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Abstract

Background

Causal knowledge is essential for understanding complex systems and revealing rela-

tionships between variables. It enables researchers to transition beyond correlations,

reason about cause and effect, and derive scientific insights. Although Randomized

Controlled Trials (RCT) remain the gold standard for causal inference, they are often

infeasible due to ethical, logistical, or financial constraints and may lack real-world

applicability. In contrast, observational data offer abundant, diverse samples, mak-

ing them well-suited for large-scale analysis. Despite susceptibility to confounding,

advances in structure learning from observations allow researchers to identify causal

relationships without relying on randomized experiments.

Research objectives

This thesis challenges conventional maximum likelihood estimation (MLE)-based meth-

ods by exploring adversarial causal discovery approaches. It leverages the Wasserstein

Generative Adversarial Network with Gradient Penalty (WGAN-GP) framework to

address key limitations: (1) model overfitting from simplistic loss functions; (2) de-

pendence on single parametric assumptions that hinder accurate causal graph recovery

reflective of true data relationships; (3) high computational cost from Augmented La-

grangian optimization in the NOTEARS framework; and (4) inability to perform causal

discovery and tabular data synthesis simultaneously under a single framework.

ii



Chapter 0. Abstract

Methods

Three models were developed using the WGAN-GP framework. The first, DAG-WGAN

integrates WGAN-GP with variational inference, leveraging hybrid losses for improved

causal modeling. The second, DAG-WGAN+ enhances continuous optimization with

efficient structure learning techniques. The third, DAGAF captures variable inter-

dependencies under various causal assumptions to generate synthetic data preserving

causal relations.

Results

All models target multivariate causal discovery and were rigorously evaluated using

Structural Hamming Distance (SHD). Results show they outperform leading methods

in causal discovery across 97.47% of all test cases. In real-world experiments, the

proposed models achieve superior accuracy (SHD = 8 vs. > 10 for state-of-the-art

models). Findings further reveal that precise causal modeling enhances synthetic data

quality by preserving underlying causal mechanisms.
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Chapter 1

Introduction

Causality is a fundamental property that shapes our view of reality. It is based on the

idea of cause and effect, which was first suggested by the ancient Greek philosopher

Aristotle in their works; ”Metaphysics” [2] and ”Posterior Analytics” [3]. Since then,

causality has been closely linked to science, allowing people to gain insight into complex

concepts such as the Universe and Life itself.

Throughout the centuries, people have developed their own interpretations of causal-

ity to explain its effects in different fields. For instance, the work of Galileo Galilei in

physics highlighted the distinction between observing the causal relationships within a

system and studying them by manipulating the parameters that influence its behavior.

This concept is referred to as intervention, and its introduction to causation enabled

Galileo to change the way people view the Universe.

In the field of medicine, Sir Austin Bradford Hill recognized that exploring the

influence of causal connections could provide valuable insight into diseases, their treat-

ments, and their outcomes. In his paper ”The Environment and Disease: Association

or Causation?” [4], Hill proposed a set of criteria (Plausibility, Consistency, Temporal-

ity, Strength, and Specificity) as a guide to examine causality in epidemiological studies.

By utilizing these criteria in randomized control trials (RCT) [5], Hill concluded that

cigarette smoking was one of the leading causes of lung cancer and investigated the ef-

fects of streptomycin as a form of treatment for tuberculosis. Although his criteria are

somewhat outdated nowadays, they are still considered essential for investigating the

2



Chapter 1. Introduction

effect of causation in various research fields, including Criminology [6], Economics [7],

Psychology [8] and Marketing [9].

In recent decades, the increasing use of computers and their capacity to store data

have shifted the study and application of causality toward a more digital direction.

This is mainly due to the accumulation of large datasets and their complexity, making

it difficult for people to comprehend the connections between the data. As a result, a

new scientific field known as Causal Structure Learning was established, which seeks

to learn the causal relationships within data through interventions or observations.

Pioneers such as Judea Pearl [10], Peter Spirtes [11] and Xun Zheng [12] have enabled

us to transition from manually searching for causal relationships between variables

or using rule-based algorithms, to discovering them by applying advanced machine

learning techniques for modeling the dependencies in data. At present, causal structure

learning is still an active area of research, with people studying the effects of causation

in fields such as Computer Science, Data Analytics, Medicine, and Physics, further

emphasizing its importance.

1.1 Why Causation?

Humans have a natural inclination to discover how things relate to each other. Our

inherent curiosity drives us to ask the essential question: ”How everything works?”.

A crucial stepping stone on our collective path to answering this question is gaining

the knowledge of how all is connected. Our desire to understand the world around

us emphasizes the importance of causality (determined by observation, reasoning, and

experimentation) in our thought process.

We can use our capacity for reasoning to recognize causal relationships by simply

observing our surroundings or by actively engaging with them. Examples of this are: 1)

Observing the influence of the rotation of Earth on the day/night cycle. 2) Experiencing

the pain and discomfort from touching a hot stove. These are accepted as being accurate

based on observation and experimentation. However, not all causal statements are

necessarily accurate. It is possible to make connections that are partially wrong or
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completely unjustified. This is usually due to our limited rationality combined with

our ability to correlate observations.

Correlations are a way of connecting different events or activities. They are seen

as high-level patterns in data or decisions made based on past experiences. Although

statistical dependencies can be used to make inferences about cause and effect, it is

important to remember that correlations do not necessarily imply causation [13], [14].

Nevertheless, people often mistake them for causal relationships because of their in-

ability to distinguish between the two.

Every causal statement consists of two components: confounding and causal associ-

ation. The former is a shared cause between two or more variables, creating an indirect

relationship, while the latter establishes a direct link between two variables. Correla-

tions are unable to express ’confounding’, but they do contribute to causal associations,

which is why they are often mistaken for causal statements. This issue is even more

noticeable when people are presented with a large amount of data.

The misidentification of statistical patterns as connections between variables can

lead to a false understanding of the causality in a dataset. This discrepancy between the

actual causal structure of the data and the one suggested by its statistical dependencies

manifests itself in the form of contradictions, such as Simpson’s paradox [15], [16]. This

paradox occurs when confounders are present, making it impossible to determine causal

relationships from correlations. The presence of such paradoxes in datasets creates

problems that can only be solved by studying and understanding the causation between

data variables. As the number of such datasets increases, it becomes increasingly

important to analyze the data from a causal perspective.

Causal inference not only plays an essential role in studying datasets but also has

significant implications for our daily lives. It enables people to gain key insight into the

connections between aspects within specific scenarios. For that reason, whether we are

engaged in a task, problem-solving or decision-making, people prefer to substantiate

their reasoning with logical arguments based on causal relationships. To elaborate

further on the intuition behind causation, the following examples are presented: 3) a

data analyst studying how the values of different columns affect the rest of the data
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in a dataset; 4) a medical professional assessing the effects of various treatments on a

disease.

These examples demonstrate the ability of causal relationships to express different

ideas. In the third example, causality provides an explanation of how the data is con-

nected. In the fourth scenario, causation allows the physician to objectively determine

which treatment will result in the most favorable outcome. Although the way in which

causal inference is expressed may vary, its influence remains the same. It enables peo-

ple to infer the effect of various factors (e.g. treatment, policy, intervention, action, or

decision) on a potential outcome by examining how they affect it.

Unfortunately, performing causal inference is challenging because of our inability to

generalize the search space that contains the relationships between variables. Hence,

people always rely on assumptions when conducting causal studies. They enable us

to control the number of possible connections by specifying a scenario with a cor-

responding set of circumstances, thus significantly limiting the formulation of causal

statements. Moreover, assumptions are essential for causal inference, as they facili-

tate the discovery of path diagrams through observations or interventions. Despite the

two aforementioned approaches using different sets of assumptions, they both attempt

to retrieve the relationships exhibited within data through a procedure called causal

structure learning.

1.2 Causal Structure Learning

Research in the field of causal structure learning focuses on discovering the causal

mechanisms within a dataset. Most contributions to the field involve computing a

graphical representation through interventions or observations that best describes the

causal relationships in the data. Interventions are considered the gold standard for

causal structure learning, with most research in this direction conducted by actively

manipulating one or multiple variables in randomized control trials [17]. However,

such experiments can be difficult to set up due to ethical, feasibility, and cost issues.

Therefore, algorithms have been developed to directly retrieve causal relationships from
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data, making observational studies more significant [18], [19]. This section provides a

brief overview of the history of causal structure learning from observational data; for a

more detailed discussion, see Section 2.2.

Studying the causal connections between different data variables within a dataset

can benefit multiple research domains and contribute to scientific knowledge. Partic-

ularly in structure learning, Bayesian Networks (BN) are a useful tool for discovering

causal relationships from observational data. Represented as Directed Acyclic Graphs

(DAG), they can be used to infer causality in complex systems. Their unique struc-

ture allows people to describe how the contents of a dataset are related, leading to

a deeper understanding of diverse fields such as medicine, justice or physics. More

importantly, BN have many applications in machine learning, as they can model the

conditional dependencies between variables while being easily interpretable and compu-

tationally tractable. Noteworthy examples include ”Finding Optimal Models for Small

Gene Networks” [20] and Causal Protein-Signaling Networks Derived from Multiparam-

eter Single-Cell Data [21].

The challenge of causal structure learning lies in the vast number of potential DAG

that form the search space. As the number of variables increases, the DAG search

space expands exponentially, rendering attempts of combinatorial nature computation-

ally intractable. To address this NP-hard problem [22], various approaches have been

developed, such as traditional score-based, constraint-based and hybrid methods, as

well as machine learning techniques like continuous optimization and efficient structure

learning.

Traditional methods for learning DAG structures rely on independence tests to limit

the search space [23], [11], [24], or perform discrete score-based searches to identify

the DAG that best fits the input data [25], [26], [27]. Both of these techniques have

their drawbacks. Constraint-based methods (CBM), such as the PC [28] and FCI

[29] algorithms, produce graphs that satisfy a set of conditional independencies, not

a learned causal structure, and thus the output of these methods is often incomplete.

Furthermore, these models are not robust to significant changes in the size of the

data variables [30]. Score-based methods (SBM), such as LiNGAM [31], PNL [32] and
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CSM [33], attempt to discretely optimize a score function to find the best DAG, but

additional structure assumptions and approximate searches are often necessary due to

the complexity of the search space, which remains super-exponential.

Researchers have attempted to address the shortcomings of CBM and SBM by

combining them into hybrid approaches. These methods have shown great promise

as they simultaneously reduce the graph search space and optimize a score function,

thus learning a DAG. A well-known example of this is the MMHC algorithm by [34],

which uses Min-Max Parent and Children (MMPC) to limit the graph search space and

optimizes the Hill-Climbing score function to compute a DAG.

Traditional causal discovery methods, though effective in earlier decades, have be-

come increasingly impractical, as their discrete search over DAG structures leads to

combinatorial intractability as the number of variables grows. To address this challenge,

the problem has been reformulated as a continuous optimization task, representing

graphs as weighted adjacency matrices, and acyclicity being enforced via differentiable

constraints that enable gradient-based optimization. Black-box models, particularly

neural networks, facilitate this approach by efficiently capturing complex, non-linear

relationships in large, high-dimensional datasets, while their differentiability allows for

end-to-end optimization of both structure and acyclicity constraints. This paradigm

shift effectively addresses the computational and scalability limitations inherent in tra-

ditional methods.

At present, the process of causal structure learning is performed using machine

learning models, made possible by the contributions of [12]. Their DAG-NOTEARS

framework has revolutionized the way causal structures are discovered by transforming

the problem from a combinatorial one to a continuous optimization approach that

can be solved with black-box models. This has enabled the development of mul-

tiple machine learning models that can handle non-linear, continuous and discrete

data [35], [36], [37], [38], [39]. For linear cases, GOLEM [40] outperforms NOTEARS,

while models such as AbPNL [41] and Deep PNL [42] assume post-nonlinear models.

Meanwhile, RL-BIC [43] uses reinforcement learning to learn causal graphs from data.

An alternative approach is the continuous optimization framework developed by [44],
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which is a bi-level optimization algorithm that discovers causal relationships by opti-

mizing the Permutahedron of permutation vectors to learn the order of the nodes in

a graph. CASPER [45] is another recently developed continuous optimization frame-

work that addresses the shortcomings of DAG-ness independent score-based methods

by introducing a new dynamic search space solved through a novel score function with

integrated graph structures, leading to the discovery of optimal DAG. The latest work

in the causal structure learning field is called REX [46]. The developers of this model

proposed a causal discovery method that integrates machine learning (ML) models with

explainability methods (based on Shapley values) to identify and interpret significant

causal relationships among variables.

Most of these machine learning models are successful in optimizing a score function

and imposing an acyclicity constraint. To achieve this, an augmented Lagrangian [47]

is used for continuous optimization, which enables the simultaneous optimization of

parameters and causal structure computation. Unfortunately, this continuous opti-

mization process is very time-consuming, making it inefficient.

Recently, researchers have explored novel ways to learn causality more efficiently.

One such method is DAG-NoCurl by [48], which is one of the first frameworks to do

so effectively. Its improved time-wise performance is achieved without the need for an

augmented Lagrangian or any explicit DAG constraints, thus eliminating the need for

explicit parameter optimization as causal structures are learned implicitly directly from

the DAG search space. Instead, constant hyper-parameters are used throughout the

learning process. A hyper-parameter study was also conducted to determine a baseline

of values that produce good results.

The success of DAG-NoCurl led to the development of more efficient frameworks

based on novel mathematical formulations. An example of this is VI-DP-DAG [49],

which uses a DAG sampling technique based on posterior distributions over edges and

node permutations. Variational inference is used to minimize the gap between the

prior distributions of the observational data samples and the posterior distributions,

resulting in a quick and precise computation of the causal structure. Most recently,

an advancement of the DAG-NoCurl framework, referred to as DAG-NCMLP [50], has
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been introduced to address the constraint of its predecessor to linear causal models.

DAG-NCMLP achieves this by applying a non-linear projection to an initial cyclic graph

estimate, effectively mapping it into the equivalent DAG search space characterized by

the original DAG-NoCurl formulation. Despite the advances made by DAG-NoCurl,

DAG-NCMLP and VI-DP-DAG, efficient structure learning is still an ongoing area of

research.

1.3 Motivations

In the last decade, there has been a steady increase in the influence of machine learning

on businesses and the industry in general. A prime example of this is the development

of the so-called ”generative models”, including Flow-based generative models [51], Vari-

ational Autoencoders (VAE) [52], Generative Adversarial Neural Network (GAN) [53]

and most recently diffusion models [54], which have revolutionized the way models learn

features and produce new data samples.

Today, many machine learning applications (e.g. data generation, image classifica-

tion, and stock forecasting) are predicting outcomes based on features and statistical

correlations rather than using causality to develop a deeper understanding, enabling

them to deduce the correct result. This leads to issues like over-fitting, lack of ex-

plainability, and inability to generalize, all of which prevent us from trusting in the

decision-making capabilities of machine learning applications.

Developing algorithms that can learn from both statistical patterns and causal

relationships will result in better generalization and faster convergence, making them

more efficient. Practically speaking, such approaches can help to resolve the trust issues

between humans and artificial intelligence by providing an explanation for the produced

output, which will be beneficial in areas such as healthcare, medicine and law, where

making the right decision is often not so clear-cut for humans. Furthermore, these

models could help us to discover new solutions to existing problems by introducing

novel ideas or ways of thinking that we have not yet considered.

From a generative model standpoint, the decision to explore causal structure learn-

ing through generative models was based on the development of Variational Autoen-
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coder (VAE) [52] architectures to recover causal relationships from data. Examples of

such models include DAG-GNN [35], GAE [39], and DAG-GNN + NoCurl [48], which

was created by the authors of the DAG-NoCurl paper. All of these models use max-

imum likelihood estimation (MLE) [55] to retrieve the causality present in the data

samples. However, these algorithms are prone to mean-seeking mode [56], which oc-

curs when models capture all data modes by approximating the likelihood of samples

across the entire training space. This results in an overly precise reconstruction process

that produces average samples and filters out most outliers. Consequently, the causal

mechanisms responsible for those outliers are lost, leading to inaccuracies in causal

structure learning and resulting in overfitting to the input data.

To address the limitations of generative models based on Maximum Likelihood

Estimation (MLE), researchers have proposed the use of additional loss terms, including

the Wasserstein distance (WD) [57], the Kullback-Leibler divergence (KLD) [58], and

the Jensen Shannon divergence (JSD) [59], to penalize such approaches for learning

unreasonable causal structures and synthesizing unrealistic data samples [60]. KLD and

JSD are often combined with an MLE-based reconstruction loss to form an Evidence

Lower Bound (ELBO) [61], which is a popular way to train Variational Autoencoders

(VAE). However, there is very little research conducted regarding the influence of the

Wasserstein distance on Variational Autoencoders. In particular, VAE-GAN [62] has

investigated the effects of combining ELBO with adversarial loss. Despite the fact that

the model produces good results, the impact of adversarial loss on the VAE architecture

remains largely unexplored. The same can be said for the application of the Wasserstein

distance in the area of causal structure learning.

The effects of adversarial loss in the context of causal learning can be studied

from two perspectives. Firstly, including the Wasserstein distance as an additional

loss term to the ELBO of VAE architectures can help to improve their accuracy in

learning causal structures. Secondly, the application of Wasserstein-1 in the context

of causal structure learning can be used to generate synthetic samples from learned

causal structures. Currently, there are only a few models that can discover causality

from tabular data using a generative adversarial network framework, such as DAG-
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GAN [37], SAM [63] and MCS [64]. Hence, putting more emphasis on studying this

relatively new approach will stimulate not only the development of new models but

also the writing and proliferation of scientific literature. This thesis explores both

perspectives and discusses their related findings.

Furthermore, from a causal perspective, most of the models developed for causal

discovery assume that the underlying structural causal model (SCM) used to generate

the input data is the additive noise model (ANM). This is a reasonable assumption

because ANM are identifiable and there exist many approaches satisfying it, which

enables method comparison. However, causal discovery is not limited to the ANM.

Another identifiable model, which is still largely unexplored compared to ANM, is the

Post-Nonlinear Model (PNL) [32]. In causal structure learning, there are very few

models working with PNL. Among them are AbPNL [41], Deep PNL [42], [65] and [66].

None of these models applies adversarial learning in the context of causal discovery

from PNL. Therefore, for a more complete study of the effect of adversarial training in

causal discovery, every model developed in support of this thesis is applied to both the

ANM and the PNL.

Last but not least, from a human-centric and knowledge-based standpoint, tabular

data remains one of the most prevalent and versatile formats for organizing information,

serving as a cornerstone for analysis and decision-making in fields such as medicine,

finance, and business. Nevertheless, challenges such as incompleteness and poor data

quality often undermine the reliability of insights drawn from it. To mitigate these is-

sues, Deep Generative Models (DGM) have emerged as powerful tools for data synthesis

and imputation, aiming to capture the underlying statistical distributions of real data

to enhance fidelity and diversity. However, while traditional DGM excel at modeling

correlations, they often lack interpretability and transparency, which are considered

key qualities for trustworthy data-driven decision-making. Causally aware generative

approaches have sought to overcome this by modeling the underlying cause-and-effect

relationships within data, producing more realistic and explainable synthetic samples.

Unfortunately, these methods still face significant challenges, including oversimplified

latent representations, dependency on prior causal knowledge, and high computational
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demands, which limit their practical applicability. These shortcomings emphasize the

necessity for a unified framework that integrates causal discovery with tabular data

synthesis. Such an approach holds the potential to advance the generative capabilities

of DGM to produce realistic, diverse, and explainable synthetic data, thus bridging the

trust-issue gap between machine learning and human beings.

1.4 Thesis Statement

This thesis studies the potential of Generative Adversarial Networks (GAN) in the

context of Causal Structure Learning. To this end, several causal discovery frameworks

have been developed under the WGAN-GP setting, resulting in multiple publications -

see Section 1.7. The models, namely DAG-WGAN, DAG-WGAN+ and DAGAF, were

evaluated against the current state-of-the-art, and were found to outperform them in

multiple cases.

The objective of the research conducted by the author is to investigate whether

the application of the Wasserstein distance-based adversarial loss can contribute to the

solution of some of the most critical challenges in modern causal structure learning.

Specifically, DAG-WGAN was developed to mitigate the weaknesses of conventional

MLE-based loss functions to induce model overfitting, which reduces the generality

of the causal structure learning process. DAGAF was developed as a proof-of-concept

algorithm capable of limiting the reliance on single parametric assumptions that restrict

the capacity to recover causal graphs that faithfully represent the true data-generating

process. This algorithm also provided a solution to the inability of existing methods to

simultaneously perform causal discovery and synthesize tabular data within a unified

framework.

Experiments have been conducted in both parametric and non-parametric settings,

and the impact of adversarial training and kernel-based disentangled representation

learning with Maximum Mean Discrepancy (MMD) [67] during MLE-based parame-

ter optimization has been thoroughly analyzed. Additionally, approaches for efficient

structure learning have been explored to address the slow computation of outputs due

to the Augmented Lagrangian and kernels having poor time complexities, facilitated
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by the DAG-WGAN+ model. All models discussed in this work are implemented using

Pytorch [68].

1.5 Research Methodology

This study employs a generative modeling framework to infer causal structures rep-

resented as Directed Acyclic Graphs (DAG) from observational data. Three progres-

sively enhanced models are developed: DAG-WGAN, DAG-WGAN+, and DAGAF.

Each model extends the capabilities of its predecessor by improving training stability,

causal structure learning efficiency, and modeling flexibility. The overall methodologi-

cal design integrates principles from causal discovery, generative adversarial networks

(GAN), and probabilistic modeling to achieve accurate and interpretable causal graph

estimation.

To systematically investigate and evaluate these proposed models, the author pro-

vides a research methodology section structured around three key components: (i) the

rationale behind the chosen methods, which explains the theoretical and empirical basis

for the selected architectures; (ii) the overall experimental framework, which outlines

the datasets and evaluation metrics employed; and (iii) the analytical framework, which

describes the comparative evaluation strategy, ablation analyses, and validation of re-

sults. Together, these elements form a coherent and rigorous approach to assessing the

effectiveness, robustness, and reliability of the proposed causal discovery frameworks.

1.5.1 Rationale behind the implemented methods

The development of the DAG-WGAN model stems from an effort to push beyond

the limitations of existing VAE-based methods for nonlinear causal discovery. DAG-

GNN, one of the earliest and most influential models in this domain, demonstrated

that combining machine learning with variational inference could effectively discover

causal structures, establishing the Variational Autoencoder (VAE) as a leading frame-

work for such tasks. However, its reliance on VAE formulations raised questions about

whether challenges such as independent data-point optimization, latent collapse, and
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scalability might induce deeper representational constraints. To mitigate this pos-

sibility, DAG-WGAN introduces a hybrid VAE–GAN architecture that incorporates

adversarial training through the Wasserstein distance, which is a more stable and ex-

pressive measure of distributional difference. This integration is intended to enhance

generative quality, stabilize training, and enable richer representations of complex data,

potentially opening new directions for more flexible and robust causal inference.

The DAG-WGAN+ model builds upon the foundation established by DAG-NoCurl,

which successfully integrated the DAG-GNN architecture with a curl-free constraint to

enhance structural accuracy and convergence, resulting in a variant known as DAG-

GNN with NoCurl. Inspired by this demonstrated synergy, the present study investi-

gates the potential benefits of combining the efficient, acyclicity-preserving equivalence

DAG formulation introduced in DAG-NoCurl with the hybrid VAE–GAN framework

of DAG-WGAN. This adaptation is intended to evaluate how embedding the DAG-

NoCurl framework within an adversarial causal discovery model influences both struc-

tural fidelity, training robustness and efficiency. Furthermore, by incorporating prin-

ciples of disentangled representation learning, DAG-WGAN+ is designed to separate

independent sources of variation within the latent space, aligning individual latent di-

mensions with distinct causal factors. This disentanglement is expected to enhance the

interpretability and refinement of the inferred causal graph, facilitating more reliable

identification of genuine causal relationships while mitigating the effects of spurious

correlations.

Last but not least, the DAGAF model extends the DAG-Notears-MLP framework

with the aim of exploring how its non-parametric architecture and demonstrated ca-

pacity to capture multiple identifiable causal models, such as Additive Noise Mod-

els (ANM), Post-Nonlinear (PNL) models, and Linear Non-Gaussian Acyclic Models

(LiNGAM), can be further enhanced through adversarial and transfer learning tech-

niques. Building on these strengths, the model investigates whether combining explicit

likelihood estimation with distributional modeling and causally aware data generation

can bridge the gap between interpretability and expressive power. To this end, DAGAF

integrates the interpretability and identifiability of DAG-Notears-MLP with the genera-
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tive flexibility of adversarial models. The author speculates that this fusion can improve

scalability to nonlinear, high-dimensional, and non-Gaussian data modes. Moreover,

the framework enables simultaneous causal discovery and tabular data synthesis within

a unified structure. By incorporating a separate instance of DAG-Notears-MLP as a

generator to produce realistic synthetic datasets consistent with inferred causal struc-

tures, DAGAF seeks to examine how aligning structural learning with data generation

can be achieved under a single training algorithm. Through this integration, DAGAF

is positioned as an exploratory step toward interpretable and data-faithful generative

causal inference, with the potential to advance high-quality, diverse tabular data syn-

thesis.

1.5.2 Overall experimental framework

The experimental framework described in this study follows the general principles es-

tablished in recent DAG-based generative adversarial causal discovery methods, namely

DAG-WGAN, DAG-WGAN+, and DAGAF. These approaches share a common exper-

imental philosophy: evaluating both the accuracy of the learned causal structure and

the generative fidelity of the corresponding data model under controlled and real-world

conditions.

Experiments are conducted using a combination of synthetic and real-world datasets.

Synthetic data allow for quantitative evaluation since the true causal graph is known.

For these experiments, directed acyclic graphs (DAG) of varying sizes and densities are

generated, and data are simulated from diverse functional mechanisms, ranging from

linear to nonlinear and post-nonlinear relationships, to test the ability of each model

to recover causal dependencies under different structural complexities. Essentially, this

results in tabular datasets, where each column represents a data variable and each row

is generated data with each cell being a manifestation of a causal mechanism and a noise

vector. Furthermore, real-world and benchmark datasets, commonly used in causal dis-

covery research, are also employed to assess practical applicability and generalization

performance.

It is also important to note that unlike traditional machine learning, where data
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is often split into training and validation sets, this practice is less common in causal

structure learning. Although train-test splitting or cross-validation is standard in pre-

dictive modeling, causal structure identification prioritizes structural constraints and

conditional independencies over predictive accuracy. Since causal relationships are in-

herently structural and assumed to hold across the entire dataset, partitioning the data

typically offers little added value in discovering the underlying structure.

Each model is evaluated against established causal structure learning baselines

(i.e., state-of-the-art methods including DAG-Notears, DAG-GNN, GraN-DAG, DAG-

Notears-MLP, GAE, etc.), ensuring that comparisons are both fair and comprehensive.

That being said, the frameworks differ in how they enforce the acyclicity constraint and

how adversarial training is used to align the generated and observed data distributions.

DAG-WGAN employs a Wasserstein-based adversarial training strategy coupled with

a differentiable acyclicity regularizer; DAG-WGAN+ introduces the DAG-NoCurl for-

mulation to improve computational efficiency and stability; and DAGAF extends the

adversarial framework to jointly learn causal structures and synthesize realistic tabular

data under multiple functional assumptions.

Nevertheless, commonalities between all three approaches include the two criteria

used to assess model performance. The first focuses on causal accuracy, quantified

by how closely the learned graph approximates the true causal structure. The met-

ric chosen for this evaluation was the Structural Hamming Distance (SHD) because it

integrates several important measures, such as True Positive Rate (TPR), False Dis-

covery Rate (FDR), and False Positive Rate (FPR). The second concerns data fidelity,

measured through the similarity between the original and generated data distributions.

It is common practice to evaluate generated sample fidelity and diversity using mul-

tiple different components of data and distribution analysis including: 1) heat maps

to visualize the learned causal structure; 2) box plots to assess feature importance

quality for regression or classification tasks; 3) correlation matrices to compare the

learned correlations to the original ones; and 4) distribution visualization to determine

the diversity of the generated samples by investigating how well the generated and the

original distributions overlap. The author utilizes all of the above in their experiments.
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Together, these evaluations provide a balanced investigation of both causal discovery

and generative capability.

All synthetic data experiments are repeated across multiple random initializations

to ensure robustness, and performance is reported in aggregate to mitigate stochastic

variability. This framework enables systematic comparison across model variants while

maintaining consistency in data generation validation and causal structure learning

evaluation. The results are available in Sections 3.2.3, 4.2 and 5.2.

1.5.3 Analytical framework

This study adopts an analytical framework that systematically examines the efficacy

of adversarial generative models in learning causal structures and synthesizing real-

istic tabular data. By leveraging directed acyclic graph (DAG)-based formulations

within adversarial learning paradigms, the framework integrates causal discovery and

data generation into a unified evaluation process. It focuses on assessing how different

optimization strategies for acyclicity enforcement, adversarial objectives, and architec-

tural refinements influence both the interpretability and performance of learned models.

In particular, the framework emphasizes a comparative analysis of recent DAG-based

adversarial methods, including DAG-WGAN, DAG-WGAN+, and DAGAF, centering

around comparing and validating the capacity of these models to accurately infer causal

structure, synthesize high-fidelity data, and maintain computational efficiency.

The comparative evaluation strategy proceeds along three primary dimensions:

structural accuracy, generative fidelity, and computational efficiency. Structural ac-

curacy is quantified using the metrics described in the above Section 1.5.2, which

collectively assess the correctness of inferred edges and their orientations. Genera-

tive fidelity is evaluated through distributional similarity metrics, including Maximum

Mean Discrepancy (MMD) and Wasserstein distance (WD) applied to tabular data,

alongside predictive utility tests (e.g., feature importance) on downstream tasks to de-

termine whether synthetic samples preserve functional dependencies observed in real

data. Computational efficiency is examined by recording training time, convergence be-

havior, and scalability with respect to the number of nodes and samples. Collectively,
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these evaluation dimensions offer a comprehensive perspective on how each approach

balances between causal interpretability, generative authenticity, and computational

performance.

To provide a more comprehensive comparative analysis, a series of ablation exper-

iments are performed to isolate and quantify the influence of key model components.

Three main ablation paths are explored: 1) modifications to model architecture (i.e.,

removing components like GAN or VAE in DAG-WGAN+) to assess its role in en-

suring valid causal graphs; 2) substitution or complementarity of the Wasserstein loss

with alternative divergence measures (in both DAG-WGAN+ and DAGAF), such as

reconstruction losses (i.e., MSE and NLL), to test sensitivity to adversarial distance

formulations; and 3) the addition of regularization loss terms (including MMD and

KLD functions in both DAG-WGAN+ and DAGAF) to analyze their effect on graph

density and overfitting. For each ablation configuration, the same datasets and eval-

uation metrics are maintained to ensure direct comparability. Changes in SHD are

systematically measured, revealing the contribution of each component to the overall

performance of every model.

Validation of the results follows a multilayered approach encompassing internal, ex-

ternal, and statistical validation (the last two are applied only within the context of

DAGAF). Internal validation assesses the stability and reproducibility of the training

process by conducting multiple runs with different random seeds and evaluating perfor-

mance across independent data partitions. External validation examines the generality

of the learned causal structures and generators when weighted adjacency matrices are

transferred across different model instances with varying statistical properties or noise

levels. Statistical validation confirms the significance of observed performance differ-

ences using non-parametric hypothesis testing methods such as the Mann-Whitney

tests, and incorporating confidence interval estimation to provide a clearer indication

of the practical significance of the results. Qualitative validation is also conducted

by inspecting the interpretability and plausibility of learned causal graphs in domains

where partial ground truth or complete causal knowledge is available. For tabular

data synthesis, the preservation of marginal distributions, pairwise correlations, and
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downstream predictive utility further validates the fidelity and diversity of generated

samples. Runtime profiling and memory consumption analyses substantiate claims of

efficiency, while consistent computational environments and standardized codebases

ensure reproducibility.

Essentially, this analytical framework combines comparative experimentation, ab-

lation study dissection, and rigorous validation to comprehensively assess the learning

dynamics and performance of DAG-WGAN, DAG-WGAN+, and DAGAF. By gather-

ing evidence from structural, statistical, and computational perspectives, the framework

provides a robust basis for evaluating adversarial DAG-learning models and contributes

to a deeper understanding of how generative-adversarial mechanisms can be effectively

harnessed for causal discovery and tabular data synthesis.

1.6 Contributions

This thesis primarily investigates the effects of the Wasserstein loss in a causal struc-

ture learning context. Its influence has been measured by incorporating the loss term

into the training algorithm of existing models and applying it as means of parame-

ter optimization for simultaneous causal discovery and tabular data synthesis under a

single machine learning framework. In addition, research topics such as disentangled

representation and efficient structure learning have also been explored to improve accu-

racy and reduce time complexity. The rest of this section briefly presents the research

areas relevant to the work discussed in this thesis, while stating the contributions of

the author.

1.6.1 Impact of adversarial training on variational inference in Causal

Discovery

The author contributes to causal discovery by studying the impact of the Wasserstein

loss with gradient penalty (WGAN-GP) on modeling the relationships between features

in observational data. Although the application of adversarial training in various fields

is well established, the use of GAN-based architectures in causal structure learning is
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relatively uncommon. Notable approaches in the domain utilizing the generative adver-

sarial network architecture include Structural Agnostic Modelling (SAM) [63], MCS [64]

and DAG-GAN [37]. These methods have demonstrated an ability to learn reasonable

causal relationships, but they suffer from scalability issues and do not assume multiple

data types. Moreover, only SAM and MCS utilize WGAN-GP, leaving the influence of

this architecture and its adversarial loss on causality learning largely unexplored.

The research carried out in support of this work leads to the development of a

parametric algorithm based on the VAE-GAN [62] architecture called DAG-WGAN.

The approach is an extension of DAG-GNN [35] and improves on the model by intro-

ducing a discriminator and an additional adversarial loss term during training. The

causal discovery method has been thoroughly tested against other popular models in

the field, and there is empirical evidence to suggest that DAG-WGAN can be used to

recover accurate structures from continuous and ordinal data. Interestingly, the exper-

iments also indicate that the Wasserstein loss with gradient penalty is most impactful

when working with high-dimensional data. Further details regarding this novelty can

be found in Chapter 3.

1.6.2 Generative Adversarial Causal Structure Learning

To facilitate the integration of GAN into the field of Causal Structure Learning, the au-

thor has developed a non-parametric generative adversarial framework called DAGAF.

This model is structured as a standalone WGAN-GP extension of DAG-Notears-MLP

capable of handling multiple data types. As such, it can be used to recover causal

relationships from continuous and categorical datasets under various structural causal

model assumptions.

The main contribution of this approach is the implicit definition of a new proba-

bility distribution with an embedded causal structure, which allows for the sampling

of realistic data points that maintain the causality exhibited in the input. The frame-

work also involves transfer learning to establish a two-step training pipeline. Initially,

DAGAF learns the causal relationships among the input features, and then employs

the acquired causal knowledge in a conditional generator to produce synthetic samples.
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The adversarial training is further strengthened by the addition of a reconstruction loss

term. The MLE-based loss term has the most significant effect on the causal discovery

process, however, a theoretical analysis has been conducted to show the contribution

of the adversarial loss function to causal structure learning. Further details regarding

this novelty can be found in Chapter 5.

1.6.3 Adversarial causal discovery with the post-nonlinear model

Most machine learning algorithms used for discovering causal structures from obser-

vational data assume only Additive Noise Models (ANM) as their Structural Causal

Model (SCM). This is a limitation of their design, as it implies that datasets can only

be generated using that particular SCM. Meanwhile, there is very limited research con-

ducted on causality learning using the post-nonlinear model (PNL), which is another

identifiable SCM, in most cases. For settings where PNL is not identifiable, see [32].

To the best knowledge of the author, there are mostly discrete score-based methods

that can perform causal discovery using the post-nonlinear model, with notable exam-

ples including [69], [70], [71], [72]. Prior to this work, there were very few machine

learning models (i.e Deep PNL, AbPNL, MC-PNL and CAF-PoNo) that could recover

relationships between variables under the assumption of PNL.

The author has developed three methods for adversarial causal discovery that use

the post-nonlinear model either in their architectures or the input data. These models

have been tested against approaches using ANM and LiNGAM (Linear Non-Gaussian

Acyclic Model), which are considered to be subsets of PNL. Experiments have shown

that adversarial training can be used to recover high-quality causal structures when the

post-nonlinear model is assumed. These promising initial findings may stimulate the

proliferation of scientific literature and further investigations into this emerging frontier

of causal discovery. Additional details regarding this novelty can be found in Chapters

3, 4, 5.
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1.6.4 Efficient Structure Learning

DAG-WGAN and DAGAF both employ an augmented Lagrangian as part of their

training procedure. Although these methods produce high-quality causal structures,

they are very slow due to the cubic computational complexity of the Lagrangian. To

address this issue, the author shifted their focus to efficient structure learning. This

field of research is devoted to creating frameworks that can identify causality from

data without the use of the augmented Lagrangian. Notable approaches include DAG-

NoCurl [48] and DP-DAG [49], which require significantly less time to discover causal

structures.

The author contributes to the field of efficient structure learning by combining

DAG-WGAN and DAG-NoCurl to develop a new model called DAG-WGAN+. Ex-

periments were conducted to assess the accuracy and the time it took for the model

to run. The outcome was a slight increase in accuracy and a considerable decrease

in training time. Furthermore, an analysis of the algorithm was conducted to deter-

mine the computational complexity of DAG-WGAN+. The results indicate that the

new model is significantly more efficient than DAG-WGAN, reducing its computational

complexity from cubic to quadratic. Additional details regarding this novelty can be

found in Chapter 4.

1.6.5 Disentangled Representations in Causal Structure Learning

An additional study was conducted to assess whether Disentangled Representation

Learning (DRL) could improve data generation and causal discovery. This was done by

adding a kernel-based Maximum Mean Discrepancy (MMD) [67] loss term to the models

discussed in Chapters 4 and 5. Previously, MMD had been used in the context of causal

learning with a few models, such as DAG-GAN [37], CGNN [73] and MMD-LCS [74], to

produce good results. To further investigate the effects of MMD on causal discovery, an

ablation study was conducted comparing versions of DAG-WGAN+ and DAGAF with

and without MMD. The results favored the instances with MMD, providing evidence

to support the use of DRL in this context. Additionally, a theoretical analysis was

conducted to prove the contributions of MMD to causal structure learning. Further
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details regarding this novelty can be found in Chapters 4 and 5.

1.7 Publications

Every author contribution described in this thesis has been published in the form of

a research paper. The list of peer reviewed publications related to this dissertation is

presented below:

• DAG-WGAN: Causal Structure Learning with Wasserstein Generative Adversar-

ial Networks [75]

• Causality Learning with Wasserstein Generative Adversarial Networks [76]

• Efficient Generative Adversarial DAG Learning with No-Curl [77]

• AI-Powered Clinical Trials: Emulating Real-World GLP-1 Efficacy with Synthetic

Patient Populations Using Causal Effect Learning [78]

• DAGAF: A directed acyclic generative adversarial framework for joint structure

learning and tabular data synthesis [79]

• Emulating Real-World GLP-1 Efficacy in Type 2 Diabetes through Causal Learn-

ing and Virtual Patients [80]

1.8 Thesis Structure

The author formulates the rest of their thesis as follows:

• Chapter 2 offers a detailed overview of the fundamental components of causal

structure learning, exploring different approaches for conducting it and summa-

rizing the relevant literature.

