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Abstract

Background

Causal knowledge is essential for understanding complex systems and revealing rela-
tionships between variables. It enables researchers to transition beyond correlations,
reason about cause and effect, and derive scientific insights. Although Randomized
Controlled Trials (RCT) remain the gold standard for causal inference, they are often
infeasible due to ethical, logistical, or financial constraints and may lack real-world
applicability. In contrast, observational data offer abundant, diverse samples, mak-
ing them well-suited for large-scale analysis. Despite susceptibility to confounding,
advances in structure learning from observations allow researchers to identify causal

relationships without relying on randomized experiments.

Research objectives

This thesis challenges conventional maximum likelihood estimation (MLE)-based meth-
ods by exploring adversarial causal discovery approaches. It leverages the Wasserstein
Generative Adversarial Network with Gradient Penalty (WGAN-GP) framework to
address key limitations: (1) model overfitting from simplistic loss functions; (2) de-
pendence on single parametric assumptions that hinder accurate causal graph recovery
reflective of true data relationships; (3) high computational cost from Augmented La-
grangian optimization in the NOTEARS framework; and (4) inability to perform causal

discovery and tabular data synthesis simultaneously under a single framework.
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Chapter 0. Abstract

Methods

Three models were developed using the WGAN-GP framework. The first, DAG-WGAN
integrates WGAN-GP with variational inference, leveraging hybrid losses for improved
causal modeling. The second, DAG-WGAN+ enhances continuous optimization with
efficient structure learning techniques. The third, DAGAF captures variable inter-
dependencies under various causal assumptions to generate synthetic data preserving

causal relations.

Results

All models target multivariate causal discovery and were rigorously evaluated using
Structural Hamming Distance (SHD). Results show they outperform leading methods
in causal discovery across 97.47% of all test cases. In real-world experiments, the
proposed models achieve superior accuracy (SHD = 8 vs. > 10 for state-of-the-art
models). Findings further reveal that precise causal modeling enhances synthetic data

quality by preserving underlying causal mechanisms.
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Chapter 1

Introduction

Causality is a fundamental property that shapes our view of reality. It is based on the
idea of cause and effect, which was first suggested by the ancient Greek philosopher
Aristotle in their works; ”Metaphysics” [2] and ”Posterior Analytics” [3]. Since then,
causality has been closely linked to science, allowing people to gain insight into complex
concepts such as the Universe and Life itself.

Throughout the centuries, people have developed their own interpretations of causal-
ity to explain its effects in different fields. For instance, the work of Galileo Galilei in
physics highlighted the distinction between observing the causal relationships within a
system and studying them by manipulating the parameters that influence its behavior.
This concept is referred to as intervention, and its introduction to causation enabled
Galileo to change the way people view the Universe.

In the field of medicine, Sir Austin Bradford Hill recognized that exploring the
influence of causal connections could provide valuable insight into diseases, their treat-
ments, and their outcomes. In his paper "The Environment and Disease: Association
or Causation?” [4], Hill proposed a set of criteria (Plausibility, Consistency, Temporal-
ity, Strength, and Specificity) as a guide to examine causality in epidemiological studies.
By utilizing these criteria in randomized control trials (RCT) [5], Hill concluded that
cigarette smoking was one of the leading causes of lung cancer and investigated the ef-
fects of streptomycin as a form of treatment for tuberculosis. Although his criteria are

somewhat outdated nowadays, they are still considered essential for investigating the
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effect of causation in various research fields, including Criminology [6], Economics [7],
Psychology [8] and Marketing [9].

In recent decades, the increasing use of computers and their capacity to store data
have shifted the study and application of causality toward a more digital direction.
This is mainly due to the accumulation of large datasets and their complexity, making
it difficult for people to comprehend the connections between the data. As a result, a
new scientific field known as Causal Structure Learning was established, which seeks
to learn the causal relationships within data through interventions or observations.
Pioneers such as Judea Pearl [10], Peter Spirtes [11] and Xun Zheng [12] have enabled
us to transition from manually searching for causal relationships between variables
or using rule-based algorithms, to discovering them by applying advanced machine
learning techniques for modeling the dependencies in data. At present, causal structure
learning is still an active area of research, with people studying the effects of causation
in fields such as Computer Science, Data Analytics, Medicine, and Physics, further

emphasizing its importance.

1.1 Why Causation?

Humans have a natural inclination to discover how things relate to each other. Our
inherent curiosity drives us to ask the essential question: ” How everything works?”.
A crucial stepping stone on our collective path to answering this question is gaining
the knowledge of how all is connected. Our desire to understand the world around
us emphasizes the importance of causality (determined by observation, reasoning, and
experimentation) in our thought process.

We can use our capacity for reasoning to recognize causal relationships by simply
observing our surroundings or by actively engaging with them. Examples of this are: 1)
Observing the influence of the rotation of Earth on the day/night cycle. 2) Experiencing
the pain and discomfort from touching a hot stove. These are accepted as being accurate
based on observation and experimentation. However, not all causal statements are

necessarily accurate. It is possible to make connections that are partially wrong or
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completely unjustified. This is usually due to our limited rationality combined with
our ability to correlate observations.

Correlations are a way of connecting different events or activities. They are seen
as high-level patterns in data or decisions made based on past experiences. Although
statistical dependencies can be used to make inferences about cause and effect, it is
important to remember that correlations do not necessarily imply causation [13], [14].
Nevertheless, people often mistake them for causal relationships because of their in-
ability to distinguish between the two.

Every causal statement consists of two components: confounding and causal associ-
ation. The former is a shared cause between two or more variables, creating an indirect
relationship, while the latter establishes a direct link between two variables. Correla-
tions are unable to express ’confounding’, but they do contribute to causal associations,
which is why they are often mistaken for causal statements. This issue is even more
noticeable when people are presented with a large amount of data.

The misidentification of statistical patterns as connections between variables can
lead to a false understanding of the causality in a dataset. This discrepancy between the
actual causal structure of the data and the one suggested by its statistical dependencies
manifests itself in the form of contradictions, such as Simpson’s paradoz [15], [16]. This
paradox occurs when confounders are present, making it impossible to determine causal
relationships from correlations. The presence of such paradoxes in datasets creates
problems that can only be solved by studying and understanding the causation between
data variables. As the number of such datasets increases, it becomes increasingly
important to analyze the data from a causal perspective.

Causal inference not only plays an essential role in studying datasets but also has
significant implications for our daily lives. It enables people to gain key insight into the
connections between aspects within specific scenarios. For that reason, whether we are
engaged in a task, problem-solving or decision-making, people prefer to substantiate
their reasoning with logical arguments based on causal relationships. To elaborate
further on the intuition behind causation, the following examples are presented: 3) a

data analyst studying how the values of different columns affect the rest of the data
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in a dataset; 4) a medical professional assessing the effects of various treatments on a
disease.

These examples demonstrate the ability of causal relationships to express different
ideas. In the third example, causality provides an ezxplanation of how the data is con-
nected. In the fourth scenario, causation allows the physician to objectively determine
which treatment will result in the most favorable outcome. Although the way in which
causal inference is expressed may vary, its influence remains the same. It enables peo-
ple to infer the effect of various factors (e.g. treatment, policy, intervention, action, or
decision) on a potential outcome by examining how they affect it.

Unfortunately, performing causal inference is challenging because of our inability to
generalize the search space that contains the relationships between variables. Hence,
people always rely on assumptions when conducting causal studies. They enable us
to control the number of possible connections by specifying a scenario with a cor-
responding set of circumstances, thus significantly limiting the formulation of causal
statements. Moreover, assumptions are essential for causal inference, as they facili-
tate the discovery of path diagrams through observations or interventions. Despite the
two aforementioned approaches using different sets of assumptions, they both attempt
to retrieve the relationships exhibited within data through a procedure called causal

structure learning.

1.2 Causal Structure Learning

Research in the field of causal structure learning focuses on discovering the causal
mechanisms within a dataset. Most contributions to the field involve computing a
graphical representation through interventions or observations that best describes the
causal relationships in the data. Interventions are considered the gold standard for
causal structure learning, with most research in this direction conducted by actively
manipulating one or multiple variables in randomized control trials [17]. However,
such experiments can be difficult to set up due to ethical, feasibility, and cost issues.

Therefore, algorithms have been developed to directly retrieve causal relationships from
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data, making observational studies more significant [18], [19]. This section provides a
brief overview of the history of causal structure learning from observational data; for a
more detailed discussion, see Section 2.2.

Studying the causal connections between different data variables within a dataset
can benefit multiple research domains and contribute to scientific knowledge. Partic-
ularly in structure learning, Bayesian Networks (BN) are a useful tool for discovering
causal relationships from observational data. Represented as Directed Acyclic Graphs
(DAG), they can be used to infer causality in complex systems. Their unique struc-
ture allows people to describe how the contents of a dataset are related, leading to
a deeper understanding of diverse fields such as medicine, justice or physics. More
importantly, BN have many applications in machine learning, as they can model the
conditional dependencies between variables while being easily interpretable and compu-
tationally tractable. Noteworthy examples include ” Finding Optimal Models for Small
Gene Networks” [20] and Causal Protein-Signaling Networks Derived from Multiparam-
eter Single-Cell Data [21].

The challenge of causal structure learning lies in the vast number of potential DAG
that form the search space. As the number of variables increases, the DAG search
space expands exponentially, rendering attempts of combinatorial nature computation-
ally intractable. To address this NP-hard problem [22], various approaches have been
developed, such as traditional score-based, constraint-based and hybrid methods, as
well as machine learning techniques like continuous optimization and efficient structure
learning.

Traditional methods for learning DAG structures rely on independence tests to limit
the search space [23], [11], [24], or perform discrete score-based searches to identify
the DAG that best fits the input data [25], [26], [27]. Both of these techniques have
their drawbacks. Constraint-based methods (CBM), such as the PC [28] and FCI
[29] algorithms, produce graphs that satisfy a set of conditional independencies, not
a learned causal structure, and thus the output of these methods is often incomplete.
Furthermore, these models are not robust to significant changes in the size of the

data variables [30]. Score-based methods (SBM), such as LINGAM [31], PNL [32] and
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CSM [33], attempt to discretely optimize a score function to find the best DAG, but
additional structure assumptions and approximate searches are often necessary due to
the complexity of the search space, which remains super-exponential.

Researchers have attempted to address the shortcomings of CBM and SBM by
combining them into hybrid approaches. These methods have shown great promise
as they simultaneously reduce the graph search space and optimize a score function,
thus learning a DAG. A well-known example of this is the MMHC algorithm by [34],
which uses Min-Max Parent and Children (MMPC) to limit the graph search space and
optimizes the Hill-Climbing score function to compute a DAG.

Traditional causal discovery methods, though effective in earlier decades, have be-
come increasingly impractical, as their discrete search over DAG structures leads to
combinatorial intractability as the number of variables grows. To address this challenge,
the problem has been reformulated as a continuous optimization task, representing
graphs as weighted adjacency matrices, and acyclicity being enforced via differentiable
constraints that enable gradient-based optimization. Black-box models, particularly
neural networks, facilitate this approach by efficiently capturing complex, non-linear
relationships in large, high-dimensional datasets, while their differentiability allows for
end-to-end optimization of both structure and acyclicity constraints. This paradigm
shift effectively addresses the computational and scalability limitations inherent in tra-
ditional methods.

At present, the process of causal structure learning is performed using machine
learning models, made possible by the contributions of [12]. Their DAG-NOTEARS
framework has revolutionized the way causal structures are discovered by transforming
the problem from a combinatorial one to a continuous optimization approach that
can be solved with black-box models. This has enabled the development of mul-
tiple machine learning models that can handle non-linear, continuous and discrete
data [35], [36], [37], [38], [39]. For linear cases, GOLEM [40] outperforms NOTEARS,
while models such as AbPNL [41] and Deep PNL [42] assume post-nonlinear models.
Meanwhile, RL-BIC [43] uses reinforcement learning to learn causal graphs from data.

An alternative approach is the continuous optimization framework developed by [44],
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which is a bi-level optimization algorithm that discovers causal relationships by opti-
mizing the Permutahedron of permutation vectors to learn the order of the nodes in
a graph. CASPER [45] is another recently developed continuous optimization frame-
work that addresses the shortcomings of DAG-ness independent score-based methods
by introducing a new dynamic search space solved through a novel score function with
integrated graph structures, leading to the discovery of optimal DAG. The latest work
in the causal structure learning field is called REX [46]. The developers of this model
proposed a causal discovery method that integrates machine learning (ML) models with
explainability methods (based on Shapley values) to identify and interpret significant
causal relationships among variables.

Most of these machine learning models are successful in optimizing a score function
and imposing an acyclicity constraint. To achieve this, an augmented Lagrangian [47]
is used for continuous optimization, which enables the simultaneous optimization of
parameters and causal structure computation. Unfortunately, this continuous opti-
mization process is very time-consuming, making it inefficient.

Recently, researchers have explored novel ways to learn causality more efficiently.
One such method is DAG-NoCurl by [48], which is one of the first frameworks to do
so effectively. Its improved time-wise performance is achieved without the need for an
augmented Lagrangian or any explicit DAG constraints, thus eliminating the need for
explicit parameter optimization as causal structures are learned implicitly directly from
the DAG search space. Instead, constant hyper-parameters are used throughout the
learning process. A hyper-parameter study was also conducted to determine a baseline
of values that produce good results.

The success of DAG-NoCurl led to the development of more efficient frameworks
based on novel mathematical formulations. An example of this is VI-DP-DAG [49],
which uses a DAG sampling technique based on posterior distributions over edges and
node permutations. Variational inference is used to minimize the gap between the
prior distributions of the observational data samples and the posterior distributions,
resulting in a quick and precise computation of the causal structure. Most recently,

an advancement of the DAG-NoCurl framework, referred to as DAG-NCMLP [50], has
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been introduced to address the constraint of its predecessor to linear causal models.
DAG-NCMLP achieves this by applying a non-linear projection to an initial cyclic graph
estimate, effectively mapping it into the equivalent DAG search space characterized by
the original DAG-NoCurl formulation. Despite the advances made by DAG-NoCurl,
DAG-NCMLP and VI-DP-DAG, efficient structure learning is still an ongoing area of

research.

1.3 Motivations

In the last decade, there has been a steady increase in the influence of machine learning
on businesses and the industry in general. A prime example of this is the development
of the so-called ”generative models”, including Flow-based generative models [51], Vari-
ational Autoencoders (VAE) [52], Generative Adversarial Neural Network (GAN) [53]
and most recently diffusion models [54], which have revolutionized the way models learn
features and produce new data samples.

Today, many machine learning applications (e.g. data generation, image classifica-
tion, and stock forecasting) are predicting outcomes based on features and statistical
correlations rather than using causality to develop a deeper understanding, enabling
them to deduce the correct result. This leads to issues like over-fitting, lack of ex-
plainability, and inability to generalize, all of which prevent us from trusting in the
decision-making capabilities of machine learning applications.

Developing algorithms that can learn from both statistical patterns and causal
relationships will result in better generalization and faster convergence, making them
more efficient. Practically speaking, such approaches can help to resolve the trust issues
between humans and artificial intelligence by providing an explanation for the produced
output, which will be beneficial in areas such as healthcare, medicine and law, where
making the right decision is often not so clear-cut for humans. Furthermore, these
models could help us to discover new solutions to existing problems by introducing
novel ideas or ways of thinking that we have not yet considered.

From a generative model standpoint, the decision to explore causal structure learn-

ing through generative models was based on the development of Variational Autoen-
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coder (VAE) [52] architectures to recover causal relationships from data. Examples of
such models include DAG-GNN [35], GAE [39], and DAG-GNN + NoCurl [48], which
was created by the authors of the DAG-NoCurl paper. All of these models use max-
imum likelihood estimation (MLE) [55] to retrieve the causality present in the data
samples. However, these algorithms are prone to mean-seeking mode [56], which oc-
curs when models capture all data modes by approximating the likelihood of samples
across the entire training space. This results in an overly precise reconstruction process
that produces average samples and filters out most outliers. Consequently, the causal
mechanisms responsible for those outliers are lost, leading to inaccuracies in causal
structure learning and resulting in overfitting to the input data.

To address the limitations of generative models based on Maximum Likelihood
Estimation (MLE), researchers have proposed the use of additional loss terms, including
the Wasserstein distance (WD) [57], the Kullback-Leibler divergence (KLD) [58], and
the Jensen Shannon divergence (JSD) [59], to penalize such approaches for learning
unreasonable causal structures and synthesizing unrealistic data samples [60]. KLD and
JSD are often combined with an MLE-based reconstruction loss to form an Evidence
Lower Bound (ELBO) [61], which is a popular way to train Variational Autoencoders
(VAE). However, there is very little research conducted regarding the influence of the
Wasserstein distance on Variational Autoencoders. In particular, VAE-GAN [62] has
investigated the effects of combining ELBO with adversarial loss. Despite the fact that
the model produces good results, the impact of adversarial loss on the VAE architecture
remains largely unexplored. The same can be said for the application of the Wasserstein
distance in the area of causal structure learning.

The effects of adversarial loss in the context of causal learning can be studied
from two perspectives. Firstly, including the Wasserstein distance as an additional
loss term to the ELBO of VAE architectures can help to improve their accuracy in
learning causal structures. Secondly, the application of Wasserstein-1 in the context
of causal structure learning can be used to generate synthetic samples from learned
causal structures. Currently, there are only a few models that can discover causality

from tabular data using a generative adversarial network framework, such as DAG-
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GAN [37], SAM [63] and MCS [64]. Hence, putting more emphasis on studying this
relatively new approach will stimulate not only the development of new models but
also the writing and proliferation of scientific literature. This thesis explores both
perspectives and discusses their related findings.

Furthermore, from a causal perspective, most of the models developed for causal
discovery assume that the underlying structural causal model (SCM) used to generate
the input data is the additive noise model (ANM). This is a reasonable assumption
because ANM are identifiable and there exist many approaches satisfying it, which
enables method comparison. However, causal discovery is not limited to the ANM.
Another identifiable model, which is still largely unexplored compared to ANM, is the
Post-Nonlinear Model (PNL) [32]. In causal structure learning, there are very few
models working with PNL. Among them are AbPNL [41], Deep PNL [42], [65] and [66].
None of these models applies adversarial learning in the context of causal discovery
from PNL. Therefore, for a more complete study of the effect of adversarial training in
causal discovery, every model developed in support of this thesis is applied to both the
ANM and the PNL.

Last but not least, from a human-centric and knowledge-based standpoint, tabular
data remains one of the most prevalent and versatile formats for organizing information,
serving as a cornerstone for analysis and decision-making in fields such as medicine,
finance, and business. Nevertheless, challenges such as incompleteness and poor data
quality often undermine the reliability of insights drawn from it. To mitigate these is-
sues, Deep Generative Models (DGM) have emerged as powerful tools for data synthesis
and imputation, aiming to capture the underlying statistical distributions of real data
to enhance fidelity and diversity. However, while traditional DGM excel at modeling
correlations, they often lack interpretability and transparency, which are considered
key qualities for trustworthy data-driven decision-making. Causally aware generative
approaches have sought to overcome this by modeling the underlying cause-and-effect
relationships within data, producing more realistic and explainable synthetic samples.
Unfortunately, these methods still face significant challenges, including oversimplified

latent representations, dependency on prior causal knowledge, and high computational
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demands, which limit their practical applicability. These shortcomings emphasize the
necessity for a unified framework that integrates causal discovery with tabular data
synthesis. Such an approach holds the potential to advance the generative capabilities
of DGM to produce realistic, diverse, and explainable synthetic data, thus bridging the

trust-issue gap between machine learning and human beings.

1.4 Thesis Statement

This thesis studies the potential of Generative Adversarial Networks (GAN) in the
context of Causal Structure Learning. To this end, several causal discovery frameworks
have been developed under the WGAN-GP setting, resulting in multiple publications -
see Section 1.7. The models, namely DAG-WGAN, DAG-WGAN+ and DAGAF, were
evaluated against the current state-of-the-art, and were found to outperform them in
multiple cases.

The objective of the research conducted by the author is to investigate whether
the application of the Wasserstein distance-based adversarial loss can contribute to the
solution of some of the most critical challenges in modern causal structure learning.
Specifically, DAG-WGAN was developed to mitigate the weaknesses of conventional
MLE-based loss functions to induce model overfitting, which reduces the generality
of the causal structure learning process. DAGAF was developed as a proof-of-concept
algorithm capable of limiting the reliance on single parametric assumptions that restrict
the capacity to recover causal graphs that faithfully represent the true data-generating
process. This algorithm also provided a solution to the inability of existing methods to
simultaneously perform causal discovery and synthesize tabular data within a unified
framework.

Experiments have been conducted in both parametric and non-parametric settings,
and the impact of adversarial training and kernel-based disentangled representation
learning with Maximum Mean Discrepancy (MMD) [67] during MLE-based parame-
ter optimization has been thoroughly analyzed. Additionally, approaches for efficient
structure learning have been explored to address the slow computation of outputs due

to the Augmented Lagrangian and kernels having poor time complexities, facilitated
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by the DAG-WGAN+ model. All models discussed in this work are implemented using
Pytorch [68].

1.5 Research Methodology

This study employs a generative modeling framework to infer causal structures rep-
resented as Directed Acyclic Graphs (DAG) from observational data. Three progres-
sively enhanced models are developed: DAG-WGAN, DAG-WGAN+, and DAGAF.
Each model extends the capabilities of its predecessor by improving training stability,
causal structure learning efficiency, and modeling flexibility. The overall methodologi-
cal design integrates principles from causal discovery, generative adversarial networks
(GAN), and probabilistic modeling to achieve accurate and interpretable causal graph
estimation.

To systematically investigate and evaluate these proposed models, the author pro-
vides a research methodology section structured around three key components: (i) the
rationale behind the chosen methods, which explains the theoretical and empirical basis
for the selected architectures; (ii) the overall experimental framework, which outlines
the datasets and evaluation metrics employed; and (iii) the analytical framework, which
describes the comparative evaluation strategy, ablation analyses, and validation of re-
sults. Together, these elements form a coherent and rigorous approach to assessing the

effectiveness, robustness, and reliability of the proposed causal discovery frameworks.

1.5.1 Rationale behind the implemented methods

The development of the DAG-WGAN model stems from an effort to push beyond
the limitations of existing VAE-based methods for nonlinear causal discovery. DAG-
GNN, one of the earliest and most influential models in this domain, demonstrated
that combining machine learning with variational inference could effectively discover
causal structures, establishing the Variational Autoencoder (VAE) as a leading frame-
work for such tasks. However, its reliance on VAE formulations raised questions about

whether challenges such as independent data-point optimization, latent collapse, and
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scalability might induce deeper representational constraints. To mitigate this pos-
sibility, DAG-WGAN introduces a hybrid VAE-GAN architecture that incorporates
adversarial training through the Wasserstein distance, which is a more stable and ex-
pressive measure of distributional difference. This integration is intended to enhance
generative quality, stabilize training, and enable richer representations of complex data,
potentially opening new directions for more flexible and robust causal inference.

The DAG-WGAN+ model builds upon the foundation established by DAG-NoCurl,
which successfully integrated the DAG-GNN architecture with a curl-free constraint to
enhance structural accuracy and convergence, resulting in a variant known as DAG-
GNN with NoCurl. Inspired by this demonstrated synergy, the present study investi-
gates the potential benefits of combining the efficient, acyclicity-preserving equivalence
DAG formulation introduced in DAG-NoCurl with the hybrid VAE-GAN framework
of DAG-WGAN. This adaptation is intended to evaluate how embedding the DAG-
NoCurl framework within an adversarial causal discovery model influences both struc-
tural fidelity, training robustness and efficiency. Furthermore, by incorporating prin-
ciples of disentangled representation learning, DAG-WGAN+ is designed to separate
independent sources of variation within the latent space, aligning individual latent di-
mensions with distinct causal factors. This disentanglement is expected to enhance the
interpretability and refinement of the inferred causal graph, facilitating more reliable
identification of genuine causal relationships while mitigating the effects of spurious
correlations.

Last but not least, the DAGAF model extends the DAG-Notears-MLP framework
with the aim of exploring how its non-parametric architecture and demonstrated ca-
pacity to capture multiple identifiable causal models, such as Additive Noise Mod-
els (ANM), Post-Nonlinear (PNL) models, and Linear Non-Gaussian Acyclic Models
(LINGAM), can be further enhanced through adversarial and transfer learning tech-
niques. Building on these strengths, the model investigates whether combining explicit
likelihood estimation with distributional modeling and causally aware data generation
can bridge the gap between interpretability and expressive power. To this end, DAGAF
integrates the interpretability and identifiability of DAG-Notears-MLP with the genera-
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tive flexibility of adversarial models. The author speculates that this fusion can improve
scalability to nonlinear, high-dimensional, and non-Gaussian data modes. Moreover,
the framework enables simultaneous causal discovery and tabular data synthesis within
a unified structure. By incorporating a separate instance of DAG-Notears-MLP as a
generator to produce realistic synthetic datasets consistent with inferred causal struc-
tures, DAGAF seeks to examine how aligning structural learning with data generation
can be achieved under a single training algorithm. Through this integration, DAGAF
is positioned as an exploratory step toward interpretable and data-faithful generative
causal inference, with the potential to advance high-quality, diverse tabular data syn-

thesis.

1.5.2 Overall experimental framework

The experimental framework described in this study follows the general principles es-
tablished in recent DAG-based generative adversarial causal discovery methods, namely
DAG-WGAN, DAG-WGAN+, and DAGAF. These approaches share a common exper-
imental philosophy: evaluating both the accuracy of the learned causal structure and
the generative fidelity of the corresponding data model under controlled and real-world
conditions.

Experiments are conducted using a combination of synthetic and real-world datasets.
Synthetic data allow for quantitative evaluation since the true causal graph is known.
For these experiments, directed acyclic graphs (DAG) of varying sizes and densities are
generated, and data are simulated from diverse functional mechanisms, ranging from
linear to nonlinear and post-nonlinear relationships, to test the ability of each model
to recover causal dependencies under different structural complexities. Essentially, this
results in tabular datasets, where each column represents a data variable and each row
is generated data with each cell being a manifestation of a causal mechanism and a noise
vector. Furthermore, real-world and benchmark datasets, commonly used in causal dis-
covery research, are also employed to assess practical applicability and generalization
performance.

It is also important to note that unlike traditional machine learning, where data
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is often split into training and validation sets, this practice is less common in causal
structure learning. Although train-test splitting or cross-validation is standard in pre-
dictive modeling, causal structure identification prioritizes structural constraints and
conditional independencies over predictive accuracy. Since causal relationships are in-
herently structural and assumed to hold across the entire dataset, partitioning the data
typically offers little added value in discovering the underlying structure.

Each model is evaluated against established causal structure learning baselines
(i.e., state-of-the-art methods including DAG-Notears, DAG-GNN, GraN-DAG, DAG-
Notears-MLP, GAE, etc.), ensuring that comparisons are both fair and comprehensive.
That being said, the frameworks differ in how they enforce the acyclicity constraint and
how adversarial training is used to align the generated and observed data distributions.
DAG-WGAN employs a Wasserstein-based adversarial training strategy coupled with
a differentiable acyclicity regularizer; DAG-WGAN+ introduces the DAG-NoCurl for-
mulation to improve computational efficiency and stability; and DAGAF extends the
adversarial framework to jointly learn causal structures and synthesize realistic tabular
data under multiple functional assumptions.

Nevertheless, commonalities between all three approaches include the two criteria
used to assess model performance. The first focuses on causal accuracy, quantified
by how closely the learned graph approximates the true causal structure. The met-
ric chosen for this evaluation was the Structural Hamming Distance (SHD) because it
integrates several important measures, such as True Positive Rate (TPR), False Dis-
covery Rate (FDR), and False Positive Rate (FPR). The second concerns data fidelity,
measured through the similarity between the original and generated data distributions.
It is common practice to evaluate generated sample fidelity and diversity using mul-
tiple different components of data and distribution analysis including: 1) heat maps
to visualize the learned causal structure; 2) box plots to assess feature importance
quality for regression or classification tasks; 3) correlation matrices to compare the
learned correlations to the original ones; and 4) distribution visualization to determine
the diversity of the generated samples by investigating how well the generated and the

original distributions overlap. The author utilizes all of the above in their experiments.
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Together, these evaluations provide a balanced investigation of both causal discovery
and generative capability.

All synthetic data experiments are repeated across multiple random initializations
to ensure robustness, and performance is reported in aggregate to mitigate stochastic
variability. This framework enables systematic comparison across model variants while
maintaining consistency in data generation validation and causal structure learning

evaluation. The results are available in Sections 3.2.3, 4.2 and 5.2.

1.5.3 Analytical framework

This study adopts an analytical framework that systematically examines the efficacy
of adversarial generative models in learning causal structures and synthesizing real-
istic tabular data. By leveraging directed acyclic graph (DAG)-based formulations
within adversarial learning paradigms, the framework integrates causal discovery and
data generation into a unified evaluation process. It focuses on assessing how different
optimization strategies for acyclicity enforcement, adversarial objectives, and architec-
tural refinements influence both the interpretability and performance of learned models.
In particular, the framework emphasizes a comparative analysis of recent DAG-based
adversarial methods, including DAG-WGAN, DAG-WGAN+, and DAGAF, centering
around comparing and validating the capacity of these models to accurately infer causal
structure, synthesize high-fidelity data, and maintain computational efficiency.

The comparative evaluation strategy proceeds along three primary dimensions:
structural accuracy, generative fidelity, and computational efficiency. Structural ac-
curacy is quantified using the metrics described in the above Section 1.5.2, which
collectively assess the correctness of inferred edges and their orientations. Genera-
tive fidelity is evaluated through distributional similarity metrics, including Maximum
Mean Discrepancy (MMD) and Wasserstein distance (WD) applied to tabular data,
alongside predictive utility tests (e.g., feature importance) on downstream tasks to de-
termine whether synthetic samples preserve functional dependencies observed in real
data. Computational efficiency is examined by recording training time, convergence be-

havior, and scalability with respect to the number of nodes and samples. Collectively,
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these evaluation dimensions offer a comprehensive perspective on how each approach
balances between causal interpretability, generative authenticity, and computational
performance.

To provide a more comprehensive comparative analysis, a series of ablation exper-
iments are performed to isolate and quantify the influence of key model components.
Three main ablation paths are explored: 1) modifications to model architecture (i.e.,
removing components like GAN or VAE in DAG-WGAN+) to assess its role in en-
suring valid causal graphs; 2) substitution or complementarity of the Wasserstein loss
with alternative divergence measures (in both DAG-WGAN+ and DAGAF), such as
reconstruction losses (i.e., MSE and NLL), to test sensitivity to adversarial distance
formulations; and 3) the addition of regularization loss terms (including MMD and
KLD functions in both DAG-WGAN+ and DAGAF) to analyze their effect on graph
density and overfitting. For each ablation configuration, the same datasets and eval-
uation metrics are maintained to ensure direct comparability. Changes in SHD are
systematically measured, revealing the contribution of each component to the overall
performance of every model.

Validation of the results follows a multilayered approach encompassing internal, ex-
ternal, and statistical validation (the last two are applied only within the context of
DAGAF). Internal validation assesses the stability and reproducibility of the training
process by conducting multiple runs with different random seeds and evaluating perfor-
mance across independent data partitions. External validation examines the generality
of the learned causal structures and generators when weighted adjacency matrices are
transferred across different model instances with varying statistical properties or noise
levels. Statistical validation confirms the significance of observed performance differ-
ences using non-parametric hypothesis testing methods such as the Mann-Whitney
tests, and incorporating confidence interval estimation to provide a clearer indication
of the practical significance of the results. Qualitative validation is also conducted
by inspecting the interpretability and plausibility of learned causal graphs in domains
where partial ground truth or complete causal knowledge is available. For tabular

data synthesis, the preservation of marginal distributions, pairwise correlations, and
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downstream predictive utility further validates the fidelity and diversity of generated
samples. Runtime profiling and memory consumption analyses substantiate claims of
efficiency, while consistent computational environments and standardized codebases
ensure reproducibility.

Essentially, this analytical framework combines comparative experimentation, ab-
lation study dissection, and rigorous validation to comprehensively assess the learning
dynamics and performance of DAG-WGAN, DAG-WGAN+, and DAGAF. By gather-
ing evidence from structural, statistical, and computational perspectives, the framework
provides a robust basis for evaluating adversarial DAG-learning models and contributes
to a deeper understanding of how generative-adversarial mechanisms can be effectively

harnessed for causal discovery and tabular data synthesis.

1.6 Contributions

This thesis primarily investigates the effects of the Wasserstein loss in a causal struc-
ture learning context. Its influence has been measured by incorporating the loss term
into the training algorithm of existing models and applying it as means of parame-
ter optimization for simultaneous causal discovery and tabular data synthesis under a
single machine learning framework. In addition, research topics such as disentangled
representation and efficient structure learning have also been explored to improve accu-
racy and reduce time complexity. The rest of this section briefly presents the research
areas relevant to the work discussed in this thesis, while stating the contributions of

the author.

1.6.1 Impact of adversarial training on variational inference in Causal

Discovery

The author contributes to causal discovery by studying the impact of the Wasserstein
loss with gradient penalty (WGAN-GP) on modeling the relationships between features
in observational data. Although the application of adversarial training in various fields

is well established, the use of GAN-based architectures in causal structure learning is
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relatively uncommon. Notable approaches in the domain utilizing the generative adver-
sarial network architecture include Structural Agnostic Modelling (SAM) [63], MCS [64]
and DAG-GAN [37]. These methods have demonstrated an ability to learn reasonable
causal relationships, but they suffer from scalability issues and do not assume multiple
data types. Moreover, only SAM and MCS utilize WGAN-GP, leaving the influence of
this architecture and its adversarial loss on causality learning largely unexplored.

The research carried out in support of this work leads to the development of a
parametric algorithm based on the VAE-GAN [62] architecture called DAG-WGAN.
The approach is an extension of DAG-GNN [35] and improves on the model by intro-
ducing a discriminator and an additional adversarial loss term during training. The
causal discovery method has been thoroughly tested against other popular models in
the field, and there is empirical evidence to suggest that DAG-WGAN can be used to
recover accurate structures from continuous and ordinal data. Interestingly, the exper-
iments also indicate that the Wasserstein loss with gradient penalty is most impactful
when working with high-dimensional data. Further details regarding this novelty can

be found in Chapter 3.

1.6.2 Generative Adversarial Causal Structure Learning

To facilitate the integration of GAN into the field of Causal Structure Learning, the au-
thor has developed a non-parametric generative adversarial framework called DAGAF.
This model is structured as a standalone WGAN-GP extension of DAG-Notears-MLP
capable of handling multiple data types. As such, it can be used to recover causal
relationships from continuous and categorical datasets under various structural causal
model assumptions.

The main contribution of this approach is the implicit definition of a new proba-
bility distribution with an embedded causal structure, which allows for the sampling
of realistic data points that maintain the causality exhibited in the input. The frame-
work also involves transfer learning to establish a two-step training pipeline. Initially,
DAGAF learns the causal relationships among the input features, and then employs

the acquired causal knowledge in a conditional generator to produce synthetic samples.
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The adversarial training is further strengthened by the addition of a reconstruction loss
term. The MLE-based loss term has the most significant effect on the causal discovery
process, however, a theoretical analysis has been conducted to show the contribution
of the adversarial loss function to causal structure learning. Further details regarding

this novelty can be found in Chapter 5.

1.6.3 Adversarial causal discovery with the post-nonlinear model

Most machine learning algorithms used for discovering causal structures from obser-
vational data assume only Additive Noise Models (ANM) as their Structural Causal
Model (SCM). This is a limitation of their design, as it implies that datasets can only
be generated using that particular SCM. Meanwhile, there is very limited research con-
ducted on causality learning using the post-nonlinear model (PNL), which is another
identifiable SCM, in most cases. For settings where PNL is not identifiable, see [32].
To the best knowledge of the author, there are mostly discrete score-based methods
that can perform causal discovery using the post-nonlinear model, with notable exam-
ples including [69], [70], [71], [72]. Prior to this work, there were very few machine
learning models (i.e Deep PNL, AbPNL, MC-PNL and CAF-PoNo) that could recover
relationships between variables under the assumption of PNL.

The author has developed three methods for adversarial causal discovery that use
the post-nonlinear model either in their architectures or the input data. These models
have been tested against approaches using ANM and LINGAM (Linear Non-Gaussian
Acyclic Model), which are considered to be subsets of PNL. Experiments have shown
that adversarial training can be used to recover high-quality causal structures when the
post-nonlinear model is assumed. These promising initial findings may stimulate the
proliferation of scientific literature and further investigations into this emerging frontier
of causal discovery. Additional details regarding this novelty can be found in Chapters

3,4, 5.
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1.6.4 Efficient Structure Learning

DAG-WGAN and DAGAF both employ an augmented Lagrangian as part of their
training procedure. Although these methods produce high-quality causal structures,
they are very slow due to the cubic computational complexity of the Lagrangian. To
address this issue, the author shifted their focus to efficient structure learning. This
field of research is devoted to creating frameworks that can identify causality from
data without the use of the augmented Lagrangian. Notable approaches include DAG-
NoCurl [48] and DP-DAG [49], which require significantly less time to discover causal
structures.

The author contributes to the field of efficient structure learning by combining
DAG-WGAN and DAG-NoCurl to develop a new model called DAG-WGAN+. Ex-
periments were conducted to assess the accuracy and the time it took for the model
to run. The outcome was a slight increase in accuracy and a considerable decrease
in training time. Furthermore, an analysis of the algorithm was conducted to deter-
mine the computational complexity of DAG-WGAN+. The results indicate that the
new model is significantly more efficient than DAG-WGAN, reducing its computational
complexity from cubic to quadratic. Additional details regarding this novelty can be

found in Chapter 4.

