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Abstract

We use lubrication theory to analyse the steady flow of thin ridges, rivulets and

rings of fluid and, in particular, we study the behaviour when the fluid is in

the presence of an external airflow. Firstly, a thin ridge on an inclined planar

substrate subject to a spatially varying pressure gradient due to an external airflow

is considered. The effect of increasing the strength of the external airflow, and of

increasing the inclination of the substrate to the horizontal, on a ridge of prescribed

constant volume is investigated, and we identify and quantify the conditions for

the ridge to de-pin at one or both of its contact lines. Secondly, we describe the

possible pinning and subsequent de-pinning of a thin rivulet with constant non-

zero contact angle as well as the possible de-pinning and subsequent re-pinning

of a thin rivulet with constant width as they flow with prescribed volume flux in

the azimuthal direction from the top to the bottom of a large horizontal cylinder.

Thirdly, this problem is extended to include the effects of a prescribed uniform

azimuthal surface shear stress arising from an external airflow in the direction

opposing gravity. Lastly, we consider a thin ring of fluid with constant width

and constant mass that flows in the azimuthal direction all the way round a large

horizontal cylinder (a “full ring” of fluid) subject to a prescribed uniform azimuthal

surface shear stress due to an external airflow. In particular, there is a maximum

mass of fluid above which no full-ring solution exists, and we show that backflow

near the cylinder surface is possible.
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β = β̄ at a = ā . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
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3.5.2 ā > π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.5.3 Rivulet Profiles . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.5.4 Mass of Fluid on the Cylinder . . . . . . . . . . . . . . . . . 135

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4 Rivulet flow round a horizontal cylinder subject to a uniform

surface shear stress 142

4.1 Unidirectional Flow on a Planar Substrate . . . . . . . . . . . . . . 143

4.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 143

4.1.2 The General Case of Non-Zero Contact Angle β > 0 . . . . . 145

4.1.3 The Special Case of Zero Contact Angle β = 0 . . . . . . . . 148

4.1.4 Cross-Sectional Flow Patterns . . . . . . . . . . . . . . . . . 148

4.2 Locally Unidirectional Flow Round a Horizontal Cylinder . . . . . . 149

4.3 A Rivulet with Constant Non-Zero Contact Angle β = β̄ > 0 . . . . 153

4.3.1 Free Surface Profiles . . . . . . . . . . . . . . . . . . . . . . 157

4.3.2 The Limit of Weak Shear (τ → 0−) . . . . . . . . . . . . . . 159

4.3.3 The Limit of Strong Shear (τ → −∞) . . . . . . . . . . . . 160

4.3.4 The Limit of Small Flux (Q̄→ 0+) . . . . . . . . . . . . . . 160

4.3.5 The Limit of Large Flux (Q̄→ ∞) . . . . . . . . . . . . . . 161

4.4 A Rivulet with Constant Semi-Width a = ā . . . . . . . . . . . . . 161
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Chapter 1

Introduction

1.1 Overview of Thin-Film Flow

Thin-film flow occurs in a wide range of settings in nature, science and industry.

In the human body, for example, synovial fluid in the knee joint, peritoneal fluid

in the abdomen, and tear films in the eyes all act as lubricant to keep moving

parts apart, reduce friction, and protect against wear of joints and organs. On a

larger scale, geophysical flows such as lava flowing from a volcano, an avalanche

of snow, and water flowing down a mountain are “thin” in the sense that the

typical thickness of the flow is much smaller than its typical length. In the motor

industry, vehicles use thin fluid films to lubricate many component parts including

the engine, brakes and gears, while in the food industry, coatings and glazes are

applied to foods to improve appearance, to add nutritional value, to preserve

against mould, or simply to improve the taste of a foodstuff (Figure 1.1(a)). In

medicine, ointments and moisturisers are applied thinly to the skin to protect it

from becoming dry through contact with the air or simply to “lock in” moisture

after bathing (Figure 1.1(b)), while steroid creams are used in the treatment of

skin complaints such as eczema to reduce itching and inflammation. In many

1
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(a) (b)

Figure 1.1: (a) A cake glazed with chocolate sauce. Picture courtesy of su-lin / Foter.com / CC BY-NC-ND. (b)

Ointment to be applied as a thin layer to skin. Picture courtesy of shauncampbell / Foter.com / CC BY.

cases, to optimise performance it is important to understand exactly how a film of

fluid behaves. For example, when paint is applied to a surface it is preferable that

the paint does not sag when drying, so that it coats the surface evenly. In heat

exchangers, condensers and evaporators it can be important to have continuous

films of fluid with no dry patches to prevent thermal stresses which could have

an adverse effect on the performance or lifespan of certain components. In spin-

coating processes, excess fluid is applied to a surface which is then rotated at high

speed (see, for example, Schwartz and Roy [83]). The rotation results in the fluid

spreading along the surface (see, for example, Wilson, Hunt and Duffy [112]) such

that an even coating of paint or protective material is obtained. No contact with

the surface is required during spin coating which is advantageous when trying to

prevent surface heterogeneities.

More specifically, there are many situations in which a thin film or droplet

of fluid is subject to an external airflow. When a car is driving quickly enough

during rainfall, drops of rainwater can be seen flowing up the windscreen or along

the side windows because of the air flowing over and around the vehicle (Figure

1.2(a)). During flight, moisture in the air can accumulate and freeze on the wings

of aircraft which can affect the flow of air passing around the aerofoil causing a
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(a) (b)

Figure 1.2: (a) Rainwater on the windscreen of a moving car. Picture courtesy of Prof. S. K. Wilson. (b) The

Erasmus bridge in Rotterdam. Picture courtesy of Wouter van Doorn / Foter.com / CC BY-NC-ND.

loss of lift or control (see, for example, Myers and Charpin [62]).

An intriguing situation in which a thin rivulet of fluid (that is, a narrow stream

of fluid) interacts with an external airflow is in so-called Rain–Wind-Induced Vi-

brations (RWIV) of the cables of cable-stayed bridges (such as, for example, the

Erasmus bridge in Rotterdam, shown in Figure 1.2(b)). In specific conditions of

moderate wind and rain, the thin rivulets of water that form on the cable surface

are seen as crucial to the existence of substantial vibrations observed in the cables.

These vibrations can cause damage to the bridge deck and decrease the lifespan

of the cables and, although still not fully understood despite considerable research

(see, for example, Robertson et al. [78] and Leimatre, de Langre and Hémon [46]),

it is thought that the fluid on the cable alters the surrounding airflow, and therefore

the forces acting on it, resulting in RWIV.

Another area of industrial interest is that of the removal of droplets of fluid from

silicon wafers during certain processes in the production of microchips. To improve

resolution during the printing process, immersion technology is used, which means

that there is a thin layer of fluid between the wafer and the lens through which

ultraviolet light shines to create circuit patterns on the wafer. Some of this fluid

is left as droplets on the surface of the wafer because of the high speed at which

the lens scans over the wafer, causing imperfections to the final microchip if left
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there. One solution is to use a jet of air to remove the droplets from the surface;

this was the focus of a workshop that I attended in Leiden, The Netherlands in

October 2010 (see van Bokhoven et al. [100]).

Reviews of modelling thin-film flows using the so-called lubrication approxi-

mation, or thin-film approximation, and discussion about their applications, are

provided by Oron, Davis and Bankoff [71], Myers [61], O’Brien and Schwartz [70]

and Craster and Matar [14]. In the next Section we show how the inherent slen-

derness of a thin film is exploited to simplify greatly the governing mathematical

equations describing fluid flow, thus allowing the prospect of at least some analyt-

ical progress when studying problems of this type.
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1.2 Derivation of the Lubrication Approximation

A Newtonian fluid is one where its stress–rate-of-strain relationship is linear such

that (see, for example, Acheson [1])

T = −pI + 2µe, (1.1)

where T is the Cauchy stress tensor, p is the fluid pressure, µ is the fluid viscosity

and

e =
1

2

(

∇u + (∇u)T
)

(1.2)

is the rate-of-strain tensor, where u is the velocity field in the fluid and ∇ is the

usual vector differential operator. The flow of an incompressible, Newtonian fluid

(that is, one which satisfies Newton’s second law and equation (1.1)) is described

by the well-known Navier–Stokes equation

ρ (ut + u · ∇u) = −∇p + ρf + µ∇2u, (1.3)

where ρ is the constant fluid density, t is time and f is any body forces acting on

the fluid (e.g. gravity), and the mass-conservation equation

∇ · u = 0, (1.4)

which are to be solved for u and p.

At the boundary between a fluid and a solid, the tangential component of

velocity satisfies the no-slip condition

u · t− U · t = 0, (1.5)

where t is a unit vector tangent to the boundary and U is the velocity of the solid,

while the normal component of velocity satisfies the no-penetration condition

u · n− U · n = 0, (1.6)
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where n is the unit vector normal to the boundary. Together, (1.5) and (1.6)

mean that the velocity of the fluid and the velocity of the solid are equal at the

boundary, that is

u = U on the boundary. (1.7)

Note that it is possible to incorporate slip conditions or flow through a solid bound-

ary (e.g. for a porous material) into the model; however, this is not considered here.

At the boundary between two fluids (denoted by “1” and “2”), the stress-

balance equation is given by (see, for example, Acheson [1])

[

T · n
]2

1
= σn (∇ · n) −∇σ, (1.8)

where σ is the surface tension of the boundary and [·]21 denotes a change across

the boundary. In the special case of constant surface tension, the normal and

tangential stress balances are therefore given by

[

n · T · n
]2

1
= σ∇ · n, (1.9)

[

n · T · t
]2

1
= 0, (1.10)

respectively.

The equations (1.3) and (1.4) are a pair of nonlinear, coupled partial differential

equations which, in general, have to be solved numerically. However, when the flow

is slender, these equations may be greatly simplified to permit the possibility of at

least some analytical progress. Flows in this geometry are described by so-called

lubrication theory. In particular, the flow domain is long and thin if the aspect

ratio

ǫ =
H

L
≪ 1 (1.11)

is small, where H and L are typical length scales in the direction transverse and

longitudinal to that in which the fluid predominantly flows, respectively. We will
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illustrate this simplification by considering the simple problem of gravity-driven

two-dimensional film flow on an inclined planar substrate.

Consider a two-dimensional thin film of fluid on a substrate inclined at an

angle α to the horizontal, with free surface h = h(x, t), constant density ρ and

viscosity µ, where t is time, and refer to Cartesian coordinates Oxy with the x

and y directions taken to be the longitudinal (i.e. parallel to the substrate) and

transverse (i.e. normal to the substrate) directions, respectively. The velocity

and pressure of the fluid are denoted by u = (u, v) = (u(x, y, t), v(x, y, t)) and

p = p(x, y, t), respectively. From (1.11) we note that H = ǫL and introduce the

following non-dimensional variables:

x = Lx∗, y = ǫLy∗, h = ǫLh∗, t =
L

U
t∗,

u = Uu∗, v = ǫUv∗, p− p∞ =
µU

ǫ2L
p∗, T =

µU

L
T∗,

(1.12)

where U = ǫ2ρgL2/µ is a characteristic velocity in the longitudinal direction, p∞

is the ambient pressure and g is the acceleration due to gravity. For clarity, we

immediately drop the star subscripts, then (1.3) and (1.4) become

ǫ2Re (ut + uux + vuy) = −px + sinα + ǫ2uxx + uyy, (1.13)

ǫ4Re (vt + uvx + vvy) = −py − cosα + ǫ2
(

ǫ2vxx + vyy

)

, (1.14)

ux + vy = 0, (1.15)

where Re = ρUL/µ is the well-known Reynolds number. To obtain the governing

equations for the two-dimensional thin film we assume that the so-called reduced

Reynolds number defined by Re∗ = ǫ2Re ≪ 1 is small so that at leading order

(1.13)–(1.15) reduce to

0 = −px + sinα + uyy, 0 = −py − cosα, ux + vy = 0. (1.16)

Note that these equations are often referred to as the lubrication equations. At the

stationary boundary y = 0 the conditions of no slip and of no penetration given
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by (1.5) and (1.6), respectively, are simply

u = v = 0. (1.17)

At the free surface y = h(x, t) the unit normal vector and unit tangent vector are

given by

n =
(−ǫh′, 1)

(1 + ǫ2h′2)1/2
, t =

(1, ǫh′)

(1 + ǫ2h′2)1/2
, (1.18)

respectively, where a dash denotes differentiation with respect to x, and which

gives the quantities

n ·T · n =
1

1 + ǫ2h′2

(

− p

ǫ2
+ h′2p− 2uyh

′ + 2vy + ǫ2
(

2uxh
′ − 2vxh

′2)
)

,

n · T · t =
1

1 + ǫ2h′2

(uy

ǫ
+ ǫ
(

vx − 2uxh
′ + 2vxh

′ − uyh
′2)− ǫ3vx

)

,

∇ · n = − ǫh′′

(1 + ǫ2h′2)1/2
.

(1.19)

Hence, from (1.9), (1.10) and (1.19) the normal and tangential stress balances at

leading order in the limit ǫ→ 0 are given by

[−p]21 = −C−1h′′, (1.20)

uy = 0, (1.21)

respectively, where C = µU/ǫ3σ is the well-known capillary number. We choose

C = O(1) (that is, ǫ = O(µU/σ)1/3) so that the terms balance in (1.20); this is

appropriate for the problems we will consider but, of course, need not be the case

in all situations.

The so-called kinematic condition is given by D(h−y)/Dt = 0, where D/Dt =

∂/∂t+u ·∇ is the material derivative, and in the case of unsteady, two-dimensional

flow (such that h = h(x, t)) this gives

ht + uhx − v = 0, (1.22)
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which, using (1.15), may also be written

ht +Qx = 0, (1.23)

where

Q =

∫ h

0

u dy (1.24)

is the volume flux per unit width across a station x = constant (nondimensionalised

with ǫUL).
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1.3 Films, Ridges and Droplets Subject to an

External Airflow

In Chapter 2 we will consider the steady flow of a thin ridge (i.e. a thin two-

dimensional droplet) of fluid in the presence of an external airflow, and so in

Subsection 1.3.1 below we discuss some of the previous work concerning problems

of this kind. In particular, we derive a model for the strongly-coupled interaction

between a thin ridge and an external airflow. Specifically, as shown in Subsection

1.3.2 this interaction may be modelled by adapting classical thin-aerofoil theory.

As an example of a problem in which this approach has been utilised, in Subsection

1.3.3 we re-formulate the analysis of King and Tuck [42], and slightly extend their

results.

1.3.1 Literature Review

There have been many studies of a thin film of fluid subject to an external pressure

gradient and/or shear stress due to an external airflow. King, Tuck and Vanden-

Broeck [43] considered a film on an inclined substrate, and included the effects of

both a uniform shear stress and an external pressure gradient from an external

flow of air directed up the substrate, as well as surface tension and gravity, and

studied the waves that form at the air-fluid interface, and Vanden-Broeck and

Miloh [102] considered a moving pressure distribution over two thin films of fluid,

with the less dense fluid sitting on top of the other, and found that the lower fluid

can dampen the waves obtained at the interface between the air and the upper

fluid. Kriegsmann, Miksis and Vanden-Broeck [44] considered a moving pressure

distribution over a thin film of fluid on an inclined substrate and found steady

solutions where the film thickness upstream and downstream of the disturbance

are equal, except for a finite range of parameter values where steady solutions
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with different thicknesses upstream and downstream were obtained. Chou and

Wu [12] considered a film subject to an applied shear stress flowing over either

a solid rectangular hump or a rectangular trough, while Myers and Charpin [62]

studied the effect of an applied shear stress over thin layers of water and ice on a

planar inclined substrate, a cylindrical substrate, and an aerofoil as a model for

ice-accretion on aircraft wings. Shuaib et al. [86] computed numerical solutions

for the different types of free surface waves that are obtained when a thin film

on an inclined substrate is subject to an applied shear stress either up or down

the substrate, and Pascal and D’Alessio [72] studied the waves on the free surface

of a non-Newtonian fluid down an inclined substrate and found that an applied

upwards shear stress has a stabilising effect (i.e. it reduces the amplitude of the

waves). Cuminato et al. [16] studied the steady flow of a thin film on a heated

horizontal substrate as a model for dry-out within a steam generating boiler pipe,

including a uniform shear stress and an external pressure gradient at the free

surface of the film arising from the gas flow, as well as evaporative mass loss from

the film, and, in particular, they calculated the location of the dry-out point.

Recently, Ueno and Farzaneh [98] considered a thin film of water on top of a layer

of ice and subjected to an external airflow. They included the effects of the external

pressure gradient, applied shear stress, gravity and surface tension, and predicted

that the wavelength of the disturbances at the ice-water interface decreases as the

strength of the external airflow is increased.

A ridge or a three-dimensional droplet (hereafter simply referred to as a droplet)

of fluid subject to an applied shear stress have also received attention. Li and

Pozrikidis [49] computed free surface profiles of a hemispherical droplet with pre-

scribed circular contact line subject to an applied shear stress with constant surface

tension, where the viscosity of the droplet and the surrounding fluid were assumed

equal because of numerical constraints, and Yon and Pozrikidis [114] extended this
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model to include the effects of the droplet and surrounding fluid having different

viscosities as well as variable surface tension caused by the presence of surfactant.

Dimitrakopoulos and Higdon [19, 20] considered a ridge and a droplet on a hori-

zontal substrate subject to an applied shear stress including the effects of surface

tension and gravity, calculating a critical shear rate above which steady solutions

do not exist and finding good qualitative agreement in the case of viscous droplets

between their numerical computations and the analysis of Dussan [99], who used

lubrication theory to study one fluid flowing over the top of a droplet of a second

fluid which is attached to a substrate. The spreading of a sessile and of a pendent

ridge, and of a sessile and of a pendent droplet, on a horizontal substrate (where

“sessile” refers to a ridge or droplet sitting on the substrate and “pendent” refers

to a ridge or droplet hanging from the substrate) subject to a jet of air directed

either vertically downwards in the sessile case, or vertically upwards in the pendent

case, was studied by McKinley, Wilson and Duffy [55], and the stability of these

flows was subsequently considered by McKinley and Wilson [53, 54]. Schleizer

and Bonnecaze [81] considered shear- or pressure-driven flow between two paral-

lel substrates in the absence of gravity, where a ridge was pinned to one of the

substrates. They found that the ridge profile becomes more deformed for a higher

ridge viscosity ratio and for a larger ridge volume (or surface area), and that there

is a critical viscosity above which no steady solutions exist. Spelt [87] also stud-

ied a ridge between parallel substrates in a shear flow, finding a critical shear rate

above which steady solutions do not exist and extended the results of Schleizer and

Bonnecaze [81] to include inertia after the contact lines have de-pinned. Ding and

Spelt [22] studied a droplet on a horizontal substrate subject to an applied shear

stress, including the effects of inertia, investigating the critical parameter values

for the contact lines to de-pin, while Ding, Gilani and Spelt [21] investigated the

motion after de-pinning has occurred and found that the droplet can move steadily



Chapter 1 13

along the substrate, can develop a tail as it slides which may eventually split into

smaller drops, or can completely detach from the substrate. Zhang, Miksis and

Bankoff [116] studied the shear flow of a ridge attached to a substrate in a channel

and found that the ridge can slide steadily along the substrate for low Reynolds

and capillary numbers but that fingers of fluid can develop ahead of the ridge for

higher parameter values, Dimitrakopoulos [18] considered a droplet in a shear flow

sliding along a rough substrate and found that it was equally-favourable for the

upstream or downstream contact line to de-pin first, and Sugiyama and Sbragaglia

[88] considered the slight deformation of a hemispherical ridge in a shear flow and

obtained an exact series solution.

More recently, there have been experimental studies of a droplet attached to

a substrate subject to an external airflow. Motivated particularly by the numer-

ical studies of Spelt [87], Ding and Spelt [22] and Ding, Gilani and Spelt [21],

Seevaratnam et al. [84] considered a droplet of oil on a substrate in a rectangular

channel subject to a pressure-driven flow of water and observed the flow regimes

reported by Ding, Gilani and Spelt [21] of steady sliding, crawling whilst develop-

ing a tail, or complete detachment from the substrate, for a range of parameter

values. Fan, Wilson and Kapur [31] experimentally investigated the motion of a

droplet attached to a substrate subject to an airflow and observed the same flow

regimes for two fluids with different viscosities, and three substrates with different

receding and advancing contact angles, as shown in Figure 1.3. As, for example,

Dussan [99] and Blake and Ruschak [9] describe, the receding and advancing con-

tact angles are the smallest and largest values that the contact angle may take

before the contact line de-pins and begins to recede or advance, respectively, and

in practice their values will depend on the properties of the three phases (air, fluid

and substrate) in the vicinity of the contact line. Figure 1.3 shows that the water

droplet slides along the substrate retaining its bulk shape whereas the glycerine
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(a) (b)

Figure 1.3: Images of droplets subject to an external airflow, observed by Fan, Wilson and Kapur [31]. The fluid

in (a) is water, which has a lower viscosity but higher surface tension than glycerine, which is the fluid in (b).

Surface A has the highest receding and advancing contact angles while surface C has the lowest. Reprinted from

J. Coll. Int. Sci. 356, J. Fan, M. C. T. Wilson and N. Kapur, Displacement of liquid droplets on a surface by a

shearing air flow, 286–292, Copyright 2011, with permission from Elsevier.

droplet develops a large tail and even sheds satellite droplets.

In many real-life situations, the interaction between the flow of a fluid and

an external airflow passing over it plays an important role. One way to model

this interaction is to adapt classical thin-aerofoil theory to obtain an expression

for the pressure gradient in the air (and, in particular, for the pressure gradient

on the free surface of the fluid) in terms of the unknown free surface profile of

the fluid. This approach was used by both King, Tuck and Vanden-Broeck [43]

and Cuminato et al. [16] mentioned above. Previously, Durbin [25, 26] used thin-

aerofoil theory to study the steady flow of a thin ridge on a horizontal substrate.

He assumed that the external airflow detaches at some point on the free surface

of the ridge resulting in an asymmetric ridge profile. In particular, Durbin [26]

studied the critical case in which the strength of the external airflow is at the

maximum value such that the ridge is deformed but for which the contact lines

do not de-pin. Subsequently, King and Tuck [42] also considered a thin ridge of

fluid in the presence of an external airflow. Like Durbin [26], they used classical
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thin-aerofoil theory to model the external pressure distribution; however, unlike

Durbin [26], they included both the effects of a uniform surface shear stress due to

the external airflow and the effects of gravity, but neglected surface tension in their

numerical calculations. King and Tuck [42] found that, for each value of the angle

of inclination of the substrate, there are zero, one or two values of the strength of

the external airflow which yield a steady state.

1.3.2 Thin-aerofoil Theory

y = h(x)

x

y

O L

U∞, p∞

ρ

ρa

Figure 1.4: Sketch of a thin, steady ridge of fluid on a planar substrate in the presence of an inviscid external

airflow.

As mentioned in Subsection 1.3.1, the interaction between the flow of a fluid

and an external airflow passing over it can be very significant. In this Subsection,

based on the analysis of Van Dyke [101], we derive an expression for the pressure

gradient arising from an external airflow passing over a thin ridge of fluid in terms

of the shape of the free surface. Of course, in classical thin-aerofoil theory the

object over which the air flows is solid (e.g. an aircraft wing), and has a known

shape, allowing the pressure to be calculated. However, in the present context of

flow over a ridge of fluid we must solve for both the shape of the free surface and
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the pressure.

Consider the steady flow of a thin ridge of fluid on a planar substrate, in the

presence of a steady external airflow, as sketched in Figure 1.4. We assume that

the fluid in the ridge has constant density ρ and coefficient of surface tension σ,

and that the external flow of air is inviscid and has constant density ρa, which

flows tangentially to the substrate far from the ridge with constant speed U∞ and

ambient pressure p∞. The airflow is perturbed by the presence of the ridge, result-

ing in a non-uniform external pressure gradient that depends in a non-trivial way

on the unknown free surface profile of the ridge. Referred to Cartesian coordinates

Oxy with the x and y directions taken to be parallel and normal to the substrate,

respectively, as indicated in Figure 1.4, the ridge has free surface profile y = h(x)

for 0 ≤ x ≤ L, width L in the transverse (i.e. in the x) direction and volume per

unit length in the longitudinal (i.e. in the z) direction V . Note that the transverse

and longitudinal coordinates are different from those used for the two-dimensional

film in Subsection 1.2. The pressure in both the air and the ridge is denoted by

p = p(x, y) and the air velocity is ua = (ua, va) = (ua(x, y), va(x, y)). We introduce

the following non-dimensionalised and scaled variables:

x = L0x
∗, L = L0L

∗, y = ǫL0y
∗, y = L0Y

∗, h = ǫL0h
∗, V = ǫL2

0V
∗,

p− p∞ =
ǫσ

L0
p∗, ua = U∞u

∗
a, va = ǫU∞v

∗
a, φ = L0U∞φ

∗,

(1.25)

where L0 is the characteristic transverse length scale, φ = φ(x, Y ) is the velocity

potential satisfying ua = ∇φ, and ǫ ≪ 1 is the (small) aspect ratio of the ridge.

Note that in (1.12) we use the governing equations for thin-film flow to determine

the pressure scale, but in (1.25) we instead use the normal stress balance at the free

surface. Note also that two different non-dimensional y-coordinates, namely y∗ and

Y ∗, are required. Specifically, the re-scaled y-coordinate y∗ corresponding to the

length scale ǫL0 (≪ L0) in the y-direction is required to describe the behaviour of
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the fluid within the thin ridge, whereas the re-scaled y-coordinate Y ∗ corresponding

to the length scale L0 in the y-direction (i.e. the same length scale as in the x-

direction) is required to describe the behaviour of the air external to the ridge. For

clarity, we immediately drop the star superscripts on non-dimensional variables in

what follows.

The external airflow satisfies the Laplace equation

φxx + φY Y = 0, (1.26)

which is to be solved subject to the boundary conditions of a uniform stream far

from the ridge

φx → 1, φY → 0 as x2 + Y 2 → ∞ (1.27)

(note that p→ 0 far from the ridge as well) and the kinematic free surface condition

(1.22), which may be written as

φY = ǫh′φx on Y = ǫh. (1.28)

We seek a solution φ to the problem (1.26) as ǫ→ 0 as a regular asymptotic series

in the form

φ(x, Y ; ǫ) = x+ ǫφ1(x, Y ) + ǫ2φ2(x, Y ) +O(ǫ3), (1.29)

while the pressure may then be written in the form

p = ǫP (x, Y ) +O(ǫ2), (1.30)

where P = P (x, Y ) is the pressure due to the external airflow. Note that the O(1)

term is zero since the ambient pressure has been scaled out. If we assume that the

φk = φk(x, Y ), k = 1, 2, 3, ..., in (1.29) are twice differentiable at Y = 0 then we

may use a Taylor expansion about Y = 0 to obtain

φ(x, ǫh; ǫ) = x+ ǫφ1(x, 0) + ǫ2[φ2(x, 0) + hφ1Y (x, 0)] +O(ǫ3), (1.31)
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from which we deduce that

φx = 1 + ǫφ1x(x, 0) + ǫ2[φ2x(x, 0) + h′φ1Y (x, 0) + hφ1Y x(x, 0)] +O(ǫ3), (1.32)

φY = ǫφ1Y (x, 0) + ǫ2[φ2Y (x, 0) + hφ1Y Y (x, 0)] +O(ǫ3). (1.33)

At leading order we simply have the uniform stream and at O(ǫ), equations (1.26)–

(1.28) become

φ1xx + φ1Y Y = 0, (1.34)

φ1x = φ1Y = 0 as x2 + Y 2 → ∞, (1.35)

φ1Y = h′ on Y = 0. (1.36)

We may use a distribution of sources and sinks along the x-axis to represent

the effect of the ridge on the external airflow (i.e. the perturbation to the uniform

stream). A point source of unit strength at the origin is given by (see, for example,

Acheson [1])

φ(x, Y ) =
1

2π
ln
√
x2 + Y 2, (1.37)

which gives

φx(x, Y ) =
1

2π

x

x2 + Y 2
. (1.38)

Van Dyke [101] states that the local source strength must be twice the aerofoil

slope which means that, using the tangency condition (1.36), we get

φ1x(x, Y ) =
1

π

∫ L

0

(x− ξ)h′(ξ)

(x− ξ)2 + Y 2
dξ. (1.39)

Therefore we obtain the appropriate form for theO(ǫ) term of the velocity potential

φ1(x, Y ) in (1.29) by integrating (1.39) with respect to x to give

φ1(x, Y ) =
1

2π

∫ L

0

h′(ξ) ln
[

(x− ξ)2 + Y 2
]

dξ. (1.40)
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From (1.32), (1.33) and (1.40) we get

|∇φ|2 = φ2
x + φ2

Y

=

(

1 +
ǫ

π

∫ L

0

(x− ξ)h′(ξ)

(x− ξ)2 + Y 2
dξ +O(ǫ2)

)2

+

(

ǫ

π

∫ L

0

Y h′(ξ)

(x− ξ)2 + Y 2
dξ +O(ǫ2)

)2

= 1 +
2ǫ

π

∫ L

0

(x− ξ)h′(ξ)

(x− ξ)2 + Y 2
dξ +O(ǫ2), (1.41)

and then use Bernoulli’s equation to calculate the pressure due to the external

airflow P in (1.30), namely

P (x, Y ) = −Λ

∫ L

0

(x− ξ)h′(ξ)

(x− ξ)2 + Y 2
dξ, (1.42)

where

Λ =
ρaU

2
∞L0

πσ
(1.43)

is a non-dimensional Weber number (i.e. the appropriate measure of the strength

of the external airflow, or the ratio of inertia to surface tension). In particular,

the pressure due to the external airflow at the free surface and substrate Y = 0 is

given by

P (x, 0) = −Λ−
∫ L

0

h′(ξ)

x− ξ
dξ, (1.44)

where the integral is of Cauchy principal-value type.

1.3.3 A ridge on an inclined substrate supported against

gravity by an external airflow (King and Tuck [42])

In this Subsection, we use the expression obtained for the pressure gradient due to

an external airflow in Subsection 1.3.2 to determine the shape of the free surface

of a ridge in the specific case studied by King and Tuck [42]. We re-formulate

the analysis of King and Tuck [42] to be consistent with the problem that will be

considered in Chapter 2, and slightly extend their results.



Chapter 1 20

y = h(x)

x

y

O

L

g

θ

U∞, p∞

α

ρ

ρa

τ

Figure 1.5: Sketch of a thin, steady sessile ridge of fluid on an inclined, planar substrate in the presence of an

external airflow, as considered by King and Tuck [42].

Consider the steady flow of a thin, steady sessile ridge of fluid on a planar

substrate inclined at an angle α to the horizontal, in the presence of a steady

external airflow, as sketched in Figure 1.5.

As in Subsection 1.3.2, the effects of a non-uniform external pressure gradient

are included; however, unlike in Subsection 1.3.2, the external airflow now exerts

a uniform shear stress τ in the transverse direction on the ridge. Note that τ = 0

corresponds to an inviscid airflow which means the ridge is static. We also denote

the downstream contact angle θ, while at the upstream end we will show that the

slope is infinite in the case of zero surface tension (this is, the case which will be

considered for the numerical computations).

We introduce the following non-dimensionalised and scaled variables:

x = Lx∗, y = ǫLy∗, h = ǫLh∗, θ = ǫθ∗,

p− p∞ =
ǫσ

L
p∗, τ =

ǫ2σ

L
τ ∗, u =

ǫ3σ

µ
u∗, Q =

ǫ4σL

µ
Q∗,

(1.45)

where ǫ = (3Lτ/2σ)1/2 ≪ 1 so that τ ∗ = 2/3 (the factor of 2/3 will cancel to give

unity in the equation for the shape of the free surface h), and Q is the volume

flux per unit width given by (1.24). Note that, unlike in (1.25) where an arbitrary

length scale L0 was used, in the present problem the width L is used as the typical
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length scale in the transverse direction and therefore the ridge occupies the interval

0 ≤ x∗ ≤ 1. For clarity, we again immediately drop the star superscripts on non-

dimensional variables in what follows. The governing lubrication equations (1.16)

now become

0 = −py −
(

L

ℓ

)2

cosα, 0 = −px −
(

L

ℓ

)2
sinα

ǫ
+ uyy, (1.46)

where ℓ = (σ/ρg)
1
2 is the capillary length, and the boundary conditions (1.17),

(1.20) and (1.21) are now

u = 0 on y = 0 (1.47)

and

p = P − h′′, uy =
2

3

(

L

ℓ

)2

on y = h. (1.48)

Note that L = ℓ in (1.16), that is, the typical length scale in the x direction is

equal to the capillary length; however, that is not the case in the present problem,

as seen in (1.46).

From (1.46b) we see that we require α = O(ǫ) for all three terms in the equation

to balance; then solving (1.46)–(1.48) for p and u in this case yields

p =

(

L

ℓ

)2

(h− y) + P − h′′ (1.49)

and

u =
y(y − 2h)

2

[

(

L

ℓ

)2

h′ + P ′ − h′′′ +

(

L

ℓ

)2
α

ǫ

]

+
2

3

(

L

ℓ

)2

y. (1.50)

The kinematic condition (1.23) implies that Q = 0 in the present steady flow prob-

lem, and so from (1.24) and (1.50), together with (1.44) to describe the pressure

due to the external airflow P via thin-aerofoil theory, we obtain the governing

nonlinear singular integro-differential equation for h, namely

Sh′′′ − h′ − α̂ + λ
d

dx
−
∫ 1

0

h′(ξ)

x− ξ
dξ +

1

h
= 0, (1.51)
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where

S =

(

ℓ

L

)2

=
σ

ρgL2
, α̂ =

α

ǫ
, λ =

ρaU
2
∞ℓ

2

πσL
=
ρaU

2
∞

πρgL
(1.52)

are dimensionless parameters: S is a Bond number (i.e. a measure of the effect of

surface tension), α̂ is an appropriately scaled version of the angle of inclination of

the substrate to the horizontal, and λ is a measure of the strength of the external

airflow. Note that the parameter λ in (1.52) is equal to the parameter Λ from

(1.43) in the case when L0 = ℓ2/L.

We assume that the width of the ridge is much greater than the capillary length

L ≫ ℓ which gives S ≪ 1 in (1.51) (i.e. the case of weak surface tension). Local

analysis of (1.51) reveals that near the upstream contact line h behaves according

to

h ∼ (2x)
1
2 as x→ 0+, (1.53)

while near the downstream contact line h behaves according to

h ∼ λ−
1
2 (1 − x) as x→ 1−. (1.54)

This means that the slope is infinite near the upstream contact line, but that the

downstream contact angle is θ = −h′(1) = λ−
1
2 .

The behaviour (1.53) describes the free surface all the way to the upstream

contact line x = 0 only if S = 0. For small but non-zero S there is a “boundary

layer” near x = 0, and we may re-scale (1.51) according to

x = S
1
2 x̄, h = S

1
4 h̄, (1.55)

so that for x = O(S1/2) (that is, in the “inner” region near x = 0), the leading

order free surface shape is given by a balance between surface tension, gravity and

shear stress satisfying

h̄′′′ − h̄′ +
1

h̄
= 0, (1.56)
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subject to the boundary conditions

h̄ = h̄′ = 0 when x̄ = 0 (1.57)

and the matching condition to the solution in the “outer” region (given by (1.53))

h̄ ∼ (2x̄)
1
2 as x̄→ ∞. (1.58)

Figure 1.6 shows a plot of the numerically obtained solution of (1.56) subject to

(1.57) and (1.58). The inclusion of weak surface tension S ≪ 1 results in a finite

contact angle at x = 0, and the solution in the “inner” region near x = 0 joins

smoothly to the square root behaviour in the “outer” region. Note that, unlike

near x = 0, the inclusion of weak surface tension does not change the local shape of

the free surface near the downstream contact line x = 1 since the local behaviour

is still given by (1.54) (that is, a balance between the pressure gradient and the

shear stress). Given that the inclusion of surface tension does not affect the shape

of the ridge when S is small, we can safely set S = 0 in (1.51) and solve for h

numerically as described below.

Standard numerical methods struggle to cope with the infinite slope of the free

surface near x = 0 and so, as suggested by Cuminato, Fitt and McKee [15] in their

review paper on linear and nonlinear singular integro-differential equations, we use

the asymptotic behaviour near x = 0 to remove this singularity in the slope from

the numerical problem. Following King and Tuck [42], we use (1.53) and (1.54)

to write (1.51) in terms of a new variable G(y) by first using the substitution

H(y) = (2x)1/2h(x), where y2 = x, to give

H(y)

[

λ
d

dy

∫ 1

0

H(ζ) + ζH ′(ζ)

ζ2 − y2
dζ +H(y) + yH ′(y) +

(

2

λ

)
1
2

α̃y

]

− 1 = 0, (1.59)

where

H → 1 as y → 0+ and H ∼ (2λ)−
1
2 (1 − y2) as y → 1−, (1.60)
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h̄

x̄

Figure 1.6: Plot of the free surface-shape near the upstream contact line, obtained by solving (1.56) numerically

subject to (1.57) and (1.58).

and we then set G(y) = H(y) + yH ′(y) to obtain

[
∫ y

0

G(ζ) dζ

]

[

λ
d

dy

∫ 1

0

G(ζ)

ζ2 − y2
dζ +G(y) +

(

2

λ

)
1
2

α̃y

]

− y = 0, (1.61)

subject to

G(0) = 1 and G(1) = −
(

2

λ

)
1
2

, (1.62)

where α̃ = α̂/θ is a measure of the ratio of substrate inclination to the downstream

contact angle. We solve (1.61) numerically by discretising the interval [0, 1] onto

a uniform grid with n subintervals, together with the assumption that G(y) is

linear on each subinterval. One of the parameters, λ or α̃, is free to be specified

while the other has to be calculated as part of the solution. The resulting set of

nonlinear algebraic equations is solved using the mathematical software package

MAPLE for a variety of pairs (α̃, λ). Figure 1.7 shows the λ–α̃ parameter plane.

In agreement with the results obtained by King and Tuck [42] (who used a Powell

method using the routine CO5NBF from the NAG library to solve the set of

algebraic equations), we find that there are no solutions when α̃ > 0.46, two

solutions when 0.08 < α̃ < 0.46 (an upper and lower branch meeting at the point
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λ

α̃α̃ = 0.23

Figure 1.7: The strength of the external airflow λ plotted as a function of the ratio of substrate inclination to

downstream contact angle α̃. On the lower branch, the solution could no longer be computed to two-decimal-place

accuracy for α̃ < 0.08. The dots indicate the two points at which α̃ = 0.23, and the free surface profiles at these

points are shown in Figure 1.8.

(α̃, λ) = (0.46, 0.19)), and one solution when 0 ≤ α̃ ≤ 0.08. King and Tuck [42]

considered only α̃ ≥ 0; however, we slightly extend their results to find that the

upper branch in Figure 1.7 extends to large, negative values of α̃, with λ increasing

monotonically as α̃ becomes increasingly negative. Physically, this corresponds to

a negative value of the substrate inclination α such that the airflow is blowing down

the substrate in cooperation with gravity (rather than up the substrate against

gravity). We measured the accuracy of the numerical results by checking that the

boundary condition h(0) = 0 was satisfied to within a prescribed tolerance, while

King and Tuck [42] performed iterations on an initial guess of a linear function

until it converged to within a prescribed tolerance. On the lower branch, like King

and Tuck [42], it was found that the boundary condition h(0) = 0 condition could

no longer be satisfied to at least two-decimal-place accuracy when α̃ < 0.08. Figure

1.8 shows the two possible solutions for the free surface profile when α̃ = 0.23.
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h(x)

x

λ ≃ 0.08

λ ≃ 0.33

Figure 1.8: Plots of the two possible free surface profiles h(x) when α̃ = 0.23, for which λ ≃ 0.08, 0.33.

1.4 Gravity-Driven Rivulet Flow

In Chapter 3 we will consider the steady, gravity-driven draining of a rivulet with

either pinned or de-pinned contact lines. Hence in Subsection 1.4.1 we discuss

relevant previous work on gravity-driven rivulet flow, and in Subsection 1.4.2, to

introduce key concepts that will be used in Chapter 3, we summarise the main

results of Duffy and Moffatt [23] and Wilson and Duffy [107], both of whom con-

sidered gravity-driven rivulet flow on a slowly varying substrate. In Subsection

1.4.3 we describe a possible area of application for the types of flow considered

in this Section, namely the flow of falling films often observed in horizontal-tube

evaporators.

1.4.1 Literature Review

The draining of a gravity-driven rivulet of fluid is a fundamental fluid mechanics

problem which has received considerable theoretical and experimental attention.

Early work on the subject was undertaken by Towell and Rothfeld [96] who studied
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steady, unidirectional flow on an inclined substrate and found good agreement

with their own experiments, by Allen and Biggin [4] who used the lubrication

approximation to obtain an expression for the velocity profile of the same problem,

and by Bentwich et al. [6] who extended this work by relaxing the condition of

small contact angles required in lubrication theory.

There are situations in which a continuous film may split into one or more

rivulets. A continuous film draining down a vertical substrate was studied by

Hartley and Murgatroyd [33] who considered the critical flow rate required to re-

wet a dry patch that appears in the film, by Mikielewicz and Moszynski [58] who

considered the minimum possible thickness that the film may take before break-

up occurs, and by El-Genk and Saber [27] who used a minimum total energy

argument to predict when a film will break up, a stable dry patch will form and

a dry patch will re-wet, and found good agreement with experiments. Johnson

et al. [40] conducted an experiment that showed a film with constant volume flux

breaking into a series of rivulets at the leading edge, the exact shape of these

rivulets depending on the inclination of the substrate to the horizontal, as shown

in Figure 1.9. More recently, Zhang et al. [115] observed complete film flow, the

formation of dry patches and the formation of rivulets while studying fluid draining

in a falling film microreactor.

