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Abstract

As an emerging field, unmanned aerial vehicles (UAVs) feature from interdisciplinary

techniques in science, engineering and industrial sectors. The massive applications

span from remote sensing, precision agriculture, marine inspection, coast guarding,

environmental monitoring, natural resources monitoring, e.g. forest, land and river,

and disaster assessment, to smart city, intelligent transportation and logistics and

delivery.

With the fast growing demands from a wide range of application sectors, there is

always a bottleneck how to improve the efficiency and efficacy of UAV in operation.

Often, smart decision making is needed from the captured footages in a real-time

manner, yet this is severely affected by the poor image quality, ineffective object

detection and recognition models, and lack of robust and light models for supporting

the edge computing and real deployment.

In this thesis, several innovative works have been focused and developed to tackle

some of the above issues. First of all, considering the quality requirements of the

UAV images, various approaches and models have been proposed, yet they focus on

different aspects and produce inconsistent results. As such, the work in this thesis has

been categorised into denoising and dehazing focused, followed by comprehensive

evaluation in terms of both qualitative and quantitative assessment. These will provide

valuable insights and useful guidance to help the end user and research community.

For fast and effective object detection and recognition, deep learning based

models, especially the YOLO series, are popularly used. However, taking the

YOLOv7 as the baseline, the performance is very much affected by a few factors,

such as the low quality of the UAV images and the high-level of demanding of

resources, leading to unsatisfactory performance in accuracy and processing speed. As

a result, three major improvements, namely transformer, CIoULoss and the

GhostBottleneck module, are introduced in this work to improve feature extraction,

decision making in detection and recognition, and running efficiency. Comprehensive

experiments on both publicly available and self-collected datasets have validated the

efficiency and efficacy of the proposed algorithm.

In addition, to facilitate the real deployment such as edge computing scenarios,

embedded implementation of the key algorithm modules is introduced. These include

the creative implementation on the Xavier NX platform, in comparison to the standard
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workstation settings with the NVIDIA GPUs. As a result, it has demonstrated

promising results with improved performance in reduced resources consumption of

the CPU/GPU usage and enhanced frame rate of real-time processing to benefit the

real-time deployment with the uncompromised edge computing.

Through these innovative investigation and development, a better understanding

has been established on key challenges associated with UAV and Simultaneous

Localisation and Mapping (SLAM) based applications, and possible solutions are

presented.

Keywords: Unmanned aerial vehicles (UAV); Simultaneous Localisation and

Mapping (SLAM); denoising; dehazing; object detection; object recognition; deep

learning; YOLOv7; transformer; GhostBottleneck; scene matching; embedded

implementation; Xavier NX; edge computing.
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Chapter 1. Introduction

1.1 Background and Motivation

An unmanned aerial vehicles (UAV), or a drone, is an unmanned aircraft that operates

without a human pilot on board. UAVs can be powered by engines, featuring reusable,

capable of sustained flight using aerodynamic lift, and capable of carrying a payload.

UAVs can complete designated tasks either through remote control or autonomous

planning, as depicted in Fig. 1.1, which illustrates typical applications. Compared to

manned aircrafts, UAVs offer advantages such as compact size, lower cost, and the

ability to perform tasks in dangerous and complex environments. However, as the use

cases for drones continue to expand, they increasingly operate in complex and even

unknown environments. Therefore, intelligent environmental perception is of

paramount importance for the development of drone applications, representing a

significant issue and challenge in the field of drone application development [1, 2].

Currently, the commonly used environmental perception technologies primarily

include the Global Positioning System (GPS), inertial systems, and matching

navigation systems [3][4]. Among these, the GPS relies on multi-satellite positioning

technology to calculate its own position by processing received satellite signals.

However, it is susceptible to electromagnetic interference when communicating with

satellites and its positioning accuracy can degrade significantly due to signal

obstruction caused by terrain features, buildings, and other factors [5]. Inertial

navigation systems use self-attitude information as a navigation data source and

determine the drone's position through cumulative data from its self-attitude.

However, they suffer from static drift, which accumulates errors over time, resulting

in inaccurate pose estimation and even errors [6]. Matching navigation involves

aligning measured environmental information with a prior map to obtain the drone's

position. However, establishing a complete and effective database is costly and

challenging, particularly with changes in flight altitude and environmental conditions

[7].

In contrast to the above methods, Simultaneous Localization and Mapping

(SLAM) technology, which combines localisation and map building simultaneously,

allows drones to perceive and model their surrounding environment during flight. It
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also estimates their motion and position using the generated environment model,

providing better perception capabilities in unknown environments [8]. As a result,

SLAM is currently the mainstream technology for intelligent environmental

perception for UAVs [9].

(a) Agricultural and forestry protection (b) Geographic surveying and mapping

(c) Emergency rescue (d) Power infrastructure inspection

Figure 1.1. Typical applications of drones

Depending on the sensors used, SLAM technology can be divided into laser

SLAM [10] and visual SLAM [11]. Laser SLAM employs laser radar as the sensor,

resulting in highly accurate maps with mature and reliable technology. However, laser

radar is expensive and has limited detection range (typically around 200 meters).

Visual SLAM, on the other hand, uses cameras as the sensing sensors, which is far

more cost-effective, to capture images of the surrounding environment, extracting

abundant texture features and other information [3][9]. It matches features or other

information between adjacent frames, estimates the motion between image frames

based on the obtained matches, and finally optimizes and adjusts the built scene map.

Visual SLAM offers advantages such as simplicity, ease of installation, low cost, and

unlimited detection range. Therefore, it is widely used on intelligent drones with

payload constraints, as it can use onboard cameras to construct maps and achieve

http://www.uniachina.com/news/industry/wurennongye
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.gim-international.com%2Fcontent%2Fnews%2Fuav-photogrammetry-as-an-alternative-to-classic-terrestrial-surveying-techniques&psig=AOvVaw3sj0ED116pqA8JlityU20f&ust=1707490014388000&source=images&cd=vfe&opi=89978449&ved=0CBUQjhxqFwoTCJD_zJn-m4QDFQAAAAAdAAAAABAI
https://news.ifeng.com/a/20160624/49233081_0.shtml
http://www.aopa.org.cn/Content_Detail.asp?Column_ID=37684&C_ID=20013832
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positioning without the need for additional sensors, while providing rich, human-

visible information [9].

However, existing visual SLAM methods are often susceptible to environmental

factors such as lighting conditions and texture features, which can lead to interference

and defects in the constructed environmental map. Furthermore, the computed camera

trajectory frequently deviates from the actual values, resulting in poor accuracy.

Additionally, inaccurate drone trajectory estimation can reduce the applicability and

robustness of the algorithm. These issues hinder the technology's effectiveness in

drone applications [12]. Therefore, for drone applications, research into visual SLAM

techniques that offer better applicability and robust performance is of paramount

importance [13].

1.2 Research Objectives and Scope of the Work

In visual SLAM based UAV navigation, one of the major challenges is the analysis

of the UAV images, i.e. how to accurately extract the useful featured information and

measurement for supporting the mapping and estimation in an efficient manner.

However, due to the relatively poor quality of the UAV images caused by the harsh

working environment, poor image contrast, low spatial resolution and severe noise,

accurate and efficient mapping from images becomes very challenging. As such, how

to enhance the image quality and improve the efficacy and efficiency of object

detection and recognition are the selected technical bottlenecks to be tackled in this

thesis.

Accordingly, the major research objectives of the thesis are defined as follows.

1) To provide a comprehensive survey of the field and identify the state of the

arts in relevant topics;

2) To investigate typical models in enhancement of UAV images degraded by

different factors and provide useful insights how they perform to satisfy the

needs of SLAM based UAV applications;

3) To investigate and develop useful models and solutions for improving the

efficiency and efficacy of existing object detection and recognition

approaches and facilitate the edge computing based real-time deployment.
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With these identified key tasks and objectives, SLAM based deployment will

become more feasible and satisfy the needs from various application scenarios.

1.3 Research Methodology

According to the defined key research objectives, the corresponding research

methodologies adopted are highlighted as follows.

1) Comprehensive survey to understand the research problem and state of the

art, where comparative study is carried out to analyse relevant approaches

and models in both qualitative and quantitative ways;

2) According to various degradations of the UAV images, mixed-models are

applied accordingly to address the associated challenges in terms of

denoising and dehazing, respectively. This can well tackle the properties of

degradation for efficacy and efficiency;

3) For improving the efficiency and efficacy of object detection from UAV

images, intensive experiments with different models will be implemented.

Meanwhile, the effect of hardware acceleration will be validated in a case

study, to further verify the effectiveness of the improved implementation of

the deep learning model.

4) To further refine the models using the feedback received from peer-

reviewing and also publish the results for increased value and impact.

1.4 Contributions

Following the defined research aims and objectives, the major contributions of this

thesis are summarised as follows.

1) First of all, a comprehensive survey of related topics and challenges is

summarised in Chapter 2, which will provide useful insights for the community

to understand the technical background and associated difficulties. Relevant

work was published in the 6th Int. Conf. on Machine Vision and Information

Technology (CMVIT) in 2022 and received the Best Poster Award;

2) Considering the quality degradation of the UAV images, various approaches

and models have been proposed, yet they focus on different aspects and

produce inconsistent results. As such, relevant work has been categorised into
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denoising and dehazing focused, followed by comprehensive evaluation in

terms of both qualitative and quantitative assessment. Useful findings are

derived to show how conventional approaches can still be useful when

comparing with the deep learning models in denoising, yet various deep

learning models demonstrate superior performance in different datasets or

under different metrics that is worth further investigation. These will provide

valuable insights and useful guidance to help the end user and research

community. Relevant work was published in the 13th Brain-Inspired Cognitive

Systems (BICS) Conference in Aug. 2023.

3) For fast and effective object detection and recognition, deep learning based

models, especially the YOLO series, are popularly used. However, taking the

YOLOv7 as the baseline, the performance is very much affected by a few

factors, e.g. quality of the UAV images and high-level demanding of

computational resources, leading to unsatisfactory poor performance in terms

of the accuracy and processing speed. As a result, three major improvements,

namely transformer, CIoULoss and the GhostBottleneck module, are

introduced for improved feature extraction, decision making in detection and

recognition, and running efficiency. Comprehensive experiments on both

publicly available and self-collected datasets have fully validated the improved

efficiency and efficacy of the proposed approach. Relevant work is under

preparation as a journal submission to the MDPI Journal of Mathematics.

4) In addition, to facilitate the real-time deployment in edge computing scenarios,

embedded implementation of the key algorithm modules is introduced. This

includes the creative implementation on the Xavier NX platform, in

comparison to the standard workstation settings with the NVIDIA GPUs. As a

result, it has demonstrated promising results with improved performance in

terms of reduced resources consumption of the CPU/GPU usage and enhanced

frame rate of processing to benefit the real-time deployment at the edge side.

This work will be included in the journal draft as mentioned above.

Herein the efficiency is to measure the computational speed, indicating the

computational complexity of the specific algorithm. The efficacy, or effectiveness,

indicates how effective the model can be applied to complete the detection or
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classification tasks. Specifically, the accuracy measures the percentage of correct

detection for object detection or classification.

1.5 Thesis organisation

The remainder of the thesis is organised as follows:

Chapter 2: Literature Review. This chapter starts with an introduction to UAVs,

providing insights into both fixed-wing and multi-rotor UAVs, emphasizing their

shared requirements for autonomy. We then delve into the importance and

significance of aerial image preprocessing, leading to discussions on the current state

of research in image enhancement, image edge detection, and their relevance to image

feature extraction. The chapter proceeds to explore the application of computer vision

in UAVs, highlighting the challenges and necessity of visual navigation research as

well as a comprehensive overview of SLAM applications in UAVs.

In Chapter 3, enhancement of UAV images is focused, where denoising and

dehazing are addressed separately, using both publicly available and self-collected

datasets. By categorising related techniques to conventional approaches in the spatial

domain and transform domains and deep learning models, relevant models and

approaches are reviewed in detail, followed by the quantitative evaluation and visual

comparison. Useful findings are identified to demonstrate the superior performance

from some of the conventional approaches as well as deep learning models. These

will provide valuable insights to help the end users to understand relevant techniques

and make the proper decision to meet their needs.

In Chapter 4, an improved YOLOv7 model is proposed for efficient and

effective object detection and recognition from UAV images, again tested in both

publicly available and self-collected datasets. First, the development of deep learning

based object detection and recognition is reviewed. There are a few reasons to select

the Yolo for object detection, which include i) real-time detection, ii) high accuracy,

iii) a unified framework for detection and classification, iv) robustness and

generalisation, and v) an end to end model for efficiency. Although YOLOv7 has

achieved promising results in various applications, it shows limitations in UAV

applications. Three major improvements, namely the transformer module, CIoU loss

function and GhostBottleneck module, are introduced as additional features to
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improve the feature extraction, computational efficiency and robustness of the

YOLOv7. Quantitative results in terms of the recall, precision and average precision

are used to validate the efficacy of the proposed work. In addition, embedded

implementation on the NVIDIA Xavier NX is detailed, along with the quantitative

results to show the reduced resources consumption and improved frame rate of real-

time processing.

Finally, Chapter 5 summarises the contributions and conclusions of the thesis,

followed by the suggested future work to further improve the development of this

emerging field.

1.6 Author’s Publications

1.Y. Tian, H. Yue, B. Yang and J. Ren, “Unmanned Aerial Vehicle Visual

Simultaneous Localization and Mapping: A Survey,” Journal of Physics: Conference

Series, vol. 2278, 6th Int. Conf. on Machine Vision and Information Technology

(CMVIT), Feb. 2022, 10.1088/1742-6596/2278/1/012006 (Best Poster Award).

2.Y. Tian, H. Yue, J. Ren, “Image Enhancement for UAV Visual SLAM

Applications: Analysis and Evaluation”, In Proc. the 13th International Conference on

Brain-Inspired Cognitive Systems (BICS’23), Aug. 5-6, Kuala Lumpur, Malaysia,

2023.

