PREDICTIVE CONTROL OF URBAN
WASTEWATER SYSTEMS

Marie O’ Brien

Industrial Control Centre
Department of Electronic and Electrical Engineering

University of Strathclyde

A thesis submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

June 2006



Declaration of Authors Rights

The copyright of this thesis belongs to the author under the terms of United King-
dom Copyright Acts as qualified by University of Strathclyde Regulation 3.49. Due
acknowledgement must always be made of the use of any material contained in, or

derived from, this thesis.



Abstract

Within recent years, technological advances and stricter regulatory requirements
have seen the increased use of automation and instrumentation within the waste-

water treatment industry. As a result, advanced control strategies are required, to
fully exploit the potential of these complex systems in addressing water quality con-

cerns. Model based control strategics can be appropriate within the multivariable
constrained wastewater system. In particular, the inherent model based nature of
this approach can be valuable in the prediction of the treatment plant effluent quality
required over a considered time period, to meet water quality standards.

Multivariable linear predictive control is implemented for a benchmark treatment
plant model, demonstrating the constraint handling ability of the predictive control
structure. The limitations of an effluent-based control strategy in the maintenance

of river quality is discussed. A more global approach to wastewater control must be
considered in order to compensate against disturbances within the system. Tackling

this concern, the incorporation of receiving water quality objectives within the control
strategy is proposed. To this end, the application of linear MPC to the control of
dissolved oxygen concentrations in the receiving waters under storm conditions is

demonstrated.

The drawbacks involved in a linear model based approach within a nonlinear urban
wastewater system are considered. Several nonlinearities are present: the bioprocesses
involved are by definition nonlinear, and are affected by varying wastewater load

and characteristics. These can be the result of varying stormwater effects upon the
treatment plant or emergency overflows to receiving waters. This therefore motivates
the development of nonlinear strategies in the control of the wastewater processes.
The control of SISO nonlinear processes within the urban wastewater system, such

as dissolved oxygen, is demonstrated via the use of fuzzy gain-scheduled and Wiener
model based predictive control. Additionally, the use of existing nonlinear process
models in the control of wastewater processes is shown in the application of state

dependent model predictive control.
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Chapter 1

Introduction

In recent years the control and the treatment of wastewater systems has become increasingly
important. With the continuing increase in world population and rising health standards,

water has become a valuable commodity. Within the current climate of environmental con-
cern, the efficient performance of wastewater treatment systems is a signficant concern. The
safety of water, both for municipal use and also as regards its effect on the environment is
of growing interest to today’s population. Recent EU directives and international changes
In approach to environmental concerns signify the dynamic nature of this area of study.
The aim has now become that of decreasing the effect of humans and their lifestyles upon
water usable for human consumption and agricultural needs. Regulatory requirements for
the treatment of wastewater are becoming increasingly strict, requiring as a consequence
more efhicient wastewater treatment plant (WWTP) operation. The manipulation of bi-

ological processes is of particular relevance within this area. The gradual increase in the

usc of mathematical and data-based models of the wastewater process, in the design and

implementation of online process control, is a consequence of a gradual trend towards ad-

vanced monitoring and automation of treatment systems. Traditionally, automation has
concentrated upon the wastewater treatment system, without reference to the quality of
recciving waters. The urban wastewater treatment system, as considered within this thesis,

is described by three components: the sewer system, the treatment plant, and the receiving

waters, as shown in Figure 1-1. It is the application of control to the urban wastewater

system that is the main focus of this thesis.
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Treatment Plant
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Figure 1-1: Urban Wastewater System: Sewer Network, Wastewater Treatment Plant and

Receiving Waters

1.1 Historical Perspective

T'he Indus Valley Civilisation (present day Pakistan), which Hourished from 2600 to
1900 BC was said to have produced the first flush toilets, with a sophisticated sewage
system in the large city of Harappa [195], as shown in Figure 1-2. These sewer systems are
the earliest recorded occurrence of sewage transportation in this manner. This civilisation
was particularly advanced in several ways, with city planning (with a regular grid-like
approach) and houses containing rubbish chutes. Later again in 1700 B.C., it is recorded
that the Minoan Palace of Knossos (Crete) contained a total of four separate drainage
systems that emptied into large sewers constructed of stone [195]. A form of a flushing
“water closet”, with a wooden seat and a small reservoir of water was present, a version of
the Hlushing toilet also featured in Roman times. However, even in Ancient Egyptian times,
It 15 speculated that suspended solids were removed using sedimentation apparatus. The
sewer systems of the Roman empire were a feat of engineering of the time, small sections
of the ancient systems of 'Cloaca Maxima’ (literally translated as the 'Greatest Sewer’) on
the river Tiber still remain in use in the modern sewers of the region. This sewer system

appears to have originally been built both over and underground, and became entirely



beneath ground during expansion of the city of Rome, serving public toilets, baths and

other public buildings. It appears that private residences could not avail of this service,

Instead relying on ’cess-pits’.

Figure 1-2: Ancient Urban Drainage System in Harappa, Part of the Indus Civilisation.
(Image Source [195])

Interestingly, use of feedback in control can be traced to such early water devices as
that of Ktesibios’s (of Alexandria) water clock in the third century BC [196]. This device
required an unvarying flow of water, in order to accurately mark the flow of time. However
the flow of water from a container is not steady, flowing more slowly when the container
s less full, and Ktesibios determined a method to maintain the constant level. The same
method was used in the design of the flush toilet, wherein a float on water level operates
a valve, allowing water to the container when the float is dipped, and closing the valve
when sufficient water is present. The feedback is present in the form of the valve, the effect

of the valve in increasing the water level is fed back to the valve and ultimately leads to

its closure. The invention of the modern flush toilet, based upon a similar method, was a

13



significant event as a waste transportation device. Early forms of water control extended to
other areas, such as that of the 3rd century Funan, in southeast Asia (in modern Cambodia

and Vietnam), perfomed the control of annual flooding and coastal changes with a network

of waterworks and canals.

As with many inventions in the history of man, knowledge of these systems was lost
or forgotten, particularly after the fall of the Roman Empire. In medieval times, sewers
were mostly open waterways, which were gradually built over, thus forming covered sewer
systems. In the 16th century, Sir John Harington’s invention of the ” washout” closet of a
similar principle introduced the concept again with a flush valve and washdown approach,
and is claimed to be the origin of the common slang for a toilet, the ’John’. However, it would

take still another two centuries before Alexander Cumming would produce the version of

the toilet used today incorporating an ’S’ bend remaining filled with water between flushing,

avoiding the return of air from the sewer.

By the late 19th century the majority of cities had a rudimentary underground combined
sewer system. It is these systems and those built in addition to these existing systems that
are still in use today. Rainwater runoff can have considerable effect upon these systems,
due to the urbanisation of the surrounding areas, with roads and buildings covering most of
the area through which the rainwater would have naturally drained. This wastewater then
instead must be transported through the storm drains and thus through the sewer system.
This high flow can lead to large overflows, which spill to receiving waters such as rivers,

causing serious disturbances.

By the 1950’s, the treatments for wastewater that most resemble those used today were
introduced: biological treatment to tackle oxygen depletion, and, in the 1970’s, combined
biological-chemical treatment to reduce eutrophication of receiving waters (from phospho-
rus and nitrogen in wastewater). From then, the processes have been further developed,
and improved, in particular with the use of automation to improve efficiency and cffective-
ness of the treatment process. To this end, advanced control and process optimisation of

the wastewater treatment industry has become of increasing concern in recent years [20],

[77](144]. The focus of this thesis is the control of wastewater treatment systems, researching

14



advanced control strategies to compliment existing control structures and instrumentation.

1.2 Automatic Control in Wastewater Treatment

The wastewater treatment industry is becoming dependent upon automatic control sys-
tems to avoid economic, process and environmental costs associated with operator process
supervision and control. The general objective of any manipulation or control in urban
wastewater systems is to reduce the effect, domestic and industrial, of humans upon the
environment. This involves treating the water in order to maintain the water quality. The
disturbances to the system are those events which either by human error, or by extreme

weather, cause effects upon concentrations within the river. This in turn has a further efiect

downriver in the direction of water flow, causing possible fish deaths due to toxic events

and/or increase in algae growth, and thus a decrease in water quality.