There are several different flow regimes for a rivulet draining down an inclined

substrate. Schmuki and Laso [82] conducted an experiment in which a jet of fluid

drained down an inclined substrate for a range of flow rates, angles of substrate

inclination, surface tension and fluid viscosity, and found five regimes of flow,

namely film flow, droplet flow, a linear rivulet, a meandering rivulet and an oscil-

lating rivulet, as shown in Figure 1.10. In a similar study, but restricted to a single

type of fluid on a single substrate, Nakagwa [65] found droplet flow, a meandering

rivulet, an oscillating rivulet and also a braided rivulet, where the latter regime is
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250mm

Figure 1.9: Images of a film breaking into a series of rivulets, found by Johnson et al. [40]. The substrate inclination

increases from left to right. Reprinted from Johnson et al. [40] with permission of Cambridge University Press.

Figure 1.10: Images of the five regimes of flow found by Schmuki and Laso [82], namely, from left to right, film

flow, droplet flow, a linear rivulet, a meandering rivulet and an oscillating rivulet. Reprinted from Schmuki and

Laso [82] with permission of Cambridge University Press.

characterised by a rivulet whose width periodically increases and decreases. This

built on earlier work by Nakagwa and Scott [66], who had observed the meandering

and oscillating regimes in their experiments. A model which predicts a braided

regime of rivulet flow draining down an inclined substrate when the flow rate is

constant was developed by Mertens, Putkaradze and Vorobieff [57] and was also

realised in experiments (shown in Figure 1.11), and it is stated that this regime

is thought to be a consequence of a combination of surface tension tending to de-

crease the rivulet width and inertia tending to increase the rivulet width. Birnir
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(a)

(b)

Figure 1.11: Images obtained by Mertens, Putkaradze and Vorobieff [57] of (a) a braided rivulet and (b) a linear

rivulet, where the flow is from left to right (as is the downward direction of the substrate), and both the substrate

inclination and the flow rate are greater in (a) than in (b). Reprinted from Mertens, Putkaradze and Vorobieff

[57] with permission of Cambridge University Press.

et al. [7, 8] subsequently developed a model for a meandering regime of rivulet

flow and claimed that the meanders are triggered by small fluctuations in flow

rate. The mechanism behind the meandering regime is, however, still not well un-

derstood. In their experiments, Le Grand-Piteira, Daerr and Limat [64] observed

rivulet meandering with a constant flow rate but reported that the critical flow

rate required for the onset of meandering increases as the fluid viscosity increases,

while recently, Couvreur and Daerr [13] suggest that the most important factor in

the emergence of rivulet meanders is the heterogeneities of the substrate.

In Chapters 3 and 4 we will consider slowly varying rivulets on a slowly varying

substrate. Duffy and Moffatt [23], using the solution for the flow of a thin rivulet

with constant, non-zero contact angle and prescribed volume flux, but slowly vary-
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ing width, down a locally planar, slowly varying substrate, interpreted the solution

in terms of the flow in the azimuthal direction from the top to the bottom of a

large horizontal cylinder. They found that the rivulet becomes wide and flat near

the top of the cylinder but narrow and deep near the bottom of the cylinder. This

work has been extended by Wilson and Duffy [105] to consider a rivulet draining

down a locally non-planar, slowly varying substrate for a variety of convex and

concave transverse substrate profiles, by Holland, Wilson and Duffy [35] to con-

sider a rivulet which is uniformly hotter or uniformly colder than the surrounding

atmosphere, by Wilson, Duffy and Ross [111] to consider a viscoplastic fluid, and

by Wilson and Duffy [106] to consider a temperature-dependent-viscosity.

All of the studies mentioned above concern a rivulet with non-zero contact angle

(that is, a rivulet of partially wetting fluid); however, the flow of a rivulet with

zero contact angle (that is, a rivulet of perfectly wetting fluid) has also received

attention. Wilson and Duffy [107] considered the unidirectional flow of a thin

rivulet with zero contact angle and prescribed volume flux, but slowly varying

width, down a slowly varying locally planar or locally non-planar substrate. In

the case of a locally planar substrate, again interpreted as the flow from the top

to the bottom of a large horizontal cylinder, Wilson and Duffy [107] found that

no solution exists on the upper half of the cylinder but that there are infinitely

many solutions on the lower half of the cylinder. This work has been extended by

Duffy and Wilson [24] to consider a temperature-dependent-viscosity, by Wilson

and Duffy [109] to consider when it is energetically favourable for the rivulet to

split into two or more sub-rivulets, and by Sullivan, Wilson and Duffy [91] to

consider the effects of a uniform longitudinal surface shear stress (which we will

discuss in more detail in Subsection 1.5.3). Other studies of rivulets of perfectly

wetting fluid have been undertaken by Kuibin [45] and Alekseenko, Geshev and

Kuibin [3], who studied the draining of a pendent rivulet on the underside of
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an inclined cylinder. The theoretical studies mentioned above concern a rivulet

with a constant zero or non-zero contact angle, but variable width; however, in

Chapters 3 and 4 we will also consider a rivulet with constant width. Exact

solutions of the Navier–Stokes equations were found by Perazzo and Gratton [74]

for a sessile rivulet with constant width draining down an inclined, planar substrate

and these solutions were found to compare favourably with those obtained from

lubrication theory. This work was extended to both sessile and pendent rivulets

on an inclined, non-planar substrate by Tanasijczuk, Perazzo and Gratton [92].

Benilov [5] found that a “narrow” sessile or pendent rivulet with constant width

draining down an inclined substrate is always stable, but that a “wide” rivulet

requires the incline to be sufficiently steep to ensure stability, and Alekseenko et

al. [2] experimentally studied the existence of surface waves on a rivulet draining

down a vertical substrate.

1.4.2 Rivulet flow on a slowly varying substrate

In this Subsection, to introduce the key concepts that will be used later, we study

the gravity-driven draining of a rivulet with constant contact angle down a sub-

strate inclined to the horizontal and, in doing so, we re-visit the analysis of Duffy

and Moffatt [23] (who considered a non-zero contact angle) and Wilson and Duffy

[107] (who considered a zero contact angle). The results are interpreted as the flow

of a rivulet on a slowly varying substrate, specifically the flow in the azimuthal

direction from the top to the bottom of a large horizontal cylinder. We note that

the analogous two-dimensional case of a thin film draining from the top to the

bottom of a cylinder has received much attention from various authors, building

on the early work undertaken by Nusselt [68, 69].

Consider the steady three-dimensional gravity-driven draining of a symmetric

rivulet with constant volume flux Q on a planar substrate inclined at an angle
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Figure 1.12: Sketch of a thin rivulet draining down a planar substrate inclined at an angle α to the horizontal.

α (0 ≤ α ≤ π) to the horizontal, as shown in Figure 1.12. We use Cartesian

coordinates Oxyz with the x axis down the line of greatest slope, the y axis

horizontal, and the z axis normal to the substrate z = 0. The rivulet has velocity

u = (u, v, w) and pressure p. We assume that the fluid is Newtonian with constant

viscosity µ, density ρ and coefficient of surface tension σ. The free surface is at

z = h, where h = h(x, y) is the thickness of the rivulet, the contact angle is

denoted by β = β(x, y), the semi-width by a = a(x) (so that h = 0 at the contact

lines y = ±a), and the maximum thickness of the rivulet, which always occurs at

y = 0, by hm = h(0).

In particular we consider a thin rivulet with β ≪ 1 such that the thickness

of the rivulet is much smaller than its width and introduce the following non-

dimensionalised and scaled variables:

x = Lx∗, y = ǫLy∗, z = ǫδLz∗, a = ǫLa∗, β = δβ∗, h = ǫδLh∗,

u =
ǫ2δ2ρgL2

µ
u∗, v =

ǫ3δ2ρgL2

µ
v∗, w =

ǫ3δ3ρgL2

µ
w∗,

p− p∞ = ǫδρgLp∗, Q =
ǫ4δ3ρgL4

µ
Q∗,

(1.63)

where p∞ is the ambient pressure, L is a typical length scale in the longitudinal

(i.e. in the x) direction, δ ≪ 1 is the transverse aspect ratio and ǫ≪ 1 is the lon-

gitudinal aspect ratio. For clarity, we immediately drop the star superscripts on
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non-dimensional variables; then the Navier–Stokes and mass-conservation equa-

tions (1.3) and (1.4) become

Re∗ (uux + vuy + wuz) = −ǫδpx + sinα +
(

ǫ2δ2uxx + δ2uyy + uzz

)

,

ǫRe∗ (uvx + vvy + wvz) = −δpy + ǫ
(

ǫ2δ2uxx + δ2uyy + uzz

)

,

ǫδRe∗ (uwx + vwy + wwz) = −pz − cosα + ǫδ
(

ǫ2δ2uxx + δ2uyy + uzz

)

,

ux + vy + wz = 0,

(1.64)

where

Re∗ =
ǫ4δ4ρ2gL3

µ2
(1.65)

is a suitably defined reduced Reynolds number. Assuming that Re∗ ≪ 1 is suffi-

ciently small then at leading order in δ and ǫ (1.64) reduces to

0 = sinα+ uzz, 0 = −δpy + ǫvzz, 0 = −pz − cosα, ux + vy +wz = 0. (1.66)

We consider the particular case ǫ≪ δ ≪ 1, corresponding to locally unidirectional

flow on a slowly varying substrate, so that (1.66b) becomes py = 0. The special

case ǫ = O(δ) is possible; however, it would require rather specific parameter values

and is not considered here.

The governing equations are to be solved subject to conditions of no slip, u = 0,

at the substrate z = 0, and balances of normal and tangential stress, p = −C−1h′′

(from (1.20)) and uz = 0 (from (1.21)), respectively, at the free surface z = h,

where C = ρgǫ2L2/σ is the dimensionless capillary number. This differs from the

capillary number defined in Section 1.2 by a factor of ǫ3: this is because in (1.12)

we use the governing equations for thin-film flow to determine the pressure scale,

but in (1.63) we instead use the normal stress balance at the free surface. We

define the capillary length ℓ = (σ/ρg)1/2 and then set ǫ = ℓ/L so that C = 1,

without loss of generality. At the edges of the rivulet y = ±a we have conditions

of zero thickness h = 0 with contact angle h′ = ∓β. Solving (1.66) with ǫ ≪ δ
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subject to the boundary conditions for the pressure and the velocity gives

p = (h− z) cosα− h′′, u =
sinα

2

(

2hz − z2
)

, (1.67)

while the local longitudinal flux ū = ū(y) is given by

ū =

∫ h

0

u dz =
sinα

3
h3, (1.68)

and therefore the volume flux Q is given by

Q =

∫ +a

−a

ū dy =
sinα

3

∫ +a

−a

h3 dy. (1.69)

Also, we use (1.67) together with the fact that py = 0 to obtain a third-order

ordinary differential equation for the free surface profile, namely

(h cosα− h′′)
′
= 0, (1.70)

which is to be solved subject to the contact-line conditions. Then for a prescribed

constant volume flux Q = Q̄, constant angle of inclination α and constant con-

tact angle β = β̄, (1.69) together with the solution of (1.70) provides an implicit

equation to be solved for the unknown semi-width a. We use this solution to de-

scribe the locally unidirectional flow down a slowly varying substrate, specifically

the flow in the azimuthal direction from the top α = 0 to the bottom α = π of a

large horizontal cylinder, of a rivulet with constant contact angle β = β̄ but slowly

varying semi-width a = a(α), in both the case β̄ = 0 and the case β̄ > 0.

1.4.2.1 The special case of zero contact angle β̄ = 0 (Wilson and Duffy

[107])

In the special case of zero contact angle β̄ = 0 (that is, the fluid wets the sub-

strate perfectly) there are several possible definitions of δ. For example, δ =

(µQ̄/ρgL4)1/3 corresponds to setting Q̄ = 1; however, to keep the presentation as
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general as possible we leave δ unspecified in what follows. We solve (1.69) and

(1.70) for a and h subject to the conditions

h = 0, h′ = 0 at y = ±a. (1.71)

There are no solutions corresponding to a sessile rivulet or a rivulet on a vertical

substrate (i.e. for 0 ≤ α ≤ π/2) but for pendent rivulets (i.e. for π/2 < α ≤ π) we

obtain infinitely many solutions, namely

a =
nπ

m
and h =

hm

2
(1 − (−1)n cosmy) (1.72)

for n = 1, 2, 3, ..., where we have written m = | cosα|1/2. The maximum thickness

of the rivulet, hm = h(0), is given by

hm = 2

(

3Q̄m

5nπ sinα

)
1
3

. (1.73)

Equations (1.72) and (1.73) show that the semi-width a does not depend on the

prescribed flux Q̄, but that the film thickness behaves according to h ∝ Q̄1/3. All

of these solutions are physically realisable; however, the higher-branch solutions

n = 2, 3, ... are simply re-scaled versions of the lowest-branch solution n = 1.

We therefore choose n = 1 without loss of generality in what follows. Figures

1.13(a) and 1.13(b) show the scaled semi-width a/π and the maximum thickness

hm as functions of the scaled angle of inclination α/π, and Figure 1.13(c) shows

cross-sectional free surface profiles h for various values of α, all when Q̄ = 1. The

rivulet becomes wide and slender near the middle α = π/2 of the cylinder, while

it becomes deep with finite width near the bottom α = π of the cylinder.

1.4.2.2 The general case of non-zero contact angle β̄ > 0 (Duffy and

Moffatt [23])

In the general case of non-zero contact angle β̄ > 0 (that is, the fluid is non-

perfectly wetting) we may choose δ = β in (1.63) so that β̄ = 1 without loss of
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Figure 1.13: Plots of (a) the scaled semi-width a/π = 1/m and (b) the maximum thickness hm as functions

of α/π, and (c) cross-sectional free surface profiles, z = h(y), at α = 9π/16, 5π/8, 11π/16, ...,15π/16, all when

Q̄ = 1, for a rivulet of perfectly wetting fluid.
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generality. We solve (1.69) and (1.70) for a and h subject to the conditions

h = 0, h′ = ∓1 at y = ±a (1.74)

to obtain the free surface shape

h =































coshma− coshmy

m sinhma
for 0 ≤ α <

π

2
,

a2 − y2

2a
for α =

π

2
,

cosmy − cosma

m sinma
for

π

2
< α ≤ π,

(1.75)

the maximum thickness of the rivulet

hm =
1

m































tanh
ma

2
for 0 ≤ α <

π

2
,

ma

2
for α =

π

2
,

tan
ma

2
for

π

2
< α ≤ π,

(1.76)

and the volume flux

Q̄ =
sinα

9m4
f(ma), (1.77)

where the function f = f(ma) appearing in (1.77) is given by

f(ma) =























15ma coth3 ma− 15 coth2ma− 9ma cothma + 4 for 0 ≤ α <
π

2
,

12

35
(ma)4 for α =

π

2
,

−15ma cot3ma + 15 cot2ma− 9ma cotma+ 4 for
π

2
< α ≤ π.

(1.78)

Note that, unlike in the case when β̄ = 0, solutions for both sessile and pendent

rivulets exist (that is, solutions exist for any α, 0 ≤ α ≤ π). Figures 1.14(a)

and 1.14(b) show the semi-width a and the maximum thickness hm as functions

of the scaled angle of inclination α/π for various values of Q̄, and Figure 1.14(c)

shows cross-sectional free surface profiles h for various values of α when Q̄ = 1.

The rivulet becomes wide with finite thickness near the top α = 0 of the cylinder,

while it becomes deep with finite width near the bottom α = π of the cylinder.
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Figure 1.14: Plots of (a) the semi-width a and (b) the maximum thickness hm as functions of α/π for Q̄ =

0.01, 0.1, 1, 10, 100, and (c) cross-sectional free surface profiles, z = h(y), for α = π/8, π/4, 3π/8, ...,7π/8 when

Q̄ = 1, for a non-perfectly wetting rivulet.
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1.4.3 Breakup of falling films into rivulets

A practical situation in which a rivulet flowing round the outside of a cylinder may

arise is in falling-film horizontal-tube evaporators used in a variety of industries

such as refrigeration, desalination and petroleum refining. The review article on

falling film evaporation by Ribatski and Jacobi [77] describes how partial film

dry-out may occur because of an uneven distribution of fluid on the tubes. This

may be caused by a gas flow within the evaporator or uneven draining of fluid

from one tube onto the one below in a bundle of horizontal tubes. This regime

of partial dry-out causes the breakdown of continuous film flow, and this is where

rivulet flow is likely to occur (see, for example, Johnson et al. [40]). The fluid

that falls from the bottom of one cylinder onto the top of the one below may take

the form of an unbroken sheet, a series of continuous, equally-spaced columns, or

drops that detach intermittently. Mitrovic [59] presented experimental results for

some of these modes of fluid flow across horizontal cylinders and summarised the

predictions available in the literature for the transition from one mode to another

in terms of a suitably defined Reynolds number. When the fluid drains from one

cylinder onto the one below in a series of equally-spaced columns, each column

of fluid may then flow round the cylinder circumference as a single rivulet before

draining off the bottom of the tube, again as a column, as shown in Figure 1.15.

Fujita and Tsutsui [32] experimentally found that the flow rate of a falling film over

a bundle of heated horizontal tubes decreases on the lower tubes leading to dry

patches appearing in the film, with the formation of rivulets most likely in regions

of severe dry-out, that is, on the lower tubes. In falling-film heat exchangers there

is often a flow of gas present, which acts in the direction opposite to that of the fluid

flow. The effect this has on the fluid flow may be of importance and was studied

experimentally by Ruan, Jacobi and Li [79]. The flow of both a two-dimensional

sheet of fluid, and a three-dimensional, single column of fluid, falling onto the top
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Figure 1.15: Images of columns of fluid falling onto the top of a horizontal cylinder and then draining round the

circumference as a series of rivulets, found by Mitrovic [59]. Reprinted from Mitrovic [59] with permission from

John Wiley and Sons.

of, and draining round to the bottom of, a horizontal cylinder has been studied

numerically by Hunt [37, 38], respectively, and in the three-dimensional case, the

fluid on the top of the cylinder spreads along the top to a finite distance away

from the column.
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1.5 Rivulets Subject to an External Airflow

In Chapter 4 we extend the analysis for a gravity-driven rivulet to include a uniform

longitudinal surface shear stress due to an external airflow at the free surface of

a rivulet. Hence in Subsection 1.5.1 we discuss some previous work on rivulets

subject to an external airflow, and in Subsections 1.5.2 and 1.5.3, to introduce the

key concepts that will be used later, we re-visit the analysis of Wilson and Duffy

[108] and Sullivan, Wilson and Duffy [91], respectively. In Subsection 1.5.4 we

reproduce the results of Sullivan et al. [90] (of which I am an author) in somewhat

greater detail. We outline the improved numerical method from that used in

Sullivan’s [89] thesis to consider the same problem, together with the more accurate

numerical results. Specifically, the improved numerical results were calculated

using a shooting method rather than the finite differences used by Sullivan [89].

1.5.1 Literature Review

Understanding of the flow of a rivulet in the presence of an external airflow is of

importance in many industrial contexts such as distillation, coating processes and

heat exchangers. Accordingly, these flows have received attention from a variety of

authors. Wilson, Duffy and Hunt [110] used lubrication theory to obtain similarity

solutions for a rivulet of non-Newtonian fluid flowing down an inclined substrate

subject to a uniform longitudinal shear stress acting down the substrate in both the

case of weak surface tension and strong surface tension. Myers, Liang and Wetton

[63] also used lubrication theory to study the flow of a rivulet on an inclined

substrate subject to a uniform longitudinal shear stress acting up the substrate,

obtaining expressions for the pressure, velocity and free surface profile in terms of

powers of the (small) aspect ratio. These were then compared to numerical results

for any contact angle and good agreement was found between the theoretical and
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numerical results for contact angles up to 30 degrees. Wilson and Duffy [108]

studied the flow of a rivulet with constant non-zero contact angle on a vertical

substrate subject to a uniform longitudinal shear stress acting up or down the

substrate and found that the conjecture by Myers, Liang and Wetton [63] that it is

never energetically favourable for a purely shear-stress-driven rivulet to split is not

correct. Wilson and Duffy [108] also found that there are five possible flow patterns

that the rivulet may take, and the same five flow patterns were found to be the

only possibilities by Sullivan, Wilson and Duffy [91] for a pendent rivulet with zero

contact angle on a slowly varying substrate, again subject to a uniform longitudinal

shear stress acting up or down the substrate. Sullivan et al. [90] studied both a

gravity-driven rivulet on a vertical substrate and a rivulet on a horizontal substrate

driven by a longitudinal shear stress, subject to a constant transverse shear stress,

and considered the cases when both contact lines are pinned and when one or both

contact lines de-pin. Luo et al. [51, 52] conducted experiments of a rivulet flowing

down an inclined channel in the presence of an airflow blowing up the channel

and found that increasing the flow rate, decreasing the strength of the airflow, or

decreasing the inclination of the channel, increases the rivulet width.

The formation of one or more rivulets resulting from the break-up of a thin film

that is subject to an external airflow has also received attention. Lopez, Miksis

and Bankoff [50] extended lubrication theory to include inertial terms to study a

thin film on an inclined substrate driven by a uniform shear stress which breaks

up into a series of rivulets with constant width, and found that the predicted

wavelength of the instability at the leading edge of the film compared well with

experiments, especially in the case of large angles of substrate inclination and low

flow rates. Eres, Schwartz and Roy [28] carried out numerical simulations of a thin

film driven by shear stress that is perturbed at its leading edge such that rivulets

form in the cases of a perfectly wetting and a non-perfectly wetting fluid. In the
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(a) (b)

Figure 1.16: Numerical simulations of (a) a film that breaks into steady wedge-shaped rivulets (on the left)

and continually-growing constant width rivulets (on the right), and (b) a film that breaks into distinct droplets,

computed by Eres, Schwartz and Roy [28]. Reprinted with permission from Eres, Schwartz and Roy [28], copyright

2000, American Institute of Physics.

perfectly wetting case and the case of small, non-zero contact angles, the rivulets

are wedge-shaped, for larger contact angles the rivulets have constant width, and

for contact angles that are larger still the rivulets break up into distinct droplets,

as shown in Figure 1.16. Saber and El-Genk [80] studied a film on an inclined or

a vertical substrate subject to gravity and a non-uniform shear stress acting up or

down the substrate, and predicted the minimum thickness of the film before break-

up occurs. Increasing the strength of a shear stress directed down the substrate

decreases the minimum thickness whereas increasing the strength of a shear stress

directed up the substrate (while the flow remains downwards everywhere) increases

the minimum thickness. Recently, Wilson, Sullivan and Duffy [113] used an energy

argument similar to that used by authors such as Mikielewicz and Moszynski [58]

and El-Genk and Saber [27] in the case of a purely gravity-driven film to determine

when it is favourable for either a film or a rivulet, both flowing on a vertical

substrate subject to a uniform longitudinal shear stress acting up or down the
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substrate, to break up into a series of rivulets, or into one or more sub-rivulets,

respectively. As in the purely gravity-driven case, there is a minimum thickness

below which it is energetically favourable for a film to break up, and there is a

maximum thickness above which it is energetically favourable for a single rivulet

to break up.

1.5.2 A rivulet of non-perfectly wetting fluid on a vertical

substrate subject to a uniform longitudinal surface

shear stress (Wilson and Duffy [108])

In this Subsection we summarise the results of Wilson and Duffy [108] who studied

the flow of a thin symmetric rivulet with constant non-zero contact angle on a ver-

tical substrate subject to a longitudinal surface shear stress τ (nondimensionalised

with δσ/ℓ), where τ > 0 corresponds to the shear acting down the substrate. This

situation is described by (1.66) with α = π/2 and ǫ ≪ δ ≪ 1 subject to no slip

at the substrate and the normal stress balance as before, but with the tangential

stress balance now given by

uz = τ at z = h. (1.79)

As in Subsection 1.4.2.2 we set δ = β so that the contact-line conditions are given

by (1.74), and we obtain

p = −h′′, u =
(2h− z)z

2
+ τz, ufs =

h2

2
+ τh,

h =
a2 − y2

2a
, hm =

a

2
, Q =

4a4

105
+

2τa3

15
,

(1.80)

where ufs = ufs(y) = u(y, h) is the velocity at the free surface. Inspection of (1.80)

reveals that for τ ≥ 0, the flux Q is an increasing function of the semi-width a but

that for τ ≤ 0, there exists a minimum value of the flux Q = Qmin at a = amin,
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where

Qmin = −3087τ 4

5120
< 0 and amin = −21τ

8
. (1.81)

Also, note that Q = 0 when a = a0 = −7τ/2 (provided that τ < 0).

All of the possible cross-sectional flow patterns that can occur may be cate-

gorised into five types which we denote as type I to type V. Figure 1.17 shows

sketches of these five different types of flow pattern; regions of downwards flow

(that is, regions with u > 0) are shaded and regions of upwards flow (that is,

regions with u < 0) are unshaded. The locations of the maximum and minimum

velocities are marked with dots. From (1.80) the free surface velocity at y = 0 (i.e.

the velocity at z = hm) is given by

ufs(0) =
h2

m

2
+ τhm. (1.82)

When τ ≥ 0 the shear stress acts in co-operation with gravity to ensure that the

velocity is downwards throughout the rivulet (type-I flow). The maximum velocity

u = ufs(0) occurs on the free surface at z = hm, and the minimum velocity u = 0

occurs on the substrate z = 0.

When τ < 0 the shear stress acts up the substrate in opposition to the effect of

gravity, and the velocity is always upwards near the contact lines. From (1.80) the

curve on which the velocity u is zero (other than at the substrate z = 0), denoted

by z = H(y), is given by

H = 2 (h + τ) . (1.83)

Since the rivulet occupies 0 ≤ z ≤ h, (1.83) yields the condition

−τ ≤ h ≤ −2τ (1.84)

for upwards flow to occur.

For hm > −τ the curve (1.83) meets the substrate z = 0 (that is, H = 0) when

y = ±b, where

b =
√

a(a+ 2τ), (1.85)
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−a +a

I

−a +a−b +b−c +c

II

−a +a−b +b

III

−a +a−b +b

IV

−a +a

V

Figure 1.17: Sketches of the five different types of cross-sectional flow pattern, denoted as type I to type V.

Regions of downwards flow (that is, regions with u > 0) are shaded and regions of upwards flow (that is, regions

with u < 0) are unshaded. The locations of the maximum and minimum velocities are marked with dots.
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and for hm < −2τ the curve (1.83) meets the free surface z = h (that is, H = h)

when y = ±c, where

c =
√

a(a + 4τ). (1.86)

If Hm > hm (where Hm = H(0)) then the flow is type II, if Hm = hm then the

flow is type III and if 0 < Hm < hm then the flow is type IV, each of these

flow types being a mixture of downwards and upwards flow. If Hm ≤ 0 then

the flow is upwards throughout the rivulet (type-V flow). For flow-types II, III

and IV the maximum velocity u = (hm + τ)2/2 occurs within the flow at y = 0,

z = Hm/2 = hm + τ , and the minimum velocity u = −τ 2/2 occurs on the free

surface at y = ±b, z = −τ . For flow-type V the maximum velocity u = 0 occurs

on the substrate z = 0, and the minimum velocity u = ufs(0) occurs on the free

surface at y = 0, z = hm.

For a rivulet of prescribed flux Q = Q̄, the semi-widths a are given by the

positive solutions of the flux equation in (1.80) with Q = Q̄ and a prescribed shear

stress τ . From (1.85) we deduce that for type-V flow, a ≤ −2τ which gives the

critical τ (i.e. at a = −2τ)

τ = τ1 = −
(

−35Q̄

16

)
1
4

, (1.87)

so Q̄ < 0, while from (1.86) we deduce that for type-III flow, a = −4τ which gives

τ = τ2 = −
(

−105Q̄

128

)

1
4

, (1.88)

so Q̄ > 0. When Q̄ < 0, we see from (1.81) that the maximum possible shear

stress τ = τm, where

τm = −
(

−5120Q̄

3087

)

1
4

, (1.89)

gives a = amin. Figure 1.18 is a sketch of the τ–a parameter plane which shows

when the different types of flow pattern given in Figure 1.17 occur in each of the

cases Q̄ > 0, Q̄ = 0 and Q̄ < 0.
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Q̄ < 0
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τ1 τ2τm

a = −4τ
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IV
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Figure 1.18: Sketch of the a–τ parameter plane showing when the different types of flow pattern given in Figure

1.17 occur in each of the cases Q̄ > 0, Q̄ = 0 and Q̄ < 0.

1.5.3 A rivulet of perfectly wetting fluid subject to a uni-

form longitudinal surface shear stress (Sullivan, Wil-

son and Duffy [91])

In this Subsection we summarise some of the results of Sullivan, Wilson and Duffy

[91] who studied the flow of a thin rivulet with zero contact angle (in contrast

to Subsection 1.5.2 where a non-zero contact angle was considered) on the lower

half of a large horizontal cylinder subject to a longitudinal surface shear stress

τ (again nondimensionalised with δσ/ℓ), where τ > 0 corresponds to the shear

acting downwards in the azimuthal direction. This situation is described by (1.66)

with ǫ ≪ δ ≪ 1 subject to no slip at the substrate and the normal stress balance

as before, while the tangential stress balance is given by (1.79) and the contact-line

conditions are given by (1.71). Then the pressure p is given by (1.67), the velocity

u and free surface velocity ufs = ufs(y) = u(y, h) are given by

u =
sinα

2

(

2hz − z2
)

+ τz, ufs =
sinα

2
h2 + τh, (1.90)
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the semi-width a and the free surface profile h of the rivulet are given by (1.72)

and the volume flux Q is given by

Q =
π

24m
(5hm sinα + 9τ) h2

m. (1.91)

For a prescribed flux Q = Q̄, inclination angle α (π/2 < α ≤ π) and shear stress

τ , we must solve (1.91) for hm then use (1.72) to obtain h.

All of the possible flow patterns in this problem are again those given by Figure

1.17 (except that, of course, the contact angle is zero). From (1.90) the free surface

velocity at y = 0 is given by

ufs(0) =
h2

m sinα

2
+ τhm. (1.92)

When τ ≥ 0 the flow is type I, the maximum velocity u = ufs(0) occurs on the free

surface at z = hm, and the minimum velocity u = 0 occurs on the substrate z = 0.

When τ < 0 the curve on which the velocity u is zero, again denoted by z = H(y),

is given by

H = 2
(

h +
τ

sinα

)

(1.93)

and this yields the condition

− τ

sinα
≤ h ≤ − 2τ

sinα
(1.94)

for upwards flow to occur.

For hm > −τ/ sinα the curve (1.93) meets the substrate z = 0 when y = ±b,

where

b =
1

m
cos−1

(

− 2τ

hm sinα
− 1

)

, (1.95)

and for hm < −2τ/ sinα the curve (1.93) meets the free surface z = h when

y = ±c, where

c =
1

m
cos−1

(

− 4τ

hm sinα
− 1

)

. (1.96)
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Figure 1.19: Plot of the α/π–τ parameter plane when (a) Q̄ = 1 (> 0) and (b) Q̄ = −1 (< 0). The regions where

each type of flow (I–V) occur are indicated.

As in Subsection 1.5.2, if Hm > hm (where Hm = H(0)) then the flow is type

II, if Hm = hm then the flow is type III, if 0 < Hm < hm then the flow is type

IV and if Hm ≤ 0 then the flow is of type V. For flow-types II, III and IV the

maximum velocity u = ufs(0) + τ 2/2 sinα occurs within the rivulet at y = 0,

z = Hm/2 = hm + τ/ sinα, and the minimum velocity u = −τ 2/2 sinα occurs on

the free surface at y = ±b, z = −τ/ sinα. For flow-type V the maximum velocity

u = 0 occurs on the substrate z = 0, and the minimum velocity u = ufs(0) occurs

on the free surface at y = 0, z = hm.

Figure 1.19 shows plots of the α/π–τ parameter plane when (a) Q̄ = 1 (> 0) and

(b) Q̄ = −1 (< 0). The regions where each type of flow (I–V) occur are indicated.

Note that when Q̄ > 0 a single solution always exists (for any τ) but when Q̄ < 0

either zero, one or two solutions exist and, in particular, there are no solutions for

τ > 0.
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1.5.4 A rivulet or ridge subject to a uniform transverse

shear stress at its free surface (Sullivan et al. [90])

In this Subsection we reproduce the results of Sullivan et al. [90] (of which I am a

co-author), outlining the improved numerical method from that used in Sullivan’s

[89] thesis to consider the same problem, together with the more accurate numerical

results.

We analyse three closely related problems involving a thin rivulet or ridge of fluid

subject to a prescribed uniform transverse shear stress at its free surface, namely

a rivulet draining under gravity down a vertical substrate, a rivulet driven by a

longitudinal surface shear stress, and a ridge on a horizontal substrate, and find

qualitatively similar behaviour for all three problems.

1.5.4.1 A gravity-driven rivulet

Consider the steady flow of a thin gravity-driven rivulet of fluid on a vertical

substrate as in Subsection 1.5.2, but now subject to a prescribed transverse (rather

than longitudinal) shear stress τ at its free surface; without loss of generality we

take τ ≥ 0. Unlike the cases considered up to this point, the rivulet is non-

symmetric and so the positions of the contact lines are denoted by y = a1 and

y = a2, where a1 < a2, so that h(a1) = h(a2) = 0, and the rivulet has contact angles

β1 and β2 (which are, in general, non-zero) at y = a1 and y = a2, respectively. In

the general case of non-zero shear, τ > 0, we have β1 < β2, while in the special

case of no shear, τ = 0, we have β1 = β2 = β > 0, say.

We non-dimensionalise according to

x = Lx∗, y = Ly∗, a1 = La∗1, a2 = La∗2, z = δLz∗, h = δLh∗,

β1 = δβ∗
1 , β2 = δβ∗

2 , p− p∞ =
δσ

L
p∗, τ =

δ2σ

L
τ ∗,

u =
δ3σ

µ
u∗, v =

δ3σ

µ
v∗, w =

δ4σ

µ
w∗,

(1.97)
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where L is a typical length scale in the x and y directions, and δ = (L/ℓ)2 ≪ 1

is the small transverse aspect ratio. For clarity we immediately drop the star

superscripts on non-dimensional variables and, as in Subsection 1.4.2.2, we set

δ = β.

At leading order in β ≪ 1 the Navier–Stokes and mass-conservation equations

are given by (1.66) with α = π/2 and are to be solved subject to conditions of no

slip u = v = 0 and no penetration w = 0 at the substrate z = 0, and balances of

normal and tangential stress at the free surface:

p = −h′′, uz = 0 and vz = τ on z = h. (1.98)

Solving for p and u = (u, v, w) yields

p = −h′′, u =
1

2
(2h− z)z, v =

h′′′

2
(2h− z)z + τz,

w = −h
′′′′

6
(3h− z)z2 − h′′′h′

2
z2.

(1.99)

The kinematic free surface condition may be written as

∇ · (ū, v̄) = 0, (1.100)

where ū and v̄ are the local fluxes in the x and y directions, respectively, namely

ū =

∫ h

0

u dz =
h3

3
, v̄ =

∫ h

0

v dz =
h′′′h3

3
+
τh2

2
. (1.101)

Hence the free surface profile h satisfies the nonlinear ordinary differential equation

hh′′′ +
3τ

2
= 0. (1.102)

The longitudinal volume flux Qg through a transverse cross-section of the rivulet

x = constant is given by

Qg =

∫ a2

a1

ū dy =
1

3

∫ a2

a1

h3 dy. (1.103)
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1.5.4.2 A shear-driven rivulet and a ridge

The analysis in Subsection 1.5.4.1 concerns a gravity-driven rivulet on a vertical

substrate, hereafter referred to simply as a “gravity-driven rivulet”, but similar

analyses apply to two other closely related problems, namely, a rivulet of fluid

on a planar substrate driven by a prescribed longitudinal surface shear stress T ,

hereafter referred to simply as a “shear-driven rivulet”, and a ridge of fluid on a

horizontal substrate, hereafter referred to simply as a “ridge”.

Proceeding as for the gravity-driven rivulet with δ = (LT/σ)1/2 for the shear-

driven rivulet and δ left general for the ridge, but for simplicity restricting our

attention to the case L ≪ l so that we may neglect the effect of gravity entirely,

p, v and w are again given by (1.99).

For the shear-driven rivulet u = z and so h again satisfies (1.102), while the

longitudinal volume flux Qs through a transverse cross-section x = constant is

given by

Qs =

∫ a2

a1

ū dy =
1

2

∫ a2

a1

h2 dy. (1.104)

For the ridge u = 0 and so, once again, h satisfies (1.102), while the area A of

a transverse cross-section x = constant is given by

A =

∫ a2

a1

h dy. (1.105)

As a result of their strong similarities, we shall present results for all three

problems in parallel, and, when results apply to all three, we simply refer to the

“rivulet/ridge”.

1.5.4.3 Equilibrium solutions

All three problems satisfy (1.102) and the boundary conditions

h(±a) = 0, h′(−a) = β1, h′(+a) = −β2, (1.106)
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where we have chosen the (arbitrary) location of the origin so that the contact

lines are at y = ±a, where a is the semi-width of the rivulet/ridge. Therefore, in

this Subsection we describe the basic properties of the solutions of (1.102) subject

to (1.106).

Local analysis of (1.102) near the contact lines reveals that when β1 > 0 the

free surface near the left-hand contact line behaves according to

h = β1(a+ y) − 3τ

4β1
(a+ y)2 ln(a + y) +O(a+ y)2 (1.107)

as y → −a+, and when β2 > 0 the free surface near the right-hand contact line

behaves according to

h = β2(a− y) +
3τ

4β2
(a− y)2 ln(a− y) +O(a− y)2 (1.108)

as y → +a−, showing that h′′ is, in general, logarithmically singular at both contact

lines. However, when β1 = 0 the appropriate local behaviour near the left-hand

contact line is

h = 2
√
τ (a+ y)

3
2 +O(a+ y)

5+
√

13
4 (1.109)

as y → −a+, in place of (1.107).

An important relationship between the contact angles β1 and β2, the rivulet/ridge

semi-width a and the shear stress τ is given by

β2
2 − β2

1 = 6τa. (1.110)

Physically (1.110) represents a transverse balance of forces due to capillary and

shear-stress effects.

In order to investigate the effect of varying the transverse shear stress τ in a

systematic way it is sensible to consider a rivulet/ridge with prescribed flux/area as

τ is increased from zero. Physically we may interpret this as the quasi-equilibrium

development of a rivulet/ridge with prescribed flux/area as the shear stress is



Chapter 1 55

slowly increased from zero. Prescribing the values of the shear stress τ and the

flux/area means that one of the remaining three quantities β1, β2 and a must also

be prescribed. The most physically sensible way to do this is firstly to prescribe the

semi-width a (corresponding to a rivulet/ridge with two pinned contact lines and

with the unknown contact angles β1 and β2 determined as part of the solution),

then to prescribe β1 or β2 (corresponding to a rivulet/ridge with one pinned and

one de-pinned contact line and with the unknown semi-width a and the other

contact angle determined as part of the solution), and finally to prescribe β1 and

β2 (corresponding to the critical “yield” condition beyond which no equilibrium

solutions are possible).

In the special case of no transverse shear stress, τ = 0, the rivulet/ridge has

the familiar parabolic free surface profile h = H(y) given by

H =
a2 − y2

2a
(1.111)

with maximum thickness hm = a/2 at y = 0 and equal contact angles β1 = β2 = 1,

and (1.103)–(1.105) yield

Qg =
4a4

105
, Qs =

2a3

15
, A =

2a2

3
, (1.112)

respectively. For simplicity of presentation in what follows we choose (without loss

of generality) the prescribed flux/area values to be

Qg =
4

105
, Qs =

2

15
, A =

2

3
, (1.113)

corresponding to setting a = 1 in the appropriate expressions in the case τ = 0

given by (1.112). Note, however, that prescribing Qg, Qs and A according to

(1.113) does not guarantee that a = 1 for all τ > 0; indeed determining when and

how a varies as τ is varied is one of the key issues discussed in Subsections 1.5.4.4

and 1.5.4.5.
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1.5.4.4 Pinned solutions with prescribed semi-width

In this Subsection we describe the development of the equilibrium rivulet/ridge

solutions with prescribed semi-width a = 1 but varying β1 and β2 as τ is increased

from zero. Physically we can interpret these solutions as a rivulet/ridge with

pinned (i.e. fixed) contact lines but varying contact angles as τ varies.