1.6.5 Disentangled Representations in Causal Structure Learning

An additional study was conducted to assess whether Disentangled Representation
Learning (DRL) could improve data generation and causal discovery. This was done by
adding a kernel-based Maximum Mean Discrepancy (MMD) [67] loss term to the models
discussed in Chapters 4 and 5. Previously, MMD had been used in the context of causal
learning with a few models, such as DAG-GAN [37], CGNN [73] and MMD-LCS [74], to
produce good results. To further investigate the effects of MMD on causal discovery, an
ablation study was conducted comparing versions of DAG-WGAN+ and DAGAF with
and without MMD. The results favored the instances with MMD, providing evidence
to support the use of DRL in this context. Additionally, a theoretical analysis was

conducted to prove the contributions of MMD to causal structure learning. Further
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details regarding this novelty can be found in Chapters 4 and 5.

1.7 Publications

Every author contribution described in this thesis has been published in the form of
a research paper. The list of peer reviewed publications related to this dissertation is

presented below:

o DAG-WGAN: Causal Structure Learning with Wasserstein Generative Adversar-
ial Networks [75]

e Causality Learning with Wasserstein Generative Adversarial Networks [76]
e Efficient Generative Adversarial DAG Learning with No-Curl [77]

e Al-Powered Clinical Trials: Emulating Real-World GLP-1 Efficacy with Synthetic

Patient Populations Using Causal Effect Learning [78]

e DAGAF: A directed acyclic generative adversarial framework for joint structure

learning and tabular data synthesis [79]

o Emulating Real-World GLP-1 Efficacy in Type 2 Diabetes through Causal Learn-
ing and Virtual Patients [80]

1.8 Thesis Structure
The author formulates the rest of their thesis as follows:

e Chapter 2 offers a detailed overview of the fundamental components of causal
structure learning, exploring different approaches for conducting it and summa-

rizing the relevant literature.

e Chapter 3 discusses the theory and implementation details behind the develop-
ment of a hybrid model, combining adversarial training and variational inference

in the context of causality learning.
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e Chapter 4 explores efficient structure learning techniques and their relevance to
causal discovery. This leads to the design of an enhanced version of the algorithm
introduced in the previous chapter, demonstrating better accuracy and compu-

tational complexity.

e Chapter 5 introduces causality learning under multiple causal structural model
assumptions and its connection to tabular data synthesis, motivating the creation
of a novel framework for simultaneous causal discovery and generation of tabular

datasets.

e Chapter 6 concludes the thesis by briefly stating the impact of the research con-
ducted by the author as well as their opinion regrading the direction of future
research efforts in the area of causal structure learning. Additionally, the author

shares their closing thoughts on all the work done during their Ph.D. studies.

e Appendix A provides all the mathematical proofs for the lemmas and the propo-

sitions defined throughout this thesis.

e Appendix B presents the code used to conduct the data quality experiments

discussed in this work.
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Literature Review

This chapter offers an overview of the research field to which the author contributes. It
begins with a brief description of the components necessary for causal structure learning
and then provides a comprehensive history of approaches and techniques for discovering
causation. The chapter then moves on to a critical analysis of prior works, highlighting
their strengths and limitations while explaining the rationale behind the methodological
choices of the author. Additionally, details of the implementation behind some models
are also discussed, as they are closely related to the research conducted in this work -

for further information, refer to Section 2.4.

2.1 Prerequisites

In this section, the author describes the concepts essential for discovering causal struc-
tures along with practical frameworks and a set of assumptions used for the development

of algorithms supporting the contributions described in their thesis.

2.1.1 Directed Acyclic Graphs

Directed Acyclic Graphs (DAG) [81], [82] are visual constructs describing complex
mathematical problems, defining sequences of processes or studying how different vari-
ables within a particular setting relate to one another. They are a special subset of

graphs, which do not contain cycles between vertices V' = {V1,...,Vn} and have di-
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rected edges E = {(i,j) € R"*"} connecting them. All graphs that do not contain
cycles live in their own DAG space, denoted by ID. Moreover, each edge of a DAG
G(V, E) is defined as (i — j) € E, where according to the direction of the relationship
i is the ancestor of j and j is the descendant of i. DAG are used in various fields
of computer science and other research areas due to their ability to be computed and
defined using an adjacency matrix A € RV*?. In this alternative representation, each
element A;; is either 0 or 1 depending on whether there is a directed edge between
¢ and j. Alternatively, there exist other types of adjacency matrix such as the Siedel
adjacency matrix [83], where the permitted values are -1, 0 or 1 and the weighted adja-
cency matrix which stores the weight values assigned to each edge. This work describes
models utilizing only weighted adjacency matrices.

The research presented in this thesis explores the application of DAG from a causal
perspective. Particularly, the acyclicity between nodes combined with the directionality
of edges facilitates the encoding of ”cause and effect” between parents and children,
allowing people to easily interpret the causality visualized in a graph [84]. Meanwhile,
estimating the causal effect of individual relationships present in the structure of a DAG
(causal inference) has also become a popular research topic, leading to various scientific
breakthroughs [85], [86], [87], [88], [89]. This study is limited to the application of DAG

for causal structure learning.

2.1.2 Bayesian Networks

Bayesian Networks (BN) [90] are a type of Probabilistic Graphical Model used to calcu-
late probabilities (i.e uncertainties) by modeling the conditional dependencies between
variables in a joint distribution. They enable the visualization of causal relationships
through Directed Acyclic Graphs (DAG), where nodes represent variables, while edges
express direct connections between them. The probability distributions and their cor-
responding structures described in Bayesian Networks have to satisfy the Local Markov
Assumption [91]. This property ensures that given a set of variables X = {X;,..., X4}
that form a DAG, a node X; depends solely on its immediate parents Pa;, enabling us

to define the Bayesian Network factorization of a joint distribution as:
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P(X1,... Xq) = [[ P(X;|Pa;). (2.1)
J

Furthermore, BN play a crucial role in causal discovery because their structure can be
obtained directly from observational data [10].

The concept of using machine learning techniques to retrieve a Directed Acyclic
Graph (DAG) that best reflects the connections between variables concealed in data
sets was first suggested by George Rebane [92]. Since then, a variety of methods have
been developed to learn its structure, sparking a proliferation of literature. To recover
an accurate graphical representation of the causality modeled by a Bayesian Network
BN = (G, ), one has to discover a set of its components that best describes the input:
1) a DAG G representing how variables within the data are connected, and 2) a set of
parameters ¢ that produce the probability distributions defined by the content of the
graph.

Learning the parameters that best correspond to the data is straightforward using
machine learning or rule-based techniques. However, learning the DAG which describes
the connections between the data is very challenging. The difficulty is related to the
combinatorial nature of the DAG search space [22]. Nevertheless, several techniques
have been developed for learning causal structures, including score-based, constraint-
based, hybrid approaches (also known as traditional methods), and most recently, con-
tinuous optimization and efficient structure learning. A brief explanation for each of

them is provided in Section 2.2.

2.1.3 Structural Causal Models

The importance of causal structure learning is significant in fields where it is neces-
sary to distinguish between correlations and causal relationships. Machine learning
algorithms can easily detect correlations in data, but discovering causal connections
is a more complex process that requires a detailed investigation of properties such as
directionality, temporal sequencing, interventions and confounding. These features are
not expressed through associative relationships, hence causality cannot be defined in

the same way as correlations. Therefore, it is imperative to formulate a strong no-
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tion for representing and validating cause-and-effect relationships expressed in a DAG.
Such a concept, known as the Structural Causal Model (SCM), was first proposed by
Sewell Wright [93], but it was Judea Pearl [94] who refined and developed it into a
mathematical object.

A Structural Causal Model M(X, Z  F) is composed of three sets: a set of data
variables X = {Xi,..., X4}, a set of noise vectors Z = {Z1, ..., Z;} sampled from an
external distribution P(Z), and a set of functions F = {f1,..., fa} that define the
causal mechanisms between the variables in X. This combination of sets allows for the
synthesis of X; from other variables in X and noise in Z. Assuming that there are no

hidden confounders influencing the variables in X, the SCM takes the general form

Xj = fj(Paj7Zj)> (2'2)

where X is the generated variable, Pa; are its parents, Z; is the noise and f; is the
equation used to produce it. All of the causal mechanisms described in the SCM are
visualized through a DAG G, defining the underlying structure of the data as a causal
graph, where the variables of the data are nodes and the edges are functions (structural

equations).

2.1.4 Assumptions for Causal Discovery

This section provides a list of assumptions essential for causal structure learning. All

of them are satisfied in the experiments related to this thesis.

e Acyclicity: The graph describing a structural causal model must not contain

any cycles.

e Local Markov assumption: Given its parents in the DAG, a node is indepen-
dent of all its non-descendants. This assumption implies that variables in the

graph are solely dependent on their immediate parents.

e Strict Causal Edges: In a directed graph, every parent is a direct cause of all
its children. This assumption enables the visualization of dependencies between

variables from the probability distribution.
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e Minimality: This assumption consist of two components. The first part is the
Local Markov assumption and the second is Strict Causal Edges. It suggests
that conditional independencies in a probability distribution are expressed with

a minimal number of edges.

e Causal sufficiency assumption: There exist no unobserved common causes

(i.e hidden confounders) between any of the variables in the graph.

e Faithfulness: This assumption enables causal structure learning from observa-
tional data. It states that a probability distribution and the DAG describing
it are faithful only when the conditional independencies of the distribution are
expressed in the graph [95], [96]. Under the causal sufficiency assumption, the
faithfulness condition implies that if there exists a statistical dependency between

two variables, then there is an underlying causal relationship between them.

e Semi-parametric assumptions: A group of assumptions influencing the for-
mulation of the structural equations making up SCM. Throughout this research
a variety of models are assumed (e.g. additive noise models, linear non-gaussian

acyclic models and post non-linear models) based on their causal identifiability.

2.1.5 Structure Identifiability

Estimating causal effects from datasets requires information regarding the underlying
structure of their contents. Interventional studies offer the most rigorous method for es-
tablishing causality through data manipulations. However, setting up such experiments
is difficult, infeasible, or sometimes even impossible. On the other hand, observational
studies are far more practical but only provide data without prior knowledge of its
causal structure. Additionally, they are easier to conduct and thus preferred to inter-
ventional ones. This has led people to ask the question ” Can causal relationships be
obtained from observational data?”.

As stated previously, it is impossible to recover causal structures from observa-
tional data without satisfying a specific set of assumptions. Furthermore, performing

causal discovery multiple times under the same setting (i.e., no changes in observational
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samples, model used, or assumptions made) can produce different results. This is a fun-
damental problem referred to as structure identifiability, which significantly limits our

ability to learn the causality expressed in observational data.

Definition 1. Structure Identifiability: Given a set of assumptions A = {A1, ..., AN}
and samples X belonging to a probability distribution P(X), a causal structure learn-
ing model M will recover an identifiable DAG G if and only if its implicitly defined

distribution P(X) cannot be generated using any other G’ € D.

In terms of graph identification, under the local Markov assumption, we can only
identify the Markov Equivalence Class (MEC) to which a DAG belongs [97]. How-
ever, in some specific cases, depending on additional assumptions and the probability
distribution from which the data originates, an MEC can be identified down to a
DAG. For example, when using different SCM (e.g. linear non-Gaussian noise model
X := f(X)+ Z, non-linear additive noise model X; := f;(Pa;)+ Z; and post-nonlinear
model X; := g;(f;j(Paj) + Z;)), with the inclusion of additional assumptions such as
faithfulness and minimality, a DAG can be identified [31], [98], [32]. On the other hand,
if the distribution is multinomial or linear Gaussian, despite the additional assumptions,

no further identification can be made from the MEC [99], [100].

2.1.6 Markov Equivalence and CPDAG

The local Markov assumption implies that only partial identification of a Directed
Acyclic Graph (DAG) G is possible based on the conditional independencies in the
distribution it describes. The inability to recover the dependencies in the data through
this assumption does not allow the identification of a DAG, but rather its Markov

Equivalence Class (MEC) instead.

Definition 2. Markov Equivalence Class: The set MEC = {Gy, ..., Gn} of all graphs
containing the same conditional independencies (i.e an identical skeleton and immoral-

ities [101]).

This class of graphs is described by a Completed Partially Directed Acyclic Graph
(CPDAG) [102], [103]. A CPDAG is similar to a DAG, but with a distinction in the
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types of edges present in the graphs. The former includes a combination of directed
and undirected edges, whereas the latter only has directed edges. In the context of
independence-based causal discovery, a CPDAG incorporates both directed and undi-

rected edges to represent immoralities and the skeleton of the graph, respectively.

2.1.7 Evaluation Metrics

This section contains metrics used to assess the quality of the results produced by the

models described in this thesis.

e True Positive Rate (TPR) [104] - measures how many edges belonging to the
ground truth graph GQ have been recovered. For example, if GQ = A — B — C
and the recovered causal graph G = A — B, then the TPR is 66%. Conversely,
if GOA = G the TPR is 100%. The metric is commonly used to calculate how

many edges of the ground truth graph are missing from the recovered graph.

e False Discovery Rate (FDR) [104] - measures how many additional edges not
present in the ground truth graph GOA have been discovered. For example, if
GQ = A — B — C and the recovered causal graph Gao = A - B — C — D,
then FDR is 25%. If G4 = Ga the FDR is 0%. The metric is used to represent

the number of extra edges in the recovered graph.

e False Positive Rate (FPR) [104] - measures how many edges of the ground
truth graph G% have been recovered with incorrect directionality. For example,
if GOA = A — B — C and the recovered causal graph Gp = A — B < C, then
the FPR is 33%. If G& = G, the FPR is 0%. The metric is used to establish

the number of reversed edges present in the recovered graph.

e Structural Hamming Distance (SHD) [105] - This distance encompasses all
of the metrics described above. It measures how many adjustments are necessary
to guarantee that the recovered causal graph G Ao matches the ground truth graph
GOA. For example, if GQ = A - B — C and Gp = A + B — D, then SHD is

3, taking into account extra (D), reversed (A <— B) and missing edges (C).
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Other metrics include Area Over Curve (AOC) [104], Area Under Curve (AUC) [104]
and Structural Interventional Distance (SID) [106]. In this work, evaluation is limited

to the application of the metrics in the list above.

2.1.8 Generative Models

Generative Models, as their name suggests, are a set of frameworks capable of producing
new data points that resemble some input data. Models falling into this category are
widely used in unsupervised machine learning because of their ability to implicitly learn

a probability distribution that closely matches the original data distribution.

A non-exhaustive list of generative models includes:

o (Gaussian) mixture model [107]

Hidden Markov model [108]

Variational autoencoder [52]

Generative adversarial network [53]

Flow-based generative model [51]

Energy based model [109]

Diffusion model [54]

In recent years, Variational Autoencoders (VAE) and Generative Adversarial Net-
works (GAN) have gained popularity due to their contributions to various research
areas. Both frameworks rely on multiple Artificial Neural Networks (ANN) [110], and

their implementation details are discussed in this section.

Variational Autoencoder

Variational Autoencoders utilize a pair of neural networks, namely an encoder and a
decoder, to learn a given training data distribution and sample new data points from

it. Specifically, the encoder produces a latent representation that captures the features
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of the real data distribution, while the decoder uses this latent variable to generate
new data samples that resemble those belonging to the original distribution. Models
based on this framework are typically trained by minimizing a Maximum Likelihood
Estimation (MLE) [55] objective function known as Evidence Lower BOund (ELBO)
[61]. The ELBO consists of two components: 1) a reconstruction loss term (i.e., negative

log-likelihood) and 2) a regularization term (i.e., Kullback-Lieber divergence).

ELBO = ~Ey_,zixllos Po(X|2)] + Dxn(Qu(ZIX)|IP(Z)  (23)

In (2.3), P(Z) denotes the prior distribution of the latent variable Z, while Q4(Z|X) and
Py(X|Z) represent the encoder and decoder networks respectively. As can be seen from
the formulation of the ELBO, the optimization of the decoder parameters 6 is dependent
on the encoder parameters ¢, hence the objective function is used to simultaneously
learn both the generative model and the inference model. Furthermore, the latent
variable Z used in the generator model is sampled from a probability distribution
Q¢(Z|X), making the network non-differentiable due to the randomness of Z. To
fix this issue, the reparameterization trick in (2.4) is used to enable backpropagation

through the decoder during training.

Z=p+00e€ (2.4)

Generative Adversarial Network

Similarly to VAE, Generative Adversarial Networks (GAN) are a type of generative
model consisting of two networks. The main idea behind GAN is to define a new
implicit probability distribution that closely matches the original data distribution,
enabling the generation of realistic data samples. This is achieved by forcing two
networks to compete against each other. On one side, a generator network G, takes
noise Z as input and generates new data samples that closely resemble the real data.
On the other hand, a discriminator network D, receives these generated samples, as
well as real data samples and tries to determine whether they belong to the real data

distribution or not. The optimization of this framework is achieved through adversarial

33



Chapter 2. Literature Review

training, where both networks engage in a Min-Max game and the objective is defined

by the following loss function:

minmax V(D, G) = Ex..p(x)llog D(X)] + Ezpellog(1 - DG(Z))]  (25)

The original GAN proposed by [53] is difficult to train and can only tell us if a sample
is real or fake, hence over the years several improvements to the objective function
of GAN have been proposed [111], [112], [113]. Amongst them, most notable is the
inclusion of the Earth-Mover’s Distance (EMD) [114].

The reformulation of the loss function with Wasserstein-1 results in a new type of
GAN named Wasserstein Generative Adversarial Network (WGAN) [115]. The main
advantage that WGAN have over regular GAN is the ability to measure the distance
between the real data distribution P(X) and the implicitly defined distribution P(X)

modeled by the generator. This reformulates the problem from detecting whether a

sample is real or fake to measuring how real or fake a given sample is.

min max V(D, G) = Ex.px)[D(X)] — Ez~pz)|D(G(2))] (2.6)

Minimizing the distance between the probability distributions P(X) and P(X) produces
data which better represents the original data distribution. However, a limitation
of WGAN is the difficulty to enforce the discriminator D to belong to the set of 1-
Lipschitz functions (i.e W in Equation (2.6)). A possible solution to this problem is
the inclusion of a gradient penalty term into the objective function of WGAN, resulting
in Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-GP)
[116]. The gradient penalty term enforces the 1-Lipschitz constraint on D by penalizing

the model if the value of the gradient norm moves away from 1.

min wax V(D, G) = Bx-poo[D(X)] = Ezp(z)[D(G(2)] + MEx_piso (175 DX l2 = 1)

Critic loss Gradient penalty
(2.7)
This approach produces high-quality data but has poor computational complexity due
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to the addition of extra terms in the loss function.

2.2 Causal Discovery Approaches

The idea of employing rule-based or machine learning techniques to identify a graph
structure that best represents the dependencies present in observational data has been
around since the early 1990s [117]. Over time, the field of causality learning has devel-
oped into a well-established scientific domain with five primary approaches to discover-
ing causal relationships from a dataset. These include traditional methods (constraint-
based, score-based, and hybrid), continuous optimization, and the more recent efficient

structure learning. Elaborations for each of those will be provided in this section.

2.2.1 Traditional Methods

Constraint-based methods (CBM) apply various conditional independence tests in or-
der to construct a graph that best represents the independencies within a given joint
distribution. The majority of models in this category satisfy the local Markov as-
sumption, resulting in the identification of a set of graphs that describe the same
conditional independencies. In other words, the output of these models is a Markov
equivalence class (MEC) represented by a completed partially directed acyclic graph
(CPDAG), where only the connections between vertices with a unique direction are
shown as directed edges. One of the first models capable of producing such a graph
is the PC algorithm [28], which is well-known for its three-step approach (skeleton
identification, immorality identification and orientation, and edge orientation). Other
kernel-based solutions for conditional independence testing include the KCI-test [118]
and KLC [119]. When causal sufficiency is not assumed, models such as ION [120],
c¢SAT+ [121], and CCI [122] have demonstrated good performance by applying inde-
pendence judgments to bidirectional graphs. Other CBM relax the assumptions of
faithfulness [123], [124], [125], [126] and acyclicity [127], [128], [129], [130] in order to
identify MEC. Lastly, interventional studies have been conducted using constrain-based

methods such as IDA [131], backshift [132], CombINE [133], and o0-CG [134].
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The DAG search space in CBM poses a fundamental challenge due to its combina-
torial nature. Chickering et al. [22] have demonstrated that discovering DAG through
independence tests is NP-hard, rendering this class of algorithms highly inefficient. As a
result, a new generation of models, such as FCI [29], RFCI [135], and Parallel-PC [136],
has been developed to improve the efficiency of the constraint-based approach. Addi-
tionally, the method suffers from unreliability as most conditional independence tests
require a substantial amount of data to accurately estimate the independent variables
in a given distribution [30].

Score-based methods (SBM) perform similar DAG searches, but they use different
techniques. Their objective is to discover a graph that best represents some probability
distribution using a scoring function (i.e some metric) [137], [138], [139]. In other
words, each graph in the DAG search space is assigned a score, and the one with
the best score is considered to accurately describe the underlying causality in a given
dataset. Traditional score-based DAG learning focuses on the implementation of rule-
based approaches to perform discrete search procedures. These methods aim to provide

a discrete optimization solution for the following problem:

max fscore(X, G) s.t. G € discrete DAG, (2.8)

where fscore denotes the scoring function, X the observational data samples and G
the DAG which describes the probability distribution the input data originates from.
Notable examples of such functions include Bayesian Information Criterion (BIC) [140],
Bayesian Dirichlet equivalence (uniform) (BDe(u)) [25], Bayesian Gaussian equivalent
(BGe) [26] and Minimum Description Length (MDL) [27].

An inherent limitation of this method is its inability to effectively handle the
super-exponentiality of the DAG search space. To address this, additional assump-
tions and approximations such as bounded tree-width [141], tree-structure [142], and
sampling [143], [144], [145] are often necessary to achieve computational tractability.
Another challenge with this approach is the fact that all discrete score-based approaches
are non-differentiable, making it impossible to use gradient-based optimization tech-

niques essential for machine learning models. Nevertheless, successful implementa-
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tions of the score-based methodology include the original Greedy Equivalence Search
(GES) [146] and its improved versions GES-mod [147] and GIES [84]. LINGAM [31] and
its variations [148], [149] recover graphs by assuming a linear non-Gaussian Structural
Causal Model. K2 [150] and GCL [151] learn hidden confounders under causal insuffi-
ciency. Exceptional results have also been achieved with non-acyclic [152], [153], [154]
and interventional [155], [156], [157], [158] solutions. Additionally, the SP [159] model
performs causal structure learning by relaxing the faithfulness assumption.

Both CBM and SBM are capable of producing accurate results, but each of them has
their own limitations. CBM tend to be unreliable when dealing with a small sample size,
while SBM often make additional assumptions and approximations to ensure that the
optimization of the score function is computationally feasible. Moreover, both methods
are highly inefficient because of the NP-hardness of DAG. As a result, researchers have
developed hybrid approaches that combine CBM and SBM to achieve better accuracy
and efficiency. Successful models in this domain of causal structure learning include
MMHC [34], RELAX [160], ARGES [161], and BiDAG [162]. Unfortunately, due to
the discrete nature of the optimization, this approach still has combinatorial computa-
tional complexity, making it unsuitable for handling complex datasets containing large

volumes of data samples or variables.

2.2.2 Continuous Optimization

In 2018, the development of a new model called Non-combinatorial Optimization via
Trace Exponantial and Augmented lagRangian for Structure learning (NOTEARS)
[12] transformed the discrete nature of SBM into the continuous optimization (CO) of
score functions with respect to an explicit acyclicity constraint. The key distinction
between this approach and its discrete predecessor is that continuous optimization is a
differentiable process, enabling the use of machine learning models for causal structure

learning. In a general sense, the CO problem can be defined as follows:

max fscore(X, G) s.t. h(G) =0, (2.9)
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where h(G) is the acyclicity constraint applied to G. The method proposed by [12]
showcased the ability to generate more accurate results in a shorter time frame com-
pared to traditional methods. Nevertheless, a significant drawback of the model is its
limited applicability to linear data.

Subsequently, several extensions of NOTEARS have been developed that are non-
linear in nature. Some of these models are based on the Auto-Encoder (AE) architec-
ture [35], [163], [39], [164] or the Generative Adversarial Network (GAN) [63], [165], [37],
while others utilize meta-learning [166], [167] and flow-based generative models [168],
[169]. Moreover, the ability to discover causality with black-box models has been ap-
plied to different types of data, including images [170], [171], tabular data [172], [38],
videos [173], and time-series data [174]. However, most continuous optimization algo-
rithms suffer from inefficiencies related to parameter optimization using the augmented
Lagrangian. According to [36], the computational complexity of the augmented La-
grangian in a causal structure learning setting is O(d®), where d is the number of
variables in the data. The poor time-wise performance of these models makes them
practically unusable with high-dimensional data. Most of the models mentioned above
assume an Additive Noise Model (ANM). However, there are also models that assume a
Post-Nonlinear Model (PNL), such as AbPNL [41], Deep PNL [42] CAF-PoNo [175] and
MC-PNL [176]. Additionally, there are models that do not assume acyclicity [177], [178].
This work is focused on investigating acyclic causal discovery methods only.

An alternative continuous optimization approach, developed by [44] as a deviation
from the NOTEARS framework, demonstrates improved DAG-learning and computa-
tional complexity compared to previous approaches. The method is based on learning
the correct order of nodes using permutation vectors that form a specific structure
called the Permutahedron. Another work in this field is CASPER, developed by [45].
Its authors highlight the flaws in the DAG-independent score functions of previously
existing models based on the NOTEARS framework. They argue that not considering
the graph structure significantly affects how the DAG search space of an algorithm is
defined, resulting in the discovery of substandard DAG. Their model recovers accurate

DAG from a dynamic search space through a novel score function. Currently, the latest
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work in the field is a novel technique called REX [46] that incorporates Shapley values
into the causal discovery process by interpreting feature contributions from machine
learning models. REX minimizes the number of features integral to the causal graph by
utilizing the connection between Shapley values and causal relationships. This specific
technique enables the authors to focus on the most influential variables for subsequent
causal analysis, enhancing the effectiveness and precision of identifying causality in
complex datasets. This integration not only makes causal models more interpretable
but also strengthens the detection of causal relationships by concentrating on features

that have a substantial impact.

2.2.3 Efficient Structure Learning

In recent times, researchers have developed machine learning models that can discover
causality without relying on the augmented Lagrangian method. These methods fall
under the category of efficient structure learning (ESL) and can recover connections
between variables in a given dataset significantly faster. The algorithms in this class are
all based on theoretically developed frameworks for efficiency. One notable approach in
this category is DAG-NoCurl [48], which is considered one of the pioneering methods
that does not use the augmented Lagrangian. Other examples of such algorithms
include VI-DP-DAG [49] which recovers DAG by learning differentiable probability
distributions over edges and permutation matrices and ELCS [179] which is an efficient
approach utilizing Markov Blankets. Recently, a hybrid model called DAG-NCMLP [50]
utilized both the DAG-NoCurl framework and the DAG-Notears-MLP model to enable
efficient learning of non-linear, non-parametric causal structures. More specifically, the
authors developed a theoretical non-parametric projection formulation for gradient-
based adjacency matrices, expanding the projection framework to cover more than
just weighted adjacency matrix representations. To instantiate their novel theoretical
framework, they build a duo-step algorithm to perform efficient DAG learning relying
on non-linear projections. The success of these models has motivated further research

in the field of efficient structure learning, making it an active area of study.
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2.3 Ciritical Analysis

This section presents a rigorous critical analysis of existing research and state-of-the-
art methodologies within the field of causal discovery. It systematically evaluates the
strengths, limitations, and underlying assumptions of previous studies to establish a
clear understanding of their contributions and shortcomings. Specifically, the author
expands on the contents of Table 2.1. Through this investigation, they justify the
methodological and theoretical choices underpinning their work, demonstrating how

these decisions directly address identified gaps in the literature.

Table 2.1: Limitations of prior works

Category Main Issues

Blurry outputs, latent collapse (for latent-based

MLE-based Approaches generative models only)

Computational Efficiency High computational complexity, poor scalability

Post nonlinear model Invertibility, post-nonlinearity, limited research

Unverifiable structures, in terms of faithfulness

Single SCM assumption to the observed data

No interpretability, mode collapse, dependence on

Tabular Data Synthesi
abular Lhata synthests known or externally learned causal structures

2.3.1 Causal structure learning with MLE-based loss functions

Despite their widespread adoption in models such as NOTEARS [12], DAG-Notears-
MLP [38] and GraN-DAG [36], MLE-based loss functions impose several practical and
theoretical constraints on causal structure learning with generative modeling algorithms
relying on latent variables. By optimizing parameters solely to maximize the likelihood
of observed data, these approaches often overlook important aspects of data diversity
and structural complexity. As a result, common MLE-based objectives (e.g., Mean
Squared Error (MSE) [180], Negative Log-Likelihood (NLL) [181], and Evidence Lower
Bound (ELBO) [61]) exhibit several notable limitations, including the following:

1. Simplicity: The objective of the loss function is to ensure that the output gen-
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erated closely resembles the input data. However, this simplicity can result in
blurry results because the model aims to minimize the average error across all
data points [56]. In the past, attempts have been made to enhance performance by
introducing additional terms as regularizers to the reconstruction loss. However,

it should be noted that excessive regularization can also lead to blurry results.

2. Diversity: In generative models with latent variables, such as the VAE-GAN
and WGAN-GP approaches considered in this thesis, the application of MLE-
based reconstruction loss terms tends to reduce the standard deviation (std) of
the implicitly learned data distribution toward zero. As a result, sampling relies
almost entirely on the mean, producing outputs that represent average data sam-
ples. This effect, referred to as latent collapse, severely restricts the diversity of

the reconstructed data.

Additionally, MLE-based algorithms are affected by the ”curse of dimensionality” [182],
which limits their effectiveness with high-dimensional data and complex distributions.

As previously mentioned in Section 1.3, to address these problems people include
additional loss terms to regularize the model training process, such as the Wasser-
stein distance (WD) [57], the Kullback-Leibler divergence (KLD) [58], and the Jensen
Shannon divergence (JSD) [59]. From these, WD is currently the least explored in the
context of causal structure learning.

The Wasserstein distance can serve as a powerful regularizer for MLE-based causal
discovery by shifting the optimization focus from minimizing point-wise discrepancies
between observed and reconstructed data toward minimizing the distance between their
entire distributions. Unlike MLE, which typically aligns individual data points through
likelihood maximization, the Wasserstein-based approach captures the global geometry
and structural characteristics of the data distribution. This allows the causal discov-
ery process to incorporate rich distributional features, such as variance, skewness, and
multi-modality that MLE tends to overlook. As a result, the learning process evolves
from a simple reconstruction task into a generative emulation of the underlying data

synthesis mechanisms, enabling the model to more faithfully replicate the causal struc-
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ture involved in the generative process responsible for producing the observed data.

Moreover, in practical terms, models that rely on adversarial training are expected
to be more effective in identifying causal relationships from observations compared to
gradient-based or maximum likelihood estimation (MLE) frameworks. An advantage of
this methodology is its ability to scale linearly with increasing data variable size, thus
reducing susceptibility to the ”curse of dimensionality” [53]. Additionally, generative
adversarial models have the ability to model distributions of varying complexity and
dimensions [183], [184]. They can also handle noisy or incomplete data and address the
issue of latent collapse that is often encountered in MLE-based approaches relying on
latent variables during training.

To determine the validity of these claims, researchers integrated adversarial train-
ing into the process of learning causal structures, resulting in a novel methodology
called Wasserstein Adversarial Causal Discovery (WACD). This approach leverages the
Wasserstein distance as a data distribution metric to discover the causal relationships
present in a given dataset. Essentially, models within this category aim to minimize
the distance between the actual data distribution and the generated data distribution,
facilitating the implicit recovery of causal structures. These frameworks involve two
key components: a Discriminator D and a Generator G. Unlike traditional generators
that only focus on generating new samples, G in this context strives to simulate the
causal mechanisms necessary to match the underlying causal structure of the original
probability distribution. Consequently, this leads to the development of causally aware
algorithms capable of generating samples that adhere to causal relationships similar to
those observed in the input data.

In a recent survey titled ” D’ya like DAGs? A Survey on Structure Learning and
Causal Discovery” [185], it is suggested that the first model capable of working with
tabular data in the field of WACD is Structural Agnostic Modeling (SAM) [63]. On
the other hand, models such as Causal Adversarial Network (CAN) [165] and Gener-
ative Adversarial Neural Network embedded with causal matrix (CMGAN) [186] have
demonstrated the ability to recover causality from images. The increasing number of

studies on Wasserstein Adversarial Causal Discovery reflects the popularity of WGAN
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in causality learning. However, there is still potential for further application of this ap-
proach, particularly in dealing with hidden confounders, mixed-type, time-series, and
incomplete data, where limited progress has been made.

Despite the lack of scientific literature volume involving these specific subdomains,
this adaptability makes WACD applicable in diverse fields such as healthcare, medicine,
and justice, where it can enhance decision-making and foster trust between humans and
artificial intelligence. Additionally, ongoing advancements in Wasserstein Generative
Adversarial Networks (WGAN) contribute to the continuous refinement of adversarial
causal discovery. Consequently, this progress is expected to yield more effective models
that surpass the current state-of-the-art in the field. The author contributes to WACD
by developing a hybrid model based on adversarial training, MLE-based loss terms and
the DAG-GNN architecture, resulting in a significant improvement in causal structure

learning accuracy from high-dimensional data - for more details see Chapter 3.

2.3.2 Importance of Computational Efficiency

Over the past few decades, various techniques have been developed to recover causal
relationships between variables in a dataset, giving rise to numerous causal structure
learning algorithms and establishing a novel field of research. As outlined in Section 1.2,
models designed to discover causality from data generally fall into one of two categories:
1) rule-based (traditional) approaches; or 2) machine learning methods. Despite their
different foundations, both families have demonstrated the ability to recover accurate
causal structures from observational data. However, many of these methods suffer from
poor computational performance, making them impractical for large-scale applications.
The three dominant causes of this inefficiency are the curse of dimensionality [187], the
NP-hard nature of learning directed acyclic graphs (DAG) [22] and the formulation
of the optimization problem. One notable example of a solution to these challenges
is the DAG-NOTEARS [12] framework, which transforms the traditionally discrete
and combinatorial process of causal discovery into a continuous optimization problem
with an explicit acyclicity constraint. While this represents a significant theoretical

advancement, NOTEARS still suffers from substantial computational inefficiencies that
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limit its scalability and practical applicability.

One of the main sources of inefficiency in NOTEARS lies in the way it enforces
the acyclicity constraint, which ensures the resulting graph has no loops. Instead of
relying on simple structural checks, NOTEARS expresses this constraint using com-
plex matrix operations that must be evaluated repeatedly throughout the optimization
process. These operations become increasingly expensive as the number of variables
grows, leading to long runtimes and high memory usage even on powerful hardware.
This makes the method well-suited only for relatively small or medium-sized datasets,
while larger systems quickly become computationally infeasible.

Furthermore, the optimization procedure used by NOTEARS is non-convex and
requires multiple rounds of iterative updates to converge. Each round involves several
inner optimization steps, and convergence can be slow or unstable depending on the
initial conditions and tuning parameters. The mathematical precision of the method
comes at the cost of computational practicality, often requiring considerable time and
manual adjustment to produce reliable results. Despite these limitations, research in-
terest in causal discovery has remained strong, leading to the development of various
models aimed at improving computational efficiency, a line of research commonly re-
ferred to as efficient structure learning.

Efficient Structure Learning (ESL) is a sub-field of Causal Discovery that focuses
on recovering the underlying causal relationships between variables in a dataset in an
efficient manner. As the name implies, all of the approaches in this category are com-
putational methods that can handle datasets of various sizes and complexities within
a reasonable time frame. In the past, there have been different ways to obtain the
causal structure of data, such as score-based and constraint-based methods, hybrid
algorithms, and continuous optimization. ESL is considered to be a super-set of all
the aforementioned approaches, aiming to improve their computational complexity and
optimization techniques, resulting in more efficient causal structure learning. The com-
plexity of the approaches varies, with some methods relying on a set of predefined rules,
while others utilizing sophisticated machine learning models trained through parameter

optimization. This distinction divides the efforts in efficient structure learning into two
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directions. One direction focuses on optimizing the algorithms used to construct the
Bayesian Network (underlying structure) of the data [162], [188], [189], by reformulating
their individual components or modifying their sequence of steps. The other direction
involves developing novel theoretical frameworks [48], [49], [190] for continuous opti-
mization models, which enable faster learning of the connections between variables in
a dataset. The frameworks under this category are designed to improve the computa-
tional complexity of machine learning models trained using the augmented Lagrangian
(cornerstone of the NOTEARS approach). Such models have cubic complexity O(d?),
due to evaluating a matrix exponential of A € R%*? where d is the data variable
size, involved in the computation of the acyclicity penalty h(A) at each augmented
Lagrangian step. Regardless of whether ESL is applied to an existing algorithm or
serves as the foundation for a new approach, it always leads to shorter running times.

The importance of efficiency in structure learning cannot be overstated when work-
ing with large or complex datasets, as it can have a substantial effect on the compu-
tational time required to obtain results. Specifically, most such methodologies have
emerged as a response to the computational bottlenecks found in NOTEARS, seek-
ing to preserve theoretical soundness while enhancing its scalability and convergence
properties. Various extensions and adaptations, such as sparsity-aware optimization,
low-rank approximations, stochastic gradient updates, and distributed or parallelized
computation, have been proposed to accelerate the structure learning process. More-
over, several ESL variants relax or approximate the acyclicity constraint introduced
in NOTEARS, reducing computational overhead without significantly compromising
the accuracy of the learned causal graph in the process. By substantially lowering the
computational costs of model training, these developments enhance the scalability of
differentiable causal discovery, allowing its deployment in big-data environments and
integration in real-world applications.