Traditionally, the main occurrence of automatic control is in the manipulation of the
activated sludge process, [80][94]. The objectives of the control implemented are two-fold:
to reject or compensate for disturbances within the system (here this involves storm events
and combined sewer overflows), and also to maintain setpoint valucs whilst at system steady
state (for example, in normal weather conditions). In particular, the main control schemes
focus upon dissolved oxygen concentrations and nutrient removal within the treatment

plant, the key processes within the system. In the receiving waters, control to regulatory
standards requires the measurement and control of similar concentrations in the river, such
as dissolved oxygen or ammonia (plus ammonium) levels. Any disturbances within the

urban wastewater system, such as sudden high flow influent to the treatment plant or over-
flow from the sewer network to the river (both which may occur during adverse weather
conditions), will either cause a dip (for dissolved oxygen) or a peak (for ammonia) in concen-

tration in the river. Restrictions exist upon the application of existing control technology to

such a process, where there exist process model uncertainties, ill defined disturbances, non-
linear dynamics and a multivariate system. Considering the issue of tightening regulations
upon treatment plant effluents and receiving water quality, there exists a demand upon the

performance existing control structure. This thesis secks to explore possible methods of

exploiting the existing wastewater industry control and instrumentation in mecting these
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restrictions.

As stated, the regulations concerning the aforementioned concentrations, and others,
have become increasingly strict in recent years, and this will continue, in particular due

to recently introduced directives concerning water quality. The difficulty in meeting these
demands is additionally restricted by financial and operational concerns. Changes to the

physical structure of the wastewater treatment plant and the sewer network is both expen-

sive and time consuming. The effect of wastewater treatment upon the environment limits
the length of time for which the plant can viably be out of operation, untreated waste
can have a severe effect. Redesign or reanalysis of the biological and chemical treatment
processes can contribute an improvement to plant operation, however this biochemical re-

search approach is not considered within the scope of this thesis, but instead improved

process performance is considered by the introduction of advanced control techniques.

Additionally, the flexibility of the plant is an issue, where flexibility is defined as the
level of automation present, the operational range of the equipment and structure, ability
to exercise online continuous control (continuous here, as opposed to the on-off strategy)
and the ability of the plant to allow for changes to the structure of the control system. The

lack of an overall consistent approach to the automation of the water industry, which is
managed by local authorities for the most part, provides an obstacle in the progress and
improvement of the water process control. Safety margins can be necessary in wastewater
trcatment processes in order to allow for conditions such as disturbances caused by extreme

weather events. In meeting the WFD objectives, control measures designed for normal

conditions are inadequate in fulfilling the system objectives during storm events, and in
addition to a nonlinear control strategy, the inclusion of safety margins would allow for
the uncertainty of control models, disturbances, and variations in influent characteristics.
These safety regions exist in order to maintain sustainability, and allow a balance between

the safety issues and plant costs.

1.3 Contemporary Water Treatment Systems
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The activated sludge process is the most common of the water treatment processes, and
is defined in a general sense as a system in which wastewater is mixed with a concentrated
biomass known as activated sludge, which degrades pollutants and organic carbon within the
wastewater. The most popular model of this process Activated Sludge Model No.1 (ASM1)
presented by the IAWQ Task Group on Mathematical Modelling for Design and Operation

of Biological Wastewater Treatment Processes [61] is generally accepted as state-of-the art.
ASM1 was primarily developed for municipal activated sludge wastewater treatment plants

to describe the removal of organic carbon substances.. ASM1 has been extended to include

biological phosphorus processes, resulting in ASM2 and ASM2d ([62],[63]). Jeppsson et al.

[69] detail the applications of real-time control of treatment plants within Europe as follows:

e Dissolved Oxygen control: This type of control is the most common, implemented

via air flow control, typically with the use of proportional integral (PI) control to a

constant setpoint.

o Nitrate control: This commonly utilises the internal recirculation flow, however occa-

sionally an external carbon flow may be used.

e Sludge control: This can be manipulated via either the recycle sludge flow or the

waste flow, though in some cases this is merely done manually.

e Phosphate control: These levels are maintained through additions of chemicals for

precipitation.

e Ammonia control: Aeration is the most common form of ammonia (plus ammonium)

control.

Dissolved Oxygen control has been the most commonly implemented of all the control-
lable concentrations in wastewater trecatment. This is due to high running costs of energy
consumption during increased aeration rate, in controlling dissolved oxygen, the air flow
can be used more efficiently. Many variables in water quality, both in the effluent from the
treatment plant, and also in the river, depend on the dissolved oxygen level. Dissolved oxy-
gen control therefore is an essential control mechanism within the treatment plant, and may
be coupled with ammonia control, also dependent upon acration changes. Figure 1-3 below
shows the acration detention tanks of an activated sludge wastewater treatment plant, the

background shows the secondary clarifier.
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For the most part, advanced control has not been widely applied in wastewater treatment

systems. The most common approach to wastewater control is that of low level control,
implemented via Programmable Logic Controllers (PLC), for example as detailed in [78].

The most widely used control methods are proportional control, simple on-off control, even
merely manual control. Such widely used models as the ASM models, and common control
practices, within research, have not been used to any considerable extent within model based

control methods in the past. In recent years however, this has begun to change and many
control strategies are being improved by advanced control methods. Many applications have
involved constructing higher level controllers around existing low level control, resulting in

more efficient and effective wastewater treatment control than before.

There are many reasons why advanced control has not been introduced into widespread
use, detailed for example in [121]. Instrumentation has proved unreliable and expensive to
maintain in the past. There are limited control options within wastewater treatment, and
time and expense are required to develop many control approaches. Regulatory standards
were not strict enough, or stringently implemented, thus there was little impetus to expend

large amounts of money developing advanced control for the systems. The introduction

in recent years of more sophisticated measurement methods and on-line sensors has led
to a more realistic possibility of applying advanced control. Also the stricter regulations
currently in place, and the fines for breaking these, have meant that control can be used in

order to decrease these costs, thus proving its financial use. With this increase in control,
and therefore complexity, it is obvious that manual control is no longer an option. However,

operator knowledge is not lost if appropriate control methods are used, for example the
fuzzy control presented later in this thesis requires operator knowledge in the design of
fuzzy rules. A literature review of rescarch in this area is presented appropriately in the
following chapters: the research area of wastewater treatment is presented in Chapter 3, as
well as instrumentation details, the research area of urban wastewater modelling is discussed
in Chapter 4, whilst research into urban wastewater control is discussed in Chapter 5, with a
brief discussion of appropriate instrumentation. A discussion of the research into nonlinear

predictive control both in industry and in wastewater treatment in particular is discussed

in Chapter 7.
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Figure 1-3: Aerated Activated Sludge Detention Tanks in a Wastewater Treatment Plant:
Foreground: The Aerated Activated Sludge Tanks, Background The Secondary Clarifier.

1.4 Legislative Issues

In the past, regulatory attitudes both locally and internationally concentrated on the
human health aspects of water treatment rather than the environmental aspect. For ex-
ample, legislation from the Council of European Communities provided for the protection
of the quality of water intended for drinking [44] and [46], bathing [45] and fishing [46]
purposes. However, recently legislative efforts have been extended to promote the envi-
ronmental concerns for water quality, via two directives. The former concentrating on the

pollution of water by urban waste [42] and the latter concentrating on the pollution of water
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by nitrates from agricultural sources [43].

Significantly, a "Water Framework Directive’ (WFD) was introduced {49] and adopted,
with aim of extending protection to all waters, (including surface and ground water) in-
cluding urban wastewater river basin management, where emissions and discharges are to

be controlled by limits on emission values, and regulatory quality standards. An important
aspect of this directive is that the quality of waters should not deteriorate upon implemen-

tation of the measures taken in accordance with the WFD. In aim of achieving river basin
management, an increase in monitoring is encouraged. Importantly for the work considered
here in this paper, [178] demonstrated that in order to achieve the aims sct out by the

WFD, the wastewater system must be considered with an integrated approach.

1.5 Objectives

The research presented within this thesis aims to investigate the control of wastewater
trcatment systems. This will refer to both the traditionally controlled wastewater treatment
plant and also, the more recent focus of interest within the water industry, the receiving

water quality. Schutze [153| defines the control objectives for an urban wastewater system

under real time control as:

o Maximise the time in which river quality standards are adhered to.

e Minimise the extent by which these standards are exceeded.
* Maximise the system’s ability to recover.