In the general case of non-zero transverse shear stress, τ > 0, the rivulet/ridge is

non-symmetric with 0 < β1 < β2 and the free surface profile is obtained by solving

(1.102) numerically subject to (1.106) and the prescribed flux/area condition. This

was done by converting the problem into an initial value problem by using the local

behaviour of h near either y = −a given by (1.107) or near y = a given by (1.108)

to generate approximate initial conditions which were imposed close to (but not at)

the appropriate contact line. For example, using (1.107) yields the approximate

initial conditions

h(−a + δ) = β1δ −
3τ

4β1
δ2 ln δ + kδ2, (1.114)

h′(−a + δ) = β1 −
3τ

4β1
(2δ log δ + δ) + 2kδ, (1.115)

h′′(−a + δ) = − 3τ

4β1
(2 log δ + 3) + 2k, (1.116)

where δ ≪ 1 was chosen to be sufficiently small (typically δ = 10−6) and k is

a free parameter. Solutions were then obtained by iterating τ and k for a given

value of β1 until the conditions of zero thickness at the other contact line, h(a) =

0, and of prescribed flux/area were satisfied to within an appropriate tolerance

(typically 10−6). The consistency of the numerical results obtained were checked

by substituting the values of β1, β2, τ and a into the transverse balance of forces

(1.110).

Figure 1.20 shows numerically calculated free surface profiles of a gravity-driven

rivulet with a = 1 for various values of τ , illustrating how the profile becomes

increasingly skewed to the right as τ is increased from zero. The corresponding
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Figure 1.20: Free surface profiles z = h(y) of a gravity-driven rivulet for τ = 0, 0.08, 0.16, 0.24, 0.32 and

τmax ≃ 0.3646. The corresponding profiles for a shear-driven rivulet and for a ridge are qualitatively similar.
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Figure 1.21: Plot of (a) the contact angles β1 and β2, (b) the maximum thickness of the rivulet/ridge hm, and (c)

the location of the maximum thickness of the rivulet/ridge ym, as functions of τ for each of the three problems.
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Gravity-driven Rivulet Shear-driven Rivulet Ridge

τmax 0.3646 0.3730 0.3924

βmax 1.4791 1.4959 1.5344

hm 0.5149 0.5208 0.5342

ym 0.1962 0.1962 0.1962

Table 1.1: Values of τmax and the corresponding maximum values of β2 = βmax, hm and ym when τ = τmax for

each of the three problems.

profiles for a shear-driven rivulet and for a ridge are qualitatively similar and hence

are omitted for brevity. Figure 1.21 shows how the contact angles β1 and β2, the

maximum thickness hm, and the location of the maximum thickness ym, vary with

τ . In particular, Figure 1.21 shows that for all three problems β2 (> 1), hm (> 1/2)

and ym (> 0) increase monotonically while β1 (< 1) decreases monotonically (with,

of course, a = 1) as τ is increased from zero. Figure 1.21 also shows that there

is a maximum value of τ , denoted by τmax, at which β1 = 0, and hence from

(1.110) at which β2 = βmax = (6τmax)
1/2, beyond which no equilibrium solution

with prescribed semi-width a = 1 is possible. Table 1.1 gives the values of τmax

and the corresponding maximum values of β2 = βmax, hm and ym when τ = τmax

for each of the three problems.

1.5.4.5 De-pinned solutions with variable semi-width

To illustrate a rivulet/ridge that de-pins only at the advancing (i.e. right-hand)

contact line we choose βA = 1.3 and βR = 0, but note that any other value of

βA satisfying 1 < βA < βmax will give qualitatively similar results. Table 1.2

gives the values of τdepin and the corresponding values of β1, hm and ym when

τ = τdepin for each of the three problems in the case βA = 1.3. Figure 1.22 shows

the free surface profiles z = h(y) of a gravity-driven rivulet for various values of
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Gravity-driven Rivulet Shear-driven Rivulet Ridge

τdepin 0.2208 0.2187 0.2149

β1 0.6041 0.6145 0.6330

hm 0.5054 0.5070 0.5099

ym 0.1236 0.1217 0.1183

Table 1.2: Values of τdepin and the corresponding values of β1, hm and ym when τ = τdepin for each of the three

problems in the case βA = 1.3.
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0.1

0.2

0.3

0.4

0.5

z

τ = τdepin ≃ 0.2208
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Figure 1.22: Free surface profiles z = h(y) of a gravity-driven rivulet with advancing contact angle β2 = βA = 1.3

for τ = τdepin ≃ 0.2208, 0.2266, 0.2324, 0.2382, 0.2440, 0.2498 and τdepinmax ≃ 0.2557. The corresponding profiles

for a shear-driven rivulet and for a ridge are qualitatively similar.

τ ≥ τdepin ≃ 0.2208 illustrating how the profile is further skewed to the right, and

is flattened and widened as τ is increased from τdepin. The corresponding profiles

for a shear-driven rivulet and for a ridge are qualitatively similar and hence are

omitted for brevity.

There is a maximum value of τ , denoted now by τdepinmax, at which β1 = 0,

and hence from (1.110) at which a = amax = β2
A/(6τdepinmax), beyond which no

equilibrium solutions with prescribed advancing contact angle β2 = βA is possible.

Table 1.3 gives the values of τdepinmax and the corresponding values of a = amax,
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Gravity-driven Rivulet Shear-driven Rivulet Ridge

τdepinmax 0.2557 0.2565 0.2593

amax 1.1016 1.0981 1.0864

hm 0.4986 0.4970 0.4917

ym 0.3178 0.3136 0.2996

Table 1.3: Values of τdepinmax and the corresponding values of a = amax, hm and ym when τ = τdepinmax for

each of the three problems in the case βA = 1.3.

Gravity-driven Rivulet Shear-driven Rivulet Ridge

τdepin 0.2635 0.2674 0.2756

β2 1.3532 1.3617 1.3797

hm 0.5076 0.5104 0.5163

ym 0.1457 0.1462 0.1472

Table 1.4: Values of τdepin and the corresponding values of β2, hm and ym when τ = τdepin for each of the three

problems in the case βR = 0.5.

hm and ym when τ = τdepinmax for each of the three problems in the case βA = 1.3.

To illustrate a rivulet/ridge that de-pins only at the receding (i.e. left-hand)

contact line we choose βR = 0.5 and βA = ∞, but note that any other value of

βR satisfying 0 < βR < 1 will give qualitatively similar results. Table 1.4 gives the

values of τdepin and the corresponding values of β2, hm and ym when τ = τdepin for

each of the three problems in the case βR = 0.5. Figure 1.23 shows the free surface

profiles z = h(y) of a gravity-driven rivulet for various values of τ ≥ τdepin ≃ 0.2635

illustrating how the profile is again further skewed to the right but (in contrast to

the case of a rivulet that de-pins only at the advancing contact line) is thickened

and narrowed as τ is increased from τdepin. The corresponding profiles for a shear-
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Figure 1.23: Free surface profiles z = h(y) of a gravity-driven rivulet with receding contact angle β1 = βR = 0.5

for τ = τdepin ≃ 0.2635, 0.3, 0.4, 0.5, . . . , 1.7, 1.8, 2, 5, 10, 15, 20 and 25. The corresponding profiles for a

shear-driven rivulet and for a ridge are qualitatively similar.

Gravity-driven Rivulet Shear-driven Rivulet Ridge

τyield 0.2340 0.2338 0.2342

ayield 1.0259 1.0264 1.0250

hm 0.5029 0.5032 0.5025

ym 0.1460 0.1461 0.1458

Table 1.5: Values of τyield and the corresponding values of ayield, hm and ym when τ = τyield for each of the

three problems in the case βR = 0.5 and βA = 1.3.
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driven rivulet and for a ridge are qualitatively similar and hence are omitted for

brevity.

Except in the cases βR = 0 and βA = ∞ considered above, in general as τ is

increased from zero de-pinning will eventually occur at both contact lines. Beyond

this critical “yield” value of τ , denoted by τyield, no equilibrium solution exists and

the rivulet/ridge will evolve unsteadily. From (1.110), τyield and the corresponding

critical “yield” value of a, denoted by ayield, are related by

β2
A − β2

R = 6ayieldτyield, (1.117)

Table 1.5 gives the values of τyield and the corresponding values of ayield, hm and ym

when τ = τyield for each of the three problems in the case βR = 0.5 and βA = 1.3.
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1.6 Rings of Fluid

In Chapter 5 of this thesis we will consider a ring of fluid subject to a uniform

azimuthal surface shear stress that flows round the entire circumference of a large,

stationary horizontal cylinder. Many authors have studied the related problem

of fluid flow on a rotating horizontal cylinder. In particular, the two-dimensional

case of a film on the outside of a rotating cylinder (known as coating flow) as well

as the problem of a film on the inside of a rotating cylinder (known as rimming

flow) has received attention. In these studies, the rotation of the cylinder prevents

either the fluid from draining off the bottom of the cylinder (in the case of coating

flow), or collecting at the bottom of the cylinder (in the case of rimming flow),

because of the effects of gravity. Pukhnachev [76] derived an equation for the film

thickness in unsteady coating flow using lubrication theory including the effects

of surface tension, gravity and viscosity. Moffatt [60] used lubrication theory to

determine that for a given rotation speed, there is a maximum mass of fluid on the

outer surface of a cylinder which can be supported against gravity. Moffatt [60]

also experimentally observed that the film thickness may not be independent of

the axial coordinate and showed the occurrence of slight humps in the free surface

which can develop into rings of fluid along the cylinder. Johnson [41] considered

rimming flow of a power-law fluid in a rotating cylinder and found four classes of

steady-state solutions. In two of these solutions the film covers the entire cylinder,

and of the other two, the fluid coats one side of the cylinder in one, and in the other,

gravity dominates such that all the fluid collects at the bottom of the cylinder.

The papers by Pukhnachev [76], Moffatt [60] and Johnson [41] have motivated

a great deal of further work on fluid flow on a rotating cylinder by a wide range of

authors; however, there has been less attention given to the case where a pressure

gradient or shear stress is present. Tirumkudulu and Acrivos [94] included the hy-

drostatic pressure gradient in the model studied by Moffatt [60] for a film on the
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inside of a rotating cylinder and showed that the numerically computed film profile

compares favourably with their experimental results for a wide range of rotation

speeds. Villegas-Diaz, Power and Riley [103] studied the steady rimming flow of

a thin film on the inside of a rotating cylinder subject to a uniform longitudinal

surface shear stress, including the effects of gravity but not surface tension. There

exists a maximum volume flux such that the film wets the entire cylinder and it

is found that this maximum flux is four times greater in the case of rotation with

no shear stress present compared to the case of shear stress with no rotation. Dis-

continuous solutions with shocks (that is, one or more jumps in the film thickness)

are possible both when the shear stress and the rotation are in the same or in

opposite directions and, in particular, when they are in opposite directions then

these shocks can occur anywhere on the cylinder. To gain further insight into the

feasibility of these shock solutions in practice, Villegas-Diaz, Power and Riley [104]

then extended the lubrication model to include surface tension and higher-order

gravity effects, and offered analytical and numerical results to support the claim

that these compressive shock solutions are physically relevant.

There have been a number of experimental studies investigating coating and

rimming flow. Melo and Douady [56] investigated the rimming flow of a film

of oil as the rotation speed of the cylinder is increased and observed the occur-

rence of three-dimensional patterns, Thoroddsen and Mahadevan [93] observed

a wide range of patterns in experiments of flow inside a cylinder, including so-

called “shark-teeth” patterns where a wavy film-front develops into having cusp-

like fronts as the rotation speed is increased. Chen et al. [10] found that there is a

critical volume of fluid inside a cylinder in rimming flow such that, for a uniform

film to form, the required rotation speed is a minimum, and that if the volume is

below this critical value then shark-teeth patterns are observed while if the volume

is above this critical value then finger instabilities and discrete rings of fluid are
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(i) (ii) (iii)

Figure 1.24: Images of rings of particle-laden fluid in a Couette device, formed by rotating the device, found by

Tirumkudulu, Tripathi and Acrivos [95]. The patterns formed in (i) are (a) before rotation and (b) after rotation,

(ii) for (a) low rotation speed and (b) high rotation speed, and (iii) for constant rotation speed as time increases

from (a) through to (c). Reprinted with permission from Tirumkudulu, Tripathi and Acrivos [95], Copyright

1999, American Institute of Physics.

observed. Chicharro, Vazquez and Manasseh [11] also considered fluid flow on the

inside of a rotating cylinder but with a much lower volume of fluid than previous

studies and again observed rings of fluid at higher rotational speeds. On a slightly

different note, Deans and Kucuka [17] observed a uniform film of ammonia-water

mixture develop over time into banded films on the outside of a stationary hori-

zontal cylinder. Another area which has received much attention is segregation of

particle-laden fluids in coating and rimming flow, and work on this topic is sum-

marised by Seiden and Thomas [85] in their recent review paper. For example,

Tirumkudulu, Tripathi and Acrivos [95] constructed a Couette device consisting

of two concentric cylinders and partially filled the gap between them with particle-

laden fluid; the inner cylinder was then rotated and the particles were observed to

form rings, as shown in Figure 1.24.

There have also been a number of three-dimensional analytical studies on coat-

ing and rimming flow. Hosoi and Mahadevan [36] numerically computed steady
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and unsteady two-dimensional solutions for fluid on the inside of a rotating cylinder

and then computed solutions including instability in the free surface in the axial di-

rection to give the three-dimensional shark-teeth pattern observed by Thoroddsen

and Mahadevan [93]. Jin and Acrivos [39] extended the two-dimensional model

of Tirumkudulu and Acrivos [94] to include an axially varying viscosity for a

film inside a rotating cylinder and found that the computed film profiles show

good agreement with the results gained from numerically solving the full three-

dimensional Stokes equations. Evans, Schwartz and Roy [30] obtained numerical

solutions to the three-dimensional model for fluid flow on the outside of a rotating

horizontal cylinder derived by Evans, Schwartz and Roy [29], which included the

effects of gravity, surface tension, centripetal acceleration and axial variation, and

successfully reproduced features observed in their own experiments, namely the

formation of fingers and rings of fluid as the rotation speed increases. Noakes,

King and Riley [67] studied the three-dimensional linear stability of thin films of

fluid on the inside or outside of a rotating horizontal cylinder in the absence of

gravity such that the film thickness is uniform all round the cylinder. In the case

of rimming flow there is an axial instability resulting in the formation of rings of

fluid and in the case of coating flow there is either an axial instability as in the

rimming case or an azimuthal instability resulting in the formation of stripes along

the cylinder at certain points round its circumference. Pougatch and Frigaard [75]

computed three-dimensional numerical solutions for the film profile in rimming

flow after the uniform, two-dimensional film becomes unstable, including higher

order viscous and gravitational effects as well as leading order surface tension and

inertia.

Recently, Leslie, Wilson and Duffy [48] studied the steady flow of a thin ring

of fluid with constant non-zero contact angle flowing on the inside or outside of

a rotating horizontal cylinder. In particular, it is found that there is a maximum
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(a) (b) (c)

(d) (e)

Figure 1.25: Three-dimensional plots of a rivulet with critical mass for a range of prescribed rotation speeds. The

prescribed rotation speed increases from the lowest value in (a) to the largest value in (e). Reprinted from Leslie,

Wilson and Duffy [48] with permission of Cambridge University Press.

mass of fluid that can be supported against gravity for a given rotation speed or,

equivalently, there is a minimum rotation speed required to support a given mass

of fluid. At this critical mass (or rotation speed) the free surface of the rivulet

exhibits a cusp on the lower half of the cylinder on the side that is rising with

rotation. Figure 1.25 shows three-dimensional plots of a rivulet with critical mass

for a range of prescribed rotation speeds and, in particular, shows that increasing

the rotation speed increases the mass of fluid that can be supported. It was also

shown that backflow (that is, the azimuthal velocity in the opposite direction to

rotation) is possible near the free surface on the rising side of the cylinder close to

the critical solution.
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1.7 Outline of Thesis

In this thesis we analyse the behaviour of steady ridges, rivulets and rings of fluid,

driven by combinations of gravity, an external pressure gradient and a uniform

surface shear stress, where the latter two effects are interpreted as the fluid being

subject to an external airflow.

In Chapter 2 we use lubrication theory to describe the steady flow of a thin ridge

of fluid with prescribed constant volume on a substrate inclined to the horizontal,

including the effects of gravity and surface tension, subject to an external pressure

gradient arising from an external airflow that flows tangentially to the substrate

far from the ridge. We model the external airflow using classical thin-aerofoil

theory as described in Subsection 1.3.2 and obtain the governing equation for the

profile of the ridge. We then describe some basic properties of the solution before

using a combination of asymptotic and numerical techniques to analyse the effect

of varying the strength of the external airflow and the inclination angle of the

substrate.

In Chapter 3 we follow the approach of Duffy and Moffatt [23] described in

Subsection 1.4.2 and use the solution for the unidirectional flow of a thin rivulet

with prescribed constant volume flux down an inclined planar substrate to de-

scribe the locally unidirectional flow of a rivulet with constant width (i.e. pinned

contact lines) but slowly varying contact angle as well as the possible pinning and

subsequent de-pinning of a rivulet with constant contact angle and the possible

pinning and subsequent re-pinning of a rivulet with constant width as it flows in

the azimuthal direction from the top to the bottom of a large horizontal cylinder.

In Chapter 4 we consider the effect of a uniform azimuthal surface shear stress

in the direction opposing gravity in the problem considered in Chapter 3. In

particular, we find that the possible flow patterns in the rivulet cross-section are

again of the type shown in Figure 1.17. We then obtain a complete description
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of the flow in the case of a rivulet with constant contact angle and slowly varying

width and in the case of a rivulet with constant width and slowly varying contact

angle.

In Chapter 5 we consider a ring of fluid with constant width on a large hori-

zontal cylinder subject to a uniform azimuthal surface shear stress. In particular,

we show that there is a critical solution corresponding to a maximum mass of fluid

that can be supported against gravity for a given shear stress, and that when the

mass is close to its maximum value, backflow (that is, flow in the direction opposite

to that of the shear stress) is possible. We use a combination of asymptotic and

numerical techniques to analyse both the critical and the sub-critical solution.

Finally, in Chapter 6 we summarise the results and main findings of the thesis,

and suggest some directions for future work.
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1.8 Presentations and Publications

The work described in Subsection 1.5.4 of Chapter 1 in collaboration with former

Ph. D. student Julie M. Sullivan, together with my supervisors, has recently been

published in Physics of Fluids [90].

Aspects of the work described in Chapters 2 and 3 have been presented at the

British Applied Mathematics Colloquium in Birmingham in 2011 and in London

in 2012, at the Scottish Fluid Mechanics Meeting in Glasgow in 2011 and in Ed-

inburgh in 2012, at the Society for Industrial and Applied Mathematics Annual

Meeting in Minneapolis, USA in 2012, and at the Thin Liquid Films and Fluid

Interfaces: Models, Experiments and Applications workshop in Banff, Canada in

2012. A full account of the work in Chapter 2 has been submitted for publication

in Physics of Fluids and a full account of the work in Chapter 3 has recently been

published in the European Journal of Mechanics - B/Fluids [73].

Aspects of the work described in Chapters 4 and 5 have been presented at the

British Applied Mathematics Colloquium in London in 2012 and at the Scottish

Fluid Mechanics Meeting in Edinburgh in 2012. A full account of the work in

Chapter 4 has been submitted for publication in the Quarterly Journal of Me-

chanics and Applied Mathematics, while a full account of the work in Chapter 5

is currently in preparation for publication.

In addition, I participated in the Physics with Industry Workshop in Leiden

in October 2010, studying the problem of removing droplets of fluid left on the

surface of microchips during the production process using a jet of air. Details of

the work completed can be found in the workshop proceedings [100].
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Strongly-coupled interaction

between a ridge of fluid and an

external airflow

In this Chapter we study the steady flow of a thin ridge of fluid with prescribed

constant volume on a substrate inclined to the horizontal, including the effects of

gravity and surface tension, subject to an external pressure gradient arising from

an external airflow.

2.1 Problem Formulation

Consider a steady thin ridge (or, equivalently, a two-dimensional droplet) of fluid

on a planar substrate inclined at an angle α (0 ≤ α ≤ π) to the horizontal, in

the presence of a steady external airflow, as sketched in Figure 2.1. Values of

α satisfying 0 ≤ α < π/2 correspond to a sessile ridge sitting on an inclined

substrate (as shown in Figure 2.1), values of α satisfying π/2 < α ≤ π correspond

to a pendent ridge hanging from an inclined substrate, while the value α = π/2

71
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Figure 2.1: Sketch of a steady thin ridge of fluid on an inclined substrate in the presence of a steady external

airflow which flows tangentially to the substrate far from the ridge with constant speed U∞ and ambient pressure

p∞.

corresponds to the special case of a ridge on a vertical substrate. We assume that

the fluid in the ridge has constant density ρ and coefficient of surface tension σ,

and that the ridge is subject to an external flow of inviscid air of constant density

ρa which flows tangentially to the substrate far from the ridge with constant speed

U∞ and ambient pressure p∞. The airflow is perturbed by the presence of the

ridge, resulting in a non-uniform external pressure gradient that depends in a non-

trivial way on the unknown free surface profile of the ridge. Referred to Cartesian

coordinates Oxy with the x and y directions taken to be parallel and normal to

the substrate, respectively, as indicated in Figure 2.1, the ridge has free surface

profile y = h(x) for 0 ≤ x ≤ L, width L in the transverse (i.e. in the x) direction,

volume per unit length in the longitudinal (i.e. in the z) direction V , maximum

thickness h = hm at x = xm, and downslope and upslope contact angles θ1 = h′(0)

(≥ 0) and θ2 = −h′(L) (≥ 0), respectively. The pressure in both the air and the

ridge is denoted by p = p(x, y).

In order to analyse the problem we introduce the following non-dimensionalised
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and scaled variables:

x = L0x
∗, xm = L0x

∗
m, L = L0L

∗, y = ǫL0y
∗, y = L0Y

∗,

h = ǫL0h
∗, hm = ǫL0h

∗
m, V = ǫL2

0V
∗, p− p∞ =

ǫσ

L0
p∗,

(2.1)

where L0 is the characteristic transverse length scale (discussed in more detail

below) and ǫ = V/L2
0 ≪ 1 is the (small) transverse aspect ratio of the ridge,

giving V ∗ = 1 without loss of generality. Hence in what follows we set V ∗ = 1 in

all of the numerical calculations, but retain V ∗ explicitly in all of the analytical

results for clarity. Note that, since the problem has two different length scales

in the y direction, two different non-dimensional y-coordinates, namely y∗ and

Y ∗, are required. The coordinate y∗ corresponding to the characteristic thickness

scale for the ridge ǫL0 (≪ L0) is required to describe the behaviour of the ridge,

and, in particular, the internal pressure in the ridge denoted by p∗ = p∗(x∗, y∗).

On the other hand, the coordinate Y ∗ corresponding to the characteristic length

scale L0 (i.e. the same length scale as in the x-direction) is required to describe

the behaviour of the external airflow, and, in particular, the external pressure in

the air denoted by p∗ = P (x∗, Y ∗). For clarity, we immediately drop the star

superscripts on non-dimensional variables in what follows.

The external airflow consists of a uniform stream with constant speed U∞ in

the positive x-direction plus a non-uniform perturbation due to the presence of

the ridge, which we obtain using thin-aerofoil theory (as in Subsection 1.3.2). The

velocity potential and stream function of the external airflow φ(x, Y ) and ψ(x, Y )

(both non-dimensionalised with L0U∞) are given in terms of the unknown free

surface profile of the ridge by (from (1.29) and (1.40), and using the fact that

φx = ψY and φY = −ψx)

φ(x, Y ) = x+
ǫ

2π

∫ L

0

h′(ξ) ln
[

(x− ξ)2 + Y 2
]

dξ, (2.2)

ψ(x, Y ) = Y +
ǫ

π

∫ L

0

h′(ξ) tan−1

(

Y

x− ξ

)

dξ, (2.3)



Chapter 2 74

satisfying ψ(x, 0) = 0, where a prime denotes differentiation with respect to ar-

gument. Using either (2.2) or (2.3) together with Bernoulli’s theorem yields an

expression for the leading order external pressure P (x, Y ), namely

P (x, Y ) = −Λ

∫ L

0

(x− ξ)h′(ξ)

(x− ξ)2 + Y 2
dξ, (2.4)

where the non-dimensional parameter Λ (≥ 0), defined by

Λ =
ρaL0U

2
∞

πσ
, (2.5)

is the appropriate measure of the strength of the external airflow. Note that,

since U∞ occurs in (2.5) only via the term U2
∞, the sign of U∞ is unimportant

and hence the profile of the ridge will be the same whether the external airflow

is directed tangentially up or tangentially down the substrate; for definiteness we

take the external airflow to be directed tangentially up the substrate, as indicated

in Figure 2.1. Note also that, since the inviscid external airflow imposes a pressure

gradient but no shear stress on the free surface of the ridge, there is no flow within

the ridge. Hence, the internal pressure p satisfies the equations

ǫpx = −
(

L0

ℓ

)2

sinα, py = −
(

L0

ℓ

)2

cosα (2.6)

(that is, equation (1.46) with L = L0 and u = 0 since there is no surface shear stress

to drive flow within the ridge) subject to the leading order normal-stress balance

at the free surface y = h, namely p = P − h′′ at Y = 0, where ℓ = (σ/ρg)1/2

denotes the usual capillary length, in which g denotes the constant magnitude of

gravitational acceleration. Integrating (2.6b) subject to the boundary condition

gives

p =

(

L0

ℓ

)2

(h− y) cosα + P − h′′ (2.7)

(that is, equation (1.49) with L = L0 and cosα 6= 1 since α = O(1) at this stage).

Substituting this solution for the internal pressure p into (2.6a) and evaluating the
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expression for the external pressure P given in (2.4) at Y = 0 yields the governing

linear singular integro-differential equation for the ridge profile h, namely

h′′′ −
(

L0

ℓ

)2

h′ cosα−
(

L0

ℓ

)2
sinα

ǫ
+ Λ

d

dx
−
∫ L

0

h′(ξ)

x− ξ
dξ = 0 (2.8)

(that is, analogous to equation (1.51) with α = O(1) and in the absence of surface

shear stress), where the integral is of Cauchy principal-value type. Equation (2.8)

is to be solved subject to boundary conditions of zero thickness at both contact

lines and of prescribed constant volume, namely

h(0) = 0, h(L) = 0, V =

∫ L

0

h dx. (2.9)

Note that not all of the terms in (2.8) are necessarily of the same order in the thin-

film limit ǫ → 0, and so the appropriate form of (2.8) depends on the particular

physical situation under investigation.

2.2 A Large Sessile Ridge

When the substrate is nearly horizontal (specifically, when α = O(ǫ)), the trans-

verse component of gravity is relatively weak and so a relatively “large” ridge of

width comparable to the capillary length ℓ can be supported against gravity by

capillary and/or external pressure forces. In this case it is appropriate to choose

L0 = ℓ as the characteristic transverse length scale so that the transverse aspect

ratio is ǫ = V/ℓ2 ≪ 1, the characteristic pressure scale is ǫσ/ℓ = ǫρgℓ = ρgV/ℓ,

and at leading order in the limit ǫ→ 0 equation (2.8) becomes

h′′′ − h′ − α̂+ Λ
d

dx
−
∫ L

0

h′(ξ)

x− ξ
dξ = 0, (2.10)

where

Λ =
ρaℓU

2
∞

πσ
(2.11)
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and the non-dimensional parameter α̂ (≥ 0), defined by

α̂ =
α

ǫ
, (2.12)

is an appropriately scaled version of the angle of inclination of the substrate to the

horizontal. Equation (2.10) is analysed in detail below and in Sections 2.3 and 2.4.

The corresponding equations in the pendent case (specifically, when π−α = O(ǫ))

and in the case of a small ridge (specifically, when α = O(1)) are discussed briefly

in Sections 2.5 and 2.6, respectively.

2.2.1 Local Behaviour near the Contact Lines

Local analysis of (2.10) reveals that near the downslope contact line h behaves

according to

h ∼ θ1x−
Λθ1
2
x2 ln x+

κ1

2
x2 as x→ 0+, (2.13)

while near the upslope contact line h behaves according to

h ∼ θ2(L− x) − Λθ2
2

(L− x)2 ln(L− x) +
κ2

2
(L− x)2 as x → L−, (2.14)

where the contact angles θ1 and θ2 and the constants κ1 and κ2 are determined

globally (rather than locally). In particular, (2.13) and (2.14) show that h′′ (but

not h or h′) is logarithmically singular at both contact lines for non-zero θ1 and

θ2.

2.2.2 Transverse Force Balance

Multiplying the governing equation (2.10) by h, integrating with respect to x from

0 to L, and using the local behaviour (2.13) and (2.14) yields a statement of the

transverse force balance on the ridge, namely

θ2
1 − θ2

2 −
∫ L

0

−
∫ L

0

h′(x)h′(ξ)

x− ξ
dξ dx = 2V α̂. (2.15)
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A simple change of variables shows that the double integral in (2.15) is identically

zero for regular (non-singular) h′(x) in 0 ≤ x ≤ L. Hence, since in the present

problem, as in that studied by Durbin [26] but not in that studied by King and

Tuck [42], there are finite contact angles at both contact lines, the transverse force

balance (2.15) reduces to simply

θ2
1 − θ2

2 = 2V α̂. (2.16)

Note that Durbin’s [26] equation (A6) is equivalent to the present equation (2.16).

The transverse force balance (2.16) is a very useful relationship which (since

V > 0 and α̂ ≥ 0) shows immediately that 0 ≤ θ2 ≤ θ1, i.e. that a ridge on an

inclined substrate is always skewed in the downslope direction, with θ1 = θ2 only in

the special case of a horizontal substrate, α̂ = 0. Moreover, there is a critical ridge

profile which occurs when θ2 = 0 (i.e. when the upslope contact angle is zero). For

a prescribed value of α̂, this critical profile occurs at a critical maximum external

airflow strength Λ, denoted by Λ = Λmax(α̂), above which there are no physically

realisable steady solutions and, conversely, for a prescribed value of Λ, it occurs at a

critical maximum angle of inclination of the substrate α̂, denoted by α̂ = α̂max(Λ),

above which there are again no physically realisable steady solutions. The critical

quantities Λmax and α̂max will be discussed in Sections 2.3 and 2.4.

2.2.3 General Form of the Solution for the Ridge Profile

Inspection of (2.9) and (2.10) reveals that the general form of the solution for the

ridge profile h = h(x) is a linear function of V and α̂, namely

h = V h0 + α̂h1, (2.17)

with

h0(0) = h0(L) = h1(0) = h1(L) = 0,

∫ L

0

h0 dx = 1,

∫ L

0

h1 dx = 0, (2.18)
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h0(x)

x

Λ = 0

Λ = Λmax(0)
≃ 2.25

(a)

h1(x)

x

Λ = Λmax(0)
≃ 2.25

(b)

Figure 2.2: Plots of the functions (a) h0(x) and (b) h1(x) appearing in the solution for the ridge profile (2.17) for

Λ = 0, 1, 2, Λmax(0) ≃ 2.25 when L = 1.

where the function h0 = h0(x), which represents the ridge profile in the case of

a horizontal substrate α̂ = 0, is positive and symmetric about x = L/2, and the

function h1 = h1(x) is antisymmetric about x = L/2. In general, we must solve

(2.10) subject to (2.9) for h numerically, and we do this using the finite difference

method detailed in Appendix A. Figure 2.2 shows numerically calculated plots of

(a) h0 and (b) h1 when L = 1 for various values of Λ satisfying Λ ≤ Λmax(0) ≃ 2.25.

In particular, since h1 is positive for 0 < x < L/2 and negative for L/2 < x < L,

Figure 2.2 shows that increasing α̂ (i.e. tilting the substrate) always skews the

ridge in the downslope direction so that the maximum thickness hm increases,

the location of the maximum thickness xm decreases (i.e. moves downslope), the

downslope contact angle θ1 increases, and the upslope contact angle θ2 decreases.

2.3 Strengthening the External Airflow

In this Section we investigate the quasi-static evolution of a large sessile ridge of

prescribed constant volume V on a substrate inclined at a constant angle α̂ to the
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horizontal as the external airflow is gradually strengthened (i.e. as Λ is gradually

increased from zero). In Subsection 2.3.1 we consider a pinned ridge with pinned

contact lines, and hence constant width L but variable contact angles θ1 and θ2.

In reality, the contact lines will not remain pinned for all values of Λ ≤ Λmax (i.e.

for all values of θ2 ≥ 0). In practice (as, for example, Dussan V. [99] and Blake

and Ruschak [9] describe), eventually one or both of the contact angles θ1 and θ2

will reach either the receding contact angle, θR, or the advancing contact angle,

θA, (as defined in Subsection 1.3.1) and the corresponding contact line or lines will

de-pin. For definiteness we assume that θ1 and θ2 satisfy θR ≤ θ1,2 ≤ θA when

Λ = 0, i.e. that the ridge is always pinned in the absence of the external airflow.

We will find that increasing the strength of the external airflow Λ decreases the

contact angles θ1 and θ2, and so, while neither θ1 nor θ2 can ever reach θA, they

may reach θR. However, as previously noted, the transverse force balance (2.16)

shows that θ2 ≤ θ1, and so (except in the special case α̂ = 0 in which θ1 = θ2), θ2

will always reach θR before θ1 does (i.e. the upslope contact line with always de-pin

before the downslope one). After de-pinning we assume that θ2 remains equal to

θR, and hence from (2.16) that θ1 = (θ2
R + 2V α̂)1/2 (≥ θR). Thus in Subsection

2.3.2 we consider a ridge that de-pins at its upslope contact line, and hence after

de-pinning has variable width L but constant contact angles θ1 = (θ2
R + 2V α̂)1/2

and θ2 = θR.

2.3.1 A Pinned Ridge

In this Subsection we study a pinned ridge with constant width L but variable

contact angles θ1 and θ2 for increasing Λ.
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2.3.1.1 The Special Case of No External Airflow (Λ = 0)

In the special case of no external airflow, Λ = 0, the ridge profile, denoted by

h = H0 = H0(x), is given by (from (2.17))

H0 = V h0 + α̂h1, (2.19)

where the functions h0 = h0(x) and h1 = h1(x) are given by

h0 =
sinh

L− x

2
sinh

x

2
L

2
cosh

L

2
− sinh

L

2

(2.20)

and

h1 =
L cosh

L− x

2
sinh

x

2

sinh
L

2

− x, (2.21)

respectively. From (2.19)–(2.21) it may readily be deduced that

θ1,2 = V γ ± α̂

2γ
, (2.22)

where the + sign is taken for θ1 and the − sign is taken for θ2, where the function

γ = γ(L) (> 0) is defined by

γ =
1

2

(

L

2
coth

L

2
− 1

)−1

. (2.23)

Inspection of (2.23) reveals that γ is a strictly positive, monotonically decreasing

function of L and satisfies γ ∼ 6/L2 → ∞ as L → 0+ and γ ∼ 1/L → 0+ as

L→ ∞, as shown in Figure 2.3. Hence from (2.22) it can be deduced that as L is

increased both contact angles decrease, with θ2 reaching zero and θ1 reaching the

non-zero value θ1 = 2V γ = α̂/γ when α̂ = 2V γ2, and hence the critical maximum

value of α̂ when Λ = 0 is given by α̂max(0) = 2V γ2.

Figure 2.4(a) shows plots of the profile of a pinned ridge in the case of no

external airflow, H0, for various values of α̂ when L = 1, in which case α̂max(0) ≃

74.40. In particular, Figure 2.4(a) shows that, as expected, in the absence of an

external airflow tilting the substrate skews the ridge in the downslope direction.
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γ(L)

L

Figure 2.3: Plot of the function γ(L) given by (2.23). The dotted curves show the leading order asymptotic

behaviour γ ∼ 6/L2 → ∞ as L → 0+ and γ ∼ 1/L → 0+ as L → ∞.

H0(x)

x

α̂ = 0

α̂ = α̂max(0) ≃ 74.40

(a)

H1(x)

x

α̂ = 0

α̂ = α̂max(0) ≃ 74.40

(b)

Figure 2.4: Plots of (a) the leading order term, H0(x), and (b) the first order term, H1(x), in the asymptotic

solution for the profile of a pinned ridge in the limit of a weak external airflow, Λ → 0+, given by (2.24) for α̂ = 0,

20, 40, 60, α̂max(0) ≃ 74.40 when L = 1.
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2.3.1.2 The Limit of a Weak External Airflow (Λ → 0+)

In the limit of a weak external airflow, Λ → 0+, the ridge profile takes the form

h = H0 + ΛH1 +O(Λ2), (2.24)

where the leading order term, H0 = H0(x), is simply the solution in the special

case of no external airflow, Λ = 0, given by (2.19)–(2.21) and the first order term,

H1 = H1(x), satisfies

H ′′′
1 −H ′

1 +
d

dx
−
∫ L

0

H ′
0(ξ)

x− ξ
dξ = 0 (2.25)

subject to

H1(0) = 0, H1(L) = 0,

∫ L

0

H1 dx = 0. (2.26)

Figure 2.4(b) shows numerically calculated plots of the first order term in the

asymptotic solution for the profile of a pinned ridge, H1, for various values of α̂

when L = 1. In the special case of a horizontal substrate, α̂ = 0, H1 is symmetric

about x = L/2 with H1 > 0 and H ′
1 = 0 at x = xm = L/2, and −H ′

1(L) =

H ′
1(0) < 0. Therefore, in this case the effect of a weak external airflow is to

slightly decrease both contact angles θ1 and θ2 equally, and to slightly increase

the maximum thickness hm (which always occurs at x = xm = L/2), i.e. to push

the ridge down at its edges and pull it up at its middle. In the general case of a

tilted substrate, 0 < α̂ ≤ α̂max, H1 is no longer symmetric about x = L/2, with

x = xm satisfying 0 < xm < L/2, and −H ′
1(L) < H ′

1(0) ≤ 0 with H ′
1(0) = 0 at

α̂ = α̂max(0). Therefore, in this case the effect of a weak external airflow is to

slightly decrease both contact angles (but to decrease θ2 more than θ1), and to

slightly increase the maximum thickness hm and to move the position at which it

occurs xm slightly downslope, i.e. to skew the ridge downslope while simultaneously

pushing it down at its edges and pulling it up at its middle as in the case of a

horizontal substrate. We will consider the effect of the external airflow in more

detail in Subsection 2.3.1.3 below.
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2.3.1.3 The General Case of Non-Zero External Airflow (Λ > 0)

Figure 2.5(a) shows plots of the profile of a pinned ridge as Λ is increased from

Λ = 0 to Λ = Λmax ≃ 1.50 when α̂ = 20 and L = 1. Figures 2.5(b)–(d) show how

the contact angles θ1 and θ2, the maximum thickness hm and the relative location of

the maximum thickness xm/L vary with Λ for a range of values of α̂. In particular,

Figure 2.5(b) shows that both θ1 and θ2 decrease monotonically with Λ, and that

dθ1/dΛ = 0 when θ2 = 0 (i.e. at Λ = Λmax). Furthermore, Figures 2.5(c) and 2.5(d)

show that hm increases monotonically and xm/L decreases monotonically (i.e. the

ridge is skewed downslope) except in the special case of a horizontal substrate,

α̂ = 0, in which the ridge is symmetric about x = xm = L/2 for all Λ.

Figure 2.6 shows the relationship between α̂max and Λmax (i.e. between the

critical values of α̂ and Λ and for which θ2 = 0) for various values of L; this plot

may be interpreted as giving either Λmax as a function of α̂ or α̂max as a function

of Λ. In particular, Figure 2.6 shows that, for a given value of L, the largest

possible value of α̂max occurs at Λ = 0 (i.e. is equal to α̂max(0)), and the largest

possible value of Λmax occurs at α̂ = 0 (i.e. is equal to Λmax(0)). For example,

in Figures 2.5(b)–(d) the largest possible value of Λ is Λmax(0) ≃ 2.25, and the

largest possible value of α̂ is α̂max(0) ≃ 74.40.

The results shown in Figure 2.5 confirm the trend evident in the limit of a

weak external airflow described in Subsection 2.3.1.2, namely that the effect of

strengthening the external airflow is to skew the ridge downslope while simulta-

neously pushing it down at its edges and pulling it up at its middle. In order to

understand why the external airflow has this effect on the ridge it is instructive to

investigate the external pressure due to the external airflow given by (2.4) in more

detail.

