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Abstract

Many future engineering systems may consist of swarms of multiple, mobile au-

tonomous agents, operating together to solve engineering problems in new and

efficient ways. To enable such systems, this thesis investigates the development

of new methodologies for verifiable swarming systems, investigating two areas of

generic swarming systems; pattern formation and reconfigurability.

Based on dynamical systems theory and through the new approach of bifurcating

artificial potential fields, it is shown that a verifiable swarming system can be con-

structed, capable of creating reconfigurable, autonomous patterns. Using scale

separation of the potential fields and Lyapunov stability methods, swarm verifi-

cation can be achieved, providing a step towards replacing traditional heuristic

methods with a more rigorous analytical approach.

The new methodologies are demonstrated in two safety or mission critical en-

gineering systems; spacecraft formation flying and swarms of unmanned aerial

vehicles. For spacecraft formation flying, it is shown that a formation can op-

erate in low-Earth-orbit and deep-space using a second order force model with

bounded actuator effort. For swarms of unmanned aerial vehicles, a guidance

and control algorithm is developed through a first order velocity field model. In

both models, it is shown that the swarm can safely form different patterns and

autonomously reconfigure between them.
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Chapter 1

Introduction

1.1 Background

In the near future many engineering systems may consist of multiple, mobile au-

tonomous agents that must operate together in a coordinated and safe manner.

Recently, various branches of science and technology, in particular biology and

robotics, have been investigating the global emergent behaviour that often occurs

when swarms of agents interact locally [1]. These systems are often termed com-

plex systems as their global behaviour cannot be fully explained by considering

the dynamics of each individual agent [2]. Biologists are motivated by the devel-

opment of mathematical models to describe the complex patterns that occur in

nature [3], whereas engineers are driven by the need to solve engineering prob-

lems in new, efficient and robust ways. Examples of potential swarm engineering

applications include; inspection of complicated engineering structures such as tur-

bines with small miniature robots [4], scientific data gathering in formations of

unmanned aerial vehicles [5–9] and for interferometric/sparse aperture telescopes

in spacecraft formation flying [10, 11]. Figures 1.1 (i) and (ii) show an example

of a swarm system in nature and also in an engineering context.

1
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(i) (ii)

Figure 1.1: Examples of swarms (i) school of fish (Getty Images) (ii) robot swarm
(MIT)

In nature the term agent applies to swarms of social entities, such as insects, that

self-organise through local communications and interaction with the environment.

This phenomena is apparent on every length scale from formations of bacteria to

flocks of birds or schools of fish [12], where one of the key characteristics is that

the members in the group maintain a constant separation distance [13]. Instead

of a centralised leader architecture, the agents in the swarm act in a distributed

way, having no a priori knowledge of the pattern that they will eventually re-

lax into. The term emergent behaviour therefore describes the process in which

through local microscopic interactions, macroscopic behaviours occur.

Although biology provides us with a prime example of a complex system there

are many examples of others such as; the dynamics of global weather patterns,

the economic dynamics of world markets and neuron activity in the brain [14].

In the past decade the study of these types of system has been termed complex

systems theory and has been suggested as the science of the 21st century. In gen-

eral they are typically composed of a series of non-linear components, interacting

and producing self-organised behaviour [14].

In the engineering context, Parunak defines a swarming system as the “the use-

ful self-organisation of multiple entities through local interactions”[15]. The term

‘useful ’ implies that the swarming system will be effective in an engineering appli-

cation, having advantages over conventional single entity systems and considering

real dynamic complexities such as non-holonomic effects. A swarming system is

particularly appealing to an engineer as it can have desirable properties such as
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scalability, robustness and flexibility.

To make use of these advantages swarm robotics has developed into a major re-

search area with large international projects currently underway addressing ways

in which they can be designed and developed. Originally robot systems were de-

veloped based on the artificial intelligence (AI) approach with the desire to model

intelligence on an individual basis, aiming at reproducing human cognition [16].

Although partially successful, it soon became apparent that even modeling the

simplest of behaviours would be a difficult task. During the mid-1980s Brooks

introduced the idea of a behaviour based system to the AI community and has

since produced a paradigm shift in the way that robotic systems are designed

[17]. His idea was based on a layered subsumption architecture, neglecting any

internal model of the environment and creating a completely reactive system,

where agent behaviours are driven by sensing and communication. This ad-hoc

type approach has been investigated by many authors and produced interesting

qualitative behaviours such as dispersion, collision avoidance and flocking [18–20].

Another related approach to the control of a swarm robotic system is the work

carried out by Beni [21]. His work was based on a cellular automata approach,

originally developed by von Neumann [22], and can be considered one of the

simplest models of a complex system. In [23] he introduced the term swarm

intelligence to describe a system that lacks any form of hierarchical control struc-

ture, where the agents in the system interact locally with each other and also the

environment.

Winfield has also introduced the term swarm engineering to highlight the key is-

sues that are involved in real, safety-critical applications as opposed to simulation

[24]. One of the difficult aspects of swarming technology is how to create verifiable

systems, ensuring no undesirable behaviours occur. Therefore, although there

have been numerous theoretical approaches developed for swarm robot systems,

the implementation of these in real applications will require the development of

verifiable swarms.

In order to address these issues this thesis investigates the development of generic

swarming systems, considering ways in which verifiable, reliable and realistic
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swarm engineered systems can be achieved. Through the use of dynamical sys-

tems theory two areas of swarm systems are investigated; pattern formation

and reconfigurability. The new control algorithms developed based on bifur-

cating artificial potential fields are mathematically elegant, computationally

efficient and can analytically prove the stability of the system replacing tradi-

tional algorithm validation. The algorithms are implemented in engineering ap-

plications of particular interest to the author; spacecraft formation flying and

unmanned aerial vehicles (UAVs).

The following sections of this chapter review the central concepts discussed in

the background that are important in swarm engineered systems and provides a

review of current modelling techniques used. There is then a discussion on re-

lated approaches to pattern formation and reconfigurability in swarming systems,

followed by the layout and objectives of this thesis.

1.2 What is Swarm Intelligence?

The term swarm intelligence first appeared in the literature as a means to de-

scribe a special type of robotic system that would be decentralised and made up

of simple and (quasi) identical agents [23]. This was particularly appealing for a

robot system as a decentralised control scheme lends to simpler robots with the

potential for mass production and high redundancy.

In 1999, Bonabeau et al. extended the definition of swarm intelligence to include

“any attempt to design algorithms or distributed problem-solving devices inspired

by the collective behaviour of social insect colonies and other animal societies”[25].

They were particularly interested in the way in which social insects such as ants

and wasps form colonies. They realised that the ideas that Beni had raised

were relevant and true of the characteristics that they found in the swarming

behaviour of social insects and suggested that the behaviour was a product of

two characteristics; self-organisation and stigmergy.

1.2.1 Self-organisation

Self-organisation describes the behaviour that a physical system goes through

with the emergence of macroscopic patterns from microscopic interactions [26].
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An example is crystal growth in snow flakes. Snowflakes form by water vapour

in clouds creating ice on dust particles. Depending upon temperature and the

spin of the flakes as they fall a variety of different flake patterns emerge through

the process of local interactions [27]. An example of a self-organised snow flake is

given in Fig. 1.2 (i). Another example of self-organisation is the process of mag-

netisation [28]. A magnetic material consists of an array of small magnets know

as spins. At high temperatures the spins have a random distribution. However,

if the temperature of the magnet is reduced the spins self-organise into the same

direction, as shown in Fig. 1.2 (ii).

(i) (ii)

Figure 1.2: Examples of self-organisation (i) snowflake formation (Gravner-
Griffeath) (ii) spin alignment for magnetisation

1.2.2 Stigmergy

In swarms of social insects self-organisation is driven by either direct or in-direct

communication. With direct communication, social insects may communicate

through some form of sensing such as physical contact. Indirect communication,

on the other hand, is when an insect alters the environment resulting in a change

in behaviour of other insects. The process of indirect communication is termed

stigmergy and is important in the collective behaviour that occurs through swarm

intelligence. One of the best examples of this process is to consider the foraging

behaviour of ants. Beckers et al. have been able to show that ants find the shortest

path between their nest and a food source by depositing chemical pheromones

when they find food [29]. Other ants in the colony are then attracted to this

substance and as a result the foraging ants can optimise their search for food.
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This idea has proved successful in several applications such as a method of re-

routing network traffic in telecommunication systems [30].

1.2.3 Approaches to Modelling Swarm Intelligence

The modelling of swarm intelligence has been researched extensively since it was

first introduced in the the late 1980s. For this reason there exists numerous

methods such as the design of optimisation tools based on the behaviour of social

insects to developing simple rules that mimic the flocking behaviour that is found

in birds. This section gives a review of some of the most popular approaches to

modelling swarm intelligence.

Cellular Automata

Cellular automata are a class of discrete mathematical systems that can be viewed

as a simple method of modelling swarm intelligence. It was first introduced by

von Neumann as a method to achieve self-reproduction and consists of lattice

cells that can exist in a number of finite states [22]. The dynamics of such sys-

tems are solved discretely with the future state of each cell dependent upon the

interaction locally with its neighbouring cells.

One of the most popular examples of cellular automata is Conway’s Game of

Life [31]. It consists of a lattice of cells that can either be dead or alive and

the dynamics of the system are solved based on a set of local rules depending

upon the condition of the surrounding cells in the simulation. The results showed

that through simple local interactions, dynamic behaviours can occur such as the

gliding of a pattern across the lattice.

Cellular automata has been applied to various topics such the modeling of fluid

behaviour [32], earthquakes [33] and chemical reactions [34].

Reynolds Flocking Boids model

One of the key early papers to demonstrate swarming behaviour in animals was

Reynolds boids simulation of flocking birds in 1987 [35]. This heuristic ruled

based approach defined the movement of each boid on three simple steering be-

haviours; separation, alignment and cohesion and produced interesting qualitative
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behaviours. The method was also investigated by Heppner and Grenander [36].

Recently the idea has been applied to flocking of autonomous unmanned air

vehicles by Crowther [37, 38]. Although producing successful behaviours, demon-

strating that swarming behaviour can be replicated through a set of simple rules,

the systems lacks any formal validation for the behaviours and therefore limits

its ability to be applied to a safety or mission critical system.

Ant Colony Optimisation

Dorigo proposed the idea of using the behaviour of ants that forage for food as

an algorithm that would find an optimal path in a graph [39]. This probabilistic

method has been shown to have near optimal solutions to the traveling salesman

problem where the aim is to find the shortest route to connect a series of cities [40].

Recently the method has been extended and applied successfully to solve problems

such as transportation, distribution and logistics in vehicle routing [41], routing

and congestion problems in computer networks [42] and the prediction of 3D

protein shapes through protein folding in biology [43].

Particle Swarm Optimisation

Particle swarm optimisation (PSO) was introduced by Kennedy and Eberhart and

was inspired from the social behaviour of flocking birds or schools of fish [44]. In

the algorithm the particles search a multi-dimensional solution space, changing

their velocity depending upon a fitness function which is weighted against its

position in the solution space and also the influence of its neighbours. The re-

sult is that the swarm will flock together, globally optimising the problem at hand.

Although originally conceived of as an optimisation tool [45], PSO has become

very popular of late in other applications due to its simplicity and efficiency. It has

been applied to various problems such as the selection of the process parameters

for pulsed laser micro-machining [46].
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1.3 Swarm Robotics

Over the past 20 years swarm robotics has developed into a major research field

driven by the need to solve engineering problems in new and efficient ways. A

robot is defined by Arkin as “a machine that is able to extract information from its

environment and use knowledge from its world to move safely and in a meaningful

and purposeful manner”[47]. The key issues to be addressed in the area of swarm

robotics are;

• How do we control a swarm of robots overcoming real practical and techno-

logical constraints such as communication limitations, non-holonomic effects

and actuator saturation?

• What technical and societal problems can be addressed and solved using

this technology?

To answer the first question researchers have based the development of control

systems on the swarm intelligence paradigm, with the ultimate aim of developing

fully autonomous, distributed systems. These systems are particularly appealing

to an engineer as they can have the key advantages of being robust to individual

failures, scalable and flexible. They also allow the engineer the opportunity to

solve problems that may not have been achievable through the use of a single

robot. As a result, swarm robotics has been applied to a range of engineering

applications such as swarms of unmanned aerial vehicles and spacecraft formation

flying.

At present there are large international projects underway that are addressing the

design and development of swarm robot systems. For example, in Europe a num-

ber of research institutes are developing swarms of small mobile robots. The Eu-

ropean Commission have funded several activities such as the Swarm-bots project

(2001-2005) and its extension, the Swarmanoid project (2006-2010). Swarm-bots

studied new approaches to the design of self-organising and self-assembling arti-

facts [48, 49], with Swarmanoid extending the research by considering systems of

distributed heterogeneous robots [50, 51].

In addition the European Commission has also funded two research projects, Sym-

brion and Replicator, between 2008 and 2013. Symbrion aims to develop novel
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principles of behaviour, adaptation and learning for swarms of robots based on ar-

tificial evolution and evolutionary computational approaches [52], with Replicator

focusing on the development of a swarm of small autonomous mobile micro-robots

that are capable of self-assembling into large artificial organisms [53]. Figures 1.3

(i) and (ii) show an example of a Swarm-bot and Symbrion robots respectively.

(i) (ii)

Figure 1.3: Examples of swarm robots (i) Swarm-bot (Universite Libre de Brux-
elles) (ii) Symbrion (University of Stuttgart)

In addition to academic research, a large number of military researchers are inves-

tigating ways in which swarming technology can be used. The idea of swarming

units of attack, as opposed to single units, has been used throughout military

history; such as swarms of U-boats adopting the ‘wolf-pack ’ strategy during the

second world war [54]. Recently, military researchers have been developing ways

in which they can take advantage of the benefits of using swarms of robots [14].

For example, in 2008 the US army invested $10 million into a collaborative re-

search project with the aim of developing swarms of unmanned air vehicles1. The

potential applications of this technology include surveillance of the battlefield or

convoy protection. The Office of Naval Research in the US have also sponsored

a research collaboration into the development of heterogeneous unmanned net-

work teams between 2008-2011, in particular swarms of unmanned underwater

vehicles (UUV). This technology could then be used to identify potential threats

and track them, reducing the risk to personnel and improving stealth capabilities.

An example of a UAV swarm and UUV is given in Fig. 1.4 (i) and (ii) respectively.

Multiple spacecraft flying in formation is another research application of swarm

robot technology. Multiple spacecraft operating together enables a variety of mis-

1www.microsystems.umd.edu/index.php, accessed 22/06/09
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(i) (ii)

Figure 1.4: (i) UAV (US army) (ii) Slocum Glider UUV (Webb Research)

sions that can improve significantly the functionality of the system in comparison

with a large single spacecraft [55]. For example, LISA, the Laser Interferometer

Space Antenna, is a joint ESA-NASA mission to observe astrophysical and cosmo-

logical sources of gravitational waves. It will consist of three spacecraft separated

by 5 million kilometers achieving a mission goal that could never be realised with

the use of only one spacecraft [56]. ESA are also investigating DARWIN, a mis-

sion that will consist of 4 spacecraft equipped with optical telescopes in formation

at the Sun-Earth L2 point searching for earth like planets [11]. Figure 1.5 (i) and

(ii) show visualisations of both LISA and DARWIN missions respectively.

(i) (ii)

Figure 1.5: Examples of spacecraft formation flying (i) LISA (NASA) (ii) DAR-
WIN (ESA)
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1.3.1 Swarm Robotics Control Architectures

The control of multiple robots can be split broadly into either centralised or dis-

tributed control. Centralised control architectures have proved successful for the

control of a small number of robots, with the advantage of achieving a very high

level of positional accuracy. The leader-follower architecture is an example of

a centralised control law that has proved successful for the control of multiple

UAVs. Koo et al. proposed a leader UAV that would determine the trajectories

of two follower UAVs, with numerical results showing that the control law can

achieve the desired flight formation [57]. The disadvantage of this system is that

as the number of UAVs increase, controlling them in a centralised way becomes

extremely demanding on the controller, which in turn limits the scalability and

robustness of the system.

As opposed to this centralised approach, this thesis is concerned with the develop-

ment of a distributed control architecture, allowing the development of a robust

and flexible system. The behaviour-based approach, introduced by Brooks, is gen-

erally regarded as the method of choice for the development of swarm robotic sys-

tems of this type. As opposed to the classical AI approach, behavioural robotics is

based on a collection of behaviours, which act either dependently or independently

to produce a particular behaviour in the robot. Instead of requiring an internal

model of the environment, behavioural intelligence is related to the interaction of

the robot with its environment and also other robots. It is therefore clear to see

the similarities that exist between this description and that of swarm intelligence.

Pirjanian states that the success of behavior-based control architectures is de-

pendent upon the Action Selection Problem, which is concerned with how the

controlled robots decide which of the basic behaviours they will use [58]. There

have been several reviews published on behavioural based control architecture for

swarm robotics, notably Arkin 1998 [47], Pirjanian 1999 [58] and more recently

Bayindir in 2007 [2]. This section gives a discussion of the key approaches to

behaviour based control.

Subsumption Architecture

This bottom up approach is based on an arbitration mechanism that consists of

a set of layered independent behaviours with a simple inhibition or suppression
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mechanism acting between them. Figure 1.6 shows a typical priority-based sub-

sumption architecture, consisting of three basic behaviours, where higher level

behaviours subsume the lower behaviours, therefore taking priority in the com-

mand of the system.

form pattern

collision avoidance

goal position

sensors actuators

Figure 1.6: Subsumption architecture

Brooks implemented his architecture on single robot platforms such as Allen [17]

and was able to demonstrate that the subsumption architecture could successfully

achieve simple behaviours such as obstacle avoidance. Mataric developed a robot

capable of path planning and navigation producing control laws in real time by

integrating a map representation into a reactive, subsumption-based mobile robot

[59]. She noted that the main advantage of this architecture was that it could

operate in an unpredictable, dynamic world.

Parker used the subsumption architecture to simulate the formation of a line pat-

tern of robots that could navigate past an obstacle to reach a goal position [60].

Balch and Arkin extended Parker’s work adding other formation patterns such

as a column or wedge formation and applied it successfully to the control of two

mobile robots [61].

One of the disadvantages of this method is that as more complex layers are

added to the system, the complexity in designing the system increases [62]. Also,

although this approach has been shown to produce interesting emergent swarm

behaviours, the system lacks formality and is therefore difficult to validate which

is essential for safety or mission critical applications.
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Probabilistic Finite State Automata

The probabilistic finite state automata approach is a method in which robots are

modelled as finite state machines, with the use of stochastic Markov processes to

describe the behaviour of the swarm [63, 64]. In this mathematical approach the

system transitions between different states dependent upon certain probabilities,

providing a way to model and analyse the long term behaviour of a swarm robotic

system [65].

Lui et al. presented a probabilistic finite state machine model to deal with a

swarm foraging task [64]. The approach uses several difference equations to de-

scribe a probabilistic finite state machine for the task and they implement the

mathematical model in a sensor-based simulation to act as validation. Using

eight simulated robots with collision avoidance sensors, three light sensors and

a camera to search for food, their results showed excellent agreement with the

mathematical model.

Soysal et al. also introduced a model to approach the aggregation problem in

swarm robotics [66]. Using a three-state finite state machine based on approach,

repel and wait behaviours they showed in simulation that an aggregation task

can be achieved.

A disadvantage to this approach is that given a particular global task to solve

there is no formal method to design individual behaviours. Also, although this

mathematical approach provides an insight to emergent swarm behaviours based

on a large number of robots, this approach is difficult to validate without resorting

to lengthy algorithm validation techniques.

Distributed Artificial Potential Fields

The artificial potential field (APF) approach is a fusion behaviour based architec-

ture that combines several behaviours of a robot, superimposing them through

the use of the APF [16]. It often results in a non-linear dynamic system, that can

either be continuous or discrete, with the evolution of the system thus expressed

mathematically. This thesis is concerned with the development of swarming sys-

tems based on this method and so the results are amenable to formal proof.
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The method was first introduced by Khatib to enable obstacle avoidance for

manipulators and mobile robots [67]. During the early years of robotics, compu-

tational resources were limited and the APF provided a simple and easy compu-

tational method for single robot motion planning [68]. It has thus been studied

extensively in the area of autonomous path planning for mobile robots [68–73] and

more recently has been applied to autonomous swarming systems [74–79]. The

basic idea behind this method is to create a global potential field that consists

of attractive and repulsive potentials acting on each robot. Depending upon the

robot’s position in its workspace the negative gradient of the attractive/repuslive

scalar potential field can either describe a required velocity or acceleration that

will attract the robot to a desired goal position while avoiding obstacles, as shown

in the example given in Fig. 1.7.
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Figure 1.7: Artificial potential field contour plot with start, S and goal, G

Ideally, the global minimum of the potential field should correspond to the de-

sired equilibrium state of the system. However, one of the limitations of the APF

method is that the robot may become trapped in undesired local minima due to

the superposition of the repulsive and attractive potential fields. This problem

has been investigated extensively with several methods developed to overcome

the problem for single and swarm robot platforms [70, 80–83].