In essence, the pursuit of efficiency within the NOTEARS framework transcends
mere algorithmic refinement, constituting a fundamental prerequisite for the widespread
applicability of causal discovery in real-world, data-intensive contexts. By facilitat-

ing scalable and computationally tractable inference of causal structures from high-
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dimensional observational data, Efficient Structure Learning methodologies effectively
broaden the practical and theoretical scope of the NOTEARS-based continuous opti-
mization approach. This, in turn, enables the construction of interpretable and gener-
alizable models capable of informing data-driven decision-making, improving predictive
accuracy, and advancing scientific understanding across a diverse range of disciplines.
As a result, this specific approach to Causal Structure Learning is an intriguing and
important area of research. The author contributes to ESL by conducting an efficiency
study in the context of the NOTEARS framework, resulting in a significant decrease in

computational complexity and training time - more details are provided in Chapter 4.

2.3.3 Causal structure learning under the PNL assumption

Identification and interpretation of the causal dependencies expressed in a dataset are
crucial aspects of data analysis, which can lead to significant scientific breakthroughs
and an increase in related research. Although both play a role in causal studies, it is
important to distinguish between them, as they focus on different areas of causality.
More specifically, the technique utilized to discover unique cause-and-effect relation-
ships is called causal structure learning, while causal inference focuses on understanding
and explaining the nature of causal relations between variables. These two processes
have to be executed sequentially, since to infer causal effects from a dataset one must
have knowledge of its interdependencies. The author contributes to causal discovery
by investigating the application of the post-nonlinear (PNL) model in learning sparse
non-parametric structures from tabular data.

In causal structure learning, randomized control trials are still considered the gold
standard for identifying dependencies in data. Such experiments involve manipulation
through interventions to reduce confounding factors, facilitating the isolation of specific
variable effects on a dataset. Unfortunately, tests of this nature are often impractical
or even impossible due to ethical, technical or resource constraints. Addressing this
issue has resulted in an increasing demand for uncontrolled causal studies. As a result,
it is essential to create frameworks that can extract causal relationships from passive

observational data.
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Over the past few decades, various methods for observational causal discovery have
been developed across numerous scientific fields, including bioinformatics [191], [192],
[193], economics [194], biology [195], [196], climate science [197], [198], and social sci-
ences [199]. Many of these studies are based on independence-based algorithms such as
PC [28], FCI [29], and RFCI [135] or discrete score-based approaches like GES [146],
GES-mod [147], and GIES [84]. In addition, continuous optimization techniques, in-
cluding NOTEARS [12], DAG-GNN [35], GraN-DAG [36] and DAG-WGAN [75] are
also widely used. These methodologies for causal structure learning have undergone
rigorous testing, with substantial empirical evidence demonstrating their ability to gen-
erate meaningful graphical representations of dependencies within datasets. However,
strong performance does not guarantee the structure identifiability (see Definition 1)
of causal models. Under such circumstances, multiple directed acyclic graphs can be
used to define the same probability distribution, making it impossible to determine its
true causal structure.

The inability to correctly identify the ground truth graph of a dataset can have sig-
nificant consequences. For instance, conducting data analysis with misidentified causal
relationships can infer incorrect conclusions about cause and effect. This can lead to
various limitations, such as suboptimal decision-making, bias in estimation and inac-
curate predictions, just to name a few. To mitigate the impact of these drawbacks, ob-
servational studies often assume Structural Causal Models (SCM), parameterized with
various equations, to guarantee a unique causal graph can be recovered from a given
probability distribution [200]. At present, there are numerous works applying different
(mostly) identifiable models to discover causality from observational data. Standout ex-
amples include the well-researched linear non-Gaussian acyclic model (LINGAM) [31],
the additive noise model (ANM) [98], which accommodates for limited non-linearity
by applying transformations to data variables but assuming the dependencies between
them are additive, and the post-nonlinear model (PNL) [32], which is suited for explor-
ing complex non-linear relationships. All of these models have been utilized in both
bivariate and multivariate causal structure learning.

Among the previously mentioned SCM, the PNL accounts for both nonlinearities
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and distortions when describing how cause(s) influences effect(s) [201]. As a result,
it is considered to be a generalization of less complex models, such as LINGAM and
ANM, capable of capturing causal dependencies exhibited in real-world evidence data.
Mathematically, the post-nonlinear model can be expressed as follows:

X = g;(f;(Paj) + 2;).¥j, Z; L f;(Pay), (2.10)
where Pa; denotes the parent(s) of the jth data variable and Z represents a noise
vector independent of Pa;. Additionally, the formulation of equation (2.10) indicates
that the post-nonlinear model is defined by two functions: 1) an initial function f;
applying nonlinearity to the parent data variables, with subsequent noise being added
to all of the transformations; and 2) an invertible (possibly nonlinear) function g;
applying an additional layer of transformations to the result. Despite the PNL model
being among the most realistic SCM for representing causal mechanisms in real-world
data distributions, it has received less attention than other identifiable models due to
difficulties associated with its post-nonlinearity and invertibility constraints.

Several methods have been proposed to explore causal structure learning based on
the post-nonlinear assumption. Examples of such models include AbPNL [202], which
utilizes an autoencoder architecture to simultaneously learn a function and its inverse
by minimizing a combination of independence and reconstruction losses. This is a gen-
eral approach which applies PNL to causal discovery in both bivariate and multivariate
settings. Another similar method, DeepPNL [203] uses multilayer perceptrons to learn
both functions associated with the PNL model. Meanwhile, CAF-PoNo [175] inves-
tigates the application of normalizing flows to optimize the invertibility constraint of
post-nonlinear SCM. Rank-PNL [204] introduces a rank-based approach to estimate
the invertible function of the structural causal model. Most recently developed, MC-
PNL [176] focuses on achieving efficient structure learning under the PNL assumption
by modeling non-linear causal relationships using a novel objective function and block
coordinate descent optimization. Despite the latest advances in PNL estimation, learn-
ing cause-and-effect relationships with this identifiable causal model remains an ongoing

research effort. The author contributes to PNL-based causal discovery by expanding
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upon the already exceptional functionality of DAG-Notears-MLP (described in Section
2.4.3) to incorporate structure learning under the PNL causal model assumption - see

Chapter 5 for more information.

2.3.4 Impact of Structural Model Assumptive Complexity on Causal

Discovery

Currently, most state-of-the-art methods for causal discovery rely on the application
of a single identifiable causal model to extract dependencies from observational data.
However, this approach introduces a significant limitation, as such causal structure
learning algorithms cannot verify whether the chosen model accurately represents the
true structure of the dataset. Addressing this issue is crucial because misidentifying
causal relationships can lead to flawed data analysis, which introduces the problems
mentioned earlier in this section.

Assuming multiple structural causal models (SCM) instead of a single one in causal
discovery from observational data offers significant advantages in terms of identifia-
bility, robustness, and generality. Under a single-SCM framework, causal discovery
is inherently nondeterministic, as a DAG may yield identifiable causal mechanisms,
but cannot guarantee the best possible description of the underlying structure of the
observational distribution. By contrast, a multi-SCM approach, where distinct causal
models represent different semi-parametric assumption sets, introduces distributional
variation that can help disentangle genuine causal effects from spurious correlations.
This allows researchers to identify invariant causal mechanisms that remain stable even
when aspects of the data-generating process change. Furthermore, leveraging multi-
ple SCM mitigates sensitivity to violations of crucial assumptions such as faithfulness,
causal sufficiency, or absence of confounding, which may not universally hold in real-
world data. As a result, such a framework enhances both the robustness and external
validity of inferred causal structures, yielding inferences that are more resilient to model
specification and more reflective of the underlying generative mechanisms defining the
input observational distribution.

Unlike many approaches that limit the discovery of causality to a single model,
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the author can apply their novel methodology (see Chapter 5) to perform structure
learning under multiple semi-parametric assumptions. As a result, given any dataset,
the author can experimentally identify the most suitable structural causal model for

modeling interdependencies in observational data.

2.3.5 Application of causal discovery in tabular data synthesis

Tabular data stands out as one of the most widespread mechanisms for representing
raw information in an organized manner. Its versatile structure facilitates the repre-
sentation of features in a variety of formats (continuous, discrete and mixed), making
it well-suited for analysis and interpretation. As a result, tabular data plays a pivotal
role in extracting insights, essential for informing the decision-making process in fields
such as medicine [205], finance [206] and business [207]. However, tabular datasets may
sometimes be incomplete, leading to limited availability and poor quality. This weak-
ness raises concerns about the validity of any inferences drawn from such data [208].

Historically, efforts have been made to mitigate the adverse effects of sparse tab-
ular data by synthesizing additional samples modeled using deep neural networks.
This approach, known as data generation, employs (deep) generative model optimiza-
tion [53], [52], [51], aiming to establish an implicit probability distribution that matches
the original distribution through end-to-end training. The majority of frameworks for
generating tabular data fall under the following two categories [209]: 1) synthesis,
which aims to create samples resembling real data (fidelity), while ensuring that the
distribution of the generated data covers the original distribution as comprehensively
as possible (diversity); and 2) imputation, which involves generating samples without
missing values based on incomplete input data. The author extends the research con-
ducted in tabular data synthesis by exploring the concept of causal awareness in Deep
Generative Models (DGM).

Currently, a considerable volume of scientific literature discusses the synthesis of
tabular data using DGM, categorizing all models utilized in this field into traditional
and causal-based approaches. The former relies on statistical patterns and correlations

to predict new samples closely resembling the input data. Meanwhile, the latter sim-
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ulates the generation process of the original dataset by learning the underlying causal
relationships between its variables. Both methodologies have yielded promising re-
sults. In the past, works such as MedGAN [210] and CorGAN [211] have demonstrated
impressive efficacy in handling Electronic Health Records (EHR) [212] with heteroge-
neous data types (continuous, discrete and mixed). Furthermore, PATE-GAN [213]
focused on addressing privacy concerns related to medical data generation. CTGAN
and TVAE proposed by [214] employ a conditional generator to mitigate the limitations
of mode collapse and class imbalance. Other models [215], [216] extend the functional-
ity of CTGAN by incorporating a Neural Ordinary Differential Equation (NODE) [217]
structure to produce fair synthetic samples at the cost of computational complexity.
The outputs of the aforementioned models have undergone rigorous statistical analysis,
proving their sufficiency for application in classification and regression problems. How-
ever, understanding and interpreting the mechanisms necessary to produce them is a
challenging task for people. This lack of explainability presents a significant limitation,
raising questions regarding the reliability of the results generated by deep generative
models.

Recently, traditional DGM have experienced an improvement in tabular data gen-
eration capabilities by leveraging causal inference. Early research into causality [94]
suggests at its significance in producing realistic samples by learning the relationships
between variables and facilitating the description of their causal dependencies. More
specifically, in the context of generative modeling, preserving causation rather than
merely modeling correlations provides a principled foundation for generating data that
reflects the true underlying mechanisms of its probability distribution, rather than re-
producing superficial statistical patterns. Traditional generative models often capture
correlational structures without understanding why variables relate, leading to poor
generalization under distributional changes. On the other hand, causally-aware gen-
erative models explicitly represent the direction and structure of dependencies among
variables, allowing for interpretable, modular, and interventionally consistent data gen-
eration. This novel causal paradigm enables counterfactual reasoning, supports robust

simulation of unseen scenarios, and enhances transferability across domains. There-
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fore, preserving causation in generative modeling yields models that are not only more
explainable and reliable but also capable of synthesizing data that faithfully replicates
the real-world processes from which it arises.

Several causality-based DGM, such as DECAF [218], TabFairGAN [219] and Causal-
TGAN [220], have produced tabular datasets by employing this novel methodology.
CausalGAN [171] and CausalVAE [170] incorporate causal dependencies into label
generation, yielding high-quality images. Alternatively, GCNN [73], DAG-GNN ([35],
DEAR [164], and DiffAN [221] prioritize causal discovery, producing accurate structures
at the cost of data quality and sparsity.

Unfortunately, both the causal structure learning and the tabular data synthe-
sis approaches face challenges in their sample generation techniques. In the case of
DAG-GNN, DEAR and DiffAN, incorporating Mean Squared Error (MSE) or its vari-
ations (e.g. NLL) produces over-simplified latent representations, resulting in latent
collapse during sampling. On the other hand, models such as Causal-TGAN, DECAF,
Causal GAN and GCNN assume a known or externally learned causal representation to
produce synthetic samples. Working with real-world data makes such sampling proce-
dures unreasonable as they require prior knowledge of the underlying causal structure
or the application of independent algorithms to identify the causality within datasets
and assess its accuracy before utilizing it for tabular data synthesis.

Recent progress in generative modeling, including Digital Twins and transformer-
based multi-attention networks [222], offers novel methodologies to capture complex
data relationships. Digital Twin models focus on creating virtual representations of
real-world systems, making them particularly useful for generating synthetic data.
Similarly, attention-based architectures, such as multi-attention networks, dynamically
assess and prioritize dependencies between variables. As generative models become
increasingly popular, integrating them with causal structure learning within a unified
framework holds great promise for producing more accurate and interpretable data
while preserving underlying causal structures [223].

The author resolves the issues with causal discovery and tabular data synthesis by

performing the two processes simultaneously using transfer learning to convey informa-

52



Chapter 2. Literature Review

tion between multiple deep neural network instances - further elaboration is provided

in Chapter 5.

2.4 Relevant Preceding Frameworks

This section provides a brief overview of models closely related to the research described
in this thesis. These methods have been compared to other benchmark approaches in
the field, such as NOTEARS [12] and GraN-DAG [36], using the Structural Hamming
Distance (SHD) metric and have demonstrated capability to produce good results. In
particular, the following algorithms are explained: DAG-GNN [35], DAG-NoCurl [48]
and DAG-Notears-MLP [38].

2.4.1 DAG-GNN

DAG-GNN [35] is a continuous optimization score-based model for causal structure
learning that combines a variational autoencoder and graph neural networks. This novel
approach extends the capabilities of NOTEARS by handling both linear and non-linear,
continuous and discrete data. The model uses an explicit weighted adjacency matrix A
as a learnable parameter and causal structure learning is achieved by minimizing the
Evidence Lower BOund (ELBO) [61].

DAG-GNN consists of two models encoder Enc and decoder Dec each instantiated

by shallow neural networks. Both modules can be denoted as

Enc= 7 =F4((I - AT)F3(X))
3 (2.11)
Dec=X =Fo((I — AT)'F(2)),
where {F3,F4} and {F1, Fa} are the MLPs for the encoder and decoder respectively. In
addition, the authors of this model have improved upon the acyclicity constraint of the
NOTEARS model making it more efficient, but at the cost of numerical stability. The
formulation of their constraint can be expressed as tr[(I + aA o A)?] —d = 0, where

d represents the number of nodes in the graph, « is a hyper-parameter, o denotes

53



Chapter 2. Literature Review

the Hadamard product of matrices, A represents the weighted adjacency matrix, tr
is the trace exponential and I denotes the identity matrix. Essentially, the acyclicity
constraint is a trace exponential that counts the number of cycles detected in the
learned graph. Its purpose is to progressively restrict the search space of the graph
until the trace yields 0, indicating the absence of cycles and ensuring that the output is
a DAG. Moreover, despite its simple architecture, the algorithm is more sophisticated
compared to NOTEARS. To ensure proper optimization of the score function and
the acyclicity constraint, the authors treat the training of the model as a constrained
continuous optimization problem, which can be solved using an augmented Lagrangian

approach [47].

2.4.2 DAG-NoCurl

DAG-NoCurl [48] is an efficient structure learning framework based on the application
of graph Hodge theory [224] and Helmholtz-Hodge Decomposition [225]; [226]; [227]
in a causal discovery setting. According to theory, a DAG consists of a harmonic, a
divergence-free, and a curl-free component, which represents an acyclic graph. Based
on this knowledge, the authors of DAG-NoCurl developed their own theorem, enabling
the mapping between weighted adjacency matrices and curl-free components. This
means that a recovered graph from this method will have directionality due to its
weighted adjacency matrix and acyclicity due to its curl-free component. This leads to
the first contribution of DAG-NoCurl, which is an alternative formulation of the DAG
search space capable of supporting causal discovery without the use of an augmented
Lagrangian. For a more detailed analysis, please refer to [48] however, in short, their
Theorem 2.1 proves that both DAG search spaces are equivalent.

The second contribution of this work involves the development of a model that can
navigate the equivalent DAG search space and recover graphs from it. To accomplish
this, the resulting DAG learning algorithm allows a weighted adjacency matrix A to be
represented as the Hadamard product of a skew-symmetric matrix W and the gradient
of a potential function on graph vertices grad(p). By learning this new representation

of A, optimization can be performed directly in the DAG space, eliminating the need
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for explicit acyclicity constraints and the expensive computation of the augmented
Lagrangian. The new model consists of three steps: 1) computing an initial prediction
APre) 2) projecting the initial prediction into the equivalent DAG search space, and 3)
obtaining a final DAG A* = W o ReLU (grad(p)).

In order to obtain an initial prediction AP the authors solve an unconstrained
continuous optimization problem F(A,X) s.t Ah(A) = 0, where, h(A) represents the
explicit acyclicity constraint applied to the weighted adjacency matrix A, and A de-
notes the Lagrangian multiplier, which is set to 10 based on empirical evidence from
the hyper-parameter study conducted by the authors. The applied acyclicity constraint
is from [35], as it offers faster computation. However, the original constraint proposed
by [12] can also be employed. Afterward, the initial prediction is subjected to a thresh-
olding process, with a value of 0.3 being used.

In the second step, the authors project the equivalent representation of AP"¢ into
the new DAG search space. This is achieved by computing the topological ordering p of
the initial prediction and using AP"¢ and p to obtain W o ReLU (grad(p)). The projec-
tion step of DAG-NoCurl allows the direct recovery of A* from the DAG search space,
without the need for acyclicity constraints. To accomplish this, the authors only opti-
mize W and use a fixed value for p when solving the second unconstrained continuous
optimization problem. By keeping p constant, the causal structure remains unchanged,
and solving for W refines the strength of the connections within W o ReLU (grad(p)).
This guarantees that the output will be a DAG, but it does not ensure that the distance
between the output and the ground truth is minimized, which is a limitation of the

approach.

2.4.3 DAG-Notears-MLP

DAG-Notears-MLP [38] is another extension of the original NOTEARS model devel-
oped by its authors. It is an updated and more generalized version of its predecessor,
commonly referred to in the causal structure learning community as NOTEARS+ [185].
The main contributions of this framework lie in its architecture, which includes a new

acyclicity constraint and a novel approach to learning weighted adjacency matrices
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implicitly. The model is a neural network that consists of an input layer Ly and a
sequence of dynamically instantiated locally connected layers L = {a(L1),...,a(Lq)},
where d denotes the number of layers and « is the activation function (e.g. ReLU)
applying nonlinearity to each layer. The model is trained using stochastic gradient
descent optimization [228], a popular algorithm for learning neural networks. The
acyclicity constraint is imposed during training, and the implicit weighted adjacency
matrix W € R%*? is obtained from the Lg layer of the Multi-Layer Perceptron (MLP).

Since the model learns the causal graph implicitly, the acyclicity constraints men-
tioned earlier [12], [35] cannot be applied. To address this issue, the authors of DAG-
Notears-MLP propose a new constraint based on partial derivatives [229], which is

defined as follows

hW(£)) = 0, W (i)kj := IOk fill2- (2.12)

In equation (2.12), W is the weighted adjacency matrix, 0 is the partial derivative
of f; with respect to the k' variable and ||.||2 is the Ridge Regression norm. Fur-
thermore, the authors investigate the generalization of the model by incorporating
non-parametric assumptions. Under such settings, the model assumes the general form
of E[X;|Xpa;] := Ez(f;(X, Z)), which encompasses a variety of SCM including ad-
ditive noise models, index models, generalized linear models and others. Elaboration
on how DAG-Notears-MLP performs causal structure learning in each of these cases is
provided in their paper [38].

The model has demonstrated an ability to produce good results against other leading
models in the field. However, it uses the Mean Squared Error (MSE) loss function as the
basis for its parameter optimization process. As a result, DAG-Notears-MLP inherits
the limitations of MLE-based approaches in causal discovery, leading to inaccuracies
in structure learning with increase in data variable size or introduction of noisy input

data.
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Adversarial Variational Inference

for Causal Discovery

This chapter presents the development of a model that investigates the impact of
Wasserstein generative adversarial training on Variational Autoencoder (VAE) archi-
tectures within the domain of causal structure learning. Its sections focus on the com-
bination of GAN and VAE for causal structure learning, while also documenting the
outcomes, strengths, and limitations of this approach. This description is followed-up
by a brief discussion regarding potential enhancements to the base model such as Dis-
entangled Representation Learning (DRL) and Efficient Structure Learning (ESL). The
content explored in this chapter has been previously published, and the publications of

the author can be found in Section 1.7.

3.1 Background Knowledge

As mentioned in Section 2.1.2, the process of discovering causal relationships involves
learning the components of a Bayesian Network (BN) [90]. Given a set of observational
samples X = {Xj,...,,X,,} and latent variables (i.e. hidden) Z = {Zi,..., Zn}, it
is theoretically possible to obtain the correct values for the building blocks of BN
by directly applying Bayes’s theorem [230] to compute the true posterior distribution
P(Z]X):
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P(X|Z2)P(Z)

P(ZIX) = =

(3.1)

Unfortunately, the computation of P(Z|X) using (3.1) is generally intractable, which
is why researchers use an approximate solution known as a variational distribution
Q(Z|X) ~ P(Z|X). This approach, called variational inference, provides a practical
solution for obtaining a posterior distribution and forms the theoretical foundation for
VAE-based models.

Bayesian Networks (BN) can be instantiated through Variational Autoencoders.
However, it is important to note that VAE are built on artificial neural networks, which
have some differences compared to probabilistic graphical models. The key distinction
lies in the assignment of content to the weights. In Bayesian Networks, weights are
initialized using probability distributions, while in basic neural networks, each weight
is assigned a scalar value. By applying variational inference to a Bayesian network, the
focus is on directly modeling probability distributions rather than optimizing individual
weight values. This approach leads to the development of various models based on
variational Bayes that are capable of learning the structure of BN.

The application of Variational Autoencoders (VAE) in the domain of causal struc-
ture learning represents a significant advancement in research. Their importance is
second only to the development of the DAG-NOTEARS framework [12], which al-
lows for causal discovery using black-box models. Nevertheless, variational inference
was used to facilitate numerous observational studies. In fact, one of the first ma-
chine learning models capable of extracting causal relationships from data is known as
DAG-GNN [35]. This approach is based on the VAE architecture and has the ability to
handle different types of data, such as continuous, vector and discrete (see Section 2.4.1
for more details). Other models that utilize variational Bayes include Graphite [163],
which can handle high-dimensional data, Disentangled gEnerative cAusal Represen-
tation Learning (DEAR) [164], which works with image data and a known ground
truth graph to perform supervised causal structure recovery, Amortized Causal Dis-
covery (ACD) [231], which discovers causality from time-series data, V-CDN [173],

which recovers causal structures from video formats, Causal Variational Autoencoder
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(CausalVAE) [170], which is a nonlinear extension of NOTEARS capable of working
with tabular data, Imputated Causal Learning (ICL) [232], which handles missing data
to learn causal relationships, and VI-DP-DAG [49], which is a causal structure learn-
ing model that efficiently discovers causal graphs using the VAE architecture. The
models mentioned above serve as evidence for the popularity of variational inference in
causal structure learning. Despite their numerous contributions, there are still many
unexplored potential applications of VAE in causality learning.

Unfortunately, as previously mentioned in Section 2.3.1, traditional MLE-based
generative modeling approaches with latent variables (including the VAE framework)
possess inherit limitations stemming from their focus on individual data point opti-
mization. In contrast, incorporating the Wasserstein distance as a regularizer refocuses
the learning objective from aligning specific data points to minimizing the distance be-
tween entire data distributions. This shift enables the capture of the global geometry
and richer statistical characteristics of the data, such as variance, skewness, and mul-
timodality, facilitating a more faithful emulation of the underlying causal mechanisms.
Building on this foundation enables the development of hybrid models, which leverage
adversarial training and a reconstruction process to minimize distributional discrepan-
cies between real and generated data, and recover accurate causal relationships. This
advancement marks an exciting and promising research direction in causal structure
learning, particularly through the exploration of VAE-GAN architectures for causal

discovery.

3.2 Causality learning with hybrid generative modeling

The objective of the study is to explore the influence of the Wasserstein distance on
variational inference in the context of causal discovery. The research aims to demon-
strate the practical significance of this metric by providing empirical support for the hy-
pothesis: ” Will incorporating Wasserstein-1 lead to improved causal recovery through a
generative adversarial framework that is trained to synthesize realistic data samples?” .

To achieve this goal, the author has developed a novel hybrid generative modeling
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framework called DAG-WGAN [75], which is based on the VAE-GAN architecture [62].

The model proposed in this study combines a variational autoencoder and a WGAN-
GP architecture. It achieves this by utilizing an encoder-decoder pair for causal dis-
covery and a critic to calculate the Wasserstein distance between the output of the
decoder and the input data. To ensure that the recovered causality does not include
any cycles, the author incorporates the explicit acyclicity constraint from [35]. The
algorithm learns to explicitly model the cause and effect between variables while syn-
thesizing data samples based on recovered causal structures and parameter optimization
through end-to-end training.

Extensive testing has been conducted on the model, comparing it to the current
state-of-the-art. The experimental results indicate that DAG-WGAN outperforms
other models by a significant margin, when dealing with large data variable sizes.
In particular, when data attributes have a high cardinality, the causal graphs learned
using DAG-WGAN are more accurate than those produced by other models. Addition-
ally, the generated data samples from DAG-WGAN are less noisy and more realistic
compared to samples from other data-generating models. The capabilities of the model
have been demonstrated on various data types, including linear, non-linear, continu-
ous, and discrete. Furthermore, the method has been tested using data produced from
multiple Structural Equation Models (SEM) [233], namely instances of Additive Noise
Models (ANM) and Post-Nonlinear Models (PNL). The experimental results suggest
that incorporating the Wasserstein distance metric supports causal discovery in the
data generative process when working with observational samples produced by apply-
ing different SEM assumptions.

Compared to other models in the field, DAG-WGAN has the following advantages:

e Realistic causal structure learning and data generation - The model simul-
taneously performs causal structure learning and data generation to synthesize

realistic samples with preserved causality.

e Multiple data types - The model is an extension of the original NOTEARS

framework capable of working with a variety of data types.
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e Multiple structural equation models - DAG-WGAN can work with obser-
vational data synthesized using instances of additive noise and post-nonlienar

models.

3.2.1 Model Architecture & Training

This section provides a detailed explanation of the inner workings of DAG-WGAN,
focusing on its architecture and training algorithm. The proposed model combines
a Variational Autoencoder (VAE) and a Wasserstein Generative Adversarial Network
with Gradient Penalty (WGAN-GP). Additionally, the framework incorporates causal
discovery by introducing an explicit weighted adjacency matrix A as a learnable param-
eter and an acyclicity constraint. For a visual representation of the model architecture,
please refer to Figure 3.1. In essence, the model comprises three neural networks that
collaborate to recover causal structures and synthesize data samples: 1) an encoder
computes the latent representations of the input data; 2) a decoder reconstructs new
data samples from the latent representations generated by the encoder; 3) a discrimina-
tor ensures that the new data samples are realistic by minimizing the distance between
the output of the decoder and the input data.

The decoder plays a crucial role in connecting the other two components of the
model. Firstly, it collaborates with the encoder in the variational autoencoder ar-
chitecture to recover causal structures from observations. Secondly, the decoder also
works alongside the discriminator in the WGAN-GP component to generate realistic
data samples. This connection between the encoder, decoder, and discriminator is also
evident in the training process of DAG-WGAN. The encoder and discriminator are
trained using reconstruction and adversarial loss, respectively, while the decoder pa-
rameters are optimized using both loss terms. The motivation behind the formulation
of this hybrid generative modeling framework is the successful application of VAE-GAN
to capture data and feature representations more effectively [62]. DAG-WGAN extends
the capabilities of NOTEARS by incorporating multiple data types (e.g., continuous
and categorical) and structural equation models (i.e., Additive Noise Models (ANM)
and Post-Nonlinear Models (PNL)). For more detailed information, see Section 3.2.3.
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Figure 3.1: DAG-WGAN employs a hybrid architecture composed of two primary com-
ponents: (1) a Variational AutoEncoder (VAE) and (2) a Wasserstein Generative Ad-
versarial Network with Gradient Penalty (WGAN-GP). The VAE component follows
the structure of the DAG-GNN model. Therefore, the key distinction between DAG-
WGAN and DAG-GNN is the integration of the additional WGAN-GP architecture,
which is implemented through the Discriminator module.

Variational Autoencoder architecture

Variational autoencoders consist of a pair of interconnected networks, namely an en-
coder and a decoder. In the default scenario, the encoder Enc takes input X and
generates a latent variable Z by learning a variational posterior Q(Z|X). On the
other hand, the decoder Dec computes a conditional likelihood distribution Py(X|Z2),
which is utilized to generate reconstructed samples X. The following mathematical

representation captures the aforementioned processes:

Enc = Expx)[Qs(Z|X)] = Z Dec =Ky q,zx)Po(X|2)] = X,  (32)

where ¢ and 0 are the model parameters of Enc and Dec respectively. Moreover, the
latent representation Z undergoes regularization to reduce over-fitting, ensuring the
latent space contains meaningful information.

DAG-WGAN facilitates the causal structure learning process by assuming structural
equations for both Enc and Dec architectures. This allows the encoding of causality
in the latent representations that are utilized to reconstruct the data. In order to

accomplish the simultaneous recovery of causality and generation of data, the author
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modifies (3.2) as follows:

Enc=Z = Ex.px)[Qs(Z|F4((I — AT)F3(X)))]

Dec=X =By q, 2. (1-aT)Fax)) [P (X|F2 (I — AT)7'F1(2)))], (3.3)

where (I — AT) and (I — AT)~! are the structural equations for the encoder and the
decoder, respectively. X € R™"*? represents observational samples from the distribution
P(X), while Z € RN*4 is a latent variable obtained from the distribution Qg (Z|F4((I—
AT)F3(X))). The reconstructed data, denoted as X € R™4 is sampled from the
distribution Py(X|Fo((I—AT)"'F{(Z))). The matrix A € R%*? is an explicitly defined
weighted adjacency matrix, with each node corresponding to a variable in X. The
functions F; to F4 are parameterized and used to apply (non)linear transformations
on Z and X. The architecture is designed in a way that the components in the decoder

(Dec) can invert the operations performed by the components in the encoder (Enc).

WGAN-GP architecture

WGAN-GP are a type of generative model that utilize the Wasserstein distance metric.
These models consist of two networks, a discriminator D and a generator G, which
compete against each other to generate realistic data samples. DAG-WGAN deviates
from the standard WGAN-GP model by incorporating the decoder from the Variational
Autoencoder (VAE) architecture as the generator. Additionally, a critic is employed to
calculate the adversarial loss with its gradient penalty. The design of discriminator is
based on the PacGAN framework [234] and aims to address the issue of mode collapse.

The architecture of D can be described as follows:

X = MLP(X,X,leaky — ReLU, Dropout, GP, pac), (3.4)

where X is the reconstructed data and X are observational data samples. Leaky-ReLU
is the activation function for the model with its negative slope set to 0.01. Dropout [235]

is set to 0.5, which accounts for stability and prevents over-fitting. GP is the gradient

63



Chapter 3. Adversarial Variational Inference for Causal Discovery

penalty term used in the standard WGAN-GP [116] configuration. Pac is a concept
related to PacGAN [234] designed to dampen the effect of mode collapse when working

with discrete data.

Training algorithm

The architecture of the variational autoencoder is trained by merging two components,
which are the reconstruction and regularization loss, as explained in (2.3). The approxi-
mation of the first component is computed using the Gaussian Negative Log-Likelihood

(GNLL) [236].

L(X,X) = B2, (2[F4((1—ATYFs (X)) 108 Po(X|Fa((I — AT)'F1(2)))]

< (3.5)
~ 5 | o om0

The second term, referred to as KL-Divergence, helps prevent overfitting and ensures

meaningful information is encoded in the latent space.

regularizer = EXNP(X) [DKL(Q¢(Z|F4((I - AT)FB(X)))HP(Z))]
1

~ = [loga(2) = (u(2) = 0(2)%) +1]

In both (3.5) and (3.6), i denotes the mean and o is the standard deviation. Together

(3.6)

the two terms form the objective function for training the VAE component of DAG-

WGAN:

Rioss(X, X, Z) = —Eg, (7p,((1—-a7)Fs x)) [l0g Po(X[Fo((I — AT)7'F1(2)))]

+ BExpx) [DrL(Qu(Z[Fa((I — AT)F3(X)))[|P(2))]
~ — <_1 [W +10ga(X)2 ) (37)

2 a(X)?2
+ 8 (—; logo(2)? — (u(2)* — 0(2)?) + 1}) ,

where ( is a hyper-parameter from [237], controlling the influence of the KLD. To

account for discrete data the reconstruction loss term in (3.7) is replaced by Cross-
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Entropy Loss (CEL) [238]:

L(X,X) = Ezq,zFi((1-AT)Fs (x)) 108 Po(X|Fa((I — AT)T'F1(2)))]

N (3.8)
~ - 3 (X, log(X.),
c=1

where N is the number of categories ¢ present within the data.
Meanwhile, the discriminator D and the generator Dec forming the WGAN-GP

architecture are trained via the following adversarial loss term:

Dioss = Ex 5, [D(X)] — Exp, [D(X)] + AEg s [([IVx D(X) — 1]])?]

Critic loss Gradient penalty (3.9)
Gioss = Ezq,(z|Fa((1-AT)Fs(x)) [ D(Dec(Z))],

where Z is the output of the encoder Enc. The hyper-parameter \ is responsible for
determining the strength of the gradient penalty applied to the Wasserstein distance.
In the context of the DAG-WGAN model, the distribution P,. corresponds to the distri-
bution P(X), while P, is equivalent to Py(X|F2((I — AT)"1F(Z))). The distribution
P¢ is obtained by sampling uniformly along a straight line between the real data dis-
tribution P, and the synthetic data distribution P,.

Neither minimizing the reconstruction loss nor the adversarial loss guarantees the
absence of cycles in the weighted adjacent matrix A. To ensure that A is acyclic,
it is necessary to include an explicit acyclicity constraint in the objective function of
the model. This constraint, proposed by the author of [35], is expressed as h(A) =
tr[(I + aA o A)¥ —d = 0, where tr represents an exponential trace in the DAG
search space, « is a positive hyperparameter, o denotes the Hadamard product [239],
and d is the number of variables in A. The constraint yields a value that represents
the number of cycles found in the recovered graph. Through augmented Lagrangian
optimization [47], this constraint can be minimized until the value reaches 0, indicating
that the recovered graph is a DAG.

DAG-WGAN is trained through the following loss function.
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Rioss(X, X, Z) = =E g, (zips((1-aT)Fs(x)) 108 Po(X|Fa((I — AT)7'F1(2)))]
Reconstruction loss

+ BExpx)[Drr(Qs(Z|F4((I — AT)F3(X)))||P(2))]

Regularization term

Dioss = Exop, [D(X)] = Exwp, [D(X)] + AEg_p [(IVD(X) = 1]])°]

(3.10)

Critic loss Gradient penalty

Gloss = —Ezqu(zIFa(1-AT)Fs(x))) [ D(Dec(Z)))]

Gener;;or loss
st tr[(I+aAoA)l]—d=0,

Acylicity constraint

where the approximations of the reconstruction and regularization loss term are used -

see (3.5) and (3.6).

Remark. It is not mandatory to use the acyclicity constraint from [35]. In fact, any
function that can be continuously optimized to yield h(A) = 0 can be applied to the
loss function of DAG-WGAN.

3.2.2 Identifiability analysis

To leverage DAG-WGAN for causal structure learning, it is necessary to determine
if the model is capable of recovering unique DAG from data. This property, known
as structure identifiability (see Definition 1), is associated with every causal discovery
model. Generally, the identifiability of a causal graph is influenced by several factors,
including 1) a set of assumptions, 2) the choice of loss functions, 3) the use of SEM in
the model architecture, and the generation of input data. However, not all combina-
tions of these factors can result in the discovery of unique causal structures, as certain
combinations only allow the identification of a DAG up to its CPDAG superset.

In this section, the author investigates the identifiability of DAG-WGAN by ex-
amining its model architecture and objective function. The identifiability of the VAE
architecture, where causal structure learning is performed, is discussed first. Prior to

this research, there was limited evidence on the exploration of the causal identifiability
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of the DAG-GNN architecture. The theoretical analysis of DAG-WGAN concludes by
providing mathematical intuition on the identifiability of the hybrid loss function in
equation (3.10).

In the meantime, the author also acknowledges the causal sufficiency assumption
as one of the most fragile in structure learning from real-world data. This assumption
states that all common causes of the observed variables are included in the model,
meaning there are no unmeasured confounders. In practice, this is rarely true as many
systems involve hidden variables or latent factors that influence multiple observed vari-
ables (e.g., socio-economic factors in health studies or environmental variables in eco-
nomic data). Violations of causal sufficiency can lead to spurious causal relationships
and incorrect edge orientations in learned causal graphs, which in turn weakens gen-
eralization when applying the model to new settings where these hidden confounders
vary.

The faithfulness assumption is another that tends to break down frequently in
real-world scenarios. It assumes that all observed independencies arise from the under-
lying causal structure rather than from specific parameter values or coincidences. In
complex systems with feedback loops, nonlinear interactions, or finely tuned parame-
ter values, apparent independencies can emerge that are not structurally meaningful.
When faithfulness fails, causal discovery algorithms may miss true edges or incorrectly
infer independencies, leading to unreliable causal models that fail to generalize across
datasets with slightly different parameterizations.

Ultimately, the fragility of causal sufficiency and faithfulness poses the greatest
threat to generalization in real-world data. When these assumptions fail, causal con-
clusions and predictions derived from one context may not transfer to another, empha-
sizing the need for careful model validation, sensitivity analyses, and the integration of

substantive expertise to ensure more reliable and transferable causal insights.

