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Abstract

Plant pests and diseases inltrate countries via international trade. Domestic trade moves

the pest ar beyond the point o entry, making eradication eorts challenging. Understand-

ing the risks and control strategies surrounding trade is vital in mitigating the damage rom

invasions. While attention has been given to the structure o the international trade net-

work, little is known about the within-UK network structure due to unregistered plant

movement and limited data availability.

We address this gap by constructing a directed and weighted network, using sales data

rom our plant nurseries. We nd that nurseries specialise sales towards one o the our

customer groups (commercial, consumer, nursery, retailer). This allows us to group nodes

into classes diering by sales patterns, with trade volumes and customer numbers highly

variable within and between classes.

Using centrality measures, we identiy nodes at higher risk o transmitting pests or diseases.

We nd that edge weights signicantly aect node centrality, emphasising the importance

o trade volumes in similar network models. Node centrality is robust to small changes in

market structure, and customers’ contribution to network structure is minimal.

We extend our network model to a compartmental metapopulation Susceptible-Inected

ramework and investigate the eect o dierent seedings, compare inspection strategies

and conduct a cost-benet analysis. Our results demonstrate that disease spread aster
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when originating in a nursery that primarily sells to other nurseries. We nd the utility o

inspecting consignments depends on the requency o inspecting nursery stock.

Finally, we identiy inspection ecacy regions when nurseries benet rom more requent

inspections, considering cost. From our analysis o network structure, trade, and disease

dynamics, this research provides guidance or targeted surveillance, intervention, and con-

trol to mitigate the spread o plant pests and diseases.

We urther use network and metapopulation methods to model the spread o COVID-19

in care homes.
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4.9 Points represent the median time until 20% o plants across nurseries are
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eries that are inected. Error bars indicate the 25% and 75% quantiles and

each colour represents which nursery group the disease is seeded in at t = 0.
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4.12 Boxplots o the proportion o inected plants by time t = 36 or nursery

nodes. The boxplots are displayed on a grid, or each considered combination

o death rates dS and dI . For this boxplot, we averaged the results or all 4

seedings. This is or nursery distribution scenario 3 and all other parameters

are at baseline (Table 4.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.13 Boxplots or the time t until 20% o the plants in nurseries are inected. The

boxplots are displayed on a grid, or each considered combination o death

rates dS and dI . This is or nursery distribution scenario 1. . . . . . . . . . 160

4.14 Boxplots or the time t until 20% o the plants in nurseries are inected. The

boxplots are displayed on a grid, or each considered combination o death

rates dS and dI . This is or nursery distribution scenario 2. . . . . . . . . . 161

xv
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axis shows the given r value or nurseries and retailers used in the simulations.

The y-axis represents the proportion o plants in nurseries that are inected.

Error bars indicate the 25% and 75% quantiles and each colour represents

which nursery group the disease is seeded in at t = 0. Subgraphs (S1), (S2)
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eries that are inected. Error bars indicate the 25% and 75% quantiles and
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4.19 Points represent the median time until 20% o plants across nurseries are
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tions. The x-axis shows the given out value or nurseries and retailers used

in the simulations. The y-axis represents the proportion o plants in nurs-

eries that are inected. Error bars indicate the 25% and 75% quantiles and

each colour represents which nursery group the disease is seeded in at t = 0.

Subgraphs (S1), (S2) and (S3) represent the dierent nursery distributions

considered, scenarios 1, 2, and 3 respectively. All other parameter values
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inected, calculated rom 100 simulations repeated or 100 network simula-

tions. The x-axis shows the given in = out value or nurseries and retailers

used in the simulations. The y-axis represents the proportion o plants in

nurseries that are inected. Error bars indicate the 25% and 75% quantiles

and each colour represents which nursery group the disease is seeded in at
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4.22 Heat map showing the median value or the proportion o inected plants
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inspection parameters out ∈ 0, 01, , 09 and scheduled inspection pa-

rameter r ∈ 0, 01, , 1. All other parameters are at baseline Table 4.1
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values o trade inspection parameters out ∈ 0, 01, , 09 and scheduled

inspection parameter r ∈ 0, 01, , 1. Note the white sections o the heat
map show the parameter combinations where the model does not reach 20%

inected in nurseries by t = 36. All other parameters are at baseline Table 4.1 174
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4.26 Heat map showing the median value or the proportion o inected plants

in nurseries by t = 36, or 100 model simulations across 100 network sim-

ulations. The medians are calculated or changes in the values o trade

inspection parameters out,in ∈ 0, 01, , 09 and scheduled inspection

parameter r ∈ 0, , 1. Here we apply the assumption out = in. In addi-

tion, scheduled inspections occur every 6 months, with the rst inspection

occurring at t = 1. All other parameters are at baseline Table 4.1 . . . . . . 178
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4.30 Heat map showing the median value or the proportion o inected plants
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we took the average o the median costs or z = 6, z = 3 and z = 1. This

is or an inspection cost o 100 times the cost o a plant. This is shown
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combinations o inspection parameters r and in = out. The areas in
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scheduled inspections every month are cheaper than every 3 months). All

other parameters are at baseline Table 4.1. . . . . . . . . . . . . . . . . . . 187
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5.1 Schematics or the compartmental and metapopulation structure.

(a): SEIARD compartmental structure o the model; (b): Time-share

network o interaction amongst subpopulations. Directed edge weights are

tik, the proportion o people rom subpopulation i who travel to mix at
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5.2 Surveillance data and ftted model. Data used or tting are black

lines, and model solution with parameter values in Table 5.1 are red lines.

(a) reported cases per week or all NHS Lothian inhabitants (care home

residents, workers and the general population); (b) reported cases per week

in NHS Lothian care home residents; (c) deaths per week or all NHS Lothian

inhabitants (care home residents, workers and the general population); (d)

deaths per week in NHS Lothian care home residents. . . . . . . . . . . . . 218

5.3 Fitted time-dependent parameters. (a) Fitted reproductive numbers

over time or care home residents, RC(t), workers, RW (t), and general pop-

ulation, RG(t); (b) tted visitation, , over time with drop highlighting the

change in policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

5.4 Quality o ft as a unction o homes seeded. Each violin is the distri-
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parameter sets, or a number o homes seeded. Black dots indicate the

minimum aggregated SSE achieved or each home seeded. . . . . . . . . . . 219

5.5 Distribution o ftted parameters as a unction o homes seeded.

Each panel is a dierent calibrated parameter. Each violin in a panel is the

distribution o individual parameters in the top ten best tting parameter

sets, or a number o homes seeded. (a) pre-lockdown care home resident

Rt, ωC
high; (b) pre-lockdown general public Rt, ωG

high; (c) sta sharing, ;

(d) visitation pre-lockdown, ω
high; (e) general public seeded cases, EG(0) =

IG(0) + AG(0). Black dots indicate the parameter value giving the lowest

aggregated least square error, or each number o homes seeded. . . . . . . 221

5.6 Sensitivity o the fnal deaths in each population to perturbations

in model parameters. Each bar shows the % change in nal deaths in a

population caused by shiting an individual parameter rom the base case,

keeping all other parameters xed at the base case (Table 5.1). Each param-

eter is increased or decreased rom its base case value by the corresponding

‘sensitivity shit’ value in Table 5.3. . . . . . . . . . . . . . . . . . . . . . . . 223
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5.7 Sensitivity o the fnal resident deaths to the time-share/mixing

parameters (, ,ω
high). Proportion o CH sta at work is , proportion o

sta shared between homes is , and pre-lockdown visitation is ω
high. Each

panel shows the combined impact o varying two o the time-share/mixing

parameters, with all other model parameters xed as the base case (Ta-

ble 5.2). The black lines in each panel are isoclines. The cross in each panel

indicates the base case value or each parameter. . . . . . . . . . . . . . . . 224
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A.8 The distribution o consignment sizes or sales in Rosemary, separating or
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B.1 Box plots o the average betweenness score per node subcategory or 100

networks with nursery distribution scenario 2 ( (NCom, NCons, NNur,
NRet) = (80, 20, 40, 20) ). All other parameters values used are shown in

Table 1.2. Scores are shown on a log10(1 + data) scale. The plot on the

let shows out-degree scores calculated on the entire network, the plot on

the right shows out-degree scores calculated on the subset o the network

with only nurseries and retailers. We note the dierences in the scales o the

y-axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

B.2 Box plots o the average betweenness score per node subcategory or 100

networks with nursery distribution scenario 3 ( (NCom, NCons, NNur,
NRet) = (20, 50, 40, 50) ). All other parameters values used are shown in

Table 1.2. Scores are shown on a log10(1 + data) scale. The plot on the let

shows out-degree scores calculated on the entire network, the plot on the

right shows out-degree scores calculated on the subset o the network with

only nurseries and retailers. We note the dierences in the scales o the y-axes.268
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B.4 Box plots o the average betweenness score per node subcategory or 100 net-
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= (10, 130, 10, 10) ). All other parameters values used are shown in Table
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B.8 Box plots o the average unweighted betweenness score per node subcategory

or 100 networks with nursery distribution scenario 2 ( (NCom, NCons,
NNur, NRet) = (80, 20, 40, 20) ). All other parameters values used are

shown in Table 1.2. Scores are shown on a log10(1 + data) scale. The plot
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on the right shows out-degree scores calculated on the subset o the network
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NNur, NRet) = (130, 10, 10, 10) ). All other parameters values used are
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B.11 Box plots o the average unweighted betweenness score per node subcate-

gory or 100 networks with nursery distribution scenario 5 ((NCom, NCons,
NNur, NRet) = (10, 130, 10, 10) ). All other parameters values used are

shown in Table 1.2. Scores are shown on a log10(1 + data) scale. The plot

on the let shows out-degree scores calculated on the entire network, the plot

on the right shows out-degree scores calculated on the subset o the network

with only nurseries and retailers. We note the dierences in the scales o
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B.12 Box plots o the average unweighted betweenness score per node subcategory

or 100 networks with nursery distribution scenario 6 ( (NCom, NCons,
NNur, NRet) = (10, 10, 130, 10) ). All other parameters values used are

shown in Table 1.2. Scores are shown on a log10(1 + data) scale. The plot

on the let shows out-degree scores calculated on the entire network, the plot

on the right shows out-degree scores calculated on the subset o the network
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B.13 Box plots o the average unweighted betweenness score per node subcategory

or 100 networks with nursery distribution scenario 7 ( (NCom, NCons,
NNur, NRet) = (10, 10, 10, 130) ). All other parameters values used are

shown in Table 1.2. Scores are shown on a log10(1 + data) scale. The plot
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with only nurseries and retailers. We note the dierences in the scales o the

y-axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
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NRet) = (40, 40, 40, 40) ). All other parameters values used are shown in

Table 1.2. Scores are shown on a log10(1 + data) scale. The plot on the let

shows out-degree scores calculated on the entire network, the plot on the

right shows out-degree scores calculated on the subset o the network with

only nurseries and retailers. We note the dierences in the scales o the y-axes.280
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B.15 Box plots o the average in-strength score per node subcategory or 100

networks with nursery distribution scenario 2 ( (NCom, NCons, NNur,
NRet) = (80, 20, 40, 20) ). All other parameters values used are shown in

Table 1.2. Scores are shown on a log10(1 + data) scale. The plot on the let

shows out-degree scores calculated on the entire network, the plot on the

right shows out-degree scores calculated on the subset o the network with
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B.16 Box plots o the average in-strength score per node subcategory or 100

networks with nursery distribution scenario 3 ( (NCom, NCons, NNur,
NRet) = (20, 50, 40, 50) ). All other parameters values used are shown in

Table 1.2. Scores are shown on a log10(1 + data) scale. The plot on the let

shows out-degree scores calculated on the entire network, the plot on the

right shows out-degree scores calculated on the subset o the network with

only nurseries and retailers. We note the dierences in the scales o the y-axes.282

B.17 Box plots o the average in-strength score per node subcategory or 100

networks with nursery distribution scenario 4 ( (NCom, NCons, NNur,
NRet) = (130, 10, 10, 10) ). All other parameters values used are shown in

Table 1.2. Scores are shown on a log10(1 + data) scale. The plot on the let

shows out-degree scores calculated on the entire network, the plot on the

right shows out-degree scores calculated on the subset o the network with

only nurseries and retailers. We note the dierences in the scales o the y-axes.283

B.18 Box plots o the average in-strength score per node subcategory or 100 net-

works with nursery distribution scenario 5 ((NCom, NCons, NNur, NRet)
= (10, 130, 10, 10) ). All other parameters values used are shown in Table

1.2. Scores are shown on a log10(1 + data) scale. The plot on the let shows
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B.19 Box plots o the average in-strength score per node subcategory or 100

networks with nursery distribution scenario 6 ( (NCom, NCons, NNur,
NRet) = (10, 10, 130, 10) ). All other parameters values used are shown in

Table 1.2. Scores are shown on a log10(1 + data) scale. The plot on the let

shows out-degree scores calculated on the entire network, the plot on the

right shows out-degree scores calculated on the subset o the network with

only nurseries and retailers. We note the dierences in the scales o the y-axes.285

B.20 Box plots o the average in-strength score per node subcategory or 100

networks with nursery distribution scenario 7 ( (NCom, NCons, NNur,
NRet) = (10, 10, 10, 130) ). All other parameters values used are shown in

Table 1.2. Scores are shown on a log10(1 + data) scale. The plot on the let

shows out-degree scores calculated on the entire network, the plot on the

right shows out-degree scores calculated on the subset o the network with
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B.21 Box plots o the average out-strength score per node subcategory or 100

networks with nursery distribution scenario 1 ( (NCom, NCons, NNur,
NRet) = (40, 40, 40, 40) ). All other parameters values used are shown in

Table 1.2. Scores are shown on a log10(1 + data) scale. The plot on the let

shows out-degree scores calculated on the entire network, the plot on the

right shows out-degree scores calculated on the subset o the network with

only nurseries and retailers. We note the dierences in the scales o the y-axes.287
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networks with nursery distribution scenario 2 ( (NCom, NCons, NNur,
NRet) = (80, 20, 40, 20) ). All other parameters values used are shown in

Table 1.2. Scores are shown on a log10(1 + data) scale. The plot on the let

shows out-degree scores calculated on the entire network, the plot on the

right shows out-degree scores calculated on the subset o the network with

only nurseries and retailers. We note the dierences in the scales o the y-axes.288

xxix



B.23 Box plots o the average out-strength score per node subcategory or 100

networks with nursery distribution scenario 3 ( (NCom, NCons, NNur,
NRet) = (20, 50, 40, 50) ). All other parameters values used are shown in

Table 1.2. Scores are shown on a log10(1 + data) scale. The plot on the let

shows out-degree scores calculated on the entire network, the plot on the

right shows out-degree scores calculated on the subset o the network with

only nurseries and retailers. We note the dierences in the scales o the y-axes.289

B.24 Box plots o the average out-strength score per node subcategory or 100

networks with nursery distribution scenario 4 ( (NCom, NCons, NNur,
NRet) = (130, 10, 10, 10) ). All other parameters values used are shown in

Table 1.2. Scores are shown on a log10(1 + data) scale. The plot on the let

shows out-degree scores calculated on the entire network, the plot on the

right shows out-degree scores calculated on the subset o the network with

only nurseries and retailers. We note the dierences in the scales o the y-axes.290

B.25 Box plots o the average out-strength score per node subcategory or 100 net-

works with nursery distribution scenario 5 ((NCom, NCons, NNur, NRet)
= (10, 130, 10, 10) ). All other parameters values used are shown in Table

1.2. Scores are shown on a log10(1 + data) scale. The plot on the let shows

out-degree scores calculated on the entire network, the plot on the right

shows out-degree scores calculated on the subset o the network with only
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B.26 Box plots o the average out-strength score per node subcategory or 100

networks with nursery distribution scenario 6 ( (NCom, NCons, NNur,
NRet) = (10, 10, 130, 10) ). All other parameters values used are shown in

Table 1.2. Scores are shown on a log10(1 + data) scale. The plot on the let

shows out-degree scores calculated on the entire network, the plot on the

right shows out-degree scores calculated on the subset o the network with

only nurseries and retailers. We note the dierences in the scales o the y-axes.292
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B.27 Box plots o the average out-strength score per node subcategory or 100

networks with nursery distribution scenario 7 ( (NCom, NCons, NNur,
NRet) = (10, 10, 10, 130) ). All other parameters values used are shown in

Table 1.2. Scores are shown on a log10(1 + data) scale. The plot on the let

shows out-degree scores calculated on the entire network, the plot on the

right shows out-degree scores calculated on the subset o the network with

only nurseries and retailers. We note the dierences in the scales o the y-axes.293
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works with nursery distribution scenario 1 ( (NCom, NCons, NNur, NRet)
= (40, 40, 40, 40) ). All other parameters values used are shown in Table 1.2.

Scores are shown on a log10(1 + data) scale. The plot on the let shows

out-degree scores calculated on the entire network, the plot on the right

shows out-degree scores calculated on the subset o the network with only

nurseries and retailers. We note the dierences in the scales o the y-axes. . 294

B.29 Box plots o the average authority score per node subcategory or 100 net-

works with nursery distribution scenario 2 ( (NCom, NCons, NNur, NRet)
= (80, 20, 40, 20) ). All other parameters values used are shown in Table 1.2.

Scores are shown on a log10(1 + data) scale. The plot on the let shows
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shows out-degree scores calculated on the subset o the network with only
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B.31 Box plots o the average authority score per node subcategory or 100 net-

works with nursery distribution scenario 4 ( (NCom, NCons, NNur, NRet)
= (130, 10, 10, 10) ). All other parameters values used are shown in Table

1.2. Scores are shown on a log10(1 + data) scale. The plot on the let shows

out-degree scores calculated on the entire network, the plot on the right

shows out-degree scores calculated on the subset o the network with only
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works with nursery distribution scenario 5 ((NCom, NCons, NNur, NRet)
= (10, 130, 10, 10) ). All other parameters values used are shown in Table

1.2. Scores are shown on a log10(1 + data) scale. The plot on the let shows

out-degree scores calculated on the entire network, the plot on the right

shows out-degree scores calculated on the subset o the network with only
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B.33 Box plots o the average authority score per node subcategory or 100 net-

works with nursery distribution scenario 6 ( (NCom, NCons, NNur, NRet)
= (10, 10, 130, 10) ). All other parameters values used are shown in Table

1.2. Scores are shown on a log10(1 + data) scale. The plot on the let shows
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B.35 Box plots o the average hub score per node subcategory or 100 networks

with nursery distribution scenario 1 ( (NCom, NCons, NNur, NRet) =
(40, 40, 40, 40) ). All other parameters values used are shown in Table 1.2.

Scores are shown on a log10(1 + data) scale. The plot on the let shows

out-degree scores calculated on the entire network, the plot on the right

shows out-degree scores calculated on the subset o the network with only
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with nursery distribution scenario 2 ( (NCom, NCons, NNur, NRet) =
(80, 20, 40, 20) ). All other parameters values used are shown in Table 1.2.

Scores are shown on a log10(1 + data) scale. The plot on the let shows

out-degree scores calculated on the entire network, the plot on the right

shows out-degree scores calculated on the subset o the network with only

nurseries and retailers. We note the dierences in the scales o the y-axes. . 302
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with nursery distribution scenario 3 ( (NCom, NCons, NNur, NRet) =
(20, 50, 40, 50) ). All other parameters values used are shown in Table 1.2.
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shows out-degree scores calculated on the subset o the network with only
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B.39 Box plots o the average hub score per node subcategory or 100 networks

with nursery distribution scenario 5 ((NCom, NCons, NNur, NRet) =

(10, 130, 10, 10) ). All other parameters values used are shown in Table 1.2.

Scores are shown on a log10(1 + data) scale. The plot on the let shows
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with nursery distribution scenario 6 ( (NCom, NCons, NNur, NRet) =
(10, 10, 130, 10) ). All other parameters values used are shown in Table 1.2.

Scores are shown on a log10(1 + data) scale. The plot on the let shows
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works with nursery distribution scenario 7 ( (NCom, NCons, NNur, NRet)
= (10, 10, 10, 130) ). All other parameters values used are shown in Table
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Chapter 1

Introduction

“A disease known is hal cured.”

This old adage demonstrates that we have known or a long time the importance o un-

derstanding diseases. The spread o inectious diseases is known to have plagued humans,

animals and plants or many thousands o years [3–5]. Inectious diseases are caused by var-

ious types o pathogens including bacteria, viruses, ungi and parasites [6]. Fungal diseases

were described by Hippocrates in 500 BC, while the Chinese and Egyptians had knowledge

o parasites dating back to 3000 BC [5, 7]. However, the scientic understanding o mi-

croorganisms was held back or many centuries by superstition and religious belies [5, 7].

This understanding remained limited until the discovery o bacteria, made possible by the

microscopes developed by Antony Van Leeuwenhoek in the late 17th century [8]. From

that period until the 19th century, numerous discoveries contributed to the dominance o

the germ theory o disease over spontaneous generation [5]. The rst scientic writings

on ungal diseases were by David Gruby and Agostino Bassi in the rst hal o the 19th

century, and in the latter hal came the rst discovered virus, the tobacco mosaic virus [7,9].

The pathogens discussed so ar are just one subset o a larger group called pests. In simple

terms, “A pest is an organism that man sees as harmul or annoying” [10]. In addition to

pathogens, there are our other types o pest: arthropods, vertebrates, weeds and nema-
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todes [10]. Fishel provides signicant dates related to pesticide use, including the use o

Sulphur rom pre-Roman civilisations as early as 2000 BC, and the use o Hellebore by the

Romans in 100 BC to control rat, mice and insect populations [11]. Natural substances

such as Rotenone, Nicotine and Paris Green were used in the ollowing years until the

rst synthetic pesticide, Dichlorodiphenyltrichloroethane (DDT), was created in 1873 [11].

The development and use o pesticides continued unabated until legislation was introduced

in 1910 to prevent harm to humans and animals [11]. From this point onward, pesticide

use continued as regulators introduced urther protective legislation [11]. However, due to

health concerns and the rise o pesticide resistance, the ght against pests remains ongoing.

As we have highlighted, the threat rom pests and diseases has been ever-present through-

out history. Natural selection has, over the millennia, put pressure on all living things to

co-evolve with their native pests and diseases [12–14]. All animals have evolved immune

systems and many have developed symbiotic relationships with other organisms as deence

mechanisms against these threats [14, 15]. These deence mechanisms are by no means

perect, but have been eective enough to bring us to the world we see today.

These deences can ail substantially when aced with a pest or disease that is non-native

to the organism’s environment [16–18]. In an increasingly globalised world, where animals,

plants, insects, ood and people are transported across borders, we also carry the burden

o introducing these non-native pests and diseases.

The Columbian Exchange o 1492 to 1800 should serve as a harsh reminder o the con-

sequences o such introductions. During this period, the movement o Europeans to the

Americas introduced many oreign diseases such as smallpox, measles, typhus and cholera

which led to the decimation o the native Americans, who had no immunity against these

diseases [19]. To avoid repeating similar catastrophes, it is crucial to understand the path-

ways through which these non-native pests and diseases spread.
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It is within this context that this thesis, co-unded by DEFRA (Department or Environ-

ment Food and Rural Aairs) and the University o Strathclyde, ocuses on the role o

domestic plant trade in spreading non-native plant pests and diseases within the United

Kingdom (UK).

In this introductory chapter we emphasise the importance o understanding plant pests

and diseases by highlighting the damage caused by previous epidemics. We show the role

that trade, both domestic and international, plays in the spread o plant pests and diseases.

Next, we dene the concepts rom network theory and mathematical epidemiological mod-

elling that we use throughout subsequent chapters in the thesis. We end the chapter with

a review o the relevant literature to display the state o the art in both trade network

construction and modelling the spread o disease on networks. This literature review high-

lights an existing gap, which our research in subsequent chapters aims to ll.

1.1 Plant pests and diseases and their signifcance

The global impact o plant pests and diseases is signicant, rom decimating horticul-

tural and agricultural yields to accelerating climate change and the destruction o ecosys-

tems [20–29]. Plant diseases can spread in a multitude o natural ways; such as soil and

roots o the plant, contaminated water sources, dispersal o splashed water, aerial dispersal

and insect vectors [30–32]. In addition to their natural movement, plant pests also spread

through human trade o plants. An example includes the introduction o Thaumetopoea

processionea, Oak Processionary Moth (OPM), to the UK in 2005 rom the importation

o OPM eggs, hidden in the canopy o Oak trees [33]. Since 2012 there has been a UK

government programme to manage OPM, and over the last ve years, £10 million have

been invested into Oak health, managing OPM and outbreak response research [34].

Evidence suggests that OPM spread urther in the UK via trade rom Europe, with close

to 70 recorded interceptions in July 2019 [35]. The moths are not the primary problem, it

is the larvae and caterpillars that prey on the Oak trees that infict the damage [35]. These

3



pests eed on the leaves o Oak trees and, when they do so in large quantities, they can

weaken the trees, increasing susceptibility to other pests and harsh environmental condi-

tions [35]. There is also a threat to humans and other animals rom this pest - the older

caterpillars shed hairs when disturbed, and contact with these hairs can cause skin rashes,

eye irritation, breathing diculties and sore throat [35]. The UK Plant Health Risk Regis-

ter, at the time o writing, has given OPM the highest score o 5 or both the likelihood o

entry and establishment to the UK and value at risk assuming no mitigation measures [36].

The impact (damage to host and/or industry) has been given a score o 4 and the risk o

spread is 3 out o 5. Through mitigations such as regulation, surveillance and research,

the value at risk does not change but the likelihood o entry and establishment, impact

and urther spread are reduced to 3, 3 and 2 respectively. For more inormation on the

relative risk scores, see [37]. DEFRA have identied the most common pathways or the

introduction and spread o this pest as plants or planting (except seeds, bulbs and tubers)

and Roundwood o Oak when bark is present [36]. It is worth noting, however, that Public

Health England concluded in 2015 that this exposure is not likely to cause severe impacts

on human health [38].

There have been plant diseases with severe, indirect impacts towards humans such as the

1942 ungal inection Cochlioblus miyabeanus (Brown Spot). The disease spread through

rice elds in Bengal (India) leading to an estimated 91% loss o yield in rice, contributing to

the Bengal amine [21]. In a similar situation, the ungal pathogen Phytophthora inestans

(Potato Late Blight) caused the Irish potato amine in the 1840s leading to the death o

approximately one million people and the emigration o another million [22]. Potato Late

Blight also severely aected the Netherlands in 1845, who were at the time the second high-

est potato-consuming country in the world [39]. In 1845, potato yield in the Netherlands

ell by 75%, which led to increased poverty, death rates and social unrest [39]. In 1927,

Tracheomycosis, Coee Wilt disease, emerged near Bangui (Central Arican Republic) and

the spread o this disease was so severe that over 50% o the coee-producing areas were

destroyed in Côte d’Ivoire and in the Democratic Republic o Congo [23].
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The ungal pathogen Phytophthora ramorum (P. ramorum) known to cause Sudden Oak

Death has been particularly devastating in the United States (US) and Europe [24]. P.

ramorum is known to have multiple hosts; i inecting oliage plants (like Rhododendron),

inection will cause necrotic lesions on leaves and shoot dieback (progressive death). When

P. ramorum causes canker inection to hosts like Oak and Beech, this usually results in

bleeding cankers and tree death [24]. Since the 1990s, P. ramorum has caused the deaths

o millions o trees in Caliornia and Oregon in the US [25], with disease spread o P. ramo-

rum via domestic plant trade being seen in the US [40–44]. The disease is thought to have

been introduced to the UK via inected nursery stock rom the European Union [18], and

some analyses have also ound implications o the domestic spread o P. ramorum in the

UK [45,46].

Hemileia vastarix, another ungal pathogen o great signicance, is known to cause the

plant disease Coee Rust [28]. Discovered in Ceylon (Sri Lanka) in 1867, Coee Rust is

known to aect the leaves o plants in the genus Coea, causing premature deoliation

and lowering yields in subsequent years by as much as 10 times [28]. Interestingly, the

devastation caused by this disease in Asia in the 1800s played a signicant role in making

tea the drink o choice in England [47]. Ater causing major losses in Ceylon, the dis-

ease would then go on to inect nearly all coee-growing regions across the world [28, 29].

In 1970, Coee Rust was reported in Brazil [29] and by the 1980s, the ungus spread to

South and Central America and Mexico [47]. There has been speculation that Coee Rust

spread rom Arica to Brazil by the wind, though it is believed more likely to have been

spread by trade [28,47]. Human-mediated introduction o Coee Rust has been attributed

to Nicaragua, El Salvador, Honduras, Guatemala, Mexico, Ecuador and Columbia, with

inected coee seedlings being the cause o its introduction to Bolivia and Peru [47]. Given

that coee is one o the most important products in international trade [29], the economic

losses rom Coee Rust over the past 150 years have been tremendous.

The threat rom plant pests and diseases in the UK has been growing in recent years.

This is illustrated in Figure 1.1, which shows the number o outbreaks aecting trees in

Britain [1]. As a consequence, the UK economy has suered. For example, in 2017 the
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Landscape and Horticultural industry contributed £242 billion to UK Gross Domestic

Product (GDP) alongside £29 billion through tourism via parks and gardens [48]. Some

estimates argue that Hymenoscyphus raxineus (Ash dieback) cost Britain £15 billion,

mainly due to ecosystem service losses [27]. Furthermore, the Dutch Elm disease outbreak

caused the loss o almost 30 million Elm trees in the UK between 1970 and 1990 [49].

Thereore, an ill-prepared response to a plant pest or disease can be very damaging to

the UK. Plant trade plays a signicant role in the spread o plant diseases [50], and so

urther understanding o how these pests and diseases travel throughout the UK is crucial

to mitigating substantial damages.

Figure 1.1. Cumulative increase o new pest and disease outbreaks aecting trees in Britain
since 1971. The horizontal and vertical axes represent the year and number o outbreaks
respectively. Figure rom [1].

Xylella is a plant disease caused by the bacterium Xylella astidiosa and is, at time o

writing, prevalent in Europe, America and Taiwan [51]. The disease has many hosts and

spreads by insect vectors that eed on the xylem fuid o the plant [32], and Xylella is con-

sidered to be the most dangerous plant bacteria worldwide [52]. Pierce’s Disease, caused
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by Xylella, destroyed more than 16000 hectares o grapevines in Caliornia in the 1880s,

with many more outbreaks occurring in the ollowing years [53]. Estimates rom 2014 say

that Pierce’s Disease cost Caliornia $104 million per year, including prevention measures

and losses to the disease [54]. There are additional losses, such as the available land that

could be used or planting i not or the presence o the disease. For example, grapes can-

not be grown in the south-eastern states near the Gul o Mexico because o Xylella [53].

Further examples o the damage caused by the disease include the removal o more than

100 million Citrus trees in Brazil, and the inection o 1-3 million Olive trees in Apulia,

Italy [53]. Though not known to be present in the UK yet, the trade o plants or planting

is considered Xylella’s most likely introductory pathway to the UK [32]. On the UK risk

register or unmitigated risks, Xylella has the maximum value at risk o 5, a likelihood o

entry and establishment o 4, an impact o 3 and a risk o spread score o 2 [55]. With mit-

igation consisting o only regulation, the risks can be halved by reducing the likelihood o

entry to 2 out o 5. The other risk scores do not change [55]. Thus, i Xylella is introduced

to the UK, understanding how to eectively control the urther spread o the disease will

help the UK avoid similar economic and environmental damage, as seen in Europe and the

Americas.

This section has highlighted only some o the substantial damages that plant pests and

diseases have caused across the globe. The damage rom previous plant pests and diseases

serves as motivation or controlling the current threats to the UK (such as Xylella and

OPM) and to understand how plant pests and diseases spread, both internationally and

domestically. This understanding will help mitigate the damage caused by any subsequent

introduced or establishing pest or disease.
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1.2 Plant trade as a mode o disease transmission

Increased globalisation has led to the increased trade o plants across the globe [56]. Though

plant pests and diseases can travel via other means such as wind, rain and even via soil on

hikers’ boots [57], plant trade is particularly an issue as it allows the aster, longer range

and larger quantity dispersal o pathogens.

Plant pests and diseases can also be indirectly spread in the trade o other products. The

Asian long-horned beetle native to East Asia was introduced to other continents in the

trade o solid wood packing material [58]. Other examples include the ungal pathogens

Canker stain o Plane (Ceratocystis platani) introduced rom the US to Europe on wood

packing material, and Dutch Elm disease (Ophiostoma ulmi), introduced to the UK on

Elm logs [16]. The trading data we have access to or this thesis is or live plants and so

we ocus on this pathway.

The importation o live plants is seen to be the major driver o unintentional introductions

o plant pests and diseases [56,59–62]. When non-native pests and diseases are introduced

to environments without an evolutionary resistance, it can be especially damaging, putting

whole ecosystems at risk [16–18]. For instance, the importation o the ungus Cryphonectria

parasitica (Chestnut blight) rom Asia to North America in the early 1900s would go on to

kill between 3 to 4 billion mature Chestnut trees in the rst hal o the 20th century [63].

Plant trade on both the international and domestic scale have been separately attributed

to the spread o plant pests and diseases.

1.2.1 International trade

The processes underlying non-native species introduction by international trade are com-

plex and temporally dynamic, with many actors aecting the risk o pest/disease introduc-

tion. These actors include changes in “...global species distributions, volumes and types o

traded commodities, trade partners and technologies, and investments in biosecurity” [17].

The number o new plant disease outbreaks is increasing, which is linked to the increased
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global movement o plants and plant products in recent decades [18,64]. This increased in-

ternational movement o plants is seen to pose the greatest risk in terms o spreading plant

pests and diseases due to the large volumes o plants involved in these movements [16,18].

Chapman et al. showed that plant pest invasions are strongly determined by global

trade networks using Generalised Linear Mixed-eects Models (GLMMs) and world trade

data [50]. The authors tested the relationship between non-native species invasions and

international trade networks and analysed the invasions o 422 plant pests in member coun-

tries o the European and Mediterranean Plant Protection Organisation (EPPO). GLMMs

were used based on the connection strengths o 10 dierent connectivity indexes, represent-

ing the roles o dierent trade networks, to determine the causality o non-native species

invasions. Features such as geographical distance, species prevalence and climate similarity

were considered in conjunction with the volume o trade between countries. They distin-

guished between total and recent invasions o non-native invasive species in their paper.

Five trade networks were created on total imports o agricultural commodities, live plants,

orest products, ruits & vegetables and seeds. The authors analysed GLMMs with individ-

ual and multiple trade networks and ound that multiple trade networks yielded a better

t to the data. It was ound that the model that best explained all invasions was using

the live plants, orest products and seeds networks. In addition, the best-tting index or

recent invasions was the trade network or live plants and orest products.

The accidental transportation o plant pests via trade is not an unusual occurrence. This is

illustrated in the statistic that plant pests or diseases were ound in 26% o all shipments

o plants entering the United States between the years 2003 and 2010 [65]. MacLachlan et

al. noticed that in the US, the rate o discovery or non-native pests did not rise in accor-

dance with the increase in the volume o plant imports in the late 20th century [65]. The

authors developed two models: one to estimate past establishments o Hemiptera (an order

o insect), in the US, Alaska and Canada using plant imports, and the other modelled the

time delay between pest establishment and discovery. The authors ound that, although

import volumes have increased rom all geographic regions, the number o establishments

has changed, depending on the region. They imply that that there is a utility to a biosecu-

9



rity approach that ocuses preventative measures on higher-risk regions. Additionally, the

authors also estimate that many established pests into the US have not been discovered

yet, with a median delay to pest discovery o 80 years and 25% more undiscovered pests

than observed discoveries. A surprising result was that the authors ound that the average

risk rom plant imports has allen over time, perhaps explained by past trade experience

and improvements in both technology and policy [65]. This result highlights that the biose-

curity eorts made across the globe have had a positive eect on the spread o plant pests

and diseases over time.

Governments try to minimise the spread o plant pests and diseases through boarder inspec-

tions and control measures such as trade restrictions, quarantine measures and required

treatments (e.g., umigation) [66]. Yet, as we have seen, plant pest and diseases still in-

ltrate across country borders. Once introduced, the transport o inected material can

result in establishment ar rom the initial point o entry, making eradication eorts chal-

lenging [67].

1.2.2 Domestic trade

Signicant attention has been put on the role o international trade as a means or spread-

ing plant pests and diseases globally. However, there has been comparatively little research

on the role that trade on the national level plays in spreading plant pests and diseases.

Data on trade volumes o plants can be dicult or impossible to obtain, and so researchers

turn to using proxies with more available data. In their study o the ornamental horticul-

tural trade in Britain, Dehnen-Schmutz et al. used the marketing o plants as a proxy or

propagule pressure (a measure o the number o individuals introduced into a nonnative

environment [68]), in a model to examine the link between plant market presence and their

capability to escape and establish into the wild [59]. The authors sampled plant species

or their analysis which were actively advertised in nursery catalogues in the mid 1800s.

Market presence in the 19th century or a plant was determined i it was included in one

o the eight catalogues chosen rom that period. A plant was considered present in the
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modern-day market i listed in the Plant Finder, an annual publication by the Royal Hor-

ticultural Society. The proxy or trade volume used was the number o nurseries selling

a species included in both the 19th century list and the latest Plant Finder publication.

Plant traits were included in their regression models such as: lie orm (perennial, annual,

etc.), plant height, minimum tolerated temperature, recommended propagation method,

the native range o species, the native range o genus and garden origin. The authors

used non-parametric tests and two logit regression tests in their analysis, which ound that

market presence strongly explained plant escape but weakly explained establishment. Es-

tablishment probability was ound to be greater i the plant genus was native to Britain,

and this probability increased with the number o continents in a plant’s native range. The

authors’ investigation revealed a correlation between the adoption o invasive ornamental

plants and changes in the relative price o those plants, indicating the potential to use

price data as an early warning system against possible establishing species.

The authors ollowed on rom this work with a multispecies temporal approach and a

Generalised Estimation Equation model that compared invading ornamental non-native

species introduced into Britain with introduced species not known to have invaded [69]. In

this paper, the authors used the same method o proxy or propagule pressure as in [59].

The authors also used data on the relative price o exotic species in the national horticul-

tural trade, species characteristics and socioeconomic variables [69]. Dehnen-Schmutz et al.

sampled 506 ornamental plant species and used longitudinal data on the invasion process,

market availability and seed prices. Data was used rom historical nursery catalogues on

the availability and prices o seeds o ornamental species in the horticultural market in

Britain rom 1885 to 1985. The same plant traits were used in this regression model as in

their previous work [59]. The authors ound that on average, invading species were sold by

more nurseries than non-invading species. The model indicated the existence o a causal

relationship between requent low prices or a species and uture escape [69]. The authors

stated that their results “provide quantitative evidence or the role o the ornamental plant

trade as a vector activity in plant invasions” and highlighted that the “attention to the
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threats posed by international trade has missed the critical role o local market develop-

ment” [69].

The link between domestic trade and disease spread has been shown directly. For example,

the trade o host plants or P. ramorum in the US have been recorded (Figure 1.2a), in

addition to the conrmed P. ramorum inected shipments (Figure 1.2b) [2]. From these

gures we can see that the structure o both the shipping patterns (a) and inected ship-

ments (b) are similar. These gures show a clear link between domestic plant trade and

the spread o plant diseases, and that spread via domestic trade can travel long distances

rom the west-coast to the east-coast o the US.

(a) (b)

Figure 1.2. (a) The shipping pattern or P. ramorum host plants. (b) The conrmed P.
ramorum inected host plant shipments between the years 2003 and 2006. Figures rom [2].

So ar, we have discussed the damage that plant pests and diseases have had across the

globe and, in particular, the role that trade plays in spreading disease. It has been noted

that the structure o plant trade can be dierent, depending on the country o interest [70].

Thus, i we want to understand the structure o UK plant trade, we require a UK specic

investigation.

12



In the next section, we provide some mathematical background or the concepts rom net-

work theory and mathematical epidemiology that we use throughout the thesis.

1.3 Background and defnitions

In this section we introduce the concepts in both network theory and mathematical epi-

demiology that we use throughout the thesis. We reer the interested reader to [71–73] or

urther details and or a general introduction to network theory.

1.3.1 Network theory

A network, G = (V,E), comprises o a set V o nodes, that usually represent individuals,

and a set E ⊂ V ×V known as edges or links that connect the nodes together representing

an interaction. In our trade network, nodes represent individual traders, while edges rep-

resent a sale between buyers and sellers. A list o edges in the network, which is unique

up to the ordering in which the edges are presented, is called an edge-list.

In the case o a directed network, the set o edges E is asymmetric, meaning that a connec-

tion rom node i to node j does not imply a connection rom j to i, undirected otherwise. A

directed trade network encodes in the edge rom i to j the inormation that i sold goods to

j. We use the terms in-going/out-going edges o a node to reer to edges ending/starting

at said node. For instance, i we consider an edge rom i to j we say that this edge is

out-going rom node i and in-going to node j.

When a network is said to be weighted, each edge has an associated real number, represent-

ing the strength o the connection. Weights are usually selected to be positive. In a trade

network, weights can be used to represent the quantity o goods sold. As such, a larger

edge weight can be interpreted as a stronger connection between nodes. In unweighted

networks, only the presence o connections is considered.
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A network can be represented as a matrix A, called an adjacency matrix, where the ele-

ments ai,j ∈ R \ 0 represent the weight or the edge rom node i to node j. I node i and

j are not connected by an edge, ai,j = 0. For unweighted networks, the values o ai,j are

restricted to 1 or 0 to represent connections.

Paths in a network are dened as a sequence o nodes, where each consecutive node is

connected by an edge and no nodes are revisited. An undirected network is said to be con-

nected i there is a path between each pair o nodes in G. Directed networks are described

as weakly-connected i they are connected when considered as an undirected network, i.e.,

when ignoring the directions o the edges.

Network centrality measures

A centrality measure quanties the importance o the nodes in a network, in some spe-

cic context. Some o these measures are particularly inormative when assessing how the

structure o a network aects the spread o inectious diseases.

The degree o a node, or an undirected network, is the total number o edges connected to

the node. In a directed network, a node has two dierent degrees. An out-degree, the total

number o out-going edges rom the respective node, and an in-degree, the total number

o in-going edges to that node. I the network is weighted, there is another degree which

incorporates the edge weights, called the node strength. The node strength is the sum total

o the weights o edges connected to a given node. Similar to the out-degree and in-degree,

we can apply the concept o strength in directed networks and dene the out-strength and

in-strength o a node by accounting or the sum total o the weights o their out-going and

in-going edges.