3. Y. Tian, H. Yue, and J. Ren, “An improved YOLOv7 with embedded

implementation for fast and effective object detection and recognition for UAV

applications”, Under preparation (to be submitted to IEEE Journal of Selected Topics

in Applied Earth Observation and Remote Sensing (JSTARS).
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Chapter 2. Literature Review

In this chapter, detailed background knowledge and related work is presented. These

include the survey of the UAV techniques in Section 2.1, the summary of the

workflow for aerial image processing in Section 2.2, discussions of the computer

vision techniques in Section 2.3, and the visual SLAM analysis in Section 2.4. Finally,

a short summary is provided in Section 2.5 to conclude the chapter.

2.1 Unmanned Aerial Vehicles (UAVs)

An Unmanned Aerial Vehicle (UAV), also known as a drone, is a flying vehicle

operated without a human pilot on board. The entire flight process can be

automatically controlled by radio remote control equipment and onboard computer

programs. Drones were first conceived in 1914 when the United Kingdom, in

response to wartime needs, proposed the use of radio remote control to guide small

unmanned aircraft for bomb-dropping missions [14]. Over the course of more than a

century, drones have seen multifaceted development, initially starting as target drones

for military training and evolving into reconnaissance aircraft used for intelligence

gathering.

Entering the 21st century, drones have experienced widespread adoption in

civilian applications, playing vital roles in disaster response and relief efforts,

environmental exploration, weather forecasting, agriculture and forestry protection,

express delivery, aerial photography, power line inspections, and more. They have

greatly enhanced convenience in both work and daily life [1][9].

Key characteristics of drones include ease of take-off and landing, adaptability to

various mission requirements, and the ability to capture timely image data [1][2].

Drones exhibit remarkable endurance, even in harsh weather conditions, allowing

them to effectively operate in hazardous areas for extended periods. They can transmit

real-time target images, enabling the prompt acquisition of various intelligence

information and situational awareness.

Drones are equipped with a variety of devices that enable them to perform

diverse tasks in various scenarios [1-3]. Before 2008, the application of drones was

primarily limited to the military sector. Over the past decade, with the advancement of



Chapter 2．Literature review

9

Micro-Electro-Mechanical Systems (MEMS) technology, drones have gradually

become integrated into daily life, appearing in various forms tailored to different

fields and tasks, such as photography, cinematography, power line inspections, and

resource exploration. Drone technology has made significant progress in terms of

structure, functionality, and navigation [13][15].

According to research data published by Drone Industry Insights, the global

market for drones itself excluding any related applications was estimated to be

approximately $22.5 billion in 2020 [16]. It is expected to exceed $48 billion by 2026,

indicating substantial market growth potential. Drones will continue to evolve towards

multi-task payloads, miniaturization of mission payloads, autonomous intelligent

flight, and standardized drone management. Based on their structural design, drones

can mainly be classified into rotary-wing drones and fixed-wing drones.

2.1.1 Fixed-Wing Unmanned Aircraft

Fixed-wing unmanned aircraft originated as early as 1917 [14]. In fact, the

United States began utilizing fixed-wing drones for military reconnaissance as early as

1960, where they played a significant role. Fixed-wing unmanned aircraft consist of

five primary components: wings, fuselage, tail, landing gear, and propulsion system.

Compared to other drone structures, they offer advantages such as a strong payload

capacity and extended flight times, making them widely employed in military and

meteorological applications [2-3] [9] [12].

Based on the design of their wings, fixed-wing UAVs can harness the lift

generated by airflow, reducing the power demand to counteract gravity, thus

extending the drone's endurance. Analogous to the speed advantage of fixed-wing

airplanes over helicopters, fixed-wing UAVs have a speed advantage compared to

rotary-wing drones. These characteristics make them exceptionally suitable for long-

distance travel. The extended range, increased flight time, and speed of fixed-wing

drones make them an ideal choice for enthusiasts and surveillance professionals.

Compared to other options in the market, fixed-wing drones offer higher performance

but also require more complex operation, necessitating pilots with more extensive

remote-control experience.
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Figure 2.1. Schematic diagram of a fixed-wing UAV (online source)

2.1.2 Multi-Rotor Unmanned Aircraft

Rotorcraft UAVs draw their flight power from rotors and possess vertical take-off

and landing capabilities, as well as omnidirectional flight capabilities [1-3][14]. They

are highly maneuverable, compact, and adaptable to urban environments, but

controlling them poses a significant challenge. Currently, in the field of rotorcraft

unmanned aircraft, quadcopters are considered a successful model due to their

symmetrical structure.

A quadcopter UAVs feature four rotors symmetrically distributed, allowing them

to perform various maneuvers such as roll, pitch, and yaw by adjusting the rotor

speeds, with relatively low control complexity due to the symmetrical design [14][17].

Presently, there are matured products with applications in multiple civilian sectors.

For instance, in agriculture, drones can monitor crop growth, and in areas where

ground-based crop protection equipment may struggle to operate, quadcopter drones

can serve as alternatives for agricultural tasks.

Multi-rotor UAVs are characterized by their compact size and excellent

maneuverability, making them a suitable choice for aerial photography. They can

effortlessly hover and take off vertically, thereby enhancing their versatility. However,

quadcopters, hexacopters, and octocopters also have their drawbacks. The addition of

more rotors can make the drone more challenging to learn and control. Additionally,

these moving components consume extra electrical power, leading to faster battery

depletion. Since most multi-rotor drones typically have less than an hour of flight time,

they are better suited for short-range applications such as photography and

videography.

https://jingyan.baidu.com/article/8c0b0eaa2bc225718d602a50.html
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Figure 2.2: Illustration of a multi-rotor UAV (source:

https://blog.csdn.net/modeling3D/article/details/115229274)

2.2 Aerial Image Processing

2.2.1 Importance and Significance

The primary purpose of image pre-processing is to eliminate irrelevant

information in images, restore useful real data, simplify data to the maximum extent,

and enhance the detectability of relevant information, thereby improving the usability

and reliability of extracted features and further benefit image segmentation, matching,

and recognition. Distortion correction, image enhancement, dehazing/noise reduction,

and brightness adjustment, among other techniques, all fall within the scope of image

pre-processing for drone imagery and require appropriate processing based on actual

conditions.

Compared to indoor drones or mobile robots, drones in outdoor environments

face a significant challenge in achieving safe and reliable visual navigation and

positioning. Outdoor flight environments exhibit significant variations and are

constrained by factors such as the drone's high altitude, small size, and lightweight,

resulting in poor wind resistance and limitations in digital camera focal lengths [1][9].

Consequently, images taken in outdoor settings are prone to distortion, warping,

tilting, zooming, and are susceptible to environmental variables like lighting and

smoke. Moreover, the captured images are often small in size but have large data

volumes, directly impacting image quality. Low-quality images can hinder the

accuracy of visual positioning. Therefore, image pre-processing is essential before

entering the image matching phase in visual SLAM [13][15][18].

Finding suitable methods to effectively remove rain, snow, haze, and other

image-degrading factors while enhancing image details can improve the accuracy of

feature recognition, laying a solid foundation for the subsequent image registration

phase.

https://blog.csdn.net/modeling3D/article/details/115229274
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2.2.2 Image enhancement

With the continuous deterioration of the global environment, haze conditions are

becoming increasingly severe. This not only poses health hazards to humans but also

presents a significant threat to various fields such as aviation and transportation. Due

to the presence of a large number of fine particles suspended in the haze, it not only

reduces human visibility but also severely degrades the quality of images captured by

outdoor imaging equipment, affecting areas such as road monitoring, aerial remote

sensing, and military observation. These images often suffer from low contrast, low

brightness, and poor clarity [19].

In the context of drone aerial photography, degraded images not only pose

challenges for image pre-processing but, if not processed effectively, can also impede

subsequent tasks such as target recognition and visual navigation. Therefore, it is

crucial to perform effective dehazing and enhancement on images and videos captured

in hazy weather conditions [20].

Image dehazing algorithms are image analysis and processing methods designed

to meet specific scene requirements, highlight image details, and enhance image

quality [21]. Based on their principles, dehazing algorithms can be categorized into

three types: physics-based dehazing algorithms, image enhancement-based dehazing

algorithms, and deep learning-based dehazing algorithms. The following Fig. 2.3

illustrates typical algorithms from each of these three categories.
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Figure 2.3. Categorisation of typical image dehazing algorithms

(1) Physics-based algorithms are based on the attenuation of light propagation in

hazy conditions. These algorithms construct a degradation model to restore clear

images by measuring or estimating parameters such as atmospheric transmittance and

scattering intensity. However, the restored images obtained by these algorithms often

suffer from halo and artifacts [22].

(2) Image enhancement-based algorithms focus on processing regions of interest

in hazy images, such as enhancing contrast to improve texture and clarity. These

algorithms are relatively simple and fast but may yield poor results on images with

limited colour information. Two typical algorithms in this category are the

Homomorphic Filtering Algorithm [23] and the Retinex Algorithm [24].

The Homomorphic Filtering Algorithm [23] aims to correct the grayscale range of

images, addressing uneven illumination in images, thereby enhancing details in dark

areas without losing details in bright areas. It attempts to minimize the decrease in

image quality caused by insufficient illumination by enhancing the high-frequency

details of the image. The basic principle behind image homomorphic filtering is the

reflection imaging principle during image generation.
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As an image enhancement method, the Retinex Algorithm [24] relies on three

basic assumptions [25]: (1) The real world is colourless. (2) Each colour domain is

composed of the three primary colours, red, green, and blue, with fixed wavelengths.

(3) Combinations of the three primary colours constitute the colour of each unit area.

The foundation of the Retinex algorithm is that an object's different colours are

determined by its ability to reflect light of different wavelengths. While illumination

may exhibit non-uniformity, it does not affect the ultimate appearance of colours. The

Retinex algorithm can achieve a balance between compression, edge enhancement,

and colour constancy within a certain dynamic range, demonstrating good adaptive

enhancement capabilities. The Retinex algorithm can further be categorized into

single-scale Retinex algorithms, multi-scale weighted average Retinex algorithms, and

multi-scale Retinex algorithms with colour restoration.

(3) Deep learning-based methods use simulated hazy image datasets to train

neural network models for image restoration. Typically, various deep learning models

based on different variations of the Convolutional Neural networks (CNNs) are used,

such as DeHazeNet [26] and densely connected pyramid dehazing network (DCPDN)

[27]. As these algorithms often rely heavily on the training data and the training

strategy, which may have limited the generic adaptability to hazy images in real

scenarios.

2.3 Computer Vision in UAV Applications

Computer vision is a scientific discipline that has emerged in recent years. It was

first proposed by David Marr in the 1980s [28]. Marr believed that the theoretical

approach to computer vision should start with images and extract the content of the

real physical scene. Computer vision technology is a bio-inspired technology that,

compared to traditional methods, can not only collect data from the surrounding

environment but also simulate the human brain's processing of collected data. It

operates at high speed and has a large storage capacity. While computer vision

technology demonstrates powerful information processing capabilities in the

application of artificial intelligence, it still differs in nature from human emotional

analysis.
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Driven by the development of society, UAVs have become a hot research topic in

the field of artificial intelligence and have been widely used in various industries

[13][15][18]. In the 1990s, research primarily focused on using computer vision

technology for surface roughness detection of materials. At the same time, computer

vision technology began to penetrate various fields, such as automotive driving, where

it was used for real-time monitoring of vehicle speed and surroundings. At this time,

the combination of computer vision and drones was virtually unknown. It wasn't until

the early 21st century that the integration of computer vision technology with drone

technology began to gain momentum. Computer vision could provide drones with rich

visual information for relative positioning and orientation adjustments. The

combination of computer vision technology and drones has been used in research on

autonomous landing, attitude measurement, navigation, and obstacle avoidance for

drones. To date, the integration of computer vision technology and drones remains a

focal point of attention in the field of artificial intelligence, with significant

development potential.

In recent years, with the improvement of computer capabilities and the rapid

development of computer vision technology, drones have expanded from their initial

military applications to other industries and have found widespread use [1]. Computer

vision technology serves as the "eyes" of drones, providing them with a wealth of

visual information for obtaining relative positions. Computer vision techniques

analyse images captured by imaging sensors, extracting semantic content and

information contained in the images for understanding and interpretation [2].

The integration of computer vision technology with drones initially aimed at

aerial reconnaissance and geological surveying but has now been widely applied in

various fields, including industrial inspection, geological mapping, disaster

information acquisition, emergency supply delivery, agricultural and forestry

protection, and unmanned combat, among others [3][5][6]. These application

scenarios impose higher requirements on drone image processing, autonomous

navigation, target recognition, and precision striking capabilities.

2.3.1 Object Detection and Tracking

Object detection and tracking have been prominent areas of interest in the field of

computer vision in decades [3][29][30]. They involve the detection, recognition, and
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tracking of objects in image sequences containing moving targets, along with

behaviour understanding and description [31]. Research in object analysis

encompasses disciplines such as pattern recognition, image processing, computer

vision, and AI. Combining UAVs with image sensors and motion-based object

detection and tracking technologies allows for real-time tracking of targets locked by

image sensors. This enables the acquisition of dynamic target information and

accurate assessment of target behaviour, thus providing valuable real-time information

for a wide range of applications [32].

With the advancement of convolutional networks, researchers have proposed

numerous deep learning-based object detection methods, which can be broadly

categorized into two types: Two-stage object detection algorithms based on candidate

regions and One-stage object detection methods based on regression. In Two-stage

detection (represented by region-based CNN, or the R-CNN [29] series), input images

first go through a candidate box generation network and then through a classification

network to classify the content of candidate boxes. Compared to One-stage methods,

Two-stage methods offer higher accuracy but require more computation, resulting in

slower processing. One-stage detection is an end-to-end object detection algorithm,

such as the YOLO [30] series and single shot multibox detector (SSD) [33] series,

which predicts object categories and their positions in a single step [15].

