

that in FORM, the limit state surface is approximated by a tangent plane at the MPP. In contrast, 

in SORM, the MPP is reached by a curve, as shown in Figure 3-1. 

 

Figure 3-1 First and second order estimations (Kolios, 2010)  
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3.2.1.1. Mean Value FOSM (MVFOSM) 

As mentioned, MVFOSM simplifies the calculation of a limit state function's failure 

probability. The Mean Value First-Order Second-Moment (MVFOSM) method is a commonly 

used approach in structural reliability analysis that combines both the first-order and second-

order statistical moments of the random variables to estimate the reliability of a structure The 

term "first-order" refers to using first order expansions to linearise the initial function, with 

inputs and outputs represented as mean and standard deviation. This basic approximation 

excludes higher moments, increasing the following model uncertainty. MVFOSM is an 

approximation technique that provides an efficient and accurate estimate of the failure 

probability by considering both the mean value and variance of the random variables. The basic 

formulation of the MVFOSM method can be described as five steps: 

1. Limit State Function (LSF): 

The limit state function (LSF) is a mathematical expression that defines the failure condition 

of the structure in terms of the random variables. It is denoted as g(U), where X represents the 

vector of random variables, and g(U) = 0 defines the failure region. 

2. Taylor Series Expansion: 

The LSF is approximated using a Taylor series expansion up to the second-order terms around 

the mean values of the random variables.  This method approximates the limit-state function 

by the first-order Taylor series expansion at the mean value point. Assuming X as a vector of 

statistically independent variables, the approximate limit-state function at the mean is as 

follows: 

 
�̃�(𝑋) ≈ 𝑔(𝜇𝑋) + ∇𝑔(𝜇𝑋)𝑇. (𝑋𝑖 − 𝜇𝑥𝑖) 

(3.1) 

 

Where 𝜇𝑋 = {𝜇𝑥1, 𝜇𝑥2, … , 𝜇𝑥𝑛}𝑇 is the mean values vector and gradient and g evaluated at 𝜇𝑋 

as: 

 
∇𝑔(𝜇𝑋) =  {

𝜕𝑔(𝜇𝑋)

𝜕𝑥1
,
𝜕𝑔(𝜇𝑋)

𝜕𝑥2
, … ,

𝜕𝑔(𝜇𝑋)

𝜕𝑥𝑛
}
𝑇

 
(3.2) 

Also, the expected mean value of approximated limit state function �̃�(𝑋) is: 
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 𝜇�̃� ≈  𝐸[𝑔(𝜇𝑋)] = 𝑔(𝜇𝑋) (3.3) 

The standard deviation of the approximate limit state function is calculated using fundamental 

statistics transformations: 

 
𝜎�̃� = √𝑉𝑎𝑟[�̃�(𝑋)] = √[∇𝑔(𝜇𝑋)𝑇]2. 𝑉𝑎𝑟(𝑋) = [∑(

𝜕𝑔(𝜇𝑋)

𝜕𝑥𝑖

𝑛

𝑖=1

)2. 𝜎𝑥𝑖
2 ]

1
2

 
(3.4) 

3. Reliability Index: 

The reliability index (β) is defined as the distance between the origin and the design point, 

which is the point on the LSF where g(X) = 0. The reliability index is given by: 

 𝛽 =  
𝜇�̃�

𝜎�̃�
≈

𝑔(𝜇𝑋)

[∑ (
𝜕𝑔(𝜇𝑋)

𝜕𝑥𝑖

𝑛
𝑖=1 )2. 𝜎𝑥𝑖

2 ]

1
2

 (3.5) 

The above reliability expression can be applied to cases of linear limit state functions. The 

index can be calculated analytically by expressing the safety margin between a system’s 

resistance R and loading S. 

 
𝑔(𝑋) = 𝑅(𝑋) − 𝑆(𝑋) 

(3.6) 

Then mean value and standard deviation resulting from Equation 3.6 are: 

 𝜇𝑔 = 𝜇𝑅 − 𝜇𝑆 (3.7) 

 
𝜎𝑔 = √𝜎𝑅

2 + 𝜎𝑆
2 − 2. 𝜌𝑅𝑆. 𝜎𝑅 . 𝜎𝑆 

(3.8) 

The correlation coefficient between R and S is indicated by 𝜌𝑅𝑆 and also 𝜇𝑅, 𝜇𝑆, 𝜎𝑅 and 𝜎𝑆 the 

mean values and standard deviations of variables R and S. Then, the reliability index can be 

calculated by: 

 𝛽 =  
𝜇𝑔

𝜎𝑔
=

𝜇𝑅 − 𝜇𝑆

√𝜎𝑅
2 + 𝜎𝑆

2 − 2. 𝜌𝑅𝑆. 𝜎𝑅. 𝜎𝑆

 (3.9) 

In case of 𝜌𝑅𝑆 = 0 (uncorrelated variables), 𝛽 can be calculated as: 
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 𝛽 =  
𝜇𝑔

𝜎𝑔
=

𝜇𝑅 − 𝜇𝑆

√𝜎𝑅
2 + 𝜎𝑆

2
 (3.10) 

The approximate limit-state surface of a nonlinear limit-state function can be determined by 

linearizing the original limit-state function at the mean value point. A hyperplane defined as a 

linear-failure function represents the failure surface in the generalised scenario with multiple 

independent variables. 

4. Failure Probability (Pf) 

The failure probability (Pf) is estimated using the MVFOSM method by considering the mean 

value (first-order) and variance (second-order) of the random variables. The failure probability 

is Pf ≈ Φ(-β). 

5. Sensitivity Factors: 

The sensitivity factors, also known as importance factors, are derived from the gradient vector 

and Hessian matrix of the LSF, and provide information about the contribution of each random 

variable to the failure probability. The sensitivity factors can be used to identify the most 

influential random variables in the structural reliability analysis and guide further analysis or 

design improvements. 

The MVFOSM technique is a simple approach for calculating the reliability index that uses the 

minimum possible representation of basic variables and provides a good balance between 

accuracy and computational efficiency in structural reliability analysis. However, this fact 

restricts the method's range of applicability because linearization of the limit-state function 

about the mean values can lead to inaccurate results. Therefore, the process cannot deal with 

nonlinearity or significant variations efficiently. 

3.2.1.2. Hasofer and Lind method 

The Hasofer-Lind (HL) method, also known as the First-Order Reliability Method (FORM), is 

widely used for estimating structures' reliability in structural reliability analysis. A first-order 

approximation method utilizes the random variables' first-order statistical moments to evaluate 

a structure's failure probability. The HL method provides an efficient and accurate estimate of 

the failure probability by iteratively updating the design point along the most probable failure 

direction. As defined, the geometrical distance measured from the origin of a u-dimensional 

space to the Most Probable Failure Point (MPP) on the failure surface can be interpreted as the 
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reliability index. The Hasofer and Lind reliability index method improves the MVFOSM 

approach by transforming the expanding point from the mean value point to the MPP. Hasofer 

and Lind (Hasofer and Lind, 1974) presented a linear transformation of the essential variables 

xi into a set of normalised and independent variables ui to expand this method to issues with 

multiple variables.  

For the basic case with two independent, normally distributed variables of strength R and stress, 

S, Hasofer and Lind transformed the initial variables to standard normalized variables: 

 
�̂� =  

𝑅 − 𝜇𝑅

𝜎𝑅
    𝑎𝑛𝑑   �̂� =

𝑆 − 𝜇𝑆

𝜎𝑆
 

(3.11) 

Where  𝜇𝑅, 𝜇𝑆, 𝜎𝑅 and 𝜎𝑆 the mean values and standard deviations of R and S, respectively. 

Now, the limit state surface must be transformed from 𝑔(𝑅, 𝑆) = 𝑅 − 𝑆 = 0 in the original 

coordinate system into the standard normalised system (�̂�, �̂�) as follow: 

 𝑔 (𝑅(�̂�), 𝑆(�̂�)) = �̂�(�̂�, �̂�) = �̂�. 𝜎𝑅 + (𝜇𝑅 − 𝜇𝑆) = 0 
(3.12) 

The distance from �̂�(�̂�, �̂�) coordinate system to the failure surface, �̂�(�̂�, �̂�) = 0 is the safety 

index: 

 𝛽 =  𝑂𝑃∗̂ =
𝜇𝑅 − 𝜇𝑆

√𝜎𝑅
2 + 𝜎𝑆

2
 (3.13) 

The most possible failure point (MPP) is the point 𝑃∗(𝑅∗ ,̂ 𝑆 ∗̂) on �̂�(�̂�, �̂�) = 0 and matches to 

the shortest space. A nonlinear function characterises the failure surface in the general situation 

of n normally distributed and independent variables. 

 
𝑔(𝑋) = 𝑔({𝑥1, 𝑥2, … , 𝑥𝑛}𝑇) = 0 

(3.14) 

The variables must then be transformed into their standard forms. 

 𝑢𝑖 =  
𝑥𝑖 − 𝜇𝑥𝑖

𝜎𝑥𝑖

   (3.15) 

The mean and standard deviation of 𝑥𝑖 are 𝜇𝑥𝑖
 and 𝜎𝑥𝑖

, respectively and the mean and standard 

deviation of 𝑢𝑖 are zero and unity. 
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The failure surface 𝑔(𝑋) = 0 in X-space is represented in the resultant failure surface 𝑔(𝑈) =

0 in U-space. The geometrical distance from the origin in U-space to any point on 𝑔(𝑈) =

0 corresponds to the number of standard deviations from the mean value point in X-space to 

the equivalent point on 𝑔(𝑋) = 0. This is due to the rotational symmetry of the second-moment 

representation of U. The safety index is defined as the shortest distance between the origin and 

the failure surface 𝑔(𝑈) = 0, as follows: 

 𝛽 =  min
𝑈∈𝑔(𝑈)=0

(𝑈𝑇. 𝑈)
1

2⁄  (3.16) 

In this case, 𝛽 is called the “HL Safety index”. The design point, 𝑈∗(𝑢1
∗ , 𝑢2

∗ , … , 𝑢𝑛
∗ ) on 𝑔(𝑈) =

0 surface in U-space can provide the corresponding vector point in the X-space. Based on the 

theory, the reliability index 𝛽 can be calculated as a solution to the optimisation problem in the 

standard normal U-space. 

 
 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 → 𝛽(𝑈) = (𝑈𝑇. 𝑈)

1
2⁄    𝑤𝑖𝑡ℎ 𝑔(𝑈) = 0 

(3.17) 

In (Freudenthal et al., 1966), To tackle this optimisation problem, numerous constrained 

optimisation methods were applied, including simple methods (possible directions, gradient, 

projection, and reduced gradient), penalty methods, dual methods, and Lagrange multiplier 

methods (Lee et al., 2014b). The applicability of each method is determined by the nature of 

the problem being researched. HL and HL-RF methods are the most commonly used algorithms 

in this case. 

Hasofer and Lind developed the HL algorithm to study normally distributed random variables. 

Rackwitz and Fiessler introduced the extended HL-RF approach by expanding the HL method 

to deal with non-Gaussian statistical distributions. Assuming that the (linear or nonlinear) limit 

state surface X has n regularly distributed and independent random variables: 

 
𝑔(𝑋) = 𝑔({𝑥1, 𝑥2, … , 𝑥𝑛}𝑇) = 0 

(3.18) 

And after transformation of the limit state function: 

 
𝑔(𝑈) = 𝑔({𝑥1𝑢1 + 𝜇𝑥1, 𝜎𝑥2𝑢2 + 𝜇𝑥1, … , 𝜎𝑥𝑛𝑢𝑛 + 𝜇𝑥𝑛}𝑇) = 0 

(3.19) 
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The intersection point P* is generated by the normal vector from the origin 𝑂 ̂to the limit-state 

surface 𝑔(𝑈). The safety index 𝛽 is the distance between the origin and the MPP. The first-

order Taylor series expansion of 𝑔(𝑈) at MPP P* is as follows: 

 �̃�(𝑋) = 𝑔(𝑈∗) + ∑
𝜕𝑔(𝑈∗)

𝜕𝑈𝑖
. (𝑢𝑖 − 𝑢𝑖

∗)

𝑛

𝑖=1

 
(3.20) 

And from transformation: 

 𝜕�̂�(𝑈)

𝜕𝑈𝑖
=

𝜕𝑔(𝑋)

𝜕𝑥𝑖
. 𝜎𝑥𝑖 

(3.21) 

The minimum distance from �̂�(𝑈) surface to the 𝑂 ̂can be derived by: 

 �̂�𝑃∗ = 𝛽 =
𝑔(𝑈∗) − ∑

𝜕𝑔(𝑈∗)
𝜕𝑥𝑖

. 𝜎𝑥𝑖 . 𝑢𝑖
∗𝑛

𝑖=1

√∑ (
𝜕𝑔(𝑈∗)

𝜕𝑥𝑖
. 𝜎𝑥𝑖)

2
𝑛
𝑖=1

 (3.22) 

The direction cosine of each transformed variable is provided below, reflecting the relative 

effect of the corresponding random variable on the total variance. 

 𝑎𝑖 = cos 𝜃𝑥1 = cos 𝜃𝑢1 = −

𝜕𝑔(𝑈∗
)

𝜕𝑢
⁄

|∇g(𝑈∗
)|

= −

𝜕𝑔(𝑋∗
)

𝜕𝑥𝑖
. 𝜎𝑥𝑖

[∑ (
𝜕𝑔(𝑈∗

)

𝜕𝑥𝑖
. 𝜎𝑥𝑖)

2

𝑛
𝑖=1 ]

1/2 (3.23) 

And 𝑃∗ coordinates are: 

 𝑢𝑖
∗ = 

𝑥𝑖
∗ − 𝜇𝑥𝑖

𝜎𝑥𝑖

= �̂�𝑃∗𝑐𝑜𝑠 𝜃𝑥1 = 𝛽𝑐𝑜𝑠 𝜃𝑥1 
(3.24) 

While transforming to the origin space X: 

 𝑥𝑖
∗ = 𝜇𝑥𝑖

+ 𝛽𝜎𝑥𝑖
𝑐𝑜𝑠 𝜃𝑥1     ,     (𝑖 = 1,2,… , 𝑛) (3.25) 

And because  𝑃∗ is a point on the limit sate surface, it must fulfil the term: 

 
𝑔({𝑥1

∗, 𝑥2
∗, … , 𝑥𝑛

∗}𝑇) = 0 
(3.26) 
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In situations where the failure surface contains numerous points related to fixed values of the 

reliability-index function (multiple MPP problem), it could be necessary to use several starting 

points to find all the values. 

 
𝑚𝑖𝑛(𝛽1, 𝛽2, … , 𝛽𝑚) =  𝛽𝐻𝐿 

(3.27) 

The algorithm of the HL reliability index is demonstrated in Figure 3-2. 

 

Figure 3-2 HL reliability index algorithm 

The HL method, as opposed to the MVFOSM method, approximates the limit-state function 

using the first-order Taylor expansion at the design point X(k) or U(k) rather than the mean 

value point 𝜇𝑥 (Lee et al., 2014b). Moreover, the MVFOSM method is simple, whereas the HL 

method requires multiple converging iterations, particularly for nonlinear situations. For 

nonlinear problems, the HL technique frequently outperforms the mean-value method. The 

accuracy of the calculation of the probability of failure Pf  will be determined by the quality 

and accuracy of the linearized limit-state function, �̃�(𝑈). Overall, the Hasofer-Lind (HL) 

method is a first-order approximation technique that uses the gradient vector of the limit state 
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function at the design point to estimate the failure probability of a structure. It is widely used 

in engineering practice to assess structures' safety and performance subject to random 

variability in material properties, loads, and other design parameters. 

3.2.1.3. Other reliability methods 

The Hasofer-Lind reliability index approach assumes that the random variables X have a 

normal distribution. In circumstances of non-Gaussian variables, the described methods for 

calculating reliability are inefficient. Various structural reliability issues contain non-Gaussian 

random variables; thus, proposing a solution for such matters is vital. There are multiple 

techniques for transforming the normalised space, such as those described in (Rosenblatt, 1952) 

and (Hohenbichler & Rackwitz, 1981). A fundamental approximative transformation is the 

"equivalent normal distribution" or "the normal tail approximation". This approximation is 

shown in Figure 3-3 while the change of the random variables from the X-space to the U-space 

can be achieved, and the performance function 𝑔(𝑈) in U-space is approximately obtained. 

 

Figure 3-3 Normalized tail approximation method (Choi at al.,2006) 

The RF technique is often referred to as the HL-RF method. Hasofer and Lind initially 

proposed the iteration algorithm and later extended it by Rackwitz and Fiessler to integrate 

random variable distribution information. The procedures presented in Figure 3-2 should be 

performed for the expanded RF algorithm, adding one variable transformation block before the 

initial design point is determined. 

FORM approximation offers satisfactory results when the limit-state surface has only one 

minimal distance point, and the function is nearly linear close to the design point. However, 
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the failure probability computed by FORM using the safety index may be inaccurate in cases 

where the failure surface has large or irregular curvatures (high nonlinearity) (Melchers, 2007). 

This difficulty could be solved by introducing second-order Taylor series expansions (or other 

polynomials). Various nonlinear approximate methods have been proposed in the literature. 

For example, in (Altes et al., 1990; Breitung, 1984; Cai & Elishakoff, 1994; Köyluoglu et al., 

1994), SORM have been developed using the second-order approximation to simplify the 

original surfaces.  

3.2.2.Simulation methods 

Simulation approaches have been developed for both the description of statistical distributions 

and the solution of the complex integration of the probability of failure directly using the results 

of multiple computing experiments. Monte Carlo Simulation, including importance sampling, 

and Latin Hypercube Simulation will be discussed as sampling methods in the following 

sections. 

3.2.2.1. Monte Carlo simulation 

Monte Carlo simulation is a numerical method for solving problems involving uncertainty and 

randomness. According to the literature, the study by (Metropolis & Ulam, 1949) was the basis 

for Monte Carlo Simulation. It refers to a basic random sampling strategy that provides random 

sampling sets for various uncertain variables. This technique has evolved considerably during 

the previous few decades, allowing estimation of the probability of an occurrence resulting 

from a stochastic process. Following the choice of a distribution type, a sampling set that could 

be utilized as input in the simulations is generated. The basic idea behind Monte Carlo 

simulation is to generate a large number of random samples from the uncertain input 

parameters of a problem and use these samples to compute the desired outputs. By averaging 

or aggregating the results from many samples, Monte Carlo simulation provides estimates of 

the mean, variance, and other statistical properties of the outputs, along with confidence 

intervals. 

The steps involved in a typical Monte Carlo simulation are as follows: 

1. Define the problem: Identify the problem or system that needs to be analysed and 

determine the uncertain input parameters (also known as random variables) that affect 

the system's behaviour. 
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2. Define probability distributions: Specify the probability distributions for each uncertain 

input parameter. Common probability distributions used in Monte Carlo simulation 

include normal (Gaussian), uniform, triangular, and log-normal distributions. 

3. Generate random samples: Generate many random samples from the specified 

probability distributions for each uncertain input parameter. The number of samples 

should be large enough to achieve accurate results, and the sampling should be done 

independently for each parameter. 

4. Perform simulations: Use the generated random samples as input values in the system 

or problem model and perform simulations or calculations to compute the outputs of 

interest. This can involve running numerical simulations, solving mathematical 

equations, or performing other types of computations. 

5. Analyse results: Aggregate the results obtained from the simulations to compute the 

desired statistics, such as mean, variance, and confidence intervals, for the outputs of 

interest. This can provide insights into the behaviour and performance of the system or 

problem under uncertainty. 

Once the stochastic variables have been identified in structural reliability issues for structural 

reliability problems, sampling sets are produced using the relevant probability density 

functions. Then, simulations are run with the resulting sampling sets to determine the 

structure's response. The limit state function represents the area's boundaries to be determined 

in the area calculation example. The failure probability for N trials can be defined as: 

 
𝑃𝑓 =

𝑁𝑓

𝑁
 

(3.28) 

Monte Carlo simulation on reliability analysis is based on a formulation for the probability of 

success estimation. Assume an indicator function I(x) is x-space: 

 𝐼(𝑥) = {
1   𝑖𝑓   𝐺(𝑥) ≤ 0
0   𝑖𝑓   𝐺(𝑥) > 0

 
(3.29) 

Iteratively dividing the number of samples by the proportion of successful implementations 

yields an estimate of the event's probability. 

 
𝐼(𝑥) =

1

𝑁
∑𝐼(𝑥𝑖)

𝑁

𝑖=1

 
(3.30) 
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As a result, the computational time and effort needed to analyse a case with a large number of 

random variables or a very low probability of failure increase dramatically. Important 

sampling, subset simulation, line sampling, etc., are just a few of the methods employed to 

solve the ineffectiveness of direct MCS in such cases. Furthermore, computational cost can be 

decreased while accuracy is maintained with the same number of runs by employing variance 

reduction approaches (Weiss et al., 2006). 