• Chapter 3 discusses the theory and implementation details behind the develop-

ment of a hybrid model, combining adversarial training and variational inference

in the context of causality learning.

23



Chapter 1. Introduction

• Chapter 4 explores efficient structure learning techniques and their relevance to

causal discovery. This leads to the design of an enhanced version of the algorithm

introduced in the previous chapter, demonstrating better accuracy and compu-

tational complexity.

• Chapter 5 introduces causality learning under multiple causal structural model

assumptions and its connection to tabular data synthesis, motivating the creation

of a novel framework for simultaneous causal discovery and generation of tabular

datasets.

• Chapter 6 concludes the thesis by briefly stating the impact of the research con-

ducted by the author as well as their opinion regrading the direction of future

research efforts in the area of causal structure learning. Additionally, the author

shares their closing thoughts on all the work done during their Ph.D. studies.

• Appendix A provides all the mathematical proofs for the lemmas and the propo-

sitions defined throughout this thesis.

• Appendix B presents the code used to conduct the data quality experiments

discussed in this work.
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Literature Review

This chapter offers an overview of the research field to which the author contributes. It

begins with a brief description of the components necessary for causal structure learning

and then provides a comprehensive history of approaches and techniques for discovering

causation. The chapter then moves on to a critical analysis of prior works, highlighting

their strengths and limitations while explaining the rationale behind the methodological

choices of the author. Additionally, details of the implementation behind some models

are also discussed, as they are closely related to the research conducted in this work -

for further information, refer to Section 2.4.

2.1 Prerequisites

In this section, the author describes the concepts essential for discovering causal struc-

tures along with practical frameworks and a set of assumptions used for the development

of algorithms supporting the contributions described in their thesis.

2.1.1 Directed Acyclic Graphs

Directed Acyclic Graphs (DAG) [81], [82] are visual constructs describing complex

mathematical problems, defining sequences of processes or studying how different vari-

ables within a particular setting relate to one another. They are a special subset of

graphs, which do not contain cycles between vertices V = {V1, ..., VN} and have di-
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rected edges E = {(i, j) ∈ Rv×v} connecting them. All graphs that do not contain

cycles live in their own DAG space, denoted by D. Moreover, each edge of a DAG

G⟨V,E⟩ is defined as (i→ j) ∈ E, where according to the direction of the relationship

i is the ancestor of j and j is the descendant of i. DAG are used in various fields

of computer science and other research areas due to their ability to be computed and

defined using an adjacency matrix A ∈ Rv×v. In this alternative representation, each

element Aij is either 0 or 1 depending on whether there is a directed edge between

i and j. Alternatively, there exist other types of adjacency matrix such as the Siedel

adjacency matrix [83], where the permitted values are -1, 0 or 1 and the weighted adja-

cency matrix which stores the weight values assigned to each edge. This work describes

models utilizing only weighted adjacency matrices.

The research presented in this thesis explores the application of DAG from a causal

perspective. Particularly, the acyclicity between nodes combined with the directionality

of edges facilitates the encoding of ”cause and effect” between parents and children,

allowing people to easily interpret the causality visualized in a graph [84]. Meanwhile,

estimating the causal effect of individual relationships present in the structure of a DAG

(causal inference) has also become a popular research topic, leading to various scientific

breakthroughs [85], [86], [87], [88], [89]. This study is limited to the application of DAG

for causal structure learning.

2.1.2 Bayesian Networks

Bayesian Networks (BN) [90] are a type of Probabilistic Graphical Model used to calcu-

late probabilities (i.e uncertainties) by modeling the conditional dependencies between

variables in a joint distribution. They enable the visualization of causal relationships

through Directed Acyclic Graphs (DAG), where nodes represent variables, while edges

express direct connections between them. The probability distributions and their cor-

responding structures described in Bayesian Networks have to satisfy the Local Markov

Assumption [91]. This property ensures that given a set of variables X = {X1, ..., Xd}

that form a DAG, a node Xj depends solely on its immediate parents Paj , enabling us

to define the Bayesian Network factorization of a joint distribution as:
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P (X1, ..., Xd) =
∏
j

P (Xj |Paj). (2.1)

Furthermore, BN play a crucial role in causal discovery because their structure can be

obtained directly from observational data [10].

The concept of using machine learning techniques to retrieve a Directed Acyclic

Graph (DAG) that best reflects the connections between variables concealed in data

sets was first suggested by George Rebane [92]. Since then, a variety of methods have

been developed to learn its structure, sparking a proliferation of literature. To recover

an accurate graphical representation of the causality modeled by a Bayesian Network

BN = (G, φ), one has to discover a set of its components that best describes the input:

1) a DAG G representing how variables within the data are connected, and 2) a set of

parameters φ that produce the probability distributions defined by the content of the

graph.

Learning the parameters that best correspond to the data is straightforward using

machine learning or rule-based techniques. However, learning the DAG which describes

the connections between the data is very challenging. The difficulty is related to the

combinatorial nature of the DAG search space [22]. Nevertheless, several techniques

have been developed for learning causal structures, including score-based, constraint-

based, hybrid approaches (also known as traditional methods), and most recently, con-

tinuous optimization and efficient structure learning. A brief explanation for each of

them is provided in Section 2.2.

2.1.3 Structural Causal Models

The importance of causal structure learning is significant in fields where it is neces-

sary to distinguish between correlations and causal relationships. Machine learning

algorithms can easily detect correlations in data, but discovering causal connections

is a more complex process that requires a detailed investigation of properties such as

directionality, temporal sequencing, interventions and confounding. These features are

not expressed through associative relationships, hence causality cannot be defined in

the same way as correlations. Therefore, it is imperative to formulate a strong no-
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tion for representing and validating cause-and-effect relationships expressed in a DAG.

Such a concept, known as the Structural Causal Model (SCM), was first proposed by

Sewell Wright [93], but it was Judea Pearl [94] who refined and developed it into a

mathematical object.

A Structural Causal Model M⟨X,Z,F⟩ is composed of three sets: a set of data

variables X = {X1, ..., Xd}, a set of noise vectors Z = {Z1, ...,Zd} sampled from an

external distribution P (Z), and a set of functions F = {f1, ..., fd} that define the

causal mechanisms between the variables in X. This combination of sets allows for the

synthesis of Xj from other variables in X and noise in Z. Assuming that there are no

hidden confounders influencing the variables in X, the SCM takes the general form

Xj := fj(Paj ,Zj), (2.2)

where Xj is the generated variable, Paj are its parents, Zj is the noise and fj is the

equation used to produce it. All of the causal mechanisms described in the SCM are

visualized through a DAG G, defining the underlying structure of the data as a causal

graph, where the variables of the data are nodes and the edges are functions (structural

equations).

2.1.4 Assumptions for Causal Discovery

This section provides a list of assumptions essential for causal structure learning. All

of them are satisfied in the experiments related to this thesis.

• Acyclicity: The graph describing a structural causal model must not contain

any cycles.

• Local Markov assumption: Given its parents in the DAG, a node is indepen-

dent of all its non-descendants. This assumption implies that variables in the

graph are solely dependent on their immediate parents.

• Strict Causal Edges: In a directed graph, every parent is a direct cause of all

its children. This assumption enables the visualization of dependencies between

variables from the probability distribution.
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• Minimality: This assumption consist of two components. The first part is the

Local Markov assumption and the second is Strict Causal Edges. It suggests

that conditional independencies in a probability distribution are expressed with

a minimal number of edges.

• Causal sufficiency assumption: There exist no unobserved common causes

(i.e hidden confounders) between any of the variables in the graph.

• Faithfulness: This assumption enables causal structure learning from observa-

tional data. It states that a probability distribution and the DAG describing

it are faithful only when the conditional independencies of the distribution are

expressed in the graph [95], [96]. Under the causal sufficiency assumption, the

faithfulness condition implies that if there exists a statistical dependency between

two variables, then there is an underlying causal relationship between them.

• Semi-parametric assumptions: A group of assumptions influencing the for-

mulation of the structural equations making up SCM. Throughout this research

a variety of models are assumed (e.g. additive noise models, linear non-gaussian

acyclic models and post non-linear models) based on their causal identifiability.

2.1.5 Structure Identifiability

Estimating causal effects from datasets requires information regarding the underlying

structure of their contents. Interventional studies offer the most rigorous method for es-

tablishing causality through data manipulations. However, setting up such experiments

is difficult, infeasible, or sometimes even impossible. On the other hand, observational

studies are far more practical but only provide data without prior knowledge of its

causal structure. Additionally, they are easier to conduct and thus preferred to inter-

ventional ones. This has led people to ask the question ”Can causal relationships be

obtained from observational data?”.

As stated previously, it is impossible to recover causal structures from observa-

tional data without satisfying a specific set of assumptions. Furthermore, performing

causal discovery multiple times under the same setting (i.e., no changes in observational
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samples, model used, or assumptions made) can produce different results. This is a fun-

damental problem referred to as structure identifiability, which significantly limits our

ability to learn the causality expressed in observational data.

Definition 1. Structure Identifiability: Given a set of assumptions A = {A1, ...,AN}

and samples X belonging to a probability distribution P (X), a causal structure learn-

ing model M will recover an identifiable DAG G if and only if its implicitly defined

distribution P (X̃) cannot be generated using any other G′ ∈ D.

In terms of graph identification, under the local Markov assumption, we can only

identify the Markov Equivalence Class (MEC) to which a DAG belongs [97]. How-

ever, in some specific cases, depending on additional assumptions and the probability

distribution from which the data originates, an MEC can be identified down to a

DAG. For example, when using different SCM (e.g. linear non-Gaussian noise model

X̃ := f(X)+Z, non-linear additive noise model Xj := fj(Paj)+Zj and post-nonlinear

model Xj := gj(fj(Paj) + Zj)), with the inclusion of additional assumptions such as

faithfulness and minimality, a DAG can be identified [31], [98], [32]. On the other hand,

if the distribution is multinomial or linear Gaussian, despite the additional assumptions,

no further identification can be made from the MEC [99], [100].

2.1.6 Markov Equivalence and CPDAG

The local Markov assumption implies that only partial identification of a Directed

Acyclic Graph (DAG) G is possible based on the conditional independencies in the

distribution it describes. The inability to recover the dependencies in the data through

this assumption does not allow the identification of a DAG, but rather its Markov

Equivalence Class (MEC) instead.

Definition 2. Markov Equivalence Class: The set MEC = {G1, ...,GN} of all graphs

containing the same conditional independencies (i.e an identical skeleton and immoral-

ities [101]).

This class of graphs is described by a Completed Partially Directed Acyclic Graph

(CPDAG) [102], [103]. A CPDAG is similar to a DAG, but with a distinction in the
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types of edges present in the graphs. The former includes a combination of directed

and undirected edges, whereas the latter only has directed edges. In the context of

independence-based causal discovery, a CPDAG incorporates both directed and undi-

rected edges to represent immoralities and the skeleton of the graph, respectively.

2.1.7 Evaluation Metrics

This section contains metrics used to assess the quality of the results produced by the

models described in this thesis.

• True Positive Rate (TPR) [104] - measures how many edges belonging to the

ground truth graph G0
A have been recovered. For example, if G0

A = A→ B → C

and the recovered causal graph GA = A→ B, then the TPR is 66%. Conversely,

if G0
A = GA the TPR is 100%. The metric is commonly used to calculate how

many edges of the ground truth graph are missing from the recovered graph.

• False Discovery Rate (FDR) [104] - measures how many additional edges not

present in the ground truth graph G0
A have been discovered. For example, if

G0
A = A → B → C and the recovered causal graph GA = A → B → C → D,

then FDR is 25%. If G0
A = GA the FDR is 0%. The metric is used to represent

the number of extra edges in the recovered graph.

• False Positive Rate (FPR) [104] - measures how many edges of the ground

truth graph G0
A have been recovered with incorrect directionality. For example,

if G0
A = A → B → C and the recovered causal graph GA = A → B ← C, then

the FPR is 33%. If G0
A = GA the FPR is 0%. The metric is used to establish

the number of reversed edges present in the recovered graph.

• Structural Hamming Distance (SHD) [105] - This distance encompasses all

of the metrics described above. It measures how many adjustments are necessary

to guarantee that the recovered causal graph GA matches the ground truth graph

G0
A. For example, if G0

A = A → B → C and GA = A ← B → D, then SHD is

3, taking into account extra (D), reversed (A← B) and missing edges (C).
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Other metrics include Area Over Curve (AOC) [104], Area Under Curve (AUC) [104]

and Structural Interventional Distance (SID) [106]. In this work, evaluation is limited

to the application of the metrics in the list above.

2.1.8 Generative Models

Generative Models, as their name suggests, are a set of frameworks capable of producing

new data points that resemble some input data. Models falling into this category are

widely used in unsupervised machine learning because of their ability to implicitly learn

a probability distribution that closely matches the original data distribution.

A non-exhaustive list of generative models includes:

• (Gaussian) mixture model [107]

• Hidden Markov model [108]

• Variational autoencoder [52]

• Generative adversarial network [53]

• Flow-based generative model [51]

• Energy based model [109]

• Diffusion model [54]

In recent years, Variational Autoencoders (VAE) and Generative Adversarial Net-

works (GAN) have gained popularity due to their contributions to various research

areas. Both frameworks rely on multiple Artificial Neural Networks (ANN) [110], and

their implementation details are discussed in this section.

Variational Autoencoder

Variational Autoencoders utilize a pair of neural networks, namely an encoder and a

decoder, to learn a given training data distribution and sample new data points from

it. Specifically, the encoder produces a latent representation that captures the features
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of the real data distribution, while the decoder uses this latent variable to generate

new data samples that resemble those belonging to the original distribution. Models

based on this framework are typically trained by minimizing a Maximum Likelihood

Estimation (MLE) [55] objective function known as Evidence Lower BOund (ELBO)

[61]. The ELBO consists of two components: 1) a reconstruction loss term (i.e., negative

log-likelihood) and 2) a regularization term (i.e., Kullback-Lieber divergence).

ELBO = −EZ∼Qϕ(Z|X)[logPθ(X|Z)] +DKL(Qϕ(Z|X)||P (Z)) (2.3)

In (2.3), P (Z) denotes the prior distribution of the latent variable Z, whileQϕ(Z|X) and

Pθ(X|Z) represent the encoder and decoder networks respectively. As can be seen from

the formulation of the ELBO, the optimization of the decoder parameters θ is dependent

on the encoder parameters ϕ, hence the objective function is used to simultaneously

learn both the generative model and the inference model. Furthermore, the latent

variable Z used in the generator model is sampled from a probability distribution

Qϕ(Z|X), making the network non-differentiable due to the randomness of Z. To

fix this issue, the reparameterization trick in (2.4) is used to enable backpropagation

through the decoder during training.

Z = µ+ σ ⊙ ϵ (2.4)

Generative Adversarial Network

Similarly to VAE, Generative Adversarial Networks (GAN) are a type of generative

model consisting of two networks. The main idea behind GAN is to define a new

implicit probability distribution that closely matches the original data distribution,

enabling the generation of realistic data samples. This is achieved by forcing two

networks to compete against each other. On one side, a generator network G, takes

noise Z as input and generates new data samples that closely resemble the real data.

On the other hand, a discriminator network D, receives these generated samples, as

well as real data samples and tries to determine whether they belong to the real data

distribution or not. The optimization of this framework is achieved through adversarial
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training, where both networks engage in a Min-Max game and the objective is defined

by the following loss function:

min
G

max
D

V (D,G) = EX∼P (X)[logD(X)] + EZ∼P (Z)[log(1−D(G(Z)))] (2.5)

The original GAN proposed by [53] is difficult to train and can only tell us if a sample

is real or fake, hence over the years several improvements to the objective function

of GAN have been proposed [111], [112], [113]. Amongst them, most notable is the

inclusion of the Earth-Mover’s Distance (EMD) [114].

The reformulation of the loss function with Wasserstein-1 results in a new type of

GAN named Wasserstein Generative Adversarial Network (WGAN) [115]. The main

advantage that WGAN have over regular GAN is the ability to measure the distance

between the real data distribution P (X) and the implicitly defined distribution P (X̃)

modeled by the generator. This reformulates the problem from detecting whether a

sample is real or fake to measuring how real or fake a given sample is.

min
G

max
D∈W

V (D,G) = EX∼P (X)[D(X)]− EZ∼P (Z)[D(G(Z))] (2.6)

Minimizing the distance between the probability distributions P (X) and P (X̃) produces

data which better represents the original data distribution. However, a limitation

of WGAN is the difficulty to enforce the discriminator D to belong to the set of 1-

Lipschitz functions (i.e W in Equation (2.6)). A possible solution to this problem is

the inclusion of a gradient penalty term into the objective function of WGAN, resulting

in Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-GP)

[116]. The gradient penalty term enforces the 1-Lipschitz constraint on D by penalizing

the model if the value of the gradient norm moves away from 1.

min
G

max
D∈W

V (D,G) = EX∼P (X)[D(X)]− EZ∼P (Z)[D(G(Z))]︸ ︷︷ ︸
Critic loss

+λEX̂∼P (X̂)[(∥∇X̂D(X̂)∥2 − 1)2]︸ ︷︷ ︸
Gradient penalty

(2.7)
This approach produces high-quality data but has poor computational complexity due
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to the addition of extra terms in the loss function.

2.2 Causal Discovery Approaches

The idea of employing rule-based or machine learning techniques to identify a graph

structure that best represents the dependencies present in observational data has been

around since the early 1990s [117]. Over time, the field of causality learning has devel-

oped into a well-established scientific domain with five primary approaches to discover-

ing causal relationships from a dataset. These include traditional methods (constraint-

based, score-based, and hybrid), continuous optimization, and the more recent efficient

structure learning. Elaborations for each of those will be provided in this section.

2.2.1 Traditional Methods

Constraint-based methods (CBM) apply various conditional independence tests in or-

der to construct a graph that best represents the independencies within a given joint

distribution. The majority of models in this category satisfy the local Markov as-

sumption, resulting in the identification of a set of graphs that describe the same

conditional independencies. In other words, the output of these models is a Markov

equivalence class (MEC) represented by a completed partially directed acyclic graph

(CPDAG), where only the connections between vertices with a unique direction are

shown as directed edges. One of the first models capable of producing such a graph

is the PC algorithm [28], which is well-known for its three-step approach (skeleton

identification, immorality identification and orientation, and edge orientation). Other

kernel-based solutions for conditional independence testing include the KCI-test [118]

and KLC [119]. When causal sufficiency is not assumed, models such as ION [120],

cSAT+ [121], and CCI [122] have demonstrated good performance by applying inde-

pendence judgments to bidirectional graphs. Other CBM relax the assumptions of

faithfulness [123], [124], [125], [126] and acyclicity [127], [128], [129], [130] in order to

identify MEC. Lastly, interventional studies have been conducted using constrain-based

methods such as IDA [131], backshift [132], CombINE [133], and σ-CG [134].
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The DAG search space in CBM poses a fundamental challenge due to its combina-

torial nature. Chickering et al. [22] have demonstrated that discovering DAG through

independence tests is NP-hard, rendering this class of algorithms highly inefficient. As a

result, a new generation of models, such as FCI [29], RFCI [135], and Parallel-PC [136],

has been developed to improve the efficiency of the constraint-based approach. Addi-

tionally, the method suffers from unreliability as most conditional independence tests

require a substantial amount of data to accurately estimate the independent variables

in a given distribution [30].

Score-based methods (SBM) perform similar DAG searches, but they use different

techniques. Their objective is to discover a graph that best represents some probability

distribution using a scoring function (i.e some metric) [137], [138], [139]. In other

words, each graph in the DAG search space is assigned a score, and the one with

the best score is considered to accurately describe the underlying causality in a given

dataset. Traditional score-based DAG learning focuses on the implementation of rule-

based approaches to perform discrete search procedures. These methods aim to provide

a discrete optimization solution for the following problem:

max
G

fscore(X,G) s.t. G ∈ discrete DAG, (2.8)

where fscore denotes the scoring function, X the observational data samples and G

the DAG which describes the probability distribution the input data originates from.

Notable examples of such functions include Bayesian Information Criterion (BIC) [140],

Bayesian Dirichlet equivalence (uniform) (BDe(u)) [25], Bayesian Gaussian equivalent

(BGe) [26] and Minimum Description Length (MDL) [27].

An inherent limitation of this method is its inability to effectively handle the

super-exponentiality of the DAG search space. To address this, additional assump-

tions and approximations such as bounded tree-width [141], tree-structure [142], and

sampling [143], [144], [145] are often necessary to achieve computational tractability.

Another challenge with this approach is the fact that all discrete score-based approaches

are non-differentiable, making it impossible to use gradient-based optimization tech-

niques essential for machine learning models. Nevertheless, successful implementa-
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tions of the score-based methodology include the original Greedy Equivalence Search

(GES) [146] and its improved versions GES-mod [147] and GIES [84]. LiNGAM [31] and

its variations [148], [149] recover graphs by assuming a linear non-Gaussian Structural

Causal Model. K2 [150] and GCL [151] learn hidden confounders under causal insuffi-

ciency. Exceptional results have also been achieved with non-acyclic [152], [153], [154]

and interventional [155], [156], [157], [158] solutions. Additionally, the SP [159] model

performs causal structure learning by relaxing the faithfulness assumption.

Both CBM and SBM are capable of producing accurate results, but each of them has

their own limitations. CBM tend to be unreliable when dealing with a small sample size,

while SBM often make additional assumptions and approximations to ensure that the

optimization of the score function is computationally feasible. Moreover, both methods

are highly inefficient because of the NP-hardness of DAG. As a result, researchers have

developed hybrid approaches that combine CBM and SBM to achieve better accuracy

and efficiency. Successful models in this domain of causal structure learning include

MMHC [34], RELAX [160], ARGES [161], and BiDAG [162]. Unfortunately, due to

the discrete nature of the optimization, this approach still has combinatorial computa-

tional complexity, making it unsuitable for handling complex datasets containing large

volumes of data samples or variables.

2.2.2 Continuous Optimization

In 2018, the development of a new model called Non-combinatorial Optimization via

Trace Exponantial and Augmented lagRangian for Structure learning (NOTEARS)

[12] transformed the discrete nature of SBM into the continuous optimization (CO) of

score functions with respect to an explicit acyclicity constraint. The key distinction

between this approach and its discrete predecessor is that continuous optimization is a

differentiable process, enabling the use of machine learning models for causal structure

learning. In a general sense, the CO problem can be defined as follows:

max
G

fscore(X,G) s.t. h(G) = 0, (2.9)
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where h(G) is the acyclicity constraint applied to G. The method proposed by [12]

showcased the ability to generate more accurate results in a shorter time frame com-

pared to traditional methods. Nevertheless, a significant drawback of the model is its

limited applicability to linear data.

Subsequently, several extensions of NOTEARS have been developed that are non-

linear in nature. Some of these models are based on the Auto-Encoder (AE) architec-

ture [35], [163], [39], [164] or the Generative Adversarial Network (GAN) [63], [165], [37],

while others utilize meta-learning [166], [167] and flow-based generative models [168],

[169]. Moreover, the ability to discover causality with black-box models has been ap-

plied to different types of data, including images [170], [171], tabular data [172], [38],

videos [173], and time-series data [174]. However, most continuous optimization algo-

rithms suffer from inefficiencies related to parameter optimization using the augmented

Lagrangian. According to [36], the computational complexity of the augmented La-

grangian in a causal structure learning setting is O(d3), where d is the number of

variables in the data. The poor time-wise performance of these models makes them

practically unusable with high-dimensional data. Most of the models mentioned above

assume an Additive Noise Model (ANM). However, there are also models that assume a

Post-Nonlinear Model (PNL), such as AbPNL [41], Deep PNL [42] CAF-PoNo [175] and

MC-PNL [176]. Additionally, there are models that do not assume acyclicity [177], [178].

This work is focused on investigating acyclic causal discovery methods only.

An alternative continuous optimization approach, developed by [44] as a deviation

from the NOTEARS framework, demonstrates improved DAG-learning and computa-

tional complexity compared to previous approaches. The method is based on learning

the correct order of nodes using permutation vectors that form a specific structure

called the Permutahedron. Another work in this field is CASPER, developed by [45].

Its authors highlight the flaws in the DAG-independent score functions of previously

existing models based on the NOTEARS framework. They argue that not considering

the graph structure significantly affects how the DAG search space of an algorithm is

defined, resulting in the discovery of substandard DAG. Their model recovers accurate

DAG from a dynamic search space through a novel score function. Currently, the latest
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work in the field is a novel technique called REX [46] that incorporates Shapley values

into the causal discovery process by interpreting feature contributions from machine

learning models. REX minimizes the number of features integral to the causal graph by

utilizing the connection between Shapley values and causal relationships. This specific

technique enables the authors to focus on the most influential variables for subsequent

causal analysis, enhancing the effectiveness and precision of identifying causality in

complex datasets. This integration not only makes causal models more interpretable

but also strengthens the detection of causal relationships by concentrating on features

that have a substantial impact.

2.2.3 Efficient Structure Learning

In recent times, researchers have developed machine learning models that can discover

causality without relying on the augmented Lagrangian method. These methods fall

under the category of efficient structure learning (ESL) and can recover connections

between variables in a given dataset significantly faster. The algorithms in this class are

all based on theoretically developed frameworks for efficiency. One notable approach in

this category is DAG-NoCurl [48], which is considered one of the pioneering methods

that does not use the augmented Lagrangian. Other examples of such algorithms

include VI-DP-DAG [49] which recovers DAG by learning differentiable probability

distributions over edges and permutation matrices and ELCS [179] which is an efficient

approach utilizing Markov Blankets. Recently, a hybrid model called DAG-NCMLP [50]

utilized both the DAG-NoCurl framework and the DAG-Notears-MLP model to enable

efficient learning of non-linear, non-parametric causal structures. More specifically, the

authors developed a theoretical non-parametric projection formulation for gradient-

based adjacency matrices, expanding the projection framework to cover more than

just weighted adjacency matrix representations. To instantiate their novel theoretical

framework, they build a duo-step algorithm to perform efficient DAG learning relying

on non-linear projections. The success of these models has motivated further research

in the field of efficient structure learning, making it an active area of study.
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2.3 Critical Analysis

This section presents a rigorous critical analysis of existing research and state-of-the-

art methodologies within the field of causal discovery. It systematically evaluates the

strengths, limitations, and underlying assumptions of previous studies to establish a

clear understanding of their contributions and shortcomings. Specifically, the author

expands on the contents of Table 2.1. Through this investigation, they justify the

methodological and theoretical choices underpinning their work, demonstrating how

these decisions directly address identified gaps in the literature.

Table 2.1: Limitations of prior works

Category Main Issues

MLE-based Approaches
Blurry outputs, latent collapse (for latent-based
generative models only)

Computational Efficiency High computational complexity, poor scalability

Post nonlinear model Invertibility, post-nonlinearity, limited research

Single SCM assumption
Unverifiable structures, in terms of faithfulness
to the observed data

Tabular Data Synthesis
No interpretability, mode collapse, dependence on
known or externally learned causal structures

2.3.1 Causal structure learning with MLE-based loss functions

Despite their widespread adoption in models such as NOTEARS [12], DAG-Notears-

MLP [38] and GraN-DAG [36], MLE-based loss functions impose several practical and

theoretical constraints on causal structure learning with generative modeling algorithms

relying on latent variables. By optimizing parameters solely to maximize the likelihood

of observed data, these approaches often overlook important aspects of data diversity

and structural complexity. As a result, common MLE-based objectives (e.g., Mean

Squared Error (MSE) [180], Negative Log-Likelihood (NLL) [181], and Evidence Lower

Bound (ELBO) [61]) exhibit several notable limitations, including the following:

1. Simplicity: The objective of the loss function is to ensure that the output gen-
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erated closely resembles the input data. However, this simplicity can result in

blurry results because the model aims to minimize the average error across all

data points [56]. In the past, attempts have been made to enhance performance by

introducing additional terms as regularizers to the reconstruction loss. However,

it should be noted that excessive regularization can also lead to blurry results.

2. Diversity: In generative models with latent variables, such as the VAE-GAN

and WGAN-GP approaches considered in this thesis, the application of MLE-

based reconstruction loss terms tends to reduce the standard deviation (std) of

the implicitly learned data distribution toward zero. As a result, sampling relies

almost entirely on the mean, producing outputs that represent average data sam-

ples. This effect, referred to as latent collapse, severely restricts the diversity of

the reconstructed data.

Additionally, MLE-based algorithms are affected by the ”curse of dimensionality” [182],

which limits their effectiveness with high-dimensional data and complex distributions.

As previously mentioned in Section 1.3, to address these problems people include

additional loss terms to regularize the model training process, such as the Wasser-

stein distance (WD) [57], the Kullback-Leibler divergence (KLD) [58], and the Jensen

Shannon divergence (JSD) [59]. From these, WD is currently the least explored in the

context of causal structure learning.

The Wasserstein distance can serve as a powerful regularizer for MLE-based causal

discovery by shifting the optimization focus from minimizing point-wise discrepancies

between observed and reconstructed data toward minimizing the distance between their

entire distributions. Unlike MLE, which typically aligns individual data points through

likelihood maximization, the Wasserstein-based approach captures the global geometry

and structural characteristics of the data distribution. This allows the causal discov-

ery process to incorporate rich distributional features, such as variance, skewness, and

multi-modality that MLE tends to overlook. As a result, the learning process evolves

from a simple reconstruction task into a generative emulation of the underlying data

synthesis mechanisms, enabling the model to more faithfully replicate the causal struc-
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ture involved in the generative process responsible for producing the observed data.

Moreover, in practical terms, models that rely on adversarial training are expected

to be more effective in identifying causal relationships from observations compared to

gradient-based or maximum likelihood estimation (MLE) frameworks. An advantage of

this methodology is its ability to scale linearly with increasing data variable size, thus

reducing susceptibility to the ”curse of dimensionality” [53]. Additionally, generative

adversarial models have the ability to model distributions of varying complexity and

dimensions [183], [184]. They can also handle noisy or incomplete data and address the

issue of latent collapse that is often encountered in MLE-based approaches relying on

latent variables during training.

To determine the validity of these claims, researchers integrated adversarial train-

ing into the process of learning causal structures, resulting in a novel methodology

called Wasserstein Adversarial Causal Discovery (WACD). This approach leverages the

Wasserstein distance as a data distribution metric to discover the causal relationships

present in a given dataset. Essentially, models within this category aim to minimize

the distance between the actual data distribution and the generated data distribution,

facilitating the implicit recovery of causal structures. These frameworks involve two

key components: a Discriminator D and a Generator G. Unlike traditional generators

that only focus on generating new samples, G in this context strives to simulate the

causal mechanisms necessary to match the underlying causal structure of the original

probability distribution. Consequently, this leads to the development of causally aware

algorithms capable of generating samples that adhere to causal relationships similar to

those observed in the input data.

In a recent survey titled ”D’ya like DAGs? A Survey on Structure Learning and

Causal Discovery” [185], it is suggested that the first model capable of working with

tabular data in the field of WACD is Structural Agnostic Modeling (SAM) [63]. On

the other hand, models such as Causal Adversarial Network (CAN) [165] and Gener-

ative Adversarial Neural Network embedded with causal matrix (CMGAN) [186] have

demonstrated the ability to recover causality from images. The increasing number of

studies on Wasserstein Adversarial Causal Discovery reflects the popularity of WGAN
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in causality learning. However, there is still potential for further application of this ap-

proach, particularly in dealing with hidden confounders, mixed-type, time-series, and

incomplete data, where limited progress has been made.

Despite the lack of scientific literature volume involving these specific subdomains,

this adaptability makes WACD applicable in diverse fields such as healthcare, medicine,

and justice, where it can enhance decision-making and foster trust between humans and

artificial intelligence. Additionally, ongoing advancements in Wasserstein Generative

Adversarial Networks (WGAN) contribute to the continuous refinement of adversarial

causal discovery. Consequently, this progress is expected to yield more effective models

that surpass the current state-of-the-art in the field. The author contributes to WACD

by developing a hybrid model based on adversarial training, MLE-based loss terms and

the DAG-GNN architecture, resulting in a significant improvement in causal structure

learning accuracy from high-dimensional data - for more details see Chapter 3.

2.3.2 Importance of Computational Efficiency

Over the past few decades, various techniques have been developed to recover causal

relationships between variables in a dataset, giving rise to numerous causal structure

learning algorithms and establishing a novel field of research. As outlined in Section 1.2,

models designed to discover causality from data generally fall into one of two categories:

1) rule-based (traditional) approaches; or 2) machine learning methods. Despite their

different foundations, both families have demonstrated the ability to recover accurate

causal structures from observational data. However, many of these methods suffer from

poor computational performance, making them impractical for large-scale applications.

The three dominant causes of this inefficiency are the curse of dimensionality [187], the

NP-hard nature of learning directed acyclic graphs (DAG) [22] and the formulation

of the optimization problem. One notable example of a solution to these challenges

is the DAG-NOTEARS [12] framework, which transforms the traditionally discrete

and combinatorial process of causal discovery into a continuous optimization problem

with an explicit acyclicity constraint. While this represents a significant theoretical

advancement, NOTEARS still suffers from substantial computational inefficiencies that
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limit its scalability and practical applicability.

One of the main sources of inefficiency in NOTEARS lies in the way it enforces

the acyclicity constraint, which ensures the resulting graph has no loops. Instead of

relying on simple structural checks, NOTEARS expresses this constraint using com-

plex matrix operations that must be evaluated repeatedly throughout the optimization

process. These operations become increasingly expensive as the number of variables

grows, leading to long runtimes and high memory usage even on powerful hardware.

This makes the method well-suited only for relatively small or medium-sized datasets,

while larger systems quickly become computationally infeasible.

Furthermore, the optimization procedure used by NOTEARS is non-convex and

requires multiple rounds of iterative updates to converge. Each round involves several

inner optimization steps, and convergence can be slow or unstable depending on the

initial conditions and tuning parameters. The mathematical precision of the method

comes at the cost of computational practicality, often requiring considerable time and

manual adjustment to produce reliable results. Despite these limitations, research in-

terest in causal discovery has remained strong, leading to the development of various

models aimed at improving computational efficiency, a line of research commonly re-

ferred to as efficient structure learning.

Efficient Structure Learning (ESL) is a sub-field of Causal Discovery that focuses

on recovering the underlying causal relationships between variables in a dataset in an

efficient manner. As the name implies, all of the approaches in this category are com-

putational methods that can handle datasets of various sizes and complexities within

a reasonable time frame. In the past, there have been different ways to obtain the

causal structure of data, such as score-based and constraint-based methods, hybrid

algorithms, and continuous optimization. ESL is considered to be a super-set of all

the aforementioned approaches, aiming to improve their computational complexity and

optimization techniques, resulting in more efficient causal structure learning. The com-

plexity of the approaches varies, with some methods relying on a set of predefined rules,

while others utilizing sophisticated machine learning models trained through parameter

optimization. This distinction divides the efforts in efficient structure learning into two
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directions. One direction focuses on optimizing the algorithms used to construct the

Bayesian Network (underlying structure) of the data [162], [188], [189], by reformulating

their individual components or modifying their sequence of steps. The other direction

involves developing novel theoretical frameworks [48], [49], [190] for continuous opti-

mization models, which enable faster learning of the connections between variables in

a dataset. The frameworks under this category are designed to improve the computa-

tional complexity of machine learning models trained using the augmented Lagrangian

(cornerstone of the NOTEARS approach). Such models have cubic complexity O(d3),

due to evaluating a matrix exponential of A ∈ Rd×d, where d is the data variable

size, involved in the computation of the acyclicity penalty h(A) at each augmented

Lagrangian step. Regardless of whether ESL is applied to an existing algorithm or

serves as the foundation for a new approach, it always leads to shorter running times.

The importance of efficiency in structure learning cannot be overstated when work-

ing with large or complex datasets, as it can have a substantial effect on the compu-

tational time required to obtain results. Specifically, most such methodologies have

emerged as a response to the computational bottlenecks found in NOTEARS, seek-

ing to preserve theoretical soundness while enhancing its scalability and convergence

properties. Various extensions and adaptations, such as sparsity-aware optimization,

low-rank approximations, stochastic gradient updates, and distributed or parallelized

computation, have been proposed to accelerate the structure learning process. More-

over, several ESL variants relax or approximate the acyclicity constraint introduced

in NOTEARS, reducing computational overhead without significantly compromising

the accuracy of the learned causal graph in the process. By substantially lowering the

computational costs of model training, these developments enhance the scalability of

differentiable causal discovery, allowing its deployment in big-data environments and

integration in real-world applications.

In essence, the pursuit of efficiency within the NOTEARS framework transcends

mere algorithmic refinement, constituting a fundamental prerequisite for the widespread

applicability of causal discovery in real-world, data-intensive contexts. By facilitat-

ing scalable and computationally tractable inference of causal structures from high-
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dimensional observational data, Efficient Structure Learning methodologies effectively

broaden the practical and theoretical scope of the NOTEARS-based continuous opti-

mization approach. This, in turn, enables the construction of interpretable and gener-

alizable models capable of informing data-driven decision-making, improving predictive

accuracy, and advancing scientific understanding across a diverse range of disciplines.

As a result, this specific approach to Causal Structure Learning is an intriguing and

important area of research. The author contributes to ESL by conducting an efficiency

study in the context of the NOTEARS framework, resulting in a significant decrease in

computational complexity and training time - more details are provided in Chapter 4.

2.3.3 Causal structure learning under the PNL assumption

Identification and interpretation of the causal dependencies expressed in a dataset are

crucial aspects of data analysis, which can lead to significant scientific breakthroughs

and an increase in related research. Although both play a role in causal studies, it is

important to distinguish between them, as they focus on different areas of causality.

More specifically, the technique utilized to discover unique cause-and-effect relation-

ships is called causal structure learning, while causal inference focuses on understanding

and explaining the nature of causal relations between variables. These two processes

have to be executed sequentially, since to infer causal effects from a dataset one must

have knowledge of its interdependencies. The author contributes to causal discovery

by investigating the application of the post-nonlinear (PNL) model in learning sparse

non-parametric structures from tabular data.

In causal structure learning, randomized control trials are still considered the gold

standard for identifying dependencies in data. Such experiments involve manipulation

through interventions to reduce confounding factors, facilitating the isolation of specific

variable effects on a dataset. Unfortunately, tests of this nature are often impractical

or even impossible due to ethical, technical or resource constraints. Addressing this

issue has resulted in an increasing demand for uncontrolled causal studies. As a result,

it is essential to create frameworks that can extract causal relationships from passive

observational data.
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Over the past few decades, various methods for observational causal discovery have

been developed across numerous scientific fields, including bioinformatics [191], [192],

[193], economics [194], biology [195], [196], climate science [197], [198], and social sci-

ences [199]. Many of these studies are based on independence-based algorithms such as

PC [28], FCI [29], and RFCI [135] or discrete score-based approaches like GES [146],

GES-mod [147], and GIES [84]. In addition, continuous optimization techniques, in-

cluding NOTEARS [12], DAG-GNN [35], GraN-DAG [36] and DAG-WGAN [75] are

also widely used. These methodologies for causal structure learning have undergone

rigorous testing, with substantial empirical evidence demonstrating their ability to gen-

erate meaningful graphical representations of dependencies within datasets. However,

strong performance does not guarantee the structure identifiability (see Definition 1)

of causal models. Under such circumstances, multiple directed acyclic graphs can be

used to define the same probability distribution, making it impossible to determine its

true causal structure.