A basic approach is to consider the case when a single robot is required to avoid

an obstacle and reach a goal position. If the goal position is described by a sym-
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metric attractive potential and the obstacle by a circular gaussian function, then

no local minima will form [84]. This is limited by the fact that the robot may

encounter obstacles that are not circular and thus this method cannot be relied

upon for applications where the robot may be required to operate in unknown

dynamic environments. A more rigorous method to overcome the local minima

problem for a single robot is Borenstein et al. proposed wall-following method

[70]. In this approach if a robot encounters an obstacle it will follow the obsta-

cle contour until it escapes the obstacle and can then continue towards the goal

position. Another method is to form the APF, U , as a solution to the Laplace

equation (∇2U = 0) [5, 85, 86]. By doing so the APF is ensured to have a single

global minimum and therefore overcome the local minimum problem.

For swarm robot problems Marcoloni et al. consider the creation of 2D patterns

operating in an environment containing unknown obstacles [83]. To overcome

local minima they manipulate the swarm so that some robots become rescuers

that are able to help other robots escape the obstacle. Their results, presented in

both simulation and experiment, suggested that this method can successfully lead

to escape from local minima although no formal analytical method was provided

to prove that it always occurs.

A related approach to Borenstein’s wall following method is Mabrouk and McInnes’

rolling vortex method [82]. In this approach the robots which are closest to wall

have a lower speed compared with those further away and as a result a rolling

vortex motion is induced and the swarm formation escapes the local minima

reaching the goal position.

In addition, another disadvantage of the APF method is that it normally requires

global knowledge of all other agents in the swarm [87], as well as a priori infor-

mation of the obstacles in the environment [88]. In real engineered systems this is

challenging and limits the scalability of the control algorithm. Furthermore, care

has to be taken to ensure that the resulting commanded velocity or force respects

non-holonomic constraints for the design of a real robot system. Kyriakopoulos

et al. consider this for path planning of a single wheeled vehicle, decomposing the

problem by using the potential field method to generate a collision free path and

then approximating this path considering non-holonomic constraints [89]. More
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recently, Gazi et al. have considered the aggregation, foraging and formation con-

trol of a swarm of non-holonomic agents [90]. In this approach they combine the

APF method with a sliding mode controller that has the advantages of being ro-

bust to uncertainties and disturbances in the system dynamics. They successfully

show that their unicycle robots can achieve swarming through the interaction of

a pairwise repulsive and attractive potential and that the simulated results can

respect the non-holonomic constraints.

The application of the APF method to the control of swarms of robots has been

studied extensively over the past decade. One of the first approaches was the so-

cial potential field approach proposed by Reif and Wang [74]. In this distributed-

control framework they consider a global controller that defines pair-wise poten-

tial functions acting on each robot. Under the assumption that the robot can

sense and communicate with all other robots in the swarm a resulting force will

act on each robot generating an emergent global behaviour. They based the po-

tential fields on inverse power laws similar to those that are found in molecular

dynamics. Their numerical results showed that using point mass robots they are

able to form evenly distributed cluster patterns.

A related approach is Spears et al. artificial physics method that suggests using

laws specifically inspired from natural physics to design distributed robot sys-

tems [91]. They note that as the sensors and actuators associated with real small

robots are usually simple it is essential that the controls laws are also simple and

should therefore be based on local communication. Their results are inspired from

the physics-like behaviour that occurs in solids, liquids and gas and show that

they can achieve hexagonal and square patterns, obstacle avoidance and coverage

tasks.

One of the advantages of the APF approach is that the stability of the system

can be investigated mathematically, therefore providing a means to prove the ex-

istence or not of certain behaviours. As the APF aims for the system to converge

to a minimum energy state, one approach is to use Lyapunov stability methods.

Leonard and Fiorelli use this approach to prove the closed loop stability of their

swarm based on the system kinetic and artificial potential energy [92]. Their

model consists of an attractive force and a local repulsive force that ensures col-
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lision avoidance. Lyapunov theory is then used to show that the inclusion of a

dissipative velocity term will ensure that the system will relax asymptotically into

the equilibrium state. D’Orsogna consider a statistical mechanics approach with

the use of H-stability of their pairwise potential swarm to indicate whether the

swarm will be in a stable or catastrophic state. They also extend their discrete

model to the continuum limit, allowing for the study of systems consisting of a

very large number of vehicles [93].

The advantages associated with APF have resulted in them being applied to sev-

eral engineering applications. For example, in the control of multiple spacecraft

the APF has been proposed as a control strategy [16]. Future space missions may

consist of the assembly of large structures [94], the use of swarms of satellites to

explore the magnetosphere [95] or asteroid-belt [96] and for the development of

very large virtual telescopes [11]. The ability of autonomous self-assembly is par-

ticularly desirable as these missions are often designed for cases when human

presence is not available, or when operated at large distances from the Earth

and is thus impractical due to communication delays. Izzo has implemented the

APF method for a swarm of homogeneous spacecraft in his equilibrium shaping

approach [16]. His results showed that coherent spatial patterns can be formed

and that the method scales well due to the lack of explicit global coordination,

resulting in a small amount of data exchange between the spacecraft. Related to

this is McQuade’s work into the autonomous configuration of satellite functions

using generic potential fields [97] and Badawy’s use of superquadric artificial po-

tential functions for autonomous on-orbit assembly of a large space structure [98].

In recent years swarms of UAVs have been applied to distributed sensing opera-

tions and are particularly suitable for missions that may be repetitive or danger-

ous [99]. Frew et al. implemented the APF through their Lyapunov based vector

field approach [7]. They showed that this approach provides globally stable con-

vergence to a limit cycle behaviour for a single UAV platform and validated the

simulation result with the development of a real UAV. In addition, Han et al. im-

plemented the APF and a robust sliding mode controller, showing in simulation

that their proposed method can track a desired trajectory [100].
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1.3.2 Other approaches

There exists a wide variety of other approaches for the control of more than one

robot. The Symbrion and Replicator projects, discussed previously, aim to pro-

duce a robot swarm than can aggregate together to form a multi-robot organism.

To achieve this they consider the use of both bio-inspired and evolutionary net-

work approaches, allowing the system the opportunity to combine the advantages

of both methods so that it can learn and adapt to a dynamic environment [53].

Related to this is the field of distributed artificial intelligence (DAI) which is con-

cerned with the development of systems that have some form of cognitive ability

[16]. As opposed to purely reactive behaviour based approaches, DAI combines

reactive and deliberative agents into a hybrid controller, where a deliberative

agent possesses an internal view of the environment and has the ability to adapt

and learn. The disadvantages of these approaches are that they are more com-

putationally expensive in comparison with simpler architectures, such as APF.

In spacecraft formation flying, Scharf et al. [101] and Lawton [102] discuss several

formation control architectures. The multiple-input-multiple-output (MIMO)

methodology considers the relative states of the formations as a single plant [103].

The advantage of this approach is that optimality can be guaranteed, however,

the controller can become unstable with the failure of one spacecraft. The virtual

structure architecture is a centralised control method where all spacecraft in the

formation are part of a virtual rigid structure where changes in the position of

each spacecraft are communicated with a formation controller and the appropri-

ate alterations are made to the structure [104]. The approach has the advantage

of maintaining a formation well during manoeuvres [105]. However, it does not

perform well if the formation shape is time-varying and is also susceptible to fail-

ure as it is centralised control [106].

Another approach is to use the centralised leader-follower (L/F) architecture, as

discussed earlier, where one spacecraft obtains information on a desired trajectory

and follower spacecraft tracks the leader [107, 108]. The Landsat-7 and Earth

Observing-1 (EO-1) satellites are examples of a real hierarchical L/F mission

and is generally considered the first mission to demonstrate formation flying [55].

The two satellites in this formation do not communicate with each other directly.



CHAPTER 1. INTRODUCTION 19

Instead a central controller determines Landsat-7’s position and sends this infor-

mation to EO-1 determining the future orbits of both spacecraft [109]. Again the

limitation of this system is that it is also dependent upon the central controller

and is therefore susceptible to failure. In addition, as the number of spacecraft

increase, the workload required to maintain a formation discretely will increase

significantly. Cyclic controller architectures are similar to the L/F, however each

spacecraft is connected in a non-hierarchical way [110].

For swarms of UAVs control architectures include Reynolds flocking model [35] as

discussed earlier. Another approach is to use graph theory to represent the local

interactions and spatial distribution of a swarm of UAVs in either an undirected

or directed graph [111, 112]. The graph consists of vertices or agents that are

connected together by edges. In the undirected case pairs of agents communicate

with each other to maintain separation distance whereas in the directed case only

one of the pair tries to maintain their position relative to each other.

1.3.3 Problem Areas

This section discusses related approaches to the two swarming problem themes

that are investigated in this thesis: pattern formation and reconfigurability.

Pattern formation

Pattern formation is an important area of swarming systems as real engineered

systems are often required to form particular patterns that can be used in a prac-

tical way [113]. Reviews of pattern formation in swarm robotics can be found by

Bahceci et al. [114] and Bayindir et al. [2].

Through the use of a pairwise attractive and repulsive potential field, D’Orsogna

proposed a self-propelling swarming system that is capable of forming different

patterns, such as a rotating ring or cluster [78]. In the model it is assumed that

all agents have information on the position of all other agents in the swarm.

However, this becomes unrealistic as the number of agents increase. Leonard et

al. overcomes this issue by considering the use of a pairwise interaction potential

field that acts in a small region surrounding the robots so that if two robots are

far enough apart they do not affect each other. Their simulated results showed
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the successful generation of patterns such as an equilateral triangle and hexagonal

lattice [92].

A practical implementation of this is the Swarm-bots project where the mobile

robots can connect and disconnect from each other, as discussed in Section

1.3 [48]. This approach consists of homogeneous small robots governed by local

attraction and repulsion. Using local sensing the robots are attracted towards

other robots with a red light and will avoid robots with blue lights. The results

consist of 16 robots that successfully self-assemble, forming patterns.

Reconfigurability

In swarming systems the ability to autonomously change pattern is advantageous

as it allows increased flexibility. In nature, recent work has suggested that swarms

of animals can switch patterns in a very simple way with a limited amount of

information exchange. Nabet et al. have demonstrated this in their coupled

dynamic animal swarm model, that consists of two groups of informed and unin-

formed individuals, with the results showing that the system can bifurcate into

two groups in a stable manner [115].

Varghese and McKee have noted that much of the work carried out to date in

swarm robotics has not been concerned with the transformation of swarm patterns

[116]. They highlight the need for a mathematical tool to describe the transition

between different patterns and to achieve this in a particle based simulation.

Although their results showed a reconfiguration of a circle pattern to a line,

avoiding an obstacle, it has the disadvantage of requiring path planning for each

individual robot and so is not an autonomous formation.
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1.4 Thesis Objectives

The objectives of the work presented are to:

• Develop new methodologies for verifiable swarming systems, replacing tra-

ditional heuristic methods with a more rigorous analytical approach.

• Investigate two areas of generic swarming systems; pattern formation and

reconfigurability.

• Demonstrate the implementation of these methodologies in engineering sys-

tems.

To achieve these objectives this thesis considers the development of new method-

ologies for swarming systems based on bifurcating APFs. The difficulties encoun-

tered in the development of real autonomous swarm robot systems result in the

view that control laws should be designed based on a simple, verifiable methodol-

ogy. The APF method is therefore ideally suited to this requirement. In addition,

there are an array of tools that exist in dynamical systems theory which can be

utilised to develop new ways in which to approach swarming problems.

To demonstrate the proposed method two engineering applications are investi-

gated; spacecraft formation flying and swarms of unmanned aerial vehicles. Us-

ing these applications it is shown that the proposed new algorithms can be used

successfully in both first order velocity field and second order force controllers.

The key contribution to knowledge that this thesis presents is that;

Through the new approach of bifurcating APFs, a verifiable swarm-

ing system will self-organise, capable of creating reconfigurable, au-

tonomous patterns.

Specifically, it is shown that self-organised swarm behaviour can be manipulated

through a simple parameter change to the system such that the swarm can transi-

tion between static and dynamic patterns. In addition, Lyapunov stability meth-

ods are used to provide a means of analytically proving that desired behaviours

will occur.
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1.5 Thesis Layout

An introduction to swarming systems was discussed in Chapter 1 indicating the

need for new methodologies for the development of verifiable swarming systems.

By meeting this requirement, many new and exciting engineering systems can be

realised in safety or mission critical applications, such as spacecraft formation fly-

ing and swarms of unmanned aerial vehicles. The concept of swarm intelligence

was identified as a method that can be used to develop such systems. Although

there are numerous approaches to the control of multiple robots, the artificial

potential field method was identified as the control architecture of choice for this

thesis.

In Chapter 2 a review of dynamical systems theory is provided explaining the

methods used throughout this thesis. Particular attention is paid to classical bi-

furcation theory which provides the key contribution in this thesis. In addition,

stability techniques are discussed allowing for analytical proof for swarm pattern

formation.

The key contributions of this thesis are explained in Chapters 3 and 4. Firstly,

Chapter 3 discusses the control model developed based on the new approach

of bifurcating artificial potential fields. The model consists of a steering and re-

pulsive potential field, with both velocity and force controllers considered. The

steering potential is used to command the formation to a desired equilibrium

position, with the repulsive potential field ensuring collision avoidance and an

equally spaced final formation. The stability of the system is also discussed,

showing that the swarm model can be verifiable. Chapter 4 shows the results

of pattern formation and reconfigurability in the swarm model developed.

In Chapter 5 the model is extended to consider real world effects that are

essential for implementation in a real system, such as actuator saturation and

communication limitations. The advantages of the model are also demonstrated,

highlighting the fact that the system is scalable, robust and flexible.

Chapters 6 and 7 apply the new control methodologies to the two engineered

systems considered in this thesis. Chapter 6 considers SFF applications, im-

plemented through a second order force swarm controller. Firstly, the model is
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applied to the two-body problem utilising Hill’s equations of motion to create

a formation of spacecraft that can orbit the Earth and form various patterns.

Secondly, the model is applied to the three-body problem, placing the formation

at the Sun-Earth Lagrange L2 position.

In Chapter 7 swarms of unmanned aerial vehicles are considered through the

use of a first order velocity field control system. The desired velocity field acting

on each UAV can be transformed into a set of commands that control the aero-

dynamic surfaces of each UAV. A 6 degree of freedom (DOF) linearised guidance

model is developed to verify that the proposed algorithm can successfully control

a formation of UAVs. A review and discussion of future work presented in this

thesis is given in Chapter 8.

1.6 Simulation Methodology

In all the simulated results shown in this thesis, the dynamics of each agent are

expressed as either a first order velocity field or second order force controller

and transformed into a set of coupled first order ordinary differential equations

(ODEs). The solution to the set of ODEs is obtained using Matlab’s (version

7.5) standard ODE solver, ode45, that employs a variable step size Runge-Kutta

integration method2. In addition, each agent is given random initial positions and

velocities using Matlab’s randn function, unless stated otherwise.

2www.mathworks.com, accessed 7/05/2010
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Chapter 2

Dynamical Systems Theory

The purpose of this chapter is to review the concepts from dynamical systems

theory that are used throughout this thesis. In Section 2.2, both first order

velocity field and second order force controllers, expressed as continuous ordinary

differential equations (ODEs), are introduced with Section 2.3 considering APFs

with respect to Lyapunov stability theory. The concept of bifurcation theory

is then discussed in Section 2.4 that provides a mathematical tool allowing

reconfigurability in the swarm model considered in this thesis.

2.1 Introduction

Dynamical systems theory provides a means of mathematically describing the

long term behaviour of a system and can be expressed as either a discrete or con-

tinuous time system. In a dissipative dynamical system the phase space contracts

to a subset of that space known as an attractor. By expressing the APF as a set

of continuous ordinary differential equations a swarm system can be attracted to

a particular subset, allowing for the emergence of different swarm patterns.

Dynamical systems can be either linear or non-linear. A linear dynamical system

is limited to fixed point attractors where all phase space trajectories converge to

a single point. In the real world, as very few systems can be modelled by linear

differential equations, non-linear equations are often used. Complexity theory

has shown that although a dynamical system is normally deterministic, the use

of non-linear equations gives rise to a wide array of new behaviours that lin-

earity cannot. For example, non-linear dynamical systems can lead to periodic

25
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behaviours such as limits cycles.

As very few ODEs have an exact solution, numerical methods must be used to

solve the system of equations. Although the system has to be solved in this way

there exists several qualitative methods to study differential equations that can

be used to determine certain characteristics of the system. For example, using the

phase plane approach, properties such as equilibrium, stability and periodicity can

be investigated. These methods will be demonstrated in the following sections.

2.2 Ordinary Differential Equations

As stated both force and velocity controllers for a swarm of agents are considered.

To solve a system of ordinary differential equations it is useful to write them as a

set of first order ODEs. A first order system of autonomous ordinary differential

equations has the form;

dx1
dt

= F1(x1, . . . , xn) . . .
dxn
dt

= Fn(x1, . . . , xn) (2.1)

where, xi (i = 1− n) are the state variables of the system.

Given a set of initial conditions, within the time span a < t < b (where a and b

are real), the system of equations can be solved numerically. Therefore, knowing

the initial state of the system, the future state can be determined. It is assumed

that the existence-uniqueness theorem holds so that there exists one solution to

the system of first order differential equations for a set of initial conditions. The

phase-paths of the system therefore, do not cross guaranteeing the existence of

a unique solution. This is a significant advantage for safety or mission-critical

systems compared to non-deterministic stochastic path planners [117].

2.2.1 Second Order Controller

Consider a point mass model in which the motion of an agent is governed by

Newton’s 2nd law, as defined in Eq. 2.2, where the actuator control force is a

function of the position coordinate, x, only;
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ẍ = f(x) (2.2)

From the conservation of energy, the potential energy, U , of the system can then

be expressed as;

U(x) = −
∫

f(x)dx+ C (2.3)

for some constant, C.

Equation 2.2 can be reduced to its first order equivalent by replacing ẋ with a

new variable y;

ẋ = y (2.4)

ẏ = −dU
dx

(2.5)

From Eq. 2.5 it can be seen that the negative gradient of the APF represents

the control force or acceleration acting on each agent. Therefore, by including

some form of dissipation in Eq. 2.5, the system can be attracted to the minimum

energy state.

2.2.2 First Order Controller

The second approach is to consider that each agent will be defined by a velocity

field, as described by Eq. 2.6 and 2.7;

ẋ = X(x, y) (2.6)

ẏ = Y (x, y) (2.7)

with agent velocity defined by the pair (ẋ, ẏ).

The resulting velocity field can then be used to attract each agent to a particular

equilibrium condition. In addition, the velocity field can be transformed into a

set of commands that can control forward speed, u, and heading angle, ψ, as
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shown in Eq. 2.8 and 2.9;

u = (ẋ2 + ẏ2)0.5 (2.8)

ψ = tan−1

(

ẏ

ẋ

)

(2.9)

It should be noted that for such a 2D system the Poincaré-Bendixon theorem

states that the phase paths can either return to an original point, giving a closed

path, reach an equilibrium point or approach a limit cycle. For the single agent

case therefore, phase paths cannot cross and therefore, no chaotic solutions can

exist. Again, this is a significant advantage for safety or mission critical systems.

2.3 Artificial Potential Fields

As explained in Section 1.3.1, the APF method consists of regions of low and

high potential corresponding to goal states and obstacles respectively. For real,

safety critical applications the APF should be designed such that the control

method can guarantee a smooth convergence to the final equilibrium state. To

achieve this Lyapunov’s stability theory can be used to ensure that the attractive

APF will converge to the desired state. Linearisation techniques are also employed

to determine the local stability properties of the system.

2.3.1 Lyapunov Stability

Lyapunov stability theory was developed by Aleksandr M. Lyapunov in his doc-

toral thesis entitled The general problem of the stability of motion at Moscow

University in 1892 [118] and is extremely useful in the development of non-linear

control systems [119, 120]. Lyapunov suggested the following two methods when

considering the stability of a non-linear system;

• Lyapunov’s Second (or Direct) Method allows the determination of

the stability of the system without requiring a solution. As this method

has the advantage of not requiring the solution of a non-linear differential

equation, it can be used to analytically prove the stability of the system.

• Lyapunov’s Indirect Method investigates the local stability of the sys-

tem through the use of linearisation techniques. Assuming a solution to
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the system can be found, linearisation can be applied to find the system

response if perturbed whilst in its equilibrium position.

Using these two Lyapunov criteria the stability of the dynamical system can be

investigated. The system is termed Lyapunov stable if all solutions starting near

an equilibrium point, xo, remain there and Lyapunov asymptotically stable if all

solutions to the system converge to the equilibrium point. A Lyapunov unstable

system is the opposite to both of these where the solution of the system moves

away from the equilibrium point. Figure 2.1 shows these three conditions.
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Figure 2.1: Lyapunov stability (i) stable (ii) asymptotically stable (iii) unstable

Lyapunov’s Second Method

Lyapunov’s Second Method consists of finding a scalar Lyapunov function, L,

that can be used to determine the stability of a system without explicitly solving

the differential equation. The aim of the APF method is to attract the system to
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a desired equilibrium state so that if Lyapunov’s Second Method can be satisfied,

global convergence of the system to the final state can be guaranteed. To ensure

this the system should be defined such that the conditions given in Table 2.1 hold

true.