Proposed by Ross B. Girshick at the University of California, Berkeley in 2014

[29], R-CNN has surpassed the contemporary end-to-end method, the OverFeat

algorithm proposed by Yann Lecun [34], in terms of performance. Its algorithmic

structure has since become a classic framework for subsequent two-stage object

detection.

Figure 2.4. Diagram to illustrate the step-wise implementation of the R-CNN [29].
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As shown in the Fig. 2.4, the specific steps of R-CNN can be summarized into

the following four key stages [29].

1) Input the image, followed by certain pre-processing such as normalisation

and denoising if applicable;

2) Region proposal generation: R-CNN utilizes the selective search method to

generate approximately 2,000 candidate regions (region proposals) for the

input image. Initially, the image is divided into several sub-regions, and then

the similarity between these sub-regions is calculated, including factors such

as colour and texture. Finally, these regions are merged to obtain

approximately these candidate regions.

3) Region based feature extraction: Each candidate region is resized to a fixed

size (224×224) and then fed into a CNN model (AlexNet convolutional

network) to obtain a feature vector. AlexNet consists of 5 convolutional

layers and 2 fully connected layers, resulting in a 4,096-dimensional feature

vector for each small region. Since there are multiple small regions, this

results in a matrix of size 4,096×2,000.

4) Classification: The feature vectors are input into a multi-class support vector

machine (SVM) classifier to predict the probability of each class for objects

within the candidate regions. A separate SVM classifier is trained for each

class, where the probability of one class is associated to a particular class is

inferred from the feature vector. The SVM classifier's weight matrix has a

dimension of 4096×N, where N is the number of classes. Objects that are

classified into a specific class have bounding boxes drawn around them,

while those that cannot be classified are discarded. Finally, a few of the most

likely bounding boxes are selected. To improve the localization accuracy, a

bounding box is also trained with the regression model to refine the precise

positions of the boxes.

The advantages of R-CNN include the ability to apply high-capacity CNN to

bottom-up candidate regions for object localization and segmentation. Moreover, in

cases where labelled training data is insufficient, it initially performs supervised pre-

training on auxiliary tasks and then fine-tunes the model for the specific domain,

resulting in significant performance improvements [18].
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While R-CNN exhibits good recognition accuracy, it is computationally intensive.

Currently, the most widely used series for object detection is YOLO [30]. YOLO

redefines object detection as a regression problem, applying a single CNN to the

entire image, dividing it into a grid of ROIs, and predicting class probabilities and

bounding boxes for each grid cell. Since it treats detection as a regression problem, it

eliminates the need for complex pipelines. YOLO is exceptionally fast, being 1000

times faster than "R-CNN" and 100 times faster than "Fast R-CNN" [35]. The diagram

of the architecture of the YOLOv5 is illustrated in Fig. 2.5.

As seen in Fig. 2.5, the network architecture of YOLOv5 can be divided into four

main parts as detailed below.

 Input: This includes Mosaic data augmentation, image resizing, and

calculation of the adaptive anchor box. Mosaic data augmentation combines

four images to enrich the background of the images. Image size processing

adapts the original images of different aspect ratios with minimal added black

borders to a standard size. Adaptive anchor box calculation updates anchor

box values based on the differences between predicted and real boxes via

iterative parameter updates.

 Backbone: This consists of BottleneckCSP and Focus modules. The

BottleneckCSP module is to enhance the learning performance of the entire

CNN while significantly reducing computational complexity. The Focus

module slices the input channels, expanding them by a factor of four and

generating downsampled feature maps through convolution, reducing

computational load and improving speed.

 Neck: It combines the conventional FPN (Feature Pyramid Network) layers

with a bottom-up feature pyramid, fusing semantic and positional features and

integrating the backbone layers with detection layers to capture richer feature

information.

 Head: The head outputs a vector containing class probabilities, object scores,

and the position of the object's bounding box. The detection network

comprises three detection layers, each responsible for detecting objects of

different sizes. Each detection layer produces corresponding vectors,

ultimately generating predicted bounding boxes and class labels for objects in

the original image.
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Figure 2.5. Diagram of the YOLOv5 architecture [36]

Object tracking can be divided into single-object tracking and multi-object

tracking. The goal of tracking is to build a motion model that predicts the possible

state of the object in the next frame, providing prior knowledge for estimating the

object's state and finding the optimal object position in the current frame. Traditional

object tracking relies on feature extraction methods combined with filtering-based

search algorithms. Algorithms like MeanShift are based on probability density

distribution and iteratively converge towards local peaks of the probability density

distribution for tracking [37][38].

Particle Filter is based on particle distribution statistics [31], approximating

probability density functions by finding a set of randomly sampled particles

propagating in the state space. It uses the sample mean instead of integral calculations

to obtain the minimum variance estimate of the system state. Kalman Filter [39][40],

on the other hand, models and predicts the trajectory of the object's motion rather than

modelling the object's intrinsic features. It estimates the object's potential location in

the next frame.

Another category of the tracking algorithms is DL based, such as the YOLO

series [30], SSD series [33], two-stage series [41], and more.
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2.3.2 Obstacle Avoidance and Path Planning

With the increasing widespread applications of drones, safety concerns have

become more prominent. When drones fly in complex urban environments with

uncertain flying conditions, collision accidents are not uncommon.

This necessitates that drones possess autonomous obstacle avoidance and path

planning capabilities, allowing them to promptly, accurately, and safely navigate

around obstacles to reach designated target locations efficiently [42]. The two key

components to achieving autonomous drone obstacle avoidance are obstacle detection

and path planning. Obstacle detection refers to the drone's ability to accurately detect

obstacles in its surroundings using its sensing devices. Path planning involves the

drone using obstacle information and its flight conditions to chart an optimal path to

its intended destination.

During the autonomous flight of a drone, encountering obstacles involves a three-

phase process: first, the drone perceives the obstacle; second, it navigates around the

obstacle; and third, it searches for a new flight path. In other words, the drone

progresses from detecting an obstacle to autonomously navigating around it and then

to autonomously planning a flight route.

In the first phase, the drone senses the presence of an obstacle, quickly identifies

it, and hovers in place, awaiting further instructions. In the second phase, the drone

accurately perceives the contours of the obstacle using sensors and then autonomously

maneuvers around it. In the third phase, the drone, based on the environmental data it

has gathered, utilizes algorithms to autonomously plan a flight route, thereby

achieving the goal of autonomous obstacle avoidance [33][43].

Effective obstacle detection relies on accurate environmental perception.

Compared to active detection methods such as ultrasonic, laser, and infrared, visual

detection only requires passive reception of image information, making it more secure

and less susceptible to signal and radiation interference [44]. It holds great potential in

complex electromagnetic and geographic environments. Existing visual obstacle

avoidance methods are mostly based on image segmentation, depth extraction, optical

flow algorithms, among others [1-3]. Image segmentation methods offer high

computational efficiency but lower detection accuracy. Depth extraction methods
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require constructing 3D maps and may not meet real-time obstacle avoidance

requirements. Optical flow methods can balance real-time performance and accuracy,

making them a preferable choice for visual obstacle avoidance.

Path planning is crucial in ensuring that drones successfully complete assigned

tasks [45]. Geometry-based algorithms include artificial potential field methods,

topological methods, etc. Biologically inspired and optimization-based algorithms

include the A* algorithm [46] etc.

The basic idea of the potential artificial gravitational field (AGF) method for path

planning is to abstract the motion of a robot in its surrounding environment as a type

of movement within an AGF [47]. In this context, the goal point exerts "attraction" on

the mobile robot, while obstacles generate "repulsion" forces. Ultimately, the robot's

motion is controlled by calculating the resultant force. Paths generated by the AGF

method are generally smooth and safe, however, similar to most of other optimisation

methods, it still suffers from the problem of local minima.

This algorithm works best when obstacles are regular in shape; otherwise, it can

lead to significant computational complexity or even become infeasible [44]. However,

from another perspective, the artificial potential field method offers an elegant and

concise mathematical description, making it still quite attractive. Its limitations

become evident when obstacles are located near the goal, as the robot may never reach

the destination.

In many previous studies, the goal and obstacles were positioned far apart [48].

As the robot approached the goal, the repulsive force from obstacles diminished

significantly, sometimes even to the point of neglect, allowing the robot to be solely

influenced by the attractive force and reach the goal directly. However, in many

practical environments, at least one obstacle is often located very close to the goal

[12][13][15]18]. In such cases, as the mobile robot approaches the goal, it also moves

closer to the obstacle. Using the previously defined attraction and repulsion field

functions, the repulsive force can become much greater than the attractive force. This

makes the goal point no longer the global minimum of the entire potential field,

rendering it impossible for the robot to reach the goal. This situation leads to the

problem of local optima, making the design of the "attraction field" a crucial aspect of

this method.
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The A* algorithm is a heuristic search algorithm [46], where heuristic search

involves establishing heuristic search rules during the process of search to calculate

the distance relationship between the current location and the target one. This

prioritizes the search direction towards the location of the target, ultimately leading to

improved search efficiency.

In the context of drone path planning, it is not only essential to navigate swiftly

and accurately around obstacles but also to prioritize the optimality, rationality, and

completeness of the planned paths in future approaches [49]. There is potential to

apply DL in this field as well, such as deep re-enforced learning [50].

2.3.3 Visual Navigation

Navigation systems provide critical support for the execution of flight missions

by UAVs. The "2007-2032 Unmanned Aircraft Systems Roadmap" published by the

U.S. Department of Defense [51] highlights the future requirements for UAVs,

including autonomous flight capabilities, efficient comprehensive reconnaissance and

sensing, and precision targeting. To achieve UAVs' autonomous flight, efficient

reconnaissance, and precision targeting, accurate environmental perception, efficient

image pre-processing, high-precision positioning, and navigation capabilities are

indispensable.

Currently, UAV navigation systems are primarily represented by GPS and

Inertial Navigation System (INS) [52]. GPS is a passive navigation system that is

susceptible to environmental factors and external interference, limiting the autonomy

of UAVs. INS accumulates errors over time, which can significantly impact

navigation task execution. With the maturation of image processing and computer

vision technologies, vision-based navigation methods have gradually been introduced

into UAV systems [4][5]. Visual navigation, which uses environmental information as

clues, leverages image sensors to perceive the surrounding environment and provides

positioning and navigation for mobile carriers through specific calculations. It offers

advantages such as real-time performance, minimal interference, rich information

content, and good compatibility. In various environments, both indoors and outdoors,

it can independently or as an auxiliary system provide navigation information for

UAVs, making it a hot research topic in the UAV field.
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From a technical perspective, visual navigation can generally be divided into

three categories [53].

1) Matching Navigation: This approach involves a complete prior map in the

computer, where real-time data is matched with the prior data to determine the

current position.

2) Simultaneous Localization and Mapping (SLAM): SLAM does not rely on

prior databases. It combines visual landmarks with its own motion to establish

relative environmental information, thereby determining its relative position.

Typical frameworks include ORB-SLAM2 [54], SVO [55], and others.

3) Active Search: This approach, which also doesn't rely on prior databases,

separates visual perception from self-motion. Visual perception is used solely

for target or feature recognition, while path information is obtained from self-

attitude sensors. Within the defined path, it enables the search for target

features.

Scene Matching Navigation (SMNS) [56] is characterized by its simple

equipment structure, passive nature, and high positioning accuracy. It uses image

sensors to match the area images near the UAV's flight or target area with stored

reference images to obtain aircraft position data. As an auxiliary navigation method,

when combined with inertial navigation systems, SMNS can form a highly

autonomous navigation system with a high-precision, enabling precision targeting for

UAVs [57]. Matching navigation can achieve absolute positioning of the aircraft. It

compares the real-time scene map captured by the aircraft with the map data stored in

the computer's memory. After a successful match, it retrieves the geographical

location from the stored map database and provides real-time correction to the

aircraft's inertial system for its current position.

2.4 Current Status in Visual SLAM Research

SLAM, initially proposed in the field of robotics by Chatila, Smith, and others

[58][59], refers to the process in which a robot, starting from an unknown location in

an unknown environment, continually observes environmental features during its

motion to determine its own position and orientation. It then incrementally constructs

a map of the surrounding environment based on its own position, achieving the

simultaneous goals of localization and map construction. Due to its significant
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academic and practical value, SLAM has long been considered a key technology for

achieving fully autonomous mobile robots. With this foundation, path planning can be

performed, obstacles can be detected and avoided in real-time, ensuring safe operation

[60].

Modern and popular visual SLAM systems can generally be divided into front-

end and back-end components, as illustrated in the diagram below. The front-end is

responsible for data association, equivalent to Visual Odometry (VO) [61]. It studies

the transformation relationship between frames and primarily accomplishes real-time

pose tracking. It processes input images, computes pose changes, and also detects and

handles loop closures. When Inertial Measurements Units (IMU) information is

available, it can also participate in fusion calculations (similar to Visual-Inertial

Odometry, VIO). The back-end primarily optimizes the output results from the front-

end. It utilizes filtering theories or optimisation techniques to perform tree or graph

optimisation, ultimately obtaining the optimal pose estimation and mapping [62].

Due to limited payload capacity, there are two mainstream methods for position

sensing in UAVs. The first approach aims to compensate for the relatively low

accuracy of IMUs by combining them with visual SLAM systems to estimate the

UAV's 3D spatial pose [63]. For instance, researchers e.g. Celik K have proposed

monocular visual SLAM methods based on distance measurements, with a single

camera mounted on UAVs [64]. In GPS-denied environments, these systems rely on

monocular cameras for autonomous UAV navigation. Researchers at the

Massachusetts Institute of Technology (MIT), such as Bethke and colleagues [65],

have developed a vision-based multi-agent cooperative system that can detect both the

position and the 3D velocity of the objects. This system offers excellent real-time

tracking of targets. Valenti and others [66] have addressed the issues of pure visual

rotational drift and potential loss of tracking during rapid movement by fusing RGB-D

odometry and IMU data.

