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Abstract 

Within recent years, technological advances and stricter regulatory requirements 
have seen the increased use of automation and instrumentation within the waste- 
water treatment industry. As a result, advanced control strategies are required, to 
fully exploit the potential of these complex systems in addressing water quality con- 
cerns. Model based control strategies can be appropriate within the multivariable 
constrained wastewater system. In particular, the inherent model based nature of 
this approach can be valuable in the prediction of the treatment plant effluent quality 
required over a considered time period, to meet water quality standards. 

Multivariable linear predictive control is implemented for a benchmark treatment 
plant model, demonstrating the constraint handling ability of the predictive control 
structure. The limitations of an effluent-based control strategy in the maintenance 
of river quality is discussed. A more global approach to wastewater control must be 
considered in order to compensate against disturbances within the system. Tackling 
this concern, the incorporation of receiving water quality objectives within the control 
strategy is proposed. To this end, the application of linear MPC to the control of 
dissolved oxygen concentrations in the receiving waters under storm conditions is 
demonstrated. 

The drawbacks involved in a linear model based approach within a nonlinear urban 
wastewater system are considered. Several nonlinearities are present: the bioprocesses 
involved are by definition nonlinear, and are affected by varying wastewater load 
and characteristics. These can be the result of varying stormwater effects upon the 
treatment plant or emergency overflows to receiving waters. This therefore motivates 
the development of nonlinear strategies in the control of the wastewater processes. 
The control of SISO nonlinear processes within the urban wastewater system, such 
as dissolved oxygen, is demonstrated via the use of fuzzy gain-scheduled and Wiener 
model based predictive control. Additionally, the use of existing nonlinear process 
models in the control of wastewater processes is shown in the application of state 
dependent model predictive control. 
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Chapter 1 

Introduction 

In recent years the control and the treatment of wastewater systems has become increasingly 

important. With the continuing increase in world population and rising health standards, 

water has become a valuable commodity. Within the current climate of environmental con- 

cern, the efficient performance of wastewater treatment systems is a signficant concern. The 

safety of water, both for municipal use and also as regards its effect on the environment is 

of growing interest to today's population. Recent EU directives and international changes 

in approach to environmental concerns signify the dynamic nature of this area of study. 

The aim has now become that of decreasing the effect of humans and their lifestyles upon 

water usable for human consumption and agricultural needs. Regulatory requirements for 

the treatment of wastewater are becoming increasingly strict, requiring as a consequence 

more efficient wastewater treatment plant (WWTP) operation. The manipulation of bi- 

ological processes is of particular relevance within this area. The gradual increase in the 

use of mathematical and data-based models of the wastewater process, in the design and 
implementation of online process control, is a consequence of a gradual trend towards ad- 

vanced monitoring and automation of treatment systems. Traditionally, automation has 

concentrated upon the wastewater treatment system, without reference to the quality of 

receiving waters. The urban wastewater treatment system, as considered within this thesis, 

is described by three components: the sewer system, the treatment plant, and the receiving 

waters, as shown in Figure 1-1. It is the application of control to the urban wastewater 

system that is the main focus of this thesis. 
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beneath ground during expansion of the city of Rome, serving public toilets, baths and 

other public buildings. It appears that private residences could not avail of this service, 

instead relying on 'cess-pits'. 

z 

"w 

.ý"-. 

w 

" fir' " ý'" , '., ý 

". ' 

. tý 

Figure 1-2: Ancient Urban Drainage System in Harappa, Part of the Indus Civilisation. 
(Image Source [195]) 

Interestingly, use of feedback in control can be traced to such early water devices as 

that of Ktesibios's (of Alexandria) water clock in the third century BC [196]. This device 

required an unvarying flow of water, in order to accurately mark the flow of time. However 

the flow of water from a container is not steady, flowing more slowly when the container 

is less full, and Ktesibios determined a method to maintain the constant level. The same 

method was used in the design of the flush toilet, wherein a float on water level operates 

a valve, allowing water to the container when the float is dipped, and closing the valve 

when sufficient water is present. The feedback is present in the form of the valve, the effect 

of the valve in increasing the water level is fed back to the valve and ultimately leads to 

its closure. The invention of the modern flush toilet, based upon a similar method, was a 
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significant event as a waste transportation device. Early forms of water control extended to 

other areas, such as that of the 3rd century Funan, in southeast Asia (in modern Cambodia 

and Vietnam), perfomed the control of annual flooding and coastal changes with a network 

of waterworks and canals. 

As with many inventions in the history of man, knowledge of these systems was lost 

or forgotten, particularly after the fall of the Roman Empire. In medieval times, sewers 

were mostly open waterways, which were gradually built over, thus forming covered sewer 

systems. In the 16th century, Sir John Harington's invention of the "washout" closet of a 

similar principle introduced the concept again with a flush valve and washdown approach, 

and is claimed to be the origin of the common slang for a toilet, the 'John'. However, it would 

take still another two centuries before Alexander Cumming would produce the version of 

the toilet used today incorporating an 'S' bend remaining filled with water between flushing, 

avoiding the return of air from the sewer. 

By the late 19th century the majority of cities had a rudimentary underground combined 

sewer system. It is these systems and those built in addition to these existing systems that 

are still in use today. Rainwater runoff can have considerable effect upon these systems, 

due to the urbanisation of the surrounding areas, with roads and buildings covering most of 

the area through which the rainwater would have naturally drained. This wastewater then 

instead must be transported through the storm drains and thus through the sewer system. 

This high flow can lead to large overflows, which spill to receiving waters such as rivers, 

causing serious disturbances. 

By the 1950's, the treatments for wastewater that most resemble those used today were 

introduced: biological treatment to tackle oxygen depletion, and, in the 1970's, combined 

biological-chemical treatment to reduce eutrophication of receiving waters (from phospho- 

rus and nitrogen in wastewater). From then, the processes have been further developed, 

and improved, in particular with the use of automation to improve efficiency and effective- 

ness of the treatment process. To this end, advanced control and process optimisation of 

the wastewater treatment industry has become of increasing concern in recent years [20], 

[77] [144]. The focus of this thesis is the control of wastewater treatment systems, researching 
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advanced control strategies to compliment existing control structures and instrumentation. 

1.2 Automatic Control in Wastewater Treatment 

The wastewater treatment industry is becoming dependent upon automatic control sys- 

tems to avoid economic, process and environmental costs associated with operator process 

supervision and control. The general objective of any manipulation or control in urban 

wastewater systems is to reduce the effect, domestic and industrial, of humans upon the 

environment. This involves treating the water in order to maintain the water quality. The 

disturbances to the system are those events which either by human error, or by extreme 

weather, cause effects upon concentrations within the river. This in turn has a further effect 

downriver in the direction of water flow, causing possible fish deaths due to toxic events 

and/or increase in algae growth, and thus a decrease in water quality. 

Traditionally, the main occurrence of automatic control is in the manipulation of the 

activated sludge process, [80][94]. The objectives of the control implemented are two-fold: 

to reject or compensate for disturbances within the system (here this involves storm events 

and combined sewer overflows), and also to maintain setpoint values whilst at system steady 

state (for example, in normal weather conditions). In particular, the main control schemes 

focus upon dissolved oxygen concentrations and nutrient removal within the treatment 

plant, the key processes within the system. In the receiving waters, control to regulatory 

standards requires the measurement and control of similar concentrations in the river, such 

as dissolved oxygen or ammonia (plus ammonium) levels. Any disturbances within the 

urban wastewater system, such as sudden high flow influent to the treatment plant or over- 
flow from the sewer network to the river (both which may occur during adverse weather 

conditions), will either cause a dip (for dissolved oxygen) or a peak (for ammonia) in concen- 

tration in the river. Restrictions exist upon the application of existing control technology to 

such a process, where there exist process model uncertainties, ill defined disturbances, non- 

linear dynamics and a multivariate system. Considering the issue of tightening regulations 

upon treatment plant effluents and receiving water quality, there exists a demand upon the 

performance existing control structure. This thesis seeks to explore possible methods of 

exploiting the existing wastewater industry control and instrumentation in meeting these 
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restrictions. 

As stated, the regulations concerning the aforementioned concentrations, and others, 

have become increasingly strict in recent years, and this will continue, in particular due 

to recently introduced directives concerning water quality. The difficulty in meeting these 

demands is additionally restricted by financial and operational concerns. Changes to the 

physical structure of the wastewater treatment plant and the sewer network is both expen- 

sive and time consuming. The effect of wastewater treatment upon the environment limits 

the length of time for which the plant can viably be out of operation, untreated waste 

can have a severe effect. Redesign or reanalysis of the biological and chemical treatment 

processes can contribute an improvement to plant operation, however this biochemical re- 

search approach is not considered within the scope of this thesis, but instead improved 

process performance is considered by the introduction of advanced control techniques. 

Additionally, the flexibility of the plant is an issue, where flexibility is defined as the 

level of automation present, the operational range of the equipment and structure, ability 

to exercise online continuous control (continuous here, as opposed to the on-off strategy) 

and the ability of the plant to allow for changes to the structure of the control system. The 

lack of an overall consistent approach to the automation of the water industry, which is 

managed by local authorities for the most part, provides an obstacle in the progress and 

improvement of the water process control. Safety margins can be necessary in wastewater 

treatment processes in order to allow for conditions such as disturbances caused by extreme 

weather events. In meeting the WFD objectives, control measures designed for normal 

conditions are inadequate in fulfilling the system objectives during storm events, and in 

addition to a nonlinear control strategy, the inclusion of safety margins would allow for 

the uncertainty of control models, disturbances, and variations in influent characteristics. 

These safety regions exist in order to maintain sustainability, and allow a balance between 

the safety issues and plant costs. 

1.3 Contemporary Water Treatment Systems 
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The activated sludge process is the most common of the water treatment processes, and 

is defined in a general sense as a system in which wastewater is mixed with a concentrated 

biomass known as activated sludge, which degrades pollutants and organic carbon within the 

wastewater. The most popular model of this process Activated Sludge Model No. 1 (ASM1) 

presented by the IAWQ Task Group on Mathematical Modelling for Design and Operation 

of Biological Wastewater Treatment Processes [61] is generally accepted as state-of-the art. 

ASM1 was primarily developed for municipal activated sludge wastewater treatment plants 

to describe the removal of organic carbon substances.. ASM1 has been extended to include 

biological phosphorus processes, resulting in ASM2 and ASM2d ([62], [63]). Jeppsson et al. 

[69] detail the applications of real-time control of treatment plants within Europe as follows: 

" Dissolved Oxygen control: This type of control is the most common, implemented 

via air flow control, typically with the use of proportional integral (PI) control to a 

constant setpoint. 

" Nitrate control: This commonly utilises the internal recirculation flow, however occa- 

sionally an external carbon flow may be used. 

" Sludge control: This can be manipulated via either the recycle sludge flow or the 

waste flow, though in some cases this is merely done manually. 

" Phosphate control: These levels are maintained through additions of chemicals for 

precipitation. 

" Ammonia control: Aeration is the most common form of ammonia (plus ammonium) 

control. 

Dissolved Oxygen control has been the most commonly implemented of all the control- 
lable concentrations in wastewater treatment. This is due to high running costs of energy 

consumption during increased aeration rate, in controlling dissolved oxygen, the air flow 

can be used more efficiently. Many variables in water quality, both in the effluent from the 

treatment plant, and also in the river, depend on the dissolved oxygen level. Dissolved oxy- 

gen control therefore is an essential control mechanism within the treatment plant, and may 

be coupled with ammonia control, also dependent upon aeration changes. Figure 1-3 below 

shows the aeration detention tanks of an activated sludge wastewater treatment plant, the 

background shows the secondary clarifier. 
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For the most part, advanced control has not been widely applied in wastewater treatment 

systems. The most common approach to wastewater control is that of low level control, 

implemented via Programmable Logic Controllers (PLC), for example as detailed in [78]. 

The most widely used control methods are proportional control, simple on-off control, even 

merely manual control. Such widely used models as the ASM models, and common control 

practices, within research, have not been used to any considerable extent within model based 

control methods in the past. In recent years however, this has begun to change and many 

control strategies are being improved by advanced control methods. Many applications have 

involved constructing higher level controllers around existing low level control, resulting in 

more efficient and effective wastewater treatment control than before. 

There are many reasons why advanced control has not been introduced into widespread 

use, detailed for example in [121]. Instrumentation has proved unreliable and expensive to 

maintain in the past. There are limited control options within wastewater treatment, and 

time and expense are required to develop many control approaches. Regulatory standards 

were not strict enough, or stringently implemented, thus there was little impetus to expend 

large amounts of money developing advanced control for the systems. The introduction 

in recent years of more sophisticated measurement methods and on-line sensors has led 

to a more realistic possibility of applying advanced control. Also the stricter regulations 

currently in place, and the fines for breaking these, have meant that control can be used in 

order to decrease these costs, thus proving its financial use. With this increase in control, 

and therefore complexity, it is obvious that manual control is no longer an option. However, 

operator knowledge is not lost if appropriate control methods are used, for example the 

fuzzy control presented later in this thesis requires operator knowledge in the design of 
fuzzy rules. A literature review of research in this area is presented appropriately in the 

following chapters: the research area of wastewater treatment is presented in Chapter 3, as 

well as instrumentation details, the research area of urban wastewater modelling is discussed 

in Chapter 4, whilst research into urban wastewater control is discussed in Chapter 5, with a 

brief discussion of appropriate instrumentation. A discussion of the research into nonlinear 

predictive control both in industry and in wastewater treatment in particular is discussed 

in Chapter 7. 
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Figure 1-3: Aerated Activated Sludge Detention Tanks in a Wastewater Treatment Plant: 
Foreground: The Aerated Activated Sludge Tanks, Background The Secondary Clarifier. 

1.4 Legislative Issues 

In the past, regulatory attitudes both locally and internationally concentrated on the 

human health aspects of water treatment rather than the environmental aspect. For ex- 

ample, legislation from the Council of European Communities provided for the protection 

of the quality of water intended for drinking [44] and [46], bathing [45] and fishing [46] 

purposes. However, recently legislative efforts have been extended to promote the envi- 

ronmental concerns for water quality, via two directives. The former concentrating on the 

pollution of water by urban waste [42] and the latter concentrating on the pollution of water 
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by nitrates from agricultural sources [43]. 

Significantly, a 'Water Framework Directive' (WFD) was introduced [49] and adopted, 

with aim of extending protection to all waters, (including surface and ground water) in- 

cluding urban wastewater river basin management, where emissions and discharges are to 

be controlled by limits on emission values, and regulatory quality standards. An important 

aspect of this directive is that the quality of waters should not deteriorate upon implemen- 

tation of the measures taken in accordance with the WFD. In aim of achieving river basin 

management, an increase in monitoring is encouraged. Importantly for the work considered 

here in this paper, [178] demonstrated that in order to achieve the aims set out by the 

WFD, the wastewater system must be considered with an integrated approach. 

1.5 Objectives 

The research presented within this thesis aims to investigate the control of wastewater 

treatment systems. This will refer to both the traditionally controlled wastewater treatment 

plant and also, the more recent focus of interest within the water industry, the receiving 

water quality. Schutze [153] defines the control objectives for an urban wastewater system 

under real time control as: 

" Maximise the time in which river quality standards are adhered to. 

" Minimise the extent by which these standards are exceeded. 

" Maximise the system's ability to recover. 

9 Maximise the system's ability to reject disturbances. 

9 In a general sense, improve river water quality above minimum. 

Overall, the control of the urban wastewater system is concentrated upon the maximi- 

sation of the minimum dissolved oxygen concentration in the river, though it is possible to 

demonstrate similar approaches to manipulation of treatment plant aeration, for control of 

ammonia concentrations. Butler et al. [193] describe that the above control objectives may 
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be based for example on concentrations of dissolved oxygen or ammonia, the aims of the 

control concentrating on manipulating a system to, or avoiding deviation from, an ideal 

state (also detailed in [12]). In particular, Butler and Schutze [23] define the performance 

criteria used for the assessment of control scenarios to be the following 

" The duration for which the dissolved oxygen (DO) concentration in the river is below 

a critical threshold. 

9 The duration of NH4 (defined here as the concentration of Ammonium plus Ammonia) 

concentration in the river is above a critical threshold. 

" To be minimised - The maximum concentration of ammonium in the river. 

9 To be maximised - The minimum concentration of DO in the river. 

In a practical sense, to fulfil these objectives the control approach adopted must include 

the following: 

" Disturbance handling: This can be defined as either unmeasured or measured distur- 

bances. The above disturbances to water quality, as a result of high loads or combined 

sewer overflows, can be considered as disturbances within the controlled process. 

" Constraint handling: Regulatory restrictions upon water quality result in the need for 

a constraint handling procedure within the adopted control strategy. 

" Multivariable control: The implemented control approach should allow easily for ex- 

tension to the multivariable case. 

" Nonlinear control: In order to incorporate the water quality objectives within the con- 

trol structure, the dynamics of the receiving waters must be considered. A nonlinear 

strategy is thus necessary due to the nonlinear nature of this process. 

" Applicability: The strategy chosen must take into account existing control structures, 

such as the popularly applied PI/PID control approach. 

Further issues that can be considered are technological constraints, the cost of operation 

and the sustainability of the system, in addition to the multiple time scales present in the 

plant internal dynamics. 
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1.6 Proposed Control Methodology 

The methodology implemented in this thesis can be divided into three sections: linear 

control, pseudo-nonlinear control and nonlinear control. The linear control is that of a state 

space approach to linear model based predictive control (MBPC). The pseudo nonlinear 

control implemented later in the thesis again uses this linear approach, however with the 

application of fuzzy rules, or Wiener modelling, to extend the control abilities to the non- 

linear system. Finally the nonlinear predictive control is implemented using nonlinear state 

dependent (SD) modelling techniques in order to fully describe the system, and thus pro- 

duce more accurate control. The algorithms used in this thesis have been developed from 

several sources. The linear predictive control algorithm used is that demonstrated by [85], 

and was modified using the measured and unmeasured disturbance modelling approaches 

and the constraint handling detailed in Maciejowski et al. [97]. This linear approach was 

utilised in the gain-scheduled control detailed in Chapter 5, and was modified for use with 

the nonlinear Wiener model. The state dependent coefficient (SDC) modelling structure 

used within the nonlinear GPC scheme was demonstrated in Dutka et al. [41] and [191]. 

An important issue in the design of a control scheme is the choice of model in the 

representation of the process dynamics. There are several considerations to be taken into 

account in this decision: 

" The purpose of the model: Model choice can depend upon the application. For control 

purposes, many variables may be ignored. 

" The dynamics of the given process: a relatively linear process dynamic can be simply 

represented by a linearised system model. In the case of nonlinear process dynamics, 

the choice of model is situation specific. The dissolved oxygen process within the 

treatment plant, and indeed the urban wastewater system, can be seen to be dependent 

upon the air flow rate into the treatment plant, and relatively decoupled from other 

variables. In this case, assumptions can be made in the nonlinear modelling of the 

process. 

" The complexity required: An ASM2d model can represent up to 12 processes, within 

19 concentrations as state variables. The common application of automation is usu- 
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ally limited to dissolved oxygen concentration and nutrient removal, thus allowing 

reduction in the complexity and size of the process model for control purposes. 

" The accuracy required: Variability in treatment plant kinetic parameters between 

plants, and issues in identification of biokinetic models [2] can result in considerable 

modelling inaccuracy (typical activated sludge models assume temperature and kinetic 

parameters to be constant). 

A distinction is made here between the models required for control law design (control 

models), and those produced for the investigation of process behaviour (simulation models). 
The former may however be determined from the latter through analysis of the physical laws 

of the system or through data driven methods. Both the 'urban wastewater system' arid 

the 'treatment plant system' as considered within this thesis are simulation models within 
Matlab/Simulink, based upon complex mathematical formulations of process behaviour and 

include the use of information based on physical systems. Scaled models such as that of 
Nejjari et al. [114] and Graells and Katebi [56] utilised within the thesis allow for design of 

more complex nonlinear control strategies for small-scale plant models. 

1.7 Thesis Summary 

The remainder of the thesis is organised in the manner presented below to detail the 

urban wastewater system, the modelling and control approaches required, and the imple- 

mentation of nonlinear predictive control to the process. 

Chapter 2 Model Based Predictive Control: 
A description of the linear predictive control algorithms utilised within the thesis is 

given, introducing the theoretical aspects of predictive control, in addition to its histori- 

cal background. The assumed model structure in the initial predictive control algorithms 
detailed in this chapter is that of a linear time invariant (LTI) process model, identified 

via subspace identification, with possible unmeasured or measured disturbance modelling. 

Thus the structure for model based predictions of future behaviour is developed, with con- 

trol optimisation in the presence of system constraints. 
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Chapter 3 Linear Predictive Control of a Wastewater Plant 

For applications of control of the treatment plant, commonly linear control methods 

are sufficient. Traditionally, low level control such as PI has been popular. This chapter 

seeks to describe the application of the above control methodology to the control of two 

treatment plant processes, utilising the existing single loop control schemes. Multivariable 

model predictive control for these processes is compared to the original control strategy. A 

benchmark model is used in this implementation, to test the validity of the control designs 

developed. The issues concerning treatment plant based control are discussed, in particular 

with respect to effects upon receiving waters. 

Chapter 4 Urban Wastewater Treatment Model 

An introduction is given to urban water systems, discussing two urban wastewater 

process models. The urban wastewater system is considered as composed of: a sewer 

system, a wastewater treatment plant and a receiving waters. For control purposes, it 

is necessary to formulate these nonlinear models in a form suitable for the model predic- 

tive control structure. The transformation of these system models to the state dependent 

representation is shown. 

Chapter 5 Nonlinear Predictive Control 

An historical and theoretical background to nonlinear predictive control is detailed 

within this chapter. Nonlinear approaches to wastewater treatment control have tradi- 

tionally been uncommon, however the extension of local and international regulations to 

the receiving waters has motivated the development of nonlinear strategies for the control 

of the wastewater process. Fuzzy gain-scheduled, Wiener model based and state dependent 

control algorithms are described throughout this chapter, demonstrating the model based 

control approaches for linear time invariant and linear time varying (LTV) model structures. 

A state dependent nonlinear model is used in state estimation via the use of a Kalman filter. 

Chapter 6 Nonlinear Predictive Control of Wastewater Systems 

A comparison of control performance and discussion of the approaches is given with 

the aim of demonstrating the design and application of nonlinear control for the urban 
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wastewater system. The linear predictive control is extended via fuzzy gain-scheduling, and 

an approximate nonlinear modelling approach is demonstrated with the use of the Wiener 

modelling structure. State dependent models developed in Chapter 4 for the purpose of 

nonlinear predictive control are applied within the scaled urban wastewater system. The 

nonlinear state dependent control of the ASM2d reaction tank model utilised in the urban 

wastewater model is also described. 

1.8 Contributions 

The main contributions of the thesis can be summarised by the following 

9 Development of 'control models' for wastewater treatment processes 

-A novel approach to modelling for control purposes in the wastewater system 

was produced, in the transformation of several models to the state dependent 

structure. The state dependent coefficient representation of the activated sludge 

model no. 2d (ASM2d) of an aerobic reactor was produced, with the inclusion 

of a feedforward model of measured variables. 

- The state dependent coefficient representation of a reduced treatment plant 

model was derived, and subsequently included in the state dependent description 

of a related urban wastewater system (UWS) model. The control requirements 

for the UWS resulted in the modification of the latter SDC representation for 

the inclusion of a feedforward model. 

-A multivariable linear model of dissolved oxygen and nitrate/nitrite dynamics 

in the wastewater treatment plant was derived. SISO linear models of the dis- 

solved oxygen and ammonia dynamics in the UWS was produced including the 

description of the upstream measured disturbances. 

- The Wiener model description of the dissolved oxygen process, considering 

the linear dynamics of the wastewater treatment plant and the nonlinear effects 

of the urban wastewater system, was produced to describe the effects of storm 

conditions upon the dissolved oxygen process. 
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" Demonstration of model based control strategies suitable for the wastewater treatment 

industry: 

- The proposal of model based control strategies suitable for the control of water 

quality in the urban wastewater system was given with the use of commonly 

available process measurements, such as dissolved oxygen and ammonia. In 

particular, the knowledge of influent flow levels to the treatment plant was 

considered as a method of prediction of water quality in the receiving waters. 

- Multiple Input/Multiple Output (MIMO) model predictive control of dissolved 

oxygen concentration and nitrate/nitrite within the treatment plant system un- 

der varying treatment plant influents was demonstrated and discussed. 

- Nonlinear control strategies for the urban wastewater system were developed 

for: linear model predictive control (MPC), fuzzy gain-scheduled control, Wiener 

model based predictive control (WMPC) and nonlinear predictive control based 

on the state dependent coefficient representation. 

-A comparison of various control strategies (Wiener MPC, Fuzzy gain-scheduled 

control, Linear MPC and PID control) was demonstrated and discussed in the 

case of dissolved oxygen control in the urban wastewater system. 

" The development of model based predictive control algorithms for the above control 

purposes: 

- The extension of the linear predictive control algorithms was developed for the 

case of the constrained nonlinear model predictive control, based on the Wiener 

model. 

- The modification of the nonlinear predictive control algorithm based upon the 

state dependent representation for feedforward compensation. 

9 The development of Matlab based software for model based predictive control for 

- linear constrained/unconstrained predictive control, with measured and un- 

measured disturbance models. 

- nonlinear model predictive control, based upon the Wiener model. 
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- nonlinear model predictive control, based upon the SDC linear time varying 

model. 

- Fuzzy gain-scheduled control based upon the linear MPC software. 
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Chapter 2 

Model Based Predictive Control 

2.1 Introduction 

The on-line dynamic optimisation of control actions, based on predicted plant dynamics 

determined from an inherent process model, is defined as model based predictive control. 

The basis of this approach (as shown in Figure 2-1 below) is the prediction of future be- 

haviour of the plant, starting at current time k, over the period defined as the 'prediction 

horizon'. The control action over a user-defined 'control horizon' is chosen as an optimised 

control sequence designed to produce the best predicted behaviour, according to the process 

model, in order to reach the required trajectory. Predictive control is one of the most widely 

used advanced forms of control in industry, particularly in the process industries. The pop- 

ularity of this control approach results from several advantages offered by a model based 

control strategy. The model based technique is appropriate to the industrial requirements of 

nonlinear control within process boundaries for multivariable systems. Constraints are eas- 

ily handled in the formulation of the optimisation sequence, and the model based strategy 

allows for the control of several variables, without modifications of the control algorithm. 

The most significant advantage of predictive control is that it provides, within its archi- 

tecture, for the inclusion of process constraints and so allows for operation in a more efficient 

manner. Constraint handling allows control to be implemented whilst avoiding operation 

in more extreme process regions, thus avoiding wear and tear. Constraints can increase the 

accuracy of the model being used, since actuator and plant limits can be incorporated into 
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Figure 2-1: Prediction of Future Behaviour and Control Sequence from Time k 

the model, an issue not considered in traditional structures such as proportional-integral 

(PI) control. 

A sufficiently accurate process model must be determined for a model based control 

scheme, since the choice of process model is of most significance. State estimation, output 

prediction and control optimisation inherently depend upon an accurate system model. 

The feedback of process behaviour is obtained via the state estimation, which is based on 

comparison of the process model behaviour with actual measured plant output, for the 

given control input. The model based structure however allows for compensation in the 

case of modelling discrepancies such as plant-model mismatch, via the use of unmeasured 
disturbance modelling. Feedforward control, such as the inclusion of measured disturbances, 
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is also accommodated, through the model-based aspect of the control. 

A particularly significant advantage for larger process models is ease of application for 

multivariable control. In the case of multivariable control, the control methods used are the 

same as those used in control of single variable processes; there are no controller architecture 

changes required for the inclusion of multiple controlled processes. This, coupled with the 

intuitive nature of the controller tuning, and the advantages shown above of constraint 

handling and feedforward control, has resulted in the popularity of the model predictive 

control approach. 

2.2 MPC Historical Background 

Predictive control itself came from several different sources independently. All of these 

proposed structures had various similar elements: use of a system model in the design, the 

use of receding horizons, and the calculation of the control signal based on the predicted 

behaviour of the plant. Predictive control was designed originally for power plants and 

petroleum refineries, but can be found in various other areas including the chemical industry, 

food processing and the automotive/aerospace industry. 

MPC was developed in earnest for industrial applications in the 1970s, but existed in its 

basic form prior to this. Researchers had described many forms of open loop optimal control, 

touching on the idea of receding horizon control, upon which MPC is based, for example the 

research presented by Lee and Markus [89]. Various other academic contributions were made 

in the area of receding horizon, internal model control and predicted plant behaviour, further 

into the 1970s, by Kleinman [79], Kwon and Pearson [86], and Rouhani and Mehra [139]. 

However, since model predictive control was originally popular in industrial applications, 

the significant developments were mostly produced in practice. A source of the modern 

form of predictive control was developed by Richalet et al. [135] of the French company 

Adersa, who proposed a form known as Model Predictive Heuristic Control (MPHC) in the 

product IDCOM (Identification and Command). Another proposed predictive control at 

that time was Dynamic Matrix Control (DMC) which originated with Cutler and Ramaker 

[33]. The DMC algorithm, more so than MPHC, concentrated on constraint handling (one 
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of the most important aspects of predictive control). The first patent for this form of control 

was given to Sanchez [148] for a method under the name "Adaptive Predictive Control", 

exploiting an internal model to implement adaptive control. 

The generalised predictive control approach was introduced in the late 80s, demon- 

strated by Clarke et al. ([28], [29]), which extended the process model structure to the use 

of ARMAX (Auto Regressive Moving Average Exogenous), allowing greater generality in 

the system model. A stable form of this algorithm was developed by Kouvaritakis et al. [82], 

and a continuous time based on constrained state space models was produced by Demiri- 

cioglu [36]. The discrete time state space format of this algorithm was presented by Ordys 

and Clarke [124]. In 1995, Chow et al. [26] proposed a gain-scheduled predictive control. 

Uncertainty involved in modelling of the wastewater process could require the application 

of a robust control strategy. Traditional robust control theory requires that the controller 

be linear, which is the case for the unconstrained predictive control approach. However, 

research by Lee and Kouvaritakis [90] demonstrated robust control for systems with in- 

put saturation, and Mayne and, Michalska [104] demonstrated robust predictive control for 

nonlinear systems. 

The various approaches to model predictive control have a generic structure, as demon- 

strated in Figure 2-2 below. A state estimator allows the use of a plant knowledge. The 

system inputs u and plant measurements y allows the user to arrive at a state estimate x. 

With this knowledge, the prediction algorithms detailed in the subsequent section allow the 

approximation of future behaviour of the process. The optimiser therefore computes fu- 

ture control moves according to this predicted behaviour such that the system approaches 

the reference (or setpoint) defined by the user. This optimisation structure must allow 

for the control actions to take into account plant constraints. The different approaches 

to predictive control, particularly commercially, may differ on some of the above details, 

particularly the handling of control optimisation and system constraints. A most basic part 

of the model based control approach is the use of a dynamic model in the control design. 

The conventional model used for prediction and calculation of control actions is restricted 

to represention of linear dynamics of the system. The structure demonstrated below how- 

ever also allows the use of a representation of system nonlinearities in building accurate 
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predictions of future behaviour. 
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Figure 2-2: Architecture for Model Predictive Control with Measured Disturbances 

The choice of model structure must have the characteristics defined by Clarke [27] as: a 

sufficiently accurate representation of the essential dynamics of the plant, provide the free 

and forced predictions of system behaviour for control use, in addition to allowing theoretical 

predictions of system behaviour and must be intuitive for use by plant operators. 

2.3 Linear Predictive Control 

Rom physical laws, mathematical representations of the dynamics and interactions of 
the process, suitable control methods can be found. The accuracy of these models is an 

attractive aspect, allowing for stricter regulation of the process. Amongst the issues that 

complex dynamic models such as these raise are controllability, observability and significant 
increases in control optimisation time. Alternatively then, suitable models may be identified 

directly from the measured experimental data of the process. These data based models are 

particularly useful where no physical model of the system is available. 
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Whilst, in both the theoretical and practical sense, the most common approach for 

control purposes is the use of linear modelling methods, few truly linear processes occur 
in nature. Despite this, linear model based control methods are significantly more popular 

than their nonlinear counterparts. The plant in reality behaves in a nonlinear manner, 

evolving in a fashion that can usually be described by the form of the equation: 

dX 
ät _f(ham, U, t) (2. i) 

where X is defined as the state vector, U is defined as the vector of inputs to the system, 

with the system evolving in relation to time t. Linear MPC can be implemented to a nonlin- 

ear system effectively and has been demonstrated thoroughly in industrial applications. In 

the particular area of wastewater control, a practical application of a linear MPC algorithm 

was detailed by Sanchez et al. [145] for the control of dissolved oxygen concentrations in a 

wastewater treatment plant. The nonlinear process may be simplified around its operating 

equilibrium, simplifying to the popular state space form of a linear model shown. 

2.3.1 Linear System Representation 

The form most commonly used, for linear predictive control, is a linearised discrete time 

model in the state space form. Thus the model variables are defined to be the input (or 

indeed inputs) to the system u(k) E R1, the state vector x(k) E R" and the output vector 

y(k) E Rm. The standard state space representation is therefore simply as follows: 

x(k + 1) = Ax(k) + Bu(k) (2.2) 

y(k) = Cx(k) + Du(k) 

where the dimensions of the state space matrices are defined as AE Rnxn, BE Rnxl, 

CE R"-T" and DE Rte'. The form of model implemented in the work presented in this 

thesis expresses the plant dynamics with an inherent integral effect. This is a convenient 

form for predictive control, which itself computes the optimal value of the control increment 

Au. There are a number of ways of including this integration within the system model. The 

chosen method here however is that demonstrated in the work by [85], the augmentation of 
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the state vector to include the vector of previous inputs as follows: 

u(k) = u(k - 1) + Au(k) (2.3) 

and so that the discrete linear model can be considered as 

x(k + 1) = Ax(k) + B(u(k - 1) + Au(k)) (2.4) 

y(k) = Cx(k) 

Thus, the system , can be equivalently defined in the following form: 

X(k + 1) = AX(k) + 130u(k) (2.5) 

y(k) = Ox(k) 

where the new state vector is defined as X(k) = 
x(k) 

, whilst the state space 
u(k-1) 

matrices of A, f3 and 0 are defined as 

Ä_ AB B_ B 
(2.6) 

H'] Hi 

ü= [C 0] 

The process model equations of 2.6 are equivalent to the original state space model. The 

above models consider only linearised plant behaviour. The common issue for linearised 

models is a limited range of accuracy and validity, around the equilibrium point of the 

process. Once the system moves from the range of this linear model, the control may 

become ineffective. Several approaches may suffice in the application of linear MPC to a 

considerably nonlinear process. The uncertainties involved in the linear modelling process 

could be defined to be combined within a noise signal, a disturbance state defined as an 
'unmeasured disturbance'. This disturbance state is implemented with the intention of 

removing the steady state offset in the control actions, introduced by plant-model mismatch. 