The out-degree distribution o a network shows the proportion o nodes in a network with

a given out-degree. The shape o the distribution can give an indication o the eects rom

an initial seeding o a disease and the rate o transmission across the network. I most

nodes in the network have a large out-degree, then a random initially inected node is most
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likely going to be connected to a large number o nodes, which they can now inect. Alter-

natively, a random seeding in a network where most nodes have a small out-degree would

result in ewer secondary inections. Networks with out-degree distributions with heavy

right tails are more susceptible to superspreader events. A superspreader event is when an

inected individual inects ar more than the average inected individual [74]. Thus, the

nodes with the higher out-degrees are a good candidate or targeted prevention measures.

The in-degree distribution o a network shows the distribution o the risk o inection or

nodes, i.e., nodes with larger in-degrees will have a higher chance o receiving inection.

Thus, nodes with higher in-degrees are good candidates or surveillance/inspection or the

presence o disease.

The in- and out-strength measures are interpreted in the same way as their unweighted

counterparts. However, these measures incorporate the inequalities amongst edges. Con-

sequently, nodes which have ewer in-going or out-going links but with larger edge weights

can have the potential or a more signicant contribution to the spread o disease.

The betweenness centrality measure calculates the extent to which a node appears in the

paths between other nodes in the network. An intuitive interpretation o this centrality

measure is that betweenness measures how oten a node acts as a bridge between others.

In the context o disease spread, the higher a node’s betweenness centrality, the more likely

said node is to receive an inection i an outbreak occurs.

The hubs and authorities in a network can be identied by Kleinberg’s hubs and authority

scores [71]. The hub and authority scores are the corresponding eigenvectors or the leading

eigenvalue o ATA and AAT . These scores are dened in reerence to one another, where

a hub is a node that has outward links to many authorities, and an authority is a node

which has many in-going links rom hubs. To interpret this measure, a disease starting

at a hub has greater potential to start an epidemic, and authorities are o higher risk o
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receiving inection. Thus hubs and authorities are potentially good candidates or targeted

prevention measures and inspections respectively.

The comparison o weighted and unweighted measures is o particular epidemiological rel-

evance. When a pest/disease has a low transmission rate, the probability o inecting

another node will depend more on the volume o plants traded amongst nodes as opposed

to the number o out-going links a node has. Whereas, when a pest/disease has a very high

transmission rate, the probability o inecting another node will be less dependent/inde-

pendent on the volume o trade. Thus edge weights can be an important eature to include

in network models and aect the interpretation o network structure in the context o the

spread o disease.

1.3.2 Compartmental modelling

When we reer to diseases, we are specically reerring to inectious diseases where inected

individuals drive urther inections. A simple method o modelling disease spread, stem-

ming rom [75], is the deterministic SI model. A population is split into a non-inected

“Susceptible” compartment and the inectious individuals into an “Inected” compartment.

The number o susceptible and inected individuals (S(t), I(t)) is calculated over time points

t, in specied increments o time ∆t. A parameter  ∈ R+ is used to describe the trans-

mission rate o the disease which consists o the population contact rate per unit o time

multiplied by the probability o transmission in a contact. For simplicity we consider  to

be constant, though this does not need to be the case. It is assumed that the population

is well mixed, meaning that the probability an inected individual interacts with a suscep-

tible individual is the same or all susceptible and inected. With an assumed requency

dependent orce o inection, the total number o interactions between the susceptible and

inected populations at time t is S(t)I(t)
N(t) and the total number o interactions resulting in

inection is  S(t)I(t)
N(t) . Here, N(t) represents the total population where S(t) + I(t) = N(t).

This simple model can then be represented as dierence equations:
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S(t+∆t) = S(t)−∆t 
S(t)I(t)

N(t)
(1.1)

I(t+∆t) = I(t) +∆t 
S(t)I(t)

N(t)
(1.2)

This simple model can be modied in many ways to represent a system more accurately

by including, or example, eatures such as death and birth/growth rates. Note that this

model can be transormed to a set o dierential equations in continuous time by rearrang-

ing Equation 1.1 and Equation 1.2 and taking the limit as ∆t → 0.

Compartments can be added to describe dierent stages o inection. For diseases with

a latency period, an “Exposed” compartment is added, resulting in a SEI (Susceptible -

Exposed - Inected) system. The SIS (Susceptible - Inected - Susceptible) model describes

when inected individuals can recover and instantly can become susceptible again. The

SIRD (Susceptible - Inected - Recovered - Dead) model includes a “Recovered” compart-

ment or those that gain immunity ater inection, and a “Dead” compartment to describe

individuals that die during the simulation timerame.

The spread o plant pests and diseases can be modelled using these techniques by compart-

mentalising a population o plants into dierent stages o inection [76–78]. Additionally,

plant pests can be modelled compartmentally in conjunction with their hosts in vector-host

systems [79].

Spatial structure can be added to these compartmental models by segmenting the popu-

lation into a “population o populations” [80]. A disease spreads within and across sub-

populations by the movements o individuals [80]. Modelling these systems then brings

orward the question o how subpopulation contacts are structured. Network theory can

help answer this question i we represent each subpopulation as a node in a network and

travel/interaction between subpopulations as edges. This idea is reerred to as the net-
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worked metapopulation and is used or modelling the large-scale spatial transmission o

diseases [81].

1.3.3 Network construction methods

To construct a general model network rst, we require a denition o the nodes in the

network and o what the edges between nodes represent. Dening nodes can be a chal-

lenge because there may be uncertainty regarding how many qualitatively dierent types

o nodes the system being described has. Dening edges will be driven by the research

question in mind, although deciding what the edge weights represent may be dicult, or

whether to include edge weights at all. These challenges can arise due to limited available

data.

In the context o constructing a plant trade network, there is commonly insucient data

available. This is likely due to the act that acquiring large amounts o data to inorm

a trade network is dicult and expensive. Data rom a signicant number o sellers and

traders can be dicult to obtain or several reasons. Sellers and traders can be reluctant to

give access to commercially sensitive sales data due to worries o potential reputation dam-

age. For example, being associated with diseased stock. Usually, this obstacle is overcome

i the seller/trader has a sense o trust in the researcher, established through previous work-

ing relationships. Understandably, this is dicult to achieve with a substantial number o

sellers and traders in a particular industry. Given that this obstacle has been overcome, it

can be o high cost in time and money to collate and clean sales data rom many dierent

sellers and traders due to the distinct and potentially incompatible ways businesses can

store and record this data. Given these limitations, a more achievable goal is to obtain

large data sets rom a smaller number o sellers and traders.

When data is unavailable to directly analyse a network representation o a system, analysis

can be conducted on many idealised networks with dierent properties as an alternative.

These network qualities include or example the degree distribution and the level o clus-

tering (the extent to which neighbours o nodes are also directly connected) in the network.

18



Examples include algorithms to produce networks which are random, scale-ree, local and

small-world.

A network is random when edges between nodes are assigned randomly, with a given

probability [82]. The Erdős-Rényi model produces a random graph using two parameters

N (number o nodes) and L (number o links) [82]. An alternate ormulation used a pa-

rameter p which represents the probability o assigning a link to any two nodes instead o L.

Scale-ree networks are largely studied, due to their requent observation in nature [83]. A

network is scale-ree i the degree distribution ollows a power law, meaning the raction

o nodes in a network that have a degree o at least k ollows the distribution k− . The

parameter  > 0 controls the spread o this distribution, where a larger value represents a

network with ewer nodes that have a high degree. It is worth noting that in most scale-ree

networks that have been studied, the value o  lies between 2 and 3 [84]. It is within this

parameter region where the degree distribution has nite mean but innite variance [71].

There are many existing algorithms to construct a scale-ree network, one o these is the

Barabási-Albert model [85]. The algorithm starts with a small number o nodes and edges,

and in each subsequent step, a node is added with a number o edges which is at most

equal to the current size o the network [85]. Nodes preerentially attach to nodes with

larger degrees, meaning the probability that a node acquires a new link is proportional to

its degree [85].

Local networks have high clustering and high path lengths, such as regular lattices [86].

A network is small-world i it is local and shortcuts are added to lower the path length

in the network [86]. Small-world networks can be constructed with the Watts-Strogatz

algorithm [87]. This algorithm starts with a regular ring lattice and or each edge in the

network, it is rewired with probability p [87].
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When constructing a trade network, the algorithms described above can be useul i there

is sucient data or existing research to make assumptions about the network structure.

When investigating a novel trade network, however, these resources may not exist. When

there has been no data on plant trade networks, research has been conducted on compar-

ing many dierent assumed network structures, with a ocus on its implication on disease

spread [70, 88, 89].

Other than retroactive node classication [70], it is unclear how to implement these meth-

ods when a trade network involves nodes which are split into categories. An example o

node categorisation would be to label nodes as either “buyers” or “sellers” in a simple

bipartite trade network. A network is bipartite i nodes can be split into two sets, where

edges only join nodes between sets [71]. The categorisation o nodes in real-world networks

may be o relevance to the objectives o the researcher(s) and can help apply the results

rom network analysis to the real world. Hence, or these systems, node categories should

be incorporated into the network construction approach.

1.3.4 Edge weights and network models

Edge weights (or fows) in a network can represent, or example, distances, costs and vol-

umes o trade. When a network is unweighted, the strengths o the connections between

nodes are not considered. For plant trade networks and the spread o disease, the volume

o trade between nodes would aect the probability o transmission rom node to node. To

illustrate this, a consignment o 10 plants rom a nursery would have a lower probability to

include an inected plant than a consignment o 1 000 plants, assuming that the nursery is

not ully inected. Hence, when the strengths o connections between nodes dier and are

an important actor, trade fows should be included in the network construction. There

are many existing methods to model trade fows, some o which we discuss in this section.

The simplest way o modelling edge weights in a network is to assign weights based on data.

An example which we have already discussed includes the work o Chapman et al., who

used geographical distance, species prevalence, climate similarity and world trade data to
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inorm the edge weights on their model o global trade networks [50]. Another example

includes McKelvey et al. who estimated what proportion o total commodities consisted o

nursery stock to approximate trade volumes [2]. In absence o similar data to inorm edge

weights, there are other methods that can be used.

In econometrics, the gravity model, and variations o it have been used to model trade

fows in networks in absence o trading data. The gravity model stems rom the idea that

trade fows will be inversely proportional to the distance between nodes (resistance ac-

tor), and proportional to some measure o mass o the interacting nodes multiplied by a

constant, representing gravity. This method o modelling trade fows has been primarily

used to model trade and migration across and between countries on a large scale [90, 91].

The gravity model has also been used to model the movement o people between cities in

the context o spreading disease [92]. One immediate limitation o this approach is that in

an increasingly globalised world, the relationship between the fow o goods and distance

does not strictly hold or all systems. Another potential limitation o this method is that

it requires estimations o the total amount o fow at a particular node, which a researcher

may not have adequate data to estimate. Steanouli and Polyzoz highlight urther limita-

tions; calibrating the parameters to data can be dicult and the tting parameters can

vary signicantly even within a data set, tted parameters can have values which cannot

be seen in reality, some signicant variables are omitted in gravity models, gravity models

in heterogeneous population groups can be subject to misspecication and the geographi-

cal subdivision into “origin” and “destination” omits other catchment centres which would

make the models more realistic [93]. Note that there are other models stemming rom

physics that model trade fows such as the radiation model, which comes rom diusion

dynamics and the intervening opportunities theory [93].

Other approaches have ocused on using machine learning methods to predict edge weights

based on similarities between nodes [94, 95]. However, these approaches require a large

quantity o data or training and testing, which is not always available. As noted by Fu et
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al. “Link weight prediction is a relatively new topic” [95], and so this area can certainly

benet rom urther developments.

1.4 Modelling disease spread on networks

Modelling the spread o disease on a network involves classiying nodes in a state o inec-

tion over time, where connections in the network drive disease spread rom node to node.

In this section we discuss the relevant literature or modelling disease spread on networks,

with particular emphasis on Susceptible-Inected compartmental models.

Disease spread can be described as a Markov chain model, where the state space o the

network consists o all possible combinations o node inection states across the entire net-

work [96]. For the SI model, and a network o N nodes, this results in 2N states. A system

o equations, the orward Kolmogorov equations, can be dened to describe how the net-

work can change rom one state to another [96]. Having larger networks or increasing the

number o compartments can give rise to diculties in dealing with a system o very high

dimension. More techniques such as mean eld approximations, individual-based models,

dynamic networks and non-Markovian epidemics are discussed in [96].

To simulate the spread o disease on a network in, or example, an SI compartmental

model, we have two options: a binary system where nodes are classed as either susceptible

or inected (similar to the models discussed in [96]), or a metapopulation model where

nodes act as subpopulations o individuals and we model the total number o susceptible

and inected within each node.

In a binary system, nodes are classed as either susceptible or inected and the edge weights

represent the probability o transmission. All nodes have sel-edges whose weights control

the internal spread o disease within the node. The question is then how to model the

probability o transmission. For the network we will be investigating, the volume o trade

across the network is heterogeneous. Thereore, unless the disease is highly inectious, the
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volume o trade will aect the probability o transmission rom one node to another and

thus should be included in an epidemiological model.

In metapopulation models, each node acts as a subpopulation o individuals and the edges

represent the movement o susceptible and inected individuals between them. We can

either model the proportion or the total number o susceptible and inected individuals in

each node. In most real-world systems, subpopulation sizes and the number o individuals

moving rom one subpopulation to another will be heterogeneous. Modelling this hetero-

geneous movement o susceptible and inected in terms o proportions o subpopulations is

thereore not appropriate.

Alternatively, we can model in the units o individuals as opposed to proportions. This

avoids problems with modelling the heterogeneous movement o individuals amongst sub-

populations o dierent sizes. Thus, edge weights in the network are required to represent

the movement o a number o susceptible and inected individuals (similar to the work rom

McKelvey et al. [2]). The next question becomes how to model the volume o movement

o individuals on each edge in the network.

For our system o UK plant trade, the volume o trade between nodes is heterogeneous.

Thereore, we require a way o capturing this heterogeneity. Our data gave inormation on

trade volumes, consisting o several years o sales rom thousands o customers. We can

use data or each group o customers to model the distribution or the number o plants

a customer rom that group purchases. Edge weights can then be generated by sampling

rom these distributions. This approach would result in a weighted, directed network with

connectance modelled directly rom sales data.

Colizza and Vespignani studied disease spread dynamics in metapopulation networks with

heterogeneous connectivity [97]. Their analysis was conducted on a network o arbitrary de-

gree distribution, where disease spread was modelled with a simple branching process. The

number o inected subpopulations in the nth generation with degree k could be expressed

as a unction o the same quantity at the previous generation. Movement across the net-
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work was modelled with a parameter p, and edge weights were assigned such that weights

rom all edges o a given node o degree k were pk. In their analysis they ound a threshold

or global disease spread, dependent on mobility across subpopulations and network topol-

ogy. The results imply that network heterogeneity lowers the threshold or global spread

and suggest an inecacy o using travel restrictions to contain global epidemics. The au-

thors then used parameters rom real world transportation networks, perorming Monte

Carlo simulations on the metapopulation system. The networks analysed agreed with their

analytical results. The authors ound that a reduction o one order o magnitude o the

mobility, p, was insucient to bring the system below the threshold or global spread. An

important note to make about this model is that all edge weights stemming rom one node

were the same. This is unrealistic or trade networks, where a business will not necessarily

sell the same amount o stock to all customers. The investigation in [97] takes into account

heterogeneity in how links are distributed and how edge weights dier amongst nodes o

dierent degree. However, heterogeneity in edge weights stemming rom one node have

not been considered which would more accurately represent certain real-world systems.

1.4.1 Modelling disease spread on trade networks

In this section we highlight previous approaches to modelling the spread o disease, speci-

ically on trade networks. We initially ocus on previous network investigations into plant

trade, and then present similar work on the trade o animals.

Plant trade

In the review entitled “Network epidemiology and plant trade networks”, Pautasso and

Jeger highlight key developments in plant network epidemiology [98]. Research on disease

spread on networks has revealed that network structure plays an important role in epidemic

dynamics [99–104]. As discussed in Section 1.2, plant trade on both the international and

domestic scale has been attributed to the spread o plant pests and diseases. Plant trade

can naturally be conceptualised as a network o individual traders connected by transac-

tions amongst one another. Thereore, analysing the network structure o plant trade will
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help us understand how plant pests and diseases spread and, more importantly, how to

mitigate this spread.

When modelling the spread o plant diseases in the units o individual plants, each node

in the network represents a metapopulation o plants (a plant nursery, garden centre, cus-

tomer, etc.). We distinguish between susceptible and inected plants by SI compartments.

The connections in the network, alongside other processes, will aect the spread o disease

within and throughout the network.

Harwood et al. developed an SEIS (Susceptible - Exposed - Inected - Susceptible) model

that linked the plant trade network in the UK to the landscape via a grid [46]. They

ocused on modelling the spread o P. ramorum and P. kernoviae. Their network o plant

trade was constructed using AgCensus data or England and Wales in combination with

data rom the HortWeek Suppliers Guide to inorm the distribution o sites that grow sus-

ceptible nursery stock. It was assumed that the spatial distribution o susceptible stock o

Scotland was similar to England, hence they overlaid a subset o the AgCensus data rom

England over Scotland. The locations o retailers were inormed by the records o the Plant

Health and Seeds Inspectorate. Links were established rom data to connect holdings with

distribution hubs and retailers with outlets. However, links between suppliers and retailers

were generated stochastically due to data unavailability. The network construction yielded

a small-world and scale-ree network. Trade was simulated via a specied trading period,

randomly selected between 1 and 60 days during the months o March and August. The

authors posed skepticism on modelling the spread o disease on the plant trade network

without also incorporating the spread via the landscape. Network models that wish to

not also incorporate the landscape should then ocus on pests and diseases which are not

already established outside the network. Harwood et al. modelled trade fows in their plant

trade model where nodes had an assumed capacity, N , and 06N plants were assumed to

be traded annually. The trade o plants was divided equally over each node’s sales period.
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McKelvey et al. developed a bipartite network model to predict the potential spread o

P. ramorum in the US using plant nursery trade fows [2]. The authors used a Bayesian

approach, modelling probabilities o transmission o P. ramorum rom entry to destination

nodes in the network. The bipartite network described nursery stock shipments rom the

west coast o the US to destinations eastward where P. ramorum is undetected in the natu-

ral orest landscape. Most o the network construction used data rom the Freight Analysis

Framework Commodity Origin-Destination database (a relational database describing the

movement o commodities, in tonnage and monetary value), between statistical regions.

These regions acted as nodes in the model network. The probability o disease trans-

mission was driven by trade volumes. The authors did not have access to nursery trade

volumes specically, and so multiplied the volume o movement by a reerenced proportion

o commodities that are nursery stock. The network approach used by McKelvey et al.

was very general, the bipartite network consisted o sources o inection, destinations to

uninected nodes and a probability o inection rom inected to those uninected.

Bayesian analysis was used to make comparisons about the likelihoods o various paths o

inection and to identiy likely proximate inection sources [2]. The authors highlighted

that the model can also identiy new sites that are at high risk o importing disease rom

these proximate sources, even in absence o detection. The probability o transmission was

determined by the parameter p, which dened the probability that a single unit o fow

(unit o trade) results in the initial inection o the fows destination. There were limita-

tions to the method the authors used, including the assumptions that the probability o

inecting dierent destinations rom a given source is independent and that new inections

all come rom one source.

The method o network construction by McKelvey et al. has the advantage o simplic-

ity, a bipartite structure which only considers the links connecting inected to uninected

nodes [2]. However, this method does not consider the eects o connections amongst in-

ected nodes. As already highlighted in this thesis, network structure has been shown to
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have an eect on disease spread dynamics and this is something the model does not take

into account.

Pautasso and Jeger analysed the relationship between probability o persistence and o

transmission in small-sized (100 nodes) directed networks [88]. Disease spread on the net-

work was a deterministic Susceptible-Inected-Susceptible (SIS) model, with a probability

o persistence parameter Pp and probability o transmission Pt. The latter was a homoge-

neous edge weight to all edges in the network. The authors simulated this disease model on

multiple replicates o our network structures: Local, small-world, scale-ree and random.

For all networks, there was a xed number o links, set at an arbitrary value o 369 to

ensure that networks on a lattice were well-connected.

Pautasso and Jeger ound that the epidemic threshold (the level o disease transmission

which separates the occurrence o a disease spreading or dying out) can be described by

a linear relationship between the probabilities o transmission and persistence, or all net-

work structures [88]. Small-world and scale-ree networks showed a signicantly lower

epidemic threshold, as opposed to random and local network structures. Interestingly,

epidemic threshold was not aected by the node the disease started in, although the start-

ing node did aect the nal size o disease equilibrium. Network structure was shown to

infuence nal epidemic size rom averaging nal epidemic sizes over all starting nodes,

with random structures showing signicantly larger epidemics than small-world structures.

Overall, rom their analysis, the authors showed that even in small-sized networks, dier-

ent network structures signicantly aect the spread o disease.

Moslonka-Leebvre et al. investigated the eect o network structure on disease spread in

small-sized (100 and 500 nodes) networks [89]. The authors looked at the correlation coe-

cient between links to and rom nodes or networks o varied size, structure, connectance

and clustering. The network structures considered were local, random, small-world and

three variations o scale-ree (positive, negative and no correlation between in and out-

degree o nodes). Disease spread was modelled using the same method as in Pautasso and

Jeger [88]. The important dierence in this investigation is that the probability o per-
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sistence parameter was set to 0 and the epidemic threshold was thus calculated rom the

probability o transmission parameter only [89]. The authors state rom their unpublished

observations that epidemic threshold conditions did not change with single or multiple

seeded inections [89]. Analysis o variance tests were conducted on the epidemic threshold

and the correlation coecient between in- and out-degrees or each network replicate. This

was repeated or each level o connectance and network structure. Additionally multivari-

ate regressions were conducted or the epidemic threshold against the correlation coecient

between in- and out-degree and the average clustering coecient or dierent network sizes,

structures and connectance levels.

The authors ound that the epidemic threshold decreased signicantly with increased con-

nectance levels or all network structures and sizes [89]. They also ound that the epidemic

threshold is lower or scale-ree networks only with a positive correlation between in- and

out-degree o nodes. It has been noted that this result also holds or large networks [89,105].

The authors ound that in sparsely connected networks, clustering can become an impor-

tant actor or disease spread. Moslonka-Leebvre et al. state that their main conclusion is

that “in directed networks, analyses o the infuence o clustering on the epidemic thresh-

old can be spurious i they do not consider simultaneously the eect o the correlation

coecient between in- and out-degree” [89]. In this investigation, the authors ound that

the epidemic threshold is negatively related to the correlation coecient between in- and

out-degree or all network structures, irrespective o network size. For small-sized and

sparse networks, however, this does not hold and clustering becomes an important actor.

Clustering was ound to not always have an eect on epidemic threshold on small-sized

networks, which is not the case with large networks.

Pautasso et al., in a urther study, investigated the role o hierarchical categories (produc-

ers, wholesalers and retailers) on small-size (100 nodes) directed networks [70]. Without

data to inorm network structure, the authors modelled disease spread in networks at our

connectance levels (local, random, small-world and scale-ree). In addition, scale-ree net-

works were analysed with positive, no and negative correlation between in- and out-degree.

Each network structure was analysed with 100, 200, 400 and 1000 links. The same dis-
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ease spread model was used as in Pautasso and Jeger, with a probability o persistence

Pp and probability o transmission Pt [88]. The value o Pt was set to the reciprocal o

the leading eigenvalue o the adjacency matrix or each network realisation [70]. Pp was

also the same or all nodes. In their model, all nodes were o equal capacity, and the only

dierences between nodes were due to their in- and out-degrees. Nodes were classied

retroactively into the category producer, wholesaler and retailer according to the equation:

∆ = (x−y)[(x+y)2)]%, where x and y represented the number o outgoing and incoming

links respectively. The value o ∆ was calculated or all nodes, where nodes were classied

as producers with ∆ at least 20%, and retailers with ∆ at most −20%. All remaining

nodes were classied as wholesalers. Pautasso et al. also varied these ranges or producers

to (60%, 100%) and retailers to (−60%, −100%). From their analysis, the authors ound

that variations in producers, wholesalers and retailers can aect the epidemic threshold [70].

Nelson and Bone used the classication o plant nurseries into three tiers (growers, whole-

salers and retailers) [106]. Growers were dened to produce plants, trade amongst other

growers and sell to wholesalers. Wholesalers bought rom growers, traded with other whole-

salers and sold to retailers. Retailers bought rom wholesalers and sold to the public. This

tiered system comes rom Pautasso et al., where nodes are assigned to groups based on their

ratio o in-coming and out-going links [70]. Networks were generated stochastically, with

an assumed scale-ree structure. First a scale-ree network was generated between whole-

salers and growers using the “ba.game” unction o the igraph package or the programming

language R [106, 107]. Then intra-tier edges amongst growers and then wholesalers were

added using a preerential attachment algorithm adapted rom Barábasi and Albert [108]

where the probability o adding a new edge between two nodes is proportional to the sum

o the node’s in- and out-degrees. Then using the same algorithm, inter-tier edges were

added between wholesalers and growers. Retailers were nally added using this preeren-

tial attachment algorithm. Note that this model uses the assumption that the network is

scale-ree, in absence o data, and uses algorithms to produce an approximately scale-ree

network in this tiered system. The ratio o incoming to outgoing links that determined a

node as a wholesaler, grower and retailer was pre-specied and analyses were conducted on

the eect o varying the proportion o nodes in each tier [106]. Nelson and Bone modelled
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the spread o disease on the model trade network using the same probability o transmis-

sion and persistence model as in [70, 88]. Nodes in the network had an associated level o

inection, a real number in the interval [0, 1] [106]. The probability o persistence was set to

05 by deault and the probability o transmission was set or each simulated network such

that the leading eigenvalue o the transition matrix was 11 (above 1 so that the disease

spread). In their analysis, the authors ound a linear relationship o the epidemic threshold

between probabilities o transmission and persistence, as was ound in Pautasso et al. [88].

We summarise the literature discussed or plant trade network modelling in the table below.

Table 1.1. Summary o plant trade network models discussed based on the network and disease
models used.
Disease Transmission Model Real/Simulated Network Discrete/Continuous Time Comments Reerence

SEIS Combined real and simulated Continuous Simulated network or Scotland [46]

Simulated links to ll in data gaps

Bayesian probabilistic model Real N/A Find most likely sources o inection [2]

No connections between inected nodes

SIS Simulated Discrete Homogeneous edge weights [88, 89, 106]

SIS Simulated Discrete Homogeneous edge weights [70]

Retroactive classication o hierarchical categories

Research on the network structure o plant trade in particular has suered rom insucient

data. In comparison to animal trade, availability o data has allowed or research highlight-

ing the contact structure o salmon and trout in Great Britain [109], the trade o pigs [110]

and the movements o livestock in Scotland [111,112]. Data collection is needed to develop

urther understanding o the movement o plants via trade and the spread o plant pests

and diseases. In the next section, we provide examples o the research conducted using

animal trade networks.

Animal trade

There is a vast literature o the trade o animals using network theory. For example, a

systematic literature search on poultry trade networks and avian infuenza ound 362 reer-

ences to infuenza spread pathways and 57 reerences on the human and animal movements

o poultry within production and trade networks [113]. From this review, we ound three

common approaches in the studies that analysed poultry trade networks: surveys that
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were conducted to get data on nodes and edges [114–122], networks that were constructed

rom well understood networks and existing data sets [122–130], or theoretic networks with

some studies using existing data or model tting [131, 132].

There has been a lot o research on trade networks o livestock with a ocus on the spread o

oot and mouth disease, highlighted in [133]. The increased regulation on the movements

o livestock resulted in greater access to data on movements such that network analysis

could be conducted [133]. Similarly, there has been substantial research on the spread o

swine fu amongst pigs, with many dierent modelling approaches, shown in the review by

Andraud and Rose [134]. The authors highlighted several models on pig trade networks

and the spread o disease [135–137]. There has also been extensive inectious disease mod-

elling in aquatic systems, as reviewed by Murray and Salama [138]. The authors highlight

network model approaches in [139–142].

Jones et al. combined data rom England, Wales and Scotland to produce a multi-layered

network or the salmon and trout aquaculture industry [109]. A multi-layered network is a

network which has multiple types o nodes and connections, to represent dierent types o

relationships [143]. Each layer is a set o edges which represent a specic relationship [143].

In this network, the nodes represent sh arms and recreational sheries. The layers in-

clude: the movement o live sh between nodes, waterborne pathogen transmission via the

river system, waterborne transmission in the marine environment, and local transmission

rom humans or animals nearby nodes. Jones et al. constructed their layered network rom

data provided by the Centre or Environment, Fisheries and Aquaculture Science and by

Marine Science Scotland, detailing live sh movements rom 2009 to 2013. Such data is

available or sh movements due to legislation by the European Union [109]. The authors

were able to get data on river connections between sites rom the European Environment

Agency’s European Catchments and River Network System and data or water currents

rom the Scottish Environment Protection Agency [109]. With this data, the authors were

able to capture the ull industry structure over a three-year period. The network was anal-

ysed using several metrics, including the in-degree, out-degree and betweenness centrality

measures. More detail on the metrics used can be ound in [109]. Note that the authors
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ound the betweenness measure to be the most eective out o many measures investigated.

The authors ound that most transport network nodes are reachable rom cross-boarder

connections, highlighting the importance o tracking live sh movements in Great Britain.

They also showed that large epidemics in the salmon and trout aquaculture industry are

dependent on the live sh transport network.

However, data is sometimes not widely available in animal trade. For instance in develop-

ing countries, the live movement o animals can be predominantly driven by the backyard

production o animals [144]. Kukielka et al. in their investigation o pig trade in the coun-

try o Georgia used data rom a questionnaire given to 487 armers to inorm a network

model [135]. Shipment origin and destination inormation was collected at the geographic

level o villages and thus nodes represented villages in their network. An edge existed

between nodes i at least one shipment was made rom one village to another. The authors

could not capture the ull network, as only our o nine regions o the country were included

in the study. An exponential random graph model was used to analyse pig trade between

villages as a unction o village characteristics and network structure. Exponential random

graph models are statistical models to make inerences on what drives network structure in

an observed network [145]. The limitation to this method is the reliance on having access

to enough data to construct an observed network. The more o a network that is modelled,

the more the assumptions rom that model will infuence the analysis.

Lentz et al. analysed the trade o pigs in Germany in relation to the spread o inec-

tious diseases in livestock populations [110]. To do this, they used data rom the HI-Tier

database [146], to construct three trade networks: a static network, a network as a time-

series and a network where time and causality are taken into account. In their analysis,

they highlight the connectivity dierences in networks with and without directed edges.

Almost all nodes were reachable rom any other node with undirected edges; however,

when considering directed edges this reduced to approximately a quarter o total nodes.

Lentz et al. posit that it is common in trade networks that the “giant strongly connected

component” and the “giant in-component” have high disease spread potential, whereas the

“giant out-component”, “tendrils” and “external nodes” do not. For brevity, we will not
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dene these, but ull details can be ound in [110]. The authors also point out that it is

common in trade networks or nodes to either have very long or very short ranges (the

number o nodes reachable rom a particular node).

The authors calculated assortativity coecients (the tendency or nodes to share connec-

tions with similar nodes) across dierent categories and ound that there was high assorta-

tivity or nodes to connect within the same ederal state, implying that trade restrictions

across ederal state borders would have a small eect on network connections yet contain

spread [110]. They ound that the static network can capture nodes as part o two risk

classes, however more detailed understanding can be gained, such as maximum outbreak

size, rom the temporal network (network over snapshots o time). Interestingly, they

ound that the volume o trade did not alter their results, when considering weighted or

unweighted networks. In their work on the temporal network, they were able to use the

“unolding accessibility” method to mimic a Susceptible-Inected model to understand how

a worst-case scenario epidemic progresses and use it or causal contact tracing. Access to

data in similar quantities and detail or plant trade would allow or similar investigations.

Enright and Kao used data to produce a network on the movements o cattle in Scot-

land [112]. Their investigation was to assess the potential epidemiological consequences

o the Cattle Tracing System (CTS), which allowed the unreported movement o cattle

between holdings. The authors’ question was how the inclusion o these additional net-

work links makes the system more vulnerable to the spread o disease. They analysed ve

undirected networks o annual trade and 36 directed networks consisting o three networks

or each month o 2014 (one or recorded cattle movements, another with CTS links, and a

third network which contracted all directly or indirectly connected holdings into one node).

The authors assessed network susceptibility to disease spread by analysing the length o

inection and inector chains. An inection chain or a node is the total number o nodes

that can be directly or indirectly inected by that node [112, 133]. Conversely, an inector

chain or a node is the total number o other nodes that can either directly or indirectly

inect that node [112]. They ound that when CTS links were included in the network,

the average number o holdings a node could inect more than doubled. Enright and Kao
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concluded that the strategic removal o a ew links in the network would reduce outbreak

potential and highlight the utility o monitoring the cattle trade as a network as opposed

to many separate holdings [112].

Throughout this section, we see that researchers either have data on the entire network

o interest and require no modelling or the network or have very little network data and

resort to theoretical investigations, testing many dierent contact structures. This rst,

data-driven approach can be seen in research ocused on animal trade. The data collection

and legislation involved in the movements o livestock allow or entire trade networks to

be analysed, without use o modelling network contact structure [109–112].

A less extreme case o this method was used or the plant trade in Great Britain in the

previously mentioned study by Harwood et al. [46]. The authors used spatial data o nurs-

ery stock covering England and Wales and data on business sizes or growers to recreate

as much o a plant trade network as possible and then modelling was used to ll in gaps.

Though a signicant amount o data was used to create a consistent network structure,

the approach was limited regarding edge weights. This was due to the absence o detailed

sales data.

The second, theoretical approach is used with no data to inorm network construction

and a network structure is assumed. Examples o this approach are ound in Pautasso

and Jeger, Moslonka-Leebvre et al., Pautasso et al. and Nelson and Bone [70, 88, 89, 106].

These approaches can be limiting, as no data is used to inorm network structure or edge

weights. Thus, we see a need or the development o network construction methods that

incorporate data when availability is limited.
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1.5 Thesis overview

Our objective is to model the domestic plant trade network in the UK. We draw inspiration

rom the approach o Pautasso et al. [70] and analyse sales data to gain a better under-

standing o how nurseries distribute their connections and classiy nodes into subcategories.

Thus, we develop a novel phenomenological approach to construct a model trade network

that includes node subcategories as a parameter, as opposed to retroactive assignment [70].

In our disease spread model, we extend the single-nursery compartmental model by Bate et

al. [76] to include every node in the network and the trade o inected plants between nodes.

We incorporate the volume o trade to include its impact on the trade o inected plants,

hence expanding upon the models that assume equal probability o transmission between

nodes [86, 106]. Similar to Harwood et al., we investigate the eectiveness o inspection

regimes [46], considering both periodic stock inspections and inspections conducted during

trade.

The thesis consists o six chapters. In Chapter 1, we introduced the key concepts or mod-

elling the spread o disease on networks and compartmental, metapopulation models that

we used throughout the thesis. We reviewed the existing literature on modelling plant

trade network structures and o plant disease spread via trade.

Chapter 2 details the methods we developed to construct a general trade network model in-

volving the assignment o nodes into subcategories. In Chapter 3, we apply these methods

to construct a model representing annual trade in the UK domestic plant trade network,

using plant nursery sales data. We use social network analysis to investigate the network

structure, looking or weaknesses in an epidemiological context.

In Chapter 4, we construct a Susceptible-Inected compartmental metapopulation model,

simulating the spread o a pest or disease on the network model rom Chapter 3. We

investigate the eects o dierent seedings (where the disease begins) and compare the

eectiveness o scheduled stock inspections against trade inspections. Note that the code
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used to run simulations and conduct the analysis in Chapters 2, 3 and 4 are stored on the

Github repository https://github.com/rnb19177/PlantTradeModel.git.

Chapter 5 ocuses on a collaborative project which started in May 2020 in response to the

COVID-19 pandemic. This project develops a compartmental metapopulation model o

the Scottish health board Lothian, dividing the population into care home residents, sta

and the general population.

We conclude this thesis with Chapter 6, which summarises our ndings and highlights

areas or uture research.
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Chapter 2

General Network Construction

In the literature review on network construction methods rom Chapter 1, we highlighted

that there appeared to be two approaches which were based on the two extremes o data

availability. With the data that we had access to, we were situated somewhere in be-

tween these extremes. In our data analysis (detailed in Chapter 3), we identiy our dis-

tinct trading patterns o plant nurseries. To construct a network where nurseries ollowed

these patterns, we could not use existing methods such as those seen in previous mod-

els [46, 70, 88, 89, 106]. Thus, it was necessary to design a new method to model the

network or domestic plant trade in the UK. Once this network was constructed, we de-

veloped a method o adding heterogeneous weights to the edges o the network using this

grouping o nodes in conjunction with sales data. We generalised this network construction

approach to highlight the methods we developed and the applicability o this method to

other systems.

Throughout this chapter we describe in detail the method we designed to construct model

hierarchical trade networks with heterogeneous edge weights. The method is inspired by

the hierarchical categories o Pautasso et al. [70]. We structure this chapter by rst dening

nodes and secondly dening edges and edge weights. We present the network construction

algorithm, ollowed by a summary o model parameters and discussion. Throughout the

chapter, or ease o interpretation, we provide illustrated examples.
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2.1 Introduction and background

Our goal is to simulate the spread o a plant pest or disease on a model o domestic plant

trade or the UK, inormed rom sales data we have access to (detailed in Chapter 3). We

want to model the entire domestic plant trade network or the UK, including customers.

By including customers in a network model, there is potential or assessing the exposure

that customers have to a pest or disease spreading throughout the network. To the best

o our knowledge, this is the rst model that attempts to do this, as other models avail-

able in the literature only ocus on the grower/producer, wholesaler and retailer section

o trade [70, 88, 89, 106]. Furthermore, rom talks at FERA (Food and Environment Re-

search Agency), it was brought to our attention that, unlike what was seen in previous

models [88,89,106], plant nurseries do not play discrete roles in the market. In act, there

is a spectrum o trading behaviour. We note that the changes in ranges o ∆ (ratio o in-

and- out degree) to retroactively classiy nodes as a producer, wholesaler and retailer in

Pautasso et al. did attempt to include this spectrum o trading behaviour, however with

a view constrained to the grower/producer, wholesaler and retailer section o trade [70].

Our interest is in how plant pests and diseases spread via domestic trade alone, and so

our modelling approach diverges rom network models incorporating spatial spread on a

landscape such as in Harwood et al. [46]. There is, to the best o our knowledge, no exist-

ing research that models the entire network o domestic plant trade or outlines all o the

individuals involved in the plant trade industry. This is primarily due to the lack o data

with enough detail to conduct these investigations.

Our ultimate goal is to construct a network which is compatible with the SI model con-

structed in Chapter 4. The rst step in our modelling approach is to characterise the

nodes. To this end, we investigate the sales data o plant nurseries to identiy all o the

dierent groups o people that buy plants in the UK. Then we look at the proportions o

each nursery’s sales towards these groups to understand how nurseries trade in the network.

From this, we identiy multiple patterns that describe how nurseries distribute their sales

to nodes in the network. I we know how the proportion o a nursery’s out-going edges
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are distributed, we can determine how edges are assigned with a pre-specied number o

customers (out-degree). From these observed patterns, it is immediate that modelling the

connections between the groups o nodes, in accordance with these patterns, requires a

novel network construction approach.

This method o construction allows or a network model with parameter sets describing:

the initial distribution o seller and trader nodes, in-degree/out-degree distribution pa-

rameters and consignment size distribution parameters. In conjunction with this method,

available data and existing literature, researchers can construct a model trade network

or analysis. This method o network construction can create the landscape or which a

researcher can use to urther elucidate data requirements. Unlike other methods to con-

struct a network, this method is not tied to an assumed structure as is with the methods

to construct scale-ree networks or random graphs. This is also one o the ew methods

which will model weighted trade networks and is generalised or many varieties o node

categorisations. A similar approach, the weighted stochastic block model, has been used to

construct weighted networks, sampling rom exponential distributions [147]. Our process

aims to logically construct a model network rom node categories, characterised by trading

behaviour inerred rom data analysis, existing literature and inormed assumptions.

2.2 Methods

In this section, we describe our methodology to construct a weighted trade network. We

start with dening the nodes and edges in the network and then describe our approach to

node subcategorisation, modelling node out-degrees/in-degrees and modelling edge weights.

We then describe in detail our algorithm or constructing the network.

When constructing any model network, it is crucial to rst dene what the nodes and the

edges between them represent. Once this is established, the next steps urther characterise

the nodes according to their eatures; or example, nodes may be labelled depending on

their role within the network or edges may be assigned directions/weights. All o these
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details will depend on the system being modelled and what type o analysis is being con-

ducted on the network. Our interest is in modelling trade networks, and thereore in the

ollowing we will reer exclusively to this type o network. The networks built using this

model are all weakly-connected by construction.

2.2.1 Node classifcation

We begin our model description by characterising nodes, i.e., agents in the network. In a

general trade network, we can identiy three types o nodes based on the trading behaviour

o the agents they represent. In act, we can categorise nodes as sellers, who solely sell

goods to other nodes, traders, who buy rom sellers and other traders and sell to others, and

buyers, who exclusively purchase rom other nodes in the network [70]. This classication

on nodes naturally induces a hierarchy between them, which we schematically represent in

Figure 2.1. In the gure, the arrows represent the fow o goods. The nodes at the top o

the hierarchy do not buy rom anyone in the network, meaning either these nodes produce

the goods they sell or buy rom outside the network. Similarly, the nodes at the bottom

do not sell to anyone in the network, meaning they either sell outside the network or use

the goods in some other way.

Figure 2.1. Schematic depiction o the hierarchy in trade networks.
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2.2.2 Edge classifcation

Now that nodes have been classied, we move on to describing the edges in our network

model. An edge between nodes in a trade network typically represents a trading relation-

ship between those nodes, with the direction indicating the selling o goods rom one node

to another. A weight may also be assigned to the edges; this can be used to represent,

or instance, the quantity o goods exchanged, the value o the transaction or the physical

distance between nodes. Going orward, edges in our model network will represent selling

transactions. Edges originate rom the node selling the goods and point to the node pur-

chasing them. The weight o each edge represents the quantity o products sold, which we

will reer to as consignment size.

2.2.3 Node categorisation

So ar, we have categorised nodes depending on where they sit in the trade hierarchy.

Nodes are either sellers, traders or buyers. This classication induces a partition o V , the

set o nodes in the network. We represent this partition by V = V (s) ∪ V (t) ∪ V (b). These

sets can then partition urther to account or subcategories:

V (s) =

ns∪

i=1

V
(s)
i , V (t) =

nt∪

i=1

V
(t)
i , V (b) =

nb∪

i=1

V
(b)
i 

The nodes in subcategory v ∈ V are thereore denoted N v
1 , N

v
2 ,    , N

v
v.