To leverage the high manoeuvrability and speed of UAVs and overcome the slow

image acquisition and transmission rate of monocular cameras, sensors are combined

with higher transmission rates, such as IMUs and camera sensors, to achieve better

position and attitude estimation results [63]. This approach enables absolute scale

estimation for monocular vision and fuses visual and inertial information for

positioning. For instance, researchers at the University of Maryland, e.g. Conroy and
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colleagues [67], improved the localization of UAVs using cameras and ultrasonic

sensors, enhancing optical flow algorithms. Researchers at the Queensland University

of Technology in Australia, led by Milford Michael J [68], conducted in-depth

research on algorithms such as visual odometry and visual expectation using

monocular cameras. They combined these with the Rat SLAM algorithm to achieve

UAV localization and navigation. Researchers at the Swiss Federal Institute of

Technology in Zurich, led by Forster and colleagues [69], studied a micro-UAV

equipped with a vertically oriented camera and an embedded minicomputer. They

obtained positioning information using a combination of direct and feature-based

semi-direct monocular visual odometry methods (SVO) methods. However, the

accuracy of this approach is relatively low.

Both of the above-mentioned approaches utilize IMUs and monocular cameras

for SLAM research. They require multiple sensors, which increases the complexity of

the system and significantly raises the cost compared to purely camera-based visual

SLAM methods [70][71].

2.5 Summary

This chapter provides an overview of the current status and applications of UAVs.

It highlights the importance and significance of pre-processing aerial images, briefly

introducing the importance and methods of image distortion correction, enhancement,

and edge detection. The chapter then focuses on the application of computer vision

techniques in UAV technology, covering scenarios such as target detection and

tracking, visual navigation, autonomous obstacle avoidance, and path planning.

Furthermore, the chapter presents an in-depth summary of the current state of

research in visual SLAM. It discusses both the front-end and back-end components of

visual SLAM and their applications in UAVs. This groundwork sets the stage for the

subsequent research, with identified knowledge gaps in image enhancement and

object detection, especially how to denoising and dehazing the UAV captured images

as well as how to achieve effective and efficient object detection accordingly. These

will be addressed in detail in the following chapters.
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Chapter 3. Image Enhancement: Analysis and Evaluations

3.1 Introduction

When capturing images with the UAV and aerial platforms, the imaging quality

can be significantly affected by complex environmental conditions. Factors such as

device shake and dust, both inside and outside the equipment, inevitably introduce

various forms of noise into the resulting images. Such noise can interfere with the

perception and understanding of the presented information by subsequent detection

and recognition algorithms. In addition, environmental issues such as fogs may also

cause significant degradation of the image quality, hence it has resulted in a new topic

of image dehazing. Considering the inconsistent illumination and limited lighting,

images under poor lighting conditions may also introduce new challenges.

With numerous models and approaches being proposed to tackle these issues, it

has come to a question how effective they are when working with the real data. In this

chapter, the aforementioned question will be answered by comprehensive evaluation

and assessment of different approaches as detailed below.

3.2 Datasets and Evaluation Criteria

3.2.1. Datasets Description

For image denoising, the CBSD68 dataset [72] and the SIDD dataset [73] were

used. The CBSD68 dataset consists of 68 colour images of varying sizes. The SIDD

dataset includes approximately 30,000 noisy images captured under different lighting

conditions using five representative smartphones, along with corresponding “noise-

free” ground truth images. In addition, an own dataset including 2,035 virtual

simulation scene images was also used for testing the effect of denoising. Some

sample images are given in Fig. 3.1. Note that these images are not necessarily all

captured by UAVs.
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Figure 3.1 Sample images from the CBSD68 dataset for denoising testing.

Figure 3.2. Samples images from the SOTS-outdoor dataset for dehazing assessment.

For image dehazing assessment, the SOTS-outdoor [74] public dataset is used.

The SOTS dataset is a synthetic dataset consisting of 1,000 test images, divided into
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indoor and outdoor categories, each containing 500 images, see some sample images

in Fig. 3.2. The outdoor images are used to test the dehazing effects of the algorithms.

In addition, a self-collected dataset is also used, which contains a total of 2,035

pictures of virtually simulated scenes, as shown in Fig. 3.3. The simulated virtual

scenes include natural environments in different seasons, extreme weather (e.g. rainy,

snowing, foggy) and different times of day (e.g. morning, noon, evening and

midnight). The large variations have enriched the contents within the dataset for

testing the robustness of the related algorithms in terms of their performance in

denoising and defogging etc.

Images in different seasons: spring, summer, autumn and winter (from left to right).

Images at different times of day: morning, noon, evening and midnight (from left to right).

Images in different weather conditions, e.g. raining (left) and foggy (right).

Figure 3.3. Sample images from the self-collected dataset of virtually simulated

scenes in different seasons (top), at different times of day (middle) and different

weather conditions (bottom).

3.2.2. Evaluation Metrics

(1) Peak Signal-to-Noise Ratio (PSNR)
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Given a hazy image I and a haze-free image K both of size M*N, the Mean

Squared Error (MSE) is defined as:

푀�� = 1
푀� �=0

푀−1
�=0
�−1 [�(�,�)−�(�, �)]2�� (3.1)

where �(�, �) and�(�, �) represent the grayscale values of pixels at location (�,�) in
the hazy and haze-free images, respectively.

The Peak Signal-to-Noise Ratio (PSNR) is then defined as:
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where �_푚�� denotes the maximum possible pixel value in the image, or 255 for an

eight-bit image.

Eq. (3.2) is commonly used for grayscale images. For colour images with three

channels (RGB), the MSE is calculated separately for each channel, and the resulting

MSE values are used to compute the PSNR for each channel. The final PSNR for the

colour image is obtained by taking the average of the PSNR values across all channels.

PSNR is one of the most widely used objective metrics for assessing image

quality. It measures the difference between two images, such as a compressed image

and its original, to evaluate the quality of the compressed image. However, many

experimental results have shown that the PSNR score may not always correlate

perfectly with the visual quality perceived by the human eye. In some cases, images

with higher PSNR values may appear worse to human observers compared to images

with lower PSNR values. Typically, a PSNR value between 30 and 50 indicates a

higher degree of similarity between two input images, a higher value suggesting a

closer match.

(2) Structural Similarity (SSIM)

This metric is used to measure the structural similarity between two images.

Structural Similarity (SSIM) [75] compares the structure, luminance, and contrast of

two images, denoted as X and Y. Given two images, and the structural similarity

between the two images can be computed using the following formula:

���푀 �,� =
2����+�1 2���+�2
��
2 +��

2 +�1 ��
2 +��

2 +�2
(3.3)

In Eq. (3.3), �� represents the average value (mean) of X, �� is the average

value (mean) of Y, ��
2 is the variance of X, ��

2 is the variance of Y, and ��� is the
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co-variance over a window between the two images. The constants �1 and �2 are

used to maintain stability and are typically set to small values like 0.01 and 0.03,

respectively. The range of the Structural Similarity (SSIM) metric is from -1 to 1,

with larger values indicating less distortion. When two images are identical, the SSIM

value is 1.

3.3 Image Denoising Models and Evaluation

For denoising of aerial images, researchers have proposed a plethora of image

denoising methods, primarily categorized into traditional image denoising and deep

learning-based image denoising methods, as detailed below.

3.3.1 Conventional Denoising Methods

Conventional denoising methods can be further divided into spatial domain

denoising methods and transform domain methods. Spatial domain methods primarily

utilize filters for denoising. They process the neighbourhood of each pixel in the

image using a filter, iterating through the entire image. Spatial domain denoising

methods can be classified based on the linearity of the filters into linear filtering

methods and non-linear filtering methods [79].

In linear filtering methods, the most common one is the mean filter. For a pixel

contaminated by noise, the mean filter, and its extension such as Gaussian filtering,

calculates the average value or weighted average of all the pixels in its neighbourhood

and assigns this value to the contaminated pixel. Non-linear filtering methods

typically include the median filter and bilateral filter. The median filter, or even with

weighted version, initially sorts the pixels around a particular pixel, resulting in an

ordered data sequence. Then, it assigns the median value from this sequence to the

pixel, effectively removing low and high-frequency components in noisy images.

Thus, it is commonly used for eliminating salt-and-pepper noise. However, it has the

drawback of potentially causing image discontinuities.

The bilateral filter [80] considers both the grayscale similarity and spatial

position relationships between pixels. It assigns higher weight values to pixels that are

both close to the center pixel and have similar grayscale values, while giving lower

weight values to pixels that are farther away or have dissimilar grayscale values. The
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advantage of the bilateral filter lies in its ability to preserve more edge information,

but it requires further improvement in protecting image texture and detail information.

Local filters can effectively remove noise when the noise level is relatively low

but are less effective at higher noise levels. To address this issue, the Non-Local

Means (NLM) [81] denoising algorithm leverages the self-similarity and redundancy

in the image's structure for denoising. Danbov et al. introduced the Block Matching

3D (BM3D) denoising algorithm [82], which involves finding a series of similar

image blocks and grouping them to obtain multiple three-dimensional blocks.

Filtering is then performed in three-dimensional space, followed by using a three-

dimensional inverse transform to produce the denoised result. Compared to NLM, this

algorithm achieves a higher PSNR but comes with a higher complexity.

For transform domain filtering, these rely on the transformation of the image to a

different domain before applying the filtering. Typical algorithms include the Fourier

transform and wavelet transform, where it is assumed that the noise will be more

easily characterised and distinguished in the transformed domains. For example,

Fourier transformation converts data from the time domain to the frequency domain,

where noise in the frequency domain often appears in high-frequency regions. Noise

removal can be achieved through low pass filtering in the frequency domain.

However, this process also eliminates the texture and detail information in the image.

In addition to Fourier transformation, wavelet transformation has also been

employed for image denoising. Denoising methods utilizing wavelet transformation

process noise removal based on the differences between image features and noise

after undergoing wavelet transformation. The advantage of wavelet-based denoising is

that it can simultaneously preserve both frequency and spatial information in the

image. However, its drawback lies in its weaker directionality, as it can only extract

limited directional information.

3.3.2 Deep Learning-Based Image Denoising Methods

In recent years, deep learning has gained the favor of many researchers due to its

powerful feature capturing capabilities and flexible network architectures. Burger et al.

employed a Multi-Layer Perceptron (MLP) [83] to learn the mapping from noisy

images to clean images, achieving performance comparable to BM3D. Chen et al. [86]
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designed a trainable Nonlinear Reaction Diffusion (TNRD) denoising model.

However, MLP and TNRD can only handle images with fixed noise levels and may

not yield ideal results when applied to datasets with varying noise levels.

To enhance the model's ability to handle varying levels of noise, Zhang et al. [87]

introduced the Denoising Convolutional Neural Network (DnCNN) model. This

model not only addresses images with different noise levels but also utilizes residual

learning and batch normalization techniques to expedite model training. Subsequently,

Zhang et al. proposed the Fast and Flexible Denoising Network (FFDNet) model [88],

which builds upon DnCNN by including noise levels as an additional input to the

model. FFDNet is capable of handling spatially correlated noise and plays a crucial

role in balancing noise reduction and image detail preservation.

However, these aforementioned models do not yield satisfactory results for real

image denoising. To tackle this issue, Guo et al. [89] introduced the Convolutional

Blind Denoising Network (CBDNet) and constructed a new noise model to simulate

real noise. CBDNet consists of a denoising sub-network and a noise level estimation

sub-network, enhancing the network's performance and generalization capacity by

introducing an asymmetric loss function. Nevertheless, CBDNet's network structure is

complex and comes with a significant computational cost, making it less suitable for

practical applications. Therefore, Anwar and Barnes [90] proposed the Real Image

Denoising Network (RIDNet) to address real-world denoising scenarios. RIDNet

adopts a modular structure for the denoising network and introduces a channel

attention mechanism for adaptive channel weight adjustment. The introduction of

CBDNet and RIDNet has driven the development of image denoising research in real-

world settings.

3.3.3 Assessment and Evaluation

The approaches we selected for comparison in this group of experiments are

briefed as follows. Within these approaches, BM3D and WNNM are conventional

filtering-based methods, and the others are deep-learning models.

 BM3D [82]: As a novel image denoising method, BM3D is based on an

enhanced sparse representation in the transform-domain, where the enhanced

sparsity is achieved by grouping similar 2-D fragments of the data within the

transform domain into 3-D data arrays namely “groups”, followed by
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collaborative filtering being applied to these 3-D groups. It has three key

steps, i.e. 3-D transformation of a group, shrinkage of transform spectrum,

and inverse 3-D transformation, where the collaborative filtering can help to

reveal the finest details shared by grouped fragments whilst preserving the

essential unique features of each individual fragment;

 WNNM (Weighted Nuclear Norm Minimization) [91]: The image is

modelled as Y = X + N, where Y is also composed of samples with noise,

forming a sample matrix. X and N are the corresponding noise-free sample

matrices and the noise, respectively. The given constraint is that X is a low-

rank matrix. Since the matrix composed of similar samples exhibiting low-

rank characteristics, when the noise does not have low-rank characteristics,

image denoising can be achieved through low-rank clustering;

 VDN (Variational Denoising Network) [94]: This model is capable of

simultaneous image denoising and noise estimation. In typical work,

Gaussian white noise is assumed to be present in the image, but this model is

not limited to Gaussian assumption. The proposed generative model exhibits

strong generalization capabilities and performs well even for noise not

encountered in the test set. The model provides an explanation for the

overfitting phenomenon often observed in deep learning methods trained

using MSE loss. This issue is attributed to overfitting the prior of the

underlying clean image while neglecting variations in noise. This VDN model

explicitly models the generation of noise, thereby avoiding this drawback of

deep learning methods;

 FFDNet [88]: The adjustable noise level mapping, denoted as M, is used as

input to provide flexibility to the denoising model regarding noise levels. An

invertible downsampling operator is introduced to reshape the input image of

size W × H × C into four subsampled sub-images of size 4W/2 × H/2 × 4C,

where W, H and C represent the width, height and the number of channels of

the image, respectively. To ensure that noise level mapping robustly controls

the trade-off between denoising and detail preservation without introducing

significant visual artifacts, an orthogonal initialisation method is also applied

to the convolution filters;
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 NAFNet [96]: Taking inspiration from the Transformer architecture, the use

of Layer Normalization (LN) is incorporated to facilitate smoother training.