» Maximise the system’s ability to reject disturbances.

e In a general sense, improve river water quality above minimum.

Overall, the control of the urban wastewater system is concentrated upon the maximi-
sation of the minimum dissolved oxygen concentration in the river, though it is possible to

demonstrate similar approaches to manipulation of treatment plant aeration, for control of

ammonia concentrations. Butler et al.[193] describe that the above control objectives may
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be based for example on concentrations of dissolved oxygen or ammonia, the aims of the

control concentrating on manipulating a system to, or avoiding deviation from, an ideal

state (also detailed in [12]). In particular, Butler and Schutze {23] define the performance

criteria used for the assessment of control scenarios to be the following

¢ The duration for which the dissolved oxygen (DO) concentration in the river is below

a critical threshold.

¢ The duration of NH4 (defined here as the concentration of Ammonium plus Ammonia)

concentration in the river 1s above a critical threshold.
¢ To be minimised - The maximum concentration of ammonium in the river.

¢ To be maximised - The minimum concentration of DO in the river.

In a practical sense, to fulfil these objectives the control approach adopted must include

the following:

e Disturbance handling: This can be defined as either unmeasured or measured distur-
bances. The above disturbances to water quality, as a result of high loads or combined

sewer overflows, can be considered as disturbances within the controlled process.

e Constraint handling: Regulatory restrictions upon water quality result in the need for

a constraint handling procedure within the adopted control strategy.

o Multivariable control: The implemented control approach should allow easily for ex-

tension to the multivariable case.

e Nonlinear control: In order to incorporate the water quality objectives within the con-

trol structure, the dynamics of the receiving waters must be considered. A nonlinear

strategy 1s thus necessary due to the nonlinear nature of this process.

o Applicability: The strategy chosen must take into account existing control structures,

such as the popularly applied PI/PID control approach.

Further issues that can be considered are technological constraints, the cost of operation

and the sustainability of the system, in addition to the multiple time scales present in the

plant internal dynamics.
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1.6 Proposed Control Methodology

The methodology implemented in this thesis can be divided into three sections: linear
control, pscudo-nonlinear control and nonlinear control. The linear control is that of a state

space approach to linear model based predictive control (MBPC). The pseudo nonlinear
control implemented later in the thesis again uses this linear approach, however with the
application of fuzzy rules, or Wiener modelling, to extend the control abilities to the non-

linear system. Finally the nonlinear predictive control is implemented using nonlinear state

dependent (SD) modelling techniques in order to fully describe the system, and thus pro-
duce more accurate control. The algorithms used in this thesis have been developed from
several sources. The linear predictive control algorithm used is that demonstrated by [85],
and was modified using the measured and unmeasured disturbance modelling approaches
and the constraint handling detailed in Maciejowski et al. [97]. This linear approach was
utilised in the gain-scheduled control detailed in Chapter 5, and was modified for use with

the nonlinear Wiener model. The state dependent coeflicient (SDC) modelling structure

used within the nonlinear GPC scheme was demonstrated in Dutka et al. [41] and [191].

An important issue in the design of a control scheme is the choice of model in the

representation of the process dynamics. There are several considerations to be taken into

account in this decision:

e The purpose of the model: Model choice can depend upon the application. For control

purposes, many variables may be ignored.

® The dynamics of the given process: a relatively linear process dynamic can be simply
represented by a linearised system model. In the case of nonlinear process dynamics,
the choice of model is situation specific. The dissolved oxygen process within the
treatment plant, and indeed the urban wastewater system, can be seen to be dependent
upon the air flow rate into the treatment plant, and relatively decoupled from other

variables. In this case, assumptions can be made in the nonlinear modelling of the

process.

e The complexity required: An ASM2d model can represent up to 12 processes, within

19 concentrations as state variables. The common application of automation is usu-
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ally limited to dissolved oxygen concentration and nutrient removal, thus allowing

reduction in the complexity and size of the process model for control purposcs.

e The accuracy required: Variability in treatment plant kinetic parameters between

plants, and issues in identification of biokinetic models [2] can result in considerable

modelling inaccuracy (typical activated sludge models assume temperature and kinetic

parameters to be constant).

A distinction is made here between the models required for control law design (control
models), and those produced for the investigation of process behaviour (simulation models).

The former may however be determined from the latter through analysis of the physical laws
of the system or through data driven methods. Both the ’urban wastewater system’ and

the 'treatment plant system’ as considered within this thesis are simulation models within

Matlab/Simulink, based upon complex mathematical formulations of process behaviour and

include the use of information based on physical systems. Scaled models such as that of

Nejjari et al. [114] and Graells and Katebi [56] utilised within the thesis allow for design of

more complex nonlinear control strategies for small-scale plant models.

1.7 Thesis Summary

The remainder of the thesis is organised in the manner presented below to detail the
urban wastewater system, the modelling and control approaches required, and the imple-

mentation of nonlinear predictive control to the process.

Chapter 2 Model Based Predictive Control:

A description of the linear predictive control algorithms utilised within the thesis is
given, introducing the theoretical aspects of predictive control, in addition to its histori-
cal background. The assumed model structure in the initial predictive control algorithms

detailed in this chapter is that of a linear time invariant (LTI) process model, identified

via subspace identification, with possible unmeasured or measured disturbance modelling.
Thus the structure for model based predictions of future behaviour is developed, with con-

trol optimisation in the presence of system constraints.
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Chapter 3 Linear Predictive Control of a Wastewater Plant
For applications of control of the treatment plant, commonly linear control methods
are sufficient. Traditionally, low level control such as PI has been popular. This chapter

seeks to describe the application of the above control methodology to the control of two
treatment plant processes, utilising the existing single loop control schemes. Multivariable

model predictive control for these processes is compared to the original control strategy. A

benchmark model is used in this implementation, to test the validity of the control designs
developed. The issues concerning treatment plant based control are discussed, in particular

with respect to effects upon receiving waters.

Chapter 4 Urban Wastewater Treatment Model

An introduction is given to urban water systems, discussing two urban wastewater
process models. The urban wastewater system is considered as composed of: a sewer
system, a wastewater treatment plant and a receiving waters. For control purposes, it
is necessary to formulate these nonlinear models in a form suitable for the model predic-

tive control structure. The transformation of these system models to the state dependent

representation is shown.

Chapter 5 Nonlinear Predictive Control

An historical and theoretical background to nonlincar predictive control is detailed

within this chapter. Nonlinear approaches to wastewater treatment control have tradi-

tionally been uncommon, however the extension of local and international regulations to

the receiving waters has motivated the development of nonlinear strategies for the control
of the wastewater process. Fuzzy gain-scheduled, Wiener model based and state dependent
control algorithms are described throughout this chapter, demonstrating the model based

control approaches for linear time invariant and linear time varying (LTV) model structures.

A state dependent nonlinear model is used in state estimation via the use of a Kalman filter.

Chapter 6 Nonlinear Predictive Control of Wastewater Systems

A comparison of control performance and discussion of the approaches is given with

the aim of demonstrating the design and application of nonlinear control for the urban

24



wastewater system. The linear predictive control is extended via fuzzy gain-scheduling, and
an approximate nonlinear modelling approach is demonstrated with the use of the Wiener
modelling structure. State dependent models developed in Chapter 4 for the purpose of
nonlincar predictive control are applied within the scaled urban wastewater system. The

nonlinear state dependent control of the ASM2d reaction tank model utilised in the urban

wastewater model is also described.

1.8 Contributions

The main contributions of the thesis can be summarised by the following

e Development of 'control models’ for wastewater treatment processes

- A novel approach to modelling for control purposcs in the wastewater system

was produced, in the transformation of several models to the state dependent
structure. The state dependent coefficient representation of the activated sludge

model no. 2d (ASM2d) of an acrobic reactor was produced, with the inclusion

of a feedforward model of measured variables.

- The state dependent coefficient representation of a reduced treatment plant
model was derived, and subsequently included in the state dependent description

of a related urban wastewater system (UWS) model. The control requirements

for the UWS resulted in the modification of the latter SDC representation for

the inclusion of a feedforward model.

- A multivariable linear model of dissolved oxygen and nitrate/nitrite dynamics

In the wastewater treatment plant was derived. SISO linear models of the dis-
solved oxygen and ammonia dynamics in the UWS was produced including the

description of the upstream measured disturbances.