Architecture identifiability

To establish the identifiability of the VAE component in DAG-WGAN, it is necessary

to determine the type of SEM employed in the generative model as specified in equation
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(3.3). The author leverages the understanding that the VAE learns causal structures
by performing (non)linear transformations on a generalized version of linear SEM, as

documented in [35], to derive the identifiability of the architecture.

Lemma 3.2.1. The Structural Equation Model (SEM) used in the decoder architecture
X = Py(X|F2((I — AT)"'F{(Z))) belongs to the Additive Noise Model category.

Proof. The proof of lemma 3.2.1 is available in Appendix A.1. O

The identifiability of Additive Noise Models has been demonstrated in previous
research. Specifically, [240] proves in their Proposition 30 that these models are iden-
tifiable if the causal mechanisms F = {f1,..., f4} are three times differentiable, non-
constant, and non-linear in all of their arguments. This implies that the decoder has

the ability to learn unique DAG and thus is identifiable.

Loss function identifiability

The analysis carried out in Section 3.6 of [35] indicates that if functions F; to Fy are
omitted from the inference and generative model, the architectures Z = (I — AT)X
and X = (I — AT)~'Z would achieve perfect data reconstruction. In this case, the
accuracy of the output data is solely based on the quality of the latent variable Z.
Therefore, to achieve lossless reconstruction of X, the objective function (ELBO) of
the VAE component of DAG-WGAN is simplified to the least squares loss E(Z) =
$|(I — AT)X]|%., assuming that the standard deviation is not learned and set to a
constant value of 1. This function has been demonstrated to produce accurate and
unique DAG [12] through end-to-end training, thus establishing ELBO as an identifiable
variant of the least square loss.

If VAE alone produce unique causal structures of decent quality, then a sensible
question to ask is What is the contribution of adversarial training to the learning of
causal structures?. To provide an answer, the author develops a mathematical intuition
supported by the empirical evidence in Section 3.2.3.

As mentioned earlier, the VAE theoretically achieves perfect reconstruction of the

input data by removing the functions F; to F4 from the encoder and decoder architec-

68



Chapter 3. Adversarial Variational Inference for Causal Discovery

tures. However, in reality, these functions are still present in the architectures, causing

the decoder to generate an approximation of the actual data distribution P(X) ~ P(X).

The quality of P(X) depends on how the model parameters are learned. Therefore,
the distance between P(X) and P(X) can be further reduced by incorporating addi-
tional loss terms. In the case of DAG-WGAN, the added loss term to the ELBO is the
Wasserstein distance with a Gradient Penalty.

The Earth Mover distance differs significantly from typical MLE-based loss func-
tions used in causal structure learning. The former aims to minimize the difference
between probability distributions, while the latter focuses on maximizing the similarity
between individual data points. Under the semi-parametric assumption, it becomes
relatively straightforward to discover causality from observational data by applying a
Structural Causal Model (SCM) to reconstruct individual data points. However, prob-
ability distributions do not provide any information about the relationships between
variables in their samples, which makes adversarial causal discovery a challenging task.
However, if a causal graph Ga and a probability distribution P(.) are faithful to each
other, they can be considered compatible. In such cases, G represents the causal
relationships observed in samples of P(.). Thus, in the case of DAG-WGAN; the dis-

tribution of observational data P(X) and the distribution of learned data P(X) can be

expressed as follows:

Pgo (X) = P(X)

P, (X) = Epx)|det(Jx—2)|Qu(Z|F4((I — AT)F5(X)))], (3.11)

where J is the Jacobian matrix [241], det|.J| denotes its determinant, Z ~ Qg (Z|F4((I—
ATYF3(X))) and X ~ P(X).

This alternative definition of P(X) and P(X) suggests that minimizing the distance
between Pgg (X) and Pg, (X) will bring the learned causal graph G closer to the
ground truth GQ, which explains the difference in accuracy between DAG-GNN and
DAG-WGAN in the experiments (see Section 3.2.3). Importantly, the rate of improve-
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ment varies depending on the data variable size. For datasets with a small number of
columns, the reconstruction is already almost perfect, leaving little room for further
improvement. Conversely, for high-dimensional data, the reconstruction becomes less
accurate, and the contribution from the adversarial loss increases. This is because
VAE have inherent difficulty in accurately reconstructing large datasets. The hybrid
loss function does not affect the identifiability of Ga because the Wasserstein Distance
with Gradient Penalty is applied to Pgo (X) and Pg,, (X), where Pg, (X) is the output
of the decoder. This essentially means that the distance between the real data and the
generated data can be described as ||PG% (X) — Pg, (X|F2((I - AT)"'F1(Z)))||, where
G is already identified. In other words, the adversarial loss only provides further
refinement of G4, resulting in a closer approximation of GOA. It should be noted that
Pg, (X|Fa((I — AT)"1F1(Z))) is still parameterized by 6, but this notation has been
omitted for simplicity.

Moreover, as graphs that are faithful to distributions only describe the relationships
between variables, they do not contribute to the training process of machine learning

models. In the context of DAG-WGAN, this implies that the theoretical results and

convergence guarantees of WGAN-GP are applicable.

Proposition 3.2.2. Given an (un)known ground truth graph G4 faithful to the obser-
vational data distribution PGOA (X), the parameters of the implicitly learned probability

distribution Pg, (X) are refined by the following solution D : R — R

Egp,[D(X)] = Ex~p, [D(X)] +AEx p_[([[Vg D(X) = 1]1)°]

-~

-~
Critic loss Gradient penalty

E2nqu(zIFa((1-AT)Fs(x))) [P (Dec(Z))],

Generator loss

where both terms are well-defined, differentiable almost everywhere and converge when

Pgo (X) = Pa,s(X).

Proof. The proof of proposition 3.2.2 is available in Appendix A.2. O
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3.2.3 Experimental results

The performance of DAG-WGAN is evaluated through a series of experiments against
some of the best models in the field. The approach is compared directly to DAG-GNN
[35] to emphasize the impact of the Wasserstein distance in causal structure learning.
Competing against DAG-GNN is justified because both models are based on the same
VAE architecture, with the difference lying in the inclusion of adversarial training
in DAG-WGAN. Additionally, the author compares their model to DAG-NOTEARS
[12] and DAG-NoCurl [48] to provide more comprehensive evidence of the effect of
Wasserstein-1 on causal discovery.

Experiments have been conducted using different types of data, such as continuous
and categorical. The accuracy of the recovered causality is assessed by calculating the
Structural Hamming Distance (SHD) [105] between the ground truth and the output
graph. Furthermore, the quality of the generated data is evaluated by comparing the
output of DAG-WGAN with data produced by CorGAN [242], and an additional study
has been carried out to determine the effect of causal structures on the generation of

synthetic data samples.

Continuous data

A series of experiments have been conducted to evaluate the performance of DAG-
WGAN in the context of continuous data. These experiments utilized synthetic data
generated from structural equations belonging to known identifiable causal models. The
comparison between the approaches involved in this study, including DAG-GNN [35],
DAG-NoCurl [48], DAG-NOTEARS [12], and DAG-WGAN [75], was based on their
ability to recover causal structures from samples generated using the same underlying
graphs and equations.

The data generation process consists of two main steps. The first step involves
determining the ground truth graph, which is done by generating an Erdos-Renyi
(ER) [243] DAG with an expected node degree of 3. This graph is represented math-
ematically by the weighted adjacency matrix A. In the second step, observational

samples are synthesized using the ground truth graph and a variety of Structural
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Equation Models (SEM). For the linear case, the equation used is X = ATX + Z.
For the nonlinear cases, two equations are used: X = ATcos(X + 1) + Z (non-
linear-1) and X = 2sin(AT(X +0.5%1)) + AT(X + 0.5 1) + Z (non-linear-2). The
two non-linear equations were used to evaluate DAG-WGAN and all other models
it was compared against. Furthermore, additional tests have been conducted to as-
sess whether the model architecture can naturally handle the Post Nonlinear Model,
which is considered a superset of the Additive Noise Model. The following SEM
are used in the experiments: X = sinh(ATcos(X + 1) 4+ Z) (post-nonlinear-1) and
X = tanh(2sin(AT(X + 0.5 % 1)) + AT(X + 0.5 % 1) + Z) (post-nonlinear-2). The
selection of these specific structural equations enables more robust model assessment
and a more comprehensive investigation involving DAG-WGAN and DAG-GNN.

The number of samples used in all experiments is 5000 per graph. To assess the
scaling capabilities of DAG-WGAN, tests are conducted with varying graph sizes (i.e.,
10, 20, 50, and 100). To account for the randomness of the generated samples, each
experiment is repeated 5 times per model. For each iteration of a test, the Structural
Hamming Distance (SHD) between the learned graph from a model and the ground
truth graph is measured. The mean SHD is then calculated for each approach and
compared against the average produced from all other methods. Additionally, confi-
dence intervals are used to complement the mean SHD and provide an indication of the
consistency of DAG-WGAN. The results of the continuous experiments can be found

in Tables 3.1, 3.2, 3.3, 3.4, and 3.5.

Table 3.1: Comparisons of DAG-learning Outcomes with Linear Data Samples

SHD (5000 linear samples)
d =10 d =20 d =50 d = 100

DAG-NOTEARS 8.4 +794 2.6 4+ 1.84 25.2 4 19.82 106.56 £+ 56.51
DAG-NoCurl 79£726 25+£193 246+ 1943 99.18 £ 55.27
DAG-GNN 6777 32+16 214+14.15  88.8 £47.63

DAG-WGAN 22+44 2+£1.1 4.8 + 4.26 28.20 + 12.02

Model

72



Chapter 3. Adversarial Variational Inference for Causal Discovery

Table 3.2: Comparisons of DAG-learning Outcomes with Non-Linear Data Samples 1

SHD (5000 non-linear-1 samples)
d=10 d =20 d =50 d = 100

DAG-NOTEARS 11.2+4.79 193 +£3.14  53.7 £ 11.39 105.47 £ 13.51
DAG-NoCurl 104 =442 174 £3.27  51.6 £11.43 105.7 £ 13.65
DAG-GNN 9.4 £ 0.8 15+ 3.58 49.8 £ 7.03 104.8 + 12.84
DAG-WGAN 9.8 £24 16 £54  40.40 + 10.97 80.40 + 9.09

Model

Table 3.3: Comparisons of DAG-learning Outcomes with Non-Linear Data Samples 2

SHD (5000 non-linear-2 samples)
d=10 d =20 d =50 d =100

DAG-NOTEARS 9.8 +261 229+ 214 383+ 13.19 12521 £+ 61.19
DAG-NoCurl 74 +£278 176 +225 33.6 £ 12.53 116.8 + 62.3
DAG-GNN 2.6 £2.06 3.80 £+ 1.94 13.8 + 6.88 112.2 £ 59.05

DAG-WGAN 1+11 3.4+206 12.20+ 7.81 20.20 £ 11.67

Model

Table 3.4: Comparisons of DAG-learning Outcomes with Post-Non-Linear Data Sam-
ples 1

SHD (5000 post-non-linear-1 samples)
d=10 d=20 d=50 d=100

DAG-GNN 127+ 31 21857 653+ 144 130.2 £ 274
DAG-WGAN 104 +3.2 182 +6 51.3 +11.8 107.8 + 19.5

Model

Table 3.5: Comparisons of DAG-learning Outcomes with Post-Non-Linear Data Sam-
ples 2

SHD (5000 post-non-linear-2 samples)
d=10 d=20 d=50 d=100

DAG-GNN 8451 146 =*£52 478 206 1457 £ 77.7
DAG-WGAN 5.6 + 5.8 10.2 £ 6.3 35.6 + 14.4 43.3 £+ 23.2

Model

Benchmark categorical data

In order to evaluate the performance of DAG-WGAN on categorical data, the author
obtains a set of discrete tabular datasets from the Bayesian Network Repository avail-
able at https://www.bnlearn.com/bnrepository/. This repository offers datasets of
different types, such as Discrete Bayesian Networks, Gaussian Bayesian Networks, and

Conditional Linear Gaussian Bayesian Networks, as well as datasets of various sizes,
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ranging from Small Networks to Massive Networks. To assess the scalability and ac-
curacy of DAG-WGAN when handling categorical data, the author specifically selects
the Sachs, Alarm, Child, Hailfinder, and Pathfinder datasets. Since DAG-GNN was
the only model capable of working with discrete data at the time, the comparison is
made solely between DAG-WGAN and DAG-GNN. The results of the experiment can
be found in Table 3.6.

Table 3.6: Comparison of DAG-learning Outcomes with Benchmark Data Samples

Dataset Nodes SHD
DAG-WGAN DAG-GNN
Sachs 11 17 25
Child 20 20 30
Alarm 37 36 55
Hailfinder 56 73 71
Pathfinder 109 196 218

Data integrity

Samples generated by DAG-WGAN have been compared with samples from other mod-
els to evaluate the data generation performance of each model on a ’dimension-wise
probability’ basis. This means that the author measures how well each model matches
the distribution of observations for each dimension. The tabular dataset used in the
experiment is MIMIC-IIT [244], which has been used in previous studies involving the
models DAG-WGAN compares against. The dataset consists of medical measurements
and observations, where each row is a patient record containing 1071 entries. The

results of the data integrity experiment are shown in Figure 3.2.
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Figure 3.2: Data integrity experiment outcome
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Moreover, DAG-WGAN is compared only with CorGAN [242] as it performs better
than other competitors such as medGAN [210] and DBM [245]. A scatter plot is used
to represent the outcome of the study, where each point corresponds to one of the
1071 entries. The x and y axes indicate the success rate for real and synthetic data,
respectively, while the diagonal line represents the ideal scenario.

The effectiveness of the reconstruction process of DAG-WGAN is also thoroughly
examined. Two scenarios are considered to ensure completeness: 1) the output data
contains the true causal graph (with SHD equal to 0); 2) the output data represents a
causal graph of poor quality (with SHD as far from 0 as possible). The quality of the
structure learning has been demonstrated using causal heat maps. The interdependen-
cies between the covariates are studied by analyzing the correlation matrices of both
cases. The diversity of the reconstructed data points is also plotted and examined.
It should be noted that the input data is generated using the non-linear-2 Structural
Equation Model (SEM) and the size of the data variables is set to 10. The author
refrains from conducting further experiments since the model architecture and training
algorithm remain the same. Therefore, since the only possible change that remains is
assuming a different SEM to generate input data, further experiments will yield similar
results. The performance of the model is also expected to deteriorate as the data vari-
able size increases, due to the decreased precision in approximating the original data
distribution.

In the case where the SHD equals 0, one would expect a perfect graph with no

extra, missing or reversed edges to be recovered, exactly as shown in Figure 3.3.

Ground Truth

Recovered Graph

Vertices
Vertices

Vertices Vertices

Figure 3.3: Weighted adjacency matrix heat map in the case SHD is 0
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A complete recovery of the ground truth graph indicates that the causal connections
in the reconstructed data are preserved. If the input data and the generated data share
the same causal relationships, then it is reasonable to expect that they will also have

similar statistical patterns (i.e., correlations), as illustrated in Figure 3.4.
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Figure 3.4: Comparison between the correlation matrices across the real (left) and
synthetic (right) features, in the case SHD = 0

The investigation reveals that the statistical correlations between the real and fake
data are nearly identical across the feature space. This similarity in correlations and
preservation of causality leads to a very close approximation of the input data.

The variety of the new data points is low, indicating that the model has an almost
perfect reconstruction process with imperceptible deviations from the real data samples
- see Figure 3.5.

In the case where the SHD is farthest away from 0, the recovered graph is signifi-
cantly different from the ground truth - see Figure 3.6.

Nevertheless, despite the inefficacy of causal structure discovery, DAG-WGAN accu-
rately learns the correlations in the input data, while successfully reconstructing data
points that closely resemble the original data, as shown in Figures 3.7 and 3.8.

The findings of the study offer valuable information regarding the capacity of DAG-
WGAN to carry out both causal structure learning and data generation simultaneously.
The most notable aspect is the straightforward design of its VAE component, which al-
lows for precise data reconstruction regardless of the accuracy of the recovered causality.
As a result, the ability of the model to learn causal structures relies on reconstructed

samples but does not impact the reconstruction process itself.
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Figure 3.5: Real and synthetic feature distributions (x3,x4), in the case SHD = 0
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Figure 3.6: Weighted adjacency matrix heat map when SHD is farthest away from 0
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Figure 3.7: Comparison between the correlation matrices across the real (left) and
synthetic (right) features when SHD is farthest away from 0
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Figure 3.8: Real and synthetic feature distributions (x3,x4) when SHD is farthest away
from 0

78



Chapter 3. Adversarial Variational Inference for Causal Discovery

3.3 Discussion

DAG-WGAN has demonstrated competitive performance in all experiments, showcas-
ing its ability to handle various types of data. The continuous results presented in
Tables 3.1, 3.2, and 3.3 show that when the Additive Noise Model (ANM) is assumed,
the proposed method outperforms DAG-NoCurl and DAG-NOTEARS in all three cases
(linear, non-linear-1, and non-linear-2) and across all dimensions. In the non-linear-1
case, DAG-GNN performs better in lower dimensions but is surpassed by DAG-WGAN
when the number of variables in the observations is higher. Moreover, the continuous
data experiments demonstrate that the method scales better than its counterparts,
providing a significant advantage. In the case of the Post-Nonlinear Model (PNL),
DAG-WGAN outperforms DAG-GNN in all experiments, although the quality of the
results is generally lower than those obtained with ANM. The results from Tables 3.4
and 3.5 reveal two important findings: 1) the architecture of DAG-GNN is not suitable
for recovering causal structures when PNL is assumed, and 2) adversarial training is
beneficial for discovering causality from data generated using PNL.

The outcomes for categorical data also strongly favor DAG-WGAN. The informa-
tion presented in Table 3.6 demonstrates that DAG-GNN is less effective than the
proposed algorithm in four out of five instances. Specifically, DAG-WGAN yields su-
perior results when applied to the Sachs, Child, Alarm, and Pathfinder datasets, and
only slightly worse results than DAG-GNN on Hailfinder. These benchmark experi-
ments offer empirical support for the use of adversarial causal structure learning with
discrete data.

Up to this point, the discussion has focused primarily on the ability of DAG-WGAN
to learn causal structures. However, the results obtained from the data integrity ex-
periment indicate that the generated data samples produced by the proposed model
are also of high quality. Figure 3.2 illustrates the superior quality of the samples gen-
erated by DAG-WGAN in terms of their dimensions, compared to those generated
by CorGAN, medGAN, and DBM. Furthermore, the completeness study demonstrates

that the model is capable of synthesizing high-quality data regardless of the recovered
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causal structure, due to the basic architecture of the VAE. This has two important
implications: 3) the reconstructed data can be utilized for regression problems and
predictions, even if the model has not learned all the connections between variables,
and 4) the model has the potential to bridge the gap between Artificial Intelligence and
humans - when the recovered graph is relatively accurate (i.e., SHD 0 or close to 0), the
model can be trusted as people can comprehend the reasoning behind its predictions.

In general, the experiments on causal structure learning and data integrity showcase
the capacity of the model to accurately discover causality from various types of data, all
the while upholding a high level of data synthesis. The empirical comparison between
DAG-WGAN and DAG-GNN provides evidence that the Wasserstein distance has a
beneficial effect on both causal discovery and data generation. Furthermore, the results
validate the hypothesis of the author regarding the role of Wasserstein-1 in recovering
causality from observational data.

Despite its innovative integration of generative modeling and causal structure learn-
ing, and the good performance on the Sachs dataset, the DAG-WGAN framework faces
several limitations when applied to real-world data. While the model is designed to
infer directed acyclic graphs that capture underlying causal dependencies, its theoreti-
cal assumptions often fail to align with the complexities of empirical data. In practice,
datasets collected from real-world systems are often noisy, nonlinear, and influenced
by latent confounders, whereas DAG-WGAN assumes that all relevant variables are
observed and that causal mechanisms can be effectively captured through a generator
module. This mismatch can lead to inferred graphs that reflect statistical associations
rather than genuine causal relationships, limiting their interpretability and real-world
applicability.

When scaled to large real-world datasets, additional challenges emerge. The adver-
sarial training process of DAG-WGAN is computationally intensive, and the acyclic-
ity constraint adds further complexity, limiting scalability to high-dimensional data.
This is mainly due to the augmented Lagrangian-based continuous optimization (CO)
method [47]. Lachapelle et al. [36] have shown that the computational complexity of

the CO approach is O(d?), where d represents the number of variables in X. In the
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experiments the author conducted, scalability testing has been performed in the range
of 10, 20, 50 and 100 data variables per dataset with notable decrease in accuracy and
increase in training duration detected as the data variable size increases. This trend
is expected to continue indefinitely as the number of variables exceeds beyond the 100
nodes barrier, making the model unusable with big-data. Moreover, training stability
remains a major issue, as performance is highly sensitive to hyperparameter choices
and optimization dynamics, often resulting in inconsistent outcomes across runs. The
purely data-driven approach of the model, without the integration of domain knowl-
edge or structural priors, also restricts its ability to produce interpretable and plausible
causal structures at scale.

Last but not least, despite achieving high accuracy in causal structure learning and
producing high-quality synthesized data, the performance of DAG-WGAN is limited
by its own architectural constraints. One key limitation is that the proposed approach
heavily relies on including specific Structural Equation Models (SEM) in both the en-
coder and decoder modules. This assumption is unreasonable, as it implies that all
real-world data must be generated using the same equations as those in the autoen-
coder architecture, which is highly unlikely. Consequently, DAG-WGAN can only work
with data generated using the SEM specified in (3.3). Additionally, the completeness
study results indicate that the reconstruction process of DAG-WGAN is overly precise,
resulting in a lack of diversity in the generated data samples.

In order to address the limitations of DAG-WGAN, the author will investigate ef-
ficient structure learning techniques, remove specific SEM from the architecture, and
incorporate Disentangled Representation Learning (DRL) to improve the time complex-
ity, generality of causal structures, and diversity of generated samples. Furthermore,
additional experiments will be conducted to determine whether the proposed method
can help address the hidden confounder problem [246], [247], [218]. The model will also
be extended to handle incomplete and time-series data. Additionally, the use of early
stopping techniques will be explored in future iterations of the model to address cases
where the optimal DAG is discovered too quickly but the augmented Lagrangian fails to

converge. A sensitivity analysis will also be conducted to investigate the performance
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of the model when introduced to slight visitations in hyper-parameters.
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Chapter 4

Efficient Generative Adversarial

DAG-Structure Learning

This chapter begins with the author providing the implementation details of the succes-
sor to the original DAG-WGAN method. The model architecture remains unchanged,
but there are significant improvements in the training algorithm. This follow-up ap-
proach called DAG-WGAN+ incorporates efficient frameworks for DAG discovery and
disentangled representation learning, resulting in a faster and more accurate method
compared to its predecessor. The chapter also explores topics such as data quality,
causal identifiability, and computational complexity in the context of DAG-WGAN—+.
Moreover, the model is capable of handling vector data as well. A series of experiments
are conducted to demonstrate the performance of DAG-WGAN+, showing that it can
compete with the state-of-the-art in the field (see Section 4.3 for more details). Ad-
ditionally, an ablation study is conducted to investigate the impact of changes in the
training algorithm on the model. The publication resulting from this work is referenced

in Section 1.7.
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4.1 An efficient DAG-WGAN formulation using DAG-
NoCurl

Following the significant progress achieved through the use of DAG-NOTEARS [12],
the field of causal structure learning has witnessed a surge in research, resulting in the
development of several extensions to the framework. Various models, such as DAG-
GNN [35], GraN-DAG [36], and DAG-WGAN [75], heavily rely on DAG-NOTEARS
and have demonstrated impressive performance. However, these models encounter
limitations during training due to the DAG-NOTEARS approach, which affects both
their accuracy and the computational time required to obtain results.

Zheng et al. [12] proposed a framework for continuous optimization that incorpo-
rates Maximum Likelihood Estimation (MLE) loss terms for model training and aug-
mented Lagrangian to enforce acyclicity. However, as previously mentioned (Section
2.3.1), in architectures such as VAE and WGAN-GP, MLE-based loss terms suffer from
a severe lack of diversity in reconstructed data (latent collapse) and function simplic-
ity resulting in a highly accurate reconstruction process leading to synthetic samples
overfitting to input data.

The DAG-learning approach of the author called DAG-WGAN+ combines the Ev-
idence Lower BOund (ELBO), Maximum Mean Discrepancy (MMD) and Wasserstein
Distance (WD) loss terms under the famous VAE-GAN architecture [62] to learn data
probability distributions and recover causal relationships from the training samples.
This combination helps to overcome the impact of the MLE limitations inherited by
the ELBO loss. The experimental results obtained using DAG-WGAN+ indicate that
by jointly optimizing the ELBO and MMD, it is possible to encourage mutual informa-
tion between observations and latent variables. As a result, the latent space contains
meaningful features of the input data, leading to enhanced representation quality, data
reconstruction, and causal discovery.

Meanwhile, constraint optimization of DAG learning models using the augmented
Lagrangian has been found to be a costly process, making it impractical to apply causal

discovery methods to real-world data analysis. To address this issue, researchers have
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proposed novel approaches for causality learning that do not involve computationally
expensive procedures. One such approach is DAG-NoCurl [48], which implicitly discov-
ers causal relationships in the DAG search space. However, to recover the correct causal
structures from observations, this model requires an accurate initial estimate. Failing
to meet this requirement may result in inaccurate DAG-learning and impose limitations
on the search space, reducing the potential for learning better DAG structures.

DAG-WGAN+ is developed by incorporating a generative adversarial DAG learn-
ing approach to an improved version of the DAG-NoCurl efficient structure learning
method. Moreover, the model uses Disentangled Representation Learning (DRL) with
the help of Maximum Mean Discrepancy (MMD) [67] and allows additional refine-
ment of the initial graph topology to achieve high accuracy and efficiency without any
limitations on the DAG search space.

The main objective of the research is to evaluate the performance of DAG-WGAN+
against its predecessor, the original DAG-WGAN model [75], to deduce which of the
two methods is superior. Furthermore, the new approach is tested against the current
state-of-the-art in a set of experiments, as discussed in Section 4.2. Ultimately, DAG-

WGAN+ enables the author to make the following contributions:

e The combination of hybrid generative modeling for causal structure recovery with
disentangled representation learning mitigates the limitations of MLE-based loss

terms, resulting in higher-quality DAG-discovery.

e Refactoring the original DAG-NoCurl approach enables further refinement of the
causal structure obtained from the initial estimation in search of DAG that better
fit the input data. Applying this improved version of DAG-NoCurl to generative

adversarial DAG-learning results in more efficient and accurate causal discovery.

4.1.1 Problem Statement

This model is designed to enhance the efficiency of the constrained continuous optimiza-
tion process used in structure learning, enabling faster generation of synthetic samples

that maintain the causal relationships of the input data through the integration of the
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DAG-NoCurl framework. The fundamental concept of this approach can be described
as follows: Given a set of n independent and identically distributed (i.i.d.) observations
X, DAG-WGAN+ is designed to recover a causal graph G4, in an efficient manner,
by learning the components of an equivalent representation A;n; € {Ga,, ., } = D of

init

the adjacency matrix A € D that can implicitly produce a new probability distribution

P(X) to closely match the original distribution P(X). In this chapter, the notation
P(X) = Pg,(X) and P(X) = Pao (X) are considered equivalent - refer to the segment
on the identifiability of the loss function in Section 3.2.2 for further details.

The method is built upon satisfying the set of assumptions outlined in Section
2.1.4. The faithfulness assumption is particularly crucial for the functionality of DAG-
WGAN+ [10], as it enables the learning of Directed Acyclic Graphs (DAG) from data
distributions. Furthermore, the author employs datasets produced with identifiable

structural equation models falling under different Semi-parametric assumption, such as

Additive Noise Models (ANM) and Post-Nonlinear Models (PNL).

4.1.2 Solution Overview

DAG-WGAN+ tackles the DAG-learning challenge by utilizing a hybrid generative
modeling framework that integrates InfoVAE [248] and WGAN-GP [116]. This results
in the optimization of model parameters through a combination of reconstruction, regu-
larization loss terms and generative adversarial training. The process of learning causal
structures using this method takes place within the auto-encoder architecture, which
incorporates an additional learnable parameter A € R%*¢. Moreover, the standard re-
construction loss (ELBO) is enhanced by introducing a mutual information term from
the training of InfoVAE [249]. The objective function based on the maximum likelihood

estimation (MLE) can be expressed as follows:

Rioss(X, X, Z) = —Bq, (zp4((1-AT)Fax)) 108 Po(X[Fo((I — AT)T'F1(2)))]
+ BEx~px)[Dr1(Qs(ZIF4((I — AT)F3(X)))||P(2))] (4.1)

+ nEx~px)lg,x,2)(X, Z)],
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where the latent variable Z is sampled from an implicitly defined variational distribu-
tion Qu(Z|F4((I — AT)F3(X))) modeled by the encoder Enc(X; A; ¢) = Qu(Z|F4((I -
ATYF3(X;¢); A; ¢)) with parameters ¢ and A. The reconstructed data X is obtained
by sampling from Py(X|F2((I —AT)~'F{(Z))), which represents the probability distri-
bution learned by the decoder Dec(Z;0) = Py(X|Fa((I — AT)"1F1(Z;6);0)) with the
parameters 6. The multi-layer perceptrons {Fs,F4} and {F1,Fs} are utilized in Enc
and Dec respectively. The term I, (x 7) (X, Z) stands for the mutual information loss.
Hyperparameters 5 and 1 are employed to adjust the impact of the regularization terms
(specifically the KL-Divergence and the mutual information term) on the reconstruc-
tion loss. The objective function in (4.1) is also subject to an unconstrained continuous
optimization with the acyclicity constraint from [35] h(A) = tr[(I + A o A)¥] —d = 0.

The author incorporates the concept of efficient structure learning by combining
generative adversarial DAG-recovery with the DAG-NoCurl framework [48]. Specifi-
cally, the model relies on discovering the topology of the variables in X by computing a
potential function ¢ and then projecting (non)cyclical structures onto its gradient Vi),
thus ensuring that the resulting output is a DAG; as detailed in Section 2.4.2. Within
the DAG-WGAN+ framework, both aspects of the DAG structure (the topology and
the strength of connections between variables) are jointly optimized, facilitating causal
discovery across a broader DAG search space. This approach leads to faster and more
precise causal structure learning in comparison to existing methods - for further details,

the reader is directed to the experimental findings in Section 4.2.

4.1.3 Training algorithm improvements

In this section, the author discusses the changes made to the training algorithm of the
initial DAG-WGAN model. Disentangled representation learning details are disclosed,
along with the incorporation of an enhanced version of the DAG-NoCurl framework.
Disentangled representation learning

The utilization of Disentangled Representation Learning (DRL) for causal discovery

stems from a recent investigation [249] carried out using the default VAE configura-
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tion. The study findings highlight the limitations of standard Variational Auto-Encoder
components. Specifically, the design of the VAE often struggles to capture fine-grained
details and variations in the input data, resulting in a noisy and uninterpretable em-
bedding space. As a result, latent variables Z sampled from such a space may fail
to capture meaningful representations, leading to inaccuracies in data reconstruction.
Furthermore, as noted in Section 2.3.1, the drawbacks of the ELBO loss function can
result in erroneous modeling of the approximate posterior Q(Z|X). This issue becomes
more apparent when the encoder is exposed to complex or high-dimensional data, which
ultimately causes the model to overfit.

DAG-WGAN+ relies on a sophisticated training algorithm that combines the ELBO
regularized by DRL with generative adversarial training to extract causality from ob-
servations. Specifically, the approach aims to approximate the distribution Pg , (X) to
PG(A (X) as shown in (3.11). This strategy prevents the model from overfitting by mod-
eling the training distribution with X instead of X, thus discouraging DAG-WGAN+
from closely matching the input data and focusing on discovering underlying patterns
or relationships.

Minimizing (4.1) requires defining the reconstructed data distribution Pg, (X).
However, as indicated in (3.11), computing Pg, (X) involves the weighted adjacency
matrix A, which is one of the parameters in the model. This implies that modeling

Pg , (X) depends on the optimization of A. As a result, the probability distribution

Pg , (X) and the weighted adjacency matrix A are jointly learned through both recon-

struction and adversarial training performed using the following objective function:

Rioss(X, X, Z) = =Bz 0, (217, ((1-AT)Fs (x))) 108 Po(X[Fo((I — AT)T'F1(2)))]
+ BEx~p(x) [Dr1(Qu(Z[Fa((I — AT)F3(X)))||P(2))]
+ nEx~px)Ig,x,2)(X, Z)] (42)
Dioss = Exp, [D(X)] = Exp, [D(X)] + AEg s [([[VD(X) — 1[])?]

Gioss = ~Ezq,(z|Fa((1-AT)F3(x))) [P (Dec(Z))]
st tr[(I+aAoA)] —d=0,
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where Rjoss, Dioss and Gy,ss are the reconstruction, discriminator and generator losses,

respectively. P, and P, represent P(X) and P(X) and thus are equivalent to Pag (X)

and Pg, (X) as well. Importantly, the only difference in the objective function between
DAG-WGAN+ (4.2) and DAG-WGAN (3.10) is the inclusion of the mutual information
term. The expanded form of (4.2) reveals the final loss function used to train DAG-

WGAN-+:

A% 0%, 9%, w" = argming 4 , max,Lpag-waan+ (A, 0, ¢,w)
Lpac-waan+ = —Ez g, (z|F.((1-AT)F;s(x)))[log P(X[Z;0)]
+(1 = B)Ex~px)[Drr(Q(Z|X; A, 9)||P(Z))]

+(v+ B8 -1)DrL(Q(Z; A, 9)[|P(Z))

FEX~P(X),2~Q0 (Z|F4(I-AT)F3(X))) [P(X5w) — D(Dec(Z;0); w)]
+AE% . p(i) [(IVx D(X)][2 — 1)?]

+E(tr[(I + aA o A)Y] — d)

such that

o _
E 2 q, (2 F4((1-AT)Fs(x)) 108 P(X]Z;0)] ~ —3 [4()(0(’;82*)) + log U(X)Q} if X

is continuous
E 70, (zFa((1-AT)Fs 00 log P(X| Z;0)] & = Y1 (X log(X,)) if X is discrete

logo(2)? — (u(2)* — 0(2)?) + 1],
(4.3)

N | —

Ex~px)[PrL(Q(Z]X; A, ¢)||P(Z))] = —

where the following set of parameters {A, ¢}, {#} and {w} are used to optimize the
encoder Enc(X, A, ¢), the decoder Dec(Z,0) and the discriminator D(X,X,w). The
1%t term represents the reconstruction loss. The 4* and 5" terms are responsible for
computing the Wasserstein-1 metric and its gradient penalty, whereas the 27¢ and 3¢
terms introduce regularization to the loss function. In both of the latter terms, P(Z)
denotes a Gaussian prior. The distance between P(Z) and both Q(Z|X; A, ¢) and
Q(Z) is computed and minimized using KL-Divergence (KLD) and Maximum Mean
Discrepancy (MMD) [250]; [112]. The final term [35] is utilized to ensure the acyclicity
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of the recovered graph. Furthermore, by incorporating D(X,X,w) and employing
the min-max optimization described in (4.3), the refinement of the reconstruction loss

4th and 5" terms are

is facilitated through adversarial training. Consequently, the
involved in modeling the parameters of the discriminator, while the encoder and decoder

are trained using the 1, 2" 37¢ and 6" terms.

Proposition 4.1.1. Given some input X and latent variables Z, for any fixed value of
the mutual information term Ig, (x z) (X,72), Lpac-waan+ reaches global optimum
when the decoder distribution Py(X|Fo((I — AT)"'F{(Z))) matches the observational
data distribution P(X).

Proof. The proof of proposition 4.1.1 is available in Appendix A.3. O

Causal structure identifiability is another crucial aspect of DAG-WGAN+ - see
Definition 1. To guarantee that the DAG recovered are identifiable, the author relies
on the following assumptions: 1) employing an identifiable structural equation model
to generate the observational data samples and 2) applying an Additive Noise Model
(ANM) [240] as the structural causal model in Dec under the semi-parametric assump-

tion.

Proposition 4.1.2. Given a generated data distribution Pg, (X), defined using a
causal graph G a belonging to the set of identifiable causal graphs Sg,, and the true
underlying causal structure of the input data denoted as G%. Assuming that G% is
also a member of Sg,, then a learned causal graph G A contains the same structure as

G9 iff. Pg,(X) matches the original data distribution PGoA(X).
Proof. The proof of proposition 4.1.2 is available in Appendix A.4. O

As stated in the beginning of this chapter, there is no architectural distinction
between DAG-WGAN and its enhanced iteration. Therefore, the structure of DAG-
WGAN+ has already been proven to be identifiable; for further information, refer to
Section 3.2.2. Modifications are solely present in the loss function of the VAE module,

where an extra mutual information component, represented by MMD, is incorporated
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into the ELBO. Given that ELBO is identifiable, the focus of the identifiability assess-
ment of DAG-WGAN+ is the MMD loss term.

The role of MMD in DAG-WGAN+ is consistent with Disentangled Representation
Learning in other VAE variants, influencing the training procedure by maximizing
the mutual information between observations X and their latent representation Z.
This leads to the ability to discover latent data features that may be concealed by the
complexity of the input data, facilitating the identification of hidden confounders within
X. In the DAG-WGAN+ framework, causal insufficiency is not assumed; rather, MMD
enhances the quality of Z, subsequently improving the performance of the decoder, thus
explaining the superior outcomes of DAG-WGAN+ over its predecessor. As the mutual
information term is applied solely to the encoder output, MMD does not directly impact
the causal graph faithful to the probability distribution of the reconstructed data. As
a result, causal structure learning with DAG-WGAN+ yields identifiable outcomes due
to the VAE architecture and other loss terms employed during training.