NAFNet also introduces LN operations, leading to significant performance

gains on image denoising and deblurring datasets. In the Baseline approach,

ReLU is jointly replaced with GELU and CA. GELU helps maintain

denoising performance while significantly enhancing deblurring performance.

Two new attention module compositions are proposed, namely CA (Channel

Attention) and SCA (Spatial-Channel Attention).

In Table 3.1, the quantitative results from one public dataset and the own dataset is

compared, using the PSNR and SSIM as indicated before. As seen, BM3D and

NAFNet have produced significant better results than other compared approaches,

though BM3D performs better in the public dataset whilst NAFNet has higher results

in the own dataset. This is mainly because our dataset is more challenging as it is 3D

simulation of the real flight environment. As a result, the scene is more complex and

larger (1,920×1,080), containing foggy and rainy scenes as well as images from

different seasons and time of a day. That is why BM3D tends to work less effectively

as it does in the CBSD68 dataset. Also note that BM3D is a filtering based

conventional model and NAF3D is a DL based approach using the transformer model.

Table 3.1: Quantitative evaluation of the image denoising algorithms

Models
CBSD68 dataset Own dataset

↑PSNR (dB) ↑SSIM ↑PSNR (dB) ↑SSIM

BM3D 41.63 0.9936 36.50 0.9301

WNNM 39.38 0.9750 35.02 0.9320

VDN 30.83 0.8533 25.83 0.8533

FFDNet 28.98 0.7969 26.16 0.7897

NAFNet 40.30 0.9621 38.02 0.9502

(a) Original image from CBSD68 (b) Result from BM3D (c) Result from WNNM
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(d) Original image from own dataset (e) Result from BM3D (f) Result from WNNM

Figure 3.4. Denoising results from BM3D and WNNM.

In addition, it is worth noting that the evaluation results from PSNR and SSIM are

not always consistent, though they seem to have an overall positive correlation. For

example, NAFNet has a higher PSNR of 40.30 than WNNM at 39.38, yet its SSIM is

0.9621, which is lower than 0.9750 from WNNM in the public dataset. In the own

dataset, BM3D has a higher PSNR than WNNM yet its SSIM is lower than that of

WNNM. This inconsistency in different metrics on one hand, indicates the difficulty

in evaluation of the denoised images. On the other hand, it shows great potential for

future investigation in this context.

(a) Original image (b) Results from VDN (c) Results from FFDNet (d) Results from

NAFNet

(e) Original image (f) Results from VDN (g) Results from FFDNet (h) Results from NAFNet

Figure 3.5. Comparison of denoising results from deep learning models of VDN,

FFDNet and NAFNet. The original images used are from CSDB68 (top) and own

dataset (bottom), respectively.

Furthermore, the denoised results of some test images are given for comparison,

including those from conventional approaches of BM3D and WNNM, see in Fig. 3.4,

and those from deep learning models, see in Fig. 3.5, respectively. In both Fig. 3.4
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and Fig. 3.5, samples images from the publicly available dataset CBSD68 and own

dataset are illustrated. As can be seen, the denoising images are significantly

improved in terms of the visual quality.

As seen from the results above, BM3D apparently outperforms WNNM, thanks for

considering the grouped fragments within a 3-D block along with the sparse

representation based collaborative filtering, which has greatly improved the

performance of denoising, including those using deep learning models. The relatively

poor performance from deep learning can be due to two reasons, i.e. insufficient

training samples and the inconsistency between the training set and the testing set,

especially when the overall dataset is small. The latter may be caused by the random

characteristics of the noise within the image, which has potentially affected the

learning-based approaches. Nevertheless, in the best deep learning model, NAFNet,

the transformer architecture has somehow mitigated such limitations, which can be

further explored.

3.4 Image Dehazing Models

Fog can reduce the brightness and contrast of images, causing objects to appear blurry

and degrading image quality. Image dehazing is a classic problem in the field of

computer vision, with a history dating back to the early 1900s. The development of

image dehazing can be broadly categorized into the following types: photometric-

based methods, polarization-based [19], prior-based and learning-based methods [20].

3.4.1 Conventional approaches

The conventional approaches rely mainly on assumptions to model the degradation

due to foggy or hazing effects, fall within prior based approaches as detailed below.

In the mid-development phase of image dehazing, further success was achieved by

utilizing improved assumptions and priors through physics-based dehazing methods.

For instance, Tan et al. [20] used a Markov Random Field to maximise the local

contrast of input hazy images to achieve effective dehazing results. However, this

approach still left some minor halos and oversaturated areas in the generated images.

Fattal et al. [21] introduced a novel method for estimating light transmission, which

also addressed shadow issues and improved image clarity and contrast. Nevertheless,

this method struggled to handle severely blurred images. Kratz and Nishino [22]
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employed a factorial Markov Random Field to estimate reflectance and depth with

natural statistical priors. This approach yielded higher detail features and saturation

but occasionally resulted in minor halos in scenes like lakes and streets.

To better eliminate the haze effects in real outdoor scenes, inspired by the dark

object subtraction technique, the Dark Channel Prior (DCP) was proposed by He et al.

[97] for estimating image transmission in outdoor scenarios. This method is suitable

for most outdoor hazy images, but it struggles with handling the sky portion of the

images and comes with high computational costs. To enhance the computational

efficiency of DCP-based methods, standard median filtering, average median filtering,

and guided image filtering have been used as alternatives to the time-consuming

process of soft matting. Tang et al. [99] combined various haze-related features with

random forests to estimate transmission maps. Berman et al. [100] proposed a pixel

dehazing method based on non-local priors. While Tang's method [99] yielded

significant dehazing effects compared to previous approaches, the computational

demands make it difficult to achieve real-time results.

3.4.2 Learning-Based Methods

Research methods in learning-based image dehazing can be roughly categorized

into two types: two-stage methods based on transmission estimation and end-to-end

pipeline methods. The former involves first learning a non-linear mapping between

input hazy images and their corresponding transmission maps and then using this

mapping to estimate transmission maps, followed by solving the haze-free image

using an atmospheric scattering model.

For example, Cai et al. [26] proposed DehazeNet for learning and estimating

transmission maps, where the network takes hazy images as inputs and outputs

estimated transmission maps, which are then used in an atmospheric scattering model

to obtain haze-free images. Similarly, Ren et al. [102] introduced a multi-scale CNN-

based image dehazing method, consisting of coarse-scale and fine-scale networks, to

learn non-linear mappings from hazy images for estimating scene transmission maps.

Li et al. [105] introduced AOD-Net, which optimized the end-to-end network from

hazy images to clear images, where the AOD-Net model was also combined with the

Faster R-CNN for object detection in the images before and after dehazing to evaluate

AOD-Net's dehazing performance. Zhang et al. [27] proposed a densely connected
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pyramid dehazing network (DCPDN) that can jointly learn the transmission maps,

atmospheric light, and dehazing. In Chen et al. [107], a new gated context aggregation

network (GCANet) was proposed along with the smooth dilated convolutions for

image dehazing. In Deng et al. [108], a haze-aware representation distillation GAN

(HardGAN) was presented to fuse the global atmospheric luminance and local spatial

structure for effective image dehazing. Liu et al. [109] introduced a multi-scale

estimation image dehazing method based on attention mechanisms (GridDehazeNet).

Qin et al. [110] proposed a feature fusion attention network (FFA-Net), in which the

channel attention is combined with the pixel attention to directly recover hazy images

into clear images.

3.4.3 Evaluation and Results

Based on the discussions above, the dehazing approaches being compared are

briefed as follows.

 DehazeFormer [111]: DehazeFormer is a network based on a five-layer U-Net

architecture, where convolution blocks are replaced with DehazeFormer

blocks. Some optional components outlined within the dashed lines can also

be considered. SK fusion and soft reconstruction are used to replace the

original settings of the concatenation fusion and global residual methods.

 FFANet [110]: A feature fusion attention network (FFA-Net) is proposed for

end-to-end direct restoration of haze-free images. It leverages attention-based

FFA structures at different hierarchical levels, allowing for the adaptive

learning of feature weights from the Feature Attention (FA) module, with

higher weights assigned to more important features. FFANet can also help to

retain shallow-level information and pass it to deeper layers;

 GridDehaze Net [109]: An attention-based multi-scale dehazing network is

introduced, comprising of three modules: pre-processing, backbone, and post-

processing. Within the backbone module, a novel attention-based multi-scale

network is implemented to address the bottleneck issues commonly

encountered in traditional multi-scale methods effectively;

 GCANet [107]: The model directly learns the residual between the original

and hazy images, which has three convolutional blocks as the encoder, one

deconvolutional block, and two convolutional blocks as the decoder. Smooth
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dilated residual blocks are inserted between them to aggregate contextual

information without causing a grid-like artifact. To fuse different-level

features, an additional gate fusion sub-network is utilized. GCANet predicts

the end-to-end target clean image's residual between the blurred input images.

 PMNet [112]: An attention-based Single Haze-aware Attenuation (SHA)

method is proposed, which uses fewer parameters and computational resources

to estimate the haze density map. The density map, along with the haze map, is

further utilized to refine texture features for improved dehazing results.

In Table 3.2, quantitative results in terms of PSNR and SSIM are given to compare

the performance of various dehazing approaches as discussed above, using the images

from one public dataset, SOTS-outdoor [74] and one own dataset. For the SOTS-

outdoor dataset, Daheze Former seems to produce consistently better results than

other compared approaches, thanks to the transformer-based model in effectively

tackling with the variations within the dataset. However, in the more challenging self-

collected dataset, Dehaze Former fails to produce the best results.

Table 3.2 Comparison of different dehazing approaches

Models
Public (SOTS-outdoor) Own dataset

↑PSNR (dB) ↑SSIM ↑PSNR (dB) ↑SSIM

Dehaze Former 36.80 0.9949 32.04 0.9210

FFANet 36.39 0.9891 34.02 0.9587

GridDehaze Net 30.86 0.9818 34.89 0.9287

GCANet 30.23 0.9801 28.50 0.8905

PMNet 34.41 0.9905 29.29 0.9025

On the contrary, the highest PSNR and SSIM are yielded by GridDehaze Net and

FFANet, respectively, though FFANet seems to produce more consistently better

results than the GridDehaze Net with the much higher SSIM and slightly lower PSNR.

This again shows the inconsistency of these two metrics in the quantitative

assessment of the dehazing results, which has inevitably raised the open question on

how to solve such inconsistency in the future.

In addition, visual comparison of the dehazing results is also given in Fig. 3.6 and

Fig. 3.7, which are for the results from the publicly available dataset and self-



Chapter 3. Image enhancement: analysis and evaluation

40

collected dataset, respectively. As can be seen, both Dehaze Former and FFANet have

produced much better results than other compared approaches, where the dehazed

images show improved contrast than the original ones. In other words, the Dehaze

Former and FFANet algorithms exhibit the best dehazing performance according to

the experiments.

(a) Original image (b) Result from Dehaze Former (c) Result from FFANet

(d) Result from GridDehaze Net (e) Result from GCANet (f) Result from PMNet

Figure 3.6. Comparison of dehazing results from publicly available dataset.

(a) Original image (b) Result from Dehaze Former (c) Result from FFANet

(d) Result from GridDehaze Net (e) Result from GCANet (f) Result from PMNet

Figure 3.7 Comparison of dehazing results from self-collected dataset.
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3.5 Summary

In this chapter, a survey of the denoising models for UAV images in SLAM

implementation is conducted, followed by a comprehensive evaluation. Several

models are selected for both qualitative and quantitative assessment, including

conventional approaches in the spatial domain and transform domain as well as deep

learning models. By benchmarking on the publicly available datasets, it is found that

the BM3D model, an extension to the NLM approach, outperforms all others, even

the deep learning approaches, owing mainly to the local-similarity with a 3-D block

and sparse representation enabled collaborative filtering in modelling. This shows the

great potential of conventional vision - based perception models in image denoising.

It also indicates the limitations of the DL models in this context, due mainly to the ill-

posed problem in training the models. Furthermore, the great performance of the

NAFNet has suggested that the transformer architecture can help to mitigate the

limitations here and improve the modelling, thus is worth for further investigation.

As the degradation process of UAV images can be much more complicated, this

chapter only covers a few tasks, where many other useful topics have not been

addressed, such as deburring and normalisation of the lighting effects et al. These will

be the future work, along with the deployment of other models.
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Chapter 4. Effective Object Detection and Recognition with

an Improved YOLOv7

4.1 Introduction

Object detection and recognition are crucial tasks in the field of computer vision.

These tasks involve identifying and locating one or more target objects within a given

image or video. Object detection and recognition techniques initially require the

classification of objects, followed by the identification of their positions within the

image or video, often marked with bounding boxes or contours [32][113][114].

In civilian applications, object detection technology can recognize and track

individuals, vehicles, and other objects appearing in surveillance footage, providing

effective means for security and prevention. In the realm of autonomous driving,

object detection technology, using onboard cameras, can real-time detect obstacles on

the road, offering reliable support for the autonomous navigation of self-driving

vehicles. In the field of medical image analysis, object detection technology can

facilitate the automatic diagnosis of diseases like tumors, offering crucial references

and support for medical diagnosis and treatment.

In the military domain, object detection finds widespread use, primarily driven by

special military needs and missions that involve aspects such as combat command,

weapon systems, and computer vision-based object detection and military video

surveillance. As for drones, object detection can be used to identify target objects,

enhancing its detection, classification and tracking. In addition, the integration of such

systems can be also applied to process real-time satellite monitoring data for civil,

industrial, environmental and military applications towards smart decision making.