- The Wiener model description of the dissolved oxygen process, considering
the linear dynamics of the wastewater treatment plant and the nonlinear effects
of the urban wastewater system, was produced to describe the effects of storm

conditions upon the dissolved oxygen process.
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e Demonstration of model based control strategics suitable for the wastewater treatment

industry:

- The proposal of model based control strategies suitable for the control of water

quality in the urban wastewater system was given with the use of commonly
available process measurements, such as dissolved oxygen and ammonia. In
particular, the knowledge of influent flow levels to the treatment plant was

considered as a method of prediction of water quality in the receiving waters.

- Multiple Input /Multiple Output (MIMO) model predictive control of dissolved

oxygen concentration and nitrate/nitrite within the treatment plant system un-

der varying treatment plant influents was demonstrated and discussed.

- Nonlinear control strategies for the urban wastewater system were developed

for: linear model predictive control (MPC), fuzzy gain-scheduled control, Wiener
model based predictive control (WMPC) and nonlinear predictive control based

on the state dependent coefficient representation.

- A comparison of various control strategies (Wiener MPC, Fuzzy gain-scheduled
control, Linear MPC and PID control) was demonstrated and discussed in the

case of dissolved oxygen control in the urban wastewater system.

o The development of model based predictive control algorithms for the above control

PUrposcs:

- The extension of the linear predictive control algorithms was developed for the

case of the constrained nonlinear model predictive control, based on the Wiener

model.

- The modification of the nonlinear predictive control algorithm based upon the

state dependent representation for feedforward compensation.
e The development of Matlab based software for model based predictive control for

- linear constrained/unconstrained predictive control, with measured and un-

measured disturbance models.

- nonlinear model predictive control, based upon the Wiener model.
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- nonlinear model predictive control, based upon the SDC linear time varying

model.

- Fuzzy gain-scheduled control based upon the linear MPC software.
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Chapter 2

Model Based Predictive Control

2.1 Introduction

The on-line dynamic optimisation of control actions, based on predicted plant dynamics
determined from an inherent process model, is defined as model based predictive control.
The basis of this approach (as shown in Figure 2-1 below) is the prediction of future be-
haviour of the plant, starting at current time k, over the period defined as the ’prediction
horizon’. The control action over a user-defined ’control horizon’ is chosen as an optimised
control sequence designed to produce the best predicted behaviour, according to the process
model, in order to reach the required trajectory. Predictive control is one of the most widely
used advanced forms of control in industry, particularly in the process industries. The pop-
ularity of this control approach results from several advantages offered by a model based

control strategy. The model based technique is appropriate to the industrial requirements of

nonlinear control within process boundaries for multivariable systems. Constraints are eas-
ily handled in the formulation of the optimisation sequence, and the model based strategy

allows for the control of several variables, without modifications of the control algorithm.

The most significant advantage of predictive control is that it provides, within its archi-
tecture, for the inclusion of process constraints and so allows for operation in a more efficient
manner. Constraint handling allows control to be implemented whilst avoiding operation
In more extreme process regions, thus avoiding wear and tear. Constraints can increase the

accuracy of the model being used, since actuator and plant limits can be incorporated into
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Figure 2-1: Prediction of Future Behaviour and Control Sequence from Time k

the model, an issue not considered in traditional structures such as proportional-integral

(PI) control.

A sufficiently accurate process model must be determined for a model based control
scheme, since the choice of process model is of most significance. State estimation, output
prediction and control optimisation inherently depend upon an accurate system model.
The feedback of process behaviour is obtained via the state estimation, which is based on
comparison of the process model behaviour with actual measured plant output, for the

given control input. The model based structure however allows for compensation in the

case of modelling discrepancies such as plant-model mismatch, via the use of unmeasured

disturbance modelling. Feedforward control, such as the inclusion of measured disturbances,
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1s also accommodated, through the model-based aspect of the control.

A particularly significant advantage for larger process models is ease of application for
multivariable control. In the case of multivariable control, the control methods used are the
same as those used in control of single variable processes; there are no controller architecture

changes required for the inclusion of multiple controlled processes. This, coupled with the
intuitive nature of the controller tuning, and the advantages shown above of constraint

handling and feedforward control, has resulted in the popularity of the model predictive

control approach.

2.2 MPC Historical Background

Predictive control itself came from several different sources independently. All of these

proposed structures had various similar elements: use of a system model in the design, the

use of receding horizons, and the calculation of the control signal based on the predicted
behaviour of the plant. Predictive control was designed originally for power plants and

petroleum refineries, but can be found in various other areas including the chemical industry,

food processing and the automotive/aerospace industry.

MPC was developed in earnest for industrial applications in the 1970s, but existed in its
basic form prior to this. Researchers had described many forms of open loop optimal control,
touching on the idea of receding horizon control, upon which MPC is based, for example the
research presented by Lee and Markus [89]. Various other academic contributions were made
in the area of receding horizon, internal model control and predicted plant behaviour, further
into the 1970s, by Kleinman [79], Kwon and Pearson [86], and Rouhani and Mehra [139].
However, since model predictive control was originally popular in industrial applications,
the significant developments were mostly produced in practice. A source of the modern
form of predictive control was developed by Richalet et al. [135] of the French company
Adersa, who proposed a form known as Model Predictive Heuristic Control (MPHC) in the
product IDCOM (Identification and Command). Another proposed predictive control at
that time was Dynamic Matrix Control (DMC) which originated with Cutler and Ramaker
[33]. The DMC algorithm, more so than MPHC, concentrated on constraint handling (one
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of the most important aspects of predictive control). The first patent for this form of control
was given to Sanchez [148] for a method under the name ” Adaptive Predictive Control”,

exploiting an internal model to implement adaptive control.

The generalised predictive control approach was introduced in the late 80s, demon-
strated by Clarke et al. ([28], [29]), which extended the process model structure to the use

of ARMAX (Auto Regressive Moving Average Exogenous), allowing greater generality in
the system model. A stable form of this algorithm was developed by Kouvaritakis et al. [82],

and a continuous time based on constrained state space models was produced by Demiri-
cioglu {36]. The discrete time state space format of this algorithm was presented by Ordys
and Clarke [124]. In 1995, Chow et al. [26] proposed a gain-scheduled predictive control.

Uncertainty involved in modelling of the wastewater process could require the application

of a robust control strategy. Traditional robust control theory requires that the controller

be linear, which is the case for the unconstrained predictive control approach. However,

research by Lee and Kouvaritakis [90] demonstrated robust control for systems with in-

put saturation, and Mayne and,Michalska [104] demonstrated robust predictive control for

nonlinear systems.

The various approaches to model predictive control have a generic structure, as demon-
strated in Figure 2-2 below. A state estimator allows the use of a plant knowledge. The
system inputs u and plant measurements y allows the user to arrive at a state estimate Z.
With this knowledge, the prediction algorithms detailed in the subsequent section allow the

approximation of future behaviour of the process. The optimiser therefore computes fu-

ture control moves according to this predicted behaviour such that the system approaches
the reference (or setpoint) defined by the user. This optimisation structure must allow
for ‘the control actions to take into account plant constraints. The different approaches
to predictive control, particularly commercially, may differ on some of the above details,
particularly the handling of control optimisation and system constraints. A most basic part
of the model based control approach is the use of a dynamic model in the control design.
The conventional model used for prediction and calculation of control actions is restricted
to represention of linear dynamics of the system. The structure demonstrated below how-

ever also allows the use of a representation of system nonlinearities in building accurate
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predictions of future behaviour.
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Figure 2-2: Architecture for Model Predictive Control with Measured Disturbances

The choice of model structure must have the characteristics defined by Clarke [27] as: a

sufficiently accurate representation of the essential dynamics of the plant, provide the free

and forced predictions of system behaviour for control use, in addition to allowing theoretical

predictions of system behaviour and must be intuitive for use by plant operators.