35 



It also introduces the ability of the MPC scheme to reject disturbances. This form of control 

is considered in Chapter 3 in the control of a wastewater treatment process. 

The linear representation can be insufficient in describing the dynamics of the nonlinear 

process. Hence, some method of modelling and controlling a nonlinear system is needed. 

Sommer [163] states that many industrial processes have relatively linear dynamic behav- 

iour, though not all can be approximated by a linear system description. For this reason, 

Sommer states that in some cases an approximated nonlinear representation can lead to 

better results than a linear approximation. There exists a large array of methods in the 

nonlinear modelling of a process, the descriptions detailed in Sommer [163] demonstrate 

the use of Hammerstein, Volterra and bilinear modelling techniques, and conclude that 

approximated nonlinear models decrease computation expense. The linear approach for 

which predictive control is developed can be easily extended by the use of multiple lin- 

ear approximations to the nonlinear process over the operating range. The linearisations 

are determined off-line, thus retaining the efficiency and structure of the traditional linear 

MPC, whilst gaining the advantages of a nonlinear control scheme. The 'gain-scheduled' 

form of this approach results in a number of linear predictive controllers, scheduled for use 

over the nonlinear range appropriate to their equilibrium linearisation point. The 'Wiener' 

form of this approach results in a single linear description of the system dynamics, varying 

in magnitude with respect to the operating point. These two methods are demonstrated in 

Chapter 6 in the control of a nonlinear urban wastewater system. 

On-line successive linearisation of the process can lead to further more accurate system 

models for control purposes. A similar method utilises the nonlinear process model, as- 

sumed constant at that sample instant, updated with predicted behaviour of the system, 

resulting in a time-varying model. This method retains the accuracy of the mathematical 

physical system description, whilst also maintaining the structure of the linear predictive 

control algorithm. This approach is detailed in Chapter 6 in the state dependent nonlinear 

predictive control of a wastewater treatment plant model, and additionally in control of the 

urban wastewater system. 
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2.3.2 Linear Model Based Predictions 

In order to solve the MPC algorithm, a method must be developed for the computation 

of the predicted behaviour of the variables available for control. In the development of the 

predictive aspect of the MPC, the initial assumption is that of no disturbances, and a fully 

measured state vector. Later, the addition of disturbance modelling and state estimation 

will be introduced. The prediction equation is that demonstrated by [85], developed through 

iteration of the discrete linear form of the system equations in the state space. The state 

vector at time j=1 is defined above as: 

X(k + 1) = AX(k) + Btu(k) (2.7) 

Thus iterating for the next sample instant, j=2: 

X(k+2) = ÄX(k+1)+BOu(k+1) 

= A2X(k) + ABAu(k) + BOu(k + 1) (2.8) 

Iterating as above for each time instant, the predicted state at time j is defined by the 

following 

X(k + j) = AjX(k) + 
j-1 
E Äj-i-1BDu(k + i) 

i-o 

(2.9) 

so that the predicted output is described by the subsequent equation for a j-step ahead 

predictor: 

y(k + j) = OA'x(k) + 
j-i 

CÄý-i-1I30u(k + Z) 
i=0 

(2.10) 

The format of controller predictions used therefore in this thesis can be represented by 

the equation for the predicted output vector 

Y(k) = FX(k) + HAU(k) (2.11) 

where the model is iterated over a horizon known as the prediction horizon, Hp. The 
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output vector is defined as Y(k) =[ y(k) y(k + 1) ... y(k + Hp - 1) y(k + HP) ,T 

Since tu(k + j) =0 for jr Hu, the control increment vector can therefore be defined as 
DU(k) Du(k) Du(k + 1) ... iu(k + Hu - 1) 

]T. So, in the equation above 2.11, 

the matrix F is found to be of dimensions FE R'llpxn and of the form, constructed from 

the output predictions: 

A 

F=O (2.12) 

A11 

The matrix F is defined as the free response matrix, describing the predicted output if 

the control input to the system were to remain constant in the future (i. e. Au = 0). That 

is, the free response F depends only upon the past. The matrix H is defined as the forced 

response of the system to the effect of all future control increments, and is defined by the 

prediction vector to be of dimensions HE R11Hpxl and of the form 

B 

H=C 

Ar"P-iB 

"o 

AHp-Hu L 

(2.13) 

where Hti is defined as the control horizon, after which the control applied to the plant 

is assumed constant, that is as above Au(k + j) =0 for j }- Hu.. The above structure 

demonstrates that the predicted output vector for the system is a function of the states and 

the changes in input. 

2.3.3 Cost function and Optimisation 

The control input of the system (i. e. the output of the controller) can be found by 

minimising the cost function of the system. The optimal control input can be found by 

determining the optimal value for Du, where the single input single output (SISO) form of 

the cost function is 
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Hp II�-1 

J [w(k +. 7) - J(k + j)] (ý) + [Au(k +. 7)]ß(j) (2.14) 
j=Hw j=0 

where H,,, is the lower cost horizon. The first term of this cost function calculates the 

square of the future error in the setpoint tracking, which requires knowledge of the future 

setpoint w. Typically, without knowledge of the setpoint trajectory in the future, the 

assumption is made that the variable w remains constant over the prediction horizon. The 

weighting factors . (j) and Q(j) determine the importance of the two cost terms of control 

increments and tracking error respectively and are defined for that time j. Normalisation 

may be required to compute optimal control that is independent of input and output units, 

this may be performed via the scaling of weighting factors. The above cost function can be 

extended to the multivariable case by the following MIMO form, using vector notation. 

J= (W - Y)TQ(W - Y) + LUTXDU (2.15) 

where the vectors TV, Y and AU are defined as W= [w(k + H,,, ).. w(k + HH)]T, y= 

[y(k + H,,, ).. y(k + Hp)]T and DU = [Du(k).... Au(k + Hu -1)]T respectively. The weighting 

matrices Q and A are defined by 

Q(HH) 00 

0 Q(H,, +1) "" 0 
Q= 

00 Q(HP) 

A(o) 00 
0 )(1) ... 0 

00... A(H ) 

(2.16) 

(2.17) 

The vector of the free response of the system is defined as f= Fx(k). The above cost 

function equation can be rewritten with the substitution of the equation Y=f+ HEU to 

the tracking error: 

e=W-Y=W-f-HDU (2.18) 
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so that the cost function J is written as 

J= (W -f- HOU)T Q (W -f- HAU) + DUT Ai U (2.19) 

= (W -f)TQ(W- f)-HOUQ(W- f)- 

HOUQ(W - f) + HAUTQHDU + DUT ADU 

= AUT[HTQH+AI]DU-2(W - f)TQHDU+(W - f)TQ(W - f) 

yielding a quadratic minimisation problem, for which a solution is: 

Du = [HT QH + AI]-1QHT (W - f) (2.20) 

This minimisation problem can alternatively be performed online as a quadratic pro- 

gramming function, particularly in the presence of constraints. The minimisation results 

in a vector of future control increments, Du, of length Hu, of which only the first element 

is needed. The only section of this vector being used in the control action applied is that 

pertaining to the next step in the control horizon, so that the control applied to the plant 

is: 

u(k) = u(k - 1) + K(W - f) (2.21) 

where K= [Il, Oi """ Oi] [HT QH + AI] -1 QHT 
, where Ii is the lxl identity matrix and Ot 

is the lxl zero matrix. 

2.3.4 System Modelling 

A brief description of the modelling tools utilised is presented in the following section. 

The nonlinear models used can be impractical for control purposes. However, within cer- 

tain ranges and for particular processes linear models are sufficient. The main method of 

identification utilised in this thesis is the approach of subspace identification, utilising data 

of the excited process. The scope of this thesis concentrates predominantly on the struc- 

ture of model used, rather than the identification method. For this reason, the subspace 
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identification method is briefly described here. The identification of parameters and system 
kinetics is not considered within the scope of the research presented, instead concentrating 

on practical models for process control. The detailed application of subspace identifica- 

tion to activated sludge systems was demonstrated by the research of Sotomayor et al. 
([164], [165]). Various other process-specific identification methods such as the modelling of 
the dissolved oxygen process via on-line updates of the oxygen mass transfer function have 

been demonstrated, for example the research presented by Suescun and Ayesa [171]. 

Subspace Identification 

The aim of using subspace identification here is to construct linear multivariable models 
in the state space form based on available input-output measurement data from the non- 
linear model. The identification of multivariable systems is of benefit here as this allows 

simultaneous control of several parameters (see for example the multivariable control of the 

COST benchmark system, in Chapter 3), or for use in modelling measured disturbances, 

as seen in Chapter 6 in the control of the urban wastewater network. Multivariable ap- 

plications of subspace identification has been demonstrated for industrial applications, for 

example in Bastogne et al. [10]. 

The subspace algorithm used in this thesis is that developed by VanOverschee et al. 
[180], i. e. the SUBID algorithm within the Matlab platform. It is not the intention of this 

section to document the history of identification techniques, or the background theory for 

this algorithm, but to briefly explain the methodology involved in the use of the SUBID 

identification algorithm. The subspace method has been used previously with predictive 

control, for example Kadalia et al. [74] and Jia et al. [70] and was presented in the tuning 

of PID algorithms for wastewater treatment by Sanchez et al. [146]. Dorsey and Lee [39] 

demonstrated the use of the subspace identification methods in the online prediction of 

process behaviour. Lindberg [94] applied subspace identification on an ASM-based treat- 

ment plant model, for the multivariable control in a predenitrification plant (of the ammonia 

and nitrate processes). 
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The assumption is that with a sufficiently large set of data for the input and output 

of the system, preferably excited by a set of random signals (in this case Pseudo Random 

Binary Sequence (PRBS)), that the system should be describable by a state space form. 

The discrete-time subspace identification methods are defined as "the approximation of 

subspaces generated by the rows or columns of block-Hankel matrices of the input-output 

data, to calculate a reliable discrete-time statespace model" [127]. The form of the system 
identified by the subspace identification algorithm utilised is as shown below, where u(k) 

and y(k) are the input and output of the system, where the pair (A, B) are controllable and 

the pair (A, C) are observable 

x(k + 1) = Ax(k) + Bu(k) + w(k) (2.22) 

y(k) = Cx(k) + Du(k) + v(k) 

with the state space matrices required to be both observable and controllable (by the 

tests shown in later sections). The signal w(k) here is unobserved noise on the states and 

similarly for the output noise v(k). The order of the model is estimated by a Singular Value 

Decomposition. The choice of input for excitation of the process is of most significance, 

depending heavily upon the typical characteristics of the signal (magnitude, mean value, 

discrete time step). These restrictions upon this input are the main source of the modelling 

error between the linearised model and the nonlinear plant, as the inputs are tailored for a 

particular operating state. The model is therefore valid only in the region of this operating 

point, and deviations from this region results in inaccuracy. In the application of this 

technique of identification, there exists a user decision of the trade-off between accuracy 

and reduction of the order of process model, resulting in the possible multiple applications 

of the algorithm and selection of best performance relevant to the process control. 

The subspace identification approach is restricted in the case of this thesis to the mod- 

elling of multivariable processes for control purposes, consisting of model inputs of manip- 

ulated variables, and model outputs of controlled variables. Unmeasured and unestimated 

inputs are not considered, whilst uncontrolled processes are simply not modelled. Differ- 

ences between the process and the modelled system are defined as 'plant-model mismatch' 
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and are considered within the unmeasured disturbance handling. Any further input vari- 

ables, such as measured disturbances, would be also be identified. The use of this approach 

within the research presented in this thesis is motivated by the need to reduce the com- 

plexity of the model, exploiting the optimisation speed, simplicity, linear nature and other 

advantages of a simplified model 

2.4 Disturbance Modelling 

The use of a disturbance model is split into two basic approaches: measured and un- 
measured. The former describes the approach of including disturbances in a form of feed- 

forward control scheme. This method assumes that the disturbance is both measurable 

and has known dynamics, described by the system model. Clarke [27) defines the need the 

disturbance modelling within model based predictive control to allow the rejection of distur- 

bances to system performance. The second of these disturbance models, the unmeasured, 
is considered in the next section. 

2.4.1 Unmeasured Disturbance Model 

The main advantage of unmeasured disturbance modelling is the provision to the controller 

of the ability to reject disturbances to the process control. This consequently also allows the 

controller to take into account differences between the linear model and the actual process, 

reducing offset error in the control performance. In a practical sense, the concept of the 

disturbance model implemented in this thesis is that of an unmeasured but unchanging 

disturbance over the prediction horizon, estimated as the difference between the actual and 

the estimated output of the system. Thus modelling discrepancies will be included within 

this constant disturbance model. 

The effect of disturbance on the controlled variables is removed by a change in the 

process model structure and thus the steady state target of the controller. The estimated 
disturbance state is then used with the original model states to predict outputs over the 
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prediction horizon. This method of a constant output disturbance is a widely-used distur- 

bance modelling approach in industry. A particular consequence of the disturbance model 

is the fact that the output vector can now no longer be assumed to be equal to the state 

vector, that is y(k + j) i x(k + j), even if the output matrix C is equal to the identity 

matrix. This results in the requirement of an observer in the estimation of the state vector 

x, and also in determining the magnitude of the disturbance state. 

The traditional MPC approaches of DMC and ID-COM used in industry both implement 

this form of disturbance handling, under the assumption of a noise free process. Davison 

and Smith [35] demonstrated the stabilising effects of the constant disturbance model and 

its benefits in reducing steady state offsets. Muske and Badgwell demonstrated a general 

state-space disturbance model for input, outputs and states, and presented conditions for 

which off-set free control can be guaranteed. Muske and Badgwell [109] demonstrated the 

requirement that the total number of disturbance states be equal to the number of outputs. 

In including a constant disturbance model, the process model must be augmented to 

include the extra disturbance states. Thus a new augmented state vector must be defined, 

based on the linear state space representation found by the identification above, where 

d7, (k) is the unmeasured disturbance state: 

x(k + 1) A 

d(k + 1) 0 
(2.23) 

y(k + 1) =IC 

O x(k) 
+B u(k) 

I d(k) O 

x(k) 
+ Du(k) 

d(k) 

where the state space matrices A, B, C and D are determined via the subspace iden- 

tification methods above, and 2.23 may be then substituted into 2.5 above, allowing the 

inclusion of the disturbance state within the predictive controller structure. In the use of 

a constant disturbance model, only output disturbances are modelled, acting as a constant 

bias upon the plant feedback. Whilst these disturbances remain constant over the sample 

period, other forms of disturbance can include ramp and sinusoid models. However, in the 

case of the fast dynamics of the controlled processes considered in this thesis, it can be seen 
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that the constant disturbance model can be sufficient in the presence of slower effects, such 

as those due to diurnal variations. 

2.4.2 Measured Disturbance 

This method of disturbance model allows for two aspects of model based control. The 

former is the ability to model process dynamics produced by an input other than the 

specified manipulated variables. The latter is the anticipation of system disturbances and 

the compensation of such with suitable control actions. This can in some situations be more 

effective than the feedback method of disturbance rejection, as the latter has an intrinsic 

delay before the corrective action can be calculated. However, exact compensation for 

the disturbance would theoretically require an exact model of the measured disturbance 

transfer function, which in a practical sense is not possible to obtain. Thus the measured 

disturbance model is used in combination with the unmeasured disturbance model approach 

detailed above. This method allows the feed-forward control to anticipate the effect of the 

measured disturbance, whilst the feedback control can be effective in the compensation of 

model offsets and process disturbances. 

In the work presented in this thesis, the modelling of measured disturbances was used in 

the control of the urban wastewater system. This allows disturbances such as the downriver 

effects of sewer-to-river overflows to be predicted to a certain extent, and if necessary, 

negated by suitable control actions by the manipulated variable. A measured disturbance 

model was used in this instance to model dynamics that were relevant to the accuracy of 

the model, but which were not controlled inputs, such as the river dynamics. The model 

format being used is therefore changed to include a measured disturbance. 

x(k + 1) = Ax(k) + Bu(k) + Bdd(k) (2.24) 

y(k) = Cx(k) + Du(k) + Ddd(k) 

where Bd is the modelled effects of disturbance and d(k) is measured disturbance. This 

structure does not affect the identification procedure, the identified model consists of n 
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inputs consisting of both manipulated inputs and measured disturbance inputs. It does 

however result in the following changes to the controller design: 

9 The disturbance d(k) is assumed constant over the prediction horizon, constructing 

the vector D(k), 

i. e. D(k) d(k) d(k + l1 k) " .. d(k + Hp - 1I k) 
]T 

where d(k) = d(k + l1 k), 

etcetera. 

" The error equation changes to include the disturbance measurement, becoming e_ 

W-f- HAU - DbD(k), where Db is the disturbance matrix constructed as 

CBd Dd ... ... 0 

CABd CBd 
... ... 0 

Db = (2.25) 

CAH"-1Bd CANp-2Bd ... CBd Dd 

This is implemented in process simulation by replicating the input over the specified 

period, which in this case is the prediction horizon. Further disturbance models can rep- 

resent a more accurate model of the disturbance behaviour by predicting the evolution of 

this variable over the prediction horizon. Bordons and Cueli [16] demonstrated the appli- 

cation of an auto-regressive (AR) model of the measured disturbance to a system, whilst 

Bodson and Douglas [15] presented the handling of a sinusoidal process disturbance. The 

constant disturbance model assumed here in the case of UWS control is sufficient, due to 

the relatively slow dynamics of the river processes. 

2.5 Constraint Handling 

Alvarez and de Prada [4] stated that a simple method of implementing constraints on 

control actions can be produced by computing the unconstrained values, and then clipping 

the signal according to the constraints. However, whilst this is sufficient in the handling 
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of control input saturations, this method did not allow for the modelling of output con- 

straints, and may drive the system to limit cycles when in closed loop. The control method 

produced by Richalet et al. [135] approaches constraint handling by a switching method, 

whereby the controller, when the constraints have been violated, switches to an alternate 

controller whose designed purpose is to move the system back within the constraints, and 

then revert to original controller. Such constraint handling methods however lead to com- 

plexities for multivariable systems. Currently, the popular approach of constraint handling 

is the definition of the constraints within the control objective itself; formulated within 

the cost function. When constraints are defined in the objective of a control scheme, the 

control problem is no longer a simple quadratic minimisation and cannot be simplified to 

the form of 2.20. Instead, the control objective is formulated as a conditional optimisation, 

with constraints defined by a set of inequalities. By modelling the constraints as such, the 

conditional optimisation results in the use of QP minimisation of the cost function of the 

system, with respect to this set of inequalities. In a general definition, the problem can be 

seen as: 

Minimise J(t), subject to vi,,, < v(t + jl t) < vhigh (2.26) 

where the inequality v can be defined to contain the system constraints. For control 

increment, saturation and output constraints, this can be defined as 

AUmin :5 Au< Au. (2.27 

Umin ýUC umax 

Ymin < Y: 5 Ymax 

The above control increment, control action and output constraints can be defined in 

the following vector format 

AU(k) 
<o (2.28) [P p] 1 
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1F&JL 
U(k) 

<0 
1 

[r 
9] 

Y(k) 
<0 

L1 
The simplest constraint upon the process must be that upon control increments. The 

constraints upon the control increments can be written as the following inequality, where 
T 

U(k) =[ u(k) ... u(k + Hu - 1) 1 
as: 

PDU(k) <p (2.29) 

The saturation constraint upon the control action is perhaps the most commonly applied 

in constrained control optimisation. The upper bound of the constraint inequalities upon 

the control vector U(k) above can be defined as follows, where the upper bound remains 

unchanged over the control horizon: 

u(k) < umaX (2.30) 

u(k + 1) C umax 

u(k + Hu -1) < um,, (2.31) 

By substitution as defined in 2.3 

u(k - 1) + Du(k) < um. (2.32) 

u(k - 1) + Du(k) + iu(k + 1) < umax 

u(k - 1) + Lu(k) + ... + Du(k + Hu - 1) < ums (2.33) 

which when reformulated as follows, where DU(k) = 
[u(k) 

""" Du(k + Hu - 1) , 

is: 
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[10... 0] AU(k) umax - u(k - 1) (2.34) 

[11... 
O] ZU(k) < uma - u(k - 1) 

1111] DU(k) < umax - u(k - 1) (2.35) 

constructing on the left hand side of the inequality a lower triangular matrix of dimen- 

sions RHuzHu 

100 """ 0 

110".. 0 

F= 111 """ 0 (2.36) 

0 

11 "" 1 

The above input constraints can be defined by the following equation therefore: 

FLU(k) < -Flu(k - 1) +, o (2.37) 

lluxl where F=[ F1 ... F jju 
] 

and z/) =[U,. ,,, Umax 
T 

is of dimensions R. 

The lower bounds of the input constraints are defined similarly, 
Jconstructing 

the format of 

equation 2.28. Finally, the output constraints as defined by the following 

J(k) : Ymax (2.38) 

ymin < y(k) 

Focussing upon the upper output bounds, this can be reformulated as follows 

Fx(k) + HOu(k) < Jmax (2.39) 

which becomes 
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HLu(k) < ymax - Fx(k) (2.40) 

and thus can be rearranged as 

rHAu(k) <g- rFx(k) (2.41) 
in the format of equation 2.28. Using the above constraint inequalities the following 

problem can be minimised online via a quadratic programming minimisation 

min 2 OT L© + 1ý1 T0 

subject to S1E <w 

where L= 2[HTQH + \I] and M= 2(w -f )T H, and where PE) <w can be seen to 

have the following form 

F -Fiu(k - 1) + 
rH LW(k) <_ -rFx(k) +g (2.42) 

Pp 

Even in the case of a linear dynamic system, the presence of system constraints causes 

nonlinearities to be present, for example in actuator saturation, deadzone or backlash. The 

assumption of the ideal case that control action can be fully implemented upon the system 

can lead to degradation of performance or even stability issues. Thus the constraint handling 

within predictive control allows for prior knowledge of actuator nonlinearities to be included 

within control optimisation, embedded within the controller cost function. The constraint 

handling approach detailed in this case assumes an accurate model of the plant. For a 

more robust implementation of a constrained predictive control strategy, methods such as 

the dual-mode strategy have been shown to be effective. In this approach, feasible control 

moves are used to guide the current state to a target set, which satisfies the constraints 

within a finite period, after which a further control strategy can be used [92]. This can 

result in conservative control, and thus, methods have been developed by [34] and [101] to 

improve upon this through the introduction of a parameter dependent Lyapunov function. 
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2.6 Observer Design 

In most control cases, it is not possible to measure the full state vector from the system. 

In subspace identification and other linearisation techniques, this is especially true, as the 

states are not physical states, but are instead chosen in the linearisation process to represent 

the model. The measured values in the system are represented by a combination of these 

states, and therefore states cannot be measured directly. Thus, an observer (also known as 

an estimator) must be used to calculate these states from the measured outputs and inputs 

of the real process. The process model is used to construct this state estimator, including 

disturbance estimation. 

N 

For both methods implemented within this thesis, pole-placement estimation and Kalman 

filter estimation, the technique itself is similar, differing in the choice of estimator gain. 

Pole-placement allows the user to define the observer gain (in placement of observer poles), 

whilst conversely the choice of Kalman filter gain is algorithm-based. The form of observer 

used is that based on a linear time invariant system model. Particularly, in the case of the 

state estimation with the use of the nonlinear model, such as that demonstrated in Chapter 

6 for Wiener model predictive control, the nonlinear process is assumed, at a given instant, 

to be represented by a linear model. 

The gain matrix of the observer, L, is chosen in order that the observer estimation error 

converges to zero. The rate of this convergence is determined therefore by the placement of 

the observer poles in a trade-off between rate of convergence and the limit of computation 

speed. The observer eigenvalues are commonly placed at a location so that the observer 

poles are ten times faster than the slowest system pole. The observer gain for the linear 

system eigenvalues is defined by the matrices, L., and Ld, for the linearised system model 

and the disturbance model, respectively, so that the gain matrix above is defined as L= [L. 
r 

Ld]. The equation of the observer can thus be defined as follows 
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x(k + 1) 
_ (A - LC) x(k) 

+ (B - LD)u(k) + Ly(k) (2.43) 
d(k + 1) d(k) 

2.7 Summary 

This chapter introduced the theoretical aspects of predictive control utilised throughout 

this thesis. An introduction to predictive control, in addition to its historical background, 

was detailed. The linear system representation and the identification of the linear model 

was shown, and thus the structure for model based predictions of future behaviour was 

demonstrated. The optimisation of system behaviour via the use of a cost function was 

described, and the use of inequality constraints within this cost function was given. The 

modelling of measured and unmeasured disturbances was also described within this chapter, 

with respect to the linear system model. The subsequent chapter details the application of 

these algorithms to the COST 624 benchmark treatment plant model. 
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Chapter 3 

Linear Predictive Control of a 

Wastewater Plant 

3.1 Introduction to WWTP Control 

Model based control can be of particular use in the control of a multivariable constrained 

process such as that of wastewater treatment. Yuan et al. [192] state that the application 

of the model predictive control approach is still in its early stages within the wastewater 

treatment area. Whilst the mathematical model of plant behaviour developed in recent 

decades is complex, the level of measurement and the number of control handles present do 

not match this growth in complexity and only a few variables can be accurately measured. 

Long term planning in wastewater treatment processes, simulating plant behaviour over 

weeks, can use offline analysis of plant conditions. However, the control of dissolved oxy- 

gen and nutrient concentrations such as nitrate/nitrite within the treatment plant requires 

online measurements to be available. 

Controllability of the wastewater treatment processes remains an issue. The restriction 

upon model choice exists due to the need to match process models to available technology. 

Typical identification procedures can utilise excitation of the system in the construction 

of an appropriate model, but are constrained by the lack of online measurements, and 

control handles by which to excite the process. A model based procedure requires access to 

online measurements or estimations of required model information. The amount and the 
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quality of data available dictates the level of modelling possible. For this reason, simplified 

models determined by linear data-based identification techniques, whilst not suitable for 

advanced state or parameter estimation, can be appropriate for the control objectives of 

typical wastewater treatment processes. 

There are several issues which motivate the application of automation within wastewater 

treatment. Operation costs involve the manpower expenditure (particularly in plants lacking 

automatic control), energy costs due to electricity and fuel usage in operation of pumps 

and motors, tax costs due to regulatory fines, and additionally chemical or carbon dosing 

costs (where present). The efficient operation of wastewater treatment plants is therefore 

of significant concern, and application of advanced control techniques can benefit plant 

performance without a proportional increase in operation costs. 

In order to compare differing control strategies efficiently and effectively, a benchmark 

model is required and in particular a general non-situation specific model can allow control 

designs to be effectively compared. This model should ideally produce the same results 

across a number of simulation platforms. This model should also fulfil the practical require- 

ment of efficient computation, though this is of decreasing significance as computation speed 

of available technology increases. The COST 624/682 research group compiled a general 

benchmark model [30], the Benchmark Simulation Model no. 1 (BSM1), which could be 

used in the area of control simulation for optimisation of wastewater treatment, using the 

ASM1 model developed by Henze et al. [61]. 

The benchmark is platform independent, in that it gives equivalent results for simulation 

in Matlab/Simulink (this simualtion platform is used throughout this thesis) as it does in 

other packages such as SIMBA [160] and STOAT [166]. The accompanying basic control 

schemes of single variable PI loops (for the So and SNO) have been shown to be robust for 

more complex and more realistic hydrodynamics [67]. Control developments for the most 

part concentrate on improvement in performance of these processes. Alex et al. [3] details 

the use of the benchmark model for evaluating effectiveness of control strategies. 
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3.1.1 WWTP Structure 

The COST simulation benchmark provides the plant layout, the specific simulation 

parameters to be used, any model parameters required and provides several different simu- 

lation conditions for the plant influent characteristics (constant influent, dry weather, storm 

weather). The wastewater treatment plant model is comprised of: 

" five biological tanks in series (of total volume of approx 6000m3), each using the ASM1 

model, the first two tanks are unaerated, and the other three tanks are aerated. 

" first two tanks (1 & 2) have a volume of 1000m3, and are fully mixed, although 

unaerated. 

" tanks 3,4 &5 are of volume 1333m3, and aeration of these tanks is applied with a 

maximum value for KLA of 360 d-1. 

. one non reactive secondary settler (also with a 6000m3 volume), which is based on the 

settling function by Takacs et al. [173], and has an area of 1500 m2, depth of 4 m2. 

The settler consists of 10 subdivisions, and its feed point is located 2.2m from the 

bottom of the settler. 

" two recycles present internally, one nitrate/nitrite recycle from the 5th tank to the 

first, at a rate of 55338 mad-1 and one sludge recycle (RAS) from the settler to the 

front end of the plant at a rate of 18446 mad-1. 

" an outflow of waste activated sludge (WAS) from the secondary settler at a rate of 

385 mad-1. 

An activated sludge process is one in which organic components within wastewater are 

removed through biological treatment with the use of organisms within the sludge. Within 

the above treatment plant benchmark model, the activated sludge process model used is the 

Activated Sludge Model no. 1 [ASM1] [61], although there are more recent models (ASM2, 

ASM2d, ASM3) with further modelled processes. The model utilised represents the process 

conditions which exist at a temperature of 15 degrees Celsius (one of the assumptions 

required for parameter choices within the model). The ASM1 process model consists of 

13 state variables, involving 8 processes. This model includes 3 of the most important 
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Sludge Recycle 

Figure 3-1: BSM1 Structure: Five Biological Tanks: Tanks 1&2 Fully Mixed, Tanks 3,4 
&5 Aerated, Followed by a Non Reactive Secondary Settler 

processes in activated sludge: 1) degradation of carbonaceous material 2) nitrification 3) 

denitrification. The later models (such as the ASM2 and ASM2d) included processes such as 

phosphorus removal, and the ASM3 adjusted the model again to solve numerical problems. 

However, for the purposes of dissolved oxygen and nitrate/nitrite control presented, the 

activated sludge model used is sufficient. In the COST 624 benchmark model as presented 

in Figure 3-1, each individual tank is represented by an ASM1 model. The aim of the 

settler is to separate the cleaned water from the biomass, and therefore it is assumed that 

there is no reaction in the settler, i. e. there are no biological changes, only physical changes 

and that the sediment settles in this tank due to the effect of gravity. The dynamics of 

the settler within the COST 624 Benchmark model are defined according to the Takacs 

approach [173]. 

The model being used, the COST benchmark, uses the ASM1 (activated sludge model 

no. 1) by Henze et al. [61]. This model uses 13 state variables and 8 processes. The time 

is given in days, the flowrate is given in m3/day and the concentrations are given in g/m3. 

The state variables of the system are as follows 

9 SS, Readily biodegradable substrate. 

" XB, IH, Active heterotrophic biomass. 

" XB, A Active autotrophic biomass. 

9 XS, Slowly biodegradable substrate. 

" XI, Particulate inert organic matter. 
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" Xp, Particulate products arising from biomass decay. 

" So, Oxygen. 

" SNO, Nitrate and nitrite nitrogen. 

" SNIT, NH4 + NH3 nitrogen. 

" SI, Soluble inert organic matter. 

" SND, Soluble biodegradable organic nitrogen. 

" XND, Particulate biodegradable organic nitrogen. 

" SALK, Alkalinity. 

The influent data defines the following variables: t (time), SS, XB, ti, XS, XI, SN!!, Sl, 

SND, XND and Q (flow), and assumes that the remaining So, XB, A, Xp and SNO are at 

an influent level of zero, whilst the remaining component, SALK, is assumed to be constant 

at 7 molm73. The influent weather data considered are those of dry weather and storm 

weather, supplied with the BSN11 simulation package of [30], depicting diurnal variations 

and weekly trends in the influent data. 

3.1.2 Control Structure 

Traditional control of the dissolved oxygen process utilizes a feedback measurement 

of the concentration as the controlled variable and air flow rate as the manipulated vari- 

able. However, there exist many interconnected system requirements for control within the 

wastewater treatment plant, which can be decomposed within a hierarchical scheme into 

lower-order controlled subsystems. Galluzo et al [50] state that the dissolved oxygen can 

be regarded as the most important control parameter in an activated sludge process not 

only with respect to aeration operating costs, but also by considering the influence that the 

dissolved oxygen concentration has on processes within the treatment plant. Nitrification 

and denitrification processes, as well as phosphorous removal, are dependent upon the dis- 

solved oxygen concentration in the aerobic area of the plant. The dynamics therefore of 

other processes, in addition to plantwide objectives of operation costs, effluent quality and 
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other considerations, may be used in a hierarchical control structure for the manipulated 

processes in the wastewater treatment plant, wherein localised control may be coordinated 

by a higher level structure in the solution of a plant-wide objective. 

Baeza et al [11] detail a hierarchical control structure for a wastewater treatment plant 

in which the supervisory control includes process control and analysis via plant computers, 

in addition to low-level control, failure detection and possible corrective actions within a 

PLC system. The upper-level PC's within the system implements PLC supervision, in 

addition to process control for key parameters, in which control actions are transmitted to 

the PLC's which determine the actuator actions for the plant. In the case of the control 

structure assumed within this benchmark treatment plant model of Section 3.1.1, it is taken 

that there exists two control loops, that of the higher level outer MPC loop manipulating 

the setpoint of a lower-level PID structure. It is considered that the setpoints to the MPC 

loops, which in practise could be provided by a hierarchical system similar to that of [11], 

are chosen to be constant. The dissolved oxygen process in the aerobic reactor within the 

treatment plant, as dictated by the ASM approach, is defined as below in equation 3.1 

dS0Q 

dt =v (S02, in - Sot) +r+ Kca(SO, sat - SO) (3.1) 

The ASM model equations are defined by the mass balance approach, with the particular 

behaviour of each state defined by the reaction terms of its processes. The dynamic dissolved 

oxygen process may be dictated by an external influence, in the presence of an aerator. It 

can be seen that the DO process is effectively decoupled from the other processes within the 

plant with the presence of this term, in that it can be strongly dependent upon the oxygen 

transfer characteristics. However, aeration does affect the remaining processes within the 

system, in particular that of ammonia and nitrate/nitrite, as it disrupts the nitrification 

process. Much research recently has been concentrated on the modelling of aeration, for 

example Gillot et al. [53], Dhanasekharan et al. [38] and Kubsad et al. [84]. 