The inability to correctly identify the ground truth graph of a dataset can have sig-

nificant consequences. For instance, conducting data analysis with misidentified causal

relationships can infer incorrect conclusions about cause and effect. This can lead to

various limitations, such as suboptimal decision-making, bias in estimation and inac-

curate predictions, just to name a few. To mitigate the impact of these drawbacks, ob-

servational studies often assume Structural Causal Models (SCM), parameterized with

various equations, to guarantee a unique causal graph can be recovered from a given

probability distribution [200]. At present, there are numerous works applying different

(mostly) identifiable models to discover causality from observational data. Standout ex-

amples include the well-researched linear non-Gaussian acyclic model (LiNGAM) [31],

the additive noise model (ANM) [98], which accommodates for limited non-linearity

by applying transformations to data variables but assuming the dependencies between

them are additive, and the post-nonlinear model (PNL) [32], which is suited for explor-

ing complex non-linear relationships. All of these models have been utilized in both

bivariate and multivariate causal structure learning.

Among the previously mentioned SCM, the PNL accounts for both nonlinearities
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and distortions when describing how cause(s) influences effect(s) [201]. As a result,

it is considered to be a generalization of less complex models, such as LiNGAM and

ANM, capable of capturing causal dependencies exhibited in real-world evidence data.

Mathematically, the post-nonlinear model can be expressed as follows:

X̃ := gj(fj(Paj) + Zj), ∀j,Zj ⊥⊥ fj(Paj), (2.10)

where Paj denotes the parent(s) of the jth data variable and Z represents a noise

vector independent of Paj . Additionally, the formulation of equation (2.10) indicates

that the post-nonlinear model is defined by two functions: 1) an initial function fj

applying nonlinearity to the parent data variables, with subsequent noise being added

to all of the transformations; and 2) an invertible (possibly nonlinear) function gj

applying an additional layer of transformations to the result. Despite the PNL model

being among the most realistic SCM for representing causal mechanisms in real-world

data distributions, it has received less attention than other identifiable models due to

difficulties associated with its post-nonlinearity and invertibility constraints.

Several methods have been proposed to explore causal structure learning based on

the post-nonlinear assumption. Examples of such models include AbPNL [202], which

utilizes an autoencoder architecture to simultaneously learn a function and its inverse

by minimizing a combination of independence and reconstruction losses. This is a gen-

eral approach which applies PNL to causal discovery in both bivariate and multivariate

settings. Another similar method, DeepPNL [203] uses multilayer perceptrons to learn

both functions associated with the PNL model. Meanwhile, CAF-PoNo [175] inves-

tigates the application of normalizing flows to optimize the invertibility constraint of

post-nonlinear SCM. Rank-PNL [204] introduces a rank-based approach to estimate

the invertible function of the structural causal model. Most recently developed, MC-

PNL [176] focuses on achieving efficient structure learning under the PNL assumption

by modeling non-linear causal relationships using a novel objective function and block

coordinate descent optimization. Despite the latest advances in PNL estimation, learn-

ing cause-and-effect relationships with this identifiable causal model remains an ongoing

research effort. The author contributes to PNL-based causal discovery by expanding
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upon the already exceptional functionality of DAG-Notears-MLP (described in Section

2.4.3) to incorporate structure learning under the PNL causal model assumption - see

Chapter 5 for more information.

2.3.4 Impact of Structural Model Assumptive Complexity on Causal

Discovery

Currently, most state-of-the-art methods for causal discovery rely on the application

of a single identifiable causal model to extract dependencies from observational data.

However, this approach introduces a significant limitation, as such causal structure

learning algorithms cannot verify whether the chosen model accurately represents the

true structure of the dataset. Addressing this issue is crucial because misidentifying

causal relationships can lead to flawed data analysis, which introduces the problems

mentioned earlier in this section.

Assuming multiple structural causal models (SCM) instead of a single one in causal

discovery from observational data offers significant advantages in terms of identifia-

bility, robustness, and generality. Under a single-SCM framework, causal discovery

is inherently nondeterministic, as a DAG may yield identifiable causal mechanisms,

but cannot guarantee the best possible description of the underlying structure of the

observational distribution. By contrast, a multi-SCM approach, where distinct causal

models represent different semi-parametric assumption sets, introduces distributional

variation that can help disentangle genuine causal effects from spurious correlations.

This allows researchers to identify invariant causal mechanisms that remain stable even

when aspects of the data-generating process change. Furthermore, leveraging multi-

ple SCM mitigates sensitivity to violations of crucial assumptions such as faithfulness,

causal sufficiency, or absence of confounding, which may not universally hold in real-

world data. As a result, such a framework enhances both the robustness and external

validity of inferred causal structures, yielding inferences that are more resilient to model

specification and more reflective of the underlying generative mechanisms defining the

input observational distribution.

Unlike many approaches that limit the discovery of causality to a single model,
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the author can apply their novel methodology (see Chapter 5) to perform structure

learning under multiple semi-parametric assumptions. As a result, given any dataset,

the author can experimentally identify the most suitable structural causal model for

modeling interdependencies in observational data.

2.3.5 Application of causal discovery in tabular data synthesis

Tabular data stands out as one of the most widespread mechanisms for representing

raw information in an organized manner. Its versatile structure facilitates the repre-

sentation of features in a variety of formats (continuous, discrete and mixed), making

it well-suited for analysis and interpretation. As a result, tabular data plays a pivotal

role in extracting insights, essential for informing the decision-making process in fields

such as medicine [205], finance [206] and business [207]. However, tabular datasets may

sometimes be incomplete, leading to limited availability and poor quality. This weak-

ness raises concerns about the validity of any inferences drawn from such data [208].

Historically, efforts have been made to mitigate the adverse effects of sparse tab-

ular data by synthesizing additional samples modeled using deep neural networks.

This approach, known as data generation, employs (deep) generative model optimiza-

tion [53], [52], [51], aiming to establish an implicit probability distribution that matches

the original distribution through end-to-end training. The majority of frameworks for

generating tabular data fall under the following two categories [209]: 1) synthesis,

which aims to create samples resembling real data (fidelity), while ensuring that the

distribution of the generated data covers the original distribution as comprehensively

as possible (diversity); and 2) imputation, which involves generating samples without

missing values based on incomplete input data. The author extends the research con-

ducted in tabular data synthesis by exploring the concept of causal awareness in Deep

Generative Models (DGM).

Currently, a considerable volume of scientific literature discusses the synthesis of

tabular data using DGM, categorizing all models utilized in this field into traditional

and causal-based approaches. The former relies on statistical patterns and correlations

to predict new samples closely resembling the input data. Meanwhile, the latter sim-

50



Chapter 2. Literature Review

ulates the generation process of the original dataset by learning the underlying causal

relationships between its variables. Both methodologies have yielded promising re-

sults. In the past, works such as MedGAN [210] and CorGAN [211] have demonstrated

impressive efficacy in handling Electronic Health Records (EHR) [212] with heteroge-

neous data types (continuous, discrete and mixed). Furthermore, PATE-GAN [213]

focused on addressing privacy concerns related to medical data generation. CTGAN

and TVAE proposed by [214] employ a conditional generator to mitigate the limitations

of mode collapse and class imbalance. Other models [215], [216] extend the functional-

ity of CTGAN by incorporating a Neural Ordinary Differential Equation (NODE) [217]

structure to produce fair synthetic samples at the cost of computational complexity.

The outputs of the aforementioned models have undergone rigorous statistical analysis,

proving their sufficiency for application in classification and regression problems. How-

ever, understanding and interpreting the mechanisms necessary to produce them is a

challenging task for people. This lack of explainability presents a significant limitation,

raising questions regarding the reliability of the results generated by deep generative

models.

Recently, traditional DGM have experienced an improvement in tabular data gen-

eration capabilities by leveraging causal inference. Early research into causality [94]

suggests at its significance in producing realistic samples by learning the relationships

between variables and facilitating the description of their causal dependencies. More

specifically, in the context of generative modeling, preserving causation rather than

merely modeling correlations provides a principled foundation for generating data that

reflects the true underlying mechanisms of its probability distribution, rather than re-

producing superficial statistical patterns. Traditional generative models often capture

correlational structures without understanding why variables relate, leading to poor

generalization under distributional changes. On the other hand, causally-aware gen-

erative models explicitly represent the direction and structure of dependencies among

variables, allowing for interpretable, modular, and interventionally consistent data gen-

eration. This novel causal paradigm enables counterfactual reasoning, supports robust

simulation of unseen scenarios, and enhances transferability across domains. There-
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fore, preserving causation in generative modeling yields models that are not only more

explainable and reliable but also capable of synthesizing data that faithfully replicates

the real-world processes from which it arises.

Several causality-based DGM, such as DECAF [218], TabFairGAN [219] and Causal-

TGAN [220], have produced tabular datasets by employing this novel methodology.

CausalGAN [171] and CausalVAE [170] incorporate causal dependencies into label

generation, yielding high-quality images. Alternatively, GCNN [73], DAG-GNN [35],

DEAR [164], and DiffAN [221] prioritize causal discovery, producing accurate structures

at the cost of data quality and sparsity.

Unfortunately, both the causal structure learning and the tabular data synthe-

sis approaches face challenges in their sample generation techniques. In the case of

DAG-GNN, DEAR and DiffAN, incorporating Mean Squared Error (MSE) or its vari-

ations (e.g. NLL) produces over-simplified latent representations, resulting in latent

collapse during sampling. On the other hand, models such as Causal-TGAN, DECAF,

CausalGAN and GCNN assume a known or externally learned causal representation to

produce synthetic samples. Working with real-world data makes such sampling proce-

dures unreasonable as they require prior knowledge of the underlying causal structure

or the application of independent algorithms to identify the causality within datasets

and assess its accuracy before utilizing it for tabular data synthesis.

Recent progress in generative modeling, including Digital Twins and transformer-

based multi-attention networks [222], offers novel methodologies to capture complex

data relationships. Digital Twin models focus on creating virtual representations of

real-world systems, making them particularly useful for generating synthetic data.

Similarly, attention-based architectures, such as multi-attention networks, dynamically

assess and prioritize dependencies between variables. As generative models become

increasingly popular, integrating them with causal structure learning within a unified

framework holds great promise for producing more accurate and interpretable data

while preserving underlying causal structures [223].

The author resolves the issues with causal discovery and tabular data synthesis by

performing the two processes simultaneously using transfer learning to convey informa-
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tion between multiple deep neural network instances - further elaboration is provided

in Chapter 5.

2.4 Relevant Preceding Frameworks

This section provides a brief overview of models closely related to the research described

in this thesis. These methods have been compared to other benchmark approaches in

the field, such as NOTEARS [12] and GraN-DAG [36], using the Structural Hamming

Distance (SHD) metric and have demonstrated capability to produce good results. In

particular, the following algorithms are explained: DAG-GNN [35], DAG-NoCurl [48]

and DAG-Notears-MLP [38].

2.4.1 DAG-GNN

DAG-GNN [35] is a continuous optimization score-based model for causal structure

learning that combines a variational autoencoder and graph neural networks. This novel

approach extends the capabilities of NOTEARS by handling both linear and non-linear,

continuous and discrete data. The model uses an explicit weighted adjacency matrix A

as a learnable parameter and causal structure learning is achieved by minimizing the

Evidence Lower BOund (ELBO) [61].

DAG-GNN consists of two models encoder Enc and decoder Dec each instantiated

by shallow neural networks. Both modules can be denoted as

Enc ≡ Z = F4((I −AT )F3(X))

Dec ≡ X̃ = F2((I −AT )−1F1(Z)),
(2.11)

where {F3,F4} and {F1,F2} are the MLPs for the encoder and decoder respectively. In

addition, the authors of this model have improved upon the acyclicity constraint of the

NOTEARS model making it more efficient, but at the cost of numerical stability. The

formulation of their constraint can be expressed as tr[(I + αA ◦A)d] − d = 0, where

d represents the number of nodes in the graph, α is a hyper-parameter, ◦ denotes
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the Hadamard product of matrices, A represents the weighted adjacency matrix, tr

is the trace exponential and I denotes the identity matrix. Essentially, the acyclicity

constraint is a trace exponential that counts the number of cycles detected in the

learned graph. Its purpose is to progressively restrict the search space of the graph

until the trace yields 0, indicating the absence of cycles and ensuring that the output is

a DAG. Moreover, despite its simple architecture, the algorithm is more sophisticated

compared to NOTEARS. To ensure proper optimization of the score function and

the acyclicity constraint, the authors treat the training of the model as a constrained

continuous optimization problem, which can be solved using an augmented Lagrangian

approach [47].

2.4.2 DAG-NoCurl

DAG-NoCurl [48] is an efficient structure learning framework based on the application

of graph Hodge theory [224] and Helmholtz-Hodge Decomposition [225]; [226]; [227]

in a causal discovery setting. According to theory, a DAG consists of a harmonic, a

divergence-free, and a curl-free component, which represents an acyclic graph. Based

on this knowledge, the authors of DAG-NoCurl developed their own theorem, enabling

the mapping between weighted adjacency matrices and curl-free components. This

means that a recovered graph from this method will have directionality due to its

weighted adjacency matrix and acyclicity due to its curl-free component. This leads to

the first contribution of DAG-NoCurl, which is an alternative formulation of the DAG

search space capable of supporting causal discovery without the use of an augmented

Lagrangian. For a more detailed analysis, please refer to [48] however, in short, their

Theorem 2.1 proves that both DAG search spaces are equivalent.

The second contribution of this work involves the development of a model that can

navigate the equivalent DAG search space and recover graphs from it. To accomplish

this, the resulting DAG learning algorithm allows a weighted adjacency matrix A to be

represented as the Hadamard product of a skew-symmetric matrix W and the gradient

of a potential function on graph vertices grad(p). By learning this new representation

of A, optimization can be performed directly in the DAG space, eliminating the need
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for explicit acyclicity constraints and the expensive computation of the augmented

Lagrangian. The new model consists of three steps: 1) computing an initial prediction

Apre, 2) projecting the initial prediction into the equivalent DAG search space, and 3)

obtaining a final DAG A∗ = W ◦ReLU(grad(p)).

In order to obtain an initial prediction Apre, the authors solve an unconstrained

continuous optimization problem F (A,X) s.t λh(A) = 0, where, h(A) represents the

explicit acyclicity constraint applied to the weighted adjacency matrix A, and λ de-

notes the Lagrangian multiplier, which is set to 10 based on empirical evidence from

the hyper-parameter study conducted by the authors. The applied acyclicity constraint

is from [35], as it offers faster computation. However, the original constraint proposed

by [12] can also be employed. Afterward, the initial prediction is subjected to a thresh-

olding process, with a value of 0.3 being used.

In the second step, the authors project the equivalent representation of Apre into

the new DAG search space. This is achieved by computing the topological ordering p of

the initial prediction and using Apre and p to obtain W ◦ReLU(grad(p)). The projec-

tion step of DAG-NoCurl allows the direct recovery of A∗ from the DAG search space,

without the need for acyclicity constraints. To accomplish this, the authors only opti-

mize W and use a fixed value for p when solving the second unconstrained continuous

optimization problem. By keeping p constant, the causal structure remains unchanged,

and solving for W refines the strength of the connections within W ◦ ReLU(grad(p)).

This guarantees that the output will be a DAG, but it does not ensure that the distance

between the output and the ground truth is minimized, which is a limitation of the

approach.

2.4.3 DAG-Notears-MLP

DAG-Notears-MLP [38] is another extension of the original NOTEARS model devel-

oped by its authors. It is an updated and more generalized version of its predecessor,

commonly referred to in the causal structure learning community as NOTEARS+ [185].

The main contributions of this framework lie in its architecture, which includes a new

acyclicity constraint and a novel approach to learning weighted adjacency matrices
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implicitly. The model is a neural network that consists of an input layer L0 and a

sequence of dynamically instantiated locally connected layers L = {α(L1), ..., α(Ld)},

where d denotes the number of layers and α is the activation function (e.g. ReLU)

applying nonlinearity to each layer. The model is trained using stochastic gradient

descent optimization [228], a popular algorithm for learning neural networks. The

acyclicity constraint is imposed during training, and the implicit weighted adjacency

matrix W ∈ Rd×d is obtained from the L0 layer of the Multi-Layer Perceptron (MLP).

Since the model learns the causal graph implicitly, the acyclicity constraints men-

tioned earlier [12], [35] cannot be applied. To address this issue, the authors of DAG-

Notears-MLP propose a new constraint based on partial derivatives [229], which is

defined as follows

h(W (f)) = 0, [W (j)]kj := ||∂kfj ||2. (2.12)

In equation (2.12), W is the weighted adjacency matrix, ∂k is the partial derivative

of fj with respect to the kth variable and ||.||2 is the Ridge Regression norm. Fur-

thermore, the authors investigate the generalization of the model by incorporating

non-parametric assumptions. Under such settings, the model assumes the general form

of E[Xj |XPaj ] := EZ(fj(X,Z)), which encompasses a variety of SCM including ad-

ditive noise models, index models, generalized linear models and others. Elaboration

on how DAG-Notears-MLP performs causal structure learning in each of these cases is

provided in their paper [38].

The model has demonstrated an ability to produce good results against other leading

models in the field. However, it uses the Mean Squared Error (MSE) loss function as the

basis for its parameter optimization process. As a result, DAG-Notears-MLP inherits

the limitations of MLE-based approaches in causal discovery, leading to inaccuracies

in structure learning with increase in data variable size or introduction of noisy input

data.
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Adversarial Variational Inference

for Causal Discovery

This chapter presents the development of a model that investigates the impact of

Wasserstein generative adversarial training on Variational Autoencoder (VAE) archi-

tectures within the domain of causal structure learning. Its sections focus on the com-

bination of GAN and VAE for causal structure learning, while also documenting the

outcomes, strengths, and limitations of this approach. This description is followed-up

by a brief discussion regarding potential enhancements to the base model such as Dis-

entangled Representation Learning (DRL) and Efficient Structure Learning (ESL). The

content explored in this chapter has been previously published, and the publications of

the author can be found in Section 1.7.

3.1 Background Knowledge

As mentioned in Section 2.1.2, the process of discovering causal relationships involves

learning the components of a Bayesian Network (BN) [90]. Given a set of observational

samples X = {X1, ...,Xn} and latent variables (i.e. hidden) Z = {Z1, ..., ZN}, it

is theoretically possible to obtain the correct values for the building blocks of BN

by directly applying Bayes’s theorem [230] to compute the true posterior distribution

P (Z|X):
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P (Z|X) =
P (X|Z)P (Z)

P (X)
(3.1)

Unfortunately, the computation of P (Z|X) using (3.1) is generally intractable, which

is why researchers use an approximate solution known as a variational distribution

Q(Z|X) ≈ P (Z|X). This approach, called variational inference, provides a practical

solution for obtaining a posterior distribution and forms the theoretical foundation for

VAE-based models.

Bayesian Networks (BN) can be instantiated through Variational Autoencoders.

However, it is important to note that VAE are built on artificial neural networks, which

have some differences compared to probabilistic graphical models. The key distinction

lies in the assignment of content to the weights. In Bayesian Networks, weights are

initialized using probability distributions, while in basic neural networks, each weight

is assigned a scalar value. By applying variational inference to a Bayesian network, the

focus is on directly modeling probability distributions rather than optimizing individual

weight values. This approach leads to the development of various models based on

variational Bayes that are capable of learning the structure of BN.

The application of Variational Autoencoders (VAE) in the domain of causal struc-

ture learning represents a significant advancement in research. Their importance is

second only to the development of the DAG-NOTEARS framework [12], which al-

lows for causal discovery using black-box models. Nevertheless, variational inference

was used to facilitate numerous observational studies. In fact, one of the first ma-

chine learning models capable of extracting causal relationships from data is known as

DAG-GNN [35]. This approach is based on the VAE architecture and has the ability to

handle different types of data, such as continuous, vector and discrete (see Section 2.4.1

for more details). Other models that utilize variational Bayes include Graphite [163],

which can handle high-dimensional data, Disentangled gEnerative cAusal Represen-

tation Learning (DEAR) [164], which works with image data and a known ground

truth graph to perform supervised causal structure recovery, Amortized Causal Dis-

covery (ACD) [231], which discovers causality from time-series data, V-CDN [173],

which recovers causal structures from video formats, Causal Variational Autoencoder
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(CausalVAE) [170], which is a nonlinear extension of NOTEARS capable of working

with tabular data, Imputated Causal Learning (ICL) [232], which handles missing data

to learn causal relationships, and VI-DP-DAG [49], which is a causal structure learn-

ing model that efficiently discovers causal graphs using the VAE architecture. The

models mentioned above serve as evidence for the popularity of variational inference in

causal structure learning. Despite their numerous contributions, there are still many

unexplored potential applications of VAE in causality learning.

Unfortunately, as previously mentioned in Section 2.3.1, traditional MLE-based

generative modeling approaches with latent variables (including the VAE framework)

possess inherit limitations stemming from their focus on individual data point opti-

mization. In contrast, incorporating the Wasserstein distance as a regularizer refocuses

the learning objective from aligning specific data points to minimizing the distance be-

tween entire data distributions. This shift enables the capture of the global geometry

and richer statistical characteristics of the data, such as variance, skewness, and mul-

timodality, facilitating a more faithful emulation of the underlying causal mechanisms.

Building on this foundation enables the development of hybrid models, which leverage

adversarial training and a reconstruction process to minimize distributional discrepan-

cies between real and generated data, and recover accurate causal relationships. This

advancement marks an exciting and promising research direction in causal structure

learning, particularly through the exploration of VAE-GAN architectures for causal

discovery.

3.2 Causality learning with hybrid generative modeling

The objective of the study is to explore the influence of the Wasserstein distance on

variational inference in the context of causal discovery. The research aims to demon-

strate the practical significance of this metric by providing empirical support for the hy-

pothesis: ”Will incorporating Wasserstein-1 lead to improved causal recovery through a

generative adversarial framework that is trained to synthesize realistic data samples?”.

To achieve this goal, the author has developed a novel hybrid generative modeling
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framework called DAG-WGAN [75], which is based on the VAE-GAN architecture [62].

The model proposed in this study combines a variational autoencoder and a WGAN-

GP architecture. It achieves this by utilizing an encoder-decoder pair for causal dis-

covery and a critic to calculate the Wasserstein distance between the output of the

decoder and the input data. To ensure that the recovered causality does not include

any cycles, the author incorporates the explicit acyclicity constraint from [35]. The

algorithm learns to explicitly model the cause and effect between variables while syn-

thesizing data samples based on recovered causal structures and parameter optimization

through end-to-end training.

Extensive testing has been conducted on the model, comparing it to the current

state-of-the-art. The experimental results indicate that DAG-WGAN outperforms

other models by a significant margin, when dealing with large data variable sizes.

In particular, when data attributes have a high cardinality, the causal graphs learned

using DAG-WGAN are more accurate than those produced by other models. Addition-

ally, the generated data samples from DAG-WGAN are less noisy and more realistic

compared to samples from other data-generating models. The capabilities of the model

have been demonstrated on various data types, including linear, non-linear, continu-

ous, and discrete. Furthermore, the method has been tested using data produced from

multiple Structural Equation Models (SEM) [233], namely instances of Additive Noise

Models (ANM) and Post-Nonlinear Models (PNL). The experimental results suggest

that incorporating the Wasserstein distance metric supports causal discovery in the

data generative process when working with observational samples produced by apply-

ing different SEM assumptions.

Compared to other models in the field, DAG-WGAN has the following advantages:

• Realistic causal structure learning and data generation - The model simul-

taneously performs causal structure learning and data generation to synthesize

realistic samples with preserved causality.

• Multiple data types - The model is an extension of the original NOTEARS

framework capable of working with a variety of data types.

60



Chapter 3. Adversarial Variational Inference for Causal Discovery

• Multiple structural equation models - DAG-WGAN can work with obser-

vational data synthesized using instances of additive noise and post-nonlienar

models.

3.2.1 Model Architecture & Training

This section provides a detailed explanation of the inner workings of DAG-WGAN,

focusing on its architecture and training algorithm. The proposed model combines

a Variational Autoencoder (VAE) and a Wasserstein Generative Adversarial Network

with Gradient Penalty (WGAN-GP). Additionally, the framework incorporates causal

discovery by introducing an explicit weighted adjacency matrix A as a learnable param-

eter and an acyclicity constraint. For a visual representation of the model architecture,

please refer to Figure 3.1. In essence, the model comprises three neural networks that

collaborate to recover causal structures and synthesize data samples: 1) an encoder

computes the latent representations of the input data; 2) a decoder reconstructs new

data samples from the latent representations generated by the encoder; 3) a discrimina-

tor ensures that the new data samples are realistic by minimizing the distance between

the output of the decoder and the input data.

The decoder plays a crucial role in connecting the other two components of the

model. Firstly, it collaborates with the encoder in the variational autoencoder ar-

chitecture to recover causal structures from observations. Secondly, the decoder also

works alongside the discriminator in the WGAN-GP component to generate realistic

data samples. This connection between the encoder, decoder, and discriminator is also

evident in the training process of DAG-WGAN. The encoder and discriminator are

trained using reconstruction and adversarial loss, respectively, while the decoder pa-

rameters are optimized using both loss terms. The motivation behind the formulation

of this hybrid generative modeling framework is the successful application of VAE-GAN

to capture data and feature representations more effectively [62]. DAG-WGAN extends

the capabilities of NOTEARS by incorporating multiple data types (e.g., continuous

and categorical) and structural equation models (i.e., Additive Noise Models (ANM)

and Post-Nonlinear Models (PNL)). For more detailed information, see Section 3.2.3.
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Figure 3.1: DAG-WGAN employs a hybrid architecture composed of two primary com-
ponents: (1) a Variational AutoEncoder (VAE) and (2) a Wasserstein Generative Ad-
versarial Network with Gradient Penalty (WGAN-GP). The VAE component follows
the structure of the DAG-GNN model. Therefore, the key distinction between DAG-
WGAN and DAG-GNN is the integration of the additional WGAN-GP architecture,
which is implemented through the Discriminator module.

Variational Autoencoder architecture

Variational autoencoders consist of a pair of interconnected networks, namely an en-

coder and a decoder. In the default scenario, the encoder Enc takes input X and

generates a latent variable Z by learning a variational posterior Qϕ(Z|X). On the

other hand, the decoder Dec computes a conditional likelihood distribution Pθ(X|Z),

which is utilized to generate reconstructed samples X̃. The following mathematical

representation captures the aforementioned processes:

Enc ≡ EX∼P (X)[Qϕ(Z|X)]⇒ Z Dec ≡ EZ∼Qϕ(Z|X)[Pθ(X|Z)]⇒ X̃, (3.2)

where ϕ and θ are the model parameters of Enc and Dec respectively. Moreover, the

latent representation Z undergoes regularization to reduce over-fitting, ensuring the

latent space contains meaningful information.

DAG-WGAN facilitates the causal structure learning process by assuming structural

equations for both Enc and Dec architectures. This allows the encoding of causality

in the latent representations that are utilized to reconstruct the data. In order to

accomplish the simultaneous recovery of causality and generation of data, the author
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modifies (3.2) as follows:

Enc ≡ Z = EX∼P (X)[Qϕ(Z|F4((I −AT )F3(X)))]

Dec ≡ X̃ = EZ∼Qϕ(Z|F4((I−AT )F3(X)))[Pθ(X|F2((I −AT )−1F1(Z)))], (3.3)

where (I −AT ) and (I −AT )−1 are the structural equations for the encoder and the

decoder, respectively. X ∈ Rn×d represents observational samples from the distribution

P (X), while Z ∈ RN×d is a latent variable obtained from the distribution Qϕ(Z|F4((I−

AT )F3(X))). The reconstructed data, denoted as X̃ ∈ Rn×d, is sampled from the

distribution Pθ(X|F2((I−AT )−1F1(Z))). The matrix A ∈ Rd×d is an explicitly defined

weighted adjacency matrix, with each node corresponding to a variable in X. The

functions F1 to F4 are parameterized and used to apply (non)linear transformations

on Z and X. The architecture is designed in a way that the components in the decoder

(Dec) can invert the operations performed by the components in the encoder (Enc).

WGAN-GP architecture

WGAN-GP are a type of generative model that utilize the Wasserstein distance metric.

These models consist of two networks, a discriminator D and a generator G, which

compete against each other to generate realistic data samples. DAG-WGAN deviates

from the standard WGAN-GP model by incorporating the decoder from the Variational

Autoencoder (VAE) architecture as the generator. Additionally, a critic is employed to

calculate the adversarial loss with its gradient penalty. The design of discriminator is

based on the PacGAN framework [234] and aims to address the issue of mode collapse.

The architecture of D can be described as follows:

X̂ = MLP (X̃,X, leaky −ReLU,Dropout,GP, pac), (3.4)

where X̃ is the reconstructed data and X are observational data samples. Leaky-ReLU

is the activation function for the model with its negative slope set to 0.01. Dropout [235]

is set to 0.5, which accounts for stability and prevents over-fitting. GP is the gradient
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penalty term used in the standard WGAN-GP [116] configuration. Pac is a concept

related to PacGAN [234] designed to dampen the effect of mode collapse when working

with discrete data.

Training algorithm

The architecture of the variational autoencoder is trained by merging two components,

which are the reconstruction and regularization loss, as explained in (2.3). The approxi-

mation of the first component is computed using the Gaussian Negative Log-Likelihood

(GNLL) [236].

L(X, X̃) = EZ∼Qϕ(Z|F4((I−AT )F3(X)))[logPθ(X|F2((I −AT )−1F1(Z)))]

≈ −1

2

[
(X̃− µ(X))2

σ(X)2
+ log σ(X)2

]
(3.5)

The second term, referred to as KL-Divergence, helps prevent overfitting and ensures

meaningful information is encoded in the latent space.

regularizer = EX∼P (X)[DKL(Qϕ(Z|F4((I −AT )F3(X)))||P (Z))]

≈ −1

2

[
log σ(Z)2 −

(
µ(Z)2 − σ(Z)2

)
+ 1
] (3.6)

In both (3.5) and (3.6), µ denotes the mean and σ is the standard deviation. Together

the two terms form the objective function for training the VAE component of DAG-

WGAN:

Rloss(X, X̃, Z) = −EQϕ(Z|F4((I−AT )F3(X)))[logPθ(X|F2((I −AT )−1F1(Z)))]

+ βEX∼P (X)[DKL(Qϕ(Z|F4((I −AT )F3(X)))||P (Z))]

≈ −

(
−1

2

[
(X̃− µ(X))2

σ(X)2
+ log σ(X)2

])

+ β

(
−1

2

[
log σ(Z)2 −

(
µ(Z)2 − σ(Z)2

)
+ 1
])

,

(3.7)

where β is a hyper-parameter from [237], controlling the influence of the KLD. To

account for discrete data the reconstruction loss term in (3.7) is replaced by Cross-
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Entropy Loss (CEL) [238]:

L(X, X̃) = EZ∼Qϕ(Z|F4((I−AT )F3(X)))[logPθ(X|F2((I −AT )−1F1(Z)))]

≈ −
N∑
c=1

(Xc log(X̃c)),
(3.8)

where N is the number of categories c present within the data.

Meanwhile, the discriminator D and the generator Dec forming the WGAN-GP

architecture are trained via the following adversarial loss term:

Dloss = EX̃∼Pg
[D(X̃)]− EX∼Pr [D(X)]︸ ︷︷ ︸

Critic loss

+λEX̂∼PX̂
[(||∇X̂D(X̂)− 1||)2]︸ ︷︷ ︸

Gradient penalty

Gloss = EZ∼Qϕ(Z|F4((I−AT )F3(X)))[D(Dec(Z))],

(3.9)

where Z is the output of the encoder Enc. The hyper-parameter λ is responsible for

determining the strength of the gradient penalty applied to the Wasserstein distance.

In the context of the DAG-WGAN model, the distribution Pr corresponds to the distri-

bution P (X), while Pg is equivalent to Pθ(X|F2((I −AT )−1F1(Z))). The distribution

PX̂ is obtained by sampling uniformly along a straight line between the real data dis-

tribution Pr and the synthetic data distribution Pg.

Neither minimizing the reconstruction loss nor the adversarial loss guarantees the

absence of cycles in the weighted adjacent matrix A. To ensure that A is acyclic,

it is necessary to include an explicit acyclicity constraint in the objective function of

the model. This constraint, proposed by the author of [35], is expressed as h(A) =

tr[(I + αA ◦ A)d] − d = 0, where tr represents an exponential trace in the DAG

search space, α is a positive hyperparameter, ◦ denotes the Hadamard product [239],

and d is the number of variables in A. The constraint yields a value that represents

the number of cycles found in the recovered graph. Through augmented Lagrangian

optimization [47], this constraint can be minimized until the value reaches 0, indicating

that the recovered graph is a DAG.

DAG-WGAN is trained through the following loss function.
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Rloss(X, X̃, Z) = −EZ∼Qϕ(Z|F4((I−AT )F3(X)))[logPθ(X|F2((I −AT )−1F1(Z)))]︸ ︷︷ ︸
Reconstruction loss

+ βEX∼P (X)[DKL(Qϕ(Z|F4((I −AT )F3(X)))||P (Z))]︸ ︷︷ ︸
Regularization term

Dloss = EX̃∼Pg
[D(X̃)]− EX∼Pr [D(X)]︸ ︷︷ ︸

Critic loss

+λEX̂∼PX̂
[(||∇X̂D(X̂)− 1||)2]︸ ︷︷ ︸

Gradient penalty

Gloss = −EZ∼Qϕ(Z|F4((I−AT )F3(X)))[D(Dec(Z))]︸ ︷︷ ︸
Generator loss

s.t tr[(I + αA ◦A)d]− d = 0︸ ︷︷ ︸
Acylicity constraint

,

(3.10)

where the approximations of the reconstruction and regularization loss term are used -

see (3.5) and (3.6).

Remark. It is not mandatory to use the acyclicity constraint from [35]. In fact, any

function that can be continuously optimized to yield h(A) = 0 can be applied to the

loss function of DAG-WGAN.

3.2.2 Identifiability analysis

To leverage DAG-WGAN for causal structure learning, it is necessary to determine

if the model is capable of recovering unique DAG from data. This property, known

as structure identifiability (see Definition 1), is associated with every causal discovery

model. Generally, the identifiability of a causal graph is influenced by several factors,

including 1) a set of assumptions, 2) the choice of loss functions, 3) the use of SEM in

the model architecture, and the generation of input data. However, not all combina-

tions of these factors can result in the discovery of unique causal structures, as certain

combinations only allow the identification of a DAG up to its CPDAG superset.

In this section, the author investigates the identifiability of DAG-WGAN by ex-

amining its model architecture and objective function. The identifiability of the VAE

architecture, where causal structure learning is performed, is discussed first. Prior to

this research, there was limited evidence on the exploration of the causal identifiability
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of the DAG-GNN architecture. The theoretical analysis of DAG-WGAN concludes by

providing mathematical intuition on the identifiability of the hybrid loss function in

equation (3.10).

In the meantime, the author also acknowledges the causal sufficiency assumption

as one of the most fragile in structure learning from real-world data. This assumption

states that all common causes of the observed variables are included in the model,

meaning there are no unmeasured confounders. In practice, this is rarely true as many

systems involve hidden variables or latent factors that influence multiple observed vari-

ables (e.g., socio-economic factors in health studies or environmental variables in eco-

nomic data). Violations of causal sufficiency can lead to spurious causal relationships

and incorrect edge orientations in learned causal graphs, which in turn weakens gen-

eralization when applying the model to new settings where these hidden confounders

vary.

The faithfulness assumption is another that tends to break down frequently in

real-world scenarios. It assumes that all observed independencies arise from the under-

lying causal structure rather than from specific parameter values or coincidences. In

complex systems with feedback loops, nonlinear interactions, or finely tuned parame-

ter values, apparent independencies can emerge that are not structurally meaningful.

When faithfulness fails, causal discovery algorithms may miss true edges or incorrectly

infer independencies, leading to unreliable causal models that fail to generalize across

datasets with slightly different parameterizations.

Ultimately, the fragility of causal sufficiency and faithfulness poses the greatest

threat to generalization in real-world data. When these assumptions fail, causal con-

clusions and predictions derived from one context may not transfer to another, empha-

sizing the need for careful model validation, sensitivity analyses, and the integration of

substantive expertise to ensure more reliable and transferable causal insights.

Architecture identifiability

To establish the identifiability of the VAE component in DAG-WGAN, it is necessary

to determine the type of SEM employed in the generative model as specified in equation
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(3.3). The author leverages the understanding that the VAE learns causal structures

by performing (non)linear transformations on a generalized version of linear SEM, as

documented in [35], to derive the identifiability of the architecture.

Lemma 3.2.1. The Structural Equation Model (SEM) used in the decoder architecture

X̃ = Pθ(X|F2((I −AT )−1F1(Z))) belongs to the Additive Noise Model category.

Proof. The proof of lemma 3.2.1 is available in Appendix A.1.

The identifiability of Additive Noise Models has been demonstrated in previous

research. Specifically, [240] proves in their Proposition 30 that these models are iden-

tifiable if the causal mechanisms F = {f1, ..., fd} are three times differentiable, non-

constant, and non-linear in all of their arguments. This implies that the decoder has

the ability to learn unique DAG and thus is identifiable.

Loss function identifiability

The analysis carried out in Section 3.6 of [35] indicates that if functions F1 to F4 are

omitted from the inference and generative model, the architectures Z = (I − AT )X

and X̃ = (I − AT )−1Z would achieve perfect data reconstruction. In this case, the

accuracy of the output data is solely based on the quality of the latent variable Z.

Therefore, to achieve lossless reconstruction of X, the objective function (ELBO) of

the VAE component of DAG-WGAN is simplified to the least squares loss E(Z) =

1
2 ||(I − AT )X||2F , assuming that the standard deviation is not learned and set to a

constant value of 1. This function has been demonstrated to produce accurate and

unique DAG [12] through end-to-end training, thus establishing ELBO as an identifiable

variant of the least square loss.

If VAE alone produce unique causal structures of decent quality, then a sensible

question to ask is What is the contribution of adversarial training to the learning of

causal structures?. To provide an answer, the author develops a mathematical intuition

supported by the empirical evidence in Section 3.2.3.

As mentioned earlier, the VAE theoretically achieves perfect reconstruction of the

input data by removing the functions F1 to F4 from the encoder and decoder architec-
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tures. However, in reality, these functions are still present in the architectures, causing

the decoder to generate an approximation of the actual data distribution P (X̃) ≈ P (X).

The quality of P (X̃) depends on how the model parameters are learned. Therefore,

the distance between P (X) and P (X̃) can be further reduced by incorporating addi-

tional loss terms. In the case of DAG-WGAN, the added loss term to the ELBO is the

Wasserstein distance with a Gradient Penalty.

The Earth Mover distance differs significantly from typical MLE-based loss func-

tions used in causal structure learning. The former aims to minimize the difference

between probability distributions, while the latter focuses on maximizing the similarity

between individual data points. Under the semi-parametric assumption, it becomes

relatively straightforward to discover causality from observational data by applying a

Structural Causal Model (SCM) to reconstruct individual data points. However, prob-

ability distributions do not provide any information about the relationships between

variables in their samples, which makes adversarial causal discovery a challenging task.

However, if a causal graph GA and a probability distribution P (.) are faithful to each

other, they can be considered compatible. In such cases, GA represents the causal

relationships observed in samples of P (.). Thus, in the case of DAG-WGAN, the dis-

tribution of observational data P (X) and the distribution of learned data P (X̃) can be

expressed as follows:

PG0
A

(X) ≡ P (X)

PGA
(X̃) ≡ EP (X)[|det(JX→Z)|Qϕ(Z|F4((I −AT )F3(X)))], (3.11)

where J is the Jacobian matrix [241], det|J | denotes its determinant, Z ∼ Qϕ(Z|F4((I−

AT )F3(X))) and X ∼ P (X).

