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Abstract

The work of this thesis is in two parts. The first part (Chapters 2 to 4) focuses on

the spatial techniques that are used in disease mapping to analyse disease data with

the main focus being to compare maps over time. These methods are into two broad

groups, non-parametric or interpolation methods, and modelling. For interpolation

methods, nonparametric kernel regression and kriging methods are discussed, and for

modelling, spatial, space-time and ecological models are discussed. The second part

(Chapters 5 to 7) focuses on developing descriptive methods that can be used to

compare two or more maps.

The first part of the work is a novel analysis of Scottish measles susceptibility data for

pre-school and primary 1 and 2 school children for the period of 1999-2005. The spatial

models and space-time models are both used to fit these data and compare the maps

over time at both district and postcode sector levels. The interpolation methods are

used as they can be helpful in comparing maps over time. Census variables obtained

from the 2001 census data are used here. This enabled fitting of an ecological model

to see if any of the variables can be useful in predicting measles susceptibility.

Since maps are similar to images, image analysis methods are adapted to help in the

comparison of maps in the second part of the thesis. Other methods used are map-

based methods, which are ratio maps, difference maps and pseudo-colour maps; use of

plots of parameters that are obtained when fitting a model, plotting the overall mean,

and the parameters for the unstructured (local) and structured (global) variation.

Spatial autocorrelation methods, namely Moran’s I, Geary’s c and their correlograms

are considered. Analogues of point process methods based on distances and used to test

for complete randomness of a spatial point pattern are developed for use in comparing

maps. Here the methods are based on differences rather than distances. The sensitivity

and power of the methods is investigated using a simulation study. Methods that

seemed to perform well are then used to compare patterns in susceptibility to measles

over time, and also to compare NHS24 call uptake data for different disease syndromes.
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Chapter 1

Introduction

1.1 Epidemiology

Epidemiology deals with the occurrence of disease and with disease aetiology (the

study of causes of disease). Last (1988) defines epidemiology as ‘the study of the

distribution and determinants of health related states or events in specified popula-

tions, and the application of this study to control of health problems’. Epidemiology

normally concerns human populations and these populations can often be defined in

geographical terms. Usually the population used is of a given area or country at a

given time. In epidemiological analysis, the variation of population structure between

geographical areas and time periods has to be taken into account (Beaglehole et al.,

1993).

Epidemiologists may try to establish whether over the years, there has been an increase

or decrease in the prevalence or rate of the disease in question, whether a geographical

area has a higher rate of disease than another area, and whether individuals with the

disease in question has different characteristics from individuals without the disease.

The characteristics may be demographic, e.g. age or gender; biological, e.g. blood

levels of antibodies; social and economical, e.g. occupation; personal habits, e.g. diet;

and genetic, e.g. blood groups. The concepts and methods used in epidemiology are

derived from other disciplines such as biology, sociology and statistics (Lilienfeld and

Stolley, 1994).
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1.2 Spatial Epidemiology

Spatial epidemiology is the study of disease occurrence in relation to spatial or geo-

graphical locations. This simply deals with interpretation and analysis of geographical

distribution of diseases.

One of the earliest analysis of distribution of disease is that of Snow (1854) who anal-

ysed the outbreak of cholera in relation to the location of the Broad Street water pump

in London. Many of the statistical methods used in analysing geographical distribution

of diseases were developed about a decade ago (Lawson et al., 2003). This applies to

both literature and statistical software development. This recent development shows a

growing concern in society about environmental health issues in relation to the health

of people, mainly because the statistical methods help in detection of sources of po-

tential health hazards. This is seen as a fundamental issue in studies of environmental

epidemiology (Diggle, 1993). The development of statistical methods also helps in the

allocation of health resources by health services, as the methods allow more accurate

depiction of the relationship between disease incidence and explanatory variables (see

Chapter 2).

There are three main areas of application of the study of spatial distribution of disease.