Table 2.1: Lyapunov’s Second Theorem stability conditions

x 6= xo x = xo

L(x) > 0 L(xo) = 0

L̇(x) < 0 L̇(xo) = 0

where, xo represents the equilibrium state of the system.

From Table 2.1, if L is defined such that it is a positive definite function and its

time derivative, L̇, is negative definite then the system is asymptotically Lyapunov

stable. Using this theorem it can be shown analytically that swarm patterns will

be achieved and is discussed in Chapter 3. It should be noted that the existence

of local minima can lead to L̇ = 0 for x 6= xo.

Lyapunov’s Indirect Method

Considering the first order equivalent of the dynamical system described by Eq.

2.2 and assuming xo is an equilibrium point of the system, linearisation techniques

can be used to investigate the local stability of the system if perturbed from the

equilibrium state. Defining δx = x− xo and Taylor series expanding about fixed

point to linear order, the eigenvalues of the system can be found using;

δẋ = Jδx (2.10)

where the Jacobian matrix, J , evaluated at the fixed point is;

J =
∂f(x)

∂x

∣

∣

∣

∣

xo

(2.11)

The eigenvalues from Eq. 2.11 therefore describe the linear behaviour of the sys-

tem with properties summarised in Table 2.2. As can be seen if the eigenvalues

of the system are in the open left half of the complex plane then the system can

be considered as linearly asymptotically stable.
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Table 2.2: Eigenvalue Classification

Type Eigenvalues Classification

Real, distinct and opposite signs +ve and -ve real Saddle
Real, distinct and same signs -ve Stable node

+ve Unstable node
Complex conjugates Complex, -ve real Stable spiral

Complex, +ve real Unstable spiral
Purely imaginary, no real Centre

In addition, the Hartman-Grobman theorem states that if at least one eigenvalue

has a real part then the equilibrium position can be considered as hyperbolic.

This allows for a qualitative idea of the behaviour of the non-linear system in

the neighbourhood of the equilibrium. If at least one eigenvalue has positive real

part this implies non-linear instability. However, if all eigenvalues have negative

real part this implies non-linear stability.

2.3.2 Attractive Potential Field

Before considering the swarm model that is discussed in Chapter 3, it is useful

to illustrate, with a simple point mass agent, how the APF method can be used

in a verifiable way to attract it to a goal position. Firstly, consider a simple 2D

attractive parabolic potential, Uatt,p with position, x, and goal position, xg;

Uatt,p =
αp
2
|x− xg|2 (2.12)

where αp controls the amplitude of the parabolic potential.

Expressing this potential in a two-dimensional second order force model results

in;

ẋ = v (2.13)

v̇ = −∇Uatt,p − σv (2.14)

where,

∇ = [∂/∂x ∂/∂y]T (2.15)
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and σ controls the amplitude of the velocity dissipation.

The Lyapunov function, L, is choosen as the total energy of the system so that

for a unit mass system;

L =
1

2
v2 + Uatt,p (2.16)

The rate of change of the Lyapunov function can be expressed as;

dL

dt
=

(

∂L

∂x

)

ẋ +

(

∂L

∂v

)

v̇ (2.17)

Then, substituting Eq. 2.13 and 2.14 into Eq. 2.17, it can be seen that for σ > 0;

dL

dt
= −σv2 < 0 (2.18)

As L is positive definite and L̇ is negative definite then the system is asymptoti-

cally Lyapunov stable, with the goal an attractor since, L̇ = 0 only at x = xg.

To investigate the local stability Lyapunov’s Indirect method is used. Assuming

that the equilibrium states are x0 and v0 the Jacobian matrix for the system is;

J =

(

∂ẋ/∂x ∂ẋ/∂v

∂v̇/∂x ∂v̇/∂v

)∣

∣

∣

∣

∣

xo,vo

(2.19)

The Jacobian, J , is then a 2× 2 matrix given by;

J =

(

0 1

−αp −σ

)

(2.20)

The eigenvalues, λ, for the system are found from det(J − λI) = 0 giving

λ = −1
2
(σ±

√

(σ2 − 4αp). Choosing σ > 0 and αp > 0, the eigenvalues are always

either negative real or complex with negative real part as −σ±
√

(σ2 − 4αp) ≯ 0.

The equilibrium position can therefore be considered as linearly stable, as ex-

pected.

Figures 2.2 and 2.3 show the results of a simple point mass agent that is desired

to reach a goal position at the origin using the parabolic potential.
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Figure 2.2: Attractive potential function (α = 1 and σ = 1)
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Figure 2.3: Lyapunov function

As can be seen from Fig. 2.2 that the agent successfully travels down the gradient

of the attractive potential function and reaches the desired equilibrium position,

with Fig. 2.3 indicating that the Lyapunov stability criteria has been satisfied.

2.3.3 Repulsive Potential Field

In real applications it is important that obstacle and agent collision avoidance

is ensured. Referring to Eq. 2.12 a repulsive potential field, Urep, is added, as

shown in Eq. 2.21;
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Utotal = Uatt + Urep (2.21)

This repulsive potential field can be used for avoidance of both single and multiple

obstacles and also for collision avoidance in a swarming system.

Obstacle Collision Avoidance

There are many methods for modeling obstacles such as power-law, superquadric

and harmonic functions [84, 121]. As discussed previously in Section 1.3.1, a

disadvantage of the APF method is that local minima may form with the inclusion

of the repulsive potential field. As the objective of this chapter is to demonstrate

basic principles, the artificial repulsive potential will be expressed such that the

local minima problem will be avoided. Consider a single obstacle represented by

a gaussian potential function [121], Urep,ob, as shown in Eq. 2.22;

Urep,ob = Cob exp

{

− 1

Lob
|x− xobs|2

}

(2.22)

where, Cob is a scaling parameter, Lob is the width of the gaussian function and

xobs is the position of the obstacle.

Therefore, considering the simple 2D case of attracting an agent to a goal position

whilst avoiding an obstacle, Eq. 2.13 and 2.14 are altered to the form shown in

Eq. 2.23 and 2.24. As stated in Section 1.3.1, the spherical symmetry of the

attractive and repulsive potential field results in no local minima forming (only

an unstable saddle).

ẋ = v (2.23)

v̇ = −∇Uatt,p −∇Urep,ob − σv (2.24)

It can be shown that for an obstacle with effective dimension, De, the scaling

parameter, Cob, to ensure collision avoidance should be chosen such that [121];

Cob =
αp(De + |xobs| − |xg|)

6 exp−3De
(2.25)
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Figures 2.4 and 2.5 show the case for an effective dimension, De = 0.5, αp = 1,

Cob = 4.6 and Lob = 0.17 . From Fig. 2.4 it can be seen that the agent successfully

avoids the obstacle and reaches the desired goal position at the origin, with Fig.

2.5 indicating that Lyapunov’s stability criteria has been satisfied.
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Figure 2.4: Obstacle collision avoidance
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Figure 2.5: Lyapunov function for obstacle collision avoidance
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Agent Collision Avoidance

In the multi-agent case it is important that collision avoidance between the agents

is assured. To achieve this consider a repulsive potential field that is a simple

pairwise exponential function, based on a generalised Morse potential [87], as

shown in Eq. 2.26;

UR
ij =

∑

j,j 6=i

Cr exp
−
|xij|
Lr (2.26)

where Cr and Lr represent the amplitude and length-scale of repulsive potential

respectively and |xij | = |xi − xj |.

The total repulsive force on the ith agent is dependent upon the position of all

the other (N − 1) agents in the formation. The repulsive potential is therefore

used to ensure collision avoidance as the agents are steered towards the goal state.

To illustrate this consider the case where there are two agents that must avoid

each other to reach their respective goal positions, as shown in Fig. 2.6.
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Figure 2.6: Agent collision avoidance initial conditions

From Fig. 2.7 it can be seen that the two agents successfully reach their desired

goal position, avoiding any collisions.
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Figure 2.7: Collision avoidance simulation (Cr = 10, Lr = 2, σ = 5 and αp = 1)

2.4 Bifurcation Theory

Bifurcation theory studies the qualitative change in behaviour of a system due

to a smooth system parameter change. In this section various bifurcations are

discussed that lead to a simple and verifiable new approach for reconfigurability in

swarming systems. Both static and dynamic bifurcations are considered allowing

for transitions between fixed point and periodic attractors.

2.4.1 Pitchfork Bifurcation

Consider the two-dimensional system described by Eq. 2.27 and 2.28;

ẋ = y (2.27)

ẏ = x(µ− x2)− y (2.28)

where µ is the bifurcation parameter.

From the discussion given in Section 2.2.1, the pitchfork bifurcation APF can

be defined as;

Upitchfork =
x4

4
− µx2

2
(2.29)

Figure 2.8 shows the potential for µ = −10 and µ = 5. For µ = −10 there is

one stable equilibrium point at xo = 0, as indicated by Fig. 2.8. For µ = 5

the system bifurcates into 3 equilibrium points, with the original equilibrium

becoming unstable at xo = 0 and two new symmetrically stable equilibrium points

emerging at xo = ±√
µ.
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Figure 2.8: Pitchfork potential

Figures 2.9 and 2.10 show the pitchfork phase-space portrait and bifurcation

diagram for the pitchfork bifurcation. As expected for µ < 0 there is one stable

spiral to the equilibrium position and for µ > 0 there are two stable spirals to

the two stable equilibrium positions.

−5 0 5
−5

0

5

x

y

−5 0 5
−5

0

5

x

y

(i) (ii)

Figure 2.9: Phase-space portrait for pitchfork potential (i) µ = −10 (ii) µ = 5
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Figure 2.10: Bifurcation diagram for pitchfork potential

2.4.2 Transcritical Bifurcation

The transcritical artificial potential function is given by Eq. 2.30;

Utransritcal =
x3

3
− µx2

2
(2.30)

Depending upon the choice of the bifurcation parameter, µ, the potential field

can have several different forms as shown in Fig. 2.11.
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Figure 2.11: Transcritical potential

Expressing the potential field in the form of Eq. 2.27 and 2.28, Fig. 2.12 shows

phase-space portrait for µ negative and positive.
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Figure 2.12: Phase-space portrait for transcritical potential (i) µ = −3 (ii) µ = 3

The transcritical bifurcation diagram is shown in Fig. 2.13 indicating that a

bifurcation occurs in the system at µ = 0. For µ < 0 there are two equilibrium

points with a stable node at the origin and an unstable node located at xo = µ.

For µ > 0, the equilibrium positions switch in behaviour so that the stable node

at the origin becomes unstable and xo = µ becomes stable.
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Figure 2.13: Bifurcation diagram for transcritical potential

2.4.3 Cusp Catastrophe

An extension to the 1-parameter bifurcation equations is to consider 2-parameter

bifurcations such as the Cusp catastrophe, developed by Thom [122]. Equation
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2.31 shows the 1D cusp catastrophe potential energy equation that is dependent

upon two bifurcation parameters, µ1 and µ2;

Ucusp =
µ1

2
x2 + µ2x+

1

4
x4 (2.31)

Figure 2.14 shows the variation of equilibrium position with bifurcation parameter

and the mapping of this potential function onto the µ1−µ2 plane. It can be seen

that the system behaviour changes as µ1 and µ2 are altered. The results are

very similar to a phase diagram from thermodynamics [123]. As pressure and

temperature are varied different phases can be achieved which is analogous to

the different patterns which can be achieved as the bifurcation parameters are

altered, as will be demonstrated later in Chapter 4.
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Figure 2.14: Cusp catastrophe (i) surface (ii) mapping on µ1-µ2 plane, indicating
number of stable equilibrium positions
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Setting µ2 = 0 results in the pitchfork bifurcation equation. However, for µ1 > 0

and all µ2 there is only one equilibrium state. For µ1 < 0 and for all µ2 there are

either 1 or 2 equilibrium states as shown. Maintaining µ1 at a constant negative

value and alternating µ2 from negative to positive, a loop is obtained switching

between one and two equilibrium positions. The system can therefore be tipped

into the upper or lower branches of the pitchfork equation as shown in Fig. 2.15.

Thus, if the system is in the bi-stable state, control over the position of a single

equilibrium state can be achieved through the variation of the parameters in the

bifurcation equation.
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Figure 2.15: Cusp catastrophe: (i) µ1 < 0, µ2 = 0 (ii) µ1 < 0, µ2 > 0 (iii) µ1 < 0,
µ2 < 0
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2.4.4 Hopf Bifurcation

In bifurcation theory the Hopf bifurcation is a dynamic bifurcation about a fixed

point of a dynamical system that generates a limit cycle as the bifurcation pa-

rameter µ changes. An example of a Hopf bifurcation is given in Eq. 2.32 and

2.33;

ẋi = µxi + yi − xi(x
2
i + y2i ) (2.32)

ẏi = −xi + µyi − yi(x
2
i + y2i ) (2.33)

Figures 2.16 (i) and (ii) show the phase-plane created when µ < 0 and µ > 0. As

the bifurcation parameter becomes positive, a pair of complex eigenvalues cross

the imaginary axis and the limit cycle behaviour is induced.
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Figure 2.16: Phase-space portrait for Hopf bifurcation (i) µ = −2 (ii) µ = 2

As µ increases the size of limit cycle also increases allowing for a varying size of

limit cycle, as shown in Fig. 2.17.
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Figure 2.17: Hopf bifurcation diagram

2.5 Summary

This chapter has considered basic concepts and tools from dynamical systems

theory that are used in this thesis. Two control approaches based on ordinary

differential equations were introduced that will be used to control the swarm for-

mation. These are the second order force controller, based on Newton’s 2nd law,

and a first order velocity field controller.

The concept of APFs was introduced considering both attractive and repulsive

potentials. Using Lyapunov stability criteria, the attractive APF can be de-

signed such that global convergence to the goal state can be guaranteed. Using

Lyapunov’s Second method this can be shown analytically without requiring a

solution to the system and is considered one of the advantages of the swarm model

developed in this thesis. If a solution to the system can be obtained another useful

approach when considering the stability of the system is to use linearisation meth-

ods. Using this approach once the agent in the system has reached a goal state,

linearisation can be used to determine the local stability properties of the system.

In real applications it is important that collision avoidance is ensured. Using the

APF method it was shown that the inclusion of a repulsive potential field can

allow for both obstacle and agent collision avoidance.



Chapter 3

Swarm System Model

This chapter considers the swarming model proposed in this thesis based on the

methods discussed in Chapter 2. Firstly, the basic swarm model is introduced

with respect to both second order force and first order velocity field controllers.

Before considering this model further, Section 3.1.1 considers basic swarm prop-

erties of a system based on a pairwise potential function. In Section 3.2 the

stability of the proposed swarming model is investigated with respect to both

force and velocity field examples. The pitchfork bifurcation potential is used to

demonstrate the stability of a 2D static formation, whereas the Hopf bifurcation

is used as an example when considering the stability of a 2D dynamic formation.

3.1 Swarm Model

Consider a swarm of homogeneous autonomous agents (1 ≤ i ≤ N) that are

interacting through an artificial potential field. It will be initially assumed that

all agents can communicate with each other and are fully actuated. Equations

3.1 and 3.2 show the second order equations of motion with mass, m, position,

xi and velocity, vi;

dxi
dt

= vi (3.1)

m
dvi
dt

= −∇iU
S(xi)−∇iU

R(xij)− σvi (3.2)

From Eq. 3.2 it can be seen that the virtual force experienced by each agent is

dependent upon the gradient of two different artificial potential functions and a

dissipative term. The first term in Eq. 3.2 is defined as the steering potential,

45
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US, which will control the formation, whereas the second term in Eq. 3.2 is

the pairwise collision avoidance repulsive potential, UR, as defined in Eq. 2.26.

Equation 3.3 shows the first order velocity field equivalent to the second order

force equations.

dxi
dt

= −∇iU
S(xi)−∇iU

R(xij) (3.3)

3.1.1 Pair-wise Potential Field

Before considering this model further, it is useful to establish some basic prop-

erties of a system of agents interacting through an internal pair-wise potential

function and a dissipative term, as shown in Eq. 3.4;

mv̇i = −∇iU(xij)− σvi (3.4)

In molecular dynamics, molecules are often represented as particles that interact

through pair-wise potential functions. An example of such a potential is the

Morse pair-wise potential function that has been considered by D’Orsogna as a

method for controlling a swarm of agents [87]. The Morse potential has the form

shown in Eq. 3.5 and Fig. 3.1;

U(xij) =
∑

j,j 6=i






Cr exp

−
|xij|
Lr −Ca exp

−
|xij |
La






(3.5)

where, Ca,Cr and La,Lr represent the amplitude and range of the attractive and

repulsive potential respectively, chosen to provide weak long-range attraction and

strong short-range repulsion.
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Figure 3.1: Morse pair-wise potential function (Ca = 2, La = 2, Cr = 2, Lr = 1)

Using this potential function it can be seen that the force experienced by each

agent in the swarm is dependent upon the position of all other agents, as shown

in the example given in Fig. 3.2.
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Figure 3.2: Pair-wise interaction forces (Ft = Fij1 + Fij2)

Taking the dot product of the velocity vector with Eq. 3.4 and summing over all

the agents results in;

∑

i

mvi · v̇i = −
∑

i

σv2
i −

∑

i

∇iU(xij) · vi (3.6)

Thus, the rate of change of total effective energy, E, of the system is continually

decreasing, as shown in Eq. 3.7, until the system reaches an equilibrium state,
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which can be considered analogous with Lyapunov’s second theorem;

dE

dt
= −σ

∑

i

v2
i ≤ 0 (3.7)

where, E =
1

2

∑

i

mv2
i +

1

2

∑

i

U(xij).

Also, taking the cross product of the position vector with Eq. 3.4 and summing

over all the agents results in;

∑

i

mxi × v̇i = −
∑

i

σxi × vi −
∑

i

xi ×∇iU(xij) (3.8)

Defining the angular momentum, H =
∑

i

xi × vi, it can be shown that angular

momentum will be continually decreasing until the system reaches an equilibrium

state, as shown in Eq. 3.9;

dH

dt
= −

( σ

m

)

H (3.9)

since,
∑

i

xi × ∇iU(xij) = 0 due to internal symmetry in the swarm (xi × xj =

−xj × xi).

Finally, consider the velocity and acceleration vector of the center-of-mass, shown

in Eq. 3.10 and 3.11;

Ṙc =

∑

i

mvi

∑

i

m
(3.10)

R̈c =

∑

i

mv̇i

∑

i

m
(3.11)

By summing over all the agents in Eq. 3.4, it can be shown that the swarm can

be controlled through its center-of-mass, as shown in Eq. 3.12;

mR̈c = −σṘc (3.12)
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where,
∑

i

∇iU(xij) = 0 due to internal symmetry in the swarm.

To illustrate this consider the case of a swarm of 50 agents interacting together

through the Morse potential field. By altering Eq. 3.4 to form shown in Eq. 3.13

the centre-of-mass of the swarm can be attracted to the origin.

mv̇i = −∇iU(xij)− αxi − σvi (3.13)

where, α controls the amplitude of this new term.

Again, summing over all the agents in the system, Eq. 3.13 reduces to;

mR̈c + σṘc + αRc = 0 (3.14)

Therefore, the eigenvalues for Eq. 3.14 are λ1,2 =
1

2m

[

−σ ±
√

(σ2 − 4αm)
]

.

For σ > 0 and α > 0 the eigenvalues are always either negative real or complex

with negative real part so that the centre-of-mass of the swarm can be considered

stable. Figure 3.3 demonstrates this with the formation relaxing into an equally

spaced static cluster pattern.
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Figure 3.3: Pair-wise pattern formation (i) random initial conditions (ii) equally
spaced cluster (Ca = 2, La = 2, Cr = 2, Lr = 1, m = 1, σ = 1, α = 2)



CHAPTER 3. SWARM SYSTEM MODEL 50

Figures 3.4 and 3.5 show the motion of the centre-of-mass and total angular

momentum respectively. The eigenvalues of the system are λ1,2 = −0.5±1.32i so

that the centre-of-mass follows a stable spiral to the origin, as confirmed in Fig.

3.4. It can also be seen in Fig. 3.5 that the rate of change of angular momentum

is continually decreasing until equilibrium is reached, as stated in Eq. 3.9.
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Figure 3.4: Motion of centre-of-mass to origin (Rc = Rxi+Ryj)
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Figure 3.5: Total angular momentum

In addition to driving the swarm centre-of-mass to a desired static position, the

swarm centre-of-mass can track a desired trajectory. For example, for the swarm

centre-of-mass to follow a circular or elliptical path, Eq. 3.15 can be used;
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m

[

v̇x

v̇y

]

=

[

−σvx −∇iU(xij)− α(xi − ξ sin(t))

−σvy −∇iU(yij)− α(yi − ζ cos(t))

]

(3.15)

where, t is time and ξ,ζ control the amplitude of the desired trajectory.

Two cases are considered for varying values of ξ and ζ , as summarised in Table

3.1. The results are shown in Fig. 3.6 and 3.7 for the formation at different

times with random initial conditions. From these results it can be seen that the

swarm center-of-mass can track the path defined by the parameters ξ and ζ whilst

maintaining a swarm cluster formation. If ξ and ζ are equal a circular path will

be obtained for the formation, as shown in Fig. 3.6. However, if ξ, ζ are different

an elliptical path can be generated, as shown in Fig. 3.7.