Figure 2.7(a) shows the external pressure at the free surface of the ridge and the

substrate, P (x, 0), plotted as a function of x for various values of Λ when α̂ = 20
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h(x)

x

Λ = 0

Λ = Λmax ≃ 1.50

(a) Λ

θ1, θ2

θ1(α̂ = 60)

θ1 = θ2

(α̂ = 0)

θ2(α̂ = 60)
(b)

hm

Λ

α̂ = 0α̂ = 60

(c)

xm/L

Λ

α̂ = 0

α̂ = 60

(d)

Figure 2.5: Plots of (a) the profile of a pinned ridge for Λ = 0, 0.4, 0.8, 1.2, Λmax ≃ 1.50 when α̂ = 20 and L = 1,

together with (b) the contact angles θ1 and θ2, (c) the maximum thickness hm and (d) the relative location of

the maximum thickness xm/L, all plotted as functions of Λ for a pinned ridge for α̂ = 0, 20, 40, 60 when L = 1

(in which case Λmax(0) ≃ 2.25 and α̂max(0) ≃ 74.40). In (b)–(d) the dots indicate the points at which θ2 = 0

(i.e. when Λ = Λmax), the dashed lines show the curves on which Λ = Λmax, and the dotted lines show the

first-order-accurate asymptotic solutions in the limit of a weak external airflow, Λ → 0+.
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α̂max

Λmax

L = 0.9

L = 1.6

Figure 2.6: Plot of the relationship between the critical inclination angle α̂max and the critical external airflow

strength Λmax for L = 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6. The dotted lines show the first-order-accurate asymptotic

solutions in the limit of a weak external airflow, Λ → 0+.

and L = 1 (i.e. for the pinned ridge whose profile is shown in Figure 2.5(a)). In

particular, Figure 2.7(a) shows that the external pressure near x = xm is lower

than the ambient pressure far from the ridge, and that the external pressure near

the downslope (leading) and upslope (trailing) edges of the ridge is higher than

the ambient pressure. Using the local behaviour (2.13) and (2.14) shows that near

the downslope contact line P behaves according to

P (x, 0) ∼ −Λθ1 ln x→ ∞ as x → 0+ (2.27)

for θ1 > 0, while near the upslope contact line P behaves according to

P (x, 0) ∼ −Λθ2 ln(L− x) → ∞ as x→ L− (2.28)

for θ2 > 0 and

P (x, 0) ∼ Λmaxκ2L = O(1) as x → L− (2.29)

for θ2 = 0, i.e. a non-zero contact angle leads to a logarithmic singularity in

P (x, 0) at the corresponding contact line. Figure 2.7(b) shows the external pres-

sure, P (x, Y ), plotted as a function of Y for various values of x in the range
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x

P (x, 0)

Λ = 0.4

Λ = Λmax ≃ 1.50

(a)

Y

P (x, Y )

x/L = 0

x/L = −0.1
x/L = −0.3

x/L = 0.1

x/L = xm/L ≃ 0.41

(b)

x

Y

(c)

Figure 2.7: Plots of (a) the external pressure at the free surface of the ridge and the substrate, P (x, 0), as a

function of x for Λ = 0, 0.4, 0.8, 1.2, Λmax ≃ 1.50 when α̂ = 20 and L = 1, (b) the external pressure, P (x, Y ), as

a function of Y at x/L = −0.3, −0.2, −0.1, 0, 0.1, 0.2, 0.3, xm/L ≃ 0.41 when Λ = 1, α̂ = 20 and L = 1, and (c)

the streamlines of the external airflow passing over the ridge when Λ = 1, α̂ = 20, L = 1 and ǫ = 0.05.



Chapter 2 87

−0.3 ≤ x/L ≤ xm/L ≃ 0.41 when Λ = 1, α̂ = 20 and L = 1. In particular,

Figure 2.7(b) shows that P (xm, Y ) is negative at Y = 0 and increases monotoni-

cally towards zero as Y increases. Figure 2.7(b) also shows that P (0, Y ) is large

and positive near Y = 0 and decreases towards zero as Y increases. P (L, Y ) has

qualitatively the same behaviour as P (0, Y ), but for clarity values of x/L greater

than xm/L ≃ 0.41 are not shown in Figure 2.7(b). Figure 2.7(c) shows the stream-

lines of the external airflow passing over the ridge plotted using (2.2) when Λ = 1,

α̂ = 20, L = 1 and ǫ = 0.05. Far upstream and downstream of the ridge the flow is

uniform and so the streamlines are parallel to the substrate, while near x = xm the

curvature of the streamlines is (slightly) negative and so, given that the pressure

increases in the direction away from the centre of curvature, the pressure there is

(slightly) smaller than that of the uniform stream. Hence, the free surface tends

to be pulled up near x = xm (i.e. hm increases). Similarly, near the contact lines

the streamline curvature is (slightly) positive and so the pressure near the contact

lines is (slightly) larger than that of the uniform stream. Hence, the free surface

tends to be pushed down (i.e. both θ1 and θ2 decrease) near the contact lines.

2.3.2 A Ridge that De-Pins at its Upslope Contact Line

In this Subsection we study a ridge that de-pins at its upslope contact line for

increasing Λ.

As the strength of the external airflow is increased from zero the ridge initially

deforms but remains pinned with constant width as described in Subsection 2.3.1.

However, since the contact angles θ1 and θ2 (≤ θ1) are both monotonically de-

creasing functions of Λ, eventually at a critical external airflow strength denoted

by Λ = ΛR and satisfying ΛR ≤ Λmax, the upslope contact angle θ2 becomes equal

to the retreating contact angle θR and the upslope contact line de-pins. As the

strength of the external airflow is increased from Λ = ΛR the ridge continues to
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θ1 = θ2(α̂ = 0)
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Figure 2.8: Plots of (a) the profile of a de-pinned ridge for Λ = ΛR ≃ 1.02, 2, 3, 4, 5 when α̂ = 20 and θR = 2,

together with (b) the contact angles θ1 and θ2, (c) the maximum thickness hm, (d) the relative location of the

maximum thickness xm/L and (e) the width L, all plotted as functions of Λ for a ridge whose upslope contact line

de-pins for α̂ = 0, 20, 40 when θR = 2 (in which case α̂max(0) ≃ 50.01). In (b)–(e) the dots indicate the points

at which the upslope contact line de-pins (i.e. when Λ = ΛR and θ2 = θR), and in (c)–(e) the dotted lines show

the leading order asymptotic solutions in the limit of a strong airflow, Λ → ∞, given by (c) hm ≃ 0.94Λ → ∞,

(d) xm/L = 1/2 (which coincides with the solution in the case α̂ = 0) and (e) L ≃ 2.20Λ−1 → 0+ for all α̂.



Chapter 2 89

deform but now with varying width L. Figure 2.8(a) shows plots of the profile of

a de-pinned ridge as Λ is increased from Λ = ΛR ≃ 1.02 when α̂ = 20 and θR = 2.

Note that for clarity the corresponding pinned ridge profiles for 0 ≤ Λ < ΛR are

not shown in Figure 2.8(a), but examples are, of course, shown in Figure 2.5(a).

Figures 2.8(b)–(e) show how the contact angles θ1 and θ2, the maximum thickness

hm, the relative location of the maximum thickness xm/L and the width L vary

with Λ for a range of values of α̂ when θR = 2. Note that for Λ < ΛR (i.e. to the

left of the dots denoting the points at which the upslope contact line de-pins), the

curves in Figures 2.8(b)–(d) are, of course, identical to the corresponding curves

for a pinned ridge shown in Figures 2.5(b)–(d). In particular, Figure 2.8(b) shows

that after the contact line has de-pinned (i.e. for Λ > ΛR) the contact angles

θ1 = (θ2
R + 2V α̂)1/2 and θ2 = θR are both independent of the value of Λ. More-

over, Figures 2.8(c)–(e) show that while hm and L are monotonically increasing

and decreasing functions of Λ, respectively, xm/L decreases to a minimum value at

Λ = ΛR before increasing towards the limiting value of xm/L = 1/2 as Λ becomes

large.

In the limit of a strong external airflow, Λ → ∞, the numerically calculated

solutions shown in Figure 2.8 suggest that the ridge becomes infinitely narrow like

L = O(Λ−1) → 0+ and infinitely thick like hm = O(Λ) → ∞ with xm/L → 1/2−.

To investigate the behaviour of the ridge in this limit we therefore rescale the

variables according to

L = Λ−1L̄, x = Λ−1L̄x̄, xm = Λ−1L̄x̄m, ξ = Λ−1L̄ξ̄,

h = ΛL̄−1h̄, hm = ΛL̄−1h̄m.
(2.30)

At leading order in the limit Λ → ∞ the effect of gravity is negligible, and equations

(2.10) and (2.9) become

h̄′′′ + L̄
d

dx̄
−
∫ 1

0

h̄′(ξ̄)

x̄− ξ̄
dξ̄ = 0 (2.31)
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h̄(x̄)

x̄x̄m = 1/2

h̄m ≃ 2.05

Figure 2.9: Plot of the leading order scaled ridge profile h̄(x̄) in the limit of a strong external airflow, Λ → ∞,

obtained by solving (2.31) subject to (2.32) numerically.

subject to

h̄(0) = 0, h̄(1) = 0, h̄′(1) = 0,

∫ 1

0

h̄ dx̄ = V, (2.32)

where the scaled width L̄ must be calculated as part of the solution. Equation

(2.31) was solved subject to (2.32) numerically to obtain the solution for the leading

order scaled ridge profile h̄ = h̄(x̄), and, in particular, the leading order values

L̄ ≃ 2.20, h̄m ≃ 2.05 and x̄m = 1/2. Figure 2.9 shows h̄ plotted as a function

of x̄, and, in particular, shows that h̄ is symmetric about x̄ = x̄m = 1/2. The

leading order asymptotic solutions for hm ≃ 0.94Λ → ∞ and L ≃ 2.20Λ−1 → 0+

are shown with dotted lines in Figures 2.8(c) and 2.8(e), while in Figure 2.8(d) the

leading order asymptotic solution for xm/L = 1/2 coincides with the solution in the

case α̂ = 0. In particular, this asymptotic solution shows how the ridge becomes

infinitely narrow and thick and symmetric in the limit of a strong external airflow.

While this asymptotic solution is formally valid for arbitrarily large values of Λ, the

underlying thin-film approximation will, of course, eventually fail when Λ becomes

too large.
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2.4 Tilting the Substrate

In this Section we investigate the quasi-static evolution of a large sessile ridge of

prescribed constant volume V in the presence of an external airflow of constant

strength Λ as the substrate is gradually tilted (i.e. as the angle of inclination of the

substrate α̂ to the horizontal is gradually increased from zero). Like in Subsection

2.3.1, in Subsection 2.4.1 we again consider a pinned ridge with pinned contact

lines, and hence constant width L but variable contact angles θ1 and θ2. However,

unlike in Subsection 2.3.1, in which we found that increasing Λ decreases both θ1

and θ2, we will find that increasing α̂ increases θ1 and decreases θ2; moreover, as

the general form of the solution for the ridge profile (2.17) shows, θ1 and θ2 both

vary linearly with α̂. Like in Section 2.3, in reality, the contact lines will not remain

pinned for all values of α̂ ≤ α̂max (i.e. for all values of θ2 ≥ 0). In practice, either

θ1 will reach θA or θ2 will reach θR and the corresponding contact line or lines will

de-pin. For definiteness we assume that θ1 and θ2 satisfy θR ≤ θ1,2 ≤ θA when

α̂ = 0, i.e. that the ridge is always pinned when the substrate is horizontal. Unlike

in Section 2.3, in which, in general, θ2 always reaches θR first as Λ is increased, now

it is possible either for θ2 to reach θR or for θ1 to reach θA first as α̂ is increased.

After de-pinning we assume that either θ2 remains equal to θR and hence from

(2.16) that θ1 = (θ2
R +2V α̂)1/2 (≥ θR) is an increasing function of α̂, or θ1 remains

equal to θA and hence from (2.16) that θ2 = (θ2
A − 2V α̂)1/2 (≤ θA) is a decreasing

function of α̂, as appropriate. In Subsection 2.4.2 we consider the general situation

in which both contact lines eventually de-pin, while in Subsections 2.4.3 and 2.4.4

we consider the special cases in which only the downslope contact line de-pins and

only the upslope contact line de-pins, respectively.
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2.4.1 A Pinned Ridge

Figure 2.10(a) shows plots of the profile of a pinned ridge as α̂ is increased from

α̂ = 0 to α̂max ≃ 38.02 when Λ = 1 and L = 1. Figures 2.10(b)–(d) show

how θ1, θ2, hm and xm/L vary with α̂ for a range of values of Λ. In particular,

Figure 2.10(b) shows that θ1 increases linearly and θ2 decreases linearly with α̂.

Furthermore, Figures 2.10(c) and 2.10(d) show that hm increases monotonically

and xm/L decreases monotonically with α̂ (i.e. the ridge is skewed downslope as

the substrate is tilted). Note that, as in Figures 2.5(b)–(d) discussed previously

in Subsection 2.4.1 (which correspond to the same values of L and V ), in Figures

2.10(b)–(d) the largest possible value of Λ is Λmax(0) ≃ 2.25, and the largest

possible value of α̂ is α̂max(0) ≃ 74.40.

2.4.2 A Ridge that Eventually De-Pins at Both of its Con-

tact Lines

In the general case in which θA is finite and θR is non-zero, the ridge eventually

de-pins at both of its contact lines for increasing α̂, but the order in which the

contact lines de-pin depends on the value of Λ. Specifically, if θ1 reaches θA at some

value α̂ = α̂A(Λ) (< α̂max(Λ)), before θ2 reaches θR, then the downslope contact

line will de-pin first, but if θ2 reaches θR at some value α̂ = α̂R(Λ) (< α̂max(Λ)),

before θ1 reaches θA, then the upslope contact line will de-pin first. Regardless of

which contact line de-pins first, the second contact line de-pins when both θ1 = θA

and θ2 = θR, and hence from the transverse force balance (2.16) this always occurs

at α̂ = α̂AR, where

α̂AR =
θ2
A − θ2

R

2V
, (2.33)

which is independent of the value of Λ, and for α̂ > α̂AR there are no steady

solutions of the kind considered here. There is a critical value of Λ, denoted by
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Figure 2.10: Plots of (a) the profile of a pinned ridge for α̂ = 0, 10, 20, α̂max ≃ 38.02 when Λ = 1 and L = 1,

together with (b) the contact angles θ1 and θ2, (c) the maximum thickness hm and (d) the relative location of

the maximum thickness xm/L, all plotted as functions of α̂ for a pinned ridge for Λ = 0, 0.5, 1, 1.5 and 2 when

L = 1 (in which case Λmax(0) ≃ 2.25 and α̂max(0) ≃ 74.40). In (b)–(d) the dots indicate the points at which

θ2 = 0 (i.e. when α̂ = α̂max) and the dashed lines show the curves on which α̂ = α̂max.
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ΛAR, for which both contact lines de-pin simultaneously as α̂ is increased (i.e.

θ1 = θA and θ2 = θR simultaneously for the first time at α̂ = α̂AR), and the

value of ΛAR determines which of the two contact lines de-pin first for increasing

α̂. Specifically, if Λ < ΛAR then the downslope contact line de-pins first, while if

Λ > ΛAR then the upslope contact line de-pins first.

Figures 2.11(a) and 2.11(b) show plots of the profile of a ridge as α̂ is increased

from α̂ = 0 to α̂ = α̂AR = 45/2 = 22.50 in the cases Λ < ΛAR and Λ > ΛAR,

respectively, when θA = 7 and θR = 2. Figures 2.11(c)–(f) show how θ1 and θ2,

hm, xm/L and L vary with α̂ for a range of values of Λ when θA = 7 and θR = 2.

Note that until the first contact line de-pins (i.e. to the left of the leftmost dots

denoting the points at which the first contact line de-pins), the curves in Figures

2.11(c)–(e) are, of course, identical to the corresponding curves for a pinned ridge

shown in Figures 2.10(b)–(d). In particular, Figures 2.11(c) and 2.11(f) show that

if Λ < ΛAR ≃ 0.93 then the downslope contact line de-pins first and the width

of the ridge increases after de-pinning, if Λ > ΛAR then the upslope contact line

de-pins first and the width of the ridge decreases after de-pinning, and if Λ = ΛAR

then both contact lines de-pin simultaneously.

2.4.3 A Ridge that De-Pins Only at its Downslope Contact

Line

In the special case when θR = 0 the upslope contact line remains pinned for all

values of θ2 ≥ 0, while the downslope contact line de-pins at α̂ = α̂A. Figure

2.12(a) shows plots of the profile of a ridge which has de-pinned at its downslope

contact line as α̂ is increased from α̂ = α̂A ≃ 23.08 to α̂ = α̂Amax = 49/2 = 24.50

when Λ = 1, θA = 7 and θR = 0. Figures 2.12(b)–(e) show how θ1 and θ2, hm,

xm/L and L vary with α̂ for a range of values of Λ when θA = 7 and θR = 0. In

particular, Figure 2.12(f) shows that the width of the ridge always increases with
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Figure 2.11: Plots of (a) the profile of a ridge which first de-pins at its downslope contact line for α̂ = 0, 5,

α̂A ≃ 10.99, 15, 20, α̂AR = 22.50 and Λ = 0 (< ΛAR ≃ 0.93), (b) the profile of a ridge which first de-pins at its

upslope contact line for α̂ = 0, 5, α̂R ≃ 7.34, 10, 15, 20, α̂AR = 22.50 and Λ = 1.5 (> ΛAR), when θA = 7 and

θR = 2, together with (c) the contact angles θ1 and θ2, (d) the maximum thickness hm, (e) the relative location

of the maximum thickness xm/L, and (f) the width L, all plotted as functions of α̂ for a ridge whose upslope and

downslope contact lines de-pin for Λ = 0, 0.5, ΛAR ≃ 0.93, 1, 1.5 when θA = 7 and θR = 2. In (c)–(f) the first

(i.e. the leftmost) dot on each curve indicates the point at which the first contact line (which can be either the

upslope or downslope contact line) de-pins, the second (i.e. the rightmost) dot indicates the point α̂ = α̂AR at

which the second contact line de-pins, and the vertical dashed line indicates the value α̂ = α̂AR = 22.50 beyond

which there are no steady solutions of the kind considered here.
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Figure 2.12: Plots of (a) the profile of a ridge which has de-pinned at its downslope contact line for α̂ = α̂A ≃ 23.08,

24, 24.25, α̂Amax = 24.50 when Λ = 1, θA = 7 and θR = 0, together with (b) the contact angles θ1 and θ2, (c) the

maximum thickness hm, (d) the relative location of the maximum thickness xm/L and (e) the width L, all plotted

as functions of α̂ for a ridge whose downslope contact line de-pins for Λ = 0, 0.5, 1 when θA = 7 and θR = 0. In

(b)–(e) the first (i.e. the leftmost) dot on each curve indicates the point at which the downslope contact de-pins,

the second (i.e. the rightmost) dot indicates the point α̂ = α̂Amax at which θ2 = 0, and the vertical dashed line

indicates the value α̂ = α̂Amax = 24.50 beyond which there are no steady solutions on the kind considered here.
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α̂ after de-pinning.

The upslope contact angle eventually reaches the value θ2 = θR = 0 when

θ2
A = 2V α̂, and so, as Figures 2.12(b)–(e) show, there is a maximum value of

α̂ = α̂Amax = θ2
A/2V (= α̂AR evaluated at θR = 0), which is independent of the

value of Λ, at which the ridge achieves its maximum width and beyond which there

are no steady solutions of the kind considered here.

2.4.4 A Ridge that De-Pins Only at its Upslope Contact

Line

In the special case when θA = ∞ the downslope contact line remains pinned for

all values of θ1, while the upslope contact line de-pins at α̂ = α̂R. Figure 2.13(a)

shows plots of profile of a ridge which has de-pinned at its upslope contact line as

α̂ is increased from α̂ = α̂R ≃ 20.58 when Λ = 1, θA = ∞ and θR = 2. Figures

2.13(b)–(e) show how θ1 and θ2, hm, xm/L and L vary with α̂ for a range of values

of Λ when θA = ∞ and θR = 2. In particular, Figure 2.13(f) shows that the width

of the ridge always decreases with α̂ after de-pinning.

In the limit of a large angle of inclination of the substrate, α̂ → ∞, the nu-

merically calculated solutions shown in Figure 2.13 suggest that the ridge becomes

infinitely narrow like L = O(α̂−1/4) → 0+ and infinitely thick like hm = O(α̂1/4) →

∞ with xm/L → 1/3+. To investigate the behaviour of the ridge in this limit we

therefore rescale the variables according to

L = α̂−1/4L̄, x = α̂−1/4L̄x̄, xm = α̂−1/4L̄x̄m, ξ = α̂−1/4L̄ξ̄,

h = α̂1/4L̄−1h̄, hm = α̂1/4L̄−1h̄m, θ1 = α̂1/2L̄−2θ̄1.
(2.34)

At leading order in the limit α̂→ ∞ the effects of the external airflow and of the

normal component of gravity are negligible, and equations (2.10) and (2.9) become

h̄′′′ − L̄4 = 0 (2.35)
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Figure 2.13: Plots of (a) the profile of a ridge which has de-pinned at its upslope contact line for α̂ = α̂R ≃ 20.58,

100, 500, 1000, 2000 when Λ = 1, θA = ∞ and θR = 2, together with (b) the contact angles θ1 and θ2, (c) the

maximum thickness hm, (d) the relative location of the maximum thickness xm/L and (e) the width L, all plotted

as functions of α̂ for a ridge whose upslope contact line de-pins for Λ = 0, 0.5, 1 when θA = ∞ and θR = 2. In

(b)–(e) the dots on each curve indicate the point at which the upslope contact de-pins, and the dotted curves

show the leading order asymptotic solutions in the limit of a large angle of inclination of the substrate, α̂ → ∞,

given by (b) θ1 ≃ 1.41α̂1/2 → ∞, (c) hm ≃ 0.61α̂1/4 → ∞, (d) xm/L → 1/3+ and (e) L ≃ 2.91α̂−1/4 → 0+ for

all Λ.
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h̄(x̄)

x̄x̄m = 1/3

h̄m ≃ 1.78

Figure 2.14: Plot of the scaled ridge profile h̄(x̄) in the limit of a large angle of inclination of the substrate,

α̂ → ∞, given by (2.37) and (2.38).

subject to

h̄(0) = 0, h̄(1) = 0, h̄′(1) = 0,

∫ 1

0

h̄ dx̄ = V, (2.36)

where the scaled width L̄ must be calculated as part of the solution. Equations

(2.35) and (2.36) have the simple exact solution

h̄ =
L̄4

6
x̄(1 − x̄)2 where L̄ = (72V )1/4 ≃ 2.91V 1/4, (2.37)

which gives the values

θ̄1 =
L̄4

6
= 12V, h̄m =

2L̄4

81
=

16V

9
≃ 1.78V, x̄m =

1

3
. (2.38)

Figure 2.14 shows h̄ plotted as a function of x̄, and, in particular, shows that h̄ is

skewed downslope with x̄m = 1/3. The leading order asymptotic solutions for θ1 =

(2V α̂)1/2 ≃ 1.41α̂1/2 → ∞, θ2 = 0, hm = (16/9)(V 3α̂/72)1/4 ≃ 0.61α̂1/4 → ∞,

xm/L = 1/3 and L = (72V/α̂)1/4 ≃ 2.91α̂−1/4 → 0+ are shown with dotted lines

in Figures 2.13(b)–(e). In particular, this asymptotic solution shows how the ridge

becomes infinitely narrow and thick and is skewed downslope with infinitely large

downslope contact angle in the limit of a large angle of inclination of the substrate.
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Like the solution in the limit of strong external airflow discussed in Subsection

2.3.2, while this asymptotic solution is formally valid for arbitrarily large values

of α̂, the underlying thin-film approximation will, of course, eventually fail when

α̂ becomes too large.

2.5 A Large Pendent Ridge

The equation for the profile of a large pendent ridge on a nearly horizontal substrate

(specifically, when π − α = O(ǫ)), differs from the corresponding equation for a

large sessile ridge (2.10) derived in Section 2.2 only in the sign of the h′ term (i.e.

the term corresponding to the normal component of gravity), where Λ is again

given by (2.11) and α̂ (≥ 0) is now defined by

α̂ =
π − α

ǫ
. (2.39)

This equation is again subject to the boundary conditions (2.9), and equations

(2.13)–(2.18) again hold.

In the special case of no external airflow, Λ = 0, the ridge profile is again given

by (2.19), where the functions h0 = h0(x) and h1 = h1(x) are now given by

h0 =
sin

L− x

2
sin

x

2

sin
L

2
− L

2
cos

L

2

(2.40)

and

h1 = x−
L cos

L− x

2
sin

x

2

sin
L

2

, (2.41)

respectively. The contact angles θ1 and θ2 are again given by (2.22), where the

function γ = γ(L) is now defined by

γ =
1

2

(

1 − L

2
cot

L

2

)−1

. (2.42)
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γ(L)

L

Figure 2.15: Plot of the function γ(L) given by (2.42). The dotted curves show the leading order asymptotic

behaviour γ ∼ 6/L2 → ∞ as L → 0+ and γ ∼ (2π − L)/4π → 0+ as L → 2π−.

Inspection of (2.42) reveals that, unlike for a sessile ridge (2.23), for a pendent

ridge there are multiple branches of solutions. However, γ is a strictly positive,

monotonically decreasing function of L in the only interval in which the solutions

for h are physically realisable, namely 0 < L ≤ 2π, and satisfies γ ∼ 6/L2 → ∞

as L→ 0+ and γ ∼ (2π − L)/4π → 0+ as L→ 2π−, as shown in Figure 2.15.

The quasi-static evolution of a large pendent ridge as the external airflow is

gradually strengthened and as the substrate is gradually tilted is very similar to

that of a large sessile ridge described in Sections 2.3 and 2.4, respectively. For

example, Figure 2.16 shows how θ1, θ2, hm, xm/L and L vary with Λ for a range

of values of α̂ when θR = 2 for both a large sessile and a large pendent ridge. In

particular, Figure 2.16 shows that there is little difference between the behaviour

of the ridge in the two situations, with the pendent ridge (shown with the dashed

lines) generally being slightly thicker, de-pinning at a slightly smaller value of

ΛR, and (after de-pinning occurs) being slightly narrower than the corresponding

sessile ridge (shown with the solid lines). Moreover, as Figure 2.16 also shows,

at leading order in the limit of a strong external airflow, Λ → ∞, the effect of
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Figure 2.16: Plots of (a) the contact angles θ1 and θ2, (b) the maximum thickness hm, (c) the relative location

of the maximum thickness xm/L, and (d) the width L, all plotted as functions of Λ for a ridge whose upslope

contact line de-pins for α̂ = 0, 20, 40 when θR = 2. The dots indicate the points at which the upslope contact

line de-pins (i.e. when Λ = ΛR and θ = θR). The solid lines show the results for a large sessile ridge for which

α̂ = α/ǫ = O(1) and the dashed lines show the results for a large pendent ridge for which α̂ = (π − α)/ǫ = O(1).
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gravity is negligible and both sessile and pendent ridges behave according to the

asymptotic behaviour described in Subsection 2.3.2.

2.6 A Small Ridge

When the substrate is not restricted to being nearly horizontal (specifically, when

α = O(1)), in both sessile and pendent cases the transverse component of gravity is

relatively strong and so only a relatively “small” ridge of width much less than the

capillary length ℓ can be supported against gravity by capillary and/or external

pressure forces. In this case it is appropriate to choose L0 =
√
ǫℓ = V 1/4

√
ℓ as the

characteristic transverse length scale so that the aspect ratio is ǫ =
√
V /ℓ ≪ 1,

the characteristic pressure scale is
√
ǫσ/ℓ =

√
ǫρgℓ = ρgV 1/4

√
ℓ, and at leading

order in the limit ǫ→ 0 equation (2.8) becomes

h′′′ − sinα + Λ
d

dx
−
∫ L

0

h′(ξ)

x− ξ
dξ = 0, (2.43)

where

Λ =
ρaU

2
∞
√
ǫℓ

πσ
=
ρaU

2
∞V

1/4
√
ℓ

πσ
. (2.44)

Inspection of (2.43) reveals that h(x, α) = h(x, π−α), i.e. a small sessile ridge and

a small pendent ridge have the same profile. Comparing (2.43) with the equation

for h in the case of a large sessile ridge (2.10) reveals that, as expected, the normal

component of gravity (i.e. the h′ term) is negligible for a small ridge, while the

dimensionless variable α̂ is replaced by sinα. Also, comparing (2.44) with (2.11)

reveals that U∞ must be much greater in the case of a small ridge than in the case

of a large ridge for the integral term to balance the other terms in (2.43) (since

V 1/4
√
ℓ ≪ ℓ); physically, this is because the external airflow must be stronger to

balance the relatively larger effect of surface tension on a smaller ridge. Near to

the contact lines, h again behaves according to (2.13) and (2.14), while the force
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balance in the x direction and the form of the free surface are now given by (2.16)

and (2.17), respectively, with sinα replacing α̂. In the special case of no external

airflow, Λ = 0,

h0 =
6x (L− x)

L3
,

h1 =
x

12
(L− x) (L− 2x)

(2.45)

and

θ1,2 =
6V

L2
± L2 sinα

12
, (2.46)

where again the + sign is taken for θ1 and the − sign is taken for θ2. It may readily

be deduced from (2.46) that the condition

sinα ≤ 72V

L4
(2.47)

must hold for physically realisable solutions (i.e. for θ2 ≥ 0), and that, unlike in

the case of a large ridge, θ2 will not reach zero for all combinations of prescribed

values of L and V , specifically if 72V/L4 > 1. The solution for Λ = 0, given by

(2.45)–(2.47), was found by Hocking and Miksis [34] albeit with a slightly different

scaling. In the limit of a weak external airflow, Λ → 0+, h is given by (2.24),

where H0 is the Λ = 0 solution and

H1 = V H10 + sinα H11, (2.48)

where the functions H10 = H10(x) and H11 = H11(x) are given by

H10 = lnL− 5x (L− x)

2L2
− x2(3L− 2x)

L3
ln x− (L− x)2 (L+ 2x)

L3
ln (L− x) ,

H11 =
Lx

48
(L− 2x) (L− x) − x2(L− x)2

24
ln x+

x2 (L− x)2

24
ln (L− x) .

(2.49)

The plots ofH0 andH1 are qualitatively similar to those shown in Figure 2.4 except

when 72V/L4 > 1, in which case H ′
0(L) is strictly positive (rather than simply non-

negative) and H ′
1(0) is strictly negative (rather than simply non-positive).
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As previously mentioned, h(x, α) = h(x, π − α), and hence we consider only

the case of a small sessile ridge with 0 ≤ α ≤ π/2 (including the case of a vertical

substrate α = π/2). In Subsection 2.4.2 we found that for a large ridge for suffi-

ciently large α̂, both contact lines will de-pin (namely when θ1 = θA and θ2 = θR).

For a small ridge the forcing term in (2.43), namely sinα, is bounded and the

contact lines will de-pin at both ends only if θ2
A − θ2

R ≤ 2V . Figures 2.17(a) and

2.17(b) give numerically calculated plots showing how θ1 and θ2 behave as α is

increased for various values of Λ with L = 2 in the case of a small ridge. In Figure

2.17(a) the values θA = 1.7 and θR = 1 were chosen so that θ2
A − θ2

R < 2 and

sinαAR = (1.72 − 1)/2 = 0.945 (or αAR ≃ 1.24, the value of α at which both

contact lines de-pin). As in Subsection 2.4.2, the value of Λ is crucial to deter-

mining which contact line de-pins first: if Λ < ΛAR then the downslope contact

line de-pins first, if Λ > ΛAR then the upslope contact line de-pins first, and if

Λ = ΛAR then the contact lines de-pin at the same value of α, namely at α = αAR.

For these particular parameter values, ΛAR ≃ 0.19. In Figure 2.17(b) the values

θA = 1.7 and θR = 0.8 were chosen so that θ2
A − θ2

R > 2. In this case, the value

of Λ determines whether the ridge remains pinned, it de-pins only at the upslope

contact line, or it de-pins only at the downslope contact line, and an example of

each possibility is shown.

Figures 2.18(a) and 2.18(b) show plots of the values of sinαAR at which the

contact lines de-pin. In Figure 2.18(a), sinαAR is plotted as a function of θR for

various values of θA. If θA <
√

2 then the range of values that sinαAR may take

is limited, but if θA ≥
√

2 then it is possible for sinαAR to lie anywhere in the

interval 0 ≤ sinαAR ≤ 1. The region to the left of each curve corresponds to the

case when only the downslope contact line de-pins. There are no solutions for

θR > θA and there are no solutions “above” each curve since no steady solutions

exist for α > αAR. In Figure 2.18(b), sinαAR is plotted as a function of θA for
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Figure 2.17: Plots of the contact angles θ1 and θ2 as functions of sin α for (a) Λ = 0, ΛAR ≃ 0.19, 0.4 when

L = 2, θA = 1.7 and θR = 1 (i.e. θ2
A
− θ2

R
< 2), and (b) Λ = 0, 0.2, 0.4 when L = 2, θA = 1.7 and θR = 0.8 (i.e.

θ2
A − θ2

R > 2). The first (i.e. the leftmost) dot on each curve indicates the point at which the first contact line

(which can be either the upslope or downslope contact line) de-pins and in (a), the second dot indicates the point

sin αAR = (1.72 − 1)/2 = 0.945 at which the second contact line de-pins.

various values of θR. There are no solutions for θA < θR and there are also no

solutions “above” each curve since this corresponds to α > αAR. The region to

the right of each curve corresponds to the case when only the upslope contact

line de-pins. Figure 2.18(c) shows a parameter-plane plot of Λ as a function of

L at α = π/2 (i.e. a vertical substrate) for various values of θA and θR such that

θ2
A − θ2

R = 2. Since θ1 reaches a maximum and θ2 reaches a minimum at α = π/2

then this corresponds to critical value pairs of Λ and L required for the contact

lines to de-pin. In the limit of a strong airflow, Λ → ∞, L = O(Λ−1) → ∞ as

given in Subsection 2.3.2. Note that there is a maximum value that L can take so

that the contact lines may de-pin, namely L = (72V )1/4 ≃ 2.91V 1/4, as deduced

from (2.47), and occurring when Λ = 0, θA =
√

2 and θR = 0. The regions to the

left and to the right of each curve in Figure 2.18(c) are considered separately. In

the region to the left of each curve, if θ2 = θR then θ1 > θA, which means that

no steady solutions exist at α = π/2 since sinαAR < 1; however, if θ1 = θA then
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sinαAR

θR

θA = 2.5θA =
√

2

θA = 0.5

(a)

sin αAR

θA

θR = 0

θR = 2.5

(b)

Λ

L

θR = 0,

θA =
√

2

θR = 3,

θA =
√

11

(c)

Figure 2.18: (a) and (b) are plots of sinαAR as a function of θR for θA = 0.5, 1,
√

2, 1.5, 2, 2.5 and θA for θR = 0,

0.5, 1, 1.5, 2, 2.5, respectively, and (c) is a parameter-plane plot of the strength of the external airflow Λ as a

function of the width L for a ridge on a vertical wall α = π/2 that de-pins at the contact lines when θR = 0, 1,

2, 3 (corresponding to θA =
√

2,
√

3,
√

6,
√

11). The dotted line is the leading order asymptotic solution in the

limit of strong airflow Λ → ∞, given by L ≃ 2.20Λ−1.
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θ2 > θR, which means that only the downslope contact line de-pins. In the region

to the right of each curve, if θ1 = θA then θ2 < θR, which means that no steady

solutions exist at α = π/2 since sinαAR < 1; however, if θ2 = θR then θ1 < θA,

which means that only the upslope contact line de-pins.

In summary, the main difference between the behaviour of a large ridge and

a small ridge is that the contact lines of a large ridge will always de-pin for large

enough α̂ whereas a small ridge may remain pinned at one or both ends depending

on the values of θA, θR, Λ and L.

2.7 Conclusions

In the present Chapter we investigated the behaviour of a steady thin ridge of

fluid with prescribed constant volume on a substrate inclined at an angle α to

the horizontal, including the effects of gravity and surface tension, subject to an

external pressure gradient arising from an external airflow. When the substrate is

nearly horizontal (specifically, when α = O(ǫ), where ǫ is the small aspect ratio of

the ridge), a relatively “large” ridge of width comparable to the capillary length

may be supported in a steady state, either sitting on the substrate (the sessile

case), or hanging from it (the pendent case). When the substrate is not restricted

to being nearly horizontal (specifically, when α = O(1)), only a relatively “small”

ridge of width much less than the capillary length may be supported in a steady

state. The governing equation for the ridge profile is different in the case of a large

sessile ridge, a large pendent ridge, and a small (sessile or pendent) ridge; however,

the behaviour in each of the three cases is similar. Hence we gave a complete

description of the behaviour of a large sessile ridge in Sections 2.2–2.4 and then

briefly considered the other two problems in Sections 2.5 and 2.6, highlighting the

differences between the three cases. In their study, King and Tuck [42] considered
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only the case when surface tension is negligible for their numerical simulations,

that is, the ridge width is much larger than the capillary length and so necessarily

α = O(ǫ) (i.e. a nearly horizontal substrate) for a steady solution. Conversely, in

their study of the stability of a ridge on an inclined substrate, Hocking and Miksis

[34] considered the case when the ridge width is much smaller than the capillary

length and, as such, found steady solutions for α = O(1) (i.e. a substrate that is

not restricted to being nearly horizontal).

In Section 2.3 we described the quasi-static evolution of solutions with pre-

scribed constant volume as the external airflow is gradually strengthened. Unlike

King and Tuck [42], who found that zero, one or two values of the strength of the

external airflow yield a steady solution for each value of the substrate inclination,

as described in Subsection 1.3.3, in the present problem we found that a range of

possible values of the strength of the external airflow are possible for each value

of the substrate inclination. In Subsection 2.3.1 we studied a pinned ridge with

pinned contact lines (i.e. constant width) and varying contact angles and found

that both contact angles decrease, the maximum thickness increases and the ridge

becomes skewed downslope as the airflow is strengthened, as shown in Figure

2.5(a). For a constant angle of inclination, there is a maximum airflow strength

that corresponds to the upslope contact angle attaining its minimum physically

realisable value of zero. In practice, the upslope contact angle will reach the re-

ceding angle at some value of the airflow strength less than this maximum and the

upslope contact line will de-pin. Hence in Subsection 2.3.2 we considered a ridge

of variable width whose upslope contact line de-pins with an assumed constant

upslope contact angle (specifically, the receding angle). In the limit of a strong

airflow, the ridge becomes narrow and thick with the downslope contact angle

remaining constant, as seen in Figure 2.8(a).

In Section 2.4 we described the quasi-static evolution of solutions with pre-
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scribed constant volume as the substrate is gradually tilted. In Subsection 2.4.1

we studied a pinned ridge with pinned contact lines and varying contact angles

and found that the downslope contact angle increases, the upslope contact angle

decreases and the maximum thickness increases, so that the ridge becomes skewed

downslope as the substrate is tilted, as shown in Figure 2.10(a). Like in Section

2.3, for a constant airflow strength there is a maximum possible angle of inclina-

tion that again corresponds to the upslope contact angle attaining its minimum

physically realisable value of zero. In practice, one or both of the contact lines

will de-pin before the upslope contact angle reaches zero. In Subsection 2.4.2 we

considered the general case in which both contact lines de-pin and in Subsections

2.4.3 and 2.4.4 we considered the special cases in which only the downslope contact

line de-pins and only the upslope contact line de-pins, respectively. For a ridge

whose contact lines de-pin at both ends, we found that the value of the inclina-

tion of the substrate at which this double de-pinning occurs is independent of the

strength of the external airflow, as shown in Figure 2.11, with no steady solutions

of the kind considered here existing beyond this value. A ridge whose downslope

contact line de-pins while its upslope contact line remains pinned becomes wider

and shallower and there is a maximum value of the inclination of the substrate

beyond which no steady solutions of the kind considered here exist (corresponding

to the upslope contact angle attaining its minimum physically realisable value of

zero). This maximum inclination value is independent of both the strength of the

external airflow and of the ridge width, as shown in Figure 2.12. A ridge whose

upslope contact line de-pins while its downslope contact line remains pinned be-

comes narrower and thicker as the inclination of the substrate is increased, with

steady solutions existing for all values of the substrate inclination, as shown in

Figure 2.13.

In Section 2.5 we found that a large pendent ridge has smaller contact angles
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and greater maximum thickness than a large sessile ridge for a given strength of

external airflow and angle of inclination of the substrate. Hence, the value of the

airflow strength at which the upslope contact angle de-pins (for a given receding

angle) is smaller for a large pendent ridge than it is for a large sessile ridge as the

airflow is gradually strengthened, as shown in Figure 2.16.

In Section 2.6 we found that, unlike in the case of a large ridge, it is possible

that a small ridge (of width much less than the capillary length) may exist for

any angle of inclination of the substrate. In particular, the upslope contact angle

achieves a minimum at α = π/2 (i.e. a vertical substrate) and so if this minimum

upslope contact angle is greater than zero then a steady solution is possible for all

α. Similarly, the ridge will de-pin at one or both contact lines only if the advancing

and/or receding angles are attained for α ≤ π/2.
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Pinning, de-pinning and

re-pinning of a slowly varying

rivulet

In this Chapter we show how the solutions for the unidirectional flow of a rivulet

with prescribed volume flux down an inclined planar substrate can be used to

describe the locally unidirectional flow of a rivulet with constant width but vari-

able contact angle (i.e. pinned contact lines) as well as the possible pinning and

subsequent de-pinning of a rivulet with constant contact angle and the possible

de-pinning and subsequent re-pinning of a rivulet with constant width as they

flow in the azimuthal direction from the top to the bottom of a large horizontal

cylinder.

3.1 Unidirectional Flow of a Thin Rivulet

Consider the steady unidirectional flow of a thin symmetric rivulet with semi-

width a and volume flux Q (> 0) down a planar substrate inclined at an angle

112
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α (0 ≤ α ≤ π) to the horizontal. We assume that the fluid is Newtonian with

constant viscosity µ, density ρ and coefficient of surface tension γ, and choose

Cartesian coordinates Oxyz with the x axis down the line of greatest slope, the

y axis horizontal, and the z axis normal to the substrate z = 0. The velocity

u = u(y, z)i and the pressure (relative to its ambient value) p = p(y, z) satisfy

the familiar mass-conservation and Navier–Stokes equations subject to the usual

normal and tangential stress balances and the kinematic condition at the free

surface z = h(y), the no-slip condition at the substrate z = 0, and the condition of

zero thickness at the contact lines (i.e. h(±a) = 0). The contact angle is denoted

by β = ∓h′(±a) (≥ 0), where the dash denotes differentiation with respect to

argument, and the maximum thickness of the rivulet, which always occurs at

y = 0, is denoted by hm = h(0). We non-dimensionalise y and a with ℓ, z, h

and hm with δℓ, u with U = δ2ρgℓ2/µ, Q with δℓ2U = δ3ρgℓ4/µ, and p with

δρgℓ, where g is the magnitude of gravitational acceleration, ℓ = (γ/ρg)1/2 is

the capillary length, and δ is the transverse aspect ratio. There is some freedom

regarding the definition of δ. When β > 0 we could define δ using the value of

the contact angle by choosing δ = β, corresponding to taking β = 1 without loss

of generality. Alternatively, we could define δ using the prescribed value of the

flux, denoted by Q̄ (> 0), by choosing δ = (µQ̄/ρgℓ4)1/3, corresponding to taking

Q̄ = 1 without loss of generality. However, for the moment we leave δ unspecified

and retain both β and Q̄ in order to keep the subsequent presentation as general

as possible.