This alternative definition of P (X) and P (X̃) suggests that minimizing the distance

between PG0
A

(X) and PGA
(X̃) will bring the learned causal graph GA closer to the

ground truth G0
A, which explains the difference in accuracy between DAG-GNN and

DAG-WGAN in the experiments (see Section 3.2.3). Importantly, the rate of improve-
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ment varies depending on the data variable size. For datasets with a small number of

columns, the reconstruction is already almost perfect, leaving little room for further

improvement. Conversely, for high-dimensional data, the reconstruction becomes less

accurate, and the contribution from the adversarial loss increases. This is because

VAE have inherent difficulty in accurately reconstructing large datasets. The hybrid

loss function does not affect the identifiability of GA because the Wasserstein Distance

with Gradient Penalty is applied to PG0
A

(X) and PGA
(X̃), where PGA

(X̃) is the output

of the decoder. This essentially means that the distance between the real data and the

generated data can be described as ||PG0
A

(X)−PGA
(X|F2((I−AT )−1F1(Z)))||, where

GA is already identified. In other words, the adversarial loss only provides further

refinement of GA, resulting in a closer approximation of G0
A. It should be noted that

PGA
(X|F2((I −AT )−1F1(Z))) is still parameterized by θ, but this notation has been

omitted for simplicity.

Moreover, as graphs that are faithful to distributions only describe the relationships

between variables, they do not contribute to the training process of machine learning

models. In the context of DAG-WGAN, this implies that the theoretical results and

convergence guarantees of WGAN-GP are applicable.

Proposition 3.2.2. Given an (un)known ground truth graph G0
A faithful to the obser-

vational data distribution PG0
A

(X), the parameters of the implicitly learned probability

distribution PGA
(X̃) are refined by the following solution D : R→ R

EX̃∼Pg
[D(X̃)]− EX∼Pr [D(X)]︸ ︷︷ ︸

Critic loss

+λEX̂∼PX̂
[(||∇X̂D(X̂)− 1||)2]︸ ︷︷ ︸

Gradient penalty

EZ∼Qϕ(Z|F4((I−AT )F3(X)))[D(Dec(Z))]︸ ︷︷ ︸
Generator loss

,

where both terms are well-defined, differentiable almost everywhere and converge when

PG0
A

(X) = PGA
(X̃).

Proof. The proof of proposition 3.2.2 is available in Appendix A.2.
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3.2.3 Experimental results

The performance of DAG-WGAN is evaluated through a series of experiments against

some of the best models in the field. The approach is compared directly to DAG-GNN

[35] to emphasize the impact of the Wasserstein distance in causal structure learning.

Competing against DAG-GNN is justified because both models are based on the same

VAE architecture, with the difference lying in the inclusion of adversarial training

in DAG-WGAN. Additionally, the author compares their model to DAG-NOTEARS

[12] and DAG-NoCurl [48] to provide more comprehensive evidence of the effect of

Wasserstein-1 on causal discovery.

Experiments have been conducted using different types of data, such as continuous

and categorical. The accuracy of the recovered causality is assessed by calculating the

Structural Hamming Distance (SHD) [105] between the ground truth and the output

graph. Furthermore, the quality of the generated data is evaluated by comparing the

output of DAG-WGAN with data produced by CorGAN [242], and an additional study

has been carried out to determine the effect of causal structures on the generation of

synthetic data samples.

Continuous data

A series of experiments have been conducted to evaluate the performance of DAG-

WGAN in the context of continuous data. These experiments utilized synthetic data

generated from structural equations belonging to known identifiable causal models. The

comparison between the approaches involved in this study, including DAG-GNN [35],

DAG-NoCurl [48], DAG-NOTEARS [12], and DAG-WGAN [75], was based on their

ability to recover causal structures from samples generated using the same underlying

graphs and equations.

The data generation process consists of two main steps. The first step involves

determining the ground truth graph, which is done by generating an Erdos-Renyi

(ER) [243] DAG with an expected node degree of 3. This graph is represented math-

ematically by the weighted adjacency matrix A. In the second step, observational

samples are synthesized using the ground truth graph and a variety of Structural
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Equation Models (SEM). For the linear case, the equation used is X = ATX + Z.

For the nonlinear cases, two equations are used: X = AT cos(X + 1) + Z (non-

linear-1) and X = 2sin(AT (X + 0.5 ∗ 1)) + AT (X + 0.5 ∗ 1) + Z (non-linear-2). The

two non-linear equations were used to evaluate DAG-WGAN and all other models

it was compared against. Furthermore, additional tests have been conducted to as-

sess whether the model architecture can naturally handle the Post Nonlinear Model,

which is considered a superset of the Additive Noise Model. The following SEM

are used in the experiments: X = sinh(AT cos(X + 1) + Z) (post-nonlinear-1) and

X = tanh(2sin(AT (X + 0.5 ∗ 1)) + AT (X + 0.5 ∗ 1) + Z) (post-nonlinear-2). The

selection of these specific structural equations enables more robust model assessment

and a more comprehensive investigation involving DAG-WGAN and DAG-GNN.

The number of samples used in all experiments is 5000 per graph. To assess the

scaling capabilities of DAG-WGAN, tests are conducted with varying graph sizes (i.e.,

10, 20, 50, and 100). To account for the randomness of the generated samples, each

experiment is repeated 5 times per model. For each iteration of a test, the Structural

Hamming Distance (SHD) between the learned graph from a model and the ground

truth graph is measured. The mean SHD is then calculated for each approach and

compared against the average produced from all other methods. Additionally, confi-

dence intervals are used to complement the mean SHD and provide an indication of the

consistency of DAG-WGAN. The results of the continuous experiments can be found

in Tables 3.1, 3.2, 3.3, 3.4, and 3.5.

Table 3.1: Comparisons of DAG-learning Outcomes with Linear Data Samples

Model
SHD (5000 linear samples)

d = 10 d = 20 d = 50 d = 100

DAG-NOTEARS 8.4 ± 7.94 2.6 ± 1.84 25.2 ± 19.82 106.56 ± 56.51
DAG-NoCurl 7.9 ± 7.26 2.5 ± 1.93 24.6 ± 19.43 99.18 ± 55.27
DAG-GNN 6 ± 7.77 3.2 ± 1.6 21.4 ± 14.15 88.8 ± 47.63

DAG-WGAN 2.2 ± 4.4 2 ± 1.1 4.8 ± 4.26 28.20 ± 12.02
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Table 3.2: Comparisons of DAG-learning Outcomes with Non-Linear Data Samples 1

Model
SHD (5000 non-linear-1 samples)

d = 10 d = 20 d = 50 d = 100

DAG-NOTEARS 11.2 ± 4.79 19.3 ± 3.14 53.7 ± 11.39 105.47 ± 13.51
DAG-NoCurl 10.4 ± 4.42 17.4 ± 3.27 51.6 ± 11.43 105.7 ± 13.65
DAG-GNN 9.4 ± 0.8 15 ± 3.58 49.8 ± 7.03 104.8 ± 12.84

DAG-WGAN 9.8 ± 2.4 16 ± 5.4 40.40 ± 10.97 80.40 ± 9.09

Table 3.3: Comparisons of DAG-learning Outcomes with Non-Linear Data Samples 2

Model
SHD (5000 non-linear-2 samples)

d = 10 d = 20 d = 50 d = 100

DAG-NOTEARS 9.8 ± 2.61 22.9 ± 2.14 38.3 ± 13.19 125.21 ± 61.19
DAG-NoCurl 7.4 ± 2.78 17.6 ± 2.25 33.6 ± 12.53 116.8 ± 62.3
DAG-GNN 2.6 ± 2.06 3.80 ± 1.94 13.8 ± 6.88 112.2 ± 59.05

DAG-WGAN 1 ± 1.1 3.4 ± 2.06 12.20 ± 7.81 20.20 ± 11.67

Table 3.4: Comparisons of DAG-learning Outcomes with Post-Non-Linear Data Sam-
ples 1

Model
SHD (5000 post-non-linear-1 samples)

d=10 d=20 d=50 d=100

DAG-GNN 12.7 ± 3.1 21.8 ± 5.7 65.3 ± 14.4 130.2 ± 27.4
DAG-WGAN 10.4 ± 3.2 18.2 ± 6 51.3 ± 11.8 107.8 ± 19.5

Table 3.5: Comparisons of DAG-learning Outcomes with Post-Non-Linear Data Sam-
ples 2

Model
SHD (5000 post-non-linear-2 samples)

d=10 d=20 d=50 d=100

DAG-GNN 8.4 ± 5.1 14.6 ± 5.2 47.8 ± 20.6 145.7 ± 77.7
DAG-WGAN 5.6 ± 5.8 10.2 ± 6.3 35.6 ± 14.4 43.3 ± 23.2

Benchmark categorical data

In order to evaluate the performance of DAG-WGAN on categorical data, the author

obtains a set of discrete tabular datasets from the Bayesian Network Repository avail-

able at https://www.bnlearn.com/bnrepository/. This repository offers datasets of

different types, such as Discrete Bayesian Networks, Gaussian Bayesian Networks, and

Conditional Linear Gaussian Bayesian Networks, as well as datasets of various sizes,
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ranging from Small Networks to Massive Networks. To assess the scalability and ac-

curacy of DAG-WGAN when handling categorical data, the author specifically selects

the Sachs, Alarm, Child, Hailfinder, and Pathfinder datasets. Since DAG-GNN was

the only model capable of working with discrete data at the time, the comparison is

made solely between DAG-WGAN and DAG-GNN. The results of the experiment can

be found in Table 3.6.

Table 3.6: Comparison of DAG-learning Outcomes with Benchmark Data Samples

Dataset Nodes
SHD

DAG-WGAN DAG-GNN

Sachs 11 17 25
Child 20 20 30
Alarm 37 36 55

Hailfinder 56 73 71
Pathfinder 109 196 218

Data integrity

Samples generated by DAG-WGAN have been compared with samples from other mod-

els to evaluate the data generation performance of each model on a ’dimension-wise

probability’ basis. This means that the author measures how well each model matches

the distribution of observations for each dimension. The tabular dataset used in the

experiment is MIMIC-III [244], which has been used in previous studies involving the

models DAG-WGAN compares against. The dataset consists of medical measurements

and observations, where each row is a patient record containing 1071 entries. The

results of the data integrity experiment are shown in Figure 3.2.

(a) CorGAN (b) DAG-WGAN

Figure 3.2: Data integrity experiment outcome
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Moreover, DAG-WGAN is compared only with CorGAN [242] as it performs better

than other competitors such as medGAN [210] and DBM [245]. A scatter plot is used

to represent the outcome of the study, where each point corresponds to one of the

1071 entries. The x and y axes indicate the success rate for real and synthetic data,

respectively, while the diagonal line represents the ideal scenario.

The effectiveness of the reconstruction process of DAG-WGAN is also thoroughly

examined. Two scenarios are considered to ensure completeness: 1) the output data

contains the true causal graph (with SHD equal to 0); 2) the output data represents a

causal graph of poor quality (with SHD as far from 0 as possible). The quality of the

structure learning has been demonstrated using causal heat maps. The interdependen-

cies between the covariates are studied by analyzing the correlation matrices of both

cases. The diversity of the reconstructed data points is also plotted and examined.

It should be noted that the input data is generated using the non-linear-2 Structural

Equation Model (SEM) and the size of the data variables is set to 10. The author

refrains from conducting further experiments since the model architecture and training

algorithm remain the same. Therefore, since the only possible change that remains is

assuming a different SEM to generate input data, further experiments will yield similar

results. The performance of the model is also expected to deteriorate as the data vari-

able size increases, due to the decreased precision in approximating the original data

distribution.

In the case where the SHD equals 0, one would expect a perfect graph with no

extra, missing or reversed edges to be recovered, exactly as shown in Figure 3.3.

Figure 3.3: Weighted adjacency matrix heat map in the case SHD is 0
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A complete recovery of the ground truth graph indicates that the causal connections

in the reconstructed data are preserved. If the input data and the generated data share

the same causal relationships, then it is reasonable to expect that they will also have

similar statistical patterns (i.e., correlations), as illustrated in Figure 3.4.

Figure 3.4: Comparison between the correlation matrices across the real (left) and
synthetic (right) features, in the case SHD = 0

The investigation reveals that the statistical correlations between the real and fake

data are nearly identical across the feature space. This similarity in correlations and

preservation of causality leads to a very close approximation of the input data.

The variety of the new data points is low, indicating that the model has an almost

perfect reconstruction process with imperceptible deviations from the real data samples

- see Figure 3.5.

In the case where the SHD is farthest away from 0, the recovered graph is signifi-

cantly different from the ground truth - see Figure 3.6.

Nevertheless, despite the inefficacy of causal structure discovery, DAG-WGAN accu-

rately learns the correlations in the input data, while successfully reconstructing data

points that closely resemble the original data, as shown in Figures 3.7 and 3.8.

The findings of the study offer valuable information regarding the capacity of DAG-

WGAN to carry out both causal structure learning and data generation simultaneously.

The most notable aspect is the straightforward design of its VAE component, which al-

lows for precise data reconstruction regardless of the accuracy of the recovered causality.

As a result, the ability of the model to learn causal structures relies on reconstructed

samples but does not impact the reconstruction process itself.
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Figure 3.5: Real and synthetic feature distributions (x3,x4), in the case SHD = 0

Figure 3.6: Weighted adjacency matrix heat map when SHD is farthest away from 0
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Figure 3.7: Comparison between the correlation matrices across the real (left) and
synthetic (right) features when SHD is farthest away from 0

Figure 3.8: Real and synthetic feature distributions (x3,x4) when SHD is farthest away
from 0
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3.3 Discussion

DAG-WGAN has demonstrated competitive performance in all experiments, showcas-

ing its ability to handle various types of data. The continuous results presented in

Tables 3.1, 3.2, and 3.3 show that when the Additive Noise Model (ANM) is assumed,

the proposed method outperforms DAG-NoCurl and DAG-NOTEARS in all three cases

(linear, non-linear-1, and non-linear-2) and across all dimensions. In the non-linear-1

case, DAG-GNN performs better in lower dimensions but is surpassed by DAG-WGAN

when the number of variables in the observations is higher. Moreover, the continuous

data experiments demonstrate that the method scales better than its counterparts,

providing a significant advantage. In the case of the Post-Nonlinear Model (PNL),

DAG-WGAN outperforms DAG-GNN in all experiments, although the quality of the

results is generally lower than those obtained with ANM. The results from Tables 3.4

and 3.5 reveal two important findings: 1) the architecture of DAG-GNN is not suitable

for recovering causal structures when PNL is assumed, and 2) adversarial training is

beneficial for discovering causality from data generated using PNL.

The outcomes for categorical data also strongly favor DAG-WGAN. The informa-

tion presented in Table 3.6 demonstrates that DAG-GNN is less effective than the

proposed algorithm in four out of five instances. Specifically, DAG-WGAN yields su-

perior results when applied to the Sachs, Child, Alarm, and Pathfinder datasets, and

only slightly worse results than DAG-GNN on Hailfinder. These benchmark experi-

ments offer empirical support for the use of adversarial causal structure learning with

discrete data.

Up to this point, the discussion has focused primarily on the ability of DAG-WGAN

to learn causal structures. However, the results obtained from the data integrity ex-

periment indicate that the generated data samples produced by the proposed model

are also of high quality. Figure 3.2 illustrates the superior quality of the samples gen-

erated by DAG-WGAN in terms of their dimensions, compared to those generated

by CorGAN, medGAN, and DBM. Furthermore, the completeness study demonstrates

that the model is capable of synthesizing high-quality data regardless of the recovered
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causal structure, due to the basic architecture of the VAE. This has two important

implications: 3) the reconstructed data can be utilized for regression problems and

predictions, even if the model has not learned all the connections between variables,

and 4) the model has the potential to bridge the gap between Artificial Intelligence and

humans - when the recovered graph is relatively accurate (i.e., SHD 0 or close to 0), the

model can be trusted as people can comprehend the reasoning behind its predictions.

In general, the experiments on causal structure learning and data integrity showcase

the capacity of the model to accurately discover causality from various types of data, all

the while upholding a high level of data synthesis. The empirical comparison between

DAG-WGAN and DAG-GNN provides evidence that the Wasserstein distance has a

beneficial effect on both causal discovery and data generation. Furthermore, the results

validate the hypothesis of the author regarding the role of Wasserstein-1 in recovering

causality from observational data.

Despite its innovative integration of generative modeling and causal structure learn-

ing, and the good performance on the Sachs dataset, the DAG-WGAN framework faces

several limitations when applied to real-world data. While the model is designed to

infer directed acyclic graphs that capture underlying causal dependencies, its theoreti-

cal assumptions often fail to align with the complexities of empirical data. In practice,

datasets collected from real-world systems are often noisy, nonlinear, and influenced

by latent confounders, whereas DAG-WGAN assumes that all relevant variables are

observed and that causal mechanisms can be effectively captured through a generator

module. This mismatch can lead to inferred graphs that reflect statistical associations

rather than genuine causal relationships, limiting their interpretability and real-world

applicability.

When scaled to large real-world datasets, additional challenges emerge. The adver-

sarial training process of DAG-WGAN is computationally intensive, and the acyclic-

ity constraint adds further complexity, limiting scalability to high-dimensional data.

This is mainly due to the augmented Lagrangian-based continuous optimization (CO)

method [47]. Lachapelle et al. [36] have shown that the computational complexity of

the CO approach is O(d3), where d represents the number of variables in X. In the
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experiments the author conducted, scalability testing has been performed in the range

of 10, 20, 50 and 100 data variables per dataset with notable decrease in accuracy and

increase in training duration detected as the data variable size increases. This trend

is expected to continue indefinitely as the number of variables exceeds beyond the 100

nodes barrier, making the model unusable with big-data. Moreover, training stability

remains a major issue, as performance is highly sensitive to hyperparameter choices

and optimization dynamics, often resulting in inconsistent outcomes across runs. The

purely data-driven approach of the model, without the integration of domain knowl-

edge or structural priors, also restricts its ability to produce interpretable and plausible

causal structures at scale.

Last but not least, despite achieving high accuracy in causal structure learning and

producing high-quality synthesized data, the performance of DAG-WGAN is limited

by its own architectural constraints. One key limitation is that the proposed approach

heavily relies on including specific Structural Equation Models (SEM) in both the en-

coder and decoder modules. This assumption is unreasonable, as it implies that all

real-world data must be generated using the same equations as those in the autoen-

coder architecture, which is highly unlikely. Consequently, DAG-WGAN can only work

with data generated using the SEM specified in (3.3). Additionally, the completeness

study results indicate that the reconstruction process of DAG-WGAN is overly precise,

resulting in a lack of diversity in the generated data samples.

In order to address the limitations of DAG-WGAN, the author will investigate ef-

ficient structure learning techniques, remove specific SEM from the architecture, and

incorporate Disentangled Representation Learning (DRL) to improve the time complex-

ity, generality of causal structures, and diversity of generated samples. Furthermore,

additional experiments will be conducted to determine whether the proposed method

can help address the hidden confounder problem [246], [247], [218]. The model will also

be extended to handle incomplete and time-series data. Additionally, the use of early

stopping techniques will be explored in future iterations of the model to address cases

where the optimal DAG is discovered too quickly but the augmented Lagrangian fails to

converge. A sensitivity analysis will also be conducted to investigate the performance
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of the model when introduced to slight visitations in hyper-parameters.
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Chapter 4

Efficient Generative Adversarial

DAG-Structure Learning

This chapter begins with the author providing the implementation details of the succes-

sor to the original DAG-WGAN method. The model architecture remains unchanged,

but there are significant improvements in the training algorithm. This follow-up ap-

proach called DAG-WGAN+ incorporates efficient frameworks for DAG discovery and

disentangled representation learning, resulting in a faster and more accurate method

compared to its predecessor. The chapter also explores topics such as data quality,

causal identifiability, and computational complexity in the context of DAG-WGAN+.

Moreover, the model is capable of handling vector data as well. A series of experiments

are conducted to demonstrate the performance of DAG-WGAN+, showing that it can

compete with the state-of-the-art in the field (see Section 4.3 for more details). Ad-

ditionally, an ablation study is conducted to investigate the impact of changes in the

training algorithm on the model. The publication resulting from this work is referenced

in Section 1.7.
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4.1 An efficient DAG-WGAN formulation using DAG-

NoCurl

Following the significant progress achieved through the use of DAG-NOTEARS [12],

the field of causal structure learning has witnessed a surge in research, resulting in the

development of several extensions to the framework. Various models, such as DAG-

GNN [35], GraN-DAG [36], and DAG-WGAN [75], heavily rely on DAG-NOTEARS

and have demonstrated impressive performance. However, these models encounter

limitations during training due to the DAG-NOTEARS approach, which affects both

their accuracy and the computational time required to obtain results.

Zheng et al. [12] proposed a framework for continuous optimization that incorpo-

rates Maximum Likelihood Estimation (MLE) loss terms for model training and aug-

mented Lagrangian to enforce acyclicity. However, as previously mentioned (Section

2.3.1), in architectures such as VAE and WGAN-GP, MLE-based loss terms suffer from

a severe lack of diversity in reconstructed data (latent collapse) and function simplic-

ity resulting in a highly accurate reconstruction process leading to synthetic samples

overfitting to input data.

The DAG-learning approach of the author called DAG-WGAN+ combines the Ev-

idence Lower BOund (ELBO), Maximum Mean Discrepancy (MMD) and Wasserstein

Distance (WD) loss terms under the famous VAE-GAN architecture [62] to learn data

probability distributions and recover causal relationships from the training samples.

This combination helps to overcome the impact of the MLE limitations inherited by

the ELBO loss. The experimental results obtained using DAG-WGAN+ indicate that

by jointly optimizing the ELBO and MMD, it is possible to encourage mutual informa-

tion between observations and latent variables. As a result, the latent space contains

meaningful features of the input data, leading to enhanced representation quality, data

reconstruction, and causal discovery.

Meanwhile, constraint optimization of DAG learning models using the augmented

Lagrangian has been found to be a costly process, making it impractical to apply causal

discovery methods to real-world data analysis. To address this issue, researchers have
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proposed novel approaches for causality learning that do not involve computationally

expensive procedures. One such approach is DAG-NoCurl [48], which implicitly discov-

ers causal relationships in the DAG search space. However, to recover the correct causal

structures from observations, this model requires an accurate initial estimate. Failing

to meet this requirement may result in inaccurate DAG-learning and impose limitations

on the search space, reducing the potential for learning better DAG structures.

DAG-WGAN+ is developed by incorporating a generative adversarial DAG learn-

ing approach to an improved version of the DAG-NoCurl efficient structure learning

method. Moreover, the model uses Disentangled Representation Learning (DRL) with

the help of Maximum Mean Discrepancy (MMD) [67] and allows additional refine-

ment of the initial graph topology to achieve high accuracy and efficiency without any

limitations on the DAG search space.

The main objective of the research is to evaluate the performance of DAG-WGAN+

against its predecessor, the original DAG-WGAN model [75], to deduce which of the

two methods is superior. Furthermore, the new approach is tested against the current

state-of-the-art in a set of experiments, as discussed in Section 4.2. Ultimately, DAG-

WGAN+ enables the author to make the following contributions:

• The combination of hybrid generative modeling for causal structure recovery with

disentangled representation learning mitigates the limitations of MLE-based loss

terms, resulting in higher-quality DAG-discovery.

• Refactoring the original DAG-NoCurl approach enables further refinement of the

causal structure obtained from the initial estimation in search of DAG that better

fit the input data. Applying this improved version of DAG-NoCurl to generative

adversarial DAG-learning results in more efficient and accurate causal discovery.

4.1.1 Problem Statement

This model is designed to enhance the efficiency of the constrained continuous optimiza-

tion process used in structure learning, enabling faster generation of synthetic samples

that maintain the causal relationships of the input data through the integration of the
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DAG-NoCurl framework. The fundamental concept of this approach can be described

as follows: Given a set of n independent and identically distributed (i.i.d.) observations

X, DAG-WGAN+ is designed to recover a causal graph GA, in an efficient manner,

by learning the components of an equivalent representation Ainit ∈ {GAinit} ≡ D of

the adjacency matrix A ∈ D that can implicitly produce a new probability distribution

P (X̃) to closely match the original distribution P (X). In this chapter, the notation

P (X̃) ≡ PGA
(X̃) and P (X) ≡ PG0

A
(X) are considered equivalent - refer to the segment

on the identifiability of the loss function in Section 3.2.2 for further details.

The method is built upon satisfying the set of assumptions outlined in Section

2.1.4. The faithfulness assumption is particularly crucial for the functionality of DAG-

WGAN+ [10], as it enables the learning of Directed Acyclic Graphs (DAG) from data

distributions. Furthermore, the author employs datasets produced with identifiable

structural equation models falling under different Semi-parametric assumption, such as

Additive Noise Models (ANM) and Post-Nonlinear Models (PNL).

4.1.2 Solution Overview

DAG-WGAN+ tackles the DAG-learning challenge by utilizing a hybrid generative

modeling framework that integrates InfoVAE [248] and WGAN-GP [116]. This results

in the optimization of model parameters through a combination of reconstruction, regu-

larization loss terms and generative adversarial training. The process of learning causal

structures using this method takes place within the auto-encoder architecture, which

incorporates an additional learnable parameter A ∈ Rd×d. Moreover, the standard re-

construction loss (ELBO) is enhanced by introducing a mutual information term from

the training of InfoVAE [249]. The objective function based on the maximum likelihood

estimation (MLE) can be expressed as follows:

Rloss(X, X̃, Z) = −EQϕ(Z|F4((I−AT )F3(X)))[logPθ(X|F2((I −AT )−1F1(Z)))]

+ βEX∼P (X)[DKL(Qϕ(Z|F4((I −AT )F3(X)))||P (Z))]

+ ηEX∼P (X)[IQϕ(X,Z)(X, Z)],

(4.1)

86



Chapter 4. Efficient Generative Adversarial DAG-Structure Learning

where the latent variable Z is sampled from an implicitly defined variational distribu-

tion Qϕ(Z|F4((I−AT )F3(X))) modeled by the encoder Enc(X;A;ϕ) = Qϕ(Z|F4((I−

AT )F3(X;ϕ);A;ϕ)) with parameters ϕ and A. The reconstructed data X̃ is obtained

by sampling from Pθ(X|F2((I−AT )−1F1(Z))), which represents the probability distri-

bution learned by the decoder Dec(Z; θ) = Pθ(X|F2((I −AT )−1F1(Z; θ); θ)) with the

parameters θ. The multi-layer perceptrons {F3,F4} and {F1,F2} are utilized in Enc

and Dec respectively. The term IQϕ(X,Z)(X, Z) stands for the mutual information loss.

Hyperparameters β and η are employed to adjust the impact of the regularization terms

(specifically the KL-Divergence and the mutual information term) on the reconstruc-

tion loss. The objective function in (4.1) is also subject to an unconstrained continuous

optimization with the acyclicity constraint from [35] h(A) = tr[(I +βA ◦A)d]− d = 0.

The author incorporates the concept of efficient structure learning by combining

generative adversarial DAG-recovery with the DAG-NoCurl framework [48]. Specifi-

cally, the model relies on discovering the topology of the variables in X by computing a

potential function ψ and then projecting (non)cyclical structures onto its gradient ∇ψ,

thus ensuring that the resulting output is a DAG; as detailed in Section 2.4.2. Within

the DAG-WGAN+ framework, both aspects of the DAG structure (the topology and

the strength of connections between variables) are jointly optimized, facilitating causal

discovery across a broader DAG search space. This approach leads to faster and more

precise causal structure learning in comparison to existing methods - for further details,

the reader is directed to the experimental findings in Section 4.2.

4.1.3 Training algorithm improvements

In this section, the author discusses the changes made to the training algorithm of the

initial DAG-WGAN model. Disentangled representation learning details are disclosed,

along with the incorporation of an enhanced version of the DAG-NoCurl framework.

Disentangled representation learning

The utilization of Disentangled Representation Learning (DRL) for causal discovery

stems from a recent investigation [249] carried out using the default VAE configura-
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tion. The study findings highlight the limitations of standard Variational Auto-Encoder

components. Specifically, the design of the VAE often struggles to capture fine-grained

details and variations in the input data, resulting in a noisy and uninterpretable em-

bedding space. As a result, latent variables Z sampled from such a space may fail

to capture meaningful representations, leading to inaccuracies in data reconstruction.

Furthermore, as noted in Section 2.3.1, the drawbacks of the ELBO loss function can

result in erroneous modeling of the approximate posterior Q(Z|X). This issue becomes

more apparent when the encoder is exposed to complex or high-dimensional data, which

ultimately causes the model to overfit.

DAG-WGAN+ relies on a sophisticated training algorithm that combines the ELBO

regularized by DRL with generative adversarial training to extract causality from ob-

servations. Specifically, the approach aims to approximate the distribution PGA
(X̃) to

PG0
A

(X) as shown in (3.11). This strategy prevents the model from overfitting by mod-

eling the training distribution with X̃ instead of X, thus discouraging DAG-WGAN+

from closely matching the input data and focusing on discovering underlying patterns

or relationships.

Minimizing (4.1) requires defining the reconstructed data distribution PGA
(X̃).

However, as indicated in (3.11), computing PGA
(X̃) involves the weighted adjacency

matrix A, which is one of the parameters in the model. This implies that modeling

PGA
(X̃) depends on the optimization of A. As a result, the probability distribution

PGA
(X̃) and the weighted adjacency matrix A are jointly learned through both recon-

struction and adversarial training performed using the following objective function:

Rloss(X, X̃, Z) = −EZ∼Qϕ(Z|F4((I−AT )F3(X)))[logPθ(X|F2((I −AT )−1F1(Z)))]

+ βEX∼P (X)[DKL(Qϕ(Z|F4((I −AT )F3(X)))||P (Z))]

+ ηEX∼P (X)[IQϕ(X,Z)(X, Z)]

Dloss = EX̃∼Pg
[D(X̃)]− EX∼Pr [D(X)] + λEX̂∼PX̂

[(||∇X̂D(X̂)− 1||)2]

Gloss = −EZ∼Qϕ(Z|F4((I−AT )F3(X)))[D(Dec(Z))]

s.t tr[(I + αA ◦A)d]− d = 0,

(4.2)
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where Rloss, Dloss and Gloss are the reconstruction, discriminator and generator losses,

respectively. Pr and Pg represent P (X) and P (X̃) and thus are equivalent to PG0
A

(X)

and PGA
(X̃) as well. Importantly, the only difference in the objective function between

DAG-WGAN+ (4.2) and DAG-WGAN (3.10) is the inclusion of the mutual information

term. The expanded form of (4.2) reveals the final loss function used to train DAG-

WGAN+:

A∗, θ∗, ϕ∗, ω∗ = argminA,θ,ϕ maxωLDAG−WGAN+(A, θ, ϕ, ω)

LDAG−WGAN+ = −EZ∼Qϕ(Z|F4((I−AT )F3(X)))[logP (X|Z; θ)]

+(1− β)EX∼P (X)[DKL(Q(Z|X;A, ϕ)||P (Z))]

+(γ + β − 1)DKL(Q(Z;A, ϕ)||P (Z))

+EX∼P (X),Z∼Qϕ(Z|F4((I−AT )F3(X)))[D(X;ω)−D(Dec(Z; θ);ω)]

+λEX̂∼P (X̂)

[
(||∇X̂D(X̂)||2 − 1)2

]
+K(tr[(I + αA ◦A)d]− d)

such that
EZ∼Qϕ(Z|F4((I−AT )F3(X)))[logP (X|Z; θ)] ≈ −1

2

[
(X̃−µ(X))2

σ(X)2
+ log σ(X)2

]
if X

is continuous

EZ∼Qϕ(Z|F4((I−AT )F3(X)))[logP (X|Z; θ)] ≈ −
∑N

c=1(Xc log(X̃c)) if X is discrete

EX∼P (X)[DKL(Q(Z|X;A, ϕ)||P (Z))] ≈ −1

2

[
log σ(Z)2 −

(
µ(Z)2 − σ(Z)2

)
+ 1
]
,

(4.3)

where the following set of parameters {A, ϕ}, {θ} and {ω} are used to optimize the

encoder Enc(X,A, ϕ), the decoder Dec(Z, θ) and the discriminator D(X, X̃, ω). The

1st term represents the reconstruction loss. The 4th and 5th terms are responsible for

computing the Wasserstein-1 metric and its gradient penalty, whereas the 2nd and 3rd

terms introduce regularization to the loss function. In both of the latter terms, P (Z)

denotes a Gaussian prior. The distance between P (Z) and both Q(Z|X;A, ϕ) and

Q(Z) is computed and minimized using KL-Divergence (KLD) and Maximum Mean

Discrepancy (MMD) [250]; [112]. The final term [35] is utilized to ensure the acyclicity
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of the recovered graph. Furthermore, by incorporating D(X, X̃, ω) and employing

the min-max optimization described in (4.3), the refinement of the reconstruction loss

is facilitated through adversarial training. Consequently, the 4th and 5th terms are

involved in modeling the parameters of the discriminator, while the encoder and decoder

are trained using the 1st, 2nd, 3rd and 6th terms.

Proposition 4.1.1. Given some input X and latent variables Z, for any fixed value of

the mutual information term IQϕ(X,Z)(X, Z), LDAG−WGAN+ reaches global optimum

when the decoder distribution Pθ(X|F2((I −AT )−1F1(Z))) matches the observational

data distribution P (X).

Proof. The proof of proposition 4.1.1 is available in Appendix A.3.

Causal structure identifiability is another crucial aspect of DAG-WGAN+ - see

Definition 1. To guarantee that the DAG recovered are identifiable, the author relies

on the following assumptions: 1) employing an identifiable structural equation model

to generate the observational data samples and 2) applying an Additive Noise Model

(ANM) [240] as the structural causal model in Dec under the semi-parametric assump-

tion.

Proposition 4.1.2. Given a generated data distribution PGA
(X̃), defined using a

causal graph GA belonging to the set of identifiable causal graphs SGA
, and the true

underlying causal structure of the input data denoted as G0
A. Assuming that G0

A is

also a member of SGA
, then a learned causal graph GA contains the same structure as

G0
A i.f.f. PGA

(X̃) matches the original data distribution PG0
A

(X).

Proof. The proof of proposition 4.1.2 is available in Appendix A.4.

As stated in the beginning of this chapter, there is no architectural distinction

between DAG-WGAN and its enhanced iteration. Therefore, the structure of DAG-

WGAN+ has already been proven to be identifiable; for further information, refer to

Section 3.2.2. Modifications are solely present in the loss function of the VAE module,

where an extra mutual information component, represented by MMD, is incorporated
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into the ELBO. Given that ELBO is identifiable, the focus of the identifiability assess-

ment of DAG-WGAN+ is the MMD loss term.

The role of MMD in DAG-WGAN+ is consistent with Disentangled Representation

Learning in other VAE variants, influencing the training procedure by maximizing

the mutual information between observations X and their latent representation Z.

This leads to the ability to discover latent data features that may be concealed by the

complexity of the input data, facilitating the identification of hidden confounders within

X. In the DAG-WGAN+ framework, causal insufficiency is not assumed; rather, MMD

enhances the quality of Z, subsequently improving the performance of the decoder, thus

explaining the superior outcomes of DAG-WGAN+ over its predecessor. As the mutual

information term is applied solely to the encoder output, MMD does not directly impact

the causal graph faithful to the probability distribution of the reconstructed data. As

a result, causal structure learning with DAG-WGAN+ yields identifiable outcomes due

to the VAE architecture and other loss terms employed during training.

It is important to note that the identifiability of causal structures is also dependent

on the assumptions made during their learning process. Among the assumptions used

through this work (see Section 2.1.4), faithfulness plays a crucial role, as it ensures

that the observed statistical independencies accurately describe the underlying causal

relationships in data. When this assumption is violated, the mapping between depen-

dencies and causal structure breaks down, directly undermining causal identifiability.

In such cases, different causal graphs can generate the same observed independencies,

making it impossible to uniquely recover the true causal structure from observational

datasets alone. This violation can affect DAG-WGAN+, which relies on faithfulness to

discover accurate causal graphs: genuine causal relationships may be masked, spurious

dependencies may appear, and the learned structure may no longer represent the true

causal mechanisms. Under such circumstances, even if the model fits the observed data

distribution well, its causal interpretations and counterfactual reasoning become unre-

liable. To mitigate these issues, robustness measures such as incorporating sparsity or

regularization constraints, applying stability-based or ensemble methods, introducing

domain knowledge through soft constraints, and leveraging interventional data or causal
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invariance principles can help recover more stable and interpretable causal structures

despite potential violations of faithfulness.

Efficient causal structure learning with DAG-NoCurl

Currently, a significant proportion of machine learning models used to recover causality

from data are trained through constrained continuous optimization methods employing

the Augmented Lagrangian technique [47]. Although this approach has been shown to

produce accurate results for causal structure learning, its performance comes at the

expense of computational efficiency and substantial time consumption [36]. A recent

advancement that addresses the constraints of Augmented Lagrangian optimization is

the DAG-NoCurl framework [48], which directly models causal structures within the

DAG search space. The framework is heavily dependent on an equivalent weighted

adjacency matrix representation A = W ◦ ReLU(∇ψ) - as outlined in Theorem 2.1

of [48], whereW ∈ Rd×d represents an upper triangular matrix, ◦ denotes the Hadamard

product [239], ReLU [251] signifies the rectified linear unit activation function, ψ is a

potential function, and ∇ symbolizes its gradient. Efficiency is achieved by computing

an initial estimate Apre to derive the potential function ψ, which subsequently maps

Apre to a causal graph GAinit
∈ {GAinit} ≡ D. Following this step, further enhancement

of W is carried out with a fixed value for ψ. However, a drawback of this model is

that the optimization of W solely impacts the edge weights and not the topology of the

graph represented by Ainit, leading to a restricted search space for DAG. Consequently,

while the DAG-NoCurl approach guarantees acyclicity, it does not ensure the accuracy

of the output graph.

The proposed model integrates the DAG-NoCurl framework with a generative ad-

versarial DAG-Structure learning approach. Initially, the estimation Apre is obtained

through an unconstrained augmented Lagrangian optimization of the loss function in

(4.3) while adhering to the acyclicity constraint h(A) = tr[(I + αA ◦A)m] −m = 0,

with a fixed Lagrange multiplier value of 10. Subsequently, Apre is projected into the

equivalent graph space {GAinit} ≡ D by determining a value for the potential function

ψ to solve Ainit = W ◦ReLU(∇ψ). In the following refinement phase, the author opts
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not to constrain the value of ψ, but rather improves the projected causal graph GAinit

by solving (4.3) under the acyclicity constraint h(A) = 0. This refinement step elimi-

nates the constraints imposed on Ainit by the fixed value of ψ, enabling the recovery

of DAG structures from a wider graph search space. Notably, the Lagrange multiplier

is not updated during the aforementioned steps, which significantly reduces compu-

tational complexity. Additionally, the original DAG-NoCurl algorithm yields W̃ after

the refinement phase. As W̃ is not a DAG, an additional step Ã = W̃ ◦ ReLU(∇ψ)

is included to derive the final DAG. In contrast, DAG-WGAN+ directly computes a

weighted adjacency matrix A by optimizing both W and ψ, eliminating the need for

post-processing steps to obtain the final DAG structure. The detailed sequence of steps

is provided in Algorithm 1.