 

Figure 3-4 Monte Carlo simulation on reliability analysis (Weiss et al., 2006) 

 

3.2.2.2. Design point simulation 

Design Point simulation is a method used in reliability analysis to evaluate the reliability of a 

system under different operating conditions or stress levels. This simulation aims to identify 

the design point, which is the operating condition or stress level at which the system fails or 

experiences a significant reduction in performance. This method, introduced by (Shinozuka & 

Asce, 1983), applies to utilise MC sampling around the design point. After approximating the 

MPP in u-dimensional space, Monte-Carlo simulation is performed at this point rather than 

doing simulations across the entire range of each distribution. For each simulation, a weighted 

indicator function is created in the sampled u-space point 𝑢𝑖 = 𝑑 + 𝑣𝑖 where d is the design 

point or alternatively a point moved from the design point, and 𝑣𝑖 is the normal independent 

variable from which the Monte-Carlo simulation method samples. For each simulation, the 

indicator function I(u) is as follows: 
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𝐼(𝑥) = {

1   𝑖𝑓   𝑔(𝑢) ≤ 0
0   𝑖𝑓   𝑔(𝑢) > 0

 
(3.31) 

Then, the probability of success for an event is then approximated as: 

 𝐼(𝑥) =
1

𝑁
∑𝐼(𝑢𝑖) (∏𝜎𝑗

𝑛

𝑗=1

)
exp (∑ 𝑢𝑖,𝑗

2 )𝑗=1

exp (−∑ (
𝑢𝑖,𝑗 − 𝑑𝑖,𝑗

𝜎𝑗

𝑛
𝑗=1 )2)

𝑁

𝑖=1

 (3.32) 

In this estimation, the coordinate of the design point is 𝑑𝑖, and 𝜎𝑖 is the standard deviation of 

sampling density. By replacing 𝑣 = 𝑢 − 𝑑, the success probability becomes: 

 
𝑃�̂� = 𝜑(𝑑)

(2𝜋)
𝑛

2⁄

𝑁
∑𝐼(𝑢𝑖) (∏ 𝜎𝑗

𝑛

𝑗=1

)𝑒𝑥𝑝 (−𝑑𝑇𝑣𝑖 − ∑𝑣𝑖,𝑗
2

𝑛

𝑗=1

(1 −
1

𝜎𝑗
2))

𝑁

𝑖=1

 
(3.33) 

As the standardised variables have 𝜎𝑖 = 1 and d as design points: 

 
𝑃�̂� = 𝜑(𝑢∗)

(2𝜋)
𝑛

2⁄

𝑁
∑𝐼(𝑢𝑖)𝑒𝑥𝑝

𝑁

𝑖=1

(−(𝑢∗)𝑇𝑣𝑖) 
(3.34) 

In summary, a design point simulation is a powerful tool for reliability analysis that can help 

engineers to identify and mitigate potential failure modes in a system under different operating 

conditions or stress levels. 

3.2.2.3. Latin Hypercube Sampling method 

Latin Hypercube Sampling (LHS) is a statistical technique used in reliability analysis to 

generate samples of input variables for use in simulation models. The Latin Hypercube Method 

(LHM) is a variation of LHS designed for computer experiments and commonly used in 

reliability analysis.  

The basic idea behind LHS is to divide the range of each input variable into equal intervals and 

randomly sample one value from each interval. This ensures that the sample points are spread 

evenly throughout the input space and that all regions of the space are adequately represented. 

By generating a set of samples in this way, LHS provides a representative sample of the input 

space, which can be used to estimate the system's behaviour over a wide range of input values. 

The LHS Method, first proposed by (Mackay & Ross, 1979), is a method for representing multi 

variables while preventing overlapping data sets. The strategy is applied by splitting the 



83 

 

distribution of each stochastic variable into n nonoverlapping periods with equal probability. 

Once generated, one value from each interval should be picked randomly for every variable, 

and the analysis point should be linked to its respective dataset. Compared to the standard 

Monte Carlo sampling, the response variance is significantly reduced due to the homogenous 

allocation of intervals on the probability distribution function. Simultaneously, the 

computational cost of producing the analysis is reduced considerably. Figure 3-5 shows a 

specific case of a two-variable sampling problem. 

 

Figure 3-5 Latin Hypercube method for two variables (Kolios, 2010) 

To apply LHM in reliability analysis, the following steps are typically followed: 

1. Define the input variables: Identify the input variables relevant to the system's 

reliability analysis under consideration. These variables may include load, stress, 

temperature, or other environmental factors affecting the system's performance. 

2. Divide the range of each variable into intervals: Divide the range of each input variable 

into a set of equal intervals. The number of intervals for each variable can be selected 

based on the desired level of accuracy and the number of samples required. 

3. Generate a Latin Hypercube sample: Use a random number generator to select one 

value from each interval for each input variable. The resulting set of values represents 

a Latin Hypercube sample of the input space. 

4. Evaluate the system response: Use the Latin Hypercube sample as input to a simulation 

model of the system and evaluate the system response. This may involve running the 

simulation multiple times with different samples to obtain a range of responses. 
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5. Analyse the results: Analyse the simulation results to determine the system's reliability 

under different input conditions. This may involve calculating statistics such as mean 

response, variance, or probability of failure. 

In summary, LHM provides a systematic and efficient way to generate samples of input 

variables representing the input space, essential for accurate reliability analysis. Using LHM, 

engineers can identify and quantify the effects of input variables on the system's performance 

and optimise the design to improve reliability. 

3.3. Response surface method 

Response Surface Methodology (RSM) is a statistical technique used in reliability analysis to 

build predictive models of a system's behaviour based on input variables. RSM determines the 

relationship between input variables and system response, such as failure rate or mean time to 

failure. The models generated by RSM can be used to optimise the design of a system and 

improve its reliability. However, in complicated 3D structures, such as an OWT support 

structure, it is challenging to express explicitly the mathematical relationship between the 

actual loading acting on the entire structure (e.g., wave or wind loads) and the behaviours that 

each member is subjected to (e.g., axial force and bending moments). In such conditions of 

sophisticated failure processes, simulation techniques can handle the problem's complexity; 

nevertheless, they are frequently inefficient for calculating small failure probability values, as 

many iterations are required until relevant findings are obtained. In such circumstances, where 

simulation techniques are computationally expensive, the stochastic response surface method 

(SRFM) (Faravelli, 1989) can accurately predict structural reliability. 

Using simple and explicit mathematical functions of the stochastic variables impacting the 

response of the structural member or system. This method approximates the precise limit state 

function, which in certain situations may be unknown. These functions may be simple 

polynomials (e.g., second or higher order) with coefficients that may be computed by fitting 

the response surface function to a sample of points based on the member's response. The 

Stochastic Response Surface Method (SRSM) limitations occur when the initial limit state 

involves nonlinearities or when very low failure probabilities must be precisely estimated. For 

example, the remarks highlighted in (Cox & Baybutt, 1981) and (S.-H. Kim & Na, 1997) result 

from an inaccurate representation of the response surface based on random sampling sites that 

may be considerably far from the MPP. 
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In (Olivi, 1980), it was mentioned that the accuracy of a highly non-linear limit state depends 

on the initial selection of sampling points. In most instances, the order of polynomials 

employed for approximating the response surface function is two. Reaching the function's 

coefficients requires a few sample points (2n+ 1). In (Olivi, 1980), the application of 

polynomials of higher order is discussed in detail. The limitation of this method is that it 

requires more sampling points, which is not always possible due to the complexity of the 

computing process and the fact that ill-conditioned matrices are formed for the derivation of 

the coefficients of the polynomials using regression (Gavin & Yau, 2008; Impollonia & Sofi, 

2003). Chebyshev polynomials use statistical analysis of the high-order response surface. 

(Enevoldsen & Sorensen, 1994) introduces an algorithm that utilizes a quadratic response 

surface achieved from Central Composite Designs (CCD). In this algorithm, once a global 

search has been done and the possible failure point domain is detected, a revised response 

surface is fitted locally to apply the reliability calculation procedures. 

As discussed, the probability of failure of the system is defined as 𝑃𝑓 = 𝑃[𝑔(𝑥) < 0], where 

g(x) is the limit state function that denotes the critical failure surface and 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛] is 

a vector containing n stochastic variables. The response surface approach presents a new 

function �̃�(𝑥) that will use enough sample orders to establish the polynomial coefficients 

(Faravelli, 1989). 

 �̃�(𝑥) = 𝑎 + ∑𝑏𝑖𝑋𝑖 + ∑𝑐𝑖𝑋𝑖
2

𝑛

𝑖=1

𝑛

𝑖=1

 
(3.35) 

An equal or greater number of sample points is expected to calculate the coefficients (2n+1), 

a, b, and c. It is possible to determine sample points so the measured response is better mapped. 

Depending on the approach, the number of samples can range from (2n+1) to 3n, typically 

combining 𝜇 and 𝜇 ± 𝑓𝜎𝑖 , where 𝜇 and 𝜎𝑖 are the mean value and standard deviation of a 

stochastic variable 𝑋𝑖 respectively, and f is a coefficient equal to 3 typically. For example, 

Figure 3-6 illustrates various sample combination patterns for a problem with two variables 

(Gavin & Yau, 2008). 
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Figure 3-6 Various Sampling approaches (Gavin & Yau, 2008) 

In linear limit states, parameter selection is less crucial than nonlinear performance. In 

subsequent circumstances, the sampling point choice is essential for approximating the initial 

limit state functions. The study in (Khuri & Cornell, 1996) presents a different expression of 

the generic polynomial approximation of quadratic limit states that incorporates mixed terms 

of the stochastic variables. This equation may describe the nonlinearity of a limit state, although 

it increases the design matrix's complexity for calculating polynomial coefficients. The 

required number of sample points among the n-dimensional space is between (
𝑛(𝑛−1)

2
+ 2𝑛 +

1) and 3n. The approximation function �̃�(𝑥), typically a quadratic polynomial with cross-terms 

is used in the form: 

 �̃�(𝑥) = 𝑎 + ∑𝑏𝑖𝑋𝑖 +

𝑛

𝑖=1

∑𝑐𝑖. 𝑋𝑖
2 + ∑ ∑𝑑𝑖𝑗. 𝑋𝑖

𝑛

𝑗=𝑖

𝑛−1

𝑖=1

𝑛

𝑖=1

. 𝑋𝑗 
(3.36) 

where, 𝑎,𝑏𝑖 , 𝑐𝑖 and 𝑑𝑖𝑗 with i,j=1,…,n are the regression coefficients and 𝑋𝑖, i=1,…,n are the n 

input variables. Equation (3.36) is a regression model. The response domain was derived, and 

an appropriate response surface model was produced. The response surface model interpolates 

the values in the multiple dimensions characterized by the DoE . Several types of response 

surfaces are available in the commercial package of ANSYS DesignXplorer. 

3.4. Regression methods 

3.4.1.Linear Regression 

In situations where two (or more) variables must be expressed as a function, linear regression 

is the underlying principle. This can indicate the challenge of correlating measurements to 

properties in an experimental method. In non-linear regression, the dependent variable is a 
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linear function of the parameters (independent variables). This method presupposes that a 

straight line can conveniently represent the plotted sets of dependent and independent variables.  

The previous approach proposed by Gauss and Legendre is known as the Least Squares Method 

(LSM). It presents a solution by reducing the absolute distance between the given data and the 

potential function (residuals) to obtain the best match. Considering 𝑎𝑖 , 𝑖 = 1,2,3… , 𝑣 as the 

regression coefficient vector and using mathematical notation, it can be written as: 

 
𝑦(𝑥) = 𝑎0 + 𝑎1. 𝑓1(𝑥) + 𝑎2. 𝑓2(𝑥) + ⋯+ +𝑎𝑣 . 𝑓𝑣(𝑥) + 𝑒 

(3.37) 

Where e is the error of the model, Equation (3.37) can be written in a matrix form: 

 
𝑌 = 𝑋. 𝑎 + 𝑒 

(3.38) 

Where Y, X, 𝛼 and e are described as: 

 𝑌 = [

𝑦1

𝑦2

⋮
𝑦𝑛

] , 𝑋 = [

1   
1   
⋮   
1   

𝑓1(𝑥1)

𝑓1(𝑥2)
𝑓2(𝑥1)

𝑓2(𝑥2)

…
…

⋮ ⋮ ⋮
𝑓1(𝑥𝑛) 𝑓2(𝑥𝑛) …

𝑓𝑚(𝑥1)

𝑓𝑚(𝑥2)
⋮

𝑓𝑚(𝑥𝑛)

] , 𝛼 = [

𝑎1

𝑎2

⋮
𝑎𝑛

] , 𝑒 = [

𝑒1

𝑒2

⋮
𝑒𝑛

] 
 

In order to determine the regression coefficients vector a, the least squares approach is 

represented in matrix form as follows: 

 
𝑎 = (𝑋𝑇 . 𝑋)−1. 𝑋𝑇 . 𝑌 

(3.39) 

After calculating the regression coefficients, the dependent variable values for the sampled 

dependent variables and the error for each are as follows: 

 
�̅� = 𝑋. 𝑎        𝑎𝑛𝑑       𝑒 = 𝑌 − �̅� 

(3.40) 

The total sum of squares (SST), the sum of squares for regression (SSR), and the error sum 

of squares (SSE) are computed as follows: 

 
𝑆𝑆𝑇 = 𝑌𝑇 . 𝑌     𝑎𝑛𝑑    𝑆𝑆𝑅 = 𝑌𝑇̅̅̅̅ . �̅� = 𝑎𝑇 . 𝑋𝑇 . 𝑌   →     𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝑅 

(3.41) 

The coefficient of determination can be defined to assess the accuracy of the modelled equation 

R2. It implies that when SSE = 0, R2 = 1 and the absolute regression has been achieved. 
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𝑅2 = 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
 

(3.42) 

3.4.2.Multivariate Regression 

When there are multiple independent or dependent variables, the fundamental equation can be 

solved if sufficient sets are provided (𝑦, 𝑥𝑖). The general issue can be defined as: 

 𝑦(𝑥) = ∑𝑎𝑖 . 𝑝𝑖(𝑥1, 𝑥2, … , 𝑥𝑛) +

𝑖

𝑒 (3.43) 

In terms of multiplications, this is also described as 

 𝑦(𝑥) = ∑𝑎𝑖 . 𝑥1
𝛼𝑖 . 𝑥2

𝛽𝑖 …𝑥𝑛
𝜔𝑖 +

𝑖

𝑒 (3.44) 

Where 𝑎𝑖 is the coefficient of regression and 𝛼𝑖 , 𝛽𝑖 , … , 𝜔𝑖 are the independent variable power 

coefficients. Consider the following data matrices: Y is a (𝑛 × 𝑞) data matrix holding the 

dependent variables, X is a (𝑛 × 𝑝) data matrix carrying the independent variables, A is a 

(𝑝 × 𝑞) data matrix having the regression coefficients, and E is a (𝑛 × 𝑞) matrix containing 

the error terms. It converts the given equation into a matrix. (�̃� indicates a matrix formed from 

X, having the different powered values of X): 

 
𝑌 = �̃�. 𝐴 + 𝐸 

(3.45) 

The dimensions of the matrices in Equation 3.42 demonstrate that (𝑝 × 𝑞) data sets must be 

accessible for the system to have a solution. An important observation that can ensure accuracy 

in the regression coefficients results is the level of how well conditioned the matrix 𝑋𝑇. 𝑋 is. 

 

3.5. Parametric FE model design basis 

3.5.1.Reference Model and met-ocean 

The reference turbine used in this study is NREL's OWT, developed based on the Senvion 

5MW wind turbines and considered representative of typical utility-scale land- and sea-based 

multi-megawatt turbines. The characteristics of this turbine are listed in Table 3-1. The sub 

structure is a monopile OC3 (LaNier, 2005; Passon et al., 2007). The tubular pile has a constant 
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section with 60mm thickness and 6m outer diameter. The embedded part of the monopile is 

36m, and the sea depth is 20m. The transition piece is 10m above the mean water level. The 

adopted NREL 5MW and OC3 Monopile geometry implanted in layered sandy soil is 

illustrated in Figure 3-7. 

 

Figure 3-7 Reference model geometry and dimensions 

According to the technical reference report for the OC3 pile (LaNier, 2005), the site considered 

in this study is located in the North Sea, IJmuiden City. It refers to the NL-1 location, 

approximately 6 miles off Ijmuiden, Holland. The met ocean database for the NL-1 site is 

extracted from the Netherlands Enterprise Agency (RVO) open-source website. 

  

Figure 3-8 Hindcast data extraction point in the NL-1 (DHI, 2020) 

The extracted individual wind and wave hindcast data cover approximately 50 years. Joint 

datasets of wind and waves have been established from the individual hindcast time series. A 

50-year extreme met ocean data are summarised in Table 3-1: 
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Table 3-1 The 50-year extreme met ocean data of NL-1 (DHI, 2020) 

Item Value 

Significant wave height Hs [m] 6.9 

Peak Period Tp [s] 7.7s 

Maximum wave height Hmax [m] 9.1 

Wave period associated with Hmax [s] 5 

High water level [m] 3.5 

Low water level [m] -0.7 

Reference Wind speed [m/s] 50 

Ave annual Wind speed [m/s] 10 

 

3.5.2. Applied Loads  

Various environmental loads are imposed on the OWTs. IEC 61400-3 (IEC, 2019) or DNV-

OS-J101 (DNV GL, 2014) have suggested a list of loads that should be applied to the structure, 

and the formulation of these loads is captured from DNV-RP-C205 (DNV GL, 2010a). The 

main loads that have been used for our case study are (A) inertia loads; (B) wind turbine rotor 

load; (C) wind load applied to the tower; (D) wave load; (E) current load and (F) hydrostatic 

loads applied to the support structure as shown in Figure 3-9. 

Table 3-2 NREL 5 MW baseline wind turbine (Jonkman et al., 2009) 

Item Value 

Rating 5 MW 

Rotor orientation Upwind 

Control Variable speed, collective pitch 

Drivetrain High speed, multiple stages, gearbox 

Rotor diameter 126 m 

Hub height 90 m 

Cut-in, rated, cut-out wind speed 3 m/s, 11.4 m/s, 25 m/s 

Cut-in, rated rotor speed 6.9 rpm, 12.1 rpm 

Rated tip speed 80 m/s 

Overhang, shaft tilt, precone 5 m, 5o , 2.5o 

Rotor diameter  126 m 

Tower base diameter 6 m 

Tower base thickness 0.027 m 

Tower top diameter 3.87 m 

Tower top thickness 0.19  
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3.5.2.1. Inertia Load 

Due to the mass of the support structure and the RNA mass at the top of the tower, inertia loads 

can considerably contribute to the buckling and change of the modal frequencies of the OWT 

support structure. Therefore, they should be included in the structural analysis of support 

structures. In addition, the structure's gravitational loads, system weight and applied loads 

impact the modal analysis (Freebury & Musial, 2000). 

3.5.2.2. Rotor Loads 

Aerodynamic loads result from the moving parts of the wind turbine and static components. 

The magnitude of the load is not constant, as it depends directly on wind and air density. The 

design load values are defined in the WindPACT (Wind Partnership for Advanced Component 

Technologies) Turbine design study (Malcolm & Hansen, 2006). The fatigue design resistance, 

developed initially by NREL, was calculated by the Damage Equivalent Load (DEL) method. 

The DEL method was validated in the study by (Freebury & Musial, 2000). 

3.5.2.3. Wave Loads 

The calculated wave load, composed of inertia and a drag term, results from the interaction 

between the wave and the cylindrical shape of the OWT support structure. Morison's equation 

can be employed according to DNV-OS-J101 (DNV GL, 2014) to estimate the amount of the 

load when the monopile diameter, D, is smaller than 0.2 of wavelength, λ. 

 𝐷 ≤ 0.2 𝜆   For Shallow water depth: 𝜆 = 𝑇√𝑔ℎ (3.46) 

The drag force is written in the form of  
1

2
𝜌𝐶𝐷𝐷𝑈|𝑈|. The combination of hydrodynamic mass 

force and Froude-Krylov force is the inertia force in the equation and leads to the following 

Morison equation (Clauss & Birk, 1997): 

 𝐹ℎ𝑦𝑑 = 𝐹𝐷𝑟𝑎𝑔 + 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 (3.47) 

 𝐹ℎ𝑦𝑑 =
1

2
𝜌𝐶𝐷𝐷𝑈|𝑈| + 𝜌𝐶𝑚𝐴�̈� + 𝜌𝐴�̇� (3.48) 

 𝐹ℎ𝑦𝑑 =
1

2
𝜌𝐶𝐷𝐷𝑈|𝑈| + 𝜌𝐶𝑀𝐴�̇� (3.49) 

 𝐹ℎ𝑦𝑑 =
1

2
𝜌𝐶𝐷𝐷(𝑈 + 𝑈𝑐)|(𝑈 + 𝑈𝑐)| (3.50) 
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where 𝜌 is the fluid density; 𝑈 and �̇� are the particle velocity and acceleration of the wave, 

respectively; 𝐴 is the area of the cylinder cross-section; 𝐶𝑚 is the hydrodynamic mass 

coefficient; 𝐶𝐷 and 𝐶𝑀 are drag and inertia coefficients, respectively. 

For a slender structure such as a monopile, Morison’s equation is usually employed to calculate 

approximately the wave loads on the structure. However, in this study, the water depth, h, is 

20m, and the wave period, T, is 5sec, so the wavelength is 70m, which satisfies the Equation 

(3.46). Therefore, Morison's equation is considered the appropriate method to calculate the 

wave load. The final form of Morison's equation can be written as: 

 𝐹𝑤𝑎𝑣𝑒(𝑧) =
1

4
𝜌

𝑤
. 𝜋.𝐷2. 𝐶𝑀. �̇�(𝑧, 𝑡) +

1

2
𝜌

𝑤𝑎𝑡𝑒𝑟
. 𝐷. 𝐶𝐷. 𝑈(𝑧, 𝑡). |𝑈(𝑧, 𝑡)| (3.51) 

The descriptions and values for equation (3.48) are listed in Table 3-3. The calculated pressure 

value from the above equation shows that when the depth increases, the wave pressure is 

reduced. 