These subcategories can be dened based on any criterion which can distinguish between

dierent sellers, traders and buyers. Some examples o distinguishing characteristics or

subcategories are the ratio o in-going to out-going links, the ratio o in-strength/out-

strength, or qualitatively distinct customer demographics.
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Defnition 2.2.1 (customer demographic). Let v be a node subcategory. The customer

demographic Dv(ω) o node ω in subcategory v is:

Dv(ω) = (pt1 ,    , ptnt
, pb1 ,    , pbnb

),

where

pi ∈ [0, 1], or all i ∈ t1,    , tnt , b1,    , bnb
,

and
nt∑

i=1

pti +

nb∑

i=1

pbi = 1

In this chapter, we subcategorise nodes based on their customer demographics. However,

the model easily generalises to situations where the nodes are subcategorised according to

other criteria.

We proceed as ollows, starting at the bottom o the trading hierarchy; c., Figure 2.1.

Since we are subcategorising nodes based on their customer demographic and since buy-

ers do not have customers by denition o our model, buyer nodes can be subcategorised

ollowing any criterion meaningul to the individual researcher. Some examples would be

subcategorising buyers based on how the product is used, geographic location, volume o

goods bought or distinct distribution o suppliers. Moving on to seller and trader nodes,

an in-depth analysis o sales data can reveal qualitatively dierent distributions o cus-

tomer groups. The precision in what constitutes a meaningully dierent distribution o

customers depends on the quality o data available. The result o this analysis is what

inorms the subcategorisation o nodes in the seller and trader categories. We now have

subcategories o our seller, trader and buyer nodes.

Each seller and trader subcategory V (s)
1 ,    , V

(s)
ns , V

(t)
1 ,    , V

(t)
nt  has an associated cus-

tomer demographic, each denoted as Ds1 ,    ,Dsns ,Dt1 ,    ,Dtnt. These customer de-

mographics can take many dierent orms, varying in complexity. We now describe a

couple o examples. A simple example would be a node subcategory v, whose nodes only
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sell to one specic trader subcategory V
(t)
1 . Nodes ω in this subcategory v would then have

a customer demographic o the orm Dv(ω) = pt1 ,    , pbnb
 = 1, 0,    , 0. Customer

demographics can also be stochastic, to allow variation amongst nodes in a subcategory.

An example o a variable customer demographic would be i, or nodes in subcategory v ∈
V (s)

1 ,    , V
(s)
ns , V

(t)
1 ,    , V

(t)
nt , more than 50% o their customers consisted o nodes rom

subcategory V
(b)
1 and an equal proportion to all other buyer subcategories. In this example,

nodes in subcategory v do not sell to traders. Then, the customer demographic or nodes

ω ∈ v would be Dv(ω) = pt1 ,    , pb1 , pb2    , pbnb
 = 0,    , X, 1−X

nb−1 ,
1−X
nb−1 ,    ,

1−X
nb−1,

where X is a uniorm random variable such that X ∼ U [05, 1]. We conclude this section

with an illustrative example.
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Illustrated example: Customer demographics

Suppose that nodes in a trade network can be classied in such a way that subcategories

consists o two sellers V (s)
1 , V

(s)
2 , two traders V (t)

1 , V
(t)
2  and two buyers V (b)

1 , V
(b)
2 .

In this example we will ocus on the customer demographic o seller subcategory V
(s)
1 .

In Figure 2.2 is an example where the rst node o V
(s)
1 , which we denote by N s1

1 ,

has an out-degree o 5, or illustrative purposes. In this example, N s1
1 ∈ V

(s)
1 has a

customer demographic Ds1(N s1
1 ) = (pt1 , pt2 , pb1 , pb2) = (04, 02, 02, 02). This is shown

in the histogram, where the x-axis represents each seller and trader node subcategory

and the y-axis represents the proportion o out-going links V
(s)
1 nodes assign to other

node subcategories. The customer demographic displayed above inorms how these links

should be distributed. This is then realised in the network by the grey node assigning

2 links to V
(t)
1 nodes (blue) and one link to nodes in V

(t)
2 (red), V (b)

1 (green) and V
(b)
2

(yellow).

Figure 2.2. Depiction o how customer demographics correspond to the assignment o links in
the network, in an example o a node with an out-degree o 5 and customer demographic
Ds1(N s1

1 ), displayed in the histogram.
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2.2.4 Out-degree modelling

The next step in our modelling process is to describe how the out-degrees o nodes should

be modelled. Indeed, the customer demographic does not give us any insight in this re-

gard, it simply tells us, once we know what the out-degree o a node should be, how to

distribute the edges. Recall that the out-degree or a node is dened to be the total num-

ber o out-going links stemming rom that node, or, in other words, the total number o

unique customers a seller/trader has. We will again make use o subcategories and assume

that nodes in the same seller/trader subcategory have out-degrees modelled rom the same

distribution. These distributions will be denoted by (Ks1
out,    ,K

sns
out ,Kt1

out,    ,K
tnt
out).

In practice, modelling the out-degree distribution or each seller and trader subcategory re-

quires data on the number o customers that sellers and traders have in a given time-rame.

For out-degree distributions, a discrete (or discretised) positive distribution is required, o

which there are many options to choose rom. Furthermore, to reject unrealistic values,

this distribution will be truncated. Indeed, or a seller to be included in the network, it

has to perorm at least one sale and thus there is an imposed lower bound o an out-degree

o 1. Out-degrees are also truncated rom above or two reasons: rst, to reject unrealistic

values, and second, to reject assigning more edges than there can exist in the network.
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Illustrated example: Out-degree distribution

Suppose that the out-degree distribution or the node subcategory V
(s)
1 , Ks1

out is

described by a negative binomial distribution [148]. This means Ks1
out ∼ NB(µ,σ2),

with probability mass unction P (Ks1
out = k) =

k−1+ µ2

σ2−µ

k


(σ

2−µ
σ2 )k( µ

σ2 )
µ2

σ2−µ . Thus, the

negative binomial distribution Ks1
out, can be modelled with the parameters mean, µ, and

variance σ2 (Figure 2.3).

In Figure 2.3 we display a ew instances o this distribution or varying values o µ and

σ2. The distribution will need to be truncated in order to ensure that generated values

stay within an appropriate range. The lower truncation is set to 1 because this is the

minimum number o customers a seller must have in order to be included in the network.

The upper truncation, or this example has been chosen to be 400, and represents

an upper bound on the maximum number o customers a node rom V
(s)
1 can have.

Vertical dashed lines are used in Figure 2.3 to represent this truncation which restricts

the simulated values to within [1, 400]. For a given µ and σ2, nodes in the subcategory

V
(s)
1 will be assigned out-degrees, simulated rom this truncated distribution.

Figure 2.3. An example o a truncated negative binomial distribution and the eect that the
two parameters the mean dµ and variance σ2 have on the shape o the curve. Changes in µ
translate the position o the distribution peak (σ2 = 400). Changes in σ2 alter the shape o the
distribution. The vertical dashed lines represent the points o truncation.
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2.2.5 In-degree modelling

Now that we have successully modelled the out-degrees, we move on to describing how

in-degrees should be modelled. The in-degree describes how many nodes a given node buys

rom. It is worth pointing out that in-degree modelling will only be needed or traders and

buyers, since sellers do not buy rom anyone within the network by construction. In-degrees

can be modelled in a similar way as out-degrees, by simulating rom given distributions

(Kt1
in,    ,K

bnb
in ). In-degree distributions must also generate discrete, positive values simi-

larly to out-degree distributions. In act, these distributions should generate a minimum

value o 1, given that, by design, traders and buyers in the network must buy rom someone.

There will also be constraints to in-degrees regarding an upper truncation, since nodes can-

not be assigned an in-degree larger than V (s)+ V (t). There may be urther constraints to
the maximum number o suppliers a node can have, which is idiosyncratic to the network

analysed.

2.2.6 Edge weight modelling

Let us begin this subsection by recalling that, in our model, an edge between nodes rep-

resents a sale o goods, with the direction o the edge describing the movement o goods,

out-going rom the agent selling and in-going to the agent buying. We can urther asso-

ciate a weight to this edge to model metrics o interest such as the quantity o goods in

the transaction or the monetary value o the transaction. We could also use some custom

metric to indicate the strength o the trading relationship, such as number o transactions

over a given time period. Throughout this chapter, weights will represent the quantity o

goods in a given transaction. We now describe how such weights will be assigned to edges

in our model.

Intuitively, we can imagine each seller/trader being assigned a capacity (a total amount

o stock). Then, each out-going link leaving these nodes will be assigned a weight, with

the constraint that the weights o all edges leaving a given node must add up to, or at

minimum not exceed, the node’s capacity. Approaching edge weights this way thus re-
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quires modelling capacities, which in turn requires large quantities o data regarding sales

volumes. However, obtaining access to such large volume o data may not always be pos-

sible, and thus other approaches need to be explored. Instead o ocusing on the capacity

o sellers and traders, we will ocus on distributions modelling the consignment sizes o

nodes in the buyer and trader categories. These distributions will also be inormed by

data; however, the cost o acquiring sucient data is lower with this approach because

many sales rom traders and buyers can be collected rom a smaller number o sellers. To

be suitable or consignment sizes, a distribution must be positive, discrete/discretised and

truncated to reject extreme values. The smallest lower truncation must be 1, as this is the

smallest quantity o goods that can be bought. Consignment size distributions or traders

and buyers are denoted by Ct1 ,    , Cbnb. Note that we assume that customer consign-

ment size is independent o which seller or trader the customer buys their goods rom. I

there is enough data, this assumption can be avoided by assigning each node subcategory

multiple consignment size distributions associated with trade rom each o their suppliers.

This chapter will, however, continue with the assumption o independence. We conclude

this section with an illustrated example. In the next section, we will describe how all o

the ideas and concepts introduced so ar piece together in our trade network modelling

algorithm.
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Illustrated example: Consignment size distribution

Suppose that the quantity o goods that nodes rom subcategory V
(b)
1 buy is described

by a truncated log-normal distribution Cb1 [149]. This means that the natural log o Cb1

ollows a normal distribution, log(Cb1) ∼ N (µ̄, σ̄2), where µ̄, σ̄ represent the mean and

standard deviation or log(Cb1). We parameterise this distribution by the untransormed

mean (µ) and standard deviation (σ), to make interpretation o values simpler. Thus,

we calculate the log-normal by log

µ

√
1 + σ2µ2


and the variance as log


1 + σ2µ2


.

The distribution in this example is truncated such that the exponential o the distribution

takes values between 1 and 100. Displayed in Figure 2.4 is the exponential o the log-

normal distribution. The x-axis represents the consignment size and the y-axis represents

the probability or an in-going edge to a node in subcategory V
(b)
1 to be assigned that

consignment size. In Figure 2.4 we display a ew instances o this truncated distribution

or varying parameters µ and σ. For a given µ and σ, nodes rom subcategory V
(b)
1

have their in-going edges weighted by a randomly generated value rom this truncated

distribution. We discretise these values to represent a quantity o trade.

Figure 2.4. An example o the exponential o a truncated log-normal distribution, with the
parameters µ and σ. The vertical dashed lines represent the points o truncation. Changes in µ
translate the distribution. Changes in σ alter the shape o the distribution.
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2.3 Network construction algorithm

We can now model all aspects o the network. Nodes have been dened to be mem-

bers o subcategories, V (s)
1 ,    , V

(s)
ns , V

(t)
1 ,   V

(t)
nt , V

(b)
1 ,    , V

(b)
nb , in a trade hierarchy o

sellers, traders and buyers; see Figure 2.1. The parameters o the network have been

described with customer demographics Ds1 ,    ,Dsns ,Dt1 ,    ,Dtnt, out-degree distribu-
tions Ks1

out,    ,K
sns
out ,Kt1

out,    ,K
tnt
out, in-degree distributions Kt1

in,    ,K
tnt
in ,Kb1

in ,    ,K
bnb
in 

and consignment-size distributions Ct1 ,    , Cbnb. In this section, we describe the process

o constructing a network rom the aorementioned parameters.

Firstly, the number o nodes in each seller subcategory are required as an initial condition.

Hence, to initialise the network construction, we have the parameters V s1 ,    , V sns .
This given number o sellers and their associated customer demographics and out-degrees,

will determine all other nodes and edges, thus generating the rest o the network. For the

sake o simplicity, in the ollowing we will assume there is no cross trading between traders.

I we drop this assumption, the number o traders V t1 ,    , V tnt  must also be specied
as an initial condition to the network construction. We remark that the number o trader

and buyer nodes can also be specied, thus constraining the network urther to achieve a

desired result. We now move on to how the trader nodes are generated.

Nodes rom the seller subcategories N (s1)
1 ,    , N

(s1)
s1 ,    , N

(sns )
1 ,    , N

(sns )
sns  ) will be as-

signed an associated out-degree and a customer demographic generated rom Ks1
out,    ,K

sns
out

and Ds1 ,    ,Dsns, respectively. The customer demographic o a seller node gives the

proportion o all out-going edges that must be assigned to traders rom that node. Multi-

plying each o these proportions by the seller node’s out-degree will give the total number

o edges that must be assigned to traders rom sellers in the network. We now begin to add

trader nodes to the network, with an iterative process that occurs or every trader node

subcategory. Starting with subcategory V
(t)
1 , suppose that there is an x number o edges

assigned rom seller nodes to nodes in the subcategory V
(t)
1 , where x > 0. We generate

the rst node o V (t)
1 , N t1

1 , and assign this node an in-degree, simulated rom the in-degree

distribution Kt1
in, where this distribution is truncated above by the minimum between x
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and all other upper truncations on this distribution. We then generate another node rom

V
(t)
1 , N t1

2 , with an in-degree simulated rom Kt1
in where the upper truncation is now the

minimum between x minus the in-degree or N t1
1 and all other upper truncations or this

distribution. We iteratively add nodes rom subcategory V
(t)
1 , where or each additional

node, the distribution Kt1
in is truncated rom above by the minimum between x minus the

sum o the in-degrees o existing V
(t)
1 nodes, and all other upper truncations. This process

continues until the total number o edges rom sellers to V
(t)
1 nodes is equal to the sum

o the in-degrees rom V
(t)
1 nodes. We apply this process or all trader node subcategories.

Once these processes have been conducted, we will know the total number o trader nodes

in the network.

Remark: Suppose that there exists trade among trader nodes in the network. The customer

demographics combined with the out-degrees impose an upper bound on each trader’s out-

degree, i.e., a trader cannot sell to more nodes in a particular group than the total amount

o nodes which are in that group. Thus an upper bound or each trader node’s out-degree

will be the total number o traders divided by the individual trader’s proportion o links

assigned to other traders, minus one, since a node cannot sell to itsel. I the total number

o traders or buyers is also specied, this too will contribute to the imposed upper bound

in the same way. Out-degrees can be controlled urther by adding more upper bounds

based on literature or data.

So ar we have described how to model the number o seller and trader nodes in the net-

work, each with associated in-degree, out-degree and customer demographic. The number

o edges to be assigned to trader nodes has also been calculated. The next step is to de-

scribe how to calculate the number o buyer nodes and the number o edges to be assigned

to buyers rom sellers and traders.

We proceed in a similar way as we did with generating the trader nodes. From the seller

and trader nodes, we calculate the number o edges to be assigned to buyers by multiply-

ing each seller and trader nodes out-degree by the proportion o edges to be assigned to

buyers (rom the respective customer demographics). We calculate the total number o
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buyer nodes rom the given buyer nodes’ in-degree distribution in the same iterative way

which we used to calculate the number o traders. Thus the total number o nodes in the

network is determined.

Now that all nodes have been created, the next step is to assign the edges in the network.

Edges must be assigned in the network to be consistent with each node’s customer demo-

graphic, in-degree and out-degree. The novel method o assigning edges to achieve this

consistency is described below and illustrated in Figure 2.5.

Firstly, or each node subcategory, we compile a paired lists o nodes, entitled the “To”

and “From” list. A “To” list, consists o nodes in a node subcategory, repeated or every

assigned in-going link the node has. The associated “From” list consists o nodes, repeated

or every out-going link they have assigned to that node subcategory. The “From” and

“To” lists together represent where links start and end regarding sales to a particular node

subcategory. We construct these pairs o lists or each node subcategory.

For each o these pairs o lists, we conduct an iterative process to connect nodes via edges.

Recall that connections in a network can be represented in an edge-list, a list o all pairs

o nodes that are connected by an edge. We construct the edge list or the network by

going through each “From” and “To” list pair, assigning edges with an iterative process.

For illustrative purposes, we will present an edge-list in a table with two columns where

the rst column represents the start o the edge and the second column represents where

the edge ends. Additional columns can be added to represent attributes associated with a

given edge. We add a third column to represent the size o the consignment (edge weight).

We describe the iterative process below and in Figure 2.5.

1. Select one o the available “From” and “To” list pairs (top let box o Figure 2.5);

2. Select the rst element in the “From” list and choose at random an element rom the

“To” list. This selection represents the assignment o an edge between these nodes

(top right box o Figure 2.5). I the rst element is repeated in the “From” list, the
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selection rom the “To” list must remove previous selections as candidates in the

random selection process in the “To” list. I an element is in both the “From” and

“To” lists, then it must also be removed as a candidate.

3. These entries are then removed rom the “From” and “To” lists and added to the

edge-list (bottom let box o Figure 2.5).

4. Repeat steps 2 and 3 until the currently chosen pair o “From” and “To” lists are

empty (bottom right box o Figure 2.5).

5. Repeat step 1 until all “From” and “To” lists are empty, resulting in an edge-list

with all links assigned corresponding to customer demographics, in-degrees and out-

degrees.

Figure 2.5. Schematic representation o the edge assignment process.

In the nal step to the network construction, we assign weights to the edges, representing

the volume o trade or each consignment. We add a third column to the edge-list, and

ll the entries in this column by generating edge weights rom the associated consignment

size distributions o the nodes in the second column o the edge-list.
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Thus we have constructed a model network which describes: who is in the network, how

big the network is, how edges are distributed and the heterogeneous distribution o con-

signments within the network. This concludes the network construction process. From

the steps outlined in this section, this method results in a model with 10 parameter sets,

summarised in Table 2.1.

Table 2.1. A summary o the parameter sets in the model.

Parameter Description

ns, nt, nb The number o seller, trader and buyer subcategories

V s1 ,    , V sns  Distribution o Seller node subcategories*

Ks1
out,    ,K

sns
out Out-degree distributions or seller subcategories

Kt1
out,    ,K

tnt
out Out-degree distributions or trader subcategories

Kt1
in,    ,K

tnt
in  In-degree distributions or trader subcategories

Kb1
in ,    ,K

bnb
in  In-degree distributions or buyer subcategories

Ct1 ,    , Ctnt Consignment size distributions or trader subcategories

Cb1 ,    , Cbnb Consignment size distributions or buyer subcategories

Ds1 ,    ,Dsns Customer demographics or seller subcategories

Dt1 ,    ,Dtnt Customer demographics or trader subcategories
* It is optional to also include the distribution o trader and/or buyer node classes to achieve a desired

result.
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2.3.1 Illustrated example: Model summary

Concluding the running example, we summarise what inormation/parameters are

associated with each node subcategory (Figure 2.6). Each node subcategory is displayed

with its vertical position refecting its place in the trading hierarchy, the nodes which

only sell at the top, those which only buy at the bottom and nodes which both buy and

sell in between.

Node groups which sell are dened by their qualitatively distinct customer demographic,

illustrated within the histograms (a). A customer demographic is dened by the

discrete distribution o the proportions o links a seller or trader assigns to other

node subcategories. Figure 2.6 shows that the node subcategory V
(s)
1 (grey) is dened

by selling most o its goods to the trader subcategory V
(t)
1 (blue), whereas V

(s)
2

(orange) is dened by selling most o its goods equally amongst the node subcategories

V
(t)
2 , V

(b)
1 , V

(b)
2 (red, green and blue).

Seller and trader node subcategories (V (s)
1 , V

(s)
2 , V

(t)
1 , V

(t)
2 ) have an associated out-degree

distribution, as sketched in subgraphs (b) with the y-axis representing probability and

the x-axis representing quantity. The only constraints on these distributions is that they

are conned to positive and discrete values. In the example o Figure 2.6, V (s)
1 ollows

a negative binomial distribution, V (s)
2 has a bi-modal distribution o a small and large

number o customers. The out-degree distribution o V (t)
1 ollows a uniorm distribution

and the out-degree o V (t)
2 ollows a fat distribution with a medium amount o customers.

The nodes rom trader and buyer subcategories have an associated distribution

rom which their consignment sizes are drawn rom. Again, these distributions

can take any shape, examples o which are sketched in subgraphs (c) within Fig-

ure 2.6. The x-axis and y-axis represent quantity and probability respectively. In

this example, we see nodes rom V
(t)
1 order primarily “medium sized” consignments,

V
(t)
2 order many small and ew larger consignments. The consignments or V

(b)
1 ollow

a log-normal distribution and V
(b)
2 consignments are drawn rom a bi-modal distribution.
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Trader and buyer nodes have associated in-degree distributions, sketched in subgraphs

(d) which represent the distribution that describes how many suppliers a node in that

subcategory has. For example, the in-degree or V
(t)
1 is characterised by a power-law

distribution and V
(t)
2 by a uni-modal distribution with high variance. The in-degrees or

V
(b)
1 are governed by a bi-modal distribution o a small and large number o suppliers,

whereas V
(b)
2 node in-degrees are heavily skewed to the right indicating a primarily

smaller number o suppliers.

Figure 2.6. Summary o the model and what parameters are associated with each node
subcategory (V (s)

1 , V
(s)
2 , V

(t)
1 , V

(t)
2 , V

(b)
1 , V

(b)
2 ). The trade hierarchy represents a spectrum with

sellers at the top and buyers at the bottom. Each node category is split into two subcategories,
with their respective sub-gures displayed below the given node. (a) The node subcategory’s
customer demographic. (b) The distribution to simulate out-degrees. (c) The consignment size
distribution. (d) The in-degree distribution.
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2.4 Discussion

In this chapter, we have developed and generalised a phenomenological method o network

construction, which allows or the construction o both weighted and unweighted, hierar-

chical trade networks with parameterised node categories. Importantly, this method poses

a ramework or which researchers can ollow to construct model trade networks and in-

orm data requirements. This method is constructed rom the basic premise that nodes

in a trade network can be split into three groups (sellers, traders and buyers), similar to

Pautasso et al. [70]. However, we partition these groups into ns, nt and nb subcategories

allowing or a more detailed labelling o nodes. Adding labels to nodes in networks helps

in applying results rom network analysis to the real-world systems they are modelling

by making it easier to identiy nodes o interest. In this section we discuss some o the

novelties and limitations to the network construction method we have developed.

The customer demographics and out-degree distributions in our model logically correspond

to the way a business can be characterised by their clientele. The in-degree and consign-

ment size distributions are also an appropriate way to describe the demand that customer

groups have or the goods they buy. In a network, the number o nodes, out-going links

and in-going links are all inter-dependent. For instance, in a directed network o n nodes,

there can be a maximum n(n− 1) number o edges (assuming no sel-edges). In a similar

way, the initial number o seller/trader nodes, in combination with the customer demo-

graphics, impose constraints on node in- and out-degrees, which is a signicant novelty to

this method.

With the characterisation o nodes into subcategories, edge weights can be modelled by

consignment size distributions. Attributing subcategories to nodes allows us to use relevant

inormation that would not usually be included in network models such as the diering

demands o customer groups. The decision o modelling consignment sizes rom the per-

spective o the customer as opposed to the supplier allows or a lesser requirement o sales

data. A detailed data set rom a ew sellers/traders could give enough sales data to model

consignment size distributions or each trader and seller subcategory. This is be signi-
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cantly easier to achieve than collecting detailed sales data rom many sellers/traders to

model distributions or how their consignment sizes vary.

There is a limitation in how to dene the seller and trader node subcategories based on

customer demographics. For example, in a market where all sellers/traders have a distinct

customer distribution, this method will not perorm well due to the data requirements

necessary to model this accurately. Furthermore, with each added node subcategory in the

model, there are an additional 2 to 5 model parameters required. With insucient data,

there will be too many parameters without estimates, making model analysis exceedingly

complex. These are important actors that a researcher would need to consider when im-

plementing this step o node subcategorisation. This method works best when there are a

small number o node subcategories.

The network construction presented in this chapter does not explicitly model how buyer

and trader nodes (with an in-degree larger than 1) choose who they buy rom, due to

the added complexity o balancing the out-degrees, customer demographics and in-degrees

alongside an independently dened supplier demographic. Similarly to customer demo-

graphics, supplier demographics would be dened as discrete distributions o seller and

trader node subcategories that describe how a node rom a subcategory’s in-going links are

distributed. Adding this eature to the model would be a clear improvement.

An assessment o this method o network construction’s perormance or a known real

world trade network is required. This method does provide a ramework or constructing

a trade network (with or without weights) and helps make clear the data requirements.

However this method does not supersede the construction o a model network inormed by

a signicant quantity o data.
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Chapter 3

Application o Network

Construction to Domestic Plant

Trade

In this chapter, we use the method outlined in Chapter 2, in combination with the data

we received rom FERA to construct a model trade network to represent annual domestic

plant trade in the UK. From our data analysis, we nd that consignment sizes ollow log-

normal distributions, dierent or each node group, and that nurseries can be characterised

by our dierent patterns o trading behaviour. We conduct a sensitivity analysis o the

model parameters, using several network centrality measures to assess the importance o

nodes. From our analysis, we nd that customers do not signicantly contribute to net-

work structure and that edge weights change the relative signicance o nodes. We nd

that the network is robust to small changes in market structure, with signicant changes

only seen in the extremes.

3.1 Introduction

As we mention in Chapter 1, the domestic trade o plants contributes to the spread o pests

and diseases, making biosecurity eorts dicult. Very little is known about the structure

o domestic trade; thus, it is our goal to construct a model trade network or the domestic
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trade o plants in the UK. We generalise and present our network construction approach

in Chapter 2, and in this chapter we use this method alongside our sales data to construct

our model plant trade network. We analyse this model network using several network cen-

trality measures, which are detailed in Section 3.3.4. These centrality measures are used

to understand which node subcategories are most central in the network, in an epidemio-

logical context. Our analysis comes in three parts, varying the parameters aecting node

subcategory consignment sizes, out-degrees, and the initial distribution o nurseries. We

assess how each node subcategory’s centrality scores change as we vary the parameters. In

the next section we describe the data and the analysis we conduct to inorm our model.

3.2 Data sets and orms

We have been provided by FERA two sets o UK plant nursery sales data. Both o these

data sets were collected by DEFRA rom the nurseries directly. The data was then cleaned

and organised by FERA. We were then securely transerred the data or the purpose o

this research. We keep the identity o the plant nurseries that gave the data anonymous.

Each o these data sets are described in this section.

The rst, smaller set o sales data consists o plant sales rom one UK plant nursery over the

course o 2013 to 2015 and purchases rom 2013 to 2016. Each row in the data represents

a sale or purchase, and the columns include the delivery address (or supplier code), deliv-

ery date, plant species and quantity. For the data on purchases, the country the plants

were bought rom is also specied. This data consists o 40 dierent genera o plants,

23, 772 sales and 11, 523 purchases. Note that the delivery addresses in this data are not

anonymised, which is relevant or the next data set.

The second data set is larger, consisting o sales data rom our dierent plant nurseries,

which we label N1, N2, N3, N4. The data or nurseries N1 and N3 include purchasing

data and all nurseries supplied data o sales. The data rom the our nurseries span dier-

ent time rames: N1 sales span all o the year 2017, N2 sales cover the end o 2016 to the
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middle o 2018, N3 sales start rom the middle o 2013 to the middle o 2016 and N4 sales

span the end o 2016 to the third quarter o 2018. This data includes 186, 846 transactions

and over 900 dierent genera o plants. In the larger data set, the rows indicate individual

purchases/sales. The columns in this data set include: “Data source”, “Genus”, “Date”,

“Receiver location”, “Supplier location”, “Variety”, “Quantity”, “Supplier Postcode”, “Re-

ceiver Postcode”. We note that this larger data set includes the smaller data set (Nursery

N3) but is stored in a dierent ormat. In the larger data set, the receiver locations or

nursery N3 are anonymised, however the receiver locations are included in the smaller data

set. Hence, we merge the two data sets by matching the sales rom the smaller set into

the N3 sales in the larger set. We achieved this by matching the dates, quantities, receiver

post-codes and genus across data sets. In the instance where a sale was included in the

smaller data set but not present in the larger data set, the sale would be added to the

merged data set. In our analysis, we only consider the nursery sales and not the purchases.

Thereore, when reerring to the sales data in this chapter, we will be reerring to only the

sales in the merged data set. We show an anonymised example o the data structure in

Figure 3.1. For clarity, we highlight the columns we used in green.

Figure 3.1. Screenshot o an anonymised example o the sales data rom our plant nurseries
supplied by FERA. The columns highlighted in green are those we used in our analysis.

The total number o nurseries in the UK is unknown, however there is an estimate in the

existing literature. The Ornamental Horticulture Roundtable Group published a report

analysing the 2019 Horticulture sector skills survey, which includes estimates o the total

number o businesses in various sub-sectors o the Ornamental Horticultural sector [150].

In their estimations, there are 630 businesses in the UK in the Ornamental sub-sector and

6525 businesses in the “Retail” sub-sector. We use these estimates or the total number o

nurseries and retailers in the UK. We can then use this to scale the consignment size and

out-degree distribution parameters. We use this data to assume that or a given number o
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nurseries in the network, there are 10 times more retailers. Data regarding plant nursery

annual sales and number o customers would allow or constructing a network where the

sizes and out-degrees o nurseries are modelled rom the supply perspective.

This concludes the section describing the data we used to inorm our model. In the next

section we will describe our method o network construction, with specic reerence to how

we used our data to inorm model parameters.

3.3 Methods

In this section we present our method o constructing a model network to represent domes-

tic plant trade in the UK. Our ocus in this section is to highlight how we have used our

data with the methodology described in Chapter 2. We proceed in a similar ashion by rst

dening the nodes, then the edges, out-degrees, in-degrees, edge weights and a summary

o the algorithm.

3.3.1 Node classifcation

There is a low resolution understanding as to who the buyers and sellers are in the net-

work. Prior to any data analysis, we assume that plant trade consists o plant nurseries

that trade amongst each other, retailers (such as garden centres) and then customers. We

use the trade data to make a more detailed and inormed characterisation o the nodes in

the network.

Plants are used in a variety o ways, rom industry use such as construction, reducing noise

pollution and arming, to decorative use by shops and the general public. Hence, there is

a logical case to make that dierent plant species will have dierent trade networks, thus

making the plant species an important actor to consider in the analysis. Given that the

ocus o our research is on the spread o plant pests and diseases, we chose to subset the

data and ocus on a select ew hosts. We chose the host relevant to OPM (Oak) because
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it is a simple one host pest and is an example o a recently introduced pest to the UK via

trade [35]. OPM is ar rom the only threat to Oak trees, there are 90 total pests that are

a threat to Oak trees, identied rom the UK plant health risk register [1]. Thus, we ocus

our analysis on the subset o the sales data that includes Quercus in the genus o the plant,

consisting o 2, 643 sales. We repeat the data analysis or the our hosts o main concern

to the UK o Xylella astidiosa: Lavender, Olive, Prunus and Rosemary [151]. In the data,

these ve hosts altogether consist o approximately 18, 000 sales.

Our rst step is to construct the node subcategories rom the existing customers in the sales

data. We identiy customers through a manual process which involved using Google search

and Google maps with the customer descriptions and postcodes. Customer descriptions

or a sale, when given, take the orm o a name or a business name (usually identied by

the company name ending with “ltd.”). In the cases where we cannot identiy a customer

clearly, we assign the sale into an “Unknown” category. We rst assign each customer in

the data to a preliminary subcategory (e.g., Farm, Contractor, Landscaper, member o the

public, Garden centre, Nursery, etc.). Regarding the spread o inectious diseases on this

network, our dominant concern is the urther transportation o the plant. Thereore, we

distill these into simpler subcategories: Commercial, Consumer, Nursery and Retailer. We

dene these subcategories to be simple and broad, yet identiy how the plant is used once

bought.

Thus our node subcategories so ar in the network consist o two buyers (Commercial and

Consumer), and two traders (Nursery and Retailer). We do not consider a seller subcat-

egory in this network. We dene nodes in the Commercial subcategory to be businesses

where the plants they bought are planted elsewhere, such as landscapers and contractors.

Nodes in the Consumer subcategory represent customers where the plants they bought

are planted on their premises, such as parks, arms and private gardens. Nodes in the Re-

tailer subcategory are dened to be businesses other than plant nurseries that sell plants.

This subcategory primarily consists o garden centres and hardware stores. Nodes in the

Nursery subcategory simply represent plant nurseries in the UK. However, rom the sales
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data, we investigate the Nursery subcategory urther or qualitatively distinct customer

demographics, as discussed in the previous chapter.

We nd that or each plant species (Oak, Lavender, Olive, Prunus and Rosemary), each

nursery (N1, N2, N3, N4) sells the majority (> 50%) o their plants to one customer sub-

category, an example is shown in Figure 3.2. In this gure, the proportion o sales o Oak

plants to customer groups are shown or each nursery (N1, N2, N3, N4). We measure both

in terms o consignment (subgraph A) and by volume o plants (subgraph B). In most

cases, the predominant customer group still holds across these dierent measures. This

pattern breaks between these measures in the sales o Prunus or nursery N3 (not shown).

The dierences between these measures suggest the existence o dierences between the

consignment size distributions o customer groups.

Figure 3.2. Customer demographics displayed or Oak sales o the our nurseries rom our data
(N1, N2, N3, N4). A. Measuring sales by consignment (number o orders).B. Measuring sales by
quantity (total number o plants sold).

Since the sample size o the data is relatively small, we assume that nurseries dominated

by the custom o retailers exist, despite not being seen in the data. Hence we dene the

node subcategories, with traders NCom, NCons, NNur, NRet,Ret and buyers Com,Cons.
The node subcategories are dened in Table 3.1.
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Table 3.1. Table o node subcategories alongside their description and role in the trade hierarchy
as described in Chapter 2.
Node subcategory Description Role

Com Commercial customers in a proession where the plants they buy will be planted elsewhere Buyer

as part o their business, e.g., Landscapers, Forestry, Contractors.

Cons Non-commercial customers, where the plants they buy, they will Buyer

plant on their premises, e.g., A park, arm, or private garden.

NCom Plant nurseries in the UK which sell mostly (> 50%) to commercial customers Trader

NCons Plant nurseries in the UK which sell mostly (> 50%) to consumers Trader

NNur Plant nurseries in the UK which sell mostly (> 50%) to nurseries Trader

NRet Plant nurseries in the UK which sell mostly (> 50%) to retailers Trader

Ret Retailers other than nurseries who will then sell the plants, e.g., Garden Centres. Trader

With this characterisation o nodes in the network, trading behaviour is heterogeneous,

with nurseries specialising their sales towards one specic customer subcategory, shown in

Figure 3.3 by the solid black edge (a major customer). There are also dotted edges to other

node subcategories (minor customers).

Figure 3.3. Network schematic summarising node subcategories and network structure. Major
customer - designate more than 50% o outgoing edges to those node subcatgories. Minor
customer - designate all other out-going links to those node subcategories.

65



Without access to retailer sales data, we assume that retailers sell only to the consumer

group. The rationale behind this assumption is that retailers mostly consist o garden

centres, which tend to sell to the general public. We would need access to sales data rom

garden centres to assess how appropriate this assumption is.

This concludes the subsection on dening node subcategories. In the next subsection, we

move on to modelling the edges in the network.

3.3.2 Edge classifcation

As in Chapter 2, an edge between nodes in this network represents the sale o plants, with

the direction o the edge indicating the movement o the plants. In this section, the distri-

butions or modelled out-degrees, in-degrees and consignment sizes are presented.

Out-degree modelling

As discussed in the previous chapter, an out-degree distribution is required to be positive

and the values generated rom the distribution must be integers. Hence, we choose the neg-

ative binomial distribution to model the out-degrees or all trader node subcategories [148].

As in the illustrated example in Chapter 2, we parameterise the negative binomial distribu-

tions by the mean and variance, which we denote dµ, dσ2 . We truncate these distributions

to a minimum value o 1, and a maximum value o 3, 000. In the data, the maximum

number o customers a nursery has in a given year is approximately 1, 500, so we choose

an arbitrary value o 3, 000 or the upper truncation.

For simplicity and due to lack o data, we assume that the out-degrees or all trader nodes

(NCom, NCons, NNur, NRet,Ret) to be rom the same distribution. Hence, the out-degree

distribution or trader nodes and the associated parameters is denoted by Kout(dµ, dσ2).
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In-degree modelling

We model the in-degrees in this network rom several assumptions. Firstly, nodes in the

commercial and consumer node subcategories have an in-degree o 1. Secondly, trader

nodes have no preerence when assigning links to nodes other than the preerence pre-

scribed by their customer demographic. And nally, there can be no repeated edges.

Edge-weight modelling

For each species in the data, we plot the distribution o consignment sizes by customer

group: Commercial, Consumer, Nursery and Retailer. Figure 3.4 shows the distributions

or Oak sales on a log10 scale. We can see that the distributions or all customer groups

are skewed and heavy-tailed. The consignment sizes are highly varied, spanning 5 orders o

magnitude. The commercial and consumer consignment distributions are similarly shaped,

with mostly smaller shipments (a peak at 0) and ew large consignments. The nursery

and retailer consignment distributions consist o much larger average consignment sizes

(a peak at 3) with ewer small consignments. The distribution o consignment sizes per

group is consistent with what we would expect rom each group; the commercial and con-

sumer groups (buyers) buying smaller consignments than the nursery and retailer groups

(traders).
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Figure 3.4. Distribution o consignment sizes or sales in Oak, separating or each customer
group. We use the sales rom all nurseries in our data N1, N2, N3, N4.

We test the skewness o these distributions against Boxcox transormations or λ ∈ (−4, 4)

using increments o 01 [152]. We nd that the values o λ which minimise skewness were

close to zero (or Oak sales, minimum skewness is achieved at −03,−01, 02, 01 or com-

mercial, consumer, nursery and retailer groups respectively). An optimal λ o 0 indicates a

log-normal distribution. Thus, we model consignments with an assumed log-normal distri-

bution, parameterised by a mean and standard deviation. From the data and Figure 3.4,

the truncations or each node subcategory can be given. Again, the minimum value or all

distributions will be 1. For commercial and consumer nodes, the upper truncation will be

104 and or nurseries and retailers, it will be 105.

We are unable to classiy the purchases rom other nurseries (identied in the data) into one

o our subcategories (NCom, NCons, NNur, NRet). It is or this reason that consignment sizes

or nurseries are to be modelled rom one distribution. Hence, we denote the consignment

size distributions

CCom(yCom

µ , yCom
σ ), CCons(y

Cons
µ , yCons

σ ), CNur(y
Nur
µ , yNur

σ ), CRet(y
Ret
µ , yRet

σ )

.
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This concludes the section on modelling edges and edge weights. In the next section we

outline our algorithm to construct the network.

Network construction algorithm

We use the same steps outlined in Chapter 2 to construct the trade network. Firstly, we

input a distribution o nurseries and retailers (NCom, NCons, NNur, NRet, Ret), where
the nodes each have an assigned out-degree and customer demographic.

Recalling that nursery subcategories are dened by assigning more than 50% o their out-

going links to one customer group (either commercial, consumer, nursery or retailer), we

describe the method o constructing the customer demographics or nursery nodes in the

ollowing way. The proportion o a nursery’s links to its dominant customer, p1, is sam-

pled rom a uniorm distribution between 05 and 1. The second proportion, p2, is then

sampled rom a uniorm distribution between 0 and (1 − p1). p3 is sampled uniormly

between 0 and (1− p1 − p2). In order or all the proportions to sum to 1, p4 is determined,

given by (1 − p1 − p2 − p3). The proportions p2, p3 and p4 are assigned randomly to the

non-dominant customers or each nursery. This results in each nursery having a unique

customer demographic that ollows the rule we identied in our data analysis. The retailer

customer demographic is simple as we assume that retailer nodes sell only to consumers.

As in Chapter 2, our initial distribution o nurseries and retailers, customer demographics

and out-degrees all impose an upper bound on each nursery’s out-degree, i.e., a nursery

cannot sell to more nurseries than there exists in the network. We also generate retailer

out-degrees this way, with simply the initial upper bound o 3, 000 because the number

o consumers is not pre-specied. We assume that the commercial and consumer nodes

have an in-degree o 1, the number o these nodes are calculated by the total number o

outgoing links to commercial and consumer nodes rom the nurseries and retailers.
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We then implement the edges assignment process as in the previous chapter. Assigning

edges uniormly does not guarantee that all retailer nodes will have an in-going edge. We as-

sume that the domestic trade network consists o one weakly-connected component, hence

any retailers at the end o the edge assignment process with an in-degree o 0, are removed

rom the network, along with their associated customers.

Finally, we assign weights to the edges in the network. For each edge, we generate edge

weights via the buyers associated consignment size distribution and add these weights to

the third column o the edge-list.

Thus, we have our model which constructs a plant trade network where we input the

number o nurseries and retailers alongside out-degree and consignment distribution pa-

rameters.

3.3.3 Model summary and parameter values

As previously stated, the network represents the annual trade o a given plant species. In

our analysis we use as a baseline the data estimates or the trade o Oak plants. Thus,

or each o the nurseries in the data, we calculate the total number o unique customers

per year. Similarly, or the consignment sizes, we calculate the mean and variance o the

sale quantity o Oak plants or commercial, consumer, nurseries and retailers. We show a

summary o the model parameters and our baseline values in Table 3.2.

A network o 632 nurseries (158 nurseries o each type) and 6320 retailers, results in a

network o approximately 25 million nodes and edges. The calculations we use in our

analysis do not perorm well with very large networks, especially directed networks where

the adjacency matrices are asymmetric. Thus, we analyse a smaller network with 160

total nurseries, with 40 nurseries o each type as a base case (Table 3.2). We make the

simpliying assumption that the number o retailers in the network is 10 times the number

o nurseries, as the base case. The estimates or the out-degree and consignment size distri-

butions come rom the ull-sized network with an estimated number o 630 nurseries and
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6525 retailers. Hence, we scale the means and standard deviations in our model by 160
630 and

the variances by

160
630

2. We show this explicitly in Table 3.2. The network simulations

using these parameters result in networks o approximately 150000 nodes and edges, which

are small enough to conduct our analysis.