It is important to note that the identifiability of causal structures is also dependent
on the assumptions made during their learning process. Among the assumptions used
through this work (see Section 2.1.4), faithfulness plays a crucial role, as it ensures
that the observed statistical independencies accurately describe the underlying causal
relationships in data. When this assumption is violated, the mapping between depen-
dencies and causal structure breaks down, directly undermining causal identifiability.
In such cases, different causal graphs can generate the same observed independencies,
making it impossible to uniquely recover the true causal structure from observational
datasets alone. This violation can affect DAG-WGAN+, which relies on faithfulness to
discover accurate causal graphs: genuine causal relationships may be masked, spurious
dependencies may appear, and the learned structure may no longer represent the true
causal mechanisms. Under such circumstances, even if the model fits the observed data
distribution well, its causal interpretations and counterfactual reasoning become unre-
liable. To mitigate these issues, robustness measures such as incorporating sparsity or
regularization constraints, applying stability-based or ensemble methods, introducing

domain knowledge through soft constraints, and leveraging interventional data or causal
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invariance principles can help recover more stable and interpretable causal structures

despite potential violations of faithfulness.

Efficient causal structure learning with DAG-NoCurl

Currently, a significant proportion of machine learning models used to recover causality
from data are trained through constrained continuous optimization methods employing
the Augmented Lagrangian technique [47]. Although this approach has been shown to
produce accurate results for causal structure learning, its performance comes at the
expense of computational efficiency and substantial time consumption [36]. A recent
advancement that addresses the constraints of Augmented Lagrangian optimization is
the DAG-NoCurl framework [48], which directly models causal structures within the
DAG search space. The framework is heavily dependent on an equivalent weighted
adjacency matrix representation A = W o ReLU (V1)) - as outlined in Theorem 2.1
of [48], where W € R%*9 represents an upper triangular matrix, o denotes the Hadamard
product [239], ReLU [251] signifies the rectified linear unit activation function, v is a
potential function, and V symbolizes its gradient. Efficiency is achieved by computing
an initial estimate A, to derive the potential function ¢, which subsequently maps

A, to acausal graph Ga, ,, € {Ga,,.,,} = D. Following this step, further enhancement

init
of W is carried out with a fixed value for 1. However, a drawback of this model is
that the optimization of W solely impacts the edge weights and not the topology of the
graph represented by A, leading to a restricted search space for DAG. Consequently,
while the DAG-NoCurl approach guarantees acyclicity, it does not ensure the accuracy
of the output graph.

The proposed model integrates the DAG-NoCurl framework with a generative ad-
versarial DAG-Structure learning approach. Initially, the estimation A, is obtained
through an unconstrained augmented Lagrangian optimization of the loss function in
(4.3) while adhering to the acyclicity constraint h(A) = tr[(I + aA o A)™] —m = 0,
with a fixed Lagrange multiplier value of 10. Subsequently, A, is projected into the

equivalent graph space {Ga. .,} =D by determining a value for the potential function

init

¥ to solve Ay = W o ReLU (V7). In the following refinement phase, the author opts
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not to constrain the value of v, but rather improves the projected causal graph Ga,,,
by solving (4.3) under the acyclicity constraint h(A) = 0. This refinement step elimi-
nates the constraints imposed on A;,;+ by the fixed value of v, enabling the recovery
of DAG structures from a wider graph search space. Notably, the Lagrange multiplier
is not updated during the aforementioned steps, which significantly reduces compu-
tational complexity. Additionally, the original DAG-NoCurl algorithm yields W after
the refinement phase. As W is not a DAG, an additional step A = W o ReLU (V)
is included to derive the final DAG. In contrast, DAG-WGAN+ directly computes a
weighted adjacency matrix A by optimizing both W and 1, eliminating the need for
post-processing steps to obtain the final DAG structure. The detailed sequence of steps

is provided in Algorithm 1.

Remark. The same additional post-processing computation step from the DAG-NoCurl
framework can be included in the model, however, doing so significantly reduces accu-

racy. More information on this matter is found in the Ablation Study - 4.2.6.

Algorithm 1 Efficient adversarial structure learning with DAG-NoCurl

Step 1: Compute an initial prediction A, by optimizing (4.3) with a
fixed Lagrangian multiplier for the acyclic constraint.

Step 2:  Use A, to compute the potential function ¢ =
—LtVT(05 * (C(Apre) — C(Apre)T)), where LT is the Moore-
Penrose pseudo-inverse of the graph Laplacian matrix L, V7 is the
transpose of the gradient matrix V, C(A,,.) is the connection matrix
of Apre — see [48] for more details.

Step 3: Compute the W matrix by converting each non-zero entry
(indexed by in row ¢ and column j, ¥ (j) > 1(i)) of Ap.e to the entry
of W by scaling it with a factor Ay.¢(7,7)/(¥(5) — (7)) - see Equation
(10) in the DAG-NoCurl [48] paper.

Step 4: Compute the initial weighted adjacency matrix
Ainit =Wo ReLU(V¢)

Step 5: Update A by optimising (4.3) with the initialisation of A =
Ainit

Furthermore, the author employs thresholding at the end of Steps 1 and 5 to reduce

93



Chapter 4. Efficient Generative Adversarial DAG-Structure Learning

the number of false discoveries. Consistent with the approach introduced by [12], a
threshold value of 0.3 is chosen. Although different threshold values could be utilized,
practical experiments conducted by the author indicated that the value aligned with [12]

and several other models such as [36], [38], [75] yields the most consistent results.

4.1.4 Computational Complexity

The development of complex functions or algorithms is often accompanied by discus-
sions of their resource utilization. In fact, a common question regarding any software
is ” How long does it take to execute this program?”. However, providing a precise an-
swer to this question is challenging due to variables like hardware quality, concurrent
program count, programming language, etc. Instead, in the area of computer science,
a simpler question is posed: ” How does the execution time of a piece of code change as
the input size grows?”. This question is valuable as the time needed to run an algo-
rithm or function varies based on input size. Computer scientists refer to this concept
as computational complexity [252], [253], which delves into the resources needed to run
computer programs, with a primary focus on computational time (time complexity)
and memory requirements (space complexity).

In this section, a computational analysis is performed to investigate how variations
in input dimensionality and the incorporation of the DAG-NoCurl framework impact
the runtime of DAG-WGAN+. The focus of the investigation is on DAG-NoCurl,
outlined in Algorithm 1, which comprises a total of five steps. The initial and final steps
involve optimization, while the intermediary steps are crucial for the functionality of
the theoretical framework. To assess the time complexity of DAG-WGAN+, the author
calculates the total resources needed to execute each step and adds them together. The
space complexity is equivalent to that of NOTEARS and its related extensions (such
as DAG-GNN), which is O(d).

Optimization in Steps 1 and 5 uses stochastic gradient descent (SGD) [228]. The
computational complexity of SGD is computed by taking into account the number of
iterations k, the data batch size n, and the number of variables in the input data d.

In a typical scenario, the time complexity of SGD is O(knd). However, in the case of
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DAG-WGAN+ the hyperparameters k and n remain constant throughout the process,
thus the complexity of Steps 1 and 5 simplifies to O(d).

Furthermore, Steps 2, 3, and 4 entail individual computations that are performed
based on specific equations and modifications of matrix values, as illustrated in Al-
gorithm 1. Each of these steps comprises a series of instructions executed once per
run. Step 2 calculates ¥ by applying the formula —LTV” (0.5* (C(Apre) — C(Apre)T)),
where all components are fixed except for the dimensions of A, € R?*4_ As this step
involves matrix subtraction, its time complexity is O(d?). Step 3 involves a function
that encompasses a sequence of matrix operations involving subtraction and scaling.
Similarly to the previous step, the runtime of Step 3 is directly proportional to the size
of Apre € R4 resulting in a computational complexity of O(d?). Step 4 calculates
Apni based on W o ReLU(V4)), where all parameters are fixed except for W € Rx¢,
The symbol o denotes the Hadamard product of matrices, which is a variant of matrix
multiplication. As a result, the computational complexity of Step 4 is also O(d?). The
time complexity of the thresholding procedures at the conclusion of Steps 1 and 5 also
increases quadratically as their respective inputs grow in size. Given that Steps 1 and
5 exhibit linear complexity while Steps 2, 3, and 4 demonstrate quadratic complexity,
the time complexity of DAG-WGAN+ is O(2d + 3d?), which simplifies to O(d + d?).
Since computational complexity is estimated based on the term that is most rapidly
growing, the time complexity of DAG-WGAN+ is O(d?), which is lower than that of
the original DAG-WGAN model, O(d?), therefore proving that the replacement of the
augmented Lagrangian with DAG-NoCurl in the training algorithm of DAG-WGAN+

leads to more efficient causal structure learning.

4.2 Experiments

In this section, the author presents a set of experiments that demonstrate how their
method outperforms current best practices. Additionally, comparison is made between
DAG-WGAN+ and its predecessor, as they share the same structure. This allows
for an examination of how the MMD-based mutual information term from [67] and

the efficient structure learning with DAG-NoCurl by [48] may enhance the process of
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generative adversarial DAG learning.

Three sets of experiments have been conducted utilizing continuous, discrete, and
vector data formats on both synthetic and benchmark datasets. The accuracy of
the recovered DAG structures is evaluated through the Structural Hamming Distance
(SHD) [105]. Furthermore, the computational time of each model is documented and
the data reconstruction performance of DAG-WGAN+ is evaluated. The results of all

these experiments are discussed in Section 4.3.

4.2.1 Continuous experiments

In order to assess the accuracy of a causal graph G identified from observational data
X, it is essential to compare it to the true underlying graph GOA of X. To this end,
to ensure fair comparisons, experiments involve the use of synthetic datasets (with
their respective ground truth graphs) that are generated from the same structural
equations as those utilized in the experiments of DAG-GNN [35], DAG-NoCurl [48],
DAG-WGAN [75] and GraN-DAG [36].

The process of generating synthetic data follows the methodology outlined in the
original DAG-WGAN approach. Initially, an Erdos-Renyi (ER) graph [243] with an
expected node degree of 3 is generated. Subsequently, a series of Structural Equation
Models (SEM) are employed to generate both linear and non-linear data observations.
Specifically, the equations utilized include: linear SEM (X = AT X 4 Z), non-linear-1
SEM (X = ATcos(X +1)+Z2), non-linear-2 SEM (X = 2sin(AT (X +0.5%1))+ AT (X +
0.5 % 1) + Z), post-non-linear-1 SEM (X = sinh(ATcos(X + 1) + Z)), and post-non-
linear-2 SEM (X = tanh(2sin(AT (X +0.5%1))+ AT (X +0.5%1)+ Z)). Further details
regarding the experimental setup for continuous data, such as graph dimensions, sample
sizes, and repetitions per model, are provided in Section 3.2.3 under the Continuous
Data segment. The outcomes of the investigation are presented in Tables 4.1, 4.2, 4.3,

4.4, and 4.5.
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Table 4.1: Efficient Generative Adversarial DAG Learning from Linear Scalar Data

Samples
SHD (5000 linear samples)

Model d=10 d=20 d=230 d=50 d = 100
DAG-NOTEARS 86 774 3.8+ 82 84 +9.1 266+ 283 102.6 524
DAG-NoCurl 74+746 3.2+ 7.6 7+ 8.2 24.2 £ 254  97.1 £+ 48.6
DAG-NOTEARS-MLP 24 + 4.2 2.8 £ 5.1 56 £5.8 174 +£15.3 84.4 4+ 27.2
DAG-GNN 4 + 6.47 2.6 £ 8.8 4.4 4+ 94 21 £21.6 77.8 &+ 33.4

GAE 3.5 t44 2.5+ 5.7 4+£5.1 183 £11.2 64.9 £ 19.8
GraN-DAG 1+5.1 1.54+69 384735 16.8 4+ 13.5 53.7 £ 21.7
VI-DP-DAG 0.6 +4.3 1.4 +4.7 35+42 1344+ 10.8 42.8 £+ 18.3

DAG-WGAN 3+39 24 + 2.1 3.2+ 25 9.6 + 8.26 24 + 16.4
DAG-WGAN+ 1.3+ 3.1 184+15 28 4+1.8 7.24+7.6 16.8 + 11.2

Table 4.2: Efficient Generative Adversarial DAG Learning from Non-Linear-1 Scalar

Data Samples

SHD (5000 non-linear-1 samples)

Model d=10 d=20 d = 30 d =50 d = 100
DAG-NOTEARS 114 £ 46 198 +72 41 +96 534 + 263 107.8 + 435
DAG-NoCurl 108 + 44 17.3+68 27+83  51.6+21 1056 + 40.8
DAG-NOTEARS-MLP 84 + 3.3 156452 252+ 64 427+ 169 91.3 + 27.3
DAG-GNN 88+4 124461 276+7.7 4434197 84+ 338
GAE 8+32 11.7+42 258+49 406+ 134 815+ 20.2
GraN-DAG 46+38 62447 23+58 385+153 779+ 22.6
VI-DP-DAG 3.2+2.9 48+4 21.7+45 3434126 70.6+ 189
DAG-WGAN 74+24 106+36 204+43 3144112 654+ 178
DAG-WGAN-+ 56+19 7.7+23 16.6+ 3.1 22.2+ 8.4 46.8 + 13.1

Table 4.3: Efficient Generative Adversarial DAG Learning from Non-Linear-2 Scalar

Data Samples

SHD (5000 non-linear-2 samples)

Model d=10 d=20 d=30 d =50 d = 100
DAG-NOTEARS 91+ 44 238+ 76 366+ 10 41.8+ 258 121.8 + 445
DAG-NoCurl 84+42 194+72 28+86 3754205 113.2+ 41.8
DAG-NOTEARS-MLP 52+ 3.1 123 +56 234+ 6.7 22.6+ 164 104.2 + 283
DAG-GNN 32+38 54465 143481 162+ 192 90.8 + 34.8
GAE 20+25 46441 132452 153 +124 76.1 + 21.9
GraN-DAG 18436 32451 124+62 147+ 148 556 + 23.6
VI-DP-DAG 1+24 26+38 115+49 129+ 11.1 37.2 + 207
DAG-WGAN 26+22 36433 104+46 12+107 22.6+ 198
DAG-WGAN4+ 22417 34427 6.4+3.4 11.2+79 19.3 + 12.2
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Table 4.4: Efficient Generative Adversarial DAG Learning from Post-Non-Linear-1
Scalar Data Samples

SHD (5000 post-non-linear-1 samples)

Model
d=10 d=20 d=30 d=50 d=100
DAG-GNN 112+ 75 18.6 £ 8 36.7 2114 60.1 =288 114.3 4 48.2
GAE 103 £ 56 16.6 £6.2 33.4+98 53.2 £ 22.7 97.8 &+ 35.2

DAG-WGAN 87+33 134+£45 26573 41.3+162 856 £ 27.8
DAG-WGAN+ 6.8 £2.2 10.7 £3.4 21.7+6.1 30.6 £12.5 63.4 £ 19.7

Table 4.5: Efficient Generative Adversarial DAG Learning from Post-Non-Linear-2
Scalar Data Samples

SHD (5000 post-non-linear-2 samples)

Model
d=10 d=20 d=30 d=50 d=100
DAG-GNN 93 +£7.8 142 +£10.7 25.74+13.3 348+ 285 1254 4+ 46.4
GAE 81+55 128+ 86 223+104 30 + 23.7 103.9 + 36.1

DAG-WGAN 6. £47 106 £53 16.8=£82 241+£17.8 452+ 325
DAG-WGAN+ 4+£34 7.9 +48 12.7+ 6.6 20.4 = 12.1 38.6 £ 26.7

4.2.2 Vector experiments

Vector experiments are also carried out using synthetic continuous data, where the sizes
of the graph and the quantity of samples remain the same. The data generation process
is the same as with the one described in Section 4.2.1. Leveraging the architecture of
the DAG-GNN [35] framework, the model can naturally handle vector data by expand-
ing the column dimension to more than 1 for each variable in the observations. In
this research, the column dimension is specified as 5, enabling direct comparison with
DAG-GNN [35], GAE [39], and DAG-WGAN [75], which were the only three models
recognized for managing vector data at the time of the experiment. The outcomes of

the study are presented in Tables 4.6, 4.7, 4.8, 4.9, and 4.10.

Table 4.6: Efficient Generative Adversarial DAG Learning from Linear Vector Data
Samples

SHD (5000 linear samples)

Model d=10 d=20 d = 30 d =50 d = 100
DAG-GNN 36+ 24 102+88 164+ 153 322 + 247 658 + 44.1
CAE 35423 96+81 1424134 283+ 225  61.2 & 40.6

DAG-WGAN 33+21 924+£74 128+11.2 2474211 59.8 £ 38.3
DAG-WGAN+ 3 +1.8 86 £6 10.5+94 21.8+15.3 51.3 £ 30.2
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Table 4.7: Efficient Generative Adversarial DAG Learning from Non-Linear-1 Vector
Data Samples

SHD (5000 non-linear-1 samples)

Model

d=10 d =20 d =30 d = 50 d = 100
DAG-GNN 58+46 11.24+98 23.6+184 4284329 952 £ 56.3
GAE 42+38 104+73 225+15 41.3 £ 29.8 90 £ 49.5

DAG-WGAN 3.8 £22 84+6 192 £12.7 402 +274 864 £ 432
DAG-WGAN+ 3.2+ 1.7 7.6 +£52 154 +89 357+ 18.7 77.6 £ 31.8

Table 4.8: Efficient Generative Adversarial DAG Learning from Non-Linear-2 Vector
Data Samples

SHD (5000 non-linear-2 samples)

Model d=10 d=20 d =30 d =50 d = 100
DAG-GNN 4128 72+48 156+119 39+304 924 +51.7
GAE 36+24 68+42 148+102 365+ 283 88.3 + 46.9

DAG-WGAN 3.2+2 64+36 132+85 333+262 85.8+424
DAG-WGAN+ 2.8+ 1.6 5.1 £2.7 11.7 +£6.3 28.4 £ 16.7 74.3 £+ 29.6

Table 4.9: Efficient Generative Adversarial DAG Learning from Post-Non-Linear Vector
Data Samples 1

SHD (5000 post-non-linear-1 samples)

Model
d=10 d=20 d=30 d=50 d=100
DAG-GNN 92+6.9 168+ 11.2 33.7+21.5 66.3 + 43.7 125.2 + 71.1
GAE 75+5 13.4 £ 8.3 28.6 + 18.4 58.4 + 39.8 111.7 + 58.2

DAG-WGAN 59+31 102+66 233+16.7 50.7+ 31.3 98.1 + 49.5
DAG-WGAN+ 4.4 + 2.5 9+ 54 19.5 +£ 10.6 41.7 + 24.2 87.3 + 39.7

Table 4.10: Efficient Generative Adversarial DAG Learning from Post-Non-Linear Vec-
tor Data Samples 2

SHD (5000 post-non-linear-2 samples)

Model
d=10 d=20 d=30 d=50 d=100
DAG-GNN 89 +4.1 156 82 274+ 19.2 63.8 £ 41.6 118.7 + 66.7
GAE 6.7+ 38 12.7+76 243+ 164 51.2+38.5 106.4 + 57.2

DAG-WGAN 54+31 98£59 19.7+125 431+£328 983 £48.6
DAG-WGAN+ 3.7+24 7.3 +41 154 + 9.8 34.5+ 22.6 81.6 + 37.5

4.2.3 Benchmark data experiments

The benchmark data experiments involve the use of datasets such as Child, Alarm,
Hailfinder, and Pathfinder, along with their corresponding ground truths sourced from

the Bayesian Network Repository https://www.bnlearn.com/bnrepository. These
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datasets are acquired specifically for scalability assessment and to guarantee a fair
comparison with the state-of-the-art. Furthermore, this experimental configuration
allows for direct assessment of the influence of MMD by comparing this approach with

DAG-WGAN [75]. The results are detailed in Table 4.11.

Table 4.11: Efficient Generative Adversarial DAG Learning with Benchmark Data
Samples

Dataset Nodes SHD
DAG-WGAN DAG-GNN DAG-WGAN-+
Child 20 20 30 19
Alarm 37 36 55 35
Hailfinder 56 73 71 66
Pathfinder 109 196 218 194

4.2.4 Real data experiments

In order to establish the practical applicability of their algorithm in a real-world sce-
nario, the author showcases the effectiveness of DAG-WGAN+ using a dataset re-
lated to genetic protein and phospholipids [21]. This dataset called Sachs, obtained
from https://www.bnlearn.com/bnrepository/, comprises 11 variables and approx-
imately 7450 samples. The results of the conducted experiments can be found in Table
4.12.

Table 4.12: Real Data Experiments conducted on the Sachs Dataset

Sachs Datatset

Model
SHD / Time Estimation
DAG-WGAN 17 (00:15:33)
DAG-GNN 25 (00:13:57)

GAE 20 (00:09:18)
GraN-DAG 17 (00:12:28)
VI-DP-DAG 16 (00:04:35)

DAG-WGAN+ 15 (00:03:09)
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4.2.5 Time-wise performance

The author recorded the time needed to achieve the accuracy of the discovered graphs
reported in the preceding sections. To achieve this, the author used the ’time’ library in
Python. Specifically, the code for DAG-WGAN+ was encapsulated between two lines:
1) 't = time.time()’, which records the current time in seconds and is used as a starting
timestamp; and 2) ’ print(” Programm finished in: ”+ str(time.strftime(” %H:%M:%S”,

', which calculates how much time has passed since

time.gmtime(time.time() - t))))
the first timestamp and converts the elapsed time into an easily readable string-based
time structure in hours, minutes, and seconds. There is no notable difference in the
time required to learn causal structures in datasets with lower dimensions. However, a
substantial discrepancy is evident in higher dimensions, where DAG-WGAN+ achieves
comparable results in significantly less time - less than thirty minutes compared to one
or a few hours for all the other methods. It is important to note that these results
are not definitive but only indicative of good performance as they are produced using
the following hardware: 13th Gen Intel(R) Core(TM) i7-13700H (2.40 GHz), 32.0 GB
RAM, NVIDIA GeForce RTX 4060 GPU with 8 GB VRAM. As a result, by relying on

supercomputers or higher-quality hardware one can reduce these times even further.

The outcomes are provided in Tables 4.13 - 4.22.
Table 4.13: Time Duration Comparison with Linear Vector Data Samples

Time Duration (5000 linear samples)

Model d=10 d=20 d=30 d=50 d=100
DAG-GNN 00:25:06  00:39:40  01:00:27  01:29:15 _ 02:19:29
CGAE 00:18:39  00:35:21  00:49:37  01:01:35  01:49:38

DAG-WGAN 00:27:46  00:44:56  01:21:27  01:53:46  03:11:39
DAG-WGAN+ 00:16:10 00:16:21 00:16:29 00:17:18 00:22:07

Table 4.14: Time Duration Comparison with Non-Linear-1 Vector Data Samples

Time Duration (5000 non-linear-1 samples)

Model d=10 d=20 d=30 d=50 d=100
DAG-CNN 00:28:39  00:38:50  00:57:19  01:20:32  02:23:22
GAE 00:19:24 00:33:56 00:51:13 01:09:47 01:52:31

DAG-WGAN 00:32:29  00:45:01  01:25:38  01:58:33  03:05:23
DAG-WGAN+ 00:16:29 00:16:48 00:16:53 00:17:32 00:21:41
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Table 4.15: Time Duration Comparison with Non-Linear-2 Vector Data Samples

Time Duration (5000 non-linear-2 samples)

Model d=10 d=20 d=30 d=50 d=100
DAG-GNN 00:24:28  00:35:00  00:55:24  01:24:59  02:25:14
CGAE 00:17:26  00:30:55  00:47:13  01:11:21  01:55:24

DAG-WGAN 00:31:14  00:43:29  01:22:41  01:49:07  02:56:19
DAG-WGAN+ 00:15:55 00:16:08 00:16:16 00:17:20 00:22:53

Table 4.16: Time Duration Comparison with Post-Non-Linear-1 Vector Data Samples

Time Duration (5000 non-linear-1 samples)

Model d=10 d=20 d=30 d=50 d=100
DAG-GNN 00:28:59  00:39:18  00:58:55  01:21:54  02:26:17
CGAE 00:19:45  00:34:39  00:52:49  01:11:09  01:54:26

DAG-WGAN 00:32:59  00:45:44  01:27:14  01:59:55  03:07:19
DAG-WGAN+ 00:16:49 00:17:31 00:18:29 00:18:54 00:23:36

Table 4.17: Time Duration Comparison with Post-Non-Linear-2 Vector Data Samples

Time Duration (5000 non-linear-2 samples)

Model d=10 d=20 d=30 d=50 d=100
DAG-GNN 00:24:50  00:35:43  00:57:03  01:26:21  02:27:09
GAE 00:17:48  00:31:38  00:48:49  01:12:43  01:57:19

DAG-WGAN 00:31:36  00:44:12  01:24:17  01:50:29  02:58:14
DAG-WGAN+ 00:16:17 00:16:51 00:17:53 00:18:42 00:24:48

Table 4.18: Time Duration Comparison with Linear Scalar Data Samples

Time Duration (5000 linear samples)

Model d=10 d=20 d=30 d=50 d=100
DAG-NOTEARS-MLP  00:16:02  00:35:21  00:49:48  05:38:57  10:25:19
DAG-GNN 00:23:20  00:32:15  01:01:15  01:16:27  03:03:06
GAE 00:18:36  00:23:45  00:37:41  00:59:11  02:31:29
GraN-DAG 00:25:12 00:37:41 01:39:38 02:11:29 04:09:56
DAG-WCAN 01:45:42  01:45:34  02:25:11  03:24:36  5:06:34
VI-DP-DAG 00:17:22  00:20:51  00:23:17  00:27:33  00:31:16

DAG-WGAN+ 00:14:32 00:15:35 00:16:58 00:17:30 00:19:25

Table 4.19: Time Duration Comparison with Non-Linear-1 Scalar Data Samples

Time Duration (5000 non-linear-1 samples)

Model d=10 d=20 d=30 d=50 d=100
DAG-NOTEARS-MLP  00:17:56 00:36:21 00:44:31 05:53:36 10:48:54
DAG-GNN 00:22:50  00:35:54  00:51:12 01:18:40  02:56:54
GAE 00:18:53 00:32:17 00:42:34 01:06:22 02:24:39
GraN-DAG 00:24:18 00:39:23 01:44:15 02:39:41 04:16:26
DAG-WGAN 01:54:12 02:19:23 02:32:43 03:51:10 5:22:34
VI-DP-DAG 00:16:53 00:21:48 00:24:47 00:28:11 00:32:15

DAG-WGAN+ 00:15:29 00:16:05 00:17:33 00:18:08 00:19:17
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Table 4.20: Time Duration Comparison with Non-Linear-2 Scalar Data Samples

Time Duration (5000 non-linear-2 samples)
d=10 d =20 d =30 d=50 d=100
DAG-NOTEARS-MLP  00:34:08  01:57:28  04:03:41  07:54:48  09:54:10

Model

DAG-GNN 00:24:16 00:29:44 00:49:28 01:21:32 02:25:27
GAE 00:17:44  00:25:46  00:40:57  01:03:42  01:57:39
GraN-DAG 00:29:12 00:42:37  01:20:30  01:44:35 02:41:13
DAG-WGAN 01:37:00 02:25:12 02:44:34 03:50:04 04:18:29
VI-DP-DAG 00:15:33 00:20:14 00:25:03 00:27:43 00:31:22

DAG-WGAN+ 00:14:26 00:15:55 00:17:16 00:19:04 00:20:04

Table 4.21: Time Duration Comparison with Post-Non-Linear-1 Scalar Data Samples

Time Duration (5000 non-linear-1 samples)

Model d=10 d=20 d=30 d=50 d=100
DAG-GNN 00:23:52 00:35:57 00:54:10 01:18:40 02:58:49
CGAE 00:19:15  00:33:00  00:44:10  01:07:44  02:26:34

DAG-WGAN 01:55:34  02:20:06  02:34:19  03:52:32 5:23:29
DAG-WGAN+ 00:15:51 00:16:48 00:19:09 00:19:30 00:21:12

Table 4.22: Time Duration Comparison with Post-Non-Linear-2 Scalar Data Samples

Time Duration (5000 non-linear-2 samples)

Model d=10 d=20 d=30 d=50 d=100
DAG-GNN 00:24:16  00:30:27  00:51:04  01:23:16  02:27:22
CAE 00:18:06  00:26:29  00:42:33  01:05:04  01:59:34

DAG-WGAN 01:37:22  02:25:55  02:46:10  03:51:26  04:20:24
DAG-WGAN+ 00:14:48 00:16:28 00:18:52 00:20:26 00:21:59

It is crucial to note that the outcomes mentioned do not demonstrate the quadratic
complexity of the model. This is due to the fact that Steps 2, 3, and 4 of Algorithm
1 are performed only once per execution, with the main focus of this method being
on optimization (specifically Steps 1 and 5). As a result, DAG-WGAN+ exhibits a

behavior more consistent with a linear growth in the duration of time.

4.2.6 Ablation study

The author has conducted an additional ablation study to determine the impact of
various aspects of the model on the results of causality learning. These experiments
encompass: 1) Comparing model training with the generative adversarial loss (Wasser-
stein distance) against training solely with the reconstruction loss (referred to as w/o

GAN) to assess the role of generative adversarial training; 2) Contrasting model train-
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ing with and without the encoder in the model architecture (referred to as w/o AE) to
evaluate the contribution of the encoder; 3) Introducing an extra step to achieve a final
approximate solution (referred to as 6 steps - for further details, see Efficient causal
structure learning with DAG-NoCurl in Section 4.1.3); 4) Analyzing model training
with and without considering the mutual information between data and latent vari-
ables to understand the impact of the MMD loss (referred to as w/o MMD); and
5) Implementing model training as described in Section 4.1.3 (referred to as default

case). The study was carried out using the Sachs dataset [21].

Table 4.23: Ablation Studies conducted on our model with Sachs Dataset

Sachs Datatset

Model
SHD / Time Estimation
w/o GAN 25 (00:03:00)
w/o AE 22 (00:02:51)
6 steps 19 (00:03:11)
w/o MMD 16 (00:03:05)
default case 15 (00:03:09)

4.2.7 Data quality

The data reconstruction capabilities of DAG-WGAN+ have also been investigated. To
achieve this, the author replicated the ’dimension-wise’ and completeness experiments
as detailed in the Data Quality segment of Section 3.2.3 using the same datasets to en-
sure a fair comparison between DAG-WGAN+ and its predecessor. This experimental
setup also enables the assessment of the impact of MMD on the data reconstruction
process. The results in terms of recovered causal graphs, correlation matrices, feature
importance, and data integrity remain consistent and are not provided in this section;
readers are directed to the Data integrity analysis of DAG-WGAN for more details.
Regarding data diversity, a slight advantage is observed in favor of DAG-WGAN+, as
illustrated in Figure 4.1.
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Figure 4.1: Real and synthetic feature distributions (x3,x4), in the case SHD = 0 (left)
and when SHD is farthest away from 0 (right)

4.3 Result Analysis

The outcomes presented in Section 4.2 illustrate the capability of DAG-WGAN+ to
compete against and surpass the current leading methods in causal structure learning.
Specifically, Tables 4.1 - 4.3 demonstrate the superiority of the model over all other
approaches in every scenario (linear, non-linear-1, and non-linear-2) when working with
high-dimensional continuous data under the assumption of the Additive Noise Model. It
is only surpassed by GraN-DAG [36] and VI-DP-DAG [49] in the case of low-dimensional
data. Moreover, as indicated by the findings in Tables 4.4 and 4.5, DAG-WGAN+ excels
over its competitors in all instances (post-non-linear-1 and post-non-linear-2) under the
assumption of the Post-Nonlinear Model.

The outcomes of the vector experiments illustrated in Tables 4.6 - 4.10 demon-
strate that DAG-WGAN-+ outperforms other methods when utilized with vector data,
irrespective of the assumed structural equation model. The approach of the author
consistently generates the most accurate DAG compared to all other approaches ex-
amined in the experiment, in various dimensions and cases. Similar to the continuous

data study, the difference in accuracy between DAG-WGAN+ and its rivals becomes
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more apparent as the size of the data variables increases.

The proposed method also surpasses all other models evaluated in the benchmark
and real-world experiments. The findings presented in Table 4.11 indicate that, when
applied to the Child, Alarm, Hailfinder, and Pathfinder datasets, DAG-WGAN+ suc-
cessfully reconstructed the most accurate causal structures. Similarly, the data in Table
4.12 demonstrate that DAG-WGAN+ exhibited superior performance in terms of both
accuracy and computational efficiency on the Sachs dataset [21]. Moreover, the timings
documented in Tables 4.13 - 4.22 reveal a consistent pattern where the model identifies
accurate graphs significantly faster than any other cutting-edge method examined in
the research, often by orders of magnitude.

The reconstructed data exhibits outstanding quality as well. In particular, the
"dimension-wise’, feature importance and correlation experiments produce consistent
results with those in the Data Integrity segment of Section 3.2.3. The key distinction
is the variety in the reconstructed samples, a result of utilizing DRL in the training
process. As illustrated in Figure 4.1, there is a minor increase in the standard deviation
of the distribution of reconstructed data, leading to a slightly less precise but still
satisfactory and more diverse reconstruction outcome.

Last but not least, the results of the ablation study reveal the optimal config-
uration of loss terms that form the objective function of the approach. The data in
Table 4.23 demonstrate that DAG-WGAN+ achieves the highest precision in recovering
DAG when trained using a sophisticated loss function that encompasses reconstruction,
adversarial, and MMD components. In essence, the efficient generative adversarial ap-
proach for learning DAG structures yields superior outcomes when compared to the
original DAG-WGAN model [75] across all experiments. Furthermore, it surpasses its
rivals in most scenarios and demonstrates the ability to produce results much quicker
than the current state-of-the-art methods, as it does not rely on the augmented La-
grangian continuous optimization technique during the training process.

Although DAG-WGAN+ demonstrates potential for combining efficient causal struc-
ture learning with disentangled representations and adversarial training, several limi-

tations arise when the model is applied to real-world data (e.g., Sachs dataset). Specif-
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ically, a major drawback is the lack of guaranteed semantic alignment. In practice,
unsupervised disentanglement often produces latent factors that are statistically in-
dependent but do not correspond to meaningful or interpretable real-world variables.
This reduces the practical utility of the representations for domains that require clear,
actionable insights. Another primary issue is the difficulty associated with evaluating
disentanglement in real-world contexts. Unlike synthetic benchmarks, where ground-
truth factors are known, real-world data rarely provide clear references for evaluating
how well the latent factors correspond to true causal variables.

On the efficient structure learning side, DAG-NoCurl relies on a linear projection
of the initial adjacency estimate to enforce acyclicity and refine the graph. While this
approach reduces computational complexity, it struggles to capture the nonlinear de-
pendencies, noise, and latent confounding commonly present in real-world data. As a
result, the inferred causal graph may include spurious edges or omit true causal rela-
tionships, limiting the reliability and interpretability of the learned structure. Together,
these challenges highlight that, while DAG-WGAN+ provides a powerful framework for
integrating fast causal discovery, disentangled representation learning and adversarial
training, its practical applicability remains constrained in complex, noisy, and partially
observed real-world settings.

Furthermore, based on the experiments conducted, DAG-WGAN+ effectively tack-
les some of the issues of its predecessor concerning efficient usability, data quality, and
management of diverse data formats (e.g., vector data). However, several drawbacks
of the original DAG-WGAN model persist and are inherent in this updated approach
as well. The key challenges that still need to be resolved are: 1) simplicity of ar-
chitecture - This leads to discrepancies between data quality and causal discovery,
allowing the model to produce high-quality data while struggling to recover accurate
causal relationships; 2) causal generality - The specific SEM utilized in both the
inference and generative models of the Variational Autoencoder (VAE) component re-
strict causality learning to the semi-parametric assumptions of Additive Noise Models
(ANM), limiting its applicability to real-world scenarios; and 3) mixed data types -

Although the model can currently handle discrete and continuous data separately, it
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lacks the capability to manage both types simultaneously in a single dataset, making
it unsuitable for complex tabular datasets.

Future research will focus on overcoming the constraints outlined earlier. In partic-
ular, a promising direction to improve the disentangled representation component is the
introduction of mechanisms that promote semantic alignment between latent factors
and meaningful real-world variables, through weakly supervised learning or domain-
informed regularization. To that end, the author will employ more reliable evaluation
metrics that do not rely on known ground-truth factors, such as the Modularity and
Explicitness scores, DCI (Disentanglement-Completeness-Informativeness) framework,
Separated Attribute Predictability (SAP) score, Mutual Information Gap (MIG), or
Interventional Robustness Score (IRS), to assess disentanglement performance in prac-
tical scenarios.

Moreover, on the structure learning side, the author intends on extending the cur-
rent DAG-NoCurl framework beyond the linear projection of the initial adjacency esti-
mate, which will enable the model to better capture nonlinear dependencies and reduce
sensitivity to noise. The author also plans to expand the model to accommodate time-
series, mixed and incomplete data. The significance of DAG-WGAN+ in capturing
valuable latent features is crucial for understanding causal relationships in scenarios
with common causes among variables. Therefore, upcoming studies will explore the
capability of the model to tackle the issue of hidden confounders. Subsequent versions
of DAG-WGAN+ will have no specific SEM in their architecture. Additionally, they
are going to be enhanced with further experiments like sensitivity analysis and inves-
tigations into hyper-parameters to identify an optimal configuration that enhances the

performance of the approach.
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Nonparametric structure learning

with nonlinear causal models

This chapter begins with the author revealing the theory and implementation details
behind a novel Directed Acyclic Generative Adversarial Framework (DAGAF), designed
for joint poly-assumptive causal structure learning and generation of tabular datasets.
Specifically, the algorithm explores the application of the PNL model and its subsets,
which include LINGAM and ANM. The recovered causality is utilized in tabular data
synthesis to investigate whether the following hypothesis holds: Is it possible to si-
multaneously learn an accurate approximation of the original causal mechanisms in a
probability distribution and apply them to define a synthetic distribution that produces
realistic data samples? Crucially, the author disentangles causality learning and tabular
data generation, eliminating the issues with parallel causal discovery and sample pro-
duction in a single model instance - for more information see Section 5.1. In addition,
a comprehensive theoretical analysis has been conducted to investigate the contribu-
tion of the loss terms involved in the training process of their framework and how its
identifiability is influenced by non-i.i.d., discrete or incomplete data. DAGAF has been
extensively evaluated against leading models in causal structure learning, with empirical
evidence indicating its effectiveness in identifying accurate causal approximations from
observational data under multiple structural causal model assumptions. Furthermore,

an in-depth analysis of the generated data reveals that DAGAF is capable of producing

109



Chapter 5. Nonparametric structure learning with nonlinear causal models

samples of remarkably high quality. The findings from the research conducted based

on this work have been published and can be found in Section 1.7.