In the general case of non-zero contact angle β > 0 Duffy and Moffatt [23]

showed that at leading order in the limit of small transverse aspect ratio δ → 0

(i.e. for a thin rivulet) the governing equations are readily solved to yield the

velocity u = sinα(2h− z)z/2, the pressure p = cosα(h− z) − h′′, the free surface
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shape

h(y) = β ×
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(3.1)

the maximum thickness of the rivulet

hm = β ×
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2
< α ≤ π,

(3.2)

and the volume flux

Q =
β3 sinα

9m4
f(ma), (3.3)

where m = | cosα|1/2. The function f = f(ma) appearing in (3.3) is given by

f(ma) =























15ma coth3 ma− 15 coth2ma− 9ma cothma + 4 for 0 ≤ α <
π

2
,

12

35
(ma)4 for α =

π

2
,

−15ma cot3ma + 15 cot2ma− 9ma cotma+ 4 for
π

2
< α ≤ π,

(3.4)

and satisfies f ∼ 12(ma)4/35 → 0 as ma → 0, f ∼ 6ma − 11 → ∞ as ma → ∞

for 0 ≤ α < π/2, and f ∼ 15π(π −ma)−3 → ∞ as ma→ π for π/2 < α ≤ π.

In the special case of zero contact angle β = 0 we recover the solution for a

perfectly wetting fluid described by Duffy and Wilson [24], namely that there is

no solution for 0 ≤ α ≤ π/2, but

a =
π

m
, h =

hm

2
(1 + cosmy), Q =

5π sinαh3
m

24m
for

π

2
< α ≤ π. (3.5)
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3.2 A Rivulet with Constant Contact Angle

3.2.1 The General Case of Non-Zero Contact Angle β =

β̄ > 0

Duffy and Moffatt [23] used the solution (3.1)–(3.4) to describe the locally uni-

directional flow with prescribed flux Q = Q̄ down a slowly varying substrate,

specifically the flow in the azimuthal direction from the top α = 0 to the bottom

α = π of a large horizontal cylinder, of a rivulet with constant non-zero contact

angle β = β̄ > 0 but slowly varying semi-width a. Note that here and henceforth

“slowly varying” means that the longitudinal aspect ratio ǫ = ℓ/R, where R is the

radius of the cylinder, satisfies ǫ≪ δ so that ǫ/δ → 0 in the limit ǫ→ 0. Imposing

the conditions of prescribed flux, Q = Q̄ with Q given by (3.3), and of constant

non-zero contact angle, β = β̄ > 0, yields a non-linear algebraic equation for the

semi-width a which can, in general, be solved only numerically or asymptotically.

Figure 3.1(a) shows a sketch of the scaled semi-width a/π as a function of the

scaled azimuthal angle α/π when β = β̄ > 0. For all values of Q̄ there is a slowly

varying rivulet that runs all the way from α = 0 [where a = O(α−1) → ∞ and

hm → 1+ as α → 0+] to α = π [where a → π− and hm = O(π − α)−1/3 → ∞ as

α → π−].

The rivulet does not have top-to-bottom symmetry; its semi-width a has a

single minimum, denoted by a = amin (< π) and occurring at α = αmin, on the

lower half of the cylinder (i.e. for π/2 < α ≤ π), and its maximum thickness hm

either increases monotonically or has a single maximum and a single minimum on

the upper half of the cylinder (i.e. for 0 ≤ α < π/2). Furthermore, in the limit of

small flux, Q̄ → 0+, the rivulet satisfies a = O(Q̄1/4) and hm = O(Q̄1/4) while in

the limit of large flux, Q̄→ ∞, it satisfies a = O(Q̄) and hm = O(1) on the upper

half of the cylinder, a = O(Q̄1/4) and hm = O(Q̄1/4) at α = π/2, and a = O(1)
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α/π

a/π

amin/π

αmin/π

(1, 1)

(a) α/π

a/π

(1, 1)

(b)

Figure 3.1: Sketches of the scaled semi-width a/π as a function of the scaled azimuthal angle α/π for a rivulet

with (a) constant non-zero contact angle β = β̄ > 0 and (b) constant zero contact angle β = β̄ = 0.

β̄

αmin/π

(a) β̄

amin/π

(b)

Figure 3.2: Plots of (a) αmin/π and (b) amin/π as functions of the constant contact angle β̄ when Q̄ = 1, together

with their asymptotic behaviour in the limits β̄ → 0+ given by (3.6) and β̄ → ∞ given by (3.7), shown with

dotted lines.
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and hm = O(Q̄1/3) on the lower half of the cylinder. Since the location and value

of the minimum semi-width are important in what follows, Figure 3.2 shows plots

of αmin/π and amin/π as functions of the constant contact angle β̄, and shows that

both are monotonically decreasing functions of β̄ satisfying

αmin ∼ π −
(

40β̄3

81π2Q̄

)

1
5

→ π− and amin ∼ π − 5π

4

(

40β̄3

81π2Q̄

)

2
5

→ π− (3.6)

as β̄ → 0+, and

αmin ∼ π

2
+

2

9

(

105Q̄

4β̄3

)
1
2

→ π

2

+

and amin ∼
(

105Q̄

4β̄3

)
1
4

→ 0+ (3.7)

as β̄ → ∞.

3.2.2 The Special Case of Zero Contact Angle β = β̄ = 0

Duffy and Wilson [24] used the solution (3.5) to describe the corresponding flow

of a rivulet with zero contact angle β = β̄ = 0 (i.e. a perfectly wetting fluid).

Specifically, imposing the condition of prescribed flux, Q = Q̄ with Q given by

(3.5), yields an explicit solution for the maximum thickness hm = hm0, where

hm0 =

(

24Q̄m

5π sinα

)
1
3

=

(

24Q̄| cosα|1/2

5π sinα

)

1
3

. (3.8)

Figure 3.1(b) shows a sketch of the scaled semi-width a/π as a function of the scaled

azimuthal angle α/π when β = β̄ = 0. For all values of Q̄ there is a slowly varying

rivulet on the lower half of the cylinder with monotonically decreasing semi-width

a = π/m and monotonically increasing maximum thickness hm = hm0 that runs

from α = π/2+ (where a = O(α− π/2)−1/2 → ∞ and hm = O(α − π/2)1/6 → 0+

as α → π/2+) to α = π (where a → π+ and hm = O(π − α)−1/3 → ∞ as

α → π−). Note that, unlike in the general case of non-zero contact angle β̄ > 0,

in which there is an infinite mass of fluid on the cylinder, in the special case of
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zero contact angle β = β̄ = 0 the mass of fluid on the cylinder, denoted by M and

non-dimensionalised with δρℓ2R, is given by

M =

∫ π

π
2

∫ +a

−a

h dy dα =

∫ π

π
2

πhm

m
dα =

(

6π2Q̄

5

)

1
3

C, (3.9)

where the constant C is given by

C =

∫ π

0

dα

(sinα)
1
3

=

√
π Γ
(

1
3

)

Γ
(

5
6

) ≃ 4.2065. (3.10)

3.3 A Rivulet with Constant Width

The solutions (3.1)–(3.4) and (3.5) can also be used to describe the locally unidi-

rectional flow with prescribed flux Q = Q̄ from the top α = 0 to the bottom α = π

of a large horizontal cylinder of a rivulet with constant semi-width a = ā (> 0)

(i.e. pinned contact lines) but slowly varying contact angle β (≥ 0). Imposing

the conditions of prescribed flux, Q = Q̄ with Q given by (3.3), and of constant

semi-width, a = ā, yields an explicit solution for the contact angle β, namely

β =

(

9Q̄m4

f(mā) sinα

)
1
3

=

(

9Q̄ cos2 α

f(| cosα|1/2ā) sinα

)
1
3

. (3.11)

The solution (3.11) reveals that, unlike in the case of constant contact angle de-

scribed in Section 3.2 (in which the dependence of a on Q̄ is not straightforward),

in this case β is simply proportional to Q̄1/3 for all values of α and ā. Moreover,

as in the case of constant contact angle, the rivulet does not have top-to-bottom

symmetry. Inspection of the solution (3.11) also reveals that, unlike in the case

of constant contact angle (in which the behaviour is qualitatively the same for all

values of the contact angle), the behaviour of the rivulet is qualitatively different

for a “narrow” rivulet with a = ā < π, in the marginal case a = ā = π, and for a

“wide” rivulet with a = ā > π. We shall therefore describe the behaviour of the

rivulet in each of these three cases separately in the next three Subsections.



Chapter 3 119

α/π

β

βmin

αmin/π
(a) α/π

β

αc/π(b)

Figure 3.3: Sketches of the contact angle β as a function of the scaled azimuthal angle α/π for (a) a “narrow”

rivulet with constant semi-width a = ā < π and (b) a “wide” rivulet with constant semi-width a = ā > π. For

brevity, the marginal case a = ā = π is not shown.

3.3.1 A Narrow Rivulet with a = ā < π

Figure 3.3(a) shows a sketch of the contact angle β as a function of the scaled

azimuthal angle α/π for a narrow rivulet with constant semi-width a = ā < π.

When ā < π for all values of Q̄ there is a slowly varying rivulet that runs all the

way from α = 0 to α = π, and its contact angle β has a single minimum, denoted

by β = βmin and occurring at α = αmin, on the lower half of the cylinder (i.e.

for π/2 < α < π)1, and its maximum thickness hm has a single minimum on the

upper half of the cylinder (i.e. for 0 < α < π/2). Since the location and value of

the minimum contact angle are important in what follows, Figure 3.4 shows plots

of αmin/π and βmin as functions of the scaled constant semi-width ā/π, and shows

that αmin is a monotonically increasing function of ā and βmin is a monotonically

decreasing function of ā satisfying

αmin ∼ π

2
+

2ā2

9
→ π

2

+

and βmin ∼
(

105Q̄

4ā4

)
1
3

→ ∞ (3.12)

1Note that αmin is independent of Q̄.
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ā/π

αmin/π

(1, 1)

(a) ā/π

βmin

(b)

Figure 3.4: Plots of (a) αmin/π and (b) βmin as functions of the scaled constant semi-width ā/π when Q̄ = 1,

together with their asymptotic behaviour in the limits ā → 0+ given by (3.12) and ā → ∞ given by (3.13), shown

with dotted lines.

as ā→ 0+, and

αmin ∼ π −
(

4(π − ā)

5π

)
1
2

→ π− and βmin ∼ 6

5

(

9Q̄2

20π

)
1
6

(π − ā)
5
6 → 0+ (3.13)

as ā→ π−. The rivulet becomes deep near the top and the bottom of the cylinder

according to

β ∼
(

9Q̄

f(ā)α

)
1
3

→ ∞ and hm ∼
(

9Q̄

f(ā)α

)
1
3

tanh
( ā

2

)

→ ∞ (3.14)

as α→ 0+, and

β ∼
(

9Q̄

f(ā)(π − α)

)
1
3

→ ∞ and hm ∼
(

9Q̄

f(ā)(π − α)

)
1
3

tan
( ā

2

)

→ ∞ (3.15)

as α → π− (so that the thin-film approximation ultimately fails in these limits);

also β and hm take the O(1) values

β =

(

105Q̄

4ā4

)

1
3

and hm =

(

105Q̄

32ā

)

1
3

(3.16)

at α = π/2. In the limit of a narrow rivulet, ā → 0+, the rivulet becomes narrow

and deep everywhere according to

β ∼
(

105Q̄

4ā4 sinα

)
1
3

→ ∞ and hm ∼
(

105Q̄

32ā sinα

)
1
3

→ ∞. (3.17)
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3.3.2 The Marginal Case a = ā = π

In the marginal case a = ā = π (not shown in Figure 3.3 for brevity) the rivulet

behaves qualitatively the same as in the case of a narrow rivulet with a = ā < π

described in Subsection 3.3.1, except that, since in this case β = 0 at α = π,

instead of satisfying (3.15) the rivulet becomes deep with zero contact angle and

finite semi-width π near the bottom of the cylinder according to

β ∼
(

3π2Q̄(π − α)5

320

)
1
3

→ 0+ and hm ∼
(

24Q̄

5π(π − α)

)
1
3

→ ∞ (3.18)

as α→ π−.

3.3.3 A Wide Rivulet with a = ā > π

Figure 3.3(b) shows a sketch of the contact angle β as a function of the scaled

azimuthal angle α/π for a wide rivulet with constant semi-width a = ā > π.

Unlike when ā ≤ π, when ā > π for all values of Q̄ there is a slowly varying

rivulet that runs from α = 0 only as far as a critical azimuthal angle α = αc

on the lower half of the cylinder (i.e. for π/2 < α < π)2, and its contact angle

β is a monotonically decreasing function of α, attaining its minimum physically

realisable value of zero at α = αc, where the critical azimuthal angle αc is given

by solving mā = π to obtain

αc = cos−1

(

−π
2

ā2

)

for ā > π (3.19)

and is a monotonically decreasing function of ā satisfying αc = π+O(ā− π)1/2 →

π− as ā → π+ and αc = π/2 + O(ā−2) → π/2+ as ā → ∞. Figure 3.5 shows the

scaled critical azimuthal angle αc/π plotted as a function of the scaled constant

semi-width ā/π. The rivulet again becomes deep near the top of the cylinder

according to (3.14) and again β and hm take the O(1) values given by (3.16) at

2Note that αc is independent of Q̄.
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ā/π

αc/π (1, 1)

Figure 3.5: Plot of the scaled critical azimuthal angle αc/π as a function of the scaled constant semi-width ā/π.

α = π/2. At α = αc the rivulet has zero contact angle β = 0, semi-width a = ā,

and maximum thickness hm = hmc, where

hmc =

(

24Q̄

5ā sinαc

)

1
3

=

(

24āQ̄

5
√
ā4 − π4

)

1
3

. (3.20)

In particular, as α→ α−
c we find that β → 0+ according to

β =

(

3(ā4 − π4)Q̄

40ā2

)

1
3

(αc − α) +O(αc − α)2, (3.21)

a ≡ ā, and hm → h−mc according to

hm = hmc +
(ā4 + π4)hmc

6π2
√
ā4 − π4

(α− αc) +O(α− αc)
2. (3.22)

However, beyond α = αc the solution for β given by (3.11) is no longer physically

realisable because it always predicts that h < 0 somewhere in the interval y = −ā

to y = +ā, and so an alternative description of the behaviour beyond α = αc is

required. Physically it is possible that the rivulet simply falls off the cylinder at

α = αc or that the flow becomes unsteady beyond α = αc. However, an alternative

(and possibly more likely) scenario in which steady rivulet flow still occurs is that

the hitherto pinned contact lines of the rivulet de-pin at α = αc, and that the
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rivulet runs from α = αc to the bottom of the cylinder α = π with zero contact

angle according to the solution in the case β = 0 given by (3.5) and (3.8), with

monotonically decreasing semi-width a = π/m (π ≤ a ≤ ā) and monotonically

increasing maximum thickness hm = hm0 (≥ hmc). In particular, as α → α+
c we

find that β ≡ 0, a→ ā− according to

a = ā− ā
√
ā4 − π4

2π2
(α− αc) +O(α− αc)

2, (3.23)

and hm → h+
mc according to (3.22), so that the solutions in α < αc and α > αc join

continuously (but not smoothly) at α = αc. This latter scenario is a special case

of the behaviour which will be discussed in Section 3.5, in which we consider the

de-pinning and re-pinning of a rivulet with constant width at a prescribed (and, in

general, non-zero) value of the contact angle β = β̄ (≥ 0). In particular, when the

rivulet de-pins at zero contact angle β = β̄ = 0 it becomes deep with zero contact

angle and finite semi-width π near the bottom of the cylinder according to

a = π +
π

4
(π − α)2 +O(π − α)4 → π+ and hm ∼

(

24Q̄

5π(π − α)

)
1
3

→ ∞ (3.24)

as α → π−, and in the limit of a wide rivulet on the upper half of the cylinder,

ā → ∞, (in which αc → π/2+) the rivulet becomes wide and flat on the upper

half of the cylinder according to

β ∼
(

3Q̄m3

2ā sinα

)
1
3

→ 0+ and hm ∼
(

3Q̄

2ā sinα

)
1
3

→ 0+ (3.25)

and is given by the solution in the case β = 0 given by (3.5) and (3.8) on the lower

half of the cylinder.

3.3.4 Rivulet Profiles

The behaviour for both ā ≤ π and ā > π is illustrated in Figure 3.6, which

shows plots of the contact angle β, the scaled semi-width a/π, and the maximum
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α/π

β

ā/π = 1

ā/π = 0.5

ā/π = 10

(a) α/π

a/π

a

π
=

1

m

ā/π = 5

ā/π = 0.5

(1, 1)

(b)

α/π

hm

hm = hm0

ā/π = 10

ā/π = 0.5

(c)

Figure 3.6: Plots of (a) the contact angle β, (b) the scaled semi-width a/π, and (c) the maximum thickness hm

as functions of the scaled angle α/π for ā/π = 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 5, 10 when Q̄ = 1 for a rivulet whose

contact lines de-pin at zero contact angle β = β̄ = 0. The corresponding solutions for a rivulet with zero contact

angle β = 0 given by (3.5) and (3.8) are shown with dashed lines (visible only in part (c)). De-pinning occurs at

α = αc for ā/π > 1, and the points at which this happens are denoted by dots.
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y

h(y)

α = 7π/8
α = π/8

(a) y

h(y)

α = 7π/8

α = π/8

α = αc

≃ 1.9766

(b)

Figure 3.7: Cross-sectional profiles h(y) when Q̄ = 1 in the cases (a) ā = 2 (< π) for α = π/8, π/4, 3π/8, π/2,

5π/8, 3π/4, 7π/8 and (b) ā = 5 (> π) for α = π/8, π/4, 3π/8, π/2, αc ≃ 1.9766, 3π/4, 7π/8. For clarity, the two

parts of this figure use the same vertical but different horizontal ranges.

thickness hm as functions of the scaled angle α/π for a range of values of ā/π

when Q̄ = 1. In particular, Figure 3.6 shows that de-pinning occurs at α = αc for

ā/π > 1. Figure 3.7 shows typical cross-sectional profiles of the rivulet in the cases

(a) ā = 2 (< π) and (b) ā = 5 (> π), and Figure 3.8 shows sketches of the rivulet

in the same two cases, namely (a) ā < π, in which the rivulet is never de-pinned,

and (b) ā > π, in which the rivulet is de-pinned and has zero contact angle in the

interval αc < α ≤ π.

3.4 Pinning and De-Pinning of a Rivulet with

Constant Contact Angle β = β̄ at a = ā

As we described in Section 3.2, the semi-width a of a slowly varying rivulet with

constant non-zero contact angle β = β̄ > 0 is unbounded at α = 0 (i.e. the

rivulet is infinitely wide at the top of the cylinder), has a single minimum value

of a = amin (< π) at α = αmin on the lower half of the cylinder and takes the

value a = π at α = π, while in the special case of zero contact angle β = β̄ = 0
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Q̄ Q̄

Q̄ Q̄

g

α α

αc

Free surface Substrate

(a) (b)

Figure 3.8: Sketches of a slowly varying rivulet with prescribed flux Q̄ with (when not de-pinned with zero contact

angle β = 0 and slowly varying semi-width a) constant semi-width a = ā and slowly varying contact angle β that

runs from the top α = 0 to the bottom α = π of a large horizontal cylinder, in the cases (a) ā < π, in which

the rivulet is never de-pinned, and (b) ā > π, in which the rivulet is de-pinned and has zero contact angle in the

interval αc < α ≤ π.
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the semi-width is unbounded at α = π/2 and decreases to the value a = π at

α = π. In practice, however, there could be a minimum physically realisable value

of the semi-width, denoted by a = ā, at which the contact lines become pinned.

Evidently the behaviour of the rivulet in this situation will be qualitatively different

for ā ≤ π and ā > π.

3.4.1 ā ≤ π

When ā ≤ amin (< π) the semi-width is always greater than or equal to ā and

hence pinning and de-pinning do not occur, and so the rivulet behaves exactly

as described in Section 3.2. However, when amin < ā < π the rivulet runs from

α = 0 with constant non-zero contact angle β = β̄ > 0 but decreasing semi-

width a as described in Section 3.2 until it reaches the value a = ā at α = αpin

(0 < αpin < αmin) at which the contact lines pin. The rivulet then runs from

α = αpin with constant semi-width a = ā but varying contact angle β as described

in Section 3.3 until it reaches α = αdepin (αmin < αdepin < π) at which the contact

lines de-pin. The rivulet then runs from α = αdepin to α = π with constant contact

angle β = β̄ > 0 but increasing semi-width a as described in Section 3.2. Here

α = αpin and α = αdepin are the appropriate solutions of the equation Q = Q̄ with

Q given by (3.3), a = ā and β = β̄. In the marginal case ā = π we have αdepin = π

and so de-pinning does not occur. Expressed another way, in the general case of

constant non-zero contact angle β̄ > 0 pinning and de-pinning occur when β̄ > β̄c,

where the value of β̄c corresponds to amin = ā. In the special case of pinning at

zero contact angle β = β̄ = 0 we have a = π/m ≥ π ≥ ā, and so pinning and

de-pinning do not occur. In the limit β̄ → ∞ we have αpin → 0+ and αdepin → π−

and so recover the solution for a rivulet with constant semi-width a = ā ≤ π

described in Section 3.3.

The behaviour when ā ≤ π is illustrated in Figure 3.9, which shows plots of the
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α/π

a

β̄ = β̄c ≃ 1.0249

β̄ = 0

β̄ = 2

a =
π

m

(1, π)

(a) α/π

β

β̄ = β̄c ≃ 1.0249

β̄ = 2

β̄ = 0

(b)

α/π

hm

β̄ = β̄c ≃ 1.0249

β̄ = 2

β̄ = 0

hm = hm0

(c)

Figure 3.9: Plots of (a) the semi-width a, (b) the contact angle β, and (c) the maximum thickness hm as functions

of the scaled angle α/π for β̄ = 0, 0.25, 0.5, 0.75, β̄c ≃ 1.0249, 1.25, 1.5, 1.75, 2 when Q̄ = 1 for a rivulet whose

contact lines pin at a = ā = 2 (< π). The corresponding solutions for a rivulet with constant semi-width ā = 2

are shown with dashed lines. Pinning and de-pinning occur for β̄ > β̄c ≃ 1.0249, and the points at which this

happens are denoted by dots.
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semi-width a, the contact angle β, and the maximum thickness hm as functions

of the scaled angle α/π for a range of values of β̄ when Q̄ = 1 and ā = 2 (< π).

In particular, Figure 3.9 shows that in this case pinning and de-pinning occur for

β̄ > β̄c ≃ 1.0249.

3.4.2 ā > π

When ā > π, as in the case amin < ā ≤ π, the rivulet runs from α = 0 with constant

non-zero contact angle β = β̄ > 0 but decreasing semi-width a as described in

Section 3.2 until it reaches the value a = ā at α = αpin (0 < αpin < αc) at

which the contact lines pin. The rivulet then runs from α = αpin with constant

semi-width a = ā but decreasing contact angle β as described in Section 3.3 until,

unlike in the case amin < ā ≤ π, it reaches the critical azimuthal angle α = αc

(π/2 < αc < π) at which the contact angle β reaches the value zero and the

contact lines de-pin. The rivulet then runs from α = αc to α = π with zero

contact angle β = 0, decreasing semi-width a = π/m and increasing maximum

thickness hm = hm0 as described in Section 3.2. In the special case of pinning at

zero contact angle β = β̄ = 0 pinning and de-pinning do not occur. In the limit

β̄ → ∞ we have αpin → 0+ and so recover the solution for a rivulet with constant

semi-width a = ā > π described in Section 3.3.

The behaviour when ā > π is illustrated in Figure 3.10, which shows plots of

the semi-width a, the contact angle β, and the maximum thickness hm as functions

of the scaled angle α/π for a range of values of β̄ when Q̄ = 1 and ā = 5 (> π). In

particular, Figure 3.10 shows that pinning and de-pinning occur for all β̄ > 0, and

that in this case de-pinning occurs at the scaled critical azimuthal angle αc/π ≃

0.6292 for all β̄ > 0.
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α/π

a

αc/π

β̄ = 0

β̄ = 1.5

a =
π

m

(1, π)

(a) α/π

β

αc/π

β̄ = 1.5

β̄ = 0

(b)

α/π
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β̄ = 1.5

β̄ = 0
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Figure 3.10: Plots of (a) the semi-width a, (b) the contact angle β, and (c) the maximum thickness hm as

functions of the scaled angle α/π for β̄ = 0, 0.25, . . ., 1.5 when Q̄ = 1 for a rivulet whose contact lines pin at

a = ā = 5 (> π). The corresponding solutions for a rivulet with constant semi-width ā = 5 are shown with dashed

lines. Pinning and de-pinning occur for all β̄ > 0, and the points at which this happens are denoted by dots. The

vertical dashed lines show the scaled critical azimuthal angle αc/π ≃ 0.6292 at which de-pinning occurs for all

β̄ > 0.
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3.4.3 Rivulet Profiles

Figure 3.11 shows typical cross-sectional profiles of the rivulet in the cases (a)

ā = 2 (< π) and β̄ = 0.5 (< β̄c ≃ 1.0249), (b) ā = 2 (< π) and β̄ = 1.5 (> β̄c),

and (c) ā = 5 (> π) and β̄ = 1, and, in order to clarify what might appear to

be a rather complicated situation, Figure 3.12 shows sketches of the rivulet in

the same three cases, namely (a) ā < π and 0 < β̄ < β̄c, in which the rivulet is

never pinned, (b) ā < π and β̄ > β̄c, in which the rivulet is pinned in the interval

αpin < α < αdepin, and (c) ā > π, in which the rivulet is pinned in the interval

αpin < α < αc and has zero contact angle in the interval αc ≤ α ≤ π.

3.5 De-Pinning and Re-Pinning of a Rivulet with

Constant Width a = ā at β = β̄

In Section 3.4 we described the pinning and de-pinning of a rivulet with constant

contact angle β = β̄ at a = ā. In this Section we describe the corresponding

situation involving the de-pinning and re-pinning of a rivulet with constant width

a = ā at β = β̄ > 0. As we described in Section 3.3, for a narrow rivulet with ā < π

the contact angle β of a slowly varying rivulet with constant semi-width a = ā is

unbounded at α = 0 and α = π, and has a single minimum value of β = βmin at

α = αmin on the lower half of the cylinder, while for a wide rivulet with ā > π the

contact angle is unbounded at α = 0 and decreases to the value zero at α = αc. In

Section 3.3 we showed how there can be steady flow of a wide rivulet all the way

from α = 0 to α = π when the contact lines de-pin when the contact angle reaches

its minimum physically realisable value of zero, i.e. at α = αc. More generally,

however, the contact lines could de-pin at a non-zero value of the contact angle,

denoted by β = β̄ > 0. Evidently, as in Section 3.4, the behaviour of the rivulet
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α = π/8

α = αpin

≃ 0.9028

α = 7π/8
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α = π/16
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≃ 0.4345 α = αc

≃ 1.9766

α = 7π/8

(c)

Figure 3.11: Cross-sectional profiles h(y) when Q̄ = 1 in the cases (a) ā = 2 (< π) and β̄ = 0.5 (< β̄c ≃ 1.0249) for

α = π/8, π/4, 3π/8, π/2, 5π/8, 3π/4, 7π/8, (b) ā = 2 (< π) and β̄ = 1.5 (> β̄c) for α = π/8, αpin ≃ 0.9028, 3π/8,

π/2, 5π/8, 3π/4, 7π/8, and (c) ā = 5 (> π) and β̄ = 1 for α = π/16, αpin ≃ 0.4345, π/4, 3π/8, π/2, αc ≃ 1.9766,

3π/4, 7π/8. For clarity, in part (b) no profiles are shown in the interval αdepin ≃ 2.9923 ≤ α ≤ π, and the three

parts of this figure use the same vertical but different horizontal ranges.



Chapter 3 133

α

g

Q̄

Free Surface

Cylinder

(a)
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αdepin

Q̄
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αpin
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(c)

Figure 3.12: Sketches of a slowly varying rivulet with prescribed flux Q̄ with (when not pinned with constant

semi-width a = ā and slowly varying contact angle β) constant non-zero contact angle β = β̄ > 0 and slowly

varying semi-width a that runs from the top α = 0 to the bottom α = π of a large horizontal cylinder, in the

cases (a) ā < π and 0 < β̄ < β̄c, in which the rivulet is never pinned, (b) ā < π and β̄ > β̄c, in which the

rivulet is pinned in the interval αpin < α < αdepin, and (c) ā > π, in which the rivulet is pinned in the interval

αpin < α < αc and has zero contact angle in the interval αc ≤ α ≤ π.
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in this situation will be qualitatively different for ā ≤ π and ā > π.

3.5.1 ā ≤ π

When ā < π and β̄ < βmin the contact angle is always greater than or equal to

β̄ and hence de-pinning and re-pinning do not occur, and so the rivulet behaves

exactly as described in Section 3.3. However, when ā < π and β̄ ≥ βmin the

rivulet runs from α = 0 with constant semi-width a = ā but decreasing contact

angle β as described in Section 3.3 until it reaches the value β = β̄ at α = αdepin

(0 < αdepin < αmin) at which the contact lines de-pin. The rivulet then runs

from α = αdepin with constant contact angle β = β̄ but varying semi-width a as

described in Section 3.2 until it reaches α = αrepin (αmin < αrepin < π) at which the

contact lines re-pin. The rivulet then runs from α = αrepin to α = π with constant

semi-width a = ā but increasing contact angle β as described in Section 3.3. Here

α = αdepin and α = αrepin are the appropriate solutions of the equation Q = Q̄

with Q given by (3.3), a = ā and β = β̄. In the marginal case ā = π we have

αrepin = π and so re-pinning does not occur. Expressed another way, de-pinning

and re-pinning occur when ā > āc, where the value of āc corresponds to βmin = β̄.

In the limit ā → ∞ we have αdepin → 0+ and αrepin → π− and so recover the

solution for a rivulet with constant non-zero contact angle β = β̄ > 0 described in

Section 3.2.

3.5.2 ā > π

When ā > π, as in the case ā ≤ π, the rivulet runs from α = 0 with constant

semi-width a = ā but decreasing contact angle β as described in Section 3.3 until

it reaches the value β = β̄ > 0 at α = αdepin (0 < αdepin < αc) at which the

contact lines de-pin. The rivulet then runs from α = αdepin with contact angle

β = β̄ > 0 but varying semi-width a as described in Section 3.2 until, unlike in
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the case ā ≤ π, it reaches α = π. In the limit ā → ∞ we have αdepin → 0+ and

so again recover the solution for a rivulet with constant non-zero contact angle

β = β̄ > 0 described in Section 3.2.

3.5.3 Rivulet Profiles

The behaviour for β̄ > 0 for both ā ≤ π and ā > π is illustrated in Figure 3.13,

which shows plots of the contact angle β, the scaled semi-width a/π, and the

maximum thickness hm as functions of the scaled angle α/π for a range of values

of ā/π when Q̄ = 1 and β̄ = 1. In particular, Figure 3.13 shows that in this case

de-pinning and re-pinning occur for ā/π > āc/π ≃ 0.6446 and de-pinning but no

re-pinning occurs for ā/π > 1. Figure 3.14 shows typical cross-sectional profiles of

the rivulet in the cases (a) β̄ = 1 and ā = 2 (< āc ≃ 2.0252) (b) β̄ = 1 and ā = 2.5

(āc < ā < π), and (c) β̄ = 1 and ā = 5 (> π), and, in order to clarify what might

again appear to be a rather complicated situation, Figure 3.15 shows sketches of

the rivulet in the same three cases, namely (a) ā < āc < π, in which the rivulet is

never de-pinned, (b) āc < ā < π, in which the rivulet is de-pinned in the interval

αdepin < α < αrepin, and (c) ā > π, in which the rivulet is de-pinned in the interval

αdepin < α ≤ π.

3.5.4 Mass of Fluid on the Cylinder

The mass of fluid on the cylinder M is given by

M =

∫ π

0

∫ +a

−a

h dy dα =

∫ π
2

0

2β(ma cothma− 1)

m2
dα+

∫ π

π
2

2β(1 −ma cotma)

m2
dα.

(3.26)

Figure 3.16 shows M plotted as a function of the logarithm of the scaled semi-

width log(ā/π) for a range of values of β̄, and shows that M is a monotonically

increasing function of ā. Figure 3.16 also shows that in the limit of a narrow
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(a) α/π
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ā/π = āc/π ≃ 0.6446
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Figure 3.13: Plots of (a) the contact angle β, (b) the scaled semi-width ā/π, and (c) the maximum thickness

hm as functions of the scaled angle α/π for ā/π = 0.2, 0.4, 0.6, āc/π ≃ 0.6446, 0.8, 1, 1.2, 1.4 when Q̄ = 1 for

a rivulet whose contact lines de-pin at non-zero contact angle β = β̄ = 1. The corresponding solutions for a

rivulet with constant contact angle β = β̄ = 1 are shown with dashed lines. De-pinning and re-pinning occur for

ā/π > āc/π ≃ 0.6446, de-pinning but no re-pinning occurs for ā/π > 1, and the points at which this happens are

denoted by dots.



Chapter 3 137

y

h(y)

α = 7π/8
α = π/8

(a)

y

h(y)

α = π/8

α = αdepin

≃ 1.2834

α = 7π/8

(b) y

h(y)

α = 7π/8

α = π/16

α = αdepin

≃ 0.4345

(c)

Figure 3.14: Cross-sectional profiles h(y) when Q̄ = 1 in the cases (a) β̄ = 1 and ā = 2 (< āc ≃ 2.0252) for α = π/8,

π/4, 3π/8, π/2, 5π/8, 3π/4, 7π/8, (b) β̄ = 1 and ā = 2.5 (āc < ā < π) for α = π/8, π/4, αdepin ≃ 1.2834, 3π/8,

π/2, 5π/8, 3π/4, 7π/8, and (c) β̄ = 1 and ā = 5 (> π) for α = π/16, αdepin ≃ 0.4345, π/4, 3π/8, π/2, 5π/8,

3π/4, 7π/8. For clarity, in part (b) no profiles are shown in the interval αrepin ≃ 3.0814 ≤ α ≤ π, and the three

parts of this figure use the same vertical but different horizontal ranges.
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Figure 3.15: Sketches of a slowly varying rivulet with prescribed flux Q̄ with (when not de-pinned with non-zero

constant contact angle β = β̄ > 0 and slowly varying semi-width a) constant semi-width a = ā and slowly varying

contact angle β that runs from the top α = 0 to the bottom α = π of a large horizontal cylinder, in the cases

(a) ā < āc < π, in which the rivulet is never de-pinned, (b) āc < ā < π, in which the rivulet is de-pinned in the

interval αdepin < α < αrepin, and (c) ā > π, in which the rivulet is de-pinned in the interval αdepin < α ≤ π.
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log(ā/π)

M

β̄ = 0

β̄ = 2

1

1

4
3

3
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Figure 3.16: The mass of fluid on the cylinder M for a rivulet whose contact lines de-pin at contact angle β = β̄

plotted as a function of the logarithm of the scaled semi-width log(ā/π) for β̄ = 0, 1/2, 1, 2 when Q̄ = 1, together

with its leading order asymptotic behaviour in the limits ā → 0+ given by (3.27) and ā → ∞ when β̄ = 0 given

by (3.28), shown with dotted lines. The triangles indicate the slopes 3Q̄/β̄2 = 12, 3, 3/4, confirming the leading

order asymptotic behaviour in the limit ā → ∞ when β̄ > 0 given by (3.29). De-pinning and re-pinning occur for

ā/π > āc/π, de-pinning but no re-pinning occurs for ā/π > 1, and the points at which de-pinning first occurs are

denoted by dots.
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rivulet, ā→ 0+, M → 0+ according to

M ∼
(

70ā2Q̄

9

)
1
3

C → 0+, (3.27)

while in the limit of a wide rivulet on the upper half of the cylinder, ā → ∞,

M → ∞ according to

M ∼
(

3ā2Q̄

2

)
1
3

C → ∞ (3.28)

when β̄ = 0 and

M ∼ 3Q̄

β̄2
log ā→ ∞ (3.29)

when β̄ > 0, where the constant C is again given by (3.10).

3.6 Conclusions

In the present Chapter we showed how the solutions for the unidirectional flow of

a thin rivulet with prescribed volume flux down an inclined planar substrate can

be used to describe the locally unidirectional flow of a rivulet with constant width

(i.e. pinned contact lines) but slowly varying contact angle as well as the possible

pinning and subsequent de-pinning of a rivulet with constant contact angle and

the possible de-pinning and subsequent re-pinning of a rivulet with constant width

as they flow in the azimuthal direction from the top α = 0 to the bottom α = π

of a large horizontal cylinder. We found that, despite being the same locally, the

global behaviour of a rivulet with constant width can be very different from that

of a rivulet with constant contact angle described by Duffy and Moffatt [23] and

Duffy and Wilson [24]. Specifically, while a rivulet with constant non-zero contact

angle β = β̄ > 0 can always run from the top to the bottom of the cylinder,

the behaviour of a rivulet with constant width ā depends on the value of ā. In

particular, while a narrow rivulet with constant semi-width a = ā ≤ π can run all

the way from the top to the bottom of the cylinder, a wide rivulet with constant
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semi-width a = ā > π can run from the top of the cylinder only to a critical

azimuthal angle α = αc given by (3.19). In Section 3.3 we discussed the scenario

in which the hitherto pinned contact lines of the rivulet de-pin at α = αc and the

rivulet runs from α = αc to the bottom of the cylinder with zero contact angle

but slowly varying semi-width a = π/m, as sketched in Figure 3.8.

In Section 3.4 we described the pinning and de-pinning of a rivulet with con-

stant contact angle β = β̄ at a = ā. In particular, we showed that when ā ≤ π the

rivulet is pinned in the interval αpin < α < αdepin for β̄ > β̄c, but that when ā > π

the rivulet is pinned in the interval αpin < α < αc and has zero contact angle in

the interval αc ≤ α ≤ π for all β̄ > 0, as sketched in Figure 3.12. In Section 3.5

we described the corresponding situation involving the de-pinning and re-pinning

of a rivulet with constant semi-width a = ā at a non-zero contact angle β = β̄ > 0

which generalises the de-pinning at zero contact angle discussed in Section 3.3. In

particular, we showed that when ā ≤ π the rivulet is de-pinned in the interval

αdepin < α < αrepin for ā > āc, but that when ā > π the rivulet is de-pinned in

the interval αdepin < α ≤ π, as sketched in Figure 3.15. In the latter situation, the

mass of fluid on the cylinder was found to be a monotonically increasing function

of the constant semi-width ā.



Chapter 4

Rivulet flow round a horizontal

cylinder subject to a uniform

surface shear stress

In Chapter 3 we considered the possible pinning, de-pinning and re-pinning of

a gravity-driven rivulet with prescribed constant volume flux as it flows in the

azimuthal direction from the top to the bottom of a large horizontal cylinder. In

this Chapter, this is extended to include a prescribed uniform surface shear stress

due to an external airflow in the direction opposing gravity, and we consider both

the case of a rivulet with constant contact angle but variable width (i.e. de-pinned

contact lines) and the case of a rivulet with constant width but variable contact

angle (i.e. pinned contact lines).

142
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z = h(y)

a−a

τ

Q

O

O

ββ

y

g

z
z

x

α

Free surface

Substrate

Figure 4.1: Sketch of a thin rivulet with semi-width a, contact angle β and volume flux Q flowing on a planar

substrate inclined at an angle α to the horizontal subject to a prescribed uniform longitudinal surface shear stress

τ .

4.1 Unidirectional Flow on a Planar Substrate

4.1.1 Problem Formulation

Consider the steady unidirectional flow of a thin symmetric rivulet with semi-width

a and volume flux Q on a planar substrate inclined at an angle α (0 ≤ α < 2π) to

the horizontal subject to a prescribed uniform longitudinal surface shear stress τ .

We assume that the fluid is Newtonian with constant viscosity µ, density ρ and

coefficient of surface tension γ, and choose Cartesian coordinates Oxyz with the

x axis down the line of greatest slope for 0 < α < π or up the line of greatest

slope for π < α < 2π, the y axis horizontal, and the z axis normal to the substrate

z = 0, such that τ > 0 corresponds to a shear stress in the positive x direction, as

sketched in Figure 4.1.