Table 3.2. Parameters or network construction and base case values considered.
Parameter Description Baseline value Source

NCom Number o commercial dominated nurseries 40 Simpliying Assumption

NCons Number o consumer dominated nurseries 40 Simpliying Assumption

NNur Number o nursery dominated nurseries 40 Simpliying Assumption

NRet Number o retailer dominated nurseries 40 Simpliying Assumption

Ret Number o retailers 1, 600 Assumption

dout
µ Nursery and retailer out-degree mean 380× (160630) Scaled data estimate

dout
σ2 Nursery and retailer out-degree variance 114, 587× (160630)2 Scaled data estimate

yCom
µ Commercial consignment-size mean 79× (160630) Scaled data estimate

yCom
σ Commercial consignment-size standard deviation 297× (160630) Scaled data estimate

yCons
µ Consumer consignment-size mean 185× (160630) Scaled data estimate

yCons
σ Consumer consignment-size standard deviation 822× (160630) Scaled data estimate

yNur
µ Nursery consignment-size mean 1844× (160630) Scaled data estimate

yNur
σ Nursery consignment-size standard deviation 3567× (160630) Scaled data estimate

yRet
µ Retailer consignment-size mean 3497× (160630) Scaled data estimate

yRet
σ Retailer consignment-size standard deviation 9588× (160630) Scaled data estimate

3.3.4 Methods o analysis

In this section we describe the methods used to analyse the network structure. As men-

tioned in Chapter 1, network centrality measures help quantiy how nodes contribute to the

structure o a network. In this chapter, we choose a range o network centrality measures

rom an epidemiological perspective. The centrality measures we use include: out-degree,

in-degree, out-strength, in-strength, betweenness, hub and authority scores. We reer back

to Chapter 1 or the denitions o these measures.

We look at the in-degree because this is a simple measure which gives an indication o a

node’s level o exposure to sources o inection. The out-degree is similarly chosen to give

an indication o a node’s ability to directly inect others. The in- and out- strength have
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similar interpretations to in- and out- degree and are a means o comparing the eect that

edge weights have in the model.

The betweenness centrality score measures how oten a node appears in the shortest paths

amongst all pairs o nodes and thus gives an indication o how much a node raises the

rate o disease transmission across the entire network. I we remove a node with high

betweenness, this increases the distance that a pest/disease is required to travel in order to

spread throughout the network. Thus, quarantines or trade restrictions are more eective

at nodes with high betweenness scores. In weighted networks, edge weights are interpreted

as distances or this measure. As edge weights in our network represent the volume o

trade, a larger amount o trade is more indicative to a closer relationship between nodes.

Thus, or the betweenness measure, we transorm edge weights to their reciprocal so that

more plants traded between nodes represents a closer relationship. We also consider the

unweighted version o this measure.

The hub and authority scores assign importance to nodes based on the importance o their

neighbours. Hubs scores are tied to out-going edges and authority scores with in-going

edges, thus the hubs act as important sources o inection and authorities as destinations.

Thus, investigation into the nodes with the highest hubs and authority scores can give us

insight into the signicant pathways o disease spread. We consider unweighted versions

o both the hub and authority scores.

To give an intuition o the overall network structure, we visualise a smaller version o the

network. We then continue our analysis with the baseline parameter values in Table 3.2.

To urther understand the structure o our network, we simulate 100 networks and calcu-

late the out-degree and in-degree or each node subcategory.

Furthermore, in our analysis, we want to see how changing the model parameters aects

the network structure; in particular, the average infuence on network structure between

node subcategories. Due to the small data set this model is based on and the variability

in each simulation o the network, we ocus on identiying general patterns through aver-
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aging many network simulations. We order our analysis into three parts: the distribution

o nurseries (NCom, NCons, NNur, NRet), the nursery and retailer degree distribution

parameters (doutµ , doutσ2 ), and the consignment size distribution parameters (yCom
µ , yCom

σ ,

yCons
µ , yCons

σ , yNur
µ , yNur

σ , yRet
µ , yRet

σ ).

The distribution o nurseries

We expect the distribution o nurseries (NCom, NCons, NNur, NRet) to be dierent

depending on the plant species traded, as each species will move within its own trade net-

work. It is logical to assume that the trade networks or some species will vary greatly or

plant species which serve dierent unctions, such as horticultural and ornamental plants.

Hence, in our analysis, we consider a xed total number o nurseries (160) and retailers

(1, 600) and analyse dierent initial distributions o nurseries (NCom, NCons, NNur, NRet) to

investigate how this may change the network structure. The distribution o nurseries can

be described by a weak composition o our nursery subcategories (a sum o our non-

negative integers). This corresponds to

160+4−1

4−1


= 708, 561 distributions o nurseries to

investigate, i we consider all possible combinations. To simpliy and make the analysis

computationally easible, we ocus on specic scenarios.

S1: Uniorm distribution (NCom, NCons, NNur, NRet) = (40, 40, 40, 40)

S2: Predominantly Commercial (NCom, NCons, NNur, NRet) = (80, 20, 40, 20)

S3: Predominantly Consumer (NCom, NCons, NNur, NRet) = (20, 50, 40, 50)

S4: NCom dominant (NCom, NCons, NNur, NRet) = (130, 10, 10, 10)

S5: NCons dominant (NCom, NCons, NNur, NRet) = (10, 130, 10, 10)

S6: NNur dominant (NCom, NCons, NNur, NRet) = (10, 10, 130, 10)

S7: NRet dominant (NCom, NCons, NNur, NRet) = (10, 10, 10, 130)
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As a baseline (S1), we consider a uniorm distribution o nurseries as we have no data to

estimate the true distribution. This allows us to see the eect o changing the distribution

o nurseries more clearly.

In S2, we look at a nursery distribution or the trade o commercial plants, e.g., horti-

cultural plants. In this network, most nurseries will sell predominantly to commercial

customers (in this instance hal o all nurseries, chosen arbitrarily). With this increase in

NCom, to keep the total number o nurseries constant, other nurseries must decrease. We

assume that a plant used commercially has less non-commercial demand, and so NCons
and NRet will decrease accordingly. We do not change NNur in this scenario.

In S3, we look at plants traded in a predominantly consumer (non-commercial) network.

Similarly as in scenario 2, this translates to an increase in NCons and NRet and a respec-

tive decrease in NCom. Again, we do not change NNur.

For scenarios 4− 7, we look at extreme cases where nursery distributions consist o mostly

one nursery type. In these scenarios, we arbitrarily set the nursery type o interest to 130

and all others to 10. We investigate these extremes to see how signicant changes to the

core o inner trading amongst nurseries aects the overall network structure.

We note that the nal number o retailers in the network will not necessarily equal the

initially specied 1600, due to the deleting o retailer nodes with an in-degree o zero.

Throughout these scenarios, the nal number o retailer nodes may change as a result o

the change in the distribution o nurseries.

Given that other network models on plant trade do not include the customers, or each

scenario, we also calculate network measures on the network consisting o only the nurs-

eries and retailers, to see whether there are any signicant dierences when including the

customers in the trade network. For each o the scenarios, the values o all other parame-

ters are set to baseline as in Table 3.2.
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The analysis or each scenario is conducted by simulating the network 100 times and or

each simulation, taking the mean o the centrality score or each node subcategory. In this

set o analysis, we consider all aorementioned centrality measures. We present the 100

means or each node subcategory in box plots.

Out-degree mean and variance

The out-degree distribution Kout(doutµ , doutσ2 ) models the out-degrees or all nursery and re-

tailer nodes. Hence changing the parameters doutµ and doutσ2 will have an eect on all node

types in the network. By varying the out-degree parameters, we can assess how changes

in network density aect which node groups are most infuential.

The maximum out-degree in the data was 1500, which gives us some indication o what

ranges to consider when varying the out-degree parameters or a ull-sized network. The

network we consider is roughly a quarter o the size (160 nurseries), and so or our analysis,

we consider doutµ in the sequence (100, 200, , 1000) and or doutσ2 , we consider the sequence

(2000, 4000, , 20000).

Given that commercial and consumer nodes have an assumed in-degree o 1 and an out-

degree o 0, the centrality scores o these nodes are not o interest. However, the commercial

and consumer nodes may have some eect on the centrality scores o the nurseries and re-

tailers. Hence such nodes are retained in the network when calculating these scores. Thus,

we constrain our analysis to the nursery and retailer node subcategories.

We calculate the mean network centrality measure or each nursery and retailer node sub-

category. We repeat this or 100 network simulations, to address the variability in each

network simulation or the same parameter set. Thereore, or each parameter combination,

we calculate the average network centrality score per node subcategory 100 times and then

we average over these 100 values. Thus, we calculate this average or each combination

o parameter values or doutµ and doutσ2 , and or each centrality measure. We present our
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results in the orm o heatmaps. In this set o analysis, we do not consider the in-degree,

out-degree, in-strength and out-strength measures.

Customer consignment distributions

The nal set o parameters we analyse are the customer consignment distribution parame-

ters yCom
µ , yCom

σ , yCons
µ , yCons

σ , yNur
µ , yNur

σ , yRet
µ , yRet

σ . We are interested in how changes in

customer demand aect the network structure. The range o values we consider are given

in Table 3.3. We construct heatmaps in our analysis or the customer consignment distribu-

tion parameters in the same way as the out-degree distribution parameters (Section 3.3.4).

We do not calculate unweighted betweenness, hub and authority measures or variations

in the consignment size parameters because dierences are only seen when considering

edge weights. In addition, we do not consider the in-degree, out-degree, in-strength and

out-strength measures.

Table 3.3. Parameters that model customer sales distributions and ranges o values considered.
Parameter Description Baseline value Range considered

yCom
µ Commercial consignment-size mean 79× (160630) (10, 100, 200, , 1000)

yCom
σ Commercial consignment-size standard deviation 297× (160630) (100, 1000, 1500, , 5000)

yCons
µ Consumer consignment-size mean 185× (160630) (10, 100, 200, , 1000)

yCons
σ Consumer consignment-size standard deviation 822× (160630) (100, 1000, 1500, , 5000)

yNur
µ Nursery consignment-size mean 1, 844× (160630) (10, 100, 200, , 1000)

yNur
σ Nursery consignment-size standard deviation 3567× (160630) (100, 1000, 1500, , 5000)

yRet
µ Retailer consignment-size mean 3497× (160630) (10, 100, 200, , 1000)

yRet
σ Retailer consignment-size standard deviation 9588× (160630) (100, 1000, 1500, , 5000)

3.4 Results

In this section, we present the results rom the analysis on our network model. We rst

show a smaller version o the trade network to visualise the network structure to gain an

intuition on the output o our model.
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We then show our analysis using our baseline parameter values. We analyse the out-degree

and in-degree distributions o the network and we present these distributions or each node

subcategory. We move on to our sensitivity analysis, changing the initial distribution o

nursery subcategories, the out-degree mean and variance or nursery and retailer nodes

and the consignment size distribution parameters.

3.4.1 Network structure

Network visualisation

To gain an intuition on how our network model is structured, we show in Figure 3.5 a

smaller version o the network with 32 nurseries, 8 o each nursery subcategory and 320

retailers. This network consists o 2, 500 nodes and edges and, with this visualisation, the

hierarchical structure o trade can be seen more clearly. We see that there is an inner core

o trading between nurseries at the centre, with trade expanding outwards to retailers, who

have their own set o customers. From a network o this size, we can see that this network

has a similar network topology to a tree.
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Figure 3.5. Visualisation o network or Oak trade with 32 nurseries and 320 retailers. Node
colour represents node subcategory. Edge colour corresponds to the selling node subcategory.

We then proceed with the network with parameter values as shown in Table 3.2.

Degree distributions

The out-degree distribution or each nursery and retailer subcategory or the 100 network

simulations is shown in Figure 3.6. From this gure we can see that all nurseries and

retailers have similar out-degree distributions, which is expected rom our modelling as-

sumptions. The peak o all nursery and retailer distributions occurs at 2, which is consistent

with our parameter values. We also see the eect o truncating the distributions or each

node subcategory. The out-degrees or NNur nodes are constrained the most and so in sub-

graph (c) we see this distribution has the smallest maximum out-degree o 26. Whereas,

the NCom, NCons and NRet nodes all have similar maximum out-degrees o 28 and 3 (sub-
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graphs (a), (b), (d)). The retailer nodes have the longest tail due to the only constraint

on their out-degrees being the initial upper truncation o 347 (3000 on a log10 scale) to

reject extreme values. The short right tail at approximately 31 also indicates that our

initial upper truncation was appropriately chosen to not cause bunching up at this value.

From these graphs we see that nurseries and retailers on average can directly inect 100

other nodes but a superspreader has the potential to directly inect up to 1000 other nodes.

Figure 3.6. Out-degree distribution shown per node subcategory (excluding commercial and
consumer nodes) or 100 network simulations. The parameter values used are shown in Table 3.2.

We see the in-degree distribution or each nursery and retailer subcategory in Figure 3.7.

Nursery nodes (subgraphs (a)−(d)) all have the same distribution, with in-degrees between

08 and 17 and a peak value at approximately 14. Thus nurseries have the potential to be

directly inected by between 10 to 30 other nurseries. Retailer nodes have relatively smaller

in-degrees which all in the range o 0 to 1, with a peak at around 05. These results suggest

that retailers are at a considerably lower risk o exposure to disease compared to nurseries.
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Figure 3.7. In-degree distribution shown per nursery and retailer node subcategory or 100
network simulations. The parameters or the network constructions are shown in Table 3.2.

3.4.2 The distribution o nurseries

We expect this analysis to give insight into the eect that a change in the plant trade

market may have on network structure. As described in the methods o analysis section,

we consider seven dierent scenarios o nursery subcategory distributions (NCom, NCons,
NNur, NRet). For each scenario, we see how network measures change or each node sub-

category. We note that all o the gures in this section are displayed on a log10(1 + data)

scale.
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We calculate centrality measures or both the network with and without customers (com-

mercial and consumer nodes). For all centrality measures and scenarios (except out-degree),

the relative signicance o each node subcategory does not change when using the network

subset. For brevity, we show an example below in Figure 3.8 or scenario 1 and the weighted

betweenness measure. All comparisons or the other scenarios and centrality measures can

be ound in Appendix B.

Figure 3.8. Box plots o the average betweenness scores per node subcategory or 100 networks.
Scores are shown on a log10(1 + data) scale. The plot on the let shows betweenness scores
calculated on the entire network, the plot on the right shows betweenness scores calculated on the
subset o the network with only nurseries and retailers. We note the dierences in the scales o
the y-axes. Parameters values used are shown in Table 3.2.

Removing the customer nodes changes the relative out-degrees o nursery and retailer

nodes; see Figure 3.9. In the ull network, all nurseries and retailers have similar scores,

except NNur nodes with smaller out-degrees. When removing the customers, NNur and

NRet nodes have the largest out-degree scores, as expected. I using out-degree to iner
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which nodes have the greatest outbreak potential, the networks which ignore customers

and only consider the nursery and retail sector may misinterpret those most central nodes.

It is interesting however, that or all other centrality measures we use, we see no dierence

in relative node signicance when removing customers.

Figure 3.9. Box plots o the average out-degree score per node subcategory or 100 networks.
Scores are shown on a log10(1 + data) scale. The plot on the let shows out-degree scores
calculated on the entire network, the plot on the right shows out-degree scores calculated on the
subset o the network with only nurseries and retailers. We note the dierences in the scales o
the y-axes. Parameters values used are shown in Table 3.2.

These are important dierences to highlight given that other model plant trade networks

do not include customers [2, 46, 70, 88, 89, 106]. All subsequent gures in this section are

shown or centrality measures calculated on the entire network.
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Considering the average weighted betweenness scores across the seven scenarios in Fig-

ure 3.10, retailers consistently have low scores which do not vary across scenarios, and so

are omitted. Nurseries across scenarios have mostly similar betweenness, with NNur nodes

achieving the highest scores, NRet nodes the second highest and NCom and NCons nodes

consistently joint with the lowest scores. However, in scenario 6 (networks primarily con-

sisting o NNur nodes), the node subcategory with the highest betweenness score changes

to NRet. In scenario 7 (networks primarily consisting o NNur nodes), the scores or NRet

decrease and become equal to the scores or NCom and NCons. With the baseline model

parameters (Table 3.2), the network structure regarding average weighted betweenness

scores appears robust to changes in nursery distribution, with qualitative dierences only

seen when the network consists o mostlyNNur orNRet nurseries (scenario 6 and scenario 7).

We then consider the average unweighted betweenness scores (Figure 3.11). In compari-

son with the weighted betweenness measure, the node subcategory with the highest score

changes rom NNur to NRet. Otherwise, the prevailing pattern remains the same, with NNur

and NRet nodes having higher betweenness scores than NCom and NCons. In scenarios 1

to 5, NNur and NRet nodes are mostly similar in their betweenness scores, and signicant

dierences only occur in scenarios 6 and 7. In scenario 6 (mostly NNur nurseries), the

betweenness scores or NNur nurseries decrease to similar levels as NCom and NCons nodes.

In scenario 7 (mostly NRet nurseries), the unweighted betweenness scores or NRet decrease

such that NNur nurseries have the highest scores.

This analysis shows that trade restrictions/quarantines would be most eective at NNur

nodes. We see that, using the unweighted betweenness measure, this changes to NRet

nodes. Thus, depending on how the volume o trade aects disease transmission, we see

dierent recommended control measures. These results are robust to small changes in the

market, and do not change unless there is a much larger number o NNur or NRet nodes

(scenarios 6 and 7). Interestingly, rom both measures and all scenarios, nurseries are a

better choice than retailers to ocus trade restrictions or quarantines.
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Figure 3.10. Weighted betweenness scores shown across all 7 considered scenarios, with data
transormed by log10(1 + data). Each box plot shows the distribution o 100 average betweenness
scores per nursery node subcategory. Parameters values used are shown in Table 3.2.
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Figure 3.11. The unweighted implementation o the betweenness centrality measure, shown
across all 7 considered scenarios. The scores are transormed by log10(1 + data). Each box plot
shows the distribution o 100 average unweighted betweenness scores per nursery node
subcategory. Parameters values used are shown in Table 3.2.
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The average in-strength scores show a consistent pattern or scenarios 1 through 6, with all

nurseries having similar scores and retailers attaining the lowest scores (Figure 3.12). The

relative average in-strength between nursery node subcategories does not change across sce-

narios because nursery subcategories, by model assumption, have no preerence to which

nursery subcategory they sell to. It is thereore understandable that nurseries have a larger

average in-strength when there are more links being assigned to nurseries (scenario 6). In

scenario 7, retailer nodes average in-strength becomes similar to nurseries. This is expected

in this scenario as the majority o nurseries in the network are subcategory NRet. Thus, in

scenario 7, organising inspections at retailers as well as nurseries should be a consideration,

given their increased signicance.
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Figure 3.12. In-strength scores shown across all 7 considered scenarios, with data transormed
by log10(1 + data). Each box plot shows the distribution o 100 average in-strength scores per
nursery and retailer subcategory. Parameters values used are shown in Table 3.2.

The in-degree scores show mostly the same pattern as we observe with the out-strength

scores. The only dierence we see is that the in-degree scores or retailers do not equal

nursery scores in scenario 7. Thereore, without access to the edge weights in the network,
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we would not capture retailer nodes’ increased signicance in markets dominated by NRet

nodes and thus misplace judgement on where to ocus inspections.

Figure 3.13. In-degree scores shown across all 7 considered scenarios, with data transormed by
log10(1 + data). Each box plot shows the distribution o 100 average in-degree scores per nursery
and retailer subcategory. Parameters values used are shown in Table 3.2.
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Out-strength scores show a consistent pattern across all 7 scenarios (Figure 3.14). Retailers

have the lowest out-strength scores which do not vary across scenarios. NRet nodes have

the largest average out-strength and NNur nodes have slightly lower out-strength. NCom

and NCons nodes have similar out-strength scores, lower than NNur nodes. This is a direct

result rom the consignment size parameters and the out-degree distribution parameters

seen in Table 3.2.
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Figure 3.14. Out-strength scores shown across all 7 considered scenarios, with data transormed
by log10(1 + data). Each box plot shows the distribution o 100 average out-strength scores per
nursery and retailer subcategory. Parameters values used are shown in Table 3.2.

The relative out-degree scores across nurseries and retailers are also robust to changes in

nursery scenario (Figure 3.15). Out-degrees or all nursery and retailer node subcategories

are similar, with NNur scores slightly smaller. This is a direct result rom our assump-
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tion that out-degrees or these nodes are modelled rom the same distribution. Without

knowledge o the out-strength scores, we would iner that all nurseries and retailers are o

equal capability to inect other nodes. Combining the results rom the out-strength and

out-degree measures (Figure 3.14, Figure 3.15) we see that NRet and NNur nodes pose the

greatest spreading potential.
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Figure 3.15. Out-degree scores shown across all 7 considered scenarios, with data transormed
by log10(1 + data). Each box plot shows the distribution o 100 average out-degree scores per
nursery and retailer subcategory. Parameters values used are shown in Table 3.2.

The average weighted hub scores across all scenarios ollow the same pattern (Figure 3.16).

We remove the retailer nodes in this analysis or clarity. Scores across scenarios are in the

range between 0 and 01. We see that NRet nodes have the highest average hub scores
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with the most variability whereas all other node subcategories hub scores are close to 0.

In scenarios 4, 5 and 6, the lower quartile or the NRet scores decrease to overlap with all

other nurseries’ scores. In scenarios with ewer NRet nodes than baseline (scenarios 2, 4, 5

and 6) we see the variance in the average hub scores or NRet increases signicantly. When

the number o NNur nodes increases in scenario 6, we see the hub scores or these nodes

increase. Thus, rom this graph we see that disease control measures would best be ocused

on NRet nodes.

The average weighted authority scores (Figure 3.17) show that all nurseries and retailers

have similar scores across the rst ve scenarios. The relative signicance o node subcat-

egories change in scenario 7, where retailers have the highest authority scores. In scenario

6 (mainly NNur), we see a tenold increase in all scores. The authority scores imply that

or most scenarios, there is no preerred node subcategory to ocus inspections or disease.

In markets dominated by NRet nurseries, there is a slight preerence to retailer nodes or

inspections.

For the average unweighted hub scores (Figure 3.18), NNur nodes have the highest scores

in all scenarios. In scenarios 1 − 6 we see that all other nurseries have equal scores. In

scenario 7, NRet and NNur nodes are the largest hubs in the network. In scenario 4 (mainly

NCom) and scenario 5 (mainly NCons), the lower quartile drops to 0 to intersect with the

scores or other nurseries. Thus, when not considering edge weights, we see a change rom

NRet to NNur nurseries as the recommended node subcategory to target control measures.

For the average unweighted authority scores, we see that all nurseries have equally higher

scores than retailers across all scenarios (Figure 3.19). This is the opposite result to the

weighted authority scores. For scenario 4 and 5, the lower quartile or nursery scores de-

creases to 0, intersecting with the retailer nodes scores. The relative scores across node

subcategories do not change as the scenario changes. We only see changes in the scores

when considering a composition o nurseries consisting o mostly one type (scenarios 4 and
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5). The unweighted hub and authority scores suggest that, when ignoring edge weights,

the most signicant pathway or spread is rom NNur nodes to all nursery nodes.

Figure 3.16. Average weighted hub scores shown across all 7 considered scenarios, with data
transormed by log10(1 + data).
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Figure 3.17. Average weighted authority scores shown across all 7 considered scenarios, with
data transormed by log10(1 + data). Note the dierences in the scale o the y-axis or dierent
scenarios.

95



Figure 3.18. Average unweighted hub scores per nursery group with data transormed by
log10(1 + data).
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Figure 3.19. Average unweighted authority scores per nursery group with data transormed by
log10(1 + data).

This concludes our analysis o the distribution o nursery subcategories. In the next section,

we vary the out-degree parameters and see how this aects network structure.
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3.4.3 Out-degree mean and variance

Recalling that in our model, we have one distribution that governs the out-degrees or

nurseries and retailers Kout(doutµ , doutσ2 ). In this section we analyse the average centrality

score per node subcategory or varying the out-degree mean and variance together. Our

methods and the values we consider are as described in Section 3.3.4.

The average authority scores or each nursery node subcategory do not change signicantly

as doutµ and doutσ2 increase (Figure 3.20). The scores are very small, so we take a log10 trans-

orm or clarity. The transormed authority scores or nurseries range rom −3 to −1.

Retailer nodes have the highest authority scores on average. Authority scores increase as

doutµ increases or all nodes. Authority scores show no dependence on doutσ2 or nurseries and

retailers, or doutµ > 200. For low out-degree mean values (250 and below), nurseries and

retailers have similar authority scores. When out-degree mean increases rom 500, retailer

nodes scores become larger than nursery nodes.

The average hub scores or each node subcategory are displayed on a log10 scale (Fig-

ure 3.21), ranging between −4 and 0. Retailer nodes have consistently low, constant

values and so are not displayed. We see that that scores are independent to changes in

doutσ2 or doutµ > 200. Increases in hub scores are seen through increases in doutµ or all nodes.

The node subcategory with the highest hub scores is NRet. We see the hub scores or NRet

are also the most responsive to increases in the out-degree mean.

A combination o actors contributes to retailers having the largest authority scores: retail-

ers consignment mean is the largest (Table 3.2) and there are more retailer than nursery

nodes. Retailers having the largest authority scores implies that the node with the biggest

hub scores is NRet, as seen in Figure 3.21. For larger out-degree means, NRet nodes become

more highly connected to retailers which have higher authority scores. This results in NRet

nodes getting larger hub scores.
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Figure 3.20. Average weighted authority score per node subcategory or 100 networks, computed
or a grid o out-degree mean doutµ and variance doutσ2 values. The values shown are on a log10 scale.

Figure 3.21. Average weighted hub score per node subcategory or 100 networks, computed or a
grid o out-degree mean doutµ and variance doutσ2 values. The values shown are on a log10 scale.

When considering the unweighted measures, we see a change in which node subcategories

have the largest hub and authority scores (Figure 3.22 and Figure 3.23). The unweighted

authority scores or all nursery subcategories show a similar nonlinear pattern, achieving

increasing average authority scores either side o an out-degree mean o 500, reaching a

peak score o 1. Increases in out-degree variance or nursery groups has a small, decreasing
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eect on average authority scores or most values o out-degree mean. Average authority

scores or retailers have the smallest values. These scores are independent to changes in

out-degree variance and increase with out-degree mean. Due to there being 160 nurseries

in the network, out-degree mean values rom 300 result in almost all nurseries connected

to each other and high authority scores.

Each nursery node’s maximum out-degree is limited rom above by the total number o

nurseries minus one, divided by the proportion o sales directed to nurseries. The average

proportion o edges assigned to nurseries in the network is 25%, thereore the average nurs-

ery’s maximum out-degree is 159025 = 636. Hence or out-degree mean values greater

than 700, in Figure 3.22 we see retailer nodes average authority score starts to increase, as

nursery nodes are on average not becoming more connected whereas retailer nodes are.

For the unweighted hub scores in Figure 3.23, a nonlinear relationship emerges between

out-degree mean and hub scores or the nursery subcategories. NCom and NCons nodes

receive low hub scores, which peak at an out-degree mean o 700 and decrease with devia-

tions rom that value. For all nursery groups, increases in out-degree variance have a weak

decreasing eect on hub scores. NNur nodes achieve the largest scores, peaking at 1 when

dµ = 300 and dσ2 = 2000. Deviations rom these values result in lower hub scores or NNur

nodes. Unweighted hub scores or NRet nodes are independent to changes in out-degree

variance or dµ < 800. NRet scores increase with the out-degree mean, getting the highest

scores or dµ ≥ 700.

The nonlinear relationship between the unweighted hub scores and dµ or NNur nodes

emerges as a direct result o the denition o nursery subcategories. As the out-degree

mean increases, all nodes are more connected, and so NNur nodes become more connected

to well-connected nodes. However, NNur nodes only have 159 other nurseries to assign links

to and so by denition the least upper bound on their out-degrees is 320. Hence, out-degree

means greater than 320 only increases the connectivity o other nursery subcategories and

as a result NNur nodes become less connected by comparison, lowering their hub score.
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The results rom the hub and authority scores highlights that or larger and more dense net-

works, retailer nodes become increasingly the preerred node subcategory or inspections

and NRet nodes most preerred or control measures. For the unweighted case, all nurseries

remain the preerred choice or inspections as we vary network size and density. However,

network size appears to have a nonlinear eect on the preerred node subcategory choice

or control measures. For smaller networks, NNur nodes are the preerred choice, but as

networks get larger, this is replaced by NRet nodes.

Figure 3.22. Average unweighted authority score per node subcategory or 100 networks,
computed or a grid o out-degree mean doutµ and variance doutσ2 values.
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Figure 3.23. Average unweighted hub score per node subcategory or 100 networks, computed
or a grid o out-degree mean doutµ and variance doutσ2 values.

We show the average weighted betweenness scores or each node subcategory in Figure 3.24,

on a log10 scale. We see independence to changes in doutσ2 or each node subcategory. In-

creases in doutµ or all nodes results in increases o betweenness. The nodes with the largest

betweenness scores are NNur and NRet. For dµ > 700, the scores or NRet nodes become

the largest. Retailer nodes consistently have the smallest betweenness scores.
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Figure 3.24. Average weighted betweenness score per node subcategory or 100 networks,
computed or a grid o out-degree mean doutµ and variance doutσ2 values. Results are shown on a
log10 scale.

For the unweighted betweenness measure, we see the same pattern or NCom, NCons, NRet

and retailer nodes, with independence to out-degree variance (Figure 3.25). The scores or

NCom NCons and NNur are smaller than the weighted measure. For NNur nodes, the rela-

tionship between out-degree mean and unweighted betweenness is nonlinear, where scores

peak at an out-degree mean o 200 to 300 and out-degree variance o 2000 to 4000, though

this eect is small. This result again comes rom the previously mentioned maximum

out-degree o NNur nurseries. Most NNur nodes out-degrees do not change or dµ > 320,

resulting in NNur nodes appearing in ewer o the shortest paths.
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Figure 3.25. Average unweighted betweenness score per node subcategory or 100 networks,
computed or a grid o out-degree mean doutµ and variance doutσ2 values. Results are shown on a
log10 scale.

Thus, nurseries remain the preerred choice to ocus trade restrictions and quarantines com-

pared to retailers as the network changes in size and density, regardless o edge weights.

For a disease where the volume o trade is relevant, NNur and NRet nodes are the preerred

choice to ocus trade restrictions. This preerence increases or larger and more dense

networks. When trade volume is not relevant, or larger networks, there is a very strong

preerence to ocusing trade restrictions at NRet nodes.

This concludes our analysis on the out-degree parameters. In the next section we analyse

each pair o consignment size distribution parameters.

3.4.4 Customer consignment distributions

For each pair o consignment-size distribution parameters, we calculate centrality scores

or each nursery and retailer group. Details o our methods can be ound in Section 3.3.4.
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We note that changing the commercial and consumer consignment size parameters has an

insignicant eect on the centrality scores considered or nurseries and retailers, and so we

do not investigate those parameters urther.

We show the average authority scores or changes in nursery consignment size parameters,

on a log10 scale (Figure 3.26). Scores or all nursery types increase when both the nursery

consignment size mean and standard deviation increase. The reverse eect is seen or re-

tailer nodes as authority scores increase or smaller nursery mean and standard deviations.

Thus, as nursery nodes buy plants in larger quantities, they all become better candidates

or inspections.

We also show the average hub scores on a log10 scale (Figure 3.27). Average hub scores or

NCom and NCons nodes are small and do not vary signicantly or the nursery consignment

size parameters. We do not show the scores or retailer nodes because they are very close

to 0 and do not vary. For NNur nodes, the average hub scores increase or larger nursery

consignment size mean and standard deviation values. The scores or NRet nodes decrease

with increases in nursery consignment mean and standard deviation. As nursery consign-

ment size mean and standard deviation increase, the volume o plants that nurseries receive

increases, raising the hub score o nurseries. Because nurseries only receive links rom other

nurseries, this larger hub score aects the authority scores or all nurseries because these

nodes are receiving larger volumes o trade.

Thereore Figure 3.27 and Figure 3.26 show that when nursery consignments are small,

retailer and NRet nodes become preerred candidates or targeted inspections and control

measures, respectively. When nursery consignments are large, inspections should be tar-

geted at all nurseries and control measures at NNur and NRet nodes.
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Figure 3.26. Changes to each node subcategories average weighted authority score in response
to changes in the nursery consignment size mean and standard deviation parameters. Values are
shown on a log10 scale.

Figure 3.27. Changes to each node subcategories average weighted hub score in response to
changes in the nursery consignment size mean and standard deviation parameters. Values are
shown on a log10 scale.

The average betweenness scores (on a log10 scale) or all nursery types except NNur do not

change signicantly or the nursery consignment parameters considered (Figure 3.28). Re-

tailer scores do not change and so we remove these rom our gures or clarity. All nurseries

average betweenness scores are dependent on the nursery consignment size mean or values
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less than 300. As nursery consignment mean values increase above 300, the betweenness

scores become more dependent on the nursery consignment size standard deviation. NNur

nodes scores are the highest or most values considered. NRet nodes average betweenness

scores do not vary much and are the second highest or all values we consider. For very low

nursery consignment standard deviation and mean values above 200, NRet nodes become

the node subcategory with the highest average betweenness in the network as opposed to

NNur nodes.

Thus, or most values we consider, varying the consignment sizes o nurseries does not

change which nursery subcategory to target trade restrictions. These results suggest to

ocus trade restrictions/quarantines on NNur and NRet nurseries when the volume o trade

aects disease spread.

Figure 3.28. Changes to each node subcategories average weighted betweenness score in
response to changes in the nursery consignment size mean and standard deviation parameters.
Values are shown on a log10 scale.

Figure 3.29 shows the average authority scores or nurseries and retailers in response to

changes in retailer consignment size parameters, on a log10 scale. Scores or nursery sub-

categories show a nonlinear dependence on retailer consignment size mean and standard

deviation. For low retailer mean values (< 200), nursery scores are independent to retailer
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consignment standard deviation. For small retailer standard deviation (< 1000) nursery

scores become independent to changes in the retailer consignment size mean. Increases

in both retailer consignment mean and standard deviation result in decreased nursery

scores. As retailer mean increases, retailer scores increase and have a growing dependence

on retailer standard deviation. For larger retailer consignment mean values, increases in

the retailer standard deviation result in a decrease to all nursery and retailer authority

scores. Scores or all nursery and retailer nodes become similar or retailer standard devia-

tion greater than 2000. This also occurs or retailer consignment mean values close to 1000.

Figure 3.29. Changes to each node subcategories average weighted authority score in response
to changes in the retailer consignment size mean and standard deviation parameters. Values are
shown on a log10 scale.

Average hub scores or changes in retailer consignment size mean and standard deviation

do not vary or retailer nodes and so are not displayed Figure 3.30. Average hub scores or

NCom, NCons and NNur show the same relationship with changes in retailer consignment

size parameters as the average authority scores in Figure 3.29. NCom and NCons nodes show

lower average hub scores. Interestingly, NRet nodes hub scores show the same pattern as

retailer nodes authority scores. When retailer consignment standard deviation is below

2000, NNur nodes are consistently the largest hubs in the network, even when the retailer

consignment mean is greater than the nursery consignment mean o 500 (Table 3.2). For
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large values o retailer mean and standard deviation, NRet nodes become the largest hubs

in the network by a actor o 10. This result impacts which node type to ocus control

measures on.

Figure 3.30. Changes to each node subcategories average weighted hub score in response to
changes in the retailer consignment size mean and standard deviation parameters. Values are
shown on a log10 scale.

We thereore see that the retailer consignment size parameters can eect whether retailers

are good candidates or inspections and where to ocus control measures. We nd that i

retailer consignments have standard deviation greater than 2000, and are not very small

(greater than 200), then inspections should be at both nurseries and retailers, with control

measures targeted at NNur and NRet. This is also the case when retailer consignments are

on average very large. Otherwise, inspections at nurseries and control measures at NRet

nodes are preerred.

Betweenness scores do not vary or nurseries or retailers with changes to the retailer con-

signment parameters (Figure 3.31). NNur nodes are best or targeted trade restrictions,

ollowed closely by NRet nodes.
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Figure 3.31. Changes to each node subcategories average weighted betweenness score in
response to changes in the retailer consignment size mean and standard deviation parameters.

This concludes our sensitivity analysis. In the next section, we discuss our methodology

and results. We summarise what we have learned and highlight limitations to our approach.

3.5 Discussion

Our algorithm yields a directed and weighted network representing annual Oak trade in

the UK, where nurseries are characterised as specialising their sales towards one o our

groups: commercial customers, consumers, nurseries and retailers. We assume that out-

degrees ollow a negative binomial distribution and we nd that consignment sizes ollow

log-normal distributions which are dierent or nurseries, retailers and customers. The net-

work topology closely resembles a tree, with dense trading amongst nurseries and retailers

in the centre, branching out to customers. We analyse the network structure with several

weighted and unweighted centrality measures and vary network construction parameters

in this chapter.
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We nd in our analysis that edge weights aect which node subcategories are considered

most central to the network structure. For the unweighted measures, NNur nurseries are the

largest hubs, all nurseries are authorities and NRet nurseries have the highest betweenness.

When weights are considered, NRet nurseries become hubs, retailers become authorities

and NNur nurseries have the highest betweenness scores. Putting this in the context o

disease control, this corresponds to dierent choices in where to ocus control measures,

inspections and trade restrictions/quarantines respectively. These results highlight the im-

portance o modelling edge weights in trade networks because o the consequential changes

in the epidemiological relevance o nodes. Thus, depending on the pest or disease at hand,

it is important to determine i the volume o trade is relevant to spread as this will infuence

which nodes to ocus our biosecurity eorts.

Betweenness scores or retailers are consistently lower than nurseries through all three sets

o analysis, indicating that inter-nursery trading is more signicant to disease transmission

across the network. NNur and NRet nurseries consistently have the highest betweenness

scores in all o our analysis. Relative betweenness scores do not change in response to

changes in the out-degree parameters. Though we see in some extreme cases that nursery

consignment sizes can aect the relative betweenness scores o node subcategories, the con-

signment size parameters mostly do not have an eect. For the unweighted betweenness

scores, this only changes the node subcategory with the highest score rom NNur to NRet.

Thus, in a world o nite resources, targeting NNur and NRet nurseries with trade restric-

tions/quarantines would be most eective at reducing spread during an outbreak. This

result holds throughout all o our analysis.

The network structure is robust to changes in the distribution o nursery subcategories.

Only in cases where nurseries consist predominantly o one subcategory do we see changes

in the relative signicance o node subcategories or centrality measures. This implies that

our results may generalise to signicant market-changing events such as the UK’s exit rom

the EU.
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The relative importance o node subcategories remains consistent as the network becomes

larger and more dense, as shown in our analysis o the out-degree mean and variance pa-

rameters. Thus, or larger networks with more annual trading, our results will remain the

same. The only exception is that, when the volume o trade is irrelevant, NRet replace

NNur nurseries as the most suitable target or control measures.

Analysis o the nursery consignment size parameters reveals that in networks where nurs-

eries buy more plants, all nurseries become more likely to receive inection and NNur nodes

have greater potential or larger outbreaks.

The size and variation o retailer consignment sizes aect the most signicant pathways

or spread in the model. We identiy regions o retailer consignment size parameters where

the primary pathway or spread can change rom between NRet and retailers, to NNur

and all other nurseries. There is also a small region or high retailer consignments with

low variation where these pathways are equally signicant. Thereore, data on retailer

consignments are important to collect or the model, with consequences to disease control

strategies.

The relative importance o node subcategories or most centrality scores does not change

when removing customers rom the network. The only exception is or the out-degree.

When customers are not considered, NNur and NRet nurseries are most central in terms o

out-degree. Whereas in the ull network, NNur nurseries are least central, with retailers

and all other nurseries equally more central. This is an interesting result considering that

no previous model trade network includes customers. The relative out-degree o the node

subcategories in the network without customers more closely agrees with the relative sig-

nicance seen rom the other centrality measures on the entire network.
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Though this network model is constructed with the spread o disease in mind, this network

would be useul in other applications such as bio-economic modelling. The inclusion o

weights into the edges o the network construction also makes this model useul or mod-

elling the distribution o produce on a nation-wide scale.

Remark: In the calculations or the consignment sizes, the minimum consignment size was

taken to be 3 instead o 1 or all consignment size distributions. This was due to a coding

error when taking the exponential o a truncated log-normal distribution with the lower

truncation set to 1 instead o 0. We do not expect this to change the results given that

the analysis ocuses on general trends and patterns, looking at the relative signicance

o node subcategories across several centrality measures. The consignment size means or

nurseries and retailers were large (Table 3.2) and so the change o a minimum value rom

3 to 1 will have an insignicant eect on the analysis in this chapter. The commercial

and consumer consignment size means were the smallest, with a value o approximately

6. The change in minimum value rom 3 to 1 would thereore have a signicant eect on

these distributions. However, commercial and consumer nodes were ound to contribute

insignicantly to network structure, and thus lowering the minimum consignment size or

these nodes would not change our results.

3.5.1 Limitations

Our network is aggregated to represent annual plant sales and is assumed to be static. This

has limitations to analysing network structure as paths in an aggregated network may not

exist in a network which changes over time [110]. Though, as plant trade is seasonal, aggre-

gating trade or over a year captures the entire trade cycle and thus the volume o plants

traded and the number o customers should be appropriate.

It is important to note that the sales inormation given in the data only gives the billing

addresses rather than the shipping address and so this leads to, inevitably, some inaccuracy

in calculations o typography.
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Another limitation o the data set is that it is practically impossible to know or certain the

source location o a plant. In the sales data, there may be rebadging: the process o a plant

having its country o origin relabelled when moving rom one country to another [16]. This

uncertainty in the data induces limitations when trying to incorporate international trade

with domestic trade and especially or incorporating the risks o dierent plant suppliers

as there may be hidden, compounded levels o risk.

In our analysis, we ocus on identiying general patterns in changes to network structure.

Hence, when analysing the eect o changes in model parameters, we average centrality

scores or each node subcategory and repeat this or 100 network simulations. There are

limitations to this approach. By taking averages o centrality scores per node subcat-

egory in each network construction, the inormation regarding the distribution o these

values per network is lost. With access to more data, the analysis o the network structure

could then rely on centrality scores o individual nodes to be more representative o reality.

In order to simpliy the model and ocus the analysis, all nurseries and retailers out-degrees

are modelled with the same negative binomial distribution. This may be limiting in the

analysis o the out-degree parameters. However, there are some dierences in the out-

degree distributions as each node has a dierent customer demographic, which imposes

distinct upper bounds or each nodes out-degree. This results in some variation o the

out-degree distributions across node subcategories. Access to more data would enable the

parameterisation o out-degree distributions or each node subcategory, allowing a more

detailed analysis.

3.6 Conclusions

In this chapter we apply the method o network construction described in Chapter 2 to the

UK’s domestic plant trade network using a combination o existing public data and sales

data provided by FERA. This is to our knowledge the rst model network or domestic
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plant trade which considers the heterogeneous trade o plants and also includes customers

as nodes in the network.