2.3 Linear Predictive Control

From physical laws, mathematical representations of the dynamics and interactions of
the process, suitable control methods can be found. The accuracy of these models is an
attractive aspect, allowing for stricter regulation of the process. Amongst the issues that

complex dynamic models such as these raise are controllability, observability and significant

Increases in control optimisation time. Alternatively then, suitable models may be identified
directly from the measured experimental data of the process. These data based models are

particularly useful where no physical model of the system is available.
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Whilst, in both the theoretical and practical scnse, the most common approach for
control purposes is the use of linear modelling methods, few truly linear processes occur
in nature. Despite this, linear model based control methods are significantly more popular
than their nonlinear counterparts. The plant in reality behaves in a nonlinear manner,

evolving in a fashion that can usually be described by the form of the equation:

aX ,
_d';' =f(A1U1t) (21)

where X is defined as the state vector, U is defined as the vector of inputs to the system,
with the system evolving in relation to time ¢. Linear MPC can be implemented to a nonlin-

ear system eflectively and has been demonstrated thoroughly in industrial applications. In
the particular area of wastewater control, a practical application of a linear MPC algorithm

was detailed by Sanchez et al. [145] for the control of dissolved oxygen concentrations in a
wastewater treatment plant. The nonlinear process may be simplified around its operating

equilibrium, simplifying to the popular state space form of a linear model shown.

2.3.1 Linear System Representation

The form most commonly used, for linear predictive control, is a linearised discrete time

model in the state space form. Thus the model variables are defined to be the input (or
indeed inputs) to the system u(k) € R, the state vector z(k) € R™ and the output vector

y(k) € R™. The standard state space representation is therefore simply as follows:

z(k+1) = Azx(k)+ Bu(k) (2.2)
y(k) Cz(k) + Du(k)

where the dimensions of the state space matrices are defined as A € R™", B € R,
C € R™" and D € R™. The form of model implemented in the work presented in this
thesis expresses the plant dynamics with an inherent integral effect. This is a convenient
form for predictive control, which itself computes the optimal value of the control increment
Au. There are a number of ways of including this integration within the system model. The

chosen method here however is that demonstrated in the work by [85], the augmentation of
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the state vector to include the vector of previous inputs as follows:

u(k) = u(k — 1) + Au(k) (2.3)

and so that the discrete linear model can be considered as

Az(k) + B(u(k - 1) + Au(k)) (2.4)
Cz(k)

z(k+ 1)
y(k)

I

Thus, the system can be equivalently defined in the following form:

x(k+1) = Ax(k)+ BAu(k) (2.5)
y(k) = Cx(k)
. z(k) .
where the new state vector is defined as x(k) = , whilst the state space
u(k - 1)

matrices of A, B and C are defined as

i- (48518 (2.6)
O I I
C = [C 0]

The process model equations of 2.6 are equivalent to the original state space model. The
above models consider only linearised plant behaviour. The common issue for linearised
models is a limited range of accuracy and validity, around the equilibrium point of the
process. Once the system moves from the range of this linear model, the control may
become ineffective. Several approaches may suffice in the application of linear MPC to a
considerably nonlinear process. The uncertainties involved in the linear modelling process
could be defined to be combined within a noise signal, a disturbance state defined as an
'unmeasured disturbance’. This disturbance state is implemented with the intention of

removing the steady state offset in the control actions, introduced by plant-model mismatch.
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It also introduces the ability of the MPC scheme to reject disturbances. This form of control

1s considered in Chapter 3 in the control of a wastewater trcatment process.

The linear representation can be insufficient in describing the dynamics of the nonlinear
process. Hence, some method of modelling and controlling a nonlinear system is nceded.

Sommer {163] states that many industrial processes have relatively lincar dynamic behav-
iour, though not all can be approximated by a linear system description. For this reason,

Sommer states that in some cases an approximated nonlinear representation can lead to
better results than a linear approximation. There exists a large array of methods in the

nonlinear modelling of a process, the descriptions detailed in Sommer {163] demonstrate
the use of Hammerstein, Volterra and bilinear modelling techniques, and conclude that

approximated nonlinear models decrease computation expense. The linear approach for

which predictive control is developed can be easily extended by the use of multiple lin-
ear approximations to the nonlinear process over the operating range. The linearisations
are determined off-line, thus retaining the efficiency and structure of the traditional linear
MPC, whilst gaining the advantages of a nonlinear control scheme. The ’gain-scheduled’
form of this approach results in a number of linear predictive controllers, scheduled for use
over the nonlinear range appropriate to their equilibrium linearisation point. The "Wiener’
form of this approach results in a single linear description of the system dynamics, varying

in magnitude with respect to the operating point. These two methods are demonstrated in

Chapter 6 in the control of a nonlinear urban wastewater system.

On-line successive linearisation of the process can lead to further more accurate system

models for control purposes. A similar method utilises the nonlinear process model, as-
sumed constant at that sample instant, updated with predicted behaviour of the system,
resulting in a time-varying model. This method retains the accuracy of the mathematical
physical system description, whilst also maintaining the structure of the linear predictive
control algorithm. This approach is detailed in Chapter 6 in the state dependent nonlinear

predictive control of a wastewater treatment plant model, and additionally in control of the

urban wastewater system.
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2.3.2 Linear Model Based Predictions

In order to solve the MPC algorithm, a method must be developed for the computation
of the predicted behaviour of the variables available for control. In the development of the

predictive aspect of the MPC, the initial assumption is that of no disturbances, and a fully

measured state vector. Later, the addition of disturbance modelling and state estimation
will be introduced. The prediction equation is that demonstrated by [85], developed through

iteration of the discrete linear form of the system equations in the state space. The state

vector at time j=1 is defined above as:

x(k + 1) = Ax(k) + BAu(k) (2.7)

Thus iterating for the next sample instant, j = 2:

x(k+2) = Ax(k+1)+ BAu(k+1)
A%y (k) + ABAu(k) + BAu(k + 1) (2.8)

Iterating as above for each time instant, the predicted state at time j is defined by the

following

j—1

x(k +7) = Alx(k) + ) A 1BAu(k + 1) (2.9)
=0

so that the predicted output is described by the subsequent equation for a j-step ahead

predictor:

-1
y(k +j) = CA'x(k) + )  CA™*BAu(k +1) (2.10)

1=0
The format of controller predictions used therefore in this thesis can be represented by

the equation for the predicted output vector

Y (k) = Fx(k) + HAU (k) (2.11)

where the model is iterated over a horizon known as the prediction horizon, H,. The
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T
output vector is defined as Y (k) = { y(k) y(k+1) ... ylk+H,—1) y(k+ Hp,) ] '

Since Au(k + j) = 0 for j > Hu, the control increment vector can therefore be defined as
T

AU(k) = [ Au(k) Au(k+1) ... Au(k+H,-1) ] . S0, in the equation above 2.11,

the matrix F is found to be of dimensions F € R™H»=" gnd of the form, constructed from

the output predictions:

o

F=C| : (2.12)
AHp
The matrix F is defined as the free response matrix, describing the predicted output if

the control input to the system were to remain constant in the future (i.e. Au = 0). That

is, the free response F' depends only upon the past. The matrix H is defined as the forced

response of the system to the effect of all future control increments, and is defined by the

prediction vector to be of dimensions H € R™»2! and of the form

iy

B oo 0
H=C|: L (2.13)

AHp-13 ... JfHp-Hu[}
where H, is defined as the control horizon, after which the control applied to the plant

is assumed constant, that is as above Au(k + j) = 0 for j > Hu.. The above structure

demonstrates that the predicted output vector for the system is a function of the states and

the changes in input.

2.3.3 Cost function and Optimisation

The control input of the system (i.e. the output of the controller) can be found by
minimising the cost function of the system. The optimal control input can be found by

determining the optimal value for Au, where the single input single output (SISO) form of

the cost function is
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J= ) lwlk+3) - ylk+Dgy + D [Buk + 1) (2.14)

where H,, is the lower cost horizon. The first term of this cost function calculates the

square of the future error in the setpoint tracking, which requires knowledge of the future

setpoint w. Typically, without knowledge of the setpoint trajectory in the future, the
assumption is made that the variable w remains constant over the prediction horizon. The

weighting factors A(j) and @Q(j) determine the importance of the two cost terms of control
increments and tracking error respectively and are defined for that time j. Normalisation

may be required to compute optimal control that is independent of input and output units,
this may be performed via the scaling of weighting factors. The above cost function can be

extended to the multivariable case by the following MIMO form, using vector notation.