5.1 DAGAF: A Directed Acyclic Generative Adversarial
Framework for joint Structure Learning and Tabular

Data Synthesis

The framework of the author is designed to produce synthetic samples by learning the
underlying generative process of input data. To accomplish this, DAGAF models a di-
rected acyclic graph (DAG) Ga that captures the causal relationships within a dataset
X, facilitating the synthesis of realistic samples with minimal loss of fidelity and di-
versity. Furthermore, the model not only yields testable results on synthetic data, but
also demonstrates performance on real-world datasets, as outlined in Section 5.2.3. The

objective of the approach is formalized as follows.

Goal: Given n i.i.d. observations X ~ P(X) € x, the framework models Ga ~ G} €
D to learn the set of structural equations F = {fi, ... f4}, such that X; := f;(Paj, Z;)

results in X ~ Pg, (X) € X matching the input.

Initially, the author attempted to achieve this goal by performing simultaneous
causal structure learning and adversarial data generation all within a single model in-
stance. This approach proved challenging, as it required the application of loss terms
(namely Mean Squared Error (MSE) and Wasserstein Distance (WD)), which are prac-
tically incompatible within the context of causality-based adversarial data generation.
On the one hand, MSE is essential for causal discovery, but applying the reconstruction
loss directly to adversarial training could limit the range of noise needed to generate fake
samples, causing significant latent collapse. Conversely, relying solely on the adversar-
ial loss to create fake data can hinder causality modeling, resulting in noisy structures.
To overcome these limitations, the author employs a framework based on a divide-

and-conquer approach, involving transfer learning to distribute responsibility across
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multiple model instances established over a sequence of steps. In summary, an SCM
models causal mechanism approximations to describe the structure of the observational
data distribution. This causality is then transferred into a DGM, which produces tab-
ular data by emulating the generative process of the observational samples. Figure 5.1
offers a visual representation of the framework pipeline utilized by the model of the
author.

Section 5.1.1 elaborates on Step 1, focusing on the recovery of causal structures
from X. Moreover, because the framework identifies causal structures by modeling the
underlying data generative process of X, it is inherently suitable for sample synthesis.
However, this involves an additional training phase (Step 2) requiring the develop-
ment of a separate Deep Generative Model (DGM) consisting of a discriminator and a
generator, as detailed in Section 5.1.3. For a comprehensive overview of the training
methodology, refer to Algorithm 2. The architecture and training approach of DAGAF

are thoroughly outlined in Section 5.1.4.

Algorithm 2 DAGAF training algorithm

Require: Sample n observational data points {X1i,...,Xp} from the training data and d noise vectors
{Z1,...,Z4} from normal or uniform distributions. Generate n synthetic data samples {X1,...,Xn}, with
data attributes X := f(X) + 2, X; := f;(Pa;) + Z; or X; := g;(fj(Pa;) + Z;) depending on whether
LiNGAM, ANM or PNL is assumed.

Ensure: The acyclicity constraint value h(AL0(f)) is higher than its tolerance of error h_tol set to le-8. Each
step during training has its own instance of DAG-Notears-MLP. Causal information is transferred from the
SCM into the DGM architecture.

Step 1: Poly-assumptive causal structure learning
LINGAM, ANM — learn f by minimizing a combination of loss terms including
adversarial loss (5.1), Mean Squared Error (5.2), Kullback-Lieber divergence (5.3),
Maximum Mean Discrepancy (5.4) and the acyclicity constraint from [38].
PNL — learn both f and g—! by solving (5.8)
This step recovers a graph representation G of the causal mechanisms in X

Step 2: Generative process simulation under multiple structural causal model assumptions
LiINGAM, ANM — learn f by computing (5.1)
PNL — learn f and g by finding the optimal value for (5.1)
This step models a generative process involving G o through adversarial training,
producing new data samples.

It is important to note that this framework does not assume any specific model
for each step. In fact, any combination of models is possible as long as the following
requirements are met:

1. An SCM is employed to learn a graph representation (i.e. an adjacency matrix)
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of causal structures from observational data with acyclicity enforced explicitly or

implicitly.

2. Causal knowledge is transferable in a meaningful representation from the first to

the second step.

3. A DGM performs tabular data synthesis using the discovered causal mechanisms

from the first step to generate new samples.

In the rest of this section, the author provides the implementation details of DAGAF

and discusses how it integrates within Algorithm 2.

Framework Pipeline Noise
Vector Tabular Data
Underlying Mechanism Synthesis
Modeling .
‘ G )
. Causal :
Observational Tabular e Knowledge G;‘:::ts‘:e Synthetic Tabular
D:
Data Meari s Transfer Simulation o

Figure 5.1: Pipeline of the framework for joint causal discovery and tabular data synthe-
sis. Initially, the modeling of the underlying mechanisms describing the observational
distribution is performed through a process known as causal structure learning, result-
ing in an implicit graphical representation (weighted adjacency matrix) consisting of
model parameters. Afterwards, tabular data synthesis is achieved by simulating the
generative process of the input data by modeling each causal mechanism using parent
variables defined in the weighted adjacency matrix from the previous step. Weight
(parameter) transfer between model instances facilitates the communication of causal
knowledge between the two stages, making the framework heavily reliant on the ‘trans-
fer learning’ methodology.

5.1.1 Modelling causal structure approximations

The DAGAF framework is designed to approximate the underlying causal mechanisms
{fj(Paj, Z;)} that generate the observed data X. According to the (semi) parametric
assumptions detailed in Section 2.1.4, each node X; € G4 is defined as a function f; :
R? — R. In this context, the general nonparametric form E[X;|Xpa;] == Ez(f;(X, 2))

simplifies to one of the following models: (i) Linear non-Gaussian Acyclic Models
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(LINGAM): X := f(X) + Z, where f(X) is a linear function of X and Z represents
a non-Gaussian noise term that is independent of X; (ii) Additive Noise Models
(ANM): X, := f;j(Paj) + Z;, where f; is a nonlinear function of the parent variables
Paj, and Z; is Gaussian and independent of f;(Pa;); (iii) Post-Nonlinear Models
(PNL): X; := g;(f;(Pa;) + Z;), where g; is a nonlinear function and Z; is Gaussian
and independent of f;(Paj).

In the initial phase of DAGAF training, the aim is to learn Directed Acyclic Graphs
(DAG) by computing an optimal solution to a sophisticated objective function that
blends together various loss terms relevant to causal structure learning. The basic
framework encompases the LINGAM and ANM structural causal models, leveraging
adversarial training and a reconstruction loss supplemented by regularization terms
to facilitate the synthesis of X from X. A key advantage of this framework is its
adaptability, enabling the basic approach to be extended to support causal discovery
under the PNL assumption without major difficulties. The enhanced form broadens the
functionality of DAGAF to include PNL by introducing an additional reconstruction

loss to model the parameters of the non-linear function g;.

Adversarial loss with gradient penalty

DAGAF simulates X by learning how to generate X through approximations of the
causal mechanisms {f;(Pa;, Z;)} € P(X). Instead of directly modeling X, the empha-
sis is placed on recovering the set of causal mechanisms F = {fi,..., fq}, where each f;
is expressed as fj(Paj; le, e W]-L) + Z; (see Section 5.1.4 for details). This process
involves identifying the immediate parents of each variable, which are encoded within
the causal structure of X.

To achieve this, the framework of the author minimizes the Wasserstein distance
W, (P(X), Pa, (X)) by applying adversarial training, which implicitly refines the causal
structure G o and facilitates the discovery of the underlying causal mechanisms. In DA-
GAF, adversarial training is formulated as a min-max optimization, where an SCM-
based generator M learns to generate synthetic data to minimize the discrepancy mea-

sured by a discriminator D(.), while D(.) is trained to maximize Wp(P(X), Pg, (X)).
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As a result, DAGAF identifies causal relationships from observational data by learn-
ing both the reconstruction process and the distributional asymmetries of P(X). The

Wasserstein distance with gradient penalty loss term is defined as follows:

Laav(X,X) = H(bs”up<1EX~P(X) [0(X)] = Expg,, (%) [9(X)]

= Expx)[D(X)] — Ex _p, (5)D(X)] (5.1)
+ EXNP(X)[(HVXD(X)H2 - 1),

where ¢(X) is a 1-Lipschitz function used to approximate the Wasserstein distance
Wp(P(X), Pg,(X)). The function D(X) is trained adversarially to learn ¢(X) and
distinguish between real X ~ P(X) and generated samples X ~ Pg, (X).

Hence, computing the optimal solution for the loss term (5.1) across all samples from
the input and synthetic distributions results in overlap between P(X) and Pg, (X).
This ensures that the synthetic data X becomes indistinguishable from the original data
X , effectively approximating its generative process - provided the causal structure in

G A is correctly identified.

Proposition 5.1.1. Let the ground-truth graph GOA be the only structure that can
generate P(X), then, under the assumption of causal identifiability, applying adver-
sarial training ensures the following: 1) the implicitly generated distribution Pg, (X)
matches P(X) and 2) the causal graph G a used to define Pg, (X) is identical to GS.

W,(P(X),Pg, (X)) =0 = Pg,(X)=P(X) = G =G}.

Proof. The proof of Proposition 5.1.1 is available in Appendix A.5. O

Reconstruction with Mean Squared Error

To improve causal structure learning, the author incorporates a reconstruction loss to
the training algorithm of DAGAF. The choice of this particular loss term is predicated
upon the need for a suitable metric to assess the distance between P(X) and Pg, (X)

in the context of causal discovery. Previous research have investigated various metrics

for measuring distances between data distributions, including Wasserstein-1 [115] and
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maximum mean discrepancy (MMD) [67], among others. However, to prevent overpa-
rameterization which can skew the causality learning results further away from GOA,
the author only approximates the means of both distributions, disregarding their unit
variance. In this context, the mean squared error (MSE) is considered an appropriate

reconstruction loss term.

Luse(X, X) = Ex (/X — X[2) = ZZHXu {fi(Paj Wi, ... W) + Z5} Iz
- (5.2)
By optimizing the parameters of DAGAF using (5.2), the residual distance between
individual samples ||[X — X|| is minimized, leading the framework to generate X ~
Pg A(5() by implicitly identifying the causal relationships of X encoded in Ga. This

reconstruction process effectively leads to a more accurate representation of the causal

mechanisms underlying X.

Proposition 5.1.2. Incorporating a reconstruction loss term into adversarial training
ensures that the distance between individual data points from both synthetic Pg , (X)
and observational P(X) data distributions is minimized. This reduction in noise pre-

vents significant gradient fluctuations, resulting in more stable adversarial convergence.

in Lyse(X,X) =0=Vi,X; =X,
GHISEHD MSE( ) ) 1y A 7
Proof. The proof of Proposition 5.1.2 is available in Appendix A.6. O

The experiments of the author highlight the significance of the MSE loss in DAG
learning. This observation is consistent with the majority of existing studies in the

field, which predominantly employ MSE as their loss function of choice.

Kullback—Leibler Divergence

Utilizing MSE as a reconstruction loss can result in overfitting to X and lead to inac-
curacies in identifying the causal mechanisms within the generative process of X. To

mitigate this issue, the author incorporates Kullback—Leibler divergence (KLD) [58]
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as a regularization term. Commonly applied in Variational Autoencoders (VAE),
the KLD is a standard component of the Evidence Lower Bound (ELBO) loss func-
tion for latent variable regularization. It is defined as Dgp (N(k, 0?)|N(0,1)) =
%E?:l (02 + pf —log(o?) — 1), where p and o denote the mean and standard devi-
ation of X. During DAGAF training, this term is used to regularize X. Furthermore,
since the model is designed to model only the mean of Pg, (X) and sets its variance
to 1, the regularization function simplifies to:

n

Lxin(X, %) = Dict (P(X)][Pan (%)) = 5 D (62) (53)
=1

The author incorporates the Kullback—Leibler divergence (KLD) as a regularization
term for X, the model-generated data, to emulate an additive noise scenario where noise
is introduced to each data point. This application of KLD encourages the model to
generate X that closely resembles the true data distribution while accounting for the
variability introduced by noise. This approach prevents overfitting by ensuring that the
generated data captures the natural variations of the real data, resulting in more robust
and realistic samples. Since the model is designed to learn causal mechanisms, this
regularization technique also helps prevent it from inferring incorrect causal structures,

such as mistakenly identifying child nodes as parent nodes.

Proposition 5.1.3. The Lxip(X,X) regularization imposes a statistical prior on
Pc A(X), ensuring that the learned distribution remains close to a predefined Gaus-
sian. Moreover, it enhances optimization stability, particularly under additive Gaussian
noise, by preventing Pg, (X) from deviating excessively from a normal distribution,
mitigating erratic behavior. By complementing adversarial and MSE losses, it ensures

both the alignment and smoothness of Pg , (X).
Proof. The proof of Proposition 5.1.3 is available in Appendix A.7. O

Note that this does not apply to the LINGAM causal model because, under that

specific assumption, the noise term Z is non-Gaussian.
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Maximum Mean Discrepancy

The reconstruction loss and its regularization term focus exclusively on capturing the
mean of P(X), neglecting its variance. This oversight makes the reconstruction process
in DAGAF particularly sensitive to rare events or outliers in P(X). To resolve this issue,
the author further minimizes the residual discrepancy between the input distribution
X ~ P(X) and the generated data distribution X ~ Pg,(X) by incorporating the
Maximum Mean Discrepancy (MMD) metric [67]. The kernel trick [254] is employed

to efficiently compute the solution for this approach.

Lavp (X, X) = [[Expx)[k(X)] — Expa, (%) [k(X)]| 13,

1 n 2 n - 1 n ~ ~
i#j i#j i#J

(5.4)

where ‘H denotes the reproducing kernel Hilbert space (RKHS) and k € H is a kernel
function.

The MMD maximizes mutual information between P(X) and Pg, (X), ensuring
the two distributions match in both their means and overall shapes. By aligning their
shapes, the MMD term also helps to reduce discrepancies in their variances. Therefore,
applying (5.4) indirectly models the standard deviation of Pg, (X), addressing latent

collapse in X and discovering the causal mechanisms that generate its outliers.

Proposition 5.1.4. Minimizing the Maximum Mean Discrepancy (MMD) loss term
Lyvp (X, 5() encourages the alignment of higher-order moments between the input dis-

tribution P(X) and the synthetic distribution Pg, (X), which supports the adversarial

loss in achieving overall distributional alignment.
Proof. The proof of Proposition 5.1.4 is available in Appendix A.8. O

The ablation study conducted in support of DAGAF confirms that incorporating
the MMD term, as introduced in DAG-GAN [37], contributes to causal discovery.
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Model training under the Post-Nonlinear SCM assumption

Up to this point, the author has explored the loss terms computed for the LINGAM
and ANM scenarios, where the model output X is synthesized using causal mechanism
approximations X := f(X) + Z or Xj = fj(Pa;) + Z;. These generated samples
are modeled to resemble the training data X by minimizing ||P(X) — Pg, (X)||. A
significant strength of DAGAF lies in its adaptability, enabling it to be extended for
handling Post-Nonlinear Models (PNL).

Post-Nonlinear Models (PNL) play a vital role in causal discovery by providing a
more realistic framework for capturing non-linear causal relationships in observational
data. Additionally, PNL is regarded as a broader, more general framework that includes

other identifiable models, such as ANM [240] and LINGAM [31], as special cases.

Xj = 9;(f;(Paj) + Z5),Vj, Z; L [j(Paj) (5.5)

Without loss of generality, the author rearranges (5.5) into

Z; = g5 (X;) — f;(Pay), (5.6)

Uis the inverse of g. Under this setting (from the rearranged equation), the

where g~
problem has been broken into two parts, which are to learn f(-) and g~!(-) respectively.

The process of learning f(-) remains the same as in the ANM and LINGAM cases,
as outlined in the previous sections on loss terms. However, learning g~'(-) represents
a unique step specific to the PNL case. In practice, these functions ¢g=*(-) and f(-) are
implemented using two separate neural networks, where f(-) follows the same approach
as before, and g~!(-) is modeled as the inverse of a general MLP. Moreover, the train-

ing procedure incorporates an additional Mean Squared Error (MSE) term, which the

author defines as follows:

o o 1 n d
LpnL(X, X) = MSE(X, X) = ;ZZ llg; 1 (X;), = fi(Pay),ll2, (5.7)
i=1 j=1

where X is the output of g~ 1.
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It is important to highlight that the loss terms from the previous sections, where
f(.) serves as the final output of the model, can also be applied in the PNL case due
to the use of skip connections, similar to those in ResNet. Although f(-) is not the
final output in the PNL setting, DAGAF can bypass the final function g(-), effectively
allowing the same loss terms to be used as in the ANM and LINGAM cases. For further

details on skip connections, refer to [255].

Causal structure acyclicity

Finding optimal values for the reconstruction and adversarial loss terms does not ensure
that Ga will be acyclic. Additionally, explicit acyclicity constraints, such as those used
in [12] and [48], fail due to the implicit nature of the contents in Ga. This means
that to prevent cycles in the learned causal structures, the author applies the implicit
acyclicity constraint from [38], defined as h(AL0(f)) = 0, where A0 € R%*? represents
the weighted adjacency matrix implicitly defined by the model weights. Further details

are available in Section 2.4.3.

5.1.2 Causal identifiability

Discovering G o from X does not necessarily guarantee that its content accurately rep-
resents the causal mechanisms underlying the observational data. Theory suggests that
a qualitative approximation of F = {fi,..., fq} depends on whether it is determined
to be a unique set of structural equations capable of producing samples that closely
resemble X [256]. Considering this, the author assumes identifiable causal models (refer
to Definition 1) and shows that the generative process of X can be replicated through
end-to-end optimization.

More specifically, the author demonstrates that, when identifiable models are ap-
plied, the global minimum of the distance ||P(X) — Pg, (X)|| can only be achieved
if the true causal structure is correctly identified, leading to P(X) = Pg, (X). For
further details, see Section A.4.

As previously mentioned, DAGAF applies several types of models, including: Linear

non-Gaussian Acyclic Models (LINGAM), Additive Noise Models (ANM), and Post-

119



Chapter 5. Nonparametric structure learning with nonlinear causal models

Nonlinear Models (PNL). It has been demonstrated that each of these models is causally

identifiable under certain assumptions.

e LINGAM: The causal identifiability of Linear non-Gaussian Acyclic Models
(LINGAM) is assured when the noise terms are assumed to be non-Gaussian. In
particular, if the noise variables are non-Gaussian and independent of X, it has

been proven that the underlying causal structure can be uniquely identified [31].

e ANM: Additive Noise Models (ANM) assume that the noise term Z; is indepen-
dent of the parent variables Pa,;. This assumption of independence allows for the
identification of the causal direction between variables. Furthermore, the function
fj() must be non-linear and three times differentiable to guarantee that apply-
ing this model leads to a unique identification of the causal direction between

variables [98].

e PNL: Post-Nonlinear Models (PNL) build upon the ANM framework by adding
an additional non-linear transformation, g;(-), after the function f;(-). The key
assumptions for identifiability in PNL include the independence of the noise terms
and the non-linear, invertible nature of the function g;(-). With these conditions
in place, the causal structure can be identified, even when complex non-linear

interactions are present [32].

Furthermore, the theoretical analysis supporting the DAGAF framework demon-
strates that, under the assumptions of LINGAM, ANM, and PNL, the learnable DAG

model G4 is identifiable.

Proposition 5.1.5. Assuming the Additive Noise Model (ANM), Linear non-Gaussian
Acyclic Model (LINGAM), or Post-Nonlinear Model (PNL), there is a unique DAG G}
that defines the observed joint distribution P(X).

Proof. The proof of Proposition 5.1.5 is available in Appendix A.9. O

Corollary 5.1.5.1. According to Proposition 4.1.2 and Lemmas A.9.1, A.9.2 that
constitute the proof of Proposition 5.1.5, the uniqueness property of Ga enables the

author to reconstruct the generative process of X.
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Corollary 5.1.5.1 indicates that, given the causal model assumptions applied in
DAGAF, the author can generate synthetic data samples that maintain the original
causal structures, which is only achievable if Go = G%. Therefore, this means that
the implicitly generated distribution Pg, (X) matches the observed distribution P(X).
Thus, it has been established that a single unique DAG can accurately represent the
probability distribution of both the input and the synthetic data.

It should be noted that the analysis assumes the data is continuous and follows an
independently and identically distributed (i.i.d.) pattern. The author acknowledges
this as a limitation since such conditions are rarely encountered in real-world datasets.
Therefore, the author examines the performance of the loss terms used to train DAGAF

under more challenging scenarios, including cases with non-i.i.d. data, missing values,

and discrete variables.

Impact of Non-i.i.d. Conditions on Causal Identifiability

Consider a scenario with real-world data, where the samples {Xj,...,X,} are not in-
dependent (i.e., there exist correlations between X; and X;) and each sample belongs
to a different heterogeneous distribution P;(X). In such a context, the empirical distri-
bution P’(X) does not accurately represent the true distribution P(X), which in turn
affects the optimization process.

More specifically, the author assumes that both the true distribution and the
implicitly generated distribution can be expressed as P'(X) = P(X) + 6(X) and
PéA(X) = Pg A (X)+0(X), where the terms §(X) and §(X) reflect deviations from the
i.i.d. assumptions. Under these conditions, the author investigates whether the iden-
tifiability associated with the loss terms applied in the objective function of DAGAF

holds or breaks down.

1) Adversarial Loss and Identifiability: When the data are not i.i.d., the adver-

sarial loss becomes:

hav(X, X) = D(P'(X)|| P, (X)).

adv
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For G to remain identifiable, 6(X) must not interfere with the optimization of
EadV(X,fQG A). However, if §(X) introduces spurious dependencies between vari-
ables (e.g., time-series correlations), then Ga may include additional edges. More-
over, if §(X) skews the marginal distributions P’(X;), the inferred functional relation-
ships X; = fj(Pa;) + Z; or X; = g;(f;(Pa;) + Z;) may no longer match the true
ones. Therefore, in the non-i.i.d. data case, the learned graph Gp is minimizing
D(P'(X)||Pg, (X)), which may differ from the true graph G4, due to the bias §(X).

In the case described above, the bias term §(X) impacts the gradient of this loss,
which is defined as follows:

Vs Loay(X, X) = VD(P(X)||Pa, (X)) + Vo D(3(X)|| P (X))-

adv

The additional term, V4D(5(X)||Pg, (X)), may destabilize optimization by introduc-
ing unintended gradient components due to data dependencies or heterogeneity, as well
as by amplifying the sensitivity to noise.

Therefore, the violation of i.i.d. assumptions introduces a bias §(X) in the empirical
distribution P’(X), which impacts the identifiability of G through the adversarial loss.
This can lead to spurious dependencies, overfitting G o to noise or correlations, leading
to averaging out domain-specific causal structures, which can reduce the uniqueness of
Ga.

2) Mean Squared Error Loss and Identifiability: Under non-i.i.d. conditions,

the mean squared error loss is modified as follows:

Lhusp(X, X) = Lyse(X, X) + §(X).

If §(X) induces correlations between samples X; and X, this disrupts the assump-
tion that the noise terms Z; are independent. Therefore, the altered MSE loss term

sk (X, X) might erroneously capture false patterns across samples, leading the out-
put of f;(Pa;) to fail in representing the true functional relationship.

Additionally, heterogeneous distributions P;(X) imply that X; and Pa; may fol-

low varying conditional relationships. This causes E{\/ISE(X,X, Ga) to average over
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different functional relationships f;(.), losing the specificity of f;(.). This can have

ramifications in the form of the learned graph G failing to reflect the true causal

structure GQ , as the functional forms are no longer consistent across samples.
Furthermore, the above statement is also supported by investigating the gradient

of Ligr(X, X) with respect to 6 is:
VoLise(X, X) = VoLuse(X, X) + Vi (X).

The additional term Vyd(X) destabilizes optimization by introducing misleading gradi-
ents caused by sample dependencies and noise arising from heterogeneity. As a result,
the optimization process becomes more sensitive to initialization and hyperparameter

choices, ultimately reducing the reliability of convergence.
3) Kullback-Leibler Divergence Loss and Identifiability: Under non-i.i.d. con-

ditions, the author defines the empirical KLD subject to the application of a first-order

Taylor expansion P(X;) using the following expression:

krp(X Zlog ?)(( J =

/ <\ o~ _l - 5(X2)
KLD(Xu X) ~ ['KLD(Xv X) n Z .

The ratio ]i(())(( )) introduces bias, especially when §(X;) varies considerably among sam-
ples. This bias distorts the optimization of Pg, (X), potentially resulting in an ap-
proximate distribution that diverges from P(X).

Further evidence in support of the above is reflected in the gradient for the KLD

loss term, defined as follows:

5(X)

ﬁdX.

VoLirp(X,X) ~ VoLxrp(X,X) — / VoPa, (X)

The additional term [ VyPg A(X)%dK introduces noise into the gradients, decreas-

ing optimization stability. This can create misleading directions in the parameter space,
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making it more difficult to converge to the true distribution P(X).

More specifically, dependence among samples causes correlated gradients, leading to
oscillations or poor convergence during training. Heterogeneity in distributions results
in gradients that do not align with the true target distribution, further destabilizing
the learning process. Therefore, the KLD term is minimized when Pg, (X) = P(X)
under i.i.d. assumptions. Non-i.i.d. effects, however, can lead to multiple minima or
local optima, reducing the identifiability of P(X).

4) Maximum Mean Discrepancy Loss and Identifiability: Due to perturbations

introduced by the non-i.i.d. term A, the author defines the empirical MMD term as:

Mvp (X, X) ~ Lynp (X, X) + A st

1 n
= > Apx)(Xi, X;)

i%)
2 — .
= =D Apx) e, (%) (X0 X)

#
+ - Z PGA X X)
i

where expanding each kernel function k(.) associated with the loss term yields a set of

equations.

k(Xi, X;) = k(P(Xq), P(X;)) + Apx)(Xi, X;),
K(Xi, X;5) = k(P(Xi), Paa (X)) + Apx) e, (50) (X X5),
B(Xi, X)) = k(Paa (Xi), Pan (X)) + Ap, x)(Xi X;),

The terms Apx)(Xi, X;), Ap X, Xj) and APGA (X)(Xu Xj) represent per-

turbations due to non-i.i.d. effects. Due to the inclusion of the A term, the empirical
MMD estimate becomes biased, and as a result, it might not converge to the true
population MMD even when the sample size n goes to infinity.

This is also theoretically implied in the gradient of £} (X, X) with respect to

model parameters 6, which is defined as follows:
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Ve Ly (X, X) = 2 (EX,X'NP/(X) [Voh(X, X)) = Bx_prix) gery, (%) [VOR(X, X)]) :

The extra perturbations Apx), A P(X),Pa , (X)’ and A Pe , (X) add noise to the gradient
A A

)

computations, which may destabilize the optimization process and hinder convergence.
Therefore, under i.i.d. assumptions, minimizing MMD ensures P(X) = Pg, (X).
However, under non-i.i.d. conditions, the perturbed kernel computations may lead to

local optima where P'(X) # Pg (X).

DAG identifiability in Discrete Variables

Even though models such as Additive Noise Models (ANM), LINGAM, and Post-
Nonlinear Models (PNL) are identifiable in continuous settings, their DAG are not
necessarily unique in discrete settings due to symmetry and observational equivalence
between different causal structures in the discrete domain.

In the discrete framework, different DAG can lead to identical joint distributions,
making it challenging to uniquely pinpoint the true DAG G%. For example, consider
two structurally distinct DAG, GloA , and G20A2, which nevertheless yield the same joint
distribution. In such discrete settings, the symmetry inherent in causal relationships
means that actions such as reversing the direction of edges or reparameterizing certain
dependencies do not alter the resulting joint distribution. More formally, this can be

expressed as:

P(X; | Pa(X;)) = P(X; | Pa(Xj)) for some (X;, X;)
s.t X; € Pa(X;) or X; € Pa(Xj).
If the functional forms f; and fj, are linear or have similar forms (e.g., f; = W; X+
Bj), the reparameterization of the weights (e.g., W;) or the reversal of causal edges

(e.g., from X; — X} to X — X;) may result in the same conditional distributions

P(X;|X}). Therefore, for DAG G1%, and G23,, the following holds:

P(X|X2) = P(X2|X;) for certain values of X1, Xo

125



Chapter 5. Nonparametric structure learning with nonlinear causal models

This symmetry ensures that the conditional distributions in both DAG are identi-
cal. Consequently, in the discrete setting, the identifiability of the DAG is compromised
because the conditional distributions remain equivalent, despite differences in the un-

derlying structural graph.

Impact of Missing Data

Real-world datasets often contain significant missing data, which can affect the iden-
tifiability (uniqueness) of the causal structure under the Post-Nonlinear (PNL) model
or other causal discovery frameworks. In the remainder of this section, the author
examines the effects of missing data on DAG identifiability.

Missing data in a real-world dataset may be caused by different mechanisms, in-
cluding: 1) Missing Completely at Random: If the probability of missingness is
unrelated to any variable in the dataset, it simply reduces the sample size. Identi-
fiability may still hold with sufficient remaining data. However, smaller sample sizes
weaken statistical patterns. 2) Missing at Random: If the probability of missingness
depends only on observed variables, biases may be introduced into conditional inde-
pendence tests and noise independence checks. DAG discovery remains theoretically
identifiable if robust imputation is used. Practical performance may still suffer due to
bias. 3) Missing Not at Random: This the most problematic type of missingness.
It depends on unobserved or missing variables and, therefore, the dataset is no longer
representative of the true causal structure. Identifiability often fails because dependen-
cies in the observed data may not reflect the true DAG. Additionally, hidden biases
introduced by missingness can also create spurious relationships.

The uniqueness of the true DAG GOA critically depends on accurately testing condi-
tional independence (for instance, verifying that Z; L Pa; in the PNL model), missing
data undermines the statistical strength of these tests. Losing significant portions of
data can lead to conditional independence tests that are unreliable or incorrect. Ad-
ditionally, imputation methods or biased sampling might introduce false dependencies
or independencies. Since models like ANM, LINGAM, and PNL assume that the noise

term Z; is independent of the set of parent variables (Z; L Pa;), missing data can
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obscure or distort the observed relationships, making it challenging to distinguish noise
from the contributions of the model.

Furthermore, it is assumed that the functional forms f; (nonlinear for ANM and
linear for LINGAM) and g; (nonlinear for PNL) are either known or can be learned.
However, the incomplete nature of real-world data often breaks this assumption. Specif-
ically, missing data can bias the noise estimates Z;, disrupting the independence of
residuals. In the case of LINGAM, this makes testing for non-Gaussian noise even
more challenging.

The ability to identify the correct model depends on accurately estimating the
marginal distributions. When data is incomplete, especially, if parent variables or
structural nodes are missing more frequently, these estimates can be significantly dis-

torted.

5.1.3 Simulating data generative processes

In the second stage of Algorithm 2, the focus shifts to generating realistic tabular data
samples using the causal graph G A obtained from Step 1. This data generation process
relies on a separate instance of the SCM M used during the causal discovery phase,
referred to here as the generator GG. Causal knowledge is transferred between SCM
instances by loading W from M to Ly € G. To facilitate tabular data synthesis,
the architecture of the generator is augmented with an additional noise vector Z =
{Zy,...,Z4}, sampled from N(0,1).

In this step, the models are trained adversarially to ensure that Pg, (X) closely
matches P(X). Specifically, the generator network G produces synthetic samples while
competing with a discriminator D : R — R, which aims to distinguish between syn-
thetic and real observational samples. The training process leverages the Wasserstein-1
distance with a gradient penalty, enabling the Deep Generative Model (DGM) to pro-
duce realistic samples that are indistinguishable from X. The loss function used is the
same as Equation (5.1).

More precisely, the transferred weights W’ form A € Ly € G, which is then subse-

quently thresholded to form a binary mask M that specifies parent—child relationships.
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This mask is then used to define a set of dynamically instantiated locally connected
layers, where each node-specific layer f;(.) receives only its parent variables Pa; as
inputs to define X; = f;(Paj, 2;), Pa;j = {i : M;; = 1}. This guarantees the global
causal structure inferred from A is transferred into the set of locally connected layers,
while making sure that each layer models only causally relevant dependencies

Furthermore, each connected layer a(L;) € {a(L1),...,a(Lq)} is treated as an
individual generator G;(Z;) € {G1(Z1),...,Ga(Zq)}. This allows each causal mecha-
nism f; € {f1,..., fa} to be modeled such that X; is generated in one of three forms:
X = G(X) + 2, Xj := Gj(Paj) + Zj, or X; := gj(G;(Paj) + Z;), depending on
the assumed model - LINGAM, ANM, or PNL, respectively. In this way, a synthetic
tabular dataset X € ¥ C R"*¢ = F(Z) = f;(Paj, Z;) is generated.

During training, only the parameters W = {W?, ... W} of the locally connected
hidden layers are updated. The weights of L are not modified to preserve the structural
equations F used to produce X.

The experiments described in Section 5.2.4 indicate that the DGM employed by
the author can produce high-quality data under both the ANM and PNL structural

assumptions.

5.1.4 Model architecture and training specifications

Figure 5.2 illustrates the overall architecture of the DAGAF framework. In Figure 5.2a,
the ANM and LiNGAM settings are depicted, where the input data X is transformed
by function f to generate X. The optimization process is governed by multiple loss
terms: Loy (X, X), Lause (X, X), Lo (X, X), and Ly (X, X), with Lxrp(X, X) be-
ing omitted in the LINGAM case. Figure 5.2b expands upon Figure 5.2a by integrating
the PNL model. The right-hand pathway remains consistent with Figure 5.2a, while
an additional left-hand pathway applies ¢! to invert X. This inversion is involved in
computing EPNL(X, X), which is then combined with the loss terms from the right-
hand pathway, forming a unified optimization framework. Figure 5.2c illustrates the
data generation process used to create synthetic data, showcasing how the framework

enables structured data synthesis.

128



Chapter 5. Nonparametric structure learning with nonlinear causal models

The author adopts the Multi-Layer Perceptron (MLP) from [38] as the Structural
Causal Model (SCM) M to represent f during the causal structure learning step. This
MLP consists of two main components: (i) an initial linear layer, Ly, which implicitly
defines the causal graph Ga and enables the modeling of causal structures, and (ii)
a set of locally connected hidden layers, L = {a(L1),...,a(Lg)}, where a applies a
nonlinear transformation to each layer. These hidden layers are designed to learn an
accurate approximation of the causal mechanisms F = {fi, ..., f¢} within Ga.

In contrast, g is a general-purpose MLP consisting of five linear layers arranged as
[d - 10d - 10d - 10d - d] (one input layer, three hidden layers, and one output layer),
with nonlinearity applied via the ReLU activation function (used specifically in the
PNL case). Figure 5.2 provides an overview of this architecture.

More specifically, each feature in X is modeled by a neural network with L hidden
layers, represented as fj(Paj,Zj;le, ...,W]-L) for j € [1,d], where le represents the
parameters of the [*" layer. Let Wj(o) € R"*? denote the weight matrix in Lo connecting
to the local neural network modeling X;, where h is the latent size and d is the number
of input variables. For any pair of variables X; and X, the Ridge regression norm of

the weights connecting X}, to all latent units in the network for X is calcualted as:

Aj = HWJ(%“) H2 = \/ Zzﬁbzl <Wﬁ)m>2, where Wﬁ)m represents the weight connecting
the k-th input variable X to the m-th latent unit in the first layer of the network for
X;.

During training, a learning rate of 3 x 1073 is used, along with a batch size of 1000.
Ridge regression regularization is incorporated in both steps by setting the weight decay
for both discriminators to 1 x 107%. The models in DAGAF are optimized iteratively,
with their parameters updated using gradient descent.

The adversarial loss is applied to the reconstructed distribution Pg A(X), meaning
that no noise vector is used during training in the causal structure learning step. Once
the parameters in A are updated, A0 is converted into G 4 through a post-processing
step: Ga = \/ALo(f), where w?jk € ALo(f), followed by thresholding at a value of
0.3, as recommended by prior works such as DAG-GNN ([35], GAE [39], and others.

These final steps are essential to recover the weights w;;, € Ga from A0(f) and to
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Figure 5.2: A Visual Representation of DAGAF. (a) The optimization structure under
ANM and LINGAM, where input data is processed to reconstruct X using multiple loss
terms, excluding Lkrp in the LINGAM case. (b) The extended framework integrating
ANM, LiNGAM, and PNL, where an additional inversion function ¢~! is introduced
to compute Lpnr,, unifying the optimization process. The dashed line signifies the skip
connection. When PNL is not assumed the advanced form of the framework reverts
back to its basic form capable of handling only ANM and LINGAM by solely learning
f. (c¢) The synthetic data generation process, illustrating how the framework enables
structured data synthesis while preserving underlying causal relationships.

minimize false discoveries in G .
To learn ¢! for the PNL case, the architecture and training procedure of g are
reversed so that X serves as the input to reconstruct the original X. However, since

g is a general model, inverting its architecture does not require any changes to its
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configuration. Therefore, the focus is placed solely on the training algorithm.

Remark. The output data X from Step 1 is used exclusively for calculating the loss
terms during training and is then discarded. This is because the reconstruction loss
employed to learn the causal structure of X greatly restricts the range of the generated

samples, producing X with high fidelity but limited diversity.

The training process is formulated as a constrained continuous optimization prob-
lem due to the need to simultaneously update the model weights and the parameters
associated with the acyclicity constraint. To address this, the author adopts a modified
version of the augmented Lagrangian method [47], as utilized in DAG-Notears-MLP.