The results rom our analysis highlight that edge weights have a signicant impact on

network structure and nodes o epidemiological interest. As networks become larger and

more connected, all nurseries and retailers become more inectious and prone to inection.

Changes in the distribution o nursery subcategories, a proxy to structural changes in the

market, only signicantly aect network structure in extreme cases, suggesting a degree o

structural robustness. The consignment sizes o retailers signicantly aect the pathways

o transmission across the network, calling or the collection o data in this sector o trade.

Customers do not contribute signicantly to the structure o the network, thus supporting

the exclusion o customers in previous network models o plant trade.

In the next chapter, using this network, we explicitly model the spread o pests and diseases

throughout the UK’s domestic plant trade in a compartmental metapopulation ramework.
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Chapter 4

Epidemiological Model on a Static

Network

4.1 Introduction

In this chapter we use the trade network model rom Chapter 3 to simulate the spread o

a generic plant pest/disease in a compartmental, metapopulation ramework. Our aim or

this chapter is to understand how pests and diseases spread throughout the network and

to investigate the eects o dierent inspection implementations.

We begin by describing the modelling approach or plant movement across the network

over time, identiying all potential sources and sinks o the system. Features to introduce

to our model include disease compartments, inter- and intra- node disease spread dynamics

and death rates. Control measures take two orms in our model: inspections that occur

during trade and scheduled inspections o all nursery and retailer node stock. From our

model equations we calculate the sources and sinks to maintain a constant population size

or nurseries and retailers.

Our analysis ocuses on disease spread amongst nurseries, rst simulating the model with

no control measures and varying the disease transmission and death rate parameters. We

conduct a sensitivity analysis on the inspection parameters and then end our analysis by
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comparing the costs and benets o dierent requencies o scheduled inspections. In our

sensitivity analysis, we consider scenarios 1 to 3 o nursery distributions rom Chapter 3.

The results rom our analysis show that a pest or disease starting in a NNur nursery, i.e., a

nursery that mostly sells to other nurseries, greatly increases the probability o an outbreak

and is ar more dicult to control with inspections. Large outbreaks occur i the transmis-

sion rate is at least 2, which roughly translates to the disease tripling every month. From a

single imported inection, disease can persist at a low prevalence or between 1 and 3 years,

implying a great diculty at tracing the initial inection event. Similar to our results in

Chapter 3, the results are robust to small changes in the market (distributions o nurseries).

Our analysis continues, identiying conditions or when inspecting purchases in addition

to sales is eective. The two types o inspection we consider are close substitutes; however,

increasing the requency o scheduled inspections can render trade inspections unnecessary.

Finally, we identiy when it is economical to increase the requency o scheduled inspec-

tions, depending on the price o inspection relative to the cost o the plant.

4.2 Network model as a metapopulation o plants

In this section we adapt our network rom Chapter 3 to a compartmental, metapopulation

ramework. We rst identiy the sources, sinks and movements o plants in this system.

Next, we dene the timescale and time-step in our model, introduce metapopulation dy-

namics and then the compartmental part o the model which describes the disease spread

dynamics.

We use the same network rom Chapter 3 which represents the annual trade o Oak plants

in the UK. In this chapter, we represent the trade network as a weighted M×M adjacency

matrix A, where M is the number o nodes in the network. Each element o A, Ai,j ∈ R+

or i, j ∈ 1, 2, ,M, represents the number o plants sold rom node i to node j. The

total number o plants a node sells (out-strength) is
M

k=1Ai,k; similarly, the total number
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o plants a node buys (in-strength) is
M

k=1Ak,i. These represent the total trade output

and input, respectively.

In our model, the network does not change over time and thus we constrain the timescale

o our analysis to the short term (3 years). Time, t, is measured in months, with step size

∆t = 1. We make a simpliying assumption to evenly distribute the annual volume o trade

across each month. Thus, we divide the entries o the adjacency matrix A by 12.

We model the movement o individual plants, with nodes in the network acting as sub-

populations. Recall rom Chapter 3 that the network consists o nurseries (NCom, NCons,

NRet and NNur), retailers and customers (commercial and consumer). Figure 4.1 sum-

marises how plants move throughout this network, depicting the metapopulation structure

by node groups o nurseries, retailers and customers (N , R, C). The possible sources

o plants into the network are imports to nurseries and retailers, and plants grown by

nurseries. Plants move throughout the network via inter-nursery trade and via sales rom

nurseries to retailers and customers or rom retailers to customers. The sinks we consider

in the system are exports overseas rom nurseries and retailers as well as a removal term

or nurseries, retailers and customers. We assume or nurseries and retailers that plants

are thrown away when they are no longer in a saleable condition and this occurs beore the

plant dies. Thereore, throughout this chapter, we reer to this orm o removal as plant

death. Additionally, removal or nurseries and retailers includes control measures. Similar

to Bate et al., we consider control measures in the orm o restriction and removal [76].

Restriction takes the orm o inspections o consignments (rom seller and/or buyer) which

we reer to as trade inspections. We model removal rom scheduled inspections, where or

nurseries and retailers, all stock on the premises is periodically inspected or disease. We

assume that inected plants caught in inspections are removed and we do not consider alse

positive outcomes rom inspections. For customers, the removal term includes the death

o both healthy and inected plants.
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Figure 4.1. Schematic representation o how plants move throughout the network. The groups
N , R and C each represent the nursery, retailer and customer nodes respectively. Plants enter
the network (sources) via imports rom overseas to nurseries and retailers, and nurseries which
grow some o their own plants. Nurseries trade amongst themselves, retailers and customers, with
retailers trading to customers. Plants leave the network (sinks) via exports overseas and a
removal term, which describes plant death and inected plants removed via inspection.

Beore considering the spread o disease, we will rst describe how the number o plants,

Ni, at each node i in the network is modelled over time. The total number o plants that a

customer has changes over time. For time t and customer i ∈ C, this is denoted by Ni(t).

For simplicity we do not model the number o plants each customer already has, i.e., or
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i ∈ C, Ni(0) = 0. Instead, we model the number o plants that each customer buys and

or t > 0 we apply a death rate, d, to all plants they have previously bought up to that

point (Ni(t)). Hence, we have

Ni(t+ 1) = Ni(t)− dNi(t) +

M∑

k=1

Ak,i, or i ∈ C

For nursery and retailer nodes (i ∈ N ∪R), we assume that the total number o plants on

the premises is xed over time, i.e., Ni(t) = Ni, or all t ≥ 0. We assume this to avoid an

unrealistic accumulation or depletion o plants over the course o simulations. Thereore,

we dene the source, Gi(t) ≥ 0, and sink, Ei(t) ≥ 0, terms to keep the total number o

plants at each nursery and retailer constant. Each nursery and retailer node at every time

step throw away a proportion o their plants that have died. Nurseries and retailers also

gain the plants they buy rom other nurseries and lose the plants they sell. Hence, we have

Ni = Ni − dNi +

M∑

k=1

Ak,i −
M∑

k=1

Ai,k +Gi(t)− Ei(t), or i ∈ N ∪R

where

Gi(t), Ei(t) ≥ 0 ∀t ≥ 0

We have now described how plants are traded across the network and introduced the role

o sources and sinks in the model. In the next section we will introduce disease dynam-

ics, to place this trade model into a Susceptible-Inected compartmental meta-population

ramework.
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4.3 Susceptible-Inected compartmental dynamics

In this section we detail the equations or the spread o a generic pest/disease ollowing

a Susceptible-Inected compartmental meta-population model. We model the spread o

a generic pest/disease on a trade network over time. Other epidemic models have re-

lied on a generic probability o transmission between connected nodes, on homogeneously

weighted networks, constructed with an assumed degree distribution and assumed class o

nodes [70, 106]. Weights on the edges o a network aect the probability o transmission

and introduce a heterogeneity that will infuence the dynamics o disease spread through-

out the network, resulting in dierent recommended control measures. Our network model

allows us to incorporate heterogeneous weights into the probability o transmission.

Figure 4.2 illustrates the orces acting on the susceptible and inected plants in a nursery.

Nurseries can import plants rom overseas and buy plants rom other nurseries, where

there is a risk o receiving inected plants. Nurseries can grow their own plants, which

are assumed to move only into the susceptible compartment. Disease then spreads via a

orce o inection between the susceptible and inected compartments. Both susceptible

and inected plants can leave the nursery through multiple sinks: sales overseas (exports),

sales to other nodes and death. Additionally, inected plants can be removed via scheduled

inspections or inspections through trade. For retailers, the process is the same except we

assume they do not grow their own plants. We do not consider sources o disease rom the

natural environment.
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Figure 4.2. Representation o how the inection process is modelled or an individual nursery in
the Susceptible-Inected compartmental system. Plants that the nursery grows are assumed to
only move into the susceptible compartment. Plants also enter a nursery through imports and
domestic trade, each carrying the potential to bring in inection. Disease spreads rom within the
nursery between the inected and susceptible compartments. Both susceptible and inected plants
can leave the nursery through exports, domestic trade and death. Inected plants also leave the
network through inspections which occur when preparing consignments and regular scheduled
inspections. For retailers, this process is the same except they can not grow their own plants.

For customers, we do not model the spread o disease given the diculty o assuming how

many other plants a customer has and how these plants are stored in relation to others.

Instead, we will count how many inected plants are received. This will serve as an indica-

tor to the level o urther spread the disease/pest has outside the trade network.

Keeping the fow o trade in the network xed over time requires addressing the imbalances

that lie in the total number o plants sold and bought or each trader in the network. I

a trader buys more plants than they sell, then iterating trade over time will result in un-

bounded accumulation o plants or that trader, or, in the opposite situation, it will result

in the trader selling more plants than they stock. These imbalances can be accounted or
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by incorporating imports rom overseas and own-grown plants as sources and considering

exports overseas as sinks in the system. In the model, we will select Gi(t) and Ei(t) so

that these imbalances do not arise.

4.4 Model development

In this section we develop the model equations or a generic pest or disease spreading

across the network in a Susceptible-Inected metapopulation ramework. The number o

susceptible and inected plants in subpopulation i at time t are denoted Si(t) and Ii(t),

respectively. We rst present the equations or each nursery and retailer node. For clar-

ity, we show each component o the model in words in Equation 4.1 and Equation 4.2.

Thereore, or all i ∈ N ∪R, we have

Si(t+ 1) =Si(t)−

Susceptible death



+

Total trade input− Inected trade input



−

Total trade output− Inected trade output



+

Total grown/imported− Inected imported



−

Total exported− Inected exported



−

Internal disease spread


, (4.1)

Ii(t+ 1) =Ii(t)−

Inected death



+

Inected trade input



−

Inected trade output



+

Inected imported



−

Inected exported



+

Internal disease spread



−

Inected removal


 (4.2)
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We now consider the equations or commercial and consumer nodes i ∈ C. Recall that

commercial and consumer nodes have a time-dependent population size Ni(t), where Si(t)+

Ii(t) = Ni(t) and Ni(0) = 0. For customers, we do not model disease spread, but only the

number o inected plants received at time t. Thereore, the equations or customers are

much simpler and or all i ∈ C we have

Si(t+ 1) = Si(t)−

Susceptible death



+

Total trade input− Inected trade input


, (4.3)

Ii(t+ 1) = Ii(t)−

Inected death



+

Inected trade input


(4.4)

Now our system o equations is described in Equation 4.1 to Equation 4.4. In subsequent

sections, we detail how each aspect o these equations are developed, highlight the as-

sumptions that we make and then present the equations ully in their mathematical orm

(Equations 4.16-4.19).

4.4.1 Internal disease spread

We model disease spread within nursery and retailer nodes with a orce o inection. For

this model we assume that the orce o inection is requency dependent and thereore we

have or each nursery and retailer node i ∈ N ∪R


Internal disease spread


= 

Si(t)Ii(t)

Ni
, (4.5)

where  > 0, the transmission rate, is assumed to be the same or all nurseries and retailers.
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4.4.2 Death rates or susceptible and inected deaths

We have our dierent death rates in our model: the death rate or susceptible and inected

plants or customers (dSc , dIc) and or nurseries and retailers (dS , dI). Relating this to

Equations 4.1 to 4.4, we simply have


Susceptible death


= dSSi(t), or i ∈ N ∪R,


Inected death


= dIIi(t), or i ∈ N ∪R,


Susceptible death


= dScSi(t), or i ∈ C,


Inected death


= dIcIi(t), or i ∈ C

The death rates or customers will not aect disease dynamics in our model, thus we do

not investigate dierent values or dSc , dIc and so or simplicity we set these parameters

to 0 (Table 4.1). In our analysis we vary the death rates or nurseries and retailers (dS ,

dI), considering death rates equivalent to all plants removed ater 1, 6 and 12 months. We

also consider the case o no death rate. We assume that dI ≥ dS . Since our time step is 1

month, we calculate monthly death rates rom the estimated lie span λ in months, using

the ollowing ormula d = 1− (10)−7λ. This ormula is derived below.

First consider the simple equation or the number o susceptibles S(t), where time, t, is

measured in months and a general death rate d:

S(t+ 1) = (1− d)S(t)

Considering a liespan o λ months, we have:

S(λ) = (1− d)S(λ− 1) = · · · = (1− d)λS(0) = 0,

(1− d)λ = 0 (4.6)
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Assuming that S(0) > 0 and solving or d we get d = 1 as the solution to Equation 4.6. This

is problematic, given that any liespan o λ months would result in d = 1. This problem

occurs because this is the only way in this discrete time ramework to have exactly 0

susceptible ater λ months. To solve this issue, we speciy a given tolerance, instead o 0.

The largest number o susceptibles we have in this model is in the order o 106 and so the

tolerance we use will be 10−7. Returning to Equation 4.6, replacing 0 with 10−7, we have:

(1− d)λ = 10−7 (4.7)

Solving Equation 4.7 or d we get:

d = 1− 10−7λ

We consider liespans o 1, 6 and 12 months. We get respective death rates 1, 09 and 07

(rounding to the rst signicant gure). For an indenite lie span, we get a death rate o 0.

4.4.3 Modelling the trade o consignments

The total number o plants rom incoming and outgoing trade or a node is simple to

calculate in our model, and is shown below


Total trade input


=

M∑

k=1

Ak,i, or i ∈ N ∪R ∪C


Total trade output


=

M∑

k=1

Ai,k, or i ∈ N ∪R

In the rest o this section, we describe how we model the trade inspection process and

the number o inected plants included in a given consignment Ai,j . This will allow us to

describe the expressions or

Inected trade input


and


Inected trade output


.
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We are rst required to make assumptions about the process in which consignments are

prepared. For a sale rom node i to j, the seller selects an Ai,j number o plants rom their

stock, we assume one by one. Ignoring inspections, this is done without replacement. The

seller’s stock consists o a combination o susceptible and inected plants. The probability

o selecting an inected plant, with this ormulation, ollows a hyper-geometric distribu-

tion [153]. We use this distribution to assume that or each consignment, the seller will

select the expected value o inected plants. For a consignment o size Ai,j , this will be
Ai,jIi(t)

Ni
, where Ii(t) is the number o inected plants the seller has at time t and Ni is the

total number o plants in stock. We assume that customers do not inspect the plants they

receive.

Nurseries and retailers can apply their own control measures by inspecting plants they have

sold on their way out o their premises and/or plants they have bought on their way in.

These inspections will aect how many inected plants are removed rom a seller’s premises

and how many inected plants are received by the buyer. In the next section we will detail

the initial approach and the subsequent model or these control measures.

Trade inspections

We assume that both nurseries and retailers can inspect outgoing and incoming consign-

ments. For a node i ∈ N ∪ R, outgoing and incoming inspections have a success rate o

out and in, respectively. The process o inspecting consignments will reduce the number

o inected plants traded.

Alternatively, we can model a repeated inspection process. In this ormulation, detected

plants are re-selected and undergo the same inspection process to ull the buyer’s original

consignment. This is an iterative process o inspecting an ever-decreasing number o plants,

until the original consignment o plants has been ullled.
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Figure 4.3 illustrates the inspection process o the buyer and seller or a given consignment

Ai,j . Firstly, the seller, i, selects plants to a total Ai,j and inspects or signs o inection.

We assume susceptible plants all pass through inspections. The inected plants selected ail

inspection at a given rate out. The inected plants that ail inspection are then removed

and the seller selects replacements. This is an iterative process which converges, except or

perect inspection (out = 1). For this reason, and that perect inspection is unrealistic,

we do not consider the case where out = 1, and thus assume that out ∈ [0, 1).

Once Ai,j plants have passed through inspection, the plants are sent to the buyer, j. As-

suming that buyers also inspect plants on their way in (in > 0), this introduces another

iterative process. The buyer begins their inspection where inected plants are ound with

a given rate in. The buyer accepts the plants that pass inspection. The inected plants

that are ound are removed (rom the seller’s compartment) and the buyer orders replace-

ments rom the same seller. The buyer repeatedly orders plants until the buyer accepts the

number o plants equal to the initial consignment. For in < 1, this process will converge.

Hence we also do not consider in = 1, and thus assume that in ∈ [0, 1).

Figure 4.3. Schematic representation o the trade inspection process or a given consignment
rom a seller to a buyer.
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We are interested in two quantities; the number o inected plants caught and missed rom

both the buyer and seller inspections. Thus there are three iterative processes to model: the

seller’s preparation o a given consignment to a buyer, the total number o plants re-ordered

by the buyer and the total number o plants sent to the buyer or inspection rom the seller.

The number o plants leaving the seller

Consider the consignment Ai,j at time t, where the seller node i has Ii(t) inected and Ni

total plants. Beore any plants reach the buyer, the seller undergoes a number o selections,

picking plants out, inspecting and removing inected plants and then re-selecting.

1. From the assumed hyper-geometric distribution or preparing a consignment, the

expected number o inected plants included in this consignment is Ii(t)
Ni

Ai,j .

2. The number o plants or the second selection is simply the number o inected plants

caught in the rst selection, which is out Ii(t)
Ni

Ai,j . We expect out
 Ii(t)

Ni

2
Ai,j inected

plants included in the selection.

3. The number o plants in the third selection will be the number o inected plants

that were caught in the previous selection, (out)
 Ii(t)

Ni

2
Ai,j . Hence there will be

(out)2
 Ii(t)

Ni

3
Ai,j inected in this selection.

4. And so on...

5. Thereore the total number o inected plants in each selection or the consignment

o size Ai,j can be described by the innite series:

Ii(t)

Ni
Ai,j + out

(
Ii(t)

Ni

)2

Ai,j + · · · = Ai,j

∞∑

k=1

(out)k−1

(
Ii(t)

Ni

)k



6. This is a convergent geometric series (out Ii(t)
Ni

< 1) and so we can evaluate the sum:
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Ai,j

∞∑

k=1

(out)k−1

(
Ii(t)

Ni

)k

=
Ii(t)

Ni
Ai,j

∞∑

k=1

(out)k−1

(
Ii(t)

Ni

)k−1

=
Ii(t)

Ni
Ai,j

(
1− out Ii(t)

Ni

)−1

=
Ii(t)

Ni − outIi(t)
Ai,j 

7. Thereore, to calculate how many inected plants are removed in this process, we

multiply by out as this is the proportion o plants ound in every step:

out Ii(t)

Ni − outIi(t)
Ai,j 

8. To calculate how many inected plants that are subsequently sent to the buyer, we

multiply by (1− out), as this is the proportion o plants missed in every step:

1 = (1− out)
Ii(t)

Ni − outIi(t)
Ai,j 

We now know how many inected plants are initially sent to the buyer or the rst consign-

ment preparation. The next step is to describe how the buyer inspects plants, how many

plants are accepted by the buyer and how many are rejected with subsequent replacements

ordered.

Buyer inspections

We describe the number o inected plants that the buyer receives or inspection, similar

to how we approached the seller inspections:

1. Firstly, the buyer receives 1 = (1 − out) Ii(t)
Ni−αoutIi(t)

Ai,j inected plants rom their

initial order o Ai,j plants. The buyer will catch in1 o these in inspections and

re-order another in1 plants.
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2. The iterative process or the seller inspections will then repeat, but or a consignment

size o in1 plants. The buyer will then receive 2 = (1 − out) Ii(t)
Ni−αoutIi(t)

in1

number o inected plants in the second selection. in2 inected plants will be

caught in inspections and so the buyer will re-order in2 plants.

3. The buyer receives 3 = (1 − out) Ii(t)
Ni−αoutIi(t)

in2 inected plants rom the seller.

in3 inected plants will be caught through inspections, and so the buyer will re-

order in3 plants.

4. And so on...

5. The number o inected plants that are sent to the buyer or inspection are thereore

modelled by the innite sum:

1 + 2 + 3 + · · · =
∞∑

k=1

k

6. Notice that k = (1−out) Ii(t)
Ni−αoutIi(t)

ink−1 and we know that 1 = (1−out) Ii(t)
Ni−αoutIi(t)

Ai,j ,

thereore we can evaluate k:

k = (1− out)
Ii(t)

Ni − outIi(t)
ink−1

=

(
(1− out)

Ii(t)

Ni − outIi(t)
in

)2

k−2

= · · ·

=

(
(1− out)

Ii(t)

Ni − outIi(t)
in

)k−1

1

=

(
(1− out)

Ii(t)

Ni − outIi(t)

)k

(in)k−1Ai,j 
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7. Thereore, the number o inected plants sent to the buyer or inspection are:

∞∑

k=1

k =

∞∑

k=1

(
(1− out)

Ii(t)

Ni − outIi(t)

)k

(in)k−1Ai,j

= Ai,j

(
(1− out)Ii(t)

Ni − outIi(t)

) ∞∑

k=1

(
(1− out)inIi(t)

Ni − outIi(t)

)k−1



8. To prove this series converges we require (1−αout)αinIi(t)
Ni−αoutIi(t)

< 1. We prove this by using

the act that Ii(t) ≤ Ni:

(1− out)inIi(t)

Ni − outIi(t)
≤ (1− out)inNi

Ni − outIi(t)

≤ (1− out)inNi

Ni − outNi

=
(1− out)in

(1− out)

= in

< 1

9. Thereore the series converges and we can calculate the sum:

∞∑

k=1

k = Ai,j

(
(1− out)Ii(t)

Ni − outIi(t)

) ∞∑

k=1

(
(1− out)inIi(t)

Ni − outIi(t)

)k−1

= Ai,j

(
(1− out)Ii(t)

Ni − outIi(t)

)(
1− (1− out)inIi(t)

Ni − outIi(t)

)−1

= Ai,j

(
(1− out)Ii(t)

Ni − outIi(t)

)(
Ni − outIi(t)

Ni − outIi(t)− (1− out)inIi(t)

)

= Ai,j

(
(1− out)Ii(t)

Ni − outIi(t)− (1− out)inIi(t)

)


10. Thus, the number o inected plants the buyer receives at time t is

Fi(
out,in, t)Ai,j ,
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where

Fi(
out,in, t) =

(
(1− out)(1− in)Ii(t)

Ni − outIi(t)− (1− out)inIi(t)

)
or i = 1, ,M,

represents the proportion o a consignment that includes inected plants which are

not ound in trade inspections.

In this section we have calculated the number o inected plants sent to the buyer and

described how the seller prepares and inspects plants or a consignment Ai,j . Thereore,

the

Inected trade input


and


Inected trade output


terms rom Equations 4.1 to

4.4 are expressed below:


Inected trade input


=

M∑

k=1

Fk(
out,in, t)Ak,i, or i ∈ N ∪R,


Inected trade input


=

M∑

k=1

Fk(
out, 0, t)Ak,i, or i ∈ C,


Inected trade output


=

M∑

k=1

Fi(
out,in, t)Ai,k, or i ∈ N ∪R

Note that or customer nodes, i ∈ C, we assume they do not inspect their purchases,

equivalent to in = 0 or these nodes.

4.4.4 Sources and sinks

As previously mentioned, in order to keep the populations o each nursery and retailer

constant (Si(t) + Ii(t) = Ni), we introduce the respective source and sink terms Gi(t) ≥ 0

and Ei(t) ≥ 0, or i ∈ N ∪ R, which model plants entering/leaving the system. Plants

that enter the system are interpreted as those imported rom international trade or grown

by the nursery. Plants that leave the system are interpreted as exports via international

trade. Thus, we have
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
Total grown/imported


= Gi(t),


Total exported


= Ei(t)

Next, we need to consider the inected component o sources and sinks, i.e., the terms or

Inected imported and Inected exported.

Importing inected plants

Nurseries and retailers who import plants rom overseas are at risk o receiving inected

plants. The event o a pest or disease successully being established into a nursery or

retailer node will be rare. Thus, we can model this process by periodically seeding an

inected plant into a randomly selected nursery or retailer node that imports plants. We

choose to seed one node with one inected plant or simplicity. We can model the number

o inected plants imported rom international trade or a given nursery or retailer node i

at time t, rom the discrete random variable X(t) ∼ U(i ∈ N ∪R : Gi(t) > 0) and the

unction νi(t, τ
import, P import), dened below:

νi(t, τ
import, P import) = P import (X(t)− i)

∑

k∈N
(t− kτ import) (4.8)

The parameter P import ∈ 0, 1 is used to control whether urther seedings are considered

in the model. The unction (x) represents the delta unction, which or x ∈ R:

(x) =




1 i x = 0

0 i x ̸= 0

For simplicity o the analysis, we do not consider urther incursions rom the international

trade network. Thus, in Equation 4.1 and Equation 4.2, we have
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
Inected imported


= νi(t, τ

import, P import), or i ∈ N ∪R

Exporting inected plants

We model inected plants included in exports in the same way as domestic trade (Section

4.4.3). The minor dierence is that we consider exported plants as one consignment Ei(t),

with the expected number o inected plants included in exports given by Ei(t)Ii(t)
Ni

. We

also summarise the incoming trade inspections or oreign trade into one parameter export.

Thus, when considering inspections, the number o inected plants exported or each trader

in the system is


Inected exported


= Fi(

out,export, t)Ei(t), or i ∈ N ∪R (4.9)

4.4.5 Inected removal

In this section we calculate the number o inected plants that are removed rom nursery

and retailer nodes via control measures. These control measures include the inspections o

consignments and the scheduled inspections o stock.

Inected plants removed rom trade inspections

The total number o inected plants removed rom trade inspections or a given consignment

Ai,j consists o the total number o inected plants removed rom the buyer and the total

removed rom the seller. In Section 4.4.3 we ound that the total number o inected plants

that are sent to a buyer or inspection is

(
(1− out)Ii(t)

Ni − outIi(t)− (1− out)inIi(t)

)
Ai,j 

Thus, multiplying by in, the total number o inected plants removed by the buyer’s

inspections can be given by
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(
(1− out)inIi(t)

Ni − outIi(t)− (1− out)inIi(t)

)
Ai,j =

in

(1− in)
Fi(

out,in, t)Ai,j  (4.10)

Next, we model the total number o inected plants that the seller removes until the con-

signment has been ullled. Finally, we account or the urther re-orders rom the buyer’s

inspections.

1. As previously calculated or the consignment Ai,j , a total out Ii(t)
Ni−αoutIi(t)

Ai,j are

removed by the seller (Section 4.4.3).

2. The buyer receives 1 = (1−out) Ii(t)
Ni−αoutIi(t)

Ai,j inected plants to inspect, ordering

a total in1 more replacements. Hence, a total out Ii(t)
Ni−αoutIi(t)

in1 will be removed

rom the seller’s inspections or this second order.

3. And so on...

4. Thereore, the total number removed rom the seller’s inspections is given by

out Ii(t)

Ni − outIi(t)
Ai,j +

∞∑

k=1

out Ii(t)

Ni − outIi(t)
ink

= out Ii(t)

Ni − outIi(t)
Ai,j + out Ii(t)

Ni − outIi(t)
in

∞∑

k=1

k

=
outIi(t)

Ni − outIi(t)

(
1 +

(1− out)inIi(t)

Ni − outIi(t)− (1− out)inIi(t)

)
Ai,j

=
outIi(t)

Ni − outIi(t)

(
Ni − outIi(t)

Ni − outIi(t)− (1− out)inIi(t)

)
Ai,j

=

(
outIi(t)

Ni − outIi(t)− (1− out)inIi(t)

)
Ai,j

=
out

(1− out)(1− in)
Fi(

in,out, t)Ai,j  (4.11)

We can now calculate the total number o inected plants removed rom a consignment via

trade inspections by summing Equation 4.11 and Equation 4.10
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out

(1− out)(1− in)
Fi(

in,out, t)Ai,j +
in

1− in
Fi(

out,in, t)Ai,j

=
out + in(1− out)

(1− out)(1− in)
Fi(

out,in, t)Ai,j

= Rtrade
i (out,in, t)Ai,j  (4.12)

We condense this term with the introduction o Rtrade
i (out,in, t) which represents the

proportion o consignment Ai,j that are removed rom the consignment inspection process

Rtrade
i (out,in, t) =

out + in(1− out)

(1− out)(1− in)
Fi(

out,in, t)

Thus, the total number o inected plants removed rom the consignment inspection process

or all consignments is given by

Rtrade
i (out,in, t)

M∑

k=1

Ai,k (4.13)

Recall that we consider exports Ei(t) to be a consignment that is also subject to inspections

(Section 4.4.4). Thus, or each nursery and retailer, i ∈ N ∪R, the total number o inected

plants removed rom the inspections o exports is given by

Rtrade
i (out,export, t)Ei(t) (4.14)

Scheduled inspections rom external sources

The other control measure we consider or nurseries and retailers is inspection or disease

by an external body on a periodic basis. These scheduled inspections may be more eec-

tive due to the inspector having access to inormation, techniques and technology that the

nursery/ retailer does not have access to. To give an example, this access may be restricted

through the high cost o training sta or the cost o expensive equipment. Importantly,
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when these inspections take place, we assume that it is an inspection o all plants the nurs-

ery or retailer has, in contrast to the trade inspections which are just or the consignments.

We model scheduled inspections or nurseries and retailers by a requency o inspections

τ insp ∈ N, an inspection eectiveness r ∈ [0, 1] and a time-point o frst inspection z ∈ N.

We model this with the unction θ(t, z, τ insp, r) which we dene below

θ(t, z, τ insp, r) = r
∑

k∈N
(t− z − kτ insp)

Thereore, the number o inected plants removed rom node i at time t rom stock inspec-

tions is

θ(t, z, τ insp, r)Ii(t) (4.15)

Thus, our

Inected removal


term rom Equation 4.2 is given by the addition o expres-

sions 4.13, 4.14 and 4.15 as shown below:


Inected removal


= Rtrade

i (out,in, t)

M∑

k=1

Ai,k

+Rtrade
i (out,export, t)Ei(t)

+ θ(t, z, τ insp, r)Ii(t)

4.4.6 Model equations

Now that all aspects o Equations 4.1 to 4.4 have been dened, we can present the equations

in their mathematical representation. For nursery and retailer nodes i ∈ N ∪R, we have
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Si(t+ 1) =Si(t)− dSSi(t)

+

M∑

k=1

(Ak,i − Fk(
out,in, t)Ak,i)

−
M∑

k=1

(Ai,k − Fi(
out,in, t)Ai,k)

+Gi(t)− νi(t, τ
import, P import)

−

Ei(t)− Fi(

out,export, t)Ei(t)


− 
Si(t)Ii(t)

Ni
, (4.16)

Ii(t+ 1) =Ii(t)− dIIi(t)

+

M∑

k=1

Fk(
out,in, t)Ak,i

−
M∑

k=1

Fi(
out,in, t)Ai,k

+ νi(t, τ
import, P import)

− Fi(
out,export, t)Ei(t)

+ 
Si(t)Ii(t)

Ni

−
(
Rtrade

i (out,in, t)

M∑

k=1

Ai,k

+Rtrade
i (out,export, t)Ei(t)

+ θ(t, z, τ insp, r)Ii(t)

)
 (4.17)

Similarly, the equations or each customer node i ∈ C are given by

Si(t+ 1) = Si(t)− dScSi(t) +

M∑

k=1

(Ak,i − Fk(
out, 0, t)Ak,i), (4.18)

Ii(t+ 1) = Ii(t)− dIcIi(t) +

M∑

k=1

Fk(
out, 0, t)Ak,i (4.19)
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We have now dened all aspects o our model equations (Equations 4.16-4.19). Below, we

summarise the model parameters in Table 4.1 alongside their baseline values.

Table 4.1. Description o model parameters and their baseline values.
Parameter Description Units Value

out Inspection eort o nursery and retailer nodes or outgoing plants 0

in Inspection eort o nursery and retailer nodes or incoming plants 0

export Mean inspection eort or buyers rom the international trade network 0

 Transmission rate o pest within node [Month]−1 2

dS Death rate o susceptible plants or nurseries and retailers [Month]−1 07

dI Death rate o inected plants or nurseries and retailers [Month]−1 1

dSc Death rate o susceptible plants or commercial and consumer customers [Month]−1 0

dIc Death rate o susceptible plants or commercial and consumer customers [Month]−1 0

r Removal rate o inected plants within nurseries rom scheduled inspections [Month]−1 0

τ Frequency o importing disease [Month] 0

τ insp Frequency o scheduled inspections [Month] 6

z Time o rst scheduled inspection [Month] 6

P import Binary indicator or subsequent inected imports 0

NCom Number o commercial dominated nurseries 40

NCons Number o consumer dominated nurseries 40

NNur Number o nursery dominated nurseries 40

NRet Number o retailer dominated nurseries 40

Ret Number o retailers 1, 600

dout
µ Nursery and retailer out-degree mean [Plants] 380× (160630)

dout
σ2 Nursery and retailer out-degree variance [Plants]2 114, 587× (160630)2

yCom
µ Commercial consignment-size mean [Plants] 79× (160630)

yCom
σ Commercial consignment-size standard deviation [Plants] 297× (160630)

yCons
µ Consumer consignment-size mean [Plants] 185× (160630)

yCons
σ Consumer consignment-size standard deviation [Plants] 822× (160630)

yNur
µ Nursery consignment-size mean [Plants] 1844× (160630)

yNur
σ Nursery consignment-size standard deviation [Plants] 3567× (160630)

yRet
µ Retailer consignment-size mean [Plants] 3497× (160630)

yRet
σ Retailer consignment-size standard deviation [Plants] 9588× (160630)

4.4.7 Explicit expressions or Gi(t) and Ei(t)

Now that our equations are ully dened, we can explicitly calculate the source and sink

terms in our model (Gi(t), Ei(t)). Sources and sinks are measured in units o plants; thus

we also have the requirement that Gi(t) ≥ 0 and Ei(t) ≥ 0. With the assumption that or
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each nursery and retailer Si(t) + Ii(t) = Ni, we can calculate the source term Gi(t) and

sink term Ei(t) or a nursery or retailer node i ∈ N ∪ R. Summing Equations 4.16 and

4.17 yields

Gi(t)− cEi(t) = b− a,

where a, b, and c are dened as

a =

M∑

k=1

(Ak,i − Ai,k),

b = dSSi(t) + (dI + θ(t, z, τ insp, r))Ii(t) +Rtrade
i (out,in, t)

M∑

k=1

Ai,k,

c = 1 +Rtrade
i (out,export, t)

Thereore, we dene both Gi(t) and Ei(t) in a piece-wise ashion as

Gi(t) =




b− a i b− a ≥ 0

0 i b− a < 0,

(4.20)

Ei(t) =





a−b
c i b− a ≤ 0

0 i b− a > 0

(4.21)

Hence, i a node sells and throws away more than it buys, there must be a source, Gi(t),

representing a combination o importing or growing to keep the stock level at Ni. Con-

versely, i a node buys more than it both sells and throws away, then it must have a sink,

Ei, representing exports, scaled to take into account or the number o inected plants

thrown away by inspections.
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4.5 Methods o analysis

In this section we describe how we conduct our analysis on the model. We are interested in

how disease spreads throughout the network and how eective dierent interventions can

be at reducing spread. As previously mentioned, we restrict our simulation period to 36

months to account or our network structure not changing over time. Most o our analysis

is restricted to the nursery nodes in our model.

When seeding disease in the network, we choose a nursery, i, at random and set Ii(0) = 1.

For each set o analysis, we look at the eects o seeding the disease in each nursery

subcategory NCom, NCons, NNur, NRet. We repeat the simulations 100 times or 100

network replicates (10000 simulations total), to average over the variability in each network

construction or each set o parameter values. Additionally, we investigate the eects o

changing the nursery distribution, considering scenarios 1, 2 and 3 rom the previous

chapter. For convenience, we recall these in Table 4.2.

Table 4.2. Description o the scenarios we consider or the distribution o nursery subcategories
in our model.
Scenario Description Value

S1 Uniorm distribution o nurseries (NCom, NCons, NNur, NRet ) = (40, 40, 40, 40)

S2 Predominantly Commercial plants (NCom, NCons, NNur, NRet) = (80, 20, 40, 20)

S3 Predominantly Consumer plants (NCom, NCons, NNur, NRet) = (20, 50, 40, 50)

The metrics we use to analyse the spread o disease include the proportion o inected

plants per node subcategory at the end o the simulation (t = 36 months) and the time t

when 20% o plants in nurseries are inected. The latter metric is used because this model

network does not respond to the disease outbreak. Above a level o prevalence o a pest

or disease, the network structure would change in response, or example with quarantines

and the rewiring o edges [106]. This assumption o a xed fow o trade in the network

thus limits our analysis to the short term.
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In our rst set o analysis, we want to understand how disease spreads throughout the

network when no control measures are in place. Thus, the only orm o removal we con-

sider are the death rate parameters or nurseries and retailers (dS , dI). Four time-series

are presented or seedings in each nursery subcategory showing the proportion o inection

over time or each node subcategory, with baseline parameters considered (Table 4.1). For

the commercial and consumer node subcategories, we calculate the proportion o inected

plants they receive at the current time point as opposed to the cumulative proportion o

inection over time. We vary the transmission rate parameter  across values 05, 1, , 3
and the death rate parameters dS and dI . When varying the death rate parameters, we as-

sume that dI ≥ dS . As we outline in Section 4.4.2, we consider death rates o 0, 07, 09, 1.

In our next set o analysis, we introduce scheduled inspections. We x the requency o

inspection at a baseline o τ insp = 6 months and vary the removal rate rom inspections

r ∈ 0, 01, , 1. We then look at varying the trade inspection parameters in and out.

We assess the eectiveness o only inspecting outgoing trade and compare this with in-

spections on both incoming and outgoing trade. First we vary out ∈ 0, 01, , 09 with

in = 0. Then, we consider in = out in the range 0, 01, , 09.

Then we consider the parameters or both trade inspections and scheduled inspections.

We vary out ∈ 0, 01, , 09 and r ∈ 0, 01, , 1 or in = 0 and in = out. We

analyse the results to compare the trade-os and eectiveness o the two dierent meth-

ods o inspection. This comparison o scheduled inspections (r ∈ 0, 02, , 1) against
trade inspections (in = out ∈ 0, 01, , 09) is repeated or dierent combinations o

the scheduled inspection requency τ insp ∈ 1, 3, 6 and the simulation time point o rst

inspection z ∈ 1, 3. We only consider the cases where τ insp ≥ z. The results are analysed

to see how increasing the requency o scheduled inspections improves inspection eective-

ness against disease spread. Additionally, we want to see how the time point o the rst

scheduled inspection ater the initial incursion aects inspection eectiveness.
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Finally, we consider the cost o inspections and replacing plants lost to inection to deter-

mine an optimal inspection requency. We compare inspecting every 3 or 6 months and

inspecting every month or every 3 months. We assume cost to consist o the monetary

value lost to nurseries rom inected plants at t = 36 and the price o all the scheduled

inspections that occurred over the simulation. The cost incurred by all nurseries can there-

ore be calculated or a given cost o a plant (X1) and cost o inspection (X2) with the

equation below:

Cost(X1, X2) = X1

∑

i∈N
Ii(36) + 160 foor(36− z

τ insp
)X2

The equation is simplied by expressing the total cost as a unction o the price o an

inspection relative to the price o a plant X3 = X2X1. We use the simplied ormula

below:

Cost(X3) =
∑

i∈N
Ii(36) + 160 foor(36− z

τ insp
)X3

For the


i∈N Ii(36) term, we calculate the total number o inected plants in nurseries

at t = 36 or the 10000 simulations and then use the median value. To account or the

variability in the timing o the rst scheduled inspection, we average over the dierent

timing o rst inspection (z) or each τ insp.

4.6 Results

The results o the analysis are presented in the same order as described in Section 4.5.

Unless otherwise specied, all gures in our analysis have been generated using the values

in Table 4.1.
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4.6.1 No inspections

In this section, we see how disease travels across the network without any intervention.

The simulations run over dierent nursery and retailer death rates and transmission rates.

We display time series or the proportion o inected plants per node subcategory (Figures

44 - 47). These gures display the median, 25% and 975% quantiles or each node sub-

category at every time-point t or the 10000 simulations.

Considering the seeding o a pest/disease in node subcategory NCom, we see the median

proportion o inected plants remains low or the rst 24 months beore epidemic spread

begins (Figure 4.4). From month 24 to 36, the median proportion o inected plants in

nurseries changes rom less than 5% to ∼ 45%. The rate o spread or dierent nursery

subcategories is the same and slower or retailers. Nurseries reach median 20% inected by

t = 31, whereas retailers reach a median 20% inected by t = 35, which makes the rate o

spread or retailers slower than nurseries by approximately 4 months.
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Figure 4.4. Time-series or the proportion o plants inected in each node subcategory at each
time-point in the simulation. For commercial and consumer nodes, points represent the
proportion o inected plants received rom plants bought at the current time step. Points
displayed are the median values o 100 simulations or 100 network constructions. The error bars
represent the 25% and 975% quantiles. The parameter values or this result are at baseline
(Table 4.1), with the pest seeded in node subcategory NCom.

Recall that or customers (commercial and consumer nodes), we calculate the proportion

o inected plants each customer has received. By t = 36, the median number o inected

plants received by commercial nodes is ∼ 40% and by consumer nodes is ∼ 16% (Figure 4.4).

The proportion o inected plants that commercial nodes receive ollows the prevalence o

disease within nurseries, given that we are not considering inspections. The proportion o

inected plants that consumer nodes receive ollows the prevalence o retailers, given that

the majority o links to consumer nodes come rom retailer nodes instead o nurseries in

this model.

For node subcategories NCom, NCons, NNur and NRet there is no variability in the sim-

ulations or the rst 14, 16, 16 and 18 time-points respectively (Figure 4.4). Similarly,

there is no variance or the commercial, retailer and consumer nodes or the rst 12, 20

and 21 time-points. A single introductory event o a pest or disease into the network at
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t = 0 and no subsequent introductions can result in epidemic spread one to two years later.