J=W-=-Y)TQW - YY)+ AUT) AU (2.15)

where the vectors W, Y and AU are defined as W = [w(k + Hy)..w(k + Hp)]T, Y =
ly(k+ Hy)..y(k+ H,)|T and AU = [Au(k)....Au(k + Hy — 1)]7 respectively. The weighting
matrices ) and A are defined by

Q(H,) 0 0
0= (? Q(H‘f’H) ? (2.16)
0 0 Q(Hp)
A(0) 0 0
= 0 AW 0 (2.17)
0 0 - A(Hy)

The vector of the free response of the system is defined as f = Fz(k). The above cost
function equation can be rewritten with the substitution of the equation Y = f+ HAU to

the tracking error:

e=W-Y=W-f-HAU (2.18)
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so that the cost function J is written as

J = (W-=f-HAU)TQW - f - HAU) + AUT)\AU (2.19)
= (W-1)'QW - f) - HAUQ(W - f) -

HAU.QW - f) + HAUTQHAU + AUTAAU

AUT[HTQH + MAU - 2(W - fYTQHAU + (W - /\TQ(W - f)

ylelding a quadratic minimisation problem, for which a solution is:

Au=[H'QH + M|T'QHT(W - f) (2.20)

This minimisation problem can alternatively be performed online as a quadratic pro-
gramming function, particularly in the presence of constraints. The minimisation results
in a vector of future control increments, Au, of length H,, of which only the first element
1s needed. The only section of this vector being used in the control action applied is that

pertaining to the next step in the control horizon, so that the control applied to the plant

1S:

u(k) =u(k-1)+ K(W - f) (2.21)

where K = [I;, 0; - - - O))[HTQH + M|~1QHT, where I is the Izl identity matrix and O,

1S the [zl zero matrix.

2.3.4 System Modelling

A brief description of the modelling tools utilised is presented in the following section.
The nonlinear models used can be impractical for control purposes. However, within cer-
tain ranges and for particular processes linear models are sufficient. The main method of
identification utilised in this thesis is the approach of subspace identification, utilising data
of the excited process. The scope of this thesis concentrates predominantly on the struc-

ture of model used, rather than the identification method. For this reason, the subspace
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identification method is briefly described here. The identification of parameters and system
kinetics is not considered within the scope of the research presented, instead concentrating
on practical models for process control. The detailed application of subspace identifica-
tion to activated sludge systems was demonstrated by the research of Sotomayor et al.
([164],[165]). Various other process-specific identification methods such as the modelling of

the dissolved oxygen process via on-line updates of the oxygen mass transfer function have

been demonstrated, for example the rescarch presented by Suescun and Ayesa [171].

Subspace Identification

The aim of using subspace identification here is to construct linear multivariable models
In the state space form based on available input-output measurement data from the non-
linear model. The identification of multivariable systems is of benefit here as this allows
simultaneous control of several parameters (see for example the multivariable control of the
COST benchmark system, in Chapter 3), or for use in modelling measured disturbances,
as scen in Chapter 6 in the control of the urban wastewater network. Multivariable ap-

plications of subspace identification has been demonstrated for industrial applications, for

example in Bastogne et al. [10].

The subspace algorithm used in this thesis is that developed by VanOverschee et al.
[180], i.e. the SUBID algorithm within the Matlab platform. It is not the intention of this

section to document the history of identification techniques, or the background theory for

this algorithm, but to briefly explain the methodology involved in the use of the SUBID
identification algorithm. The subspace method has been used previously with predictive
control, for example Kadalia et al.[74| and Jia et al. [70] and was presented in the tuning
of PID algorithms for wastewater treatment by Sanchez et al. [146]. Dorsey and Lee [39)
demonstrated the use of the subspace identification methods in the online prediction of
process behaviour. Lindberg [94] applied subspace identification on an ASM-based treat-
ment plant model, for the multivariable control in a predenitrification plant (of the ammonia

and nitrate processes).
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The assumption is that with a sufficiently large set of data for the input and output
of the system, preferably excited by a set of random signals (in this case Pscudo Random
Binary Sequence (PRBS)), that the system should be describable by a state space form.
The discrete-time subspace identification methods are defined as "the approximation of
subspaces generated by the rows or columns of block-Hankel matrices of the input-output

data, to calculate a reliable discrete-time statespace model” [127]. The form of the system
identified by the subspace identification algorithm utilised is as shown below, where u(k)

and y(k) are the input and output of the system, where the pair (A,B) are controllable and
the pair (A,C) are observable

z(k + 1) Az(k) + Bu(k) + w(k) (2.22)
y(k) = Cz(k)+ Du(k) + v(k)

with the state space matrices required to be both observable and controllable (by the
tests shown in later sections). The signal w(k) here is unobserved noise on the states and
similarly for the output noise v(k). The order of the model is estimated by a Singular Value
Decomposition. The choice of input for excitation of the process is of most significance,
depending heavily upon the typical characteristics of the signal (magnitude, mean value,
discrete time step). These restrictions upon this input are the main source of the modelling
error between the linearised model and the nonlinear plant, as the inputs are tailored for a

particular operating state. The model is therefore valid only in the region of this operating
point, and deviations from this region results in inaccuracy. In the application of this

technique of identification, there exists a user decision of the tra,del-off between accuracy

and reduction of the order of process model, resulting in the possible multiple applications

of the algorithm and selection of best performance relevant to the process control.

The subspace identification approach is restricted in the case of this thesis to the mod-
elling of multivariable processcs for control purposes, consisting of model inputs of manip-
ulated variables, and model outputs of controlled variables. Unmeasured and unestimated
inputs are not considered, whilst uncontrolled processes are simply not modelled. Differ-

ences between the process and the modelled system are defined as ’plant-model mismatch’
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and are considered within the unmeasured disturbance handling. Any further input vari-
ables, such as measured disturbances, would be also be identified. The use of this approach
within the research presented in this thesis is motivated by the nced to reduce the com-

plexity of the model, exploiting the optimisation speed, simplicity, linear nature and other

advantages of a simplified model

2.4 Disturbance Modelling

The use of a disturbance model is split into two basic approaches: measured and un-
measured. The former describes the approach of including disturbances in a form of feed-

forward control scheme. This method assumes that the disturbance is both measurable
and has known dynamics, described by the system model. Clarke [27] defines the nced the

disturbance modelling within model based predictive control to allow the rejection of distur-

bances to system performance. The second of these disturbance models, the unmeasured,

1s considered in the next section.

2.4.1 Unmeasured Disturbance Model

The main advantage of unmeasured disturbance modelling is the provision to the controller
of the ability to reject disturbances to the process control. This consequently also allows the

controller to take into account differences between the linear model and the actual process,

reducing offset error in the control performance. In a practical sense, the concept of the
disturbance model implemented in this thesis is that of an unmeasured but unchanging

disturbance over the prediction horizon, estimated as the difference between the actual and

the estimated output of the system. Thus modelling discrepancies will be included within

this constant disturbance model.

The effect of disturbance on the controlled variables is removed by a change in the
process model structure and thus the steady state target of the controller. The estimated

disturbance state is then used with the original model states to predict outputs over the
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prediction horizon. This method of a constant output disturbance is a widely-used distur-
bance modelling approach in industry. A particular consequence of the disturbance model
15 the fact that the output vector can now no longer be assumed to be equal to the state
vector, that is y(k + j) # z(k + 7), even if the output matrix C is equal to the identity
matrix. This results in the requirement of an observer in the estimation of the state vector

T, and also in determining the magnitude of the disturbance state.

The traditional MPC approaches of DMC and ID-COM used in industry both implement
this form of disturbance handling, under the assumption of a noise free process. Davison
and Smith [35] demonstrated the stabilising effects of the constant disturbance model and

its benefits in reducing steady state offsets. Muske and Badgwell demonstrated a general

state-space disturbance model for input, outputs and states, and presented conditions for

which ofi-set free control can be guaranteed. Muske and Badgwell [109] demonstrated the

requirement that the total number of disturbance states be equal to the number of outputs.