A limitation on application of control within the wastewater treatment plant is the 

availability of online sensors. The sensors assumed available within the BSM1 are detailed 

in Table 3.1 Within the WWTP, the main sensors available in practice are typically flow, 

level and nutrient measurements. Even further limitations are enforced due to the lack of 
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control handles, with the most common of these available being limited to aeration, recycled 
flow rate and chemical dosing. The BSM1 model is composed of five individual activated 

sludge processes, of which only two are controlled: the second tank (unacrated and fully 

mixed) and the fifth tank (aerated, with a maximum Kia of 10hr-1). In the case of the 

control demonstrated here, the single variable control loops considered as 'existing control' 

are: 

. PID control for the SNO nitrate/nitrite control on the 2"d tank as defined in [30] 

" PID control of the So process of the 5th tank as defined by Sanchez [147] 

Table 3.1 Sensors and Actuators present in BSM1 WWTP 

Sensor 
. 

Units 

Dissolved Oxygen (DO) mg/l 
Nitrate/Nitrite mg/1 

Actuator Output 

Blower Aerator (m3/d) 

Pump Flow Rate (m3/d) 

For comparison purposes, control designed for the COST benchmark must be performed 

and evaluated under identical conditions in each instance. For this reason, the simulation 

parameters used in all cases were: variable step ODE23 solver, relative tolerance le-4 and 

absolute tolerance le-7. The dissolved oxygen control is implemented around the last aer- 

ated tank within the wastewater treatment plant, prior to the settler, via manipulation of 

the airflow to the reactor, as shown in Figure 3-2. 

The oxygen control loop manipulates DO to a 2gm-3 setpoint by controlling the value 

of the oxygen transfer coefficient (KLA). The Kia, in this compartment of the treatment 

plant is constrained to a maximum of 360 d-1. The simulation benchmark specifications 

define a maximum oxygen saturation concentration of 8g 02m-3. The airflow to the fifth 

reactor is pumped via a blower actuator controlled by a discrete PID controller identified 
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Sludge Recycle 

Figure 3-2: PI Control Loop of Dissolved Oxygen Concentration in Final Aerated Tank via 
Manipulation of the Air Flow Rate 

by [147] via subspace identification of PI parameters, with the form of discrete PID transfer 

function Gc 
, 
(z): 

G, (z) = 
10000z - 9306 

z-1 
* alpha *R* h/(SOsatt * V) (3.2) 

where the oxygen transfer rate (in ratio to clear water conditions) alpha is defined as 0.6, 

the specific oxygen input as R= 16, the immersion depth of the air as h= 4m, the dissolved 

oxygen saturation value as So, sat=8g/m3, tank volume V is defined as 1333m3. The control 

of nitrate/nitrite concentrations is implemented upon the concentration measured from the 

output of the second anoxic compartment, which is controlled by adjusting the internal 

recycled flow within the system, as in Figure 3-3. 

Figure 3-3: PI Control Loop of Nitrate/Nitrite Concentration in Second Non-Aerated Tank 

via Manipulation of the Internal Recycle Flow Rate 
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The nitrate/nitrite PID controller is tuned to the tracking of a setpoint of 1gm-3 and the 

internal recycle flow rate is constrained to a maximum of 92230 rn3d-1 (that is, 1.6 times 

the default rate). The parameters for the PI controller are defined as the proportional gain 

Kp, integral time constant Tj and anti-windup time constant Td (defined by [30]): 

Table 3.2 Nitrate/Nitrite Control: PID Parameters 

Kp Ti Td 

15000 0.05 0.03 

3.2 Predictive Control of a Treatment Plant 

Traditionally, wastewater treatment plants have heavily relied on approaches such as 

PI control or simple on-off control, avoiding advanced approaches such as model based 

control. Reduced models of processes within the activated sludge based treatment plant 

have problems in their practical implementation with poor parameter identifiability and 

the requirement for the use of advanced estimation approaches. The use of linear models 

of the process, identified from online data, avoids these issues that are commonplace with 

ASM based models. The subspace identification approach described in Chapter 2 is used 

to identify a linear discrete state space model. The multivariable linear system required 

has two inputs of dissolved oxygen and nitrate/nitrite setpoints (for the single variable PID 

controllers) and two outputs of dissolved oxygen and nitrate/nitrite concentrations in effuent 

of the 5th and 2'"d reactors respectively. The multivariable linear MPC is designed therefore 

to calculate the appropriate setpoint manipulation for dissolved oxygen and nitrate/nitrite, 

acting upon feedback from the plant, as shown in Figure 3-4. The inner loop sctpoint is 

varied over time to more accurately and efficiently meet the setpoint of the outer loop. 

Identification of the multivariable linear system is implemented by PRBS excitation 

of the above PI setpoints over a simulation period of 14 days under the constant influent 

wastewater conditions. The discrete time step (Td29C), mean value (m) and amplitude (a) of 

the PRBS signals chosen in the identification of the control model are as detailed in Table 

3.3. 
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Figure 3-4: Multivariable MPC for the WWTP Plant: Dissolved Oxygen and Ni- 
trate/Nitrite Control 

Table 3.3 PRBS Parameters in Identification of DO and Nitrate/Nitrite Models 

Tdisc (days) m (g/m3) a (g/m3) 

Dissolved Oxygen 0.01 2 0.5 

Nitrate/Nitrite 0.01 1 0.5 

A data set of length 2 days is chosen from this, reflecting the behaviour of the above con- 

centrations, and is utilised in the subspace identification algorithm. The model is identified 

under constant influent allowing the description of the dissolved oxygen and nitrate/nitrite 

behaviour and interactions. It does not however indicate the effect of the influent flow vari- 

ations, which would negatively affect the performance of the controller. A comparison is 

made between the linear models, for nitrate and dissolved oxygen concentrations, and the 

behaviour of these processes within the treatment plant under constant influent conditions, 

as shown in Figure 3-5. 

The linear model identified describes much of the dynamics of the dissolved oxygen 

process. The time constant of the dissolved oxygen process is dictated by the oxygen 

transfer process and thus the dissolved oxygen response is strongly coupled with aeration. 
The remaining mismatch is due to the nonlinearity of the overall process. The nitrate/nitrite 
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Figure 3-5: Comparison of Multivariable Linear Model with WWTP Process Behaviour 

process, whilst dependent upon the internal recycle flow, is also dependent upon the process 

aeration. There is additionally a difference between the time constants of the nitrate/nitrite 

process and the faster dissolved oxygen process. This can be seen to have effects upon 

identification of the linear model with respect to the nitrate process. The MPC structure 

has the ability to compensate for this with the use of a constant unmeasured disturbance 

model as described in Chapter 2, as shown in Figure 3-6. The state estimation designed 

for the identified system will calculate the estimated disturbance state, resulting in an 

additional state for each modelled output of the linear state space model. 

The observer poles are chosen as in Table 3.4, by convention to be ten times faster than 

the system eigenvalues, with two additional poles for estimation of the disturbance states. 

Table 3.4 Observer and System Eigenvalues 
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Figure 3-6: Linear Model Structure with Disturbance Estimation 

System Eigenvalues [ 0.9195 0.9511 0.9990 0.9952 0.9797 1 

Observer Poles [ 0.8691 0.8690 0.8689 0.7688 0.7688 0.86 0.967 ] 

The linear predictive control has equivalent performance to the PID control in the con- 

stant influent operating conditions. The controller performance therefore must be analysed 

for varying influent conditions (dry influent and storm influent characteristics). The MIMO 

predictive control implemented with linearised model identified is designed with the follow- 

ing parameters described in Table 3.5, chosen by trial and error. 

Table 3.5 Linear MPC Tuning Parameters 

Control Increment Weighting A [500 100] 

Error Weighting Q [10 1] 

Prediction Horizon Hp 50 

Control Horizon Hu 30 

Sample Time T8 1/1440 

The main aim of the activated sludge process is to acheive a low level of biodegradable 

matter in the effluent from the treatment plant. The performance of the dissolved oxygen 

control is particularly important in acheiving this aim. Comparisons of performance of 

MPC and PID control are demonstrated for varying weather conditions: 

" Predictive control of dissolved oxygen (as part of multivariable control in WWTP) 

versus the PID performance, both simulated for plant performance during dry weather 

conditions. 
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" Predictive control of dissolved oxygen versus the PID performance, both simulated 

for plant performance during storm weather conditions. 

" Predictive control of nitrate/nitrite (as part of multivariable control in WWTP) ver- 

sus the PID performance, both simulated for plant performance during dry weather 

conditions. 

" Predictive control of nitrate/nitrite versus the PID performance, both simulated for 

plant performance during storm weather conditions. 

The figures below demonstrate the performance of the existing constant setpoint PID 

control of the dissolved oxygen concentration, in comparison with MPC variable setpoint 

control. The figures demonstrate the response of the controlled variable (dissolved oxygen), 

the manipulated variable (dissolved oxygen setpoint) and the air flow rate determined by the 

mass transfer coefficient Kt,,. The varying dissolved oxygen setpoint allows the predictive 

control approach to compensate against the effect of flow variations within the treatment 

plant, demonstrating the advantage of a second level of control for the process. Figure 3-7 

demonstrates the performance of the control under dry weather conditions. 

The performance of the dissolved oxygen process shows a similar response under storm 

influent conditions, as seen in Figure 3-8, the disturbance model allowing for compensation 

against variations due to changes in influent. The flow variations do not have a significant 

adverse effect upon the response, the dissolved oxygen dynamics being sufficiently decoupled 

from the process nonlinearities by the linear effects of oxygen transfer. 

Whilst the dissolved oxygen concentrations within the treatment plant are commonly 

controlled, the additional importance of nutrient removal from the wastewater is signifi- 

cant. The use of multivariable MPC control of the nitrate/nitrite levels, together with the 

dissolved oxygen concentration in the aerobic area, allows the process to compensate for 

the variations due to flow changes and varying influent wastewater characteristics. Figure 

3-9 demonstrates, for dry weather conditions, the nitrate/nitrite performance, in addition 

to the control action of the variable nitrate setpoint, and the resulting changes in internal 

recycle flow rate. 

Again, Figure 3-9 demonstrates, for storm weather conditions, the nitrate/nitrite per- 
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Figure 3-7: a. Dissolved Oxygen Response under MPC Control during Dry Weather Influent. 
Conditions b. Applied Setpoint to Dissolved Oxygen PI Control Loop c. Air Flow to the 
Final Aerated Tank 

forinance in the anoxic reaction tank. The MPC control allows the reduction of the peak 

disturbance in the nitrate/nitrite concentration levels. However, the excessively large flow 

rates involved indicate the issue in the application of the above control. The restriction 

of control objectives to the treatment plant itself, and not the effluent concentrations or 

the effects upon receiving water quality, results in a control action detrimental to overall 

treatment plant performance. 

Since the control objective concentrates only capon tlic performance of the chosen concen- 

tration, and not upon such issues wS the concentrations of suspended solids in the efHueiºt, 

the control approach under storm conditions for nitrate/nitrite would actimIlY degrade plant 

performance. 
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Figure 3-8: Dissolved Oxygen Response, Setpoint Applied and Air Flow to the Final Acrat, ed 
Tank under MPC Control during Storm Weather Influent Conditions 

3.2.1 Effluent Quality 

The performance of the control strategies under differing influent comfitious, as , flown 

above, can vary. The results of different strategies may bc compared via the plant perfor- 

inance index provided in the BSM1 [30], including siicli variables ms: 

" eifinent quality (EQ) index (kg pollution units (1-1 ): this nieasures within one terni 

the effluent pollution load. This is calculated using the (hit a of the hast 7 days of plant, 

simulation under the chosen weather conditions. 

" operational costs, such is pumping/aeration energy (bot li in units of kWli d" 1) and 

sludge production (kg d-i), sludge for disposal and total sludge pro(uction). 

" measures of any effluent violations, with respect, to five effluent constraints, as Statitee(l 
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Figure 3-9: a. Nitrate/Nitrite Control under MPC Control during Dry NAleather Influent 
Conditions b. Applied Setpoint to Nitrate/Nitrite PI Control Loop c. Internal Recycle 
Flow Rate 

in Table 3.6. This is represented by two measures: the number of violations and the 

percentage of time the effluent is in violation. 

Table 3.6 Effluent Limits as stated in [30], 

where COD is defined as Chemical Oxygen Demand 
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Figure 3-10: Nitrate/Nitrite Response, Setpoint Applied and Internal Recycle Flow Rate 

under MPC Control during Storin Weather Influent Conditions 

Effluent Component Variable Effluent Limits Units 

Ammonia SN fj, c 11 gNm-: 1 

Total Nitrogen Nt,, j, e 18 gNm-3 

BODE, BODC 10 gBODm-3 

Total COD COD,, 100 gCODin 

Suspended Solids TSSC 30 gSSn1-3 

The effluent quality, limit. violations and plant performance indicators are calcIIlate(l for 

each storm condition and control approach, for comparison purposes, and are demonstrated 

in tables 3.7-3.9. 
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Table 3.7 Operational Variables and Effluent Violations for the BSM1,7 days of Storm 
Tnfliinnt ci niiln+inn 

Storm Influent Multivariable MPC Single Variable PI 

Aeration energy (kWh/d) 7273.1599 7279.974 

Average pumping energy (kWh/d) 1816.4268 1731.8525 

Effluent Quality (kg pollution units/d) 8207.2352 8276.7014 

Nitrogen Violations (number and %) 6,13.6977% 6,10.6415% 

Ammonia Violations (number and %) 7,27.453% 7,19.3842% 

Suspended Solids Violations (number and %) 2,0.35283% 2,0.26671% 

Table 3.8 Operational Variables and Effluent Violations for the BSM1,7 days of Dry 

Influent simulation 

Dry Influent Multivariable MPC Single Variable PI 

Aeration energy (kWh/d) 7227.5294 7230.8554 

Average pumping energy (kWh/d) 1525.177 1494.4871 

Effluent Quality (kg pollution units/d) 7474.8663 7530.8699 

Nitrogen Violations (number and %) 6,15.8922% 7,12.8801% 

Ammonia Violations (number and %) 5,17.8566% 5,12.5621% 

Table 3.9 Average Concentrations in Effluent for Dissolved Oxygen, Nitrate/Nitrite and 
Ammonia 

Plant Influent: Dry Storm 

Control Structure PI MPC PI MPC 

So (mg (-COD)/1) 1.9641 2.0007 1.9733 2.0038 

SNO (mg N/1) 12.4175 12.3673 10.5572 10.4839 

SNIT (mg N/1) 2.4772 2.3757 2.9922 2.9001 

Each of these tables indicates information describing the behaviour of the components 

in the effluent to the receiving waters. If one inspects the behaviour graphically however 
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(as in Figure 3.10), it can be seen that although the number of viola. tions and lengtlº that, 

the plant is in violation is equal or even less for the PI control, it is also clear that this 

description of the plant performance does not take into account the peak value of the 

violation. In particular, it is shown in Figure 3-11 that the predictive control application 

decreases the maximum nitrate/nitrite and ammonia concentration concentrations reaclºeº1 

within the effluent. It will be seen later in the thesis that this peak value is used in the 

analysis of disturbance effects in the receiving waters. 
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Figure 3-11: Total Nitrogen and Ammonia Concentrations in the Effluent for Single Variable 

and Multivariable MPC, PI Control and the Effluent Limit for Both Variables 

3.3 Urban Wastewater System 

The urban wastewater system consists of three sijhsyst. cnis: a sewer system, at rcat ºucut. 
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facility and receiving waters such as a river or a lake. The objective of the wastewater 

process is the removal of waste from households and industry via a sewer network, allowing 

its transportation to treatment facilities, after which discharge to receiving waters takes 

place. In certain situations, such as storm events, in which high loads of flow enter the sewer 

network, emergency discharges to the receiving waters may take place prior to treatment. 

These events are known as 'combined sewer overflows' and can have a considerable negative 

effect upon water quality. 

The control considered within this thesis concentrates on the performance of the treat- 

ment plant with respect to river quality, with reference to sewer overflows occuring else- 

where in the subsystem. Many control applications have centred upon the reduction of 

sewer overflows, and the control method demonstrated here does not conflict with such 

measures should they exist within the system. The control developed aims to provide a 

control scheme in the presence of overflows, however the control schemes developed for the 

urban wastewater system also consider that existing control may reduce CSO (combined 

sewer overflow) occurrences and therefore increase influent flows to the treatment plant. The 

primary objective of the treatment plant is the maintenance of an acceptable concentration 

of suspended solids in the wastewater effluent. However, under high hydraulic loads upon 

the treatment plant in the instance of high influent flow levels, the period in which sludge 

is retained within the primary clarifier may be significantly reduced as to not allow for 

sufficient treatment. An additional concern may be the loss of suspended solids to the plant 

effluent, known as 'washout', reducing water quality and damaging plant performance. For 

this reason, many plants include a control strategy to bypass flow directly to the receiving 

waters after a threshold of maximum influent flow has been passed. Recent strategies have 

been suggested in avoidance of such situations, such as those described by Nielsen et al. 

[112] of aeration tank settling (reducing the sludge load on the settler, therefore decreasing 

the risk of washout of sludge). 

The wastewater treatment plant is one part of a larger system, whose importance in 

reducing the human impact upon water, as part of this system, is considered within this 

thesis. The control of the wastewater treatment plant shown above aims at controlling 

nitrate/nitrite levels in the treatment plant and maintaining oxygen concentrations for the 
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removal of organic substances. In the wider system, the control objectives may differ in 

the maintenance of water quality to regulatory levels, whilst the actuators however most 

commonly remain strictly within the treatment plant. 

3.3.1 Effluent and Receiving Water Regulations 

Water quality is defined as a description of the physical, chemical, biological and aes- 

thetic aspects that influence fitness for use and ability to maintain the health of aquatic 

ecosystems. These properties can be influenced by constituents, that is the properties of 

water and that which is dissolved or suspended in it, i. e. its characteristic. The common 

regulatory approach to wastewater has concentrated on effluent quality, minimising the ef- 

fect of the treatment plant subsystem instead of the effect upon the receiving waters, as 

shown by the approach of the Uniform Emission Standard (UES) of [182]. The implica- 

tion of the 'integrated' approach adopted by the WFD is that the control schemes must be 

extended to include information from the other subsystems of urban wastewater treatment. 

The Environmental Quality Objectives/Standards (denoted by EQO/EQS) shown in 

Tyson et al. [178] is focussed upon immission levels, the quality of receiving water, whilst the 

Uniform Emission Standard above is focussed upon emission levels, quality of effluent water, 

respectively. In the EQO/EQS, the capacity of receiving waters to assimilate pollutants is 

accounted for, in that a certain level may be assimilated and the receiving waters may 

still meet the water quality standards. The UES on the other hand views the objective 

of attaining effluent water quality without respect to issues in receiving waters due to 

discharges local to this point, and compliance with these regulations is more defined with 

respect to control technology utilised rather than the quality of the receiving waters affected 

[177]. 

The European water policy of the Water Framework Directive is established with the 

objectives as detailed in [17], defined as: protection of all waters (for example, groundwater 

and surface waters), acheiving sufficient quality status of these waters (ecologically and 

chemically) within the deadline set (15 years), a river basin approach to water management, 
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control of emissions and discharges by an approach combining emission limits and quality 

standards, mandatory pricing for water and public participation. Tolessa [177] details that 

in addition to the WFD, the water quality legislation of the CWA (Clean Water Act) of the 

USA is of similar importance. 

The CWA objectives involve the optimistic aim of eliminating the discharge of pollutants 

entirely, whilst in the presence of pollutants the objective is given of the restoration of, and 

maintenance of, the water integrity (biological, chemical and physical), in order to acheive 

a water quality appropriate for aquatic life and for human uses. The objectives of both the 

CWA and also of the WFD are based upon the river basin approach to water quality. The 

indicator variables of dissolved oxygen and ammonia concentrations are a popular choice. 

Table 3.10 below demonstrates the quality as indicated by these concentrations, for a small 

river receiving water. 

Table 3.10 Small river receiving water: Dissolved Oxygen and Ammonia Indicator 

Variables 

Concentration good sufficient insufficient bad 

Dissolved Oxygen (duration 1h, mg/1) 4 3 2 1 

Ammonia (duration lh, mg/1) 0.1 0.2 0.3 0.4 

Schilling [151] defines the possible solutions to water pollution due to urban discharges 

are 

9 reduce the amount of sewage (e. g. on a household level, and also by methods such as 

infiltration of stormwater into soil). 

" reduce combined sewer overflow (increasing storage capacity, real time control and 

monitoring of sewers). 

9 increase WWTP capacity (physical expansion). 

. increase treatment efficiency (e. g. process control, improving plant performance). 
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Immediate oxygen depletion in receiving water passing a CSO discharge point is con- 

sidered the 'dominating acute effect in running waters' according to Schilling [151]. Large 

levels of easily degradable organic substances creating an oxygen demand may be discharged 

during CSO events. Sedimentation of slower degradable organic matter may cause a delayed 

oxygen depletion. Ammonia discharges are destructive, even if brief or at low levels, due to 

the strongly toxic nature of unionised ammonia to fish. The chemical and biochemical im- 

pacts of urban discharges on receiving waters are characterised by Schilling et al. as related 

to the indicator variables of toxic substances (ammonia) and oxygen depletion (dissolved 

oxygen) respectively. In a practical sense the above quality standards, in particular in the 

case of ammonia, may be too strict, especially in consideration of dynamic conditions such 

as the time of day or time of year at which the sample is taken, and diurnal variations of 

ammonia levels in the sewage. Combined sewer overflows are further discussed in Section 

3.4.4. 

3.3.2 Instrumentation and Actuators 

Commonly, instrumentation within the wastewater treatment industry has concentrated 

on the treatment plant, in measurement of flows, levels, and wastewater concentrations such 

as dissolved oxygen, ammonia, nitrate and phosphates. Other measurements of biochemical 

importance, such as pH, suspended solids and COD may also be implemented. Whilst in 

recent decades, the bottleneck to the control and automation of wastewater treatment was 

considered to be instrumentation [121], this has seen a change particularly in the prevalence 

of the monitoring of treatment plant bioprocesses. The sensors throughout the remainder 

of the urban wastewater system remain as yet considerably less common. 

Whilst the instrumentation in place within the treatment plant industry has increased, 

a similar surge has not taken place in the number of control handles available. The imple- 

mentation of control strategies is limited by a lack of control handles, the existing control 

actions are performed by control valves (such as ball, diaphragm and plug valves), pumps 

(such as fans and blowers) and motors (electric motors, such as induction or DC). Control 

action within the sewer system differs from that of the treatment plant, based mostly upon 
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hydraulic issues. The traditionally applied control action is that of flow manipulation (for 

example using gates, pumps or weirs). In monitoring of sewer conditions, water levels are 

measured (Hansen and Carstensen [58] ), flow rates upstream and downstream. Weather 

systems can be of use in the measurement of rainfall, and for example in the forecast of 

rainfall (Adebe and Price[1]). Pleau et al. [132] demonstrated a control strategy for the 

sewer network based on predicted rainfall from meteorological models, and similarly for 

Entem et al. [48]. Whilst a significant proportion of sewer control concentrates on hy- 

draulic problems, recent research has demonstrated control of pollutants within the sewer 

system, with regard to the receiving water quality. The control options within the receiving 

waters are defined by Schutze et al. [152] as artificial aeration, flow control and control of 

discharges from CSO's and also from the WWTP. On-line monitoring is possible for DO, 

pH, temperature, amongst others, however literature has detailed [179] the lack of use of 

these control handles or sensors in the control of river quality. 

The aim of real time control (RTC) in the urban wastewater system should be the 

inclusion of river water quality as a control objective. It is for this reason that the the 

simulation model chosen for the urban wastewater system must allow the current state of 

the receiving waters to be determined, for design of possible control strategies within the 

subsystems and testing of their effects upon the final receiving water system. The actuators 

as considered within this thesis are those existing within the treatment plant. Controllability 

of the process depends on the number of these control handles, the manipulated variables, 

and the relation between these and the system control objectives. According to [7], in 

general the manipulated variables within an activated sludge waste treatment plant are: 

9 hydraulic: influent flow, wastage and recirculations. 

" additions of chemical or carbon sources. 

" air supply. 

" pre-treatment of influent wastewater. 

The actuators considered in the control applied to the urban wastewater system demon- 

strate in the following chapters are the those of aeration and chemical dosage, the con- 

trol handles available within [31] for the manipulation of dissolved oxygen (and ammo- 

nia/ammonium) and phosphorous. 
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3.3.3 Real time control of Urban Wastewater Systems 

Schilling et al. [150] defines real-time control of the urban wastewater system to be that 

where 'process data.. (is).. continuously monitored in the system and, based on these mea- 

surements, regulators are operated during the actual flow and/or treatment process' and de- 

fines the 'process data' as information such as water level, flow and pollutant concentration. 

Meirlaen [105] details that three requirements are therefore necessary for implementation 

of this real time control: sensor measurement of process conditions, control computation 

based upon this measurement and actuator action upon the process. Schutze et al. [152] 

define 'integrated control' of an urban wastewater system as the 'integration of objectives' 

and 'integration of information'. 

The former defines the control objectives of one subsystem with respect to the criteria of 

another subsystem, for example in the case of this thesis, the control of the treatment plant 

is determined by the water quality criteria of the receiving waters. The latter defines the 

use of information from one subsystem in the control of another, for example in this case in 

which the effects of combined sewer overflows upon water quality at the point of overflow 

are used in the control of the treatment plant performance. Schutze et al. [152] defines 

the control objectives within a treatment plant in a three level structure: the lowest, at 

plant level, in control to plant setpoints, the medium level is specified to cover time varying 

setpoints supplied by advanced control techniques, whilst the highest level in the control 

structure is the definition of plant operation objectives. 

3.3.4 Combined Sewer Overflows 

During rain events, a flow exceeding the hydraulic capacity of the sewer may cause the 

water to be diverted via 'emergency overflow' structures, in an event known as a 'combined 

sewer overflow'. Untreated wastewater may therefore enter the receiving waters causing 
detrimental effects to water quality, such as an increase in the concentration of pollutants 
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present, or oxygen depletion. Two types of sewer structure exist in common use. The first, a 

separate sewer system, has a two-pipe structure: for the rain water and for the wastewater. 

This is more efficient for the treatment of waste, as the rain water does not dilute the 

wastewater, and additionally no combined overflows of waste occur. However, the 'first flush 

effect' of high rainfall events impacts upon seperate sewer systems, and is not transported to 

the wastewater plant for treatment, thus having detrimental effects upon receiving waters. 

The second, the combined sewer system, consists of only one pipe, containing both of the 

above flows, with the advantage of less construction costs. However the increased flow to 

the treatment plant during rain events reduces the efficiency of the treatment, and also as 

stated above CSO's may occur. The water quality in the sewer considered in this thesis 

therefore is the result of sewer mixing of the dry weather flow (household and industry 

wastewater flow, independent of rainfall effects) with the stormwater. The dry weather 

flow contains physical pollutants (e. g. suspended solids) , chemical pollutants (BOD, COD, 

nutrients) and microbiological pollutants dangerous to human health. 

Some studies have indicated that the effects of CSO reduction in the case of dissolved 

oxygen control are not clearly advantageous, and that the subsequent increase in hydraulic 

load to the treatment plant may decrease plant performance. Research studies by Rauch 

and Harremoes [137] demonstrate the effects of overloading the treatment plant, causing a 

break-down to occur with dramatic oxygen depletion in the receiving waters. A later study 

by the same group [138] of real time control of CSO indicates no correlation between the 

minimum oxygen concentration and the volume of CSO reduction. The increased volume 

of wastewater stored in detention basins contributed to an increased treatment plant load, 

subsequently causing water pollution via the treatment plant effluent, thus working against 

the objectives of the water detention. The approach demonstrated within this thesis aims 

to allow control of the urban wastewater system both in the presence of overflows and also 

in the presence of increased influent flow rates to the treatment plant. 

The effects of CSO's detailed by [105] are manifold, but in particular the effects upon 

oxygen demand can be caused by COD from CSO's, as well as NH4, causing a reduction 

in dissolved oxygen, and an accumulation of biomass. Nutrients such as nitrogen and 

phosphorous, in their various forms, can cause environmental effects such as enrichment, 
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which is the condition that results when the receiving water has a nutrient concentration in 

excess of that necessary for aquatic life. Nutrient enrichment can result in increased growth 

of algae and other plant life. 

3.4 Summary 

In this chapter, the control issues for a wastewater treatment plant with relation to 

linear predictive control techniques are discussed, starting with the development of a linear 

strategy in two-level control around single PI control loops. Two concentrations are chosen 

for control: the dissolved oxygen concentration and the nitrate/nitrite concentration. The 

control of these variables is assessed by examining the effects upon the treatment plant 

effluent. The performance of this control strategy under varying plant influent is demon- 

strated by the statistical assessment under several weather conditions. The aim of the initial 

section of this chapter is the introduction of predictive control in the traditional area of the 

maintenance of treatment plant quality. The performance of the control strategies under 

differing influent conditions is discussed. The analysis of treatment plant effluent behaviour 

with respect to specified effluent violation constraints is of particular significance. 

Following this, a survey of the available sensors and actuators within the treatment plant 

and also the extended urban wastewater system was given. The existing real time control 

and its objectives is discussed, and the effect of governmental and internation legislation 

upon water quality control is detailed. The issue of nonlinearity within the urban wastewater 

system is discussed, with suggestions as to the method in which this problem should be 

tackled. Combined sewer overflows are also discussed, in relation to the possible effects 

posed. The relation between the combined sewer overflows, the treatment plant and the 

receiving waters must be addressed. Therefore the following chapter, the background, and 

the introduction to modelling, of this urban wastewater system is given. 
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Chapter 4 

Urban Wastewater Treatment 

Model 

4.1 Introduction 

With the introduction of the Water Framework Directive in 2000 [49], an 'integrated' view 

of the wastewater treatment system has become more important in the automation and 

control of the processes. The definition of the structure of an 'integrated system' differs 

from source to source, Vanrolleghem et al. [181] for example define the integration of the 

sewer and treatment plants as the 'integrated urban waste water system'. Butler et al. [193] 

discusses the 'integration' involved as the exchange of information between the sections of 

the treatment process and the integration of control objectives. The integrated control 

objective can be seen to be an overall optimisation in the system, not just in one section at 

a time. 

The area of integrated wastewater system management has been underdeveloped and 

research until now has, for the most part, concentrated on one aspect of wastewater treat- 

ment at a time. The modelling related to wastewater has concentrated heavily upon the 

development of treatment plant models. Most commonly in urban areas, wastewater (and 

stormwater, in the combined systems) is handled by a sewer system and a wastewater 

treatment plant, and later discharged to receiving waters, such as rivers. It is this complete 

process, the mixing, biological and chemical processes that take place in the progression of 

the wastewater through the system from sewer influent to receiving waters effluent, that is 
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considered as the urban wastewater system in this thesis. The sections that are modelled 

within the mathematical representation of the system are: combined sewer, waste treatment 

plant and river. 

A significant concern in the design of automation and control for an integrated approach 

to wastewater treatment is the issue that systems are not planned or designed specifically for 

integrated system control, but instead concentrate on meeting effluent regulatory standards. 

The need to address this problem motivates the design of control for the integrated system. 

This chapter therefore deals with the modelling of the urban wastewater system for the 

purposes of control. A general explanation of urban wastewater modelling is given, and 

the models used in this thesis are described. Each model is explained with regards to the 

individual components, and the reasoning and assumptions behind each. A model is chosen 

to represent the process as regards water quality criteria and control to specific objectives, 

thus model components unnecessary for realistic control are not examined. Motivation for 

reduction or simplification of the models used for control is discussed in Section 4.3. 

The simplistic modelling of the urban wastewater system developed by [56] is discussed 

in Section 4.5. The complex mechanistic representation of the urban wastewater is detailed 

in Section 4.6, as developed by [31], and is demonstrated, with respect to the implementation 

of predictive control based upon a linearised dissolved oxygen process model in Section 4.7. 

The control objective, method and results, and also the limitations of linear models for 

a nonlinear system are discussed. The need for a nonlinear approach is detailed. In the 

development of a nonlinear model approach for control of the system, the state dependent 

format of each model is presented. The derivation of the nonlinear generalised predictive 

control scheme demonstrated later in Chapter 6 depends on the development of a state 

dependent format of the treatment plant and urban wastewater system models utilised in 

this thesis. The transformation of the simple wastewater treatment plant model, its related 

urban wastewater model and the ASM2d aerobic model to the state dependent coefficient 

form is shown. 
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4.2 Urban Wastewater System Modelling 

The issue in the modelling of any biological system is the objective of the model, that is, 

the use for which it is designed. In the analysis of wastewater treatment and benchmarking 

of control schemes, a process model is required to represent the water processes affected 

by wastewater and changes in its composition. The modelling requirements demonstrated 

by Rauch et al. [136] show that the integrated models can be designed based only on 

those components in the receiving waters, which are affected by wastewater. Rauch et al. 

detailed that the state of a receiving water is not determined entirely by its chemical quality. 

Regulatory constraints however do not take this into account, or the fact that more often 

than not, local ecological conditions also affect the receiving water. This issue itself actually 

constrains the possibility of effectively improving ecological quality levels. It is not however 

the issue considered in this thesis, which concentrates on the effects of wastewater upon the 

receiving waters. To this end, the focus of attention within the modelling demonstrated 

is the representation of wastewater processes in progression from treatment plants, to the 

effluent to rivers, and the effects of any sewage overflow to the river; other point sources are 

not considered. 

Rauch et al. [136] specify that the impact of wastewater on the receiving waters can 

be organised in the following groups: chemical, bio-chemical, physical, hygienic, aesthetic, 

hydraulic and hydrologic impacts. It is then the choice of the user to specify which of these 

impacts are to be monitored and improved, thus determining the focus of the model. The 

nitrate, ammonia and phosphate concentrations, in their role as nutrients and their effects 

upon the river life, are considered as the key factors within the nutrient control issue. In the 

area of wastewater treatment, nutrients present a particular problem, they are contained in 

domestic sewage, in argicultural run-off and are also present in industrial effluents. These 

nutrients, particularly nitrates and phosphates, encourage the growth of plant life in the 

river or receiving waters, but this can become excessive under conditions of high nutrient 

concentrations. 

The growth and decay of algae becomes in turn an oxygen demand upon the river, in 

a process known as eutrophication, the over-enrichment of a body of water with nutrients 
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with a subsequent decrease in oxygen levels. In lakes, or slow-flow rivers, this problem 

can become significant. The importance of nutrient control and the solution required can 

depend upon this signifance, and may be of no concern to local water authorities in the 

case of fast-flowing waters. Dissolved oxygen levels are traditionally an important issue, in 

that large and extended dips in oxygen in the water can lead to fish deaths. For this reason, 

dissolved oxygen is a commonly controlled variable. 