From the upper quantiles o the nursery node subcategories, we see the rate o spread

fattening o to approximately 50% prevalence. The lower quantile or all time-points and

node subcategories in Figure 4.4 is 0. Thereore, depending on the node seeded and the

exact network structure, an initial disease introduction can either ail to establish or reach

maximum prevalence.

The time series or seedings in NCom, NCons, NNur and NRet are shown in Figure 4.4,

Figure 4.5, Figure 4.6 and Figure 4.7, respectively. The results or seeding in NCons are al-

most identical to seeding in NCom (Figure 4.4 and Figure 4.5). It is seeding in NNur where

we see the largest dierence in disease spread (Figure 4.6). With this seeding, epidemic

spread begins in nurseries ater 18 months, compared to 24 months or other seedings. The

rate o spread is higher in all node subcategories with this seeding. To illustrate this, we

compare the inection curves o NCom or seedings in NNur and NCons (Figure 4.6 Fig-

ure 4.5), because the results or NCom, NCons and NRet seedings are similar and NCom is

not a seeded node subcategory in these instances. In the NCons seeding (Figure 4.5), the

nal time point o 0 median inection occurs at t = 17 or NCom. By t = 36, the median

proportion inected is 045. For the NNur seeding (Figure 4.6), the nal time point o 0

median inection is t = 15 and the time point to reach 045 proportion inected is t = 28.

Thereore, or seeding in NNur, inection spreads aster by 6 months.

Important to note with the NNur seeding (Figure 4.6) is that the lower quantiles or all

node subcategories are not constant at 0 throughout the time-series. This result shows

that, at the 95% level, epidemic spread will occur ater approximately 24 months o a

pest or disease seeded in NNur. We also see the dierence between the upper and lower

quantiles narrows signicantly at t = 36 or the nursery groups NCom, NCons and NNur.

By t = 36 at the 95% signicance level, the nursery groups NCom, NCons and NNur are at

or close to 50% inection prevalence.
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Seeding the pest or disease in node subcategory NRet (Figure 4.6) results in ewer inec-

tions overall and slightly slower spread than seeding in NCom or NCons (Figure 4.4 and

Figure 4.5). This is likely due to the network parameters given that retailer nodes buy the

largest consignments, see parameter yRet
µ in Table 4.1. Thus NRet nodes are likely selling

more plants than they buy, resulting in a larger Gi(t) term or NRet nodes. Thus, as we do

not consider additional sources o inected plants rom Gi(t), the model dilutes the number

o inected plants that can be traded rom NRet nodes in particular.

From all seedings considered (Figure 4.4 to Figure 4.7), the inection curves or the commer-

cial and consumer nodes ollow the inection curves or nursery nodes and retailer nodes,

respectively. This result suggests that the prevalence o disease in nurseries insignicantly

aects consumer nodes. Inected plants arrive in signicant numbers to customers once

the disease has spread throughout the nurseries and retailers. This indicates that the rate

o entry o inected plants to customers is not aected signicantly by the initial nursery

inected but rather the prevalence o disease in nurseries and retailers.
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Figure 4.5. Time-series or the proportion o plants inected in each node subcategory at each
time-point in the simulation. For commercial and consumer nodes, points represent the
proportion o inected plants received rom plants bought at the current time step. Points
displayed are the median values o 100 simulations or 100 network constructions. The error bars
represent the 25% and 975% quantiles. The parameter values or this result are at baseline
(Table 4.1), with the pest seeded in node subcategory NCons.
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Figure 4.6. Time-series or the proportion o plants inected in each node subcategory at each
time-point in the simulation. For commercial and consumer nodes, points represent the
proportion o inected plants received rom plants bought at the current time step. Points
displayed are the median values o 100 simulations or 100 network constructions. The error bars
represent the 25% and 975% quantiles. The parameter values are at baseline (Table 4.1), with
the pest seeded in node subcategory NNur.
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Figure 4.7. Time-series or the proportion o plants inected in each node subcategory at each
time-point in the simulation. For commercial and consumer nodes, points represent the
proportion o inected plants received rom plants bought at the current time step. Points
displayed are the median values o 100 simulations or 100 network constructions. The error bars
represent the 25% and 975% quantiles. The parameter values or this result are at baseline
(Table 4.1), with the pest seeded in node subcategory NRet.

We see that the size o the error bars or seedings in NCom, NCons or NRet nurseries are

much larger compared to NNur seedings, due to the lower quantiles being near zero (Fig-

ure 4.4 to Figure 4.7). Most o the outgoing links rom NCom, NCons, and NRet nodes are

towards either Commercial, Consumer or Retailer nodes who do not contribute to urther

spread throughout the network. With the variation in simulations o the network, or

NCom, NCons or NRet seedings, there will be seeded nodes who have no outgoing connec-

tions to other nurseries, resulting in the near-zero lower quantiles (Figure 4.4, Figure 4.5

and Figure 4.7). Whereas, most o the outgoing links rom NNur nodes are to other nurs-

eries who can spread the disease urther across the network. Thus, we do not see this

near-zero lower quantile or NNur seedings in Figure 4.6.
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In this section we have gained an understanding o how a generic pest or disease spreads

throughout our network model, with our baseline parameter values (Table 4.1). In the

next section we investigate how changing the disease transmission parameter  aects the

disease spread dynamics in our model.

Varying the rate o disease transmission

In this section we vary the disease transmission parameter  and assess the eect that this

has on disease spread in the network. Figure 4.8 shows the proportion o inected plants

in nurseries by t = 36 (y-axis) or changes in  (x-axis). This plot also shows the results

or each dierent seeding, and subgraphs (S1), (S2), and (S3) show the results or nursery

scenarios 1, 2 and 3 respectively (Table 4.2). In each gure, we show the median, 25% and

75% quantiles or the 10000 simulations with a given parameter set. Note that the median

value or NCom seeding in these plots is almost identical to NCons and so is not visible

or most points in Figure 4.8. We see that the proportion inected in nurseries does not

change signicantly or dierent nursery scenarios (Figure 4.8), hence we ocus the rest o

our analysis o this gure on subgraph (S1), representing scenario 1.

Immediately, we see that the disease dies out or  ≤ 1 and large outbreaks occur only

when  ≥ 2. For NCom, NCons and NRet seedings, the error bars all overlap or xed

values o  and so are not signicantly dierent. For  > 1, the error bars or seeding in

NNur do not overlap with the other seedings, showing a signicant dierence in the nal

proportion inected in nurseries or this seeding. As we saw in the time series analysis, the

variability or NNur seedings is much lower than all other seedings. In addition, or  ≥ 2,

the variability shrinks or the NNur seeding such that the upper and lower quartile are

equal to the median. Thus, the probability o an epidemic occurring is almost certain or a

seeding in NNur, as long as the disease is growing. For other seedings, the large variability

implies that the probability o an epidemic is ar lower.
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Figure 4.8. Points represent the median proportion o nurseries inected when t = 36, calculated
rom 100 simulations repeated or 100 network simulations. The x-axis shows the given  value
or nurseries and retailers used in the simulations. The y-axis represents the proportion o plants
in nurseries that are inected. Error bars indicate the 25% and 75% quantiles and each colour
represents which nursery group the disease is seeded in at t = 0. Subgraphs (S1), (S2) and (S3)
represent the dierent nursery distributions considered, scenarios 1, 2, and 3 respectively. All
other parameter values are at baseline (Table 4.1)

We also see the eect that varying  has on the time t until 20% o the plants in nurseries

are inected (Figure 4.9). Similar to the previous graph, the median values are displayed in

addition to the 25% and 75% quantiles. The subgraphs (S1), (S2) and (S3) display results

or the dierent nursery scenarios and we show the results or dierent seedings within

each subgraph. Firstly, there are no points plotted or  ∈ 05, 1, 15 because in these

simulations, nurseries do not reach 20% inected. Again, most plotted points or the NCom

seeding are identical to the NCons seeding and so are not visible in Figure 4.9. Across

scenarios, there are ew dierences in the skewness o the results and a small divergence

in the NCom seeding rom NCons in scenario 3 or  = 25 (Figure 4.9). Otherwise, the

results are qualitatively the same and thus we ocus our analysis on subgraph (S1).

Intuitively, the time until 20% o nurseries are inected decreases or increasing values o

 ≥ 2. We see that a change rom  = 2 to  = 3 can cause an outbreak to occur 9

months aster. Again, we do not see a signicant dierence between NCom, NCons and

NRet seedings or the same value o . We also see that NNur seedings are signicantly

dierent rom all other seedings. For seeding in NNur, the error bars do not overlap or
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changes in , showing a signicant eect on the time until 20% inection in nurseries. For

NCom, NCons and NRet seedings, error bars do not overlap or  = 2 and  ∈ 25, 3,
however, error bars do overlap or  = 25 and  = 3. This indicates that a change rom

 = 2 to  = 25 has a signicant eect, but the change rom  = 25 to  = 3 is insigni-

cant. These results suggest a limit to how  aects the rate at which the disease spreads

throughout the network.

Figure 4.9. Points represent the median time until 20% o plants across nurseries are inected,
calculated rom 100 simulations repeated or 100 network simulations. The x-axis shows the given
 value or nurseries and retailers used in the simulations. The y-axis represents the proportion o
plants in nurseries that are inected. Error bars indicate the 25% and 75% quantiles and each
colour represents which nursery group the disease is seeded in at t = 0. Subgraphs (S1), (S2) and
(S3) represent the dierent nursery distributions considered, scenarios 1, 2, and 3 respectively. All
other parameter values are at baseline (Table 4.1).

Varying death rates

Next we investigate changes in the death rates or susceptible and inected plants in

nurseries and retailers. As described in Sections 4.4.2 and 4.5, we vary combinations

o dS ∈ 0, 07, 09, 1 and dI ∈ 0, 07, 09, 1 with the added constraint dS ≤ dI . For each

death rate combination, we simulate 100 times or 100 networks and repeat this or the 4

dierent seedings. We average the results over the dierent seedings.
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We see the proportion inected by t = 36, ocusing on the nursery node subcategories (Fig-

ure 4.10-Figure 4.12). The combinations o death rates are displayed in a grid, with the

columns varying dI and the rows varying dS . Figure 4.10 shows the results or varying

death rates with nursery scenario 1. Varying dS does not have an eect on the model, a

direct result rom no additional sources o inection. Intuitively, increasing dI has a de-

creasing eect on the level o inection in nurseries. The only signicant change we see or

scenario 1 is a change rom dI = 0. Thus, or the parameter values we consider, there is

an insignicant dierence in disease spread or pests or diseases that kill the plant in one

year or less.
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Figure 4.10. Boxplots o the proportion o inected plants by time t = 36 or nursery nodes. The
boxplots are displayed on a grid, or each considered combination o death rates dS and dI . For
this boxplot, we averaged the results or all 4 seedings. This is or nursery distribution scenario 1
and all other parameters are at baseline (Table 4.1).

The results or scenarios 2 and 3 (Figure 4.11 Figure 4.12) are mostly the same as scenario

1, except or one key dierence. For both o these gures, we see that the upper and lower

quartiles or dS = dI = 0 overlap with the boxplots or dI = 07. Thus, a change in dI

rom 0 is only seen to be signicant in these scenarios or dI ∈ 09, 1. This implies that

in a market ocused towards commercial (scenario 2) or consumers (scenario 3), disease

spread is only signicantly dierent with pests or diseases that reduce the lie expectancy

to shorter than 6 months (dI ≥ 09).
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Figure 4.11. Boxplots o the proportion o inected plants by time t = 36 or nursery nodes. The
boxplots are displayed on a grid, or each considered combination o death rates dS and dI . We
average the results or all 4 seedings. This is or nursery distribution scenario 2 and all other
parameters are at baseline (Table 4.1).
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Figure 4.12. Boxplots o the proportion o inected plants by time t = 36 or nursery nodes. The
boxplots are displayed on a grid, or each considered combination o death rates dS and dI . For
this boxplot, we averaged the results or all 4 seedings. This is or nursery distribution scenario 3
and all other parameters are at baseline (Table 4.1).

Figure 4.13, Figure 4.14 and Figure 4.15 display the time until 20% o nurseries are inected

or each scenario. The upper and lower quartiles or all 3 scenarios overlap and so we can

say there is no signicant dierence between scenarios or a given combination o dS and dI .

Figure 4.13 shows the eect o varying dS and dI or nursery scenario 1. For increases in

dI , the time until 20% inected increases (Figure 4.13). The upper and lower quartiles do

not overlap when changing dI ∈ 0, 07, 09 and are thus signicant. The upper and lower

quartiles or an increase o dI rom 09 to 1 overlap and so are not signicantly dierent in
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Figure 4.13. It is surprising that a disease that kills a plant in 6 months does not spread

much aster than a disease that kills the plant in 1 month. The signicant dierence in

disease spread appears to be between diseases which kill the plant in a year or longer and

6 months or less. An interesting result, or scenario 1, changing the death rate dI rom

07 to 09 signicantly aects the time until 20% inected but insignicantly aects the

nal level o inection by t = 36. This implies that the pests or diseases that kill the plant

quickly will be slower to begin epidemic spread but not have smaller epidemic sizes.

Again, increases in dS do not change the results, or a xed dI (Figure 4.13). The higher dS
is, the more plants are removed; however, these removed are then replaced by susceptible

plants. Thereore, in terms o the proportion o inected plants there is no change. In the

same way, the model is more sensitive to the changes in dI because all inected plants are

replaced by susceptibles.
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Figure 4.13. Boxplots or the time t until 20% o the plants in nurseries are inected. The
boxplots are displayed on a grid, or each considered combination o death rates dS and dI . This
is or nursery distribution scenario 1.
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Figure 4.14. Boxplots or the time t until 20% o the plants in nurseries are inected. The
boxplots are displayed on a grid, or each considered combination o death rates dS and dI . This
is or nursery distribution scenario 2.
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Figure 4.15. Boxplots or the time t until 20% o the plants in nurseries are inected. The
boxplots are displayed on a grid, or each considered combination o death rates dS and dI . This
is or nursery distribution scenario 3.

This ends the analysis o disease spread in a network without any intervention. From the

results so ar, we see that the pest spreads throughout the network rom starting at a nurs-

ery, by spreading amongst nurseries beore reaching retailers. Commercial nodes receive

inected plants in tandem with nurseries and in proportion to the current prevalence o

disease within nurseries. Once there is enough disease within nurseries, disease begins to

spread to and within retailers. Consumer nodes receive inected plants rom retailers, in

accordance to the proportion o inected plants within retailers. In agreement with our

results rom Chapter 3, there is little dierence when varying the nursery distribution in

scenarios 1, 2 and 3. We do see a dierence when changing which nursery group is seeded

with the pest or disease. Seeding in NNur nurseries, i.e., nurseries that sell mostly to

other nurseries, is consistently qualitatively dierent than NCom, NCons and NRet seedings.
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Seeding in NNur results in higher inection levels with less variability compared to all other

seedings. We see that seeding in NRet, i.e., nurseries that mostly sell to retailers, appears

to result in the slowest disease spread; however, this may be infuenced rom model as-

sumptions. Variation o the parameter  shows that the disease spreads or  > 1, with

urther increases in  > 2 having a smaller eect on the model. We ound that our results

do not change or variations o dS , stemming rom model assumptions, and that increases

in dI slow down disease spread.

Next we investigate the addition o interventions to disease spread, starting with scheduled

inspections that remove a proportion o inected plants in each nursery and retailer.

4.6.2 Introducing scheduled inspections

In this section, we varied the parameter r ∈ 0, 01, 02, · · · , 1, which controls the eec-

tiveness o scheduled inspections. As a baseline, we xed the parameter which controls the

requency o these scheduled inspections τ insp = 6. The time-point o rst inspection is

also xed at z = 6.

We can see that increases in inspection eectiveness, r, has a decreasing eect on the pro-

portion o inected plants in nurseries by t = 36 (Figure 4.16). This eect is seen or all

seedings and nursery scenarios. There is no signicant dierence when changing nursery

scenario. Thereore, we will ocus our analysis on scenario 1.

Due to the high variability in the simulations or NCom, NCons and NRet seedings, we see

the error bars (25% and 75% quantiles) overlap. Thereore or these seedings, we see no

signicant dierence in the nal proportion o inected in nurseries or 0 ≤ r ≤ 1. For

values o r > 0 we see that NNur seedings are signicantly dierent rom all other seedings.

For seedings in NNur there is no signicant reduction in inection or r ≤ 08. However,

we do see a signicant reduction or r ≤ 06 and r ≥ 09. There is also a signicant

reduction in inection or r = 1 and all other values, or NNur seedings. Thereore, we see

that there are only signicant dierences in the nal proportion o inection in nurseries
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when changing r or seedings in NNur nurseries and large values o r ≥ 09. Though the

eect is signicant, scheduled inspections do not have a large eect on reducing inection

in nurseries. For example, changing r rom 0 to 1 reduces the median proportion inected

or NCom and NCons seedings by just over 50%. This reducing eect is lowest or seedings

in NNur with a change o r rom 0 to 1 reducing the median proportion inected by 20%.

Figure 4.16. Points represent the median proportion o nurseries inected when t = 36,
calculated rom 100 simulations repeated or 100 network simulations. The x-axis shows the given
r value or nurseries and retailers used in the simulations. The y-axis represents the proportion o
plants in nurseries that are inected. Error bars indicate the 25% and 75% quantiles and each
colour represents which nursery group the disease is seeded in at t = 0. Subgraphs (S1), (S2) and
(S3) represent the dierent nursery distributions considered, scenarios 1, 2, and 3 respectively. All
other parameter values are at baseline (Table 4.1)

We also measure the time until 20% o plants in nurseries are inected or the same changes

in r (Figure 4.17). Firstly, across all nursery scenarios and seedings we consider, increases

in r delays the time t until 20% o plants in nurseries are inected. Increasing the ecacy

o scheduled inspections appears not to be very eective, delaying the spread o inection

by at most 9 months. Comparing across nursery scenarios, we see mostly small changes in

skewness and median values and the overall trend remains the same or changes in r, per

seeding. We do see some small overlaps in error bars or NNur seedings across scenarios,

or example, in scenario 1 we see an overlap o the error bars between NNur and other

seedings or r ∈ 08, 1. However, or most values o r considered, we see a signicant

dierence in the time until 20% o plants in nurseries are inected between NNur and all

other seedings. For scenario 1 in Figure 4.17, we see that changing r rom 0 to 1 reduces
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the median time or NCom and NCons seedings by approximately 16%. For NRet and NNur

seedings, this reduction in the median is approximately 13% and 20% respectively. There-

ore, we see that increases in r have a smaller eect on the speed in which the disease

spreads (Figure 4.17) compared to reducing the nal epidemic size (Figure 4.16). This is

intuitive, as the scheduled inspections only aect the model every 6 time-steps, leaving the

disease to spread uninterrupted at all other times.

Figure 4.17. Points represent the median time until 20% o plants across nurseries are inected,
calculated rom 100 simulations repeated or 100 network simulations. The x-axis shows the given
r value or nurseries and retailers used in the simulations. The y-axis represents the proportion o
plants in nurseries that are inected. Error bars indicate the 25% and 75% quantiles and each
colour represents which nursery group the disease is seeded in at t = 0. Subgraphs (a), (b) and (c)
represent the dierent nursery distributions considered, scenarios 1, 2, and 3 respectively. All
other parameter values are at baseline (Table 4.1).

The results rom these gures suggest that inspections are not an eective means o control-

ling disease spread, especially when the disease is seeded in NNur nurseries (Figure 4.16 and

Figure 4.17). This may be due to the rst inspection happening too late (z = 6) or the in-

spections not occurring requently enough (τ insp = 6). This will be seen in a uture section.

Next, we consider in isolation, the restrictive control measure o trade inspections.
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4.6.3 Introducing trade inspections

In this section we look at two dierent variations o trade inspections as a orm o disease

control. Firstly, we investigate the case where plants are only inspected by the seller and

not the buyer, i.e., out > 0 and in = 0, or nurseries and retailers. The second case is

when inspections are conducted by both the buyer and the seller. For simplicity, we only

consider when incoming inspections are as eective as outgoing inspections, i.e., out = in

or nurseries and retailers. For both cases, we vary the inspection parameters out and in

in the range 0, 01, , 09.

Outgoing inspections only

Considering only outward trade inspections, there are no signicant changes to the pro-

portion inected in nurseries by t = 36 across the 3 nursery scenarios or changes in out

(Figure 4.18). Thus we ocus our analysis o Figure 4.18 on nursery scenario 1. We see an

overall decrease in inection as we increase out. Due to the overlapping quartiles, varying

out does not have a signicant eect on the proportion o inected plants in nurseries or

seedings in NCom, NCons and NRet (Figure 4.18).

However, changes in out or seedings in NNur, do have a signicant eect. For 01 ≤
out < 05, the reduction in inection is signicant, though small. For out ≥ 05, a larger

increase in out is required to have a signicant eect, i.e., or out ∈ 05, 07, 09 we see

non-overlapping quartiles. For out > 05, inection decreases urther but the variability

in simulations also increases. Interestingly, as out increases, the variability in simulations

increases or NNur seedings but decreases or all others. For out = 0 increasing to 09, the

median value or NNur seeding is reduced by approximately 20% whereas the other seed-

ings are reduced by approximately 85%. Thereore, we see that outward trade inspections

only are ar more eective when the disease does not begin in a NNur nursery.
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Figure 4.18. Points represent the median proportion o nurseries inected when t = 36,
calculated rom 100 simulations repeated or 100 network simulations. The x-axis shows the given
out value or nurseries and retailers used in the simulations. The y-axis represents the proportion
o plants in nurseries that are inected. Error bars indicate the 25% and 75% quantiles and each
colour represents which nursery group the disease is seeded in at t = 0. Subgraphs (S1), (S2) and
(S3) represent the dierent nursery distributions considered, scenarios 1, 2, and 3 respectively. All
other parameter values are at baseline (Table 4.1).

For each scenario, we see the same trend o increases in out causing a delay to the time

until 20% inection in nurseries, with some minor changes in medians and quartiles (Fig-

ure 4.19). Similar to the previous measure, we do not see any signicant dierence between

nursery scenarios and so we continue with our ocus on scenario 1. Again, there is a sig-

nicant dierence between NNur and all other seedings. For seedings in NCom, NCons

and NRet, we only see out have a signicant eect or out ≤ 01 and out = 09, where

the quartiles do not overlap. Thus, out signicantly lowers the rate o spread amongst

nurseries or these seedings or only very high inspection ecacy. However, this lower rate

o spread will only delay the inection reaching 20% by at most 7 months.

Similarly or seeding in NNur, we only see signicant eects o out or large values, or

example, the quartiles or out ∈ 0, 01, 02, 03, 04 do not overlap with out = 09. Thus

i a disease starts in a NNur nursery, improving the ecacy o outgoing trade inspections

is more eective, yet the disease still spreads aster and urther than i the disease started

elsewhere. In contrast with the previous measure, as out increases, we see the gap between

NNur and other seedings narrow and converge such that or out = 09 we see overlapping
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quartiles. Thereore, increased ecacy o outgoing trade inspections increases the dier-

ences between seedings or nal inection prevalence but decreases the dierences or the

rate at which the disease spreads across the network.

Figure 4.19. Points represent the median time until 20% o plants across nurseries are inected,
calculated rom 100 simulations repeated or 100 network simulations. The x-axis shows the given
out value or nurseries and retailers used in the simulations. The y-axis represents the proportion
o plants in nurseries that are inected. Error bars indicate the 25% and 75% quantiles and each
colour represents which nursery group the disease is seeded in at t = 0. Subgraphs (S1), (S2) and
(S3) represent the dierent nursery distributions considered, scenarios 1, 2, and 3 respectively. All
other parameter values are at baseline (Table 4.1).

So ar, we see that outgoing trade inspections are slightly more eective at reducing dis-

ease prevalence than scheduled inspections, with the current baseline parameter values

(Table 4.1). It is surprising that or inspection ecacy as high as 90% and 100%, trade

inspections do not have a greater eect on controlling disease spread in the network. In

the next section, we consider additional trade inspections, where nurseries and retailers

inspect purchases in addition to sales.

168



Equal ingoing and outgoing inspections

When introducing both ingoing and outgoing inspections, we see the same patterns as

we did or scheduled inspections and outgoing trade inspections only (Figure 4.20 and

Figure 4.21). Increases in inspection ecacy lead to less disease prevalence by t = 36 (Fig-

ure 4.20) and a slowing down o disease spread (Figure 4.21). We also do not see signicant

dierences across scenarios, thus we ocus our analysis on scenario 1 or these gures.

Again, we nd no dierence between NCom, NCons and NRet seedings and NNur seedings

are dierent rom all others (Figure 4.20). The quartiles or NNur do not overlap with

other seedings, indicating a signicant dierence. For NNur seedings there is a signicant

eect in the nal proportion inected in nurseries or out = in ≤ 04. For increases in

inspection ecacy out = in > 05, the eect o trade inspections increases or NNur

seedings but decreases or all other seedings.

For in, or NCom, NCons and NRet seedings, there is a non-linear eect on nal inection

prevalence by t = 36 or increases in out = in, when compared to the linear eect we

saw in Figure 4.18. For larger inspection ecacy (out = in > 06), we see a smaller

reduction in the nal proportion inected decrease. For NNur seedings, we still see the

nonlinear eect o increased ecacy o trade inspections; however, this increased reduction

in nal proportion inected is now stronger than in the previous case with only outgoing

inspections. For a pest or disease starting in a NCom, NCons or NRet nursery, increases in

in = out rom 0 to 06 have the largest reducing eect on the nal proportion inected in

nurseries; however, when a pest or disease starts in a NNur nursery, we only see similarly

sizes reductions on the nal proportion inected in nurseries or in = out > 05.
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Figure 4.20. Points represent the median proportion o nurseries inected when t = 36,
calculated rom 100 simulations repeated or 100 network simulations. The x-axis shows the given
in = out value or nurseries and retailers used in the simulations. The y-axis represents the
proportion o plants in nurseries that are inected. Error bars indicate the 25% and 75% quantiles
and each colour represents which nursery group the disease is seeded in at t = 0. Subgraphs (S1),
(S2) and (S3) represent the dierent nursery distributions considered, scenarios 1, 2, and 3
respectively. All other parameter values are at baseline (Table 4.1).

The only dierences in seeding or changes in in = out regarding the time until 20% o

nurseries are inected are in NNur nurseries and all other seedings or in = out ≤ 03

(Figure 4.21). For in = out > 03, all seedings converge together. With the addition

o ingoing inspections (Figure 4.21), there is less dependence on where the disease starts

in regard to the rate o inection, compared to outgoing inspections only (Figure 4.19).

However, the added ingoing inspection does not slow the rate o inection signicantly, or

a given success rate. For example, the introduction o in o equal value to out slows the

median time until 20% inection in nurseries by at most 3 months.
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Figure 4.21. Points represent the median time until 20% o plants across nurseries are inected,
calculated rom 100 simulations repeated or 100 network simulations. The x-axis shows the given
in = out value or nurseries and retailers used in the simulations. The y-axis represents the
proportion o plants in nurseries that are inected. Error bars indicate the 25% and 75% quantiles
and each colour represents which nursery group the disease is seeded in at t = 0. Subgraphs (S1),
(S2) and (S3) represent the dierent nursery distributions considered, scenarios 1, 2, and 3
respectively. All other parameter values are at baseline (Table 4.1).

We see that the addition o inspections rom buyers increases the eectiveness o trade

inspections (Figure 4.20 and Figure 4.21), when compared to only having inspections or

outgoing consignments (Figure 4.18 and Figure 4.19). Trade inspections are also more

eective at controlling and slowing disease spread than our baseline implementation o

scheduled inections. However, it still appears unrealistic that either o these types o

inspection, on their own, could successully control an outbreak. Thereore, in the next

section, we consider both trade and scheduled inspections, at varying ecacy combinations.

4.6.4 Comparing scheduled and trade inspections

In this section, we look at implementing both trade inspections and scheduled inspections

to see the eect they both have on disease spread. We look at the two dierent implementa-

tions o trade inspections: outgoing inspections only and both outgoing and ingoing inspec-

tions. We vary the trade inspection parameters (in,out) in the range 0, 01, , 09 and
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the scheduled inspections parameter (r) in the range 0, 01, , 1. Considering each com-

bination o values or these parameters, we construct heat maps using each o our measures.

First we consider outgoing inspections only and look at the nal proportion o inected in

nurseries by t = 36 (Figure 4.22). There is a nonlinear trade-o or increasing out against

r or reducing the nal proportion o inection in nurseries. The two control measures ap-

pear to act as substitutes. For larger values o r, an increase in out has smaller reductions

in the nal proportion inected. This is seen or all seedings, however or NNur seedings,

values o r ≥ 09 or 06 ≤ out ≤ 09 are required or a noticeable decrease in the nal

proportion inected. For NCom, NCons and NRet seedings, we see that or very high trade

inspection ecacy (out ∈ 07, 08, 09) and most values or scheduled inspection ecacy

(r ≥ 02), the disease has been eradicated in nurseries by t = 36.
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Figure 4.22. Heat map showing the median value or the proportion o inected plants in
nurseries by t = 36, or 100 model simulations across 100 network simulations. The medians are
calculated or changes in the values o trade inspection parameters out ∈ 0, 01, , 09 and
scheduled inspection parameter r ∈ 0, 01, , 1. All other parameters are at baseline Table 4.1

Whereas, or the time until 20% o nurseries are inected, there is a linear trade-o between

out and r (Figure 4.23). The isoclines are negatively sloped and shallow or all seedings,

meaning that scheduled inspections are slightly more eective than trade inspections at

slowing down rate o spread throughout nurseries. Again, we have that or NNur seedings,

we require very large values or out and r to slow the rate o spread to a similar level as

other seedings. The white regions in Figure 4.23 show parameter combinations where in

all simulations, the disease never reaches 20% disease prevalence in nurseries. Thus, we

see the disease remains at very low prevalence or r ∈ 08, 09, 1 and out ∈ 08, 09.
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Figure 4.23. Heat map showing the median value or the time, t, when the proportion o
inected plants in nurseries reaches 20%, or 100 model simulations across 100 network
simulations. The medians are calculated or changes in the values o trade inspection parameters
out ∈ 0, 01, , 09 and scheduled inspection parameter r ∈ 0, 01, , 1. Note the white
sections o the heat map show the parameter combinations where the model does not reach 20%
inected in nurseries by t = 36. All other parameters are at baseline Table 4.1

Thus, we see that trade inspections are slightly more eective than scheduled inspections

at controlling disease spread, with little gain rom implementing both control measures.

Outbreaks are also much harder to control i starting in a NNur nursery. Though we iden-

tiy some parameter combinations that eradicate disease in nurseries, these ecacy levels

are very high and unlikely to be achievable in practice. Thus we repeat this analysis with

trade inspections or both sales and purchases.
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With equal ingoing and outgoing inspections, the nonlinear trade-o between trade inspec-

tions against scheduled inspections persists, though the isoclines are steeper, indicating a

stronger eect o trade inspections (Figure 4.24). Disease-ree regions still do not exist

or NNur seedings, though the increases in in = out > 03 have a larger eect on dis-

ease reduction, with the greatest increases when in = out > 06. For NCom, NCons and

NRet seedings, the disease-ree regions are larger. These disease-ree states can be achieved

without scheduled inspections, with in = out ≥ 07. By including scheduled inspections,

disease-ree states can be achieved with r = 1 and in = out = 04.

Figure 4.24. Heat map showing the median value or the proportion o inected plants in
nurseries by t = 36, or 100 model simulations across 100 network simulations. The medians are
calculated or changes in the values o trade inspection parameters out,in ∈ 0, 01, , 09 and
scheduled inspection parameter r ∈ 0, 01, , 1. Here we apply the assumption out = in. All
other parameters are at baseline Table 4.1
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For the time until 20% o nurseries are inected, the addition o ingoing trade inspections

renders these inspections more eective than scheduled inspections (Figure 4.25). There

are also more parameter combinations where the disease remains below 20% prevalence or

all simulations (white regions).

Figure 4.25. Heat map showing the median value or the time, t, when the proportion o
inected plants in nurseries reaches 20%, or 100 model simulations across 100 network
simulations. The medians are calculated or changes in the values o trade inspection parameters
out,in ∈ 0, 01, , 09 and scheduled inspection parameter r ∈ 0, 01, , 1. Here we apply
the assumption out = in. Note the white sections o the heat map show the parameter
combinations where the model does not reach 20% inected in nurseries by t = 36. All other
parameters are at baseline Table 4.1

Comparing the trade and scheduled inspections we nd a trade-o between the two, where

they act as substitute control measures. It is unrealistic to control disease spread without

ingoing trade inspections due to the very high inspection ecacy required. Thus, the ad-

dition o inspecting purchases as well as sales during trade is a more achievable disease
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control strategy. We see that controlling disease spread when the disease begins in a NNur

nursery is much more challenging than other seedings or all combinations o inspection

parameters. Thus, scheduled inspections that occur every 6 months, with the rst inspec-

tion occurring at t = 6 are not eective at reducing spread.

In the next section, we investigate varying the requency and time-point o rst scheduled

inspection to see how this may improve eorts to lower inection.

4.6.5 Varying inspection requency and timing o frst scheduled inspec-
tion

Initially, we x the inspection requency and change the rst inspection rom z = 6 to

z = 3 in Figure 4.26. The general pattern remains the same as in Figure 4.24. Scheduled

inspections are more eective at reducing spread or all seedings, most notably in NNur,

where increases in r > 04 lowers the nal proportion inected in nurseries by t = 36.
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Figure 4.26. Heat map showing the median value or the proportion o inected plants in
nurseries by t = 36, or 100 model simulations across 100 network simulations. The medians are
calculated or changes in the values o trade inspection parameters out,in ∈ 0, 01, , 09 and
scheduled inspection parameter r ∈ 0, , 1. Here we apply the assumption out = in. In
addition, scheduled inspections occur every 6 months, with the rst inspection occurring at t = 1.
All other parameters are at baseline Table 4.1

Setting z = 1, we see an initially unintuitive result or the proportion inected in nurseries

by t = 36 (Figure 4.27). This result is almost the same as z = 6 (Figure 4.24). This is

because or z = 6, inspections occur at time-points 6, 12, 18, 24, 30, 36 and or z = 1,

inspections occur at 1, 7, 13, 19, 25, 31. Since the simulations end at t = 36, we do not

see the eect o the nal inspection or z = 6, hence the last inspection that takes eect

occurs at t = 30, which is very close to the nal inspection or z = 1. Similarly with

z = 3, with the measure we use there is eectively one more inspection taking place when

compared to z = 6.
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Figure 4.27. Heat map showing the median value or the proportion o inected plants in
nurseries by t = 36, or 100 model simulations across 100 network simulations. The medians are
calculated or changes in the values o trade inspection parameters out,in ∈ 0, 01, , 09 and
scheduled inspection parameter r ∈ 0, , 1. Here we apply the assumption out = in. In
addition, scheduled inspections occur every 6 months, with the rst inspection occurring at t = 1.
All other parameters are at baseline Table 4.1

Changing scheduled inspections to every 3 months (τ insp = 3), and rst inspection to

z = 3, increases in r have a greater reduction on the nal proportion inected in nurseries

(Figure 4.28), in comparison to τ insp = 6 (Figure 4.24). There is more o a linear trade-o

between inspection parameters, when compared with τ = 6 and z = 3 (Figure 4.26). We see

that scheduled inspections are almost interchangeable with trade inspections (Figure 4.28).

Bringing the time o the rst inspection earlier to z = 1, there is little eect on NCom,

NCons and NRet seedings (Figure 4.29). However, or NNur seedings, scheduled inspec-

tions become more eective at lowering inection than trade inspections. For example, a

combination o [r = 04,out = in = 0] has the same outcome as [r = 0,out = in = 07].
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Figure 4.28. Heat map showing the median value or the proportion o inected plants in
nurseries by t = 36, or 100 model simulations across 100 network simulations. The medians are
calculated or changes in the values o trade inspection parameters out,in ∈ 0, 01, , 09 and
scheduled inspection parameter r ∈ 0, , 1. Here we apply the assumption out = in. In
addition, scheduled inspections occur every 3 months, with the rst inspection occurring at t = 3.
All other parameters are at baseline Table 4.1
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Figure 4.29. Heat map showing the median value or the proportion o inected plants in
nurseries by t = 36, or 100 model simulations across 100 network simulations. The medians are
calculated or changes in the values o trade inspection parameters out,in ∈ 0, 01, , 09 and
scheduled inspection parameter r ∈ 0, , 1. Here we apply the assumption out = in. In
addition, scheduled inspections occur every 3 months, with the rst inspection occurring at t = 1.
All other parameters are at baseline Table 4.1

When scheduled inspections occur every month, increasing the value o r becomes much

more eective than trade inspections or reducing the nal proportion o inected in nurs-

eries (Figure 4.30). For seedings in NNur nurseries, a disease prevalence o approximately

0 can be achieved with r ≥ 05 and no trade inspections. For all other seedings, this can be

achieved or r > 03. There is now a very small eect or increases in in = out. For NCom,

NCons and NRet seedings, a disease prevalence o 0 can be achieved with in = out > 06.

For NNur seedings, trade inspections alone cannot eradicate disease.
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Figure 4.30. Heat map showing the median value or the proportion o inected plants in
nurseries by t = 36, or 100 model simulations across 100 network simulations. The medians are
calculated or changes in the values o trade inspection parameters out,in ∈ 0, 01, , 09 and
scheduled inspection parameter r ∈ 0, , 1. Here we apply the assumption out = in. In
addition, scheduled inspections occur every month, with the rst inspection occurring at t = 1.
All other parameters are at baseline Table 4.1

In this section we ound that the measure we use (nal proportion inected in nurseries)

makes it dicult to determine how the timing o the rst inspection aects the spread o

disease. We showed this in our comparison o [τ insp = 6, z = 6] and [τ insp = 6, z = 1]

(Figure 4.24 and Figure 4.27). With this in mind, we do see that increasing the requency

o inspections rom every 6 months to every 3 months may not be benecial, depending on

how quickly the disease is spotted (Figure 4.26 and Figure 4.28). Unsurprisingly, sched-

uled inspections every month are the most eective orm o control (Figure 4.30). Though,

this control is so eective as to render trade inspections almost unnecessary. This result
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suggests that it would be a more eective or plant nurseries to spend resources in order

to inspect all nursery stock monthly, even at the cost o abandoning trade inspections.

Inspecting more requently, though reducing disease spread, o course comes with an in-

crease in costs to businesses. With limited resources, inspecting the entire nursery stock

every month may not be easible. Thus, in the next section we aim to take into account

the cost o both disease and inspections.

4.6.6 Cost-beneft analysis o increasing scheduled inspection requency

As detailed in Section 4.5, we calculate cost by:

Cost(X3) =
∑

i∈N
Ii(36) + 160 foor

36− z

τ insp

X3,

where X3 is the cost o an inspection relative to the price o a plant. We compare

τ insp ∈ 3, 6 and τ insp ∈ 1, 3 and nd when inspections become too expensive to in-

crease their requency. Note that we average over the dierent z values or each value o

τ insp.

We compare the cost o inspection requencies o 3 and 6 months, initially with an inspec-

tion cost o X3 = 100 times the cost o a plant (Figure 4.31). The grey areas indicate a

negative cost, thus the region where it is cheaper or nurseries to inspect every 3 months.

For NCom seedings, the black region covered by r ≤ 02 and out = in ≤ 03 indicates

when inspections are not removing enough disease to justiy inspecting more requently.

The black region covered by 0 ≤ r ≤ 1 and out = in ∈ 03, 04, 05, 06, 07 indicates

when inspections are removing enough disease so that it is still economical or nurseries

to inspect every 6 months. When out = in > 07, the black region represents the case

when trade inspections remove enough inection not to warrant increasing the requency

o scheduled inspections. The results or NCons seedings are very similar to NCom. NRet

seedings show similar results as well, with a smaller grey area which spans 01 ≤ r ≤ 1 and
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out = in ≤ 05. For NNur seedings, the grey area is much larger, spanning almost all

parameter combinations, covered by r ≥ 02 and all values or out = in.

Figure 4.31. Heat map showing the median cost incurred by all nurseries or scheduled
inspections occurring every 3 months minus every 6 months. For τ insp = 3, we took the average o
the median costs or z = 3 and z = 1. For τ insp = 6, we took the average o the median costs or
z = 6, z = 3 and z = 1. This is or an inspection cost o 100 times the cost o a plant. This is
shown or combinations o inspection parameters r and in = out. The areas in grey indicate
parameter combinations which have a negative cost (where scheduled inspections every 3 months
are cheaper than every 6 months). All other parameters are at baseline Table 4.1.

Increasing the cost o inspection to 400 times the cost o a plant, the grey areas shrink

in size or all seedings (Figure 4.32). For NCom and NCons seedings, the grey area has

now been conned to r ≥ 02 and out = in ≤ 04. The grey area or NRet seedings has

almost disappeared, bound by 03 ≤ r ≤ 09 and out = in ≤ 02. The grey area or NNur

seedings remains large, however this is now conned to r > 04. For an inspection cost o

1140, all grey areas disappear (Figure 4.33). And thus or costs o 1140 and above, it is

never economical to inspect every 3 months as opposed to every 6 months.
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Figure 4.32. Heat map showing the median cost incurred by all nurseries or scheduled
inspections occurring every 3 months minus every 6 months. For τ insp = 3, we took the average o
the median costs or z = 3 and z = 1. For τ insp = 6, we took the average o the median costs or
z = 6, z = 3 and z = 1. This is or an inspection cost o 400 times the cost o a plant. This is
shown or combinations o inspection parameters r and in = out. The areas in grey indicate
parameter combinations which have a negative cost (where scheduled inspections every 3 months
are cheaper than every 6 months). All other parameters are at baseline Table 4.1.
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Figure 4.33. Heat map showing the median cost incurred by all nurseries or scheduled
inspections occurring every 3 months minus every 6 months. This is or an inspection cost o 1140
times the cost o a plant. This is shown or combinations o inspection parameters r and
in = out. All other parameters are at baseline Table 4.1.

Next we compare the costs o inspecting every month against every 3 months or an in-

spection cost o 100 (Figure 4.34). We see a similar pattern compared to the 6 against

3 month gures, though the grey regions are smaller. The grey region or NNur seedings

remains large, spanning almost all parameter combinations. An important dierence is,

or monthly inspections to be cheaper than inspecting every 3 months, we require r < 06

or NCom, NCons and NRet seedings.
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Figure 4.34. Heat map showing the median cost incurred by all nurseries or scheduled
inspections occurring every month minus every 3 months. For τ insp = 3, we took the average o
the median costs or z = 3 and z = 1. This is or an inspection cost o 100 times the cost o a
plant. This is shown or combinations o inspection parameters r and in = out. The areas in
grey indicate parameter combinations which have a negative cost (where scheduled inspections
every month are cheaper than every 3 months). All other parameters are at baseline Table 4.1.