Table 3.1: Swarm centre-of-mass parameters

path Ca La Cr Lr m σ α ξ ζ

circular 2 2 2 1 1 2 10 2 2
ellipse 2 2 2 1 1 2 10 4 2
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Figure 3.6: Swarm centre-of-mass circular path
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Figure 3.7: Swarm centre-of-mass elliptical path

Therefore, some useful properties of a swarm system based on a pair-wise poten-

tial field have been discussed that will become useful in the following sections.

3.2 Stability

The stability of the swarm model introduced in Section 3.1 is discussed in the

following sections. It will be shown that there exists a scale separation between

the steering and repulsive terms such that each agent in the swarm moves under

the influence of a long-range steering potential, but with short range collision

avoidance. This assumption allows collisions to be treated separately in the sta-

bility analysis. For the second order force system the pitchfork bifurcation is used

as an example when considering the stability of a system that is desired to create

2D static patterns. For the first order velocity field case the Hopf bifurcation

is used as an example when considering the stability of a 2D dynamic pattern

formation.

3.2.1 Artificial Potential Function Scale Separation

From the swarm model discussed in Section 3.1, it is known that the dynamics

of each agent is dependent upon the gradient of two different artificial potential

functions. The steering and repulsive potential are a function of position only

with length scale R and Lr respectively, as shown in Eq. 3.16 and 3.17;
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US = f(X,R) (3.16)

UR = Cr exp
−X/Lr (3.17)

where for illustration a simple one-dimensional (1D) system with position coor-

dinate X is considered.

Defining an outer region dependent upon the steering potential only and an inner

region dependent upon the repulsive potential only it can be shown that these two

regions are separated so that each agent moves under the influence of the long-

range steering potential but with short range collision avoidance (for Lr/R << 1).

This effectively creates a boundary layer between them, as illustrated in Fig. 3.8,

where the position of the boundary layer is dependent upon the parameters chosen

in the steering and repulsive potentials. This can then be used to determine the

non-linear stability properties of the system considering the steering potential

only.

outer solutioninner solution

boundary layer

j i
X

U

U , length scale, R

U , length scale, L
S

R
r

Figure 3.8: Artificial potential function scale separation

For 1D motion of an agent of mass m and damping constant σ;

m
dV

dt
= −dU

R

dX
− dUS

dX
− σV (3.18)

so that,

mV
dV

dX
=
Cr
Lr

exp−X/Lr −dU
S

dX
− σV (3.19)
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Scaling X such that S = X/R, then;

1

R
mV

dV

dS
=
Cr
Lr

exp
−
R

Lr
S
− 1

R

dUS

dS
− σV (3.20)

Now define ε =
Lr
R

<< 1 so that;

mV
dV

dS
=
Cr
ε

exp
−
S

ε −dU
S

dS
− σRV (3.21)

Let ε → 0 in order to consider ‘far-field’ dynamics which form a singularly per-

turbed system [124];

lim
ε→0

1

ε
exp(−S/ε) = 0 (3.22)

Therefore, at large separation distances the repulsive potential vanishes allowing

the consideration of the steering potential only when investigating the stability

of the system, under the assumption that ǫ << 1.

Conversely defining a stretched variable S =
S

ε
it is found that the ‘near-field’

dynamics are defined by;

mV
dV

dS
= Cr exp

−S −εR
(

1

Lr

dUS

dS
+ σV

)

(3.23)

and letting ε → 0;

mV
dV

dS
= Cr exp

−S (3.24)

Thus, at small separations the steering potential vanishes. Therefore, it has be

shown that a scale separation exists in the model between the repulsive and steer-

ing terms allowing for the treatment of collisions as separate in the subsequent

stability analysis.

3.2.2 Relationship Between Second and First Order Sys-

tems

Considering the second order system as defined in Eq. 3.18, the velocity field can

be defined as follows;



CHAPTER 3. SWARM SYSTEM MODEL 55

m

σ

dV

dt
= −1

σ

dUS

dX
− 1

σ

dUR

dX
− V (3.25)

Assuming that m/σ << 1 so that the system is overdamped,

− 1

σ

dUS

dX
− 1

σ

dUR

dX
− V = 0 (3.26)

thus,

dX

dt
= −1

σ

dUS

dX
− 1

σ

dUR

dX
(3.27)

Assuming that the second-order system is over-damped, the dynamics of the

swarm of agents can be reduced to the form shown in Eq. 3.28.

dxi
dt

= −∇iU
S(xi)−∇iU

R(xij) (3.28)

The first order system is therefore also said to move under the influence of a

long-range steering potential but with short-range collision avoidance.

3.2.3 Second Order Force Swarm System

Consider a steering potential based on the pitchfork bifurcation as shown in the

first two terms of Eq. 3.29. The aim of this potential is to drive each agent to

a goal distance, r, from the origin in the x − y plane thus forming a symmetric

ring. The last term in Eq. 3.29 is to ensure that the formation is created in the

x − y plane, where α controls the amplitude of this quadratic potential. Using

this as an example potential field the stability of the second order system can be

investigated.

US(xi;µ, α) = −1

2
µ (ρi − r)2 +

1

4
(ρi − r)4 +

1

2
αz2i (3.29)

where cylindrical polar coordinates (ρi, zi) are used, neglecting the θ term as the

potential field is rotationally symmetric.

As discussed in Section 2.4.1, depending on the sign of µ, the steering potential

can have two distinct forms as the bifurcation parameter, µ, is altered from

negative to positive. The equilibrium states of the potential occur whenever
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∂U/∂ρi = 0 and ∂U/∂zi = 0. Therefore;

∂U

∂ρi
= −µ(ρi − r) + (ρi − r)3 (3.30)

∂U

∂zi
= αzi (3.31)

If µ ≤ 0, equilibrium occurs when ρi = r. If µ > 0 equilibrium occurs when

ρi = r, r±√
µ. Therefore, a single ring will bifurcate to a double ring using µ as

a control parameter.

For a function consisting of two variables the stability of the system is determined

from the sign of the determinant of the Hessian matrix [125], D, given in Eq. 3.32;

D =
∂2U

∂ρ2i

∂2U

∂z2i
−
[

∂2U

∂ρi∂zi

]2

(3.32)

The conditions for stability are as follows;

(i) D > 0, ∂2U/∂ρ2i > 0 =⇒ equilibrium point is a stable minimum.

(ii) D > 0, ∂2U/∂ρ2i < 0 =⇒ equilibrium point is a unstable maximum.

(iii) D < 0 =⇒ equilibrium point is a saddle.

The second derivatives of the potential are shown in Eq. 3.33, 3.34 and 3.35;

∂2U

∂ρ2i
= −µ+ 3(ρi − r)2 (3.33)

∂2U

∂z2i
= α (3.34)

∂2U

∂ρi∂zi
= 0 (3.35)

From Eq. 3.34, choosing α > 0, ∂2U/∂z2i > 0. From Eq. 3.33 it can be seen

that ∂2U/∂ρ2i ≷ 0 depending on the value of µ. Therefore, the properties of the

equilibrium state, ρo, are shown in Table 3.2;
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Table 3.2: Stability of equilibrium states of artificial potential function

µ ρo ∂2U/∂ρ2i Stability

< 0 r > 0 stable minimum
> 0 r < 0 unstable maximum

r +
√
µ > 0 stable minimum

r −√
µ > 0 stable minimum

Linear stability: 1-parameter static bifurcation

Using Lyapunov’s indirect method, as discussed in Section 2.3.1, an eigenvalue

analysis can be performed on the linearised equations of motion assuming that at

large separation distances the repulsive potential can be neglected through scale

separation as explained in Section 3.2.1. Therefore, the second order equations

of motion for the swarm model are re-cast as;

(

ẋi

v̇i

)

=

(

vi

−σvi −∇iU
S(xi)

)

=

(

f(xi,vi)

g(xi,vi)

)

(3.36)

Let xo and vo denote fixed points with ẋi = v̇i = 0 so that;

f(xo,vo) = 0 (3.37)

g(xo,vo) = 0 (3.38)

Thus, vo = 0 and ∇US = 0 at equilibrium. This occurs when ρo = r if µ < 0 and

ρo = r, r±√
µ if µ > 0, with zo = 0. Defining δxi = xi−xo and δvi = vi−vo and

Taylor Series expanding about the fixed points to linear order, the eigenvalues of

system can be found. The Jacobian, J, is defined as;

J =

(

∂
∂xi

(f(xi,vi))
∂
∂vi

(f(xi,vi))
∂
∂xi

(g(xi,vi))
∂
∂vi

(g(xi,vi))

)∣

∣

∣

∣

∣

xo,vo

(3.39)

This is then a 4× 4 matrix given by;



CHAPTER 3. SWARM SYSTEM MODEL 58

J =













0 0 1 0

0 0 0 1

−∂2U
∂ρ2i

− ∂2U
∂ρi∂zi

−σ 0

− ∂2U
∂ρi∂zi

−∂2U
∂z2i

0 −σ













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xo,vo

(3.40)

As shown previously, if µ < 0 equilibria of the system occur when xo = (r, 0) and

vo = 0. Evaluating the Jacobian matrix given in Eq. 3.40 it is found that;

J =













0 0 1 0

0 0 0 1

µ 0 −σ 0

0 −α 0 −σ













(3.41)

The corresponding eigenvalue spectrum is therefore;

λ =

{

1/2(−σ ±
√

(σ2 − 4α))

1/2(−σ ±
√

(σ2 + 4µ))
(3.42)

As α > 0, σ > 0 and µ < 0 the eigenvalues are always either negative real or com-

plex with negative real part as −σ±
√

(σ2 − 4α) ≯ 0 and −σ±
√

(σ2 + 4µ) ≯ 0.

The equilibrium position can therefore be considered as linearly stable.

If µ > 0 equilibrium of the system occurs when xo1 = (r, 0), xo2 = (r +
√
µ, 0)

and xo3 = (r −√
µ, 0) with vi = 0. The Jacobian matrix evaluated at the three

different equilibrium positions is given by Eq. 3.43, 3.44 and 3.45 respectively as;

J1 =













0 0 1 0

0 0 0 1

µ 0 −σ 0

0 −α 0 −σ













(3.43)

J2 =













0 0 1 0

0 0 0 1

−2µ 0 −σ 0

0 −α 0 −σ













(3.44)
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J3 =













0 0 1 0

0 0 0 1

−2µ 0 −σ 0

0 −α 0 −σ













(3.45)

The eigenvalues for J1 are;

λ =







1/2
(

−σ ±
√

(σ2 − 4α)
)

1/2
(

−σ ±
√

(σ2 + 4µ)
) (3.46)

Considering the second pair of eigenvalues in Eq. 3.46 it can be show that

−σ ±
√

(σ2 + 4µ) > 0, since σ2 + 4µ > σ2 and therefore there is always at

least one positive real eigenvalue. This equilibrium position is therefore always

linearly unstable.

The eigenvalues for J2 and J3 are;

λ =







1/2
(

−σ ±
√

(σ2 − 4α)
)

1/2
(

−σ ±
√

(σ2 − 8µ)
) (3.47)

Again as α > 0, σ > 0 and µ > 0, the eigenvalues are always either negative real or

complex with negative real part as −σ±
√

(σ2 − 4α) ≯ 0 and −σ±
√

(σ2 − 8µ) ≯

0. The equilibrium positions can therefore be considered as linearly stable.

Non-linear stability: 1-parameter static bifurcation

Using Lyapunov’s second method the non-linear stability of the system can be

investigated allowing an analytical proof that the swarm will relax into the min-

imum energy configuration. Again using the assumption of scale separation, the

Lyapunov function, L, is defined as the total energy of the system, where US(xi)

is given in Eq. 3.29, so that, for unit mass;

L =
∑

i

(

1

2
v2
i + US(xi)

)

(3.48)

where, L > 0 other than at the goal state when L = 0.

The rate of change of the Lyapunov function can be expressed as;
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dL

dt
=

(

∂L

∂xi

)

ẋi +

(

∂L

∂vi

)

v̇i (3.49)

Then, substituting Eq. 3.36 into Eq. 3.49 it can be seen that;

dL

dt
= −σ

∑

i

v2
i ≤ 0 (3.50)

As stated previously in Section 2.3.1, a problem arises in the use of superim-

posed artificial potential functions as L̇ ≤ 0. This implies that L̇ could equal

zero in a position other than the goal minimum suggesting that the system may

become trapped in a local minimum. However, under the assumption of the scale

separation, as there is a smooth, well defined symmetric potential field and equi-

librium only occurs at the goal states, the local minima problem can be avoided

and the system will relax into the desired goal position.

For the more general case when scale separation cannot be assumed, a similar

analysis to that shown in Section 3.1.1 can be used. Therefore, taking the dot

product of the velocity vector with Eq. 3.2 and summing over all agent states

results in;

∑

i

mvi · v̇i = −
∑

i

σv2
i −

∑

i

∇iU
S(xi) · vi −

∑

i

∇iU
R(xij) · vi (3.51)

Thus, the rate of change of the total effective energy is then;

dE

dt
= −σ

∑

i

v2
i ≤ 0 (3.52)

where, E =
1

2

∑

i

mv2
i +

∑

i

US(xi) +
1

2

∑

i

UR(xij).

This is a similar result to that obtained above, however, it now takes into con-

sideration the repulsive potential field. Again, the total effective energy of the

system is continually decreasing. However, the system may relax into a minimum

energy configuration other than that given by the minimum of the desired steer-

ing potential. For example, considering the case when r = 0, each agent in the

swarm will be driven to the origin of the system. However, due to the interaction

with the repulsive potential, the agents will be forced apart with the steering

and repulsive potential balancing such that the system will relax into a locally
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minimum energy cluster configuration. In this situation the scale separation ar-

gument does not hold true, however, it does provide a tool to enable analytical

investigation of the stability of the problem.

3.2.4 First Order Velocity Field Swarm System

In this example consider the case of a first order velocity field that is based on

the Hopf bifurcation, as discussed in Section 2.4.4 and shown in Eq. 3.53;







ẋi

ẏi

żi






=

















µxi + yi − xi(x
2
i + y2i )−

∂UR

∂xi

−xi + µyi − yi(x
2
i + y2i )−

∂UR

∂yi

−αzi −
∂UR

∂zi

















(3.53)

For µ > 0 each agent in the swarm will be attracted to a limit cycle with radius,

r =
√
µ, with the addition of the repulsive potential field creating an equally

spaced ring formation in the x− y plane.

Linear stability: 1-parameter dynamic bifurcation

Similar to the analysis performed in Section 3.2.3, the velocity field described

by Eq. 3.53 is recast to determine the linear stability of the system;







ẋi

ẏi

żi






=







µxi + yi − xi(x
2
i + y2i )

−xi + µyi − yi(x
2
i + y2i )

−αzi







=







m(xi)

n(xi)

p(xi)






(3.54)

Similarly, letting xo denote fixed points with ẋi = ẏi = żi = 0 then;

m(xo, yo, zo) = 0 (3.55)
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n(xo, yo, zo) = 0 (3.56)

p(xo, yo, zo) = 0 (3.57)

The Jacobian, J, is then a 3× 3 matrix given by;

J =







∂
∂xi

(m(xi))
∂
∂yi

(m(xi))
∂
∂zi

(m(xi))
∂
∂xi

(n(xi))
∂
∂yi

(n(xi))
∂
∂zi

(n(xi))
∂
∂xi

(p(xi))
∂
∂yi

(p(xi))
∂
∂zi

(p(xi))







∣

∣

∣

∣

∣

∣

∣

xo,yo,zo

(3.58)

Thus, it can be shown that;

J =







µ 1 0

−1 µ 0

0 0 −α






(3.59)

The corresponding eigenvalue spectrum is therefore;

λ1,2,3 = −α, µ± i (3.60)

From the eigenvalue spectrum given in Eq. 3.60 it can be seen that for µ < 0 and

α > 0 the equilibrium position is linearly stable, indicating a stable spiral to that

position. Alternatively, if µ > 0, the eigenvalues will now be either positive real

or positive real with complex conjugate. Therefore, as the complex eigenvalues

cross the imaginary axis at µ = 0, the system is said to have bifurcated from a

stable spiral into the oscillatory limit cycle motion.

Non-linear stability: 1-parameter dynamic bifurcation

Again Lyapunov’s second theorem is used to determine the non-linear stability

of the system. As the z-direction motion is decoupled from the x and y motion,

as shown in Eq. 3.54, consider a Lyapunov function, L, defined as;

L =
1

2

∑

i

[

x2i + y2i
]

(3.61)

Therefore,
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dL

dt
=
∑

i

[

∂L

∂xi
ẋi +

∂L

∂yi
ẏi

]

(3.62)

dL

dt
=
∑

i

[

ρ2i (µ− ρ2i )
]

(3.63)

For µ < 0 and α > 0, L̇ ≤ 0 so that ρi is always decreasing until L = 0 so

each agent would be attracted to the equilibrium position located at the origin.

Alternatively, if µ > 0 and α > 0, L̇ > 0 if ρ2i < µ and L̇ < 0 if ρ2i > µ so the

system is attracted to a limit cycle of radius, ρi =
√
µ, in the x − y plane, with

zi = 0.

3.3 Summary

This chapter introduced the swarm model considered in this thesis showing that it

consists of steering and repulsive potential that are used to command each agent

and prevent collisions respectively. To demonstrate some useful swarming prin-

ciples a swarm model based on a pair-wise potential was introduced in Section

3.1, showing how basic patterns can be formed and also how the centre-of-mass

of the swarm can be controlled. Section 3.2 considered the stability of the pro-

posed swarming model. Firstly, it was shown that there exists a scale separation

between the steering and repulsive potentials so that each agent moves under the

influence of a long-range steering potential but with short range collision avoid-

ance. The stability of both the second and first order models was investigated.

As an example, the pitchfork bifurcation equation was used to demonstrate the

linear and non-linear stability of the second order swarm model so that static 2D

patterns will form under the assumption of scale separation. An energy analysis

was also performed for the more general case when this assumption cannot be

made, showing that the swarm system will relax into a locally minimum energy

configuration. The linear and non-linear stability analysis was also repeated for a

first order system with consideration to dynamic pattern formation through the

Hopf bifurcation.



Chapter 4

Pattern Formation and

Reconfigurability

This chapter considers the swarm model discussed in Chapter 3, demonstrating

both swarm pattern formation and reconfigurability. Firstly, in Section 4.1.1, it

is shown that a swarm of agents can be attracted to different states. In Section

4.1.2 pattern formation using bifurcation theory is demonstrated, with Section

4.1.3 showing examples of other potentials that can lead to different swarm

patterns. Finally, Section 4.2 considers reconfigurability in a swarm using the

new approach of bifurcating potential fields. In all the examples given in this

chapter, the point-mass swarm of agents are given random initial conditions with

following constant parameters; Cr = 1, Lr = 0.5 and σ = 2, unless stated

otherwise.

4.1 Pattern Formation

4.1.1 Swarm Attractors

Depending on the form of the steering potential, the swarm model can be at-

tracted to different states. A simple quadratic potential is used in the following

examples, based on a dissipative second order dynamical system.

0D Attractor

Consider a steering potential defined as;

64
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US =
α

2
|xi|2 (4.1)

where, xi = (xi, yi, zi)
T .

Using this steering potential each agent in the swarm will be attracted to the

origin with the repulsive potential causing a cluster pattern to emerge, as shown

in Fig. 4.1.
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Figure 4.1: 0D Attractor - ball cluster (n = 50, α = 1)

Therefore, although each agent in the swarm is attracted to a 0D point, a 3D

ball pattern will emerge as the swarm interacts through the repulsive potential.

1D Attractor

In order to attract the swarm to a 1D line pattern in the x-direction, the steering

potential energy can be defined as;

US =
α

2
(y2i + z2i ) (4.2)

From the results shown in Fig. 4.2 it can be seen that a line pattern can be

achieved in the x-direction with the repulsive potential causing the separation

distance between the agents to increase in the x-direction.
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Figure 4.2: 1D Attractor - line (n = 10, α = 1)

2D Attractor

By forming a potential gradient in only one direction, the swarm can be attracted

to a 2D plane using the following steering potential;

US =
α

2
z2i (4.3)

From the results shown in Fig. 4.3 it can be seen that the swarm is attracted

to the x − y plane with the repulsive potential causing the swarm of agents to

disperse, with the velocity of the swarm approaching zero as the repulsive term

approaches zero.
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Figure 4.3: 2D Attractor - dispersion of swarm (n = 25, α = 1)
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No Attractor

In this case the swarm is not attracted to any state, allowing the swarm to interact

through the repulsive potential field only, using the second order system shown

in Eq. 4.4;

m
dvi
dt

= −∇iU
R(xij)− σvi (4.4)

From the results shown in Fig. 4.4 it can be seen that the swarm of agents interact

together with the repulsive potential again forcing the agents to disperse, with

the velocity of the swarm approaching zero as the repulsive potential approaches

zero.
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Figure 4.4: 3D dispersion of swarm (n = 50)

This section has demonstrated the way in which the steering potential can be used

to attract the swarm to a particular state. It will now be shown how different

swarm patterns can be achieved using bifurcation of the steering potential.