Table 3-3 Wave load assumption and values in ULS 

Item  Description 

Monopole Inertia Coefficient, Cm 1.6 (LaNier, 2005; DNV, 2014) 

Monopile Drag Coefficient, CD 1.0 (LaNier, 2005; DNV, 2014) 

Water Density, 𝜌𝑤𝑎𝑡𝑒𝑟 1025 Kg/m3 

Horizontal Velocity of Water Particles, 𝑈(𝑧, 𝑡) The linear/Airy wave theory (Chakrabarti, 2005) 

Acceleration of Water Particles, �̇�(𝑧, 𝑡) The linear/Airy wave theory (Chakrabarti, 2005) 

 

3.5.2.4. Current loads 

Drag loading produced from the current must be included in the hydrodynamic loads. 

Therefore, an exponential profile for the sub-surface current was used to describe the current 

velocity 𝑢𝑐(𝑧) from surface to seabed 𝑑: 

 𝑢𝑐(𝑧) = 𝑢𝑐,𝑠𝑢𝑏(
𝑑 + 𝑧

𝑑
)1/7 (3.52) 

Where 𝑢𝑐,𝑠𝑢𝑏 is the velocity of current at the surface. Current velocity could be added to the 

wave particle velocity in the drag term of Morison’s equation if the current and wave were 

assumed as aligned loads. The calculated pressure value from the current load equation on the 
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surface shows that when the depth increases, the current pressure rises to 18m, and because of 

the seabed surface, the pressure reduces. 

3.5.2.5. Wind Loads 

Wind loads on the tower are caused by drag force and are defined by equation (3.54). In that 

equation, the power-law profile represents the wind shear as: 

 �̅�(𝑧) = �̅�𝑟(
𝑧

𝑧𝑟
)
𝛼

 (3.53) 

where α is the roughness coefficient, its value is taken as 0.115 considering the offshore 

condition (Jonkman & Musial, 2010). The reference wind speed �̅�𝑟 is measured at the nacelle 

reference height, 𝑧𝑟. Finally, wind loads can be calculated by: 

 𝐹𝑡𝑜𝑤𝑒𝑟(𝑧) =
1

2
𝜌

𝑎
𝐶𝐷,𝑇𝐷(𝑧)𝑉𝑟

2(𝑧) (3.54) 

The Drag Coefficient, 𝐶𝐷,𝑇 is 1.0 (Chehouri et al., 2015), D(z) is the external diameter of the 

tower segment at the height of z, and the outer diameter of the tower narrows at the height of 

𝑧. Figure 3-9 shows the schematic OWT support structure with all applied loads. The calculated 

pressure value from the wind load profile on the surface indicates that when the height 

increases, the wind pressure increase. 

3.5.2.6. Hydrostatic Loads 

The outer surface of the monopile is subjected to hydrostatic pressure when submerged in 

water. This is a constant normal load that increases linearly with water depth. Therefore, the 

hydrostatic force, Fh, can be calculated using the gravitational constant, g, and water depth, h: 

 𝐹ℎ = 𝜌
𝑤
𝑔ℎ (3.55) 
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Figure 3-9 Applied loads on OWT support structure (Gentils et al., 2017) 

3.5.3. Limit States and DLCs 

Several load cases that cover all conditions of OWTs design are defined in (DNV GL, 2016), 

and (IEC, 2019) as a reference. As suggested by (P. Schaumann, C. Böker, A. Bechtel, 2011), 

two structurally prominent load cases have been considered. The ultimate limit state (ULS) and 

fatigue limit state (FLS). 

3.5.3.1. ULS 

Ultimate limit state (ULS) corresponds to extreme environmental conditions based on a 50-

year return period. Under the 50-year Extreme Wind Model (EWM) with the 50-year Reduced 

Wave Height (RWH) and Extreme Current Model (ECM), defined as the Design Load Case 

(DLC) 6.1b and 2.1 for IEC (2019) and DNV-GL (2014) standards, the most critical ULS load 

case is often considered to correspond to the parked wind turbine. According to standards (IEC, 

2019), the safety factors for the design loads are 1.1 and 1.35 for gravitational and 

environmental loads, respectively. Tables 3-4 and 3-5 summarise the load cases and 

aerodynamic loads applied to the model in ULS and FLS from a conceptual design study of 

(LaNier, 2005) on 5MW steel tower, respectively. 
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Table 3-4 Wind turbine aerodynamic loads (LaNier, 2005) 

Limit State Tilting moment (MN.m) Torsional moment (MN.m) Thrust force (kN) 

ULS 38.567 7.876 781 

FLS 3.687 3.483 197 

 

Table 3-5 Design Load Cases in ULS (IEC, 2005) 

Load Case Wind Wave Load safety Factor 

Ultimate: 

DLC 6.1b/2.1 

EWM: 

𝑉𝑔 50 

RWH: 

1.32 × 𝐻𝑠50, 𝑇𝑠50 

- 

1.0 

(Parked)  ECM: 𝑉𝑐,𝑒𝑥  

Fatigue: 

DLC 1.2/7.2 

NTM: 

𝑉𝑎𝑣𝑒 

NSS: 

𝐻𝑎𝑣𝑒 , 𝑇𝑎𝑣𝑒 

Normal N 

1.1/1.35 

(Operation)  No Current  

 

3.5.3.2. FLS 

Fatigue limit state (FLS) is another limit state caused by variation in operation and cyclic loads. 

FLS is an essential source of cyclic loading during the OWT lifetime. In the current case study, 

a popular load scenario for FLS is an operating state under the Normal Turbulence Model 

(NTM) and the Normal Sea State (NSS), where wave height and cross zero periods were 

calculated using the site's joint probability function, assuming no current. According to (IEC, 

2005), the safety factor for this load case is equal to 1.0. Fatigue Wind Load Tower Forces 

values for reference turbine are provided from the reference technical report (LaNier, 2005). 

Later for optimised model, OWECS software, the in-house tool in Seaway7 company will be 

used to generate Damage Equivalent Load (DEL) in FLS analysis for optimised model 

considering time-series analysing. 

3.5.4.Parametric FEA Model 

A parametric finite element model is performed using the ANSYS workbench. The modelling 

phase started by defining parameters such as geometry data, material properties and structure 

thickness. The flow chart is illustrated in Figure 3-10. 
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Figure 3-10 Parametric FEA model flowchart 

3.5.4.1. Geometry and applied loads  

A 3D model consisting of five parts was created using the previous section's geometrical 

parameters, i.e., soil, tower, grout, monopile, and transition piece. The monopile and tower 

parts were sectioned into 10 and 15 pieces (LaNier, 2005; Passon et al., 2007). The diameter 

of the soil was considered 20 times the diameter of the monopile support structure. This is large 

enough to prevent boundary effects from influencing pile-soil behaviour. As the reference 

documents recommend, this model was created with precise tower dimensions, transition piece, 

grout, and monopile (Brown & Brown, 2012). Wind, wave, and current load profile data have 

been calculated and applied as variable loads on the outer area of the structure. The thrust force 

is located at the tower's designated point at the top. The moment is applied to the whole 

structure. Gravitational load is located downward on the centre of mass of the support structure. 

Details are illustrated in Figure 3-11 and Figure 3-12. 
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Figure 3-11 NREL 5MW wind turbine and OC3 platform geometry 

 

Figure 3-12 Isometric view of geometry and applied loads 

3.5.4.2. Material 

According to (DNV GL, 2016), the support structure's primary material is S355 Steel. The 

grout material is Ducorit D4. Sand properties are defined by using the Drucker-Prager model. 
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According to (Drucker and Prager, 2016), the soil yield strength can be defined in terms of 

cohesion value and friction angle as in equation (3.56): 

 𝜎𝑦,𝑠 =
6𝑐 𝑐𝑜𝑠(𝜙)

√3(3 − sin(𝜙))
 (3.56) 

where ϕ is the friction angle, c is the cohesion value. Thus, the friction between pile and soil 

can be driven by equation (3.57) (Jung et al., 2015): 

 
𝐶𝑓 = 𝑡𝑎𝑛 (

2

3
𝜙) 

(3.57) 

Regarding the above equations and soil properties adopted from (Jung et al., 2015), the soil 

characteristics and Steel/Grout material used in this study (Theotokoglou & Papaefthimiou, 

2017) are summarized in Tables 3-6 and 3-7. In addition, the contacts between the soil and the 

monopile are defined in ANSYS, considering the friction coefficients. 

Table 3-6 Sand Properties in different levels (Jung et al., 2015) 

Sand Type 

Young’s 

Modulus 

(MPa) 

The angle of 

friction (deg) 

Friction 

coefficient 

Yield 

stress 

(kPa) 

Loose  30 33 0.40 59.2 

Medium 50 35 0.43 58.5 

Dense 80 38.5 0.48 57 

 

The soil properties are defined in the OC3 benchmark study (Passon et al., 2007), as shown in 

Figure 3-13. 

 

Figure 3-13 Soil Profile (Passon et al., 2007) 
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Table 3-7 Support structure material properties 

Item Steel  Grout  

 Young Modulus, E (GPa) 210 70 

Density (kg/m3) 8500 2740 

Poisson’s ratio 0.38 0.19 

Tensile Strength (MPa) - 10 

Yield Strength (MPa) 355 - 

 

3.5.4.3. Meshing 

Mesh generation is essential in FEA simulation since it is susceptible to the result's accuracy. 

This model used the shell element type, Shell281, for the thin-wall structures such as towers 

and monopile. Shell281 characteristics are suitable for considerable strain nonlinearity and 

large rotation applications (Thompson & Thompson, 2017); therefore, it is appropriate for this 

study. Furthermore, the grouting part is meshed by the element SOLID186 to obtain accurate 

bending stress considering friction. Finally, SOLID185 was used for the soil part. 

Table 3-8 Mesh sensitivity 

Description 
Element size of 

Steel part 

Number of 

Elements 

Max Von Mises 

(MPa) 

Mesh #1 4 m 1780 25.4 

Mesh #2 2 m 7584 23.1 

Mesh #3 1 m 37356 23.0 

Mesh #4 0.5 m 235180 23.0 

 

Mesh convergence is performed to obtain an accurate result. The process starts with applying 

100kN Force on top of the tower. The application of 100kN Force is a test force on top of the 

structure to optimise the mesh in the x-direction. Because the mesh quality check is essential, 

it could be any value or load in any direction, but a single force is preferred to reduce the 

calculation run time. The calculated maximum Von Mises value converges after using a mesh 

type with an element size of 1m (37356 elements) refinements by comparing the result values 

and the differences. Figure 3-14 illustrates the final optimum mesh, and Table 3-8 presents the 

optimum number of elements. By comparing the values and the differences, Mesh #3 is 

selected in order to proceed with the analysis.  
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Figure 3-14 Final generated mesh with the cross-section 

 

3.5.4.4. Boundary Condition 

Boundary conditions are applied to the geometry, as the bottom of the soil model is fixed in all 

directions. The side boundaries of the soil are fixed against lateral translation. Contact between 

soil and monopile is set according to the frictional coefficients, and other contacts are assumed 

as bonded. On top of the tower, wind turbine rotor aerodynamic loads are applied. Other loads 

(such as wave, current, wind loads, and hydrostatic loads) are applied using pressure 

formulations, which allow these loads to automatically update with the updated diameters of 

the support structure during the optimisation process in a more accurate representation. 

Hydrostatic loads surround the submerged components. The RNA is a concentrated mass 

applied to the tower top via a multi-point constraint. The interface at the top of the tower is 

defined as Rigid (CERIG boundary condition) to avoid any unnecessary deformation on top 

surface (Flanged attachment). 

3.6. Summary 

In this Chapter, numerical approaches for assessing structural reliability are discussed. 

Deterministic Methods, including First Order Reliability Methods, have been provided in 

accordance with the procedure followed in the formulation of developing codes. Simulation 



101 

 

methods such as Monte Carlo (MC) were also briefly discussed. The Stochastic Response 

Surface Method (SRSM) has been explained in detail, and the processes for the standard SRSM 

have been deduced. At the end, the parametric FEA model was developed, and they were 

explained in order to prepare all essentials to create reliability-constrained design optimisation 

framework. 
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4. Reliability-Constrained Design 

Optimisation Framework 

 

4.1. Introduction 

As discussed, structural reliability assessment is employed to assess the safety levels of the 

OWT structure. Safety has a direct relation with failure modes. Several time-dependent failure 

modes of an OWT support structure can directly affect its resistance to applied loads. However, 

the predominant phenomenon is fatigue damage due to the marine environment and corrosion, 

which results in the degradation of the components (Price & Figueira, 2017) and also because 

of the amplitude of fatigue loads caused by the mixed responses of wind, wave, and other loads. 

Consequently, fatigue is a design-driving criterion for an OWT as a welded structure, according 

to (Dong et al., 2012). 

 

4.2. Optimisation framework development 

4.2.1.Structural Optimisation of Support Structure 

Optimisation in the early stages of the design process can reduce a significant cost. The 

structural optimisation model merges the parametric FEA model and GA. The result will be a 

lighter and more robust structure with optimum responses to environmental loads. 
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 𝐹𝑜𝑏𝑗 = min(𝑀𝑔𝑙𝑜𝑏𝑎𝑙) 
(4.1) 

where 𝐹𝑜𝑏𝑗 is an objective function that is chosen to minimize 𝑀𝑔𝑙𝑜𝑏𝑎𝑙, the global mass of the 

support structure. As this study aims at developing an integrated optimisation methodology, 

the minimum global mass of the support structure is chosen as the objective function. The mass 

reduction in an OWT support structure is to achieve cost reduction goals. Partial safety factors 

(PSFs) are applied according to DNV standards (DNV GL, 2016). The corresponding flowchart 

is presented in Figure 4-1. 

 

Figure 4-1 Flowchart of the structural optimisation model (Gentils et al., 2017) 

 

4.2.2. Design Variables 

According to (Kallehave et al., 2015; Muskulus & Schafhirt, 2014), thickness and diameter 

dimensions are two types of variables that significantly influence structural response and are 

individually designed driven by different criteria. Defining several sections on the tower and 

monopile caused an increase in the number of variables. This issue can be a challenge in the 
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simulation process and calculation time. A reduction technique has been introduced by (Ashuri, 

2012), which uses linear interpolation between the top and bottom ends. This strategy has been 

adopted and applied to the tower, foundation and monopile. As a result, the number of variables 

decreased from 30 to 13 in the final process. It should be noted that the diameter of the 

foundation section stays constant all along the length due to installation limitations. So, design 

variables for a design point 𝑗 can be stated in Equation (4.2) as a vector of variables inspired 

by the chromosome formulation: 

 𝑋𝑗 = [𝑥1 𝑥2 𝑥3 … 𝑥𝑛]
𝑇    𝑤𝑖𝑡ℎ 𝑛 = 13 

(4.2) 

where, 𝑥1 and 𝑥2 are the diameters at the base and top of the monopile, and 𝑥3 and 𝑥4 are the 

diameters at the bottom and top of the tower. 𝑥5, 𝑥6, 𝑥7 and 𝑥8 are the thickness at the base and 

top of the tower; 𝑥9 and 𝑥10 are the thickness at the bottom and top of the sub-structure and 𝑥11, 

and 𝑥12 are the thickness along the foundation. Finally, 𝑥13 is the thickness of the transition 

piece. In Figure 4-2, the position of all variables is presented. The list of variables with their 

upper and lower bounds is available in Table 4-1. 

Table 4-1 Upper and lower bound of the design variables 
Variable  Name Unit Lower Bound Upper Bound 

Monopile base diameter X1 [m] 5 7 

Monopile top diameter X2 [m] 5 7 

Tower base diameter X3 [m] 5 7 

Tower top diameter X4 [m] 3 4.5 

Tower base thickness X5 [mm] 20 40 

Tower Int1 thickness X6 [mm] 20 40 

Tower Int2 thickness X7 [mm] 15 35 

Tower top thickness X8 [mm] 10 30 

Monopile substructure base 

thickness 

X9 
[mm] 45 70 

Monopile substructure top 

thickness 

X10 
[mm] 45 70 

Monopile foundation base 

thickness 

X11 
[mm] 40 70 

Monopile foundation top 

thickness 

X12 
[mm] 45 70 

Transition piece thickness X13 [mm] 25 40 

 

 

Figure 4-2 Design variables of OWT support structure 



105 

 

4.2.3. Design Constraints and Criteria 

Choice of criteria is paramount for the reliability of optimisation solutions. A wrong choice or 

lack of proper criteria could lead to unexpected structural failure during experimental tests or 

structure lifetime. This paper defined seven structural constraints based on modal, stress, 

deformation, bucking, and fatigue requirements. Geometrical constraints on the design 

variables were also considered and are described below. It's worth noting that the turbine's 

foundation and tower are both composed of steel. If the turbine's tower is composed of 

composite material, it should be addressed independently from the monopile base. 

4.2.3.1. Resonance Constraint  

As seen in Figure 4-3, OWTs are dynamically loaded structures, with loads coming from the 

wind, waves, and rotor excitations. The fundamental frequency 𝑓0 (the first tower bending 

frequency) and the dynamic interaction with the external loads have a strong influence on the 

structure's response. This occurs when 𝑓0 is higher than the rotor's rotational frequency, 𝑓1𝑃, 

which is caused by rotor imbalances, but lower than the blade-passing frequency, 𝑓3𝑃, which is 

caused mainly by aerodynamic impulse loads when the blades pass the tower (Kallehave et al., 

2015). To avoid resonance phenomena, the first natural frequency 𝑓1𝑠𝑡 should be sufficiently 

separated from the turning rotor-induced frequencies 𝑓1𝑃 and blade-passing frequency 𝑓3𝑃. The 

structure’s natural frequency should be between 𝑓1𝑃 and 𝑓3𝑃 (Gentils et al., 2017). 

 

Figure 4-3 Illustration of typical excitation ranges of a modern OWT (Kallehave et al., 2015) 

According to (DNV GL, 2010b), the first natural frequency should avoid rotor-induced 

frequencies with a tolerance of ±5%: 

 𝑓
1𝑃±5%

≤ 𝑓
1𝑠𝑡±5%

≤ 𝑓
3𝑃±5%

 (4.3) 
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The cut-in and rated rotor speed of the NREL 5MW are 6.9 rpm and 12.1 rpm, respectively. 𝑓0 

would be roughly 0.20– 0.23 Hz for a 6–8 MW offshore wind turbine on a monopile 

constructed for the soft–stiff frequency range of Ducorit Data Sheet. Therefore, resonance 

constraints are: 

 
0.212 𝐻𝑧 ≤  𝑓1𝑠𝑡 ≤ 0.328 𝐻𝑧 

(4.4) 

 

4.2.3.2. Stress Constraints 

In the Ultimate Limit State (ULS), the maximum stress of the support structure 𝜎𝑉𝑀,𝑚𝑎𝑥 (Von 

Mises) should stand below the allowable stress limits 𝜎𝑉𝑀,𝑎𝑙𝑙𝑜𝑤. The following inequality 

expresses this. 

 𝜎𝑉𝑀,𝑚𝑎𝑥 ≤ 𝜎𝑉𝑀,𝑎𝑙𝑙𝑜𝑤 
(4.5) 

where the allowable stress value 𝜎𝑉𝑀,𝑎𝑙𝑙𝑜𝑤 is derived from Equation (4.6): 

 𝜎𝑉𝑀,𝑚𝑎𝑥 =
𝜎𝑦,𝑆𝑡𝑒𝑒𝑙 

𝛾𝑚. 𝛾𝑓

 (4.6) 

where, 𝜎𝑦,𝑠𝑡𝑒𝑒𝑙 is the steel component's yield strength, and 𝛾𝑚 and 𝛾𝑓 are the PSFs for material 

and consequence of failure, respectively. The yield strength for S355 steel is 355 MPa is 

adopted from (Arshad & O’Kelly, 2013). Furthermore, the PSFs for material 𝛾𝑚 and failure 𝛾𝑓 

are 1.1 and 1.0 (IEC, 2005), respectively. Thus, the allowable stress 𝜎𝑉𝑀,𝑎𝑙𝑙𝑜𝑤 is 322.7 MPa. 

4.2.3.3. Deformation Constraints 

The stability of the monopile foundation is a vital factor in ULS. Therefore, rotation and 

deflection constraints have been defined to ensure that pile-head deflection 𝑑𝑝𝑖𝑙𝑒 and seabed 

rotation 𝜃𝑠𝑒𝑎𝑏𝑒𝑑 values are less than allowable values. These constraints could be expressed by: 

 𝑑𝑝𝑖𝑙𝑒 ≤ 𝑑𝑎𝑙𝑙𝑜𝑤 (4.7) 

 
θ𝑠𝑒𝑎𝑏𝑒𝑑 ≤ θ𝑎𝑙𝑙𝑜𝑤 − θ𝑖𝑛𝑐 

(4.8) 

where, θ𝑖𝑛𝑐 is the installation uncertainty and was chosen analytically here at 0.1°. According 

to (DNV GL, 2010b), the values of 𝑑𝑎𝑙𝑙𝑜𝑤 and θ𝑎𝑙𝑙𝑜𝑤 were fixed at 0.1 𝑚 and 0.5°, respectively. 
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The material safety factor 𝛾𝑚 of 1.0 was applied for the soil strength in this section (DNV GL, 

2016). 