In including a constant disturbance model, the process model must be augmented to
include the extra disturbance states. Thus a new augmented state vector must be defined,
based on the linear state space representation found by the identification above, where

dm (k) is the unmeasured disturbance state:

x(k+ 1) A O z(k) n B u(k) (2.23)

d(k + 1) oI || dr 9,

y(k + 1)

[c I] z((::; + Du(k)

where the state space matrices A, B, C and D are determined via the subspace iden-
tification methods above, and 2.23 may be then substituted into 2.5 above, allowing the
inclusion of the disturbance state within the predictive controller structure. In the use of
a constant disturbance model, only output disturbances are modelled, acting as a constant
bias upon the plant feedback. Whilst these disturbances remain constant over the sample

period, other forms of disturbance can include ramp and sinusoid models. However, in the

case of the fast dynamics of the controlled processes considered in this thesis, it can be seen
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that the constant disturbance model can be sufficient in the presence of slower effects, such

as those due to diurnal variations.

2.4.2 Measured Disturbance

This method of disturbance model allows for two aspects of model based control. The
former is the ability to model process dynamics produced by an input other than the

specified manipulated variables. The latter is the anticipation of system disturbances and
the compensation of such with suitable control actions. This can in some situations be more
effective than the feedback method of disturbance rejection, as the latter has an intrinsic

delay before the corrective action can be calculated. However, exact compensation for
the disturbance would theoretically require an exact model of the measured disturbance

transfer function, which in a practical sense is not possible to obtain. Thus the measured
disturbance model is used in combination with the unmeasured disturbance model approach
detailed above. This method allows the feed-forward control to anticipate the effect of the

measured disturbance, whilst the feedback control can be effective in the compensation of

model offsets and process disturbances.

In the work presented in this thesis, the modelling of measured disturbances was used in
the control of the urban wastewater system. This allows disturbances such as the downriver
effects of sewer-to-river overflows to be predicted to a certain extent, and if necessary,

negated by suitable control actions by the manipulated variable. A measured disturbance
model was used in this instance to model dynamics that were relevant to the accuracy of

the model, but which were not controlled inputs, such as the river dynamics. The model

format being used is therefore changed to include a measured disturbance.

z(k+1) = Az(k)+ Bu(k)+ Byd(k) (2.24)

y(k) = Cz(k) + Du(k) + Dyd(k)

where By is the modelled effects of disturbance and d(k) is measured disturbance. This

structure does not affect the identification procedure, the identified model consists of n
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inputs consisting of both manipulated inputs and measured disturbance inputs. It does

however result in the following changes to the controller design:

o The disturbance d(k) is assumed constant over the prediction horizon, constructing

the vector D(k),

T
ie. D(k) = [ d(k) d(k+1]k) - d(k+Hp ~ 1|k) ] , where d(k) = d(k + 1|k),
etcetera.

e The error equation changes to include the disturbance measurement, becoming € =

W — f - HAU — DyD(k), where D, is the disturbance matrix constructed as

C.Bd -Dd v oo .o 0
CADB CB R ¢

Dy=| ’ _ ’ | | _ (2.25)
CAHr-1B, CAHP-2B, ... CB, D,

This is implemented in process simulation by replicating the input over the specified
period, which in this case is the prediction horizon. Further disturbance models can rep-
resent a more accurate model of the disturbance behaviour by predicting the evolution of
this variable over the prediction horizon. Bordons and Cueli [16] demonstrated the appli-
cation of an auto-regressive (AR) model of the measured disturbance to a system, whilst

Bodson and Douglas [15] presented the handling of a sinusoidal process disturbance. The
constant disturbance model assumed here in the case of UWS control is sufficient, due to

the relatively slow dynamics of the river processes.

2.5 Constraint Handling

Alvarez and de Prada [4] stated that a simple method of implementing constraints on

control actions can be produced by computing the unconstrained values, and then clipping

the signal according to the constraints. However, whilst this is sufficient in the handling
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of control input saturations, this method did not allow for the modelling of output con-
straints, and may drive the system to limit cycles when in closed loop. The control method
produced by Richalet et al. [135] approaches constraint handling by a switching method,
whereby the controller, when the constraints have been violated, switches to an alternate
controller whose designed purpose is to move the system back within the constraints, and
then revert to original controller. Such constraint handling methods however lead to com-

plexities for multivariable systems. Currently, the popular approach of constraint handling
is the definition of the constraints within the control objective itself; formulated within

the cost function. When constraints are defined in the objective of a control scheme, the

control problem is no longer a simple quadratic minimisation and cannot be simplified to
the form of 2.20. Instead, the control objective is formulated as a conditional optimisation,

with constraints defined by a set of inequalities. By modelling the constraints as such, the

conditional optimisation results in the use of QP minimisation of the cost function of the

system, with respect to this set of inequalities. In a general definition, the problem can be

SCCI1 as.

Minimise J(t), subject to vipw < v(t + F|t) < Vhigh (2.26)

where the inequality v can be defined to contain the system constraints. For control

increment, saturation and output constraints, this can be defined as

Aumin < Au < Aupay (2.27)
Umin S U S Umax
Ymin S Y S Ymax

The above control increment, control action and output constraints can be defined in

the following vector format

[P —p] < 0 (2.28)
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F oy U(lk) < 0
T 9] Yik) < 0

The simplest constraint upon the process must be that upon control increments. The

constraints upon the control increments can be written as the following inequality, where

T
UR)=[ u(k) - u(k+H,—1) ]| as:

PAU(k) < p (2.29)

The saturation constraint upon the control action is perhaps the most commonly applied

in constrained control optimisation. The upper bound of the constraint inequalities upon
the control vector U(k) above can be defined as follows, where the upper bound remains

unchanged over the control horizon:

u(k) < Umax (2.30)
u(k+1) < uUmax
u(k + Hy, - 1) < Umax (2'31)
By substitution as defined in 2.3
u(k—1)+ Au(k) < Unax (2.32)
u(k— 1)+ Au(k) + Au(k+1) < Umax
ulk—1)+ Au(k)+...+Aulk+ H, - 1) < uUnax (2.33)

T
which when reformulated as follows, where AU (k) = [ Au(k) --- Au(k+ H,-1) ]

1s:
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AU (k)
AU(k) < Umax —u(k—1)

IN

(10 ... 0 tmmax — w(k — 1) (2.34)

| |
|

11 .- 0

(11 .. 1]AU®

IA

Umax — u(k — ]_) (2.35)

constructing on the left hand side of the inequality a lower triangular matrix of dimen-

sions RHutHu

S
— O
- O O

0
0
0 (2.36)
0
1

1 1

The above input constraints can be defined by the following equation therefore:

FAU(K) < —Fru(k — 1) + 9 (2.37)

T
where f = [ Fi ... Fu, ] and ¥ = [ Umax «-- Umax ] is of dimensions R/+*!,
The lower bounds of the input constraints are defined similarly, constructing the format of

equation 2.28. Finally, the output constraints as defined by the following

Ymax (2.38)

Ymin ..<_. y(k)

<
~~
2y
—
INA

Focussing upon the upper output bounds, this can be reformulated as follows

Fr(k)+ HAu(k) < Ymax (2.39)

which becomes
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HAu(k) < Ymax — Fz(k) . (2.40)

and thus can be rearranged as

FHAu(k) < g — TFz(k) (2.41)

in the format of equation 2.28. Using the above constraint inequalitics the following

problem can be minimised online via a quadratic programming minimisation

min }-E-)TLG + MTo
e 2

subject to 20 < w

where L = 2[HTQH + M) and M = 2(w — f)TH, and where 00 < w can be scen to

have the following form

F -Fiu(k-1)+ 9
TH |AU(k) < | -TFz(k) +g (2.42)
P p

Even in the case of a linear dynamic system, the presence of system constraints causes

nonlinearities to be present, for example in actuator saturation, deadzone or backlash. The
assumption of the ideal case that control action can be fully implemented upon the system
can lead to degradation of performance or even stability issues. Thus the constraint handling

within predictive control allows for prior knowledge of actuator nonlinearities to be included
within control optimisation, embedded within the controller cost function. The constraint
handling approach detailed in this case assumes an accurate model of the plant. For a
more robust implementation of a constrained predictive control strategy, methods such as
the dual-mode strategy have been shown to be effective. In this approach, feasible control
moves are used to guide the current state to a target set, which satisfies the constraints
within a finite period, after which a further control strategy can be used {92]. This can
result in conservative control, and thus, methods have been developed by [34] and [101] to

improve upon this through the introduction of a parameter dependent Lyapunov function.
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2.6 Observer Design

In most control cases, it is not possible to measure the full state vector from the system.
In subspace identification and other linearisation techniques, this is especially true, as the

states are not physical states, but are instead chosen in the linearisation process to represent

the model. The measured values in the system are represented by a combination of these

states, and therefore states cannot be measured directly. Thus, an observer (also known as
an estimator) must be used to calculate these states from the measured outputs and inputs
of the real process. The process model is used to construct this state estimator, including

disturbance estimation.