Among a number of existing approaches, the YOLO series of models [30] are

selected for object detection in the thesis, due to the following reasons. The first is the

high computational efficiency that can be applied for real-time processing. The

second is the relatively high detection accuracy in comparison to many other methods.

The third is the unique property of the YOLO series feature, as it adopts a one-stage

processing to combine the detection and classification together. As a result, it also
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features good robustness and generalisation in various scenarios as well as an end to

end model for extra efficiency.

4.2 Related Work

Before 2012, object detection and recognition primarily relied on traditional

detection methods. With the development of GPUs and NPUs, object detection and

recognition have shifted from traditional approaches to those based on DL methods,

as depicted in Fig. 4.1. Detailed discussions of related models and algorithms,

especially the DL based, are given as follows.

Figure 4.1: The development history of object detection and recognition (source:

https://wikidocs.net/167508).

4.2.1 Conventional Approaches

In 2001, P. Viola and M. Jones, among others, introduced the Viola-Jones (VJ)

detector for face recognition [32]. The VJ detector employed a sliding window

approach and demonstrated robustness across various skin tones. It began by

calculating all different-sized windows within an image and then sequentially

traversed the image using windows of various sizes to identify facial features.

In 2005, Dalal et al. [113] introduced the HOG (Histogram of Oriented Gradients)

Detector method. This method primarily employed directional gradient histograms for

detection and used Support Vector Machines (SVM) with manually crafted features to

detect objects. The conventional HoG approach relies on a spatial window to extra the

https://wikidocs.net/167508
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features of the object, where the optimal window size should match the dimension of

the object. However, this detection method was not suitable for scenarios where the

scale of the target object varies significantly, due to the difficulty to identify the

optimal window size and resulting in poor detection performance. To address the

issue of scale variation, the Deformable Part-based Model (DPM) algorithm emerged.

It was introduced by P. Felzenszwalb et al. in 2008 [114]. DPM used a sliding

window approach to extract features at different scales and employed SVM for

classification. This method exhibited excellent detection performance, surpassing

traditional algorithms that relied on manual feature extraction. In summary, traditional

object detection algorithms typically involve three steps: sliding window traversal of

the image, feature extraction (such as Harr or HOG), and classifier-based detection

with bounding box regression. The workflow for object detection in conventional

approaches such as [32][113][114] is illustrated in Fig. 4.2.

Figure 4.2. Workflow of conventional object detection approaches

Conventional object detection algorithms suffer from inherent limitations.

1) The selection of feature regions depends on manual extraction. When feature

extraction is incomplete or erroneous, detection accuracy is low, and the time

complexity is high.

2) Due to the complexity of natural scenes, traditional detection algorithms yield

poor feature extraction results when objects are affected by factors such as

lighting and occlusion, leading to reduced detection performance.
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As a result, conventional methods struggle to fully meet the practical

requirements of object detection and recognition applications.

4.2.2 Deep Learning - Based Approaches

Deep learning (DL) -based detection algorithms employ CNNs to perform multi-

level convolution operations on images for more accurate feature extraction. They can

address issues such as false positives and false negatives caused by object

deformations and changes in the surrounding environment. These algorithms exhibit

higher robustness compared to traditional methods that rely on manual feature

extraction.

Currently, DL based object detection algorithms can be categorized into one-

stage object detectors and two-stage object detectors. The primary difference between

them lies in the fact that two-stage object detectors introduce a region proposal phase

to generate candidate boxes, which are then used to predict object boxes. Notable one-

stage detectors include YOLO [30], SSD [115], and RetinaNet [116], while

representative two-stage detectors include R-CNN [29], Fast R-CNN, and Faster -

RCNN [118].

(1) R-CNN Series Algorithms

RCNN algorithms utilize selective search for region proposal and then use

convolutional networks to extract features from these regions. They combine SVM

for candidate box classification and employ non-maximum suppression (NMS) for

regression to identify objects. An example of the RCNN algorithm is illustrated in Fig.

4.3. RCNN achieved an average precision of 58.5% on the VOC07 test set,

representing a significant improvement over traditional algorithm like DPM-v5.

Figure 4.3. Diagram of the RCNN algorithm

However, RCNN has notable drawbacks. Since RCNN is a distributed two-stage

object detection algorithm, it needs to crop and resize candidate region images during

Image

Input

Select

search

Candidat

e Area

Image

croppin
Fixed

size
CNN FC

SVM

Bounding

box



Chapter 4. Effective object detection and recognition with an improved YOLOv7

46

feature extraction to adapt to the input of CNNs. This process results in the loss of

image feature information, leading to lower accuracy. Furthermore, RCNN requires a

convolutional calculation for each candidate region, which significantly increases

computational complexity, causing slower training and prediction speeds.

Fast RCNN is an improved algorithm based on the RCNN approach. It begins by

transforming input images into feature maps using convolutional networks.

Subsequently, it extracts candidate regions on the feature maps using the selective

search algorithm. This approach addresses the issue of repetitive convolution

calculations seen in RCNN, effectively improving computational speed. Fast RCNN

introduces Region of Interest (ROI) pooling, which is inspired by SPP Net. After

obtaining the feature maps, ROI pooling extracts features using blocks of different

sizes, divided into 'n' blocks, resulting in an 'n'-dimensional feature vector. Fig. 4.4

provides an example illustration of the Fast RCNN algorithm. In Fig. 4.4, FCN

represents feature maps generated using the output of the first five convolutional

layers of the AlexNet. The bounding box regression involves calculating the

difference between anchor boxes and predicted values.

Figure 4.4. Diagram of the Fast RCNN algorithm

Fast RCNN performs feature extraction only once, utilizing a single network to

simultaneously handle both classification and regression tasks. It combines the

objective functions for target classification and bounding box prediction into a single

multi-task objective function, improving both speed and accuracy. The network

employs cross-entropy and smooth L1 loss for classification and bounding box

regression, respectively. Due to its multi-scale training capability, Fast RCNN

effectively performs data augmentation when given images of different sizes. Fast

RCNN achieves a mean average precision (mAP) of 70.0% on the VOC07 dataset and
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is 200 times faster than RCNN. However, its detection speed is still constrained by

the candidate region operation.

In order to further enhance detection speed, Faster RCNN replaces the candidate

region operation in Fast RCNN with the Region Proposal Network (RPN) structure.

The RPN network consists of two parts: one part obtains the positive and negative

classifications of anchors using softmax, and the other part calculates the regression

offsets for anchor boxes. The final proposals are generated by combining the positive

anchors and the regression of the target boxes. These proposals then serve as input to

Fast RCNN. An illustration of the Faster RCNN algorithm is provided in Fig. 4.5.

The common feature extraction network used in Faster RCNN is based on the

structure of VGG16 with the last max-pooling layer removed. The introduction of the

RPN network is to provide Fast RCNN with regions where objects may be located

directly, eliminating the need for the selective search mechanism to extract candidate

regions, thereby improving detection speed. Faster RCNN achieved a mAP of 70.4%

on the VOC12 dataset, a significant improvement over Fast RCNN. Additionally,

Faster RCNN is the first end-to-end detector among two-stage object detection

algorithms.

Figure 4.5. Example illustration of the Faster RCNN Algorithm.

Throughout the development of two-stage object detection, the detection system

has evolved from independently operating components, such as region proposal,

feature extraction networks, and bounding box regression, into an integrated network

that shares computation at the feature layer level. This integration has greatly reduced

computation time.
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(2) SSD Series Algorithms

The SSD object detection algorithm [115] pioneered the use of multi-scale feature

maps for detection. It placed default boxes at various scales on different feature maps,

modifying the traditional VGG16 network. The Prior Box layer in SSD is responsible

for deploying default boxes at each pixel location in the feature map. The default box

coordinates are normalized based on the input image's top-left and bottom-right

coordinates and specified values. Bounding box predictions are made through

convolutional layer regression parameters. However, in SSD, the minimum and

maximum values of prior boxes and aspect ratio values are manually set and not

learned from the network. The size and number of default boxes depend on the

designer's experience. These issues were later addressed in subsequent networks by

using real box clustering before training to avoid manual shortcomings.

SSD also uses large feature maps to detect small objects, but the SSD network

does not incorporate feature fusion networks, leading to subpar detection results for

small objects. The DSSD algorithm aimed to improve the inadequate detection

performance of small objects in SSD. It analysed the problem, stating that while

shallow feature maps are suitable for localizing small objects, they lack sufficient

semantic information for classification. To address this, DSSD up sampled feature

maps using deconvolution and fused them with the original feature maps. The fused

feature maps were then fed into a perception network for predictions. DSSD replaced

SSD's VGG network with ResNet-101, introduced residual modules before

classification and regression, and added deconvolution layers after the auxiliary

convolution layers introduced by SSD, creating a "wide-narrow-wide" "hourglass"

structure. This effectively improved small object detection but did not significantly

enhance detection speed. On the VOC07 dataset with 513×513 input images, the mAP

of DSSD achieved 81.5%, with a frame rate of around 6fps.

FSSD [119], as an improved version of SSD, introduces a feature fusion approach

that takes feature maps of different scales produced by VGG16 and transforms them

into the same scale as the conv4-3 layer using bilinear interpolation. It then

concatenates all the feature maps, uses the obtained feature maps for resampling to

obtain different feature map scales, and inputs them into a perception network for

predictions. On the VOC07 dataset with 300*300 input images, the mAP of FSSD

achieves 82.7%. On a single 1080Ti GPU, FSSD reaches a speed of 65.8FPS. FSSD
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also outperforms native SSD on the COCO dataset, achieving state-of-the-art

performance in terms of both speed and accuracy within the SSD series at that time.

(3) The YOLO series of algorithms

The YOLO series of algorithms, as one-stage object detection methods, ensure

high accuracy while maintaining exceptionally fast processing speeds. This series has

evolved from YOLOv1 [30] to the latest version, YOLOv8, as depicted in Fig. 4.6.

The core concept of YOLOv1 is to input an entire image into the network and

obtain detection results and bounding box offsets directly at the output layer through a

convolutional neural network. Due to the simplicity of YOLO's network architecture,

which consists of only a pre-trained fully convolutional network, four subsequent

convolutional layers, and two fully connected layers, it achieves very fast detection

speeds but at the cost of lower accuracy, leading to many missed objects.

Subsequently, YOLOv2 [122] improved upon YOLOv1 by introducing Batch

Normalization (BN) layers and anchor box mechanisms. It removed computationally

expensive fully connected layers and pooling layers, which tend to lose feature

information. On the VOC12 dataset, YOLOv2 achieved a mAP of 73.5%. However, it

still struggled with detecting small objects effectively. YOLOv3 [124] adopted the

darknet-53 backbone feature extraction network, implementing multiscale detection

inspired by residual networks. To enhance object detection performance across

various scales, it introduced a feature pyramid network and employed downsampling

to expand the receptive field of each pixel. This resulted in improved performance in

detecting small objects. YOLOv4 [125] introduced improvements in the detection

head. Similar to YOLOv3, it used three scales to handle objects of different sizes but

employed multiple anchor points for each real value.
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Figure 4.6. Evolution of YOLO Series Models [126].

YOLOv5, considered a leader in real-time object detection, introduced the Focus

module, which preserves more complete feature information during image

downsampling. It employed two different CSP structures in the backbone and neck,

effectively addressing the gradient vanishing problem caused by increased network

depth. This improved the network's ability to fuse features, resulting in richer and

more accurate feature information. YOLOv5 is known for its speed, model

lightweight design, and enhanced accuracy in locating small objects. It offers

flexibility with four different network configurations, namely YOLOv5n (nano),

YOLOv5s (small), YOLOv5m (medium), YOLOv5l (large), and YOLOv5x (extra-

large), utilizing channel and layer control factors similar to EfficientNet.

YOLOv6 [127] adopted anchorless detection, featuring a new backbone based on

RepVGG, which increased parallelism compared to previous YOLO backbones. For

the neck, it used PAN enhancements with RepBlocks or CSPStackRep Blocks,

particularly for large models. Performance was further improved through a self-

distillation strategy for regression and classification tasks. YOLOv7 [128] introduced

the Extended Efficient Layer Aggregation Network (E-ELAN), which improved

accuracy without affecting inference speed, albeit extending training time. It achieved
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more effective learning and convergence in deep models by controlling the shortest

and longest gradient paths. E-ELAN was applicable to models with infinitely stacked

computational blocks, enhancing network learning through shuffling and merging

cardinalities of different feature groups without disrupting the original gradient paths.

As of Jan. 2023, Ultralytics (https://www.ultralytics.com/yolo), the company behind

YOLOv5, released YOLOv8, offering five versions: YOLOv8n, YOLOv8s,

YOLOv8m, YOLOv8l, and YOLOv8x.

4.3 Experimental Settings

4.3.1 Experimental Environment

The experimental environment in this study involves two platforms: a

conventional PC setting with CPU/GPU and also an embedded implementation.

For the server-side, the system runs on Windows 10 and is equipped with two

NVIDIA GeForce RTX 3090 GPUs, 32GB of RAM, and an Intel Xeon Silver 4210

CPU. The total computational power of this setup is 35.6 teraflops. The embedded

development platform operates on a Linux-based system NVIDIA Xavier NX. It

features a 6-core NVIDIA Carmel 64-bit ARMv8.2 CPU, 384-core NVIDIA Volta

GPU, and 8GB of RAM. The computational power reaches 14 teraflops at 10 watts

and 21 teraflops at 15 watts. With accelerated computing power of up to 21 TOPS, it

can run neural networks in parallel and process data from multiple high-resolution

sensors. It is suitable for drones, portable medical equipment, small commercial

robots, smart cameras, high-resolution sensors, automatic High-performance AI

systems such as optical inspection and other IoT embedded systems. The module

appearance of the Xaiver NX is given in Fig. 4.7, along with the block diagram of its

process engine illustrated in Fig. 4.8.