Remark. The same additional post-processing computation step from the DAG-NoCurl

framework can be included in the model, however, doing so significantly reduces accu-

racy. More information on this matter is found in the Ablation Study - 4.2.6.

Algorithm 1 Efficient adversarial structure learning with DAG-NoCurl

Step 1: Compute an initial prediction Apre by optimizing (4.3) with a
fixed Lagrangian multiplier for the acyclic constraint.

Step 2: Use Apre to compute the potential function ψ =
−L+∇T

(
0.5 ∗ (C(Apre) − C(Apre)

T )
)
, where L+ is the Moore-

Penrose pseudo-inverse of the graph Laplacian matrix L, ∇T is the
transpose of the gradient matrix ∇, C(Apre) is the connection matrix
of Apre – see [48] for more details.

Step 3: Compute the W matrix by converting each non-zero entry
(indexed by in row i and column j, ψ(j) > ψ(i)) of Apre to the entry
of W by scaling it with a factor Apre(i, j)/(ψ(j)− ψ(i)) - see Equation
(10) in the DAG-NoCurl [48] paper.

Step 4: Compute the initial weighted adjacency matrix
Ainit = W ◦ReLU(∇ψ)

Step 5: Update A by optimising (4.3) with the initialisation of A =
Ainit

Furthermore, the author employs thresholding at the end of Steps 1 and 5 to reduce
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the number of false discoveries. Consistent with the approach introduced by [12], a

threshold value of 0.3 is chosen. Although different threshold values could be utilized,

practical experiments conducted by the author indicated that the value aligned with [12]

and several other models such as [36], [38], [75] yields the most consistent results.

4.1.4 Computational Complexity

The development of complex functions or algorithms is often accompanied by discus-

sions of their resource utilization. In fact, a common question regarding any software

is ”How long does it take to execute this program?”. However, providing a precise an-

swer to this question is challenging due to variables like hardware quality, concurrent

program count, programming language, etc. Instead, in the area of computer science,

a simpler question is posed: ”How does the execution time of a piece of code change as

the input size grows?”. This question is valuable as the time needed to run an algo-

rithm or function varies based on input size. Computer scientists refer to this concept

as computational complexity [252], [253], which delves into the resources needed to run

computer programs, with a primary focus on computational time (time complexity)

and memory requirements (space complexity).

In this section, a computational analysis is performed to investigate how variations

in input dimensionality and the incorporation of the DAG-NoCurl framework impact

the runtime of DAG-WGAN+. The focus of the investigation is on DAG-NoCurl,

outlined in Algorithm 1, which comprises a total of five steps. The initial and final steps

involve optimization, while the intermediary steps are crucial for the functionality of

the theoretical framework. To assess the time complexity of DAG-WGAN+, the author

calculates the total resources needed to execute each step and adds them together. The

space complexity is equivalent to that of NOTEARS and its related extensions (such

as DAG-GNN), which is O(d).

Optimization in Steps 1 and 5 uses stochastic gradient descent (SGD) [228]. The

computational complexity of SGD is computed by taking into account the number of

iterations k, the data batch size n, and the number of variables in the input data d.

In a typical scenario, the time complexity of SGD is O(knd). However, in the case of
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DAG-WGAN+ the hyperparameters k and n remain constant throughout the process,

thus the complexity of Steps 1 and 5 simplifies to O(d).

Furthermore, Steps 2, 3, and 4 entail individual computations that are performed

based on specific equations and modifications of matrix values, as illustrated in Al-

gorithm 1. Each of these steps comprises a series of instructions executed once per

run. Step 2 calculates ψ by applying the formula −L+∇T
(
0.5∗(C(Apre)−C(Apre)

T )
)
,

where all components are fixed except for the dimensions of Apre ∈ Rd×d. As this step

involves matrix subtraction, its time complexity is O(d2). Step 3 involves a function

that encompasses a sequence of matrix operations involving subtraction and scaling.

Similarly to the previous step, the runtime of Step 3 is directly proportional to the size

of Apre ∈ Rd×d, resulting in a computational complexity of O(d2). Step 4 calculates

Ainit based on W ◦ ReLU(∇ψ), where all parameters are fixed except for W ∈ Rd×d.

The symbol ◦ denotes the Hadamard product of matrices, which is a variant of matrix

multiplication. As a result, the computational complexity of Step 4 is also O(d2). The

time complexity of the thresholding procedures at the conclusion of Steps 1 and 5 also

increases quadratically as their respective inputs grow in size. Given that Steps 1 and

5 exhibit linear complexity while Steps 2, 3, and 4 demonstrate quadratic complexity,

the time complexity of DAG-WGAN+ is O(2d + 3d2), which simplifies to O(d + d2).

Since computational complexity is estimated based on the term that is most rapidly

growing, the time complexity of DAG-WGAN+ is O(d2), which is lower than that of

the original DAG-WGAN model, O(d3), therefore proving that the replacement of the

augmented Lagrangian with DAG-NoCurl in the training algorithm of DAG-WGAN+

leads to more efficient causal structure learning.

4.2 Experiments

In this section, the author presents a set of experiments that demonstrate how their

method outperforms current best practices. Additionally, comparison is made between

DAG-WGAN+ and its predecessor, as they share the same structure. This allows

for an examination of how the MMD-based mutual information term from [67] and

the efficient structure learning with DAG-NoCurl by [48] may enhance the process of
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generative adversarial DAG learning.

Three sets of experiments have been conducted utilizing continuous, discrete, and

vector data formats on both synthetic and benchmark datasets. The accuracy of

the recovered DAG structures is evaluated through the Structural Hamming Distance

(SHD) [105]. Furthermore, the computational time of each model is documented and

the data reconstruction performance of DAG-WGAN+ is evaluated. The results of all

these experiments are discussed in Section 4.3.

4.2.1 Continuous experiments

In order to assess the accuracy of a causal graph GA identified from observational data

X, it is essential to compare it to the true underlying graph G0
A of X. To this end,

to ensure fair comparisons, experiments involve the use of synthetic datasets (with

their respective ground truth graphs) that are generated from the same structural

equations as those utilized in the experiments of DAG-GNN [35], DAG-NoCurl [48],

DAG-WGAN [75] and GraN-DAG [36].

The process of generating synthetic data follows the methodology outlined in the

original DAG-WGAN approach. Initially, an Erdos-Renyi (ER) graph [243] with an

expected node degree of 3 is generated. Subsequently, a series of Structural Equation

Models (SEM) are employed to generate both linear and non-linear data observations.

Specifically, the equations utilized include: linear SEM (X = ATX + Z), non-linear-1

SEM (X = AT cos(X+1)+Z), non-linear-2 SEM (X = 2sin(AT (X+0.5∗1))+AT (X+

0.5 ∗ 1) + Z), post-non-linear-1 SEM (X = sinh(AT cos(X + 1) + Z)), and post-non-

linear-2 SEM (X = tanh(2sin(AT (X+0.5∗1))+AT (X+0.5∗1)+Z)). Further details

regarding the experimental setup for continuous data, such as graph dimensions, sample

sizes, and repetitions per model, are provided in Section 3.2.3 under the Continuous

Data segment. The outcomes of the investigation are presented in Tables 4.1, 4.2, 4.3,

4.4, and 4.5.
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Table 4.1: Efficient Generative Adversarial DAG Learning from Linear Scalar Data
Samples

Model
SHD (5000 linear samples)

d = 10 d = 20 d = 30 d = 50 d = 100

DAG-NOTEARS 8.6 ± 7.74 3.8 ± 8.2 8.4 ± 9.1 26.6 ± 28.3 102.6 ± 52.4
DAG-NoCurl 7.4 ± 7.46 3.2 ± 7.6 7 ± 8.2 24.2 ± 25.4 97.1 ± 48.6

DAG-NOTEARS-MLP 2.4 ± 4.2 2.8 ± 5.1 5.6 ± 5.8 17.4 ± 15.3 84.4 ± 27.2
DAG-GNN 4 ± 6.47 2.6 ± 8.8 4.4 ± 9.4 21 ± 21.6 77.8 ± 33.4

GAE 3.5 ± 4.4 2.5 ± 5.7 4 ± 5.1 18.3 ± 11.2 64.9 ± 19.8
GraN-DAG 1 ± 5.1 1.5 ± 6.9 3.8 ± 7.35 16.8 ± 13.5 53.7 ± 21.7
VI-DP-DAG 0.6 ± 4.3 1.4 ± 4.7 3.5 ± 4.2 13.4 ± 10.8 42.8 ± 18.3
DAG-WGAN 3 ± 3.9 2.4 ± 2.1 3.2 ± 2.5 9.6 ± 8.26 24 ± 16.4

DAG-WGAN+ 1.3 ± 3.1 1.8 ± 1.5 2.8 ± 1.8 7.2 ± 7.6 16.8 ± 11.2

Table 4.2: Efficient Generative Adversarial DAG Learning from Non-Linear-1 Scalar
Data Samples

Model
SHD (5000 non-linear-1 samples)

d = 10 d = 20 d = 30 d = 50 d = 100

DAG-NOTEARS 11.4 ± 4.6 19.8 ± 7.2 41 ± 9.6 53.4 ± 26.3 107.8 ± 43.5
DAG-NoCurl 10.8 ± 4.4 17.3 ± 6.8 27 ± 8.3 51.6 ± 21 105.6 ± 40.8

DAG-NOTEARS-MLP 8.4 ± 3.3 15.6 ± 5.2 25.2 ± 6.4 42.7 ± 16.9 91.3 ± 27.3
DAG-GNN 8.8 ± 4 12.4 ± 6.1 27.6 ± 7.7 44.3 ± 19.7 84 ± 33.8

GAE 8 ± 3.2 11.7 ± 4.2 25.8 ± 4.9 40.6 ± 13.4 81.5 ± 20.2
GraN-DAG 4.6 ± 3.8 6.2 ± 4.7 23 ± 5.8 38.5 ± 15.3 77.9 ± 22.6
VI-DP-DAG 3.2 ± 2.9 4.8 ± 4 21.7 ± 4.5 34.3 ± 12.6 70.6 ± 18.9
DAG-WGAN 7.4 ± 2.4 10.6 ± 3.6 20.4 ± 4.3 31.4 ± 11.2 65.4 ± 17.8

DAG-WGAN+ 5.6 ± 1.9 7.7 ± 2.3 16.6 ± 3.1 22.2 ± 8.4 46.8 ± 13.1

Table 4.3: Efficient Generative Adversarial DAG Learning from Non-Linear-2 Scalar
Data Samples

Model
SHD (5000 non-linear-2 samples)

d = 10 d = 20 d = 30 d = 50 d = 100

DAG-NOTEARS 9.1 ± 4.4 23.8 ± 7.6 36.6 ± 10 41.8 ± 25.8 121.8 ± 44.5
DAG-NoCurl 8.4 ± 4.2 19.4 ± 7.2 28 ± 8.6 37.5 ± 20.5 113.2 ± 41.8

DAG-NOTEARS-MLP 5.2 ± 3.1 12.3 ± 5.6 23.4 ± 6.7 22.6 ± 16.4 104.2 ± 28.3
DAG-GNN 3.2 ± 3.8 5.4 ± 6.5 14.3 ± 8.1 16.2 ± 19.2 90.8 ± 34.8

GAE 2.9 ± 2.5 4.6 ± 4.1 13.2 ± 5.2 15.3 ± 12.4 76.1 ± 21.9
GraN-DAG 1.8 ± 3.6 3.2 ± 5.1 12.4 ± 6.2 14.7 ± 14.8 55.6 ± 23.6
VI-DP-DAG 1 ± 2.4 2.6 ± 3.8 11.5 ± 4.9 12.9 ± 11.1 37.2 ± 20.7
DAG-WGAN 2.6 ± 2.2 3.6 ± 3.3 10.4 ± 4.6 12 ± 10.7 22.6 ± 19.8

DAG-WGAN+ 2.2 ± 1.7 3.4 ± 2.7 6.4 ± 3.4 11.2 ± 7.9 19.3 ± 12.2
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Table 4.4: Efficient Generative Adversarial DAG Learning from Post-Non-Linear-1
Scalar Data Samples

Model
SHD (5000 post-non-linear-1 samples)

d=10 d=20 d=30 d=50 d=100

DAG-GNN 11.2 ± 7.5 18.6 ± 8 36.7 ± 11.4 60.1 ± 28.8 114.3 ± 48.2
GAE 10.3 ± 5.6 16.6 ± 6.2 33.4 ± 9.8 53.2 ± 22.7 97.8 ± 35.2

DAG-WGAN 8.7 ± 3.3 13.4 ± 4.5 26.5 ± 7.3 41.3 ± 16.2 85.6 ± 27.8
DAG-WGAN+ 6.8 ± 2.2 10.7 ± 3.4 21.7 ± 6.1 30.6 ± 12.5 63.4 ± 19.7

Table 4.5: Efficient Generative Adversarial DAG Learning from Post-Non-Linear-2
Scalar Data Samples

Model
SHD (5000 post-non-linear-2 samples)

d=10 d=20 d=30 d=50 d=100

DAG-GNN 9.3 ± 7.8 14.2 ± 10.7 25.7 ± 13.3 34.8 ± 28.5 125.4 ± 46.4
GAE 8.1 ± 5.5 12.8 ± 8.6 22.3 ± 10.4 30 ± 23.7 103.9 ± 36.1

DAG-WGAN 6. ± 4.7 10.6 ± 5.3 16.8 ± 8.2 24.1 ± 17.8 45.2 ± 32.5
DAG-WGAN+ 4 ± 3.4 7.9 ± 4.8 12.7 ± 6.6 20.4 ± 12.1 38.6 ± 26.7

4.2.2 Vector experiments

Vector experiments are also carried out using synthetic continuous data, where the sizes

of the graph and the quantity of samples remain the same. The data generation process

is the same as with the one described in Section 4.2.1. Leveraging the architecture of

the DAG-GNN [35] framework, the model can naturally handle vector data by expand-

ing the column dimension to more than 1 for each variable in the observations. In

this research, the column dimension is specified as 5, enabling direct comparison with

DAG-GNN [35], GAE [39], and DAG-WGAN [75], which were the only three models

recognized for managing vector data at the time of the experiment. The outcomes of

the study are presented in Tables 4.6, 4.7, 4.8, 4.9, and 4.10.

Table 4.6: Efficient Generative Adversarial DAG Learning from Linear Vector Data
Samples

Model
SHD (5000 linear samples)

d = 10 d = 20 d = 30 d = 50 d = 100

DAG-GNN 3.6 ± 2.4 10.2 ± 8.8 16.4 ± 15.3 32.2 ± 24.7 65.8 ± 44.1
GAE 3.5 ± 2.3 9.6 ± 8.1 14.2 ± 13.4 28.3 ± 22.5 61.2 ± 40.6

DAG-WGAN 3.3 ± 2.1 9.2 ± 7.4 12.8 ± 11.2 24.7 ± 21.1 59.8 ± 38.3
DAG-WGAN+ 3 ± 1.8 8.6 ± 6 10.5 ± 9.4 21.8 ± 15.3 51.3 ± 30.2
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Table 4.7: Efficient Generative Adversarial DAG Learning from Non-Linear-1 Vector
Data Samples

Model
SHD (5000 non-linear-1 samples)

d = 10 d = 20 d = 30 d = 50 d = 100

DAG-GNN 5.8 ± 4.6 11.2 ± 9.8 23.6 ± 18.4 42.8 ± 32.9 95.2 ± 56.3
GAE 4.2 ± 3.8 10.4 ± 7.3 22.5 ± 15 41.3 ± 29.8 90 ± 49.5

DAG-WGAN 3.8 ± 2.2 8.4 ± 6 19.2 ± 12.7 40.2 ± 27.4 86.4 ± 43.2
DAG-WGAN+ 3.2 ± 1.7 7.6 ± 5.2 15.4 ± 8.9 35.7 ± 18.7 77.6 ± 31.8

Table 4.8: Efficient Generative Adversarial DAG Learning from Non-Linear-2 Vector
Data Samples

Model
SHD (5000 non-linear-2 samples)

d = 10 d = 20 d = 30 d = 50 d = 100

DAG-GNN 4 ± 2.8 7.2 ± 4.8 15.6 ± 11.9 39 ± 30.4 92.4 ± 51.7
GAE 3.6 ± 2.4 6.8 ± 4.2 14.8 ± 10.2 36.5 ± 28.3 88.3 ± 46.9

DAG-WGAN 3.2 ± 2 6.4 ± 3.6 13.2 ± 8.5 33.3 ± 26.2 85.8 ± 42.4
DAG-WGAN+ 2.8 ± 1.6 5.1 ± 2.7 11.7 ± 6.3 28.4 ± 16.7 74.3 ± 29.6

Table 4.9: Efficient Generative Adversarial DAG Learning from Post-Non-Linear Vector
Data Samples 1

Model
SHD (5000 post-non-linear-1 samples)

d=10 d=20 d=30 d=50 d=100

DAG-GNN 9.2 ± 6.9 16.8 ± 11.2 33.7 ± 21.5 66.3 ± 43.7 125.2 ± 71.1
GAE 7.5 ± 5 13.4 ± 8.3 28.6 ± 18.4 58.4 ± 39.8 111.7 ± 58.2

DAG-WGAN 5.9 ± 3.1 10.2 ± 6.6 23.3 ± 16.7 50.7 ± 31.3 98.1 ± 49.5
DAG-WGAN+ 4.4 ± 2.5 9 ± 5.4 19.5 ± 10.6 41.7 ± 24.2 87.3 ± 39.7

Table 4.10: Efficient Generative Adversarial DAG Learning from Post-Non-Linear Vec-
tor Data Samples 2

Model
SHD (5000 post-non-linear-2 samples)

d=10 d=20 d=30 d=50 d=100

DAG-GNN 8.9 ± 4.1 15.6 ± 8.2 27.4 ± 19.2 63.8 ± 41.6 118.7 ± 66.7
GAE 6.7 ± 3.8 12.7 ± 7.6 24.3 ± 16.4 51.2 ± 38.5 106.4 ± 57.2

DAG-WGAN 5.4 ± 3.1 9.8 ± 5.9 19.7 ± 12.5 43.1 ± 32.8 98.3 ± 48.6
DAG-WGAN+ 3.7 ± 2.4 7.3 ± 4.1 15.4 ± 9.8 34.5 ± 22.6 81.6 ± 37.5

4.2.3 Benchmark data experiments

The benchmark data experiments involve the use of datasets such as Child, Alarm,

Hailfinder, and Pathfinder, along with their corresponding ground truths sourced from

the Bayesian Network Repository https://www.bnlearn.com/bnrepository. These
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datasets are acquired specifically for scalability assessment and to guarantee a fair

comparison with the state-of-the-art. Furthermore, this experimental configuration

allows for direct assessment of the influence of MMD by comparing this approach with

DAG-WGAN [75]. The results are detailed in Table 4.11.

Table 4.11: Efficient Generative Adversarial DAG Learning with Benchmark Data
Samples

Dataset Nodes
SHD

DAG-WGAN DAG-GNN DAG-WGAN+

Child 20 20 30 19
Alarm 37 36 55 35

Hailfinder 56 73 71 66
Pathfinder 109 196 218 194

4.2.4 Real data experiments

In order to establish the practical applicability of their algorithm in a real-world sce-

nario, the author showcases the effectiveness of DAG-WGAN+ using a dataset re-

lated to genetic protein and phospholipids [21]. This dataset called Sachs, obtained

from https://www.bnlearn.com/bnrepository/, comprises 11 variables and approx-

imately 7450 samples. The results of the conducted experiments can be found in Table

4.12.

Table 4.12: Real Data Experiments conducted on the Sachs Dataset

Model
Sachs Datatset

SHD / Time Estimation

DAG-WGAN 17 (00:15:33)
DAG-GNN 25 (00:13:57)

GAE 20 (00:09:18)
GraN-DAG 17 (00:12:28)
VI-DP-DAG 16 (00:04:35)

DAG-WGAN+ 15 (00:03:09)
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4.2.5 Time-wise performance

The author recorded the time needed to achieve the accuracy of the discovered graphs

reported in the preceding sections. To achieve this, the author used the ’time’ library in

Python. Specifically, the code for DAG-WGAN+ was encapsulated between two lines:

1) ’t = time.time()’, which records the current time in seconds and is used as a starting

timestamp; and 2) ’ print(”Programm finished in: ”+ str(time.strftime(”%H:%M:%S”,

time.gmtime(time.time() - t))))’, which calculates how much time has passed since

the first timestamp and converts the elapsed time into an easily readable string-based

time structure in hours, minutes, and seconds. There is no notable difference in the

time required to learn causal structures in datasets with lower dimensions. However, a

substantial discrepancy is evident in higher dimensions, where DAG-WGAN+ achieves

comparable results in significantly less time - less than thirty minutes compared to one

or a few hours for all the other methods. It is important to note that these results

are not definitive but only indicative of good performance as they are produced using

the following hardware: 13th Gen Intel(R) Core(TM) i7-13700H (2.40 GHz), 32.0 GB

RAM, NVIDIA GeForce RTX 4060 GPU with 8 GB VRAM. As a result, by relying on

supercomputers or higher-quality hardware one can reduce these times even further.

The outcomes are provided in Tables 4.13 - 4.22.

Table 4.13: Time Duration Comparison with Linear Vector Data Samples

Model
Time Duration (5000 linear samples)

d = 10 d = 20 d = 30 d = 50 d = 100

DAG-GNN 00:25:06 00:39:40 01:00:27 01:29:15 02:19:29
GAE 00:18:39 00:35:21 00:49:37 01:01:35 01:49:38

DAG-WGAN 00:27:46 00:44:56 01:21:27 01:53:46 03:11:39
DAG-WGAN+ 00:16:10 00:16:21 00:16:29 00:17:18 00:22:07

Table 4.14: Time Duration Comparison with Non-Linear-1 Vector Data Samples

Model
Time Duration (5000 non-linear-1 samples)

d = 10 d = 20 d = 30 d = 50 d = 100

DAG-GNN 00:28:39 00:38:50 00:57:19 01:20:32 02:23:22
GAE 00:19:24 00:33:56 00:51:13 01:09:47 01:52:31

DAG-WGAN 00:32:29 00:45:01 01:25:38 01:58:33 03:05:23
DAG-WGAN+ 00:16:29 00:16:48 00:16:53 00:17:32 00:21:41
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Table 4.15: Time Duration Comparison with Non-Linear-2 Vector Data Samples

Model
Time Duration (5000 non-linear-2 samples)

d = 10 d = 20 d = 30 d = 50 d = 100

DAG-GNN 00:24:28 00:35:00 00:55:24 01:24:59 02:25:14
GAE 00:17:26 00:30:55 00:47:13 01:11:21 01:55:24

DAG-WGAN 00:31:14 00:43:29 01:22:41 01:49:07 02:56:19
DAG-WGAN+ 00:15:55 00:16:08 00:16:16 00:17:20 00:22:53

Table 4.16: Time Duration Comparison with Post-Non-Linear-1 Vector Data Samples

Model
Time Duration (5000 non-linear-1 samples)

d = 10 d = 20 d = 30 d = 50 d = 100

DAG-GNN 00:28:59 00:39:18 00:58:55 01:21:54 02:26:17
GAE 00:19:45 00:34:39 00:52:49 01:11:09 01:54:26

DAG-WGAN 00:32:59 00:45:44 01:27:14 01:59:55 03:07:19
DAG-WGAN+ 00:16:49 00:17:31 00:18:29 00:18:54 00:23:36

Table 4.17: Time Duration Comparison with Post-Non-Linear-2 Vector Data Samples

Model
Time Duration (5000 non-linear-2 samples)

d = 10 d = 20 d = 30 d = 50 d = 100

DAG-GNN 00:24:50 00:35:43 00:57:03 01:26:21 02:27:09
GAE 00:17:48 00:31:38 00:48:49 01:12:43 01:57:19

DAG-WGAN 00:31:36 00:44:12 01:24:17 01:50:29 02:58:14
DAG-WGAN+ 00:16:17 00:16:51 00:17:53 00:18:42 00:24:48

Table 4.18: Time Duration Comparison with Linear Scalar Data Samples

Model
Time Duration (5000 linear samples)

d = 10 d = 20 d = 30 d = 50 d = 100

DAG-NOTEARS-MLP 00:16:02 00:35:21 00:49:48 05:38:57 10:25:19
DAG-GNN 00:23:20 00:32:15 01:01:15 01:16:27 03:03:06

GAE 00:18:36 00:23:45 00:37:41 00:59:11 02:31:29
GraN-DAG 00:25:12 00:37:41 01:39:38 02:11:29 04:09:56

DAG-WGAN 01:45:42 01:45:34 02:25:11 03:24:36 5:06:34
VI-DP-DAG 00:17:22 00:20:51 00:23:17 00:27:33 00:31:16

DAG-WGAN+ 00:14:32 00:15:35 00:16:58 00:17:30 00:19:25

Table 4.19: Time Duration Comparison with Non-Linear-1 Scalar Data Samples

Model
Time Duration (5000 non-linear-1 samples)

d = 10 d = 20 d = 30 d = 50 d = 100

DAG-NOTEARS-MLP 00:17:56 00:36:21 00:44:31 05:53:36 10:48:54
DAG-GNN 00:22:50 00:35:54 00:51:12 01:18:40 02:56:54

GAE 00:18:53 00:32:17 00:42:34 01:06:22 02:24:39
GraN-DAG 00:24:18 00:39:23 01:44:15 02:39:41 04:16:26

DAG-WGAN 01:54:12 02:19:23 02:32:43 03:51:10 5:22:34
VI-DP-DAG 00:16:53 00:21:48 00:24:47 00:28:11 00:32:15

DAG-WGAN+ 00:15:29 00:16:05 00:17:33 00:18:08 00:19:17
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Table 4.20: Time Duration Comparison with Non-Linear-2 Scalar Data Samples

Model
Time Duration (5000 non-linear-2 samples)

d = 10 d = 20 d = 30 d = 50 d = 100

DAG-NOTEARS-MLP 00:34:08 01:57:28 04:03:41 07:54:48 09:54:10
DAG-GNN 00:24:16 00:29:44 00:49:28 01:21:32 02:25:27

GAE 00:17:44 00:25:46 00:40:57 01:03:42 01:57:39
GraN-DAG 00:29:12 00:42:37 01:20:30 01:44:35 02:41:13

DAG-WGAN 01:37:00 02:25:12 02:44:34 03:50:04 04:18:29
VI-DP-DAG 00:15:33 00:20:14 00:25:03 00:27:43 00:31:22

DAG-WGAN+ 00:14:26 00:15:55 00:17:16 00:19:04 00:20:04

Table 4.21: Time Duration Comparison with Post-Non-Linear-1 Scalar Data Samples

Model
Time Duration (5000 non-linear-1 samples)

d = 10 d = 20 d = 30 d = 50 d = 100

DAG-GNN 00:23:52 00:35:57 00:54:10 01:18:40 02:58:49
GAE 00:19:15 00:33:00 00:44:10 01:07:44 02:26:34

DAG-WGAN 01:55:34 02:20:06 02:34:19 03:52:32 5:23:29
DAG-WGAN+ 00:15:51 00:16:48 00:19:09 00:19:30 00:21:12

Table 4.22: Time Duration Comparison with Post-Non-Linear-2 Scalar Data Samples

Model
Time Duration (5000 non-linear-2 samples)

d = 10 d = 20 d = 30 d = 50 d = 100

DAG-GNN 00:24:16 00:30:27 00:51:04 01:23:16 02:27:22
GAE 00:18:06 00:26:29 00:42:33 01:05:04 01:59:34

DAG-WGAN 01:37:22 02:25:55 02:46:10 03:51:26 04:20:24
DAG-WGAN+ 00:14:48 00:16:28 00:18:52 00:20:26 00:21:59

It is crucial to note that the outcomes mentioned do not demonstrate the quadratic

complexity of the model. This is due to the fact that Steps 2, 3, and 4 of Algorithm

1 are performed only once per execution, with the main focus of this method being

on optimization (specifically Steps 1 and 5). As a result, DAG-WGAN+ exhibits a

behavior more consistent with a linear growth in the duration of time.

4.2.6 Ablation study

The author has conducted an additional ablation study to determine the impact of

various aspects of the model on the results of causality learning. These experiments

encompass: 1) Comparing model training with the generative adversarial loss (Wasser-

stein distance) against training solely with the reconstruction loss (referred to as w/o

GAN) to assess the role of generative adversarial training; 2) Contrasting model train-
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ing with and without the encoder in the model architecture (referred to as w/o AE) to

evaluate the contribution of the encoder; 3) Introducing an extra step to achieve a final

approximate solution (referred to as 6 steps - for further details, see Efficient causal

structure learning with DAG-NoCurl in Section 4.1.3); 4) Analyzing model training

with and without considering the mutual information between data and latent vari-

ables to understand the impact of the MMD loss (referred to as w/o MMD); and

5) Implementing model training as described in Section 4.1.3 (referred to as default

case). The study was carried out using the Sachs dataset [21].

Table 4.23: Ablation Studies conducted on our model with Sachs Dataset

Model
Sachs Datatset

SHD / Time Estimation

w/o GAN 25 (00:03:00)
w/o AE 22 (00:02:51)
6 steps 19 (00:03:11)

w/o MMD 16 (00:03:05)
default case 15 (00:03:09)

4.2.7 Data quality

The data reconstruction capabilities of DAG-WGAN+ have also been investigated. To

achieve this, the author replicated the ’dimension-wise’ and completeness experiments

as detailed in the Data Quality segment of Section 3.2.3 using the same datasets to en-

sure a fair comparison between DAG-WGAN+ and its predecessor. This experimental

setup also enables the assessment of the impact of MMD on the data reconstruction

process. The results in terms of recovered causal graphs, correlation matrices, feature

importance, and data integrity remain consistent and are not provided in this section;

readers are directed to the Data integrity analysis of DAG-WGAN for more details.

Regarding data diversity, a slight advantage is observed in favor of DAG-WGAN+, as

illustrated in Figure 4.1.
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Figure 4.1: Real and synthetic feature distributions (x3,x4), in the case SHD = 0 (left)
and when SHD is farthest away from 0 (right)

4.3 Result Analysis

The outcomes presented in Section 4.2 illustrate the capability of DAG-WGAN+ to

compete against and surpass the current leading methods in causal structure learning.

Specifically, Tables 4.1 - 4.3 demonstrate the superiority of the model over all other

approaches in every scenario (linear, non-linear-1, and non-linear-2) when working with

high-dimensional continuous data under the assumption of the Additive Noise Model. It

is only surpassed by GraN-DAG [36] and VI-DP-DAG [49] in the case of low-dimensional

data. Moreover, as indicated by the findings in Tables 4.4 and 4.5, DAG-WGAN+ excels

over its competitors in all instances (post-non-linear-1 and post-non-linear-2) under the

assumption of the Post-Nonlinear Model.

The outcomes of the vector experiments illustrated in Tables 4.6 - 4.10 demon-

strate that DAG-WGAN+ outperforms other methods when utilized with vector data,

irrespective of the assumed structural equation model. The approach of the author

consistently generates the most accurate DAG compared to all other approaches ex-

amined in the experiment, in various dimensions and cases. Similar to the continuous

data study, the difference in accuracy between DAG-WGAN+ and its rivals becomes

105



Chapter 4. Efficient Generative Adversarial DAG-Structure Learning

more apparent as the size of the data variables increases.

The proposed method also surpasses all other models evaluated in the benchmark

and real-world experiments. The findings presented in Table 4.11 indicate that, when

applied to the Child, Alarm, Hailfinder, and Pathfinder datasets, DAG-WGAN+ suc-

cessfully reconstructed the most accurate causal structures. Similarly, the data in Table

4.12 demonstrate that DAG-WGAN+ exhibited superior performance in terms of both

accuracy and computational efficiency on the Sachs dataset [21]. Moreover, the timings

documented in Tables 4.13 - 4.22 reveal a consistent pattern where the model identifies

accurate graphs significantly faster than any other cutting-edge method examined in

the research, often by orders of magnitude.

The reconstructed data exhibits outstanding quality as well. In particular, the

’dimension-wise’, feature importance and correlation experiments produce consistent

results with those in the Data Integrity segment of Section 3.2.3. The key distinction

is the variety in the reconstructed samples, a result of utilizing DRL in the training

process. As illustrated in Figure 4.1, there is a minor increase in the standard deviation

of the distribution of reconstructed data, leading to a slightly less precise but still

satisfactory and more diverse reconstruction outcome.

Last but not least, the results of the ablation study reveal the optimal config-

uration of loss terms that form the objective function of the approach. The data in

Table 4.23 demonstrate that DAG-WGAN+ achieves the highest precision in recovering

DAG when trained using a sophisticated loss function that encompasses reconstruction,

adversarial, and MMD components. In essence, the efficient generative adversarial ap-

proach for learning DAG structures yields superior outcomes when compared to the

original DAG-WGAN model [75] across all experiments. Furthermore, it surpasses its

rivals in most scenarios and demonstrates the ability to produce results much quicker

than the current state-of-the-art methods, as it does not rely on the augmented La-

grangian continuous optimization technique during the training process.

Although DAG-WGAN+ demonstrates potential for combining efficient causal struc-

ture learning with disentangled representations and adversarial training, several limi-

tations arise when the model is applied to real-world data (e.g., Sachs dataset). Specif-
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ically, a major drawback is the lack of guaranteed semantic alignment. In practice,

unsupervised disentanglement often produces latent factors that are statistically in-

dependent but do not correspond to meaningful or interpretable real-world variables.

This reduces the practical utility of the representations for domains that require clear,

actionable insights. Another primary issue is the difficulty associated with evaluating

disentanglement in real-world contexts. Unlike synthetic benchmarks, where ground-

truth factors are known, real-world data rarely provide clear references for evaluating

how well the latent factors correspond to true causal variables.

On the efficient structure learning side, DAG-NoCurl relies on a linear projection

of the initial adjacency estimate to enforce acyclicity and refine the graph. While this

approach reduces computational complexity, it struggles to capture the nonlinear de-

pendencies, noise, and latent confounding commonly present in real-world data. As a

result, the inferred causal graph may include spurious edges or omit true causal rela-

tionships, limiting the reliability and interpretability of the learned structure. Together,

these challenges highlight that, while DAG-WGAN+ provides a powerful framework for

integrating fast causal discovery, disentangled representation learning and adversarial

training, its practical applicability remains constrained in complex, noisy, and partially

observed real-world settings.

Furthermore, based on the experiments conducted, DAG-WGAN+ effectively tack-

les some of the issues of its predecessor concerning efficient usability, data quality, and

management of diverse data formats (e.g., vector data). However, several drawbacks

of the original DAG-WGAN model persist and are inherent in this updated approach

as well. The key challenges that still need to be resolved are: 1) simplicity of ar-

chitecture - This leads to discrepancies between data quality and causal discovery,

allowing the model to produce high-quality data while struggling to recover accurate

causal relationships; 2) causal generality - The specific SEM utilized in both the

inference and generative models of the Variational Autoencoder (VAE) component re-

strict causality learning to the semi-parametric assumptions of Additive Noise Models

(ANM), limiting its applicability to real-world scenarios; and 3) mixed data types -

Although the model can currently handle discrete and continuous data separately, it
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lacks the capability to manage both types simultaneously in a single dataset, making

it unsuitable for complex tabular datasets.

Future research will focus on overcoming the constraints outlined earlier. In partic-

ular, a promising direction to improve the disentangled representation component is the

introduction of mechanisms that promote semantic alignment between latent factors

and meaningful real-world variables, through weakly supervised learning or domain-

informed regularization. To that end, the author will employ more reliable evaluation

metrics that do not rely on known ground-truth factors, such as the Modularity and

Explicitness scores, DCI (Disentanglement-Completeness-Informativeness) framework,

Separated Attribute Predictability (SAP) score, Mutual Information Gap (MIG), or

Interventional Robustness Score (IRS), to assess disentanglement performance in prac-

tical scenarios.

Moreover, on the structure learning side, the author intends on extending the cur-

rent DAG-NoCurl framework beyond the linear projection of the initial adjacency esti-

mate, which will enable the model to better capture nonlinear dependencies and reduce

sensitivity to noise. The author also plans to expand the model to accommodate time-

series, mixed and incomplete data. The significance of DAG-WGAN+ in capturing

valuable latent features is crucial for understanding causal relationships in scenarios

with common causes among variables. Therefore, upcoming studies will explore the

capability of the model to tackle the issue of hidden confounders. Subsequent versions

of DAG-WGAN+ will have no specific SEM in their architecture. Additionally, they

are going to be enhanced with further experiments like sensitivity analysis and inves-

tigations into hyper-parameters to identify an optimal configuration that enhances the

performance of the approach.
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Nonparametric structure learning

with nonlinear causal models

This chapter begins with the author revealing the theory and implementation details

behind a novel Directed Acyclic Generative Adversarial Framework (DAGAF), designed

for joint poly-assumptive causal structure learning and generation of tabular datasets.

Specifically, the algorithm explores the application of the PNL model and its subsets,

which include LiNGAM and ANM. The recovered causality is utilized in tabular data

synthesis to investigate whether the following hypothesis holds: Is it possible to si-

multaneously learn an accurate approximation of the original causal mechanisms in a

probability distribution and apply them to define a synthetic distribution that produces

realistic data samples? Crucially, the author disentangles causality learning and tabular

data generation, eliminating the issues with parallel causal discovery and sample pro-

duction in a single model instance - for more information see Section 5.1. In addition,

a comprehensive theoretical analysis has been conducted to investigate the contribu-

tion of the loss terms involved in the training process of their framework and how its

identifiability is influenced by non-i.i.d., discrete or incomplete data. DAGAF has been

extensively evaluated against leading models in causal structure learning, with empirical

evidence indicating its effectiveness in identifying accurate causal approximations from

observational data under multiple structural causal model assumptions. Furthermore,

an in-depth analysis of the generated data reveals that DAGAF is capable of producing
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samples of remarkably high quality. The findings from the research conducted based

on this work have been published and can be found in Section 1.7.

5.1 DAGAF: A Directed Acyclic Generative Adversarial

Framework for joint Structure Learning and Tabular

Data Synthesis

The framework of the author is designed to produce synthetic samples by learning the

underlying generative process of input data. To accomplish this, DAGAF models a di-

rected acyclic graph (DAG) GA that captures the causal relationships within a dataset

χ, facilitating the synthesis of realistic samples with minimal loss of fidelity and di-

versity. Furthermore, the model not only yields testable results on synthetic data, but

also demonstrates performance on real-world datasets, as outlined in Section 5.2.3. The

objective of the approach is formalized as follows.

Goal: Given n i.i.d. observations X ∼ P (X) ∈ χ, the framework models GA ≈ G0
A ∈

D to learn the set of structural equations F = {f1, ...fd}, such that X̃j := fj(Paj ,Zj)

results in X̃ ∼ PGA
(X̃) ∈ χ̃ matching the input.

Initially, the author attempted to achieve this goal by performing simultaneous

causal structure learning and adversarial data generation all within a single model in-

stance. This approach proved challenging, as it required the application of loss terms

(namely Mean Squared Error (MSE) and Wasserstein Distance (WD)), which are prac-

tically incompatible within the context of causality-based adversarial data generation.

On the one hand, MSE is essential for causal discovery, but applying the reconstruction

loss directly to adversarial training could limit the range of noise needed to generate fake

samples, causing significant latent collapse. Conversely, relying solely on the adversar-

ial loss to create fake data can hinder causality modeling, resulting in noisy structures.