A large issue in the management of urban water resources and treatment is the almost 

exponential increase in population during the last century. This population surge has also 

therefore resulted in increased city populations, and a proportional increase in load upon 

the sewer system. In addition, climate changes have taken place, as well as changes within 

industry, that must be taken into account by water authorities. The objectives of advanced 

automation and control in the increased efficiency of plant operation can allow a system 

to deal somewhat with the increased load by implementing changes in its mode of oper- 

ation, rather than making any investment in physical changes to the system, in the form 

of plant expansion. Many treatment plants are overdesigned, and so, the increased load 

upon the wastewater treatment industry may well be within the physical constraints of the 

treatment system. Any investment required in the improvement of automated processes 

within the plant would merely take the form of the addition of extra sensors in the system, 

a significantly smaller cost than phsyical redesign. 

4.3 Model Choices 

Mathematical models of the wastewater treatment process within the control algorithm 

provide the ability to predict the allowable discharge of a given component to the receiving 

water, to meet water quality standards. The main motivation within the wastewater re- 

search area for mathematical modelling is the possibility of evaluating new designs without 

the need for an intrusive practical implementation of the designed strategy. The models de- 

veloped therefore are sufficiently complex to describe the dynamics and interactions within 

the wastewater process, of which there are many. For this reason, bulky and often complex 

process models are produced with the aim of process representation, without reference to 
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control requirements. Model simplification, with mechanistic models, or model reduction 

can be utilised to produce a 'control model'. The model simplifications result in 'surro- 

gate models', defined by [181] to be an approximate substitute to the complex mechanistic 

models of the process. The complex original models represent the real process consider- 

ably more accurately, however the surrogate models can be chosen to represent only the 

variables under consideration, with the benefit of simplification but with the expense of 

accuracy. These 'surrogate' models can be defined as reduced mechanistic models, such as 

that of the simplified wastewater treatment plant model of [114] or more complex grey-box 

models such as that demonstrated by [141] in the application of neural modelling for the 

ASM2d process. 

Model reductions utilised within this thesis are summarised as shown in Figure 4-1, 

similarly to the method defined by [181], involving elimination of parts of the model not 

necessary to the control of the process. The approach detailed by [181] utilizes the control 

model methodology of [106] in the relocation of system boundaries according to available 

actuators and sensor information. In the case of the work presented in this thesis, the 

control models represent only those dynamics which can be manipulated or measured, e. g. 

upstream and downstream concentrations of the controlled variable, the actuators and the 

dynamics of the treatment plant and river sections considered. For example, the parts of 

the sewer system upstream of the control action may be eliminated, as they may never affect 

the control of the system, and act only as influent behaviour and description of catchment 

and sewer wastewater characteristics. The river dynamics upstream prior to any sensors 

may not be required within the control model due to the lack of control handles, but river 

dynamics after any sensors may be modelled for disturbance prediction purposes. Similarly 

then, the downstream dynamics of the river following the last sensor may be eliminated, as 

any unmeasured events after this sensor do not affect the control action. 

Two forms of urban wastewater model are used within the work presented. A complex 

mechanistic representation of the urban wastewater system based upon the ASM2d model 

and the QUAL2E [19] model is considered. A separate, simplified model representing the 

basic mass-balance equations of the urban wastewater system is presented. In the devel- 

opment of a 'control model' of the processes involved in both these approaches, the state 
dependent model representation of the nonlinear dynamics is used. 
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Figure 4-1: Modelling of the Urban Wastewater System: Through Complex Mechanistic 
Models and Reduced Representations 

4.4 State Dependent Model Representation 

Previously in the thesis, the state space representation of the process has taken the linear 

form 

x(k + 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) + Du(k) 

(4.1) 

However, models of this form do not fully incorporate the dynamics of a nonlinear 

system. In order for-more accurate process representation, it is required to model the 

system in the form 

x(k + 1) = A(x, u). x(k) + B(x, u)u(k) (4.2) 

y(k) = C(x, u)x(k) + D(x, u)u(k) 

where the matrices A(x, u), B(x, u), C(x, u) and D(x, u) are 'state dependent' matrices 
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(although in some cases these matrices are also input dependent, the model will be referred 

to as 'state dependent'). The nonlinear dynamics of the urban wastewater system are 

contained within these matrices. Thus, the model is of a format similar to that of the linear 

form of the state space model (thus allowing for the use of predictive control algorithms). 

The format of the state dependent model used here was first demonstrated by Pearson et al. 

in 1962 [128], and was later used in the work of Burghart [24], and Wernli et al. [185], in 1969 

and 1975 respectively. The nonlinear process can be seen to be described by the general 

form of x=f (x, u). This must be rearranged into a state dependent coefficient (SDC) 

format. The method used in this case is the direct approach, where the above equation is 

split into two functions, fl (x, u) and f2(x, u), where f (x, u) = fl (x, u) + f2(x, u), so that 

the function f 1(x, u) can be represented as 

fll (xl, x2i - Xne Uli U27 ". un) 

{1 
f12(X1) X29 "' Xne Ul9 u2e '' un) 

Jl 
(x, ul = 

f1n(x1, x21 xne Ul, u2e "' un) 

which is transformed to the required SDC format by: 

xl 

fi (x, u) = A(x, u) 
x2 

xn 

(4.3) 

(4.4) 

For a multivariable system, there are a number of factorisations that will construct this. 

Similarly for f2 (x, u) the factorisation will take the following form 

f21(xl, x2, "'xn, U1, U2, ". uný 

f2 (x, u) 

f22(xl)X2, 
"' xn, Uli U23 ... un) 

f2n(x1, x2e "' xn, ul, u2, *'*Un) 

which is similarly transformed to the SDC format by: 

(4.5) 
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Ul 

f2 (x, u) = B(x, u) 
U2 (4.6) 

un 

4.5 Simple System Model 

For the purposes of nonlinear generalised predictive control, a simpler process model than 

that based on the ASM standards was required. To that end, an urban wastewater system 

model proposed by Graells [56] is detailed briefly in this section, followed by the trans- 

formation to state dependent form of this model. The urban wastewater model presented 

consists of the basic hydrodynamics and biological and chemical processes in the sewer, 

treatment plant and river. This utilises the treatment plant model by Nejjari et al. [114] in 

the representation of the effects of the influent data from the sewer system upon the effluent 

to the river. The treatment plant is modelled as activated sludge reactors, followed by a 

settler. 

The growth of bacteria in an aerobic environment requires the presence of a soluble 

substrate for carbon and energy. A simplification can be made of the complex process 

to two processes of the biomass increase by cell growth and decrease by decay, together 

with the resulting processes of the use of oxygen and removal of substrate. Therefore 

the simplest model of this process must include the following three components: biomass, 

substrate and dissolved oxygen. The following system chosen represents the dynamics of 

these three variables (with an additional recycled biomass description). The effect of these 

treatment plant dynamics upon the river is represented by biological process equations, 

each individual section described by a continuous stirred tank reactor (CST1I). It does not 

involve the description of the nutrients that would typically be present in a wastewater 

system (such as nitrates, ammonia, phosphorous), but it does allow the modelling and 

control of dissolved oxygen and substrate (or BOD) levels throughout the system. 
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4.5.1 Treatment Plant Model 

Settler 

Influent 
ýý" all 

Dilution Rate 

Acration 

Effluent 

Recycled Sludge Waste Sludge 

Figure 4-2: Simple Wastewater Treatment Plant: Activated Sludge Reactor and Settler, 

with Recycled Sludge Flow 

The structure of the wastewater treatment plant system as shown in Figure 1-2, h, Lsed 

on an activated sludge system as detailed in the work of Nejjari et al. [1141, is Lssunwd to 

consist of the following components: 

.A bioreactor, considered here as a stirred tank, in which micro-organisnls Sllspewled 

there degrade the substrate, through biochemical clegra(littion. This system is c"oºisi<1- 

ered to be perfectly mixed, so that the concentration can be assitnied to be spatially 

homogenous. 

"A settler, in which the micro-organisms are assumed to be completely removed. No 

biological reactions are considered to take place within the settler. A fraction of the 

biomass present is recycled to the bioreactor, whilst the remainder is considered waste, 

in order to maintain a suitable level of organisms wit hiin the system. 

" The inputs to the system are as follows: the wastewater influent, the aeration rate 

and the dilution rate. 

An illustration of the described process is shown in Figure 4-2, where the process vari- 

able s are, defined as the biomass X, the recycled hiOllMSs Xr, substrate S and dissolved 

oxygen C, which are described by the following equations: 
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dX 
dt _ µ(t)X (t) - D(t) (1 + r)X (t) + rD(t)Xr (t) 

dS 
= 

A(t)X(t) 
- D(t)(1 + r)S(t) + D(t)Sin 

dTC 
= -&p(t) C(t) - D(t)(1 + r)C(t) + D(t)Cin + Kia(Ca - C) 

dd r= -D(t) (, ß + r)X(t) + D(t)(1 + r)X,. (t) 

where the parameters are defined as follows: 

" the above mentioned variables (X, S, C, X, ) are defined as the state variables 

(4.7) 

9r and 0 are the ratio of recycled flow to influent flow, and the ratio of waste flow to 

influent flow, respectively. 

" D(t) and W(t) are defined as the manipulated variables of dilution rate and aeration 

rate, which control substrate and dissolved oxygen respectively. 

9 The constant yield coefficient is denoted as Y. 

" The influent substrate and dissolved oxygen concentrations are represented by SIN 

and CIN 
. 

9 Ko is assumed to be constant, and CS is the maximum dissolved oxygen concentration. 

. The transfer of oxygen is dictated by the oxygen mass transfer function, ICI,,, which 
is assumed to be linearly proportional to the air flow rate WV (t) by the following 

relationship, where a>0: Kla, = aWW (t). 

. The biomass specific growth rate is defined by 

µ(t) = µmax S(t) C(t) 
ISS + S(t) if, T C(t) 

(4.8) 

where µmß is the maximum specific growth rate, Ks is the affinity constant and KC is 

the saturation constant. The chosen state dependent form for the above treatment plant 

process model is as follows: 
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X(t) µ(t) - D(t)(1 +r) 000 X(t) rX,. (t) 0 

S(t) E`y 000 S(t) Sin - (1 + r)S(t) 0 D(t) 

C(t) - -xY` t000 C(t) 
+ 

Cin - (1 + r)C(t. ) CS -C TV(t) 
±r (t) (1 + r)D(t) 000 Xr(t) -(ß + r)Xr(t) 0 

(4.9) 

A reduced model, such as that of the above, allows the representation of some of the 

nonlinear behaviour of a wastewater treatment system, in which micro-organisms biochem- 

ically degrade substrate, for the purposes of research. The limitation of this model is the 

opportunity for control of only two wastewater plant concentrations; the residual substrate 

and dissolved oxygen in the treatment plant effluent. There exists a lack of modelling of 

significant characteristics of the treatment plant system, such as the pollutant concentra- 

tions of nitrates, ammonia and phosphorous, discussed in Section 4.6.1 and the assumption 

of an ideal settler process. 

4.5.2 Urban Wastewater System Model 

The system modelled by [56] consists of an urban area, comprised of a catchment area 

nearby to a river, which uses a sewer system (here the traditional combined sewer system) 

to transport waste to a treatment facility. The effluent of this treatment plant flows to the 

receiving waters, which may be additionally affected by the CSO's from the sewer network. 

The structure of urban wastewater system is as shown in the block diagram in Figure 4-3. In 

the catchment area, a constant flow of human waste combines with a varying flow of runoff 

water, which together form an influent to the sewer network. In this way, the rainfall within 

the catchment area affects the load to the treatment plant system. The runoff is modelled 

by the unit hydrograph, which was originally proposed by Sherman [156]. A hydrograph is a 

graph that shows the change in water quantity or other characteristics (level, flow, velocity, 

etcetera) over time, which in this case describes the response to an inch of rainfall applied 

uniformly to a catchment area, at a uniform rate during its specified duration. 
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The flow produced then by this catchment drains into a detention tank prior to its 

progression through the sewer network. A simple model is used to represent the pipe 

network of the sewer, the method for modelling the sewer was developed in Marinaki [102 
. 

Due to the fact that there is very little mixing in the network, it is reasonable to assume only 

hydraulic effects in the sewer. Thus the load from the catchment areas does not change in 

terms of chemical representation whilst being transported through the network. Due to the 

lack of control handles within this sewer network, the sewer model will not be considered 

within the state dependent representation of the urban wastewater model developed in this 

chapter. 

Figure 4-3: Simple Urban Wastewater System: Sewer, Treatment Plant and Receiving 
Water Models (Selected Area is that Considered for SDC Representation) 

The river network consists of sections, each of which is modelled using the concept of a 

continuously stirred reactor, and some simple hydraulic dynamic equations. A key factor in 

determining the effect of waste upon a river is the oxygen demand upon the process. This 

commonly requires the use of biological treatment and traditionally was one of the main con- 

siderations in the design and operation of a treatment plant. In addition to the importance 

of the dissolved oxygen modelling therefore is the inclusion of both readily biodegradable 

and slowly biodegradable biological oxygen demand: BOD, and DOD, (in literature, the 

BOD acronym is defined as either 'biological' or 'biochemical' oxygen demand). The frac- 

tions modelled therefore within the river model are the total flow Q, dissolved oxygen C, 
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and the two BOD fractions above. 

Commonly within the wastewater treatment industry, there are existing control tech- 

nologies in place, the majority of which are lower level control systems, such as on-off control 

or PI control, implemented via PLC. The control scheme assumed in the case of the above 

model is that of a PI control loop within the treatment plant only. This is a common control 

design traditionally, considering the treatment plant component individually, without refer- 

ence to the urban wastewater system. The control therefore consists of a PI loop controlling 

the airflow rate for the plant W(t) with respect to the dissolved oxygen level in the effluent 

from the treatment plant. 

The treatment plant dynamic equations considered in this model are those described 

within the previous section. The CSTR model of the river dynamics must therefore be 

detailed. The state vector of the CSTIt river model [Q XDO BODn BODS] differs from that 

of the treatment plant and thus appropriate conversions must be defined. The relationship 

between the substrate in the treatment plant, S, and the total BOD (the sum of the BODE 

and the BODE concentrations) in the receiving waters is described by 

BOD =K*S= I3ODR + BODE (4.10) 

where 

BODR = Kl * 130D 

BODE = (1- Kl) * BOD 

(4.11) 

The assumption is made in the treatment plant model that zero biomass is present in 

the effluent, and this implies therefore that the BOD is composed entirely of substrate, S. 

In this case, therefore, the constant K is defined as K=1. The total DOD is assumed to 

be comprised by 80% BODR and 20% BODE, and therefore KI is defined as K1=0.8. The 

process dynamics of the four states flow Q, dissolved oxygen XDO, readily biodegradable 

13ODR and slowly biodegradable BODE are described by the following equations: 
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dQ Qi. n(t) - Q(t) 
(4.12) 

dt T(t) 
dXDO XDO, in(t) - XDO(t) 

+ R(t) + P(t) + SED(t) + D(t) 
dt r(t) 

dXBO Dr 
= 

XBODin(t)(- XBODr(t) 
- (vsedR1t1 (1 - fdR) 

t T(t) 

+lCdR(PT-20 
XDO(t) 

)XBODr(t) (4.13) 
XDO(t) + kDO 

dXDODs 
_ 

XBOD,, in(t)(- XBOD8(t) 
- (1/sedSh1 (1 - fdS) 

T-20 XDO(t) 
+ dSýPKd XDO(t) kDO 

)XBODS (t) (4.14) 

where R(t) is the reaeration term, P(t) is the photosynthesis term, SED(t) is the 

sediment oxygen demand term and D(t) is the deoxygenation term of the form below: 

R(t) = ka(DOsat - XDO(t)) (4.15) 

P(t) = a77(t) 

SED(t) = ('SOD 
SOD 
ht (t) 

=- 
T-20 XDO(t) 

r1 D(t) VKd XDO(t) + kDO 1XBOD*, oo(t) + XDQD,, 
oo(t)1 

where XBODR,,, and XBOD, 
s,, O : are the steady state values for XDOD', and XDODs 

with zero mass flow through the tank boundaries, and where ra(t) describes the variation in 

sunlight intensity, which are defined by: 

XBODR,,,. (t) - XBOD, R(t) 
d 

1-e 
SkdR 

XBODs, 
o, 

(t) =X BOD, s 
(t) 

kd 

5kds 1-e- 

Sln(7r 
tday-taunriee ) 

tdaylength J 

`J l0 

(9.16) 

(4.17) 

or 
tdy E [tsunrise; tsunrise + tdaylength) 

(4.18) 
otherwise 

Hydraulic Parameters 
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The time constant t, volume of the tank V, cross section area A and depth hi are defined 

as follows: 

T(t) _V 
(t) 

Q(t) 
V(t) = A(t). l 

A(t) = ht(t). b + 
(ht(t))2 

s 

ht(t) = h,,, + h,,,, 
Q(t) - 111600 
Qm - 111600 

(4.19) 

The constant model parameters above (ka, k,, kd, a, etcetera) are defined in the Ap- 

pendix. 

4.5.3 River CSTR Model Transformation to SDC 

This model can be represented in the state dependent format, where the inputs to the 

model are upriver flow, upriver dissolved oxygen and the two oxygen demand variables 

upriver are modelled as the input vector u= Pin, XDO, in, XBODR, 
$f, 

XBODs,; 
T, 

Q]T 
" The 

state vector x is similarly consists of x= [Q, XDO, X BODR, X BODS]T , which is also the 

output of the model, y. 

T 

T-20 SOD 
WKd ht 

A(x, u) _ 

0 

0 

where 

0 
kDo _1_1 O(XDO(t T 

-B0[XBOD,., oo(t) + XBOD,, 
oo(t) 

0 

0 

00 

00 

+ BBODß 0 

0 -1 + BDODS 
(4.20) 

T-20 
XDOM 

BBODR = -(ý/sedRh(t) 
(1 

- . 
fdR) + kdRýPJ{d 

XDO(t) + 

ICDD 
)XBOD,. (t) (4.21) 
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1 
BBODS = (V8eds j (1 - fdS) + kdSVKd20 

XDX 
DOM 

O)ý'13ODS 
(t) 

o000 

0 
B(x, U) 

T00a 

00T00 

00010 

4.5.4 Urban Wastewater System Transformation to SDC 

(4.22) 

The model of Graells and Katebi [56] consists of both upriver and downriver models 

of up to 15 river stretches, each defined by the CSTR, model above. The state dependent 

model considered for nonlinear control purposes consists of the following: 

" Treatment Plant. 

" Upriver CSTR stretch. 

. Downriver CSTR stretch. 

as modeled by the state dependent coefficient structures demonstrated in the sections 

above. The block diagram of the system is as shown in Figure 4-4. 

The summation of concentrations present in the mixing between the treatment plant 

effluent and the concentrations already present in the receiving waters can be represented 
by the following equation: 

Qjxj ýý=1 Qý 
ý=1 

(4.23) 

where X is the concentration in question, and the flows through the point of mixing are 

denoted by Q. For example in this case, the dissolved oxygen mixing between the effluent 

(XDO, l) and the concentration present in the river (XDO, 2) is dictated by the ratio of the 

magnitude of the flow from the treatment plant Q1 and the flow through the river, Q2, as 

by the above equation, where n=2. 

With the knowledge of the mixing equations, both the state dependent models of the 

river, which are of the same format, and also the knowledge of the treatment plant dynamics 
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QI XDO1 XBODRI XBODSI 

Treatment 
Plant 
Model 

Q2 XD02 XBODR2 XBODS2 

CSTR 

Q3 XD03 XBODRI XBODS3 

Z! > CSTR 

Figure 4-4: Urban Wastewater System Considered for State Dependent Model Transfor- 
mation: - Two CSTR Models Representing River Dynamics - Treatment Plant Model as 
defined above 

from the previous section, a state dependent model of the process can be built. This can 

be modelled by the following format, where Al (x), Bl (x), Cl (x) and D1 (x) define the state 

dependent model of the treatment plant, A2(x), B2(x), C2(x) and D2(x) define the state 

dependent model of the upriver section and A3 W, B3 (x), C3(x) and D3(x) define the state 

dependent model of the downriver section. 

Auwe = 

Buwa = 

Al 0 
0 

0 A2 

A3,1 A3,2 

B1 00 

0 B2 rd 
[0 B3] 0 rd 

(4.24) 

where A3, land A3,2 are defined as: 
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0000T 
in 

o 0 0 
0O o0 

1+ 2T i f 'r 
O 0 

A31 - ' 
f n 1 2 fin (4.2 

l/ 1 00 0 (0.8'k 
+ 2ý'r 

0 + T 
0 

1 fin 2 fin 1 
tý 1 0 0 (0.2 * 

1+ 2T º 
j 

T + f n I 2 fin 

-00 T3 
0 

k DO 
3(t - 1ý 

T3 aýXDO 
, T-20 SOD VKd ht 

Q3 -BO[XBODr, oo, 3 (t) 0 0 
A3,2 = 

+XBODr, o, 3 (0) 

00-1 -I- BBODR, 3 0 
T3 

000 -73 + BBOD�3 

and B3 is defined to be the matrix: 

000 -T3 

B3 _0000 (4.26) 
0000 

0000 

Finally, I'd is defined as the coefficient of the daylight measurement and is defined to be 

the following, where 

o000 
000 rd = (4.27) 
0000 
0000 

The state variables are defined by the vector 

x=I Ql XDO, 1 XBODR, 
1 

XDODS, 
I 

(4.28) 

". " 
Q2 XDO, 2 XDODR, 

2 
XDOS, 

2 

""" 
Q3 XDO, 3 XBODR, 

3 
XDOS, 

3 
)T 
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where: 

" Q1, Q2, and Q3 are the effluent flow from the treatment plant, the upriver flow and 

the downriver flow, respectively. 

" XDO, I, XDO, 2, and XDO, 3 are the dissolved oxygen concentration in the effluent, 

upriver and downriver flows respectively. 

" XBODR, 1, XBODR, 2, and XBODR 3 are the readily biodegradable biological oxygen 

demand in the effluent, upriver and downriver flows respectively. 

" XBODs, I, 
XDOs, 2, and XDOs, 3 are the slowly biodegradable biological oxygen demand 

in the effluent, upriver and downriver flows respectively. 

The input variables are defined by the vector 

u=[DW Q1 Q2, in XDO2, i. n XBODR2, in XBODS2, in 71 
]T (4.29) 

where 

9 the time t is utilised in calculation of the daylight measurement q. 

9 The variables Q2, in, XDo2, tn, XBODR2, in and XBODS2, in are defined as the upstream 

measurements of flow, dissolved oxygen concentration and readily and slowly biodegrad- 

able biological oxygen demand respectively. 

Clearly not all of the above variables in the input vector u are used to control the 

downriver processes, indeed the available control actions remain the dilution rate and air 

flow rate, D(t) and W(t) respectively. Thus in the case of nonlinear control of the urban 

wastewater system based upon the above model, the considered structure of the process 

model is defined to be: 

x= Ax + Bouc + Bmdm (4.30 

where the control actions u, are defined as u, =[ D(t) tim(t) ] and the measured 

disturbance vector is defined as d,,,, =[ 77 Q1 Q2, in XDo2, ~n XBoDIn, in XBoDS2, in 
] 

The Auv, 3 state dependent matrix remains as defined above. The matrices Bo and 8,,,, are 
defined as 
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Bo = 

rXr(t) 0 

Si� - (1 + r)S(t) 0 

Cin - (1 + r)C(t) CS -C 

-(, ß + r)X,. (t) 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

Bm = 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 - 0 0 0 0 
0 0 0 0 a 

0 0 0 0 0 

0 0 0 0 
T2 

T3 0 0 0 0 0 

0 0 0 0 0 a 
0 0 0 0 0 0 

0 0 0 0 0 0 
4.31) 

4.6 Complex Urban Wastewater Model 

The second model, developed by Camilleri et al. [31], consists as above of a treatment 

plant modelled as activated sludge processes followed by a settler. The former is represented 

by the ASM2d model presented by [63], and the latter by a model developed by Take et 

at. [173]. The influent to this treatment plant model is the effluent data of a simple 

sewer model, representing the basic physical processes of a combined sewer network. This 

allows the simulation of rain events which impact both the flow and concentrations into 

the treatment plant, and also the effects of this increased flow upon the river directly, via 

combined sewer overflows. As in the previous section, the sewer dynamics are considered 

only with respect to the effects upon the influent of the treatment plant, and the CSO's 

to the receiving waters. The river model is represented by a sequence of continuous stirred 

tank reactors, with hydraulics and dynamic chemical and biological processes based on the 

QUAL2E model [19]. 

Again, it is assumed that the unit hydrograph approach is utilised in the modelling of the 
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characteristics of the urban catchment. The additional system variables of nutrient con- 

centrations (ammonia, nitrates, phosphates, bicarbonates) and organic matter (biomass, 

particulate material, inert organics) are included in this sewer model. As previously as- 

sumed, any mixing or chemical reactions that happen in the sewer, or the CSTR detention 

tank, during transportation do not significantly affect the concentrations of variables in the 

sewer. The catchment influent data is as proposed by Camilleri [31]. The secondary settler 

within the treatment plant model is again defined as a ten layer clarifier, modelled by the 

Takacs approach. It is assumed that two recycles exist in the anoxic-aerobic treatment plant 

system: an internal recycle prior to the clarifier, and an external recycle from the clarifier 

itself. 

4.6.1 Treatment Plant Modelling 

In the treatment plant model as shown in Figure 4-5, the following processes are mod- 

elled: 

e Biological processes (reduction of organic content (to avoid oxygen removal), reduction 

of nutrients (nitrate, phosphate)), any removed material taken as sludge. 

9 Secondary sedimentation, i. e. separation of activated sludge from process, removed 

to sludge, as above. The effluent of the secondary settler continues to the receiving 

water. 

" Simultaneously, although not modeled here, the sludge taken off is thickened (by 

removal of liquid), stabilised (pathogens and odour removed, as well as further treat- 

ment), conditioned and dewatered (chemically, physically or with heat, to remove 

further liquid) 

4.6.2 Activated Sludge Tank: Mass Balance Equations 
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Influent Tank 1 Tank 2 Ftp 
Anoxic Reactor r 'I AerobicReactor 

Kla Fe(OH)3 

D 
Internal Recycle 

Wasta 
External Recycle 

Figure 4-5: Treatment Plant Considered within the ASM2d/QUAL2E Based System: 
Anoxic Tank followed by Aerobic Tank, Takacs-Model Based Settler 

The activated sludge tank is modelled according to the ASM2d model introduced by 

Henze et al. [63]. Certain processes, however, are not considered within the model consid- 

ered, specifically those of the PAO (phosphorous accumulating organisms). These processes 

therefore are neither modelled in the original system (the process dynamics are set to a 

derivative of zero, i.. e constant), nor in the state dependent form. The system equations 

(as shown in [63]) for the processes of the following are considered: 

9 Hydrolysis processes (anaerobic hydrolysis is not considered, the two tanks present 

in this model are of aerobic or anoxic processes, thus aerobic/anoxic hydrolysis is 

modelled). 

" Fermentable growth processes (for fermentable substrates and fermentable products). 

. Fermentable denitrification processes (for fermentable substrates and fermentable 

products) - fermentation itself however is not considered. 

9 Lysis. 

9 Aerobic, and Lysis, of XAUT. 

9 Precipitation, and redissolution. 

For each component mass balance, it can be seen that the system follows the definition 

as stated in [63] 
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Input-Output+Reaction=Accumulation (4.32) 

The mass balance consists of the transport terms of 'input' and 'output' which are de- 

pendent upon the system characteristics, in this case defined by the physical volume, the 

concentrations and the flow through the system. The inputs consist of influent concentra- 

tions into the tank (i. e. 20 state variables), as well as FeCl3 concentration and aeration 

value. The outputs then consist of the effluent concentrations from the tank. Each reactor 

above can therefore be modelled with 22 inputs and 20 outputs, via the use of the ASM2d, 

where the mass balance approach is utilised and defined by the following equation: 

dt = 
QV ̀Cin - 

QV t Cov, 
t +r (4.33) 

where the concentrations C are defined to be the state variables and the rate equations 

are dependent upon the system processes as shown in Appendix B. The dissolved oxygen 

process assumes an external oxygen source, via aeration. Thus the dissolved oxygen process 

is represented as 

ddt, 2 
- `min go, 2, in - 

QV 0au t So, 2, out +r+ Kla(So, sat - So) (4.34) 

Similarly for the state equation of Xjteox, the addition of the external FeCl3 input 

results in the following process equation: 

dXMeOH 
_ 

Qin 
XMeOH, in - 

22! t XMeOll, 
out +r+ 

FeCl3 (4.3r 
dt VVV 

The components considered for the above mass balance equations are as follows: 

" Organic components, excluding organic nitrogen and organic phosphorus (in gCOD/m3): 

Sf readily biodegradable substrate, S. fermentation products, SI inert, non biodegrad- 

able organics, XI inert, non biodegradable organics, Xs slowly biodegradable sub- 

strate, X11 heterotrophic biomass, XAUT autotrophic, nitrifying biomass. 

" nitrogen components in gN/m3, SNH4 Ammonium, SNO3 Nitrate (plus nitrite), SN2 

Dinitrogen. 

" phosphorus components in gP/m3 and gFePO4/m3 respectively, SP04 Phosphate, 
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XMep Ferric-phosphate, FeP04. 

9 other components: SO2 Dissolved Oxygen (g02/m3), SALK bicarbonate alkalinity 

(mole HC03-/m3), XAIeot1 Ferric hydroxide, Fe(OH)3 (gFe(0H)3/m3), XTSS Total 

Suspended Solids (gTSS/m3). 

Matrix Representation 

Any component's concentration within a system can be affected by several biological 

processes. The rate equations for processes in the ASM models are structured in a matrix 

representation, which allows for ease of description of the mass balance equations of each 

component. In the particular case of state dependent modelling, it provides a simpler 

method by which the transformation is made to the state dependent coefficient form. The 

stoichiometric coefficients defined for the processes allow the description of the relationships 

between components for particular processes. This allows the model to describe the mass 

relationships consistently. The system reaction term, ri, is obtained as the summation of 

the product of the stoichiometric coefficients vtj and the process rate expression pj for the 

component i: 

ri = vtj pj (4.36) 

An example: Dissolved Oxygen 

Process Equation and Reaction Terms 

In order to construct the state dependent equations of the treatment plant, it is required 

that state dependent equations of the ASM2d processes be defined. The process equation, 

for example for dissolved oxygen, is of the form: 
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Qin Qout 1114.07 - YA1 
Sot= V So, 2, in- V 

So, 2eff'+(1-YH)P4'f'(1-YII)p5+(-YPIIA)p11+(v13,02)p13-( }Ä 1%º18 

(4.37) 

where each p product refers to specific processes. The reaction terms for each state 

variable are defined by the process equations p (as described in Appendix B) and the 

stoichiometric parameters, such as those defined by parameters K029 Kp04, KPIIA etcetera 

above. Each state consists of a number of process equations, in addition to the hydraulic 

terms (such as V ). In defining the process within the state dependent form, a state 

dependent coefficient matrix consisting of the reaction terms can be considered. This is 

defined to be of a product of the following matrices: 

"A constant gain matrix A,,,, od (as shown in Appendix C) 

"A state dependent process matrix Mp and a state matrix x. 

In this form, the resulting state dependent matrix A(x) in the form A, n,, d * AIR. The 

state matrix x(t) of the ASM2d model is constructed of the 20 state variables as defined 

above. However, for the purposes of control, several state variables are not required for the 

state dependent coefficient form. The variables Si, S, 2, X;, Xpao, Xpp, Xp and X j., are not 

utilised in the process equations of the remaining variables and do not affect the controlled 

concentrations, or prediction of future behaviour of the considered process. Therefore the 

state variable is defined as x=[SXQ], where the components are defined as 

"S=[ So2 Sf Sa Snh4 Sno3 Sp04 Salk ] 

0X=[ X8 Xh Xaut Xmeoh Xmep 
I 

0 flow, Q 

The input vector u is defined as 

u- 
[xin 

Kla UfeI (4.38) 

where the input concentrations to the aerobic tank are defined as xin =[ Sin Xin Qsn ] 

as defined by the state vector above, the air flow rate control action is defined by the mass 
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transfer coefficient Kia, and the dosage of Fe(OH)3 is defined as up. The state dependent 

matrix is chosen so that in no case should there be zero denominator. 

Mp = 

o 00 0 0 0 o o X(117 0 0 0 
o 00 0 

x5 
0 0 00 0 0 0 

xl 
o0 0 0 0 0 00 0 0 0 

0 0 
x3 

0 0 0 0 00 0 0 0 

0 
x2 

0 0 0 0 0 00 0 0 0 

o 00 x4 0 0 0 00 0 0 0 

0 00 0 0 0 0 o 
x12 

0 0 

0 0o 0 0 
xýfi 

o 00 0 0 0 

o 00 0 0 0 0 00 
x16 

0 0 

0 00 0 0 0 0 00 0 p() 

x 
l8 0 

0 00 0 0 0 0 00 0 0 21 
x 19 

The tank reaction term r can be defined therefore by the following equation: 

r= Amod * -1p *X (4.39) 

Hydraulic Terms 

The CSTR nature of the activated sludge, reaction tank allows the assumption that 

components (both soluble and particulate) are dispersed evenly and immediately throughout 

the tank. For this reason, it can be assumed that the concentrations at the tank effluent 

are the concentrations present within the tank. Additionally, the influent flow is assumed 

equal to the effluent flow and thus the following assumption can be held 

Q= Rin = Qout (4.40) 

The concentration in the effluent is the concentration of the variables within the tank, 

i. e. the output of the model is the value of the states. Again, in the case of the influent 

flow, the assumed state variables 
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4.6.3 State Dependent ASM2d Model 

The state dependent model of an activated sludge tank can therefore be defined according 

the above, as follows: 

A(x) = AmodMp 

Q/V 

0 
B (x, u) _ 

0 

o """ 0 
Q/V .. 0 

0 """ Q/V 

X1 So, 
sat - XI 0 

X2 0 

1/v 

X12 00 

(4.41) 

It can be seen from the process equation above that the inputs to the activated sludge 

tank are dependent upon an input variable (the flow variable, Q). As in the previous 

section, the input vector of the above state dependent model is composed of control actions 

uC =[ Kia Ufe 
] 

and measured disturbances xi,,. 