4.1.2 Bifurcation Patterns

Using the bifurcation equations discussed in Section 2.4, several different pat-

terns can be formed. This section introduces these patterns, with Section 4.2

demonstrating how bifurcation theory can be used to transition between these

patterns through a simple parameter change.
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Pitchfork Bifurcation

Using the pitchfork bifurcation potential various swarm patterns can be achieved

depending upon the type of attractor used. Firstly, consider a 0D attractor based

on the pitchfork steering potential, as shown in Eq. 4.5;

US =
1

4
(x4i + y4i + z4i ) +

1

2
(µxx

2
i + µyy

2
i + µzz

2
i ) (4.5)

Therefore, depending upon the sign of the bifurcation parameters, µx, µy and µz,

the number of attractors will change, as summarised in Table 4.1.

Table 4.1: Pitchfork bifurcation parameters - 0D attractor

µx < 0 > 0 < 0 < 0 < 0 > 0 > 0 > 0

µy < 0 < 0 > 0 < 0 > 0 > 0 < 0 > 0
µz < 0 < 0 < 0 > 0 > 0 < 0 > 0 > 0

attractors 1 2 2 2 4 4 4 8

For µx, µy, µz < 0 there is only one equilibrium position so the swarm is attracted

to a point at the origin, as discussed in Section 4.1.1. Figure 4.5 confirms this

for a swarm of 50 agents, with a 3D cluster formation forming as expected.
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Figure 4.5: 3D cluster formation (n = 50, µx = −5, µy = −5, µz = −5)
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Figures 4.6, 4.7 and 4.8 show the results for the case when the bifurcation pa-

rameters are chosen such that there at 2, 4 and 8 attractor positions respectively.

Depending upon each agent initial conditions, they are driven towards one of

the attracting positions, resulting in the cluster formations shown. It should be

noted that the split of agents is largely uncontrolled, however, future work will

investigate the probability of an even split and its sensitivity to initial conditions.
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Figure 4.6: Two cluster formations (n = 50, µx = 5, µy = −5, µz = −5)
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Figure 4.7: Four cluster formations (n = 50, µx = 5, µy = 5, µz = −5)
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Figure 4.8: Eight cluster formations (n = 50, µx = 5, µy = 5, µz = 5)

Next, consider the pattern formation based on a 1D pitchfork bifurcation attrac-

tor, as shown in Eq. 4.6;

US = −1

2
(µyy

2
i + µzz

2
i ) +

1

4
(y4i + z4i ) (4.6)

Again, depending on the sign of the bifurcation parameters, µy and µz, the num-

ber of fixed point attractors can be altered, as summarised in Table 4.2.

Table 4.2: Pitchfork bifurcation parameters - 1D attractor

µy < 0 > 0 < 0 > 0

µz < 0 < 0 > 0 > 0
attractors 1 2 2 4

In Section 4.1.1 it was shown that line pattern will be forced apart due to the

repulsive potential. In order to achieve a fixed line length with equal spacing, Eq.

4.6 can be altered to include constraining potential, Uc, as follows;

US = −1

2
(µyy

2
i + µzz

2
i ) +

1

4
(y4i + z4i ) + Uc (4.7)

where,

Uc = Ac exp{−
1

Lc
(xi − xw1)

2}+ Ac exp{−
1

Lc
(xi − xw2)

2} (4.8)

and Ac and Lc represent the amplitude and length scale of the potential and

xw1, xw2 represent the bounds of the constraining potential.
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As an example, consider the constraining potential defined such that it is desired

to form an equally spaced line in the x-direction, with bounds choosen so that

xw1,2 = ±6, as shown in Fig. 4.9. To ensure that the agents do not escape the

constraining potential, Ac >
1
2
v2max, where vmax is the maximum velocity of an

agent.
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Figure 4.9: Constraining potential (Ac = 50, Lc = 0.05)

The results shown in Fig. 4.10, 4.11 and 4.12 consider a constraining potential

between xw1,2 = ±6. It can be seen that the swarm can be attracted to the

three different formation patterns, assuming random initial condition within the

bounds of xi = ±6. Firstly, for µy < 0, µz < 0 a line pattern is formed as

expected. For µy > 0, µz < 0 and µy < 0, µz > 0 there are now two equilibrium

positions with two line patterns forming in either the x − z or x − y plane. If

µy > 0, µz > 0 there are then four attractors and thus four lines form, as shown

in Fig. 4.12.
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Figure 4.10: Line formation (n = 10, µy = −5, µz = −5)
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Figure 4.11: Two line formations (n = 20, µy = 5, µz = −5)
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Figure 4.12: Four line formations (n = 40, µy = 5, µz = 5)

It was shown in Section 4.1.1 that to attract the swarm to a particular 2D

plane, a simple quadratic potential can be used with the results indicating that

a swarm, under the influence of a purely repulsive potential field, would disperse

in that plane. The pitchfork bifurcation equation, shown previously in Eq. 3.29,

will now be used to form patterns in that plane.

US(xi;µ, α) = −1

2
µ (ρi − r)2 +

1

4
(ρi − r)4 +

1

2
αz2i (4.9)

where, ρi = (x2i + y2i )
0.5 and r is scalar.

The results shown in Fig. 4.13-4.16 consider varying values of n, µ and r. For

µ < 0 and r = 3 an equilateral triangle formation can be achieved, as shown Fig.

4.13. This can be extended to a square formation for n = 4 and so on, eventually

achieving the ring state, as shown in Fig. 4.14. For µ > 0, Fig. 4.15 shows the

double ring formation that can be achieved, with Fig. 4.16 showing the cluster



CHAPTER 4. PATTERN FORMATION AND RECONFIGURABILITY 73

pattern when µ < 0 and r = 0.
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Figure 4.13: Triangle formation (n = 3, µ = −5, r = 2)
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Figure 4.14: Ring formation (n = 50, µ = −5, r = 10)
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Figure 4.15: Double ring formation (n = 20, µ = 5, r = 2)
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Figure 4.16: Cluster formation (n = 50, µ = −5, r = 0)

Referring back to Eq. 4.4, a pitchfork steering potential can be used to form 3D

patterns using Eq. 4.10;

US(xi;µ) = −1

2
µ (|xi| − r)2 +

1

4
(|xi| − r)4 (4.10)

From the results shown in Fig. 4.17 and 4.18 it can be seen that for µ < 0 a

spherical formation is achieved with radius equal to r. For µ > 0 a double sphere

formation can be achieved, with inner and outer sphere radius of ri = 3.6 and

ro = 6.4 as expected (ri,o = r ±√
µ), as confirmed in Fig. 4.19 and 4.20
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Figure 4.17: Sphere formation (n = 50, µ = −5, r = 5)
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Figure 4.19: Double sphere formation (n = 50, µ = 2, r = 5)
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Therefore, using the pitchfork bifurcation potential a swarm of agents can be

attracted to different states, forming a variety of different static patterns. Similar

static patterns to that shown in this section can be achieved using the transcritical

and cusp bifurcation equations.

Hopf Bifurcation

From Section 2.4.4 it is known that the Hopf bifurcation can lead to either fixed

point or periodic limit cycle attractors. Using the swarming model described by

Eq. 3.53, Fig. 4.21 and 4.22 show the formation patterns that can achieved for

µ < 0 and µ > 0 respectively.
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Figure 4.21: Hopf bifurcation cluster pattern (n = 20, µ = −5)
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From the results it can be seen that the swarm relaxes into a rotating cluster

pattern for µ < 0, as shown in Fig. 4.21. In this case the velocity field directs each

agent to the origin, however, due to the interaction with the repulsive potential,

the swarm balances such that a rotating cluster pattern is achieved. Figure 4.22

shows the rotating ring formation for the case when µ > 0 when the system is

attracted to a limit cycle.

4.1.3 Other Swarm Patterns

In addition to the bifurcation potential patterns, there are several other potentials

that can be used to form patterns as discussed in the following examples.

Grid Formation

In order to generate a grid formation in a plane, the following steering potential

can be used;

US = Ax cos(Mxxi)Ay sin(Myyi) +
1

2
z2i (4.11)

where, Ax, Ay and Mx,My control the amplitude and spatial frequency of the

terms.

An example of the grid potential is shown in Fig. 4.23, that results in the forma-

tion of multiple potential wells.
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Figure 4.23: Grid potential (Ax = −1, Ay = 1, Mx = 10 and My = 10)

From the results shown in Fig. 4.24, a swarm grid formation can be achieved.

By inclusion of a constraining potential in both the x and y directions (xw1,2 =

±1, yw1,2 = ±1.5) and giving each agent random initial condition within these

bounds, each agent in the swarm will relax into the minimum of the potential

with the repulsive potential ensuring that two agents do not remain in the same

potential, therefore, creating the grid formation as shown. It should be noted

that if the initial conditions were unbound, there is no guarantee that swarm will

self-organise into the grid formation shown, with gaps most likely to occur in the

final formation.
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Figure 4.24: Grid formation (n = 41, Ax = −1, Ay = 1, Mx = 10 and My = 10)
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Multiple Ring Formation

The pitchfork bifurcation allowed for the formation of either a single or double

ring configuration. This can be extended to multiple rings by considering the

following steering potential equation;

US = Am cos(ηρi) +
1

2
z2i (4.12)

where, Am and η control the amplitude and spatial frequency of the term.

Figure 4.25 shows the potential function consisting of multiple ring minimum

energy states. The wavelength of the cosine function is given by 2π/η so that by

increasing the value of η results in smaller ring radii.
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Figure 4.25: Multiple ring potential (Am = 1 and η = 10)

From the results shown in Fig. 4.26 it can be seen that the swarm formation can

relax into a equally spaced multiple ring configuration, assuming random initial

conditions within the bounds of a constraining potential in both the x and y

directions (xw1,2 = ±3, yw1,2 = ±3).
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Figure 4.26: Multiple ring formation (n = 100, Am = 1 and η = 10)

Therefore, for illustration both the grid and multiple ring formation were demon-

strated with respect to the swarm formations in the x − y plane, although both

can be easily extended to the 1D and 3D formation pattern cases.

Orientation of the Formations

The results thus far have considered formation patterns in a particular plane. In

real applications it may be desired for the swarm pattern to form in a different

plane. To achieve this the directional cosine matrix (DCM) [126] approach can

be used by rotating the x and y axis by an angle φ and θ respectively as follows;

C1(φ) =







1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)






(4.13)

C2(θ) =







cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)






(4.14)

The DCM is then defined in Eq. 4.15, with Eq. 4.16 showing the new position

vector, x′
i as a function of the DCM and xi;



CHAPTER 4. PATTERN FORMATION AND RECONFIGURABILITY 81

DCM =







cos(θ) 0 − sin(θ)

sin(φ) sin(θ) cos(θ) sin(φ) cos(θ)

cos(φ) sin(θ) − sin(φ) cos(φ) cos(θ)






(4.15)







x′i

y′i

z′i






= DCM







xi

yi

zi






(4.16)

As an example consider the formation of a ring pattern, orientated such that

φ = 45o and θ = 45o using the pitchfork bifurcation shown in Eq. 3.29.
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Figure 4.27: Orientation of the pitchfork bifurcation (n = 20, µ = −5, r = 3)

Therefore, from the results it can be seen that ring swarm pattern can be orien-

tated by transforming the potential field.

Rotation of the Formation

McInnes has shown how vortex-like swarming can be achieved through artificial

potential field methods [127]. Equation 3.1 and 3.2 are altered to include a

dissipative orientation term, Λi, instead of a velocity dependent term, as shown

in Eq. 4.17 and 4.18;

dxi
dt

= vi (4.17)

m
dvi
dt

= −∇iU
S(xi)−∇iU

R(xij)− Λi (4.18)
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where,

Λi =
∑

j,i 6=j

Co(vij .x̂ij) exp
−|xij |/Lo x̂ij (4.19)

and, vij represents the relative velocity vector between agents, Co, Lo represent

the strength and range over which the orientation function interacts respectively

and (̂.) denotes a unit vector.

The purpose of the orientation term is to locally align agent velocity vectors,

resulting in a vortex rotation. Using a similar procedure to that discussed in

Section 3.1.1, it can be shown that the swarm system will dissipate energy,

while conserving momentum therefore relaxing into rotating formation. Again,

considering the use of the pitchfork bifurcation as the basis of the steering poten-

tial as described by Eq. 3.29, taking the dot product of the velocity vector with

Eq. 4.18 and summing over all agent states it can be shown that [128];

dE

dt
= −

∑

i

viΛi ≤ 0 (4.20)

Also, taking the cross product of the position vector with Eq. 4.18 and summing

over all agent states it can be shown that;

dH

dt
= 0 (4.21)

Figure 4.28 shows the final configuration for a swarm of 20 agents. The swarm

therefore dissipates energy, relaxing into the equally spaced ring configuration

and conserves angular momentum resulting in the rotating ring pattern.
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Figure 4.28: Rotation of the ring formation (n = 20, µ = −5, r = 3, Co = 5 and
Lo = 1)
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4.2 Reconfigurability

4.2.1 Transcritical Bifurcation

As explained in Section 2.4.2, the transcritical bifurcation allows for the switch-

ing in position of a single stable equilibrium position dependent upon the sign of

the bifurcation parameter, µ. Using this bifurcation potential it can be shown

that the position of a single line configuration can be altered by a simple param-

eter change of µ. Consider a swarm of 10 agents that are desired to form a line

in the x-direction at three different y-positions, with z = 0. To achieve this the

transcritical potential, shown in Eq. 4.22 can be used, with xw1,2 = ±5.

US =
1

3
y3i −

1

2
µy2i +

1

2
z2i + Uc (4.22)

Figure 4.29 shows the evolution of the y position of the swarm, where it is desired

to form a line in the x-direction at y = 8, then y = 4 and y = 0.
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Figure 4.29: Evolution of swarm in the y-direction

Figures 4.30 (i)-(vi) show the results for the system indicating that the system

can successfully transition between the desired line positions. Giving the system

random initial conditions in the x and z direction, with y = 10, the system can

be successfully attracted to the first equilibrium position located at y = µ = 8,

as shown in Fig. 4.30 (ii). Bifurcating the system such that µ = 4 and µ = −2

the system will then transition autonomously to a new line position located at

y = 4 and y = 0, as confirmed by Fig. 4.30 (iv) and (vi). It should be noted

that although the self-organised pattern has been proven analytically —to always

occur, the path of each agent may be different depending upon initial conditions.
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Figure 4.30: Transcritical bifurcation (i) initial conditions (ii) line located at
y = 8, (µ = 8, t = 49s) (iii) bifurcation of the system (µ = 4, t = 50s) (iv) line
located at y = 4 (t = 99s) (v) bifurcation of the system (µ = 0, t = 100s) (vi)
line located at y = 0 (t = 150s)
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4.2.2 Pitchfork Bifurcation

Using the pitchfork bifurcation a swarm can transition between different 2D for-

mation patterns through a simple parameter change. Figure 4.31 shows the evo-

lution of a swarm of 40 agents that are desired to form a double ring pattern and

then bifurcate into a cluster and then a single ring formation.
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Figure 4.31: Evolution of swarm in the x− y plane

Figures 4.32 (i)-(vi) show the results for the pitchfork bifurcating system indicat-

ing that the desired swarm patterns were achieved. The first pattern corresponds

to the case when there are two stable equilibrium positions with µ > 0, resulting

in the agents falling into a double ring pattern, as shown in Fig. 4.32 (ii). The

bifurcation parameter is then altered such that µ < 0 and r = 0 thus forcing each

agent to the origin with the repulsive potential causing an equally spaced cluster

to form, as shown in Fig. 4.32 (iv). The swarm then bifurcates once more so that

r = 5 and an equally spaced ring pattern emerges, as shown in Fig. 4.32 (vi).



CHAPTER 4. PATTERN FORMATION AND RECONFIGURABILITY 86

−2
−1

0
1

2

−2
−1

0
1

2

−2

−1

0

1

2

xy

z

−5
−2.5

0
2.5

5

−5
−2.5

0
2.5

5

−5

−2.5

0

2.5

5

xy

z

(i) (ii)

−5
−2.5

0
2.5

5

−5
−2.5

0
2.5

5

−5

−2.5

0

2.5

5

xy

z

−2
−1

0
1

2

−2
−1

0
1

2

−2

−1

0

1

2

xy

z

(iii) (iv)

−2
−1

0
1

2

−2
−1

0
1

2

−2

−1

0

1

2

xy

z

−4
−2

0
2

4

−4
−2

0
2

4

−4

−2

0

2

4

xy

z

(v) (vi)

Figure 4.32: Pitchfork bifurcation (i) random initial conditions (ii) double ring
(ro = 4.9, ri = 2.1, µ = 2, r = 3.5, t = 19s) (iii) bifurcation of the system (µ =
−5, r = 0, t = 20s) (iv) cluster (t = 39s) (v) bifurcation of the system (µ =
−5, r = 4, t = 40s) (vi) ring, radius = 4, (t = 60s)
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4.2.3 Cusp Catastrophe

As stated in Section 2.4.3, the cusp catastrophe is a 2-parameter bifurcation that

can be viewed as analogous with a phase diagram in thermodynamics. Referring

back to Fig. 2.14 (ii), it can be seen that the number of attractors can be altered

as the bifurcation parameters µ1 and µ2 change. To demonstrate this consider

the formation of a double sphere pattern, that then bifurcates into the upper and

lower branches of the potential, forming a large and small sphere. Figure 4.33

shows the evolution of the swarm of agents from the origin of the system.
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Figure 4.33: Evolution of the cusp catastrophe

Figures 4.34 (i)-(vi) show the results of the simulation indicating that the system

successfully transitions between the desired patterns. Depending on the initial

conditions, each agent will be attracted to one of the double sphere equilibrium

states, with the system eventually relaxing into the minimum energy configura-

tion, as shown in Fig. 4.34 (ii). Bifurcating the system so that µ2 = −1, the

system will be attracted into the outer ring state, as shown in Fig. 4.34 (iv). Fi-

nally, bifurcating the system again such that µ2 = 1 and r = 3 the system will be

attracted to a smaller sphere, as shown in Fig. 4.34 (vi). It should be noted that

the formation of both the double ring and double sphere pattern is dependent

upon agent initial conditions. In both the examples shown in Section 4.2.2 and

4.2.3 the system was choosen such that the swarm bifurcates from two stable

equilibrium positions to one equilibrium position. If the system is desired to go

in the other direction from the single to a double equilibrium position, there is no

guarantee that the swarm will relax into either the double ring or double sphere

pattern. Nevertheless, the results still demonstrate that bifurcation theory can

provide a means to transition between different formation patterns.
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Figure 4.34: Cusp catastrophe (i) random initial conditions (ii) double sphere
(ro = 3, ri = 1, µ1 = 1, µ2 = 0, r = 2, t = 49s) (iii) bifurcation of the system
(µ1 = −1, µ2 = −1, r = 2, t = 50s) (iv) outer single sphere, radius = 3.3 (t = 99s)
(v) bifurcation of the system (µ1 = −1, µ2 = 1, r = 3, t = 100s) (vi) inner single
sphere, radius = 1.7 (t = 150s)
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4.2.4 Hopf Bifurcation

Consider a swarm of 20 agents that are desired to form a rotating cluster pattern,

then an equally spaced rotating ring and finally return back to the rotating clus-

ter pattern. To achieve this the Hopf bifurcation can be used to autonomously

reconfigure the swarm by altering the bifurcation parameter. Using the first order

velocity field as described by Eq. 3.53, Fig. 4.35 shows the time evolution for the

swarm system.
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Figure 4.35: Evolution of the Hopf bifurcation

Figures 4.36 (i)-(vi) show the formation of the different autonomous patterns

through the Hopf bifurcation. The initial pattern occurs when µ = −5, as shown

in Fig. 4.36 (ii), resulting in the rotating cluster pattern. Figure 4.36 (iv) shows

the bifurcation of this pattern by making a simple parameter change so that

µ = 5. By doing so the system behaviour changes and a limit cycle motion is

induced. Again the interaction with the repulsive potential results in an equally

spaced rotating ring pattern. The final formation corresponds to again the case

when µ = −5 so that the rotating cluster pattern can be achieved again, as shown

in Fig. 4.36 (vi).
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Figure 4.36: Hopf bifurcation (i) random initial conditions (ii) rotating cluster
formation (µ = −5, t = 9s) (iii) bifurcation of the system (µ = 5, t = 10s) (iv)
rotating ring formation (t = 19s) (v) bifurcation of the system (µ = −5, t = 20s)
(vi) rotating cluster formation (t = 30s)
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4.3 Summary

This chapter has demonstrated the two swarming themes considered in this thesis;

pattern formation and reconfigurability. It has been shown that through the new

approach of bifurcating APFs, a verifiable swarming system will self-organise,

capable of creating reconfigurable autonomous patterns. Using the potential field

method the swarm system can be attracted to different states, with bifurcation

theory providing a means of pattern formation once attracted to a particular state.

In addition, it was also shown how other potentials can be used to form different

swarm patterns. It was then demonstrated that by using bifurcation theory the

swarm system can autonomously reconfigure between different patterns through

simple parameter changes to the potential.