4.2.3.4. Buckling Constraints 

The risk of instability due to buckling is not negligible in a monopile's design and optimisation 

process due to the slenderness of the tower and sizeable weighted Rotor – nacelle assembly 

(RNA) at the top. The results of the ULS static analysis are used as pre-stress loads. To avoid 

this type of failure in ULS mode, the load multiplier 𝐿𝑚, the ratio of the critical load to the 

current applied load, should be larger than the allowable load multiplier 𝐿𝑚,𝑎𝑙𝑙𝑜𝑤. If the buckling 

load multiplier is negative, the model will buckle when the applied loads are reversed (and 

scaled by the multiplier). For example, A buckling multiplier of -0.75 implies that the part will 

buckle with a 750 Pa compression load if a pressure of 1000 Pa is applied to the model, which 

puts it in tension. According to (DNV GL, 2010b), 𝐿𝑚,𝑎𝑙𝑙𝑜𝑤 value of 1.4 has been chosen. This 

constraint could be expressed by: 

 𝐿𝑚 ≥ 𝐿𝑚,𝑎𝑙𝑙𝑜𝑤 (4.9) 

 

4.2.3.5. Fatigue Constraints and Assessment 

As discussed earlier, fatigue is one of the main governing factors for the OWT support structure 

design process. Therefore, the design life-number of cycles 𝑁𝑙𝑖𝑓𝑒- could be assessed based on 

rated rotor speed 𝑛𝑟𝑎𝑡𝑒𝑑 (12.1 rpm) and availability 𝜂𝑎 (98.5%) of the chosen met ocean region 

(Kuhn, 2001). Thus, considering a lifetime requirement of 20 years (DNV GL, 1987, 2010a), 

the number of cycles to be expected is 1.25×108: For practical fatigue design, welded joints are 

divided into several classes, each with a corresponding design S-N curve. Using the design life 

number, Nlife, and S-N curve, the design fatigue stress range, 𝜎f,Design can be derived. In this 

case study, global fatigue stress is considered. 

 𝑁𝑙𝑖𝑓𝑒 = 𝜂
𝑎
× 𝑛𝑟𝑎𝑡𝑒𝑑 × (60𝑚𝑖𝑛 × 24ℎ𝑟 × 365𝑑𝑎𝑦 × 20𝑦𝑒𝑎𝑟𝑠) (4.10) 

The basic design S_N curve is given as: 

 
𝑙𝑜𝑔𝑁 = 𝑙𝑜𝑔�̅� − 𝑚𝑙𝑜𝑔∆𝜎 

(4.11) 
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where N is the predicted number of cycles to failure for stress range ∆𝜎, m is the negative 

inverse slope of the S-N curve and 𝑙𝑜𝑔�̅� is the intercept of the design S-N curve with the log 

N-axis by the S-N curve. However, as the fatigue strength of weld joints is dependent on plate 

thickness, the thickness of the adjoining plate is essential, and the thickness effect needs to be 

considered: 

  
𝑙𝑜𝑔𝑁 = 𝑙𝑜𝑔�̅� − 𝑚𝑙𝑜𝑔 (∆𝜎 (

𝑡

𝑡𝑟𝑒𝑓
)

𝑘

) 
(4.12) 

where  𝑡𝑟𝑒𝑓 is 25mm for plates, t is the thickness of place where the crack is most likely 

propagated, and k is the thickness exponent (0.1 for tubular girth weld and 0.25 for threaded 

bolts). 

4.2.3.5.1. Damage Equivalent Load approach in fatigue assessment of optimised model 

To produce reliable, cost-effective, and safe designs for offshore wind turbines, it is necessary 

to accurately model the site-specific wind-wave joint distribution in fatigue load calculations. 

However, the number of design load simulations required to account for every possible 

combination of wind and wave parameters for every wind direction and wave direction is 

prohibitively high. This results in equivalent wind-wave correlations for design purposes. 

Wind-wave correlations can reduce the number of possible wind-wave parameter combinations 

for design load calculations. Still, they can also present difficulties maintaining the 

hydrodynamic fatigue distribution regardless of the underlying full-wave climate. The OWECS 

tool software uses the new method described in (Passon, 2015) based on the preliminary work 

carried out in (Passon & Branner, 2015). The new approach retains hydrodynamic fatigue 

damages from the whole wave climate across the structure. It focuses on an adequate 

consideration of dynamics for the fatigue design of hydrodynamically sensitive offshore wind 

turbines. 

This section presents a summary of contained and processed the met ocean data of the DLC in 

FLS using OWECS software, the in-house tool in Seaway7 company to generate Damage 

Equivalent Load (DEL) in FLS analysis considering time-series analysing. At first, 3 different 

DLCs are defined in Table 4-2.  

Table 4-2 An overview of the individual DLCs in the load case 

DLC Total Probability [-] # Cases in Load Case Table # Non-zero probability cases 

1.2  0.8849529      6336      3776 
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6.4  0.0550471      1728       700 

7.2  0.1400000      8064      4476 

ALL  1.0000000     16218      8952 

 

Figure 4-4 shows the (omnidirectional) probability in [%] over design load cases. It was 

observed that DLC1.2 can represent the most fatigue limit state because it covers more than 

80% of the fatigue damage.  

 

Figure 4-4 Probability over design load cases (All Directions) in [%] 

Probabilities over wind/wave speed needs to be consider. Figure 4-5 show the omnidirectional 

probability in [%] over wind speed for the combined DLCs: 

• Design Load Case: 1.2 

• Design Load Case: 6.4 

• Design Load Case: 7.2 
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Figure 4-5 Probability over wind speed (All Directions) in [%] 

Figure 4-6 shows the probability distribution over wind directions, i.e. wind rose, for all DLCs 

in the load case table. 

 

Figure 4-6 Wind Rose (All Directions, All DLCs) in [%] 

Figure 4-7 shows the probability distribution over wave directions, i.e. wave rose (wind-sea), 

for all DLCs in the load case table. 
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Figure 4-7 Wave Rose (wind-sea) (wind-sea, All Directions, All DLCs) in [%] 

Now by having both wave/wind directions (Figure 4-8), the effective misalignment figure can 

be generated in Figure 4-9 for all DLCs for FLS. 

 

Figure 4-8 Wind and Wave Rose (wind-sea, All Directions, All DLCs) in [%] 
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Figure 4-9 Wind-Wave Misalignment in 0-30-60-90 degrees (wind-sea, All Directions, All DLCs) in [%] 

Considering Wind-Wave misalignments, the in-house OWECS tool calculated the combined 

wave/wind directional Moments/Loads for all three DLCs in different altitudes in monopile, 

presented in Table 4-3 and Table 4-4. In addition, the eigenfrequency of the structure was 

extracted from the first mode of the modal analysis of the FE Model. 

Table 4-3 Damage Equivalent Moments (Combined Wave/Wind) in compass directions for optimised monopile 

  Mode m Lifetime Nref 0 30 60 90 120 150 Omni 

  [-] [-] [years] [kNm] [kNm] [kNm] [kNm] [kNm] [kNm] [kNm] [kNm] 

INTERFACE 1 5 20+2 1e+7 35496 32347 30116 31503 36789 38442 38442 

 

Table 4-4 Damage Equivalent Load (Combined Wave/Wind) in compass directions at Interface of optimised monopile 

  Mode m Lifetime Nref 0 30 60 90 120 150 Omni 

  [-] [-] [years] [-] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

INTERFACE 1 5 20+2 1e+7 163.37 181.95 190.1 182.36 165.72 155.06 190.1 

 

The fatigue assessment on the central column has been performed using the damage equivalent 

loads (DEL) approach, only assessing the primary circumferential welds. This assessment will 

be done on an optimised design in order to observe if the optimisation results meet the fatigue 

assessment criteria or net. The approach has adopted a Category ‘D’ of the S-N curve. 

Appropriate SCFs have been applied where there is a change in plate thickness and at the 

conical transitions. “In air” S-N curves have been considered above the splash zone, and “in 
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water with cathodic protection” curves below the splash zone for the entire field life. The splash 

zone is coated, and the coating life is 14 years. 

Consequently, the splash zone is treated as “in the air” for the first 14 years and then treated as 

water without corrosion protection after that. The average corrosion allowance is applied after 

the first 14 years. It is assumed that the length of plates in circumferential welds is between 

2.5m to 3.5m for current thicknesses. According to DNV-RP-C203 (DNV GL, 1987), the wall 

thickness at each weld was checked to achieve the required fatigue life with a Design Fatigue 

Factor (DFF) of 3 (In this case, 3 × 20𝑦𝑒𝑎𝑟𝑠 = 60𝑦𝑒𝑟𝑎𝑠).  

The stress concentration factor (SCF) for welding between plates with different thicknesses 

can be derived by: 

 𝑆𝐶𝐹 = 1 +
6(𝛿𝑚 + 𝛿𝑡 − 𝛿0)

𝑡 [1 +
𝑇1.5

𝑡1.5 ]
 (4.13) 

where T is the thickness of the thicker plate, t is the thickness of the thinner plate, 𝛿𝑚 is the 

maximum misalignment, 𝛿𝑡 = ½ (T-t) is the eccentricity due to change in thickness and 𝛿0 = 

0.1 is misalignment inherent in S-N Data for butt welds. Also, the SCF for the tabular side and 

cone side can be calculated as: 

 
𝑆𝐶𝐹 = 1 +

0.6𝑡√𝐷𝑗(𝑡 + 𝑡𝑐)

𝑡2
𝑡𝑎𝑛𝛼 → 𝑓𝑜𝑟 𝑇𝑎𝑏𝑢𝑙𝑎𝑟 𝑠𝑖𝑑𝑒 

(4.14) 

 
𝑆𝐶𝐹 = 1 +

0.6𝑡√𝐷𝑗(𝑡 + 𝑡𝑐)

𝑡𝑐2
𝑡𝑎𝑛𝛼 → 𝑓𝑜𝑟 𝐶𝑜𝑛𝑒 𝑠𝑖𝑑𝑒 

(4.15) 

where 𝐷𝑗 is cylinder diameter at a junction, t plate thickness, 𝑡𝑐 is cone thickness, and 𝛼 is the 

slope angle of the cone. When the thicknesses are revised and redesigned at the end of the 

optimisation process, a fatigue assessment shall be performed to check if the structure's lifetime 

is acceptable considering standard DFF. 

In FE Model, an appropriate S-N curve of slope 𝑚 and 𝑙𝑜𝑔�̅� is provided by DNV-RP-C203. 

The maximum fatigue stress range 𝜎f,m𝑎𝑥 in the OWT support structure subjected to the fatigue 

loads is calculated from the FEA simulations. The minimum fatigue safety ratio 𝑓𝑠𝑟,𝑚𝑖𝑛 could 

be derived from the design stress 𝜎𝑑𝑒𝑠𝑖𝑔𝑛 over the maximum fatigue stress 𝜎f,m𝑎𝑥 in the structure. 
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This safety ratio should stay above the allowable fatigue safety ratio 𝑓𝑎𝑙𝑙𝑜𝑤, which is equal to 

one time the material PSF 𝛾𝑚. Fatigue constraint can be written as: 

 𝑓
𝑎𝑙𝑙𝑜𝑤

≥ 𝑓
𝑠𝑟,𝑚𝑖𝑛

 (4.16) 

The PSF of material for the Fatigue Limit State is 1.15 (DNV GL, 1987, 2010a); therefore, 

𝑓𝑎𝑙𝑙𝑜𝑤 is equal 1.15. Finally, the fatigue life of the optimised model will be assessed in Section 

6.1.3 by the DNV S-N curve method with calculated DEL. This will validate the FE model and 

approve the structure fatigue design approach. 

At this stage, all constraints are described, and Table 4-5 summarises all structural constraints 

that have been used in this study. 

Table 4-5 Upper and Lower bound of the constraints 

Constraint  Name Unit Lower Bound Upper Bound 

1st Natural frequency 𝑓1𝑠𝑡 [Hz] 0.21 0.328 

Maximum equivalent Stress 

(Von Mises) 

𝜎𝑉𝑀,𝑚𝑎𝑥 
[MPa] - 323 

Pile head deflection 𝑑𝑝𝑖𝑙𝑒  [m] - 0.1 

Pile head rotation 𝜃𝑝𝑖𝑙𝑒  [°] - 0.4 

Buckling load multiplier 𝐿𝑚 - 1.4 - 

Minimum fatigue safety ratio 𝑓𝑓𝑠,𝑚𝑖𝑛 - 1.15 - 

 

4.2.4.Genetic algorithm utilisation 

As the FE Model is parametric, the parameters involved in the optimisation process in the 

multi-objective GA procedure can be easily chosen and updated. The initial samples are created 

and individually solved by the respective module during optimisation. After all the initial 

samples have been solved, the specified optimisation algorithm is automatically run. The 

optimisation module suggests a candidate design that meet the requirements at the end of the 

process. A GA is divided into five parts: initialization, fitness assignment, selection, crossover, 

and mutation (Kharmanda et al., 2014).  The number of initial samples should be at least ten 

times the number of design variables. This value was increased by 200 points in this study to 

improve the chances of finding a better solution (Haupt et al., 2004). Convergence speed is 

affected by the number of samples per iteration. 

In this study, an empirical value of 50 is chosen. The output parameters' maximum spread, 

mean, and standard variation calculates the convergence criterion. The optimisation was 



115 

 

assumed to have converged when the criteria value reached 1.5 per cent, implying a 

homogeneous population. The maximum number of iterations is the blocking criteria of the 

algorithm. Cross-over probability is a value between 0 to 1. A low value encourages using 

available design points (parents), whereas a high value encourages the exploration of new 

designs through offspring generation. A crossover probability of 0.90 (Haupt et al., 2004) is 

used in this study. The probability of mutation must be between 0 and 1. A higher value 

increases the algorithm's randomness until it becomes a simple random search for a value of 

one. This study uses a typical mutation probability of 0.01 (Haupt et al., 2004). The 

“performance” of a genetic algorithm depends highly on the method of encoding candidate 

solutions into chromosomes and “the particular criterion for success,” or the fitness function 

measuring. The probability of crossover, the probability of mutation, the population size, and 

the number of iterations are all critical details. After a few trial runs, these values can be 

adjusted based on the algorithm's performance. In Table 4-6, the main characteristics and 

settings of the GA have been provided. 

Table 4-6 Settings of GA 

Parameter name Value 

Number of Initial Samples 200 

Number of Samples per Iteration 50 

Convergence Stability Criteria  1.5% 

Maximum Number of Iterations 25 

Crossover Probability 0.9 

Mutation Probability 0.01 

After applying GA settings to the parametric FEA model, the requested “Candidate Points” 

number under the properties table pane displays. The quantity of gold stars or red crosses next 

to each objective-driven parameter indicates how well it matches the specified objective. For 

instance, three red crosses are the worst, and three gold stars represent the best. The user can 

also add and edit its candidate points, view values of candidate point expressions, and calculate 

the percentage of variance for each parameter for which a goal has been established in the table 

panel. 

4.2.5.FEA geometry model validation  

The geometry is validated by comparing the results of the current and 5MW NREL reference 

models. This case study was also the opportunity to test the mesh convergence study to ensure 

reasonable accuracy and an appropriate number of elements in the model. A case study was 
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defined by (Damiani et al., 2013), in which a 2MN rotor thrust load was applied to the tower's 

top, and the soil was considered rigid. Considering the weight of the nacelle and blades, the 

results show good agreement with the reference model. The result values are presented in Table 

4-7, confirming the present model's validation. 

Table 4-7 Deformation in the reference model and current model  

Load case Deformation 

Mass/Thrust 
Current 

model 

Reference 

model 
%Diff 

2MN +Weight 1.676 m 1.644 m +1.94% 

 

4.3. Reliability-Constrained Optimisation (RCO) 

4.3.1. Framework definition 

Defining the RCD framework using reliability assessment, regression, response surface and 

Monte Carlo simulation to find the optimal design for OWT by satisfying the criteria specified 

by design standards, which correspond to a target reliability level. The model combines OWT 

deterministic optimised candidate design solutions and a simulation model with the Six Sigma 

reliability assessment. Figure 4-10 illustrates the flowchart of the reliability-constrained design 

optimisation framework developed in this work. 
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Figure 4-10 Flowchart of Reliability-Constrained Design optimisation framework 

To perform the SRA, a parametric FEA model was built in the ANSYS© at the first step. Then, 

the various input parameters are given using their corresponding distributions.  The developed 

FEA model is then used to run a series of FEA simulations through the Design of Experiment 

(DoE) module in the DesignXplorer© of ANSYS.  

Choosing a proper sampling method is vital in reliability assessment. At first, the Monte Carlo 

Sampling (MCS) method is used to calculate the probability of failure (Pf). The MCS approach 

tries to sample each random variable, Xi to provide a value �̂�𝑖. Then the limit state function is 

checked by those xi values, and if the function is violated, it is noted as a failed structure.  

 
𝑃𝑓 =

𝑛(𝑔(𝑥𝑖 ≤ 0)

𝑁
 

(4.17) 

where n is the number of trials in which the limit state function result is more than zero, 𝑔(�̂�𝑖) 

is the limit state function, and N is the number of trials. 

MCS can calculate the Pf heuristically but cannot transform the limit state function (Lee et al., 

2014b). MCS randomly simulates the samples, depending on the probability density functions 

of input variables; therefore, Pf accuracy depends on the iterating sampling size. Latin 

Hypercube Sampling (LHS) by (Loh, 1996) is a variance reduction method that helps the user 

save time and reduce the number of iterations needed in the MCS method. In this study, LHS 
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with the number of samples equal to 1 × 107 is selected and applied to all the design constraint 

cases.  

A good design point is typically the outcome of a trade-off between multiple objectives. As a 

result, optimisation procedures that lead to a single design point during design exploration 

should be avoided. Enough data on the existing design are required in order to answer "What-

if" inquiries regarding how design factors affect product performance. The best judgments can 

be possibly made based on precise data, even if the design limitations change unexpectedly. 

DoEs and Response Surfaces (RS) provide all the data needed to develop simulation-driven 

products. The Response Surface method replaces the original input-output relationship with an 

approximation function. For the approximation function �̂�, typically a quadratic polynomial 

with cross-terms is used in the form: 

 
�̂� = 𝐶0 + ∑𝑐𝑖. 𝑥𝑖 + ∑∑𝑐𝑖𝑗. 𝑥𝑖

𝑛

𝑗=𝑖

𝑛

𝑖=1

𝑛

𝑖=1

. 𝑥𝑗  
(4.18) 

where, 𝐶0, 𝑐𝑖 and 𝑐𝑖𝑗 with i,j=1,…,n are the regression coefficients and 𝑥𝑖, i=1,…,n are the n 

input variables. Equation (4.18) is also a regression model. The response domain was derived, 

and an appropriate response surface model was produced. The response surface model is the 

interpolation of the values in the multiple dimensions characterized by the DoE . Several types 

of response surfaces are available in the commercial package of ANSYS DesignXplorer© 

(Thompson & Thompson, 2017), including genetic aggregation, standard response surface full 

second-order polynomials, kriging algorithms, non-parametric regression, and the sparse grid. 

In this study, the standard response surface full second-order polynomials, with manual 

refinements, are adopted. The second-order model is the most common approximating 

polynomial model in response surface methods (Bezerra et al., 2008). The Central Composite 

Design (CCD) presented by (Box & Wilson, 1951) is the selected design, as it is the most 

recommended design for fitting second-order models (Brown & Brown, 2012). The goodness 

of fit metric is also packaged within the response surface module, calculated for the DoE points 

and can be assessed for verification points to check how accurately the response surface can 

predict the design points. The predicted and observed chart must be reviewed to show the 

goodness of fit of data for outputs in all limit state cases. Moreover, the output values should 

be checked to determine if most points fall on or near the line. The response surface correctly 

evaluates the values for most of the design points within its range, including the verification 

points.  
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The Six Sigma Analysis (SSA) function of the DesignXplorer© module in ANSYS is 

employed in this study for the probabilistic assessment. The Six Sigma Expression was created 

by Motorola initially (Harry & Motorola University Press., 1997). SSA can also determine the 

extent to which model uncertainties affect analysis results. To do so, SSA uses several 

statistical distribution functions to define uncertain parameters. In practice, Six Sigma analysis 

has been employed for robust design approaches in recent years. 

In the ANSYS DesignXplorer© module, the parameters defined in the simulation have been 

recognized automatically. The user assigns design or random variables, and a statistical 

distribution function can be selected for each of these random variables.  

Finally, the cumulative distribution function (CDF) is used to assess the Pf of the component. 

The resultant CDF value at any given point shows the probability that the relevant parameter 

value remains below that point. The equivalent reliability index β is evaluated through 

appropriate statistical transformation (Melchers & Beck, 2018). 

4.3.2. Structural Reliability Assessment 

Selecting appropriate stochastic variables and assigning appropriate statistical distributions are 

vital for the systematic consideration of uncertainty through reliability analysis. Even though 

the stochastic data are characterized in this application by normal distributions, the framework 

can accommodate any statistical distribution variables through appropriate consideration. In 

this section, ANSYS converted the input parameters from the DoE function and produced sets 

of stochastic variables based on the defined statistical distribution. A series of deterministic 

FEA simulations were performed, and then the results were exported to the Response Surface 

Module to map the response with those design points. The Six Sigma module uses these results 

to assess the system's reliability. The corresponding reliability index β is evaluated by 

appropriate statistical transformation (Melchers & Beck, 2018). Table 4-8 presents the mean 

values and standard deviation of the stochastic variables. 