So, 
sat -Xl 

0 
Bo = 

0 

Q/V 
0 Bm = 

0 

4.6.4 Storm Events 

0 

1/v 
0 

o "". 0 
Q/V """o 

o""" Q/v 

X1 

X2 

X19 

(4.42) 

(4.43) 

The flow in the sewer is considered to be the result of mixing of the storm water runoff and 

the wastewater load of the catchment within the combined sewer. The storm conditions as 
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considered within the simulated rain events of this thesis result in an increased flow rate to 

the treatment plant and an overflow to the river. The characteristics of the CSO discharge, 

the concentrations of nutrient loads etcetera, are assumed toi follow tliat of the w. tst("w: LIer 

characteristics of the influent flow to the treatment plant, as shown in Figure 4-6, cliff'ering 

only in magnitude of flow. The subsequent effect upon the receiving waters of the incrca. sed 

load to the treatment plant and the combined sewer overflow is shown in Figure . 1-7. 
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Figure 4-6: Storm Events Affect upon the Treatment Plant, Influent and the Receiving 
Waters for the Concentrations of Dissolved Oxygen, Ammonia and Nitrate 

The two responses above do not reveal the entire behaviour of the systcrºº. Instead, 

the effluent behaviour frone the treatment plant must be inspected, wherein it, can be seen 

that the dissolved oxygen peak in the influent flow is not present in the cfflnerºt flow. 

The increased flow rate through the plant, instead affects the treatment plant, performance 

and thus results in a decrease in dissolved oxygen levels in the elinent.. It, is considered 

therefore that manipulation of treatment plant performance, and thus concentrations of 
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effluent components, could allow improvements in the quality of the receiving waters. 
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Figure 4-7: Storm Events Effect upon the Treatnieiºt. Plant Effluent for the Coucciitrati<ns 

of Dissolved Oxygen, Ammonia and Nitrate 

4.6.5 Linear Behaviour 

The tim in the development of models for control of the urban wastewater system is 

the simplification of the process model used, in accordance with the availahle information 

frone the system. The objective is also, however, the maximisation of the accuracy of the 

simplified model. The issue with linearised models is the limited region in which the model is 

valid, with the nonlinear effects of varying flow levels and influent characteristics, caused by 

variations in weather conditions. The nonlinearity of the process prevents the identification 

of a sufficiently accurate linear model of process dynamics. In the urban wastewater cunt rol 

proposed within this thesis, the influent flow to the treatment plait is used as an indicator 

of the presence of an increase in load due to rainfall, and therefore the introduction of 

nonlinearities to the system. 

In normal weather conditions, a, steady state influent, flow to the treatment plant of 

5575m3/d is present. In the identification of an appropriate 'control ºººodel', the process 

is considered as: a manipulated variable of aeration rate within they treatment plant, a 

feedforward variable of upriver dissolved oxygen measurenºents, and a controlled variable 

of the downriver dissolved oxygen concentration. Identification of the systenº dynamics 
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at steady state influent, flow may result in a suitably accurate system model at that. given 

operating condition. However, is Figure 4-8 indicates, the difference of 1)eliax-iour at varying 

treatment, plant influent flow rates is significant. The maxinºiini influent, flow to .t treat iuent 

plant is typically in the order of 5 to 7 times the steady state influent flow, however at such 

flow rates the effects of such a high load upon the secondary clarifier has adverse effects, 

such as washout, adding further to the process nonlinearity. 

Inspecting the linear behaviour of the 'control model' defined almvc, a stepp chawge ill 

aeration rate to the treatment plant was applied at several different, influent flow rates. A 

linear model identified at, the influent flow of 5575m3Id is shown in the Figure 4-8 to be 

valid in normal weather conditions. However, the difference in system response at. vary- 

ing flow rates, results in a linear model unable to describe variations in dissolved oxygen 

concentrations during storm events. Vanrolleghein [183] states that the popular approach 

of linearisation of the nonlinear model around a specific operating point is not acceptable, 

due to the high variation in process conditions, leading to new operating points where the 

linearised model no longer represents process behaviour accurately. Vaurollegherii proposes 

that control must be adapted to accommodate these nonlinea. rities, and suggests the possible 

use of a gain scheduled approach. 
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4.6.6 Linear Predictive Control 

Problems in urban wastewater systems arise when storm conditions cause high influent 

loads to the treatment plant and indirectly therefore disturbances to river quality, and/or 

combined sewer overflows directly to the river itself. The depletion in concentrations such as 

dissolved oxygen, and an increase in nutrient loads such as ammonia, result from the above 

disturbances. It is the objective of a control scheme in the maintenance of river quality 

to meet the control objectives stated in Chapter 1. The aim is therefore, for example in 

the case of dissolved oxygen, to minimise the length of time for which oxygen depletion 

occurs, and minimise the effects, that is increase the value of minimum dissolved oxygen 

concentration occuring in the river. The disturbance rejection therefore should allow the 

system to recover to normal conditions, maximising the disturbance rejection. The process 

considered is as presented in Figure 4-9. 

The above linear model for the steady state influent flow of 5575m3/d was used in the 

design of a linear predictive controller for the purposes of manipulation of dissolved oxygen 

concentrations in the receiving waters. The predictive controller was designed to act as a 

higher level controller calculating an optimal setpoint for a lower level inner loop, in this 

case, PI control. The existing plant PI controller for dissolved oxygen concentrations in the 

aerobic reaction tank was used in the simulations carried out within this chapter, and was 

tuned according to a proportional gain Kp = 85 and an integral time constant of Ti = 130. 

Although the above model details the behaviour of several components within the re- 

ceiving waters, for realistic purposes, it can be assumed that only basic measurements 

are available. It is assumed dissolved oxygen and ammonia/ammonium measurements are 

available upriver at the point of emergency sewer overflow, and downriver after the point 

of effluent of the treatment plant. Due to the practical lack of control handles within the 

receiving waters, the assumed available actuators are those of basic control loops within the 

treatment plant of aeration control and chemical dosage. It is assumed that there exists 

sufficient excitation of the considered components in the process for the purposes of model 

identification. 

In this case, the control objective for the linear predictive controller in the above system 
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Figure 4-9: Structure of ASM2d/QUAL2E Urban Wastewater System Model as considered 
for control 

was the maintenance of dissolved oxygen concentrations in the river, with the aim of min- 

imising the effects of storm weather upon the receiving waters. A single linear controller 

was therefore designed for the flow range of 5575m3/d, with the following tuning parameters 

as shown in Table 4.1. 

Table 4.1 UWS Linear MPC Mining Parameters 

T8 Q A Hv, Hp 

0.05 40 0.0005 5 9 

The unmeasured constant disturbance model was included in the 'control model' to allow 

some compensation for the modelling mismatch with the nonlinear process. State estimation 

was implemented with the use of a Kalman filter, with noise covariances Qn = 0.7 *I where 

the identity matrix I is of dimension R", where n is the number of model states) and 

Rn = 0.7. 

The Figure 4-10 compares the performance of dissolved oxygen in the receiving waters 

for two situations: 

" The original PI control of the treatment plant: in which the control objective is the 

regulation of the dissolved oxygen concentration in the treatment plant effluent. 

" The MPC control of the urban wastewater system: in which the control objective 
is the regulation of the dissolved oxygen concentration in the receiving waters, via 

Manipulated 
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manipulation of the above PI control and thus its concentration 111 the treatment 

plant effluent. 

A change of the control, from the treatment plant objective to that of t he receiving wa- 

ters, allows the system to recover from storm events in a shorter till(' period, and decreases 

the maximum effect upon the dissolved oxygen concentration in the river. However, the 

mismatch between the linear model and the system dynamics increases with t he magnitude 

of influent flow change from steady state. Thus it is necessary to consider further techniques 

in the control of the nonlinear processes within the urban wastewater system. 
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4.7 Summary 

The issue of process modelling for the purposes of control of wastewater treatment processes 

is considered. The aim of this chapter was the choice of an appropriate urban wastewa- 

ter system structure, and the development of state dependent models for the purpose of 

nonlinear predictive control of this system. An introduction to the area of urban wastewa- 

ter treatment systems was given. This was followed with the basic principles of wastewater 

treatment process models, and the mathematical models involved in the description of treat- 

ment plant and river dynamics. In particular, it was necessary to describe the nonlinear 

dynamics of models used for control purposes, in a form suitable to the state space model 

predictive control approach detailed. 

The state dependent coefficient approach allows the use of existing nonlinear process 

representations in the application of nonlinear model based predictive control. The de- 

scription and the state dependent transformation of a small scale wastewater treatment 

plant was demonstrated. Similarly, the state dependent transformation of a CSTR based 

river model was detailed, allowing the development of a state dependent model incorpo- 

rating a selection of the dynamics of the urban wastewater system. A description of the 

ASM2d/QUAL2E based urban wastewater model utilised within the thesis was also given, 

and a state dependent model was developed for a single activated sludge reactor within this 

system. 

In discussion of the modelling approaches required for the control of the urban waste- 

water system, the development of a linear predictive control strategy is demonstrated. The 

choice of control objective, the modelling method used, the control design chosen and the 

performance of the controller, in addition to the limitations of linear models for a nonlinear 

system, are discussed. 

113 



Chapter 5 

Nonlinear Predictive Control 

5.1 Introduction 

The approach of model predictive control clearly depends on an accurate process model 

for the purposes of prediction and optimisation of the performance of the controlled process. 

The issue then, within model based control, is one of appropriate model choice, based either 

upon the nonlinear system model determined from physical laws and process equations, or 

upon a model determined from experimental data and identification tests, or indeed a 

choice of model based upon a combination of these two approaches. Significant attention in 

control literature has been paid to the control algorithms, as opposed to the modelling and 

identification of the systems. This can be seen to be due to the application specific nature 

of the model identification. The choice of model appropriate to the application is dependent 

upon various factors: computation speed necessary, accuracy required, model complexity 

and model availability. 

The existing model available for control purposes dictates the choice of control strategy. 

Murray-Smith and Johansen [72] state that there is little advantage in accuracy in the use 

of fuzzy or neural models, if there exists an accurate mathematical model of the process. 

In the absence of a nonlinear physical model of the process, which is commonly the case in 

wastewater processes, data-based representations can be appropriate. Data-based models 

can be of particular benefit in the description of controlled wastewater processes. These 

are commonly of SISO structure, and thus the complexity and computation time may be 
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Figure 5-1: Speed Versus Accuracy: Choosing an Appropriate Model Structure 

reduced, in the use of data-based models as a substitute for the nonlinear mathematical 

process model. 

Various approaches in simplified methods have been developed for nonlinear modelling 

applications. The advantages of Takagi-Sugeno fuzzy modelling, ARX (Autoregressive with 

Exogenous Inputs) models and functional state approaches in the representation of non- 

linear processes have been demonstrated, for example as discussed within [72]. Nonlinear 

input-output models, ARMA, ARX and Volterra models have all been implemented in the 

application of nonlinear predictive control (Maner et al. [98], Hernandez and Arkun, [6,1], 

Sriniwas and Arkun [168] ). Wiener models have been a popular choice of process repre- 

sentation, being capable of arbitrary accuracy in their approximation (Gerksic et al. [52], 

Norquay et al. [115]). Artificial neural networks have begun to be applied in applications of 

nonlinear process control (Su and McAvoy [170]). Kadmiry and Driankov [40] describe how 

there exists no general method of nonlinear control design, but a 'collection of alternative 

and complimentary' approaches that are specifically advantageous for particular nonlinear 

systems. It can be seen that each nonlinear method presented requires the use of a different 

modelling technique, a modification upon the existing model for the purposes of a given 

control algorithm. 

The models utilised for control of the nonlinear wastewater processes within this thesis 

extend from the Linear Time Invariant (LTI) data-based model to the Linear Time Vary- 

ing (LTV) model of the process based upon the mathematical representation. The model 

structures considered axe: 
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" Linear Time Invariant (LTI): This traditional approach is well researched, documented 

and a popular choice among process industries. The time invariant nature of the 

models allow for offline design of the controller, i. e. prediction equations and system 

control gain. Multiple LTI models can be utilised to control a process over a nonlinear 

operating space. 

. LTI and Static Nonlinearity: The benefits of this approach can be a high level of 

accuracy, whilst retaining low complexity. The controller can retain the advantageous 

aspects of a linear approach, whilst providing the benefits of a nonlinear prediction 

model. This form of control can be situation and process specific. 

" Linear Time Varying (LTV): This method uses existing physical models of the system 

to produce a nonlinear control approach, avoiding lengthy model reduction procedures. 

The use of the linear state space structure fits with the established linear control model 

structure. The approach is particularly suitable due to the time varying and nonlinear 

nature of bioprocesses. 

System states in data based models are typically not measured and bear little resem- 
blance to 'real' process states, being a result of the system identification procedure and 

structure used to represent the chosen dynamics. In the case of a mathematical system 

model, the issue of state estimation with the use of a complex process model arises, par- 

ticularly with respect to unknown plant parameters. While research has demonstrated 

estimation of unknown process parameters and kinetics required in the nonlinear modelling 

of systems, it can be seen that a considerable difficulty lies in the lack of measurements 

within systems. Without sufficient plant information from sensors, the development of 

software sensors such as the extended Kalman filter is difficult. This can be a significant 

issue in the practical application of nonlinear model control techniques such as those based 

on the SDC approach, due to the absence of sufficient plant feedback. The accuracy of 

the nonlinear models however, in addition to the large number of modelled variables, and 

the increase in the use of sensors in the wastewater industry motivates the development of 

nonlinear control models, based upon the available process models. 
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5.2 Model Structures 

Multiple model approaches are popular due to their advantages in exploiting existing mod- 

elling and control techniques. This approach produces nonlinear control of the system via a 

number of simpler local systems based on linear algorithms. This method has an intuitive 

aspect, in the definition of a nonlinear system decomposed into multiple linear equivalents. 

This 'divide and conquer' strategy is based on the idea that a nonlinear controller can be 

composed of a number of local linear controllers, effectively partitioning the control strate- 

gies. As well as the computational advantages of this methodology, the intuition involved 

exploits the user knowledge available. The choice of number, range and characteristics of 

the local models and controllers are situation specific, the aim is a balance of the trade-off 

between simplification and accuracy. 

Fuzzy Logic allows the use of linear predictive control methodologies on a nonlinear 

system by the definition of fuzzy rules governing the use of controllers for a given operating 

point. The fuzzy gain-scheduled predictive control (FGPC) approach utilised in this thesis 

is similar to the functional-state approach, in that a series of states or operating regimes 

are defined, with an associated local model. Each linear model results in a linear controller, 

designed offline due to the linear time invariant nature of the model. The simple form of 

transitioning between these local controllers is hard-switching, such as that demonstrated 

by Jiang [71]. The use of fuzzy rules in the scheduling of control avoids seeks to avoid 

abrupt changes in the interpolation of control signals. Interpolation of control schemes 

leads to a smoother controller response, and the definition of FGPC transitions is dictated 

by the user-defined membership functions, constructing an interpolation scheme based on 

process knowledge. The 'scheduling variable' of the process is an indicator of the current 

operating point in the nonlinear range of the process, and thus the membership function 

should describe the choice of controller appropriate to the operating point indicated by this 

variable. Shamma and Athans [158] state that the scheduling variable should capture the 

nonlinearities of the process, since the intention of the gain-scheduling is of course to deal 

with these nonlinearities. 

The design of nonlinear control schemes remains complex, however the divide and con- 

quer approach of gain-scheduled systems allows the use of better developed and researched 

117 



methods of analysis and design of LTI systems. The traditional popularity of linear control 

algorithms gives the additional benefit of 'continuity', as described by Leith et al. [93]. Ex- 

isting control procedures, and the industry structure and protocols that accompany them, 

can make the financial, organisational and time issues of nonlinear control approaches pro- 

hibitively costly. 

More accurate process models, such as the Wiener model approach, avoid the issues 

related with divide-and-conquer methods whilst moving further towards nonlinear control 

and simultaneously retaining the basic structure of the linear methods. The Wiener or 

Hammerstein approaches to the modelling of a process is to define the process dynamics with 

the use of two components: the static (memoryless) nonlinearity, and the linear dynamics. 

The two approaches are differentiated by the position of the static nonlinearity: the Wiener 

model is a linear dynamic block followed by a static nonlinear function, and the Hammerstein 

model has nonlinear function prior to a linear dynamic description. Zhu [19.1] states the 

advantages of the block orientated approach to be: 

" The low cost in identification tests. 

9 The low cost in identification computation. 

" The ease of incorporating a priori process knowledge. 

" The ease of use for control purposes. 

As the wastewater industry moves gradually towards increased use of automation and 

instrumentation, the mathematical process models already present within this area may 

shift from their function in analysis and benchmarking, and find use as 'control models' in 

their own right. The process knowledge available within these models has as yet remained 

almost entirely unexploited, restricted by the lack of control handles and sensors within the 

wastewater industry 

5.3 Fuzzy Gain Scheduled Predictive Control 
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In the control of a nonlinear process, linear controllers can be implemented via gain- 

scheduling. Astrom and Wittenmark [6] demonstrated an early form of gain-scheduling (CS) 

for flight control systems, in describing the changes in system gain with differing operating 

conditions. Linear models are determined for certain ranges within which the behaviour 

may be approximated by a linear description, and are used to design individual model based 

predictive controllers for each. This allows for simple and quick implementation of control 

on a nonlinear process, though with the requirement for identification of a set of distinct 

linear models, and the subsequent tuning of the resulting individual controllers. The fuzzy 

nonlinear control implemented here can also be called fuzzy gain-scheduled (FCS) predictive 

control. There exists in literature and practise multiple model and multiple controller forms 

of fuzzy gain scheduling as in Figure 5-2, it is the latter that is considered in this thesis. 

This approach is similar in method to that used by Ling and Edgar [96], where model-based 

fuzzy gain-scheduling (MFGS) is described as the implementation of several linear model 

based controllers over a partitioned process operating space. In that approach, MFGS was 

demonstrate applied to the PID control of a water-gas shift reactor and the method was 

demonstrated to be comparable to nonlinear model predictive control. Johansen et al. [72] 

note that the Takagi-Sugeno fuzzy mechanism for multiple linear controllers can be seen as 

an efficient method of, and need not be distinguished from, the gain scheduling approach. 

The difference between the multiple-model and the multiple-controller approach is de- 

fined by Ling and Edgar [96] as being related to the nature of the action variables (i. e. the 

outputs of the fuzzy interpolation): representing a model if the action variables are process 

outputs, but representing an aspect of control if the action variables are process inputs. 

Ling and Edgar also suggest that the differing size between a fuzzy controller and a fuzzy 

model is a limiting factor in the use of fuzzy models in predictions of future behaviour, 

suggesting that sufficient model accuracy for predictive purposes for a nonlinear model over 

a wide range would require a prohibitively large number of fuzzy rules. 

Traditionally, the scheduling variable with which the control changes are referenced 

is considered to require a relatively slow-varying dynamic with respect to the controlled 

process, usually measured external from the process. Astrom and Wittenmark (6) demon- 

strated a slow-varying externally measured scheduling variable for the purposes of gain- 

scheduled control. However, Rugh [140] utilised a state internal to the process to schedule 
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Figure 5-2: a. Fuzzy Model Based Control b. Fuzzy Gain-Scheduled Control 

the controller. Additionally, Shamma and Athans [159] demonstrated the use of a rapidly 

changing scheduling variable. 

A significant advantage of a gain-scheduled approach is the retention of the linear model 

structure for control design, allowing the user the choice of any appropriate linear control 

scheme, the simplicity and intuitive nature of a linear approach and the traditional ad- 

vantages of computational efficiency. This computational efficiency allows the controller to 

respond quickly to changing process operating conditions. A potential difficulty of the gain- 

scheduled approach is the choice of a scheduling variable and the situation-specific nature 

of this choice, depending for the most part upon the dynamics and characteristics of the 

process. Additionally, the 'local' nature of the control scheme itself can lead to issues, local 

stability does not imply global stability for the process control. In practical applications, 

a major advantage lies in the ability of implementation of this form of GS control within 

PLC's. Fuzzy gain scheduled control implemented via a PLC of a gas-liquid seperation plant 

was demonstrated by Kocijan et al. [81]. The limits of PLC hardware are well known, low 

numerical precision, limited memory and limited sampling rate are all issues that restrict 

the control that can be applied. The linear representation of the system at a given operating 

point of the system is considered to be in the form of the state space linear model: 
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xk+1 = Axk +LB 13m 1 
uk (5.1) 
dk 

Yk = Cxk +[D Dm, 
,k (5.2) 

dk 

where the vector x is defined as the states of that linear model, the vector u is defined 

as the current control action applied to the process and the vector d is defined as the 

measured disturbance to the process. In the urban wastewater system considered, this 

allows for process knowledge due to upstream sensor measurements to be included within 

the process description. The nonlinear operating range of the considered process is chosen 

to be defined by multiple linear models of this form. Each is described by an individual 

state space representation: 

uk 
Xk+1, i = Ak, ixk, i +[ Di Bm, i L dk 

Yk, i = Ck, ixk, i +[ Di Dm, 
'i 

uk ] 

dk 

where i=1... n, where n is the number of linear regions considered, and where the 

vector xi is specific to that linear model, and similarly specific, subsequently, is the output 

vector yi. The control action u is again that currently applied to the process, i. e. the 

output of the fuzzy controller, and the vector d remains the measured disturbance. Thus 

the same user-specified setpoint and feedback information from the process is supplied to 

each individual controllers. For each of the linear models, there are differences therefore 

only in individual controller and estimator parameters, in addition to state estimates. The 

individual prediction matrices, error vectors and calculated control action are defined by 

the controller structure as defined in Chapter 2 to be: 

Y= Fax - HizU 

Ei = W-Y 

(5.4) 
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Ji= (E. )TQ(e. ) '+' zWTA U 

where again i=1... n, where n is the number of linear models for which controllers 

are designed. Each linear controller is designed particular to a specific operating point of 

the plant, and the predictive controller and observer parameters for each controller (A;, Q{, 

HH, 2, H,,, =, Q, R,,, ) are individually tuned to meet the control objectives local to this point, 

assuming the regions surrounding that operating point have similar dynamics. Optimisation 

of this cost function results in the computed control action for the linear model i according 

to the above controller tunings: 

Dui = KiEi (5.5) 

The advantages of the gain-scheduled nonlinear approach over the linear counterpart 

can be lost with an inappropriate choice of combination method. The fuzzy logic used here 

is a method of interpolation of computed control actions, utilising the Takagi-Sugeno-Kang 

fuzzy methods, which is based on fuzzy theory proposed by Takagi et al. [174). In the 

application of fuzzy gain-scheduled control, the fuzzy function utilised is a set of linguistic 

rules. These describe the method in which the appropriate choice will be made of the linear 

controller to be used, at that specific operating point in the nonlinear process. In this format 

an operating point can belong entirely to one set (one controller), or partially to two sets 

(two controllers weighted according to operating point). At the modal value of the fuzzy 

set, the control action upon the process is equivalent to that of a linear predictive controller 

operating at the point for which the model was linearised. Thus, conversely, at non-modal 

values the control action upon the process is equivalent to a weighted sum of the outputs 

of the appropriate linear controllers. The following steps are therefore involved in the 

implementation of the fuzzy approach for this gain-scheduled control scheme: 

1. Fuzzification: The value (here the scheduling variable, s) is fuzzified, that is, trans- 

formed into a fuzzy set specific to that variable, allowing the definition of its mem- 

bership function. 

2. Fuzzy rules are applied, inferring a fuzzy value, it is this that defines the action to be 

performed. 

3. The value is de-fuzzified, in this case the fuzzy value set is defined as a set of values 
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to be used in the weighted summation of control actions calculated by the bank of 
linear MPC's. 

4. The applied control is therefore defined as the variable C, determined from the sum 

of the weighted control values. 

Scheduling 
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Feedback 

Setpoint 

Linear MPCI 

Linear MPC2 

Linear MPC3 

Linear MPC n 

............................ ....................... .............. ... 

Fuzzy Schcdulcr 

WI W2... Wn 

i1t U2... Un EiJ 

Figure 5-3: Architecture of the Fuzzy Gain Scheduled MPC, with n Linear MPC Controllers 

The structure in Figure 5-3 can be expressed mathematically: the linear predictive 

controllers are defined by 5.4 and the control input to the plant is determined via the 

following general function, 

ui = f(x2, ck-1, r) 

C_ 
EWi(P)"Ui 

E wi(P) 

(5. G) 

where i=1"""n, where n is the number of local controllers, and x is the vector of 

measured or estimated system states, ck_1 is the measured value of the previous control 

input and the setpoint is defined by vector r. For the FGS utilised in this thesis, the overall 

output of the composite controller (that is, the combined linear controllers) c is composed 

of the weighted sum of the outputs ui of the local controllers. The weighting vector w; is 
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defined as being within the bounds O< wi <1 and the sum of these weights constrained by 

F, ws = 1. The weightings upon the individual control signals are dictated by the scheduling 

variable p according to the fuzzy membership function. The steps involved in the choice of 

linear subsystems, the subsequent control design and the algorithm steps are as follows: 

1. The plant local operating points (equilibrium or otherwise) are chosen according 

to the variable, p, which technically can be a plant input, output or even a system 

state. As stated previously, this scheduling variable must take the nonlinearities 

of the plant into account. 

2. A fuzzy membership function is developed defining the overlapping regions above. 

3. The dynamics in each individual local region are approximated via a linearisation 

around the given operating point. 

4. For each local model, a state estimator is designed, in order that the current 

error and predicted future error be available to the control algorithm. 

5. The prediction equations and optimal control strategy for the local controllers 

are determined from the system state space matrices chosen in the linearisation 

approach above. 

6. At each controller sample instant, the individual local controllers estimate the 

current system states, predicted error and appropriate control response. 

7. The fuzzy rules as defined by the membership function above dictates, according 

to the scheduling variable, the weighting function for the above vector of control 

responses. 

5.4 Wiener Model Predictive Control 

The Wiener structure of a cascaded system of a LTI model and a memoryless nonlinear 

model as shown in Figure 5-4 can be valuable in the practical implementation of nonlinear 

model predictive control. This is due to their capability in representing systems where 

dynamics can be defined in a linear structure, whilst the gain curve over the nonlinear 

operating range can be described in a static nonlinear function. The Wiener structure has 

been popular in the process industries in modelling nonlinear systems, as demonstrated 
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by the applications to distillation column control [18], p11 processes ([75], [116]) and a 

continuous stirred tank reactor [32]. Wiener models can be determined by identification 

methods from input and output data, either from the process or, as in this thesis, from a 

nonlinear simulation model. 

Recently, subspace identification methods have begun to be extended to Wiener model 

identification in [54] and [186]. The model found is suitable for use in the model predictive 

algorithm determined for linear control, using the existing optimisation techniques. In 

this way, Wiener model predictive control is efficient, accurate and retains the traditional 

MPC structure. Because of the state aspect of the process nonlinearity, it can effectively 

be removed from the control problem, modelled only as a gain acting upon the process. 

As previously described in the case of linear MPC, model disturbances and any inaccuracy 

introduced by mismatch with the plant will be compensated with an Kalman filter, updated 

at each sample instant. 

Linear Time Static Nonlinearity 
Invariant System Gain Function 

Scheduling 

Figure 5-4: Architecture of Wiener MPC: LTI Model of System Linear Dynamics and 
Description of Static Nonlinearity 

The representation of the linear dynamics is required to be in the format of an LTI state 

space description for the purposes of the MPC algorithm, thus the linear time invariant 

model is defined by 

Xk+1 = Axk + Buk 

Vk = CXk+Duk 

(5.7) 

where v is defined as the output of the linear system and thus the input to the gain 
function of the static nonlinearity. This results in an output vector y= g(p)v , where p is 
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defined as the 'scheduling variable', and thus the static nonlinearity can be included within 

the state space description as 

xk+l = AXk + Buk (5.8) 

Yk = 9(P)Cxk + 9(P)Duk (5.9) 

so that the system can be seen to be of the format 

xk+l = Axk + Buk (5.10) 

Yk = Ckxk + Dkuk (5.11) 

where the state space matrices Ck = g(p)C and Dk = g(p)D are the matrices updated 

at each sample instant by the scheduling variable p. Thus at each time k there exists a 

linear time invariant model of the system, for which the control is recalculated. The aim of 

modelling in this case is the identification of both systems, in particular the measurement 

and analysis of the dynamic step response of the LTI subsystem, and an estimation of the 

characteristics of the non-linear subsystem, to produce the structure as shown in Figure 

5-5. 

u{ )AB v{k) 
CD 

t 

g(p) 

P(k) 

S(k) 

Figure 5-5: Wiener Model: Linear State Space Representation, Scaled by a Nonlinear Gain 
Function 

The static nonlinearity in a general form can be defined as acting upon the system states 

with respect to this given 'scheduling' input, a variable or vector dictating the nonlinearity 

of the system. This can be assumed to be approximated by a linear function, though 
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in practice this gain function can be constructed of various forms. Cervantes et al. [32] 

demonstrated the use of a piecewise linear function. 

The Kalman filter utilised to estimate the system states (in addition to the unmeasured 

disturbances) assumes noise matrices giving the system the form: 

xk+1 = Axk -i- Buk + wk (5.12) 

Yk = Ckxk + Dkuk + Zk 

where w and z are the noise vectors. The state space process model is updated at each 

sample instant, thus the gain of the Kalman filter L must also be again determined. The 

state estimator is thus used as a 'soft sensor' in the calculation of disturbances upon the 

system. The Kalman filter in this case is used as a state and process disturbance estimator, 

with gain Lk updated at each sample instant 

Xe, k+1 = AXe, k + Buk + Lk(yk - CkXe, k - Dk11, k) (5.13) 

Ye, k = CkXe, k + Dkuk 

The system model can be seen to be an LTI system, whose output v(klk) is transformed 

to y(klk) by a nonlinear function, so that at any given sample instant the model can be 

seen to be simply the algebraic product an LTI model and a system gain. The order of the 

LTI system can be chosen to be of any (practical) dimension, and together with the equally 

definable nonlinear function, can give the process model an arbitrary level of accuracy. The 

restrictions upon choice of LTI model depends on the level of accuracy required, the stability 

of the model and the time constraints upon the control optimisation and state estimation. 

Gomez et al. [54] demonstrated the ease of identification of a stable Wiener model, in 

comparison with a linear approach, concluding that in stability the Wiener model obtains a 

better performance, remaining stable for a wider range of model orders. Together with the 

improved predictions from a Wiener model, this illustrates the advantages of the Wiener 

representation based nonlinear model predictive control (NMPC). 
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The LTI state space representation of the nonlinear system is updated at each sample 

instant according to the static nonlinearity dictated by the scheduling variable. The pre- 

dictive control algorithm for this Wiener-model based system is therefore similarly updated 

online: 

9 The updated Kalman filter provides state estimates ik. 

" The model representation defined by A, 13, Ck, Dk dictates the prediction equation 

at time k Yk = Fkxk + Hkz uk. 

. The tracking error, with respect to the user-defined setpoint, is defined as ek =w- Yk. 

" The cost function to be optimised at time k is described as Jk = (Ek)TQ(Ek) -{- 
DUT a'Uk. 

" The increment of control action to the process is defined as Auk = KkEk, where the 

control gain Kk is calculated with the above cost function according to the tuning 

parameters, (Ai, Qi, HP, i, H,,, i, Q, Rn)" 

5.5 Nonlinear Generalised Predictive Control 

5.5.1 Background and History of Nonlinear GPC 

The control scheme presented here implements a nonlinear form of generalised predictive 

control. The linear form of this control algorithm was initially developed by Clarke et al. 

(1987) [28] and is the form of linear control implemented earlier in this thesis. Various 

other forms of linear control exist such as the model based predictive control approach 

developed by Richalet et al. in 1978 [135], and the dynamic matrix control approach 

proposed by Cutler and Ramaker, in 1980 [33]. Garcia in 1984 [51] extended the latter of 

these approaches to a nonlinear process, in which a nonlinear model was used, with the 

solution online of a single quadratic program. An approach to nonlinear predictive control, 

utilising the optimal control calculated in the previous time step by the predictive controller 

was implemented by Kouvaritakis et al. [83]. It is about this optimal trajectory that the 

system is linearised, which is then used to recalculate the optimal control for the current 

time step. Youssef et al. (2003)[191] presented a similar approach for nonlinear predictive 
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flight control. An approach similar to that used here was developed by Lee et al. [911, 

however this used a different model representation. 

A nonlinear form of GPC utilising a nonlinear state dependent system model, was 

demonstrated in 2001 by Ordys and Grimble [126]. This approach was implemented in 

the same year by Grimble and Ordys [57] for the application of robotic control and in 200.1 

by Dutka et al. [41] for a helicopter control application. The approach of representation 

of the nonlinear discrete time model into the state and control dependent form of a state 

space model was demonstrated in 1998 by Mracek et al. [108] and also two years previous 

by Huang et al. [66]. Mutha et al. [110] describes the modification of the model based 

predictive equation for nonlinear control. This paper demonstrated that the control perfor- 

mance depends upon the ability of the prediction matrix to account for the nonlinearities 

of the process. 

In slow changing processes, nonlinear models (based on mechanistic mathematical mod- 

els) can be useful in the application of nonlinear control. The method of nonlinear gen- 

eralised predictive control detailed in this chapter exploits the ability of the state space 

modelling approach to represent nonlinear systems, such as the state dependent model ap- 

proach. The process knowledge described by the nonlinear process model can be expressed 

in an equivalent state space model, where the state space matrices contain the details of 

the nonlinear process laws. The nonlinear model can therefore be seen as a linear model 

at a given time instant, with the current estimated or measured states determining the 

characteristics of that linear model. 

A model must contain sufficient description of the system process, capturing the crucial 

features of the plant, whilst simultaneously being adequately simple to allow for control 

system design. The use of a nonlinear model of the process has the obvious benefit of an 

increase in accuracy of estimation and predictions provided by the model. An accurate 

model can be seen to provide better process performance, thereby increasing efficiency and 

lowering costs. It provides the ability to control a complex nonlinear system. The recent 

surge in technological computing power has decreased the concerns of optimisation time, 

however the issues of observability and controllability of large complex nonlinear models 
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still stands. 

In this chapter, the nonlinear model is considered as a 'white box' model, that is, a 

model determined from mathematical model equations. Although these models are deter- 

mined from process analysis, the nonlinear process model cannot be fully and accurately 

described by a mathematical model. This is due to the physical constraints of measurement 

and analysis, thus resulting in some, albeit minor, modelling discrepancys. The practical 

concerns of application of nonlinear methods, such as state dependent modelling, for control 

remains the aspects of controllability and observability of the nonlinear process models. It 

remains to be seen if future wastewater modelling will provide the requirements for control, 

of observable and controllable models, research such as [162] suggests that pseudo-nonlinear 

modelling approaches may suffice and allow for the use of more complex advanced control 

methods. 