Chapter 5

Towards Real World

Considerations

The work presented in earlier chapters has considered the ideal swarming scenario

where it has been assumed that all agents are fully actuated and can communi-

cate freely with each other. In real, safety or mission critical applications it is

important to consider real world effects. As such, this chapter investigates the

issue of actuator saturation and communication limitation to increase the fidelity

of the swarm model. A new potential field inspired from the pitchfork bifurcation

equation is developed based on hyperbolic-exponential potentials, addressing the

issue of actuator saturation. Secondly, the assumption that every agent in the

swarm can communicate with all other agents is unrealistic and limits the scala-

bility of the model. As such this problem is addressed by adapting the repulsive

potential field so that it only acts in a sensing region surrounding each agent.

This new swarm model is then applied to both force and velocity field examples.

In addition, the advantages of the new model are demonstrated indicating that

the system is robust to agent failure, flexible and scalable. As part of future

work, other real world effects will be investigated such as; consideration of com-

putational load on each agent, communication time-delays, non-holonomic effects

and robustness to partial agent failure.

5.1 Actuator Saturation

In Chapter 4 it was shown that classical static bifurcations can be used to steer

a swarm of agents, allowing for a simple transition between formations. Although

92
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this form of autonomous control architecture has the advantages of being flexible

and robust, the analysis considered the formation of patterns assuming ideal

agents. In order to assure stability for real, safety or mission critical systems it is

important to consider actuator saturation. From Eq. 3.2, the control force (ui)

acting on each agent is shown in Eq. 5.1.

ui = uS + uR + ud (5.1)

where,







uS

uR

ud






=







−∇iU
S(xi)

−∇iU
R(xij)

−σvi






(5.2)

Through the triangle inequality [125] the maximum control force must be;

|ui| 6 |∇iU
S(xi)|+ |∇iU

R(xij)|+ |σvi| (5.3)

The maximum control force that the system is required to produce will therefore

be dependent upon the sum of the maximum gradient of the steering and repul-

sive potentials and the maximum speed that each agent can move.

Considering the classical pitchfork bifurcation as an example steering potential,

referring back to Eq. 3.29, it can be seen that the control force is unbound

as the distance ρi from the origin increases. Recently, work done by Badaway

and McInnes devised a promising approach to overcome this unbound control

force through the use of a hyperbolic potential function [98]. This function has a

smooth shape at the goal state whilst becoming asymptotic with a constant gra-

dient (thus bound control force) as the distance from origin increases. Equation

5.4 and Fig. 5.1 show the hyperbolic control potential, Uh(ρi), that can be used

as the steering potential to achieve a bound control force.

Uh(ρi) = Ch
[

(ρi − r)2 + 1
]0.5

(5.4)

where the constant Ch controls the amplitude of the function.
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Figure 5.1: Hyperbolic potential function (Ch = 1, r = 5)

To make use of the principles demonstrated in the pitchfork bifurcation potential,

an additional exponential potential function, Ue(ρi), can be added as shown in

Eq. 5.5 and Fig. 5.2.

Ue(ρi) = µCe exp
−(ρi−r)

2/Le (5.5)

where Ce and Le represent the amplitude and length scale of the function and µ

is the bifurcation parameter.
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Figure 5.2: Exponential potential function (Ce = 1, Le = 0.2, r = 5) (i) µ = 1 (ii)
µ = −1

Combining Eq. 5.4 and 5.5, a new bound bifurcating steering potential equation

can be achieved as shown in Eq. 5.6 and Fig. 5.3. If the bifurcation parameter

µ < 0 there is one goal state as shown in Fig. 5.3 (i). If however, the system

bifurcates such that µ > 0, two stable goal positions will emerge as shown in Fig.

5.3 (ii). The last term in Eq. 5.6 ensures that the formation is created in the

x− y plane.
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US(xi) = Uh(ρi) + Ue(ρi) + Uh(zi)

= Ch
[

(ρi − r)2 + 1
]0.5

+ µCe exp
−(ρi−r)2/Le +Cz[z

2
i + 1]0.5 (5.6)

where the constant Cz controls the amplitude of this bound hyperbolic potential

function.
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Figure 5.3: New bound steering potential (Ch = 1, r = 5) (i) US
ρ : µ = −1, Ce =

1, Le = 0.2 (ii) US
ρ : µ = 1, Ce = 1, Le = 0.2 (iii) US

z : Cz = 1

This new steering potential is then a bound control force, dependent upon the

maximum gradient of the hyperbolic and exponential terms. Firstly, considering

the hyperbolic function, the control force, uSh , is shown in Eq. 5.7 and Fig. 5.4.

uSh = −∇iUh(ρi, zi) = [uhρ, uhz]
T =

[

− Ch(ρi − r)

[(ρi − r)2 + 1]0.5
,− Czzi

(z2i + 1)0.5

]T

(5.7)

Therefore, as ρi → ∞, uh → −Ch; ρi → 0, uh → Ch and as zi → ∞, uz → −Cz
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Figure 5.4: Hyperbolic control forces (i) uhρi: Ch = 1, r = 5 (ii) uhz: Cz = 1

as shown in Fig. 5.4.

Similarly, the exponential control force is shown in Eq. 5.8.

uSe = −∇iUe(ρi, zi) = [ueρ, uez]
T =

[

2µ
Ce
Le

(ρi − r) exp−(ρi−r)2/Le , 0

]T

(5.8)

The maximum exponential control forces occurs when ρi = r ±
√

Le
2

giving the

maximum control force, ueρ, equal to ±
√
2µ

Ce
√

Le
exp−0.5, as shown in Fig. 5.5.
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Figure 5.5: Exponential control force (r = 5, Ce = 1, Le = 1, µ = 1)

Therefore, depending upon the constants chosen in Eq. 5.6, the maximum bound

control force in the ρi direction will either be controlled through the hyperbolic

or exponential term in the steering potential equation. The equations have to be

evaluated to determine if either the hyperbolic or exponential term dominates, as
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shown in Fig. 5.6 (i) and (ii). Considering the case when µ > 0, with constants

choosen so that the hyperbolic term dominates, then |uSρ |max = Ch as shown in

Fig. 5.6 (i). If, however, the exponential term dominates, as shown in Fig. 5.6

(ii), then |uSρ |max can be found numerically. In the z direction |uSz |max = Cz, as

shown in Fig. 5.4 (ii).
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Figure 5.6: Steering potential control forces (µ = 1, Ch = 1, Le = 1, r = 5) (i) ush
dominating, Ce = 1 (ii) uSe dominating, Ce = 4

The bound steering potential control force is then;

|uS| = |∇iU
S(xi)|max ≤

[

(

∇iU
S(ρi)max

)2
+
(

∇iU
S(zi)max

)2
]0.5

(5.9)

The repulsive potential is a bound force that has a maximum value equal to

CR/LR that occurs when xij = 0. This would, however, occur when two agents

are in the same position and therefore would have collided. The realistic maxi-

mum control force would therefore be (uRi )max = CR/LR exp−(|xij |min/LR) where,

|xij|min = |xi − xj |min, is the minimum separation distance between both agents

without colliding, as shown in Fig. 5.7.
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Figure 5.7: Repulsive potential (Cr = 1, Lr = 1) (i) UR (ii) uR

The maximum control force is therefore;

|uR| = |∇iU
R(xij)|max =

Cr
Lr

exp−|xij |min/Lr (5.10)

Referring back to Section 3.2.1, |xij |min can be estimated by considering the

case when one agent is moving at its maximum speed towards another agent.

Assuming that the agent will brake to V = 0 at S = Xmin/Lr then;

m

∫ 0

Vm

V dV = Cr

∫ S

∞

exp−S dS (5.11)

where Vm can assumed to be the initial speed of the agent if the dissipative con-

stant σ is large.

It follows then that,

− 1

2
mV 2

m = −Cr
[

exp−S
]S

∞
(5.12)

The minimum separation is then estimated as;

Xmin = Lr ln

(

2Cr
mV 2

m

)

(5.13)

Therefore, collision avoidance can be assured with the condition that 2Cr > mV 2
m.
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The dissipative force, ud is bound by the maximum speed, Vm. Therefore;

|ud| = |σvi|max ≤ σVm (5.14)

The maximum total force that the actuator will generate is therefore;

|ui| 6 |∇iU
S(xi)|+ |∇iU

R(xij)|+ |σvi| (5.15)

If the steering potential is dominated by the hyperbolic term, the maximum

control force is;

|ui| 6 |∇iU
S(xi)|+ |∇iU

R(xij)|+ |σvi|

6

√

C2
h + C2

z +
Cr
Lr

exp−|xij |min/Lr +σVm (5.16)

If, however, the steering potential is dominated by the exponential term, |∇iU
S(xi)|

will have to be evaluated, with |∇iU
S(zi)max| = Cz, |∇iU

R(xij)| =
Cr
Lr

exp−|xij |min/Lr

and |σvi| = σVm.

Therefore, it has been shown how to overcome the problem of actuator saturation

in the swarm force model, developing a new bound bifurcating potential. This

model can be easily extended to the first order velocity field case, placing bounds

on the maximum velocity experienced.

5.2 Sensing Region

Although the artificial potential function method is theoretically elegant, Sigurd

points out that the assumption that all agents in a swarm have information on

all other agents is unrealistic as the number of agents increase [129]. To address

this disadvantage in the APF method, the requirement of global knowledge will

be removed and each agent will now have a sensing region [72, 77, 92], as shown

in Eq. 5.17 and Fig. 5.8, that will still ensure collision avoidance and an equally

spaced final formation.



CHAPTER 5. TOWARDS REAL WORLD CONSIDERATIONS 100

UR
ij =







∑

j,j 6=i

Cr exp
−|xij |/Lr if |xij | ≤ Zr

0 if |xij | > Zr







(5.17)

where Zr is the radius of repulsive zone of influence.

Zr

agent

sensing region

Figure 5.8: Agent repulsive potential sensing region

Therefore, as the repulsive potential only acts in a region surrounding each agent,

scale separation will still hold true so that the system will move under the influ-

ence of a long-range steering potential but with short-range collision avoidance.

While not a rigorous proof, related work by Tanner has shown that, by using

graph theory, if the communication network between agents remains connected

for all time the system is guaranteed to relax into the minimum of the potential

[112].

5.3 Second Order Swarm

To demonstrate the use of the new bound control laws with local communication,

consider a swarm of 20 agents that have mass of 10 kg, required to form three

different formations; ring (diameter 50 m), cluster (diameter 16 m) and double

ring (inner and outer diameters of 10 m and 20 m respectively). Each agent

is given random initial conditions, with an initial speed equal to 0.1 ms−1 and

Zr = 10 m. The results are shown in Fig. 5.9, with Table 5.1 noting the value of

the parameters during each stage.
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Table 5.1: Bound control constants

Formation µ r Ch Ce Le Cz Cr Lr σ

Ring 0 25 0.05 - - 0.01 1 1 0.5
Cluster 0 0 0.02 - - 0.05 1 1 0.5

Two rings 4 8 0.1 0.1 5 0.05 1 1 1

From the results shown in Fig. 5.9 it can be seen that the desired formations

are achieved during the simulation. Figure 5.10 shows the separation distance

between the agents indicating that they do not collide during the simulation,

satisfying the assumption made regarding the minimum separation distance (es-

timated by Xmin = Lr ln

(

2Cr
mV 2

m

)

= 3 m).
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Figure 5.10: Second order swarm agent separation distance

During the formation of the first two stages, the maximum bound control force

is equal to that given in Eq. 5.16. Similarly, in the formation of the double

ring state when the steering potential is influenced by both the hyperbolic and

exponential term, as the hyperbolic term dominates the maximum bound control

force is also given by Eq. 5.16. The control force calculated from the simulation

is shown in Fig. 5.11 (i)-(iii) and summarised in Table 5.2 with a comparison

made to the analytical upper bound.
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Figure 5.11: Control force (i) ring (ii) cluster (iii) double ring
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Table 5.2: Control force

Formation Analytical |ui|max (N) Simulated |ui|max (N)

Ring 0.15 0.1
Cluster 0.15 0.02

Two rings 0.26 0.115

From the results shown in Fig. 5.11 (i)-(iii), it can be seen that the maximum

control force was found to occur at the start of the simulation of each formation,

as at this point each agent will be moving at their maximum velocity. It can

be seen that as each agent is driven to the equilibrium position, short range

repulsion occurs as they interact, agreeing well with the scale separation explained

in Section 3.2.1. From Table 5.2 it can also be seen that the maximum simulated

control force during each formation is less than the maximum analytical bound

control force. A real system could therefore be designed in such a way that

actuator saturation can be avoided so that the desired patterns will form.

5.4 First Order Swarm

The new bound potential field is now demonstrated in a first order swarm system,

where 10 agents are desired to form three formation patterns; double ring, ring

and cluster, traveling at a constant final forward speed equal to 2 ms−1. A swarm

of 10 agents are considered to move in the x − y plane. The desired bound

velocity field acting in the x− y plane will be transformed into a desired heading

and velocity command, as described by Eq. 2.8 and 2.9. It will be assumed

that the maximum speed of the agents is 3 ms−1, with a maximum turning rate

and acceleration defined as 90 os−1 and 0.981 ms−2 respectively. Therefore, the

desired velocity field is as follows;

ẋdesired = −
[

Ch(ρn − r)

[(ρn − r)2 + 1]0.5
+ 2µ

Ce
Le

(ρn − r) exp−(ρn−r)2/Le

]

xn
ρn

+
∑

j,j 6=i

Cr
Lr

xij
|xij |

exp−|xij |/Lr +uc (5.18)
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ẏdesired = −
[

Ch(ρn − r)

[(ρn − r)2 + 1]0.5
+ 2µ

Ce
Le

(ρn − r) exp−(ρn−r)2/Le

]

yn
ρn

+
∑

j,j 6=i

Cr
Lr

yij
|xij|

exp−|xij |/Lr (5.19)

where, as the agents are desired to move at a constant forward speed equal to

uc, xi is replaced with xn = xi − uct and ρi with ρn = (x2n + y2i )
0.5 in the steering

potential terms.

The desired command speed (Vdesired) and heading angle (ψdesired) are therefore;

Vdesired = (ẋ2desired + ẏ2desired)
0.5 (5.20)

ψdesired = arctan

(

ẏdesired
ẋdesired

)

(5.21)

The state variables for the system are then defined as;













x1

x2

x3

x4













=













Vi

ψi

xi

yi













(5.22)

A system of first order equations of motion are then solved resulting in a com-

manded speed and heading angle that can be used to control each agent, as shown

in Eq. 5.23.













ẋ1

ẋ2

ẋ3

ẋ4













=













−λv(Vi − Vdesired) if |V̇i| ≤ V̇max

−λψ(ψi − ψdesired) if |ψ̇i| ≤ ψ̇max

Vi cos(ψi)

Vi sin(ψi)













(5.23)

where λv and λψ are inverse time constants.

In addition as there is a bound on the maximum turning rate and speed there

is turning circle associated with each agent. The radius of the turning circle

is defined in Eq. 5.24, so that if the maximum speed and turning rate are 3
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ms−1 and 90 o s−1 respectively, then the maximum turning radius, Rturning, is

approximately 1.9 m.

Rturning =
Vmax

ψ̇max
(5.24)

In order to estimate that size of the repulsive free parameters, Cr and Lr, consider

the case of 2 agents interacting through the repulsive potential only. Considering

a simple 1-dimensional system with position coordinate, X , with
dX

dt
≈ Vmax for

X >> 0. Therefore, assuming that at close separation distances the repulsive

potential only acts, the dynamics of each agent is;

dX

dt
= Vmax −

Cr
Lr

exp
−
X

Lr (5.25)

The minimum separation distance, Xmin, will therefore be estimated by setting
dX

dt
= 0 so that,

Xmin = Lr ln

(

Cr
VmaxLr

)

(5.26)

In order to ensure collision avoidance, the minimum separation distance between

the agents in the formation must be 2×Rturning = 3.8 m. The repulsive potential

constants, Cr and Lr, are therefore chosen to ensure that the minimum separation,

Xmin, is greater than this value. Each agent is given random initial conditions

in the x− y plane, random initial heading angles and an initial speed of 2 ms−1,

with Zr = 10 m. The free parameter values are summarised in Table 5.3.

Table 5.3: 1 parameter static bifurcation free parameters

formation Ch r µ Ce Le Cr Lr λv λψ

double ring 1 15 5 1 6 34 5 0.5 0.5
ring 1 25 0 - - 34 5 0.5 0.5

cluster 1 0 0 - - 34 5 0.5 0.5

From the results shown in Fig. 5.12 (i)-(iv) it can be seen that the swarm suc-

cessfully creates the desired formations, with Fig. 5.13 showing that no collisions

occur during the simulation.
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Figure 5.12: First order swarm (i) initial conditions (ii) double ring (ro = 18 m,
ri = 12 m) (iii) ring (r = 25 m) (iv) cluster (r = 20 m)
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Figure 5.13: First order swarm agent separation distance
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5.5 Advantages of Swarm System

5.5.1 Robustness of the Model

As one of the desirable characteristics of the model developed is that the swarm

of agents are robust to failures, Fig. 5.14 demonstrate this for a swarm of 30

agents.
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Figure 5.14: Robustness of the model (i) random initial conditions for 30 agents
(ii) ring formation (µ = −2, r = 10, Cr = 3, Lr = 5) (iii) failure of 10 agents (iv)
reconfiguration of the formation

As can be seen from the results the swarm successfully falls into a ring pattern

with radius 10 m. Figure 5.14 (iii) shows the random failure of 10 agents with

the assumption that once they fail they are completely removed from the system.

The system will then autonomously reconfigure to a new ring configuration, as

shown in Fig. 5.14 (iv). To further improve this, future work will consider the

case when the agents cannot be assumed to be removed or have partial failure.
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5.5.2 Scalable Formation

Another advantage of the model developed is that the system scales well as the

number of agents increase, as shown in Fig. 5.15.
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Figure 5.15: Scalable formation (i) random initial conditions for 30 agents (ii)
cluster formation, µ = −2, r = 0, Cr = 1 and Lr = 0.5 (iii) addition of 20 agents
(iv) reconfiguration of the cluster formation

As can be seen from the results the system will autonomously reconfigure with

the addition of new agents. In addition, as the swarm can be based on local

communication, the control required by each agent will not alter significantly

with the addition of more agents, allowing the swarm model to be considered

scalable.
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5.5.3 Flexible Formations

The final advantage of the model is that the swarm can be shown to avoid ob-

stacles and also alter its pattern through a simple parameter change. As an

example, consider the case when 30 agents are desired to form a cluster pattern,

autonomously manoeuver to avoid circular obstacles (represented by the obstacle

potential function shown in Eq. 2.22) and then form a ring pattern.

From the results, shown in Fig. 5.16, it can be seen that from random initial

conditions the swarm successfully forms the cluster pattern. It then approaches

the obstacles and autonomously manoeuvres to avoid them and then finally bi-

furcates to forms the desired ring pattern.

As discussed previously, the stability of the system has been investigated so that

desired patterns are achieved. Each agent moves under the influence of the long-

range steering potential with short-range collision avoidance, effectively treating

other agents in the swarm as obstacles and moving to avoid them. In the case

shown here, although there is no guarantee provided that agents will avoid the

obstacles, if the agents are able to sense other objects (either stationary or mov-

ing), they will be dominated by the repulsive collision avoidance potential created

by the obstacle until that term is negligible, assuming that they can manoeuvre

around the obstacle. Once this occurs the agents will again act under the influ-

ence of the formation dynamics and create the desired formation, as shown in

Fig. 5.16.
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Figure 5.16: Flexible formation (i) random initial conditions (ii) cluster (iii) ob-
stacle avoidance (iv) obstacle avoidance (v) ring
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5.6 Summary

This chapter has considered two ways in which the utility of the proposed swarm-

ing model can be improved. Firstly, the issue of actuator saturation was ad-

dressed, giving an example how a combined hyperbolic-exponential potential can

be used to achieve a bound bifurcating potential field. The issue of communi-

cation constraints was also addressed by assuming that the repulsive potential

can now only act in a region close to each agent. To demonstrate this both a

second and first order system were considered. Finally, the advantages of the

model were demonstrated showing that the system is robust, scalable and flexi-

ble. Future work will investigate other real world effects such as; consideration

of computational load on each agent, communication time-delays, non-holonomic

effects and robustness to partial agent failure.



Chapter 6

Spacecraft Formation Flying

This chapter considers the implementation of the proposed second order force

swarm model, as discussed inChapter 5, for spacecraft formation flying missions.

Firstly, there is a brief overview of spacecraft formation flying, describing why the

swarming model is useful. Spacecraft formation flying in both Low-Earth-Orbit

(LEO) and deep-space are considered in Sections 6.2 and 6.3 respectively. For

LEO, the swarm model is adapted considering the two-body problem, whereas for

deep-space missions the swarm of spacecraft are developed based on the three-

body problem, operating at the Sun-Earth L2 position.