Table 4-8 Design Variables (Jonkman & Musial, 2010; LaNier, 2005; Melchers and Beck, 2018) 

Stochastic Variables Ultimate Load Case Fatigue Load Case CoV 
Distribution Type as 

(DNV GL, 2014) 

 Mean value 
Standard 

deviation 
Mean value 

Standard 

deviation 
  

Wind Thrust (kN) 781 78.1 197 19.7 0.1 Normal 

Torsional Moment (kN.m) 38,567 3856.7 3686 368.6 0.1 Normal 

Tilting Moment (kN.m) 7876 787.6 3483 348.3 0.1 Normal 
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Steel Young’s Modulus 

(GPa) 
210 21 210 21 0.1 Normal 

RNA Mass (Tonne) 350 35 350 35 0.1 Normal 

 
When structural reliability analysis is carried out, suitable safety levels must be selected 

considering failure, applicable rules, access for inspection, and repair; this safety level is called 

the target safety level. According to DNV guidelines (Ashuri, 2012; DNV GL, 2010a), the 

designs' target annual failure probability is 1E-4. 

It should be noted that, in DO, the methodology contains specified reliability as the PSF is 

included. Thus, these safety factors must be eliminated in the reliability assessment. 

4.4. RCO Framework validation 

The validation of an optimisation framework involves testing the performance and accuracy of 

the optimisation algorithm and the resulting solutions. Validation is essential to ensure that the 

optimisation framework is reliable and produces high-quality results. The objective of 

validation of an analytical procedure is to demonstrate that it is suitable for its intended purpose.  

There are several ways to validate an optimisation framework. In this case, analytical validation 

is selected. Analytical validation involves comparing the optimisation results with available 

analytical solutions or benchmarks. This method is useful when analytical solutions exist. The 

analytical validation can verify the correctness of the optimisation framework and its 

implementation. 

In this study, a reliability-constrained optimisation framework for offshore wind turbine 

support structures is developed. First, a parametric 3D FEA model of Monopile OWT support 

structures is developed in ANSYS, taking account of stochastic material properties and 

environmental loads and optimised in the “Direct Optimisation” module in ANSYS. For 

details, please read Section 4.2. 

Then, the model reliability was assessed in “ANSYS DesignXplorer©”. A six-sigma analysis 

function has been used to perform a reliability assessment on the FEA parametric model with 

the variables defined in the previous section. The sampling method is Latin Hypercube 

Sampling (LHS), with 107 samples. In order to find the probability of failure, a cumulative 

distribution function (CDF) is extracted and utilised. The corresponding reliability index β is 

evaluated by appropriate statistical transformation (Melchers & Beck, 2018). In the validation 

process, there is no need to apply all limit states. Comparing the results with just the same 
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condition is enough to save the calculation time. Therefore, only ULS is considered in this 

section, as ULS check is always a first check in conceptual design process. 

Performing the reliability assessment and finding the reliability index, β, using the H&L 

method or FORM, described in Section 3.2.1.2, is the primary step in the analytical validation 

of the RCO optimisation framework. First, a performance function needs to be defined to start 

FORM. For our monopile design, there is a dependent variable (here, in this case, maximum 

equivalent stress from ULS) and several independent variables (here, in this case, Thrust load 

and Bending Moments in ULS and Steel Young Modulus). Then, using multivariate regression 

analysis explained in Section 3.4.2, the relation between dependent and independent variables 

is processed.  

 
𝜎𝑉𝑀,𝑚𝑎𝑥 = [𝑎0, 𝑎1, … , 𝑎6]

[
 
 
 
 
 
 
1
𝑥1

𝑥1
2

..
𝑥3

𝑥3
2]
 
 
 
 
 
 

 
(4.19) 

where (𝑎0, 𝑎1, … , 𝑎6) are seven regression coefficients. As discussed, the probability of failure 

of the system is defined as 𝑃𝑓 = 𝑃[𝑔(𝑥) < 0], where g(x) is the limit state function that implies 

the critical failure surface and 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛] is a vector containing n stochastic variables. 

An equal or greater number of sample points is expected to calculate the coefficients (2n+1). 

Therefore, the number of regression coefficients is chosen as 7. Now we can define the 

performance function in Eq (4.20) at the first step of FORM Hasofer and Lind algorithm: 

 
𝑔(𝑥) = 𝜎𝑉𝑀,𝑎𝑙𝑙𝑜𝑤 − [𝑎0, 𝑎1, … , 𝑎6]

[
 
 
 
 
 
 
1
𝑥1

𝑥1
2

..
𝑥3

𝑥3
2]
 
 
 
 
 
 

 
(4.20) 

The mean value is set as an initial design point, 𝑥𝑖,𝑘 = 𝜇𝑥𝑖
  (𝑖 = 1,2, … , 𝑛) and calculation of 

gradients of performance function is started. Then the initial reliability index starts using mean 

value method and direction cosine. 

 
𝛽 =

𝜇�̃�

𝜎�̃�
=

𝑔(𝜇𝑥)

√[∑ (
𝜕𝑔(𝜇𝑥)

𝜕𝑥𝑖
)
2

. 𝜎𝑥𝑖
2𝑛

𝑖=1 ]

 
(4.21) 
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 𝛼𝑖 = −
(
𝜕𝑔(𝜇𝑥)

𝜕𝑥𝑖
)
2

. 𝜎𝑥𝑖

√[∑ (
𝜕𝑔𝑋∗

𝜕𝑥𝑖
𝜎𝑥𝑖)
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𝑛
𝑖=1 ]

 (4.22) 

Here, 𝑥𝑖,𝑘 indicates the 𝑖-th element in the vector 𝑋k of the 𝑘-th iteration, and 𝜇𝑥𝑖 is the mean 

value of the 𝑖-th element. Now a new design point is computed, 𝑋k and Uk following by the 

gradients. 

 𝑥𝑖,𝑘 = 𝜇𝑥𝑖
+ 𝛽𝜎𝑥𝑖𝛼𝑖 

(4.23) 

 
𝑢𝑖,𝑘 =

𝑥𝑖,𝑘 − 𝜇𝑥𝑖

𝜎𝑥𝑖

 
(4.24) 

Using Eq. (4.23) and Eq. (4.24), the reliability index 𝛽 and direction cosine 𝛼𝑖 can be computed. 

And the iteration needs to be repeated until the convergence of 𝛽. 

 𝛼𝑖 = −
(
𝜕𝑔𝑋∗

𝜕𝑥𝑖
) . 𝜎𝑥𝑖
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𝜕𝑥𝑖
𝜎𝑥𝑖)

2
𝑛
𝑖=1 ]

 (4.25) 

 𝛽 =
𝑔(𝑈∗) − ∑ (

𝜕𝑔(𝑈)
𝜕𝑥𝑖
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 (4.26) 

The MATLAB code used to calculate the reliability index from above analytical solution is 

provided in APPENDIX C. 

Finally, the estimated reliability index for reference and optimised model from FORM must be 

compared with the reliability index from the Six Sigma method in ANSYS with the design 

ULS load analysis and variables.  

For the optimised model, the ULS maximum equivalent stress probability of failure, 𝑃𝑓(𝑓𝑠𝑟 ≤

322.7 𝑀𝑃𝑎), is about 5.3E-4 using the ANSYS six sigma module, while the calculated value by 

FORM was 8.31E-4. Then, the corresponding β for the initial model is 3.14, while the 

corresponding β for ANSYS six sigma method is 3.27. The summarized results from both 

FORM, and Six Sigma methods are in Table 4-9. 
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Table 4-9 Summarized results of FORM and Six Sigma method 

Case 
Probability of Failure 

Six Sigma (ANSYS)  FORM 

Initial design 2.81E -14 1.07E -12 

Optimise design 5.30E-4 8.31E-4 

Case 
𝜷 

Six Sigma (ANSYS) FORM 

Initial design 7.51 7.0245 

Optimise design 3.27 3.14 

 

Both reliability assessment tools, i.e. the developed non-intrusive formulation and ANSYS 

DesignXplorer© module, give reasonably close results in the optimised model. The deviation 

of reliability calculation in ANSYS results from FORM calculation is due to a limitation in the 

number of simulations performed with ANSYS. Furthermore, the fact that the computational 

time required by the non-intrusive formulation of FORM is much less than that required by the 

six-sigma analysis in ANSYS, which is a great advantage for this method in simple case studies 

but in full-scaled coupled and more complicated models with different limit states the 

computational time will be increased. The advantage of the ANSYS DesignXplorer© module 

over FORM is: 

1. DesignXplorer© module allows engineers to model complex systems that involve 

multiple variables and parameters. In contrast, FORM is limited to analysing systems 

with only a few variables and parameters. 

2. DesignXplorer© module uses advanced algorithms to perform optimisation, sensitivity, 

and robustness analyses. This allows engineers to quickly identify the most critical 

design factors and make informed decisions to improve the reliability of the structure. 

3. DesignXplorer© module is integrated with other Six Sigma tools, such as Monte Carlo 

simulation and Design of Experiments (DOE). This enables engineers to perform more 

comprehensive reliability analyses and identify the root cause of failures. 

4. DesignXplorer© module provides a user-friendly interface that makes setting up and 

running simulations easy. This can save time and reduce the risk of errors in the 

analysis. 

Overall, the DesignXplorer© module in Six Sigma offers several advantages over the FORM 

approach when finding a structure's reliability in 3D structure in which the correlation between 

parameters affecting objective function in not clear initially. However, FORM still can give us 
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a fair result to validate the framework and compare the reference and optimised model 

reliability index with two different assessing methods. 

4.5. Cost analysis of optimised design 

The optimisation study combined a numerical optimisation algorithm, reliability assessment 

and cost analysis with different calculations, as Figure 4-11 sketches. This section focuses on 

estimating LCOE for reference and optimised models to see the effect of optimisation results. 

 

Figure 4-11 Methodology flow chart 

To review the study up to this section, the input to the problem is the list of information needed 

to execute the finite element analysis and optimisation algorithm and the specifications for the 

essential design tools. The numerical optimisation process needs: 

• An objective function: 𝐹𝑜𝑏𝑗 is an objective function that is chosen to minimize 𝑀𝑔𝑙𝑜𝑏𝑎𝑙 

, the global mass of the support structure. 

• Design variables: any parameters that influence the global mass, such as wind turbine 

overall design, thicknesses and diameters of the pile, tower or transition piece. 

• Constraints: low or upper bounds of design variables, but also limits on stresses, 

strains, or loads. The bound of constraints keeps the design space in a feasible area 

where the optimum values are found. 

• State-of-the-art reliability-constrained optimisation framework takes to involve target 

reliability in the optimisation process. 
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The input for the modelling of the reference turbine in ANSYS software, in order to perform 

the numerical analysis and simulation, includes: 

• Environmental conditions 

• Wind, wave, and current load profile calculations 

• A complete description of turbine aerodynamics, structure, control, and safety 

strategies regarding the regulations so that the structure's response to the wind inflow 

shall be determined and relevant extreme and fatigue loads can be obtained. 

Finally, the cost analysis has been done to compare the LCOE prices of the reference and 

optimised models, considering the most influential parameters involved in reducing the weight 

of the support structure. 

 

4.5.1. Wind farm specification 

Regarding the cost analysis and estimation of LCOE, the initial step is to define a wind farm. 

The wind farm features are assumed to be a fixed bottom site consisting of 100 wind turbines 

rated at 5.0 MW, yielding a total plant capacity of 500 MW. The turbines are supposed to 

operate for 20 years without any catastrophic O&M incidents. The farm is also assumed to be 

30km far from the shore. The summary of the farm characteristics is presented in Table 4-10. 

Table 4-10 Wind farm characteristics 

Parameter Description/Value 

Location North Sea 

Turbine-rated power (MW) 5 

Number of Turbines 100 

Wind plant capacity (MW) 500 

Water Depth (m) 20 

Substructure Monopile 

Distance from Shore (Km) 30 

Project design life (years) 20 

 

4.5.2. Cost breakdown 

Cost definitions and terminology were presented in section 2.8.1. In this part, the breakdown 

of the CapEx for the fixed-bottom offshore reference project is explained and illustrated in 

Figure 4-12. Again, the shades of green represent the turbine cost, shades of blue represent the 

balance of system (BOS) costs and shades of purple represent financial costs. This chart's main 

objective is to find the key factors that affect a monopile's cost by optimising the structure's 

weight. 
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Figure 4-12 CapEx cost breakdown for a fix-bottom offshore wind turbine (Stehly & Duffy, 2020) 

Maintenance costs for offshore wind farms are projected to be roughly 25% of the Levelized 

Production Cost (LPC) (Stehly & Duffy, 2020). The LPC is the average cost of one production 

(kWh) during the estimated lifetime of a wind power station, stated in £/kWh. With predicted 

CapEx reductions in the coming years, this ratio might rise to 33 per cent of the total lifetime 

cost. However, they are just estimations that could drastically change in the future primarily 

because of the evolutionary strategies in Operating and maintenance (O&M). Additionally, 

some big projects are still under warranty, preventing us from observing the actual O&M costs. 

Conversely, as turbine technology improves and becomes more reliable, O&M costs should 

decrease. In this study, the effects of weight reduction in O&M and decommissioning costs are 

much less than the “Turbine manufacturing” and “Assembly, Installation” sections, so the 

values remain constant.  

Insurance and contingency expenses for the support structure during the lifetime were projected 

at 10% and 12%, respectively, according to (Stehly & Duffy, 2020). However, these figures 

should fall in the future, along with offshore wind industry uncertainties, as more experience 

is gathered. The study did not include these expenditures due to difficulties calculating them 

for various foundations and substructures. Furthermore, because they are considered a fixed 
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percentage value that is the same for all support structures, excluding them from the study 

provides a more precise cost comparison and more comprehensible outcomes. 

4.5.3. Production process 

Production of the OWT monopile support structure can be divided into three sections, 

illustrated in Figure 4-13.   

 

Figure 4-13 Production process of a monopile 

Assessing the project is an initial step before manufacturing and installation. Understanding 

the project size, the farm's distance from shore and geotechnical assessments are vital. Next, a 

monopile and its transition piece are made using a reasonably easy and automated method. 

"Cans," cylinders of the rolled plate with a longitudinal seam, are commonly used to construct 

piles. It entails a number of fabrication steps, which are listed in Figure 4-13. 

4.5.4. Levelized Cost of Energy (LCOE) 

This section gives a methodology for estimating the levelized cost of energy (LCOE) for both 

reference and optimised 5MW NREL offshore wind turbine performed in the previous section. 

LCOE is a metric used to assess the cost of electricity generation and the total power-plant-

level impact of technology design changes. It can be used to compare the costs of all types of 

generation.  

In addition, sensitivity analyses have shown the range of effects that essential LCOE variables 

could have on the cost of wind energy for offshore wind power. Therefore, this report addresses 

Assessing the project

1.Turbine Rated power

2.Number of turbines

3.Distance from shore

4.Project Design life

5.Geotechnical 
assessments

Monopile Manufacturing

1.Storage of Steel plate

2.Milling and cutting

3.Rolling

4.Inside Longitudinal 
welding and milling

5.Outside Longitudinal 
welding

6.Calibration

7.Assembly

8.Inside circular welding 
and milling

9.Outside circular welding

10.NDT inspection

11.Secondary steel 
assembly

12.Coating

Monopile installation

1.Seabed preparation (If 
needed)

2.Pile driving and drilling

3.Transition piece 
positioning 

4.Grouting

5.Scour protection

6.Monopile installation
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many assumptions and cost variables but does not include the full spectrum of drivers that 

affect wind energy prices. 

According to NREL documents (Stehly & Duffy, 2020), for wind energy, the following 

equation is used to calculate LCOE: 

 
𝐿𝐶𝑂𝐸 =

(𝐶𝑎𝑝𝐸𝑥 × 𝐹𝐶𝑅) + 𝑂𝑝𝐸𝑥

𝐴𝐸𝑃𝑛𝑒𝑡
 

(4.27) 

The LCOE equation's first three primary inputs, CapEx, OpEx, and net average annual energy 

production (AEPnet), allow it to incorporate system-level consequences from design changes 

(e.g., larger rotors or taller wind turbine towers). The fourth essential input, fixed charge rate 

(FCR), shows the revenue required to pay the annual carrying costs on that investment during 

the estimated project's economic life. 

In the other word, LCOE "represents the average revenue per unit of electricity generated that 

would be required to recover the costs of building and to operate a generating plant during an 

assumed financial life and duty cycle” and is calculated as the ratio between all the discounted 

costs over the lifetime of an electricity generating plant divided by a discounted sum of the 

actual energy amounts delivered (Ioannou et al., 2017). 

 
𝐿𝐶𝑂𝐸 =

𝑂𝑣𝑒𝑟𝑎𝑙 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑐𝑜𝑠𝑡

𝑆𝑢𝑚 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑖𝑛 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
=  

∑
𝐼𝑡 + 𝑀𝑡

(1 + 𝑟)𝑡
𝑛
𝑡=1

𝐸𝑡

(1 + 𝑟)𝑡

 
(4.28) 

𝐼𝑡:   Investment expenditures in the year t 

𝑀𝑡: Operations and maintenance 

𝐸𝑡:  Electrical energy generated in year t 

𝑟:    Discount rate 

t:    Expected lifetime of system or power station 

4.5.5. Manufacturing and Installation 

4.5.5.1. Manufacturing of monopile 

A monopile and its transition piece are manufactured relatively straightforwardly and 

automated. The piles often consist of "cans," cylinders of a rolled plate with a longitudinal 

seam. It consists of numerous fabrication steps, which are summarised below: 
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1. Storage of Steel plate 

2. Milling and cutting 

3. Rolling 

4. Inside Longitudinal welding and milling 

5. Outside Longitudinal welding 

6. Calibration 

7. Assembly 

8. Inside circular welding and milling 

9. Outside circular welding 

10. NDT inspection 

11. Secondary steel assembly 

12. Coating 

Finally, the components are stored before being delivered to the logistic port, where they will 

await the start of the installation process. However, the manufacturing costs of the monopile 

have risen significantly in recent years, owing primarily to increases in steel and commodity 

prices, which contribute around 45-50% to the monopile's production costs (Stehly & Duffy, 

2020). 

4.5.5.2. Installation of a monopile foundation 

The construction of a typical monopile consists of the following phases: 

1. Seabed preparation (If needed): A "mattress" of rock and stones are laid around the 

foundation to prevent erosion. Typically, no seabed preparation is required for driving 

the pile (except where seabed erosion is a problem). This eliminates the need for this 

time-consuming underwater procedure. 

2. Pile driving and drilling: The pile is hammered to the desired depth through the 

mattress. Pile driving is recommended when the overburden consists of soils (sands, 

gravels, clay, and so on). This could be a diesel or hydraulic hammer system or a 

vibrator or oscillator. 

3. Transition Piece (TP) positioning: Transition Piece (TP) is installed, complete with pre-

installed features such as boat landing arrangement, cathodic protection, cable ducts for 

underwater cables, turbine tower flange, and such. TP allows for the absorption of 

inaccuracies during the pile installation process. As a result, even if the foundation is 

not perfectly level, it is possible to raise the turbine tower to a completely vertical 
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position. The transition piece's upper rim is a flange that allows the fastening of the 

turbine tower. Before grouting, brackets are put inside the TP to provide temporary 

support.  

4. Grouting: Installation Tolerances can be adequately tested for and adjusted within 

grouted connections. The grouting procedure is straightforward and can be executed 

above and below the waterline with standard processing equipment. Grouting is the 

most common connection between the TP and the pile at mean sea level. This is 

accomplished by pushing grout through flexible hoses into the annuli gaps. 

5. Scour protection: There are numerous scour protection methods, ranging from asphalt 

to concrete beds; however, most of these choices need costly offshore installation. The 

most economical approach is laying crushed rock, often called "rip-rap." The concept 

underlying the placement of a layer of rock is that the rock particles are chosen so that 

they cannot be washed away by the increased current surrounding the construction. 

6. Monopile transportation with barge and tug. 

The review of the Manufacturing and Installation process of OWT indicates the CapEx is 

mainly affected by the following sections: 

A. Seabed preparation and Scour protection cost 

The cost of scour protection is calculated on a rock volume cost basis. Hence, the protection 

volume is calculated and multiplied by 350£/m3 (UK beis, 2020). Finally, the amount of steel 

used for reference and the optimised foundation is estimated and presented later in the results 

section. 

B. Pile transportation and installation cost:  

The pile and transition pieces are transported from the onshore base to the site by barge and a 

tug. HLV will accomplish pile driving, Transition Piece (TP) and grouting. The prices are listed 

In Table 4-11. The vessel cost depends on the lifting weight and varies from 40K£/day for 

200Tn to 120K£/day for 1000Tn. The average time and weather window for each operation 

(Hs = 1.5) is shown in the graph as 60%. 

Table 4-11 Typical pile transportation vessels and their costs 

Vessel Operational Hs (m) Cost (£/Day) 

Barge 1.5 10000 

Tug 3 30000 
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The weather window and availability of vessels shall be counted. The average duration of each 

procedure is summarised in Table 4-12, based on information from recent projects. Then, the 

weather windows for these operations must be considered a function of the vessel's operational 

Hs. Consideration is given to a minimum weather window of six hours for the start of 

operations. The results are depicted in Figure 4-14 using data collected from four North Sea 

sites (Sarkar & Gudmestad, 2013). The overall cost can be estimated after the total required 

time and the daily rate of each vessel are known. In addition, according to the market 

information (Meißner, 2020), the cost of a large piling hammer is estimated at 15000£/Day 

Table 4-12 Typical pile transportation vessels and their costs 

Operation 
Time 

(Day) 

Pile Loading and Transportation (Return) 0.5 

Tower Loading and Transportation (Return) 0.5 

Pile Installation 1 

Tower Installation 1 

 

 

Figure 4-14 Annual average weather windows based on four North Sea sites (Sarkar & Gudmestad, 2013) 

C. Mob and Demob Cost 

Based on “Electricity Generation Costs Report from UK Government” information (UK beis, 

2020), mob and demob fixed cost of 35000£ is considered. For each monopile, the price is 

divided by 100: 3500£ for each Monopile. 
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4.5.6. CAPEX and OPEX Breakdown 

A summary of Capex and Opex cost breakdown is presented in Table 4-13 according to 

estimations in sections 4.5.4 and 4.5.5 and also some high-level estimations are according to a 

study that has been done by UK Catapult ORE in 2021 (Catapult ORE, 2021). 