The assumption within nonlinear predictive control schemes is that the control model 

utilised has no mismatch with the plant, and that no unmeasured disturbance is acting 

on the system. The fidelity of identified nonlinear models to the actual physical system 

is an issue, thus model uncertainty is difficult to avoid. Uncertainty is a significant issue 

for the performance of a controller, resulting in robustness issues, such as stability and 

performance, and as such is a significant issue for nonlinear predictive control. Robustness 

analysis and synthesis for nonlinear systems is considerably more complex than in the 

linear case, especially in presence of state and input constraints. Several recent advances in 

nonlinear predictive control methods have resulted in better handling of robustness issues. 

The research of [190] investigated robust stability issues for uncertain nonlinear systems 

with disturbances and input saturation, whilst [155] considered these issues for control 

under perturbations. The work of [8] demonstrated a modification of the Lyapunov stability 

theory for nonlinear control in the situation of plant-model mismatch. Santos and I3iegler 

[149] detailed an off-line method to determine the amount of structural and parameteric 

uncertainty for which robust stability can be guaranteed. 
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5.5.2 Nonlinear GPC Theory 

The following sections will describe the approach of state dependent modelling and linear 

time varying models for the purpose of the nonlinear generalised predictive control (NLGPC) 

scheme detailed later. The approach of state dependent representation of a system model 

as developed by Pearson [128] avoided the linearisation of the nonlinear model by the 

representation of the model in the state space format, via the state dependent state space 

coefficients described by the process model states and parameters itself, therefore allowing 

a linear model to be obtained at each time step. The nonlinear system model is represented 

by the model: 

T= 
fi(X, u) (5.14) dt 

y= f2(X) 

where x is the state vector of size nx, u is the input vector of size n,,, y is the output 

vector of size n, and fi and f2 are vectors of size n.,, and ny respectively. These system 

equations can be rewritten in the following form of state dependent coefficients: 

= A(x)x + B(x)u 

y= C(x)x + D(x)u 

(5.15) 

where A(x) is the state matrix of size (nx x nt), 11(x) is the input matrix of size (n, z x 

ne), C(x) is the output matrix of size (ny x n-, ) and D(x) is the matrix of size (ny x n�). 

There are a number of ways of reformatting the system equations 5.14 to the format of the 

state dependent equations 5.15, there is not a unique choice of the state dependent model. 

However the choice of appropriate state dependent format must allow for a controllable 

linear system at any given operating point. For the purposes of NLGPC, the above state- 

space system can be seen in the format of a linear time-varying system, at each sample point, 

as is shown in the next section. Note that the state dependent representation of the system is 

equivalent to the original nonlinear process model, and is merely an algebraic rearrangement 

of the initial model. For the purposes of predictive control, it is necessary for the system 
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to be repesented by a discrete state space model, the continuous time representation of the 

system is therefore discretised according to sample time T,. 

5.5.3 Linear Time Varying Model 

The above state dependent coefficients can be extended to described a linear time- 

varying system. The control input vector (of optimal control steps over the prediction 

horizon), computed in previous optimisations, were unused in the linear and nonlinear 

techniques demonstrated earlier in this thesis. However, these can be utilised with a the state 

dependent coefficient matrices above to predict the system behaviour for the subsequent 

time steps. This is updated at each sample time, with the values computed in the last 

optimisation routine. As before, the system is subsituted into the following form, with an 

incremental input to include integral action, where the new state Xk consists of the original 
T 

system states and additionally the previous input to the system 
[ 

Xk uk 
J: 

ý1 BB 
Xk+l 

0I 
Xk +I buk (5.1G) 

Yk _[CD, Xk 

where the state space matrices of the old system model arc denoted by A, 13, C and D 

respectively, and the new system matrices are denoted by A, B and C: 

Xk+l = AXk + Bt uk (5.17) 

Yk = CXk 

The cost function of the GPC controller here is defined as 

J= (IV - Y)TQ(lV - Y) - tUTAt U (5.18) 

where the vectors are defined as the setpoint vector W=[ w(k + NI) """ w(k: + NN) , 
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the output vector Y y(k + Nl) """ y(k + N2) IT 
and the control increment vector 

AU =[ DU(k + Ni) """ AU(k + N2) 
IT 

" The control weightings as denoted by Q and 

A are defined as diagonal matrices of size Rt. hpxt*Ilp and IZ1+II�xt+"u respectively, where I is 

the number of controlled outputs. 

Q1 0 00 
0 Q2 00 
0 0 ". 0 
0 0 0 Qlfp 

Al 0 00 

i1 = 
0 )t2 00 

0 0 ". 0 

0 0 0 Ajju 

(5.19) 

The state space system matrices detailed above in 5.16 are updated, determining the 

predictions of future states through repeated substitution of calculated future inputs. As 

for the linear predictive control algorithm previously, the prediction of future behaviour is 

built by iteration 

Xk+1 = AkXk + BkAuk 

Xk+2 = Ak+IAkXk + Ak+1BkAuk + Bk+10uk+i 

(5.20) 

Xk+3 = Ak+2Ak+1AkXk + Ak+2Ak+1 BkAuk + Ak+2Bk+10tuk+1 + Bk+20äk+2 

The matrices Ak, Ak+1 
i 

Bk, Bk+l, etcetera are dependent upon the values of the state 

vector prior to that specific sampling instant, i. e. Xk, X'k+l. Thus the calculation at tittle k 

of the state Xk+n is dependent upon the calculation of the previous n-1 states. Therefore 

it is possible to build a vector of predicted behaviour at time j as in 5.21. 

Xk+j - 
[Ak+I_1Ak+J_2 

''' Ak 
J 

Xk (5.21) 
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+[ Ak+j-1Ak+j-2 ... Ak+1 
, 13k, 66Uk 

+{ Ak+j-1Ak+j-2 
... Ak+2 } 13k+10uk+1.. 

... 
+[ Ak+j-1 

J Bk+j-2 &Uk+j-2 
(5.22) 

+Bk+j-10Uk+j-1 

Utilising the same notation as used in [191] 

TT 
A_{ 

AnAn-1... Al 
if 

1< n (x. 23) 11 r r 

k=1 1l>n 

The predicted state vector at time j is defined by the following equation, wherein it is 

assumed again that the control increments are the control horizon are zero. 

-1 

Xk+j 

I- [llAký1] 
Xk 

j-1 
+ ii Ak+i BkIuk 

i=1 

j-1 

+ 
[uAk+1] 

flk+10uk+1 

i=2 
j-1 

+ 11 Ak+i Bk+IJu-1Auk+lIu-1 

i=Ilu 

The predicted output, as determined from the above, is shown in the following, retaining 

the GPC notation of Krauss et al. [85]: 

Y= FkAkXk + Hk&Uk 

(5.24) 

(5.25) 

where 

Fri=C* 
[llAk+`J 

t_1 

Ilp-1 

... j1Ak+i 
i=i 

(5.26) 

where C is defined as the diagonal matrix of C over the horizon Hp, and II can similarly 

be defined as 
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U0 Ak+i Bk 0""'0 
i=1 

Ak+i] Bk U Ak+i Bk+1 
Hk =C* s=1 i=2 (5.27) 

"p-1 HP-1 "p-1 

11 
Ak+i Bk U Ak+i Bk+l " .. U Ak+i Bk+l/u-1 

k=1 i=2 k=//u 

The prediction equation thus includes the extended vector of the predicted states, de- 

termined by the control vector. This allows the controller to take the dynamic nature of the 

process into account. Whilst the extended control vector is used for prediction, in actuality 

only the first element of the control vector is applied to the plant. The remaining elements 

of the vector are considered only as predictions of the future control actions. 

The steps for the implementation of an NLGPC control scheine are as follows, for time 

t: 

1. Measure the current states of the process - for state vector x. 

2. Subsitute into system state dependent model, incorporating integral action, using 

system states and current control input. 

3. Use the control vector calculated in the previous optimisation (without the current 

control input, which is already applied to the plant) to construct a prediction vector 

X, together with the current state vector, as detailed above. 

4. Using X, the state dependent matrices are calculated, for the future state predictions, 

and the controller matrices. 

5. The next optimal control vector is determined via optimisation of the cost function. 

G. Control signal is applied to the plant, controller moves buk to Step 1. 

5.5.4 Measured Disturbances 

Measured disturbances may be included within the plant description, allowing feedfor- 

ward information about system disturbances, but also additionally including plant input 
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signal other than those defined as process control actions. This has been shown for the 

linear case by several sources, for example [125]. This method, that shown in Chapter 2 

for linear predictive control, is used for the nonlinear state dependent case, modifying the 

nonlinear algorithm. The state space state dependent model can be modified to include 

description of measured disturbances within the system: 

Xk+l = AkXk + Bkzuk + Bd kdk (5.28) 

Yk = CXk + Dddk 

The process model is transformed to the state dependent representation such that the 

nonlinearities are contained within the Ak, Bk and Bd, k matrices. A more general approach 

to the modelling of measured disturbances would result in the state dependent form of the 

output matrices C and Dd. In the event of inclusion of measured disturbances in the system 

model, the above control algorithm is modified. The measured disturbances act in two 

ways: modelling uncontrolled input variables to the process model and secondly including 

measurements of disturbance effects elsewhere within the process. Thisapproach of including 

measured disturbances for suitable control action to be taken, is called feedforward control. 

The inclusion of measured disturbances in this instance affects the output prediction vector. 

Xk+l = AkXk + Bk0Uk + Bd, kdk (5.29) 

Xk+2 = Ak+lAkXk + Ak+1BkAUk + Bk+1AUk+1 

+Ak+1Bd, kdk + Bd, k+ldk+1 

Xk+3 = Ak+2Ak+lAkXk + Ak+2Ak+1BkLuk + Ak+2Bk+10uk+1 + Bk+2Atlk+2 

Ak+2Ak+lBd, kdk + Ak+2Bd, k+ldk+1 + Bd, k+2dk+2 

since the measured disturbance is assumed constant over the prediction horizon, thell 

dk = dk+l = dk+2 = .... The above derivation is however also valid in the case that 

dk 54- dk+l dk+2 ="" "" The state dependent matrix Bd however does change over the 

prediction horizon, updated with changes in the state vector. Therefore the predicted state 

vector at time j is defined by 
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Xk+j = 
[Ak+I_1Ak+I_2. 

"" Ak 
] 

Xk 

+[ Ak+j-1Ak+j-2 ' .. Ak+1 
] BkAUk 

+[ Ak+j-lAk+j-2 ''' Ak+2 
, 

Bk+10ttk+1 

... 
+ 

[ý1 

-1 

] 
Bk+. 7-20uk+j-2 

+Bk+j-1L Uk+j-1 

+[ Ak+j-1Ak+j-2 ''' Ak+1 
, 

Bd, kdk 

+[ Ak+j-lAk+j-2 ''" Ak+2 
] 

Bd, k+Idk 

... 
+[ Ak+j-1 

] 
Bd, k+j-2dk 

+Bd, k+j-1 dk 

(5.30) 

As with its linear counterpart, the inclusion of the measured disturbance does not affect 

the optimisation of the cost function, but instead modifies the prediction equation, so that 

the predictions are defined according to the equation 

Y= FkAkXk + Hkt Uk + Db, kD(k) (5.31) 

where D(k) d(k) d(k + ilk) """ 
]T" The disturbance description matrix Db, k is 

defined by: 

0 
C 

Ll 
Ak+i Bd, k Dd 

i=1 

C 
11 

Ak+i] Bd, k C 111 Ak+il Bd, k+1 
Db, k _ i-1 i=2 

IIp-1 lip-1 
C II Ak+i Bd, k C 11 Ak+i Bd, k+l 

k=1 i=2 

5.6 Summary 

... ... 0 

... ... 0 

lip-1 
C Ak+i] Bd, k+llu-I Dd 11 

k=llu 

(5.32) 
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In this chapter, the theoretical background is given for three control schemes; that of 

fuzzy gain-scheduled control, Wiener model based predictive control and nonlinear state 

dependent predictive control. The linear predictive control algorithms detailed in Chap- 

ter 2 of this thesis were exploited in the development of a fuzzy gain-scheduled control 

strategy. This will be shown for the control of ammonia/ammonium concentrations and 

dissolved oxygen levels in the urban wastewater system within Chapter 6. The Wiener 

model approach of a linear dynamic model in series with nonlinear system gain was utilised 

in the development of an input-dependent model for nonlinear predictive control. This will 

be demonstrated in the subsequent chapter in the development of a dissolved oxygen con- 

trol strategy for the urban wastewater system. The introduction of the state dependent 

nonlinear modelling approach allows the use of the subsequent nonlinear predictive control 

strategy, including feedforward control action via the use of a measured disturbance model. 

The state dependent models developed in Chapter 4 will be used in the implementation of 

this strategy for nonlinear predictive control, in Chapter 6. 
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Chapter 6 

Nonlinear Predictive Control of 
Wastewater Systems 

6.1 Introduction 

The application of model based control techniques has proved appropriate for waste- 

water purposes. However, the majority of these applications have concentrated upon the 

wastewater treatment plant, and the optimisation of its performance. Linear predictive 

control for the extended urban wastewater system may not be suitable, in the presence 

of strong nonlinear effects such as storm event disturbances or varying influent wastewa- 

ter characteristics. The aim therefore is the development of appropriate nonlinear control 

techniques with respect to the control objective of maintaining receiving water quality. 

In developing nonlinear model predictive control for receiving waters, it is necessary that 

nonlinear model structures are utilised. The main research presented within this chapter 

therefore is concentrated upon appropriate modelling approaches for specific situations. 

The nonlinearities present in wastewater treatment result from various sources and their 

effects upon the system operating conditions: the plant kinetics. coupling interactions 

between process variables, the varying characteristics of the influent to the treatment plant, 

the effects of disturbances upon the system (such as toxic events and storm events) and 

temperature variations. The nonlinearities considered within this chapter include the effects 

of varying rainfall upon the characteristics of the wastewater, both in the changing treatment 
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plant influent and also the effects of combined sewer overflows to the receiving waters. 

Nonlinear control applications within wastewater industry have been uncommon, despite 

the nonlinear behaviour present within the biological and physical processes inherent to 

the process. Whilst traditionally, control on a local level of water treatment plants and 

individual bioreactors within these has been popular, the introduction of the recent EU 

directives concerning urban water systems has increased attention upon control of integrated 

systems. The WFD legislation requires that attention be given to interactions between 

subsystems, mainly towards maintenance of river quality. Meirlaen [105] describes that this 

in turn requires that immission concentrations (i. e. river concentrations) be included within 

the focus of the designed control schemes. It is the quality of the receiving water which is 

considered within the scope of this thesis. 

6.1.1 Urban Wastewater Systems Control 

As stated by Mailleret et al. [99], the trends within control of biological systems (particularly 

bioreactors) has concentrated upon three main methods: local, global (given full knowledge 

of system model), and global (accounting for some model uncertainties). The approaches 

considered within this thesis follow the above trends, with applications extended however 

from local control of bioreactions within the treatment plant, to a more global control 

of pollutants within urban wastewater systems, with the use of varying levels of model 

knowledge. 

Automation of the wastewater treatment process was considered as early ws the 1970's 
[22], however this has been slow to be implemented in practical applications. Vanrolleglhcnº 

states that only minimal control devices are available in common treatment plants, with 

dissolved oxygen control being the most widespread application of process control. III more 

recent decades, the carbon pollution in wastewater is not the only objective of treatment 

processes but additionally nutrient removal (for example, for nitrogen and phosphorous). 

Olsson ([121], [123]) describes amongst other problems facing the instrumentation and con- 

trol issues in the water treatment industry today are the plant constraints, insufficient 

sewer systems and unreliable measuring devices. Jeppsson et al. [69] states the main forces 
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behind progress in the water industry as being: stricter regulatory standards, financial con. 

straints, energy efficiency, increased plant monitoring (a traditonal 'bottleneck') and new 
technological progress. 

Sensors, for example online flow measurements, redox potential and temperature sen- 

sors, are most commonly available within the treatment plant. Although there exists some 

equivalent technology for the monitoring of receiving waters, online river quality sensors are 

not frequently used, even in verification of effluent compliance with regulatory standards. 
This is a significant issue in the development of control schemes for receiving water quality, 
due to the lack of feedback measurements. More fundamentally (as stated in [69]), water 

treatment plants were not originally designed for real time control. This is apparent in the 

widespread lack of flexible control handles, and is a factor restricting the control approaches 

considered in this thesis. The control schemes developed here remain strictly within the 

existing structures of treatment plants, seeking to allow improvements upon current plant 

performance, and allow authorities to avoid structural modifications of existing plants. 

The common approach of plant designers has been to have inbuilt safety margins such 

as excessive reactor volumes, whilst ignoring the necessity to include controllability and 

sufficient plant flexibility (as stated in [122]), thus increasing the plant construction costs 

whilst also limiting the future development and automation of the wastewater treatment 

operation. For this reason, the applicability of advanced control techniques is restricted by 

the controllability issue. Tables 6.1 and 6.2 demonstrate the available sensors and actuators 

in the urban wastewater system, as considered within this thesis. 

Table 6.1 Available sensors and actuators assumed within the ASM2d/QUAL2E urban 

wastewater system 

Section Sensors Actuators 

Sewer Flow to T'eatment Plant None 

Treatment Plant Dissolved Oxygen, Ammonia, Phosphorous Aeration, I e(O11)3 dosage 

River Dissolved Oxygen, Ammonia None 
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Table 6.2 Available sensors and actuators assumed within the Graclls urban wastewater 

system model 

Section Sensors Actuators 

Sewer Flow to Treatment Plant None 

Treatment Plant Dissolved Oxygen, Substrate Aeration, dilution rate 

River Dissolved Oxygen, BOD None 

6.1.2 Process Models 

A model of the nonlinear dynamics, of the variables that are to be controlled, is re. 

quired in the application of nonlinear control methods. Instances of calibration of ASM 

based models against actual system behaviour have been shown, however, in the absence 

of such situation-specific representations, simplified models of system dynamics may be do- 

termined. 'Black box' models of the dynamics, found by system identification techniques, 

may be used. In the presence of a process model, the control model structure can move 

from the 'black box' approach to a more 'white box' approach, based on mathematic l 

knowledge of the system dynamic behaviour. The issue of uncertainty still remains how- 

ever, even in the presence of a highly complex system model. Several assumptions are 

commonly made in the mathematical representation of the system dynamics. Mal: inia et 

al. [100] state that many modelling approaches consider a constant temperature. Petersen 

[130] described the restrictions of some of the ASM models as (among others): process 

parameters (which although possibly varying) are fixed at values for a chosen constant teal- 

perature, an assumed constant p11 (which if varying would affect many process parameters) 

and nitrification parameters and correction factors are assumed constant. «'}eilst Physi. 

cal modelling of wastewater treatment systems has been the subject of much research, in 

practise, physical wastewater treatment models can be difficult to identify. The use of a 

grey-box model can be appropriate when complete physical models are not available, by 

retaining the basic structure of these models in the combination of fundamental and exper- 
imental modelling techniques. Whilst parameters of the physical system may not always he 

identifiable, parameters of grey-box models can be identified from process mneasurements. 
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The large scale of the water treatment process models and the large number of vari- 

ables and uncertainties, has commonly restricted the implementation of nonlinear control 

schemes. System uncertainty in the activated sludge processes is heavily dependent on the 

identifiability of the process kinetics and parameters. Identifiability of process parama 

ters, for example in research by [175], has been implemented. The process of identifiability 

commonly does not produce unique solutions, several choices of process parameters are pos- 

sible, each producing valid representations of behaviour specific to the identified situation. 

Mailleret et al. [99] stated the 'delicate' nature of the control problem for water treatment: 

the approximate nature of the process models available restrict applications of nonlinear 

methodologies, and a large source of this lack of knowledge is based within the system kinet- 

ics. However, the presence of an identified model for a given process does provide the user 

with the ability to apply a more advanced nonlinear control approach than that of simplified 

or reduced models. The nonlinear control approaches detailed within this chapter consider, 

then, two situations; that in which a full process model is available and alternatively that 

in which there is a lack of process knowledge. 

The use of mathematical models in the control of the urban wastewater system allows the 

integration, into the control strategy, of current and future receiving water quality dynamics. 

These models can be used in predicting the treatment plant effluent quality required during 

the subsequent operating period in order to acheive the desired quality of receiving water. 

By varying the performance of the treatment plant, and therefore the effluent characteristics, 

the quality of the receiving waters may also be varied. The research detailed in hleirlaen 

[105] concentrated on the use of model simplification and model reduction, and the use of 

artificial neural networks, in control and prediction of dissolved oxygen concentrations, and 

also in the minimisation of ammonia levels in receiving waters. 

Linearisation of specific processes within the system is considered here, allowing the 

use of existing control algorithms in implementation of nonlinear control, via scheduling 

methods such as fuzzy gain-scheduling or the Wiener model approach demonstrated later. 

The lack of control handles within the overall system, and the low level of instrumentation 

in the receiving waters, motivates the use of simplified or reduced models such as these. 

The immision based strategy extending local treatment plant control to that of the receiving 
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waters avoids the common issues of lack of presence of instrumentation and actuators within 

the sewer system, restricting the influence of the sewer subsystem upon the control scheme 
to the measurements of sewer overflows. 

Vanrolleghem [183] states that the 'building blocks' of the control of a process are the 

following 

9 the process: the system that is to be controlled. In this case, the process to be 

controlled is that of water quality of the receiving waters. 

" the actuators: the method by which the process is manipulated. In the following 

applications, the actuators are the basic manipulatible variables: air flow rate, dilution 

rate and chemical dosage. 

" the control algorithm: the method by which the appropriate control action is calcu- 

lated for disturbance rejection or setpoint tracking, which is in this case the model 

based predictive control algorithm. The aim is to minimise deviations from steady 

state behaviour, the objective for the water quality. 

" the sensors: the devices by which measurements of output variables and disturbances 

are found. 

Additionally, particularly in the case of predictive control, other considerations for the 

'building blocks' for WWTP control could include the plant operating costs and the con- 

straints upon the system, biological, chemical and mechanical. 

6.1.3 Nonlinear Control 

Nonlinear control has been recently implemented on similar biological processes, for 

example, Szederkenyi et al. [172] demonstrated control of a fermentation process using 

several methods (for example LQ and input-output linearisation approaches), and adaptive 

control applications have been demonstrated, such as that used by I ilgert et al. [65]. 

Nonlinear control of a continuous bioreactor was demonstrated by Gonzalez et al. [55), via 

the use of a feedback linearisation controller implemented with online estimation of system 

uncertainties (such as process kinetics). Aoyama et al. [5) described nonlinear process 
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control for a CSTR system via the use of a neural network approach. Mailleret states 
that global approaches to nonlinear bioprocess control are mainly linearising controllers 
(for example the control of anaerobic digestion by [129] and nonlinear biorcactor control 

[133]). The issue with these approaches is the use of exact linearisation and therefore the 

requirement of full model knowledge. Table 6.3 indicates the control strategies utilised 

within this chapter. 

Table 6.3 Control Strategies in Chapter 6 for the Urban Wastewater System 

SD - State Dependent, WMPC - Wiener MPC, FGS - Fuzzy Gain Scheduling 

Section Control Strategy 

Sewer None 

Treatment Plant SD, Linear 

River WMPC, FGS, Linear, SD 

This chapter aims to introduce approaches in the case of the following controllable 

processes 

9 SISO Nonlinear: Clearly, the biological wastewater treatment process is multiple input 

multiple output (MIMO), however the common control approach is to view the con- 

trolled variables individually in single input/single output (SISO) structures. Olson 

and Jeppson [122] state that the different time constants of a wastewater treatment 

system, ranging from minutes for the control of dissolved oxygen to (lays for sludge 

composition, decouple control actions into separate SISO controllers. Thus the initial 

sections concerning Fuzzy Gain-Scheduled and Wiener MPC are applicable to SISO 

nonlinear processes. 

" MIMO Nonlinear: Although the current absence of control handles has limited control 

approaches to primarily SISO processes, the recent increase in instrumentation and 

automation of wastewater treatment, and the regulatory and environmental pressures 

concerning water quality, it is not unreasonable to assume that nonlinear control 

of MW O processes within the urban wastewater system will become iucrerlsing1y 

important. In this event, nonlinear modelling approaches such as state dependent 

techniques can be utilised in exploiting the available process descriptions. 
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The following control approaches are demonstrated in this chapter, in control of the 

urban wastewater system, in addition to the reduction of effects of storm events: 

" Fuzzy Gain-Scheduled Control: The structure and algorithms developed for the pur- 

poses of linear model based control may be extended with the use of multiple linear 

descriptions of the nonlinear behaviour of a process. SISO nonlinear control may be 

produced via the scheduling of multiple linear controllers, according to the description 

of the process nonlinear operating range. 

" Wiener based Model Predictive Control: In specific cases, the nonlinear process may 

be represented by a linear dynamic description, followed by a static nonlinearity. In 

this event, this structure may be utilised in the development of a nonlinear controller, 

based on an instantaneously linear process model at a given sample instant. Thus 

the process model is updated at each sample time, allowing for increased accuracy in 

predictions of system behaviour. 

" State Dependent Model based Predictive Control: The nonlinear model as defined 

by a mathematical process description can be reformulated to the state space struc- 

ture, allowing the use of the linear control algorithms. The construction of a linear 

time varying model, according to the calculated control sequence over the user spec- 
ified control horizon, provides more accurate model predictions and control actions 

according to predicted behaviour. 

6.2 System Conditions 

The urban wastewater model utilised for the purposes of simulation of fuzzy gain scJhed- 

uled (FGS) and Wiener MPC control is the ASA12d/QUAL2E model of [311. The plant 

conditions used in all simulations for the control implementation are defined by the fol- 

lowing settings. There exists a PI controller to manipulate the wastage flow, for which it 

constant setpoint of 150 (m3/d) was set. The steady state influent flow can be found to 

be 5575m3/d and the chemical dosage of Fe(OH)3 is set to a value of G00000 (g/c]). Tlhe 

temperature is assumed to be constant at a value of 20°C. The measurements assumed 
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available, within the treatment plant and also in the receiving waters, are as shown in 

the above Table 6.1. The plant PI controller for dissolved oxygen concentrations in the 

treatment plant aerobic reactor is as defined in Table 6.4. 

control DO 
So 

Influent 
oo0o 
oý 

E lucnt 

Internal Nitrate Recycle 

Figure 6-1: PI Control of the Aerobic Reactor within WV\VTP 

Table 6.4 PI Mining parameters 

Kp T; 
Dissolved Oxygen 85 130 

Ammonia 1500 500 

In the event of ammonia control, the control action of aeration of the aerobic reactor is 

again utilised, although the above PI controller is modified to control ammonia/anunouium 

concentrations in the reactor effluent. However, the steacly state value of ammonia in 

the aerobic tank is 0.53g/m3, in comparison to a dissolved oxygen steady state value of 
6.87g/m3, and the PI control parameters are therefore scaled appropriate to the change in 

magnitude of the controlled variable, and are as demonstrated in Table 6.4. 

6.3 Fuzzy Gain Scheduled Predictive Control 
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Bioprocesses are well-known within control applications for their nonlinear nature. The 

gain-scheduling approach allows the adaptation of the control application to the nonlinear 

operation, whilst retaining the common linear control. In the application considered In 

this section, a family of controllers are designed on the basis of a linearisation via the 

subspace identification algorithm. Consider that the system to be controlled consists of 

the following variables: a controlled variable, a measured disturbance, and a manipulated 

variable. The dissolved oxygen process can be considered a nonlinear SISO system with 

a measured disturbance model, where the manipulated variable is the air flow rate to the 

aerobic reaction tank within the treatment plant, and the controlled output is the dissolved 

oxygen concentration in the receiving waters subsequent to the treatment plant effluent 

point. Similarly, in the control of ammonia levels these variables are defined as downriver 

and upriver ammonia concentrations respectively, and, as above, the rate of air flow. The 

use of the feedforward approach in wastewater treatment control is stated by Vanrolleghem 

[183] to have the advantage of compensating for the effect of predictable disturbances in 

water quality. Theoretically, the compensation for system disturbances can be performed 

completely if it is fully measured or predicted, requiring either a perfect process model or 

ideal process measurements. This is clearly not currently realistic, however the fccdforward 

approach in wastewater control, coupled with the feedback approach and model mismatch 

compensation may allow for some of the benefits of feedforward control. 

6.3.1 Dissolved Oxygen Fuzzy Gain Scheduled Control 

The efficient control of the dissolved oxygen levels in the receiving waters is one of the 

most significant within the urban wastewater system, making dissolved oxygen an impor- 

tant water quality indicator. Dissolved oxygen is essential for the survival of aquatic life 

(both plant and fish), and extended oxygen depletion can have extreme effects upon fish 

populations. In [69], the most common type of applied real-time control is stated to be 

the control of dissolved oxygen concentration in the aerobic reactor based on feedback of 
dissolved oxygen measurements. This is the case in the control, presented in this thesis, of 
dissolved oxygen in the receiving waters, implemented via manipulation of dissolved oxy- 

gen PI sctpoint within the treatment plant, and thus the variation in aeration within this 
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Figure 6-2: Linear model structure in description of the nonlinear process: with model 
inputs of dissolved oxygen setpoint S0,, p, and upstream dissolved oxygen concentration 
S0, u, and output of downstream dissolved oxygen concentration So, d 

The decision in the design of the fuzzy gain scheduled control are dictated by three steps. 
The first involves the decision of the parameters that define the membership functions. The 

control purpose in this case is the manipulation of the urban wastewater system during 

changes in weather conditions, which may be characterised by the change of influent to 

the treatment plant. Thus the 'scheduling variable' chosen was that of treatment plant 

influent flow, under the assumption that changes in wastewater characteristics within the 

system should be indicated by variations in flow to the treatment plant. The second decision 

involves the choice of the number of 'descriptors' in the fuzzy scheduler. In this case the 

choice should cover the varying weather conditions. The approximately linear regions over 

the operating range in the case of nonlinear dissolved oxygen control can be divided into 

nine ranges of flow. The third decision in the design of the fuzzy scheduler is the choice 
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of the shape of the membership function for each of the above. In this case, the most 

appropriate shape of membership function for the purpose of smooth transition between 

operating ranges is that of a trapezoid. 

The objective of the FGS approach is to utilise the aforementioned linear model identi- 

fication methods in the simplification of the control of the dissolved oxygen process in the 

receiving waters to a nonlinear SISO system. Subspace identification is used in the descrip. 

tion of the nonlinear process with a set of linear models. Each linear model is identified at 

specific treatment plant influent flow levels, commencing at an influent flow of 3000m3/d, 

and at 3000m3/d intervals thereafter. This is implemented for a total of nine linear ranges, 

to a maximum influent flow of 27000m3/d. The following PRBS parameters for discrete 

time step (Tdi3c), mean value (m) and amplitude (a): 

Table 6.6 Dissolved Oxygen Process PRBS Identification Parameters 

T di,, m a 

0.05 4 4 

The model structure for the predictive control algorithm assumes the following: 

9 Each linear system is chosen to satisfy controllability and observability requirements. 

9 Each linear model, of 1..... n, is considered to be of the format of. a linear model 
(including a measured disturbance) and a constant unmeasured disturbance state. 

- the upriver dissolved oxygen concentration is a measured disturbance, and 

assumed constant over the prediction horizon. 

- the linear model utilised for state estimation includes an unmeasured distur- 

bance state, to compensate for plant-model mismatch, estimated at each sample 
instant. 

" Kalman filters are utilised in the estimation of the linear model states, for cacti linear 

controller 

The dissolved oxygen control was simulated in the presence of disturbances, during a 

storm event. The characteristics of the storm event are defined by its duration of 0.33h at 
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Figure 6-3: FGS Control Membership Function for the Nonlinear Dissolved Oxygen Process 

time 4 days, and the rain intensity of 30mm/h causing a combined sewer overflow and a 

dip in the river dissolved oxygen level. This system was tuned to track a dissolved oxygen 

setpoint in the receiving waters of 7.5gm-3. The fuzzy membership function chosen allows 

for simple design and interpretation of the fuzzy rules. The fuzzy scheduler has one input, 

the measurement of the influent flow to the treatment plant, and n=9 outputs of weighting 

values, each in the range 0< wn, <1 and with a total sum 1V = Zi w, a =1 

The FGS approach designed was compared with a control scheme of a single linear 

predictive controller. The single linear controller utilised, for comparison purposes, is that 

controller of the FGS structure which is active at the steady state influent flow. That 

is, at the steady state conditions, the FGS and linear predictive control performances are 

equivalent. The obtained results for fuzzy gain scheduled control in Figure G-4 show the 

effectiveness of the approach in the nonlinear control of dissolved oxygen concentrations 

in receiving waters, and its improvement upon the performance of its linear counterpart. 

The objectives, as stated, is the minimisation of effects of CSO's. In this case, the control 

objective requires that the time for which the dissolved oxygen is below a chosen threshold is 

minimised. By inspection of the control performance, it can be seen that the FCS approach 

descreases the length of time for which there exists oxygen depletion. An additional control 

objective is the maximisation of the minimum dissolved oxygen concentration as a result of 

the system disturbance, for which the FGS approach again improves upon the performance 
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Figure 6-4: Fuzzy Gain Scheduled Predictive Control of Dissolved Oxygen in the Urban 
Wastewater System, versus Linear MPC 

of the linear control scheme. The linear controller is based upon a linear model which is not 

valid during such large deviations from the steady state behaviour. On the other hand in 

the case of the FGS scheme, the model upon which the active controller is based provides a 

closer approximation to the actual plant behaviour. This approach utilises a single variable, 

of the treatment plant influent flow, in the scheduling of nonlinear control. However, an 

increase in scheduling variables could be advisable, for example, the inclusion of a pollutant 

concentration in the treatment plant wastewater influent. This could act as a representation 

of changes in the influent wastewater characteristics that may not be indicated by a change 

in influent flow (for example, during a high nutrient load from an industrial source). 
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6.3.2 Ammonia Fuzzy Gain Scheduled Control 

The behaviour of ammonia is significantly more nonlinear than that of dissolved oxygen, 

and in addition, due to coupling, has sensitivity to variations in other system variables. In 

this case, the control action is defined as the variation of the setpoint of the ammonia 

PI control loop in the aerobic reactor in the treatment plant, additionally a measured 

disturbance variable is defined as the ammonia concentration upriver in the receiving waters. 