In dimensionless variables the velocity u = u(y, z)i and the pressure (relative to

its ambient value) p = p(y, z) satisfy the familiar lubrication and mass-conservation

equations (given by (1.16) with y and z replacing x and y, respectively) subject

to the normal stress balance p = −h′′ (that is, equation (1.20) where the dash

now means differentiation with respect to y), the tangential stress balance uz = τ

(analogous to equation (1.21) but now including the shear stress τ at the free
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surface) and the kinematic condition at the free surface z = h(y) (that is, equation

(1.22) with y replacing x and with ht = 0 for steady flow), the no-slip condition u =

0 at the substrate z = 0 (analogous to equation (1.17)), and the condition of zero

thickness at the contact lines (i.e. h(±a) = 0), where a dash denotes differentiation

with respect to argument. The contact angle is denoted by β = ∓h′(±a) (≥ 0) and

the maximum thickness of the rivulet, which always occurs at y = 0, is denoted

by hm = h(0). In the above, and in what follows, we have non-dimensionalised as

follows:

y∗ = ℓy, a∗ = ℓa, z∗ = δℓz, h∗ = δℓh, h∗m = δℓhm,

u∗ =
δ2ρgℓ2

µ
u, Q∗ =

δ3ρgℓ4

µ
Q, p∗ − p∗∞ = δρgℓp, τ ∗ = δ2ρgℓ,

(4.1)

where star subscripts denote dimensional variables, g is the magnitude of gravita-

tional acceleration, ℓ = (γ/ρg)1/2 is the capillary length, and δ is the transverse

aspect ratio. There is some freedom regarding the definition of δ; however, for the

moment we leave δ unspecified in order to keep the subsequent presentation as

general as possible. At leading order in the limit of small transverse aspect ratio

δ → 0 (i.e. for a thin rivulet) the governing equations (given by (1.16) with y and

z replacing x and y, respectively) are readily solved to yield the pressure

p = cosα(h− z) − h′′ (4.2)

and the velocity

u =
sinα

2
(2h− z)z + τz, (4.3)

so that the local flux ū = ū(y) is given by

ū =

∫ h

0

u dz =
sinα

3
h3 +

τ

2
h2. (4.4)

We may differentiate (4.2) with respect to y and use the fact that py = 0 to obtain

a third order ordinary differential equation for the free surface, namely

(h cosα− h′′)′ = 0, (4.5)
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which is to be solved subject to the contact-line conditions h(±a) = 0 and ∓h′(±a) =

β (≥ 0).

4.1.2 The General Case of Non-Zero Contact Angle β > 0

In the general case of non-zero contact angle β > 0 we may solve (4.5) subject to

the contact-line conditions to obtain the free surface shape

h = β ×































coshma− coshmy

m sinhma
for 0 ≤ α <

π

2
,

3π

2
< α < 2π,

a2 − y2

2a
for α =

π

2
,

3π

2
,

cosmy − cosma

m sinma
for

π

2
< α <

3π

2
,

(4.6)

so that the maximum thickness of the rivulet is given by

hm =
β

m
×































tanh
(ma

2

)

for 0 ≤ α <
π

2
,

3π

2
< α < 2π,

ma

2
for α =

π

2
,

3π

2
,

tan
(ma

2

)

for
π

2
< α <

3π

2
,

(4.7)

and the volume flux is given by

Q =

∫ a

−a

ū dy =
β3 sinα

9m4
f(ma) +

β2τ

2m3
g(ma), (4.8)

where we have written m = | cosα|1/2. The functions f = f(ma) and g = g(ma)

appearing in (4.8) are defined by

f(ma) =











































15ma coth3ma− 15 coth2ma− 9ma cothma+ 4 for 0 ≤ α <
π

2
,

3π

2
< α < 2π,

12

35
(ma)4 for α =

π

2
,

3π

2
,

−15ma cot3ma + 15 cot2ma− 9ma cotma + 4 for
π

2
< α <

3π

2
(4.9)
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and

g(ma) =































3ma coth2ma− 3 cothma−ma for 0 ≤ α <
π

2
,

3π

2
< α < 2π,

4

15
(ma)3 for α =

π

2
,

3π

2
,

3ma cot2ma− 3 cotma+ma for
π

2
< α <

3π

2
.

(4.10)

Note that the function f(ma) was first obtained by Duffy and Moffatt [23] (their

equation (14) and denoted as F (B)) and the function g(ma) was first obtained

by Sullivan, Wilson and Duffy [91] (their equation (2.16)). For 0 ≤ α < π/2 and

3π/2 < α < 2π both f and g are positive, monotonically increasing functions,

increasing from zero at ma = 0 to infinity as ma → ∞, while their derivatives f ′

and g′ are also positive, monotonically increasing functions, increasing from zero

at ma = 0 to 6 and 2, respectively, as ma → ∞. Figure 4.2(a) shows plots of

f , g, f ′, and g′ as functions of ma for 0 ≤ α < π/2 and 3π/2 < α < 2π. For

π/2 < α < 3π/2 both f and g have multiple branches, but we restrict our attention

to the branches in the interval 0 ≤ ma < π since these are the only ones for which

the solution is physically realisable (specifically, for which h ≥ 0 everywhere in the

interval y = −a to y = +a). Then f and g and their derivatives f ′ and g′ are

all positive, monotonically increasing functions, increasing from zero at ma = 0

to infinity as ma → π−. Figure 4.2(b) shows plots of f , g, f ′, and g′ as functions

of ma/π for π/2 < α < 3π/2. For future reference it is useful to note that in the

limit ma → 0+

f(ma) =











12

35
(ma)4 − 8

105
(ma)6 +O(ma)8 for 0 ≤ α <

π

2
,

3π

2
< α < 2π,

12

35
(ma)4 +

8

105
(ma)6 +O(ma)8 for

π

2
< α <

3π

2
(4.11)
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ma

f(ma)

g(ma)

f ′(ma)

g′(ma)

(a) ma/π

f(ma)

g′(ma)

f ′(ma)

g(ma)

(b)

Figure 4.2: Plots of f and g (solid lines), defined by (4.9) and (4.10), respectively, together with their derivatives

f ′ and g′ (dashed lines) as (a) functions of ma for 0 ≤ α < π/2 and 3π/2 < α < 2π when 0 ≤ ma < ∞, and (b)

functions of ma/π for π/2 < α < 3π/2 when 0 ≤ ma < π.

and

g(ma) =











4

15
(ma)3 − 4

105
(ma)5 +O(ma)7 for 0 ≤ α <

π

2
,

3π

2
< α < 2π,

4

15
(ma)3 +

4

105
(ma)5 +O(ma)7 for

π

2
< α <

3π

2
.

(4.12)

In the limit ma→ ∞ for 0 ≤ α < π/2 and 3π/2 < α < 2π

f(ma) = 6ma− 11 +O(ma exp (−2ma)) (4.13)

and

g(ma) = 2ma− 3 +O(ma exp (−2ma)). (4.14)

In the limit ma→ π− for π/2 < α < 3π/2

f(ma) =
15π

(π −ma)3
+O(π −ma)−1 (4.15)

and

g(ma) =
3π

(π −ma)2
+O(1). (4.16)
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4.1.3 The Special Case of Zero Contact Angle β = 0

In the special case of zero contact angle β = 0 we recover the solution for a rivulet

of perfectly wetting fluid analysed by Sullivan, Wilson and Duffy [91], namely that

there is no solution for 0 ≤ α ≤ π/2 and 3π/2 ≤ α < 2π, but

a =
π

m
, h =

hm

2
(1 + cosmy) , Q =

π

24m
(5 sinαhm + 9τ) h2

m (4.17)

for π/2 < α < 3π/2.

4.1.4 Cross-Sectional Flow Patterns

All of the possible cross-sectional flow patterns that can occur within the rivulet

may be categorised into five types which, following the notation used by Wilson

and Duffy [108] and Sullivan, Wilson and Duffy [91], we denote as type I to type V.

The flow patterns for a rivulet on a substrate inclined at an angle α for 0 < α < π

with shear stress τ and volume flux Q are equivalent to those for π < α < 2π with

shear stress −τ and volume flux −Q, and hence, without loss of generality, in the

rest of this Subsection we restrict our attention to the interval 0 < α < π.

Figure 1.17 in Chapter 1 shows sketches of these five different types of flow

pattern when β > 0 at α = π/2, for which the rivulet has a parabolic profile.

Regions with u > 0 (i.e. downwards flow for 0 < α < π) are shaded and regions

with u < 0 are unshaded. When β = 0 and/or α 6= π/2 the rivulet profile is

not parabolic; however, the flow patterns in these cases are qualitatively the same

as those shown in Figure 1.17. The locations of the maximum and minimum

velocities are marked with dots, and expressions for these points for each flow type

are the same as those given by Sullivan, Wilson and Duffy [91] and hence are not

reproduced here for brevity. When τ > 0 the shear stress acts down the substrate in

co-operation with gravity and so the velocity is downwards throughout the rivulet

(type-I flow), but when τ < 0 the shear stress acts up the substrate in opposition
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to gravity, and the velocity is always upwards near the contact lines (types-II–V

flow). The velocity within the rivulet is zero on the curve z = 2(h − τ/ sinα);

with z = h = hm this shows, in particular, that type-III flow occurs when hm =

−2τ/ sinα. For flow types II–IV this curve of zero velocity meets the substrate

when y = ±b, and for flow type II it meets the free surface when y = ±c, where b

is given by

b =







































1

m
cosh−1

[

coshma +
τm sinhma

β sinα

]

for 0 < α <
π

2
,

(

a2 +
2τa

β

)
1
2

for α =
π

2
,

1

m
cos−1

[

cosma− τm sinma

β sinα

]

for
π

2
< α < π,

(4.18)

and c is given by (4.18) with τ replaced by 2τ .

4.2 Locally Unidirectional Flow Round a Hori-

zontal Cylinder

In the remainder of the present Chapter we use the steady unidirectional flow so-

lutions (4.6)–(4.10) and (4.17) to describe the steady, locally unidirectional flow of

a slowly varying rivulet with prescribed flux Q = Q̄ on a slowly varying substrate,

specifically the flow in the azimuthal direction round a large stationary horizontal

cylinder, subject to a prescribed uniform azimuthal surface shear stress τ . Note

that here and henceforth “slowly varying” means that the longitudinal aspect ratio

ǫ = ℓ/R, where R is the radius of the cylinder, satisfies ǫ≪ δ, so that ǫ/δ → 0 in

the limit ǫ→ 0. The angle α is now interpreted as the local slope of the cylinder,

with α = 0 at the top, increasing down the right-hand side to α = π at the bottom,

and up the left-hand side to α = 2π at the top again. Since a solution with shear

stress τ and volume flux Q̄ on one side of the cylinder is equivalent to a solution
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with shear stress −τ and volume flux −Q̄ on the other side, in the remainder of

the present Chapter we will, without loss of generality, restrict our attention to

the case of positive prescribed flux, Q̄ > 0 (corresponding to a clockwise flux in

the figures shown later).

In practice, when a rivulet flows round a cylinder it is possible that either its

contact lines are de-pinned and free to move such that its contact angle remains

constant but its width varies, or its contact lines are pinned such that its width

remains constant but its contact angle varies. We will therefore consider both of

these scenarios in the present Chapter and, in particular, we will show that they

have qualitatively different behaviour. Firstly, in Section 4.3 we describe a rivulet

with constant non-zero contact angle β = β̄ > 0 but slowly varying semi-width

a = a(α). Imposing the condition of prescribed flux Q = Q̄ means that (4.8) is a

transcendental equation for a which is solved asymptotically in various physically

relevant limits and numerically. Secondly, in Section 4.4 we describe a rivulet

with constant semi-width a = ā but slowly varying contact angle β = β(α) (≥ 0).

Imposing the condition of prescribed flux Q = Q̄ means that (4.8) is a cubic

polynomial equation for β which may be solved exactly. We analyse this solution

and, in particular, explore its behaviour in various physically relevant limits.

Figure 4.3 shows a representative selection of rivulet solutions for various values

of τ plotted as functions of the scaled angle α/π (0 ≤ α < 2π) when Q = Q̄ = 1.

Expressed in another way, Figure 4.3 shows contours of the expression for the shear

stress τ given by (4.8) in the α/π–a, α/π–β and α/π–hm planes, as appropriate,

when Q = Q̄ = 1. Specifically, Figures 4.3(a) and 4.3(b) show the semi-width

a and maximum thickness hm for a rivulet with constant non-zero contact angle

β = β̄ = 1, Figures 4.3(c) and 4.3(d) show the contact angle β and maximum

thickness hm for a “narrow” rivulet with constant semi-width a = ā = 2 (< π),

and Figures 4.3(e) and 4.3(f) show the contact angle β and maximum thickness
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Figure 4.3: Plots of (a) the semi-width a, (c,e) the contact angle β, and (b,d,f) the maximum thickness hm as

functions of α/π (0 ≤ α < 2π) when Q = Q̄ = 1 for (a,b) τ = −0.5, 0, 0.5, 1, τc ≃ 1.1614, 1.5 for a rivulet with

constant contact angle β = β̄ = 1, (c,d) τ = −0.5, 0, 0.5, 1, τc ≃ 1.2741, 1.5 for a “narrow” rivulet with constant

semi-width a = ā = 2 (< π), and (e,f) τ = −0.5, 0, 0.5, 1, 1.5 for a “wide” rivulet with constant semi-width

a = ā = 5 (> π). We solve equation (4.8) to plot parts (a), (c) and (e), and we use equation (4.7) to plot parts (b),

(d) and (f). In (a) the vertical dashed lines indicate the values of α/π at which a → ∞, and in (b) the dots denote

the corresponding values of hm which lie on the curves hm = β̄/
√

cos α for 0 ≤ α < π/2 and 3π/2 < α < 2π,

which are denoted with dotted lines. In (e) and (f) the vertical dashed lines correspond to the values of α/π at

which β = 0, namely α/π = αdepin/π ≃ 0.6292 and α/π = 2 − αdepin/π ≃ 1.3708.
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hm for a “wide” rivulet with constant semi-width a = ā = 5 (> π), all plotted as

functions of α/π for various values of τ . In particular, Figure 4.3 shows that neither

in the case of constant non-zero contact angle nor in the case of constant width

does the rivulet have top-to-bottom symmetry (i.e. symmetry about α = π/2 and

α = 3π/2). As Figure 4.3 shows, there are various kinds of rivulet solution, some

of which exist only in a restricted range of values of α. In particular, in Figures

4.3(a) and 4.3(b) there is no physically realisable rivulet solution with β = β̄ = 1

when τ = −0.5 in the interval 0 ≤ α ≤ α∞, where α∞/π ≃ 0.2264. This behaviour

(which occurs for all τ < 0) will be discussed in greater detail in Section 4.3, where

it will be interpreted as the presence of an infinitely wide sheet of fluid. Similarly,

in Figures 4.3(e) and 4.3(f) there are no physically realisable rivulet solutions with

a = ā = 5 for all values of τ shown in the interval αdepin < α < 2π − αdepin, where

αdepin/π ≃ 0.6292 and 2−αdepin/π ≃ 1.3708. This behaviour (which occurs for all

values of τ when ā > π) will be discussed in greater detail in Section 4.4, where

it will be interpreted as the occurrence of contact-line de-pinning. Comparison of

Figures 4.3(c) and 4.3(d) with Figures 4.3(e) and 4.3(f) shows that, just as was

found in Chapter 3 in the special case of no shear stress, τ = 0, unlike a rivulet

with constant non-zero contact angle, a “narrow” rivulet with constant semi-width

a = ā < π behaves qualitatively differently from a “wide” rivulet with constant

semi-width a = ā > π. Figure 4.3 also shows the existence of a positive critical

shear stress, τc (> 0), such that “full-ring” solutions (i.e. solutions for which a, β

and hm are continuous, finite and non-negative for all 0 ≤ α < 2π and −a ≤ y ≤ a),

analogous to those studied by Leslie, Wilson and Duffy [48] in the case of flow on

a rotating cylinder in the absence of surface shear stress, exist when τ ≥ τc but

not when τ < τc.

In the remainder of the present Chapter we focus on just one of the kinds of

solution shown in Figure 4.3, namely the case of non-positive shear stress, τ ≤ 0,
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in which there is always a solution corresponding to a rivulet flowing down at least

part of the right-hand side of the cylinder (where the shear stress acts in opposition

to gravity, but it is still possible to sustain a positive flux), but never any solutions

corresponding to flow on the left-hand side of the cylinder (where the shear stress

acts in co-operation with gravity, making it impossible to sustain a positive flux).

4.3 A Rivulet with Constant Non-Zero Contact

Angle β = β̄ > 0

In this Section we describe the steady, locally unidirectional flow of a slowly varying

rivulet with constant non-zero contact angle β = β̄ > 0 but slowly varying semi-

width a = a(α) on the right-hand side of a large horizontal cylinder subject to a

non-positive uniform azimuthal surface shear stress τ (≤ 0) acting in opposition

to gravity.

In the special case of no shear, τ = 0, the rivulet becomes infinitely wide at

the top of the cylinder (i.e. a → ∞ as α → 0+) and it runs all the way from the

top α = 0 to the bottom α = π of the cylinder; however, as we saw in Figure

4.3(a), in the general case of strictly negative shear, τ < 0, the rivulet becomes

infinitely wide at the station α = α∞ away from the top of the cylinder (i.e. a→ ∞

as α → α+
∞) and there is no physically realisable rivulet solution in the interval

0 ≤ α ≤ α∞. The value of α∞ (0 ≤ α∞ < π/2) is determined by the leading order

balance in (4.8) when a→ ∞, namely

2β̄ sinα+ 3mτ = 0 (4.19)

evaluated at α = α∞, and is therefore given by

α∞ = cos−1

(

√

81τ 4 + 64β̄4 − 9τ 2

8β̄2

)

, (4.20)
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−τ

α∞/π

(a) −τ

hm∞

(b)

Figure 4.4: Plots of (a) the scaled azimuthal angle at which the rivulet becomes infinitely wide, α∞/π, given

by (4.20), and (b) the corresponding maximum thickness, hm∞, given by (4.21), as functions of −τ (≥ 0) when

β̄ = 1. The dotted curves show the asymptotic results in the limits of weak shear, −τ → 0+, and strong shear,

−τ → ∞, given by (4.22) and (4.23), respectively.

while the corresponding value of the maximum thickness hm = hm∞ is given by

hm∞ =
β̄√

cosα∞
=

[

√

81τ 4 + 64β̄4 + 9τ 2
]

1
2

2
√

2
. (4.21)

Figure 4.4 shows plots of α∞/π and hm∞ as functions of −τ (≥ 0) when β̄ = 1,

and shows that both α∞ and hm∞ are monotonically increasing functions of −τ .

In particular, in the limit of weak shear, τ → 0−, the rivulet becomes infinitely

wide near the top of the cylinder and correspondingly its maximum thickness

approaches the finite value β̄ from above according to

α∞ ∼ −3τ

2β̄
→ 0+ and hm∞ ∼ β̄ +

9τ 2

16β̄
→ β̄+, (4.22)

while in the limit of strong shear, τ → −∞, the rivulet becomes infinitely wide near

the middle of the cylinder and correspondingly its maximum thickness becomes

infinite according to

α∞ ∼ π

2
− 4β̄2

9τ 2
→ π

2

−
and hm∞ ∼ −3τ

2
→ ∞. (4.23)
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Q̄

α∞

α

Free surface

Substrate

τ < 0

g

Figure 4.5: Sketch of the scenario considered in Section 4.3, namely an infinitely wide two-dimensional film of

uniform thickness H = H(α) covers the cylinder from α = 0 to α = α∞, where it “breaks” into a single rivulet

with prescribed flux Q = Q̄, constant contact angle β = β̄ (> 0) and slowly varying semi-width a that runs from

α = α∞ to α = π.
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Since there is no physically realisable rivulet solution in the interval 0 ≤ α ≤

α∞, an alternative description of the behaviour is required there. Perhaps the

most natural scenario is that an infinitely wide two-dimensional film of uniform

thickness H = H(α) covers the cylinder from α = 0 to α = α∞, where it “breaks”

into a single rivulet with prescribed flux Q = Q̄ that runs from α = α∞ to the

bottom of the cylinder α = π. This scenario is sketched in Figure 4.5 and is the

one that we will consider here. The appropriate form of H , determined by setting

ū = 0 and h = H in (4.4), is

H = − 3τ

2 sinα
(> 0). (4.24)

In particular, (4.24) shows that the film becomes deep near the top of the cylinder

according to

H ∼ −3τ

2α
→ ∞ (4.25)

as α→ 0+, and that it approaches the finite thickness hm∞ from above according

to

H ∼ hm∞ − 2β̄2

3τ
(α∞ − α) → h+

m∞ (4.26)

as α→ α−
∞. Similarly, (4.8) shows that the rivulet becomes infinitely wide accord-

ing to

a ∼
4
[

3(cosα∞)
3
2 Q̄− β̄2τ

]

β̄
√

81τ 4 + 64β̄4 (α− α∞)
→ ∞ (4.27)

and (4.7) shows that it approaches the finite maximum thickness hm∞ from above

according to

hm ∼ hm∞ +
hm∞ tanα∞

2
(α− α∞) → h+

m∞ (4.28)

as α → α+
∞, so that the infinitely wide film in 0 ≤ α ≤ α∞ and the finite-width

rivulet in α∞ < α ≤ π join continuously (but not smoothly) at the station α = α∞.

In the special case of no shear, τ = 0, the rivulet becomes deep with finite semi-
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width π near the bottom of the cylinder according to

a ∼ π −
(

5β̄3(π − α)

3Q̄

)

1
3

→ π− and hm ∼
(

24Q̄

5(π − α)

)
1
3

→ ∞ (4.29)

as α → π−, while in the general case of strictly negative shear, τ < 0, the rivulet

again becomes deep with finite semi-width π near the bottom of the cylinder, but

now according to

a ∼ π +
10β̄(π − α)

9τ
→ π− and hm ∼ − 9τ

5(π − α)
→ ∞ (4.30)

as α→ π−.

The behaviour of the present solution is illustrated in Figure 4.6, which shows

plots of the semi-width a and the maximum thickness hm as functions of α/π when

β̄ = 1 for (a,b) various values of τ (≤ 0) when Q̄ = 1 and for (c,d) various values

of Q̄ when τ = −0.5.

In Subsection 4.3.1 we present examples of free surface profiles of the film and

the rivulet, and in Subsections 4.3.2–4.3.5 we describe the behaviour in the limits

of weak shear, τ → 0−, strong shear, τ → −∞, small flux, Q̄ → 0+, and large

flux, Q̄→ ∞, respectively.

4.3.1 Free Surface Profiles

Figure 4.7 shows examples of cross-sectional free surface profiles of the film and

the rivulet in the case β̄ = 1, τ = −0.5 and Q̄ = 1. For these parameter values

we obtain α∞ ≃ 0.7112, and so the profile shown for α = π/8 < α∞ ≃ 0.7112

is simply a horizontal line that corresponds to an infinitely wide film of uniform

thickness H ≃ 1.9598.
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α/π

a

τ = 0

τ = −4

π√
− cosα

(1, π)

(a)
α/π

hm

τ = 0

τ = −4
β̄√

cosα

(b)

α/π

a

Q̄ = 0.01

Q̄ = 1000

(1, π)

α∞/π ≃ 0.2264

π√
− cosα

(c)
α/π

hm

Q̄ = 1000

Q̄ = 0.01

β̄√
cosα

(d)

Figure 4.6: Plots of (a,c) the semi-width a and (b,d) the maximum thickness hm as functions of the scaled angle

α/π when β̄ = 1 for (a,b) τ = −4, −3, . . . , 0 when Q̄ = 1 and (c,d) Q̄ = 0.01, 0.1, . . . , 1000 when τ = −0.5. In (a)

and (c) the vertical dashed lines indicate the values of α/π = α∞/π, given by (4.20), at which a → ∞, and in (b)

and (d) the dots denote the corresponding values of hm which lie on the curve hm = β̄/
√

cos α for 0 ≤ α < π/2,

which is denoted with a dotted line. In (a) and (c) the dotted lines denote the solution a = π/
√
− cos α for

π/2 < α ≤ π attained at leading order in the asymptotic limits τ → −∞ and Q̄ → ∞, respectively.
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y

h(y)

α = π/8α = π/4

α = 7π/8

Figure 4.7: Cross-sectional free surface profiles of the film H and the rivulet h(y) when β̄ = 1, τ = −0.5 and

Q̄ = 1 at α = π/8, π/4, 3π/8, π/2, 5π/8, 3π/4, 7π/8. Note that in this case π/8 < α∞ ≃ 0.7112 < π/4, and so

the profile in the case α = π/8 is that of an infinitely wide film of uniform thickness H ≃ 1.9598 rather than that

of a finite-width rivulet.

4.3.2 The Limit of Weak Shear (τ → 0−)

In the limit of weak shear, τ → 0−, α∞ → 0+ according to (4.22) and the rivulet

behaves according to

a ∼ aτ0 −
9g(maτ0)τ

2β̄ sinαf ′(maτ0)
→ a+

τ0 and hm ∼ β̄

m
tanh

(maτ0

2

)

= O(1) (4.31)

on the upper half of the cylinder,

a ∼
(

105Q̄

4β̄3

)
1
4

−7τ

8β̄
→
(

105Q̄

4β̄3

)
1
4

+

and hm ∼
(

105Q̄β̄

64

)

1
4

−7τ

16
→
(

105Q̄β̄

64

)

1
4

+

(4.32)

at α = π/2, and according to (4.31) with “tanh” replaced by “tan” in the expres-

sion for hm on the lower half of the cylinder, where aτ0 is the semi-width in the

special case of no shear, that is, the form of a when τ = 0.
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4.3.3 The Limit of Strong Shear (τ → −∞)

In the limit of strong shear, τ → −∞, α∞ → π/2− according to (4.23) and the

film becomes deep according to H = −3τ/(2 sinα) → ∞ on the upper half of the

cylinder, while the rivulet becomes wide and deep according to

a ∼ −7τ

2β̄
→ ∞ and hm ∼ −7τ

4
→ ∞ (4.33)

at α = π/2, and deep with finite width according to

a ∼ π

m
+

10β̄ sinα

9m2τ
→ π

m

−
and hm ∼ − 9τ

5 sinα
→ ∞ (4.34)

on the lower half of the cylinder. Note that a changes from O(τ) to O(1) in a

narrow transition layer of width O(τ−2) near α = π/2+.

4.3.4 The Limit of Small Flux (Q̄→ 0+)

In the limit of small flux, Q̄→ 0+, the rivulet behaves according to

a ∼ aQ0 +
18m3Q̄

β̄2
[

2β̄ sinαf ′(maQ0) + 9mτg′(maQ0)
] → a+

Q0 (4.35)

and

hm ∼ β̄

m
tanh

(maQ0

2

)

= O(1) (4.36)

on the upper half of the cylinder for α∞ < α < π/2,

a ∼ −7τ

2β
− 30Q̄

49τ 3
→ −7τ

2β̄

+

and hm ∼ −7τ

4
− 15β̄Q̄

49τ 3
→ −7τ

4

+

(4.37)

at α = π/2, and according to (4.35) and (4.36) with “tanh” replaced by “tan” on

the lower half of the cylinder, where aQ0 is the semi-width in the special case of

zero flux, that is, the form of a when Q̄ = 0.
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4.3.5 The Limit of Large Flux (Q̄→ ∞)

In the limit of large flux, Q̄ → ∞, the rivulet becomes wide with finite thickness

according to

a ∼ 3m3Q̄

β̄2
[

2β̄ sinα + 3mτ
] → ∞ and hm ∼ β̄

m
tanh

(

3m4Q̄

2β̄2
[

2β̄ sinα + 3mτ
]

)

→ β̄

m

−

(4.38)

on the upper half of the cylinder for α∞ < α < π/2, wide and deep according to

a ∼
(

105Q̄

4β̄3

)
1
4

− 7τ

8β̄
→ ∞ and hm ∼

(

105Q̄β̄

64

)

1
4

− 7τ

16
→ ∞ (4.39)

at α = π/2, and deep with finite width according to

a ∼ π

m
−
(

5πβ̄3 sinα

3m7Q̄

)

1
3

→ π

m

−
and hm ∼

(

24Q̄m

5π sinα

)

1
3

→ ∞ (4.40)

on the lower half of the cylinder; note that a and hm in (4.40) are independent

of τ to the orders given. Note also that a changes from O(Q̄) to O(1) and hm

changes from O(1) to O(Q̄1/3) in a narrow transition layer of width O(Q̄−1/2) near

α = π/2.

4.4 A Rivulet with Constant Semi-Width a = ā

In this Section we describe the steady, locally unidirectional flow of a slowly varying

rivulet with constant semi-width a = ā but slowly varying contact angle β =

β(α) (≥ 0) on the right-hand side of a large horizontal cylinder subject to a non-

positive uniform azimuthal surface shear stress τ (≤ 0) acting in opposition to

gravity.

Unlike in the case of constant non-zero contact angle described in Section 4.3

in which the behaviour is qualitatively the same for all values of the contact angle,

the behaviour is qualitatively different for a narrow rivulet with a = ā < π, in

the marginal case a = ā = π, and for a wide rivulet with a = ā > π, and hence
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Q̄ Q̄

Q̄ Q̄

g

α α

αdepin

Free surface Substrate

τ < 0 τ < 0

(b)(a)

Figure 4.8: Sketch of the scenario considered in Section 4.4, namely a rivulet with prescribed flux Q̄ and (when

not de-pinned with zero contact angle β = β̄ = 0 but slowly varying semi-width a = π/m) constant semi-width

a = ā but slowly varying contact angle β that runs from α = 0 to α = π, in the cases (a) a = ā < π, in which the

rivulet is never de-pinned, and (b) a = ā > π, in which the rivulet is de-pinned and has zero contact angle in the

interval αdepin ≤ α ≤ π.

in Subsections 4.4.1–4.4.3 we describe the behaviour in each of these three cases

separately. In Subsection 4.4.4 we present examples of free surface profiles of the

rivulet, and in Subsections 4.4.5–4.4.8 we describe the behaviour in the limits of

weak shear, τ → 0−, strong shear, τ → −∞, small flux, Q̄ → 0+, and large flux,

Q̄→ ∞, respectively.

4.4.1 A Narrow Rivulet with a = ā < π

For a narrow rivulet with a = ā < π for all values of Q̄ and τ (≤ 0) there is a

slowly varying rivulet that runs all the way from the top of the cylinder α = 0 to

the bottom of the cylinder α = π, and its contact angle β has a single minimum on

the lower half of the cylinder and its maximum thickness hm has a single minimum

on the upper half of the cylinder. This scenario is sketched in Figure 4.8(a).
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4.4.1.1 The Special Case of No Shear (τ = 0)

In the special case of no shear, τ = 0, the real positive solution of (4.8) for the

contact angle β is given by (3.11) in Chapter 3 and the maximum thickness hm is

given by (4.7) with β given by (3.11). The rivulet becomes deep near the top and

the bottom of the cylinder according to (3.14) in Chapter 3 as α→ 0+ and (3.15)

in Chapter 3 as α → π−; also β and hm take the O(1) values (3.16) in Chapter 3

at α = π/2. In the limit of a very narrow rivulet, ā → 0+, the rivulet becomes

narrow and deep everywhere according to (3.17) in Chapter 3.

4.4.1.2 The General Case of Strictly Negative Shear (τ < 0)

In the general case of strictly negative shear, τ < 0, the real positive solution of

(4.8) for the contact angle β is

β = − 3τmg(mā)

2 sinαf(mā)

{

1 + 2 cosh

[

1

3
cosh−1

(

1 − 4Q̄m sin2 αf 2(mā)

3τ 3g3(mā)

)]}

, (4.41)

and the maximum thickness hm is given by (4.7) with β given by (4.41). The

rivulet becomes deep near the top and the bottom of the cylinder according to

β ∼ − 9τg(ā)

2αf(ā)
→ ∞ and hm ∼ − 9τg(ā)

2αf(ā)
tanh

( ā

2

)

→ ∞ (4.42)

as α→ 0+ and

β ∼ − 9τg(ā)

2(π − α)f(ā)
→ ∞ and hm ∼ − 9τg(ā)

2(π − α)f(ā)
tan

( ā

2

)

→ ∞ (4.43)

as α→ π−; also β and hm take the O(1) values

β = −7τ

6ā

{

1 + 2 cosh

[

1

3
cosh−1

(

1 − 405Q̄

49τ 3ā

)]}

and hm =
βā

2
(4.44)

at α = π/2. In the limit of a very narrow rivulet, ā → 0+, the rivulet becomes

narrow and deep everywhere according to (3.17) in Chapter 3 (showing that, rather

unexpectedly, its behaviour is independent of τ).
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α/π
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τ = 0

τ = −2
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Figure 4.9: Plots of (a,c) the contact angle β and (b,d) the maximum thickness hm as functions of the scaled

angle α/π when Q̄ = 1 for (a,b) τ = −2, −1.75, . . . , 0 when ā = 2 (< π), and (c,d) ā = 0.25, 0.5, 1, . . . , 3 when

τ = −1.
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The behaviour of the present solution when a = ā < π is illustrated in Figure

4.9, which shows plots of the contact angle β and the maximum thickness hm as

functions of α/π when Q̄ = 1 for (a,b) various values of τ (≤ 0) when ā = 2 (< π)

and for (c,d) various values of ā satisfying ā < π when τ = −1.

4.4.2 The Marginal Case a = ā = π

In the marginal case a = ā = π the rivulet behaves qualitatively as in the case of

a narrow rivulet with a = ā < π except that, since in this case β = 0 at α = π,

instead of satisfying (3.15) in Chapter 3 in the special case of no shear, τ = 0, or

(4.43) in the general case of strictly negative shear, τ < 0, the rivulet becomes deep

with zero contact angle and finite semi-width π near the bottom of the cylinder

according to (3.18) in Chapter 3 when τ = 0 and

β ∼ −9πτ(π − α)

40
→ 0+ and hm ∼ − 9τ

5(π − α)
→ ∞ (4.45)

when τ < 0, as α→ π−.

4.4.3 A Wide Rivulet with a = ā > π

Unlike for a narrow rivulet with a = ā < π, for a wide rivulet with a = ā > π for

all values of Q̄ and τ (≤ 0) there is a slowly varying rivulet that runs from the top

of the cylinder α = 0 only as far as a station α = αdepin (π/2 < αdepin < π) on the

lower half of the cylinder, and its contact angle β, again given by (3.11) in Chapter

3 in the special case of no shear, τ = 0, or (4.41) in the general case of strictly

negative shear, τ < 0, is a monotonically decreasing function of α, attaining its

minimum physically realisable value of zero at the station α = αdepin, where αdepin

is given by

αdepin = cos−1

(

−π
2

ā2

)

for ā > π. (4.46)
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Note that, rather unexpectedly, αdepin is independent of both τ and Q̄, and hence

coincides exactly with the corresponding angle found in Chapter 3 in the special

case of no shear, τ = 0. The rivulet again becomes deep near the top of the

cylinder according to (3.14) in Chapter 3 when τ = 0 or (4.42) when τ < 0, and

again β and hm take the O(1) values given by (3.16) in Chapter 3 when τ = 0

or (4.44) when τ < 0 at α = π/2. At α = αdepin the rivulet has zero contact

angle β = 0, semi-width a = ā > π, and maximum thickness hm = hmdepin, where

hmdepin (> 0) is the real positive solution of (4.17c) when α = αdepin, namely

hmdepin =

(

24Q̄ā

5
√
ā4 − π4

)
1
3

(4.47)

when τ = 0 and

hmdepin = − 3τ ā2

5
√
ā4 − π4

{

1 + 2 cosh

[

1

3
cosh−1

(

1 − 100Q̄(ā4 − π4)

9τ 3ā5

)]}

(4.48)

when τ < 0. Furthermore, as α→ α−
depin we find that β → 0+ according to

β = βdepin (αdepin − α) +O(αdepin − α)2, (4.49)

a ≡ ā, and hm → h−mdepin according to

hm = hmdepin+
5(ā4 + π4)h2

mdepin + 9τ ā2
√
ā4 − π4hmdepin

6π2(5
√
ā4 − π4hmdepin + 6τ ā2)

(α− αdepin)+O(α−αdepin)
2,

(4.50)

where the coefficient βdepin (> 0) in (4.49) is the real positive solution of the cubic

polynomial equation that is obtained from (4.8) in the limit α → α−
depin, and is

given by

βdepin =

√
ā4 − π4

4ā
hmdepin, (4.51)

together with (4.47) or (4.48), as appropriate.

Since there is no physically realisable rivulet solution in the interval αdepin <

α ≤ π, an alternative description of the behaviour is required there. The scenario

we will consider is the one proposed in Chapter 3, namely that for 0 ≤ α <
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αdepin the rivulet behaves according to the description of a narrow rivulet given in

Subsection 4.4.1, but that the contact lines de-pin at α = αdepin, and the rivulet

runs from α = αdepin to the bottom of the cylinder α = π with zero contact

angle according to the solution in the case β = β̄ = 0 given by (4.17), with

monotonically decreasing semi-width a = π/m (π ≤ a ≤ ā) and monotonically

increasing maximum thickness hm ≥ hmdepin. This scenario is sketched in Figure

4.8(b). In particular, as α → α+
depin we find that β ≡ 0, a → ā− according to

(3.23) in Chapter 3, that is, it is independent of τ , and hm → h+
mdepin according to

(4.50), so that the solutions in α < αdepin and α > αdepin join continuously (but

not smoothly) at the station α = αdepin. Note that in Chapter 3 the more general

scenario of de-pinning and re-pinning at a non-zero contact angle was considered,

but for simplicity we restrict our attention to the simplest case of de-pinning at

zero contact angle here.

4.4.3.1 The Special Case of No Shear (τ = 0)

In the special case of no shear, τ = 0, the real positive solution of (4.17c) for the

maximum thickness hm in the interval αdepin ≤ α ≤ π is

hm =

(

24Q̄m

5π sinα

)
1
3

. (4.52)

Near the bottom of the cylinder the rivulet becomes deep with finite semi-width

π according to (3.24) in Chapter 3 as α → π−. Also, in the limit of a very wide

rivulet, ā → ∞, for which αdepin → π/2+, the rivulet becomes wide and flat

according to (3.25) in Chapter 3 on the upper half of the cylinder, and behaves

according to the solution in the case β = β̄ = 0 given by (4.17) and (4.52) on the

lower half of the cylinder.
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4.4.3.2 The General Case of Strictly Negative Shear (τ < 0)

In the general case of strictly negative shear, τ < 0, the real positive solution of

(4.17c) for the maximum thickness hm in the interval αdepin ≤ α ≤ π is

hm = − 3τ

5 sinα

{

1 + 2 cosh

[

1

3
cosh−1

(

1 − 100Q̄m sin2 α

9πτ 3

)]}

. (4.53)

Near the bottom of the cylinder the rivulet has finite semi-width a that approaches

the value π again according to (3.24) in Chapter 3 and becomes deep according to

hm ∼ − 9τ

5(π − α)
→ ∞ (4.54)

as α→ π−. At leading order in the limit of a very wide rivulet, ā→ ∞, for which

αdepin → π/2+, on the upper half of the cylinder β and hm take the O(1) forms

β = − 3mτ

2 sinα
and hm = − 3τ

2 sinα
(4.55)

and the rivulet behaves according to the solution in the case β = β̄ = 0 given by

(4.17) and (4.53) on the lower half of the cylinder.

The behaviour of the present solution when a = ā > π is illustrated in Figure

4.10, which shows plots of the contact angle β, the maximum thickness hm and the

semi-width a as functions of α/π when Q̄ = 1 for (a,b) various values of τ (≤ 0)

when ā = 5 (> π) and for (c,d) various values of ā satisfying ā ≥ π when τ = −1.

4.4.4 Free Surface Profiles

Figure 4.11 shows examples of cross-sectional free surface profiles of the rivulet

when τ = −1 and Q̄ = 1 in the cases (a) ā = 2 (< π) and (b) ā = 5 (> π).

4.4.5 The Limit of Weak Shear (τ → 0−)

In the limit of weak shear, τ → 0−, β and hm take the forms

β = β0 + τβ1 +O(τ 2) and hm = hm0 + τhm1 +O(τ 2). (4.56)
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Figure 4.10: Plots of (a,c) the contact angle β, (b,d) the maximum thickness hm and (e) the semi-width a, all as

functions of α/π (0 ≤ α ≤ π) for (a,b) τ = −2, −1.75, . . . , 0 when ā = 5 (> π) and Q̄ = 1 and (c,d,e) ā = π, 3.5,

4, 5, . . . , 10, 20, 40 when τ = −1 and Q̄ = 1. The dots indicate the corresponding values of αdepin/π given by

(4.46) at which the contact lines de-pin.
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α = π/8

α = 7π/8
α = αdepin
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Figure 4.11: Cross-sectional free surface profiles h(y) when τ = −1 and Q̄ = 1 in the cases (a) ā = 2 (< π)

at α = π/8, π/4, 3π/8, π/2, 5π/8, 3π/4, 7π/8 and (b) ā = 5 (> π) at α = π/8, π/4, 3π/8, π/2, αdepin =

cos−1(−π2/25) ≃ 1.9766, 3π/4 and 7π/8. For clarity, the two parts of this figure use the same vertical but

different horizontal ranges.