Table 4-13 CAPEX and OPEX Cost Breakdown (Catapult ORE, 2021) 

CAPEX Cost Breakdown   
Category Estimated Cost (£/MW)  

Engineering, Development, Engineering Management  £                       130,000.00   
Turbine  £                       900,000.00   
Foundation Fabrication, Cable and Substation  £                       600,000.00   
Transportation & Installation  £                       700,000.00   

       £                   2,330,000.00  Total 

 

        

OPEX Cost Breakdown  
Category Estimated Cost (£/MW)  

Operation, maintenance, and service (per annum)  £                         80,000.00   
Decommissioning  £                       350,000.00   
Unpredicted events  £                         50,000.00   

       £                      480,000.00  Total 

 

4.6. Summary 

The objective of this section was to illustrate the benefit of integrating (1) a proper parametric 

FEA model and (2) a multi-criteria Genetic algorithm to optimise the mass of an OWT support 

structure. During optimisation, modelling with shell elements for the support structure and 

solid elements for the soil was used to ensure more reliable and accurate modelling than 

possible. This FEA model was combined with a genetic algorithm, and it was determined that 

the global support structure mass would be lowered using an integrated optimisation strategy. 

Diameters and section thickness were identified as design variables, and an approach to limit 

the number of variables was devised and implemented. Several constraints were applied based 

on standard regulations, including modal, stress, deformation, buckling, and fatigue. The model 

was used to evaluate the performance of the NREL 5 MW reference monopile on OC3. Then, 

the cost analysis methodology was defined to compare the LCOE of the reference design model 

and the optimised design model.  
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5. Scaling up and water-depth 

sensitivity 

 

5.1. Introduction 

Finding a best solution to win in competition of getting project between big companies are 

always a priority in industry. Early engagements are involved in proposing the best type of 

support structure considering the cost. In this matter, weight estimation is vital especially for 

futuristic view of extra-large foundations. Having an efficient approach in scaling up a support 

structure, and a preliminary equation to estimate the weight is the concern of many companies 

in their technology teams. 

This section starts with developing a scaling-up approach of 7.5MW and 12.5MW wind turbine 

support structures. These foundations are the scrambled-up version of OC3 on NREL 5MW 

wind turbine and modified by considering the dimensions and properties of similar available 

reference turbines such as 8MW Vestas and 10MW DTU, and 15MW IEA. The main objective 

of this modelling is to propose a simple method to scale up the structure considering the main 

criteria. Finally, developing a preliminary equation for estimating the weight of these massive 

structures in conceptual design steps. 

In addition, the sensitivity analysis of IEA 15MW is done in this section, which tries to answer 

the most popular questions of industry these days: How large can we go regarding the monopile 

support structures? 
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5.2. Scale up factor 

In multi-megawatt wind turbines, upwind, three-bladed, horizontal-axis turbines are the most 

common design. All wind turbines developed in this section are specially designed for offshore 

applications. The two OWT foundation sizes of 7.5MW and 12.5MW are examined for the 

feasibility of the suggested upscaling approach on a bottom-fixed monopile offshore platform, 

of which 12.5MW is categorized as extra-large monopile. Both 7.5MW and 12.5MW follows 

current and near-future offshore wind industry norms, but the aim for deep water depth is a 

futuristic point of view.  

The first step is to estimate the initial size and dimension of 7.5MW and 12.5MW support 

structures and then use this assumption to find the scale factors. 

The 7.5MW tower height was mainly derived from linear interpolation between the 5MW and 

10MW turbine monopile foundations. The size of the tower is close to 8MW Vestas’s wind 

turbine; therefore, the support structure of the current 8MW Vestas can be used to validate the 

scale factor of our developed 7.5MW.  

The developed 12.5MW dimension is very close to the support structure of the 10MW DTU 

reference turbine; as we know, DTU has a very conservative design in that size; therefore, the 

support structure of 10MW Vestas can be used to validate the scale factor of our developed 

12.5MW. 

The entire tower mass does not increase linearly but instead in a logarithmic trend. The mass 

per tower length [kg/m] is expressed for the tower mass density, which decreases from bottom 

to top, as defined in Equation (5.2).  

 𝑚 =  𝜌𝐴 (5.1) 

 𝑚 =  𝜌𝜋[(𝐷/2)2 − (𝐷/(2 − 𝑡))2] (5.2) 

where 𝜌 is the steel density, A is the cross-section area, D is the outer diameter of the structure, 

and t is the wall thickness. As shown in Figure 5-1, the values were interpolated based on the 

relative height fractions of the respective towers. 
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Figure 5-1 Schematic of tower scaling up linearly 

The shape of the OC3 platform is not changed in the scaling approach. However, the scaling 

factor should be used to refine the dimensions to tolerate the larger displacement and mass. 

The scaling factor is generated by basic geometry rules, which are proportional to the cubic 

root of the increased mass. 

 𝑆 ≈  √𝑚3
 (5.3) 

where S is the scaling factor, and m is the platform mass increase ratio. For instance, according 

to the DTU reference datasheet (Bak et al., 2013), a 10MW turbine is more than twice as heavy 

as an NREL 5MW turbine which means: 

𝑆 𝑓𝑜𝑟 𝑢𝑝𝑠𝑐𝑎𝑙𝑖𝑛𝑔 5𝑀𝑊 𝑡𝑜 10𝑀𝑊 𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑖𝑠 ∶  √2.3 
3

= 1.32 

 

For 7.5MW and 12.5MW support structures, the initial estimated mass is increased by 1.22 and 

2.47, respectively. Therefore, the scale factors, S, are 1.07 and 1.35, respectively. The 

components are illustrated in Figure 5-2, listed in Table 5-1, which shows the dimensions of 

scaled turbines according to the scale factor. It should be noted that these dimensions are all 

approximations, and optimisation procedures can achieve the final and practical dimensions. 

Table 5-1 Scaled-Up turbines dimension 

Item (See 

Fig. 5.2) 
Description 

5MW 

(reference) 
7.5MW 12.5MW 

A Tower Height (m) 77.6 83 104.76 

C Sea level to the top of Transition piece (m) 10 10.7 13.5 
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B Water Depth (m) 20 23 28 

D Loose Soil depth (m) 5 5.3 6.75 

E Medium Soil depth (m) 9 9.6 12.2 

F Pile Embedded depth (m) 36 38.5 48.6 

H+THK Monopile Diameter and Thickness (m x mm) 6 X 60 6.9 x 65 8.1 x 80 

G+THK 
Tower (Bottom) Diameter and Thickness (m x 

mm) 
6 X 30 6.9 x 33 8.1 x 40 

N Grout Thickness (mm) 30 32.1 40.5 

K Cylindrical part of Transition piece(m) 7.5 8 10 

J Conical part of Transition piece (m) 1.5 1.6 2 

L Transition Piece Length (m) 12.5 13.3 16.5 

 

 

Figure 5-2 Representation of the adapted Reference turbine geometry with details of the TP 

5.3. Reference turbines for up-scaled foundations  

Reference turbines were implemented for research purposes to facilitate a more straightforward 

comparison with a standardised design. Furthermore, only reference turbines come with all the 

detailed information needed for a helpful simulation because most data are kept secret by wind 
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turbine manufacturers. The NREL 5MW reference wind turbine (Jonkman et al., 2009) with 

OC3 monopile is modelled in the ANSYS Design Modeler module. In addition, the DTU 

10MW (Bak et al., 2013) and IEA 15MW (Gaertner et al., 2020) were also chosen as reference 

turbines for scaled turbines because they were both published by internationally renowned 

research institutions and are specially created for offshore cases. 

These reference turbines are available to validate our developed turbines and upscaling 

procedure. The NREL 5MW and V164 8MW (Vestas, 2011) were operated in Class 1A wind, 

and DTU 10MW and IEA 15MW were operated in Class 1B wind, according to the IEC61400-

1 (IEC, 2005). 

Table 5-2 specifies the key parameters of reference turbines. Having this information in one 

table gives us a good overview of how these parameters change by increasing structure size. 

The first impression from the table is that we can use the 8MW Vestas and 10MW DTU 

reference loads and data to apply on our developed 7.5MW and 12.5MW support structures 

and towers as their dimensions are more than 90% similar to each other and then do the FE 

analysis to see the proposed scale-up approach is applicable for early-stage conceptual design 

or not. 

Figure 5-3 illustrates the rated power vs support structure mass in different turbine sizes that 

indicate the exponential behaviour of this trend. However, it can be seen in some conservative 

reference designs; for instance, in DTU 10MW, the thicker plate and wider pile diameter can 

cause a heavier structure. From Figure 5-4, we can see that most turbines have their maximum 

power with a rated wind speed in the range of 10-11 m/s. This information is valuable to get 

started on the process of scaling up and water depth sensitivity. 

 

Figure 5-3 Rated Power vs Support Structure mass of different wind turbine sizes 
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Table 5-2 Key Parameters of Reference Wind Turbines 

item 
NREL 

5MW 

7.5MW 

(Tower) 
8MW Vestas 

DTU 

10MW 

12.5MW 

(Tower) 

IEA 

15MW 

Wind Regime  
IEC Class 

1A 
- IEC Class 1A 

IEC 

Class 1B 
- 

IEC 

Class 1B 

Cut in  3 m/s - 4 m/s 4 m/s - 3 m/s 

Cut out 25 m/s - 25 m/s 25 m/s - 25 m/s 

Rated Wind 

Speed 
11.4 m/s - 11.1 m/s 11.4 m/s - 10.6 m/s 

Rated Power 5 MW - 8 MW 10 MW - 15 MW 

Rotor 

Diameter 
126 m - 164 m 178.3 m - 240 m 

Hub Height 90 m 105 m 108 m 120 m 134m 150 

Tower Height 77.5 m 90 m 92 m 103 m 113 m 138 m 

RNA Mass 350 t - 515 t 674 t - 1017 t 

Tower Mass 250 t 371 t 390 t 525 t 550 t 760 t 

Monopile 

Mass 
522 t 630 t 655 t 1190 t 1210 t 1480 t 

 

 

Figure 5-4 Rated Power vs Wind Speed curves for all reference turbines 

 

5.4. Met Ocean Condition 

The NL-1 location in the Dutch part of the North Sea was chosen as it is open source. 

Furthermore, it was recognized as appropriate for deploying monopiles considering the soil 
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condition, available data and water depth. The site's characteristic is the same as what is 

described in Section 3.5.1. 

 

5.5. The design procedure and FEA  

In general, the procedure of FEA modelling is the same as explained in the RCO framework in 

Chapter 3. In this section, the overall design strategy is reviewed. The wind turbine foundation 

geometries were modelled in a widely used software, ANSYS commercial package, to simulate 

the operational and ultimate load conditions applied to the structures. The progress started with 

modelling NREL 5MW turbine geometry. Boundary conditions must be applied properly. The 

bottom of the soil model is fixed in all directions. The side boundaries are secured against 

lateral translation. The frictional coefficients set the contact between the soil and the monopile, 

and all other connections are bonded. According to reference reports, wind turbine rotor 

aerodynamic loads are applied to the top of the tower. Other loads (such as wave, current, wind, 

and hydrostatic loads) are applied through pressure formulations, which allow these loads to 

update automatically with the revised diameters of the support structure during the upscale 

process. Hydrostatic loads surround the submerged component. A multi-point constraint 

represents the RNA as a concentrated mass applied to the tower top. Using the scale factors 

explained before, the dimensions of 7.5MW and 12.5MW turbines were calculated and 

modelled in ANSYS. 

As mentioned in Chapter 3, previous studies (Gentils et al., 2017; Kallehave et al., 2015) 

recommended using shell elements to get more accurate results for thin-wall sections such as 

tower, transition piece and monopile. Regarding the Ansys Help Documentation (Thompson 

& Thompson, 2017), the Shell281 element type with eight nodes and six degrees of freedom 

(DoF) has been used as it has behaviour in linear and considerable strain nonlinear purposes. 

Furthermore, experiments and standards (DNV GL, 2016) recommend using SOLID 186 for 

grout to examine bending stress in this section. Finally, SOLID 185 has been used for 

modelling the soil. 
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Figure 5-5 Mesh convergence result for all sizes of Turbines 

Mesh convergence is accomplished to gain an accurate result with the optimum number of 

elements to save calculation time. The process starts with applying 100kN Force on top of the 

tower for each size and gets results with a different number of elements. Figure 5-5 shows the 

optimum number of elements for each turbine, and Figure 5-6 illustrates the final generated 

mesh on the 7.5MW wind turbine as an example. 

 

Figure 5-6 Final generated mesh for 7.5MW turbine size 

The type of contact between the soil and the monopile is set according to the frictional 

coefficients presented in Table 3-6. 
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There are several approaches to validate a model; comparing the deflection of RNA or natural 

frequency of the developed model with the reference calculated data are the common ways to 

validate an offshore wind turbine’s geometry. As the NREL 5MW reference model is the base 

of all other developed models, we have validated the 5MW geometry with the reference NREL 

data. The FEA model validation of 5MW NREL has been explained in Section 4.2.5. 

5.5.1. ULS Loads 

Ultimate sea state is considered in this part of study, as the loads are available in reference 

reports. Table 5-3 shows the thrust and tilting moments of developed turbines. The hydrostatic 

and wind/wave loads are calculated and applied as the way explained in Section 3.5.2 and 

illustrated in Figure 5-7. 

Table 5-3 Thrust and Moment applied on the wind turbines 

Load Case Moment (MNm) on base of tower 

ULS (DLC6.1) 

5MW (LaNier, 2005) 7.5MW (Vestas, 2011) 
12.5MW (Wang et 

al., 2021) 

15MW IEA 

(Gaertner et al., 

2020) 

38.5 49.5 128 401 

Thrust Force (kN) (Gaertner et al., 2020; LaNier, 2005) 

781 1052 1650 2580 

 

 

Figure 5-7 Aero-Hydro dynamic, wind and wave loads of an OWT monopile support structure 
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Figure 5-8 Flow chart of the complete initial design procedure 

It should be noted that the safety factor is not applied to these values in this table and will be 

considered in the analysis of the input data into the software. The flow chart of the complete 

initial design and the upscaling procedure is illustrated in Figure 5-8. Finally, the results will 

be presented and discussed in Chapter 6. 

 

5.6. Estimation of monopile mass using preliminary 

parametric equation 
 

The other objective of this section is to obtain an equation to show the relation between the 

weight and water depth of large steel offshore monopiles. It is a helpful tool for many offshore 

wind companies in the technology section to estimate and adjust their compass for future 

projects. The equation is a rough estimation, but it can be verified and optimised in future 

studies. The methodology in this section consists of the following: 

• Finding as many as OW Turbines data to create a dataset (see Table 5-4) 

• Plotting the graphs of Weight vs Rating and Weight vs Water depth. 

• Finding the relation and equation  

• Checking and validating the function with the scaled turbines 

 

Table 5-4 Dataset of the offshore wind turbines in Europe with a monopile support structure (C4Offshore) 

Wind Farm/Turbine Name 
Turbine 

(MW) 

Max Water 

depth (m) 

Diameter 

(m) 

Length 

(m) 

Weight 

(t) 

Lely 0.5 10 3.7 30 89 

Bockstigen 0.5 6 2.1 21 43 

Utgrunden 1 1.5 10 3.6 33.7 165 

Horns Rev 1 2 14 4 42 230 

Prinses Amalia 2 24 4 54 320 

North Hoyle 2 11 4 25 250 

Scroby Sands 2 10 4.2 42 200 
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Horns Rev 2 2.3 17 3.9 40 280 

Samsø 2.3 13 4.5 45 300 

EnBW Baltic 1 2.3 19 4.3 37 215 

Teesside 2.3 16.5 5 48 160 

Belwind 3 24 5 72 550 

Egmond aan Zee 3 18 4.6 60 250 

Kentish Flats 3 5 4 38 247 

Robin Rigg 3 13 4.3 35 310 

Barrow 3 20 4.7 60 530 

Vestas V112 3.3 20 6 48 750 

Anholt 3.6 19 5 54 630 

DanTysk 3.6 31 6 65 730 

Riffgat 3.6 23 6 70 720 

Rhyl Flats 3.6 12 4.7 40 235 

Gunfleet Sands 3.6 15 5 50 423 

Burbo Bank 3.6 8 5 52 400 

Sheringham Shoal 3.6 22 5.2 61 530 

Lincs 3.6 16.3 5.2 48 480 

Gwynt Môr 3.6 28 6 70 700 

Greater Gabbard 3.6 32 6 60 700 

Walney Phase 2 3.6 30 6 68 805 

London Array 3.6 25 7 85 650 

Amrumbank West 3.8 25 6 70 800 

Borkum Riffgrund 1 4 29 5.9 66 700 

NREL 5 20 6 56 522 

Vestas V164 8 30 8 66 1150 

DTU 10 35 8 65 1190 

NREL-DTU 15 40 10 80 1480 

 

The relationship between monopile weight vs turbine rating and water depth is shown in Figure 

5-9. Equations 5.5 and 5.6 are extracted from these figures, where W is the weight of the 

monopile in tonnes, B is the water depth in meters, and r is the wind turbine rating in MW. 

𝑊 = 126.04 𝑟 1.05      (5.5) 

𝐵 =
𝑙𝑛(

𝑊

98.5
)

0.071
       (5.6) 
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The weight values from the 3D model and the above equations are compared in Table 5-5, 

considering the maximum water depth estimation for developed 7.5MW and 12.5MW support 

structures to validate the formulas. For instance, the weight of the turbine is estimated using 

Eq. (5.5). Then, the maximum suitable water depth is calculated by Eq. (5.6). The values are 

then compared, and the deviations are observed. 

 

Table 5-5 Comparison of monopile weight between function value and 3D model value 

 Developed up-scaled 7.5 MW 

in 30m 

Developed up-scaled 12.5 MW 

in 40m 

3D model estimation 1020 𝑡 1760 𝑡 

Function (W vs r) 1045 𝑡 (+2.4% Deviation) 1787.5 𝑡 (+1.5% Deviation) 

Water-depth 

estimation according 

to (Eq.19) 

33.26 𝑚 (+10% Deviation) 40.82 𝑚 (+2% Deviation) 

 

The values in Table 5-5 show a good agreement between the function results and the developed 

3D model of these upscaled wind turbines. This confirms the validity of the scale-up 

methodology proposed in this study. Therefore, these equations can be used in the preliminary 

design stage to forecast each turbine's material or cost and the maximum considered water 

depth.  

 

Figure 5-9 Regression analysis for the ‘weight vs Turbine rating’ and ‘weight vs water depth’ equations 
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5.7. Water depth sensitivity  

Water depth sensitivity is performed on the biggest offshore reference wind turbine model, 

15MW IEA, with a bottom-fixed monopile support structure. This reference wind turbine is a 

Class IB direct-drive machine with a rotor diameter of 240 m and a hub height of 150 m. 

The monopile diameter, thickness, and length were constant for each water depth. The 

monopile thickness was calculated using an estimated diameter-thickness ratio (van Wingerde 

et al., 2006). The pile diameter and penetration depth were chosen to obtain the first mode 

eigenfrequency derived from the wind turbine blade passing frequency intervals of 1P and 3P. 

The first mode of the original tower-monopile design was 0.175 Hz which lies within the 

allowable range. With up to 120-meter blades, the tower height was chosen so that the hub 

height reached 150 metres. This allows for 30 metres of ground (water surface) clearance 

beyond the recommended clearance of 20m (Bortolotti et al., 2019) in standards. The monopile 

foundation has a 10-meter outer diameter, pushing the limits of current manufacturing and 

installation technology. The initial water depth was 45m. However, in this study, we want to 

put this structure in different water depths (30-60m) and examine the feasibility and behaviour 

in the new conditions. It should be noted that the maximum possible embedded depth of the 

pile in the ground is assumed to be 50m for a water depth of more than 45m, considering current 

technology barriers. 

In this case, the IEA 15MW reference wind turbine (Gaertner et al., 2020) is modelled in the 

ANSYS Design Modeler. In addition, the support structure of this reference turbine is 

optimised by (McWilliam et al. 2021) and has been used in this study. Table 5-2 shows the key 

parameters of the IEA 15MW reference turbine and support structure, and Figure 5-10 

illustrates the dimensions. 

An IEC design load case (DLC) analysis was performed to determine the worst-case ultimate 

loading on critical design constraining components. The DLC 1.1 for Normal Turbulence 

Model (NTM) and DLC 6.1 for Extreme Wind Shear (EWS) were chosen from reference model 

report (Gaertner et al., 2020). The Tower base Moments are 37 MN.m for DLC 1.1 and 401 

MN.m for DLC 6.1. The corresponding wind/wave profile and hydrostatics are calculated as 

the methodology described in Section 3.5.2. 
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Figure 5-10 Representation of the adapted reference turbine for water depth sensitivity 

 

5.8. Summary 

This chapter focuses on developing a scale up approach and parametric equations to estimate 

the weight and suitable water depth for future extra-large offshore wind turbines was another 

purpose of this chapter. The methodology of finding a relation between the “weight vs turbine 

rating” and “weight vs water depth” for preliminary estimation for design was suggested and 

will be utilized to obtain a function. To achieve the objective, a dataset of several OWTs has 

been selected. 