Dissolved oxygen control in the treatment plant based on online measurements of ammonia 

levels was demonstrated by Ingildsen et al. [681. The controlled variable is the ammonia 

concentration in the receiving waters downriver of the treatment plant effluent. 
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Figure 6-5: Linear model structure in description of the nonlinear process: with model 
inputs of nitrate/nitrite setpoint Snh4,8p, and upstream nitrate/nitrite concentration Snh4, U, 
and output of downstream nitrate/nitrite concentration Snh4, d 

The approximately linear regions over the operating range in the case of nonlinear 

ammonia control can be divided into five regions, dictated again by linear operating ranges 

of flow of 3000m3 width each. Due to the 'washout effect' of the hydraulic load upon the 

treatment plant, the effects of aeration changes upon ammonia dynamics at high flows is 
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not of significant magnitude for control use. This restricted the range of identification of 

linear models to a maximum flow of 15000m3/d. The choice of membership function is 

again trapezoidal for smooth transitions between linear controllers. As before, therefore, 

the chosen ranges for the linear controlkrs are defined by the scheduler membership function 

as shown below 

Wembashq function pots 

1 

U. S 

0 

mit mQ m13 mM Mrs 

0 0.5 1 1. F 22$ 
input varieble'thw 

x 10ý 

Figure 6-6: Ammonia Membership Function 

Table 6.7 Ammonia Process PRBS Identification Parameters 

Tdisc m a 

0.05 0.4 0.2 

Again, the urban wastewater model was simulated in the presence of a storm event 

defined by a duration of 0.33h at time 4 days, and the rain intensity of 30mm/h causing a 

combined sewer overflow and an increase in the river ammonia level. This system was tuned 

to track an ammonia setpoint in the receiving waters of 0.4gm-3, that is, at the outer limit of 

the water quality regulations. The aim is therefore to return to within this limit ns quickly 

as possible, that is, to reduce the period for which the system is outside the regulatory 

constraints. The unconstrained case of the model predictive control is demonstrated. The 

fuzzy membership function chosen for the scheduling of the linear controllers is demonstrated 

by the graph above. 
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Figure 6-7: Fuzzy Gain Scheduled Control of Ammonia concentration in receiving water 

Again the linear control scheme used for comparison purposes was that of the controller 

identified for a steady state treatment plant influent flow, 5575m3/d, and therefore has the 

equivalent control performance as the FGS at that steady state. The result of the FGS 

control performance is shown on the graph above and demonstrates the nonlinear control of 

ammonia concentrations in receiving waters, and the improved performance over its linear 

counterpart. The issue in this case however, is that the maximum ammonia concentration 

reached is the same in both cases, the treatment plant is simply unable to compensate 

further for this ammonia load upon the system. The period of time for which the ammonia 

concentration is over a specified threshold value (which in this case is set to a value of 
0.5g/m3) is less in the case of the FGS control, spending a total of 7.5 hours over the 

threshold value, in comparison with the linear control scheme for which the period of time 

spent in violation of the specified threshold was 10.1 hours. 
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6.4 Nonlinear Behaviour 

In order to analyse the behaviour of both dissolved oxygen and ammonia concentrations 
in the receiving waters, varying hydraulic loads upon the treatment plant were simulated. 

The effects of a step change in aeration rate of the aerobic reactor within the WWTP 

during these various load scenarios is demonstrated in Figure 6-8. The dissolved oxygen 

demonstrates a similar response to the step change at each point over the nonlinear range, 

indicating an almost linear behaviour scaled by a nonlinear system gain. Conversely, the 

ammonia process is significantly nonlinear within the treatment plant, and at low flows 

demonstrates a response to air flow changes that is both slow and of low magnitude. The 

use of existing low level control structures such as PI control can lincarise the behaviour 

of the treatment plant subsystem further in the case of dissolved oxygen control, allowing 

the steady state behaviour of the treatment plant to be replicated over changing influent 

flow. The linear dynamics of the dissolved oxygen process are a result of the effects of 

the oxygen transfer function for aeration. This can be exploited in the modelling of the 

dissolved oxygen process via linear dynamics and nonlinear system gain, in the format of 

the Wiener model approach detailed in Chapter 5. 

6.5 Wiener Model Predictive Control 

The Wiener model structure describes the relation between input aeration rate Kj., 

and output dissolved oxygen concentration in the receiving water, So. The dissolved oxy- 

gen process is suitable for the Wiener model approach due to the linearising effect of the 

oxygen transfer of the treatment plant process aeration. The manipulated variable in this 

system model is defined to be the above aeration rate, and therefore a subsequent variable 

must be included to 'schedule' the static nonlinear gain function. The transfer function 

of the system is intended to represent the dissolved oxygen process and the effects of the 

treatment plant influent flow dynamics upon this. The magnitude of influent flow is chosen 
for this purpose, as the influent flow variable covers the nonlinearity of the process. It 
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Figure 6-8: Dissolved Oxygen and Ammonia responses to step change in air flow within 
WWTP 

can be defined using previously detailed concepts, as the 'measured disturbance' variable 

defining unmanipulated but modelled system dynamics or, equivalently, could be described 

similarly to the 'scheduling variable' as utilised in the fuzzy gain-scheduled approach. The 

Wiener model identified is valid over a larger operating range than the linear time invariant 

representation, allowing for more accurate predictions. 

An element of the model based predictive control approach is the reduction of the 

effect of the plant-model mismatch by the implementation of only the first action of the 

calculated control sequence, subsequent to which the sequence is recalculated. However, 

this can be further exploited by updating the process model at each sampling point. For 

the control of the dissolved oxygen process, the process model may be simplified to the 

nonlinear SISO representation of aeration effects upon the receiving water dissolved oxygen 

dynamics. The Wiener model approach realises the nonlinear dynamics via the separation of 

linear dynamics and static nonlinearities. From the viewpoint of identification, the dissolved 
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oxygen process within treatment plant systems can be regarded as a Wiener structure; tin 

LTI system cascaded with a static nonlinearity. 

In particular, within the urban wastewater system the effect of the major nonlinearity 

in the dissolved oxygen process, that is variable flow, can be modelled within a nonlinear 

gain function, acting upon the dynamics of the oxygen process itself. Lindberg et al. [9,9] 

demonstrated the representation of this process via the knowledge of oxygen transfer. The 

control approach of [25] et al utilises the dissolved oxygen reference trajectory, using the 

structure of the dissolved oxygen dynamics and the two time scales (fast and slow) that 

exist in this process. 

The LTI transfer function and static nonlinearity as determined by the Wiener model 

approach are not directly used in the predictive control algorithm, but are instead formu- 

lated together within the input dependent state space model of Chapter G. This approach 

utilises the idea of a state space model, similar to that of the state dependent approach, 

updating the model at each sample point. 

Xk+i = Axk + Buk 

Yk = C(uk)xk + D(uk)uk 

(6.1) 

As can be seen in the above diagram, the Wiener model approach is a block oriented 

method of modelling system nonlinearities, consisting of a dynamic block and a static 

block. The Wiener model in this case is utilised to represent the significant dynamics with 

respect to the control of the dissolved oxygen concentration and the model is developed by 

performing step tests on the nonlinear system within the operating space of the process. 

It is assumed that system physical parameters are constant (or at least changing slowly), 

though this may introduce some uncertainty in the model in the case of changing parameters. 

The system is treated as a two input, one output system. The inputs are defined as the 

dissolved oxygen PI loop control in the treatment plant (with the manipulated variable Kea 

(the mass transfer coefficient, related to the air flow rate)) and the measured disturbance (or 

scheduling variable) Q. The output (or controlled variable) is defined as the dissolved oxygen 
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concentration in the river, So, river" In this case, the upriver concentration of dissolved oxygen 

is not considered, in that the feedforward information concerning CSO's is not included in 

the process model. The nonlinear model is assumed to take into account changes in influent 

flow levels to the plant, and to consider any additional oxygen depletion as a disturbance 

event (caused by combined sewer overflows). The nonlinear state space model of this process 

is developed according to the following steps: 

1. Step tests are performed upon the process. The same step change in PI setpoint is 

applied for varying flow loads to the treatment plant. 

2. The analysis of the steady state values of the system is made. The system is analysed 

via the step response from steady state of the system at that given operating point 
(which varied at each flow rate). The steady state gain of the system, varying over the 

operating range, is described by a nonlinear gain function dependent upon the influent 

flow to the treatment plant g(p), where p is defined as the scheduling variable, Q;,,.. 
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The dynamics of the system are described by a transfer function. 

3. Subsequent to the steady state gain analysis, the response are scaled to a unity steady 

state gain, for the analysis of the dynamics of the step response. The settling time 

of the step response, for a system of linear dynamics, should be similar for each flow 

range, allowing a low-order description of the system to be determined. 

4. The nonlinear representation of the system can be seen in the format scaled by the 

gain function g(p) 

G(s) = 
as + 19(P) 
bs +1 

(6.2) 

which is converted to the state space representation for the purposes of the use in the 

model predictive control structure, producing an input dependent state space description 

of the process. The identification problem is considered as: in the presence of changes in 

influent flow levels to the treatment plant and variations in the air flow rate, to produce a 

state space realisation of the system dynamics, and an estimate of the system nonlinearity. 

In this case, the model identification is determined by analytical methods, via step response 

tests upon the process model. The data is divided into two components: the component 

that changes over the flow range (the steady state gain) and the component which does not 

(the transfer function of the step response). 

Step 1: The former (the static nonlinearity) was determined by calculating the steady 

state gain of the system at different values of flow. This was implemented by applying 

a step change to the system and analysing the responses. It is necessary to analyse the 

changes, from the steady state, of the dissolved oxygen concentration at each given flow 

level. The required information in constructing a function of the nonlinear system gain is 

the magnitude of the step response at each given influent flow. The offset (from zero) at 

steady state for each operating point, prior to this step change, was therefore removed rom 

each set of step response data. In this manner, the magnitude of step response could be 

determined. The steady state offset at any given operating point within this flow range 

may be established via interpolation of the data described within the Table below. Thus, 

the step responses, with zero initial steady state offset, are shown in the following figure. 

160 



Table 6.8 Steady State Offsets for Wiener model over flow range 

Flow (m3/d) 3000 6000 9000 12000 15000 18000 21000 2,1000 

Steady State Offset 8.0850 7.8350 7.6100 7.4100 7.2250 7.0700 6.9250 6.7970 
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Figure 6-10: Step responses of dissolved oxygen in receiving waters for varying influent 
WWTP flows 

Step 2: In determining the static nonlinearity of the process, the system gain with 

respect to the changing influent flow must be analysed. The effects of flow variations upon 

the dissolved oxygen process shown in the table below can be represented by a nonlinear 
function. 

Table 6.9 Nonlinear system gains for Wiener model over flow range 
Flow (m3/d) 3000 6000 9000 12000 15000 18000 21000 2,1000 

Nonlinear gain 0.061 0.1180 0.1650 0.2070 0.2450 0.2800 0.3120 0.3350 

However, it can be observed that the static nonlineaxity of the process is approximately 

linear. The behaviour of the nonlinear gain (y) with respect to changing influent flow (p) 

is therefore defined by 
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y= 9(P) 

= 1.2250x10-005p + 0.05475 

(6.3) 

(6.4) 

Step 3: It can be seen that the dynamics of the system are approximately constant 

over the nonlinear range. Tian and Fugii [1761 state that the gain can arbitrarily be fixed in 

either subsystem, affecting the scaling upon the other, without affecting the input output 

characteristics of the nonlinear model. The steady state gain at each influent flow level is 

used to produce the nonlinear gain function, as demonstrated in Steps 1 and 2. There- 

fore the steady state responses above are adjusted to a unity steady state gain (that is, 

normalised with respect to the input step change), eliminating the effects of the static non- 

linearity, so that it may be seen that the responses behave almost identically at each flow 

level. 
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Figure 6-12: Unity gain step responses of dissolved oxygen in receiving waters 

Step 4: The LTI transfer function of the system dynamics determined from the step 

tests above is defined by the following transfer function as 

G(s) = 
0.45s +1 (6.5) 

s+1 

The state space model representation of this transfer function is required and thus a 

conversion to the state space domain produces the form as follows: 

A= [-1] 

C= [0.55] 

B=[l] 
D= [0.45) 

so that the full state space description of the Wiener process is as follows: 

A= [-1] D=[1] 

(6.6) 

(a. 7) 
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C= [0.559(P)] D= [0.45 * 9(P)] 

The behaviour of the Wiener model of the dissolved oxygen process considered is com- 

pared with the behaviour of the 'real' process for a storm event. The figure below demon- 

strates that the Wiener model response is comparable to that of the 'real' system model. 

uissoiveo oxygen uoncentrauon in rcecemng water curing a rain event 
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Figure 6-13: Comparison of urban wastewater model and wiener model response during a 
storm event 

The controller design is based around the state space system model as constructed in 

Equation 6.7 above. Whilst the system model is updated at each sample instant, the GPC 

algorithm formulation however remains unchanged from the original structure demonstrated 

in Chapter 2. The difference however, especially in a comparison with the gain-scheduled 

control, is in the online calculation of the controller characteristics: the prediction equa- 

tion, the controller gain matrices and the optimisation of the updated cost function. The 

nonlinear controller designed follows at each sample instant, these steps: 

1. Update input dependent model matrices Ck and Dk. 

2. State estimation, in this case using the Kalman approach, using the model as defined 

above. 

3. Calculation of the system predictions, using the states calculated in Step 2. 

4. Optimisation of the cost function as defined by the matrices of Step 1. 

--"- Wiener Model 
- Real Process 
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5. Application of the initial element of this control vector, return to Step 1 at next sample 

instant. 

The state estimation is found using an Kalman filter, where the state space equations 

are updated at each sampling instant. The Kalman gain is determined from these state 

space equations, and thus is also updated. The predictions are found using the approach as 
demonstrated by Krauss et al. [85], and the control actions are calculated to minimise a user- 

specified cost function. The responses demonstrated in the following figures show a moderate 

rain event: intensity 5mm/hr, duration ihr, at time 3 days. Two control approaches are 

shown: a linear controller identified for a steady state influent flow of 5575m3/d in the 

treatment plant effluent and a Wiener model predictive controller defined over the nonlinear 

operating range up to a flow of 27000m3/d. The tuning as specified in the above table is 

utilised for both controllers for comparison purposes. The objective of the control approach, 

as previously, is the minimisation of the effects of combined sewer overflow and increased 

influent flow to the treatment plant. In this case, the measured variable is the dissolved 

oxygen downriver in the receiving waters only, eliminating the need for a sensor upstream 

of the treatment plant effluent. The design requirement is reduced to that of a single 

controller, updated online with each sample instant by a measured disturbance variable, of 

one control input, and one feedback measurement. This single controller is tuned according 

to the following parameters: 

Table 6.10 MPC Tuning Parameters for Wiener Model approach 

T. Q A H. Hp 

0.05 40 0.0005 5 10 

The control signal computed by the Wiener and linear predictive controllers developed 

are constrained by the following inequality: 

0<U< 10g02m-3 (6.8) 

The performance as indicated in Figure 6-14 demonstrates the unconstrained case of 

linear and Wiener model predictive control, whilst Figure 6-15 demonstrates the constrained 
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Figure 6-14: Wiener Model Predictive Control of Dissolved Oxygen in the Urban Wastewa- 
ter System, versus Linear MPC, during a moderate rain event, no CSO 

control of both controllers, according to the above inequality. Both cases indicated the 

improved disturbance rejection abilities of the Wiener AMC technique, reducing the oxygen 

depletion effects of the storm event. The Wiener MPC approach additionally shows a less 

oscillatory response than its linear counterpart. The increased accuracy of the Wiener 

model provides improved predictions of future plant behaviour in the presence of varying 

treatment plant influent, over the approximated predictions of the linear process model. 

Whilst the above Wiener state space model was determined offline via analysis of step 

responses, online identification of Wiener models has been demonstrated for other appli- 

cations. The issue concerning an application of such a method to the control of ammonia 
levels in the receiving waters is the nonlinearity of the process. Whilst the dynamics of the 

dissolved oxygen process over changing flows can be modelled approximately by a simple 
first or second order transfer function, and thus a linear time invariant model, the dynamics 

of the ammonia process are considerably more nonlinear over similar flow variations. 
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ter System, versus Linear MPC, during a moderate rain event, no CSO: In the presence of 
actuator constraints 

6.6 Comparison of Control Approaches 

To discuss the control approaches, in terms of effectiveness and applicability, the re- 

sponses of the designed controllers to the disturbance of a rain event must be examined. 

The four following controllers are therefore evaluated in these simulation studies: 

" fuzzy gain scheduled control utilising feedforward control via measured disturbances, 

which considers individual linear models (nine in total) to define system dynamics 

over the nonlinear operating conditions of a storm event, identified via subspace iden- 

tification. Nine linear model predictive controllers are simulated in parallel with the 

measured disturbance variable of dissolved oxygen concentration in the upstream re- 

ceiving water, for the controlled output of dissolved oxygen concentration in the re- 

ceiving waters. The treatment plant influent flow measurement is considered as a 
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scheduling variable, in the fuzzy interpolation of linear controllers according to oper- 

ating point. 

" Wiener model based control, which considers the controlled process to be a SISO 

system of one manipulated input of airflow rate and one controlled output of dissolved 

oxygen concentration in the receiving waters, with knowledge of the treatment plant 

influent flow as a measurable disturbance variable, identified through system step test 

analysis. 

" linear model based predictive control, which considers a linear model with state vari- 

ables and inputs as in the case of the fuzzy gain scheduled control, for the steady state 

plant conditions (that is, a treatment plant influent flow of 5575in3/d). This linear 

controller is equivalent to that of the membership function of the FGS controller for 

this flow range. 

" the PID control for the receiving waters is a modification of the original PI control 

whose control objective was the setpoint tracking for dissolved oxygen concentrations 

in the aerobic tank of the treatment plant, but which in this case instead considers 

the dissolved oxygen concentration in the downstream receiving water. 

8.5 

8 

7.5 
DO 
glm3 7 

6.5 

6 

5.5 L 
3 

Figure 6-16: Comparison of Predictive Control Approaches during a rain event: WMPC, 
FGS, Linear and PI 
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PI control is included for comparison purposes, tuned via the trial and error method. 

The simplicity and popularity of the PI approach has led to its common application for 

wastewater applications, and with advanced tuning methods (for nonlinear control) could 

perform adequately, although lacking several of the advantages of the model Lased control 

structure. MPC has the advantage of ease of application for multivariable processes, mul- 

tivariable nonlinear MPC control of the urban wastewater system is demonstrated later in 

this chapter. Additionally, the PI structure does not easily allow for constraint handling, 

where the model based control approach excels, for example in the constraint handling 

demonstrated in the WMPC application in the previous section. 

The criteria by which these control schemes are compared is defined by two values: the 

minimum dissolved oxygen concentration for a given event, and the length of time that the 

dissolved oxygen concentration was below a certain threshold value. Since the storm event 
does not cause oxygen depletion below the regulatory levels, a threshold value will be chosen, 

for comparison purposes, that all of the control schemes exceed. The threshold dissolved 

oxygen concentration of 7g/m3 is chosen. The performance of the control schemes are 

therefore as detailed in Table 6.11 below. The reason for the improvement of performance 

over that of PI control can be explained by several factors: the inclusion of a fecdforward 

mechanism for control in the case of FGS, the accuracy of the Wiener model in the case of 
WMPC, or indeed the inclusion of unmeasured disturbance modelling in the model based 

control, including that of the linear case. Particularly, the intuitive nature of the MIT 

tuning allowed for better performance. 

Table 6.11 Comparison of Control Schemes 

Control Scheme Period of time below threshold (days) Minimum DO (g/m3) 

PID 0.4725 6.52 

WMPC 0.04 6.91 

Linear 0.086 6.67 

FGS 0.16 6.51 

Closer inspection of the behaviour of the system over extended storm events, such ws 
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the following event of intensity 10 at a time of 4 days, for a duration of 3 hours as shown in 

Figure 6-17, indicates the issues involved in the use of the PI control. The extended nature 

of the storm event allows the PI to more closely follow the responses of the model based 

control techniques, with respect to the period of time for which oxygen depletion occurs. 

However, the PI controller requires an extended period of time to return to steady state, and 

in addition results in the application of an excessively large control action. The model based 

control approaches, if compared, can be seen to improve in performance proportionally to 

the level of accuracy in the control models utilised. In particular, the Wiener MPC approach 

results in a minimum dissolved oxygen concentration of Gg/m3, in comparison with the PI 

control case, in which the minimum dissolved oxygen concentration is 5g/m3. It can be seen 

therefore that the nonlinear approach of the Wiener model based control scheme improves 

considerably, with respect to water quality objectives, over the traditional PI approach. 
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Figure 6-17: Extended Storm Event: Comparison of Control Approaches for the Urban 
Wastewater System 
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6.7 State Dependent Nonlinear Predictive Control 

In the presence of an accurate nonlinear process model of a system, the above model simpli- 

fications and reductions may be made redundant. By representation of the nonlinear model 

in the state space format, the traditional predictive control techniques may be employed. 

The application of such an approach does however require several assumptions to be made, 

arguably making the approach unrealistic. The application of the MPC approach using a 

nonlinear model is investigated, and the assumptions and conclusions are discussed, in the 

remainder of this chapter. 

Nonlinear models based on mechanistic mathematical models can be useful in the ap- 

plication of nonlinear control. This approach has not been widely explored in wastewater 

treatment control, for many reasons. The most obvious of these is the lack of accurate 

nonlinear models of the wastewater systems, and in addition the number of unobservable 

and uncontrollable processes within wastewater treatment plants themselves. The models 

utilised in water treatment control have been, for the most part, linear or multiple linear 

models, and have been sufficient for their purpose. It is the objective of this section to 

explore the application of a nonlinear advanced control approach to wastewater, using a 

mechanistic model and compare to the previous methods demonstrated in this thesis. The 

increasingly stringent regulatory requirements may perhaps push industry towards further 

accurate and possibly more complex control schemes. 

The choice of model used to demonstrate nonlinear predictive wastewater control in this 

chapter is itself a reduced model [114]. In order to allow for controllability and observability 
issues, a larger (more complex) model such as the ASM based models was impractical for 

study in the scope of this thesis. The nonlinear GPC approach presented in the previous 

chapter is applied to the following wastewater treatment control problem. The urban waste- 

water system is not considered here, instead the objective of this control is the optimisation 

of the treatment system performance. Although, in a general sense, the main structure and 
function of a treatment plant is similar in most situations, the control developed is system 

specific, as the system characteristics, dynamics and kinetics in each case differ. The aim 
here therefore is to demonstrate the application of a nonlinear GPC strategy in the case 

of a known nonlinear system model. In practice, the size of the treatment plant, the inAu- 
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ent characteristics, the control systems present and the measured variables, as well as the 

regulatory standards required may differ from system to system 

As stated previously, the large variation in the time constants associated with sub- 

processes within the wastewater process allows the application of decoupled SISO control 

schemes as shown above. Considering the MIMO nature of the process however Nielsen 

and Onnerth [113] for example demonstrated the benefit of MIMO control of nitrate con- 

centrations at the effluent of a full scale treatment plant utilising carbon addition and the 

oxygen supply. Lech et al. [87] demonstrated process instability caused by interactions and 

coupling across separate control loops. The benefit therefore of the MIMO controller de- 

sign can be elimination of these issues, as shown in a decoupling MIMO control scheme for 

a carbon removal wastewater treatment plant application demonstrated by Vanrolleghem 

[184]. 

The use of nonlinear models explicitly within the model based predictive control ap- 

plications for biological wastewater treatment processes has not been commonly applied. 

Vanrolleghem states that the use of nonlinear models themselves as part of control coptimi- 

sation has only been demonstrated by a few examples due to the unrealistic assumption of a 

perfect process model with a fixed structure, and lists simulation examples of this numerical 

optimisation (for example, those shown in [161], [189], [103], [73], [37]). 

6.7.1 Treatment Plant Control 

The application of nonlinear predictive control using SDC modelling shown here is demon- 

strated in 0' Brien et al [120], whilst a comparison of this method with a 'linearisation 

around a trajectory' nonlinear predictive control approach is demonstrated with the use of 

the extended Kalman filter for state estimation in 0' Brien et al [9]. 

The approach demonstrated here is the application of nonlinear predictive control to a 

wastewater treatment plant model, using the state dependent format of the Ncjjari [1191 

model. The state dependent coefficients A(x, u) and B(x, u) defined in Chapter 5, in addi- 

tion the following state dependent coefficient matrices, define the state dependent form of 

the treatment plant: 
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where the C matrix is assumed to represent the two controlled process outputs, substrate 

and dissolved oxygen, whilst the zero D matrix denotes the lack of direct feedthrough from 

the inputs. The system state vector is therefore defined as x=[ X(t) S(t) C(t) X,. (t) ,, 

T 
the input vector is defined as u. =[ D(t) til(t) ] 

and the output vector is defined as 

S(t) C(t) 
T. 

Table 6.12 Control Parameters for State Dependent Nonlinear Control of WWTP 

Parameters SD-GPC 

T, 1 

Q [11/40210/72) 

A [2/0.08252 5/912) 

H,, 2 

Hp 4 

Table 6.13 'Treatment Plant System Constants 

173 



Constant Meaning Value (unit) 

Ko Constant 0.5 

K8 Affinity constant 100(mg/1) 

KC Saturation constant 2(mg/1) 

Pmax Maximum specific growth rate 0.15(h-1) 

Si. Influent substrate 200(mg/1) 

Cm Influent dissolved oxygen 0.5(mg/1) 

Y Yield coefficient 0.65 

r Ratio of recycled flow to influent 0.6 (-) 

,Q Ratio of waste-flow to influent 0.2 (-) 

Available measurements within the wastewater treatment industry are often both in- 

sufficient, as detailed in Chapter 3, but also, even if available, can be of poor quality, with 

corruption due to noise and the possibility of sensor failure. Several state variables, which 

cannot be measured by direct method because there is no reliable instrumentation avail- 

able, will require the use of mathematical models within "software sensors". In this case, a 
Kalman filter as demonstrated in 0' Brien et al [9] is utilised. In the case study shown, the 

online measurement of biomass X, recycled biomass X,. and substrate concentrations at the 

plant effluent, S are assumed not to be available. Sensor measurements for the dissolved 

oxygen, C, are assumed to be corrupted with noise. The extended Kalman filter uses the 

linearisation of state and observation equations around the currently estimated plant oper- 

ating states to estimate the current state without noise corruption. In order to facilitate 

the application of SDC nonlinear control, the assumption is made that the kinetics of this 

model are constant. This is usually not the case in a real process, however the lack of 
kinetic modelling is a common problem in wastewater applications. Research by Benazzi 

et al. [13] has shown a level of parameter estimation for this process with the use of all 

extended Kalman filter. 

The nonlinear predictive control algorithm described by the state space equations and 

controller paramaters above is applied to an activated sludge wastewater treatment plant. 
The control objective of this case study is to track setpoint changes of dissolved oxygen, C, 
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and substrate, S at the treatment plant effluent. The controller configuration contains two 

control actions, those of dilution rate and air flow rate into the plant. The above model 

is discretised, via a Tustin integration of sample time lh. The MIMO nonlinear controller 

structure produced by the SDC approach is chosen with the objective of tracking setpoint 

changes for dissolved oxygen and substrate levels simultaneously, in the presence of process 

noise. 

The choice of controller parameters is made through trial and error, via simulation tests 

of system performance, with the aim of minimisation of the settling time of the controlled 

process to a zero steady state error, and avoidance of excessive actuator control actions. The 

nonlinear discrete state space representation of the process leads to an on-line formulation 

of the NMPC controllers at each sampling time, where the discretisation of the nonlinear 

SDC model is performed via a Tustin integration, with a sample time of lh. 
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Figure 6-20: Closed Loop Actuator Response for Airflow Rate and Dilution Rate in the 
WWTP 

The closed loop response of the process and actuators for a simulated time period of 

100hours is demonstrated by 6-19 and 6-20 above. The linear time varying model produced 

results in the use of a linear quadratic programming algorithm in the cost function optimi- 

sation, according to the control weightings specified in Table 6.12. In steady state, there 

exists a negligible offset from the desired setpoint value, that is, there is effectively zero 

steady state error for the control response. The initial response in the nonlinear control 

demonstrates an oscillation at time 0-'20h. The initial state estimation error in the ex- 

tended Kalman filter introduces oscillations, due to a mismatch in initial conditions between 

estimator and plant. The setpoint changes must begin a period of time after this point for 

the estimated states to reach the true value. 
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Figure 6-21: Linear MPC versus Nonlinear MPC for a Wastewater 'Reatment Plant Appli- 

cation 

The application of model based methods in proposing a nonlinear control scheme for a 

wastewater treatment plant requires the availability of an accurate nonlinear process model. 

In the presence of such a model, state dependent modelling techniques can allow a nonlinear 

control model to be developed. The model obtained has a linear time varying model struc- 

ture, allowing the prediction of future behaviour with sufficient accuracy to be used in the 

calculation of appropriate control actions. The traditional approach for model predictive 

control is the linearisation of the considered process. For the reasons of comparison, the 

demonstration of the linear predictive control response is as shown in 6-21, without the use 

of the constant disturbance model traditionally used to compensate for the modelling error. 

The linear approach to predictive control (without mismatch compensation) is appropriate 
for small operating ranges in the vicinity of the operating point at which linearisation was 
implemented. However, the nonlinear model approach can handle the dynamics involved in 

the full operating range of the process. The step response above demonstrates the limited 

valid region of operation of the linear GPC, in a small deviation from the steady state 
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operating point. The linear predictive controller is unable to follow the setpoint change for 

the dissolved oxygen concentration, whilst the nonlinear method allows for the elimination 

of steady state offset throughout the nonlinear range. 

6.7.2 Urban Wastewater System Control 

This section focusses upon the application of nonlinear state dependent coefficient con- 
trol to downstream dissolved oxygen and BOD regulation in a portion of a receiving water. 

The control is accomplished by means of manipulation of the treatment plant effluent, aim- 

ing to compensate for variations within the receiving waters via modification of discharges 

from the treatment plant. The approach above was extended to include control of the urban 

wastewater system according to the diagram below. The river sections were modelled as 

CSTR, each contained in a state dependent state space description. The model considered 

one river stretch prior to the addition of the treatment plant effluent, and one river stretch 

subsequent to the mixing. The upriver dynamics and the effects of the effluent from the 

treatment plant were combined via a weighted sum of the concentrations of each flow. 

The two original controlled variables in the treatment plant were those of the substrate 

and of the dissolved oxygen concentration in the effluent. The substrate however is not 

considered within the CSTR, river model, instead the related BOD concentrations are de- 

scribed, and so the BOD levels in the river are chosen as an alternative controlled variable. 

The state vectors at the chosen points upriver and downriver are assumed to be known, 

in addition to the treatment plant influent flow rate. In the case study presented here, 

the dependance of BOD upon dilution rate (via the substrate process) is exploited for the 

purposes of control. 

The full state dependent representation of the above can be seen as detailed in Chapter 

4, in addition to the output matrices as defined by: 

c(X, u)= 
00000000010o 
000000 000010 
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1=4(x)x+B, (u)u 

y=q(x)x+4(u)u 

a, c, 

=A2(x)x+B2(u)u ' ýQý k=A, (x)x+B, (u)u 
U2 10 

y=CZ(x)x+DZ(u)u Q y=C, (x)x+D, (u)u y 

Qz, Cz 

Figure 6-22: State dependent architecture for the Urban Waastewater System 

00000000 D(x, u) = 
00000000 

6.7.3 Application 

(6.11) 

The important control objective within this scaled system is the control of the dissolved 

oxygen level in the receiving waters, whilst the second objective is that of BOD levels at the 

same point. The system as defined above considers the dynamics of the river in two parts: 

a partial upriver reach consisting of one CSTR model, and similarly for a point downriver. 

The treatment plant is as considered in the previous application, with the inclusion of a 

varying treatment plant influent rate. The controller is designed as in the previous section 

and applied to the urban wastewater system as described in Chapter 4, and the following 

controller parameters are chosen as shown in Table 6.14. Additionally, the urban wastewater 

system constants are as shown in Appendix A. 

Table 6.14 Controller Parameters for State Dependent Nonlinear Control of UWS 
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Parameters SD-GPC 

T, 1 

Q [1 1) 

A [2/0.08252 5/9121 

H. 2 

Hp 4 

In demonstrating the extension of the above treatment plant control to the urban waste- 

water system, setpoint tracking for varying step changes in dissolved oxygen and 13ODs, 2, trº 

in the river is shown in the Figure below, 6-23. The demonstrated control performance, 

whilst although demonstrating the ability of the controller to account for step changes, is 

not realistic as such control of the system is only possible at high flows. This is due to the 

magnitude of the river flow 18,000m3/h, in comparison to the steady state influent flow to 

the treatment plant of 373.72m3/h which, due to the effects of mixing with the receiving 

waters, has only a low magnitude effect (if any) upon the receiving waters. For the purposes 

of demonstration of setpoint tracking, the treatment plant influent flow is set equal to that 

of the receiving waters. However, considering that the objective of the control scheme is 

the reduction of the effects of disturbance events (for example here, high flow events), it is 

therefore logical that the control performance be demonstrated during these periods. 

Upon inspection, it can be seen that the dissolved oxygen concentration in the river 

varies diurnally. The causes of these variations are defined to be primarily the processes of 

photosynthesis and aerobic respiration, as given by equations 4.15 in Chapter 4. The pho- 

tosynthesis process is defined as the production of free oxygen in the presence of sunlight, 

thus resulting in an increase in dissolved oxygen during the daylight hours. The respiration 

process for algae and plants consumes oxygen, thus causing a decrease in dissolved oxygen, 

and releasing carbon dioxide during the night. The oscillation present in the dissolved oxy- 

gen response for nonlinear predictive control therefore can be seen to be a result of diurnal 

dissolved oxygen variations within the receiving waters. A typical diurnal cycle for dissolved 

oxygen would be sinusoidal in nature, with the minimum and maximum concentrations oc- 

curing early morning and late day respectively. In the case of excessive algae growth, there 

would occur an increase in the diurnal variation, however the case considered in this section 
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is that of typical dissolved oxygen diurnal variations of a river, occuring within environ- 

mental safety margins. It is clear that the dissolved oxygen responds to step changes in the 

setpoint, the BODr concentration indicates a similar ability in sctpoint tracking. 
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Figure 6-23: State Dependent Control of Dissolved Oxygen and BODE behaviour in receiv- 
ing waters of UWS for setpoint tracking 

The primary control objective in this case was the rejection of disturbances caused by 

a high flow treatment plant influent, and this was implemented for the dissolved oxygen 

concentration in the receiving waters, C2, i,,, and slowly biodegradable DOD, DODs, 2,1. 
The controller configuration contains the two original control actions for the treatment 

plant, those of dilution rate and air flow rate into the plant. The high flow event occurs at a 

time of 30 hours, with a duration of 3 hours, and an intensity of 15 mm/h, with an oxygen 

depletion in the receiving waters of up to 7mg/1. For comparison purposes, the control of 

the same system with the use of the SISO approach of the FGS scheme as demonstrated in 
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IFAC is shown. It is clear from Figure 6-24 that the air flow rate changes implemented by 

the NLGPC scheme compensate for the dissolved oxygen depletion in the receiving waters, 

whilst a considerable decrease in the levels of BOD disturbance in the river is also shown. 