The complete training objective for Step 1 is defined as follows:

~ 1 & - 1"
LrecX,X) = =3 X = Xilla+ 5> (1)
i=1 i=1

Mean Squared Error KL Divergence
I 2 & . I, o <
+- > k(X X;) - - > k(X X;) + ~ > k(X X;)
i#] i#] ]
Maximum Mean Discrepancy
Logn(X, X) = Ex~px)[D(X)] — EXNPGA X) [D(X)] +EXNP(X)M|V5(D(X)H2 —1)%
Discriminator loss Gradient Penalty
Lg(X) = - Ex.px)[D(G(X))]

Generator loss

(5.8)

A 1< A .
Lrni(X,X) =~ > IX = Xl i.f.f the assumed SCM is PNL
i=1

PNL loss term

st h(AP(f)) =0, [A%(j)]ij = [10if;]]2

Acyclicity constraint

5.1.5 Computational Complexity Analysis

The DAGAF framework consists of three individual models (FCM/Generator M /G,
Discriminator D (ANM, LINGAM setting) and an additional MLP (PNL) case) trained
with an algorithm involving three interconnected components (Causal Structure Learn-

ing, Tabular Data Synthesis and Augmented Lagrangian-based Continuous Optimiza-
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tion). This intricate architecture and training process make DAGAF considerably
more complicated compared to other state-of-the-art methods, such as DAG-GNN [35],
GraN-DAG [36], DECAF [218], and Causal-TGAN [220], which only focus on causal
discovery or tabular data synthesis and involve fewer models. This complexity moti-
vated the author to evaluate the efficiency and practicality of their approach.

They investigate how much resources DAGAF requires to perform causal structure
learning and tabular data synthesis simultaneously. To achieve this, the author provides
pseudo-code for Algorithm 2 and conducts a time complexity analysis on it. The

alternative representation of the training process for their framework is available below.

A+ 0,c+1
current_h(AL0(f)) < oo, h_tol + le — 8
k_max_iter < 100, epochs < 300
for k < k_.maz_iter do
while ¢ < le + 20 do
for epoch < epochs do

if pnl == True then > The beginning of the Causal Discovery (CD) Step
X = {g1(A(Par; Wi, ... W) + 21), ..., ga(fa(Pag; W), .., WE) + 24)}

else
X = {fi(Par; W}, ... WE) + 21, ..., fa(Pag; W}, ..., WE) + 24}

end if

DiscLoss = Lg40 (X,f{)

GenLoss = L5 (X)

RecLoss = Lrpc (X, X) + £|h(AF0)|2 + Ar(AF0)
PnlLoss = Lpnr (X, X) > if PNL is assumed
DiscGradients = DiscLoss.backward()

GenGradients = GenLoss.backward()

RecGradients = RecLoss.backward()

PnlGradients = PnlLoss.backward|() > if PNL is assumed

DiscParameters = DiscParameters - 1le — 3 * DiscGradients
GenParameters = GenParameters - 1le — 3 * GenGradients
RecParameters = RecParameters - 1e — 3 * RecGradients

PnlParameters = PnlParameters - 1le — 3 * PnlGradients > if PNL is assumed

DS{wlo} « cD{wlo} > Parameter transfer between steps
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if pnl == T'rue then > The beginning of the Data Synthesis (DS) Step
X = {g1(G1(Pay; Wi, .., WE) + Z1), ..., ga(Ga(Pag; Wi, ... WE) + Z4)}

else
X = {G1(Pay; W}, ... WE) + Z1, .., Ga(Pag; W}, .., WE) + Z4}

end if

DiscLoss = L4y (X,X)
GenLoss = Lg(Z)

DiscGradients = DiscLoss.backward()
GenGradients = GenLoss.backward|()

DiscParameters = DiscParameters - 1le — 3 * DiscGradients

GenParameters = GenParameters - le — 3 * GenGradients

end for
if h(ALo(f)) > 0.25 then
c4cx10
else
break
end if
end while
current_h(ALo(£)) < h(ALo(f))
X < cx current_h(ALo(f))
if current_h(ALo(f)) < h_tol then
break
end if

end for

The space complexity of DAGAF is O(d), where d is the number of variables in X, which
is consistent with that of Notears and its extensions. For more theoretical details, the
reader is referred to [12].

To conduct a comprehensive time complexity analysis on their framework, the au-
thor investigates the efficiency of each stage in Algorithm 2 individually. Addition-
ally, they include the augmented Lagrangian and the causal knowledge transfer in
their study. The total computational complexity is calculated by adding the individ-
ual complexities of each component of Algorithm 2 and deducing which is the most
resource-demanding. The training procedure of DAGAF begins with an initial stage,

involving declarations of variables, hyperparameters and model instances, all of which
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are considered atomic operations taking constant time O(1).

Afterwards, the training procedure is applied by entering the augmented Lagrangian,
which consists of three nested loops (1: controlled by k_max_iter, 2: constrained by the
range of values for ¢ and 3: managed by the number of epochs in the training process).
Since, in the worst case, all of them will run until their respective limiting values are
reached, individually each of the loops has linear complexity. If the range for each loop
is considered constant, then optimizing the augmented Lagrangian parameters relies
solely on the number of data variables in the input dataset, yielding a time complexity
of O(d), where d is the number of variables in the observational data. Since there are
three nested loops and parameter optimization (taking constant time O(1)) involved
in the augmented Lagrangian, its computational complexity is cubic O(d)3.

Within the augmented Lagrangian, the training algorithm divides into two parts:
a causal structure learning stage and a tabular data synthesis stage with an additional
operation to transfer the causal knowledge between steps taking constant time O(1).
Both sections of the training procedure employ stochastic gradient decent (SGD) to
perform model parameter optimization. Typically, the computational complexity of
SGD is O(knd), where k is the number of epochs, n is the number of samples and d is
the data variable size of X. In the case of DAGAF, both k and n are constant hyperpa-
rameters, which means that the complexity of the optimization technique depends only
on the number of data attributes present in the input. Hence, the total computational
complexity of both parts is linear O(d).

The time complexity of Algorithm 2 can be expressed as O(d)® + 20(d), which
reduces to O(d)? since researchers are only interested in the fastest growing term. The
results of the analysis indicate that DAGAF exhibits a cubic computation complexity,

which is an outcome consistent with findings reported in other research studies [12], [36].

5.2 Experimental Results

The author performs a series of experiments on their general framework for causality-

based tabular data synthesis. These tests utilize various datasets comprising continuous
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and discrete data types to evaluate the following factors:

e Structure learning accuracy, which evaluates how well the model captures and

represents the relationships between features in observational data.

e Synthetic data quality, which analyzes the standard of the samples produced using

the learned generative process.

e An ablation study and sensitivity analysis are conducted to evaluate the impact
of the loss term configuration and the hyper-parameter settings on the training

process - for more information, the reader is referred to Sections 5.2.6 and 5.2.7.

To assess structure learning, DAGAF is compared against several state-of-the-art
Directed Acyclic Graph (DAG) learning methods, including DAG-WGAN [75], DAG-
WGAN+ [77], DAG-Notears-MLP [38], Dag-Notears [12], DAG-GNN [35], GraN-DAG
[36], GAE [39], CAREFL [168], DAG-NF [257], DCRL [258] and VI-DP-DAG [49]. The
quality of the discovered causality is assessed using the Structural Hamming Distance
(SHD) [105] as the primary metric across all experiments. However, it is important to
note that SHD is not the only metric for evaluating the accuracy of learned structures.
Alternative measures, such as Area Under Curve (AUC) and Area Over Curve (AOC),
can also be applied.

The author further assesses the quality of the synthetic data produced by DAGAF
by conducting several tests to analyze the statistical properties of X. To compare
P(X) with Pg A(X), they utilize boxplot analysis and examine marginal distributions.
Furthermore, correlation matrices are calculated for both y and y to evaluate the

relationships among their covariates.

5.2.1 Continuous data

The author conducts experiments on continuous data types using simulated datasets
derived from predefined structural equations and Directed Acyclic Graph (DAG) struc-
tures. To achieve this, the author generates an Erdos-Renyi [243] causal graph with

an expected node degree of 3, which is used as the ground-truth DAG GY and can be
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described by a weighted adjacency matrix A. Each experiment involves 5,000 obser-
vational data samples generated using various equations applied to the causal mecha-
nisms in G, including linear (X := A7X + Z), non-linear-1 (X := A cos(X +1) + 2),
non-linear-2 (X := 2sin(A(X + 0.5)) + A(X + 0.5) + Z), post-non-linear-1 (X :=
sinh(A cos(X 4 1) 4 2)), and post-non-linear-2 (X := tanh(2sin(A (X +0.5)) + A(X +
0.5) + 2Z)). These structural equations have been extensively utilized in various studies
on DAG learning, including models such as, DAG-GNN [35], Gran-DAG [36], GAE [39],
DAG-WGAN [75], DAG-WGAN+ [77] and Notears-MLP [38], among others. Their
widespread use enables a thorough and reliable comparison with other state-of-the-art
models in the field. The last two equations are modified versions of the second and
third equations, specifically designed to serve as appropriate test cases for experiments
related to the PNL assumption. It is also important to note that the list of equations
used in the experiments is by no means exhaustive, other equations can also be applied.

The approach of the author aligns with the methodology used in most state-of-
the-art DAG learning models, including DAG-GNN, GraN-DAG, DAG-Notears and
GAE. To assess the scalability of DAGAF, tests are performed on datasets with 10,
20, 50, and 100 columns. Each experiment is repeated five times to account for sample
randomness and the average Structural Hamming Distance (SHD) is recorded. The

findings are summarized in Tables 5.1, 5.2, 5.3, 5.4, and 5.5.

Table 5.1: Non-parametric DAG structures recovered from linear data samples

SHD (5000 linear samples)

Model
d=10 d=20 d=50 d=100
DAG-Notears 8672 13.8+96 41.8+29.4 102.8 4 53.2
DAG-Notears-MLP 4.6 £4.3 7.6 6.3 29.6 £ 18.5 74 + 30.6

DAG-GNN 6+ 6.9 11.4 £8.2 33.6 £21.2 854+ 464
GAE 55 +£49 103472 31.3+13.8 80.2+ 24.6
GraN-DAG 344+52 6475 2524146 684+ 258
CAREFL 27+48 59+71 2494141 66.9 £ 24.7
DAG-NF 24+46 52169 2314134 64.2+24.3
VI-DP-DAG 21 +45 45+67 2244127 63.7£ 235
DCRL 1.8+27 31+48 18.7+£119 53.3£21.9
DAG-WGAN 52 +£38 92457 19.6 123 58.6 & 22.7
DAG-WGAN+ 3.7+31 56+£49 172+ 10.5 49.1 + 20.1
DAGAF 1.4 + 2.3 2+ 4.4 16.4 +- 9.8 38.8 + 18.3
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Table 5.2: Non-parametric DAG structures recovered from non-linear-1 data samples

Table 5.3: Non-parametric DAG structures recovered from non-linear-2 data samples

Table 5.4: Non-parametric DAG structures recovered from post-non-linear-1 data sam-

ples

SHD (5000 non-linear-1 samples)

Model
d=10 d=20 d=50 d=100

DAG-Notears 114 £ 45 28.24+10.2 554 23.1 105.6 + 48.3
DAG-Notears-MLP 52+ 1.8 154 +46 438 +154 86.2 +29.8
DAG-GNN 924+33 234+£84 50.2+195 98.6+ 37.6
GAE 8.6 + 2.2 20 + 5.7 47.5 +£10.2 92.3 £ 18.9
GraN-DAG 4+24 11.2 £ 6.5 36.4 +11.9 72.8 £21.7
CAREFL 3.8+22 109+62 341+11.2 71.74+19.1
DAG-NF 344+21 104+£56 31.6+10.7 69.5+ 173
VI-DP-DAG 3.1+2 9.8 £ 5.1 28.7 £ 9.3 68.1 +16.5
DCRL 2.9 + 1.7 7.5+ 4 243 £ 7.8 614+ 14.9
DAG-WGAN 6.4+1.4 18.6 £ 3.7 22 4+ 8.6 64.6 £ 15.2
DAG-WGAN+ 49+1.2 142433 205+6.9 571+ 145
DAGAF 2.6 £1 52+ 2.8 18.8+6.2 50.2 + 134

SHD (5000 non-linear-2 samples)

Model
d=10 d=20 d=50 d=100

DAG-Notears 104 £3.9 224 +£8.1 476 +21.2 112.8 £ 57.8
DAG-Notears-MLP 54 +15 13.8+4.3 304+ 157 856 + 35.6
DAG-GNN 84+£32 192+ 7.7 36.2+18.6 91.8 £ 49.3
GAE 73+ 1.8 174 +5.1 33.7+13.7 88.4 4 26.6
GraN-DAG 42 +21 11.6 £5.6 2524145 71.6 £ 29.7
CAREFL 3.8+ 1.8 10.5+53 24.8+13.8 69.9 + 26.1
DAG-NF 33+ 1.7 97+£49 243 +13.1 68.1+ 24.3
VI-DP-DAG 28+ 1.6 93+47 238+ 133 67.3 238
DCRL 22+13 71+29 151 +94 59.5 + 17.2
DAG-WGAN 6.6 1.2 15.2+34 226 %129 64.2+ 215
DAG-WGAN+ 51 + 1.1 123 +25 175+ 10.2 56.7 &+ 18.4
DAGAF 1.4+09 58 +22 14.2 + 8.3 51.8 + 16.2

SHD (5000 post-non-linear-1 samples)

Model
d=10 d=20 d=50 d=100

DAG-GNN 13.7 £ 9.2 21.74+ 104 63.7+31.2 118.6 £+ 50.1
GAE 123+ 81 19.1 £88 56.2+24.6 101.3 +37.4
CAREFL 11.8 £ 6.4 185 +£7.9 521 £ 228 97.2 £+ 34.9
DAG-NF 11.2 £ 53 162+ 6.1 473 +19.5 92.5 + 31.3
DAG-WGAN 105 +£4.7 156 +5.8 445+ 17.7 88.7 £ 29.6
DAG-WGAN+ 84 +33 128 +43 32.8+13.6 66.1 + 21.2
DAGAF 56 + 25 7.3+3.2 254+ 11.3 524 + 15.7
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Table 5.5: Non-parametric DAG structures recovered from post-non-linear-2 data sam-
ples

SHD (5000 post-non-linear-2 samples)

Model
d=10 d=20 d=50 d=100
DAG-GNN 10.8 £8.7 16.1 £11.9 37.1 &30.3 128.3 £ 48.2
GAE 9.1 +6.3 14.3 £ 9.5 31.5 +£24.8 105.7 + 34.4

CAREFL 8358 13583 298 +224 921 £323
DAG-NF 77+£55 128+ 74 284 £21.7 84.8+£ 285
DAG-WGAN 72+52 114+6.2 252+186 76.5+276
DAG-WGAN+ 4.5 £ 3.6 8.6 £5.1 21.7+£ 123 694 +19.1
DAGAF 29+ 24 5.7+3.6 18.6 +£10.5 47.2 + 14.7

5.2.2 Benchmark experiments

In their experiments, the author incorporated discrete datasets as part of an empirical
study to evaluate how the DAGAF framework performs on such data. However, as
discussed in the theoretical analysis conducted in Section 5.1.2, they acknowledge that
applying this method to discrete datasets introduces identifiability challenges.

In conducting experiments with discrete data, the author utilized benchmark datasets
including Child, Alarm, Hailfinder, and Pathfinder, available with their ground truths
from the Bayesian Network Repository at https://www.bnlearn.com/bnrepository.
These datasets are meticulously prepared to facilitate scalability testing and allow for
a fair comparison with leading-edge techniques. The author compared their model
against DAG-GNN and both versions of DAG-WGAN, with the experimental results
shown in Table 5.6.

Table 5.6: Non-parametric DAG structures recovered from benchmark data samples

Datasets  Nodes SHD
DAG-WGAN DAG-WGAN+ DAG-GNN DAGAF
Child 20 20 19 30 17
Alarm 37 36 35 55 43
Hailfinder 56 73 66 71 63
Pathfinder 109 196 194 218 181
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5.2.3 Real data experiments

Up to this point, simulations based on artificial data suggest that the model can yield
satisfactory outcomes. However, such findings are not entirely conclusive because the
simulations do not perfectly reflect real-world scenarios. To mitigate this issue, the
author conducted experiments on the acclaimed Sachs dataset [21], which is respected
within the research community. This dataset comprises 7466 samples across 11 vari-
ables, with its ground-truth underlying structure presumed to contain roughly 20 con-
nections. Additionally, DAGAF was employed with both Additive Noise Model (ANM)
and Post Non-linear (PNL) assumptions to compare the Structural Hamming Distance
(SHD) produced by these Structural Causal Models (SCM), deducing whether the
post-nonlinear model performs better with real-world data. The findings are provided

in Table 5.7.

Table 5.7: Non-parametric DAG structures from real data samples

Sachs Dataset

Model
SHD
DAG-WGAN 17
DAG-WGAN+ 15
DAG-NF 15
DAG-GNN 25
GAE 20
GraN-DAG 17
VI-DP-DAG 16

DAGAF ANM 9 / PNL 8

5.2.4 Synthetic data quality

This study argues that the method of the author outperforms the current best mod-
els in the field of causal discovery by integrating DAG learning with synthetic data
production. To support this assertion, they analyze features (d=10) drawn from two
sets of simulated data based on the ANM and PNL assumptions, then compare these
against features generated by their technique. The author considers the special scenario
in which their model attains a SHD of 0 on the simulation data, resulting in the high-

est quality samples because of the comprehensive understanding of causal mechanisms
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within the generative process.

The author conducts multiple analyses to evaluate the similarity between the origi-
nal and synthetic data. These experiments involve computing the correlation matrices,
visualizing joint and marginal distributions, performing Principal Component Analy-
sis (PCA) [259] to study distributional consistency and performing machine learning
regression to compare the feature importance in both datasets. The findings demon-
strate that the synthetic data generated by the proposed framework possesses adequate
predictive information for regression applications (Figure, 5.3). Additionally, the joint
and marginal distributions of the features (Figure 5.4) present in the input data are
also captured by the generated data. Moreover, the produced samples preserve the
fundamental patterns and structure of the original dataset (Figure 5.5) and accurately

reflect the correlations present within (Figures 5.7 and 5.8).
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Figure 5.3: Feature importance comparison between real (left) and synthetic (right)
data, in both the ANM (first row) and the PNL (second row) case. The synthetic
features with their relevance are indistinguishable from the original ones, allowing for
their application in regression tasks.
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Figure 5.4: Visualizing the distributions of the real and synthetic features, the author
plotted x5 against x8 (left), x3 against x6 (right), in the case of ANM, and x3 against
x4 for the PNL case. The joint and marginal distributions are accurately modeled with
no significant differences between the real and synthetic features.
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PCA Comparison of Original and Synthetic Data

PCA Comparison of Original and Synthetic Data
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Figure 5.5: Principal Component Analysis (PCA) between the original and synthetic
samples for both the ANM (left) and the PNL (right) case. The author observes both
the input and the synthetic samples have similar clusters and outliers. The results
indicate that the implicitly generated distribution resembles the original distribution
in both mean and standard deviation, making them indistinguishable from each other.
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Figure 5.6: Visualizing the Wasserstein distance between the original and synthetic data
over the course of the augmented Lagrangian algorithm. The significant discrepancy
between the real and the generated samples (165-170 and from 300 epochs onward)
occurs because of fluctuations in the SHD, courtesy of the parameter-tuning for the
continuous optimization approach. Conversely, the lowest SHD is detected when the
Wasserstein Distance is at its lower conversions (50-150 and 175 - 275 epochs).
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Figure 5.7: Comparison of the correlation matrices for real (left) and synthetic (right)
features reveals that the statistical correlations across the feature space for both real
and synthetic data are nearly identical, in the ANM case.
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Figure 5.8: Comparison of the correlation matrices for real (left) and synthetic (right)
features reveals that the statistical correlations across the feature space for both real
and synthetic data are nearly identical, in the PNL case.

5.2.5 Additional results

The author enhances the analysis from earlier experiments by incorporating more ex-
amples. These include real-vs-synthetic statistical comparisons for each feature (Table
5.8), additional visual representations of synthetic feature distributions (Figure 5.9),
and the remaining outcomes from machine learning regression models (Figures 5.10
and 5.11). Additionally, they offer examples of suboptimal results to demonstrate the
repercussions when causal structure learning or tabular data synthesis do not yield

adequate results.
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Figure 5.9: Further examples of the synthetic joint and marginal distributions for the
method of the author on the dataset presented in Section 5.2.4. The author observes
multiple cases with different distribution shapes. Additionally, they depict one case of
severe latent collapse (bottom-right corner) in the produced data from DAGAF.
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Figure 5.10: Remaining examples of feature importances (x1-x6) to supplement the
results in Section 5.2.4. The author observes some failure cases, where the synthetic
features differ significantly from their real counterparts.
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Figure 5.11: Remaining examples of feature importances (x7-x10) to supplement the
results in Section 5.2.4. The author observes some failure cases, where the synthetic
features differ significantly from their real counterparts.

Table 5.8: Mann-Whitney t-test results for all real and synthetic features to supplement
Figure 5.4. The author observes some failure cases, where the real and synthetic features
differ significantly (p < 0.05).

Feature  p-value

x1 7.7952e-07

x2 0.5004
x3 0.1683
x4 0.0020
x5 0.8563
x6 0.9127
x7 0.0364
x8 0.1747
x9 0.2089

x10 6.4502e-26
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5.2.6 Ablation study

In an ablation study, the author aimed to find the optimal combination of terms within
the loss function for Step 1. Using the Sachs, ECOLI70, MAGIC-IRRI and ARTH150
datasets available in https://www.bnlearn.com/bnrepository, nine distinct experi-
ments were conducted, exploring different mixtures of loss terms. Each setup included
the Wasserstein-1 distance. The first configuration, labeled "w/o recon loss”, ex-
cludes the reconstruction loss and its regularization from the training process. The
remaining configurations were identified by the specific terms involved in the recon-
struction loss for W, such as MSE [180] and NLL [260]. Furthermore, the author
examined combinations with additional terms like MMD [67] and KLD [58]. The out-
comes of these trials are detailed in Table 5.9.

Table 5.9: DAGAF ablation study

. SHD
Loss function
Sachs ECOLI7T0 MAGIC-IRRI ARTH150

w/o recon loss 21 109 194 352
recon loss (MSE) 14 85 148 263
recon loss (NLL) 16 100 163 295
MSE + MMD 10 51 111 164
NLL + MMD 14 85 148 263
MSE + KLD 12 63 130 196
NLL 4+ KLD 12 63 130 196
MSE + KLD + MMD 9 46 102 150
NLL + KLD + MMD 11 54 117 172

5.2.7 Sensitivity analysis

In order to evaluate the robustness of the model, the author conducts a sensitivity
analysis to examine how changes in hyper-parameter configurations influence model
training. This study measures the accuracy of DAG modeling (denoted as SHD) under
varying hyper-parameters, including the learning rate and dropout rate (Ir, dropout),
the size of the noise vector, and the batch size (z-size, batch-size). The analysis

begins with a baseline set at Ir = 0.001, dropout = 0.5, z-size = 1, batch-size =
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100, modifying each parameter one at a time to determine their impact on the SHD.

The experiments utilized the Sachs dataset, with the outcomes compiled in Table 5.10.

Table 5.10: DAGAF sensitivity analysis

Sachs Dataset
Hyper-parameters o

SHD
Ir = 3e-3, dropout = 0.5, z-size = 1, batch-size = 100 9
Ir = 3e-3, dropout = 0.0, z-size = 1, batch-size = 100 10
Ir = 3e-3, dropout = 0.5, z-size = 2, batch-size = 100 10
Ir = 3e-3, dropout = 0.5, z-size = 5, batch-size = 100 11
Ir = 3e-3, dropout = 0.5, z-size = 1, batch-size = 500 9
Ir = 3e-3, dropout = 0.5, z-size = 1, batch-size = 1000 10
Ir = 2e-4, dropout = 0.5, z-size = 1, batch-size = 100 11
Ir = 1e-3, dropout = 0.5, z-size = 1, batch-size = 100 12

5.3 Discussion & Future Work

Tables 5.1 through 5.5 indicate that the proposed general framework for causality-
driven tabular data synthesis consistently surpasses current state-of-the-art methods in
DAG learning across all test scenarios (linear, nonlinear-1, nonlinear-2, post-nonlinear-
1, and post-nonlinear-2) and data dimensionalities, regardless of whether ANM or PNL
assumptions are applied. Notably, the SHD difference between DAGAF and other
models becomes more pronounced as data dimensionality increases, underscoring the
enhanced performance of the approach for DAG learning in datasets with numerous
variables, courtesy of adversarial training.

Table 5.6 showcases the benchmark experiment results, highlighting the exceptional
performance of DAGAF. Notably, it consistently surpasses DAG-GNN across all four
datasets: Child, Alarm, Hilfinder, and Pathfinder. Moreover, both DAG-WGAN and
its improved version, DAG-WGAN+, deliver poorer outcomes than the approach of
the author in three out of the four datasets. Similar patterns emerge in experiments on
continuous datasets, where the SHD gap between the method of the author and others
widens with more data variables.

Up to this point, the author has focused solely on the performance of their model
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using continuous and benchmark datasets. While these outcomes show strong perfor-
mance, assessing the approach with real-world datasets is essential for a comprehensive
evaluation. The experiment using the Sachs dataset illustrates that DAGAF is profi-
cient at accurately determining DAG structures from real data. As indicated in Table
5.7, the method of the author significantly surpasses all other prominent models em-
ployed in the study. Furthermore, empirical data suggest that assuming PNL enables
the framework to derive a more precise approximation of the causal structure compared
to other identifiable causal models.

In DAGAF, the process of learning DAG structures from observational data is
conducted alongside the generation of high-quality synthetic datasets. This is evidenced
by the results in Figures 5.7, 5.8, 5.3, 5.6, 5.5 and 5.4, applicable to both ANM and
PNL scenarios. When the model accurately identifies the true structure in a dataset
(indicated by SHD = 0), the gap between the distributions of the real and synthetic data
is minimized. Additionally, the model accurately mirrors the statistical dependencies
from the real dataset in the synthetic data it generates. These findings demonstrate
the ability of DAGAF to produce varied data samples while preserving the integrity of
DAG structures.

The ablation study together with the sensitivity analysis identifies the best combi-
nation of loss functions for the framework and illustrates the effect of hyperparameters
on model training. As shown in Table 5.9, the optimal loss terms for Step 1 include
MSE, KLD, MMD, and adversarial training. Additionally, the data in Table 5.10 reveal
that lowering the learning and dropout rates substantially enhances model performance.
Conversely, expanding the dimensions of the noise vector and input batch size leads to
only minor variations in the accuracy of the algorithm.

The results of the experiments demonstrate that the proposed approach adeptly
handles various types of data (numerical and categorical) to consistently reconstruct
DAG structures given the ANM and PNL assumptions while generating realistic data
samples. Notably, DAGAF significantly surpasses the performance of the latest DAG-
learning methods. The research highlights that the incorporation of the Wasserstein

distance substantially enhances the process of DAG-learning.
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Although DAG-WGAN+ demonstrates strong potential in causal structure learn-
ing, several limitations become evident when applying the model to benchmarks or
data produced by real-world systems (i.e., Child, Alarm, Sachs, Hailfinder, Pathfinder,
etc.). One of the primary challenges lies in the nature of real-world data, which often
contain noise, potential measurement errors and mixed data types. DAG-WGAN+, as
a generative machine learning-based approach, can be sensitive to these issues, risking
overfitting or misrepresenting causal relationships when data quality is suboptimal or
the dataset itself is inherently challenging. Furthermore, the model assumes causal suf-
ficiency, which means that all relevant variables are observed and measured. In practical
settings, this assumption rarely holds, and the presence of latent confounders or unob-
served factors can lead to biased or incomplete causal structures. In their future work,
the author intends to address these challenges by integrating robust regularization tech-
niques, domain adaptation methods, or hybrid approaches that explicitly model latent
variables. Additionally, pre-processing strategies to better handle mixed data types and
denoise observations will be utilized to improve the stability and reliability of learned
causal structures in real-world datasets.

Model-related limitations also constrain DAG-WGAN+ in real-world application.
The framework enforces acyclicity through continuous relaxations, which restricts its
ability to represent systems with feedback loops or cyclic dependencies. Additionally,
the performance of DAG-WGAN+ depends heavily on hyperparameter tuning, net-
work architecture, and adversarial training stability. Small changes in these configura-
tions can result in significantly different inferred graphs, undermining reproducibility
and interpretability. Consequently, while the adversarial component allows the model
to capture complex nonlinear dependencies, it can also introduce training instability,
making convergence difficult and outcomes inconsistent across runs. This occurs pri-
marily due to the delicate balance required between the generator and discriminator
during training, where small imbalances can lead to higher oscillating losses or mode
collapse. Future research will explore additional stabilization techniques for adversarial
training, such as adaptive learning rates or curriculum learning approaches. Alternative

formulations for enforcing acyclicity, as well as architectures capable of approximating
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cyclic dependencies, will also be explored with the aim of enhancing the robustness and
expressiveness of DAG-WGAN+ while improving reproducibility across runs.

Moreover, the outcomes discussed have been derived utilizing LINGAM, ANM, or
PNL causal models, which are recognized as identifiable SCM [31], [98], [261], [32].
Nevertheless, the scope of current experiments is limited to these models, presenting
a challenge. Future research endeavors will investigate a broader array of identifiable
structures, including generalized linear models, polynomial regression, and index mod-
els. Additionally, experiments involving the synthesis of tabular data have also been
somewhat limited, focusing largely on the basic attributes of datasets. Ongoing work
will aim to broaden these investigations by evaluating DAGAF against other causality-
based tabular data generation methods [218], [219], [220]. This evaluation will utilize
more appropriate metrics like the Cross-Validation Score (CVS) [262], Kolmogorov-
Smirnov (KS) test [263] or Chi-Square test [264] to enable a more comprehensive as-
sessment of the data generation proficiency of DAGAF.

The proposed approach identifies DAG structures by integrating MLE with adver-
sarial loss components while applying an acyclicity constraint through an augmented
Lagrangian. Consequently, DAGAF is characterized by substantial computational de-
mands and a complex loss function. The author plans to explore more efficient methods
for structure learning and adversarial loss training to create a faster model that mainly
uses the Wasserstein distance. Additionally, the PNL model instance is limited since
the neural network designed to learn g~! features a simple architecture, and there
is inadequate regularization on the loss term that governs the parameter learning of
the invertible function. Future research will involve experiments to ascertain whether a
more elaborate architecture and loss function can be utilized in training ¢g~! to discover
more accurate causal structures.

The proposed causal learning-based framework for synthetic data generation is
closely linked to recent advancements in generative modeling, including Digital Twins
and transformer-based architectures. DAG learning inherently captures the core idea of
attention mechanisms by identifying the direct causal parents of each variable, much like

how transformers dynamically assign importance to relevant dependencies. Further-
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more, the approach aligns with the principles of Digital Twins, which aim to replicate
real-world systems and generate data that accurately represent their causal structures.
This study introduces a unified framework for causal discovery and generative model-
ing, incorporating adversarial learning, MSE, MMD, and KLD regularization to ensure
robust structure learning and high-fidelity synthetic data generation.

In their future work, the author will implement various strategies to address miss-
ing data. This includes data imputation techniques such as mean/mode imputation,
multiple imputation, and more advanced methods such as matrix completion and vari-
ational autoencoders (VAE), while recognizing that imputation inherently introduces
assumptions about missingness that could bias results. Additionally, they will incorpo-
rate structural information by utilizing partial knowledge of the directed acyclic graph
(DAG), informed by domain expertise, to mitigate the impact of missing data. An-
other approach involves explicitly modeling missingness by introducing a missingness
variable within the DAG to indicate whether a particular variable is absent. Further-
more, the author will apply causal inference methods, including latent variable models
and specialized techniques tailored for incomplete data, to enhance the robustness and
accuracy of their analyses.

Finally, as part of their future work, the author will explore the flexibility of their
framework by experimenting with various combinations of SCM and DGM to determine
the optimal configuration for improving output quality and extending its applicability
to time-series data. To that end, emerging concepts, such as the digital twin layer
utilizing multi-attention networks [222], [223], present promising directions for further
investigation. Their capacity to handle mixed-variable datasets, align higher-order sta-
tistical distributions, and dynamically capture multimodal dependencies can enhance
the causal discovery framework proposed in this study. Future research could focus
on integrating these mechanisms to strengthen the robustness and scalability of causal
discovery and synthetic data generation for complex real-world datasets. Such inte-
gration would bridge theoretical foundations with practical applications, addressing
challenges like non-i.i.d. data and variable heterogeneity while enabling the creation of

high-fidelity synthetic datasets for downstream tasks.
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A thorough investigation of hyper-parameters will underpin the novel setup to iden-
tify their optimal values, leading to more realistic data samples produced by a more

precisely simulated generative process.
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Chapter 6

Conclusion

In this chapter, the author concludes their thesis by reflecting on the impact of their
research on causal structure learning. They also share their perspective on recent
advancements and the current state of the field, highlighting how their findings can
shape future research directions. Finally, the author provides closing remarks on the

contributions and significance of their work within the context of the thesis.

6.1 Advancements in Causal Structure Learning through

the Wasserstein Distance

The research described in Chapter 3 provides compelling evidence that incorporating
the Wasserstein distance metric can substantially improve causal structure learning
from tabular data. By addressing the limitations of traditional MLE-based causal
discovery methods, the study demonstrates how adversarial training, guided by the
Wasserstein metric, can enhance both the accuracy of causal inference and the qual-
ity of data generation. To achieve this, the author introduces DAG-WGAN, a novel
framework that seamlessly integrates a Wasserstein-based adversarial loss with an au-
toencoder architecture and an acyclicity constraint. This combination enables the
model to simultaneously learn causal relationships and produce realistic synthetic data
that better represent the underlying data distribution. Comprehensive experimental

results indicate that DAG-WGAN consistently surpasses existing methods that exclude
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the Wasserstein distance, particularly when applied to high-cardinality datasets. The
model demonstrates remarkable scalability, achieving improved performance across sce-
narios involving 50 to 100 nodes, along with enhanced training stability that produces
a 99.9% improvement across all experiments conducted and a Structural Hamming Dis-
tance (SHD) of 17 compared to 25 achieved by state-of-the-art models on real-world
data. Moreover, DAG-WGAN exhibits a notable advantage in data generation quality,
as illustrated in Figures 3.2 — 3.8. The results collectively suggest that the improved
fidelity of the synthesized data not only enhances the interpretability and robustness
of causal discovery but also contributes to a more accurate and dependable data gen-

eration process overall.

6.2 Optimizing Causal Structure Learning with Genera-

tive Adversarial Networks and DAG-NoCurl

The research described in Chapter 4 introduces a generative adversarial DAG learning
framework that advances causal structure discovery by integrating adversarial training,
disentangled representations and efficient structure learning techniques. Building on re-
cent methods that reformulate causality learning as an optimization problem with a
continuous acyclicity constraint, the proposed approach called DAG-WGAN+ leverages
generative adversarial networks to overcome the limitations of maximum likelihood es-
timation and improve both accuracy and efficiency. Assuming the identifiability of the
true causal model, the framework learns a causal structure capable of generating data
distributions consistent with the observed data, further enhanced through integration
with InfoVAE to encourage mutual information between latent and observed variables.
Theoretical analysis demonstrates that, for a fixed level of mutual information, the
model achieves global optimality when it accurately recovers the data distribution.
Additionally, by adapting a modified version of the DAG-NoCurl framework, the pro-
posed method achieves substantial speed improvements while avoiding restrictions tied
to initial estimations, allowing continued refinement of the recovered DAG. Extensive

experiments on benchmark datasets confirm that the model outperforms most state-
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of-the-art approaches in both learning quality (99.9% improvement across all cases,
SHD 15 vs. >= 16 for the state-of-the-art on real-world data) and computational

performance (reduced computational complexity from cubic to quadratic).

6.3 DAGATF insights towards integrating Causal Discov-

ery and Data Synthesis

The research described in Chapter 5 introduces DAGAF, a comprehensive and robust
dual-step framework for multivariate causal structure learning and high-fidelity tabu-
lar data synthesis. Unlike conventional approaches that rely on a single identifiable
causal model, DAGAF unifies multiple structural causal models (Additive Noise Model
(ANM), Linear non-Gaussian Acyclic Model (LINGAM), and Post-Nonlinear Model
(PNL)) within a single architecture capable of learning complex causal dependencies.
By leveraging Directed Acyclic Graphs (DAG) to represent inter-variable relationships,
the framework models the underlying generative mechanisms of data, enabling it to
produce realistic samples that closely match true data distributions. A rigorous theo-
retical analysis demonstrates how the Wasserstein-1 distance metric serves as an effec-
tive measure for guiding structure learning, while the integration of regularization and
reconstruction loss terms strengthens the ability of the framework to recover mean-
ingful causal relationships from observational data. Extensive experimental evalua-
tions on both real-world and benchmark datasets reveal that DAGAF consistently out-
performs state-of-the-art DAG-learning methods, achieving significantly lower Struc-
tural Hamming Distance (SHD) scores (Sachs: 47%, Child: 11%, Hailfinder: 5%, and
Pathfinder: 7% improvements), while simultaneously generating diverse, high-quality
synthetic samples. These findings highlight a profound connection between the accu-
rate recovery of DAG structures and the generation of realistic, representative data,
underscoring that the synthesis of authentic tabular datasets is inherently linked to the

discovery of meaningful causal mechanisms within the data.
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6.4 Future directions

The field of causal structure learning has made significant advancements in recent years,
with research primarily focusing on enhancing continuous optimization-based methods
and establishing robust theoretical frameworks for efficient causal discovery. These de-
velopments have enabled researchers to accurately identify causal relationships between
data variables within a reasonable amount of time. The author envisions the next phase
of progress in this field to be its practical application in industry. To that end, they pro-
pose directing future research efforts to solving the fundamental challenges associated
with the integration of causal machine learning methods in industry described below.
Each research problem is presented with a case study showcasing potential solutions
and real-world applications, facilitating the translation of causal inference into diverse

industrial domains.

e Scalability to High-Dimensional and Big Data — A key challenge is scalabil-
ity, as current methods frequently face difficulties with computational efficiency
and accuracy when applied to high-dimensional datasets, such as those in ge-
nomics or social networks. Future research will aim to address this by developing
scalable algorithms that utilize sparsity, distributed computing, and approxima-
tion techniques such as adversarial training to efficiently manage large-scale sys-
tems.