Also, the feasibility of a scale-up approach for bottom-fix foundations, such as monopile, in 

the deeper sea was examined by performing FEA (finite element analysis) simulations. 

Finally, the sensitivity analysis methodology is proposed for the largest available reference 

support structure, IEA 15MW, using numerical methods and 3D analysis. The maximum 

equivalent stress, first natural frequency, global buckling, fatigue damage and safety factor 

have been studied in water depths between 30-60m.  
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6. Results and Discussion 

 

6.1. RCO and LCOE Results on 5MW NREL 

6.1.1. Design Constraints  

The evolution of the design constraints is tracked and shown in Appendix B. As the most 

populated constraints, the first natural frequency and fatigue drive the design. These findings 

confirm the recommendations of primary codes and standards (DNV GL, 2016; IEC, 2019). 

Although buckling and maximum Von Mises stress may appear less contributory, they are 

highly activated during the selection of first-generation points from the initial population, 

which is critical for the rest of the optimisation. Therefore, the Tresca stress or pile-head 

deflection are the constraints for which the choice of constraint conditions is considered 

irrelevant. This demonstrated the necessity of multi-criteria optimisation. Furthermore, the 

significant activation and saturation of constraints highlight the importance of using accurate 

data. In fact, because the final solution is near the farthest edge of the allowable space, even 

the most minor deviation from reality in the model attributes (such as load estimation, material 

strength, etc.) could result in failure under real-world conditions. 

6.1.2. Design Variables 

Comparing the reference and RCO designs in Figure 6-1, thickness and diameter profiles are 

evaluated. It appears that the monopile's mass is reduced mainly through its thickness, 

particularly for the base, while its outer diameter is only slightly increased. Considering the 

combined stiffness of the soil and piling, the outcome of the foundation thickness may be 
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justified. Because the earth provides more stiffness at deeper soil locations, a thinner pile can 

obtain the same comparable stiffness. Where the stress is anticipated to be the highest for the 

remainder of the construction, the material quantity is raised (i.e. junction of tower and 

transition piece). The section of the support structure that is not buried has a significantly 

reduced outer diameter. Therefore, it would seem that both categories of design variables are 

essential for the optimisation result. 

 

Figure 6-1 Comparison of reference and optimised design from RCO framework in Thickness and Diameter 

 

6.1.3. Reliability Assessment Results 

 

6.1.3.1. Reliability-Constrained Optimisation (RCO) Framework Results 

A new framework for optimising an OWT support structure by assessing the reliability of 

complex support structures in parallel was developed in the previous sections. In this section, 
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the reliability assessment results of Reference, DO and RCO designs are explained in Table 6-

1. The RCO framework and Deterministic Optimisation (DO) were applied to the NREL 5MW 

OWT monopile structure. The RCO accounts for several stochastic input variables and ultimate 

and fatigue limit states. The failure probability value was extracted from the design parameters' 

cumulative density function (CDF) and probability density function (PDF). Figure 6-2 a-e 

presented the CDF and PDF of design constraints of RCO design as an example.  

In this assessment, the target reliability level of 1E-4 (or Reliability Index of 3.8) should be 

considered the threshold. The comparisons of design parameters obtained from different 

models indicate that the Pf in both optimised models decreased significantly in the buckling 

and eigenfrequency due to the reduction in the tower and monopile diameter and thickness. 

As expected, the reference model was designed conservatively, and the reliability index is 

much higher than the target value. However, as shown in the results, the reliability assessment 

performed on the optimised structure revealed that the RCO design, in which the stochastic 

variables are considered, meets the recommended reliability assessment criteria since the 

reliability value of all of the design constraints considered is within the design thresholds. 

Nevertheless, the DO design does not fulfil the criteria because it has less probability of failure 

than the target reliability level of 1E-4 in resonance capacity.  

Table 6-1 Reliability assessment comparison 

Ultimate Limit State 
5MW NREL on OC3 monopile 

Reference Design 
RCO Design  DO Design 

  Pf β Pf β Pf β 

Max Stress Capacity 1.3E-06 4.71 3.0E-5 4.01 3.5E-5 3.99 

 Buckling Capacity ≈0 7.01 4.1E-5 3.94 5.3E-5 3.88 

Maximum Deflection ≈0 7.61 6.0E-8 5.28 9.0E-8 5.21 

Resonance Capacity 2.1E-08 5.48 5.9E-5 3.85 2.1E-4 3.53 

Fatigue Limit State       

Min Safety Factor 8.0E-06 4.32 6.1E-05 3.84 7.9E-5  3.81 
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Figure 6-2 Cumulative density function and probability density function RCO design for (a) Fatigue minimum safety factor; 

(b) Equivalent stress maximum; (c) First natural frequency; (d) Buckling load multiplier; (e) Total deflection 

c 

d 

e 
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6.1.4. Structural Response of FEA for DO and RCO  

This section gives the structural responses of optimised models in ultimate and fatigue limit 

states. In order to see the importance of considering reliability constraints in the optimisation 

process, the FEA results of the DO design are compared with the FEA results of the RCO 

Design in Table 6-3 in more detail.  

Prior to comparing the DO and RCO results, it is worth seeing the RCO design FEA figure 

results in Figure 6-3 (a) for maximum Von Mises equivalent stress, Figure 6-3 (b) for buckling, 

Figures 6-3 (c) and Figure 6-3 (d) for total deformation and mudline displacement in the ULC, 

Figure 6-3 (e) for modal analysis, and Figure 6-3 (f) for safety factor in fatigue load condition.  

The global maximum equivalent stress equals 287MPa, 11% less than the allowable stress of 

323MPa.  The maximum deformation of the support structure is 2.94m, which shows the 

considerable deflection experienced by the structure; however, considering the foundation and 

soil deformation of 0.077m, which is 23% lower than the allowable 0.1m. Also, 0.351 degrees 

rotation at the mudline is observed, 12.2% less than the permissible value of 0.4. This implies 

the current support structure design is unlikely to experience large deflections. The buckling 

load multiplier in this result is 1.68; the limit value for this section is 1.4. This difference shows 

that the present support structure design is safe under maximum buckling loads. 

The modal analysis gives the resonance evaluation and dynamic properties of the structure. 

The frequency of the first mode is 0.231 Hz which is acceptable for our modal frequency 

limitation. However, as the frequency is one of the important drivers in the OWT design 

process and considering that the thicknesses of some parts and the diameter have decreased for 

the optimisation process, a reliability assessment must be carried out to check the structural 

reliability. Furthermore, in association with stress distribution, critical fatigue failure location 

is keen to appear at the top of the tower. Therefore, the minimum safety factor occurs on top 

of the tower and is equal to 1.194, which is 5.1% higher than the minimum allowable value of 

1.15; as a result, the current design can survive its design lifetime under fatigue-inducing loads. 
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Figure 6-3 FEA results for RCO design, a) Von Mises equivalent stress, b) Buckling deformation, c) mudline displacement, 

d) Total deformation, e) 1st mode frequency and displacement, f) Fatigue minimum safety factor 

The values of the design parameters obtained from DO and RCO designs are summarized in 

Table 6-2. As discussed in DO, the OWT support structure is optimised only for explicit and 

implicit constraints in Section 3.4.2 without implementing the reliability constraint and 

stochastic variables.  But in the RCO framework, proposed an optimisation process by 

additional reliability constraints with stochastic variables. These results reveal that considering 

the uncertainties and adding a target reliability value as a constraint can affect the design output. 

Finally, the 5MW NREL OWT support structure mass can be reduced by 19.7% in the RCO 

framework and 19.95% in traditional deterministic optimisation (DO).  

Table 6-2 The comparison of DO and RCO framework mass reduction results  

 

Variable  Name Unit 
Lower 

Bound 

Reference 

Design 

Optimised 

Design (RCO) 

Optimised 

Design (DO) 

Upper 

Bound 

Design 

Variables 
Monopile base 

diameter 

X1 
[m] 5 6 6.10 6.10 7 

 Monopile top 

diameter 

X2 
[m] 5 6 5.34 5.28 7 

 Tower base diameter X3 [m] 5 6 5.28 5.28 7 

 Tower top diameter X4 [m] 3 3.87 3.28 3.38 4.5 
 Tower base 

thickness 
X5 [mm] 20 27 30 31 40 

 Tower Int1 thickness X6 [mm] 20 25 26 26 40 
 

Tower Int2 thickness 
X7 [mm] 15 22 21 22 35 

 Tower top thickness X8 [mm] 10 19 17 17 30 
 

Monopile 

substructure base 

thickness 

X9 

[mm] 45 60 46 45 70 

 
Monopile 

substructure top 

thickness 

X10 

[mm] 45 60 45 45 70 

 Monopile foundation 

base thickness 

X11 
[mm] 40 60 45 46 70 

 Monopile foundation 

top thickness 

X12 
[mm] 45 60 46 45 70 

e f 
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 Transition piece 

thickness 

X13 
[mm] 25 30 33.54 33.43 40 

Objective 

function 

Constraints 
1st Natural frequency 

 

[Hz] 0.21 0.285 0.231 0.223 0.328 

 Maximum 

equivalent Stress 

(Von Mises) 

 
[MPa] - 185 287 299 323 

 Pile head deflection  [m] - 0.057 0.079 0.08 0.1 
 Pile head rotation  [°] - 0.26 0.34 0.34 0.4 
 Buckling load 

multiplier 

 
- 1.4 2.35 1.68 1.56 - 

 Minimum fatigue 

safety ratio 

 
- 1.15 1.54 1.19 1.21 - 

Mass Saving 
Support Structure 

mass 

 
[Tonnes] - 924.5 

741.4  
(-19.7%) 

739.1  
(-19.95%) 

- 

 

 

In deterministic optimisation (DO), PSFs defined by DNV have been used and in reliability-

constrained optimisation (RCO) the PSFs are eliminated and the stochastic variables with 

defined distributions are considered. The closeness of the results from DO and RCO proves the 

proper choice of distribution types and CoV of stochastic variables in reliability-constrained 

optimisation process. 

Figure 6-4 presents the sensitivity analysis, showing the independent input variables' local 

sensitivity to the output parameters. This analysis helps designers examine which variable 

contributes the most to structural response and reliability performance changes. As expected, 

thrust and tilting moment drastically impact maximum equivalent stress in the ULS. Therefore, 

both tilting and torsional moments and thrust load in operational conditions influence the 

margin of safety calculation in the FLS. Material properties such as soil Young’s Modulus 

depend on the deformation and displacement of the structure and pile in the mudline and the 

eigenfrequency of the structure as a consequence. It is evident that these material properties 

next to pile thickness and diameter are the modal analysis's main parameters.  
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Figure 6-4 Local sensitivity analysis for each parameter 

 

6.1.5. Fatigue assessment of RCO design using S-N curve 

The fatigue life of the RCO design support structure is assessed by considering 20m water 

depth and having fatigue damage equivalent loads (DEL) (from the OWECS in-house 

software) for the FEA model. The category ‘D’ S-N curve has been adopted for the column 

circumferential welds. The results are presented in Table 6-3. Local SCFs have been considered 

at the conical transitions assuming no ring stiffener reinforcement. All column sections are 

regarded as outer diameter (OD) flush, and appropriate SCFs have been applied. No assessment 

has been made for the effect of local SCF due to secondary attachments or the column-to-

outrigger connection. Fatigue assessment has been performed under DNVGL-RP-C203 (DNV 

GL, 1987), “Fatigue design of offshore structures”. 

Table 6-3 Fatigue life assessment for Optimised Turbine 

Optimised Turbine 

Weld Location and 

Type 

Elev. (m) D (m) Tu / Tl (mm) SCF Cone SCF Life (yrs) 
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Tower Top of the cone 87.00 3.4 18 / 18 1.00 1.15 187 

Circumferential Weld 83.50 3.5 18 / 18 1.05 1.15 169 

Circumferential Weld 80.00 3.6 18 / 20 1.05 1.00 236 

Circumferential Weld 76.50 3.7 20 / 20 1.05 1.00 239 

Circumferential Weld 73.00 3.8 20 / 20 1.00 1.00 413 

Circumferential Weld 69.50 3.9 20 / 20 1.00 1.00 457 

Circumferential Weld 66.00 4.0 20 / 22 1.00 1.00 465 

Circumferential Weld 62.50 4.1 22 / 22 1.00 1.00 378 

Circumferential Weld 59.00 4.2 22 / 22 1.00 1.00 356 

Circumferential Weld 55.50 4.3 22 / 24 1.05 1.00 246 

Circumferential Weld 52.00 4.4 24 / 24 1.05 1.00 257 

Circumferential Weld 48.50 4.5 24 / 24 1.05 1.00 248 

Circumferential Weld 45.00 4.6 24 / 26 1.00 1.00 365 

Circumferential Weld 41.50 4.7 26 / 26 1.00 1.00 379 

Circumferential Weld 38.00 4.8 26 / 26 1.00 1.00 348 

Circumferential Weld 34.50 4.9 26 / 28 1.05 1.00 247 

Circumferential Weld 31.00 5.0 28 / 28 1.06 1.00 214 

Circumferential Weld 27.50 5.1 26 / 26  1.06 1.00 234 

Circumferential Weld 24.00 5.2 26 / 26 1.09 1.00 198 

Circumferential Weld 20.50 5.3 26 / 28  1.10 1.00 188 

Circumferential Weld 17.00 5.4 28 / 30  1.10 1.00 174 

Circumferential Weld 13.50 5.5 30 / 32 1.07 1.13 148 

Tower Bottom of the cone 10.00 5.6 30 / 34 1.00 1.13 136 

Monopile Top of the cone 7.50 5.7 80 / 80 1.12 1.18 97 

Circumferential Weld 

(Splash Zone) 4.00 5.8 80 / 70 1.22 1.18 88 

Circumferential Weld 

(Splash Zone) 0.00 5.9 70 / 60 1.24 1.00 91 

Circumferential Weld 

(Splash Zone) -3.50 6.0 60 / 50 1.28 1.00 83 

Circumferential Weld -7.00 6.1 50 / 46 1.19 1.00 101 

Circumferential Weld -10.50 6.2 46 / 46 1.09 1.00 117 

Circumferential Weld -14.00 6.4 46 / 46 1.00 1.13 106 

Monopile Bottom of the 

cone -17.50 6.5 46 / 46 1.00 1.13 238 

Circumferential Weld -21.00 6.5 46 / 46 1.00 1.13 245 

Circumferential Weld -24.50 6.5 46 / 46 1.00 1.00 346 

Circumferential Weld -28.00 6.5 46 / 46 1.06 1.00 312 

Circumferential Weld -31.50 6.5 46 / 44 1.06 1.00 278 

Circumferential Weld -35.00 6.5 44 / 44 1.06 1.00 268 

Circumferential Weld -38.50 6.5 44 / 44 1.00 1.00 346 

Circumferential Weld -42.00 6.5 44 / 44 1.00 1.00 389 

Circumferential Weld -45.50 6.5 44 / 44 1.00 1.00 416 

Circumferential Weld -49.00 6.5 44 / 44 1.00 1.00 318 
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Circumferential Weld -52.50 6.5 44 / 42 1.05 1.00 247 

Circumferential Weld -56.00 6.5 42 / 42 1.05 1.00 268 

 

Fatigue assessment on the optimised model indicates that a significant impact on the wall 

thickness due to the conical transitions where the SCF varies between 1.05-1.28. The cone 

angle primarily drives the higher SCFs. The assessment assumes all plates are OD flush, but 

this introduces an eccentricity at each plate thickness transition and an associated SCF. This 

SCF generally means that a transition in plate thickness of more than 10mm between adjacent 

plates is impractical. For example, a 10mm change in wall thickness will produce an SCF of 

~1.15 to 1.25. The above checks exclude other areas with local stress raisers due to attachments 

from secondary steel. This assessment proves that the RCO model can fulfil the fatigue criteria 

according to DNV regulations. 

6.1.6. Cost analysis result 

The 5MW NREL reference turbine was modelled, and FEA was done while loads were applied. 

In addition, the RCO framework was performed. As a result, the mass was reduced by 19.7%. 

The results of weight and volume are listed below. Considering the methodology explained in 

section 4.4, a rough estimation of the levelized cost of energy for reference and optimised 

designs can be calculated. An example of a calculation spreadsheet is provided in Appendix A. 

Table 6-4 Mass and volume estimation of steel in reference and optimised design of 5MW NREL 

 Reference Model Optimised Model (RCO) 

 Volume (m3) Mass (Tn) Volume (m3) Mass (Kg) 

Tower 29.2 246.9 26 219.3 

Transition Piece 7.34 62.4 7.32 62.2 

Monopile 66.2 569 49.6 421 

Total  105.8 878.3 83 702.6 

 

The sensitivity analysis is done to see the most influencer in changing the cost in this analysis. 

Figure 6-5 shows that weather downtime and steel price are the main drivers in this matter. 
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Parameters Unit low input high input Spread 

Transportation time (£/MWh) £51.21 £51.29 0.08 

Scour Protection (£/MWh) £51.18 £51.38 0.2 

Seabed Preparation (£/MWh) £51.16 £51.54 0.38 

Vessels (£/MWh) £50.37 £51.98 1.61 

Steel Price (£/MWh) £49.32 £54.12 4.8 

Weather downtime (£/MWh) £48.65 £55.76 7.11 

     

Initial LCOE (£/MWh) £52.59   

Optimized LCOE (£/MWh) £51.23   

Figure 6-5 Parameter sensitivity analysis in cost analysis 

According to technical reports (Stehly & Duffy, 2020; UK beis, 2020) and considering cost 

differences in pile transportation, drilling, scouring and structure weight. We can now estimate 

the CapEx for Reference and Optimised models, which is 1,375,000 £/MW and 1,320,000 

£/MW, respectively. 

The spread value in sensitivity study is according to internal data from EPCI companies which 

is not publicly available but, in this study, it has been used to validate for the high level 

approximations. However, industry status after covid 19 pandemic and Ukraine war has been 

changed a lot due to increasing the costs in all sections, especially in supply chain which will 

cause an increase in LCOE and other estimations. 

The cost analysis was performed, and a difference of 55k£/MW was estimated between the 

Reference model and Optimised model CapEx. The LCOE for both cases were calculated, and 
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the result shows that a 2.6% reduction in the final LCOE price in optimised design is expected, 

as presented in Table 6-5. 

Table 6-5 Final LCOE results comparison 

Model LCOE/MWh Difference 

Reference 52.59 

- 2.6% 

Optimised 51.23 

 

6.2. Scaling up approach  

 

6.2.1. FEA Analysis Results 

The stability requirements set for the preliminary design of scaled-up models include the 

structure's eigenfrequency, buckling and stress endurance, summarised in Table 6-6. 

Table 6-6 Summarized results for all developed and reference wind turbine support structures 

Load Case 5MW NREL 7.5MW 12.5MW 15MW IEA 

 Maximum Equivalent Stress (MPa) 

ULS 185 295 233 197 

 Buckling Multiplier 

 2.35 20.1 11.6 4.6 

 Tower Head Deflection (m) 

 1.79 0.73 1.87 2.1 

 1st Natural Frequency (Hz) 

 0.285 0.31 0.201 0.188 

 

For 7.5MW and 12.5MW, maximum equivalent stress equals 295MPa and 233MPa, 

respectively, less than the allowable stress of 323MPa.  The maximum deformation of the 

support structure is 0.73m and 1.87m, which shows the acceptable deflection experienced by 

the structure size. Considering the soil deformation, 0.158 and 0.259 degrees rotation at the 

mudline is observed, less than the allowable value of 0.4 degrees. The first natural frequency 

is 0.285 Hz which is acceptable for the modal frequency limitation range, as illustrated in Fig. 

13. The support structure design is safe under maximum buckling loads as the buckling load 



161 

 

multiplier is 20.1 and 11.6, well below the limit value. Figure 6-6 (a-e) depicts the results of 

FE Analysis for 7.5MW presented in contour graphs. 

 

 

 

 

Figure 6-6 FE Analysis results for up-scaled design 7.5MW Wind Turbine   b) Von Mises equivalent stress, c) Buckling 

deformation, d) Total deformation, e) first mode frequency and displacement 

6.3. Water depth sensitivity of IEA 15MW 

6.3.1. FE Analysis Results of IEA 15MW 

The FEA results of the 3D model include the modal analysis, buckling, fatigue and stress 

endurance and total deformation of IEA 15MW in a water depth of 30m is presented in Figure 

6-7 (a-e). 

For the IEA 15MW wind turbine, the maximum equivalent stress equals 217MPa, less than the 

allowable stress of 323MPa. The maximum deformation of the support structure is 1.27m, 
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which shows the acceptable deflection experienced by the structure size. Considering the soil 

deformation, a 0.146-degree rotation at the mudline is observed, less than the allowable value 

of 0.4 degrees. The first natural frequency is 0.171Hz, acceptable for the modal frequency 

limitation range. The support structure design is safe under maximum buckling loads as the 

buckling load multiplier is 8.56, well above the limit value. The minimum allowable safety 

factor is 1.15, and the analysis shows the current design can survive under fatigue-inducing 

loads by calculating 1.289 for the safety factors.  
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Figure 6-7 FE Analysis results for IEA 15MW a) Fatigue minimum safety factor, b) Von Mises equivalent stress, 

c) Buckling deformation, d) Total deformation, e) first mode frequency and displacement 

6.3.2. Water-depth sensitivity results 

The diagram in Figure 6-8 shows how the main design factors (global maximum equivalent 

stress, buckling and fatigue) change at various water depths. It can be a compact design 

envelope for the conceptual design of extra-large monopiles. Numerical analysis was 

performed for each of these points in the graphs. Fatigue analysis reveals that damage impact 

rises by increasing the water depth, indicating that hydrodynamic loads became more 

considerable at higher water depth. Fatigue prediction shows maximum damage occurs in the 

60m water depth, and the increasing incline happens from shallow to deeper water depth. 