The complete rejection of disturbances shown in this case in dissolved oxygen is unlikely, 

particularly given the constraints upon any possible compensatory action that would take 

place within the treatment plant. Additionally, the difference, in practise, in the time scales 

of the dissolved oxygen and BOD processes would also impact upon the performance of 

the predictive control scheme. Steffens et al [169] demonstrated the characterisation of 

the processes of an activated sludge process according to time scales. Fast system states, 

of time constants of the order of 1-10 minutes, included dissolved oxygen and ammonia, 

medium system states were defined as nitrate and soluble inerts, whilst the slower system 

states included autotrophic and heterotrophic biomass. The aim of the performances shown 
below however is to indicate the need for multivariable control within the urban wastewater 

system: the MIMO control of dissolved oxygen and BOD allows better disturbance rejection 

than the SISO control scheme for dissolved oxygen only. 

6.7.4 ASM2d State Dependent Model 

The full influent vector is considered in this control application, although realistically 

the characteristics of the influent will not be fully known. It can be seen therefore that the 

assumption must be made that measurements of the influent are available. In reality the 

following components are measurable online: influent flow Q, nitrate So 3, ammonia Snh4, 

dissolved oxygen So, phosphorous Sp04. Respirometer measurements of readily biodegrad- 

able substrate and slowly biodegradable substrate are in some situations available every 

30mins. The remainder would require advanced estimation methods, such as the extended 

Kalman filter demonstrated for the ASM1 model, for example [13] demonstrated active 

heterotrophic and autotrophic biomass ( demonstrated to be valid for a limited period of 

a fortnight) and estimation via FFT of soluble and particulate biodegradable organic ni- 

trogen. It is assumed that these estimates/measurements would be available in this case. 

The control handles available within the model of [31] are those of aeration and chemical 

dosage. Further manipulated variables possible for wastewater treatment plants include re- 

turn sludge flow rate in the control of effluent suspended solids, nitrate recycle and carbon 
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Figure 6-24: State Dependent Control versus Fuzzy Gain-Scheduled Control of Dissolved 
Oxygen and BODR behaviour in receiving waters of UWS for disturbance rejection 

addition for N removal. Other assumptions in this control application are considered to be: 

9 The kinetic parameters of the ASM2d processes within the tank are assumed to he 

fixed, although in practice these could vary. 

9 The realistic assumption is made that the controlled outputs are measurable. 

The identifiability of the ASM2d parameters is a current focus of research, the calibra- 
tion of the ASM2d model is hampered by the overparametcrisation of the model with respect 
to the data available for calibration. It is therefore possible that the identified parameters 

are not unique, and in response to this research has been focussed upon the development of 

systematic methods for parameter identification (Tapia et al. [175]). Whilst the dissolved 

oxygen process, as stated in section 6.7.3, has a short time constant, the slower process 

associated with phosphorous precipitation is of the magnitude of hours. The issue of opti- 
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misation of control for an ASM2d based wastewater treatment plant process with multiple 

time scales was demonstrated in the work of Rutkowski et al [142]. 

In the application of nonlinear generalised predictive control to the ASM2d reaction 

tank, the state dependent model as defined in Chapter 4 is considered. The ASM2d state 

dependent model considers the following definition of the system variables: 

9 there exist two manipulated variables: air flow rate and addition of ferric chloride 
(FeCl3). 

" The above variables manipulate the value of two controlled variables of the tank 

effluent: So (dissolved oxygen) and SP04 (phosphate). 

9 The measured disturbances are the remaining influent concentrations into the aerobic 

tank. 

The method by which the Ferric Chloride FeCl3 affects the phosphate concentrations 
Sp04 is detailed by the following expressions, as detailed in [31]. The reactions of the 

chemical Ferric Chloride added to the water, the Fe+3 ions reacting with the OH' present, 

to become Ferric Hydroxide Fe(OH)s, the component considered within the ASM2d model 

(denoted by the term MeOH, where Me is defined as the generic metal term). 

-º Fe(OH)3 + 3H+ + 3C1 FeCl3 + H2O 1 

The general representation of metal hydroxide reaction with a phosphate, producing a 

metal phosphate MeP 

Al eOH + P04 i--º MeP 

which in this case is seen to be as follows 

Fe+3 + HHPO4 3-" ý--º FCPO4 + nil+ 

where Fe+3 is dissociated according to the equation Fe(OH)3 i; Fe+3 + OH-. The 

concentrations XM, p and XAIeott are modelled within the ASM2d process. Since ASM2d 
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denotes the chemical reagent as Fe(OH)3, the chemical dosage of FcC13 as utilised in [311 

is scaled according to the definition that lg of FCC13 produces 0.66 g of Fe(01I)3. For 

clarity, the simulation results produced in this thesis of the system response, to Setpoitnt 

changes therefore demonstrate the response of the Fe(OH)3 dosage directly. 

6.7.5 ASM2d NLGPC Application 

The state-of-the-art in terms of water treatment is currently changing with the intro- 

duction of new directives, development of the industry technology and the surge in interest 

and concern for environmental matters. Due to this, the control applied is also in transition, 

adapting to include the new constraints upon the requirements of the water industry. The 

control of dissolved oxygen processes is standard amongst the schemes in place within the 

water industry, whilst nitrification-denitrification and phosphorous removal are acquiring a 

similarly common place. 

As with any biological process, the dynamics of the ASM2d aerobic process are intrinsi- 

cally nonlinear. With increased applications of process model identifiability [1751, and also 

research into the online estimation of plant kinetic parameters, it can be concluded that the 

use of a nonlinear process model for control could eliminate (or at the least, compensate) for 

the lack of modelling accuracy involved in the linear approaches traditionally used. The aim 

in this section is the application of nonlinear control with a full nonlinear process model. 

Realistically, a selection of variables are available from respirometers and other sensors, and 

estimated with the use of nonlinear state estimation techniques. Additionally, for many 

nonlinear control applications, reduced or scaled models are utilised. As previously, the 

mass balance equations of the ASh22d process reactions can be transformed to a nonlinear 

state dependent coefficient model, taking into account the coupled biological reactions with 

the aerobic tank. 

The system considered is that of an aerobic activated sludge process within an anoxic- 

aerobic treatment plant structure, whose main control structures consist of variable aeration 

of the biological processes within aerobic tank and also the chemical precipitation of Phos- 

phorous. The objective of the control application is the therefore the setpoiut track-itºg for 

dissolved oxygen and concentrations of inorganic soluble phosphorous (S1) in the effluent 
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of the aerobic reactor within the treatment plant as defined by [31]. The advantages of phos- 

phorous removal by chemical precipitation can be the simpler process dynamics and the ease 

of operation, some wastewater compositions make the removal of phosphorous by biological 

methods difficult. However, the sludge resulting from the chemical precipitation method is 

difficult to handle and dispose of, and it is thus costly to store and treat this sludge. The 

added costs of chemical dosage can also be disadvantageous. There exists a third approach 

in the treatment of phosphorous: 'simultaneous precipitation', in which chemical and bi- 

ological methods both exist. However, Camilleri [311 states, in the choice of modelling of 

chemical phosphorous removal in the ASM2d/QUAL2E approach, that "the reduction of 

the soluble Phosphorus is very important because, in absence of other methodologies, this 

the only way to keep the concentration of the total Phosphorus below the regulation limits 

without significantly decrease the flowrate entering the plant" (p. 309). Many regulatory 

bodies do not provide limits for Phosphorous levels, restricting the concentrations only in 

sensitive areas. Many plants operate with a fixed level of chemical additions, so that the 

need for efficient control of this process is therefore necessary, to allow minimisation of the 

chemical dosage applied during steady state conditions. 

Table 6.15 UWS control conditions during ASM2d control 
Variables Value 

Qw 150 

b 0.2 

Qin 5750 

T. 1/1440 

EI1lucntVariablc$ 

186 



The processes considered in the TPMP1 treatment plant model of [31] are not all of those 

considered in the ASM2d model developed by [63), the anaerobic processes are not included, 

and additionally the phosphorous processes, the reaction terms of lysis, aerobic/anoxic 

growth and storage of XPAO, Xpp and XpffA, are not considered due to the choice of 

simulated processes within the model, although the mass balances for the associated states 

are still calculated. The motivation behind this is stated by [31] as the introduction of the 

chemical removal of phosphorous (via the Fe(OH)3 process), eliminating the use of the 

biological removal process. 

Table 6.16 SDC control parameters for ASM2d control 
Parameters SD-GPC 

T8 1/1440 

Q [20/102 10] 

A [2/902 0.1/12000002] 

H. 5 

Hp 15 

An open loop observer is used, that is the influent values to the treatment plant are 

used in calculating the state variables with no reference to the values of the effluent of the 

aerobic reactor, to calculate the states according to the state dependent model and initial 

plant conditions at time t=0. In reality, this would be unsuitable, and a similar Kalman 

filter approach as that used in the control of the UWS above would be required. This is 

however outside the scope of the thesis. It is assumed therefore that the method used in the 

following application utilises accurate knowledge of plant behaviour. The time period of the 

simulation examples described is 6 days. Constraints exist upon the manipulated variables, 

with a saturation value for airflow, denoted by a maximum mass transfer coefficient lira of 
250 1/d, and a maximum dosage of Fe(0H)3 of 15x105 g/d 

0<1 (1. < 250 1/d 

0< Fc(OH)3 < 15x105 g/d 

(6.12) 
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Figure 6-26: ASM2d Step Setpoint Change Responses for Dissolved Oxygen and Inorganic 
Soluble Phosphorous 

In simulations of closed loop behaviour of this system under SDC control, it can be 

seen that both dissolved oxygen and phosphorous concentrations converged to, and reacted 

to changes in, the specified setpoints. This behaviour was produced during steady state 

operation of the plant, at a treatment plant influent flow of 5745in3/d. It may be observed 

that the constraints upon the dosage of Fe(OH)3 slow the response of Spp. 4 to changes 

in setpoint, the delay introduced in the reaction follows the period of between 12 and 2.1 

hours after step changes, for which the manipulated input constraints are in effect. The 

response of the dissolved oxygen process to setpoint changes, in comparison, has a settling 

time of approximately 1.2 hours. A sctpoint reduction for SPO4 of 0.4g/m3 results in a 

significant increase in the chemical dosage required, over 7 times the steady state dosaged 

required. Conversely, the control action required for manipulation of the dissolved oxygen 

concentration does reach the air flow constraints, but however has behaviour of transients 
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large increases in airflow rate during step changes in setpoint. The control responses and 

also the control actions performed indicates a level of coupling of the behaviour of the 

controlled variables. 
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Figure 6-27: ASM2d Actuator Responses for Airflow Rate and Fc(0I1)3 

The above responses make a large assumption, namely that the influent variables are 

both measurable and also available with little delay. Substrate (readily and slowly biode- 

grable) can be measured via respirometer, usually with a minimum delay of 30 minutes. 

Dissolved oxygen concentration measurements are available with little or no delay, whilst 

nitrate/nitrite levels are commonly measurable with a 15 minute delay. The use of Kalman 

filter estimation has been demonstrated for the ASM1 model, for example Benazzi et al. 

[13] detailed the application of Kalman filters in the estimation of soluble and particu- 

late biodegradable organic nitrogen, and partially in the case of estimation of active het- 

erotrophic and autotrophic biomass. The application of nonlinear state dependent control 

in the case of the ASM2d model produces many issues: 
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" The parameters of the plant are situation specific, and must be identified from plant 

data. However, the extended kalman filter is sufficient for estimation if these parame- 

ters are regularly and well calibrated, and was demonstrated for the ASM2d model 

by [21] 

" the kinetic parameters of the plant are not constant, as assumed in the application. 

Biological processes are time varying and nonlinear. This results in inaccuracies in the 

system model. This control approach relies heavily upon an accurate process model. 

" In the case of a known model, there still exists a lack of controllability of the system. 

" Many variables are not measured, and although some are estimatable from the system 

model, not all information about the system is available 

The advantages on the other hand in the application of the state dependent approach 

are the following 

" In the case of accurate nonlinear model, system dynamics and interactions can be 

accurately represented 

" The linear time varying modelling approach allows for more accurate predictions of 

future behaviour 

" The state space representation allows the traditional MPC technique to be extended 

to nonlinear systems 

" The model linearisation techniques commonly used are inaccurate outside of the linear 

operating range 

Considering the current regulatory climate of 'integrated' control, it may be assumed 

that future research may make way for identifiability of parameters for complex models 
(such as ASM2d), improvements in river water quality measurements and estimation, the 

provision of further control handles and indeed therefore the underlying issue of control- 
lability and observability. In that case, the introduction of nonlinear control such ats that 

based upon the state dependent state-space model representation of nonlinear processes, is 

possible. 
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6.8 Summary 

The aim of this chapter was the design and application of nonlinear control approaches 

for the urban wastewater system. An introduction to the area of urban wastewater treat- 

ment system control was given. The linear predictive control detailed in previous chapters 

was extended for the control of river quality via the use of gain-scheduling with fuzzy meth- 

ods and alternatively by the use of the Wiener modelling approach. In particular, this 

latter approach was applied in the case of dissolved oxygen control in the urban wastewater 

system. The linear dynamics of the dissolved oxygen process and its varying system gain 

over the nonlinear range was exploited in the production of a Wiener model of this process, 

allowing the development of a input dependent nonlinear state space model of the dissolved 

oxygen process to be developed. 

State dependent models developed in previous chapters for the purpose of nonlinear 

predictive control are applied in the control of dissolved oxygen concentrations and substrate 

levels within the WWTP, and dissolved oxygen and BOD levels in the urban wastewater 

system. The nonlinear state dependent control of the dissolved oxygen and inorganic soluble 

phosphorous processes within ASM2d reaction tank model utilised in the urban wastewater 

model was also demonstrated, via the manipulation of airflow rate and chemical dosage of 

Ferric Hydroxide. 
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Chapter 7 

Conclusions and Future Work 

7.1 Thesis Summary 

This thesis investigates the control techniques applicable for the maintenance of water 

quality in urban wastewater systems. Real-time control of a wastewater treatment system 

allows for optimisation of existing systems, technology and infrastructure, without the need 
for physical extension of the system or excessive financial investment. Traditionally, linear 

control techniques have proved popular and efficient in the control of wastewater treat- 

ment processes, concentrating on emission based strategies of effluent water quality control 

from treatment plants. Recently, the drive towards a more 'integrated' approach, focussed 

upon imission strategies, has motivated research into schemes whose primary objective is 

maintenance of river water quality. 

Whilst reliable research has been presented for the minimisation of CSO events and their 

subsequent effects upon river quality, an alternative approach considers the extension of the 

existing control structures within treatment plants to incorporate river quality objectives; 

the latter approach is utilised within this thesis. The choice of model and control scheme 
for a wastewater treatment process must take into account the limits and constraints of 

that industry: the choice of control must be practical and easy to implement, it must be 

applicable with the existing technology, actuators and sensors and it should not require 
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an excessive financial expenditure. It is proposed within this thesis that a model based 

predictive control approach is sufficient to fulfil the requirements of the wastewater industry. 

Chapter 2 introduced the concepts of the Linear Model Predictive Control technique 

used within this thesis, with a brief historical background of the control strategy. The tl, e- 

oretical background to the MPC algorithm structure for linear state space system models 

was introduced. The inclusion of disturbance rejection within the control method chosen 

is of signifance, both in compensation for plant-model mismatch and also in the rejection 

of system disturbances to the desired performance. In addition, the inclusion of feedfor- 

ward process knowledge in the handling of disturbances can be of advantage. To this end, 

the formulation of measured and unmeasured disturbance modelling for this control ap- 

proach was detailed. The constraint handling and subsequent structure of the cost function 

optimisation for the predictive control algorithm was described. 

The application of linear MPC to a wastewater treatment plant simulation case study 

was demonstrated within Chapter 3. An overview of the Benchmark Simulation Model 1 

(BSM1) was given, and the development of a MIM'IO control application was detailed for the 

nitrate/nitrite and dissolved oxygen processes. This required the subspace identification of 

linear models of both processes. The control strategies developed from these linear models 

were tested for two treatment plant influent conditions: in dry conditions and in storm 

conditions. It is shown that the simple PI control approach, combined with the advantages 

of the MPC strategy, allow for exploitation of the best aspects of both forms of control. The 

simplicity of the PI structure is maintained, and the case of design, implementation and 

use of the MPC strategy complements this existing control. The issues involved in control 
based within the wastewater treatment plant were discussed, in particular with regards to 

the effluent and receiving water quality requirements. Optimisation of plant performance, 

such as setpoint tracking for the chosen variables, is shown to be inadequate with respect 

to the effects upon receiving water quality. This motivated the development of an imission 

based control approach, considering the urban wastewater system. 

The introduction of the process models utilised in the description of the urban wastewa- 
ter system is shown in Chapter 4, with respect specifically to the representation of treatment 

plant and receiving water dynamics. In the particular case of nonlinear modelling for control 
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purposes, the state dependent formulation of several wastewater models is demonstrated: a 

wastewater treatment plant process model, a model of receiving water dynamics and sub- 

sequently the urban wastewater model based upon these approaches. The state dependent 

coefficient representation was also produced for the ASM2d process model of an aerobic 

reactor. These representations were additionally modified for the inclusion of a fecdforward 

model of measured variables 

Two distinct forms of nonlinear control were presented within Chapter 5 of this thesis. 

The initial control approaches demonstrated within this chapter extended the linear MPC 

algorithm to the nonlinear process, via gain-scheduled and Wiener model based techniques. 

The later control approach utilised an inherently nonlinear control model based upon a 
Linear Time Varying representation of the process, with the state dependent coefficient 

modelling technique. The fuzzy approach to gain scheduled MPC introduced within this 

chapter describes the nonlinear range with a finite set of linear models, to be chosen ap- 

propriate to the given operating condition by a fuzzy membership function. The Wiener 

model approach described considers the nonlinearities of the process as definable by two 

components: the dynamic linear process and the static nonlinear system gain. Thus at 

any given operating point, the process can be considered as defined by a linear represen- 

tation, and is seen as an approximate model of the nonlinear process over the operating 

range. In the presence of an existing process model, it may be chosen to include the full 

nonlinear process description within the model based control algorithm. The nonlinear con- 

trol approach based upon the SDC process representation retains the features of the linear 

predictive control algorithm whilst gaining the beneficial accuracy of the nonlinear process 

models. 

Chapter 6 demonstrates the application of the above control methodologies to the ur- 

ban wastewater system. Two implementations of fuzzy gain scheduled control were demon- 

strated in Chapter 6 in the maintenance of water quality: for the dissolved oxygen concen- 

tration and for the ammonium concentration in the receiving waters. The FGS control was 
demonstrated for disturbance rejection in the event of storm weather and combined sewer 

overflows. Analysis of the behaviour of these processes with respect to air flow rate changes 

within the treatment plant indicated the nonlinearity of the ammonia process. Addition- 
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ally however, this analysis demonstrated the linear nature of the dissolved oxygen response. 

This behaviour was thus exploited in a Wiener model description of the effect of air flow 

rate changes upon the dissolved oxygen levels in the receiving waters. The implementation 

of Wiener MPC was demonstrated, again in the case of a storm weather event. 

A comparison of the FGS and WMPC approaches with their linear counterpart, in 

addition to the traditional PI control approach was shown. The nonlinear generalised 

predictive control algorithm of Chapter 6 was utilised in three simulation case study control 

applications: the control of dissolved oxygen and substrate concentrations in a WWTP, 

the control of dissolved oxygen and BOD in an UWS and the control of dissolved oxygen 

and phosphorous levels in an aerobic activated sludge process. The control approaches 

detailed within Chapter 6 aim to demonstrate the necessity for and advantages in the use 

of advanced control in the automated operation of the wastewater treatment process. In 

particular, the use of control in the compensation for disturbances within the system due to 

high wastewater loads and storm weather events was considered, with respect to the control 

objectives proposed within Chapter 1. Advanced control in the current climate benefits the 

water industry in its efforts to comply with water quality standards. Stricter control will 

be a necessity in the event of more stringent environmental quality criterion. 

7.2 Future Work 

Possible future work can be summarised by the following points 

" Application of nonlinear generalised predictive control to the ASM2d/QUAL2E urban 

wastewater model, requiring the SDC model representation of the complex settler 

dynamics. The CSTR nature of the receiving waters allows for the relative case of 

transformation of the nonlinear river system model to the state dependent structure, 

thus providing the description of the nonlinear dynamics of the urban wastewater 

system within the state dependent format, allowing nonlinear control of several river 

water quality variables. 

9 The complexity of the settler dynamics limits the applicability of the SDC to the full 

complex urban wastewater model. Recent research in modelling of the settler has 
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further increased this complexity, with the most accurate clarifier effluent predictions 

from 2d and 3d hydrodynamic models. These models however may not be suited to 

online control applications due both to their complexity and also to the large amount 

of data necessary for their calibration. A formulation of the SDC for the settler model 

would be necessary to fully describe the complex behaviour of the process. 

" Expansion of nonlinear methods to include more controlled variables, such as state 

dependent control of BOD, Ammonia, Nitrate and Suspended Solids.. 

" Use of extended Kalman filter estimation methods to provide non-measured variables, 

with nonlinear GPC - demonstrating possible practical application of nonlinear con- 

trol. In the application of control using the SDC modelling approach for the urban 

wastewater system and also for the ASM2d treatment plant model, the assumption 

was made that full state information can be measured. In application, the system 

state may not be fully measured, and significantly only the controlled output and 

manipulated input measurements may be available. The application of state and pa- 

rameter estimation would be necessary for the practical application of this approach 

to the real nonlinear system. 

" Online identification, in conjunction with the above developed methods, would reduce 
the uncertainty involved in the practical implementation of control based upon process 

models. 

" Extension of nonlinear state dependent, to allow control to adapt to changing para- 

meters, and/or robust to system' uncertainties. 

" Use of sewer advanced techniques during and after rain events, such as prediction of 

future flow rates or influent loads, allowing further nonlinear control and/or extension 

to include emergency procedures such as stormtank emptying to avoid washout effects. 

" Inclusion of further objectives in the control optimisation, such as ecological quality 

standards, effluent quality requirements, chemical and carbon dosing, aeration energy 

and pumping energy costs 
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Appendix A 

UWS Constant Parameters 

Symbol Definition Value (units) 

VsedR BODR sedimentation rate 0.0416666 (m/h) 

VsedS BODS sedimentation rate 0.0083333 (m/h) 

kdR BODR decomposition rate 0.025 (1/h) 

kds BODS decomposition rate 0.00625 (1/h) 

fdR Dissolved fraction of BODR 1 (-) 

fds Dissolved fraction of BODS 1 (-) 

kd Temperature coefficient for BOD de-oxygenation 1.0,17(-) 

kDO BOD half-saturation constant 0.5 (mg02/1) 

ka Reaeration rate 0.0.103333 (1/li) 

a Weight factor for the photosynthetic activity 0.2 

SOD Sediment oxygen demand 0.10,1166666 g/(m2h) 
1 Length of reach 2000 (in) 

b Base width 21.1 (in) 

s Bank slope 1.5 (-) 

hm Flow dependent parameter 1 (m) 

Qm Maximum Flow before Flooding 239760(m 3/11) 

h,,, Minimum reach depth 1.58 (m) 

DOsat Dissolved Oxygen Saturation 9.6055 (-) 
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Initial Values of State Variables of Single River Reach 

Symbol Definition Value (units) 

Q Base flow 18000 (m3/h) 

DO Initial dissolved oxygen 9 (mg/1) 

BODR Initial BODR 0 (mg/1) 

BODE Initial RODS 0 (mg/1) 

218 



Appendix B 

ASM2D Processes 

Aerobic hydrolysis: 

1K So2 Xa Xh ý, pý = NKo2+So2Kx+Xa Xh' II 

Anoxic hydrolysis: 

p(2) = KHPNO3 Ko2 Sno3 Xs Xh ]ý, l! Ko2+So2 Kno3+Sno3 Kx+X aXh 
Anaerobic hydrolysis: 

K Ko2 Kno3 XsXh Xp(3) 
- NN' fe Ko2+So2 Kno3+Sno3 Kx+X aXhj! 

Growth on fermentable substrate, Sf: 
Sot f- Snh4 Spo4 Salk Xý !! p(4) - PNKo2+So2 Kam'+Sf gf+5'a nh4ý- n4 Kp+ po4 a+-S°-.; M 

Growth on fermentation product, Sa: 

_ 
So2 Sa Sa Snh4 S Salk 

P(5) - PH Ko2+So2 Kßä +a Knh4+ n4 Kp+Spo4 Ki, Jk+Sak 
"11 

Denitrification with fermentable substrates, Sf: 

6 Kot Sno3 Sf Snh4 NA Salk ýýI1 p() = µNýlno3 Ko Kno3+Sno3 +an a4+ n9 li ptSpo4 a+a 

Denitrification with fermentation products, Sa: 

7 Ko2 Sno3 Sa Sa Snh4 SrxA Salk 1ý -SjxA p( = µNýno3 Ko2+ o2 Kno3o3 A Sf +Sa n 4+ n h4 KF+ a+`I! 

Fermentation: 

8 Kot Kno3 S_ Salk X II - 4f e Ko2+So2 Kno3+Sno3 hKf e-4-SJ -KZTF+ 53M II 

Lysis : 

P(9) = bhXh 

Storage of Xpha : 

P(10) -q pha Kä. ß aah 
alk+S ak Kpp+X pp X pao 

XPAO 

Aerobic storage of Xpp : 
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p(ll) So2 Spo4 
ýS 

L1ý X ha Xo Kmnýx, 
-Xrr 

.A mo r^O = 9ppho2+ 
02 pslt -}Spo4 ALIT K+SALK pp+ pa pao Kt + K,,, 1" nx _ pp pao 

l 

Anoxic storage of Xpp : 

p(12) = p(ll) *n no3 
Ko2 Sno3 
Sot Kno3+Sno3 

Aerobic growth on Xpha: 

p(13) _ ýLPAý 
So2 Snh4 Spo4 Salk X ha X io 

02+ý n 4+ n4 p+Spod Kai + pp+ pia paoÄ1 
Anoxic growth on Xpha: 

p(14) = p(12) * ? 1no3 Ko2 Sno3 
Sot Kno3+ no3 

Lysis of Xpao: 

P(15) = bpaoXpaoKA 
LK+SALK 

Lysis of X pp: 

p(16) = bppXppK SALK 

ALK+SALK 

Lysis of Xpha: 
(1 SALK 

p117) = bphaXpha 
KALK+SALK 

Aerobic growth of autotrophic organisms: 

p(18ý = TAUT 
Sot Snh4 SPM Salk 

AAUT l Kot+So2 Knh4+Snh4 hp+ po4 Kalk+Salk 

Lysis 

p(19) = bAUTXAUT 

Precipitation of Phosphorous 

p(20) = kpreSpo4Xmeoh 

Redissolution of Phosphorous 
Salk 

1(21) _ ''redXmep 
alk+ 
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Appendix C 

A-mod Matrix 

Amod= 

o 0 -0.6 -0.6 0 0 0 
1 1 -1.6 0 -1.6 0 0 

0 0 0 -1.6 0 -1.6 0 

0.01 0.01 -0.022 -0.07 -0.022 -0.07 0.031 

0 0 0 0 -0.21 -0.21 0 

0 0 -0.04 -0.02 -0.001 -0.02 0.01 

0.001 0.001 -0.001 0.021 0.014 0.036 0.002 

-1 -1 0 0 0 0 0.9 

0 0 1 1 1 1 -1 
0 0 0 0 0 0 0 

-0.75 -0.75 0.9 0.9 0.9 0.9 -0.15 
0 0 0 0 0 0 0 

-18 0 0 0 

0 0 0 0 

0 0 0 0 

-4.21 0.031 0 0 

4.17 0 0 0 

-0.02 0.01 -1 1 

-0.6 0.002 0.0.18 -0.0.18 
0 0.9 0 0 

0 0 0 0 

1 -1 0 0 

0.9 -0.15 1.42 -1.42 
0 0 -3.15 3.45 
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Appendix D 

Abbreviations 

AR: Auto Regressive 

ARMA: Autoregressive Moving Average 

ARMAX: Auto Regressive Moving Average Exogenous 

ARX: Autoregressive with Exogenous Inputs 

ASM: Activated Sludge Model 

BOD: Biochemical Oxygen Demand 

BSM: Benchmark Simulation Model 

CSTR: Continuous Stirred Tank Reactor 

COD: Chemical Oxygen Demand 

CSO: Combined Sewer Overflow 

CWA: Clean Water Act 

DMC: Dynamic Matrix Control 

DO: Dissolved Oxygen 

EQ: Effluent Quality 

EQO/EQS: Environmental Quality Objectives/Standards 

EU: European Union 

FGS: Fuzzy Gain Scheduling 

GPC: Generalised Predictive Control 

GS: Gain Scheduling 

LTI: Linear Time Invariant 

LTV: Linear Time Varying 

222 



MBPC: Model Based Predictive Control 

MIMO: Multiple Input Multiple Output 

MPC: Model Predictive Control 

MPHC: Model Predictive Heuristic Control 

NH4: Ammonium plus Ammonia 

NLGPC: Nonlinear Generalised Predictive Control 

NMPC: Nonlinear Model Predictive Control 

PAO: Phosphorous Accumulating Organisms 

PI: Proportional Integral 

PID: Proportional Integral Derivative 

PLC: Programmable Logic Controller 

PRBS: Pseudo Random Binary Sequence 

RTC: Real Time Control 

SDC: State Dependent Coefficient 

SD: State Dependent 

SISO: Single Input Single Output 

UES: Uniform Emission Standard 

UWS: Urban Wastewater System 

WFD: Water Framework Directive 

WMPC: Wiener Model Predictive Control 

WWTP: Wastewater Treatment Plant 
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Appendix E 

List of Notation 

a, amplitude 

A,,,, 4, constant gain matrix 

A, B, C, D, State Space Matrices 

Bd, Dd, Disturbance Matrices 

b, ratio of waste flow to influent flow 

C, Dissolved Oxygen 

Cin, dissolved oxygen concentrations 
Cs, Maximum dissolved oxygen concentration 

D, dilution rate 
D, deoxygenation term 

d, Disturbance Vector 

F, Free Response Matrix 

F, 0 Input Constraints 

f, Free response vector 

P, g, Output Constraints 

H, Forced Response Matrix 

Hp, Prediction Horizon 

Hu, Control Horizon 

J, Cost Function 

KC, saturation constant 
Kj,, oxygen mass transfer function 
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Kp, Proportional Gain 

KS, affinity constant 

L, Observer Gain 

m, mean value 

lily, state dependent process matrix 

P, photosynthesis term 

P, p, Rate Constraints 

Q, Error Weighting 

Q, flow 

R, reaeration term 

r, ratio of recycled flow to influent flow 

S, Substrate 

SALK, Alkalinity. 

SED, sediment oxygen demand term 

SI, Soluble inert organic matter. 

Sin, influent substrate 
SNH, NH4 + N113 nitrogen. 

SNO, Nitrate and nitrite nitrogen. 
So, Oxygen. 

So, sa, t, dissolved oxygen saturation 

SND, Soluble biodegradable organic nitrogen. 
SS, Readily biodegradable substrate. 
t, time 

Td, derivative time constant 

Tdisc, discrete time step 

Ti, Integral time constant 

Ts, Sample Time 

U, Input Vector 

AU, Control Increment Vector 

W, aeration rate 
X, State Vector 

X, Augmented State Vector 
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X, Biomass 

Xb,, dr, River readily biodegradable concentration 

Xjs, River slowly biodegradable concentration 

XBODR, OO, steady state value for XBODR 

XBODS, oo, steady state value for XBODR 

XB, A, Active autotrophic biomass 

XB, H, Active heterotrophic biomass. 

Xd,,, River dissolved oxygen concentration 

XI , Particulate inert organic matter. 
XND, Particulate biodegradable organic nitrogen. 

Xp, Particulate products arising from biomass decay 

X,., Recycled Biomass 

XS, Slowly biodegradable substrate. 

Y, Predicted Output Vector 

Y, constant yield coefficient 

e, Tracking Error 

A, Control Increment Weighting 

rd, coefficient of the daylight measurement 

pj, process rate 

r=, reaction term 

p, biomass specific growth rate 

Amax, maximum specific growth rate 

vij, stoichiometric coefficients 
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in practice this gain function can be constructed of various forms. Cervantes et al. [32) 

demonstrated the use of a piecewise linear function. 

The Kalman filter utilised to estimate the system states (in addition to the unmeasured 

disturbances) assumes noise matrices giving the system the form: 

Xk+1 = Axk+Buk+wk (5.12) 

Yk = Ckxk+Dkuk+Zk 

where w and z are the noise vectors. The state space process model is updated at each 

sample instant, thus the gain of the Kalman filter L must also be again determined. The 

state estimator is thus used as a 'soft sensor' in the calculation of disturbances upon the 

system. The Kalman filter in this case is used as a state and process disturbance estimator, 

with gain Lk updated at each sample instant 

Xe, k+1 = AXe, k + Buk + Lk(yk - Ckxe, k - DkUk) (5.13) 

Ye, k = CkXe, k + DkUk 

The system model can be seen to be an LTI system, whose output v(klk) is transformed 

to y(klk) by a nonlinear function, so that at any given sample instant the model can be 

seen to be simply the algebraic product an LTI model and a system gain. The order of the 

LTI system can be chosen to be of any (practical) dimension, and together with the equally 

definable nonlinear function, can give the process model an arbitrary level of accuracy. The 

restrictions upon choice of LTI model depends on the level of accuracy required, the stability 

of the model and the time constraints upon the control optimisation and state estimation. 

Gomez et al. [54] demonstrated the ease of identification of a stable Wiener model, in 

comparison with a linear approach, concluding that in stability the Wiener model obtains a 

better performance, remaining stable for a wider range of model orders. Together with the 

improved predictions from a Wiener model, this illustrates the advantages of the Wiener 

representation based nonlinear model predictive control (ND'IPC). 

127 