Decoding Cancer Causality at Genomic Scale: In genomics, large-scale
projects such as The Cancer Genome Atlas (TCGA) have leveraged sparse Bayesian
networks and adversarial training to discover causal relationships between gene
mutations and tumor progression, enabling personalized cancer treatment strate-
gies [265]. Scalable causal inference methods have also been applied in social
network analysis to identify influential nodes that drive information diffusion and

polarization across massive user networks.

e Causal Structure Learning in Dynamic and Temporal Systems — In-
creasing emphasis is being placed on causal structure learning from dynamic and

temporal systems, as many real-world phenomena, such as climate patterns and
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neural activity, involve complex temporal processes that are challenging to model
causally. Progress in this area requires extending causal discovery techniques to
time-series data, managing feedback loops, and addressing non-stationary behav-
ior. Approaches applying dynamic Bayesian networks are anticipated to play a
significant role in these advancements.

Mapping Climate Feedback Loops Through Time In climate science, re-
searchers have employed Dynamic Bayesian Networks (DBN) to model causal in-
teractions between COs, temperature, and ocean currents, improving predictions
of climate feedback mechanisms [266]. Similarly, in neuroscience, the Human Con-
nectome Project has used DBN and Granger causality to identify dynamic causal
pathways between brain regions, deepening understanding of disorders such as

epilepsy and schizophrenia.

e Multi-Modal and Heterogeneous Data Integration: — Integrating multi-
modal and heterogeneous data presents a major challenge. Real-world datasets
often encompass diverse formats, including text, images, and tabular data. Fu-
ture approaches are expected to concentrate on identifying causal relationships
across these varied modalities, potentially leveraging embeddings and feature rep-
resentations to establish a cohesive causal framework.

Unifying Brain Imaging and Clinical Data in Alzheimer’s Research:
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) combines MRI, PET,
genetic, and clinical data to discover cross-modal causal relationships related to
cognitive decline. Through multi-view causal representation learning, researchers
identified biomarkers predictive of Alzheimer’s progression, improving early de-
tection and interpretability [267]. Similar techniques are also used in autonomous
systems and disaster response to fuse sensory, textual, and environmental data

for causal event modeling.

e Causal Discovery in Noisy, Biased or Missing Data — Managing noisy,
biased, or missing data continues to be a significant challenge, as real-world

datasets are frequently incomplete or contain errors, making causal inference
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more complex. Future research will strive to develop robust algorithms capa-
ble of addressing noise, hidden confounders, and selection bias, while accurately
imputing missing data without compromising the underlying causal relationships.
Recovering Medical Causality from Imperfect Health Records: In health-
care, causal discovery from Electronic Health Records (EHR) often involves in-
complete or biased data. Robust causal models using graph-based imputation
and Bayesian inference have been employed to reveal medication—outcome rela-
tionships in chronic disease management [268]. In economics, causal techniques
with bias correction are used by institutions such as the IMF and World Bank to

infer policy impacts from incomplete and noisy global indicators.

e Applications in Real-World Domains — The application of causal structure
learning in real-world domains presents immense potential. Areas such as health-
care, economics, and environmental science stand to gain from actionable insights
into causal relationships. Future work will focus on partnering with domain ex-
perts to develop customized causal discovery tools and showcase their effectiveness
in addressing complex societal challenges, such as crafting public health strategies
or informing policy decisions.

Causal Insights from COVID-19 Policy Interventions: During the COVID-
19 pandemic, causal Bayesian networks were applied to the Oxford COVID-19
Government Response Tracker to evaluate the effectiveness of interventions across
more than 180 countries. The study identified which measures, such as lock-
downs and mask mandates, had the strongest causal effect on transmission re-
duction [269]. Beyond public health, similar causal modeling frameworks are now
used in energy systems for predictive maintenance and in economic policy design

for assessing taxation and welfare impacts.

e Ethics, Bias and Policy Implications — The field must address the ethical
and societal challenges associated with causal reasoning. Applying causal models
in sensitive areas, such as hiring practices or criminal justice, raises important

concerns regarding bias and fairness. It will be essential to develop methods that
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promote ethical applications and produce unbiased results, especially as causal
models are increasingly employed in decision-making and policy development.

Reassessing Fairness in Algorithmic Justice: The ProPublica COMPAS
study exposed racial bias in recidivism prediction systems. Subsequent research
on counterfactual fairness [270] applied causal reasoning to separate legitimate
from spurious causal pathways, leading to fairer decision frameworks. Similar
causal debiasing approaches have been adopted by organizations such as LinkedIn
and IBM Research to ensure equitable outcomes in hiring and recommendation

algorithms.

Moreover, the author provides additional case studies and real-world applications for
addressing specific scientific problems within industry domains they are interested in,

such as Physics, Astronomy, Large Language Models (LLM), and Biomedical Sciences.

e Causal Discovery in Complex Physical Systems — Understanding causality
in physical and astrophysical data remains difficult due to non-linearity, noise,
and temporal dependencies inherent to large observational datasets. Extending
causal discovery to handle dynamic, multivariate signals is key to improving phys-
ical interpretability.

Tracing Cosmic Evolution through Causal Graphs: Researchers applied
causal structure learning to cosmological simulations (e.g., CAMELS) to discover
how dark matter distribution causally influences galactic formation and star evo-
lution [271], [272]. Graph neural networks and dynamic Bayesian models were
used to infer causal dependencies across temporal snapshots, enhancing the in-

terpretability of simulation-based inference in astrophysics.

e Causal Reasoning and Fairness in LLM — As large language models are in-
creasingly used in decision-support systems, ensuring causal consistency and fair-
ness is critical. Most LLM excel at correlational pattern recognition but struggle
with true causal inference or counterfactual reasoning.

Probing Causal Understanding in Large Language Models: Recent eval-

uations show that GPT-4 and similar LLM exhibit systematic biases in causal
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judgment tasks, such as direction-of-causation or counterfactual inference [273].
Hybrid models integrating structural causal models with LLM aim to improve
causal reasoning and reduce bias, advancing interpretability and ethical deploy-

ment.

e Causal Discovery in Real-World Clinical Data — Handling bias, noise, and
missingness in health records remains a major challenge in clinical causal infer-
ence. Integrating causal discovery with generative patient modeling can emulate
and validate clinical trials.

Emulating Real-World GLP-1 Efficacy in Type 2 Diabetes through
Causal Learning and Virtual Patients: A virtual trial framework combined
causal structure learning with generative modeling to emulate RCT of GLP-1
receptor agonists [274]. Using 5,476 patient records, virtual patients were gener-
ated via a causal-WGAN to reproduce treatment effect rankings, demonstrating

scalable and generalizable estimation of real-world treatment efficacy.

Ultimately, the connection between causality and adversarial training underscores a
fundamental shift in modern machine learning toward models that prioritize robustness,
interpretability, and causal validity over superficial correlation fitting. While causality
seeks to discover the true generative mechanisms that govern observed samples, ad-
versarial training reinforces this objective by exposing models to carefully constructed
perturbations that emulate counterfactual or interventional scenarios. This process
forces models to distinguish between features that are causally relevant and those that
are merely coincidental or distribution-specific. In essence, adversarial perturbations
function as empirical probes, similar to causal interventions, that reveal the stability
and invariance of learned representations under various manipulations. By aligning
the empirical rigor of adversarial robustness with the conceptual foundations of causal
inference, researchers can accelerate the development of learning systems that not only
withstand adversarial or out-of-distribution challenges but also capture the mechanism-
driven regularities underlying real-world data. Therefore, the integration of causal rea-

soning and adversarial training represents a promising pathway toward achieving more
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reliable, interpretable, and firmly grounded in underlying scientific principles artificial

intelligence.

6.5 Closing thoughts

This thesis delves into various theoretical and practical aspects of causal discovery, fo-
cusing on continuous optimization-based models, efficient structure learning algorithms,
and frameworks designed to capture multivariate causality under multiple causal model
assumptions. It introduces three approaches (namely DAG-WGAN, DAG-WGAN-+
and DAGAF), which have led to four successful publications (two in conferences and
two in journals), with a fifth paper currently in progress. Through these contributions,
the author has made a substantial impact on key areas of causal structure learning,
including adversarial-based causal discovery, resource-efficient structure learning, and
the simultaneous approximation of causal mechanisms and tabular data synthesis.
The thesis provides a comprehensive account of the implementation details of these
models, supported by theoretical analyses that include mathematical proofs and in-
tuitive explanations. Additionally, the author presents extensive empirical evidence
from various experiments to validate their theoretical claims and test their underly-
ing hypotheses. Finally, the results highlight that the proposed models significantly

outperform state-of-the-art approaches, showcasing their effectiveness and superiority.
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Appendix A

Theoretical Proofs

This appendix serves as a designated space for presenting proofs of various statements

made throughout this work.

A.1 Proof of lemma 3.2.1

Lemma 3.2.1. The Structural Equation Model (SEM) used in the decoder architecture
X = Py(X|Fo((I — AT)"'F(Z))) belongs to the Additive Noise Model category.

Proof. For simplicity, the derivation of this proof requires only the architecture of the
generative model, denoted as X = Fo((I — AT)"'F{(Z)). According to [35], under the
assumption that Fy is invertible, X = Fo((I—AT)"'F(2)) = F; {(X) = ATF; 1(X) +
F1(Z). Furthermore, if the functions F5 and F; are omitted, the architecture simplifies
toX = (I —AT)"1Z = ATX + Z, where ATX + Z is the linear SEM.

The linear SEM can be represented as a Generalised Linear Model (GLM) X; =
g (fj(X)), where X; = ¢,;(f;(X)) = X, = A]TX + Z; under the assumption that the
function g; just adds noise to its input and f; = AjTX (i.e linear). However, the
parameterized functions Fo and F apply nonlinearity to the linear structural equation
model. Therefore, the SEM applied in the VAE component of DAG-WGAN is a special
case of GLM, where X; = g;(f;(X)) assumes the general form of X; = f;(X) +
Z;, which falls under the Additive Noise Model (ANM) category [98] due to f being

nonlinear, thus concluding the proof. ]
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A.2 Proof of proposition 3.2.2

Proposition 3.2.2. Given an (un)known ground truth graph G4 faithful to the obser-
vational data distribution PG% (X), the parameters of the implicitly learned probability

distribution Pg, (X) are refined by the following solution D : R — R

Egp,[DX)] = Ex~p, [D(X)] + AEx p_[([V5D(X) —1]1)’]

Critic loss Gradient penalty

E 2 qu(zPa((1-AT)F3(x)) [D(Dec(2))],

Generator loss
where both terms are well-defined, differentiable almost everywhere and converge when

Pgo (X) = Pg, (X).

Proof. DAG-WGAN is a VAE-GAN approach, where the adversarial architecture is
WGAN-GP. Notice also that the discriminator D used in DAG-WGAN is very similar
to the one used in the standard WGAN-GP (see the WGAN-GP architecture subsection
in Section 3.2.1), and both are trained using the same adversarial loss. This allows the
author to derive the proof of their proposition from other existing ones.

The convergence of the terms in the proposition relies on the fact that all variations
of WGAN converge when the critic cannot distinguish real from fake data samples,
at which point the Wasserstein distance is 0. Theoretically speaking, to achieve an
Earth-Mover distance of 0 means that the generator must synthesize new data samples
which are indistinguishable from the input. To this end, the following must be correct:
Given a fixed optimal 1-Lipschitz continuous discriminator D*, the generator
G converges if and only if Pgo (X) = Pg, (X). The above statement is intuitively
true because D* always produces a Wasserstein distance of 0, which is only possible
if the samples produced by G belong to a probability distribution Pg A(X) identical
to the observational distribution Pgo (X). Therefore, the generator will converge if
and only if its fake samples do not violate the converging condition of the critic, which

occurs only when Pgo (X) = Pg, (X), thus completing the proof.
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A.3 Proof of proposition 4.1.1

Proposition 4.1.1. Given some input X and latent variables Z, for any fixed value of
the mutual information term I, (x z) (X,Z2), Lpac-wacANn+ reaches global optimum
when the decoder distribution Py(X|F2((I — AT)"1F{(Z))) matches the observational
data distribution P(X).

Proof. The author considers the InfoVAE objective used in the context of the DAG-
WGAN+ decoder model, defined as:

Lyae = —Eq, (z/m,((1-aT)Fs(x))) 108 Po(X|Fa((I — AT)'F1(2)))]
+ (1 = B)Ex~px)[DrL(Qe(ZIF4((I — AT)F3(X)))||P(Z))]

+ (v + 8= 1)DkL(Qs(2)[| P(Z)).

More specifically, they aim to show that this objective achieves a global minimum
when the joint distribution Q4(X, Z) of the encoder matches the model joint distribu-
tion Py(X, Z) induced by the decoder:

Qs(X, Z) = P(X)Qy(Z|F4((I — AT)F5(X))) = (A1)

Py(X, Z) = P(Z)Py(X|F2((I — AT)'F1(2))).

Under this condition, several consequences follow (by properties of joint distribu-
tions):

e The marginals match: Q4(X) = Py(X).

e The conditionals match: Qu(Z|F4((I-AT)F3(X))) = Py(F2((I-AT)"1F,(2))|X)
and Qu(F4((I — AT)F3(X))|Z) = Pp(X[F2((I — AT)"'F1(Z))).

e The latent marginal also matches: Q4(Z) = Py(2).

Substituting into the loss:

1. The reconstruction term becomes:

—Eq, (zF.((1-AT)Fs(x)) 108 Po(X|Fa((I — AT)"'F1(2)))],
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which achieves its minimum when Py(X|F2((I — AT)71F(2))) = Qu(F4((I —
ATYF3(X))|Z) - that is, the decoder correctly models the conditional distribution

of the data given the latent variables.

2. The KL divergence terms vanish:
Dkr(Qs(Z|F4((I — ATF3(X)))|[P(2)) =0 and  Dki(Qs(Z)|P(2)) =0,

because the respective distributions match under the joint equality. In other
words, the first term yields 0 because Qy(Z|Fa((I — AT)F3(X))) = Pyp(F2(( —
ATY"1F((2))|X) = P(Z), while the second equation computes a value of 0 due
to Qu(Z) = Py(Z) = P(Z).

To justify why this implies recovery of the true data distribution: note that the
encoder is trained on samples from the true data distribution P(X), so the joint dis-
tribution Qy(X, Z) = P(X)Qu(Z|F4((I — AT)F3(X))) is grounded in the true data. If
the decoder achieves Py(X, Z) = Q4(X, Z), then its marginal over X is also:

Py(X) = / Py(X|Fa((I — AT)"'F,(2)))P(2) dZ
— [ Qu(Fu((1 - ATFA(X))|2)P(2) 2

But since Qu(F4((I — AT)F3(X))|Z) was derived from P(X) via the encoder, it
follows that:

Py(X) = / Qu(Fu((I — AT)F5(X))|2)P(Z) dZ = P(X).

Thus, the decoder distribution Py(X) matches the true observational distribution. This
means that the decoder

Py(X|Fo((I - AT)7'Fi(2)))

has successfully learned to generate samples indistinguishable from the true data dis-
tribution P(X).
Therefore, the InfoVAE objective is globally minimized when Q4(X, Z) = Py(X, Z),
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and under this condition, the decoder Py(X|Fa((I — AT)"'F{(Z))) recovers the true

observational distribution P(X), thus concluding the proof. O

A.4 Proof of proposition 4.1.2

Proposition 4.1.2. Given a generated data distribution Pg, (X), defined using a
causal graph G a belonging to the set of identifiable causal graphs Sg,, and the true
underlying causal structure of the input data denoted as G%. Assuming that G?A is
also a member of Sg,, then a learned causal graph G A contains the same structure as

G9 i.ff. Pg,(X) matches the original data distribution PGoA(X).

Proof. If G% is contained in Sg,, then according to Definition 1 the following state-
ment must also be true: Under the same set of assumptions A, there exists only one
causal graph Ga capable of defining Pg, (5() Hence, if a causal structure learning
model M recovers a causal graph Ga that matches G, then Pg, (X) = PGoA(X),

thus concluding the proof. O

A.5 Proof of proposition 5.1.1

Proposition 5.1.1. Let the ground-truth graph GQ be the only structure that can
generate P(X), then, under the assumption of causal identifiability, applying adver-
sarial training ensures the following: 1) the implicitly generated distribution Pg, (X)
matches P(X) and 2) the causal graph G used to define Pg, (X) is identical to GY.

W,(P(X), Pa,(X)) =0 = Pg,(X)=P(X) = Ga =GS.

Proof. Consider X ~ Pg,(X) as the distribution induced by the DAG Ga. As-
sume that the observational data distribution X ~ P(X) is defined using the ground-
truth graph GQ. Furthermore, let the adversarial loss term EadV(X,X), describing
the Wasserstein distance W,(P(X), Pg, (X)), correspond to the formulation given in
Equation (5.1). Then, achieving the global optimum for Laq, (X, X) guarantees distri-

butional overlap between Pg, (X) and P(X).
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Wy, (P(X), Pas (X)) =0 — Pg,(X) = P(X)

Additionally, by considering the reverse perspective one can observe how distributional

alignment implies that the optimal solution for Equation (5.1) is discovered.

Pg,(X) = P(X) = W,(P(X), Pg, (X)) =0

When Ga # G, the synthetic and observational distributions cannot be matched,
which means that Pg, (X) # P(X), because G is incorrect. As a result, there are
fundamental structural discrepancies between Pg, (X) and P(X), resulting from the
application of incorrect causal mechanisms in the generation of the synthetic distribu-
tion. These differences are reflected in their samples, leading to an increase in Earth

Mover’s distance:

W, (P(X), Pg, (X)) > 0.

Therefore, minimizing L,q,(X,X) ensures that Pg, (X) aligns with P(X), and the
identifiability assumption guarantees that this alignment occurs exclusively when G =

GQ, thus concluding the proof. O

A.6 Proof of proposition 5.1.2

Proposition 5.1.2. Incorporating a reconstruction loss term into adversarial training
ensures that the distance between individual data points from both synthetic Pg, (X)
and observational P(X) data distributions is minimized. This reduction in noise pre-

vents significant gradient fluctuations, resulting in more stable adversarial convergence.
min £MSE(Xa X) =0= Vi, Xz =X;
GaA€D

Proof. Based on the mathematical formulation presented in Equation (5.2), the optimal
solution for the loss term Lygp(X, X) can only be obtained when the squared difference

between each corresponding pair of data points X; ~ P(X) and X; ~ Pg, (X), where
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i € {1,...,n}, equals zero. This implies that there is no difference between the predicted
data X and the original data X, resulting in a perfect match between the means of
their respective distributions Pg, (X) = P(X) w.r.t. u.

The gradient of Lysg(X, X) with respect to the SCM parameters 6, which model

G and subsequently Pg, (X), can be expressed as the following:

- 1 <& - -
VoLuse(X, X) = — D24 |1Xi = X[ VoXi,

i=1
As the predicted data points X; begin to approximate the observations X; more ac-
curately, the residual distance ||X; — X;|| reduces further. As a result, the loss term
Lvse(X, X) is forced to approach its infimum, leaving little room for parameter opti-

mization with each subsequent iteration of model training.

1X; — Xi” -0 = Lusp(X,X)—=>0 = Vpluse(X, X) — 0.

This behavior occurs because the residual distance || X; — X;|| directly influences the
gradient magnitude. As X; approaches X; the gradient diminishes, leading to smaller
updates during optimization. Therefore, the Lysg(X, f() loss ensures stable optimiza-
tion through smooth gradients. Its steady convergence as X; — X; prevents oscillatory

behavior, thus concluding the proof. O

A.7 Proof of proposition 5.1.3

Proposition 5.1.3. The Lkip(X, X) regularization imposes a statistical prior on
Pc A(X), ensuring that the learned distribution remains close to a predefined Gaus-
sian. Moreover, it enhances optimization stability, particularly under additive Gaussian
noise, by preventing Pg, (X) from deviating excessively from a normal distribution,
mitigating erratic behavior. By complementing adversarial and MSE losses, it ensures

both the alignment and smoothness of Pg , (X).
Proof. The application of the EKLD(X,X) loss term enforces the Gaussianity of the
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probability distribution P(Z;|Pa;) from which the residual noise Z; is sampled. The
noise terms belonging to this conditional distribution can be defined as follows: Z; =
X;— fj(Paj). Therefore, converging on the global optimum of Lki,p(X, 5() guarantees
that DAGAF models the causal mechanism f; in a way that ensures Z; ~ P(Z;|Pa;) =
N(0, 0']2-). Enforcing the Gaussianity of Z; guarantees that the observed deviations from
the functional relationship X; = f;(Pa;) follow the Gaussian noise assumption, which
is crucial for causal discovery under both the ANM and the PNL assumptions.
Consider Lxrp(X,X) as a regularizer, penalizing the model when the conditional
residual noise distribution P(Z;|Pa;) deviates from the standard normal distribution

N(0, 0]2). Additionally, express the gradient for Lx1p (X, X) w.r.t. Ga as the following:

P(Z; | Paj)

d
VeaLrp(X, X) = Z]EP% Vaa logm ’
ARl

j=1
From the above equation, it is evident that the term log V'(Z}; 0, 0]2) is quadratic in Zj,
yielding a smooth gradient Vg, Lx1.p (X, X) that is robust against minor perturbations
in Ga. This limits overfitting to the noise present in X; and stabilizes the modeling
of f;. As a result, the EKLD(X,X) term enhances the overall stability of the model
by aligning the implicitly generated distribution Pg, (X) with a normal (Gaussian)
distribution.

The Lxrp(X,X) term can also be applied to other components of the objective
function used in the training process of DAGAF. For example, the adversarial loss
Laav(X, X) encourages overlap between P(X) and Pg , (X), however, it does not explic-
itly impose the additive Gaussian assumption. On the other hand, the reconstruction
loss Lyvse(X, X) minimizes the distance between the original X; and the synthetic XZ
data points individually, but fails to take into consideration the statistical properties of
Z;. The KLD regularization term Lkip(X, X) directly imposes a Gaussian structure
on Zj, ensuring that it adheres to the additive Gaussian assumption. This constraint

discourages f; from overfitting to non-Gaussian noise, thus completing the proof. [J
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A.8 Proof of proposition 5.1.4

Proposition 5.1.4. Minimizing the Maximum Mean Discrepancy (MMD) loss term
Lanvp (X, X) encourages the alignment of higher-order moments between the input dis-

tribution P(X) and the synthetic distribution Pg, (X), which supports the adversarial

loss in achieving overall distributional alignment.

Proof. Based on the MMD definition provided in Equation (5.4), the author gives the

gradient of the term Lynvp (X, 5() w.r.t. 6, which is used to define Ga, as follows:

Vo Ly (X, X) = 2(EX~PGA(X) [ng:(f(i, Xj)}
— Exp(x) X~Pa , (X) [Vok(Xs, X;)]),

where X ~ Pg A (X) represents samples drawn from the model-generated distribution,
while X ~ P(X) denotes samples from the true distribution. The function k(X,X)
serves as a positive-definite kernel, commonly selected as a Gaussian kernel or another
characteristic kernel (e.g., RBF or Polynomial).

The kernel k(X, X) inherently encodes the higher-order statistics of both the true
distribution P(X) and the synthetic data distribution Pg, (X). The function achieves
this by encouraging internal consistency within the implicitly generated model distri-
bution, as evidenced by the third term in Lyvp(X, X), Eg . Pesp (X) [k(X;,X;)], which
aligns the fake data points X; and X; to ensure that their higher-order moments are
consistent. Additionally, the kernel function facilitates alignment with the true distri-
bution through the second term, EX~P(X),X~PGA(X) [k(Xi, X))

The loss term Lyvp (X, X) directly targets higher-order differences using kernel-
induced feature mappings k(.). This mechanism complements the adversarial loss by
ensuring that both general and detailed aspects of P(X) and Pg, (X) are matched.
Therefore, the combination of Lymp (X, 5() and L,qv(X, X) provides a robust frame-
work for distributional alignment, addressing both large-scale discrepancies and higher-

order mismatches, thus completing the proof.
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A.9 Proof of proposition 5.1.5

Proposition 5.1.5. Assuming the Additive Noise Model (ANM), Linear non-Gaussian
Acyclic Model (LINGAM), or Post-Nonlinear Model (PNL), there is a unique DAG G§
that defines the observed joint distribution P(X).

Proof. The proof for this proposition constitutes two different derivations due to fun-
damental differences between the assumptions involved in the definition of the causal
models used to perform causal discovery under the DAGAF framework. As a result,
the author proceeds to first investigate the LINGAM and ANM cases, and afterwords
addresses the PNL case.

Lemma A.9.1. Assuming either the additive noise model (ANM) or the linear non-
Gaussian acyclic model (LINGAM) condition holds, the ground-truth directed acyclic
graph (DAG) GQ can be uniquely determined from the distribution P(X).

P(X) # P'(X) = G} #G'%..

Proof. Consider a dataset x comprising data attributes X = {X7, ..., X4}, where each
attribute X is produced under either the ANM or LINGAM assumption, as represented
by the following equation:

Xj = [j(Paj) + Zj.

Each function f; : R? — R is deterministic (e.g., nonlinear in the ANM case and linear
for the LINGAM scenario). Additionally, the noise terms Z; ~ P(Z) are indepen-
dent - non-Gaussian in LINGAM and Gaussian in ANM, while Pa; denotes the set of
immediate parents of X; in the DAG.

In both ANM and LiNGAM, the independence of the noise term Z; from the parent
set Pa; is fundamental, expressed as Z; 1 Pa;. This independence in the true DAG
Gg places significant restrictions on the functional relationships between the causal

mechanisms within GOA:
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P(Zj) = Pz,(X; — fj(Paj)).

Assuming G'S, is different from G2 , then the functions f/ used to define G’%, must
gLa A j A

satisfy the following conditions:

P(Zj) = Pz, (X; — fj(Paj)),

However, if G’ %l differs from G, then the corresponding causal mechanism func-
tions f]’~ will not match their true counterparts f; present in the ground-truth DAG.
Moreover, the new noise terms ZJ’- will lose their independence from their parent sets
Pag», since that independence is unique to the actual causal structure in GOA. Therefore,
G’ OA, cannot simultaneously satisfy the same independence conditions as GOA, leading
to a contradiction.

Hence, given the ANM with nonlinear functions and independent noise or the
LINGAM model with linear functions and non-Gaussian noise, no alternative DAG
G’ OA/ distinct from GQ can generate the same observational data distribution P(X).
Therefore, this confirms that the true DAG G is uniquely identifiable from P(X),

thus completing the proof. O

Next, the author provides theoretical analysis regarding the identifiability of the

Post-Nonlinear (PNL) assumption.

Lemma A.9.2. Assuming the Post-Nonlinear (PNL) causal model assumption holds,
there exists a uniquely identifiable DAG G% that produces the joint distribution ob-
served for the data variables { X7, ..., X4}.

Proof. Let x be a data set consisting of data attributes {X1, ..., X4}, where each X is
associated with a set of parent nodes Pa; and an independent Gaussian noise term Zj,
satisfying Z; 1L Pa;. Moreover, causal mechanisms represented by nonlinear functions
fj are applied to model parent contributions, while g; denotes a nonlinear function

applied post-summation:
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Xj = g;(fj(Paj) + Z5),Vj, Z; L f;(Paj), Z; NN('“’UJZ)‘

Additionally, assume that the input p; to the post-nonlinear function g; is expressed

as follows:

pj = fj(Paj) + Z;.

Assuming that Pa; is the correct set of parent nodes and the function g; does not
affect the independence structure. Then, the residual noise Z; remains independent of

the parent variables, which is formally expressed as:

Zj A1 PCL]’.

Within the Post-Nonlinear causal model, the statistical connection between X}, its
parent nodes Pa;, and the residual noise Z; exhibits specific invariances. In particular,
the conditional probability P(X;|Pa;) (which is determined by the PNL structure) and

the marginal probability P(Pa;) together define the joint distribution as follows:

P(Xj, Paj) = P(X]’PGJ)P(PCLJ)

Now, consider an alternative parent set Pa} that does not match the true set Pa;.
For this incorrect set, the residual noise Z; is computed by subtracting the function

fi(Pa}) from p;, expressed as:

Zj = pj — f;(Paj).

In this scenario, the fundamental independence condition Z; 1L Pa;- does not hold.
As a result, when the parent set is defined incorrectly, the residual noise Z; becomes
statistically dependent on the variables in Pa}. This dependency means that the con-
ditional distribution P(X;|Pa’;) cannot preserve the same invariance because of intro-
duced dependencies, thus completing the proof.

O
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The proofs above demonstrate that under each of the three causal model assump-
tions (LINGAM, ANM, and PNL) a given probability distribution can be represented

by only one unique DAG, thus concluding the proof.
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Data quality evaluation notebook

In this section, we analyse the quality of the synthetic data generated by the model.

We conduct the following tests:

1. Statistical properties: We compare the closeness-of-fit between the real and
synthetic data distributions using boxplot analysis, marginal distributions and
principal component analysis. We additionally compute the correlation matrices

across both sets of data to study the interdependencies between the covariates.

2. Machine learning regression: We train separate Random forest regressors
on the real and synthetic datasets and compare their corresponding regression

performances. We additionally plot the feature importances using permutations.

s N
In [1]:

import pickle

N

import pandas as pd

3| import numpy as np

|| import matplotlib.pyplot as plt

5| import seaborn as sb

6| import plotly.express as px

71 from scipy import stats

8| from sklearn.ensemble import RandomForestRegressor

9l from sklearn.inspection import permutation_importance
10| from sklearn.model_selection import train_test_split

11| from sklearn.metrics import mean_squared_error,

r2_score
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In [2]:

In [3]:

In [4]:

12

16

18

1

1

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

#load in the real dataset

var_names = [’x1’, ’x2°’,’x3’, ’x4’, ’x5’, ’x6’, ’x7’, °’
x87, ’x9°’, ’x10°]

’?2 if data stored as a .csv file

P

fname_real = ’./real_data.csv’

real_df = pd.read_csv(fname_real, names=var_names)

real_df .drop(index=0, inplace=True)

real_df [’data’] = ’real’

22 if data stored as DatalLoader

200

# with open(r"./train_loader.pkl", "rb") as input_file:
# train_loader = pickle.load(input_file)
# real_tensor_data = train_loader.dataset.tensors[0].

squeeze ()

# real_df = pd.DataFrame(real_tensor_data.numpy(),
columns=var_names)

# real_df[’data’] = ’real’

display(real_df)

#load in the fake dataset (of equal size to the real

one)
fname_fake = ’./generated_data.csv’
fake_df = pd.read_csv(fname_fake, names=var_names)

fake_df .drop(index=0, inplace=True)
fake_df[’data’] = ’fake’
display (fake_df)

#combine both the real and fake data into a single
dataset to allow comparisons
df _all = pd.concat([real_df, fake_df], ignore_index=

True)
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In [5]:

10

display(df_all)

df _all.to_csv(’./real_&_fake_dataframe.csv’)

#given the column names for the covariates we want to

visualise, plot the real vs fake and run a t-test

on them.

def show_data_properties(df, x_var, y_var, plot_type,

key=’data’):

P

description

Qauthor: calmac

@date: 16.05.23

P

# get features of interest

xreal, yreal = df[x_var].loc[df[keyl=="real’], dfl[
y_var].loc[df [key]l=="real’]

xfake, yfake = df[x_var].loc[df[keyl=="fake’], df[

y_var].loc[df [key]l=="fake’]

# run a t-test between real/fake features

ttest_x = stats.mannwhitneyu(xreal, xfake)

ttest_y = stats.mannwhitneyu(yreal, yfake)

print (’Mann-Whitney U-test (real vs fake):’)

print (’\t{}: p-value={}’.format(x_var, ttest_x[1]))

print (’\t{}: p-value={}’.format(y_var, ttest_y[1]))

# visualise results
fig = px.scatter(df, x=x_var, y=y_var,
marginal_x=plot_type, marginal_y=
plot_type,
color=key, width=800, height=800,
trendline=’ols’
)
fig.update_layout (legend=dict (
yanchor=’top’, y=0.95,
xanchor="right’, x=0.9

))
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In [6]:

In [7]:

In [8]:

In [9]:

In [10]:

10

11

N

1

N

fig.show ()
x_var = ’x3°
y_var = ’x4’
plot_type = ’box’

show_data_properties(df_all, x_var, y_var, plot_type)

~

#we alternatively plot correlation matrices to
visualise the dependencies between all covariates.

def plot_correlation(data, names, cmap=’Blues’,
annotations=False):

)20

Description

@author: calmac
@date: 16.05.23

)0

data

pd.DataFrame (data, columns=names)

corr = data.corr()

sb.heatmap (corr, cmap=cmap, annot=annotations,
xticklabels=names, yticklabels=names)

plt.show ()

&

-

#real data:correlation matrix
plot_correlation(real_df.iloc[:,:-1], real_df.columns

[:-11)

#fake data:correlation matrix
plot_correlation(fake_df.iloc[:,:-1], fake_df.columns
[:-11)

b

#machine learning regression
def runRandomForestRegression(real_data, fake_data,
outcome, seed=42, feature_importance=True,

bootstrap=False):
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19

30

Description

@author: calmac

@date: 16.05.23

)0

# find all features except the outcome: these
become the covariates

feature_names = real_data.columns[“real_data.
columns.isin([outcome])]

print (’Outcome of interest: {}’.format (outcome))

print (’Covariates: {}’.format(list(feature_names)))

’?? Random forest regressor fit to the REAL data

# real data

Xr, yr = real_datal[feature_names], real_datal
outcome]

Xr_train, Xr_test, yr_train, yr_test =
train_test_split(Xr, yr, test_size=0.1,

random_state=seed)

# real model
model_real = RandomForestRegressor(n_estimators
=1000, max_depth=5, random_state=seed)

model _real.fit(Xr_train, yr_train)

>?2 Random forest regressor fit to the FAKE data

# fake data

Xf, yf = fake_datal[feature_names], fake_datal
outcome]

Xf_train, Xf_test, yf_train, yf_test =
train_test_split(Xf, yf, test_size=0.1,

random_state=seed)
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39

40

Data quality evaluation notebook

# fake model
model_fake = RandomForestRegressor(n_estimators
=1000, max_depth=5, random_state=seed)

model_fake.fit (Xf_train, yf_train)

Given two trained RF models (one trained on real,
the other on fake data)

run both models on the same test set of real data
and compare their performances.

20

yr_pred = model_real.predict(Xr_test)

print (’Results (real):’)

print (’\tR2 score: {}’.format(r2_score(yr_test,
yr_pred)))

print (’\tMSE: {}’.format(mean_squared_error (yr_test

, yr_pred)))

yf_pred = model_fake.predict(Xr_test)

print (’Results (fake):’)

print (’\tR2 score: {}’.format(r2_score(yr_test,
yf_pred)))

print (’\tMSE: {}’.format(mean_squared_error (yr_test

, yI_pred)))

if feature_importance:

PP S

Now examine whether the real and fake RFs use
similar features to

predict the outcome of interest.

PP

# Real

result_real = permutation_importance (model_real
, Xr_test, yr_test, n_repeats=10, random_state=seed
)

sorted_imp_idx_real = result_real.
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importances_mean.argsort ()

58 imp_real = pd.DataFrame(

59 data = result_real.importances/|[
sorted_imp_idx_reall].T,

60 columns = feature_names[sorted_imp_idx_real

61 )

62 ax = imp_real.plot.box(vert=False, whis=10)
63 ax.set_title(’Feature importance using
permutations (real)’)

64 ax.axvline (x=0, color=’k’, linestyle=’--’)
65 ax.set_xlabel (r’Decrease in $R"2$°’)

66 ax.figure.tight_layout ()

67 plt.show ()

69 # Fake

70 result_fake = permutation_importance(model_fake
, Xr_test, yr_test, n_repeats=10, random_state=seed
)

71 sorted_imp_idx_fake = result_fake.

importances_mean.argsort ()

~
&

imp_fake = pd.DataFrame (
73 data = result_fake.importances/|[
sorted_imp_idx_fake].T,

7 columns = feature_names[sorted_imp_idx_fake

75 )

76 ax = imp_fake.plot.box(vert=False, whis=10)
77 ax.set_title(’Feature importance using
permutations (fake)’)

78 ax.axvline (x=0, color=’k’, linestyle=’--’)

79 ax.set_xlabel(r’Decrease in $R"2$’)

80 ax.figure.tight_layout ()
81 plt.show ()
=
(
In [11]: 1| outcome = ’x1°

2 runRandomForestRegression(real_data=real_df.iloc[:,
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In [12]:

N

w

-

[

:_1] )

fake_data=fake_df.iloc[:, :-1], outcome=outcome)
N\

features_std = StandardScaler ().fit_transform(df_all.

iloc[:, :-21)

pca = PCA(n_components=2)

principalComponents = pca.fit_transform(features_std)

pca_df = pd.DataFrame(data=principalComponents, columns
=[’PC1’>, ’PC2°])
pca_df [’data’] = df_all[’data’]

pca_df

plt.figure(figsize=(8, 6))

for label, color in zip([’real’, ’fake’], [’blue’, ’
orange’]):
subset = pca_df [pca_df[’data’] == labell]
plt.scatter (subset [’PC1°], subset[’PC2’], label=

label, alpha=0.7, color=color)

plt.title(’PCA Comparison of Original and Synthetic
Data’)

plt.xlabel (’Principal Component 1°’)

7| plt.ylabel (’Principal Component 27)

plt.legend ()
plt.show ()

=
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