To overcome these limitations, the author employs a framework based on a divide-

and-conquer approach, involving transfer learning to distribute responsibility across
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multiple model instances established over a sequence of steps. In summary, an SCM

models causal mechanism approximations to describe the structure of the observational

data distribution. This causality is then transferred into a DGM, which produces tab-

ular data by emulating the generative process of the observational samples. Figure 5.1

offers a visual representation of the framework pipeline utilized by the model of the

author.

Section 5.1.1 elaborates on Step 1, focusing on the recovery of causal structures

from X. Moreover, because the framework identifies causal structures by modeling the

underlying data generative process of X, it is inherently suitable for sample synthesis.

However, this involves an additional training phase (Step 2) requiring the develop-

ment of a separate Deep Generative Model (DGM) consisting of a discriminator and a

generator, as detailed in Section 5.1.3. For a comprehensive overview of the training

methodology, refer to Algorithm 2. The architecture and training approach of DAGAF

are thoroughly outlined in Section 5.1.4.

Algorithm 2 DAGAF training algorithm

Require: Sample n observational data points {X1, . . . ,Xn} from the training data and d noise vectors
{Z1, . . . ,Zd} from normal or uniform distributions. Generate n synthetic data samples {X̃1, . . . , X̃n}, with
data attributes X̃ := f(X) + Z, X̃j := fj(Paj) + Zj or X̃j := gj(fj(Paj) + Zj) depending on whether
LiNGAM, ANM or PNL is assumed.

Ensure: The acyclicity constraint value h(AL0 (f)) is higher than its tolerance of error h tol set to 1e-8. Each
step during training has its own instance of DAG-Notears-MLP. Causal information is transferred from the
SCM into the DGM architecture.

Step 1: Poly-assumptive causal structure learning
LiNGAM, ANM → learn f by minimizing a combination of loss terms including
adversarial loss (5.1), Mean Squared Error (5.2), Kullback-Lieber divergence (5.3),
Maximum Mean Discrepancy (5.4) and the acyclicity constraint from [38].
PNL → learn both f and g−1 by solving (5.8)
This step recovers a graph representation GA of the causal mechanisms in X

Step 2: Generative process simulation under multiple structural causal model assumptions
LiNGAM, ANM → learn f by computing (5.1)
PNL → learn f and g by finding the optimal value for (5.1)
This step models a generative process involving GA through adversarial training,
producing new data samples.

It is important to note that this framework does not assume any specific model

for each step. In fact, any combination of models is possible as long as the following

requirements are met:

1. An SCM is employed to learn a graph representation (i.e. an adjacency matrix)
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of causal structures from observational data with acyclicity enforced explicitly or

implicitly.

2. Causal knowledge is transferable in a meaningful representation from the first to

the second step.

3. A DGM performs tabular data synthesis using the discovered causal mechanisms

from the first step to generate new samples.

In the rest of this section, the author provides the implementation details of DAGAF

and discusses how it integrates within Algorithm 2.

Figure 5.1: Pipeline of the framework for joint causal discovery and tabular data synthe-
sis. Initially, the modeling of the underlying mechanisms describing the observational
distribution is performed through a process known as causal structure learning, result-
ing in an implicit graphical representation (weighted adjacency matrix) consisting of
model parameters. Afterwards, tabular data synthesis is achieved by simulating the
generative process of the input data by modeling each causal mechanism using parent
variables defined in the weighted adjacency matrix from the previous step. Weight
(parameter) transfer between model instances facilitates the communication of causal
knowledge between the two stages, making the framework heavily reliant on the ‘trans-
fer learning’ methodology.

5.1.1 Modelling causal structure approximations

The DAGAF framework is designed to approximate the underlying causal mechanisms

{fj(Paj ,Zj)} that generate the observed data X. According to the (semi) parametric

assumptions detailed in Section 2.1.4, each node Xj ∈ GA is defined as a function fj :

Rd → R. In this context, the general nonparametric form E[Xj |XPaj ] := EZ(fj(X,Z))

simplifies to one of the following models: (i) Linear non-Gaussian Acyclic Models
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(LiNGAM): X̃ := f(X) + Z, where f(X) is a linear function of X and Z represents

a non-Gaussian noise term that is independent of X; (ii) Additive Noise Models

(ANM): X̃j := fj(Paj) + Zj , where fj is a nonlinear function of the parent variables

Paj , and Zj is Gaussian and independent of fj(Paj); (iii) Post-Nonlinear Models

(PNL): X̃j := gj(fj(Paj) + Zj), where gj is a nonlinear function and Zj is Gaussian

and independent of fj(Paj).

In the initial phase of DAGAF training, the aim is to learn Directed Acyclic Graphs

(DAG) by computing an optimal solution to a sophisticated objective function that

blends together various loss terms relevant to causal structure learning. The basic

framework encompases the LiNGAM and ANM structural causal models, leveraging

adversarial training and a reconstruction loss supplemented by regularization terms

to facilitate the synthesis of X̃ from X. A key advantage of this framework is its

adaptability, enabling the basic approach to be extended to support causal discovery

under the PNL assumption without major difficulties. The enhanced form broadens the

functionality of DAGAF to include PNL by introducing an additional reconstruction

loss to model the parameters of the non-linear function gj .

Adversarial loss with gradient penalty

DAGAF simulates X by learning how to generate X̃ through approximations of the

causal mechanisms {fj(Paj ,Zj)} ∈ P (X). Instead of directly modeling X̃, the empha-

sis is placed on recovering the set of causal mechanisms F = {f1, . . . , fd}, where each fj

is expressed as fj(Paj ;W
1
j , . . . ,W

L
j ) + Zj (see Section 5.1.4 for details). This process

involves identifying the immediate parents of each variable, which are encoded within

the causal structure of X.

To achieve this, the framework of the author minimizes the Wasserstein distance

Wp(P (X), PGA
(X̃)) by applying adversarial training, which implicitly refines the causal

structure GA and facilitates the discovery of the underlying causal mechanisms. In DA-

GAF, adversarial training is formulated as a min-max optimization, where an SCM-

based generatorM learns to generate synthetic data to minimize the discrepancy mea-

sured by a discriminator D(.), while D(.) is trained to maximize Wp(P (X), PGA
(X̃)).
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As a result, DAGAF identifies causal relationships from observational data by learn-

ing both the reconstruction process and the distributional asymmetries of P (X). The

Wasserstein distance with gradient penalty loss term is defined as follows:

Ladv(X, X̃) = sup
∥ϕ∥L≤1

EX∼P (X)[ϕ(X)]− EX̃∼PGA
(X̃)[ϕ(X̃)]

= EX∼P (X)[D(X)]− EX̃∼PGA
(X̃)[D(X̃)]

+ EX̂∼P (X̂)[(||∇X̂D(X̂)||2 − 1)2],

(5.1)

where ϕ(X) is a 1-Lipschitz function used to approximate the Wasserstein distance

Wp(P (X), PGA
(X̃)). The function D(X) is trained adversarially to learn ϕ(X) and

distinguish between real X ∼ P (X) and generated samples X̃ ∼ PGA
(X̃).

Hence, computing the optimal solution for the loss term (5.1) across all samples from

the input and synthetic distributions results in overlap between P (X) and PGA
(X̃).

This ensures that the synthetic data X̃ becomes indistinguishable from the original data

X , effectively approximating its generative process - provided the causal structure in

GA is correctly identified.

Proposition 5.1.1. Let the ground-truth graph G0
A be the only structure that can

generate P (X), then, under the assumption of causal identifiability, applying adver-

sarial training ensures the following: 1) the implicitly generated distribution PGA
(X̃)

matches P (X) and 2) the causal graph GA used to define PGA
(X̃) is identical to G0

A.

Wp(P (X), PGA
(X̃)) = 0 =⇒ PGA

(X̃) = P (X) =⇒ GA = G0
A.

Proof. The proof of Proposition 5.1.1 is available in Appendix A.5.

Reconstruction with Mean Squared Error

To improve causal structure learning, the author incorporates a reconstruction loss to

the training algorithm of DAGAF. The choice of this particular loss term is predicated

upon the need for a suitable metric to assess the distance between P (X) and PGA
(X̃)

in the context of causal discovery. Previous research have investigated various metrics

for measuring distances between data distributions, including Wasserstein-1 [115] and
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maximum mean discrepancy (MMD) [67], among others. However, to prevent overpa-

rameterization which can skew the causality learning results further away from G0
A,

the author only approximates the means of both distributions, disregarding their unit

variance. In this context, the mean squared error (MSE) is considered an appropriate

reconstruction loss term.

LMSE(X, X̃) = EX,X̃(||X− X̃||2) =
1

n

n∑
i=1

d∑
j=1

||Xij − {fj(Paj ;W 1
j , ...,W

L
j ) + Zj}i||2

(5.2)

By optimizing the parameters of DAGAF using (5.2), the residual distance between

individual samples ||X − X̃|| is minimized, leading the framework to generate X̃ ∼

PGA
(X̃) by implicitly identifying the causal relationships of X encoded in GA. This

reconstruction process effectively leads to a more accurate representation of the causal

mechanisms underlying X.

Proposition 5.1.2. Incorporating a reconstruction loss term into adversarial training

ensures that the distance between individual data points from both synthetic PGA
(X̃)

and observational P (X) data distributions is minimized. This reduction in noise pre-

vents significant gradient fluctuations, resulting in more stable adversarial convergence.

min
GA∈D

LMSE(X, X̃) = 0⇒ ∀i, X̃i = Xi

Proof. The proof of Proposition 5.1.2 is available in Appendix A.6.

The experiments of the author highlight the significance of the MSE loss in DAG

learning. This observation is consistent with the majority of existing studies in the

field, which predominantly employ MSE as their loss function of choice.

Kullback–Leibler Divergence

Utilizing MSE as a reconstruction loss can result in overfitting to X and lead to inac-

curacies in identifying the causal mechanisms within the generative process of X̃. To

mitigate this issue, the author incorporates Kullback–Leibler divergence (KLD) [58]
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as a regularization term. Commonly applied in Variational Autoencoders (VAE),

the KLD is a standard component of the Evidence Lower Bound (ELBO) loss func-

tion for latent variable regularization. It is defined as DKL

(
N (µ, σ2)∥N (0, 1)

)
=

1
2

∑n
i=1

(
σ2i + µ2i − log(σ2i )− 1

)
, where µ and σ denote the mean and standard devi-

ation of X̃. During DAGAF training, this term is used to regularize X̃. Furthermore,

since the model is designed to model only the mean of PGA
(X̃) and sets its variance

to 1, the regularization function simplifies to:

LKLD(X, X̃) = DKL(P (X)||PGA
(X̃)) =

1

2

n∑
i=1

(µ2i ). (5.3)

The author incorporates the Kullback–Leibler divergence (KLD) as a regularization

term for X̃, the model-generated data, to emulate an additive noise scenario where noise

is introduced to each data point. This application of KLD encourages the model to

generate X̃ that closely resembles the true data distribution while accounting for the

variability introduced by noise. This approach prevents overfitting by ensuring that the

generated data captures the natural variations of the real data, resulting in more robust

and realistic samples. Since the model is designed to learn causal mechanisms, this

regularization technique also helps prevent it from inferring incorrect causal structures,

such as mistakenly identifying child nodes as parent nodes.

Proposition 5.1.3. The LKLD(X, X̃) regularization imposes a statistical prior on

PGA
(X̃), ensuring that the learned distribution remains close to a predefined Gaus-

sian. Moreover, it enhances optimization stability, particularly under additive Gaussian

noise, by preventing PGA
(X̃) from deviating excessively from a normal distribution,

mitigating erratic behavior. By complementing adversarial and MSE losses, it ensures

both the alignment and smoothness of PGA
(X̃).

Proof. The proof of Proposition 5.1.3 is available in Appendix A.7.

Note that this does not apply to the LiNGAM causal model because, under that

specific assumption, the noise term Z is non-Gaussian.
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Maximum Mean Discrepancy

The reconstruction loss and its regularization term focus exclusively on capturing the

mean of P (X), neglecting its variance. This oversight makes the reconstruction process

in DAGAF particularly sensitive to rare events or outliers in P (X). To resolve this issue,

the author further minimizes the residual discrepancy between the input distribution

X ∼ P (X) and the generated data distribution X̃ ∼ PGA
(X̃) by incorporating the

Maximum Mean Discrepancy (MMD) metric [67]. The kernel trick [254] is employed

to efficiently compute the solution for this approach.

LMMD(X, X̃) = ||EX∼P (X)[k(X)]− EX̃∼PGA
(X̃)[k(X̃)]||2H

=
1

n

n∑
i ̸=j

k(Xi,Xj)−
2

n

n∑
i ̸=j

k(Xi, X̃j) +
1

n

n∑
i ̸=j

k(X̃i, X̃j),
(5.4)

where H denotes the reproducing kernel Hilbert space (RKHS) and k ∈ H is a kernel

function.

The MMD maximizes mutual information between P (X) and PGA
(X̃), ensuring

the two distributions match in both their means and overall shapes. By aligning their

shapes, the MMD term also helps to reduce discrepancies in their variances. Therefore,

applying (5.4) indirectly models the standard deviation of PGA
(X̃), addressing latent

collapse in X̃ and discovering the causal mechanisms that generate its outliers.

Proposition 5.1.4. Minimizing the Maximum Mean Discrepancy (MMD) loss term

LMMD(X, X̃) encourages the alignment of higher-order moments between the input dis-

tribution P (X) and the synthetic distribution PGA
(X̃), which supports the adversarial

loss in achieving overall distributional alignment.

Proof. The proof of Proposition 5.1.4 is available in Appendix A.8.

The ablation study conducted in support of DAGAF confirms that incorporating

the MMD term, as introduced in DAG-GAN [37], contributes to causal discovery.
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Model training under the Post-Nonlinear SCM assumption

Up to this point, the author has explored the loss terms computed for the LiNGAM

and ANM scenarios, where the model output X̃ is synthesized using causal mechanism

approximations X̃ := f(X) + Z or X̃j = fj(Paj) + Zj . These generated samples

are modeled to resemble the training data X by minimizing ||P (X) − PGA
(X̃)||. A

significant strength of DAGAF lies in its adaptability, enabling it to be extended for

handling Post-Nonlinear Models (PNL).

Post-Nonlinear Models (PNL) play a vital role in causal discovery by providing a

more realistic framework for capturing non-linear causal relationships in observational

data. Additionally, PNL is regarded as a broader, more general framework that includes

other identifiable models, such as ANM [240] and LiNGAM [31], as special cases.

Xj := gj(fj(Paj) + Zj), ∀j,Zj ⊥⊥ fj(Paj) (5.5)

Without loss of generality, the author rearranges (5.5) into

Zj = g−1j (Xj)− fj(Paj), (5.6)

where g−1 is the inverse of g. Under this setting (from the rearranged equation), the

problem has been broken into two parts, which are to learn f(·) and g−1(·) respectively.

The process of learning f(·) remains the same as in the ANM and LiNGAM cases,

as outlined in the previous sections on loss terms. However, learning g−1(·) represents

a unique step specific to the PNL case. In practice, these functions g−1(·) and f(·) are

implemented using two separate neural networks, where f(·) follows the same approach

as before, and g−1(·) is modeled as the inverse of a general MLP. Moreover, the train-

ing procedure incorporates an additional Mean Squared Error (MSE) term, which the

author defines as follows:

LPNL(X̂, X̃) = MSE(X̂, X̃) =
1

n

n∑
i=1

d∑
j=1

||g−1j (Xj)i − fj(Paj)i||2, (5.7)

where X̂ is the output of g−1.

118



Chapter 5. Nonparametric structure learning with nonlinear causal models

It is important to highlight that the loss terms from the previous sections, where

f(.) serves as the final output of the model, can also be applied in the PNL case due

to the use of skip connections, similar to those in ResNet. Although f(·) is not the

final output in the PNL setting, DAGAF can bypass the final function g(·), effectively

allowing the same loss terms to be used as in the ANM and LiNGAM cases. For further

details on skip connections, refer to [255].

Causal structure acyclicity

Finding optimal values for the reconstruction and adversarial loss terms does not ensure

that GA will be acyclic. Additionally, explicit acyclicity constraints, such as those used

in [12] and [48], fail due to the implicit nature of the contents in GA. This means

that to prevent cycles in the learned causal structures, the author applies the implicit

acyclicity constraint from [38], defined as h(AL0(f)) = 0, where AL0 ∈ Rd×d represents

the weighted adjacency matrix implicitly defined by the model weights. Further details

are available in Section 2.4.3.

5.1.2 Causal identifiability

Discovering GA from X does not necessarily guarantee that its content accurately rep-

resents the causal mechanisms underlying the observational data. Theory suggests that

a qualitative approximation of F = {f1, . . . , fd} depends on whether it is determined

to be a unique set of structural equations capable of producing samples that closely

resemble X [256]. Considering this, the author assumes identifiable causal models (refer

to Definition 1) and shows that the generative process of X can be replicated through

end-to-end optimization.

More specifically, the author demonstrates that, when identifiable models are ap-

plied, the global minimum of the distance ||P (X) − PGA
(X̃)|| can only be achieved

if the true causal structure is correctly identified, leading to P (X) = PGA
(X̃). For

further details, see Section A.4.

As previously mentioned, DAGAF applies several types of models, including: Linear

non-Gaussian Acyclic Models (LiNGAM), Additive Noise Models (ANM), and Post-
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Nonlinear Models (PNL). It has been demonstrated that each of these models is causally

identifiable under certain assumptions.

• LiNGAM: The causal identifiability of Linear non-Gaussian Acyclic Models

(LiNGAM) is assured when the noise terms are assumed to be non-Gaussian. In

particular, if the noise variables are non-Gaussian and independent of X, it has

been proven that the underlying causal structure can be uniquely identified [31].

• ANM: Additive Noise Models (ANM) assume that the noise term Zj is indepen-

dent of the parent variables Paj . This assumption of independence allows for the

identification of the causal direction between variables. Furthermore, the function

fj(·) must be non-linear and three times differentiable to guarantee that apply-

ing this model leads to a unique identification of the causal direction between

variables [98].

• PNL: Post-Nonlinear Models (PNL) build upon the ANM framework by adding

an additional non-linear transformation, gj(·), after the function fj(·). The key

assumptions for identifiability in PNL include the independence of the noise terms

and the non-linear, invertible nature of the function gj(·). With these conditions

in place, the causal structure can be identified, even when complex non-linear

interactions are present [32].

Furthermore, the theoretical analysis supporting the DAGAF framework demon-

strates that, under the assumptions of LiNGAM, ANM, and PNL, the learnable DAG

model GA is identifiable.

Proposition 5.1.5. Assuming the Additive Noise Model (ANM), Linear non-Gaussian

Acyclic Model (LiNGAM), or Post-Nonlinear Model (PNL), there is a unique DAG G0
A

that defines the observed joint distribution P (X).

Proof. The proof of Proposition 5.1.5 is available in Appendix A.9.

Corollary 5.1.5.1. According to Proposition 4.1.2 and Lemmas A.9.1, A.9.2 that

constitute the proof of Proposition 5.1.5, the uniqueness property of GA enables the

author to reconstruct the generative process of X.
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Corollary 5.1.5.1 indicates that, given the causal model assumptions applied in

DAGAF, the author can generate synthetic data samples that maintain the original

causal structures, which is only achievable if GA = G0
A. Therefore, this means that

the implicitly generated distribution PGA
(X̃) matches the observed distribution P (X).

Thus, it has been established that a single unique DAG can accurately represent the

probability distribution of both the input and the synthetic data.

It should be noted that the analysis assumes the data is continuous and follows an

independently and identically distributed (i.i.d.) pattern. The author acknowledges

this as a limitation since such conditions are rarely encountered in real-world datasets.

Therefore, the author examines the performance of the loss terms used to train DAGAF

under more challenging scenarios, including cases with non-i.i.d. data, missing values,

and discrete variables.

Impact of Non-i.i.d. Conditions on Causal Identifiability

Consider a scenario with real-world data, where the samples {X1, ...,Xn} are not in-

dependent (i.e., there exist correlations between Xi and Xj) and each sample belongs

to a different heterogeneous distribution Pi(X). In such a context, the empirical distri-

bution P ′(X) does not accurately represent the true distribution P (X), which in turn

affects the optimization process.

More specifically, the author assumes that both the true distribution and the

implicitly generated distribution can be expressed as P ′(X) = P (X) + δ(X) and

P ′GA
(X̃) = PGA

(X̃)+δ(X̃), where the terms δ(X) and δ(X̃) reflect deviations from the

i.i.d. assumptions. Under these conditions, the author investigates whether the iden-

tifiability associated with the loss terms applied in the objective function of DAGAF

holds or breaks down.

1) Adversarial Loss and Identifiability: When the data are not i.i.d., the adver-

sarial loss becomes:

L′adv(X, X̃) = D(P ′(X)||PGA
(X̃)).
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For GA to remain identifiable, δ(X) must not interfere with the optimization of

Ladv(X, X̃,GA). However, if δ(X) introduces spurious dependencies between vari-

ables (e.g., time-series correlations), then GA may include additional edges. More-

over, if δ(X) skews the marginal distributions P ′(Xi), the inferred functional relation-

ships X̃j = fj(Paj) + Zj or X̃j = gj(fj(Paj) + Zj) may no longer match the true

ones. Therefore, in the non-i.i.d. data case, the learned graph GA is minimizing

D(P ′(X)||PGA
(X̃)), which may differ from the true graph G0

A, due to the bias δ(X).

In the case described above, the bias term δ(X) impacts the gradient of this loss,

which is defined as follows:

∇ϕL′adv(X, X̃) = ∇ϕD(P (X)||PGA
(X̃)) +∇ϕD(δ(X)||PGA

(X̃)).

The additional term, ∇ϕD(δ(X)||PGA
(X̃)), may destabilize optimization by introduc-

ing unintended gradient components due to data dependencies or heterogeneity, as well

as by amplifying the sensitivity to noise.

Therefore, the violation of i.i.d. assumptions introduces a bias δ(X) in the empirical

distribution P ′(X), which impacts the identifiability of G0
A through the adversarial loss.

This can lead to spurious dependencies, overfitting GA to noise or correlations, leading

to averaging out domain-specific causal structures, which can reduce the uniqueness of

GA.

2) Mean Squared Error Loss and Identifiability: Under non-i.i.d. conditions,

the mean squared error loss is modified as follows:

L′MSE(X, X̃) = LMSE(X, X̃) + δ(X).

If δ(X) induces correlations between samples Xi and Xj , this disrupts the assump-

tion that the noise terms Zj are independent. Therefore, the altered MSE loss term

L′MSE(X, X̃) might erroneously capture false patterns across samples, leading the out-

put of fj(Paj) to fail in representing the true functional relationship.

Additionally, heterogeneous distributions Pi(X) imply that Xj and Paj may fol-

low varying conditional relationships. This causes L′MSE(X, X̃,GA) to average over
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different functional relationships fj(.), losing the specificity of fj(.). This can have

ramifications in the form of the learned graph GA failing to reflect the true causal

structure G0
A, as the functional forms are no longer consistent across samples.

Furthermore, the above statement is also supported by investigating the gradient

of L′MSE(X, X̃) with respect to θ is:

∇θL′MSE(X, X̃) = ∇θLMSE(X, X̃) +∇θδ(X).

The additional term ∇θδ(X) destabilizes optimization by introducing misleading gradi-

ents caused by sample dependencies and noise arising from heterogeneity. As a result,

the optimization process becomes more sensitive to initialization and hyperparameter

choices, ultimately reducing the reliability of convergence.

3) Kullback-Leibler Divergence Loss and Identifiability: Under non-i.i.d. con-

ditions, the author defines the empirical KLD subject to the application of a first-order

Taylor expansion P (Xi) using the following expression:

L′KLD(X, X̃) =
1

n

n∑
i=1

log
PGA

(X̃i)

P ′(Xi)
=⇒

L′KLD(X, X̃) ≈ LKLD(X, X̃)− 1

n

n∑
i=1

δ(Xi)

P (Xi)

The ratio δ(Xi)
P (Xi)

introduces bias, especially when δ(Xi) varies considerably among sam-

ples. This bias distorts the optimization of PGA
(X̃), potentially resulting in an ap-

proximate distribution that diverges from P (X).

Further evidence in support of the above is reflected in the gradient for the KLD

loss term, defined as follows:

∇θL′KLD(X, X̃) ≈ ∇θLKLD(X, X̃)−
∫
∇θPGA

(X̃)
δ(X)

P (X)
dX.

The additional term
∫
∇θPGA

(X̃) δ(X)
P (X)dX introduces noise into the gradients, decreas-

ing optimization stability. This can create misleading directions in the parameter space,
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making it more difficult to converge to the true distribution P (X).

More specifically, dependence among samples causes correlated gradients, leading to

oscillations or poor convergence during training. Heterogeneity in distributions results

in gradients that do not align with the true target distribution, further destabilizing

the learning process. Therefore, the KLD term is minimized when PGA
(X̃) = P (X)

under i.i.d. assumptions. Non-i.i.d. effects, however, can lead to multiple minima or

local optima, reducing the identifiability of P (X).

4) Maximum Mean Discrepancy Loss and Identifiability: Due to perturbations

introduced by the non-i.i.d. term ∆, the author defines the empirical MMD term as:

L′MMD(X, X̃) ≈ LMMD(X, X̃) + ∆ s.t

∆ =
1

n

n∑
i ̸=j

∆P (X)(Xi,Xj)

− 2

n

n∑
i ̸=j

∆P (X),PGA
(X̃)(Xi, X̃j)

+
1

n

n∑
i ̸=j

∆PGA
(X̃)(X̃i, X̃j),

where expanding each kernel function k(.) associated with the loss term yields a set of

equations.

k(Xi,Xj) = k(P (Xi), P (Xj)) + ∆P (X)(Xi,Xj),

k(Xi, X̃j) = k(P (Xi), PGA
(X̃j)) + ∆P (X),PGA

(X̃)(Xi, X̃j),

k(X̃i, X̃j) = k(PGA
(X̃i), PGA

(X̃j) + ∆PGA
(X̃)(X̃i, X̃j),

The terms ∆P (X)(Xi,Xj), ∆P (X),PGA
(X̃)(Xi, X̃j) and ∆PGA

(X̃)(X̃i, X̃j) represent per-

turbations due to non-i.i.d. effects. Due to the inclusion of the ∆ term, the empirical

MMD estimate becomes biased, and as a result, it might not converge to the true

population MMD even when the sample size n goes to infinity.

This is also theoretically implied in the gradient of L′MMD(X, X̃) with respect to

model parameters θ, which is defined as follows:
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∇θL′MMD(X, X̃) = 2

(
EX,X′∼P ′(X)[∇θk(X,X′)]− EX∼P ′(X),X̃∼P ′

GA
(X̃)[∇θk(X, X̃)]

)
.

The extra perturbations ∆P (X), ∆P (X),PGA
(X̃), and ∆PGA

(X̃) add noise to the gradient

computations, which may destabilize the optimization process and hinder convergence.

Therefore, under i.i.d. assumptions, minimizing MMD ensures P (X) = PGA
(X̃).

However, under non-i.i.d. conditions, the perturbed kernel computations may lead to

local optima where P ′(X) ̸= P ′GA
(X̃).

DAG identifiability in Discrete Variables

Even though models such as Additive Noise Models (ANM), LiNGAM, and Post-

Nonlinear Models (PNL) are identifiable in continuous settings, their DAG are not

necessarily unique in discrete settings due to symmetry and observational equivalence

between different causal structures in the discrete domain.

In the discrete framework, different DAG can lead to identical joint distributions,

making it challenging to uniquely pinpoint the true DAG G0
A. For example, consider

two structurally distinct DAG, G1
0
A1

and G2
0
A2

, which nevertheless yield the same joint

distribution. In such discrete settings, the symmetry inherent in causal relationships

means that actions such as reversing the direction of edges or reparameterizing certain

dependencies do not alter the resulting joint distribution. More formally, this can be

expressed as:

P (Xi | Pa(Xi)) = P (Xj | Pa(Xj)) for some (Xi, Xj)

s.t Xj ∈ Pa(Xi) or Xi ∈ Pa(Xj).

If the functional forms fj and fk are linear or have similar forms (e.g., fj = WjXk +

Bj), the reparameterization of the weights (e.g., Wj) or the reversal of causal edges

(e.g., from Xj → Xk to Xk → Xj) may result in the same conditional distributions

P (Xj |Xk). Therefore, for DAG G1
0
A1

and G2
0
A2

, the following holds:

P (X1|X2) = P (X2|X1) for certain values of X1, X2
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This symmetry ensures that the conditional distributions in both DAG are identi-

cal. Consequently, in the discrete setting, the identifiability of the DAG is compromised

because the conditional distributions remain equivalent, despite differences in the un-

derlying structural graph.

Impact of Missing Data

Real-world datasets often contain significant missing data, which can affect the iden-

tifiability (uniqueness) of the causal structure under the Post-Nonlinear (PNL) model

or other causal discovery frameworks. In the remainder of this section, the author

examines the effects of missing data on DAG identifiability.

Missing data in a real-world dataset may be caused by different mechanisms, in-

cluding: 1) Missing Completely at Random: If the probability of missingness is

unrelated to any variable in the dataset, it simply reduces the sample size. Identi-

fiability may still hold with sufficient remaining data. However, smaller sample sizes

weaken statistical patterns. 2) Missing at Random: If the probability of missingness

depends only on observed variables, biases may be introduced into conditional inde-

pendence tests and noise independence checks. DAG discovery remains theoretically

identifiable if robust imputation is used. Practical performance may still suffer due to

bias. 3) Missing Not at Random: This the most problematic type of missingness.

It depends on unobserved or missing variables and, therefore, the dataset is no longer

representative of the true causal structure. Identifiability often fails because dependen-

cies in the observed data may not reflect the true DAG. Additionally, hidden biases

introduced by missingness can also create spurious relationships.

The uniqueness of the true DAG G0
A critically depends on accurately testing condi-

tional independence (for instance, verifying that Zj ⊥⊥ Paj in the PNL model), missing

data undermines the statistical strength of these tests. Losing significant portions of

data can lead to conditional independence tests that are unreliable or incorrect. Ad-

ditionally, imputation methods or biased sampling might introduce false dependencies

or independencies. Since models like ANM, LiNGAM, and PNL assume that the noise

term Zj is independent of the set of parent variables (Zj ⊥⊥ Paj), missing data can
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obscure or distort the observed relationships, making it challenging to distinguish noise

from the contributions of the model.

Furthermore, it is assumed that the functional forms fj (nonlinear for ANM and

linear for LiNGAM) and gj (nonlinear for PNL) are either known or can be learned.

However, the incomplete nature of real-world data often breaks this assumption. Specif-

ically, missing data can bias the noise estimates Zj , disrupting the independence of

residuals. In the case of LiNGAM, this makes testing for non-Gaussian noise even

more challenging.

The ability to identify the correct model depends on accurately estimating the

marginal distributions. When data is incomplete, especially, if parent variables or

structural nodes are missing more frequently, these estimates can be significantly dis-

torted.

5.1.3 Simulating data generative processes

In the second stage of Algorithm 2, the focus shifts to generating realistic tabular data

samples using the causal graph GA obtained from Step 1. This data generation process

relies on a separate instance of the SCM M used during the causal discovery phase,

referred to here as the generator G. Causal knowledge is transferred between SCM

instances by loading WL0 from M to L0 ∈ G. To facilitate tabular data synthesis,

the architecture of the generator is augmented with an additional noise vector Z =

{Z1, . . . ,Zd}, sampled from N (0, 1).

In this step, the models are trained adversarially to ensure that PGA
(X̃) closely

matches P (X). Specifically, the generator network G produces synthetic samples while

competing with a discriminator D : Rd → R, which aims to distinguish between syn-

thetic and real observational samples. The training process leverages the Wasserstein-1

distance with a gradient penalty, enabling the Deep Generative Model (DGM) to pro-

duce realistic samples that are indistinguishable from X. The loss function used is the

same as Equation (5.1).

More precisely, the transferred weights WL0 form A ∈ L0 ∈ G, which is then subse-

quently thresholded to form a binary mask M that specifies parent–child relationships.
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This mask is then used to define a set of dynamically instantiated locally connected

layers, where each node-specific layer fj(.) receives only its parent variables Paj as

inputs to define X̃j = fj(Paj ,Zj), Paj = {i : Mij = 1}. This guarantees the global

causal structure inferred from A is transferred into the set of locally connected layers,

while making sure that each layer models only causally relevant dependencies

Furthermore, each connected layer α(Lj) ∈ {α(L1), . . . , α(Ld)} is treated as an

individual generator Gj(Zj) ∈ {G1(Z1), . . . , Gd(Zd)}. This allows each causal mecha-

nism fj ∈ {f1, . . . , fd} to be modeled such that X̃j is generated in one of three forms:

X̃ := G(X) + Z, X̃j := Gj(Paj) + Zj , or X̃j := gj(Gj(Paj) + Zj), depending on

the assumed model - LiNGAM, ANM, or PNL, respectively. In this way, a synthetic

tabular dataset X̃ ∈ χ̃ ⊆ Rn×d = F(Z) = fj(Paj ,Zj) is generated.

During training, only the parameters W = {W 1, . . . ,WL} of the locally connected

hidden layers are updated. The weights of L0 are not modified to preserve the structural

equations F used to produce X̃.

The experiments described in Section 5.2.4 indicate that the DGM employed by

the author can produce high-quality data under both the ANM and PNL structural

assumptions.

5.1.4 Model architecture and training specifications

Figure 5.2 illustrates the overall architecture of the DAGAF framework. In Figure 5.2a,

the ANM and LiNGAM settings are depicted, where the input data X is transformed

by function f to generate X̃. The optimization process is governed by multiple loss

terms: Ladv(X, X̃), LMSE(X, X̃), LKLD(X, X̃), and LMMD(X, X̃), with LKLD(X, X̃) be-

ing omitted in the LiNGAM case. Figure 5.2b expands upon Figure 5.2a by integrating

the PNL model. The right-hand pathway remains consistent with Figure 5.2a, while

an additional left-hand pathway applies g−1 to invert X. This inversion is involved in

computing LPNL(X̂, X̃), which is then combined with the loss terms from the right-

hand pathway, forming a unified optimization framework. Figure 5.2c illustrates the

data generation process used to create synthetic data, showcasing how the framework

enables structured data synthesis.
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The author adopts the Multi-Layer Perceptron (MLP) from [38] as the Structural

Causal Model (SCM)M to represent f during the causal structure learning step. This

MLP consists of two main components: (i) an initial linear layer, L0, which implicitly

defines the causal graph GA and enables the modeling of causal structures, and (ii)

a set of locally connected hidden layers, L = {α(L1), ..., α(Ld)}, where α applies a

nonlinear transformation to each layer. These hidden layers are designed to learn an

accurate approximation of the causal mechanisms F = {f1, ..., fd} within GA.

In contrast, g is a general-purpose MLP consisting of five linear layers arranged as

[d - 10d - 10d - 10d - d] (one input layer, three hidden layers, and one output layer),

with nonlinearity applied via the ReLU activation function (used specifically in the

PNL case). Figure 5.2 provides an overview of this architecture.

More specifically, each feature in X is modeled by a neural network with L hidden

layers, represented as fj(Paj ,Zj ;W
1
j , ...,W

L
j ) for j ∈ [1, d], where W l

j represents the

parameters of the lth layer. Let W
(0)
j ∈ Rh×d denote the weight matrix in L0 connecting

to the local neural network modeling Xj , where h is the latent size and d is the number

of input variables. For any pair of variables Xj and Xk, the Ridge regression norm of

the weights connecting Xk to all latent units in the network for Xj is calcualted as:

Ajk =
∥∥∥W (1)

j,k,:

∥∥∥
2

=

√∑h
m=1

(
W

(1)
j,k,m

)2
, where W

(1)
j,k,m represents the weight connecting

the k-th input variable Xk to the m-th latent unit in the first layer of the network for

Xj .

During training, a learning rate of 3×10−3 is used, along with a batch size of 1000.

Ridge regression regularization is incorporated in both steps by setting the weight decay

for both discriminators to 1× 10−6. The models in DAGAF are optimized iteratively,

with their parameters updated using gradient descent.

The adversarial loss is applied to the reconstructed distribution PGA
(X̃), meaning

that no noise vector is used during training in the causal structure learning step. Once

the parameters in AL0 are updated, AL0 is converted into GA through a post-processing

step: GA =
√

AL0(f), where w2jk ∈ AL0(f), followed by thresholding at a value of

0.3, as recommended by prior works such as DAG-GNN [35], GAE [39], and others.

These final steps are essential to recover the weights wjk ∈ GA from AL0(f) and to
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Figure 5.2: A Visual Representation of DAGAF. (a) The optimization structure under
ANM and LiNGAM, where input data is processed to reconstruct X̃ using multiple loss
terms, excluding LKLD in the LiNGAM case. (b) The extended framework integrating
ANM, LiNGAM, and PNL, where an additional inversion function g−1 is introduced
to compute LPNL, unifying the optimization process. The dashed line signifies the skip
connection. When PNL is not assumed the advanced form of the framework reverts
back to its basic form capable of handling only ANM and LiNGAM by solely learning
f . (c) The synthetic data generation process, illustrating how the framework enables
structured data synthesis while preserving underlying causal relationships.

minimize false discoveries in GA.

To learn g−1 for the PNL case, the architecture and training procedure of g are

reversed so that X̃ serves as the input to reconstruct the original X. However, since

g is a general model, inverting its architecture does not require any changes to its
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configuration. Therefore, the focus is placed solely on the training algorithm.

Remark. The output data X̃ from Step 1 is used exclusively for calculating the loss

terms during training and is then discarded. This is because the reconstruction loss

employed to learn the causal structure of X greatly restricts the range of the generated

samples, producing X̃ with high fidelity but limited diversity.

The training process is formulated as a constrained continuous optimization prob-

lem due to the need to simultaneously update the model weights and the parameters

associated with the acyclicity constraint. To address this, the author adopts a modified

version of the augmented Lagrangian method [47], as utilized in DAG-Notears-MLP.

The complete training objective for Step 1 is defined as follows:

LREC(X, X̃) =
1

n

n∑
i=1

||Xi − X̃i||2︸ ︷︷ ︸
Mean Squared Error

+
1

2

n∑
i=1

(µ2i )︸ ︷︷ ︸
KL Divergence

+
1

n

n∑
i ̸=j

k(Xi,Xj)−
2

n

n∑
i ̸=j

k(Xi, X̃j) +
1

n

n∑
i ̸=j

k(X̃i, X̃j)︸ ︷︷ ︸
Maximum Mean Discrepancy

Ladv(X, X̃) = EX∼P (X)[D(X)]− EX̃∼PGA
(X̃)[D(X̃)]︸ ︷︷ ︸

Discriminator loss

+EX̂∼P (X̂)[(||∇X̂D(X̂)||2 − 1)2]︸ ︷︷ ︸
Gradient Penalty

LG(X) = −EX∼P (X)[D(G(X))]︸ ︷︷ ︸
Generator loss

LPNL(X̂, X̃) =
1

n

n∑
i=1

||X̂i − X̃i||2︸ ︷︷ ︸
PNL loss term

i.f.f the assumed SCM is PNL

s.t h(AL0(f)) = 0, [AL0(j)]ij := ||∂ifj ||2︸ ︷︷ ︸
Acyclicity constraint

(5.8)

5.1.5 Computational Complexity Analysis

The DAGAF framework consists of three individual models (FCM/Generator M/G,

Discriminator D (ANM, LiNGAM setting) and an additional MLP (PNL) case) trained

with an algorithm involving three interconnected components (Causal Structure Learn-

ing, Tabular Data Synthesis and Augmented Lagrangian-based Continuous Optimiza-
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tion). This intricate architecture and training process make DAGAF considerably

more complicated compared to other state-of-the-art methods, such as DAG-GNN [35],

GraN-DAG [36], DECAF [218], and Causal-TGAN [220], which only focus on causal

discovery or tabular data synthesis and involve fewer models. This complexity moti-

vated the author to evaluate the efficiency and practicality of their approach.