6.1 Introduction

Many future spacecraft missions may consist of multiple, autonomous spacecraft

flying in formation, driven by commercial, military and scientific requirements

[55]. A distributed satellite system in LEO could be used to improve communica-

tion capabilities on Earth, with advantages such as fault tolerance as individual

spacecraft failure does not necessarily imply mission failure. In addition, there

is increased mission flexibility as the formation can autonomously reconfigure, as

well as the potential for mass production of small, identical spacecraft, reducing

manufacturing and launch costs. The challenging aspects include the develop-

ment of reliable, autonomous control laws that can ensure collision avoidance, as

well technologically meeting the requirements associated with such systems. This

may include accurate sensors required for precise determination of the state of

the system or new forms of propulsion.

113
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The field of distributed spacecraft systems can be divided into three areas; con-

stellation, cluster or leader-follower. In the constellation case, the spacecraft are

positioned relative to an object (such as the Earth), whereas a cluster formation

is positioned relative to each other. The leader-follower case considers two space-

craft, where the follower spacecraft tracks the leader, maintaining a formation.

At present there are several current and future planned SFF missions. These

missions can be split into those that will operate in LEO or deep-space. Al-

though a small number of spacecraft in LEO could be controlled separately by

a ground station on Earth, as the operational distance from the Earth increases,

spacecraft formation flying becomes a more viable option. Examples of current

LEO SFF missions include the leader-follower EO-1 and Landsat 7 mission, as

discussed in Section 1.3.2. Also, COSMIC/FORMOSAT-3, launched in 2006,

is a joint Taiwan/US science constellation mission consisting of six LEO satellites

that are used for space weather monitoring, global weather and climate change

research [130], as shown in Fig. 6.1 (i). For deep-space SFF many missions are

based around the deployment of the formation at Lagrange points, which are equi-

librium positions where the gravitational and centrifugal forces of two massive

bodies balance. Examples of future missions are DARWIN that would consist of

4 spacecraft located at the Sun-Earth L2 position, as discussed in Section 1.3.

The Terrestrial Planet Finder Interferometer (TPF-I) is an example of a cluster

formation of 4 spacecraft in a halo orbit about the Sun-Earth L2 position, that

will be used to study all aspects of planets outside of our solar system, as shown

in Fig. 6.1 (ii).

(i) (ii)

Figure 6.1: Spacecraft formation flying missions (i) COSMIC/FORMOSAT-3
constellation (NASA) (ii) TPF-I cluster (NASA)

This chapter aims to demonstrate that the swarm control model can be adapted



CHAPTER 6. SPACECRAFT FORMATION FLYING 115

to allow spacecraft formation flying in both LEO and deep-space. To demonstrate

this, linear equations of motion for both the two-body and three-body problem

are discussed, with higher fidelity models considered as part of future work.

6.2 Two Body Problem

The two-body problem is concerned with the motion of two bodies that interact

under their mutual gravitation. For a spacecraft orbiting the Earth it is assumed

that both the spacecraft and Earth can be modelled as point masses and also

perturbation forces, such as aerodynamic effects, can be ignored. Under these

assumptions, the spacecraft and Earth system is shown in Fig. 6.2.
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m1 
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r1 

r2 

Figure 6.2: Two-body problem

From Fig. 6.2, the Earth and spacecraft are defined with mass, m1 and m2 at a

position vector, r1 and r2 respectively. The inertial equations of motion of each

mass can be expressed as;

m1r̈1 =
Gm1m2

|r21|3
r21 (6.1)

m2r̈2 = −Gm1m2

|r21|3
r21 (6.2)

where, r21 = r2 − r1 is position vector of the spacecraft relative to the Earth and

G is the universal gravitational constant (6.673× 10−11m3kg−1s−2).
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A gravitational coefficient µg is defined as;

µg = G(m1 +m2) (6.3)

It will be assumed that the mass of the Earth is much greater than the spacecraft

(m1 >> m2), so that Eq. 6.4 can be approximated by;

µg ≈ Gm1 (6.4)

where, the mass of the Earth is assumed to be 5.9742× 1024 kg [131].

Taking the difference between Eq. 6.1 and 6.2, the equation of motion of m2

relative to m1 is;

r̈21 = − µg
|r21|3

r21 (6.5)

Under the assumption of a spherical Earth, initial conditions are choosen such

that a circular orbit is achieved [121], as shown in Fig. 6.3. The initial conditions

are; [xo, yo, zo]
T = [ro, 0, 0]

T and [vxo, vyo, vzo]
T = [0,

√

µg
ro
, 0]T , where ro = rearth+

rsc is the initial radius of the spacecraft from the centre of the Earth, with assumed

radius of the Earth rearth = 6371 km [121] and initial altitude rsc = 1000 km.
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Figure 6.3: Relative dynamics in an inertial coordinate frame
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6.2.1 Relative Motion Dynamics

In this section the relative dynamics of two spacecraft, in close proximity, traveling

around a spherical Earth are considered. It is assumed that the target spacecraft

is in a circular orbit around the Earth with an orbital radius Rt and orbital rate

ωe =
√

µg/R3
t . A reference frame with (x, y, z) coordinates with basis vector

(~i,~j,~k) is attached to the centre of mass of the target vehicle that orbits with an

angular velocity, ~ω = ωe ~K with respect to the inertial frame of reference [126],

as summarised in Fig. 6.4. 

Circular orbit 

Chase spacecraft 

Z 

Y 

X 

y 
z 

x 

r 

rc
 

Rt
 

Target spacecraft 

Figure 6.4: Motion of spacecraft orbiting the Earth

Assuming that there are no external forces or disturbances acting on each space-

craft and letting the position of the chase vehicle relative to the target vehicle

be r, then the motion relative to the Earth’s centre for the target and chase

spacecraft are given by Eq. 6.6 and 6.7 respectively [132];

r̈t +
µ

|rt|3
rt = 0 (6.6)

r̈c +
µ

|rc|3
rc = 0 (6.7)

where, |rt| = Rt and |rc| = [(Rt + x)2 + y2 + z2]
0.5
.
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Taking the difference between the equations of motion of the chase and target

spacecraft results in;

r̈+
µ

|rt + r|3 (rt + r)− µ

|rt|3
rt = 0 (6.8)

where, r = rc − rt.

Assuming that the orbital radius of the target spacecraft is much larger than

the relative distance between the spacecraft (|rt| >> |r|), the non-linear relative

equations of motion can be linearised to form the Clohessy-Wiltshire or Hill’s

(HCW) relative equations of motion as follows;

ẍ− 2ωeẏ − 3ω2
ex = 0 (6.9)

ÿ + 2ωeẋ = 0 (6.10)

z̈ + ω2
ez = 0 (6.11)

The closed form solutions of the HCW equations are given by Eq. 6.12-6.14 [132].

x(t) =
ẋ0
ωe

sin(ωet)−
(

3x0 +
2ẏ0
ωe

)

cos(ωet) +

(

4x0 +
2ẏ0
ωe

)

(6.12)

y(t) =
2ẋ0
ωe

cos(ωet) +

(

6x0 +
4ẏ0
ωe

)

sin(ωet)− (6ωex0 + 3ẏ0)t−
2ẋ0
ωe

+ y0 (6.13)

z(t) =
ż0
ωe

sin(ωet) + z0 cos(ωet) (6.14)

where, [xo, yo, zo]
T and [ẋo, ẏo, żo]

T are the position and velocity initial conditions

at t = 0 respectively.

From Eq. 6.13 it can be seen that the 3rd term of y(t) becomes unbound with

time, so that if the constraint 2ωex0 + ẏ0 = 0 is satisfied, it will ensure that the

chase spacecraft does not drift away from the leader. Using this constraint the

HCW admit periodic solutions given by Eq. 6.15-6.20 [133];
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x =
c1
2
sin(ωet+ αo) (6.15)

y = c1 cos(ωet+ α0) + c3 (6.16)

z = c2 sin(ωet+ β0) (6.17)

ẋ =
c1
2
ωe cos(ωet+ αo) (6.18)

ẏ = −c1ωe sin(ωet+ α0) (6.19)

ż = c2ωe cos(ωet+ β0) (6.20)

where, c1, c2, c3, c4, α0 and β0 are constant, determined from the initial conditions.

The initial conditions that satisfy Eq. 6.15-6.20 at time, t = 0, are given by Eq.

6.21-6.26;

x0 =
c1
2
sin(αo) (6.21)

y0 = c1 cos(α0) + c3 (6.22)

z0 = c2 sin(β0) (6.23)

ẋ0 =
c1
2
ωe cos(αo) (6.24)

ẏ0 = −c1ωe sin(α0) (6.25)

ż0 = c2ωe cos(β0) (6.26)

Depending upon the choice of free-parameters, c1, c2, c3, α0 and β0, a variety of

bounded relative orbits can be achieved. Orbits known as projected circular orbits
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(PCO) can be achieved by choosing c1, c2 = ρc, c3 = 0 and α0 = β0 so that the

relative orbit of the chase spacecraft in the y− z plane is circular with radius, ρc.

The initial conditions are then;

x0 =
ρc
2
sin(α0) (6.27)

y0 = ρc cos(α0) (6.28)

z0 = ρc sin(α0) (6.29)

ẋ0 =
ρc
2
ωe cos(α0) (6.30)

ẏ0 = −ρcωe sin(α0) (6.31)

ż0 = ρcωe cos(α0) (6.32)

so that,

y2 + z2 = ρ2c (6.33)

As an example, consider the case where it is desired that the chase spacecraft be

in a PCO, ρc = 1000 m in the y − z plane, about the target spacecraft orbiting

at a radius, Rt = 6671 km (300 km above the Earth’s surface). Therefore, the

initial conditions for the chase spacecraft are as follows;
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(6.34)

where, α0 = 180o.
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Figure 6.5 shows the motion of the chase spacecraft relative to the target space-

craft, with Fig. 6.6 showing the projection of the orbit onto the y − z plane.

As can be seen from the results, the chase spacecraft achieves the desired bound

circular periodic orbit in the y − z plane with radius, ρc = 1000 m.
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Figure 6.5: Motion of the chase spacecraft relative to the target spacecraft
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Figure 6.6: Motion of the chase spacecraft relative to the target spacecraft pro-
jected in y − z plane

Therefore, it has been shown that if the initial conditions of a spacecraft are

choosen to satisfy the PCO initial conditions, then a spacecraft can follow a

circular periodic orbit about a target spacecraft. The bifurcating potential field

will now be used to force a swarm of spacecraft onto a desired equally spaced

PCO from arbitrary initial conditions and then bifurcate to a different equally

spaced periodic orbit. To force the spacecraft onto a desired orbit with radius,

ρc, in the y− z plane, the following steering potential, shown in Eq. 6.35, will be

used;
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US(xi) = Cx

[

(xi −
ρc
2
)2 + 1

]0.5

+ Ch
[

(ρyz − ρc)
2 + 1

]0.5
+ µCe exp

−(ρyz−ρc)2/Le

(6.35)

where, ρyz = (y2i + z2i )
0.5.

From Eq. 6.30-6.32 it is known that the desired velocity of the spacecraft to orbit

on the PCO is a function of α0, ρc and ωe, so that if the spacecraft were to start

far from the desired PCO, a simple first order controller could be used to drive

the system to the desired velocity, with the steering potential forcing the system

to the desired orbit. The HCW equations of motion given in Eq. 6.9-6.11 are

re-cast into the swarm model, including the new forcing terms;

ẍi − 2ωeẏi − 3ω2
exi = −∂U

R

∂xi
− ∂US

∂xi
− λv (ẋi − ẋd) (6.36)

ÿi + 2ωeẋi = −∂U
R

∂yi
− ∂US

∂yi
− λv (ẏi − ẏd) (6.37)

z̈i + ω2
ezi = −∂U

R

∂zi
− ∂US

∂zi
− λv (żi − żd) (6.38)

where, ẋd =
ρc
2
ωe cos(α0), ẏd = −ρcωe sin(α0), żd = ρcωe cos(α0) and λv is an

inverse time constant determining the response of the system.

Consider a formation of 5 spacecraft that have mass 10 kg and minimum separa-

tion distance, |xij|min = 3 m, that are required to achieve three different PCOs

with radius of 5 m, 10 m and 15 m. Each spacecraft are given random initial po-

sitions (satisfying the constraint that |xij |initial > 3 m), with an initial maximum

speed of 0.1 ms−1, sensing radius, Zr = 10 m and maximum actuator force of 2 N.

To satisfy these conditions, Table 6.1 summarises the bound potential constants

used in each formation.

Table 6.1: LEO SFF bound constants

Formation µ ρc Ch Cx Ce Le Cr Lr λv

A 0 5 0.3 0.3 - - 4 0.8 10
B 0 10 0.3 0.3 - - 4 2 10
C 0 15 0.3 0.3 - - 4 3 10
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From Section 5.1, the maximum bound control force from Eq. 6.36-6.38 can be

estimated as follows;

|uS| = |∇iU
S(xi)|max =

√

(C2
x + C2

h) (6.39)

|uR| = |∇iU
R(xij)|max =

Cr
Lr

exp−|xij |min/Lr (6.40)

|ud| = |λv(ẋi − ẋd)|max = λv(|ẋ|max − |ẋd|min) = λv(|ẋ|max − ρcωe) (6.41)

The results of the simulation are shown in Fig. 6.7-6.9 indicating that the for-

mation of spacecraft can successfully create desired patterns and autonomously

reconfigure between them.
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Figure 6.7: Formation A - ρca = 5 m (i) x− y − z plane (ii) y − z plane

Figure 6.10 confirms that the desired PCO are achieved in each formation and

that collision avoidance is ensured throughout the simulation.

Figure 6.11 shows the velocity profile of each spacecraft in the x, y and z di-

rections, with the results showing that the swarm of spacecraft are successfully

driven to the desired velocity once in the equilibrium formation.
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Figure 6.8: Formation B - ρcb = 10 m (i) x− y − z plane (ii) y − z plane
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Figure 6.9: Formation C - ρcc = 15 m (i) x− y − z plane (ii) y − z plane
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Figure 6.12 shows the actuator force acting on each spacecraft. As expected the

largest force occurs at the beginning of each formation, driving each spacecraft

to the desired PCO. Once in this condition the actuator force decays to zero and

the swarm of spacecraft follows an equally spaced periodic orbit. Table 6.2 shows

that the simulated swarm actuator force is lower than the analytical bound force

satisfying the constraint that the actuator force should be less than 2 N.
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Table 6.2: LEO SFF control force

Formation Analytical |ui|max (N) Simulated |ui|max (N)

A 1.4 1.3
B 1.3 0.3
C 1.2 0.3

This section has considered the implementation of the bifurcating swarm system

in LEO orbit, taking advantage of the HCW linear, unperturbed equations of

relative motion that yield closed periodic solutions. It was shown that using the

bound bifurcating swarm potentials, that a swarm of spacecraft can be driven

safely towards a desired periodic orbit, relaxing into an equally spaced rotating

ring formation about a target spacecraft. Potential applications of these forma-

tions include simultaneous scientific data gathering that could be used to forecast

weather or make gravity field measurements, with the swarm being able to re-

configure to meet different mission requirements.

The linear, unperturbed HCW equations of motion provide a starting point to

illustrate the implementation of the swarm model for space formation flying in

LEO. There are several real world, non-linear effects that can be considered to

improve the model. For example, higher order orbital dynamics will include sig-

nificant perturbations such as the Earth gravity harmonics. The largest of these

is the second zonal harmonic J2 perturbation, which is caused by the oblateness

of the Earth [134]. Other perturbations include drag, solar radiation and the

eccentricity of the reference orbit [135, 136]. Also, there was no consideration to

the form of propulsion used and it was assumed that the spacecraft could move

instantaneously in all degrees-of-freedom. As such these effects on the SFF model

can all be viewed as part of future work.
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6.3 Three Body Problem

The three-body problem is concerned with the motion of an infinitesimal body

that interacts with the gravitational field of two massive primary bodies. In

particular, the circular restricted three-body problem (CRTBP) considers the

case when the motion of the primary bodies are constrained to circular orbits

about their common centre of mass, rotating with constant angular velocity, ω.

Figure 6.13 considers the case when the primary bodies are the Sun and the

Earth.
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Figure 6.13: Sun-Earth restricted three-body problem

Using a similar convention to that set out by Wie [126], the dynamics of a space-

craft in Sun-Earth CRTBP are shown in Eq. 6.42-6.44.

Ẍ − 2ωẎ − ω2X = −µS(X −DS)

|rS|3
− µE(X +DE)

|rE |3
(6.42)

Ÿ + 2ωẊ − ω2Y = −µSY|rS|3
− µEY

|rE|3
(6.43)

Z̈ = −µSZ|rS|3
− µEZ

|rE|3
(6.44)

where,

|rS| =
[

(X −DS)
2 + Y 2 + Z2

]0.5
(6.45)
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|rE | =
[

(X +DE)
2 + Y 2 + Z2

]0.5
(6.46)

and MS,ME are the mass of the Sun and the Earth respectively and µS = GMS,

µE = GME .

By setting all the time derivatives in Eq. 6.42-6.44 to zero, five equilibrium points

are found, know as the Lagrange or libration points, where the gravitational and

centrifugal forces of the two primary bodies balance. Euler discovered three

collinear unstable equilibrium points that lie on the X-axis (L1, L2 and L3), with

Lagrange discovering two other stable equilibrium points that form an equilateral

triangle with the primary bodies (L4 and L5) [126], as shown in Fig. 6.14.
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Figure 6.14: Libration points

The motion of spacecraft near the libration points can be accurately described

by the linearised equations of motion [131, 137, 138].

ẍ− 2ωẏ − (ω2 + 2µ2
o)x = 0 (6.47)

ÿ + 2ωẋ+ (µ2
o − ω2)y = 0 (6.48)
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z̈ + µ2
oz = 0 (6.49)

where,

µ2
o =

µE
|REL2|3

+
µS

|RSL2|3
(6.50)

and [x, y, z]T represents the position coordinate of a spacecraft relative to libra-

tion points and |REL2| and |RSL2| are the distance from the Earth and the Sun

to the Sun-Earth L2 point respectively.

Using these linearised equations of motion, a swarm of spacecraft will be desired

to form patterns about the Sun-Earth L2 point. This libration point offers a good

location to observe the Universe and is currently the home to several satellites

such as the Wilkinson Microwave Anisotropy Probe1 and Herschel2. Setting all

the time derivatives in Eq. 6.42-6.44 to zero, the Sun-Earth L2 position is located

at −1.01D m (assuming that DS = 4.54841 × 105 m, DE = 1.495891 × 1011 m,

ME = 5.9742 × 1024 m, MS = 1.981 × 1030 m [131]). It should be noted that

although the Sun-Earth L2 position was choosen any of the other libration points

could have been equally used to demonstrate spacecraft formation flying.

Consider a swarm of 10 spacecraft that are desired to form an equally spaced

ring formation, with radius, r = 25 m, in the y − z plane pointing towards the

Sun and Earth. Formation reconfiguration is particularly important in spacecraft

formation flying as it allows a change in mission type [139] and is demonstrated

by the addition of a further 5 spacecraft that are desired to form a double ring

formation with inner radius, ri = 15.5 m and outer radius, ro = 28.5 m. As it is

desirable that the formation of spacecraft can point in an arbitrary direction, the

swarm is then desired to form a ring formation with radius, r = 35 m at an angle

of φ = 45o and θ = 45o, as explained in Section 4.1.3. It will be assumed that

each spacecraft has a mass of 10 kg, sensing radius, ZR = 25 m, maximum speed,

0.1 ms−1, minimum separation distance, |xij|min = 5 m and maximum actuator

force of 0.5 N.

1http://map.gsfc.nasa.gov/, accessed 14/10/09
2sci.esa.int/herschel/, accessed 14/10/09
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To satisfy these constraints, Table 6.3 summarises the parameters choosen for

each formation.

Table 6.3: Deep-space SFF bound constants

Formation µ r Ch Ce Le Cz Cr Lr σ

A 0 25 0.03 - - 0.03 3 2 1
B 3 22 0.03 0.2 15 0.03 3 2 1
C 0 35 0.02 - - 0.02 3 2 1.5

For formation A the spacecraft are given random initial conditions, satisfying the

constraint that |xij |initial > 5 m, with an initial speed of 0.1 ms−1. For formation

B, the five additional spacecraft are desired to form the inner ring with radius,

ri = 15.5 m. Their initial conditions are chosen randomly within the bound of

−r < yi, zi < r and constraint |xij|initial > 5 m, with an initial speed of 0.1 ms−1.

The initial conditions for formation C are the final conditions of formation B.

The results of the simulation are shown in Fig. 6.15, indicating that the spacecraft

formation successfully creates a ring, double ring and orientated ring formation

as desired.

In addition, Fig. 6.16 shows that the spacecraft are driven to the desired radius

for each formation, with 6.17 showing that they achieve this without colliding.
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Figure 6.18 shows the actuator force acting on each spacecraft during each for-

mation. Table 6.4 shows a comparison between the maximum analytical control

force and the maximum simulated control force, indicating that actuator satura-

tion can be avoided, satisfying the constraint that the maximum actuator force

be less than 0.5 N. Figure 6.18 indicates that as the spacecraft are driven towards

their desired formation, collision avoidance occurs, again agreeing well with the

scale-separation assumption made in Section 3.2.1.