Figure 4.7. The module appearance of the Xaiver NX

https://www.ultralytics.com/yolo
https://www.baidu.com/link?url=5iSrpuvECZHZmYwAYYjIhaNnnSY3Q8Xzi9mgLaSK1zMkhULf47okSzHwtoHfdEd9r3XEPJ8DDnm7jdikpuj7TEH36VrsPvWgmx28pULdCDwzCfDMHu_bjf5xNW7QxOTRXVms928MXBNBFXXvRV9g6K&wd=&eqid=8c6f220f0006a037000000065d96c47d
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Figure 4.8. The block diagram of the process engine of the Xaiver NX.

As seen, the Xavier NX processor engine includes high-speed I/O and memory

structures. Xavier NX's CPU uses the non-Arm public version of Nvidia's self-

developed Carmel architecture, which is compatible with the Armv8.2 architecture.

The maximum frequency is 1.4-1.9GHz. The Geekbench5 single-core running score

is 473, which is twice as high as the Arm Cotoex-A72 in the Raspberry Pi 4. There

are three groups of CPU Clusters on the NX chip. Each Cluster contains two Carmel

CPUs and a shared 2MB L2 cache. The three Clusters share a 4MB L3 cache. The

total Geekbench5 multi-core running score of the 6 CPUs is 2,307, which is the

highest in the Raspberry Pi 4. 3x that of 4 Arm Cortex-A72 CPUs. Its GPU uses

NVIDIA's previous generation architecture Volta, but the 21Tops computing power it

provides can still beat other edge computing chips.

The complete technical specifications of the Jetson Xavier NX module are shown

in Table 4.1. To ensure experimental consistency, the framework and software

versions used for model development on both platforms remain identical, as listed in

Table 4.2.

Table 4.1 Detailed technical specification of the Jetson Xavier NX

AI Performance 21 TOPS

GPU 384-core NVIDIA Volta™GPU equipped with 48 Tensor cores

CPU 6 Kernel NVIDIA Carmel ARM®v8.2 64-bit CPU, plus 6MB L2+4MB L3

Display Memory 8 GB 128bits LPDDR4x, 59.7GB/s
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Memory 16 GB eMMC 5.1

Power

Consumption
10w |15w |20w

PCIe One x1(PCIe 3.0)+ one x4(PCIe 4.0), in total 44 GT/s*

CSI Camera

Up to 6 cameras (or 24 via virtual channel settings)

14 channels (3x4 or 6x2）MIPI CSI-2

D-PHY 1.2 (up to Gbps)

Video

coding

2x 4K60|4x 4K30|10x 1080p60|22x 1080p30(H.265)

2x 4K60|4x 4K30|10x 1080p60|20x 1080p30(H.264)

Video

decoding

2x 8K30|6x 4K60|12x 4K30|22x 1080p60|44x 1080p30(H.265)

2x 4K60|6x 4K30|10x 1080p60|22x 1080p30(H.264)

Display Two multimodal DP 1.4/eDP 1.4/HDMI 2.0

DL Accelerator 2x NVDLA Engine

Visual

Accelerator
7 channel VLIW visual processor

Network 10/100/1000 BASE-T Ethernet

Size &

Specifications

69.6mmx 45mm

260 pins, SO-DIMM connector

Table 4.2 List of software versions used.

Software Version used

Pytorch 1.7

CUDA 10.2

CuDNN 7.6.5

Python 3.8

OpenCV 3.3.1

4.3.2 Datasets

In this study, both real and virtual datasets are utilized. Real datasets possess

genuine characteristics such as real backgrounds, lighting conditions, and noise.

Using real datasets allows for a better reflection of how objects perform in actual

environments, enhancing the accuracy and robustness of object recognition

algorithms in real-world applications. Virtual datasets, on the other hand, are

generated through computer simulations, enabling control over various data

parameters and conditions. They provide a larger pool of data samples, expediting the
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algorithm's training and testing processes. Additionally, virtual datasets can be used to

assess algorithm performance in different scenarios and conditions, providing a more

comprehensive performance evaluation.

In summary, the use of both real and virtual datasets complements each other,

improving the performance and robustness of object recognition algorithms.

(1) Real Dataset (Public)

This study utilizes the publicly available UA-DETRAC [133] dataset for object

recognition. The UA-DETRAC dataset consists of actual aerial footage recorded at a

frame rate of 25 frames per second (fps) with an image resolution of 960×540 pixels.

It comprises a total of 140,000 images with 8,250 annotated vehicles and 1.21 million

vehicle bounding boxes. The dataset includes various traffic scenes such as

intersections and highways and provides video sequences under different weather and

time conditions, including daytime, night-time, and rainy conditions, as shown in Fig.

4.9. One advantage of this dataset is that it closely resembles the perspective of a

high-altitude camera and is suitable for aerial drone front-end cameras. Additionally,

it contains a diverse set of 8,250 vehicles with various shapes, making it suitable for

detecting different types of vehicles in real-world scenarios. Therefore, using the UA-

DETRAC dataset allows for the better training of object recognition algorithms for

vehicle detection in practical applications.

The dataset's folder names correspond to video IDs and contain information about

the camera's status, weather conditions, and details for each vehicle within the video

sequences. This information includes the vehicle's direction, speed, trajectory length,

occlusion rate, and vehicle type, as illustrated in Fig. 4.10.

Daytime Nighttime Rainy Day

Figure 4.9. Sample images from the UA-DETRAC dataset.
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Figure 4.10 Illustration of data labels in the UA-DETRAC dataset.

(2) Virtual Dataset (Non-Public)

This study utilizes a virtually simulated dataset for recognition, as depicted in Fig.

4.11. The dataset comprises a total of 2,035 images within virtual simulated scenes,

encompassing various natural environments such as seasonal simulations, extreme

weather simulations, and time simulations, as illustrated in Figs. 4.12-4.14. The

dataset includes three categories of objects: airports, vehicles, and buildings, with

variations in vehicle and building types.

Figure 4.11. Example of one virtually simulated image.

(a) spring (b) summer (c) autumn (d)

winter

Figure 4.12 Simulated different seasons of spring to winter (a-d, from left to right).
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(a) early morning (b) noon (c) evening (d) late

night

Figure 4.13 Simulated scenes at different times of a day.

Figure 4.14 Simulated rainy and foggy effects.

4.3.3 Evaluation Metrics

In this study, the evaluation metrics for object recognition primarily include the

Precision (True Positives, TP), Recall (False Negatives, FN), Accuracy, Average

Precision (AP), and Frames Per Second (FPS). True Positives (TP) represent

predictions that are positive and actually true, while False Negatives (FN) represent

predictions that are negative but actually true. On the other hand, False Positives (FP)

indicate predictions that are positive but actually false, and True Negatives (TN)

denote predictions that are negative and actually true. Among these, AP represents the

average precision for a category in the dataset, while Accuracy, Precision, and Recall

are mainly calculated using the confusion matrix, as shown in Fig. 4.15.



Chapter 4. Effective object detection and recognition with an improved YOLOv7

57

Figure 4.15 Illustration of the confusion matrix.
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4.4 Improved YOLO Implementation and Evaluation

4.4.1 Model Training

The recognition module employs the YOLOv7 algorithm. Initially, the training

dataset from the virtual dataset is randomly split into training, validation, and test sets

with a ratio of 6:2:2. Given the hardware information of the server, a batch size of 16

is set, while the other hyperparameters remain unchanged. The loss during the

training process is depicted in Fig. 4.16, where 'L' represents the loss value (Loss).

Figure 4.16 Training loss � under varying number of iterations��.

Simultaneously, training is conducted using cosine metric learning. A batch size

of 32 is set, along with a learning rate of 0.001. The loss function incorporates

parameters to prevent category center jitter, with α set to 0.5, and a balancing

parameter γ set to 0.085. The training results are illustrated in Fig. 4.17. After

multiple iterations, the classification accuracy starts to stabilize and reaches its peak at
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94.5%. This improvement in accuracy is attributed to the significant distances

between different objects in space, enhancing the model's stability.

Figure 4.17 Evolutional variations of classification accuracy in training, where퐴�

and�� denote the classification accuracy and the number of iterations, respectively.

4.4.2 Results from Conventional YOLO in the Server Platform

According to the current research status, YOLO stands out due to its remarkable

balance between speed and accuracy. It can rapidly and reliably identify objects in

images while also possessing the advantage of model lightweight design, as depicted

in Table 4.3.

Choosing the YOLOv3-tiny, YOLOv5s, and YOLOv7 algorithms for

implementation on the server, the recognition results of these three models on a public

dataset are illustrated in Fig. 4.18. After conducting experiments on the UA-DETRAC

dataset, YOLOv7 yielded better results. Consequently, the YOLOv7 was trained on

the virtual simulation dataset. However, the average precision (AP) at a threshold of

0.5 is only 0.897. Since the original YOLOv7's recognition accuracy is relatively low

in virtual scenes, several improvements have been made.
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Table 4.3 Comparison of YOLO Series Architectures and Results [134]

Year version Anchor Framework Backbone AP (%)

2015 YOLO No Darknet Darknet24 63.4

2016 YOLOv2 Yes Darknet Darknet24 63.4

2018 YOLOv3 Yes Darknet Darknet53 36.2

2020 YOLOv4 Yes Darknet CSPDarknet53 43.5

2020 YOLOv5 Yes Pytorch Modified CSP v7 55.8

2020 PP-YOLO Yes PaddlePaddle ResNet50-vd 45.9

2021 Scaled-YOLOv4 Yes Pytorch CSPDarknet 56.0

2021 PP-YOLOv2 Yes PaddlePaddle ResNet101-vd 50.3

2021 YOLOR Yes Pytorch CSPDarknet 55.4

2021 YOLOX No Pytorch Modified CSP v5 51.2

2022 PP-YOLOE No PaddlePaddle CSPRepResNet 54.7

2022 YOLOv6 No Pytorch EfficientRep 52.5

2022 YOLOv7 No Pytorch RepConvN 56.8

2022 DAMO-YOLO No Pytorch MAE-NAS 50.0

2023 YOLOv8 No Pytorch YOLO v8 53.9

Figure 4.18 Detection results from images in three datasets
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4.4.3 Improvements of the YOLOv7

Several improvements have been introduced to the YOLOv7 model for enhancing

its capability in feature extraction, efficiency and efficacy of object detection and

classification as detailed below.

4.4.3.1 Add transformer for improved feature extraction

First, a Transformer module is added into the YOLOv7 backbone network to

enhance its feature extraction capabilities, as shown in Fig. 4.19. The Transformer is

used to replace the last part of C3 in the backbone network to extract image features,

as highlighted in yellow in Fig. 4.19.

Figure 4.19 Network architecture by adding the Transformer to YOLOv7

The CSPDarknet53 in the original backbone network used for feature extraction

and selection consists of a bottleneck structure and three convolutions (C3). In the C3

module, when the feature map 퐹�� of the input of the previous layer is calculated as

two parallel branches, as shown in Fig. 4.19, the number of dimensions of 퐹�� is

reduced by half and two new feature maps are generated. These two feature maps are

concatenated as the output 퐹��� of the C3 module. Use Transformer to replace the
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last part of C3 in the backbone network to extract image features, which enhances the

capability of the feature extraction network and improves detection accuracy.

As shown in Fig. 4.19, the replaced Transformer is connected to the CBS module.

The CBS module is the basic module that makes up the network. It consists of the

convolution layer (Conv), batch normalization (BN) and activation layer, and is

combined with Sigmoid Weighted Linear Unit (SiLU).

4.4.3.2 Introducing the CIoU loss function

After modifying the model structure, in order to improve the training speed of the

model, the CIoU loss function is used in the network structure. The loss function in

YOLOv7 is the GIoU loss function. When the prediction box and the real box are

completely surrounded, GIoU loses the ability to be further optimised. GIoU depends

on the IoU term, which will cause oscillation during the training process and is

difficult to converge. Therefore, it is necessary to improve the loss function. The

GIoU formula is given as follows.

퐺��� = ���−
퐴� − �
퐴�

, �퐺��� = 1−퐺���# 4.3

where �퐺��� is the corresponding loss function.

In Eq. 4.3, IoU is the intersection ratio of the predicted box and the real box. The

smallest rectangle containing both the real box and the predicted box is 퐴� , and � is

the union of the two boxes. CIoU can simultaneously calculate the center offset,

aspect ratio and overlap size of the real and predicted boxes, as defined below.

���� = ���−
�2 �,���

�2
−�� ,����� = 1−����# 4.4

Among them, � and ��� represent the centers of the two frames, α is the balance

parameter, � represents the consistency of the aspect ratio between the real frame and

the detection frame, �2 denotes the calculation of the Euclidean distance between the

two frames, and c represents the minimum of the diagonal length of the rectangle. The

definitions of α and � are given below, where���, ℎ�� and�, h represent the width

and height of PB and GT, respectively.
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As shown in Fig. 4.20, when the regression box has an inclusion relationship, the

IoU Loss values   are the same, and the GIoU Loss values   of the three

regression boxes are the same. It is impossible to judge which regression effect is

better, but the CIoU Loss values   are not the same. Obviously The regression of

the third box is better.

Figure 4.20 Comparison of IoU, GIoU and CIoU in different predicted boxes.

4.4.3.3 Add the GhostBottleneck module for improved efficiency

Meanwhile, the GhostBottleneck module is used in the network structure to

reduce the number of parameters and the associated computational complexity, which

has not only ensured the detection performance but also reduced the computational

costs. Since the backbone network of YOLOv7 has a large amount of calculation,

optimising the backbone network can reduce the number of model parameters to a

certain extent. By replacing the CSP module in YOLOv7 and using GhostBottleneck

in the lightweight network ghost network GhostNet [37], the amount of model

parameters is reduced.