They investigate how much resources DAGAF requires to perform causal structure

learning and tabular data synthesis simultaneously. To achieve this, the author provides

pseudo-code for Algorithm 2 and conducts a time complexity analysis on it. The

alternative representation of the training process for their framework is available below.

λ← 0, c← 1

current h(AL0 (f))←∞, h tol← 1e− 8

k max iter ← 100, epochs← 300

for k < k max iter do

while c < 1e+ 20 do

for epoch < epochs do

if pnl == True then ▷ The beginning of the Causal Discovery (CD) Step

X̃ := {g1(f1(Pa1;W 1
1 , ...,W

L
1 ) + Z1), ..., gd(fd(Pad;W

1
d , ...,W

L
d ) + Zd)}

else

X̃ := {f1(Pa1;W 1
1 , ...,W

L
1 ) + Z1, ..., fd(Pad;W

1
d , ...,W

L
d ) + Zd}

end if

DiscLoss = Ladv(X, X̃)

GenLoss = LG(X)

RecLoss = LREC(X, X̃) + c
2
|h(AL0 )|2 + λh(AL0 )

PnlLoss = LPNL(X̂, X̃) ▷ if PNL is assumed

DiscGradients = DiscLoss.backward()

GenGradients = GenLoss.backward()

RecGradients = RecLoss.backward()

PnlGradients = PnlLoss.backward() ▷ if PNL is assumed

DiscParameters = DiscParameters - 1e− 3 * DiscGradients

GenParameters = GenParameters - 1e− 3 * GenGradients

RecParameters = RecParameters - 1e− 3 * RecGradients

PnlParameters = PnlParameters - 1e− 3 * PnlGradients ▷ if PNL is assumed

DS{WL0} ← CD{WL0} ▷ Parameter transfer between steps
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if pnl == True then ▷ The beginning of the Data Synthesis (DS) Step

X̃ := {g1(G1(Pa1;W 1
1 , ...,W

L
1 ) + Z1), ..., gd(Gd(Pad;W

1
d , ...,W

L
d ) + Zd)}

else

X̃ := {G1(Pa1;W 1
1 , ...,W

L
1 ) + Z1, ..., Gd(Pad;W

1
d , ...,W

L
d ) + Zd}

end if

DiscLoss = Ladv(X, X̃)

GenLoss = LG(Z)

DiscGradients = DiscLoss.backward()

GenGradients = GenLoss.backward()

DiscParameters = DiscParameters - 1e− 3 * DiscGradients

GenParameters = GenParameters - 1e− 3 * GenGradients

end for

if h(AL0 (f)) > 0.25 then

c← c ∗ 10

else

break

end if

end while

current h(AL0 (f))← h(AL0 (f))

λ← c ∗ current h(AL0 (f))

if current h(AL0 (f)) ≤ h tol then

break

end if

end for

The space complexity of DAGAF isO(d), where d is the number of variables in X, which

is consistent with that of Notears and its extensions. For more theoretical details, the

reader is referred to [12].

To conduct a comprehensive time complexity analysis on their framework, the au-

thor investigates the efficiency of each stage in Algorithm 2 individually. Addition-

ally, they include the augmented Lagrangian and the causal knowledge transfer in

their study. The total computational complexity is calculated by adding the individ-

ual complexities of each component of Algorithm 2 and deducing which is the most

resource-demanding. The training procedure of DAGAF begins with an initial stage,

involving declarations of variables, hyperparameters and model instances, all of which
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are considered atomic operations taking constant time O(1).

Afterwards, the training procedure is applied by entering the augmented Lagrangian,

which consists of three nested loops (1: controlled by k max iter, 2: constrained by the

range of values for c and 3: managed by the number of epochs in the training process).

Since, in the worst case, all of them will run until their respective limiting values are

reached, individually each of the loops has linear complexity. If the range for each loop

is considered constant, then optimizing the augmented Lagrangian parameters relies

solely on the number of data variables in the input dataset, yielding a time complexity

of O(d), where d is the number of variables in the observational data. Since there are

three nested loops and parameter optimization (taking constant time O(1)) involved

in the augmented Lagrangian, its computational complexity is cubic O(d)3.

Within the augmented Lagrangian, the training algorithm divides into two parts:

a causal structure learning stage and a tabular data synthesis stage with an additional

operation to transfer the causal knowledge between steps taking constant time O(1).

Both sections of the training procedure employ stochastic gradient decent (SGD) to

perform model parameter optimization. Typically, the computational complexity of

SGD is O(knd), where k is the number of epochs, n is the number of samples and d is

the data variable size of X. In the case of DAGAF, both k and n are constant hyperpa-

rameters, which means that the complexity of the optimization technique depends only

on the number of data attributes present in the input. Hence, the total computational

complexity of both parts is linear O(d).

The time complexity of Algorithm 2 can be expressed as O(d)3 + 2O(d), which

reduces to O(d)3 since researchers are only interested in the fastest growing term. The

results of the analysis indicate that DAGAF exhibits a cubic computation complexity,

which is an outcome consistent with findings reported in other research studies [12], [36].

5.2 Experimental Results

The author performs a series of experiments on their general framework for causality-

based tabular data synthesis. These tests utilize various datasets comprising continuous
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and discrete data types to evaluate the following factors:

• Structure learning accuracy, which evaluates how well the model captures and

represents the relationships between features in observational data.

• Synthetic data quality, which analyzes the standard of the samples produced using

the learned generative process.

• An ablation study and sensitivity analysis are conducted to evaluate the impact

of the loss term configuration and the hyper-parameter settings on the training

process - for more information, the reader is referred to Sections 5.2.6 and 5.2.7.

To assess structure learning, DAGAF is compared against several state-of-the-art

Directed Acyclic Graph (DAG) learning methods, including DAG-WGAN [75], DAG-

WGAN+ [77], DAG-Notears-MLP [38], Dag-Notears [12], DAG-GNN [35], GraN-DAG

[36], GAE [39], CAREFL [168], DAG-NF [257], DCRL [258] and VI-DP-DAG [49]. The

quality of the discovered causality is assessed using the Structural Hamming Distance

(SHD) [105] as the primary metric across all experiments. However, it is important to

note that SHD is not the only metric for evaluating the accuracy of learned structures.

Alternative measures, such as Area Under Curve (AUC) and Area Over Curve (AOC),

can also be applied.

The author further assesses the quality of the synthetic data produced by DAGAF

by conducting several tests to analyze the statistical properties of X̃. To compare

P (X) with PGA
(X̃), they utilize boxplot analysis and examine marginal distributions.

Furthermore, correlation matrices are calculated for both χ and χ̃ to evaluate the

relationships among their covariates.

5.2.1 Continuous data

The author conducts experiments on continuous data types using simulated datasets

derived from predefined structural equations and Directed Acyclic Graph (DAG) struc-

tures. To achieve this, the author generates an Erdos-Renyi [243] causal graph with

an expected node degree of 3, which is used as the ground-truth DAG G0
A and can be
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described by a weighted adjacency matrix A. Each experiment involves 5,000 obser-

vational data samples generated using various equations applied to the causal mecha-

nisms in G0
A, including linear (X̃ := ATX+Z), non-linear-1 (X̃ := A cos(X+1)+Z),

non-linear-2 (X̃ := 2 sin(A(X + 0.5)) + A(X + 0.5) + Z), post-non-linear-1 (X̃ :=

sinh(A cos(X+ 1) +Z)), and post-non-linear-2 (X̃ := tanh(2 sin(A(X+ 0.5)) +A(X+

0.5) +Z)). These structural equations have been extensively utilized in various studies

on DAG learning, including models such as, DAG-GNN [35], Gran-DAG [36], GAE [39],

DAG-WGAN [75], DAG-WGAN+ [77] and Notears-MLP [38], among others. Their

widespread use enables a thorough and reliable comparison with other state-of-the-art

models in the field. The last two equations are modified versions of the second and

third equations, specifically designed to serve as appropriate test cases for experiments

related to the PNL assumption. It is also important to note that the list of equations

used in the experiments is by no means exhaustive, other equations can also be applied.

The approach of the author aligns with the methodology used in most state-of-

the-art DAG learning models, including DAG-GNN, GraN-DAG, DAG-Notears and

GAE. To assess the scalability of DAGAF, tests are performed on datasets with 10,

20, 50, and 100 columns. Each experiment is repeated five times to account for sample

randomness and the average Structural Hamming Distance (SHD) is recorded. The

findings are summarized in Tables 5.1, 5.2, 5.3, 5.4, and 5.5.

Table 5.1: Non-parametric DAG structures recovered from linear data samples

Model
SHD (5000 linear samples)

d=10 d=20 d=50 d=100

DAG-Notears 8.6 ± 7.2 13.8 ± 9.6 41.8 ± 29.4 102.8 ± 53.2
DAG-Notears-MLP 4.6 ± 4.3 7.6 ± 6.3 29.6 ± 18.5 74 ± 30.6

DAG-GNN 6 ± 6.9 11.4 ± 8.2 33.6 ± 21.2 85.4 ± 46.4
GAE 5.5 ± 4.9 10.3 ± 7.2 31.3 ± 13.8 80.2 ± 24.6

GraN-DAG 3.4 ± 5.2 6.4 ± 7.5 25.2 ± 14.6 68.4 ± 25.8
CAREFL 2.7 ± 4.8 5.9 ± 7.1 24.9 ± 14.1 66.9 ± 24.7
DAG-NF 2.4 ± 4.6 5.2 ± 6.9 23.1 ± 13.4 64.2 ± 24.3

VI-DP-DAG 2.1 ± 4.5 4.5 ± 6.7 22.4 ± 12.7 63.7 ± 23.5
DCRL 1.8 ± 2.7 3.1 ± 4.8 18.7 ± 11.9 53.3 ± 21.9

DAG-WGAN 5.2 ± 3.8 9.2 ± 5.7 19.6 ± 12.3 58.6 ± 22.7
DAG-WGAN+ 3.7 ± 3.1 5.6 ± 4.9 17.2 ± 10.5 49.1 ± 20.1

DAGAF 1.4 ± 2.3 2 ± 4.4 16.4 ± 9.8 38.8 ± 18.3
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Table 5.2: Non-parametric DAG structures recovered from non-linear-1 data samples

Model
SHD (5000 non-linear-1 samples)

d=10 d=20 d=50 d=100

DAG-Notears 11.4 ± 4.5 28.2 ± 10.2 55 ± 23.1 105.6 ± 48.3
DAG-Notears-MLP 5.2 ± 1.8 15.4 ± 4.6 43.8 ± 15.4 86.2 ± 29.8

DAG-GNN 9.2 ± 3.3 23.4 ± 8.4 50.2 ± 19.5 98.6 ± 37.6
GAE 8.6 ± 2.2 20 ± 5.7 47.5 ± 10.2 92.3 ± 18.9

GraN-DAG 4 ± 2.4 11.2 ± 6.5 36.4 ± 11.9 72.8 ± 21.7
CAREFL 3.8 ± 2.2 10.9 ± 6.2 34.1 ± 11.2 71.7 ± 19.1
DAG-NF 3.4 ± 2.1 10.4 ± 5.6 31.6 ± 10.7 69.5 ± 17.3

VI-DP-DAG 3.1 ± 2 9.8 ± 5.1 28.7 ± 9.3 68.1 ± 16.5
DCRL 2.9 ± 1.7 7.5 ± 4 24.3 ± 7.8 61.4 ± 14.9

DAG-WGAN 6.4 ± 1.4 18.6 ± 3.7 22 ± 8.6 64.6 ± 15.2
DAG-WGAN+ 4.9 ± 1.2 14.2 ± 3.3 20.5 ± 6.9 57.1 ± 14.5

DAGAF 2.6 ± 1 5.2 ± 2.8 18.8 ± 6.2 50.2 ± 13.4

Table 5.3: Non-parametric DAG structures recovered from non-linear-2 data samples

Model
SHD (5000 non-linear-2 samples)

d=10 d=20 d=50 d=100

DAG-Notears 10.4 ± 3.9 22.4 ± 8.1 47.6 ± 21.2 112.8 ± 57.8
DAG-Notears-MLP 5.4 ± 1.5 13.8 ± 4.3 30.4 ± 15.7 85.6 ± 35.6

DAG-GNN 8.4 ± 3.2 19.2 ± 7.7 36.2 ± 18.6 91.8 ± 49.3
GAE 7.3 ± 1.8 17.4 ± 5.1 33.7 ± 13.7 88.4 ± 26.6

GraN-DAG 4.2 ± 2.1 11.6 ± 5.6 25.2 ± 14.5 71.6 ± 29.7
CAREFL 3.8 ± 1.8 10.5 ± 5.3 24.8 ± 13.8 69.9 ± 26.1
DAG-NF 3.3 ± 1.7 9.7 ± 4.9 24.3 ± 13.1 68.1 ± 24.3

VI-DP-DAG 2.8 ± 1.6 9.3 ± 4.7 23.8 ± 13.3 67.3 ± 23.8
DCRL 2.2 ± 1.3 7.1 ± 2.9 15.1 ± 9.4 59.5 ± 17.2

DAG-WGAN 6.6 ± 1.2 15.2 ± 3.4 22.6 ± 12.9 64.2 ± 21.5
DAG-WGAN+ 5.1 ± 1.1 12.3 ± 2.5 17.5 ± 10.2 56.7 ± 18.4

DAGAF 1.4 ± 0.9 5.8 ± 2.2 14.2 ± 8.3 51.8 ± 16.2

Table 5.4: Non-parametric DAG structures recovered from post-non-linear-1 data sam-
ples

Model
SHD (5000 post-non-linear-1 samples)

d=10 d=20 d=50 d=100

DAG-GNN 13.7 ± 9.2 21.7 ± 10.4 63.7 ± 31.2 118.6 ± 50.1
GAE 12.3 ± 8.1 19.1 ± 8.8 56.2 ± 24.6 101.3 ± 37.4

CAREFL 11.8 ± 6.4 18.5 ± 7.9 52.1 ± 22.8 97.2 ± 34.9
DAG-NF 11.2 ± 5.3 16.2 ± 6.1 47.3 ± 19.5 92.5 ± 31.3

DAG-WGAN 10.5 ± 4.7 15.6 ± 5.8 44.5 ± 17.7 88.7 ± 29.6
DAG-WGAN+ 8.4 ± 3.3 12.8 ± 4.3 32.8 ± 13.6 66.1 ± 21.2

DAGAF 5.6 ± 2.5 7.3 ± 3.2 25.4 ± 11.3 52.4 ± 15.7
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Table 5.5: Non-parametric DAG structures recovered from post-non-linear-2 data sam-
ples

Model
SHD (5000 post-non-linear-2 samples)

d=10 d=20 d=50 d=100

DAG-GNN 10.8 ± 8.7 16.1 ± 11.9 37.1 ± 30.3 128.3 ± 48.2
GAE 9.1 ± 6.3 14.3 ± 9.5 31.5 ± 24.8 105.7 ± 34.4

CAREFL 8.3 ± 5.8 13.5 ± 8.3 29.8 ± 22.4 92.1 ± 32.3
DAG-NF 7.7 ± 5.5 12.8 ± 7.4 28.4 ± 21.7 84.8 ± 28.5

DAG-WGAN 7.2 ± 5.2 11.4 ± 6.2 25.2 ± 18.6 76.5 ± 27.6
DAG-WGAN+ 4.5 ± 3.6 8.6 ± 5.1 21.7 ± 12.3 69.4 ± 19.1

DAGAF 2.9 ± 2.4 5.7 ± 3.6 18.6 ± 10.5 47.2 ± 14.7

5.2.2 Benchmark experiments

In their experiments, the author incorporated discrete datasets as part of an empirical

study to evaluate how the DAGAF framework performs on such data. However, as

discussed in the theoretical analysis conducted in Section 5.1.2, they acknowledge that

applying this method to discrete datasets introduces identifiability challenges.

In conducting experiments with discrete data, the author utilized benchmark datasets

including Child, Alarm, Hailfinder, and Pathfinder, available with their ground truths

from the Bayesian Network Repository at https://www.bnlearn.com/bnrepository.

These datasets are meticulously prepared to facilitate scalability testing and allow for

a fair comparison with leading-edge techniques. The author compared their model

against DAG-GNN and both versions of DAG-WGAN, with the experimental results

shown in Table 5.6.

Table 5.6: Non-parametric DAG structures recovered from benchmark data samples

Datasets Nodes
SHD

DAG-WGAN DAG-WGAN+ DAG-GNN DAGAF

Child 20 20 19 30 17
Alarm 37 36 35 55 43

Hailfinder 56 73 66 71 63
Pathfinder 109 196 194 218 181
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5.2.3 Real data experiments

Up to this point, simulations based on artificial data suggest that the model can yield

satisfactory outcomes. However, such findings are not entirely conclusive because the

simulations do not perfectly reflect real-world scenarios. To mitigate this issue, the

author conducted experiments on the acclaimed Sachs dataset [21], which is respected

within the research community. This dataset comprises 7466 samples across 11 vari-

ables, with its ground-truth underlying structure presumed to contain roughly 20 con-

nections. Additionally, DAGAF was employed with both Additive Noise Model (ANM)

and Post Non-linear (PNL) assumptions to compare the Structural Hamming Distance

(SHD) produced by these Structural Causal Models (SCM), deducing whether the

post-nonlinear model performs better with real-world data. The findings are provided

in Table 5.7.

Table 5.7: Non-parametric DAG structures from real data samples

Model
Sachs Dataset

SHD

DAG-WGAN 17
DAG-WGAN+ 15

DAG-NF 15
DAG-GNN 25

GAE 20
GraN-DAG 17
VI-DP-DAG 16

DAGAF ANM 9 / PNL 8

5.2.4 Synthetic data quality

This study argues that the method of the author outperforms the current best mod-

els in the field of causal discovery by integrating DAG learning with synthetic data

production. To support this assertion, they analyze features (d=10) drawn from two

sets of simulated data based on the ANM and PNL assumptions, then compare these

against features generated by their technique. The author considers the special scenario

in which their model attains a SHD of 0 on the simulation data, resulting in the high-

est quality samples because of the comprehensive understanding of causal mechanisms
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within the generative process.

The author conducts multiple analyses to evaluate the similarity between the origi-

nal and synthetic data. These experiments involve computing the correlation matrices,

visualizing joint and marginal distributions, performing Principal Component Analy-

sis (PCA) [259] to study distributional consistency and performing machine learning

regression to compare the feature importance in both datasets. The findings demon-

strate that the synthetic data generated by the proposed framework possesses adequate

predictive information for regression applications (Figure, 5.3). Additionally, the joint

and marginal distributions of the features (Figure 5.4) present in the input data are

also captured by the generated data. Moreover, the produced samples preserve the

fundamental patterns and structure of the original dataset (Figure 5.5) and accurately

reflect the correlations present within (Figures 5.7 and 5.8).

Figure 5.3: Feature importance comparison between real (left) and synthetic (right)
data, in both the ANM (first row) and the PNL (second row) case. The synthetic
features with their relevance are indistinguishable from the original ones, allowing for
their application in regression tasks.
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Figure 5.4: Visualizing the distributions of the real and synthetic features, the author
plotted x5 against x8 (left), x3 against x6 (right), in the case of ANM, and x3 against
x4 for the PNL case. The joint and marginal distributions are accurately modeled with
no significant differences between the real and synthetic features.
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Figure 5.5: Principal Component Analysis (PCA) between the original and synthetic
samples for both the ANM (left) and the PNL (right) case. The author observes both
the input and the synthetic samples have similar clusters and outliers. The results
indicate that the implicitly generated distribution resembles the original distribution
in both mean and standard deviation, making them indistinguishable from each other.

Figure 5.6: Visualizing the Wasserstein distance between the original and synthetic data
over the course of the augmented Lagrangian algorithm. The significant discrepancy
between the real and the generated samples (165-170 and from 300 epochs onward)
occurs because of fluctuations in the SHD, courtesy of the parameter-tuning for the
continuous optimization approach. Conversely, the lowest SHD is detected when the
Wasserstein Distance is at its lower conversions (50-150 and 175 - 275 epochs).
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Figure 5.7: Comparison of the correlation matrices for real (left) and synthetic (right)
features reveals that the statistical correlations across the feature space for both real
and synthetic data are nearly identical, in the ANM case.

Figure 5.8: Comparison of the correlation matrices for real (left) and synthetic (right)
features reveals that the statistical correlations across the feature space for both real
and synthetic data are nearly identical, in the PNL case.

5.2.5 Additional results

The author enhances the analysis from earlier experiments by incorporating more ex-

amples. These include real-vs-synthetic statistical comparisons for each feature (Table

5.8), additional visual representations of synthetic feature distributions (Figure 5.9),

and the remaining outcomes from machine learning regression models (Figures 5.10

and 5.11). Additionally, they offer examples of suboptimal results to demonstrate the

repercussions when causal structure learning or tabular data synthesis do not yield

adequate results.
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Figure 5.9: Further examples of the synthetic joint and marginal distributions for the
method of the author on the dataset presented in Section 5.2.4. The author observes
multiple cases with different distribution shapes. Additionally, they depict one case of
severe latent collapse (bottom-right corner) in the produced data from DAGAF.
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Figure 5.10: Remaining examples of feature importances (x1-x6) to supplement the
results in Section 5.2.4. The author observes some failure cases, where the synthetic
features differ significantly from their real counterparts.
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Figure 5.11: Remaining examples of feature importances (x7-x10) to supplement the
results in Section 5.2.4. The author observes some failure cases, where the synthetic
features differ significantly from their real counterparts.

Table 5.8: Mann-Whitney t-test results for all real and synthetic features to supplement
Figure 5.4. The author observes some failure cases, where the real and synthetic features
differ significantly (p < 0.05).

Feature p-value

x1 7.7952e-07
x2 0.5004
x3 0.1683
x4 0.0020
x5 0.8563
x6 0.9127
x7 0.0364
x8 0.1747
x9 0.2089
x10 6.4502e-26
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5.2.6 Ablation study

In an ablation study, the author aimed to find the optimal combination of terms within

the loss function for Step 1. Using the Sachs, ECOLI70, MAGIC-IRRI and ARTH150

datasets available in https://www.bnlearn.com/bnrepository, nine distinct experi-

ments were conducted, exploring different mixtures of loss terms. Each setup included

the Wasserstein-1 distance. The first configuration, labeled ”w/o recon loss”, ex-

cludes the reconstruction loss and its regularization from the training process. The

remaining configurations were identified by the specific terms involved in the recon-

struction loss for W , such as MSE [180] and NLL [260]. Furthermore, the author

examined combinations with additional terms like MMD [67] and KLD [58]. The out-

comes of these trials are detailed in Table 5.9.

Table 5.9: DAGAF ablation study

Loss function
SHD

Sachs ECOLI70 MAGIC-IRRI ARTH150

w/o recon loss 21 109 194 352
recon loss (MSE) 14 85 148 263
recon loss (NLL) 16 100 163 295

MSE + MMD 10 51 111 164
NLL + MMD 14 85 148 263
MSE + KLD 12 63 130 196
NLL + KLD 12 63 130 196

MSE + KLD + MMD 9 46 102 150
NLL + KLD + MMD 11 54 117 172

5.2.7 Sensitivity analysis

In order to evaluate the robustness of the model, the author conducts a sensitivity

analysis to examine how changes in hyper-parameter configurations influence model

training. This study measures the accuracy of DAG modeling (denoted as SHD) under

varying hyper-parameters, including the learning rate and dropout rate (lr, dropout),

the size of the noise vector, and the batch size (z-size, batch-size). The analysis

begins with a baseline set at lr = 0.001, dropout = 0.5, z-size = 1, batch-size =
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100, modifying each parameter one at a time to determine their impact on the SHD.

The experiments utilized the Sachs dataset, with the outcomes compiled in Table 5.10.

Table 5.10: DAGAF sensitivity analysis

Hyper-parameters
Sachs Dataset

SHD

lr = 3e-3, dropout = 0.5, z-size = 1, batch-size = 100 9
lr = 3e-3, dropout = 0.0, z-size = 1, batch-size = 100 10
lr = 3e-3, dropout = 0.5, z-size = 2, batch-size = 100 10
lr = 3e-3, dropout = 0.5, z-size = 5, batch-size = 100 11
lr = 3e-3, dropout = 0.5, z-size = 1, batch-size = 500 9
lr = 3e-3, dropout = 0.5, z-size = 1, batch-size = 1000 10
lr = 2e-4, dropout = 0.5, z-size = 1, batch-size = 100 11
lr = 1e-3, dropout = 0.5, z-size = 1, batch-size = 100 12

5.3 Discussion & Future Work

Tables 5.1 through 5.5 indicate that the proposed general framework for causality-

driven tabular data synthesis consistently surpasses current state-of-the-art methods in

DAG learning across all test scenarios (linear, nonlinear-1, nonlinear-2, post-nonlinear-

1, and post-nonlinear-2) and data dimensionalities, regardless of whether ANM or PNL

assumptions are applied. Notably, the SHD difference between DAGAF and other

models becomes more pronounced as data dimensionality increases, underscoring the

enhanced performance of the approach for DAG learning in datasets with numerous

variables, courtesy of adversarial training.

Table 5.6 showcases the benchmark experiment results, highlighting the exceptional

performance of DAGAF. Notably, it consistently surpasses DAG-GNN across all four

datasets: Child, Alarm, Hilfinder, and Pathfinder. Moreover, both DAG-WGAN and

its improved version, DAG-WGAN+, deliver poorer outcomes than the approach of

the author in three out of the four datasets. Similar patterns emerge in experiments on

continuous datasets, where the SHD gap between the method of the author and others

widens with more data variables.

Up to this point, the author has focused solely on the performance of their model
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using continuous and benchmark datasets. While these outcomes show strong perfor-

mance, assessing the approach with real-world datasets is essential for a comprehensive

evaluation. The experiment using the Sachs dataset illustrates that DAGAF is profi-

cient at accurately determining DAG structures from real data. As indicated in Table

5.7, the method of the author significantly surpasses all other prominent models em-

ployed in the study. Furthermore, empirical data suggest that assuming PNL enables

the framework to derive a more precise approximation of the causal structure compared

to other identifiable causal models.

In DAGAF, the process of learning DAG structures from observational data is

conducted alongside the generation of high-quality synthetic datasets. This is evidenced

by the results in Figures 5.7, 5.8, 5.3, 5.6, 5.5 and 5.4, applicable to both ANM and

PNL scenarios. When the model accurately identifies the true structure in a dataset

(indicated by SHD = 0), the gap between the distributions of the real and synthetic data

is minimized. Additionally, the model accurately mirrors the statistical dependencies

from the real dataset in the synthetic data it generates. These findings demonstrate

the ability of DAGAF to produce varied data samples while preserving the integrity of

DAG structures.

The ablation study together with the sensitivity analysis identifies the best combi-

nation of loss functions for the framework and illustrates the effect of hyperparameters

on model training. As shown in Table 5.9, the optimal loss terms for Step 1 include

MSE, KLD, MMD, and adversarial training. Additionally, the data in Table 5.10 reveal

that lowering the learning and dropout rates substantially enhances model performance.

Conversely, expanding the dimensions of the noise vector and input batch size leads to

only minor variations in the accuracy of the algorithm.

The results of the experiments demonstrate that the proposed approach adeptly

handles various types of data (numerical and categorical) to consistently reconstruct

DAG structures given the ANM and PNL assumptions while generating realistic data

samples. Notably, DAGAF significantly surpasses the performance of the latest DAG-

learning methods. The research highlights that the incorporation of the Wasserstein

distance substantially enhances the process of DAG-learning.
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Although DAG-WGAN+ demonstrates strong potential in causal structure learn-

ing, several limitations become evident when applying the model to benchmarks or

data produced by real-world systems (i.e., Child, Alarm, Sachs, Hailfinder, Pathfinder,

etc.). One of the primary challenges lies in the nature of real-world data, which often

contain noise, potential measurement errors and mixed data types. DAG-WGAN+, as

a generative machine learning-based approach, can be sensitive to these issues, risking

overfitting or misrepresenting causal relationships when data quality is suboptimal or

the dataset itself is inherently challenging. Furthermore, the model assumes causal suf-

ficiency, which means that all relevant variables are observed and measured. In practical

settings, this assumption rarely holds, and the presence of latent confounders or unob-

served factors can lead to biased or incomplete causal structures. In their future work,

the author intends to address these challenges by integrating robust regularization tech-

niques, domain adaptation methods, or hybrid approaches that explicitly model latent

variables. Additionally, pre-processing strategies to better handle mixed data types and

denoise observations will be utilized to improve the stability and reliability of learned

causal structures in real-world datasets.

Model-related limitations also constrain DAG-WGAN+ in real-world application.

The framework enforces acyclicity through continuous relaxations, which restricts its

ability to represent systems with feedback loops or cyclic dependencies. Additionally,

the performance of DAG-WGAN+ depends heavily on hyperparameter tuning, net-

work architecture, and adversarial training stability. Small changes in these configura-

tions can result in significantly different inferred graphs, undermining reproducibility

and interpretability. Consequently, while the adversarial component allows the model

to capture complex nonlinear dependencies, it can also introduce training instability,

making convergence difficult and outcomes inconsistent across runs. This occurs pri-

marily due to the delicate balance required between the generator and discriminator

during training, where small imbalances can lead to higher oscillating losses or mode

collapse. Future research will explore additional stabilization techniques for adversarial

training, such as adaptive learning rates or curriculum learning approaches. Alternative

formulations for enforcing acyclicity, as well as architectures capable of approximating
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cyclic dependencies, will also be explored with the aim of enhancing the robustness and

expressiveness of DAG-WGAN+ while improving reproducibility across runs.

Moreover, the outcomes discussed have been derived utilizing LiNGAM, ANM, or

PNL causal models, which are recognized as identifiable SCM [31], [98], [261], [32].

Nevertheless, the scope of current experiments is limited to these models, presenting

a challenge. Future research endeavors will investigate a broader array of identifiable

structures, including generalized linear models, polynomial regression, and index mod-

els. Additionally, experiments involving the synthesis of tabular data have also been

somewhat limited, focusing largely on the basic attributes of datasets. Ongoing work

will aim to broaden these investigations by evaluating DAGAF against other causality-

based tabular data generation methods [218], [219], [220]. This evaluation will utilize

more appropriate metrics like the Cross-Validation Score (CVS) [262], Kolmogorov-

Smirnov (KS) test [263] or Chi-Square test [264] to enable a more comprehensive as-

sessment of the data generation proficiency of DAGAF.

The proposed approach identifies DAG structures by integrating MLE with adver-

sarial loss components while applying an acyclicity constraint through an augmented

Lagrangian. Consequently, DAGAF is characterized by substantial computational de-

mands and a complex loss function. The author plans to explore more efficient methods

for structure learning and adversarial loss training to create a faster model that mainly

uses the Wasserstein distance. Additionally, the PNL model instance is limited since

the neural network designed to learn g−1 features a simple architecture, and there

is inadequate regularization on the loss term that governs the parameter learning of

the invertible function. Future research will involve experiments to ascertain whether a

more elaborate architecture and loss function can be utilized in training g−1 to discover

more accurate causal structures.

The proposed causal learning-based framework for synthetic data generation is

closely linked to recent advancements in generative modeling, including Digital Twins

and transformer-based architectures. DAG learning inherently captures the core idea of

attention mechanisms by identifying the direct causal parents of each variable, much like

how transformers dynamically assign importance to relevant dependencies. Further-
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more, the approach aligns with the principles of Digital Twins, which aim to replicate

real-world systems and generate data that accurately represent their causal structures.

This study introduces a unified framework for causal discovery and generative model-

ing, incorporating adversarial learning, MSE, MMD, and KLD regularization to ensure

robust structure learning and high-fidelity synthetic data generation.

In their future work, the author will implement various strategies to address miss-

ing data. This includes data imputation techniques such as mean/mode imputation,

multiple imputation, and more advanced methods such as matrix completion and vari-

ational autoencoders (VAE), while recognizing that imputation inherently introduces

assumptions about missingness that could bias results. Additionally, they will incorpo-

rate structural information by utilizing partial knowledge of the directed acyclic graph

(DAG), informed by domain expertise, to mitigate the impact of missing data. An-

other approach involves explicitly modeling missingness by introducing a missingness

variable within the DAG to indicate whether a particular variable is absent. Further-

more, the author will apply causal inference methods, including latent variable models

and specialized techniques tailored for incomplete data, to enhance the robustness and

accuracy of their analyses.

Finally, as part of their future work, the author will explore the flexibility of their

framework by experimenting with various combinations of SCM and DGM to determine

the optimal configuration for improving output quality and extending its applicability

to time-series data. To that end, emerging concepts, such as the digital twin layer

utilizing multi-attention networks [222], [223], present promising directions for further

investigation. Their capacity to handle mixed-variable datasets, align higher-order sta-

tistical distributions, and dynamically capture multimodal dependencies can enhance

the causal discovery framework proposed in this study. Future research could focus

on integrating these mechanisms to strengthen the robustness and scalability of causal

discovery and synthetic data generation for complex real-world datasets. Such inte-

gration would bridge theoretical foundations with practical applications, addressing

challenges like non-i.i.d. data and variable heterogeneity while enabling the creation of

high-fidelity synthetic datasets for downstream tasks.
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A thorough investigation of hyper-parameters will underpin the novel setup to iden-

tify their optimal values, leading to more realistic data samples produced by a more

precisely simulated generative process.
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Conclusion

In this chapter, the author concludes their thesis by reflecting on the impact of their

research on causal structure learning. They also share their perspective on recent

advancements and the current state of the field, highlighting how their findings can

shape future research directions. Finally, the author provides closing remarks on the

contributions and significance of their work within the context of the thesis.

6.1 Advancements in Causal Structure Learning through

the Wasserstein Distance

The research described in Chapter 3 provides compelling evidence that incorporating

the Wasserstein distance metric can substantially improve causal structure learning

from tabular data. By addressing the limitations of traditional MLE-based causal

discovery methods, the study demonstrates how adversarial training, guided by the

Wasserstein metric, can enhance both the accuracy of causal inference and the qual-

ity of data generation. To achieve this, the author introduces DAG-WGAN, a novel

framework that seamlessly integrates a Wasserstein-based adversarial loss with an au-

toencoder architecture and an acyclicity constraint. This combination enables the

model to simultaneously learn causal relationships and produce realistic synthetic data

that better represent the underlying data distribution. Comprehensive experimental

results indicate that DAG-WGAN consistently surpasses existing methods that exclude
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the Wasserstein distance, particularly when applied to high-cardinality datasets. The

model demonstrates remarkable scalability, achieving improved performance across sce-

narios involving 50 to 100 nodes, along with enhanced training stability that produces

a 99.9% improvement across all experiments conducted and a Structural Hamming Dis-

tance (SHD) of 17 compared to 25 achieved by state-of-the-art models on real-world

data. Moreover, DAG-WGAN exhibits a notable advantage in data generation quality,

as illustrated in Figures 3.2 – 3.8. The results collectively suggest that the improved

fidelity of the synthesized data not only enhances the interpretability and robustness

of causal discovery but also contributes to a more accurate and dependable data gen-

eration process overall.

6.2 Optimizing Causal Structure Learning with Genera-

tive Adversarial Networks and DAG-NoCurl

The research described in Chapter 4 introduces a generative adversarial DAG learning

framework that advances causal structure discovery by integrating adversarial training,

disentangled representations and efficient structure learning techniques. Building on re-

cent methods that reformulate causality learning as an optimization problem with a

continuous acyclicity constraint, the proposed approach called DAG-WGAN+ leverages

generative adversarial networks to overcome the limitations of maximum likelihood es-

timation and improve both accuracy and efficiency. Assuming the identifiability of the

true causal model, the framework learns a causal structure capable of generating data

distributions consistent with the observed data, further enhanced through integration

with InfoVAE to encourage mutual information between latent and observed variables.

Theoretical analysis demonstrates that, for a fixed level of mutual information, the

model achieves global optimality when it accurately recovers the data distribution.

Additionally, by adapting a modified version of the DAG-NoCurl framework, the pro-

posed method achieves substantial speed improvements while avoiding restrictions tied

to initial estimations, allowing continued refinement of the recovered DAG. Extensive

experiments on benchmark datasets confirm that the model outperforms most state-
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of-the-art approaches in both learning quality (99.9% improvement across all cases,

SHD 15 vs. >= 16 for the state-of-the-art on real-world data) and computational

performance (reduced computational complexity from cubic to quadratic).

6.3 DAGAF insights towards integrating Causal Discov-

ery and Data Synthesis

The research described in Chapter 5 introduces DAGAF, a comprehensive and robust

dual-step framework for multivariate causal structure learning and high-fidelity tabu-

lar data synthesis. Unlike conventional approaches that rely on a single identifiable

causal model, DAGAF unifies multiple structural causal models (Additive Noise Model

(ANM), Linear non-Gaussian Acyclic Model (LiNGAM), and Post-Nonlinear Model

(PNL)) within a single architecture capable of learning complex causal dependencies.

By leveraging Directed Acyclic Graphs (DAG) to represent inter-variable relationships,

the framework models the underlying generative mechanisms of data, enabling it to

produce realistic samples that closely match true data distributions. A rigorous theo-

retical analysis demonstrates how the Wasserstein-1 distance metric serves as an effec-

tive measure for guiding structure learning, while the integration of regularization and

reconstruction loss terms strengthens the ability of the framework to recover mean-

ingful causal relationships from observational data. Extensive experimental evalua-

tions on both real-world and benchmark datasets reveal that DAGAF consistently out-

performs state-of-the-art DAG-learning methods, achieving significantly lower Struc-

tural Hamming Distance (SHD) scores (Sachs: 47%, Child: 11%, Hailfinder: 5%, and

Pathfinder: 7% improvements), while simultaneously generating diverse, high-quality

synthetic samples. These findings highlight a profound connection between the accu-

rate recovery of DAG structures and the generation of realistic, representative data,

underscoring that the synthesis of authentic tabular datasets is inherently linked to the

discovery of meaningful causal mechanisms within the data.
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6.4 Future directions

The field of causal structure learning has made significant advancements in recent years,

with research primarily focusing on enhancing continuous optimization-based methods

and establishing robust theoretical frameworks for efficient causal discovery. These de-

velopments have enabled researchers to accurately identify causal relationships between

data variables within a reasonable amount of time. The author envisions the next phase

of progress in this field to be its practical application in industry. To that end, they pro-

pose directing future research efforts to solving the fundamental challenges associated

with the integration of causal machine learning methods in industry described below.

Each research problem is presented with a case study showcasing potential solutions

and real-world applications, facilitating the translation of causal inference into diverse

industrial domains.

• Scalability to High-Dimensional and Big Data – A key challenge is scalabil-

ity, as current methods frequently face difficulties with computational efficiency

and accuracy when applied to high-dimensional datasets, such as those in ge-

nomics or social networks. Future research will aim to address this by developing

scalable algorithms that utilize sparsity, distributed computing, and approxima-

tion techniques such as adversarial training to efficiently manage large-scale sys-

tems.

Decoding Cancer Causality at Genomic Scale: In genomics, large-scale

projects such as The Cancer Genome Atlas (TCGA) have leveraged sparse Bayesian

networks and adversarial training to discover causal relationships between gene

mutations and tumor progression, enabling personalized cancer treatment strate-

gies [265]. Scalable causal inference methods have also been applied in social

network analysis to identify influential nodes that drive information diffusion and

polarization across massive user networks.