The same trend happened in the stress vs water-depth chart, and the maximum equivalent stress 

increased by increasing water depth. Still, there is no exceeding of the allowable stress, 

323MPa, obtained from analysis considering the safety factors. However, there are warnings 

that buckling could be an issue, as the global buckling multiplier decreased significantly, 

especially above 50m water depth. As a result, it exceeded the allowable value, 1.4, mentioned 

in DNV (DNV GL, 2016).  
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Figure 6-8 Water depth sensitivity of 15MW OWT monopile support structure in Buckling, Maximum global 

stress, and Global fatigue damage 

 

Figure 6-9 Water depth effects on first natural frequency and support structure weight of 15MW OWT 

Figure 6-9 shows the predicted frequencies of different designs according to the water depth 

changes. In all cases, the calculated frequencies are between the respective turbine's 1P and 3P 

frequency constraints. Also, the trend of support structure mass can be found in the same graph. 
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The results are based on high fidelity detailed design that considers fatigue and stress; therefore, 

the mass values and trends are accountable.  

Overall, if we wanted to define the maximum safe line for this diagram considering all 

uncertainties involved, 50m is the ultimate water depth we can imagine for a bulky monopile. 

However, we all know that in recent projects, even one tonne is crucial, so compared to Jacket 

structure capabilities and weight, in a water depth of 50m, a monopile is not the first option on 

paper. 

6.4. Design Limitations  

The extra-large monopile is approaching nine metres or more in diameter (Katsikogiannis et 

al., 2019). At this moment, high-capacity wind turbines are being manufactured and need next-

generation XXL monopiles. The growing size of the monopile exhibits many practical 

obstacles (such as logistics, installation, and manufacturing) and design/analysis related. The 

design limitation was investigated in this study by performing a preliminary design of a support 

structure (from the seabed to the nacelle) for large and extra-large wind turbines from 30m to 

60m water depth. The water depth sensitivity analysis for 15MW OWT was more significant 

than current industry standards, intending to put our present models to the test. However, 

several design limitations must be considered when designing extra-large monopiles for deep 

water depths. Some of these limitations include: 

1. Geotechnical Conditions: The soil conditions at the wind farm site can significantly 

impact the design of the monopile. The soil may be more unstable or have lower bearing 

capacity in deep water depths, requiring more extensive or deeper foundations. 

2. Structural Integrity: Extra large monopiles are subject to significant loads and stresses 

from the wind turbine, waves, and currents. Designers must ensure that the monopile 

can withstand these loads while maintaining its structural integrity over the wind farm's 

lifetime. 

3. Transportation and Installation: As the size and weight of monopiles increase, 

transportation and installation become more challenging. Specialized vessels and 

equipment may be required to transport and install these structures, which can add 

significant costs to the project. 

4. Environmental Conditions: Offshore wind farms are exposed to harsh environmental 

conditions, including high winds, waves, and corrosion. Designers must ensure that the 
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monopile and associated components are resistant to these conditions and can operate 

safely and efficiently over the wind farm's lifetime. 

5. Manufacturing: The manufacturing process for extra-large monopiles can be complex 

and costly. Fabrication facilities must be able to handle the large size and weight of 

these structures and quality control must be carefully managed to ensure that the 

monopile meets the required specifications. Tolerance concerns may arised either. 

The most up-to-date designs can account for soil-structure interaction. However, different 

physical load-bearing mechanisms are at work for big-diameter foundations. The traditional p-

y curve approach is insufficient for accurate soil-structure modelling and needs some 

modifications (Rezaei et al., 2018). Modelling the hydrodynamic loading by diffraction slightly 

impacts the magnitude of the stresses for this diameter monopile. As a result, Morison's 

equation can be utilized without being overly conservative. The diffraction effect should be 

considered for monopiles larger than 10m in diameter, as preliminary load calculations indicate 

a 10-15% fatigue load decrease during the lifetime (Igwemezie et al., 2019). Even with the 

ever-increasing number of wind turbines, monopiles will be around for a long time.  
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7. Conclusions  

 

7.1. Summary  

In this study, an RCO framework for OWT support structures was developed. A parametric 

FEA model of OWT monopile support structures took into account stochastic environmental 

loads and material properties. The parametric FEA model was optimised in two different 

methods, traditional Deterministic Optimisation (DO) method and newly developed 

Reliability-Constrained Optimisation (RCO) framework in which Genetic Algorithm (GA) 

combined with the response surface and Six Sigma Analysis in order to evaluate the reliability 

and then optimised model considering the structural probability of failure. 

Both optimised designs reduced the mass of structure 19.7% and 19.97% by RCO and DO, 

respectively. However, by assessing the reliability index and probability of failure of DO 

optimised design and compared with reliability index and probability of failure of RCO design, 

considering the standard target reliability (β > 3.8) as threshold, DO design failed to pass the 

target reliability assessment criteria in modal analysis. This shows the necessity of considering 

stochastic variables and reliability-based techniques in future optimisation procedures. In 

general, the following conclusions can also be drawn from this study:  

• In the first step, good agreement is observed when comparing the deflection of the tower 

top section of the reference OWT and the developed ANSYS models, which confirms 

the validity of the initial FEA geometry. 
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• During the deterministic optimisation process, the whole mass of the structure was 

reduced by 19.97%. 

• A practical response surface approach evaluates the failure function at sampling points. 

In addition, a Monte Carlo simulation with a Latin Hypercube reduction method 

technique is applied to assess the failure probability. 

• The necessity for Reliability-Constrained Optimisation for a large OWT in harsh 

environmental conditions is evident. This optimisation framework has been proved the 

necessity of considering stochastic variables and reliability-based techniques in 

optimisation procedures. 

• This study shows that not all suggested deterministic optimised design candidates fulfil 

structural reliability criteria. For instance, the reliability index in resonance capacity in 

DO design exceeds the allowable value, while the structural design fulfils all limit state 

function criteria in the deterministic optimisation process.  

• Fatigue damage life assessment was performed on the optimised model (RCO) using 

the DEL approach, and designed thicknesses are acceptable according to standards and 

recommendations. 

• LCOE Comparison was performed between the original and optimised design, which 

showed a 2% cost saving caused by the RCO framework. 

This study also focuses on developing a parametric equation to estimate the weight and suitable 

water depth for future extra-large offshore wind turbines. Also, the feasibility of large bottom-

fix foundations, such as monopile, in the deeper sea was examined by performing FEA (finite 

element analysis) simulations. 

The relation between the weight of monopile structure vs turbine rating and water depth for 

preliminary design were extracted and utilised in functions. A dataset of several OWTs has 

been used from previous projects to gain this objective. The results showed that the equation 

has acceptable estimated values. 

Furthermore, a scale-up approach is suggested for large monopile. This approach developed a 

support structure and tower of turbines with an estimated 7.5MW and 12.5MW. The up-scaled 

models can be considered preliminary designs for further studies and optimisations since the 

models' geometry and scale-up methodology are validated. The FE analysis results show a good 

agreement when comparing the design criteria by DNV. Evaluations on monopiles' static 

lateral load-carrying capacity in dense sand subjected to aero-hydro dynamic loads using 3D 

finite element analyses in fatigue and ultimate load cases were performed using the DEL 
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approach. The results showed that the calculated scale factors and the procedure on scaled 

models are satisfactory, as the computed values in maximum equivalent stress, global buckling, 

resonance, and fatigue capacities fulfilled the standard criteria.  

In addition, the feasibility of fixed-bottom support structures in different water depths was 

investigated based on a high-fidelity detailed design that considered ultimate and fatigue limit 

states for large bottom-fix foundations. 

The sensitivity analysis has been done on the IEA 15MW reference support structure using 

numerical calculations and 3D geometry. The maximum equivalent stress, first natural 

frequency, global buckling, fatigue damage and safety factor have been studied in water depths 

between 30-60m. The reference turbine validates the geometry and applied loads as the FEA 

results match the values compared to the definition report. The results show that the current 

design and dimension of IEA 15MW can stand up to 50m of water depth with a diameter of 

10m. However, a detailed fatigue analysis needs to be done, which may decrease structure 

tolerance. The global buckling multiplier decreased considerably, significantly above 50m 

water depth, and maximum equivalent stress is on edge. Also, the support structure mass for 

the deeper sea was estimated and presented considering the natural frequency of designs. 

In addition to these technical studies, manufacturing, transportation, lifting and installation 

procedures must be considered when it comes to the applicability of a structure in deep seas. 

 

7.2. Statement of contributions 

This study provides knowledge in a novel and provides value to stakeholders. Though the 

research is scientifically sound, all the best methods have been followed, and results have been 

validated against operational site reports and state-of-the-art methods. Furthermore, through an 

extensive literature review and working with experts in academia and industry, the research 

has been promised to follow the most appropriate and highest standards. 

Section Novelty Impact 

Reliability-constrained 

optimisation framework 

Develops a framework for 

optimisation of an OWT 

support structure by 

contributing the target 

Researchers and industry 

will benefit from this 

approach in the preliminary 

design step to have better 
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reliability next to other 

typical constraints involving 

an iterative optimisation 

process using stochastic 

variables. 

recommendations and 

optimised structures in early 

engagement meetings with 

their clients. 

Multi-layered Validation 

approach  

Validation of the RCO 

framework has been done in 

a multi-stage process, firstly 

by checking the geometry of 

the parametric model, 

secondly by assessing the 

fatigue life of the optimised 

model and then finally by 

comparing the LCOE of 

original and optimised 

designs. 

This validation process 

helps other researchers or 

industries rely on the 

framework more efficiently 

in their future conceptual 

design optimisation process. 

Scale-up approach and 

preliminary weight 

estimation equation  

The corresponding equation 

in order to estimate the 

weight of a scaled-up 

support structure utilised the 

very recent wind farm data 

in the development process. 

Therefore, it can give the 

designer a good weight 

approximation in case of 

considering larger wind 

turbines such as 15MW or 

more. 

Companies that want to be 

involved in Engineering, 

Procurement, Construction 

and Installation (EPCI) 

agreements with their clients 

need to provide feed 

information about that 

project. One of the most 

important sections in this 

feed data is the type of 

foundation and the estimated 

weight of that support 

structure. Here in this thesis, 

the developed preliminary 

weight approximation 

formula helps these 

companies reach that 
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estimation by applying their 

factors in the equation. This 

is a time-saving opportunity. 

Water depth sensitivity and 

feasibility of a monopile 

This part of the study can be 

considered an envelope 

design for extra-large 

monopiles with a futuristic 

view in deep water depth. It 

felt the most relevant aspects 

of applicability of a 

monopile in water depth 

more than 30m.  

Applicability and feasibility 

of a foundation type in 

different water depths are 

vital for industry. Choosing 

the right support structure 

considering cost, lifting 

vessels, fabrication 

tolerances, etc., needs 

preview information about 

that specific foundation. 

Monopiles, as the most 

common type of support 

structures, are usually the 

first alternative for most 

companies to install. The 

current sensitivity study in 

this thesis gives adequate 

information to define the 

limitations of monopile in 

the deep water of seas. 

 

7.3. Future work 

The RCO framework could be applied to other types of structures. For example, it could be 

valuable to be utilised in jacket structures for large wind turbines. 

Considering potential future work from extra-large monopile offshore wind turbines and 

support structures, the installation, transportation and lifting problems in academic studies are 

necessary. Splitting the structure using Single slip joint or Double slip joint approaches is 

suggested and needs more studies in future. 
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Current design procedure and optimisation framework is in TRL 1, The framework can be 

applied in more detailed designs considering more accurate loads and time conditions for future 

works. 
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Appendix A: 

Example of LCOE Calculation Spreadsheet 
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Appendix B 

History of the optimisation constraint criteria, a) Von Mises equivalent stress, b) 

Buckling deformation, c) mudline displacement, d) Tresca SF, e) 1st mode frequency 

and displacement, f) Fatigue minimum safety factor.
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Appendix C 

Reliability assessment using FORM and regression. MATLAB Code (four variables) 

clear 
clc 
 
er=10^-10; 
% Input of dependent variables - Load patterns 
xinp=[]; 
x_var=xinp'; 
%Input of independent variables - Response 
yinp=[]; 
y_var=yinp'; 
[xs,ys]=size(x_var); 
R=; 
%Definition of Variables 
x1_m=; 
x2_m=; 
x3_m=; 
x4_m=; 
x1_s=; 
x2_s=; 
x3_s=; 
x4_s=; 
% Expand x_var to X 
regs=2*ys+1; 
xexp=x_var; 
for i=1:xs 
X(i,regs)=1; 
for j=1:ys 
X(i,2*j-1)=xexp(i,j)^2; 
X(i,2*j)=xexp(i,j)^1; 
end 
end 
Y=y_var; 
b=X\Y; 
%b=inv(X'*X)*X'*Y; 
% Definition of iterations 
n_iter=10; 
err=0.01; % Convergence criterion 
% Definition of Limit State Functions 
syms x1 x2 x3 x4 
a1=b(1); 
a2=b(2); 
a3=b(3); 
a4=b(4); 
a5=b(5); 
a6=b(6); 
a7=er; 
a8=er; 
a9=b(regs); 
g=R-(a1*x1^2+a2*x1+a3*x2^2+a4*x2+a5*x3^2+a6*x3+a7*x4^2+a8*x4+a9); 
 
mu1=; 
mu2=; 
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mu3=; 
mu4=; 
 
 
sig1=; 
sig2=; 
sig3=; 
sig4=; 
 
% itter=0 
% % 1st iteration: 
% % a)Initial point computation: 
gx1=subs(g,x1,mu1); 
gx1=subs(gx1,x2,mu2); 
gx1=subs(gx1,x3,mu3); 
gx1=subs(gx1,x4,mu4); 
 
 
diffg_x1=diff(g,x1); 
diffg_x2=diff(g,x2); 
diffg_x3=diff(g,x3); 
diffg_x4=diff(g,x4); 
 
 
diffg_x1_mu1=diff(g,x1); 
diffg_x2_mu2=diff(g,x2); 
diffg_x3_mu3=diff(g,x3); 
diffg_x4_mu4=diff(g,x4); 
 
 
diffg1_6=[diffg_x1_mu1 diffg_x2_mu2 diffg_x3_mu3 diffg_x4_mu4]; 
diffg1_6=subs(diffg1_6,x1,mu1); 
diffg1_6=subs(diffg1_6,x2,mu2); 
diffg1_6=subs(diffg1_6,x3,mu3); 
diffg1_6=subs(diffg1_6,x4,mu4); 
 
 
diffg_x1_mu1=diffg1_6(1,1); 
diffg_x2_mu2=diffg1_6(1,2); 
diffg_x3_mu3=diffg1_6(1,3); 
diffg_x4_mu4=diffg1_6(1,4); 
 
 
 
p1=diffg_x1*sig1; 
p2=diffg_x2*sig2; 
p3=diffg_x3*sig3; 
p4=diffg_x4*sig4; 
 
 
 
beta1=gx1/(sqrt(p1^2+p2^2+p3^2+p4^2)); 
beta1=subs(beta1,x1,mu1); 
beta1=subs(beta1,x2,mu2); 
beta1=subs(beta1,x3,mu3); 
beta1=subs(beta1,x4,mu4); 
 
 
beta1=eval(beta1) 
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% ================================== 
alpha_1_1=-diffg_x1_mu1*sig1/(sqrt(p1^2+p2^2+p3^2+p4^2)); 
alpha_1_1=subs(alpha_1_1, x1,mu1); 
alpha_1_1=subs(alpha_1_1, x2,mu2); 
alpha_1_1=subs(alpha_1_1, x3,mu3); 
alpha_1_1=subs(alpha_1_1, x4,mu4); 
 
alpha_1_1=eval(alpha_1_1) 
 
alpha_2_1=-diffg_x2_mu2*sig2/(sqrt(p1^2+p2^2+p3^2+p4^2)); 
alpha_2_1=subs(alpha_2_1, x1,mu1); 
alpha_2_1=subs(alpha_2_1, x2,mu2); 
alpha_2_1=subs(alpha_2_1, x3,mu3); 
alpha_2_1=subs(alpha_2_1, x4,mu4); 
 
alpha_2_1=eval(alpha_2_1) 
 
 
alpha_3_1=-diffg_x3_mu3*sig3/(sqrt(p1^2+p2^2+p3^2+p4^2)); 
alpha_3_1=subs(alpha_3_1, x1,mu1); 
alpha_3_1=subs(alpha_3_1, x2,mu2); 
alpha_3_1=subs(alpha_3_1, x3,mu3); 
alpha_3_1=subs(alpha_3_1, x4,mu4); 
 
alpha_3_1=eval(alpha_3_1) 
 
alpha_4_1=-diffg_x4_mu4*sig4/(sqrt(p1^2+p2^2+p3^2+p4^2)); 
alpha_4_1=subs(alpha_4_1, x1,mu1); 
alpha_4_1=subs(alpha_4_1, x2,mu2); 
alpha_4_1=subs(alpha_4_1, x3,mu3); 
alpha_4_1=subs(alpha_4_1, x4,mu4); 
 
alpha_4_1=eval(alpha_4_1) 
 
 
x1_2=mu1; 
x2_2=mu2; 
x3_2=mu3; 
x4_2=mu4; 
 
 
u1_2=0; 
u2_2=0; 
u3_2=0; 
u4_2=0; 
 
 
 
% % c) Now the new design point, X2, has to be computed: 
 
x1_2=mu1+beta1*sig1*alpha_1_1; 
x2_2=mu2+beta1*sig2*alpha_2_1; 
x3_2=mu3+beta1*sig3*alpha_3_1; 
x4_2=mu4+beta1*sig4*alpha_4_1; 
 
 
 
u1_2=(x1_2-mu1)/sig1; 
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u2_2=(x2_2-mu2)/sig2; 
u3_2=(x3_2-mu3)/sig3; 
u4_2=(x4_2-mu4)/sig4; 
 
 
fa=1.0; 
u1_2=fa*u1_2; 
 
 
% % 2nd iteration: 
% % % a) 
% while err2> err 
for itter=1:n_iter 
   
gx2=subs(g,x1,x1_2); 
gx2=subs(gx2,x2,x2_2); 
gx2=subs(gx2,x3,x3_2); 
gx2=subs(gx2,x4,x4_2); 
 
gx2=eval(gx2) 
 
diff_x1_x2=eval(subs(diffg_x1_mu1,x1,x1_2)); 
diff_x2_x2=eval(subs(diffg_x2_mu2,x2,x2_2)); 
diff_x3_x2=eval(subs(diffg_x3_mu3,x3,x3_2)); 
diff_x4_x2=eval(subs(diffg_x4_mu4,x4,x4_2)); 
 
 
% % b) 
 
Nom=(gx2-
(diff_x1_x2*sig1*u1_2+diff_x2_x2*sig2*u2_2+diff_x3_x2*sig3*u3_2+diff_x4_x2*si
g4*u4_2)); 
Denom=sqrt((diff_x1_x2*sig1)^2+(diff_x2_x2*sig2)^2+(diff_x3_x2*sig3)^2+(diff_
x4_x2*sig4)^2); 
beta2=Nom/Denom; 
 
diffg_x1_mu=subs(diffg_x1_mu1,x1,mu1); 
diffg_x2_mu=subs(diffg_x2_mu2,x2,mu2); 
diffg_x3_mu=subs(diffg_x3_mu3,x3,mu3); 
diffg_x4_mu=subs(diffg_x4_mu4,x4,mu4); 
 
pp1=diffg_x1_mu*sig1; 
pp2=diffg_x2_mu*sig2; 
pp3=diffg_x3_mu*sig3; 
pp4=diffg_x4_mu*sig4; 
 
alpha_1_2=-diffg_x1_mu*sig1/(sqrt(pp1^2+pp2^2+pp3^2+pp4^2)); 
alpha_1_2=eval(alpha_1_2) 
alpha_2_2=-diffg_x2_mu*sig2/(sqrt(pp1^2+pp2^2+pp3^2+pp4^2)); 
alpha_2_2=eval(alpha_2_2) 
alpha_3_2=-diffg_x3_mu*sig3/(sqrt(pp1^2+pp2^2+pp3^2+pp4^2)); 
alpha_3_2=eval(alpha_3_2) 
alpha_4_2=-diffg_x4_mu*sig4/(sqrt(pp1^2+pp2^2+pp3^2+pp4^2)); 
alpha_4_2=eval(alpha_4_2) 
 
 
% % % {{{{{{{{{{{{{=============================}}}}}}}}}}}}}}}}}}}} 
% % c) Compute a new design point X3: 
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x1_2=mu1+beta2*sig1*alpha_1_2 
x2_2=mu2+beta2*sig2*alpha_2_2 
x3_2=mu3+beta2*sig3*alpha_3_2 
x4_2=mu4+beta2*sig4*alpha_4_2 
 
 
u1_2=(x1_2-mu1)/sig1; 
u2_2=(x2_2-mu2)/sig2; 
u3_2=(x3_2-mu3)/sig3; 
u4_2=(x4_2-mu4)/sig4; 
 
 
u1_2=fa*u1_2 
 
% % d) Convergence checking: 
 
err2=(abs(beta1-beta2))/beta1 
 
beta1=beta2; 
 
end 
 
Reliability_index_Betta=sprintf('%0.5e',beta2) 

 

 