For both methods implemented within this thesis, pole-placement estimation and Kalman
filter estimation, the technique itself is similar, differing in the choice of estimator gain.
Pole-placement allows the user to define the observer gain (in placement of observer poles),
whilst conversely the choice of Kalman filter gain is algorithm-based. The form of observer
used is that based on a linear time invariant system model. Particularly, in the case of the

state estimation with the use of the nonlinear model, such as that demonstrated in Chapter
6 for Wiener model predictive control, the nonlinear process is assumed, at a given instant,

to be represented by a linear model.

The gain matrix of the observer, L , is chosen in order that the observer estimation error
converges to zero. The rate of this convergence is determined therefore by the placcment of
the observer poles in a trade-off between rate of convergence and the limit of computation
speed. The observer eigenvalues are commonly placed at a location so that the observer
poles are ten times faster than the slowest system pole. The obscrver gain for the lincar
system eigenvalues is defined by the matrices, L, and L, for the linearised system model
and the disturbance model, respectively, so that the gain matrix above is defined as L = (L,

Lg). The equation of the observer can thus be defined as follows
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k1) (A-LC) E (B = LD)u(k) + Ly(k) (2.43)
d(k +1) d(k)

2.7 Summary

This chapter introduced the theoretical aspects of predictive control utilised throughout

this thesis. An introduction to predictive control, in addition to its historical background,
was detailed. The linear system representation and the identification of the linear modecl

was shown, and thus the structure for model based predictions of future behaviour was

demonstrated. The optimisation of system behaviour via the use of a cost function was
described, and the use of inequality constraints within this cost function was given. The
modelling of measured and unmeasured disturbances was also described within this chapter,

with respect to the linear system model. The subsequent chapter details the application of

these algorithms to the COST 624 benchmark treatment plant model.
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Chapter 3

Linear Predictive Control of a

Wastewater Plant

3.1 Introduction to WWTP Control

Model based control can be of particular use in the control of a multivariable constrained
process such as that of wastewater treatment. Yuan et al. [192] state that the application
of the modecl predictive control approach is still in its early stages within the wastewater
treatment area. Whilst the mathematical model of plant behaviour developed in recent
decades is complex, the level of measurement and the number of control handles present do
not match this growth in complexity and only a few variables can be accurately measured.
Long term planning in wastewater treatment processes, simulating plant behaviour over

weeks, can use offline analysis of plant conditions. However, the control of dissolved oxy-

gen and nutrient concentrations such as nitrate/nitrite within the treatment plant requires

online measurements to be available.

Controllability of the wastewater treatment processes remains an issue. The restriction
upon model choice exists due to the need to match process models to available technology.
Typical identification procedures can utilise excitation of the system in the construction
of an appropriate model, but are constrained by the lack of online measurements, and
control handles by which to excite the process. A model based procedure requires access to

online measurements or estimations of required model information. The amount and the
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quality of data available dictates the level of modelling possible. For this reason, simplified
models determined by linear data-based identification techniques, whilst not suitable for

advanced state or parameter estimation, can be appropriate for the control objectives of

typical wastewater treatment processes.

There are several issues which motivate the application of automation within wastewater
treatment. Operation costs involve the manpower expenditure (particularly in plants lacking
automatic control), energy costs due to electricity and fuel usage in operation of pumps

and motors, tax costs due to regulatory fines, and additionally chemical or carbon dosing

costs (where present). The efficient operation of wastewater treatment plants is therefore
of significant concern, and application of advanced control techniques can bencfit plant

performance without a proportional increase in operation costs.

In order to compare differing control strategies efficiently and effectively, a benchmark
model is required and in particular a general non-situation specific model can allow control
designs to be effectively compared. This model should ideally produce the same results
across a number of simulation platforms. This model should also fulfil the practical require-
ment of efficient computation, though this is of decreasing significance as computation speed
of available technology increases. The COST 624/682 rescarch group compiled a gencral
benchmark model {30}, the Benchmark Simulation Model no. 1 (BSM1), which could be

used in the area of control simulation for optimisation of wastewater treatment, using the

ASM1 model developed by Henze et al. [61].

The benchmark is platform independent, in that it gives equivalent results for simulation
in Matlab/Simulink (this simualtion platform is used throughout this thesis) as it does in
other packages such as SIMBA [160] and STOAT [166].The accompanying basic control
schemes of single variable PI loops (for the Sp and Syp) have been shown to be robust for
more complex and more realistic hydrodynamics [67]. Control developments for the most
part concentrate on improvement in performance of these processes. Alex et al. [3] details

the use of the benchmark model for evaluating effectiveness of control strategics.
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3.1.1 WWTP Structure

The COST simulation benchmark provides the plant layout, the specific simulation
parameters to be used, any model parameters required and provides several different simu-
lation conditions for the plant influent characteristics (constant influent, dry weather, storm

weather). The wastewater treatment plant model is comprised of:

e five biological tanks in series (of total volume of approx 6000m?), each using the ASM1

model, the first two tanks are unaerated, and the other three tanks are acrated.

e first two tanks (1 & 2) have a volume of 1000m?, and are fully mixed, although

unaerated.

o tanks 3, 4 & 5 are of volume 1333m3, and aeration of these tanks is applied with a

maximum value for Ky 4 of 360 d~1.

e one non reactive secondary settler (also with a 6000m? volume),which is based on the
settling function by Takacs et al. [173], and has an area of 1500 m2, depth of 4 m2.

The settler consists of 10 subdivisions, and its feed point is located 2.2m from the

bottom of the settler.

o two recycles present internally, one nitrate/nitrite recycle from the 5 tank to the
first, at a rate of 55338 m>d~' and one sludge recycle (RAS) from the scttler to the
front end of the plant at a rate of 18446 m3d~-1.

e an outflow of waste activated sludge (WAS) from the secondary settler at a rate of

385 m3d~!.

An activated sludge process 1s one in which organic components within wastcwater are
removed through biological treatment with the use of organisms within the sludge. Within
the above treatment plant benchmark model, the activated sludge process model used is the
Activated Sludge Model no. 1 [ASM1] [61], although there are more recent models (ASM2,
ASM2d, ASM3) with further modelled processes. The model utilised represents the process
conditions which exist at a temperature of 15 degrees Celsius (one of the assumptions

required for parameter choices within the model). The ASM1 process model consists of

13 state variables, involving 8 processes. This model includes 3 of the most important
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Figure 3-1: BSM1 Structure: Five Biological Tanks: Tanks 1 & 2 Fully Mixed, Tanks 3, 4
& 5 Aerated, Followed by a Non Reactive Secondary Settler

processes in activated sludge: 1) degradation of carbonaceous material 2) nitrification 3)

denitrification. The later models (such as the ASM2 and ASM2d) included processes such as
phosphorus removal, and the ASM3 adjusted the model again to solve numecrical problems.
However, for the purposes of dissolved oxygen and nitrate/nitrite control presented, the

activated sludge model used is sufficient. In the COST 624 benchmark model as presented
in Figure 3-1, each individual tank is represented by an ASM1 model. The aim of the

settler is to separate the cleaned water from the biomass, and therefore it is assumed that
there is no reaction in the settler, i.e. there are no biological changes, only physical changes
and that the sediment settles in this tank due to the effect of gravity. The dynamics of
the settler within the COST 624 Benchmark model are defined according to the Takacs

approach [173].

The model being used, the COST benchmark, uses the ASM1 (activated sludge model
no. 1) by Henze et al.[61]. This model uses 13 state variables and 8 processes. The time

is given in days, the flowrate is given in m®/day and the concentrations are given in g/m3.

The state variables of the system are as follows

e Sg, Readily biodegradable substrate.
e Xp 1, Active heterotrophic biomass.
e Xp 4 Active autotrophic biomass.

e X, Slowly biodegradable substrate.

e X, Particulate inert organic matter.
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e Xp, Particulate products arising from biomass deccay.
e So, Oxyg<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>