It found from the GhostNet experiments that in ordinary CNNs, the layered

output feature maps have many similarities. Therefore, if a nonlinear convolution is

used, linear convolution is then performed on this basis to obtain the features. Graph,

on the basis of ensuring the feature extraction capability, can reduce a certain

computational complexity. GhostNet first obtains a feature map through nonlinear
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changes, and then performs linear changes on this basis to obtain the ghost feature

map. The GhostNet Bottleneck consists of two stacked Ghost modules, with the first

Ghost module acting as an expansion layer, increasing the number of channels. The

second Ghost module reduces the number of channels to facilitate superposition with

the residual network. Finally, residual connections are used before and after the two

Ghost modules to strengthen feature transfer and gradient return, ensuring the feature

extraction capability of the network.

4.4.4 Results of the improved YOLOv7

In order to validate the effectiveness of the aforementioned improvements,

ablation study experiments were conducted on the virtual simulation dataset by

sequentially adding the Transformer module, CIoU Loss, and the GhostBottleneck

module. The experiment weights were initialized randomly, and the Adam optimizer

was employed with an initial learning rate of 0.001. Three learning rate decays were

performed during the experiments, each reducing the learning rate to half of its

current value. Additionally, weight decay was applied during training with a decay

rate of 0.0001. The results of the YOLOv7 ablation experiments are presented in

Table 4.4.

Table 4.4 Ablation study of the improved YOLOv7

Transformer CIoULoss GhostBottleneck Precision Recall AP@0.5

× × × 0.901 0.942 0.897

√ × × 0.929 0.966 0.924

√ × √ 0.927 0.966 0.922

× √ × 0.908 0.945 0.909

× √ √ 0.908 0.945 0.909

√ √ × 0.939 0.969 0.933

√ √ √ 0.938 0.969 0.932

In Table 4.4, the first row is the basic performance of the original YOLOv7

algorithm framework on the virtual data set. It can be seen that the average detection

accuracy AP@0.5 is 0.897. Then only after the Transformer module was introduced

in YOLOv7, both Precision and Recall improved, and AP@0.5 increased by 3.01%.

When the GhostBottleneck module is introduced at the same time as the Transformer

module, the change in AP@0.5 is small.
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Only in YOLOv7, the loss function GIoULoss was improved to CIoULoss.

Compared with the original YOLOv7 algorithm, although both Precision and Recall

increased, the improvement of detection accuracy by only improving the loss function

was very small, and AP@0.5 only increased by 1.33%. When the GhostBottleneck

module is introduced when CIoULoss is introduced, there is no change in

performance.

Finally, the Transformer, CIoULoss and GhostBottleneck modules were all

introduced into YOLOv7. Compared with the original algorithm, Precision and Recall

were greatly improved, and AP@0.5 increased by 3.90%. Although the Precision and

AP@0.5 have slightly decreased after the introduction of the GhostBottleneck module,

the overall model parameters have been reduced from the original 7.5M to 4.85M, as

shown in Table 4.5. In other words, the GhostBottleneck module can maintain about

the same detection accuracy yet significantly reduce the number of parameters and

computational complexity to benefit the embedded implementation.

Table 4.5 Comparison of model complexity with the GhostBottleneck

Model Main module Parameters CPU time GPU time

Original BottleneckCSP 7.5 M 1.25 s 0.037 s

Add GhostBottleneck GhostBottleneck 4.85 M 0.98 s 0.031 s

To sum up, first, by introducing the Transformer module into the backbone

network, the capability of the feature extraction network is enhanced and the detection

accuracy when the target pixels are small is improved. Second, by adding the CIoU

Loss loss function in the network, it speeds up the bounding box regression rate and

improves the positioning accuracy. Finally, the GhostBottleneck module is used in the

network structure to reduce the amount of parameters and computational complexity,

which not only ensures detection performance but also reduces computational costs

and alleviates the problem of limited device computing power. The experimental

results have validated the efficacy of the improved three improvements. In addition,

visual results from the improved YOLOv7 on the simulated virtual scenes are given in

Fig. 4.21 for visual comparison.
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Figure 4.21 Detection results in virtually simulated scenes.

4.5 Further Comparison with Embedded Implementation

4.5.1 Quantitative Comparison

After training and recognition on the server side, the optimal weight files of

YOLOv7 and the improved YOLOv7 algorithm were ported to the embedded

development environment. The embedded experimental platform selected for this

purpose is the NVIDIA Xavier NX. This platform is compact in size and provides

powerful computing performance for edge computing applications. Leveraging its up

to 21 TOPS (trillion operations per second) of acceleration computing power, it can

parallelize the execution of neural networks and process data from multiple high-

resolution sensors.

Herein, the original YOLOv7 and the improved YOLOv7 were compared on the

embedded platform, where both YOLOv7 and the improved YOLOv7 were

implemented under the PyTorch framework. The results were shown in Table 4.6 for

comparison. As can be seen, the improved YOLOv7 has not only produced much

better results in object detection and classification, as already shown in Table 4.4, the

computational efficiency in terms of reduced CPU/GPU usage and increased frame

rate of processing has further demonstrated its suitability for real-time applications.

Table 4.6 Results of YOLOv7 and improved YOLOv7 on the NX Platform
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Algorithms

Computational process

Detection and

recognition

GPU CPU Actual utilization rate

YOLOv7

Image detection time

(seconds)

1.12 2.9

Real-time camera

detection frame rate

(FPS)

7.4 0.4 CPU Processing: 6 CPUs is

consistently close to 65%.

GPU Processing: 6 CPUs is

approximately 20%, while the GPU

utilization is at 99%.

Video test frame rate

(FPS)

7.4 0.4 CPU Processing: 6 CPUs is

consistently close to 65%.

GPU Processing: 6 CPUs is

approximately 35%, while the GPU

utilization is at 99%.

Modified

YOLOv7

Image detection time

(seconds)

0.63 0.36

Real-time camera

detection frame rate

(FPS)

22-

28

3.4 CPU Processing: 6 CPUs is

consistently close to 60%.

GPU Processing: 6 CPUs is

approximately 25%, while the GPU

utilization is at 30-70%.

Video test frame rate

(FPS)

18-

26

3.4 CPU Processing: 6 CPUs is

consistently close to 58%.

GPU Processing: 6 CPUs is

approximately 60%, while the GPU

utilization is at 30-70%.

4.5.2 Visual Comparison

In addition, visual comparison from the UA-DETRAC dataset and the simulated

virtual scenes are shown in Fig. 4.22 and Fig. 4.23, respectively. As seen, the

improved YOLOv7 has achieved much better the consistency of the object IDs, which

has clearly demonstrated its efficacy in object detection and recognition under

complex scenarios.
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Figure 4.22. Visual results from UA-DETRAC dataset on the NX Platform

Figure 4.23. Visual results from the simulated virtual scenes.
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4.6 Summary

In this chapter, an improved YOLOv7 is presented for more effective and

efficient object detection and recognition from UAV images, by adding the

following three key components, i.e. transformer, CIoULoss and

GhostBottleneck. As a result, the precision, recall and AP@05 have all been

improved, which have validated the enhanced performance by adding these

modules.

In addition, embedded implementation of the YOLOv7 and the improved one

is also compared. The CPU usage, memory consumption and running time for

detection have all been significantly improved. Increasing the detection frame

rate from 7.4 FPS to 22-28 has enabled more chance for real-time

implementation in order to satisfy a wide range of inspection and surveillance

applications.
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Chapter 5. Conclusions and Future Work

5.1 Contributions and Conclusions

In this thesis, several challenges are focused in UAV based SLAM applications,

aiming to provide efficient and effective solutions to enable edge-computing based

deployment and thus benefit a wide range of inspection and survey applications.

These include i) image enhancement of UAV images, ii) effective object detection

and recognition, and iii) embedded implementation for improved efficiency.

Accordingly, innovative solutions are developed in the thesis, along with research

publications to highlight the value of the work.

The major contributions and useful findings of the thesis are summarised as

follows.

1) In Chapter 2, a detailed survey of related work in UAV based SLAM applications

is focused, covering the basic knowledge of UAVs and aerial image processing as

well as computer vision techniques in UAV applications and current status of

visual SLAM development. This can provide valuable insights for people who are

interested in the area of work, e.g. vision-based UAV applications.

2) In Chapter 3, evaluation and assessment of the models for UAV image

enhancement are performed, covering denoising and dehazing, respectively.

Relevant approaches are first reviewed, including conventional ones in spatial

domain and transform domain as well as DL models.

For denoising of UAV images, filtering based approaches including BM3D,

WNNM and a few DL based approaches are selected for assessment, the latter

covers VDN, FFDNet and NAFNet for their better performance than the peers.

Extensive evaluations are carried out in both publicly available and self-collected

datasets. It is worth noting that the conventional method of BM3D seems to

perform comparable or even slightly better than the DL models. This has verified

the great potential of conventional approaches in UAV image enhancement, and

has also demonstrated space for further exploration of the DL models. Useful

discussions are provided to analyse these results.
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For dehazing of UAV images, several DL models are selected for evaluation,

including DehazeFormer, FFANet, GriddehazeNet, GCANet and PMNet, again

using both publicly available and self-collected datasets. Overall, the

DehazeFormer model outperforms all others in the publicly available dataset. For

the self-collected dataset, FFANet seems to have superior performance than other

compared models. These results indicate the potential limitations of the existing

approaches, hence in-depth analysis of the key models and further integration of

different approaches can be beneficial.

3) In Chapter 4, object detection and recognition from UAV images are studied,

using an improved YOLOv7 model along with embedded implementation.

Although the YOLO series of models seem to produce quite promising results of

object detection in various applications, the performance was constrained in the

tested datasets due mainly to the poor quality and less distinguishable features.

Also, these YOLO algorithms suffer from too heavy computational loads and

resource consumption to fit the edge computing. These issues have motivated the

improvements on the YOLOv7 as detailed in the chapter.

Specifically, three important improvements are introduced to the existing

YOLOv7 model. These include adding the transformer to improve feature

extraction, introducing the CIoU loss function to increase the training speed due

to easy of convergence, and appending the GhostBottleneck module to further

reduce the number of parameters and computational complexity. With these

additions, all the quantitative measures in terms of the precision, recall and

average precision have been improved by 2.7-3.7%, a significant achievement on

top of the existing YOLOv7.

In addition, embedded implementation of YOLOv7 and the improved version

is conducted to further validate the efficiency of the improvements. The resources

consumption of the GPU and CPU has been significantly reduced from 99% and

65% to 30-70% and less than 60%, respectively. The processing times for GPU

and CPU based detection has been reduced by 48% and 85%, respectively. This

has led to the increasing frame rate for real-time applications from 7.4 (GPU) or

0.4 (CPU) to 18-28 (GPU) and 3.4 (CPU), respectively. These have demonstrated

the value of the proposed improvements to facilitate the edge-computing based

real-time deployment of the functional modules.
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5.2 Future Work

Although innovative solutions have been developed to address the challenging issues

identified in the thesis in terms of image enhancement, object detection and

recognition and embedded implementation for efficiency. There are utterly unsolved

issues that would need further investigation as detailed below.

1) Image enhancement: Despite of the success in other tasks such as object

detection and classification, DL based UAV image enhancement, particularly

for denoising and dehazing, shows few improvements over conventional

approaches, such as BM3D. This suggests remained space for improvements,

and the potential to combine conventional approaches with DL in this

particular task.

In addition, there are other challenging topics in image enhancement in

UAV applications, such as the low-light environment, poor stability caused

blurring, and low spatial resolution. As a result, new models and approaches

need to be derived to tackle these challenges.

Moreover, as the quantitative metrics for quality assessment, using PSNR

and SSIM, seem inconsistent in many cases. How to derive more consistent

and effective metrics for quality assessment of the enhanced images should be

investigated.

2) Object detection and recognition: Although the improved YOLOv7 model

has shown significantly reduced computation load, increased processing

efficiency, as well as the higher detection accuracy, the CPU usage and

memory requirement are still high. As such, performance optimisation of the

architecture including parallel implementation of the key modules will be

explored in the future. This can further improve the efficiency and usability

especially for edge computing.

In addition, testing and implementation on most recent YOLO models such

as YOLOv8 will be continued in the future work. As an extended and further

optimised model from YOLOv7, YOLOv8 is claimed to have further

enhanced accuracy and efficiency, though the exact performance

improvements may vary, depending on the implementation and the application
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scenarios. Therefore, it is worth applying more work on YOLOv8 to further

improve the performance.

Furthermore, integration of other DL modules for multi-task learning

based joint optimisation can be investigated, such as to consider the image

enhancement with the object detection and recognition module. In this way,

the sequential workflow can be optimised simultaneously in order to improve

the efficiency and efficacy.

3) SLAM based autonomous deployment: As a high-demanding task in UAV

inspection, SLAM based autonomous deployment plays a key role in a wide

range of application scenarios. As such, scene matching navigation can be

focused, based on the outcomes from the thesis. Different from conventional

approaches using the detected corners [135] and local features using the scale

invariant feature transform (SIFT) [136], speeded up robust features (SURF)

and Oriented FAST and Rotated BRIEF (ORB) [137], DL based scene

matching provides a useful alternative for future exploration, especially with

sub-pixel accuracy. The robustness, accuracy and efficiency will be the three

key factors when designing, developing and evaluating such approaches.
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Appendix

List of the online codes used for comparison.
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6) CycleISP: https://github.com/swz30/CycleISP.git, Access date: 05/08/2022

7) TSKL: https://github.com/fingerk28/Two-stage-Knowledge-For-Multiple-

Adverse-Weather-Removal.git, Access date: 23/08/2022

8) DehazeFormer: https://github.com/IDKiro/DehazeFormer.git, Access date:
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10)GridDehazeNet: https://github.com/proteus1991/GridDehazeNet.git, Access
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12) PMNet: https://github.com/Owen718/ECCV22-Perceiving-and-Modeling-

Density-for-Image-Dehazing.git, Access date: 17/06/2022
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