Increasing the cost o inspection to 400, the grey regions or all seedings except NNur dis-

appear (Figure 4.35). This region is small, conned to 04 ≤ r ≤ 08 and in = out ≤ 05.

All grey regions disappear or an inspection cost o 489 and above (Figure 4.35).
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Figure 4.35. Heat map showing the median cost incurred by all nurseries or scheduled
inspections occurring every month minus every 3 months. For τ insp = 3, we took the average o
the median costs or z = 3 and z = 1. This is or an inspection cost o 400 times the cost o a
plant. This is shown or combinations o inspection parameters r and in = out. The areas in
grey indicate parameter combinations which have a negative cost (where scheduled inspections
every month are cheaper than every 3 months). All other parameters are at baseline Table 4.1.
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Figure 4.36. Heat map showing the median cost incurred by all nurseries or scheduled
inspections occurring every month minus every 3 months. For τ insp = 3, we took the average o
the median costs or z = 3 and z = 1. This is or an inspection cost o 432 times the cost o a
plant. This is shown or combinations o inspection parameters r and in = out. All other
parameters are at baseline Table 4.1.

Thus, when inspections are less than 489 times the cost o the plant, there are combina-

tions o inspection parameters which suggest it is cheaper to have scheduled inspections

every month in nurseries. For inspection costs between 489 and 1140, there are regions to

preer inspections every 3 months as opposed to every 6 months. For costs higher than

1140, nurseries are better o inspecting every 6 months. Our previous analysis shows that

conducting scheduled inspections every month with an ecacy o at least 50% is adequate

to control disease spread in all seedings (Figure 4.30). Thus, our cost-benet analysis

shows that the cheaper the inspection relative to the plant, the more easible this adequate

strategy becomes. Interestingly, trade inspections are counter-productive at making this

control strategy easible, revealing the potential conficts o interest in nursery managers

wanting to minimise costs and the national goal to minimise disease spread.
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4.7 Discussion

In this chapter, we extended our network model into a compartmental metapopulation

ramework or a generic pest/disease spreading throughout the UK plant trade network.

We modelled the trade o inected plants rom an assumed hyper-geometric distribution

and consignment inspection process. Sources and sinks were chosen to keep the population

sizes constant or all nursery and retailer nodes. Our analysis ocused on how disease spread

diers when a pest/disease is seeded in a dierent nursery subcategory and on comparing

the eect o dierent control measures.

Our analysis consistently showed that outbreaks are more likely to occur and more dicult

to control i a pest is introduced to a nursery that predominantly sells to other nurseries.

We also ound that, once introduced, a pest or disease can remain at a low prevalence

in the network or a long time period (almost three years) beore epidemic spread begins.

This result highlights the diculty in tracing the initial introduction o a pest or disease

and could act as an estimate or how long movements o plants within the UK should

be documented. Interestingly, this coincides with the Plant Healthy scheme regulatory

requirements assessment criteria o keeping plant passports or three years [154].

More requent scheduled inspections were increasingly eective at controlling disease in

comparison to trade inspections, such that or monthly scheduled inspections, trade in-

spections were ineective. However, or scheduled inspections every six months, inspecting

consignments became a more eective control strategy. For trade inspection ecacy o

40% and above, the addition o inspecting purchases had a noticeable eect at lowering

disease spread. The most eective control strategy we identied was to inspect all nursery

stock every month with at least 50% ecacy, even i consignments are no longer inspected.

From our cost-benet analysis, we identied ecacy regions o the inspection parameters

where it is in the nurseries’ nancial interest to inspect plants more requently. This also

revealed when potential conficts o interest appeared, regarding the choice between min-

imising costs and minimising disease. Lowering inspection costs or inspecting nurseries in

190



a cheaper and less eective way (at a minimum ecacy o 50%) would aid in improving

biosecurity in the plant trade sector o the UK.

The changes to the rate o transmission parameter suggested that inection is needed to

more than double every month or a large epidemic to occur within three years. However,

this requirement could be lower i inected plants remain in nurseries/retailers or longer

than one month, our baseline value.

The results rom our analysis were robust to changes in the distribution o nursery types

in the network. This is in agreement with our results rom Chapter 3. Due to the compu-

tational intensity, we could not investigate all seven scenarios rom the previous chapter

and only consider scenarios 1, 2 and 3 to represent a uniorm distribution o nurseries and

distributions skewed towards commercial and consumers, respectively (Table 4.2).

Our model provided a good starting point to modelling the spread o a general pest or

disease through domestic trade. To maintain this generality, we chose to model disease

spread in a susceptible-inected ramework. However, there are specic stages o inection

or certain pests/diseases that would improve the model or an approach ocused on a spe-

cic pest/disease. Examples include the addition o compartments to represent exposed

but not yet inected plants or a compartment or vaccinated/treated plants.

Note that our model equations 4.16 and 4.17 are synchronous. The number o susceptible

and inected plants in each node at time t+ 1 are calculated entirely rom the state o the

system at time t, and are all updated at the same time. Thus, the disease that spreads

within the node at time t ( Si(t)Ii(t)
Ni

) occurs in synchrony with the movements o inected

plants in or out o the node. Thereore in our calculations, we do not compute the spread,

death or removal o inected plants beore we compute the trade o plants. This will re-

sult in a limiting eect o the control measures as the disease will persist within the node

through internal spread. However, with this limitation noted, it would be unrealistic to

assume that all disease spread occurs beore any trading, as our time-step is one month.

Thus, with our chosen time-step, we are limited with either approach. Our methodology
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would be improved with a smaller time-step o one day, and in our model simulations, an

update to disease spread beore plants are traded throughout the network.

In our analysis, we did not consider any other source o inection into the system ater

the seeding at t = 0. This was done to simpliy the analysis, though this comes with

limitations. In reality, nurseries which grow their own plants would be exposed to a threat

o inection which is dependent on the prevalence o disease within the nursery. There are

also threats o inection coming rom imported plants overseas, though this will be a rare

event. Since all subsequent sources o plants into the system were susceptible, the death

rate dI limits the maximum number o inected plants in the model at any one time. Addi-

tionally, the lack o sources o inection is what contributed to the suppression o inection

in NRet nodes in our model. From the parameter values we used or Oak sales, retailer

nodes consignment sizes were the largest, almost twice those o nurseries. This caused

the nurseries that sell mostly to retailers to sell more than they buy. Thereore, due to

our sources consisting o only susceptible plants, disease was articially suppressed in our

model or this node subcategory. We suspect that this is the reason that NRet nurseries

were not as infuential in the network as suggested rom our analysis in Chapter 3. An

alteration to the model that could more accurately describe sources and threats o disease

would be an improvement.

In our model, inspection parameters were the same or all nurseries and retailers. An in-

teresting extension to this model would be to have inspection parameters dier between

nodes, especially given that seedings in NNur nurseries were so signicant in our analysis.

One example would be to only have inspections in the largest nurseries or those o a specic

subcategory.

We assumed the population size o nurseries and retailers to be one year’s worth o plants.

This is calculated by the maximum between total bought or sold or each nursery and

retailer node. A nursery’s and retailer’s capacity or stocking a plant would in practice

vary depending on many actors such as supply, demand and the physical space the nurs-
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ery/retailer has or the specic plant. In uture work, this would be an important addition

to consider.

We averaged trade across the year, to keep our model general. To include seasonality in the

model, similar to Harwood et al., we could partition the year into seasons o trade and no

trade [46]. Since each plant species would have diering trading seasons, ocusing on the

trade o specic plant hosts or plant species would be required to make this investigation

easible. It would be interesting to see how periods o no movement across the network

would aect the results rom this chapter.

In our model, the orce o inection was present every time-step. For a pest that multiplies

over periods o time longer than a month, a continuous orce o inection overestimates

this process. To model the spread o a pest more accurately, we would need to alter the

transmission rate parameter to be periodic, matching the time between generations o

a particular pest. We expect a combination o the size o seeding, removal rate within

nurseries, pest generation length and transmission rate would aect the disease spread

dynamics signicantly or this change in the model.

We ocused the majority o our analysis on nurseries. A clear extension o this work would

be to investigate the disease spread dynamics amongst the retailers and customers. To

maintain generality, in addition to the many uncertain parameters in our model, we chose

not to incorporate seasonality. Access to more data, or a more ocused investigation where

we can x many parameter values, would allow or adding seasonality to the model. It

would be interesting to develop a disease spread model on an unweighted version o the

model network and compare the results with the work conducted in this chapter.

We could extend the model to include urther incursions o disease rom the international

trade network and expose plants grown by nurseries to a orce o inection. In reality, the

trade network would change in response to an epidemic and with our model, trade is xed

over time. We could make the network dynamic and include quarantines or nodes with a

given prevalence to simulate the model or longer time spans, similar to work conducted
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in [106]. To simpliy analysis, we xed our network model parameters on the values we

obtained or Oak trade. We could vary these network parameters or another host or via

a sensitivity analysis with our disease spread model.

An interesting point to note about the inspection parameters (r, out and in), is that

their value will be determined by the pest or disease in question as well as the capabilities

o the nurseries/inspectors themselves. Some pests/diseases may be spotted with a cursory

glance whilst others may require extensive testing. In addition, the values o the inspection

parameters represent an ecacy, but they can equally be interpreted as a proportion o

plants inspected i the inspection is 100% eective. Given these many actors, an investi-

gation into a specic pest or disease is required to consider what values o the inspection

parameters would be considered realistic.

Note that there can appear some inconsistency or our results between the two measures

we use to analyse disease spread: proportion inected by 36 months and time until 20%

inected in nurseries. The reason or this is that the rst measure uses all o the simula-

tions or a set o parameter values, while, or the second measure we subset to only those

simulations in which inection in nurseries reaches 20% prevalence.

Due to the stochasticity o the network construction and the many simulations to analyse

the model, we model disease spread in a deterministic system or simplicity and to ease

computational cost. This is potentially not very limiting as disease spread in large popu-

lations can lead to deterministic behaviour [96].

From the implementation o scheduled inspections, inected plants were still traded beore

the inspection is perormed, and thus not all plants were inspected. This explained the

limited eect that scheduled inspections had on the model. An alternative implementation

could be where the inspection takes place beore any trade, and the number o inected in

each nursery and retailer is reduced by a proportion r and then trade resumes. Modelling

inspections in a system with simultaneous trade and disease spread brings in this problem

o the ordering o processes. For trade inspections, we did not have this issue as the order
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o operations were built into the way trade inspections unction. However, with modelling

an inspection o the nursery stock at a given time-step, it is important to speciy i the

inspection happens beore any trade has occurred. Tied to this, is our chosen time-step

and unit o time, measured in months. I we change our time-step in the model to days,

this could improve the eectiveness o scheduled inspections as less plants will be missed.

Initially, this trade inspection process was modelled by assuming all inected plants that

were caught in initial inspections rom both the buyer and seller were then replaced by sus-

ceptible plants. To ensure that each seller had the capacity to replace inected plants with

susceptible, the probability o inspection success was multiplied by Si(t)
Ni

, which represents

the number o susceptible plants divided by the total number o plants o subpopulation

i. Hence, using this method, the number o inected plants in a given consignment was

calculated by (1 − out Si(t)
Ni

)(1 − in Si(t)
Ni

)Ai,j
Ii(t)
Ni

. Recall that Ai,j represents the num-

ber o plants traded rom node i to j, and out and in represent the inspection ecacy

parameters or sales and purchases respectively. We compared the two dierent meth-

ods o modelling trade inspections, by considering an illustrated example: Ai,j = 100,

Ni = 104, Si(t) = 5000, Ii(t) = 5000,out = 05,in = 05. Using the initial method we

have the number o inected plants buyer j receives (1−out Si(t)
Ni

)(1−in Si(t)
Ni

)Ai,j = 28125.

Whereas, using the second method, we have Fi(
out,in, t)Ai,j = 20. There is approxi-

mately 40% less inected plants being traded in comparison with the rst method. Al-

though the initial method proposed is simpler in both concept and computation, the 40%

dierence incurred rom ignoring subsequent inspections underestimates the eectiveness

o trade inspections. Thereore, we chose to use the second method o modelling trade

inspections.

The simulations or this chapter were computationally intensive, simulating the model

10000 times or each parameter combination. Initially this model was programmed using

R (version 42), using a Windows 10 computer with an Intel Core i9-10850K CPU. The best

perormance we could achieve or one simulation o the model was 14 seconds, meaning a

39 day run-time or 10000 simulations. We had been attempting to reduce run-time with

parallel processing, however or this version o the code there were high diminishing returns
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using greater than 10 cores, achieving at best making the code run ve times quicker. An

eight day run-time or one parameter set would still limit how many simulations we could

conduct and so we had to nd a way to reduce run-time urther. We then rewrote the code

rom R into C++ using R packages Rcpp and RcppArmadillo [155,156]. This improved the

run-time o the code greatly, resulting in one simulation o the model taking 1 second. We

were in addition able to run in parallel by turning the code into an R package. Using this

code and the ARCHIE WeSt supercomputer (a Linux system using Intel Xeon Gold 6138

Skylake processors), we were able to run 10000 simulations over 4 seedings in 4 to 12 hours.

With our old implementation, this would have taken 32 days, a minimum improvement o

56700%. These changes in our code implementation were vital to conducting the analysis

in this chapter.

In hindsight, we could have simplied the analysis or each parameter combination to run

ewer simulations. Instead o simulating the model or 100 random seedings per nursery

group or each generated network, we could have xed the seeding, once or each nursery

in the network (160 total nurseries). This would have reduced computational load or each

parameter combination by 60% (rom 400× 100 to 160× 100).
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Chapter 5

Developing a Network

Epidemiological Model with

Application to COVID-19

In May 2020, we began a collaborative research project in response to the ongoing COVID-

19 pandemic. The authors o this work are: Matthew Baister, Ewan McTaggart, Paul

McMenemy, Itamar Megiddo and Adam Kleczkowski. COVID-19 was spreading ar and

wide across the care home community during the rst wave o the pandemic, leading to

many deaths. We wanted to investigate the dierent routes COVID-19 was taking into

care homes to cause this. Thus, we developed a compartmental metapopulation model

describing the population o the Scottish health board Lothian, splitting the populace into

care home residents, care home sta and the general population. This work spanned May

2020 to July 2021.

Adam Kleczkowski and Itamar Megiddo played supervisory roles. Paul McMenemy also

supervised but also provided a oundational code to simulate the model. Ewan McTaggart

and Matthew Baister worked in tandem on: constructing the model equations, building on

rom the code written by Paul McMenemy (data visualisation, data tting and sensitivity

analysis) and writing the manuscript. Ewan McTaggart reviewed the relevant literature

and constructed the model schematics and Matthew Baister collected data sources or pa-

197



rameter estimates. A table summarising the contributions o each author can be ound in

Appendix C.
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Abstract

Care homes in the UK were disproportionately aected by the rst wave o the COVID-19

pandemic, accounting or almost hal o COVID-19 deaths over the course o the period

rom 6th March – 15th June 2020. Understanding how inectious diseases establish them-

selves throughout vulnerable communities is crucial or minimising deaths and lowering

the total stress on the National Health Service (NHS Scotland). We model the spread

o COVID-19 in the health-board o NHS Lothian, Scotland over the course o the rst

wave o the pandemic with a compartmental Susceptible - Exposed - Inected reported -

Inected unreported - Recovered - Dead (SEIARD), metapopulation model. Care home

residents, care home workers and the rest o the population are modelled as subpopula-

tions, interacting on a network describing their mixing habits. We explicitly model the

outbreak’s reproduction rate and care home visitation level over time or each subpopula-

tion, and execute a data t and sensitivity analysis, ocusing on parameters responsible or

intra-subpopulation mixing: sta sharing, sta shit patterns and visitation. The results

suggest that hospital discharges were not predominantly responsible or the early outbreak
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in care homes, and that only a ew such cases led to inection seeding in care homes by

the 6th o March Sensitivity analysis show the main mode o entry into care homes are

inections by sta interacting with the general population. Visitation (beore cancellation)

and sta sharing were less signicant in aecting outbreak size. Our model suggests that

ocusing on the protection and monitoring o sta, ollowed by reductions in sta sharing

and quick cancellations o visitation can signicantly reduce uture inection attack rates

o COVID-19 in care homes.
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Introduction 1

The outbreak o the SARS-CoV-2 induced disease (COVID-19) pandemic has had a pro- 2

ound impact, causing 3.7 million deaths by early June 2021 and economic hardship glob- 3

ally [157]. The care home population suered a disproportionate amount o COVID-19 4

related deaths. From the week ending 13th March 2020 to the week ending 26th June 5

2020 (the “rst wave”), 54,510 deaths were associated with COVID-19 in the UK, 40% o 6

which were among care home residents [158]. The COVID-19 pandemic has highlighted 7

the vulnerability o care homes, as their resident population is elderly and oten suers 8

rom several co-morbidities [159], their systems have not been developed with inection 9

prevention and control (IPC) in mind, and their IPC guidelines have been borrowed rom 10

hospitals - a completely dierent setting [160]. Networks o care homes are an ecosys- 11

tem connected by sta working across acilities. These connections increase the risk o 12

COVID-19 ingress into care homes, and to protect their vulnerable community, we need 13

to understand the ecosystem dynamics. 14

Care homes and their residents are enclosed societies, isolated to some extent rom the 15

general population. Their connection to broader society primarily consists o interaction 16

with sta and visits rom the general population. Care home sta potentially play a vital 17

role in COVID-19 introduction and spread throughout the care home population. Firstly, 18

sta exposure to inection rom the general population can establish an outbreak in a 19

home. Secondly, some sta work across multiple homes - a concept we reer to as sta 20

sharing. Sta acting as a bridge between care homes and the general population and 21

sta sharing induces a network, connecting care homes in a given community via their 22

workers. This creates the potential or COVID-19 to spread rom one home to another; 23

hence, investigation o this pathway is important. We nd it natural to describe this using 24

a heterogeneous patch size metapopulation model ramework. 25

Very ew models explore COVID-19 transmission at a community level and explicitly 26

include the unique dynamics in care homes. For example, in [161,162] agent-based models 27

(ABMs) o single homes are used to investigate the impact o testing strategies on the 28

disease burden. A report by Nyguen et al. [163] uses an ABM to investigate the impact on 29
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care home residents o various vaccine coverage, and reducing the weekly testing o sta. 30

However, the models in [162, 163] do have an external orce o inection (FOI) rom the 31

community, based on prevalence data, representing sta interaction with the community 32

and visitors. These models [161–163] do not assess the relative impact o the dierent 33

COVID-19 pathways into care homes. Nguyen et al. [164] extend [162,163], using a hybrid 34

ABM-System Dynamics model, to explore the conditions under which visitation, hetero- 35

geneous care homes sizes, and the cohorting o residents impacts COVID-19 outbreak 36

severity. 37

Rosello et al. [165] model an individual care home with a stochastic compartmental 38

model, using multiple FOI’s to capture COVID-19 pathways, including visitors, hospital 39

discharges, sta working at other homes, and sta inections rom the community. They 40

nd that importations o inections by sta rom the community are the main driver o 41

outbreaks, and importation by visitors or rom hospitals is rare, but do not explicitly model 42

disease spread throughout a network o care homes. In [166] individual care homes and 43

the general public are independent, deterministic SEIR models, with a stochastic external 44

FOI connecting the general public to each home. This FOI depends on the prevalence 45

o COVID-19 in the general public, and the size o each home. Transmission rates in 46

homes and in the general public do not vary over time. In [167], two weakly-coupled 47

SEIR sub-models with time-dependent transmission rates dene the dynamics; one sub- 48

model describes the general public and one describes all care home residents in Stockholm 49

as a single homogeneous group. Again, a single FOI acts on the residents to capture 50

inections rom sta and visitors. The models [166, 167] do not dierentiate between, and 51

thereore allow comparison o, the COVID-19 pathways into care homes. Bunnik et al. [168] 52

use a compartmental metapopulation model to explore the trade-os between increasing 53

protection or a “vulnerable” population and relaxing restrictions or the “non-vulnerable” 54

ater the rst lockdown in Scotland. They use time-dependent transmission rates with three 55

metapopulation groups; vulnerable, shielders and general public. We extend and apply the 56

methodology o [168] in our model, investigating protection to a vulnerable group (care 57

home residents) in ways other than shielding. 58
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We construct a SEIARD compartmental metapopulation model to describe the rst 59

wave o COVID-19 in a health board in Scotland. The population is divided into groups 60

o care home residents, sta, and general public. Our care home resident group are not 61

a single homogeneous unit as in [167, 168] but are separate units, creating a rened spa- 62

tial/geographic structure. These units are not independent as in [166] but are linked by 63

a sta sharing network which, to our knowledge, is unique. We calibrate this model to 64

data rom the NHS Lothian Health Board and explore the sensitivity o the results to 65

changes in key parameters. We investigate the importation o inections by sta rom the 66

community, visitation, sta sharing, and additionally, we shed light on the exposure o 67

care homes at the beginning o the rst wave, e.g., via hospital discharges [169]. The aim 68

is to identiy and rank the modes o COVID-19 ingress into and throughout the susceptible 69

care home community in order to improve uture pandemic responses. Our model allows 70

or this investigation by coupling the general public and individual care homes with the 71

explicit movement o sta and visitors between the two. 72

Materials and methods 73

Mathematical model 74

We develop a deterministic SEIARD compartmental metapopulation model with hetero- 75

geneous subpopulation sizes. Each subpopulation consists o a host human population, 76

categorised urther into six compartments o COVID-19 inection status: Susceptible (S), 77

i.e., everyone who is not inected; Exposed (E), those exposed to the virus (and inected) 78

but not yet inectious; Inectious and reported (I), inectious individuals that have been 79

identied with a positive test; Unreported inectious (A), inectious individuals that have 80

not been identied with a positive test; Recovered (R), those who had COVID-19 and recov- 81

ered; and Dead (D), those who died rom their illness. Symptomatic and asymptomatic 82

individuals are not modelled explicitly; instead, asymptomatic inections contribute to- 83

wards a reduction in the reporting rates. This model is illustrated in Figure 5.1 (a). 84
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(a) (b)

Figure 5.1. Schematics or the compartmental and metapopulation structure. (a):
SEIARD compartmental structure o the model; (b): Time-share network o interaction
amongst subpopulations. Directed edge weights are tik, the proportion o people rom
subpopulation i who travel to mix at eective population k.

The metapopulation structure represents the population o the NHS Lothian health 85

board in Scotland. We distinguish between care home residents, care home workers and 86

the general population, modelling the m = 109 care homes or older adults in NHS Lothian 87

[170]. The jth home has a resident subpopulation, Cj , with a corresponding care home 88

worker subpopulation, Wj . The general population is encapsulated by the subpopulation 89

G. Each care home includes the same number o residents, a simpliying assumption made 90

due to lack o publicly available data on care home sizes in Lothian. We also assume the 91

worker subpopulations are the same size as residents’ [171]. 92

Each node o the network, i ∈ X := C1, C2, , Cm,W1,W2, ,Wm, G with X = n, 93

is described in terms o the SEIARD compartmental model with equations: 94
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dSi

dt
= −SiΛi

dEi

dt
= SiΛi −

Ei

λ
dIi
dt

= ri
Ei

λ
− Ii

τ
dAi

dt
= (1− ri)

Ei

λ
− Ai

τ
dRi

dt
= (1− µi)

(Ii +Ai)

τ
dDi

dt
= µi

(Ii +Ai)

τ

(5.1)

Susceptibles in subpopulation i (Si), are inected with a FOI Λi, and moved to the 95

exposed class (Ei). Ater a non-inectious latent period o λ days, they become inectious, 96

testing positive at a reporting rate o ri. These identied inections move to the class Ii. 97

Hence, any unidentied inections, Ai, occur at rate 1 - ri. Ater τ inectious days, a 98

person either recovers or dies at the rate µi. For simplicity, and considering the short span 99

o time the model is designed to describe, non-COVID related deaths are not considered. 100

For similar reasons, we do not include a birth rate or admission o new residents to care 101

homes rom the general population. 102

We assume a constant reporting rate or care home residents (ri∈C1,,Cm = rC), 103

workers (ri∈W1,,Wm = rW ), and the general public (rG). The parameters τ and λ 104

describe the inectious period and latency period, respectively, and are assumed to be the 105

same across all subpopulations. Mortality rates, µi, vary by subpopulation, refecting the 106

positive association o serious outcomes o COVID-19 with age [172]. As we are modelling 107

over a period o 4 months (approx. rst wave), and immunity ater COVID-19 inection 108

lasts as long as 5 months [173] [174], we do not consider a transition rom Recovered to 109

Susceptible. 110

We model visitation to each care home by multiplying the proportion o the popula- 111

tion, NCNG, that visit the care home, and their length o stay, (t). The proportion 112

remains constant over time while (t) varies over time. Up until 13th March 2020, each 113
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resident has one visitor per day [162]. Then (t) drops to 0, refecting the policy change 114

to essential visitation only [170, 175]. (t) is described by the unction logi(Ωx), with 115

Ωx = t,ωx
end,ω

x
rate,ω

x
low,ω

x
high, dened below: 116

logi(Ωx) =
(ωx

high − ωx
low)

(1 + exp(ωx
rate(t− ωx

end)))(1 + exp(−ωx
rate(t+ 82)))

+ ωx
low, (5.2)

with the shape o a sigmoidal logistic unction. The value o 82 is used in the unction 117

so that when t = 0, logi(Ωx) = ωhigh. The unction drops rom ωhigh to ωlow at a time 118

controlled by ωx
end, such that when t = ωx

end, logi(Ωx) = (ωx
high + ωx

low)2. The ωrate 119

parameter changes the gradient o the descent at t = ωend. 120

Thus, visitation rate is described by NC(0)
NG(0)(t) =

NC(0)
NG(0) logi(Ω). Given that visitation 121

drops to 0 in the rst 2 weeks o the simulation, the changes in population size over that 122

time is negligible, hence we can keep the proportion o the population constant and control 123

visitation by solely changing (t). 124

A constant proportion o workers, , spend their time at care homes. With  = 05, 125

hal o a worker compartment, Wi, are at care homes, Ci, over the course o a day. The 126

proportion o workers not at care homes, 1−, reside in the general population, G. During 127

the rst wave o COVID-19 in Scotland, there was both intra-organizational sta sharing 128

between homes (i.e., sta who work at multiple homes belonging to the same care provider), 129

as well as inter-organizational sta sharing (use o bank or agency sta) [176,177]. There- 130

ore, a constant proportion o each homes’ assigned workers, , are exchanged between 131

homes. We reer to this as sta sharing. We have made the simpliying assumption that 132

the sta sharing network has a topology o a circle, whereby the shared sta or home j 133

are split evenly between homes j − 1 and j + 1. We assume care home residents do not 134

leave their homes. 135

Interaction across subpopulations is heterogeneous and is described in terms o time- 136

sharing, determining proportions o subpopulations mixing in groups with each other. In 137

the ith subpopulation there are Ni(t) = Si(t)+Ei(t)+Ii(t)+Ai(t)+Ri(t) active individuals 138
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who can mix with others. The proportion rom subpopulation i who travel to, and mix 139

with, subpopulation k is tik. The eective population size o subpopulation k, given that 140

others have travelled to it and some people rom k have let, is N̂k(t) =


j∈X tjkNj(t). 141

We assume these eective populations N̂k(t) are well mixed, so people who travel to each 142

population can meet all others there. There are two types o eective populations; the care 143

homes and the general population. Care home j, comprises N̂Cj (t) people: its residents, its 144

working sta, sta rom other care homes, and visitors. The general population consists o 145

N̂G(t) people; this includes all the sta not at work and the non-visiting general population. 146

147

Our specic time-share assumptions are represented visually as a directed, weighted 148

network in Figure 5.1 (b). The corresponding weighted adjacency matrix, the travel/time- 149

share matrix, is T ∈ Rn×n, whose [i, j]th element is tij . The rows and columns o 150

T are in the order o C1, C2, , Cm,W1,W2, ,Wm, G. T consists o the partitions 151

TCC , TCW , TWC , TWW , TCG, TWG, TGC , TGW . To clariy notation: matrix Im indicates 152

the identity matrix o dimension m, matrix [a]m×m indicates a matrix o dimension m×m 153

with all entries a. Hence T and the subsequent sub-matrices are as ollows: 154

T =




TCC TCW TCG

TWC TWW TWG

TGC TGW TGG



n×n

, (5.3)

TCC = Im, TCW = TWW =

[
0

]

m×m

, TCG =

[
0

]

m×1

, TGW =

[
0

]

1×m

,

TWG =

[
1− 

]

m×1

, TGC =

[
NC(0)

NG(0)
(t)

]

1×m

, TGG =

[
1−m

NC(0)

NG(0)
(t)

]

1×1

,
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TWC =




(1− ) 
2 0    0 

2


2 (1− ) 

2    0 0

0 
2 (1− )    0 0

...
...

...   
...

...

0 0 0    (1− ) 
2


2 0 0    

2 (1− )



m×m

 (5.4)

Disease transmission in the model is assumed to be requency-dependent. The FOI 155

integrates which inections occur to whom, rom whom and where the inection takes 156

place, as in [178,179]. The FOI acting on subpopulation i, Λi (see Equation 5.5), accounts 157

or the dierent groups’ people rom i mix in over a day and who they encounter. It is 158

most easily understood by considering ΛiSi: 159

ΛiSi =
∑

k∈Li

tikSi

N̂k(t)

∑

j∈X
ji(t)tjk(Ij +Aj) (5.5)

The set o eective populations that subpopulation i travels to is Li, consistent with the 160

non-zero elements in the ith row o the travel matrix T . At eective population k, there is 161

tikSi susceptible individuals rom i. At k there will also be tjk(Ij +Aj) inectious people 162

rom j who have travelled to k. The transmission rate between subpopulation j and i is 163

ji(t). Thereore, 164

tikSi

N̂k

ji(t)tjk(Ij +Aj)

is the number o new daily inections in i caused by people rom j at the eective 165

population k. 166
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The transmission rates ji(t) allow us to represent heterogeneous interaction patterns 167

o individuals between and within dierent subpopulations. They incorporate the trans- 168

mission dynamics o COVID-19 changing over time and location, or example, through 169

lockdowns or other changes in behaviour [178]. We write ji(t) =
R(t)ji

τ , describing the 170

transmission rate ji(t) between subpopulations j and i, with the reproduction rate, R(t)ji, 171

divided by the inectious period, τ . The contact rate and inection probability between 172

subpopulations i and j is captured by R(t)ji. We assume only the transmission rates 173

between and within the subpopulation types (residents C, workers W, general public G) 174

dier. Thereore, the transmission rates are arranged in a symmetric partitioned matrix 175

β ∈ Rn×n whose [j, i]th element is ji(t). The rows and columns o β are in the order o 176

C1, C2, , Cm,W1,W2, ,Wm, G. β contains block sub-matrices; 177

β =




βCC βT
WC βT

GC

βWC βWW RT
GW

βGC βGW βGG




βCC =

[
C(t)

]

m×m

, βWC =

[
C(t)

]

m×m

, βWW =

[
W (t)

]

m×m

βGC =

[
C(t)

]

1×m

, βGW =

[
G(t)

]

1×m

, βGG =

[
G(t)

]

1×1

The matrix notation above is the same as or the travel matrix T . For simplicity, we 178

have assumed that the resident-resident, worker-resident, and general population-resident 179

transmission rates are equal. Similarly, we assume the general population-worker and 180

general population-general population transmission rates are the same. The transmission 181

rates are described by: 182
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C(t) =
logi(t,ωc

end,ω
c
rate,ω

c
low,ω

c
high)

τ
,

W (t) =
logi(t,ωc

end,ω
c
rate,ω

c
low, (ω

c
high + ωG

high)2)

τ

G(t) =
logi(t,ωG

end,ω
G
rate,ω

G
low,ω

G
low,ω

G
high)

τ

Where the logi unction, Equation 5.2, models the reproduction rate. To simpliy 183

and to reduce the number o parameters, we relate the reproduction rate or workers 184

in terms o the residents and general population. As care home workers balance their 185

time between care homes and the general population, we assume the workers pre-lockown 186

maximum reproduction rate is the average o the care homes and general populations, 187

ωW
high = (ωC

high + ωG
high)2. We assume the reproduction rate or workers and residents 188

drops at the same time, and to the same value. 189

Model calibration process 190

We used data rom the network o care homes in NHS Lothian [170] complemented by 191

Public Health Scotland Open Data, breaking down COVID-19 cases and deaths per health 192

board [180,181], to inorm and calibrate our model. Parameters were ound using a mixture 193

o methods, as indicated in Table 5.1, including literature search, sensitivity o results, and 194

rigorous t based on minimising the sum o squares o residuals. 195
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Table 5.1. Parameter denitions, alongside their base case values and source.
Parameter Description Value Source

 Sta sharing 0.4 Data t

 Proportion o workers at care home 0.5 Assumptiona

ri∈C1,,Cm = rC Reporting rate or residents 053 Estimated [170,182–184]

ri∈W1,,Wm = rW Reporting rate or workers 0.52 Estimated [170,180, 184–186]

rG Reporting rate or general public 0.077 Estimated [180,185, 186]

µi∈C1,,Cm = µC Death rate or residents 0.25 Estimated [170,182–184]

µi∈G,W1,,Wm = µG Death rate or general public (and workers) 0.017 Estimated [180,181, 185, 186]

τ Inectious period 7 days [187]

λ Latent period 5.8 days [188]

m Number o care homes 109 [170]

N(0) =


iNi(0) Total initial population 907,580 [186]

NCi(0) Initial resident subpopulation size 48 [170]

NWi(0) Initial worker subpopulation size 48 [171]

NG(0) Initial general public subpopulation size 897,116 Estimated [170,171, 186]

ωC
end Timing o Rt descent or residents and workers 42 days Manually tted b

ωC
rate Rate o descent o Rt or residents and workers 0.5 Assumptionc

ωC
low Post-descent Rt or residents and workers 0.6 Assumptiond

ωC
high Pre-descent Rt or residents 4.7 Data t

ωG
end Timing o Rt descent or general population 22 days Manually tted b

ωG
rate Rate o descent o Rt or general population 0.5 Assumptionc

ωG
low Post-descent Rt or general population 0.6 [189]

ωG
high Pre-descent Rt or the general population 4.1 Data t

ω
end Timing o descent or visitation 10 days [170, 175]

ω
rate Rate o descent o visitation 3 [170, 175]

ω
low Post-descent value or visitation 0 Assumptione

ω
high Pre-descent Rt or visitation 0.083 Data t

Hseeded Number o homes seeded 4 Data t

EG(0) Initial general population inections 120 Data t
a We assume workers spend hal day at work, other hal mixing in general population. Alternatively,
workers do 12hr shits. Units are given where appropriate in the Value column.
b Manually set by matching the model output to the inection peak dates in the NHS Lothian data [170,180].
c Initial model exploration indicated that higher rates (steeper drops in Rt) resulted in inection peaks (in
general public and residents) alling too quickly compared to the NHS Lothian data [170, 180]. The value
o 0.5 corresponds to a descent o ∼ 2 weeks.
d We assume the reproductive rate or every sub-population drops to the Scottish government’s [189]
estimated Rt ater lockdown (so ωC

low = ωG
low).

e Equals 0 to refect the policy change to essential visitation only [170,175], and to avoid the complication
o modelling end-o-lie visitation.
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Data 196

NHS Lothian is the second-largest health board in Scotland [190], providing public health 197

services to an estimated 907,580 people (2019 mid-year population estimate [186]). The 198

daily conrmed positive tests o COVID-19 cases reported across the entire health board 199

were taken rom the Public Health Scotland Open Data [180]. This data does not delineate 200

which cases occurred in care homes, and thus, we retrieved the subset o cases in care homes 201

rom Burton et al. [170], which reports a 7-day average o conrmed cases in care home 202

residents. Weekly COVID-19 deaths at the NHS Lothian health board level come rom 203

National Records Scotland [181]. Care home resident deaths are a subset o these and are 204

published in [170]. Both death data are weekly counts o registered deaths where COVID- 205

19 is mentioned on the death certicate (either as the underlying cause or as a contributory 206

actor) [181]. 207

Parameters set using evidence and assumptions 208

In this section, we describe our assumptions on parameters, parameters estimated rom 209

the literature, and parameters manually calibrated to the data. 210

A Scottish population study between 10th April to 15th June [185] estimated a combined 211

adjusted seroprevalence across their study period (rst wave = 10th April to 15th June) o 212

4.3% (95% CI 4.2%-4.5%). As o the week beginning 15th June 2020, there had been 18,077 213

positive tests [180], which as a percentage o Scotland’s population (2019 census [186]) is 214

∼ 033%. We use this inormation to assume a constant reporting rate in the rst wave 215

or the general public o rG = 03343 ∼ 0077. 216

In Scotland, the policy rom the start o March to 16th April 2020 was to test only the 217

rst ew symptomatic care home residents, and aterwards, was to test all symptomatic 218

residents [170]. Assuming when there is an outbreak in a home, 40% o the residents end 219

up inected (40% incidence) [182, 183]. Given 48 residents per care home, until 16th o 220

April we assume a reporting rate o (a ew tested)/(total inected) = 3/(0.4 × 48) = 5/32. 221

Ater 16th April, we assume all the symptomatic cases are reported, giving a reporting rate 222

o 4/5 (an estimated symptomatic proportion o COVID-19 cases in long term aged care 223
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is 80% [184]). Between the start o our simulation (6th March 2020) and 16th April 2020 224

is a time dierence o 42 days, and between 17th April 2020 and the end o our simulation 225

period (15th June 2020) is a time dierence o 60 days. Thereore, or 42 days, we assume 226

a reporting rate o 5/32, and or 60 days, it is 4/5. The weighted average and constant CH 227

reporting rate over the simulation period is rC= (5/32)(42/102) + (4/5)(60/102) ∼ 053. 228

Until the 17th o April, we assume the sta reporting rate was the same as the general 229

public (0.077). From then on, we assume the care home testing policy change (on the 17th 230

o April) extended to their sta [170], and the reported percentage o cases was 83% (the 231

symptomatic proportion [184]). Our weighted average and constant sta reporting rate 232

over the simulation period is rS = 0.077×(42/102)+ 0.8360/102 ∼ 0.52. 233

There are two constant death rates in our model: a resident death rate (µC) and a 234

general population death rate (µG). We assume care home sta have the same death 235

rate as the general population. There were ∼ 899 positive tests and 423 deaths in NHS 236

Lothian care home residents over the study period. Using our resident reporting rate, we 237

estimate there were 8991053 ∼ 1697 total residents inected with COVID-19 over the 238

study period. Thereore, we estimate a resident death rate o µC = 4231697 ∼ 025. 239

Similarly, there were 3123 total positive tests and 709 deaths over the study period in NHS 240

Lothian overall. Using our general reporting rate, rG, we estimate a general population 241

death rate o µG = 709(31230077) ∼ 0017. 242

Under our parameterisation, the timing o the drop in reproductive rates or care home 243

residents (ωC
end) and or the general population (ωG

end) control the timing o peak inections 244

in each respective population, independent o all other parameter values. This is linked to 245

the reproductive rate unction (logi) at an infection point at t = ωx
end (where logi(Ωx) takes 246

the value o (ωx
high+ωx

low)2). Thereore, we manually set these parameters (ωC
end, ωG

end) by 247

matching the model output to the inection peak dates in the NHS Lothian data [170,180]. 248
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The ωG
rate and ωC

rate parameters were assumed to be 0.5. Initial model exploration 249

indicated that higher rates (steeper drops in Rt) resulted in inection peaks (in general 250

public and residents) alling too quickly compared to the NHS Lothian data [170, 180]. 251

From sensitivity analysis, we ound that changing the values o these parameters does not 252

aect the disease dynamics (in terms o total inections/deaths). The ωrate parameter 253

controls the steepness o the descent rom ωhigh to ωlow, however the timing o the start o 254

the descent changes to almost cancel out the eect o changing the steepness o this drop. 255

The value o ωG
rate = ωC

rate = 05, corresponds to a descent o ∼ 2 weeks. For ω
rate we chose 256

the value o 3 to ollow the rapid visitation policy changes in care homes [170, 175]. 257

The ωG
low and ωC

low values were set to 0.6, the estimated Rt ater the rst wave in 258

Scotland [189]. Due to the uncertainty in the timing o the drop and the Rt peak value, 259

we did not use this source or the ωG
high and ωG

end parameters. 260

We have made the simpliying assumption o ω
low = 0, to avoid the complications o 261

modelling end-o-lie visitation in care homes. 262

Closed environments are conducive to COVID-19 transmission and superspreading 263

events [191], thereore we assume pre-lockdown transmission rates within care homes are 264

not less than the general populations, ωC
high ⩾ ωG

high. 265

Care homes operate with sta under diering working hour schedules. This includes 266

care homes having a day and night shit ( = 05), three 8 hour shits ( = 033) or an 267

uneven distribution o sta spread throughout the day. For simplicity, we assume that all 268

homes operate under two 12 hour shits per day, i.e.,  = 05. Other shits are explored in 269

the sensitivity analysis. 270

We make a number o assumptions about the population initially inected. Workers 271

were not initially inected in the model. In the general population, we assume an equal 272

amount o exposed and inected individuals (with and without symptoms), i.e., EG(0) = 273

IG(0)+AG(0). Hseeded = Cj ∈ C1,    , Cm : ECj (0) > 0 care homes were seeded with 274

inections, representing introductions such as hospital discharges. To account or the delay 275

in inections at the start o the pandemic in care homes compared to the general population, 276
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as seen in the data Figure 5.2, we assume or all j ∈ 1,    ,m, ICj (0) = ACj (0) = 0. We 277

seeded the homes so that initially inected homes lay equally spaced on the circle sharing 278

structure (see Figure 5.1 (b)). I a home is seeded then we assume ECj (0) = 1, and i not, 279

ECj (0) = 0. 280

Data ft 281

While some parameter values can be ound based on the external data and literature, as 282

shown in the previous section, other parameters were estimated using a ormal t to the 283

cases and deaths data or the Lothian NHS health board (Table 5.1). These parameters 284

were ree to vary subject to constraints based on a combination o assumptions and inor- 285

mation rom the literature. We used the method o least-squares, aggregating the error o 286

model output against the our data sets or NHS Lothian cases and deaths and choosing 287

the parameter set which minimised this error. The data or NHS Lothian population cases 288

and care home cases were in the orm o daily and seven day averages respectively. The 289

death data or both the NHS Lothian population and care homes were in weekly counts. 290

To make the tting consistent, we transormed the daily and seven day average data into 291

weekly data or conormity (Figure 5.2). The constraints on the parameters in our model, 292

described in the previous section, let 6 ree parameters or ormal tting. Their ranges 293

used or the data t are shown in Table 5.2. 294

Table 5.2. Parameters used or the data t and the sets o values simulated over.