• Causal Structure Learning in Dynamic and Temporal Systems – In-

creasing emphasis is being placed on causal structure learning from dynamic and

temporal systems, as many real-world phenomena, such as climate patterns and
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neural activity, involve complex temporal processes that are challenging to model

causally. Progress in this area requires extending causal discovery techniques to

time-series data, managing feedback loops, and addressing non-stationary behav-

ior. Approaches applying dynamic Bayesian networks are anticipated to play a

significant role in these advancements.

Mapping Climate Feedback Loops Through Time In climate science, re-

searchers have employed Dynamic Bayesian Networks (DBN) to model causal in-

teractions between CO2, temperature, and ocean currents, improving predictions

of climate feedback mechanisms [266]. Similarly, in neuroscience, the Human Con-

nectome Project has used DBN and Granger causality to identify dynamic causal

pathways between brain regions, deepening understanding of disorders such as

epilepsy and schizophrenia.

• Multi-Modal and Heterogeneous Data Integration: – Integrating multi-

modal and heterogeneous data presents a major challenge. Real-world datasets

often encompass diverse formats, including text, images, and tabular data. Fu-

ture approaches are expected to concentrate on identifying causal relationships

across these varied modalities, potentially leveraging embeddings and feature rep-

resentations to establish a cohesive causal framework.

Unifying Brain Imaging and Clinical Data in Alzheimer’s Research:

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) combines MRI, PET,

genetic, and clinical data to discover cross-modal causal relationships related to

cognitive decline. Through multi-view causal representation learning, researchers

identified biomarkers predictive of Alzheimer’s progression, improving early de-

tection and interpretability [267]. Similar techniques are also used in autonomous

systems and disaster response to fuse sensory, textual, and environmental data

for causal event modeling.

• Causal Discovery in Noisy, Biased or Missing Data – Managing noisy,

biased, or missing data continues to be a significant challenge, as real-world

datasets are frequently incomplete or contain errors, making causal inference
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more complex. Future research will strive to develop robust algorithms capa-

ble of addressing noise, hidden confounders, and selection bias, while accurately

imputing missing data without compromising the underlying causal relationships.

Recovering Medical Causality from Imperfect Health Records: In health-

care, causal discovery from Electronic Health Records (EHR) often involves in-

complete or biased data. Robust causal models using graph-based imputation

and Bayesian inference have been employed to reveal medication–outcome rela-

tionships in chronic disease management [268]. In economics, causal techniques

with bias correction are used by institutions such as the IMF and World Bank to

infer policy impacts from incomplete and noisy global indicators.

• Applications in Real-World Domains – The application of causal structure

learning in real-world domains presents immense potential. Areas such as health-

care, economics, and environmental science stand to gain from actionable insights

into causal relationships. Future work will focus on partnering with domain ex-

perts to develop customized causal discovery tools and showcase their effectiveness

in addressing complex societal challenges, such as crafting public health strategies

or informing policy decisions.

Causal Insights from COVID-19 Policy Interventions: During the COVID-

19 pandemic, causal Bayesian networks were applied to the Oxford COVID-19

Government Response Tracker to evaluate the effectiveness of interventions across

more than 180 countries. The study identified which measures, such as lock-

downs and mask mandates, had the strongest causal effect on transmission re-

duction [269]. Beyond public health, similar causal modeling frameworks are now

used in energy systems for predictive maintenance and in economic policy design

for assessing taxation and welfare impacts.

• Ethics, Bias and Policy Implications – The field must address the ethical

and societal challenges associated with causal reasoning. Applying causal models

in sensitive areas, such as hiring practices or criminal justice, raises important

concerns regarding bias and fairness. It will be essential to develop methods that
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promote ethical applications and produce unbiased results, especially as causal

models are increasingly employed in decision-making and policy development.

Reassessing Fairness in Algorithmic Justice: The ProPublica COMPAS

study exposed racial bias in recidivism prediction systems. Subsequent research

on counterfactual fairness [270] applied causal reasoning to separate legitimate

from spurious causal pathways, leading to fairer decision frameworks. Similar

causal debiasing approaches have been adopted by organizations such as LinkedIn

and IBM Research to ensure equitable outcomes in hiring and recommendation

algorithms.

Moreover, the author provides additional case studies and real-world applications for

addressing specific scientific problems within industry domains they are interested in,

such as Physics, Astronomy, Large Language Models (LLM), and Biomedical Sciences.

• Causal Discovery in Complex Physical Systems – Understanding causality

in physical and astrophysical data remains difficult due to non-linearity, noise,

and temporal dependencies inherent to large observational datasets. Extending

causal discovery to handle dynamic, multivariate signals is key to improving phys-

ical interpretability.

Tracing Cosmic Evolution through Causal Graphs: Researchers applied

causal structure learning to cosmological simulations (e.g., CAMELS) to discover

how dark matter distribution causally influences galactic formation and star evo-

lution [271], [272]. Graph neural networks and dynamic Bayesian models were

used to infer causal dependencies across temporal snapshots, enhancing the in-

terpretability of simulation-based inference in astrophysics.

• Causal Reasoning and Fairness in LLM – As large language models are in-

creasingly used in decision-support systems, ensuring causal consistency and fair-

ness is critical. Most LLM excel at correlational pattern recognition but struggle

with true causal inference or counterfactual reasoning.

Probing Causal Understanding in Large Language Models: Recent eval-

uations show that GPT-4 and similar LLM exhibit systematic biases in causal
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judgment tasks, such as direction-of-causation or counterfactual inference [273].

Hybrid models integrating structural causal models with LLM aim to improve

causal reasoning and reduce bias, advancing interpretability and ethical deploy-

ment.

• Causal Discovery in Real-World Clinical Data – Handling bias, noise, and

missingness in health records remains a major challenge in clinical causal infer-

ence. Integrating causal discovery with generative patient modeling can emulate

and validate clinical trials.

Emulating Real-World GLP-1 Efficacy in Type 2 Diabetes through

Causal Learning and Virtual Patients: A virtual trial framework combined

causal structure learning with generative modeling to emulate RCT of GLP-1

receptor agonists [274]. Using 5,476 patient records, virtual patients were gener-

ated via a causal-WGAN to reproduce treatment effect rankings, demonstrating

scalable and generalizable estimation of real-world treatment efficacy.

Ultimately, the connection between causality and adversarial training underscores a

fundamental shift in modern machine learning toward models that prioritize robustness,

interpretability, and causal validity over superficial correlation fitting. While causality

seeks to discover the true generative mechanisms that govern observed samples, ad-

versarial training reinforces this objective by exposing models to carefully constructed

perturbations that emulate counterfactual or interventional scenarios. This process

forces models to distinguish between features that are causally relevant and those that

are merely coincidental or distribution-specific. In essence, adversarial perturbations

function as empirical probes, similar to causal interventions, that reveal the stability

and invariance of learned representations under various manipulations. By aligning

the empirical rigor of adversarial robustness with the conceptual foundations of causal

inference, researchers can accelerate the development of learning systems that not only

withstand adversarial or out-of-distribution challenges but also capture the mechanism-

driven regularities underlying real-world data. Therefore, the integration of causal rea-

soning and adversarial training represents a promising pathway toward achieving more
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reliable, interpretable, and firmly grounded in underlying scientific principles artificial

intelligence.

6.5 Closing thoughts

This thesis delves into various theoretical and practical aspects of causal discovery, fo-

cusing on continuous optimization-based models, efficient structure learning algorithms,

and frameworks designed to capture multivariate causality under multiple causal model

assumptions. It introduces three approaches (namely DAG-WGAN, DAG-WGAN+

and DAGAF), which have led to four successful publications (two in conferences and

two in journals), with a fifth paper currently in progress. Through these contributions,

the author has made a substantial impact on key areas of causal structure learning,

including adversarial-based causal discovery, resource-efficient structure learning, and

the simultaneous approximation of causal mechanisms and tabular data synthesis.

The thesis provides a comprehensive account of the implementation details of these

models, supported by theoretical analyses that include mathematical proofs and in-

tuitive explanations. Additionally, the author presents extensive empirical evidence

from various experiments to validate their theoretical claims and test their underly-

ing hypotheses. Finally, the results highlight that the proposed models significantly

outperform state-of-the-art approaches, showcasing their effectiveness and superiority.

162



Appendix A

Theoretical Proofs

This appendix serves as a designated space for presenting proofs of various statements

made throughout this work.

A.1 Proof of lemma 3.2.1

Lemma 3.2.1. The Structural Equation Model (SEM) used in the decoder architecture

X̃ = Pθ(X|F2((I −AT )−1F1(Z))) belongs to the Additive Noise Model category.

Proof. For simplicity, the derivation of this proof requires only the architecture of the

generative model, denoted as X̃ = F2((I −AT )−1F1(Z)). According to [35], under the

assumption that F2 is invertible, X̃ = F2((I−AT )−1F1(Z)) ≡ F−12 (X̃) = ATF−12 (X)+

F1(Z). Furthermore, if the functions F2 and F1 are omitted, the architecture simplifies

to X̃ = (I −AT )−1Z ≡ ATX + Z, where ATX + Z is the linear SEM.

The linear SEM can be represented as a Generalised Linear Model (GLM) Xj =

gj(fj(X)), where Xj = gj(fj(X)) ≡ Xj = AT
j X + Zj under the assumption that the

function gj just adds noise to its input and fj = AT
j X (i.e linear). However, the

parameterized functions F2 and F1 apply nonlinearity to the linear structural equation

model. Therefore, the SEM applied in the VAE component of DAG-WGAN is a special

case of GLM, where Xj = gj(fj(X)) assumes the general form of Xj = fj(X) +

Zj , which falls under the Additive Noise Model (ANM) category [98] due to f being

nonlinear, thus concluding the proof.
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A.2 Proof of proposition 3.2.2

Proposition 3.2.2. Given an (un)known ground truth graph G0
A faithful to the obser-

vational data distribution PG0
A

(X), the parameters of the implicitly learned probability

distribution PGA
(X̃) are refined by the following solution D : R→ R

EX̃∼Pg
[D(X̃)]− EX∼Pr [D(X)]︸ ︷︷ ︸

Critic loss

+λEX̂∼PX̂
[(||∇X̂D(X̂)− 1||)2]︸ ︷︷ ︸

Gradient penalty

EZ∼Qϕ(Z|F4((I−AT )F3(X)))[D(Dec(Z))]︸ ︷︷ ︸
Generator loss

,

where both terms are well-defined, differentiable almost everywhere and converge when

PG0
A

(X) = PGA
(X̃).

Proof. DAG-WGAN is a VAE-GAN approach, where the adversarial architecture is

WGAN-GP. Notice also that the discriminator D used in DAG-WGAN is very similar

to the one used in the standard WGAN-GP (see the WGAN-GP architecture subsection

in Section 3.2.1), and both are trained using the same adversarial loss. This allows the

author to derive the proof of their proposition from other existing ones.

The convergence of the terms in the proposition relies on the fact that all variations

of WGAN converge when the critic cannot distinguish real from fake data samples,

at which point the Wasserstein distance is 0. Theoretically speaking, to achieve an

Earth-Mover distance of 0 means that the generator must synthesize new data samples

which are indistinguishable from the input. To this end, the following must be correct:

Given a fixed optimal 1-Lipschitz continuous discriminator D∗, the generator

G converges if and only if PG0
A

(X) = PGA
(X̃). The above statement is intuitively

true because D∗ always produces a Wasserstein distance of 0, which is only possible

if the samples produced by G belong to a probability distribution PGA
(X̃) identical

to the observational distribution PG0
A

(X). Therefore, the generator will converge if

and only if its fake samples do not violate the converging condition of the critic, which

occurs only when PG0
A

(X) = PGA
(X̃), thus completing the proof.
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A.3 Proof of proposition 4.1.1

Proposition 4.1.1. Given some input X and latent variables Z, for any fixed value of

the mutual information term IQϕ(X,Z)(X, Z), LDAG−WGAN+ reaches global optimum

when the decoder distribution Pθ(X|F2((I −AT )−1F1(Z))) matches the observational

data distribution P (X).

Proof. The author considers the InfoVAE objective used in the context of the DAG-

WGAN+ decoder model, defined as:

LVAE = −EQϕ(Z|F4((I−AT )F3(X)))[logPθ(X|F2((I −AT )−1F1(Z)))]

+ (1− β)EX∼P (X)[DKL(Qϕ(Z|F4((I −AT )F3(X)))||P (Z))]

+ (γ + β − 1)DKL(Qϕ(Z)∥P (Z)).

More specifically, they aim to show that this objective achieves a global minimum

when the joint distribution Qϕ(X, Z) of the encoder matches the model joint distribu-

tion Pθ(X, Z) induced by the decoder:

Qϕ(X, Z) ≡ P (X)Qϕ(Z|F4((I −AT )F3(X))) = (A.1)

Pθ(X, Z) ≡ P (Z)Pθ(X|F2((I −AT )−1F1(Z))).

Under this condition, several consequences follow (by properties of joint distribu-

tions):

• The marginals match: Qϕ(X) = Pθ(X).

• The conditionals match: Qϕ(Z|F4((I−AT )F3(X))) = Pθ(F2((I−AT )−1F1(Z))|X)

and Qϕ(F4((I −AT )F3(X))|Z) = Pθ(X|F2((I −AT )−1F1(Z))).

• The latent marginal also matches: Qϕ(Z) = Pθ(Z).

Substituting into the loss:

1. The reconstruction term becomes:

−EQϕ(Z|F4((I−AT )F3(X)))[logPθ(X|F2((I −AT )−1F1(Z)))],

165



Appendix A. Theoretical Proofs

which achieves its minimum when Pθ(X|F2((I − AT )−1F1(Z))) = Qϕ(F4((I −

AT )F3(X))|Z) - that is, the decoder correctly models the conditional distribution

of the data given the latent variables.

2. The KL divergence terms vanish:

DKL(Qϕ(Z|F4((I −AT )F3(X)))∥P (Z)) = 0 and DKL(Qϕ(Z)∥P (Z)) = 0,

because the respective distributions match under the joint equality. In other

words, the first term yields 0 because Qϕ(Z|F4((I −AT )F3(X))) = Pθ(F2((I −

AT )−1F1(Z))|X) = P (Z), while the second equation computes a value of 0 due

to Qϕ(Z) = Pθ(Z) = P (Z).

To justify why this implies recovery of the true data distribution: note that the

encoder is trained on samples from the true data distribution P (X), so the joint dis-

tribution Qϕ(X, Z) = P (X)Qϕ(Z|F4((I −AT )F3(X))) is grounded in the true data. If

the decoder achieves Pθ(X, Z) = Qϕ(X, Z), then its marginal over X is also:

Pθ(X) =

∫
Pθ(X|F2((I −AT )−1F1(Z)))P (Z) dZ

=

∫
Qϕ(F4((I −AT )F3(X))|Z)P (Z) dZ.

But since Qϕ(F4((I − AT )F3(X))|Z) was derived from P (X) via the encoder, it

follows that:

Pθ(X) =

∫
Qϕ(F4((I −AT )F3(X))|Z)P (Z) dZ = P (X).

Thus, the decoder distribution Pθ(X) matches the true observational distribution. This

means that the decoder

Pθ(X|F2((I −AT )−1F1(Z)))

has successfully learned to generate samples indistinguishable from the true data dis-

tribution P (X).

Therefore, the InfoVAE objective is globally minimized when Qϕ(X, Z) = Pθ(X, Z),
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and under this condition, the decoder Pθ(X|F2((I −AT )−1F1(Z))) recovers the true

observational distribution P (X), thus concluding the proof.

A.4 Proof of proposition 4.1.2

Proposition 4.1.2. Given a generated data distribution PGA
(X̃), defined using a

causal graph GA belonging to the set of identifiable causal graphs SGA
, and the true

underlying causal structure of the input data denoted as G0
A. Assuming that G0

A is

also a member of SGA
, then a learned causal graph GA contains the same structure as

G0
A i.f.f. PGA

(X̃) matches the original data distribution PG0
A

(X).

Proof. If G0
A is contained in SGA

, then according to Definition 1 the following state-

ment must also be true: Under the same set of assumptions A, there exists only one

causal graph GA capable of defining PGA
(X̃). Hence, if a causal structure learning

model M recovers a causal graph GA that matches G0
A, then PGA

(X̃) = PG0
A

(X),

thus concluding the proof.

A.5 Proof of proposition 5.1.1

Proposition 5.1.1. Let the ground-truth graph G0
A be the only structure that can

generate P (X), then, under the assumption of causal identifiability, applying adver-

sarial training ensures the following: 1) the implicitly generated distribution PGA
(X̃)

matches P (X) and 2) the causal graph GA used to define PGA
(X̃) is identical to G0

A.

Wp(P (X), PGA
(X̃)) = 0 =⇒ PGA

(X̃) = P (X) =⇒ GA = G0
A.

Proof. Consider X̃ ∼ PGA
(X̃) as the distribution induced by the DAG GA. As-

sume that the observational data distribution X ∼ P (X) is defined using the ground-

truth graph G0
A. Furthermore, let the adversarial loss term Ladv(X, X̃), describing

the Wasserstein distance Wp(P (X), PGA
(X̃)), correspond to the formulation given in

Equation (5.1). Then, achieving the global optimum for Ladv(X, X̃) guarantees distri-

butional overlap between PGA
(X̃) and P (X).

167



Appendix A. Theoretical Proofs

Wp(P (X), PGA
(X̃)) = 0 −→ PGA

(X̃) = P (X)

Additionally, by considering the reverse perspective one can observe how distributional

alignment implies that the optimal solution for Equation (5.1) is discovered.

PGA
(X̃) = P (X) =⇒ Wp(P (X), PGA

(X̃)) = 0

When GA ̸= G0
A, the synthetic and observational distributions cannot be matched,

which means that PGA
(X̃) ̸= P (X), because GA is incorrect. As a result, there are

fundamental structural discrepancies between PGA
(X̃) and P (X̃), resulting from the

application of incorrect causal mechanisms in the generation of the synthetic distribu-

tion. These differences are reflected in their samples, leading to an increase in Earth

Mover’s distance:

Wp(P (X), PGA
(X̃)) > 0.

Therefore, minimizing Ladv(X, X̃) ensures that PGA
(X̃) aligns with P (X), and the

identifiability assumption guarantees that this alignment occurs exclusively when GA =

G0
A, thus concluding the proof.

A.6 Proof of proposition 5.1.2

Proposition 5.1.2. Incorporating a reconstruction loss term into adversarial training

ensures that the distance between individual data points from both synthetic PGA
(X̃)

and observational P (X) data distributions is minimized. This reduction in noise pre-

vents significant gradient fluctuations, resulting in more stable adversarial convergence.

min
GA∈D

LMSE(X, X̃) = 0⇒ ∀i, X̃i = Xi

Proof. Based on the mathematical formulation presented in Equation (5.2), the optimal

solution for the loss term LMSE(X, X̃) can only be obtained when the squared difference

between each corresponding pair of data points Xi ∼ P (X) and X̃i ∼ PGA
(X̃), where
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i ∈ {1, ..., n}, equals zero. This implies that there is no difference between the predicted

data X̃ and the original data X, resulting in a perfect match between the means of

their respective distributions PGA
(X̃) = P (X) w.r.t. µ.

The gradient of LMSE(X, X̃) with respect to the SCM parameters θ, which model

GA and subsequently PGA
(X̃), can be expressed as the following:

∇θLMSE(X, X̃) =
1

n

n∑
i=1

2 · ||Xi − X̃i|| · ∇θX̃i.

As the predicted data points X̃i begin to approximate the observations Xi more ac-

curately, the residual distance ∥Xi − X̃i∥ reduces further. As a result, the loss term

LMSE(X, X̃) is forced to approach its infimum, leaving little room for parameter opti-

mization with each subsequent iteration of model training.

∥Xi − X̃i∥ → 0 =⇒ LMSE(X, X̃)→ 0 =⇒ ∇θLMSE(X, X̃)→ 0.

This behavior occurs because the residual distance ∥Xi − X̃i∥ directly influences the

gradient magnitude. As X̃i approaches Xi the gradient diminishes, leading to smaller

updates during optimization. Therefore, the LMSE(X, X̃) loss ensures stable optimiza-

tion through smooth gradients. Its steady convergence as X̃i → Xi prevents oscillatory

behavior, thus concluding the proof.

A.7 Proof of proposition 5.1.3

Proposition 5.1.3. The LKLD(X, X̃) regularization imposes a statistical prior on

PGA
(X̃), ensuring that the learned distribution remains close to a predefined Gaus-

sian. Moreover, it enhances optimization stability, particularly under additive Gaussian

noise, by preventing PGA
(X̃) from deviating excessively from a normal distribution,

mitigating erratic behavior. By complementing adversarial and MSE losses, it ensures

both the alignment and smoothness of PGA
(X̃).

Proof. The application of the LKLD(X, X̃) loss term enforces the Gaussianity of the

169



Appendix A. Theoretical Proofs

probability distribution P (Zj |Paj) from which the residual noise Zj is sampled. The

noise terms belonging to this conditional distribution can be defined as follows: Zj =

Xj−fj(Paj). Therefore, converging on the global optimum of LKLD(X, X̃) guarantees

that DAGAF models the causal mechanism fj in a way that ensures Zj ∼ P (Zj |Paj) ≈

N (0, σ2j ). Enforcing the Gaussianity of Zj guarantees that the observed deviations from

the functional relationship Xj = fj(Paj) follow the Gaussian noise assumption, which

is crucial for causal discovery under both the ANM and the PNL assumptions.

Consider LKLD(X, X̃) as a regularizer, penalizing the model when the conditional

residual noise distribution P (Zj |Paj) deviates from the standard normal distribution

N (0, σ2j ). Additionally, express the gradient for LKLD(X, X̃) w.r.t. GA as the following:

∇GA
LKLD(X, X̃) =

d∑
j=1

EPaj

[
∇GA

log
P (Zj | Paj)
N (Zj ; 0, σ2j )

]
.

From the above equation, it is evident that the term logN (Zj ; 0, σ2j ) is quadratic in Zj ,

yielding a smooth gradient ∇GA
LKLD(X, X̃) that is robust against minor perturbations

in GA. This limits overfitting to the noise present in Xj and stabilizes the modeling

of fj . As a result, the LKLD(X, X̃) term enhances the overall stability of the model

by aligning the implicitly generated distribution PGA
(X̃) with a normal (Gaussian)

distribution.

The LKLD(X, X̃) term can also be applied to other components of the objective

function used in the training process of DAGAF. For example, the adversarial loss

Ladv(X, X̃) encourages overlap between P (X) and PGA
(X̃), however, it does not explic-

itly impose the additive Gaussian assumption. On the other hand, the reconstruction

loss LMSE(X, X̃) minimizes the distance between the original Xi and the synthetic X̃i

data points individually, but fails to take into consideration the statistical properties of

Zj . The KLD regularization term LKLD(X, X̃) directly imposes a Gaussian structure

on Zj , ensuring that it adheres to the additive Gaussian assumption. This constraint

discourages fj from overfitting to non-Gaussian noise, thus completing the proof.
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A.8 Proof of proposition 5.1.4

Proposition 5.1.4. Minimizing the Maximum Mean Discrepancy (MMD) loss term

LMMD(X, X̃) encourages the alignment of higher-order moments between the input dis-

tribution P (X) and the synthetic distribution PGA
(X̃), which supports the adversarial

loss in achieving overall distributional alignment.

Proof. Based on the MMD definition provided in Equation (5.4), the author gives the

gradient of the term LMMD(X, X̃) w.r.t. θ, which is used to define GA, as follows:

∇θLMMD(X, X̃) = 2(EX̃∼PGA
(X̃)[∇θk(X̃i, X̃j)]

− EX∼P (X),X̃∼PGA
(X̃)[∇θk(Xi, X̃j)]),

where X̃ ∼ PGA
(X̃) represents samples drawn from the model-generated distribution,

while X ∼ P (X) denotes samples from the true distribution. The function k(X, X̃)

serves as a positive-definite kernel, commonly selected as a Gaussian kernel or another

characteristic kernel (e.g., RBF or Polynomial).

The kernel k(X, X̃) inherently encodes the higher-order statistics of both the true

distribution P (X) and the synthetic data distribution PGA
(X̃). The function achieves

this by encouraging internal consistency within the implicitly generated model distri-

bution, as evidenced by the third term in LMMD(X, X̃), EX̃∼PGA
(X̃)[k(X̃i, X̃j)], which

aligns the fake data points X̃i and X̃j to ensure that their higher-order moments are

consistent. Additionally, the kernel function facilitates alignment with the true distri-

bution through the second term, EX∼P (X),X̃∼PGA
(X̃)[k(Xi, X̃j)].

The loss term LMMD(X, X̃) directly targets higher-order differences using kernel-

induced feature mappings k(.). This mechanism complements the adversarial loss by

ensuring that both general and detailed aspects of P (X) and PGA
(X̃) are matched.

Therefore, the combination of LMMD(X, X̃) and Ladv(X, X̃) provides a robust frame-

work for distributional alignment, addressing both large-scale discrepancies and higher-

order mismatches, thus completing the proof.
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A.9 Proof of proposition 5.1.5

Proposition 5.1.5. Assuming the Additive Noise Model (ANM), Linear non-Gaussian

Acyclic Model (LiNGAM), or Post-Nonlinear Model (PNL), there is a unique DAG G0
A

that defines the observed joint distribution P (X).

Proof. The proof for this proposition constitutes two different derivations due to fun-

damental differences between the assumptions involved in the definition of the causal

models used to perform causal discovery under the DAGAF framework. As a result,

the author proceeds to first investigate the LiNGAM and ANM cases, and afterwords

addresses the PNL case.

Lemma A.9.1. Assuming either the additive noise model (ANM) or the linear non-

Gaussian acyclic model (LiNGAM) condition holds, the ground-truth directed acyclic

graph (DAG) G0
A can be uniquely determined from the distribution P (X).

P (X) ̸= P ′(X) =⇒ G0
A ̸= G′

0
A′ .

Proof. Consider a dataset χ comprising data attributes X = {X1, ..., Xd}, where each

attribute Xj is produced under either the ANM or LiNGAM assumption, as represented

by the following equation:

Xj := fj(Paj) + Zj .

Each function fj : Rd → R is deterministic (e.g., nonlinear in the ANM case and linear

for the LiNGAM scenario). Additionally, the noise terms Zj ∼ P (Z) are indepen-

dent - non-Gaussian in LiNGAM and Gaussian in ANM, while Paj denotes the set of

immediate parents of Xj in the DAG.

In both ANM and LiNGAM, the independence of the noise term Zj from the parent

set Paj is fundamental, expressed as Zj ⊥⊥ Paj . This independence in the true DAG

G0
A places significant restrictions on the functional relationships between the causal

mechanisms within G0
A:
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P (Zj) = PZj (Xj − fj(Paj)).

Assuming G′0A′ is different from G0
A, then the functions f ′j used to define G′0A′ must

satisfy the following conditions:

P (Z ′j) = PZ′
j
(Xj − f ′j(Pa′j)),

However, if G′0A′ differs from G0
A, then the corresponding causal mechanism func-

tions f ′j will not match their true counterparts fj present in the ground-truth DAG.

Moreover, the new noise terms Z ′j will lose their independence from their parent sets

Pa′j , since that independence is unique to the actual causal structure in G0
A. Therefore,

G′0A′ cannot simultaneously satisfy the same independence conditions as G0
A, leading

to a contradiction.

Hence, given the ANM with nonlinear functions and independent noise or the

LiNGAM model with linear functions and non-Gaussian noise, no alternative DAG

G′0A′ distinct from G0
A can generate the same observational data distribution P (X).

Therefore, this confirms that the true DAG G0
A is uniquely identifiable from P (X),

thus completing the proof.

Next, the author provides theoretical analysis regarding the identifiability of the

Post-Nonlinear (PNL) assumption.

Lemma A.9.2. Assuming the Post-Nonlinear (PNL) causal model assumption holds,

there exists a uniquely identifiable DAG G0
A that produces the joint distribution ob-

served for the data variables {X1, ..., Xd}.

Proof. Let χ be a data set consisting of data attributes {X1, ..., Xd}, where each Xj is

associated with a set of parent nodes Paj and an independent Gaussian noise term Zj ,

satisfying Zj ⊥⊥ Paj . Moreover, causal mechanisms represented by nonlinear functions

fj are applied to model parent contributions, while gj denotes a nonlinear function

applied post-summation:
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Xj := gj(fj(Paj) + Zj), ∀j,Zj ⊥⊥ fj(Paj),Zj ∼ N (µ, σ2j ).

Additionally, assume that the input ρj to the post-nonlinear function gj is expressed

as follows:

ρj = fj(Paj) + Zj .

Assuming that Paj is the correct set of parent nodes and the function gj does not

affect the independence structure. Then, the residual noise Zj remains independent of

the parent variables, which is formally expressed as:

Zj ⊥⊥ Paj .

Within the Post-Nonlinear causal model, the statistical connection between Xj , its

parent nodes Paj , and the residual noise Zj exhibits specific invariances. In particular,

the conditional probability P (Xj |Paj) (which is determined by the PNL structure) and

the marginal probability P (Paj) together define the joint distribution as follows:

P (Xj , Paj) = P (Xj |Paj)P (Paj).

Now, consider an alternative parent set Pa′j that does not match the true set Paj .

For this incorrect set, the residual noise Zj is computed by subtracting the function

fj(Pa
′
j) from ρj , expressed as:

Zj = ρj − fj(Pa′j).

In this scenario, the fundamental independence condition Zj ⊥⊥ Pa′j does not hold.

As a result, when the parent set is defined incorrectly, the residual noise Zj becomes

statistically dependent on the variables in Pa′j . This dependency means that the con-

ditional distribution P (Xj |Pa′j) cannot preserve the same invariance because of intro-

duced dependencies, thus completing the proof.
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The proofs above demonstrate that under each of the three causal model assump-

tions (LiNGAM, ANM, and PNL) a given probability distribution can be represented

by only one unique DAG, thus concluding the proof.
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Data quality evaluation notebook

In this section, we analyse the quality of the synthetic data generated by the model.

We conduct the following tests:

1. Statistical properties: We compare the closeness-of-fit between the real and

synthetic data distributions using boxplot analysis, marginal distributions and

principal component analysis. We additionally compute the correlation matrices

across both sets of data to study the interdependencies between the covariates.

2. Machine learning regression: We train separate Random forest regressors

on the real and synthetic datasets and compare their corresponding regression

performances. We additionally plot the feature importances using permutations.� �
1In [1]: import pickle

2 import pandas as pd

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import seaborn as sb

6 import plotly.express as px

7 from scipy import stats

8 from sklearn.ensemble import RandomForestRegressor

9 from sklearn.inspection import permutation_importance

10 from sklearn.model_selection import train_test_split

11 from sklearn.metrics import mean_squared_error ,

r2_score
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12 from sklearn.decomposition import PCA

13 from sklearn.preprocessing import StandardScaler� �� �
1In [2]: #load in the real dataset

2 var_names = [’x1’, ’x2’,’x3’, ’x4’, ’x5’, ’x6’, ’x7’, ’

x8’, ’x9’, ’x10’]

3 ’’’ if data stored as a .csv file

4 ’’’

5 fname_real = ’./ real_data.csv’

6 real_df = pd.read_csv(fname_real , names=var_names)

7 real_df.drop(index=0, inplace=True)

8 real_df[’data’] = ’real’

9

10 ’’’ if data stored as DataLoader

11 ’’’

12 # with open(r"./ train_loader.pkl", "rb") as input_file:

13 # train_loader = pickle.load(input_file)

14

15 # real_tensor_data = train_loader.dataset.tensors [0].

squeeze ()

16 # real_df = pd.DataFrame(real_tensor_data.numpy(),

columns=var_names)

17 # real_df[’data ’] = ’real’

18 display(real_df)� �� �
1In [3]: #load in the fake dataset (of equal size to the real

one)

2 fname_fake = ’./ generated_data.csv’

3 fake_df = pd.read_csv(fname_fake , names=var_names)

4 fake_df.drop(index=0, inplace=True)

5 fake_df[’data’] = ’fake’

6 display(fake_df)� �� �
1In [4]: #combine both the real and fake data into a single

dataset to allow comparisons

2 df_all = pd.concat ([real_df , fake_df], ignore_index=

True)
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3 display(df_all)

4 df_all.to_csv(’./real_&_fake_dataframe.csv’)� �� �
1In [5]: #given the column names for the covariates we want to

visualise , plot the real vs fake and run a t-test

on them.

2 def show_data_properties(df , x_var , y_var , plot_type ,

key=’data’):

3 ’’’

4 description

5 @author: calmac

6 @date: 16.05.23

7 ’’’

8 # get features of interest

9 xreal , yreal = df[x_var ].loc[df[key ]==’real’], df[

y_var ].loc[df[key]==’real’]

10 xfake , yfake = df[x_var ].loc[df[key ]==’fake’], df[

y_var ].loc[df[key]==’fake’]

11

12 # run a t-test between real/fake features

13 ttest_x = stats.mannwhitneyu(xreal , xfake)

14 ttest_y = stats.mannwhitneyu(yreal , yfake)

15 print(’Mann -Whitney U-test (real vs fake):’)

16 print(’\t{}: p-value ={}’.format(x_var , ttest_x [1]))

17 print(’\t{}: p-value ={}’.format(y_var , ttest_y [1]))

18

19 # visualise results

20 fig = px.scatter(df , x=x_var , y=y_var ,

21 marginal_x=plot_type , marginal_y=

plot_type ,

22 color=key , width =800, height =800,

23 trendline=’ols’

24 )

25 fig.update_layout(legend=dict(

26 yanchor=’top’, y=0.95,

27 xanchor=’right’, x=0.9

28 ))
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29

30 fig.show()� �� �
1In [6]: x_var = ’x3’

2 y_var = ’x4’

3 plot_type = ’box’

4

5 show_data_properties(df_all , x_var , y_var , plot_type)� �� �
1In [7]: #we alternatively plot correlation matrices to

visualise the dependencies between all covariates.

2 def plot_correlation(data , names , cmap=’Blues’,

annotations=False):

3 ’’’

4 Description

5

6 @author: calmac

7 @date: 16.05.23

8 ’’’

9 data = pd.DataFrame(data , columns=names)

10 corr = data.corr()

11 sb.heatmap(corr , cmap=cmap , annot=annotations ,

xticklabels=names , yticklabels=names)

12 plt.show()� �� �
1In [8]: #real data:correlation matrix

2 plot_correlation(real_df.iloc[:,:-1], real_df.columns

[:-1])� �� �
1In [9]: #fake data:correlation matrix

2 plot_correlation(fake_df.iloc[:,:-1], fake_df.columns

[:-1])� �� �
1In [10]: #machine learning regression

2 def runRandomForestRegression(real_data , fake_data ,

outcome , seed=42, feature_importance=True ,

bootstrap=False):
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3 ’’’

4 Description

5

6 @author: calmac

7 @date: 16.05.23

8 ’’’

9

10 # find all features except the outcome: these

become the covariates

11 feature_names = real_data.columns [~ real_data.

columns.isin([ outcome ])]

12 print(’Outcome of interest: {}’.format(outcome))

13 print(’Covariates: {}’.format(list(feature_names)))

14

15 ’’’ Random forest regressor fit to the REAL data

16 ’’’

17 # real data

18 Xr, yr = real_data[feature_names], real_data[

outcome]

19 Xr_train , Xr_test , yr_train , yr_test =

train_test_split(Xr , yr , test_size =0.1,

random_state=seed)

20

21 # real model

22 model_real = RandomForestRegressor(n_estimators

=1000, max_depth=5, random_state=seed)

23 model_real.fit(Xr_train , yr_train)

24

25 ’’’ Random forest regressor fit to the FAKE data

26 ’’’

27 # fake data

28 Xf, yf = fake_data[feature_names], fake_data[

outcome]

29 Xf_train , Xf_test , yf_train , yf_test =

train_test_split(Xf , yf , test_size =0.1,

random_state=seed)

30
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31 # fake model

32 model_fake = RandomForestRegressor(n_estimators

=1000, max_depth=5, random_state=seed)

33 model_fake.fit(Xf_train , yf_train)

34

35 ’’’

36 Given two trained RF models (one trained on real ,

the other on fake data)

37 run both models on the same test set of real data

and compare their performances.

38 ’’’

39 yr_pred = model_real.predict(Xr_test)

40 print(’Results (real):’)

41 print(’\tR2 score: {}’.format(r2_score(yr_test ,

yr_pred)))

42 print(’\tMSE: {}’.format(mean_squared_error(yr_test

, yr_pred)))

43

44 yf_pred = model_fake.predict(Xr_test)

45 print(’Results (fake):’)

46 print(’\tR2 score: {}’.format(r2_score(yr_test ,

yf_pred)))

47 print(’\tMSE: {}’.format(mean_squared_error(yr_test

, yf_pred)))

48

49

50 if feature_importance:

51 ’’’

52 Now examine whether the real and fake RFs use

similar features to

53 predict the outcome of interest.

54 ’’’

55 # Real

56 result_real = permutation_importance(model_real

, Xr_test , yr_test , n_repeats =10, random_state=seed

)

57 sorted_imp_idx_real = result_real.
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importances_mean.argsort ()

58 imp_real = pd.DataFrame(

59 data = result_real.importances[

sorted_imp_idx_real ].T,

60 columns = feature_names[sorted_imp_idx_real

]

61 )

62 ax = imp_real.plot.box(vert=False , whis =10)

63 ax.set_title(’Feature importance using

permutations (real)’)

64 ax.axvline(x=0, color=’k’, linestyle=’--’)

65 ax.set_xlabel(r’Decrease in $R^2$’)

66 ax.figure.tight_layout ()

67 plt.show()

68

69 # Fake

70 result_fake = permutation_importance(model_fake

, Xr_test , yr_test , n_repeats =10, random_state=seed

)

71 sorted_imp_idx_fake = result_fake.

importances_mean.argsort ()

72 imp_fake = pd.DataFrame(

73 data = result_fake.importances[

sorted_imp_idx_fake ].T,

74 columns = feature_names[sorted_imp_idx_fake

]

75 )

76 ax = imp_fake.plot.box(vert=False , whis =10)

77 ax.set_title(’Feature importance using

permutations (fake)’)

78 ax.axvline(x=0, color=’k’, linestyle=’--’)

79 ax.set_xlabel(r’Decrease in $R^2$’)

80 ax.figure.tight_layout ()

81 plt.show()� �� �
1In [11]: outcome = ’x1’

2 runRandomForestRegression(real_data=real_df.iloc[:,
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:-1],

3 fake_data=fake_df.iloc[:, :-1], outcome=outcome)� �� �
1In [12]: features_std = StandardScaler ().fit_transform(df_all.

iloc[:, :-2])

2

3 pca = PCA(n_components =2)

4 principalComponents = pca.fit_transform(features_std)

5

6 pca_df = pd.DataFrame(data=principalComponents , columns

=[’PC1’, ’PC2’])

7 pca_df[’data’] = df_all[’data’]

8 pca_df

9

10 plt.figure(figsize =(8, 6))

11 for label , color in zip([’real’, ’fake’], [’blue’, ’

orange ’]):

12 subset = pca_df[pca_df[’data’] == label]

13 plt.scatter(subset[’PC1’], subset[’PC2’], label=

label , alpha =0.7, color=color)

14

15 plt.title(’PCA Comparison of Original and Synthetic

Data’)

16 plt.xlabel(’Principal Component 1’)

17 plt.ylabel(’Principal Component 2’)

18 plt.legend ()

19 plt.show()� �
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