The leading order terms β0 and hm0 are the forms of the contact angle and maxi-

mum thickness in the special case of no shear, τ = 0, given by (3.11) in Chapter 3

and (4.7), respectively, for 0 ≤ α < αdepin, and by (4.52) on the lower half of the

cylinder for αdepin ≤ α ≤ π. The first order terms β1 and hm1 are given by

β1 = − 3mg(mā)

2f(mā) sinα
and hm1 = − 3g(mā)

2f(mā) sinα
tanh

(mā

2

)

(4.57)

on the upper half of the cylinder,

β1 = − 7

6ā
and hm1 = − 7

12
(4.58)

at α = π/2, (4.57) with “tanh” replaced by “tan” in the expression for hm1 on the

lower half of the cylinder for π/2 < α < αdepin, and

hm1 = − 3

5 sinα
(4.59)

on the lower half of the cylinder for αdepin ≤ α ≤ π.
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4.4.6 The Limit of Strong Shear (τ → −∞)

In the limit of strong shear, τ → −∞, the rivulet becomes deep according to

β ∼ − 9mτg(mā)

2f(mā) sinα
→ ∞ and hm ∼ − 9τg(mā)

2f(mā) sinα
tanh

(mā

2

)

→ ∞ (4.60)

on the upper half of the cylinder,

β ∼ −7τ

2ā
→ ∞ and hm ∼ −7τ

4
→ ∞ (4.61)

at α = π/2, (4.60) with “tanh” replaced by “tan” in the expression for hm on the

lower half of the cylinder for π/2 < α < αdepin, and

hm ∼ − 9τ

5 sinα
→ ∞ (4.62)

on the lower half of the cylinder for αdepin ≤ α ≤ π. Note that β changes from

O(τ) to zero in a narrow transition layer of width O(τ−1) near α = α−
depin.

4.4.7 The Limit of Small Flux (Q̄→ 0+)

In the limit of small flux, Q̄→ 0+, the contact angle β behaves according to

β ∼ βQ0 −
2m3Q̄

βQ0τg(mā)
→ β+

Q0, (4.63)

and the maximum thickness hm behaves according to (4.7) with β given by (4.63)

for 0 ≤ α < αdepin, and

hm ∼ − 9τ

5 sinα
+

40mQ̄ sinα

27πτ 2
→
(

− 9τ

5 sinα

)+

(4.64)

on the lower half of the cylinder for αdepin ≤ α < π, where βQ0 is the contact angle

in the special case of zero flux, namely

βQ0 = − 9mτg(mā)

2 sinαf(mā)
. (4.65)
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Figure 4.12: Plots showing how the α/π–τ parameter plane is divided by curves corresponding to type-I and

type-III flows into regions in which the solutions have the cross-sectional flow patterns of types I–IV described in

Subsection 4.1.4 when Q̄ = 1 for (a) β = β̄ = 0.5, 1, 1.5, 2, 2.5, 5 and (b) a = ā = 1, 3, π, 5, 7, 9, 20. The dashed

curves correspond to the special case of zero contact angle, β = β̄ = 0, given by (4.66), and in (b) the locations at

which the curves corresponding to wide rivulets with a = ā ≥ π join this curve are marked with dots. The dotted

curves show the solution in the limits of (a) small contact angle, β̄ → 0+, given by (4.67) for 0 ≤ α < π/2 and

plotted on the β̄ = 0.5 curve and large contact angle, β̄ → ∞, given by (4.68) and plotted on the β̄ = 5 curve,

and (b) a narrow rivulet, ā → 0+, given by (4.69) and plotted on the ā = 1 curve and a wide rivulet, ā → ∞,

given by (4.70) for 0 ≤ α < π/2 and plotted on the ā = 20 curve.

4.4.8 The Limit of Large Flux (Q̄→ ∞)

In the limit of large flux, Q̄ → ∞, the contact angle and maximum thickness

become large (i.e. β → ∞ and hm → ∞, respectively) according to the solution

in the special case of no shear, τ = 0, given by (3.11) in Chapter 3 and (4.7) for

0 ≤ α < αdepin, and by (4.52) for αdepin ≤ α ≤ π. Note that β changes from

O(Q̄1/3) to zero in a narrow transition layer of width O(Q̄−1/3) near α = α−
depin.

4.5 Flow Patterns Revisited

Figures 4.12(a) and 4.12(b) show how the α/π–τ parameter plane is divided by

curves corresponding to type-I and type-III flows into regions in which the solu-
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tions have the cross-sectional flow patterns of types I–IV described in Subsection

4.1.4 when Q̄ = 1 (> 0) for rivulets with various constant contact angles β = β̄

and various constant semi-widths a = ā, respectively. In particular, Figure 4.12 in-

cludes the curves corresponding to type-III flow in the special case of zero contact

angle, β = β̄ = 0, namely

τ = −
(

6Q̄m sin2 α

π

)

1
3

, (4.66)

obtained using the fact that hm = −2τ/ sinα for type-III flow (as mentioned

in Subsection 4.1.4), together with (4.53). The maximum strength of (negative)

shear such that type-III flow exists at some station α = constant on the cylinder

is denoted by τ = τIIIm. As Figure 4.12 shows, there are two stations (α = αIII1

and α = αIII2 > π/2, where αIII1 < αIII2) at which type-III flow exists when

|τ | < |τIIIm|, one (α = αIII > π/2) when τ = τIIIm, and none when |τ | > |τIIIm|. In

the latter case the flow is always upwards at z = hm (i.e. type IV for all α). Of

course, since Q̄ > 0, type-V flow is not possible here.

For type-III flow, in the limit of small contact angle, β̄ → 0+, we have

τ ∼ − β̄ sinα

2m
→ 0− (4.67)

on the upper half of the cylinder and shown as a dotted curve in Figure 4.12(a)

when β̄ = 0.5, and (4.66) on the lower half of the cylinder, shown as a dashed

curve in Figure 4.12(a). In the limit of large contact angle, β̄ → ∞, we have

τ ∼ −1

4

(

210Q̄β̄ sin3 α
)

1
4 → −∞, (4.68)

shown as a dotted curve in Figure 4.12(a) when β̄ = 5. In the limit of a narrow

rivulet, ā→ 0+, we have

τ ∼ −1

4

(

210Q̄ sin2 α

ā

)

1
3

→ −∞, (4.69)
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shown as a dotted curve in Figure 4.12(b) when ā = 1. In the limit of a wide

rivulet, ā→ ∞, we have

τ ∼ −
(

3Q̄ sin2 α

4ā

)

1
3

→ 0−, (4.70)

on the upper half of the cylinder and shown as a dotted curve in Figure 4.12(b)

when ā = 20, and (4.66) on the lower half of the cylinder, shown as a dashed curve

in Figure 4.12(b).

Figure 4.13 shows sketches of the possible flow patterns within the film and

the rivulet with constant non-zero contact angle described in Section 4.3 in the

vertical cross-section y = 0. In particular, Figures 4.13(a) and 4.13(b) show the

case |τ | < |τIIIm|, in which α∞ < αIII1 < π/2 and αIII1 > π/2, respectively, Figure

4.13(c) shows the case τ = τIIIm, and Figure 4.13(d) shows the case |τ | > |τIIIm|.

Figure 4.13 also illustrates that the solutions for the film in 0 ≤ α ≤ α∞ and for

the rivulet in α∞ < α ≤ π join continuously (but not smoothly) at the station

α = α∞. The flow patterns within the rivulet with constant width described in

Section 4.4 are rather similar to those shown in Figure 4.13 and hence are omitted

for brevity.

4.6 Conclusions

In the present Chapter we investigated the flow of a slowly varying rivulet with

positive prescribed flux Q = Q̄ > 0 on a slowly varying substrate, specifically

the flow in the azimuthal direction round a large stationary horizontal cylinder,

subject to a prescribed uniform azimuthal surface shear stress τ . In particular, we

focused on the case of non-positive shear stress, τ ≤ 0, that is, opposing gravity,

in which there is always a solution corresponding to a rivulet flowing down at

least part of one side of the cylinder. We considered both a rivulet with constant

non-zero contact angle β = β̄ > 0 but slowly varying semi-width a = a(α) and a
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Figure 4.13: Sketches of the possible flow patterns within the film and the rivulet in the vertical cross-section

y = 0 when (a) |τ | < |τIIIm| and αIII1 < π/2, (b) |τ | < |τIIIm| and αIII1 > π/2, (c) τ = τIIIm, and (d) |τ | > |τIIIm|.

The dashed curves indicate where u = 0.
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rivulet with constant semi-width a = ā but slowly varying contact angle β = β(α),

and showed that they have qualitatively different behaviour.

In Section 4.3 we showed that, unlike in the special case of no shear, τ = 0,

considered by Duffy and Moffatt [23], in the general case when shear is present,

τ < 0, a rivulet with constant non-zero contact angle β = β̄ > 0 can never run

all the way from the top to the bottom of the cylinder, and so we considered the

scenario sketched in Figure 4.5 in which an infinitely wide two-dimensional film of

uniform thickness H = −3τ/(2 sinα) (> 0) covers the cylinder from the top α = 0

to the station α = α∞, where it breaks into a single rivulet with constant non-zero

contact angle but slowly varying width that runs from the station α = α∞ to the

bottom α = π. In particular, we showed that α∞ is a monotonically increasing

function of −τ which approaches the value π/2 from below in the limit −τ → ∞,

and hence that as the strength of the (negative) shear increases the film covers an

increasingly larger part of the upper half of the cylinder.

In Section 4.4 we showed that, like in the special case of no shear, τ = 0,

considered in Chapter 3, while a narrow rivulet with constant semi-width a = ā ≤

π can run all the way from the top α = 0 to the bottom α = π of the cylinder,

a wide rivulet with constant semi-width a = ā > π can run from α = 0 only to

the station α = αdepin, where its contact angle becomes zero, and so we considered

the scenario sketched in Figure 4.8 in which the contact lines de-pin at α = αdepin

and the rivulet flows from α = αdepin to α = π with zero contact angle but slowly

varying width. In particular, we showed that αdepin is independent of τ , and hence

that as the strength of the shear is varied the rivulet always de-pins at the same

station on the lower half of the cylinder.

As Figure 4.3 shows, the rivulet solutions described in the present Chapter are

not the only physically realisable solutions for flow on a stationary cylinder in the

presence of a uniform azimuthal surface shear stress. In particular, as we described
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in Section 4.2, full-ring solutions that extend all the way round the cylinder, which

are impossible in the absence of shear, exist when the shear is sufficiently strong;

these solutions will be analysed in Chapter 5.



Chapter 5

A shear-driven ring of fluid on a

horizontal cylinder

In this Chapter we study the steady three-dimensional flow in the azimuthal di-

rection of a ring of Newtonian fluid on a large horizontal cylinder subject to a

prescribed uniform azimuthal surface shear stress due to an external airflow. Un-

like in Chapter 4, where we studied rivulet flow on one side of the cylinder with

prescribed volume flux, in the present Chapter we study a ring of fluid that flows

round the entire circumference of the cylinder (referred to as a “full ring”) in which

the volume flux is unknown a priori. Also, in Chapter 4 it was found that the pres-

ence of shear simply modifies the rivulet solution that is obtained in the case of no

shear studied in Chapter 3; however, in the present Chapter it is found that the

presence of shear is required for a full-ring solution to exist. Lastly, in Chapter

4 both the case of a rivulet with constant contact angle but variable width (i.e.

de-pinned contact lines) and of a rivulet with constant width but variable contact

angle (i.e. pinned contact lines) were considered; however, in the present Chapter

we focus on a ring with constant width only and find that, analogously to the case

of a rivulet with constant width in Chapter 4, de-pinning of the contact lines of a

178
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sufficiently wide ring is unavoidable for a full ring to exist. The case of constant

non-zero contact angle is discussed briefly in Section 6.2.

5.1 Problem Formulation

5.1.1 Geometry of the Problem

Consider the steady three-dimensional flow of a thin, slowly varying ring of fluid

(as previously discussed in Sections 1.6 and 4.2) of prescribed constant semi-width

a = ā on the outside of a large stationary horizontal cylinder of radius R subject

to a prescribed uniform azimuthal surface shear stress τ . We again take the fluid

to be Newtonian with constant viscosity µ, density ρ and coefficient of surface

tension γ. The azimuthal angle α (0 ≤ α < 2π) is measured clockwise from the

vertical, with α = 0 corresponding to the top of the cylinder; values of α in the

interval 0 < α < π (π < α < 2π) correspond to the right-hand (left-hand) side of

the cylinder. We choose local Cartesian coordinates Oxyz with the x axis down

(up) the line of greatest slope for 0 < α < π (π < α < 2π), the y axis horizontal,

and the z axis normal to the substrate z = 0, such that the shear stress τ (> 0)

acts in the same (opposite) direction to gravity in 0 < α < π (π < α < 2π), as

sketched in Figure 5.1. At each station α = constant the ring has free surface

z = h(y) and its cross-section is symmetric with respect to y = 0. The contact

angle is denoted by β = ∓h′(±ā) (≥ 0), where a dash denotes differentiation with

respect to the argument, and the maximum thickness of the ring, which always

occurs at y = 0, is denoted by hm = h(0). We consider the situation in which the

ring is thin, which means that the transverse aspect ratio, denoted by δ, is small,

specifically δ ≪ 1. There is some freedom regarding the definition of δ; however,

for the moment we leave δ unspecified in order to keep the subsequent presentation

as general as possible. In addition, we assume that the ring is slowly varying in α,
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y−ā +ā
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O

g

τ

Fluid
Cylinder

Figure 5.1: Sketch of a thin, slowly varying ring of constant semi-width a = ā but slowly varying contact angle

β = β(α) flowing on a horizontal cylinder subject to a prescribed uniform azimuthal surface shear stress τ .

which means that the azimuthal aspect ratio, defined by ǫ = ℓ/R, satisfies ǫ ≪ δ,

so that ǫ/δ → 0 in the limit ǫ → 0, where ℓ = (γ/ρg)1/2 is the capillary length.

Under these assumptions the velocity of the fluid is locally unidirectional (i.e. in

the x direction only) and is denoted by u = u(y, z)i, while the pressure is denoted

by p = p(y, z).

We therefore introduce the following non-dimensionalised and scaled variables:

x = Rx∗, y = ǫRy∗, a = ǫRa∗, z = ǫδRz∗, h = ǫδRh∗, β = δβ∗,

u =
ǫ2δ2R2ρg

µ
u∗, p− p∞ = ǫδRρgp∗, τ = ǫδ2Rρgτ ∗,

Q =
ǫ4δ3R4ρg

µ
Q∗, M = ǫ2δR3ρM∗,

(5.1)

where p∞ is the ambient pressure, Q is the azimuthal volume flux of fluid crossing a

station α = constant and M (> 0) is the constant mass of fluid on the cylinder. For

clarity, we immediately drop the star superscripts on non-dimensional variables in

what follows. Note that, although we consider flow on the outside of the cylinder

only, the solution of the related problem of flow on the inside of the cylinder is

obtained by simply letting the solution on the upper half of the cylinder in the

present problem correspond to the lower half of the cylinder, and vice-versa.
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At leading order in ǫ and δ the governing Navier–Stokes equations for the flow

on the cylinder are readily solved to yield the pressure and the velocity, again

given by (4.2) and (4.3) in Chapter 4, respectively, and the shape of the free

surface satisfies the third order ordinary differential equation (4.5) in Chapter 4

subject to the contact-line conditions h = 0 and h′ = ∓β at y = ±ā, where β is

calculated as part of the solution.

In this Chapter we shall be concerned only with so-called “full-ring” solutions,

that is, solutions for which β ≥ 0 and h > 0 are continuous and finite for all 0 ≤

α < 2π and −ā < y < ā, analogous to those studied by Leslie, Wilson and Duffy

[48] in the case of a full ring with constant, non-zero contact angle but variable

width on a rotating horizontal cylinder in the absence of shear stress. These

full-ring solutions have constant, non-zero Q which, unlike the rivulet solutions

described in Chapter 4, is unknown a priori and instead calculated as part of

the solution, and we note that these solutions have neither top-to-bottom, nor

left-to-right, symmetry.

5.1.2 The General Case of Non-Zero Contact Angle β > 0

In the general case of non-zero contact angle β > 0 the free surface shape h(y)

and the maximum thickness hm are again given by (4.6) and (4.7) in Chapter 4,

respectively, with a = ā, that is, locally the cross-sectional ring profile is the same

as that of a thin rivulet with non-zero contact angle flowing on a planar substrate

inclined at an angle α to the horizontal. The volume flux Q is given by

Q =
β3 sinα

9m4
f(mā) +

β2τ

2m3
g(mā) (5.2)

(i.e. equation (4.8) in Chapter 4 with a = ā), where we have writtenm = | cosα|1/2,

and the functions f = f(mā) and g = g(mā) are again defined by (4.9) and (4.10)

in Chapter 4, respectively, with a = ā. For a given semi-width ā and shear stress
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τ , equation (5.2) is a cubic polynomial equation for β as a function of α in terms

of the unknown Q. By considering equation (5.2) at the top α = 0 or the bottom

α = π of the cylinder (i.e. when sinα = 0) we see that if τ > 0 then it immediately

follows that Q > 0, so that the flux is downwards on the right-hand side of the

cylinder and upwards on the left-hand side of the cylinder. On the left-hand side

of the cylinder (i.e. when sinα < 0) there are two real positive roots β of (5.2), but

only one of these (the one that we shall use) corresponds to the full ring flowing

continuously all the way around the cylinder.

5.1.3 The Special Case of Zero Contact Angle β = 0

In the special case of zero contact angle β = 0 there is no solution corresponding

to a full ring of fluid; however, for future reference we note that there is a solution

corresponding to a “half ring” of fluid with slowly varying width (i.e. de-pinned

contact lines) on the lower half of the cylinder, namely

a =
π

m
, h =

hm

2
(1 + cosmy) , Q =

π

24m
(5 sinαhm + 9τ) h2

m (5.3)

for π/2 < α < 3π/2, but no solution on the upper half of the cylinder for 0 ≤ α ≤

π/2 and 3π/2 ≤ α < 2π. Equation (5.3) is identical to (4.17) in Chapter 4, that

is, locally the cross-sectional half-ring profile is the same as that of a thin rivulet

with zero contact angle flowing on the underside of a planar substrate inclined at

an angle α to the horizontal. For a given shear stress τ , equation (5.3c) is a cubic

polynomial equation for hm as a function of α in terms of the unknown Q.

5.1.4 Pinned, De-Pinned and Re-Pinned Contact Lines

In the present problem of a full ring with constant semi-width a = ā but slowly

varying contact angle β = β(α) we find that the behaviour of a “narrow” ring

with ā < π is qualitatively different from that of a “wide” ring with ā > π. In
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particular, we find that a narrow ring can flow around the entire circumference

of the cylinder with pinned contact lines whereas for a wide ring de-pinning of

the contact lines is unavoidable for a full ring of fluid to exist. Note that this is

analogous to the result in Chapters 3 and 4 for rivulet flow on one side of a large

horizontal cylinder. Specifically, a wide ring can flow from the top α = 0 of the

cylinder only as far as a station α = αdepin on the lower right-hand part of the

cylinder, where the azimuthal angle αdepin is again given by (4.46) in Chapter 4,

and from a station α = αrepin on the lower left-hand part of the cylinder back to

the top α = 2π, with pinned contact lines, where αrepin = 2π − αdepin (> αdepin),

and αdepin (π/2 < αdepin < π), αrepin (π < αrepin < 3π/2) correspond to the values

of α at which the contact angle β attains its minimum physically realisable value

of zero. Since equation (5.2) does not provide a physically realisable solution for

part of the lower half of the cylinder αdepin < α < αrepin (specifically, the solution

with β given by (5.2) predicts that h < 0 somewhere in the interval −ā < y < ā),

an alternative description of the behaviour is required there. We will consider

a scenario analogous to the one proposed in Chapters 3 and 4, namely that the

contact lines de-pin at α = αdepin and that the ring flows with zero contact angle

β = β̄ = 0 but slowly varying semi-width a = π/m according to (5.3) until

α = αrepin, at which point the contact lines re-pin. The scenarios described above

for a narrow and a wide ring are sketched in Figure 5.2. Note that in Chapter 3 we

considered the more general scenario of de-pinning and re-pinning at a prescribed

non-zero contact angle; however, as in Chapter 4, for simplicity we restrict our

attention to the simplest case of de-pinning at zero contact angle here.

5.1.5 Existence of Full Rings

Equation (5.2) is a cubic polynomial equation for the contact angle β = β(α) (> 0)

in terms of the unknown volume flux Q when the contact lines are pinned (i.e. for
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Figure 5.2: Sketches of a slowly varying full ring with constant mass M with (when not de-pinned with zero

contact angle β = β̄ = 0 but slowly varying semi-width a = π/m) constant semi-width a = ā but slowly varying

contact angle β that flows round the entire circumference of a large horizontal cylinder 0 ≤ α < 2π, in the cases

(a) ā < π, in which the ring is always pinned, and (b) ā > π, in which the ring is de-pinned with β = β̄ = 0 on

part of the lower half of the cylinder in the interval αdepin ≤ α ≤ αrepin.

all α when ā < π, or for 0 ≤ α < αdepin and αrepin < α < 2π when ā > π), and

(5.3c) is a cubic polynomial equation for the maximum thickness hm = hm(α) (> 0)

in terms of the unknown volume flux Q when the contact lines are de-pinned

(i.e. for αdepin ≤ α ≤ αrepin when ā > π). At the top of the cylinder the flux

takes the form Q = β2τg(ā)/2 for all ā while at the bottom of the cylinder it

takes the form Q = β2τg(ā)/2 for ā < π and Q = 3πτh2
m/8 for ā > π. At

α = π/2 and α = 3π/2 the flux takes the form Q = 4β3ā4/105 + 2β2τ ā3/15 and

Q = −4β3ā4/105 + 2β2τ ā3/15, respectively, for all ā. By considering the roots of

these cubic polynomial equations for β at α = π/2 and α = 3π/2 we find that the

flux must satisfy 0 < Q ≤ 98τ 3ā/405 for full-ring solutions to exist. Note that, in

particular, full-ring solutions exist only when shear is present (i.e. τ > 0); this is

to be expected, since a non-zero shear is clearly required in order to drive the flow

of the fluid against gravity on the left-hand side of the cylinder.

Figure 5.3 shows a representative selection of solutions for various values ofQ =

constant, plotted as functions of the scaled angle α/π (0 ≤ α < 2π) when τ = 1.
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Figure 5.3: Contours of the expression for the flux Q given by (5.2) for pinned contact lines (i.e. for all α when

ā < π, or for both 0 ≤ α < αdepin and αrepin < α < 2π when ā > π) and by (5.3c) for de-pinned contact lines (i.e.

when ā > π for αdepin ≤ α ≤ αrepin) in the (a,c,e) α/π–β and (b,d,f) α/π–hm planes when τ = 1, plotted for (a)

ā = 2 (< π) and Q = 0.4, Qc ≃ 0.4835, 0.6, (b) ā = 4 (π < ā < 51/4π ≃ 4.6978) and Q = 0.5, Qc ≃ 0.9477, 1.5

and (c) ā = 6 (> 51/4π) and Q = 0.5, Qc ≃ 1.0570, 1.5. The branches corresponding to full-ring solutions are

shown with solid curves, while the other branches are shown with dotted curves. The vertical dashed lines indicate

the values αdepin/π and αrepin/π.
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Expressed in another way, Figure 5.3 shows contours of the expression for the flux

Q given by (5.2) for pinned contact lines and by (5.3c) for de-pinned contact lines

in the α/π–β and α/π–hm planes when τ = 1, plotted for (a) ā = 2 (< π), (b)

ā = 4 (π < ā < 51/4π ≃ 4.6978) and (c) ā = 6 (> 51/4π). Contours for other

values of τ are qualitatively similar, and the significance of the value ā = 51/4π

is discussed in Section 5.2. In particular, only some of these solutions satisfy the

criteria to be full-ring solutions, and Figure 5.3 demonstrates a key feature of

the present problem, namely the existence of a critical solution with critical flux,

denoted by Q = Qc, such that a full-ring solution exists when Q ≤ Qc but not

when Q > Qc. Here and henceforth variables in the critical case (e.g. the critical

flux) are denoted with a subscript c (e.g. Qc), and this critical solution is discussed

in detail in Subsection 5.2. Specifically, Figure 5.3 shows that in the case Q < Qc

the only branch for which hm > 0 everywhere (shown in a solid line) is a full-ring

solution, while the other branches (not shown in Figure 5.3) give hm < 0 on at least

part of the cylinder, and so are not physically realisable. In the case Q = Qc the

lower parts of two branches (shown in solid lines) meet to form a corner at α = α̂c

and hm = ĥmc, where the solution is continuous but not smooth at the corner, while

the upper parts of these two branches (shown in dotted lines) are discontinuous

and so cannot be full-ring solutions. Here and henceforth variables relating to the

corner in the critical case (e.g. the location of the corner) are denoted with both a

subscript c and a hat (e.g. α̂c). In the case Q > Qc the branches are discontinuous

(shown in dotted lines) and so cannot be full-ring solutions. Figures 5.3(c)–(f)

also show that the location of the corner can occur either in the interval in which

the ring has pinned contact lines (shown in parts (c) and (d)) or in the interval in

which the ring has de-pinned contact lines (shown in parts (e) and (f)).
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5.1.6 Mass of Fluid

The total mass in the full ring of fluid on the cylinder is finite and is given by

M =

∫ 2π

0

∫ ā

−ā

h dy dα

=

∫ π
2

0

2β (mā cothmā− 1)

m2
dα +

∫ 3π
2

π
2

2β (1 −mā cotmā)

m2
dα

+

∫ 2π

3π
2

2β (mā cothmā− 1)

m2
dα. (5.4)

For a prescribed shear stress τ , either the contact angle β is determined in terms of

Q by (5.2) for pinned contact lines or the maximum thickness hm is determined in

terms of Q by (5.3c) for de-pinned contact lines. The constant value of the flux Q

is determined either via a criticality condition in the case of critical flux Q = Qc,

where the associated critical mass M = Mc is calculated as part of the solution,

as discussed in Section 5.2, or from a condition of prescribed mass from (5.4) in

the sub-critical case in which the mass is below its maximum value, M < Mc, as

discussed in Section 5.3. Note that, by inspection of (4.2), (4.3), (4.6) and (4.7) in

Chapter 4, together with (5.2) and (5.3c), we could scale τ out of the problem by

defining new dimensionless variables via z = τz∗, h = τh∗, hm = τh∗m, β = τβ∗,

p = τp∗, u = τu∗, Q = τ 3Q∗ and M = τM∗; however, for clarity we retain τ in

what follows, and set τ = 1 only in the numerical calculations.

5.2 The Critical Full-Ring Solution

In this Section we describe the behaviour of the critical ring solution with critical

flux Q = Qc. In the critical case either the shear stress τ or the mass M may

be prescribed with the other being determined by a criticality condition; however,

since, as mentioned in Subsection 5.1.6, τ could be scaled out of the problem,

in the rest of this Section we assume that τ is prescribed and we determine the
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critical mass, M = Mc, above which no full-ring solution exists.

As may be seen in Figure 5.3, a key feature of the critical solution is that the

expression for the flux Q, given by either (5.2) or (5.3c), has a saddle point at

α = α̂c and hm = ĥmc which gives rise to a corner in the critical ring profile hc

at α = α̂c. In Subsections 5.2.1 and 5.2.2 we consider separately the cases when

the corner occurs in the interval with pinned contact lines and in the interval with

de-pinned contact lines, respectively; in Subsection 5.2.3 we determine where the

corner occurs for a given ring width, and in Subsection 5.2.4 we consider some

properties of the critical solution. For brevity, in the remainder of this Chapter

we refer to the interval in which the contact lines are pinned (de-pinned) simply

as the “pinned (de-pinned) interval”.

5.2.1 Corner in the Pinned Interval

When the corner occurs in the pinned interval, the conditions ∂Q/∂α = 0 and

∂Q/∂β = 0, with Q given by (5.2), lead to the criticality conditions

4 − 5 sin2 α̂c −
2m̂cā sin2 α̂cf

′(m̂cā)

f(m̂cā)
+

3m̂cā sin2 α̂cg
′(m̂cā)

g(m̂cā)
= 0 (5.5)

and

β̂c = − 3m̂cτg(m̂cā)

sin α̂cf(m̂cā)
, (5.6)

where we have written m̂c = | cos α̂c|1/2. Equation (5.6) shows that sin α̂c < 0,

indicating that the corner is on the left-hand side of the cylinder. Equation (5.5)

may be solved for the location of the corner, α̂c, and then the contact angle at the

corner, β̂c, is given explicitly by (5.6), and the maximum thickness at the corner,

ĥmc, and critical flux, Qc, are given explicitly by (4.7) and (5.2), respectively, with

α = α̂c and β = β̂c.
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5.2.2 Corner in the De-Pinned Interval

When the corner occurs in the de-pinned interval, the conditions ∂Q/∂α = 0 and

∂Q/∂hm = 0 obtained from (5.3c) are solved together with (5.3c) itself to yield

the solution

α̂c

π
= 1 +

1

π
cos−1 1√

5
≃ 1.3524, ĥmc =

3τ√
5
≃ 1.3416τ, Qc =

9πτ 3

53/48
≃ 1.0570τ 3.

(5.7)

Equation (5.7) shows that, as in Subsection 5.2.1, the corner is on the left-hand side

of the cylinder; note, however, that in this case, α̂c, ĥmc and Qc are independent

of ā, and α̂c is independent of τ .

5.2.3 Location of the Corner α̂c

The value of the constant semi-width ā for which the corner occurs at the point

where the contact lines re-pin (that is, the location at which the pinned and de-

pinned intervals meet) is found by solving αrepin = α̂c to give

ā = 51/4π ≃ 4.6978 (> π). (5.8)

When ā < 51/4π the corner is in the pinned interval αrepin < α < 2π and when

ā ≥ 51/4π the corner is in the de-pinned interval π < α ≤ αrepin.

5.2.4 The Critical Ring for Various Ring Widths

When ā < 51/4π, and with the critical flux Qc obtained from (5.2) with α = α̂c

and β = β̂c from (5.5) and (5.6), the critical contact angle βc, critical ring profile

hc, critical maximum thickness hmc, critical pressure pc, critical velocity uc and

critical mass Mc may be obtained from (5.2), (4.6), (4.7), (4.2), (4.3) and (5.4),

respectively.

When ā ≥ 51/4π, and with the critical flux Qc given by (5.7c), the critical

maximum thickness hmc, critical ring profile hc, critical pressure pc, critical velocity
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uc and critical mass Mc may be obtained from (5.3c), (5.3b), (4.2), (4.3) and (5.4),

respectively.

Figure 5.4 shows the scaled position of the corner in the critical solution, α̂c/π,

the contact angle at the corner in the critical solution, β̂c, the maximum thickness

at the corner in the critical solution, ĥmc, the critical flux Qc and the critical mass

Mc, all plotted as functions of ā when τ = 1. In particular, Figure 5.4(a) shows

that α̂c/π decreases monotonically from 3/2 when ā = 0 (for which, of course, there

is no solution) to 1+cos−1(1/
√

5)/π ≃ 1.3524 when ā ≥ 51/4π, Figure 5.4(b) shows

that β̂c decreases monotonically from infinity when ā = 0 to zero when ā ≥ 51/4π,

Figure 5.4(c) shows that ĥmc increases monotonically from 7/6 ≃ 1.1667 when

ā = 0 to 3/
√

5 ≃ 1.3416 when ā ≥ 51/4π, Figure 5.4(d) shows that Qc increases

monotonically from zero when ā = 0 to 9π/53/48 ≃ 1.0570 when ā ≥ 51/4π,

and Figure 5.4(e) shows that Mc increases monotonically from zero when ā = 0

to 26.1538 when ā = 51/4π, and then continues to increase monotonically when

ā > 51/4π. Figure 5.4 also shows that in the limit of a very narrow ring, ā → 0+,

the solution at the corner behaves according to

α̂c

π
∼ 3

2
− ā2

126π
→ 3

2

−
, β̂c ∼

7τ

3ā
→ ∞, ĥmc →

7τ

6

+

≃ 1.1667τ+ = O(1), (5.9)

and the critical flux and critical mass become small according to

Qc ∼
98τ 3ā

405
→ 0+, Mc ∼

14τ ā

3
log
(

2 +
√

3
)

≃ 6.1458τ ā→ 0+. (5.10)

Figure 5.5 shows the critical contact angle βc and the critical maximum thick-

ness hmc as functions of α/π when τ = 1 for a range of values of ā. In particular,

Figure 5.5 shows that there is a corner in the solution for βc only when ā < 51/4π;

this is because the corner is in the de-pinned interval when ā > 51/4π, for which

βc ≡ 0. In the limit of a very narrow ring, ā → 0+, the critical contact angle βc

behaves according to

βc ∼
7τ β̃c

6ā sinα
→ ∞, (5.11)
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ā

α̂c/π

(51/4π, 1.3524)

(a) ā

β̂c

(51/4π, 0)

(b)

ā

ĥmc

(51/4π, 1.3416)

(c) ā

Qc

(51/4π, 1.0570)

(d)

ā

Mc

(51/4π, 26.1538)

(e)

Figure 5.4: Plots of (a) α̂c/π, (b) β̂c, (c) ĥmc, (d) Qc and (e) Mc as functions of ā when τ = 1, together with the

asymptotic results in the limit of a very narrow ring, ā → 0+, given by (5.9) and (5.10), and shown as dotted lines.

The dots are located on the curves at the value ā = 51/4π ≃ 4.6978 and the values α̂c/π ≃ 1.3524, ĥmc ≃ 1.3416

and Qc ≃ 1.0570 here are given by (5.7), while the value Mc ≃ 26.1538 is numerically calculated from (5.4) with

β = βc. There is a corner in the pinned interval when ā < 51/4π and in the de-pinned interval when ā ≥ 51/4π.
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α/π

βc

ā = 1

ā = 8

(a) α/π

hmc

ā = 1

ā = 8

(b)

Figure 5.5: Plots of (a) the critical contact angle βc and (b) the critical maximum thickness hmc as functions of

α/π when τ = 1 for ā = 1, 2, π, 4, 51/4π ≃ 4.6978, 5, 6, 7, 8. The dotted curves show the asymptotic solution in

the limit of a very narrow ring, ā → 0+, on the ā = 1 curve. The dots in part (b) indicate the values at which

the contact lines de-pin and re-pin (i.e. the values corresponding to βc = 0 in part (a)).

where

β̃c = −1 + 2 ×



















cos

(

π − 2α

3

)

for 0 ≤ α ≤ 3π

2
,

cos

(

π + 2α

3

)

for
3π

2
< α < 2π,

(5.12)

and the critical maximum thickness hmc behaves according to (4.7) in Chapter 4

with β = βc from (5.11). These asymptotic results are included in Figure 5.5 on

the ā = 1 curves and show that the asymptotic solution predicts that both βc and

hmc are smaller than the exact solution on the upper half of the cylinder but larger

on the lower half of the cylinder. Figure 5.6 shows plots of βc and hmc as functions

of ā when τ = 1 for a range of values of α. The behaviour of the full ring at the

stations shown in Figure 5.6 in the limits of a very narrow ring, ā→ 0+, and a very

wide ring, ā→ ∞, is detailed in Appendix B. Figure 5.7 shows three-dimensional

plots of the critical ring profile hc when τ = 1 for a range of values of ā. Figures

5.5, 5.6 and 5.7, together with the asymptotics given in Appendix B, show that

a larger value of ā results in a smaller βc, a smaller hmc on the upper half of the
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ā

βc

α = 0

α = π/2

α = π

α = 3π/2

ā = 51/4π ≃ 4.6978

(a) ā

hmc

α = 0

α = π/2

α = 3π/2

α = π

ā = 51/4π ≃ 4.6978

(b)

Figure 5.6: Plots of (a) the critical contact angle βc and (b) the critical maximum thickness hmc as functions of

ā when τ = 1 at α = 0, π/2, π, 3π/2.

α/πy

z

(a)

α/πy

(b)

α/πy

(c)

α/πy

(d)

Figure 5.7: Three-dimensional plots of the critical ring profile hc as a function of y and α/π when τ = 1 for (a)

ā = 2, (b) ā = 4 (< 51/4π ≃ 4.6978), (c) ā = 6 (> 51/4π) and (d) ā = 8.
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ā

B−

c

B+
c

(51/4π, 1.3849)

(a)

ā

H−

mc H−

mc ≃ 0.5539

H+
mc

H+
mc ≃ −1.8956

(51/4π−,−0.2050)

(51/4π,−1.2262)

(b)

Figure 5.8: (a) The slopes of the critical contact angle βc as α → α̂±
c , B±

c , and (b) the slopes of the critical

maximum thickness hmc as α → α̂±
c , H±

mc, plotted as functions of ā when τ = 1. The vertical dashed lines

indicate the value ā = 51/4π ≃ 4.6978, beyond which βc ≡ 0 and B±
c = 0. The dotted curves show the

asymptotic results in the limit of a very narrow ring, ā → 0+, given by (5.14).

cylinder, and a larger hmc in the pinned interval on the lower half of the cylinder

(while, of course, in the de-pinned interval hmc is independent of ā).

The shape of the corner in the critical solution depends on ā; the slopes of the

contact angle βc, ring profile hc, and maximum thickness hmc on either side of the

corner (i.e. as α → α̂±
c ) are denoted by

B±
c =

dβc

dα

∣

∣

∣

∣

α=α̂±
c

, H±
c =

∂hc

∂α

∣

∣

∣

∣

α=α̂±
c

, H±
mc = H±

c |y=0 =
dhmc

dα

∣

∣

∣

∣

α=α̂±
c

, (5.13)

respectively. Figure 5.8 shows plots of B±
c and H±

mc as functions of ā when τ = 1.

In particular, Figure 5.8(a) shows that B−
c is a positive, monotonically decreasing

function of ā when ā < 2.9586 and a positive, monotonically increasing function

of ā when 2.9586 < ā < 51/4π ≃ 4.6978, whereas B+
c is a negative, monotonically

increasing function of ā when ā < 2.7332 and a positive, monotonically increasing

function of ā when 2.7332 < ā < 51/4π, where B−
c = B+

c ≃ 1.3849 when ā =

51/4π, while of course β̂c = 0 for ā > 51/4π and so B−
c = B+

c = 0. Also, Figure

5.8(b) shows that H−
mc is a positive, monotonically decreasing function of ā when
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ā < 4.5150, a negative, monotonically decreasing function of ā when 4.5150 <

ā < 51/4π, and takes the constant positive value H−
mc ≃ 0.5539 when ā > 51/4π,

whereas H+
mc is a negative, monotonically decreasing function of ā when ā < 51/4π

and takes the constant negative value H+
mc ≃ −1.8956 when ā > 51/4π. In the

limit of a very narrow ring, ā→ 0+, the slopes B±
c and H±

mc behave according to

B±
c ∼ ∓7

√
3τ

9ā
→ ∞ and H±

mc ∼ ∓7
√

3τ

18
= O(1), (5.14)

and these are included in Figure 5.8 as dotted curves.

5.3 The Sub-Critical Full-Ring Solution

In Section 5.2 we described the behaviour of the critical ring solution with maxi-

mum mass Mc for a prescribed shear stress τ (where the value of Mc is found as

part of the solution). In this Section we describe the behaviour of a sub-critical

full ring when the mass M is also prescribed, in which case a solution exists pro-

vided that M satisfies M < Mc (i.e. only for values of ā, Q and M that lie below

the solid curves in Figures 5.4(d) and 5.4(e)). The behaviour in each of the cases

ā < π, π < ā < 51/4π ≃ 4.6978 and ā > 51/4π is qualitatively different and so we

present results in each of these three cases separately.

As described in Subsection 5.1.4, when ā < π the full ring flows round the entire

circumference of the cylinder with pinned contact lines. Figures 5.9(a) and 5.9(b)

show plots of the contact angle β and the maximum thickness hm as functions of

α/π when τ = 1 and ā = 2 (< π) for a range of values of M ≤ Mc ≃ 12.2613.

When ā > π the full ring flows with pinned contact lines for 0 ≤ α < αdepin and

αrepin < α < 2π, and with de-pinned contact lines for αdepin ≤ α ≤ αrepin. In

particular, when π < ā < 51/4π the corner is in the pinned interval αrepin < α <

3π/2, and Figures 5.9(c) and 5.9(d) show plots of β and hm as functions of α/π

when τ = 1 and ā = 4 (π < ā < 51/4π) for a range of values of M ≤Mc ≃ 23.4027.



Chapter 5 196

α/π

β

M = Mc ≃ 12.2613

(a) α/π

hm

M = Mc ≃ 12.2613

(b)

α/π

β

M = Mc ≃ 23.4027

(c) α/π

hm
M = Mc

≃ 23.4027

(d)

α/π

β

M = Mc ≃ 27.8273

(e) α/π

hm

M = Mc

≃ 27.8273

(f)

Figure 5.9: Plots of (a,c,e) the contact angle β and (b,d,f) the maximum thickness hm as functions of α/π when

τ = 1 and (a,b) ā = 2 (< π), M = 0.5π, π, ..., 3.5π, Mc ≃ 12.2613, (c,d) ā = 4 (π < ā < 51/4π ≃ 4.6978),

M = π, 2π, ...,7π, Mc ≃ 23.4027 and (e,f) ā = 6 (> 51/4π), M = π, 2π, ...,8π, Mc ≃ 27.8273. The vertical

dashed lines in parts (d) and (f) indicate the values αdepin/π and αrepin/π. The dotted curves show the solution

in the limit of small mass, M → 0+, given in Subsection 5.3.1, for the two smallest values of M in each plot. For

clarity the vertical ranges for plots of β in parts (a,c,e) differ from each other; however, the vertical ranges for

plots of hm in parts (b,d,f) are the same.
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ā

β

α = 0

α = π/2
α = π

α = 3π/2

ā ≃ 1.0225

(a) ā

hm

α = 0

α = π/2

α = 3π/2

α = π

ā ≃ 1.0225

(b)

Figure 5.10: Plots of (a) the contact angle β and (b) the maximum thickness hm as functions of ā when τ = 1 and

M = 2π for α = 0, π/2, π, 3π/2. The vertical dashed lines indicate the value ā ≃ 1.0225, at which value Mc = 2π,

so that no full-ring solutions exist when ā < 1.0225.