Parameter Values considered

ωC
high 33, 34,    , 5

ωG
high 33, 34,    , 45
 01, 02,    , 05

EG(0) 100, 110,    , 180
ω
high 0042, 0083, 017

Hseeded 1, 2,    10
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To investigate the question o how many care homes were exposed at the start o the 295

pandemic, we ran the tting separately or Hseeded xed at 1 through 10. We simulated the 296

model over 21,060 combinations o the remaining parameters to calculate the least-squares, 297

or each value o Hseeded. We investigate the distribution o the parameters in Table 5.2 in 298

the top ten best tting scenarios, or each value o Hseeded. 299

Sensitivity analysis 300

Ater identiying the parameter set that minimises the least-squares, the base case (Ta- 301

ble 5.2), we perormed a sensitivity analysis. We measured the change in each population’s 302

deaths when shiting individual parameters in Table 5.3 rom the base case. This allowed 303

us to assess the relative impact o individual parameters on each population. We also 304

measured the change in deaths in each population when changing pairs o the time-share 305

parameters (ω
high, , ), keeping all other parameters at the base case. The results were 306

stored in a 50×50 grid and visualised using heat-maps to determine the key modes o 307

COVID-19 ingress into and throughout care homes. 308
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Table 5.3. Parameters involved in the sensitivity analysis. Sensitivity shit is the unit o change
used or each parameter rom its base case. These values were chosen to measure the change in
each population’s deaths to small perturbations o individual parameters rom it’s base case.

Parameter Sensitivity shit

ωC
end 1

ωC
high 01

ωC
low 01

ωC
rate 01

ωG
end 1

ωG
high 01

ωG
low 01

ωG
rate 01

 01

 005

ω
high 00167

EG(0) = IG(0) + AG(0) 10

λ 03

τ 04

Results 309

In this section we rst show how the model captures the NHS Lothian data or cases and 310

deaths in the period rom March to June 2020, and subsequently show how sensitive the 311

results are to changes in key parameters. 312

Data ft 313

The model captures the key eatures o the COVID-19 related cases and deaths in both 314

care home and general populations, Figure 5.2. The minimum aggregate least-squares error 315

was 33,042, with our model predicting 3,165 total cases and 817 total deaths compared to 316

the total 3,123 cases and 709 deaths in the data. The average dierence between data and 317

predictions was 3.5 cases/deaths per week. In care homes we predicted 871 cases and 411 318

deaths compared to 903 cases and 423 deaths in the data. Our model does not predict 319
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the initial jump in deaths in care homes due to our assumption that inection reporting 320

is constant. Further, our model overestimates the number o deaths or all populations 321

despite a good t or the cases, as the calculation o death rates is tied to the reporting 322

rates. 323

Figure 5.2. Surveillance data and ftted model. Data used or tting are black lines, and
model solution with parameter values in Table 5.1 are red lines. (a) reported cases per week or
all NHS Lothian inhabitants (care home residents, workers and the general population); (b)
reported cases per week in NHS Lothian care home residents; (c) deaths per week or all NHS
Lothian inhabitants (care home residents, workers and the general population); (d) deaths per
week in NHS Lothian care home residents.

The reproduction rates change rapidly over the period o April - May 2020, Figure 5.3 324

refecting the delayed eect o the lockdown. The care home resident population’s all in 325

reproduction rate is delayed by ∼ 3 weeks compared to the all in the general population. 326

This delay is inormed by the data, due to the ωend parameters controlling the timing o 327

the peaks in Figure 5.2 - we must be careul when attempting to interpret this delay. 328
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Figure 5.3. Fitted time-dependent parameters. (a) Fitted reproductive numbers over time
or care home residents, RC(t), workers, RW (t), and general population, RG(t); (b) tted
visitation, , over time with drop highlighting the change in policy.

In order to assess the initial level o care home exposure to virus, we consider the quality 329

o t as a unction o Hseeded. The minimum sum o squares o residuals takes the shape o 330

a parabola, with a minimum at Hseeded = 4, see Figure 5.4. This suggests that a relatively 331

small number o homes were initially exposed to COVID-19. 332

Figure 5.4. Quality o ft as a unction o homes seeded. Each violin is the distribution o
aggregated sum o squared errors (SSE) in the top ten best-tting parameter sets, or a number o
homes seeded. Black dots indicate the minimum aggregated SSE achieved or each home seeded.
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The optimal choice (in terms o the least-squares criterion) or the parameters as used 333

in the data t (Table 5.2) is relatively stable with respect to changes in Hseeded, Figure 5.5. 334

The pre-lockdown reproduction rate in care homes, ωC
high, appears stable in the range o 335

4.5 to 4.7, changing or 10 homes seeded with the optimal value lowering to 3.9. This 336

highlights the clear link between the reproduction rate and the exposure o care homes 337

at the beginning o the pandemic. For the pre-lockdown reproduction rate in the general 338

population, ωG
high, we see a stable optimal value in the range o 3.9 to 4.2. We see a lot o 339

uncertainty in the proportion o sta shared , or Hseeded outside o the range o 4 to 8. 340

The distribution or  changes or Hseeded = 10 , with the optimal value going back up to 341

0.5. This coincides with the rise in EG(0) and the substantial all in ωC
high. This points to 342

the correlation between these 3 parameters. Similarly, there is a lot o uncertainty in the 343

value o pre-lockdown visitation, ω
high, with an optimal choice or every value considered 344

in our tting as we vary Hseeded. This uncertainty highlights that the parameters in our 345

model are highly correlated. As seen in Figure 5.6 and Figure 5.7, Figure 5.5 can also be 346

seen to hint at how eective these parameters are at aecting the outcome o the model. 347

For example, the variability in the chosen value o  and ω
high can also be attributed to 348

the relatively small aect they have on the model outcome. 349
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Figure 5.5. Distribution o ftted parameters as a unction o homes seeded. Each
panel is a dierent calibrated parameter. Each violin in a panel is the distribution o individual
parameters in the top ten best tting parameter sets, or a number o homes seeded. (a)
pre-lockdown care home resident Rt, ωC

high; (b) pre-lockdown general public Rt, ωG
high; (c) sta

sharing, ; (d) visitation pre-lockdown, ωγ
high; (e) general public seeded cases,

EG(0) = IG(0) + AG(0). Black dots indicate the parameter value giving the lowest aggregated
least square error, or each number o homes seeded.

Sensitivity analysis 350

Figure 5.6 indicates the sensitivity o the predicted deaths to the parameters in Table 5.3 351

or care home residents, workers and general population. Predictions are most sensitive 352

to the inectious period, τ , and latency period, λ. The parameters ωC
end,ω

C
high,ω

C
low 353

signicantly infuence care home and worker deaths, without aecting predicted deaths 354

in the general population. Interestingly, a change in one day rom when the care home 355

reproduction rate drops, results in almost 10% change in predicted resident and worker 356

deaths. The parameters, ωG
end,ω

G
high,ω

G
low, controlling the timing o the reproduction 357

rate and it’s value beore and ater lockdown or the general population, signicantly aect 358
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predicted deaths in the general population. Interestingly, changing the value o  by 0.1 359

(20%) results in very little eect to the residents (< 5%) and general population (< 1%) 360

but a 15% change in predicted worker deaths. 361

222



Figure 5.6. Sensitivity o the fnal deaths in each population to perturbations in
model parameters. Each bar shows the % change in nal deaths in a population caused by
shiting an individual parameter rom the base case, keeping all other parameters xed at the base
case (Table 5.1). Each parameter is increased or decreased rom its base case value by the
corresponding ‘sensitivity shit’ value in Table 5.3.
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In our model, the path o sta catching inections rom the community is controlled by 362

; sta spreading inections between homes through sta sharing by ; and visitors bringing 363

inections into homes rom the outside community by ω
high. We investigate the relative risk 364

o these COVID-19 pathways into care homes using Figure 5.7. This shows the combined 365

impact o varying pairs o these parameters on the total resident deaths. Changing sta 366

sharing, , and sta shit patterns, , the nal number o predicted resident deaths do not 367

change signicantly, apart rom when  ∼ 1 (Figure 5.7). When considering  = 1, we 368

should also restrict  = 0, as sta living in care homes would not be shared across them. 369

Varying  and ω
high does not signicantly eect predicted deaths while holding all other 370

parameters constant at their respective values in Table 5.1. Changing sta shit patterns 371

(), has the largest impact on the predicted deaths, especially in the extremes. Reducing  372

and ω
high alone are weaker, but  has a comparatively larger eect than ω

high. Reducing  373

to 0 and increasing  to 1 together creates an even higher impact on the predicted deaths 374

Figure 5.7, showing an outbreak severity reduction o ∼ 75% compared to the observed 375

values in Lothian during the rst wave. Reducing pre-lockdown visitation rom 2 visiting 376

hours per resident to 0 hours per resident, would reduce our predicted rst-wave deaths by 377

20 to 40, about 10% o the death count in the rst wave in NHS Lothian. 378

Figure 5.7. Sensitivity o the fnal resident deaths to the time-share/mixing
parameters (, ,ωγ

high). Proportion o CH sta at work is , proportion o sta shared between
homes is , and pre-lockdown visitation is ωγ

high. Each panel shows the combined impact o
varying two o the time-share/mixing parameters, with all other model parameters xed as the
base case (Table 5.2). The black lines in each panel are isoclines. The cross in each panel
indicates the base case value or each parameter.
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Discussion 379

To identiy and rank the key modes o ingress into care homes, we used a combination o 380

modelling, data t and simulations. We nd that homes in our model are more at risk 381

to outbreaks through sta inections rom the general population, relative to visitation or 382

sta sharing. We also nd that outbreaks in our model were not signicantly driven by 383

hospital discharges. These ndings coincide with the results rom Rosello et al., who used 384

a stochastic compartmental model on single care homes in England [165]. We additionally 385

nd that in our model the drop in within-home reproduction rate was 3 weeks behind that 386

o the general population. 387

Changing worker shit patterns in care homes () only weakly aects the model outcome 388

or most “reasonable” values e.g. a 2-shit pattern ( = 05) or 3-shit pattern ( = 033). It 389

is only in the extremes where substantial dierences are seen.  close to 1, alongside low pre- 390

lockdown visitation, greatly reduces the nal outbreak size in care homes. Thus, our results 391

point to a strategy o sta living-in with residents, in conjunction with timely lowering o 392

visitation, as an eective pandemic response. This happened in France, where care home 393

outbreak size was reduced signicantly in care homes where sta sel-conned [192]. I 394

living within the care home is not possible, this result o very high levels o  may imply 395

that the strategy o segmenting the sta away rom both care home residents and the 396

general population whilst they are not at work would be eective, e.g., organisation o 397

accommodation or care home workers [159]. From our model, we see the most eective 398

solution to keeping care homes sae rom inection is to ocus on the pathway rom general 399

population to workers to residents. 400

Eliminating sta sharing did not eliminate outbreaks in our model simulations, sug- 401

gesting that this was not the primary route o inection entering homes. Supporting the 402

literature [159, 176, 193], reducing sta sharing does reduce the outbreak severity; in our 403

model, this impact is low compared to other routes. This conclusion is limited due to 404

our assumption o the circle sharing contact structure, which in turn refects limited data 405

availability regarding the contact structure o the care home industry in Lothian (due to 406

commercial sensitivity). A dierent contact structure could result in sta sharing lead- 407
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ing to more/less exportation o inection rom homes with outbreaks. A more thorough 408

examination on the contact-structure o this system and how that impacts disease spread 409

dynamics would be an important contribution to the literature. One way to achieve this 410

would be to consider an addition o highly connected hubs [194]. We expect that including 411

highly connected worker populations will increase the eect o sta sharing. In our simula- 412

tions, sta sharing has an eect when there exists a non-uniorm distribution o inections 413

in worker sub-populations. Worker sub-populations acting as hubs would acquire disease 414

quicker and skew the distribution o inection amongst worker sub-populations. However, 415

the general population strongly connects all nodes in the network, and dominates the 416

impact o the sta sharing network on disease spread. This is because we assume a sin- 417

gle general population with ull mixing. At the geographical scale we model (a health 418

board) this is an appropriate assumption, although it would not hold or larger scales o 419

heterogeneity, e.g., the national level (Scotland). 420

A reduction in visitation reduces predicted resident deaths, as speculated in [159]. Our 421

model predictions support ndings that visitation to care homes was not the driving cause 422

o inection in care homes [195]. Since visitation was banned, the evidence or visitation 423

causing outbreaks is limited. Investigation with constant visitation would be necessary to 424

see how the outcome would be dierent i visitation did not change at all; this was not the 425

ocus o our investigation. 426

Our parameter estimations suggest that ater the nation-wide lock down, Rt within 427

care homes dropped three weeks ater it did in the wider population. Several possible 428

explanations exist, including dierences in testing availability or testing strategies and 429

the diculty in controlling care home resident interactions to lower disease transmission. 430

Dropping care homes’ reproduction rate 1 day earlier, results in a 10% reduction in resident 431

and worker deaths. Thereore a more thorough investigation into the delay between the 432

general populations’ and care homes’ reproduction rate is necessary to aid closing this gap 433

in uture outbreaks. 434
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From the data t, there were a low number o care homes inected at the beginning o 435

the rst wave (Hseeded = 4). These initial inections could represent hospital discharges or 436

any other pathway. The result supports the claim rom a report on English care homes that 437

resident discharges rom hospitals were not the primary cause o care home outbreaks [196]. 438

The hospital discharges are only included as initial care home inections, Hseeded. In reality, 439

discharges continued during the rst wave [170] and more detailed data will be needed to 440

address this problem. 441

We made a number o simpliying assumptions. Our model does not explicitly account 442

or the variation in susceptibility with age [197]. It is only implicitly addressed by consid- 443

ering dierent values o  within and outwith o care homes, while keeping the sta and 444

general population homogeneous. Due to the unavailability o data regarding care home 445

worker inections, we expressed worker transmission rates in terms o transmission rates 446

or care home residents and the general population. We assumed the resident-resident and 447

resident-worker transmission rates were equal. However, contacts between care giving sta 448

and residents are likely more requent and closer than between residents. On the other 449

hand there may be more adherence or better knowledge o how to use PPE among sta. 450

Also, contact between residents could be reduced more easily during the pandemic [159]. 451

The data t was achieved by minimising the aggregated sum o squared error or each 452

o the our time-series. This method requires the errors to be independent, ollow a normal 453

distribution and or the variance to be constant. With the data, we could not estimate 454

the variance over time. To mitigate the eect o the diering variance o the data sets, we 455

shited the our time-series to the same scale, this being weekly cases/deaths. 456

The size o individual care homes is believed to be the main actor that infuences the 457

likelihood o a care home outbreak [170, 176, 198]. Larger homes typically have more sta 458

and thereore a higher chance o experiencing an outbreak beore the smaller ones. In 459

general, we expect larger care homes to receive an increased orce o inection rom all 460

sources, proportional to its increased size, and thereore an increased outbreak risk. This 461

in turn could increase risk or smaller homes directly connected to the larger ones through 462

sta sharing and visitations, and the overall outbreak risk. However, this eect could 463
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balanced by a lowered risk associated with small care homes, with the total population 464

size kept constant. In our model, we assume a uniorm home size in order to keep the model 465

generic. As a result (and since the model is deterministic) the risk o sta and visitors 466

bringing in inections is the same or all care homes, which may result in underestimation 467

o the initial rate o spread. An obvious extension o this chapter would be to consider 468

various sources o heterogeneity, including size. 469

The National Records Scotland death data used were the dates o death registration, not 470

the date o death. This is limiting, as we are an average o 3 days behind in the prediction o 471

deaths [181]. The data or care home resident deaths includes deaths in hospital; including 472

nosocomial inections, which we do not take into account into our model. We expect this 473

not to limit the interpretation o our results, considering hospital deaths o care home 474

residents make up approximately 5% o the total care home resident deaths [181]. 475

We do not distinguish explicitly between symptomatic and asymptomatic individuals, 476

as in (A) there are people with symptoms that would have been missed by testing. However, 477

asymptomatic inections implicitly aect this model’s reporting rates. We do not explicitly 478

model sel-isolation or any behavioural change ater inection, nor delays or changes in 479

reporting. For simplicity, reported inected individuals are reported immediately. Since we 480

are not explicitly modelling behaviour change once inected, we do not expect incorporating 481

reporting delays to signicantly aect our results on the inection pathways. Reporting 482

diered over time, especially in the early weeks o the pandemic when testing was scarce; in 483

care homes, the national policy was to test only the rst ew symptomatic residents [170]. 484

With our constant reporting rate, we overestimate the number o positive cases prior to 485

the policy change, and underestimate the cases aterwards. A time-dependent reporting 486

rate would impact our death rate and reproductive rate parameters and thereore requires 487

urther study. 488

Data regarding care home outbreaks were limited due to the commercial nature o care 489

home organisations in Scotland. Making this data available would allow or additional 490

modelling approaches. Adding in urther heterogeneity into the system by including a dis- 491

tribution o home sizes and types would urther improve the modelling approach. Includ- 492
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ing a stochastic component to this model could lead to more insight into “super-spreader” 493

events in care homes [191] and their eect on epidemic response. Finally, this work ocuses 494

on disease dynamics over the course o the rst wave, it would be interesting to model this 495

system or uture waves and to incorporate the implementation o vaccinations. Extending 496

this system to the rest o Scotland or even the entirety o the UK would be a clear extension 497

o this work. 498

Conclusion 499

In our model, the primary route o introduction to the care home sector is rom the sta 500

via the general population. Our results also agree with other ndings in the literature 501

which suggest that visitation was not the major cause o COVID-19 establishment in 502

care homes [195] and that hospital discharges accounted or a small number o care home 503

outbreaks early on in the pandemic [196]. Prioritising the protection and monitoring 504

o sta, second to timely reductions in visitation and sta sharing, are what our model 505

suggests or an eective reduction in outbreak size. Our ndings also show diculties in 506

halting the spread o COVID-19 within the homes in tandem with the general population. 507

This highlights the need or more planning and support or care homes and their sta in 508

organising quick and eective responses to emerging pandemics. The lessons to be learned 509

rom the rst wave o COVID-19 will be crucial to minimise the damage rom uture 510

outbreaks. 511
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Chapter 6

Conclusions

This thesis aimed to understand the structure o UK plant trade in relation to the spread

o pests and diseases. Data is hard to obtain, oten o a commercially sensitive nature and

thereore very little is known on the structure o plant trade in the UK at the national

level. Even less is known about how pests and diseases spread throughout this network.

In response to this, we have ormulated a method o trade network construction, which

can be improved rom additional data. Using the unique access to data that we had, we

constructed a trade network model and characterised nurseries that trade on a spectrum as

opposed to the simplied roles o wholesaler, grower and retailer as seen in the literature.

The network we constructed is also novel in the inclusion o customers in the network and

our application o edge weights which results in heterogeneous trade.

Our social network analysis highlighted the importance o including edge-weights to net-

work models as dierent conclusions can be made when analysing a network with or with-

out edge-weights. We also ound that customers do not contribute signicantly to network

structure, supporting the network analysis o previous research. From our analysis o the

hubs, authorities and betweenness centrality measures we concluded that retailers are most

at risk o acquiring inection, nurseries which specialise sales to retailers cause the largest

outbreaks and nurseries which specialise sales to other nurseries are good candidates or

trade restriction measures. Additionally, we ound that this is robust or small changes

in market structure. This is an important result, given that there is interest regarding

how changes to plant trade in the UK may aect disease spread (in response to the UK’s
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exit rom the European Union or example). However, a change in UK connections to the

international trade network is something our research does not address.

To understand how to control the spread o disease rom trade, we extended our network

model into a compartmental, metapopulation ramework. From our analysis on this model,

we ound that a disease seeded in nurseries that sell mostly to other nurseries greatly in-

creased the rate o spread throughout the network and raised the probability o an outbreak

when compared to seedings in other nurseries. Changes in the rate o transmission sug-

gested a requirement o inection to more than double every month or a large epidemic to

occur. However, this requirement may be lower or inected plants that stay in nurseries

and retailers or longer than one month. We ound that the utility o inspecting consign-

ments to control disease decreased as the requency o inspecting all stock on site increased.

Depending on price and ecacy, more requent inspections could be cost-eective or plant

nurseries. Our model gave estimations or the inspection price thresholds where this change

occurs. The most eective control strategy we ound rom this analysis was to inspect all

plants in nurseries each month with at least 50% ecacy. Thereore eorts should be made

to make this easible, such as reducing inspection costs and/or diverting resources rom

inspecting consignments. The results concerning inspection requency are particularly rel-

evant to the continued development o the Plant Healthy scheme [154].

The COVID-19 pandemic presented an opportunity to use compartmental metapopulation

models, similar to Chapter 4, to understand COVID-19 transmission into the care home

community. Our analysis showed that the primary driver o COVID-19 into care homes

was the inection that care home sta acquired rom the general population, providing

theoretical support or sta living in with care home residents during a pandemic scenario.

Our results also showed that visitation rom the general population was not the major

cause o the establishment o COVID-19 into care homes. The data tting suggested that

the number o care homes initially seeded with inection was low. This chapter was an ad-

ditional example o the understanding that networked metapopulation models can give to

the way diseases spread throughout isolated populations via the movements o individuals.
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The plant trade models in this thesis have been constructed with many unknown param-

eters, the analysis has thus been limited and many assumptions have been made. Future

work with a ocus on a specic pest/disease, with access to more data to provide parameter

estimations can overcome these limitations. This thesis acts as an initial exploration in us-

ing sales data to inorm trade networks and to understand how disease spreads throughout

the UK plant trade network and the vulnerabilities that lie within.

Future work

Our plant trade network model captured trader behaviour and the variability in the vol-

ume o plants traded across the network. We chose not to embed our plant trade network

model onto a grid-based geography o the UK, as in Harwood et al., because the scope

o our research was ocused solely on modelling the structure o the network [46]. As a

result, our research is restricted to the introduction o currently absent pests and diseases

to the UK. A clear extension to this trade model would be to superimpose the network

trade model onto a spatial model o the UK, allowing the modelling o currently present

pests/diseases.

In our analysis or chapters 2 and 3, we investigated structural changes in the market,

represented by a change in the distribution o nursery subcategories. We ound that our

results were robust to small changes in market structure. This investigation could be ex-

tended by looking at the eects o changes in the denition o each nursery subcategory.

For example, we could alter the network model to coincide more closely to the wholesaler,

grower and retailer paradigm, by assuming that NNur nurseries have an in-degree o 0, i.e.,

they only sell. This would have signicant impacts on network structure, with one nursery

type being cut o rom receiving any inected plants rom the rest o the network.

Scheduled inspections in Chapter 3 were applied uniormly to nurseries and retailers in the

model. An interesting urther investigation would be to look into scheduled inspections

to dierent subsets o nurseries and retailers. For instance, only applying scheduled in-
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spections to one nursery subcategory would have enabled a comparison o the results we

obtained rom our social network analysis in Chapter 2. It would also be interesting to

see the eect o commercial customers applying their own trade inspections, as this could

lower the burden o disease control on nurseries.
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Appendix A

Customer demographics and

consignment size distributions or

Xylella hosts

This section shows the customer demographics and consignment size distributions using

the nursery sales data o key Xylella hosts (Lavender, Olive, Prunus and Rosemary). These

results coincide with the results on Oak sales in Chapter 3.

260



Figure A.1. Customer demographics displayed o the two nurseries in our data that trade in
Lavender (N1, N4) measured by: A.) sales by consignment (number o orders), B.) sales by
quantity (total number o plants sold).

Figure A.2. Customer demographics displayed o the two nurseries in our data that trade in
Olive (N1, N4) measured by: A.) sales by consignment (number o orders), B.) sales by quantity
(total number o plants sold).
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Figure A.3. Customer demographics displayed or Prunus sales o the our nurseries rom our
data (N1, N2, N3, N4) measured by: A.) sales by consignment (number o orders), B.) sales by
quantity (total number o plants sold).

Figure A.4. Customer demographics displayed o the two nurseries in our data that trade in
Rosemary (N1, N4) measured by: A.) sales by consignment (number o orders), B.) sales by
quantity (total number o plants sold).
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Figure A.5. The distribution o consignment sizes or sales in Lavender, separating or each
customer group. We use the sales rom all nurseries in our data that trade in Lavender N1, N4.

Figure A.6. The distribution o consignment sizes or sales in Olive, separating or each
customer group. We use the sales rom all nurseries in our data that trade in Olive N1, N4.
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Figure A.7. The distribution o consignment sizes or sales in Prunus, separating or each
customer group. We use the sales rom all nurseries in our data that trade in Prunus
N1, N2, N3, N4.
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Figure A.8. The distribution o consignment sizes or sales in Rosemary, separating or each
customer group. We use the sales rom all nurseries in our data that trade in Rosemary N1, N4.
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Appendix B

Full network and network subset

comparison fgures

This section shows the comparisons or the centrality measures we considered in Chapter

3. For each centrality measure, we compared the scores in each node subcategory with

the same measures computed on the network with the commercial and consumer nodes

removed.
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Figure B.1. Box plots o the average betweenness score per node subcategory or 100 networks
with nursery distribution scenario 2 ( (NCom, NCons, NNur, NRet) = (80, 20, 40, 20) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.2. Box plots o the average betweenness score per node subcategory or 100 networks
with nursery distribution scenario 3 ( (NCom, NCons, NNur, NRet) = (20, 50, 40, 50) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.3. Box plots o the average betweenness score per node subcategory or 100 networks
with nursery distribution scenario 4 ( (NCom, NCons, NNur, NRet) = (130, 10, 10, 10) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.

269



Figure B.4. Box plots o the average betweenness score per node subcategory or 100 networks
with nursery distribution scenario 5 ((NCom, NCons, NNur, NRet) = (10, 130, 10, 10) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.

270



Figure B.5. Box plots o the average betweenness score per node subcategory or 100 networks
with nursery distribution scenario 6 ( (NCom, NCons, NNur, NRet) = (10, 10, 130, 10) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.6. Box plots o the average betweenness score per node subcategory or 100 networks
with nursery distribution scenario 7 ( (NCom, NCons, NNur, NRet) = (10, 10, 10, 130) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.

272



Figure B.7. Box plots o the average unweighted betweenness score per node subcategory or
100 networks with nursery distribution scenario 1 ( (NCom, NCons, NNur, NRet) =
(40, 40, 40, 40) ). All other parameters values used are shown in Table 1.2. Scores are shown on a
log10(1 + data) scale. The plot on the let shows out-degree scores calculated on the entire
network, the plot on the right shows out-degree scores calculated on the subset o the network
with only nurseries and retailers. We note the dierences in the scales o the y-axes.
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Figure B.8. Box plots o the average unweighted betweenness score per node subcategory or
100 networks with nursery distribution scenario 2 ( (NCom, NCons, NNur, NRet) =
(80, 20, 40, 20) ). All other parameters values used are shown in Table 1.2. Scores are shown on a
log10(1 + data) scale. The plot on the let shows out-degree scores calculated on the entire
network, the plot on the right shows out-degree scores calculated on the subset o the network
with only nurseries and retailers. We note the dierences in the scales o the y-axes.

274



Figure B.9. Box plots o the average unweighted betweenness score per node subcategory or
100 networks with nursery distribution scenario 3 ( (NCom, NCons, NNur, NRet) =
(20, 50, 40, 50) ). All other parameters values used are shown in Table 1.2. Scores are shown on a
log10(1 + data) scale. The plot on the let shows out-degree scores calculated on the entire
network, the plot on the right shows out-degree scores calculated on the subset o the network
with only nurseries and retailers. We note the dierences in the scales o the y-axes.
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Figure B.10. Box plots o the average unweighted betweenness score per node subcategory or
100 networks with nursery distribution scenario 4 ( (NCom, NCons, NNur, NRet) =
(130, 10, 10, 10) ). All other parameters values used are shown in Table 1.2. Scores are shown on a
log10(1 + data) scale. The plot on the let shows out-degree scores calculated on the entire
network, the plot on the right shows out-degree scores calculated on the subset o the network
with only nurseries and retailers. We note the dierences in the scales o the y-axes.
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Figure B.11. Box plots o the average unweighted betweenness score per node subcategory or
100 networks with nursery distribution scenario 5 ((NCom, NCons, NNur, NRet) =
(10, 130, 10, 10) ). All other parameters values used are shown in Table 1.2. Scores are shown on a
log10(1 + data) scale. The plot on the let shows out-degree scores calculated on the entire
network, the plot on the right shows out-degree scores calculated on the subset o the network
with only nurseries and retailers. We note the dierences in the scales o the y-axes.
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Figure B.12. Box plots o the average unweighted betweenness score per node subcategory or
100 networks with nursery distribution scenario 6 ( (NCom, NCons, NNur, NRet) =
(10, 10, 130, 10) ). All other parameters values used are shown in Table 1.2. Scores are shown on a
log10(1 + data) scale. The plot on the let shows out-degree scores calculated on the entire
network, the plot on the right shows out-degree scores calculated on the subset o the network
with only nurseries and retailers. We note the dierences in the scales o the y-axes.
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Figure B.13. Box plots o the average unweighted betweenness score per node subcategory or
100 networks with nursery distribution scenario 7 ( (NCom, NCons, NNur, NRet) =
(10, 10, 10, 130) ). All other parameters values used are shown in Table 1.2. Scores are shown on a
log10(1 + data) scale. The plot on the let shows out-degree scores calculated on the entire
network, the plot on the right shows out-degree scores calculated on the subset o the network
with only nurseries and retailers. We note the dierences in the scales o the y-axes.
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Figure B.14. Box plots o the average in-strength score per node subcategory or 100 networks
with nursery distribution scenario 1 ( (NCom, NCons, NNur, NRet) = (40, 40, 40, 40) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.15. Box plots o the average in-strength score per node subcategory or 100 networks
with nursery distribution scenario 2 ( (NCom, NCons, NNur, NRet) = (80, 20, 40, 20) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.16. Box plots o the average in-strength score per node subcategory or 100 networks
with nursery distribution scenario 3 ( (NCom, NCons, NNur, NRet) = (20, 50, 40, 50) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.17. Box plots o the average in-strength score per node subcategory or 100 networks
with nursery distribution scenario 4 ( (NCom, NCons, NNur, NRet) = (130, 10, 10, 10) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.18. Box plots o the average in-strength score per node subcategory or 100 networks
with nursery distribution scenario 5 ((NCom, NCons, NNur, NRet) = (10, 130, 10, 10) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.19. Box plots o the average in-strength score per node subcategory or 100 networks
with nursery distribution scenario 6 ( (NCom, NCons, NNur, NRet) = (10, 10, 130, 10) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.20. Box plots o the average in-strength score per node subcategory or 100 networks
with nursery distribution scenario 7 ( (NCom, NCons, NNur, NRet) = (10, 10, 10, 130) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.21. Box plots o the average out-strength score per node subcategory or 100 networks
with nursery distribution scenario 1 ( (NCom, NCons, NNur, NRet) = (40, 40, 40, 40) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.22. Box plots o the average out-strength score per node subcategory or 100 networks
with nursery distribution scenario 2 ( (NCom, NCons, NNur, NRet) = (80, 20, 40, 20) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.23. Box plots o the average out-strength score per node subcategory or 100 networks
with nursery distribution scenario 3 ( (NCom, NCons, NNur, NRet) = (20, 50, 40, 50) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.24. Box plots o the average out-strength score per node subcategory or 100 networks
with nursery distribution scenario 4 ( (NCom, NCons, NNur, NRet) = (130, 10, 10, 10) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.25. Box plots o the average out-strength score per node subcategory or 100 networks
with nursery distribution scenario 5 ((NCom, NCons, NNur, NRet) = (10, 130, 10, 10) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.26. Box plots o the average out-strength score per node subcategory or 100 networks
with nursery distribution scenario 6 ( (NCom, NCons, NNur, NRet) = (10, 10, 130, 10) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.27. Box plots o the average out-strength score per node subcategory or 100 networks
with nursery distribution scenario 7 ( (NCom, NCons, NNur, NRet) = (10, 10, 10, 130) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.28. Box plots o the average authority score per node subcategory or 100 networks
with nursery distribution scenario 1 ( (NCom, NCons, NNur, NRet) = (40, 40, 40, 40) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.29. Box plots o the average authority score per node subcategory or 100 networks
with nursery distribution scenario 2 ( (NCom, NCons, NNur, NRet) = (80, 20, 40, 20) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.30. Box plots o the average authority score per node subcategory or 100 networks
with nursery distribution scenario 3 ( (NCom, NCons, NNur, NRet) = (20, 50, 40, 50) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.31. Box plots o the average authority score per node subcategory or 100 networks
with nursery distribution scenario 4 ( (NCom, NCons, NNur, NRet) = (130, 10, 10, 10) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.32. Box plots o the average authority score per node subcategory or 100 networks
with nursery distribution scenario 5 ((NCom, NCons, NNur, NRet) = (10, 130, 10, 10) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.33. Box plots o the average authority score per node subcategory or 100 networks
with nursery distribution scenario 6 ( (NCom, NCons, NNur, NRet) = (10, 10, 130, 10) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.34. Box plots o the average authority score per node subcategory or 100 networks
with nursery distribution scenario 7 ( (NCom, NCons, NNur, NRet) = (10, 10, 10, 130) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.35. Box plots o the average hub score per node subcategory or 100 networks with
nursery distribution scenario 1 ( (NCom, NCons, NNur, NRet) = (40, 40, 40, 40) ). All other
parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale. The
plot on the let shows out-degree scores calculated on the entire network, the plot on the right
shows out-degree scores calculated on the subset o the network with only nurseries and retailers.
We note the dierences in the scales o the y-axes.
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Figure B.36. Box plots o the average hub score per node subcategory or 100 networks with
nursery distribution scenario 2 ( (NCom, NCons, NNur, NRet) = (80, 20, 40, 20) ). All other
parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale. The
plot on the let shows out-degree scores calculated on the entire network, the plot on the right
shows out-degree scores calculated on the subset o the network with only nurseries and retailers.
We note the dierences in the scales o the y-axes.
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Figure B.37. Box plots o the average hub score per node subcategory or 100 networks with
nursery distribution scenario 3 ( (NCom, NCons, NNur, NRet) = (20, 50, 40, 50) ). All other
parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale. The
plot on the let shows out-degree scores calculated on the entire network, the plot on the right
shows out-degree scores calculated on the subset o the network with only nurseries and retailers.
We note the dierences in the scales o the y-axes.
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Figure B.38. Box plots o the average hub score per node subcategory or 100 networks with
nursery distribution scenario 4 ( (NCom, NCons, NNur, NRet) = (130, 10, 10, 10) ). All other
parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale. The
plot on the let shows out-degree scores calculated on the entire network, the plot on the right
shows out-degree scores calculated on the subset o the network with only nurseries and retailers.
We note the dierences in the scales o the y-axes.
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Figure B.39. Box plots o the average hub score per node subcategory or 100 networks with
nursery distribution scenario 5 ((NCom, NCons, NNur, NRet) = (10, 130, 10, 10) ). All other
parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale. The
plot on the let shows out-degree scores calculated on the entire network, the plot on the right
shows out-degree scores calculated on the subset o the network with only nurseries and retailers.
We note the dierences in the scales o the y-axes.
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Figure B.40. Box plots o the average hub score per node subcategory or 100 networks with
nursery distribution scenario 6 ( (NCom, NCons, NNur, NRet) = (10, 10, 130, 10) ). All other
parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale. The
plot on the let shows out-degree scores calculated on the entire network, the plot on the right
shows out-degree scores calculated on the subset o the network with only nurseries and retailers.
We note the dierences in the scales o the y-axes.
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Figure B.41. Box plots o the average hub score score per node subcategory or 100 networks
with nursery distribution scenario 7 ( (NCom, NCons, NNur, NRet) = (10, 10, 10, 130) ). All
other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data) scale.
The plot on the let shows out-degree scores calculated on the entire network, the plot on the
right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.42. Box plots o the average unweighted authority score per node subcategory or 100
networks with nursery distribution scenario 1 ( (NCom, NCons, NNur, NRet) = (40, 40, 40, 40)
). All other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data)
scale. The plot on the let shows out-degree scores calculated on the entire network, the plot on
the right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.

308



Figure B.43. Box plots o the average unweighted authority score per node subcategory or 100
networks with nursery distribution scenario 2 ( (NCom, NCons, NNur, NRet) = (80, 20, 40, 20)
). All other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data)
scale. The plot on the let shows out-degree scores calculated on the entire network, the plot on
the right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.44. Box plots o the average unweighted authority score per node subcategory or 100
networks with nursery distribution scenario 3 ( (NCom, NCons, NNur, NRet) = (20, 50, 40, 50)
). All other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data)
scale. The plot on the let shows out-degree scores calculated on the entire network, the plot on
the right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.45. Box plots o the average unweighted authority score per node subcategory or 100
networks with nursery distribution scenario 4 ( (NCom, NCons, NNur, NRet) = (130, 10, 10, 10)
). All other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data)
scale. The plot on the let shows out-degree scores calculated on the entire network, the plot on
the right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.46. Box plots o the average unweighted authority score per node subcategory or 100
networks with nursery distribution scenario 5 ((NCom, NCons, NNur, NRet) = (10, 130, 10, 10)
). All other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data)
scale. The plot on the let shows out-degree scores calculated on the entire network, the plot on
the right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.47. Box plots o the average unweighted authority score per node subcategory or 100
networks with nursery distribution scenario 6 ( (NCom, NCons, NNur, NRet) = (10, 10, 130, 10)
). All other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data)
scale. The plot on the let shows out-degree scores calculated on the entire network, the plot on
the right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.48. Box plots o the average unweighted authority score per node subcategory or 100
networks with nursery distribution scenario 7 ( (NCom, NCons, NNur, NRet) = (10, 10, 10, 130)
). All other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data)
scale. The plot on the let shows out-degree scores calculated on the entire network, the plot on
the right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.49. Box plots o the average unweighted hub score per node subcategory or 100
networks with nursery distribution scenario 1 ( (NCom, NCons, NNur, NRet) = (40, 40, 40, 40)
). All other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data)
scale. The plot on the let shows out-degree scores calculated on the entire network, the plot on
the right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.50. Box plots o the average unweighted hub score per node subcategory or 100
networks with nursery distribution scenario 2 ( (NCom, NCons, NNur, NRet) = (80, 20, 40, 20)
). All other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data)
scale. The plot on the let shows out-degree scores calculated on the entire network, the plot on
the right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.51. Box plots o the average unweighted hub score per node subcategory or 100
networks with nursery distribution scenario 3 ( (NCom, NCons, NNur, NRet) = (20, 50, 40, 50)
). All other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data)
scale. The plot on the let shows out-degree scores calculated on the entire network, the plot on
the right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.52. Box plots o the average unweighted hub score per node subcategory or 100
networks with nursery distribution scenario 4 ( (NCom, NCons, NNur, NRet) = (130, 10, 10, 10)
). All other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data)
scale. The plot on the let shows out-degree scores calculated on the entire network, the plot on
the right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.53. Box plots o the average unweighted hub score per node subcategory or 100
networks with nursery distribution scenario 5 ((NCom, NCons, NNur, NRet) = (10, 130, 10, 10)
). All other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data)
scale. The plot on the let shows out-degree scores calculated on the entire network, the plot on
the right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.54. Box plots o the average unweighted hub score per node subcategory or 100
networks with nursery distribution scenario 6 ( (NCom, NCons, NNur, NRet) = (10, 10, 130, 10)
). All other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data)
scale. The plot on the let shows out-degree scores calculated on the entire network, the plot on
the right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Figure B.55. Box plots o the average unweighted hub score per node subcategory or 100
networks with nursery distribution scenario 7 ( (NCom, NCons, NNur, NRet) = (10, 10, 10, 130)
). All other parameters values used are shown in Table 1.2. Scores are shown on a log10(1 + data)
scale. The plot on the let shows out-degree scores calculated on the entire network, the plot on
the right shows out-degree scores calculated on the subset o the network with only nurseries and
retailers. We note the dierences in the scales o the y-axes.
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Appendix C

COVID-19 model supplementary

material

This section is relevant to Chapter 6 and includes the table o author contributions to

clearly identiy what each author contributed to the work. This section also includes the

gure or our manual tting o the parameters which control the timing o the all in the

reproduction rate due to lockdown or care homes and the general population (ωC
end, ωG

end).

This gure shows the values we considered as baseline all under a local minima in terms

o squared error.
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Table C.1. Description o the contribution roles o each author: Adam Kleczkowski (AK),
Matthew Basiter (MB), Ewan McTaggart (EMT), Paul McMenemy (PM), Itamar Megiddo (IM).

Contributor Role Role Defnition Name

Conceptualization Ideas; ormulation or evolution o overarching research goals and aims. AK

Data Curation Management activities to annotate (produce metadata), scrub data and MB, EMT

maintain research data (including sotware code, where it is necessary or

interpreting the data itsel) or initial use and later reuse.

Formal Analysis Application o statistical, mathematical, computational, or other ormal MB, EMT

techniques to analyze or synthesize study data.

Funding Acquisition Acquisition o the nancial support or the project leading to this publication. AK

Investigation Conducting a research and investigation process, specically perorming the MB, EMT

experiments, or data/evidence collection.

Methodology Development or design o methodology; creation o models AK, PM, MB, EMT, IM

Project Administration Management and coordination responsibility or the research activity planning AK, PM, IM, MB, EMT

and execution.

Resources Provision o study materials, reagents, materials, patients, laboratory samples, AK, PM, MB, EMT

animals, instrumentation, computing resources, or other analysis tools.

Sotware Programming, sotware development; designing computer programs; implementation AK, PM, MB, EMT

o the computer code and supporting algorithms; testing o existing code components.

Supervision Oversight and leadership responsibility or the research activity planning and, AK, PM, IM

execution including mentorship external to the core team.

Validation Verication, whether as a part o the activity or separate, o the overall MB, EMT

replication/reproducibility o results/experiments and other research outputs.

Visualisation Preparation, creation and/or presentation o the published work, specically MB, EMT

visualization/data presentation.

Writing- Original Drat Preparation Creation and/or presentation o the published work, specically writing MB, EMT

the initial drat (including substantive translation).

Writing- Review & Editing Preparation, creation and/or presentation o the published work by those AK, PM, IM, MB, EMT

rom the original research group, specically critical review, commentary

or revision – including pre- or post-publication stages.
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Figure C.1. Natural log o aggregated sum o squared error in a ωC
end − ωG

end

parameter space. ωC
end controls the timing o the drop in resident Rt, and ωG

end controls the
timing o the drop in general population Rt. These parameters were tted manually, achieving a
minimum or the values shown in Table 5.1. In the plot, all other parameters are held at the base
case (Table 5.1).
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