Table 6.4: Deep-space SFF control force

Formation Analytical |ui|max (N) Simulated |ui|max (N)

A 0.17 0.14
B 0.23 0.13
C 0.2 0.03

From the results it can be seen that the swarm of spacecraft can successful form

the desired patterns at the Sun-Earth L2 position based on the linearised equa-

tions of motion. As the distance of the spacecraft from the Sun-Earth L2 position

was small in comparison with the distances between L2 and the Earth and Sun,

the linearised equations are valid under the assumptions made regarding the

CRTBP.

To further improve the model perturbations at the Sun-Earth L2 position can

be considered. For example, lunar and other planetary perturbations can be

included, as well as considering the effects of solar radiation pressure. In addition,

the CRTBP can be altered to consider the elliptical motion of the Sun and Earth

about their barycenter. Similarly with LEO SFF, there was no consideration

to the form of propulsion and it was assumed that the spacecraft could move

instantaneously in all degrees-of-freedom. As such these effects on the SFF model

can all be viewed as part of future work.
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6.4 Summary

This chapter has demonstrated SFF using the proposed swarm model. Firstly,

SFF in LEO was considered with the orbital dynamics of the spacecraft modelled

using HCW relative linearised equations of motions. Under the assumption of

a spherical Earth and neglecting perturbations in the two-body problem, it was

shown that the swarm model could be used to drive a formation of spacecraft

safely onto an equally spaced relative PCO about a target spacecraft. It was

also shown that the formation could autonomously reconfigure, through a sim-

ple parameter change, to a new PCO satisfying constraints associated with each

spacecraft. Deep-space SFF was then considered at the Sun-Earth L2 position.

Under the assumption that the Sun and Earth rotate about their barycenter in a

circular orbit, the linearised CRTBP equations of motion where used to model the

orbital dynamics of the spacecraft at L2. The swarm model was then used to form

three different formations again demonstrating pattern formation and reconfig-

urability. As part of future work, these models can both be improved by including

higher order effects, as well as considering practical constraints associated with

the spacecraft.



Chapter 7

Unmanned Aerial Vehicles

This chapter considers the implementation of the first order velocity field swarm

model, as discussed on Chapter 5, in a linearised 6 DOF guidance and control

model for a formation of 3 UAVs. Through the control of forward speed and roll,

pitch and yaw angles, it is shown that 3 UAVs can safely form three triangular

patterns, whilst satisfying the saturation limits of the UAV control surfaces.

7.1 Introduction

As well as many future spacecraft missions consisting of multiple spacecraft, the

near future may also see the deployment of swarms of UAVs, again driven by

commercial, military and scientific requirements [37]. For distributed sensing

missions, that may be repetitive or dangerous, this is particulary suitable as the

swarm is autonomous. In addition, it has been shown that by flying multiple

UAVs in formation, fuel consumption can be reduced by a reduction in induced

drag [140].

In the dynamic modelling of UAVs, the equations of motion can take five different

forms; (i) non-linear fully coupled, (ii) non-linear semi-coupled, (iii) non-linear

decoupled, (iv) linear coupled and (v) linear decoupled. Each of these models

has advantages and disadvantages, such as precision, accuracy, complexity and

credibility [141]. As the purpose of this chapter is to demonstrate that the swarm

model can be applied to a formation of UAVs, the linear decoupled equations of

motion are considered, with higher order models viewed as part of future work.

138



CHAPTER 7. UNMANNED AERIAL VEHICLES 139

The block diagram of the guidance and control system for a formation of UAVs

is shown in Fig. 7.1. For the guidance system, the first order swarm control

discussed in Section 5.4 is used. As 6 DOF linear decoupled equations of motion

are considered, a robust linear time-invariant control system is used to ensure that

the system can follow the guidance algorithm, assuming that the UAV roll (φ),

pitch (θ) and yaw (ψ) angles can be measured, as well as the UAV forward speed

(u) and position (x, y, z)T .
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Figure 7.1: UAV control block diagram

7.2 UAV Dynamics

To simulate each UAV, the linear decoupled equations of motion that describe

small deviations from constant speed, straight and level flight, can be split into

two uncoupled sets of longitudinal and lateral directions, as shown in Eq. 7.1 and

7.2 respectively [141].
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+


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where, (u, v, w)T represent the forward, side and vertical velocity, (φ, θ, ψ)T repre-

sent the roll, pitch and yaw angle, (p, q, r)T represent the roll, pitch and yaw rate

respectively and (δa, δr, δe, δt)
T represent the aileron, rudder, elevator deflection

and thrust offset, as shown in Fig. 7.2. All of these state variables represent the

deviation from the trim flight conditions. 
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Figure 7.2: UAV state variable definition

The UAV model is based on a low-speed fixed wing UAV, that has a steady

forward speed, u0 = 12.5 ms−1, mass of 430 g and 1 m wingspan. The stability

derivatives for both longitudinal and lateral motion are summarised in Table 7.1

and 7.2 [142].
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Table 7.1: Longitudinal linearised stability derivatives

Xu [s−1] −0.13
Xw [s−1] 0.14
Zu [s−1] −3.17
Zw [s−1] −13.06
zq [ms−1] −1.37
uo [m−1s−1] 12.5
Mu [ms−1] −1.95
Mw [m−1s−1] −17.41
Mq [s−1] −21.86
Xδe [ms−2] 0
Xδt [kg−1] 2.32
Zδe [ms−2] −7.73
Zδt [kg−1] 0
Mδe [s−2] −205.25
Mδt [s−2] 0
θo [rad] -0.0078

Table 7.2: Lateral linearised stability derivatives

Yv [s−1] −0.68
Yp [ms−1] −0.11
Yr [ms−1] −12.20
Lv [m−1s−1] −32.17
Lp [s−1] −56.38
Lr [s−1] 19.30
Nv [m−1s−1] 7.89
Np [s−1] −3.13
Nr [s−1] −4.00
Yδa [ms−2] −3.34
Yδr [kg−2] 22.99
Lδa [s−2] −26.88
Lδr [s−2] −6.80
Nδa [s−2] 58.54
Nδr [s−2] −226.79
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7.3 UAV Guidance and Control

The guidance algorithm for the UAVs is based on the first order swarm model

described by Eq. 5.18 and 5.19. From this model, the desired forward speed, ud,

and desired yaw angle, ψd, can be calculated, as shown in Eq. 7.3 and 7.4.

ud = (ẋ2desired + ẏ2desired)
0.5 (7.3)

ψd = arctan

(

ẏdesired
ẋdesired

)

(7.4)

To control the UAVs and achieve straight and level flight, a robust controller for

a linear time-invariant multi-variable system is used [143], as shown in Fig. 7.3.

1
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K
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+ + +

- -

d yxr x
+

Figure 7.3: Block diagram of robust linear time-invariant multi-variable control
system

Both the longitudinal and lateral linearised equations of motion can be expressed

in the state space form as;

ẋ = Ax +Bu (7.5)

y = Cx (7.6)

where, xlongitudinal = [u, w, q, θ]T , xlateral = [v, p, r, φ, ψ]T are the state variables of

the system, ulongitudinal = [δe, δt]
T , ulateral = [δa, δr]

T are the inputs and y is the

output of the system.

The error, e in the system is defined as;

e = y− rd (7.7)
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where, rd is the desired state of the system.

From Eq. 7.5, it is known that;

d

dt
ẋ = Aẋ +Bu̇ (7.8)

and assuming that ṙd = 0, then;

d

dt
e = Cẋ (7.9)

Combining Eq. 7.8 and 7.9 results in;

d

dt

[

ẋ(t)

e(t)

]

=

[

A 0

C 0

][

ẋ(t)

e(t)

]

+

[

B

0

]

u̇(t) (7.10)

To ensure the controllability of the system, the rank of the following matrix should

be considered [144];

rank

[

A B

C 0

]

= n+ p (7.11)

where, n is the order of the A matrix and p is the order of the C matrix.

Accordingly, it is found that only two state variables for both the longitudinal

and lateral equations of motion can be controlled. Therefore, controlling both

forward speed and attitude and meeting the requirements of guidance algorithm,

u and θ are choosen for longitudinal motion control, with φ and ψ choosen for

lateral motion control.

The input, u, for both longitudinal and lateral motions of the controller is;

u(t) = −K1x(t)−K2

∫ t

0

e(t)dt (7.12)

where, K1 and K2 are feedback gains of the controller, selected using the pole

placement method.
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7.4 Formation of UAVs

Using the guidance and control system discussed in Section 7.3, a formation of

3 UAVs are desired to travel at three different equally spaced triangular patterns,

traveling at constant forward speed of 12.5 ms−1, at constant altitude.

From the guidance algorithm, ud and ψd are calculated, with θd = 0o and φd = 0o

in order to achieve fixed attitude flight. It is assumed that each UAV has a

maximum turning rate of 30 os−1 and forward speed of 15 ms−1. From Eq. 5.24

it is known that the turning circle associated with each UAV is approximately

29 m, so that the system should be designed such that the minimum separation

distance between UAVs is 58 m. To satisfy these constraints Table 7.3 summarises

the free parameters and random initial conditions (ensuring |xij |initial > 58 m)

for each UAV, with ZR = 125 m.

Table 7.3: Static bifurcation free parameters

time (s) µ r Cr Lr Ch xinitial (m) yinitial (m)

0-1000 0 50 335 40 0.2 -50 15
1000-2000 0 70 335 40 0.2 0 -60
2000-3000 0 50 335 40 0.2 30 70

The results of the simulation are shown in Fig. 7.4-7.14. Figures 7.4 and 7.5

show the UAVs flight path and patterns, indicating that the UAVs can safely

form three equally spaced triangular patterns. Figures 7.6-7.9 show a comparison

between the desired and actual controlled variables about the trim condition. It

can be seen from Fig. 7.6 and 7.7 that each UAV can follow the desired speed

and yaw angle provided by the guidance algorithm, traveling at constant speed

of 12.5 ms−1, with ψ = 0o once in equilibrium.

In addition, Fig. 7.8 and 7.9 show that the UAVs achieve level flight, with both

φ and θ changing as the guidance commands change, again reaching the desired

value once in equilibrium. Although only 4 state variables are controlled, Fig.

7.10 and 7.11 confirm that the side and vertical velocity, as well as the angular

rates are zero once in the final equilibrium state.

The saturation limits of the aircraft control surfaces are δe ± 0.35 rad, δa, δr =
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±0.79 rad and thrust −0.35 < δt < 5.45 N. Figures 7.12-7.14 confirm that the

system can operate within these limits, with no collisions.
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Figure 7.10: UAV angular rate about trim (i) UAV A (ii) UAV B (iii) UAV C
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Figure 7.11: UAV side and vertical speed about trim (i) UAV A (ii) UAV B (iii)
UAV C
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Figure 7.12: UAV elevator, aileron and rudder inputs about trim (i) UAV A (ii)
UAV B (iii) UAV C
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Figure 7.14: UAV separation distance

Therefore, from the results shown it can be seen that a formation of UAVs can

safely form different patterns, satisfying the assumptions made regarding the

model. To further improve the model, higher order models of the UAV dynamics

can be considered. In addition, when simulating the UAV system all aspects of

the UAV dynamics could be considered. This may include the UAV structure,

propulsion system, sensors and consideration of the atmospheric flight conditions

[141]. For example, an important perturbation when dealing with small UAVs is

to consider the effect of wind on the system. All of these improvements can be

considered as part of future work.
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7.5 Summary

This chapter has considered the implementation of the first order swarm model

in a guidance and control model of a formation of 3 UAVs. A 6 DOF simulation,

based on the linear decoupled equations of motion, was developed considering the

trim conditions of a real UAV, traveling in straight and level flight, with forward

speed of 12.5 ms−1. Using a robust linear time-invariant controller it was shown

that by using state feedback of forward speed and roll, pitch and yaw angles, a

formation of 3 UAVs can safely form 3 triangular patterns.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis has addressed the following areas of work;

1. Development of new methodologies for verifiable swarming systems, replac-

ing traditional heuristic methods with a more rigorous analytical approach.

2. Investigation of two areas of generic swarming systems; pattern formation

and reconfigurability.

3. Implementation of these methodologies in engineering systems.

Firstly, Chapter 1 provided an overview of swarming systems, highlighting that

many future engineering systems may consist of multiple, mobile autonomous

agents, that must operate in a coordinated and safe manner. The advantages of

such systems are the potential for system robustness, scalability and increased

flexibility. They are desirable, from an engineering point of view, as engineers are

often driven by the need to solve problems in new and efficient ways. Much of the

research into swarming is motivated by the swarm intelligence paradigm, and as

such there are a wide variety of methods to control a swarm system, such as the

APF method. This approach was identified as the control method of choice as it

allows for a simple, verifiable approach to swarming systems. In addition, as the

APF is based on dynamical systems theory, there are an array of tools that can

be utilised to develop new ways in which to approach swarming.

155
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In Chapter 2, concepts from dynamical systems theory used in this thesis were

discussed. Firstly, the APF methodology was considered, showing that it can

be applied to both first order velocity field and second order force controllers.

The advantage of using the APF method is that the stability of the system can

be proven analytically, therefore addressing the first aim of the work, so that

traditional heuristic methods can be replaced with a more analytical approach.

Using Lyapunov stability theory, the stability of a non-linear system can be in-

vestigated. Lyapunov’s second method allows the determination of the stability

of the system without requiring a solution, with Lyapunov’s indirect method in-

vestigating the local stability of the system through linearisation techniques. To

allow reconfigurability in the swarm model, bifurcation theory was discussed, de-

scribing ways in which the artificial potential field can be manipulated through a

simple parameter change. Both static and dynamic bifurcations were considered

allowing a transition between both fixed point and periodic attractors.

The main contribution to knowledge presented in this thesis was discussed in

Chapters 3 and 4 and can be summarised in the following statement;

Through the new approach of bifurcating APFs, a verifiable swarm-

ing system will self-organise, capable of creating reconfigurable, au-

tonomous patterns.

The swarm model for both first and second order systems was introduced in

Chapter 3, consisting of a steering and repulsive potential. The steering poten-

tial, based bifurcating APFs, was used to control the swarm, with the repulsive

potential ensuring collision avoidance between agents. Before considering this

model further, a pair-wise potential field was discussed, identifying useful prop-

erties of a swarm system. The stability of the swarm model was then considered,

showing that there exists a scale separation between the steering and repulsive

potentials, such that each agent in the swarm moves under the influence of a long-

range steering potential, but with short range collision avoidance. This allows for

collisions to be treated separately in the Lyapunov stability analysis, with both

Lyapunov’s second and indirect method being used to show that the behaviour

of the swarm system is verifiable.

To address aim 2, Chapter 4 considers pattern formation and reconfigurabil-

ity. It was shown that a swarm of agents can be attracted to different states
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depending on the form of the potential. Pattern formation using the bifurcation

potentials, discussed in Chapter 2, was then demonstrated, indicating that a

variety of different patterns can be achieved. For example, the static pitchfork

bifurcation can lead to ring, line or cluster patterns. It was also shown that

the dynamic Hopf bifurcation can lead to rotating ring and cluster patterns. In

addition to the bifurcation potential patterns, other potentials were developed al-

lowing for patterns such as a swarm grid and multiple ring configurations. It was

also shown that the patterns can be arbitrarily orientated through a coordinate

transformation. Reconfigurability using the bifurcating potential field was then

demonstrated for both the static and dynamic bifurcations, showing that through

a simple parameter change, the swarm model can autonomously reconfigure.

In Chapter 1 swarm robotics was identified as one of the major research fields

investigating swarming. The key issues to consider in the development of real

swarms of robots are; how can the control laws be developed such that the safety

of the system is ensured and how can real practical and technological constraints

be overcome? Using the bifurcating APF, Chapter 5 considers two approaches

to these issues. Firstly, to assure stability for real, safety critical systems it is

important to consider actuator saturation. Using the pitchfork bifurcating po-

tential as an example, it is known that the control force from this potential is

unbound as distance from the origin increases. To overcome this, a hyperbolic-

exponential bifurcating potential was developed, allowing for a bound steering

potential, therefore overcoming the issue of actuator saturation. The second real

world consideration is that of communication. The assumption that all agents

have global knowledge of all other agents is unrealistic as the number of agents

increases, so the repulsive potential was altered such that it only acts in a region

surrounding each agent. These considerations were demonstrated in both first

and second order swarm examples, with the final section of the chapter illustrat-

ing that the swarm model can be robust to individual failure, scalable and flexible

to obstacles.

The final objective of the work was to demonstrate the swarm model in engi-

neering systems. In Chapter 1, SFF and UAVs were identified as two swarm

robot applications. Chapters 6 and 7 consider these applications with use of

the second order force and first order velocity field methods for SFF and UAVs
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respectively.

SFF missions are desirable as they can improve mission capabilities, as well as

being more fault tolerant in comparison to single spacecraft missions. Chap-

ter 6 considers SFF in LEO and in deep space. Taking advantage of linear,

unperturbed equations of relative motion that yield closed periodic solutions in

LEO, it was shown that a formation of spacecraft can form an equally spaced

rotating ring pattern about a target spacecraft. Using the new bound bifurcating

potentials and communication constraints, it was also shown that the formation

can reconfigure to a new bound equally spaced periodic orbit, satisfying assump-

tions made regarding the actuators. The second example considers a formation

of spacecraft in deep-space. Using the circular restricted three-body problem, it

was shown that SFF can be achieved at the Sun-Earth L2 position. Using the

linearised equations of motion at L2, and assuming that the distance from L2 is

small, a formation of spacecraft were shown to form several different patterns,

that could be used to meet different mission requirements.

For swarms of UAVs, Chapter 7 develops a guidance and control algorithm for

3 UAVs, based on the linearised 6 DOF equations of motion of a real UAV about

straight and level flight. Using a robust linear time-invariant controller it was

shown that by using state feedback of forward speed and roll, pitch and yaw

angles, a formation of 3 UAVs can safely form 3 triangular patterns.

8.2 Future Work

The work presented in this thesis has addressed the objectives stated in Chapter

1, developing a new verifiable swarming model, allowing for pattern formation

and reconfigurability. Although the work addressed the objectives, there is scope

to expand and further improve the research in the following ways;

• In Chapters 3 and 4 bifurcation theory was discussed, showing that a

swarm of agents could bifurcate from a single pattern and double pattern.

It was noted that balance between agents during the split is largely un-

controlled, so as part of future work it would be interesting to investigate

analytically the probability of the split and its sensitivity to initial condi-

tions.
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• It was also shown analytically that each agent would be driven to desired

equilibrium positions, however, there was no discussion on how long this

would take. In the development of real engineered systems this will be very

important and can therefore also be considered as part of future work.

• In Chapter 5 two real world effects were considered. There are, of course,

many other real world effects that could be taken into consideration to

further improve the model. For example, in mobile robots an important

consideration is non-holonomic effects. Other effects would be to consider

sensor and actuator inaccuracy in the model, consideration of computa-

tional load on each agent, communication time-delays and robustness to

partial agent failure.

• These real world effects all have an influence on the stability of the system.

Chapter 5 considered the implementation of a limited sensing region, al-

though no analytical proof was provided that the stability of the system can

be assured. Future work could therefore consider this further, considering

similar work carried out using a graph theory approach.

• Both the LEO and deep-space SFF flying models illustrated simple ways in

which the swarm formation could be applied to space applications. As such,

the linearised equations of motion in the two and three-body problems were

considered. This could be extended by considering higher order models on

the effects of the swarm formation, as well as considering other dynamic

complexities of the formation. For example, no consideration was given to

the specific form of propulsion. In deep-space missions, it may be desirable

to have a form of propulsion that will allow the mission to operate for an

indefinite duration. In this case the swarm model could be adapted to

consider the effect of using solar sails as the form of propulsion.

• For swarms of UAVs, the full non-linear equations of motion should be

considered to increase the fidelity of the model. In addition, the aircraft

structure, propulsion system and avionics could be included in the modeling.

For small UAVs, an important perturbation to consider is wind, so the

development of a controller to account for this could be carried out.

• Investigation of other areas of generic swarming systems; for example, sin-

gle robot path planning has been studied extensively, although there has



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 160

been little work been carried out on swarm path planning. Other areas in-

clude swarm avoidance of arbitrary shaped obstacles, avoidance of moving

obstacles, optimal swarm path planning and swarm foraging.

• The swarm considered in this thesis was homogeneous. In order to meet dif-

ferent system requirements it would be interesting to consider heterogeneous

swarms. Swarms could therefore meet different engineering requirements,

although still operate together and ensure collision avoidance.

• Other areas of dynamical systems theory could be investigated; for example,

complexity theory is a new, rapidly growing scientific field that could be

used to investigate the control of a very large number of agents. Scale-free

networks, for example, have been suggested as a way of maximising the

effectiveness of controlling a large group of interacting components [145].

• The end goal would be to implement the swarm model in a formation of

real robots. By validating the swarm theory in one application, such as

UAVs, it allows for a starting point in the justification for more ambitious

applications, such as SFF.

It is clear that there is large scope for future work. The end goal is to develop

swarms of robots that can be used to solve engineering problems in new and

efficient ways. Figure 8.1 summarises these aims with a possible future space

exploration mission. By developing the technology required to achieve swarming,

swarms of spacecraft, robots and UAVs could all work together in the not so

distant future.

Figure 8.1: Future swarm system (JPL, CALTECH)
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