When ā > 51/4π the corner is in the de-pinned interval π < α < αrepin, and

Figures 5.9(e) and 5.9(f) show plots of β and hm as functions of α/π when τ = 1

and ā = 6 (> 51/4π) for a range of values of M ≤ Mc ≃ 27.8273. Figure 5.9(d)

shows that, while the corner is in the pinned interval when π < ā < 51/4π, the

location of the maximum value of hm in a sub-critical case M < Mc may occur

in either the pinned or the de-pinned interval; however, Figure 5.9(f) shows that

the location of the maximum value of hm when ā > 51/4π always occurs in the

de-pinned interval. Also, while the critical maximum thickness at the corner, ĥmc,

is the maximum value of hmc for most ring widths, there is a small interval of ā

values, namely 4.5150 < ā < 51/4π ≃ 4.6978 (obtained by inspection of Figure

5.8(b)) in which this is not the case. Figure 5.10 shows plots of β and hm as

functions of ā when τ = 1 and M = 2π for a range of values of α, Figure 5.11

shows plots of β and hm as functions of M when τ = 1 and ā = 2, 4, 6 for a range

of values of α, and Figure 5.12 shows three-dimensional plots of the ring profile

h when τ = 1 for various values of ā and M ≤ Mc, clearly illustrating how the
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(a) M

hm

α = 0

α = π/2

α = π

α = 3π/2

M = Mc ≃ 12.2613
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Figure 5.11: Plots of (a,c,e) the contact angle β and (b,d,f) the maximum thickness hm as functions of the mass M

when τ = 1 and (a,b) ā = 2 (< π), (c,d) ā = 4 (π < ā < 51/4π) and (e,f) ā = 6 (> 51/4π), at α = 0, π/2, π, 3π/2.

The dotted lines show the asymptotic results in the limit of small mass, M → 0+, given by (5.16) at α = 0 for

(a,c,e), given by (4.7) in Chapter 4 with β given by (5.16) at α = π for (b), and given by (5.17) at α = π for

(d,f). For clarity, the asymptotic solution for M → 0+ is shown for one value of α only in each plot and, also for

clarity, the vertical ranges for plots of β in parts (a,c,e) differ from each other; however, the vertical ranges for

plots of hm in parts (b,d,f) are the same.
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Figure 5.12: Three-dimensional plots of the ring profile h as a function of y and α/π when τ = 1 for: (a) M = π,

(b) M = 2π, (c) M = 3π and (d) M = Mc ≃ 12.2613 when ā = 2 (< π), (e) M = 2π, (f) M = 4π, (g) M = 6π

and (h) M = Mc ≃ 23.4027 when ā = 4 (π < ā < 51/4π), and (i) M = 2π, (j) M = 4π, (k) M = 6π and (l)

M = Mc ≃ 27.8273 when ā = 6 (> 51/4π).
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M

Q

Q = 1.0570

M = 26.1538

ā = 1 ā = 8

Qc

Figure 5.13: The flux Q plotted as a function of the mass M when τ = 1 for ā = 1, 2, ...,8. The critical flux Qc is

shown with a dashed curve, and the values Q = Qc ≃ 1.0570 and M = Mc ≃ 26.1538 when ā = 51/4π ≃ 4.6978

are shown with horizontal and vertical dashed lines, respectively. The dotted curves show the asymptotic results

in the limit of small mass, M → 0+, given by (5.15), when ā = 1 and ā = 8.

shape of the ring varies with both ā and M . In the limit of a very wide ring,

ā → ∞, the contact lines are de-pinned on the entire lower half of the cylinder

(i.e. αdepin → π/2+ and αrepin → 3π/2−) so that the ring profile on the lower half of

the cylinder is independent of ā, and is given by (5.3b). Figures 5.9, 5.11 and 5.12

show that β is an increasing function of M for 0 ≤ α < αdepin and αrepin < α < 2π,

and that hm is an increasing function of M for all α (0 ≤ α < 2π).

Figure 5.13 shows Q plotted as a function of M for a range of values of ā when

τ = 1, together with the critical flux Qc, shown as a dashed curve. The critical

flux remains constant at Qc ≃ 1.0570 for ā ≥ 51/4π, as given by (5.7); however,

the critical mass Mc continues to increase as ā is increased beyond this value.

5.3.1 The Limit of Small Mass (M → 0+)

In the limit of small mass, M → 0+, the flux becomes small according to

Q ∼ 3τM2

32C2
→ 0+, (5.15)
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the contact angle becomes small according to

β ∼
√

3m3/2M

4C
√

g(mā)
→ 0+, (5.16)

and the maximum thickness becomes small according to (4.7) in Chapter 4 with

β given by (5.16) in the pinned interval, and according to

hm ∼
√
mM

2C
√
π

→ 0+, (5.17)

in the de-pinned interval, where C = C(ā) is given by

C =
√

3

∫ π
2

0

mā cothmā− 1
√

mg(mā)
dα+

√
3

∫ αdepin

π
2

1 −mā cotmā
√

mg(mā)
dα+

√
π

∫ π

αdepin

1√
m

dα.

(5.18)

There is no full-ring solution in the limit of large mass, M → ∞, since full-ring

solutions exist only for M ≤ Mc. The asymptotic results for Q given by (5.15)

are included as dotted curves in Figure 5.13 for ā = 1 and ā = 8 (the asymptotic

results for other values of ā being omitted for clarity). The asymptotic result for

β given by (5.16) is included as a dotted curve in Figures 5.9(a), 5.9(c) and 5.9(e)

on the curves for the two smallest values of M displayed in each case (namely,

0.5π and π, π and 2π, and π and 2π, respectively), and in Figures 5.11(a), 5.11(c)

and 5.11(e) on the curve α = 0 (the asymptotic results for α = π/2, π, 3π/2 being

omitted for clarity). The asymptotic result for hm given by (4.7) in Chapter 4

with β given by (5.16) in the pinned interval, and given by (5.17) in the de-pinned

interval, is included as a dotted curve in Figures 5.9(b), 5.9(d) and 5.9(f) on the

curves for the two smallest values of M displayed in each case (namely, 0.5π and π,

π and 2π, and π and 2π, respectively), and in Figures 5.11(b), 5.11(d) and 5.11(f)

on the curve α = π (the asymptotic results for α = 0, π/2, 3π/2 being omitted for

clarity). Figure 5.14 shows three-dimensional plots of the asymptotic solution for

the ring profile h when ā = 6 and τ = 1 for various values of M , and correspond

to the exact solutions shown in Figures 5.12(i)–(l). In particular, Figure 5.14
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(a)
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(b)
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Figure 5.14: Three-dimensional plots of the asymptotic solutions for the ring profile h in the limit of small mass,

M → 0+, as a function of y and α/π when ā = 6 and τ = 1 for (a) M = 2π, (b) M = 4π, (c) M = 6π and (d)

M = Mc ≃ 27.8273. These asymptotic solutions correspond to the exact solutions shown in Figures 5.12(i)–(l).

shows that the asymptotic solution for h provides a good approximation to the

exact solution for most values of M ≤Mc; however, comparing Figures 5.12(l) and

5.14(d) shows that, as expected, this approximation is poorest in comparison with

the exact solution in the case M = Mc, where the asymptotic solution predicts

that hm in the de-pinned interval is smaller than in the exact solution. For brevity,

we do not display plots for other values of ā in Figure 5.14.

5.4 Backflow

In this Section we will show that, while the direction of the velocity u is mostly

in the same direction as that of the surface shear stress τ and of the flux Q (i.e.

u > 0), there is a region of ā–M parameter space in which backflow (that is,

flow in the direction opposite to the surface shear stress τ) can occur. Further,

backflow may occur only on the left-hand side of the cylinder, that is, the side in

which the shear stress opposes gravity. Figure 5.15 shows the two types of flow

pattern that are possible for the present three-dimensional ring flow, namely (in

the terminology of Wilson and Duffy [108]) type I, in which u > 0 everywhere,

and type IV, in which u < 0 in a region adjacent to the substrate near the centre

of the ring. Regions with u > 0 are shaded and regions with u < 0 (that is,
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−a +a

I

(a)

−a +a−b +b

IV

(b)

Figure 5.15: Sketches of the two possible types of cross-sectional flow pattern for a full ring of fluid, denoted (in

the terminology of Wilson and Duffy [108]) as type I and IV. Regions with u > 0 are shaded and regions with

u < 0 (that is, regions of backflow) are unshaded. Note that the profiles are parabolic only for α = π/2 and

α = 3π/2 but that the flow patterns are qualitatively the same for all values of α.

regions of backflow) are unshaded. From (4.3) in Chapter 4, other than at the

substrate z = 0, the azimuthal velocity may be zero (i.e. u = 0) only on the

three-dimensional surface defined by

z = 2
(

h+
τ

sinα

)

(5.19)

in 0 < z ≤ h. Given that τ > 0, it is immediately apparent that (5.19) may have

solutions satisfying z ≤ h only for π < α < 2π (i.e. on the left-hand side of the

cylinder). The surface (5.19) intersects the substrate z = 0 when h = −τ/ sinα,

which, from (4.6) in Chapter 4 or (5.3b) when the contact lines are pinned or de-

pinned, respectively, means that it may intersect the substrate only in the curves
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y = ±b(α) defined by

b(α) =
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(5.20)

which provides an explicit expression for the “footprint” of the region of backflow

on the cylinder (i.e. in the α–y plane). The endpoints in the α direction of the

region of backflow given by (5.20) occur at y = b = 0, so that at these endpoints

we have hm = −τ/ sinα, and therefore β is given by (4.7) in Chapter 4 as

β =
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− τm
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cot
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2
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coth
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2

)
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2
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(5.21)

We may substitute hm = −τ/ sinα into (5.3c) when the contact lines are de-pinned

(i.e. for π < α ≤ αrepin), or substitute (5.21) into (5.2) when the contact lines are

pinned (i.e. for αrepin < α < 2π), to give an equation that determines the values

of α at the endpoints of the region of backflow in terms of Q, namely

Q =
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(5.22)
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Figure 5.16 shows plots of Q given by (5.22) as a function of α/π when τ = 1

for different values of ā. In particular, Figure 5.16 shows that Q is a positive,

monotonically decreasing function from α = π to α = αmin, where αmin = αmin(ā),

and is a positive, monotonically increasing function from α = αmin to α = 2π. At

α = αmin, the flux takes its minimum valueQ = Qmin, where 0 < Qmin < Qc for any

ā (and there is a corresponding minimum mass denoted by M = Mmin satisfying

0 < Mmin < Mc), and therefore (5.22) has two solutions α = α1 and α = α2 (with

π < α1 < αmin < α2 < αmax, where αmax = 2π − sin−1(18/7
√

7) ≃ 4.9500) when

Q > Qmin, one solution α = α1 = α2 = αmin when Q = Qmin, and no solutions

when Q < Qmin. When Q > Qc there is, of course, no full-ring solution, when

Q < Qmin there is a full-ring solution with no backflow, and when Qmin ≤ Q ≤ Qc

there is a full-ring solution with a small region of backflow adjacent to the substrate

between α = α1 and α = α2. The largest interval of backflow in the α direction

for a given ā occurs in the case of a critical full ring (i.e. when Q = Qc); we denote

the endpoints of the region of backflow in this case by α = α1c and α = α2c.

Figure 5.16 also shows that for different values of ā the region of backflow may

occur entirely in the pinned interval αrepin < α < 2π (shown in parts (a) and

(b)), partly in each of the pinned and de-pinned intervals (shown in part (c)),

or entirely in the de-pinned interval π < α < αrepin (shown in part (d)). Figure

5.17(a) shows the difference between the critical flux and the minimum flux below

which backflow is not possible, Qc −Qmin, and Figure 5.17(b) shows the difference

between the critical mass and the minimum mass below which backflow is not

possible, Mc −Mmin, plotted as functions of ā when τ = 1, which, in conjunction

with Figures 5.4(d) and 5.4(e), show the regions of the ā–Q and ā–M parameter

planes in which backflow occurs. In particular, Figure 5.17 shows that backflow

occurs only when Q and M are relatively close to the critical values Qc and Mc,

respectively, and so we restrict our attention in the rest of this Section to backflow
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Q

α/π

(αmin/π, Qmin)

(α1c/π, Qc) (α2c/π, Qc)

(a)

Q

α/π

αrepin/π ≃ 1.2884

(b)

Q

α/π

αrepin/π ≃ 1.3708

(c)

Q

α/π

αrepin/π ≃ 1.4354

(d)

Figure 5.16: Plots of Q given by (5.22) as a function of α/π when τ = 1 showing the endpoints of any region of

backflow for (a) ā = 3, (b) ā = 4, (c) ā = 5, and (d) ā = 7. The horizontal dashed lines indicate the values Qc

and the vertical dashed lines indicate the values αrepin/π.
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ā

Qc − Qmin

(51/4π, 0.0783)

(a) ā

Mc − Mmin

(51/4π, 1.4445)

(b)

Figure 5.17: The differences between (a) the critical flux and the minimum flux below which backflow is not

possible, Qc − Qmin, and (b) the critical mass and the minimum mass below which backflow is not possible,

Mc − Mmin, plotted as functions of ā when τ = 1.

in the critical solution.

Figure 5.18(a) shows the scaled endpoints of the region of backflow in the

critical case, α1c/π and α2c/π, plotted as functions of ā, together with the scaled

position of the corner in the critical solution, α̂c/π, and, in particular, shows that

the corner always lies between the endpoints. In the limit of a very narrow ring,

ā → 0+, the endpoints are equal distance from the station α/π = 3/2, one on

the lower half, namely α1c/π → 1 + sin−1(18/7
√

7)/π− ≃ 1.4244− as ā → 0+,

and one on the upper half, namely α2c/π → 2 − sin−1(18/7
√

7)/π− ≃ 1.5756− as

ā→ 0+. Both α1c and α2c are monotonically decreasing functions of ā from ā = 0

to ā = 51/4π ≃ 4.6978 and ā ≃ 5.7937, respectively. When ā ≥ 51/4π the lower

endpoint remains constant at α1c/π ≃ 1.2949, and when ā > 5.7937 the upper

endpoint remains constant at α2c/π ≃ 1.4050.

Figure 5.18(b) shows the footprint of the region of backflow in the α/π–y plane

(i.e. the curves y = ±b(α) given by (5.20)) in the critical case for a range of values

of ā. Figure 5.18(b) also shows the curves y = ±b̂c, where b̂c = bc(α̂c), on which

the region of backflow has maximum width. In particular, Figure 5.18(b) shows
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ā

(51/4π, 1.3524)

(51/4π, 1.2949)

(5.7937, 1.4050)

α̂c/π

α1c/π

α2c/π

(a)

y

α/π

ā = 0

ā = 4.5

ā ≥ 51/4π

ā > 5.7937
b̂c

−b̂c

(b)

Figure 5.18: (a) The scaled endpoints of the region of backflow in the critical case, α1c/π and α2c/π, plotted as

functions of ā when τ = 1 together with the scaled position of the corner in the critical solution, α̂c/π. (b) The

footprint of the region of backflow in the α/π–y plane (i.e. the curves y = ±b given by (5.20)) in the critical case

when τ = 1 for ā = 0, 0.1, 0.5, 1, 2, 3, 4, 4.5, 51/4π ≃ 4.6978, 5 and for ā > 5.7937, together with the dotted curves

y = ±b̂c, where b̂c = bc(α̂c), on which the region of backflow has maximum width. The solid curves indicate

regions of backflow where the contact lines are pinned (i.e. a = ā and βc = βc(α) (> 0)) and the dashed curves

indicate regions where the contact lines are de-pinned (i.e. βc = β̄c = 0 and a = π/m).
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that in the limit of a very narrow ring, ā→ 0+, the region of backflow also becomes

narrow but approaches a constant width in the α/π direction, eventually becoming

a line of length 0.1512 from α/π ≃ 1.4244 to α/π ≃ 1.5756 when ā = 0 (for which

there is, of course, no full-ring solution). When ā ≥ 51/4π the “lower” part of the

region of backflow occupying α1c ≤ α ≤ α̂c is constant, and when ā ≥ 5.7937 the

“upper” part of the region of backflow occupying α̂c ≤ α ≤ α2c is also constant.

When ā < 51/4π the entire region of backflow occurs in the pinned interval lines,

when 51/4π < ā < 5.7937 the region of backflow occurs partly in each of the

pinned and de-pinned intervals, and when ā > 5.7937 the entire constant region

of backflow occurs in the de-pinned interval.

5.5 Conclusions

In this Chapter we considered the steady flow of a three-dimensional thin, slowly

varying ring of fluid with (when not de-pinned with zero contact angle but variable

width) constant width but variable contact angle on either the outside or the

inside of a large stationary horizontal cylinder subject to a uniform azimuthal

surface shear stress. In particular, we studied full-ring solutions corresponding to

a ring of continuous, finite and non-zero thickness that extends all the way round

the cylinder, and found that the presence of shear is required for such solutions

to exist. Analogously to the related problem of a full ring with constant non-

zero contact angle but variable width (i.e. de-pinned contact lines) on a rotating

horizontal cylinder in the absence of shear, studied by Leslie, Wilson and Duffy

[48], in the present problem there is a critical solution corresponding to a maximum

mass of fluid, M = Mc, above which no full-ring solution exists for a given shear

stress τ .

In Section 5.1 we showed that a narrow ring of constant semi-width ā < π
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can flow all the way round the cylinder with pinned contact lines but that for a

wide ring with ā > π, de-pinning of the contact lines is unavoidable for a full-

ring solution to exist. We assumed that the contact lines de-pin at some station

α = αdepin and subsequently re-pin at some station α = αrepin on the lower half of

the cylinder, corresponding to the locations at which the contact angle β is zero,

and that between these two points the ring flows with zero contact angle β = β̄ = 0

but variable semi-width a = π/m, according to the solution for a perfectly wetting

fluid given by (5.3).

In Section 5.2 we described the behaviour of the critical ring solution with

M = Mc and, in particular, we showed that the critical ring profile, hc, has a

corner in the free surface and further, this corner always occurs on the lower half

of the cylinder on the side in which the shear stress opposes gravity. For a ring of

semi-width ā < 51/4π ≃ 4.6978 the corner occurs in the pinned interval, but for

ā > 51/4π the corner occurs in the de-pinned interval. The critical flux Qc is an

increasing function of ā for ā < 51/4π but constant for ā > 51/4π (i.e. independent

of ā), whereas the critical mass Mc is an increasing function of ā for all ā. In the

pinned interval, the critical contact angle βc and the critical maximum thickness

hmc are decreasing functions of ā, but in the de-pinned interval βc = 0 and hmc

is independent of ā. For a very narrow ring, ā → 0+, βc becomes large but hmc

remains finite, while the location of the corner α̂c approaches the middle of the

cylinder. Three-dimensional plots of hc are shown in Figure 5.7 for various values

of ā.

In Section 5.3 we described the behaviour of the sub-critical ring solution when

M < Mc in the three cases ā < π, π < ā < 51/4π and ā > 51/4π. The contact

angle β in the pinned interval is an increasing function of the mass M , while the

maximum thickness hm is an increasing function of the mass M everywhere on the

cylinder. In the limit of small mass, M → 0+, the contact angle in the pinned
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interval becomes small (while, of course, the contact angle in the de-pinned interval

is zero), and the volume flux Q also becomes small.

In Section 5.4 we showed that there is a region in the ā–M parameter plane

(specifically, when the mass is close to its critical value Mc) in which backflow

(that is, flow in the direction opposite to the surface shear stress) occurs, in a

region adjacent to the substrate, and on the side of the cylinder in which the shear

stress opposes gravity. As ā increases from zero, this region of backflow moves

downwards from the middle of the cylinder into the lower half of the cylinder and

is constant for ā ≥ 51/4π.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we considered a number of different problems involving ridges (or

two-dimensional droplets), rivulets and rings of fluid in the presence of various

external airflows.

In Chapter 2 we studied the strongly-coupled interaction between a ridge on a

planar substrate inclined to the horizontal and a spatially varying external pressure

gradient arising from an external flow of air directed parallel to the substrate. We

found that relatively “large” ridges of width comparable to the capillary length

can be supported in a steady state only when the substrate is nearly horizontal,

whereas relatively “small” ridges of width much less than the capillary length can

be supported in a steady state for all values of substrate inclination (including a

vertical substrate).

We focused mainly on a “large” sessile ridge and studied its quasi-static evo-

lution as the airflow is gradually strengthened. When the contact lines are pinned

(i.e. the ridge is of constant width), the ridge thickness becomes thinner near its

edges, that is, smaller contact angles, and thicker near its centre as the airflow is

212
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strengthened. This is because the pressure due to the external airflow near the

edges (centre) of the ridge is slightly greater (less) than the ambient value far from

the ridge, and so the free surface tends to be pushed down (pulled up) here. There

is a maximum airflow strength, corresponding to the contact angle at the upslope

contact line reaching its minimum physically realisable value of zero, beyond which

no steady ridge profile exists. In reality, a contact line will de-pin when the contact

angle reaches the receding angle, and it was found that the upslope contact angle

always reaches this value before the downslope one does. Hence we studied the case

when the ridge is de-pinned at its upslope contact line, and found that it becomes

narrower and deeper as the strength of the external airflow is increased. In this

case, we assumed that the upslope contact angle remains constant at the receding

angle as the airflow is strengthened, and found that the downslope contact angle

also remains constant, and so remains pinned.

We also studied the quasi-static evolution of the ridge as the substrate is grad-

ually tilted. When the contact lines are pinned, the ridge becomes skewed downs-

lope with smaller (larger) upslope (downslope) contact angle, and larger maximum

thickness. In this case it is possible for either the downslope or the upslope contact

line to de-pin first. When only the downslope contact line de-pins the ridge be-

comes wider and shallower, and there is a maximum value of the inclination of the

substrate beyond which no steady solutions exist; however, when only the upslope

contact line de-pins the ridge becomes narrower and deeper. In the general case

in which both contact lines de-pin, irrespective of which contact line de-pins first

there is a single value of the inclination of the substrate at which the other contact

line subsequently de-pins, and beyond which no steady solutions exist.

In Chapters 3, 4 and 5 we studied the steady, locally unidirectional flow in the

azimuthal direction of a rivulet or a ring on a large stationary horizontal cylinder

and, in particular, in Chapters 4 and 5 we studied the effects of a prescribed (rather
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than coupled, as in Chapter 2) uniform azimuthal surface shear stress due to an

external airflow.

In Chapter 3 we considered a gravity-driven rivulet with prescribed volume flux

as it flows from the top to the bottom of the cylinder in both the case of constant

width but variable contact angle (i.e. pinned contact lines) and constant non-zero

contact angle but variable width (i.e. de-pinned contact lines). We found that

while a rivulet with de-pinned contact lines can flow all the way from the top to

the bottom of the cylinder, a rivulet with pinned contact lines may do likewise only

when it is sufficiently “narrow”; however, when it is sufficiently “wide”, the contact

angle reaches its minimum physically realisable value of zero at some location on

the lower half of the cylinder. We then discussed a possible scenario in which the

contact lines de-pin at this location, and the rivulet flows to the bottom of the

cylinder with zero contact angle and slowly decreasing width.

For a rivulet with constant non-zero contact angle, we found that if the contact

lines pin (which may occur on either the upper or the lower half of the cylinder) at

a sufficiently narrow (wide) width then they will subsequently de-pin with non-zero

(zero) contact angle on the lower half of the cylinder, and the rivulet will flow to

the bottom of the cylinder with constant non-zero (zero) contact angle but slowly

increasing (decreasing) width.

For a rivulet with constant width, we found that if it is sufficiently narrow the

contact lines may de-pin on either the upper or lower half of the cylinder, and

then re-pin on the lower half; however, a sufficiently wide rivulet will de-pin on

the upper half of the cylinder and remain de-pinned all the way to the bottom. In

addition, we found that the mass of a rivulet with constant width is an increasing

function of the width.

In Chapter 4 we considered a rivulet with prescribed volume flux as it flows

from the top to the bottom of a large horizontal cylinder subject to a prescribed
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uniform azimuthal surface shear stress that acts in opposition to gravity. Unlike in

the case of no surface shear in Chapter 3, we found that a rivulet with de-pinned

contact lines cannot flow all the way from the top to the bottom of the cylinder

when shear is present; rather, the width becomes infinite at some station on the

upper half of the cylinder. We then discussed the possible scenario of an infinitely

wide two-dimensional film of uniform thickness on the upper part of the cylinder

that breaks into a single rivulet with prescribed flux that flows to the bottom with

de-pinned contact lines.

As in the case of no surface shear discussed in Chapter 3, when shear is present

a rivulet with pinned contact lines can flow all the way from the top to the bottom

of the cylinder only when it is sufficiently narrow, and the contact angle of a

sufficiently wide rivulet will reach its minimum physically realisable value of zero

at some station on the lower half of the cylinder; in fact, this station is found to

be independent of the value of the surface shear stress.

In Chapter 5 we studied a ring of fluid with pinned contact lines on a hori-

zontal cylinder subject to a prescribed uniform azimuthal surface shear stress. In

particular, we found that, analogously to the flow of a rivulet on one side of a

cylinder studied in Chapters 3 and 4, while a sufficiently narrow ring can flow all

the way round the cylinder (a “full ring”) with pinned contact lines, the contact

lines of a sufficiently wide ring de-pin with zero contact angle on the lower half

of one side of the cylinder and then subsequently re-pin on the lower half of the

opposite side of the cylinder for a full ring to exist.

For a prescribed surface shear stress, there is a maximum mass of fluid that can

be supported against gravity for a full ring to exist. Alternatively, for a prescribed

mass of fluid, there is a minimum surface shear stress required for a full ring to

exist; however, we focused only on the case of prescribed shear. In the critical

case of maximum mass, there is a corner in the free surface of the ring which
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occurs on the side of the cylinder in which the shear opposes gravity. For a very

narrow ring, the corner is located close to the middle of the cylinder, and moves

downwards towards the bottom of the cylinder as the width is increased. The

corner in a sufficiently narrow ring occurs in the interval where the contact lines

are pinned (referred to as “the pinned interval”), while it occurs in the interval

where the contact lines are de-pinned (referred to as “the de-pinned interval”), for

a sufficiently wide ring, and the ring becomes deeper at all stations on the cylinder

as the width is increased in the critical case.

In the sub-critical case in which the mass is less than its maximum value, the

contact angle increases everywhere in the pinned interval, while the maximum

thickness increases at all stations on the cylinder, as the mass increases. We also

found that backflow may occur in a region adjacent to the substrate on the side of

the cylinder in which the shear stress opposes gravity when the mass is close to its

maximum value. This region is close to the middle of the cylinder in the pinned

interval for a narrow ring, moves downwards as the width increases until the region

is completely in the de-pinned interval, after which the region is constant as the

width is further increased.

6.2 Future Work

There are many directions in which aspects of the work presented in this thesis

could be extended.

In Chapter 2 we studied a ridge that is subject to an external pressure gradient

arising from an external airflow. We assumed that the airflow was inviscid and so

the obvious extension to this work would be to remove this simplifying assumption

and include the effects of a prescribed shear stress arising from the external airflow

at the air-fluid interface. Another natural extension would be to consider a three-
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dimensional droplet that interacts with an external airflow. One motivation for

this work was to aid understanding of the phenomenon of so-called rain-wind–

induced vibrations (RWIV) mentioned in Section 1.1 and, while the interaction

between the pressure gradient arising from the airflow and the fluid is thought

to be significant, the shear stress arising from the airflow also plays an important

role. With this application in mind, extending the present work to consider a ridge

on a curved (rather than a planar) substrate would provide a more realistic model

for flow on a cable.

Given that the cables are typically inclined to the horizontal in RWIV, there is

usually a gravity-driven flow in the longitudinal direction, and so a gravity-driven

rivulet flowing down an inclined substrate that interacts with the pressure gradient

arising from an external airflow in the direction transverse to that of the flow could

be considered. In such a situation, if the effects of surface tension are also included

then a similar analysis to that in Chapter 2 yields the dimensionless governing

equation for the free surface h = h(y) of the rivulet (analogous to equation (2.10)

in Chapter 2 for a ridge), namely

h′′′ − h′ cosα + Λ
d

dy
−
∫ a

−a

h′(ξ)

y − ξ
dξ = 0, (6.1)

where a is the semi-width of the rivulet, α is the angle of inclination of the substrate

to the horizontal and Λ is a measure of the strength of the external airflow, again

given by equation (2.11) in Chapter 2. This must be solved subject to the contact

line conditions h(±a) = 0, h(±a) = ∓β (≥ 0), where β is the contact angle, and

the condition of prescribed volume flux Q = Q̄, where

Q =
sinα

3

∫ a

−a

h3 dy. (6.2)

In the special case of no external airflow, Λ = 0, the free surface profile h0 and

volume flux Q are given by equations (3.1) and (3.3) in Chapter 3, respectively,

with a = a0 and β = β0. In the limit of a weak airflow, Λ → 0+, we pose the



Chapter 6 218

expansions h = h0+Λh1+O(Λ2), a = a0+Λa1+O(Λ2) and β = β0+Λβ1+O(Λ2). In

the special case of a vertical substrate (i.e. at α = π/2) the equation and boundary

conditions for h1 are

h′′′1 =
β0

a0

d

dy
−
∫ a0

−a0

ξ

y − ξ
dξ, (6.3)

h1(a0) = a1β0, h′1(0) = 0, h′1(a0) =
a1β0

a0
− β1, (6.4)

and whose solution is given by

h1(y) =
β0

6a0

[

(a0 − y)3 ln (a0 − y) + (a0 + y)3 ln (a0 + y)
]

− β0

2

[

(a0 − y)2 ln (a0 − y) + (a0 + y)2 ln (a0 + y)
]

+
2a2

0β0

3
ln (2a0) +

1

6a2
0

(

3a0β1 − 3a1β0 − a2
0β0

) (

a2
0 − y2

)

+ a1β0.

(6.5)

In practice, either the contact angle or the width may be constant as Λ varies. In

the case of constant contact angle β = β0 we obtain a1 = −293a2
0/720 and in the

case of constant semi-width a = a0 we obtain β1 = −293β0a0/540, showing that,

as in the case of a ridge in Chapter 2, increasing the strength of the external airflow

has the effect of decreasing the width or decreasing the contact angle. We use the

solution for a rivulet in the limit of a weak airflow, Λ → 0+, to plot examples of free

surface profiles for (a) constant contact angle β = β0 and (b) constant semi-width

a = a0, for various values of Λ when α = π/2, shown in Figure 6.1. Specifically,

Figure 6.1 shows that the maximum thickness increases as Λ is increased from

zero for both the case β = β0 and the case a = a0. A complete description of

the behaviour of the rivulet for all values of Λ and for different values of substrate

inclination would be a useful extension to the present work.

In Chapters 3, 4 and 5 we considered steady rivulet flow on a large stationary

horizontal cylinder. This could be extended to consider flow on non-cylindrical

substrates. In particular, in Chapter 3 we considered gravity-driven rivulets with

pinned contact lines that de-pin at both zero and non-zero contact angles. In
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y

h(y)

Λ = 0

Λ = 1

(a)
y

h(y)

Λ = 0

Λ = 2

(b)

Figure 6.1: First-order-accurate cross-sectional profiles of a rivulet subject to an external airflow in the limit of

a weak airflow, Λ → 0+, h(y) = h0(y) + Λh1(y) when Λ = 0, 0.5, 1, 1.5, 2 at α = π/2, and (a) a = a0 + Λa1,

a1 = −293a2
0/720, β = β0 = 1 and (b) β = β0 + Λβ1, β1 = −293β0a0/540, a = a0 = 1.

Chapters 4 and 5 we extended this work to include an azimuthal surface shear

stress, but only for a zero de-pinning contact angle, and so an obvious extension

would be to consider a non-zero de-pinning (and re-pinning in the case of a full

ring) contact angle (i.e. β = β̄ > 0). The behaviour of a wide ring with pinned

contact lines, ā > π, and a non-zero de-pinning and re-pinning contact angle,

β̄ > 0, is illustrated in Figure 6.2, which shows plots of the contact angle β, the

semi-width a, and the maximum thickness hm as functions of the scaled angle α/π

for a range of values of M ≤ Mc ≃ 23.2019, together with a three-dimensional

plot of the critical ring profile hc, all when τ = 1, ā = 4 (> π) and β̄ = 0.2.

A complete description of this problem would be of interest. In Chapters 3 and

4 we considered both the case of constant contact angle and of constant width;

however, in Chapter 5 we considered only the case of constant width and so the

problem of a ring with constant contact angle subject to an azimuthal shear stress

is a possible extension. Unlike for a full ring with constant width a = ā described
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α/π

β

M = 2π

M = Mc ≃ 23.2019

(a) α/π

a

M = 2π

M = Mc ≃ 23.2019

(b)

α/π

hm

M = 2π

M = Mc ≃ 23.2019

(c)

α/πy

z

(d)

Figure 6.2: A ring with constant semi-width a = ā > π on a horizontal cylinder subject to an azimuthal shear

stress τ , whose contact lines de-pin and re-pin at a non-zero contact angle β = β̄ > 0; specifically, plots of (a) the

contact angle β, (b) the semi-width a and (c) the maximum thickness hm as functions of the scaled angle α/π for

M = 2π, 3π, ...,7π, Mc ≃ 23.2019, and (d) a three-dimensional plot of the critical ring profile hc as a function of

y and α/π, all when τ = 1, ā = 4 (> π) and β̄ = 0.2. The dots in parts (a)–(c) indicate the values αdepin/π and

αrepin/π.
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in Chapter 5, we find that the azimuthal surface shear stress τ cannot be scaled

out of the problem in the case of a full ring with constant non-zero contact angle

β = β̄ > 0. The behaviour of a full ring in the critical case for β = β̄ > 0 is

illustrated in Figure 6.3, which shows plots of the critical semi-width ac and the

critical maximum thickness hmc as functions of the scaled angle α/π, together with

three-dimensional plots of the critical ring profile hc, all for a range of values of the

shear stress τ when M = Mc and β̄ = 1. A complete description of this problem

would be of interest. It would also be useful to consider the case when both the

contact angle and the width vary as the rivulet flows round the cylinder.

The present work on a ring could be combined with the work of Leslie, Wilson

and Duffy [48] to describe a ring on a rotating horizontal cylinder subject to an

azimuthal surface shear stress, thus extending the work by Villegas-Diaz, Power

and Riley [103, 104] on two-dimensional film flow to three dimensions. We could

also extend the work on rivulets on cylinders to include the pressure gradient that

arises from an external airflow, a uniform transverse shear stress as considered by

Sullivan et al. [90] in the case of a rivulet on a vertical substrate, or even a non-

uniform shear stress as considered by Saber and El-Genk [80] for a two-dimensional

film. In Chapter 4 we considered a film that breaks into a single rivulet as it flows

round a cylinder, but it would also be useful to consider a film that breaks into

more than one rivulet. This is of relevance to falling-film flow found in evaporators

and condensers as discussed in Subsection 1.4.3; the inclusion of non-isothermal

effects (as studied by, for example, Leslie, Wilson and Duffy [47]) together with

an external airflow would be useful with this application in mind.

In addition, other extensions to all of the work in this thesis that would be of

interest would be to include inertial terms in the analysis which may be important

for some applications, to consider unsteady solutions, to consider the stability of

steady flows, and also to carry out experimental investigations to validate the
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z
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Figure 6.3: A ring with constant non-zero contact angle β = β̄ > 0 on a horizontal cylinder subject to an azimuthal

shear stress τ and, in particular, in the critical case of maximum mass; specifically, plots of (a) the critical semi-

width ac and (b) the critical maximum thickness hmc as functions of the scaled angle α/π for τ = 0.25, 0.5, ...2.5,

and (c)–(g) three-dimensional plots of the critical ring profile hc as functions of y and α/π for (c) τ = 0.5, (d)

τ = 1, (e) τ = 1.5, (f) τ = 2, (g) τ = 2.5, all when M = Mc and β = β̄ = 1.
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analysis.

In Chapter 1 we described how thin-film flow in the presence of an external

airflow continues to attract much theoretical and experimental research because

of the occurrence of such flows in both nature and industry. I believe that this

thesis provides a useful addition to the substantial body of work already available

in this area; however, there are, of course, many open problems that remain to be

considered.
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Numerical Method used in

Chapter 2

In this Appendix we outline the numerical method used to solve (2.10) subject

to (2.9) in Chapter 2. We first map the ridge from the interval x ∈ [0, L] onto

the interval x ∈ [0, 1], which is then divided into n equally spaced subintervals

[xi, xi+1], where xi = i/n, 0 ≤ i ≤ n− 1. We adopt a method similar to that used

by Tseluiko et al. [97] and use central differences to approximate h′′′(x), h′(x) and

the derivative of the integral term; the integral itself is approximated as half the

sum of the integrals in each double subinterval [ξj−1, ξj+1] for 1 ≤ j ≤ n−1. Hence

the term

d

dx
−
∫ 1

0

h′(ξ)

x− ξ
dξ (A.1)
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is discretised and approximated by

n

(

−
∫ 1

0

h′(ξ)

xi+ 1
2
− ξ

dξ −−
∫ 1

0

h′(ξ)

xi− 1
2
− ξ

dξ

)

=
n2

4

n−1
∑

j=1

(hj+1 − hj−1)

(

∫ ξj+1

ξj−1

dξ

xi+ 1
2
− ξ

−
∫ ξj+1

ξj−1

dξ

xi− 1
2
− ξ

)

+
n2h1

2

(

∫ ξ1

ξ0

dξ

xi+ 1
2
− ξ

−
∫ ξ1

ξ0

dξ

xi− 1
2
− ξ

)

− n2hn−1

2

(

∫ ξn

ξn−1

dξ

xi+ 1
2
− ξ

−
∫ ξn

ξn−1

dξ

xi− 1
2
− ξ

)

=
n2

4

n−1
∑

j=1

(hj+1 − hj−1) ln

∣

∣

∣

∣

(2i− 2j + 3) (2i− 2j − 3)

(2i− 2j − 1) (2i− 2j + 1)

∣

∣

∣

∣

+
n2h1

2
ln

∣

∣

∣

∣

(2i− 3) (2i+ 1)

(2i− 1)2

∣

∣

∣

∣

+
n2hn−1

2
ln

∣

∣

∣

∣

(2i− 2n− 1) (2i− 2n+ 3)

(2i− 2n+ 1)2

∣

∣

∣

∣

, (A.2)

where

δx = xi+1 − xi, n =
1

δx
, xi± 1

2
=
i± 1

2

n
, ξj±1 =

j ± 1

n
, hj = h(ξj), (A.3)

and h0 = hn = 0 from the boundary conditions. Then, rather than specifying the

volume condition directly, we specify either θ1 or θ2 to give an expression for either

h1 or hn−1, respectively. This yields a system of (n− 2)× (n− 2) linear equations

for the ridge profile hi at each node xi, which is solved using the mathematical

software package MAPLE. This is done iteratively, specifically the value of the

specified angle is altered until the volume condition (2.9) is satisfied to within a

prescribed tolerance (typically 10−6). The numerical results show good agreement

when checked against the transverse force balance (2.16) and the asymptotic results

derived in Chapter 2.
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Further Asymptotics in the Case

of a Critical Ring

In this Appendix we describe the behaviour of the critical full ring at the stations

shown in Figure 5.6 in Chapter 5 in the limits of a very narrow ring, ā→ 0+, and

a very wide ring, ā→ ∞.

At the top of the cylinder α = 0 the contact angle becomes large and the

maximum thickness remains finite according to

βc ∼
7τ

3
√

3ā
→ ∞ and hmc →

7τ−

6
√

3
≃ 0.6736τ− (B.1)

as ā→ 0+, and the ring becomes slender according to

βc ∼
3τ

53/8

√

π

8ā
→ 0+ and hmc ∼ βc → 0+ (B.2)

as ā → ∞. At α = π/2 the contact angle becomes large and the maximum

thickness remains finite according to

βc ∼
7τ

6ā
→ ∞ and hmc →

7τ

12
≃ 0.5833τ (B.3)

as ā→ 0+, and the ring becomes slender according to

βc ∼
3τ

53/84

√

15π

ā3
→ 0+ and hmc ∼

3τ

53/88

√

15π

ā
→ 0+ (B.4)
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as ā → ∞. At the bottom of the cylinder α = π the contact angle becomes large

and the maximum thickness remains finite according to

βc ∼
7τ

3
√

3ā
→ ∞ and hmc →

7τ+

6
√

3
≃ 0.6736τ+ (B.5)

as ā → 0+, and the contact angle is identically zero, βc ≡ 0, and the maximum

thickness remains finite according to

hmc =

√
3τ

53/8
≃ 0.9472τ (B.6)

when ā ≥ 51/4π. At α = 3π/2 the the contact angle becomes large and the

maximum thickness remains finite according to

βc ∼
7τ

3ā
→ ∞ and hmc →

7τ

6

−
≃ 1.1667τ− (B.7)

as ā→ 0+, and the ring becomes slender according to (B.4) as ā→ ∞.
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