These are:

1. Disease Mapping

2. Ecological Analysis

3. Disease Clustering.

Disease Mapping: The focus of analysis here is to estimate the true relative risk

(see Section 1.3.2) of disease across the geographical area of study or the disease map.

Since the observed data may contain noise due to random variation, the purpose is

to clean the noise from disease map and reveal the underlying structure. This can be

done by smoothing and modelling (see Section 1.4). The aims were outlined by Law-

son et al. (2000) as follows: (i) to describe the spatial variation in disease incidence

for the formulation of aetiological hypotheses maps, (ii) to identify areas of unusual

high risk so that action may be taken, and (iii) to provide a ‘clean’ map of disease risk

in a region to allow better resource allocation and risk assessment.
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Ecological Analysis: This focuses on the analysis of the spatial distribution of dis-

ease in relation to measured explanatory variables at the aggregated spatial level. In

general, ecological analysis can be defined (in the sense of ecology) as focusing on

explaining the spatial distribution of disease by the inclusion of explanatory variables.

A study of this kind was done by Cook and Pocock (1983), who examined the rela-

tionship of cardiovascular incidence in the United Kingdom to a variety of variables

which included water hardness, climate, location, socio-economical and genetic fac-

tors. Another study is by Donnelly (1995), who examined the respiratory health of

school children and volatile organic compounds in the outdoor atmosphere. The gen-

eral definition can include situations where the relationship between the case address

locations and pollution hazards is through explanatory variables such as distance and

direction from the hazard, thus individual data are directly related to the explanatory

variables.

The problem with ecological analysis is ecological bias, which arises when the associ-

ation between the variables at group/aggegated level is interpreted or applied as the

association at individual level. The issue of ecological bias and methods based on

individual level data have been discussed and developed by different authors, includ-

ing Jackson et al. (2006), Steel et al. (2006) and Steel and Holt (1996). However,

the advantage of ecological analysis is that it uses data already available at low cost,

while individual level data are often unavailable for confidentiality reasons. It has

been argued that the best method is to include both group level (to increase power to

study small area variations) and individual level data (reducing ecological bias) when

available in the analysis (Jackson et al., 2006).

Disease Clustering: This concerns the analysis of disease clusters and their locations

in a disease map. It takes a variety of forms:

General/non-specific clustering : The analysis here is concerned with assessing the

whole disease map to see if it is clustered or not, i.e. whether there are clusters of

regions with high or low disease rates. It does not determine where the clusters are

formed but whether the map is clustered.

Specific/focused clustering : The analysis attempts to find out where the clusters are

located in the map, if they exist. They may be in a fixed or known location, thus

the relationship between disease incidence and the location of hazards may be as-
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sessed. When locations of clusters are unknown, these are estimated from the data.

In this case the clustering is called non-focused clustering. Ecological methods can be

used in the analysis of focused clustering, while in non-focused clustering methods of

analysis which allow estimation of the location of clusters and their form have to be

constructed.

In this thesis we deal with the first area of spatial epidemiology, i.e. disease mapping.

We will also move into ecological analysis.

1.2.1 Types of Spatial Data

There are two forms of mapped data which arise in studies of spatial distribution of

disease, and these dictate which methods to use in analysing data. These are case

event data and region count data. These are discussed by Lawson (2001).

Case event data: A study area/spatial window is defined, say W. For a fixed period

of time, within W, the disease case events which occur at locations xi, i = 1, ...,m,

are recorded. These locations are usually residential addresses, e.g. street address, zip

code (USA) or postcode (UK).

Count data: As in case event data, a study area W with m arbitrarily bounded

subregions is defined, and these subregions may lie wholly or in part in W. Counts or

totals of disease incidence, say ni, i = 1, ...,m, in each subregion are recorded. Usually

the m subregions are arbitrarily defined administrative regions/tracts. These are small

areas within the study window, such as census tracts, health authority areas, counties

or electoral districts. Count data are an aggregation of all the disease cases within a

tract. Due to medical confidentiality, availability of case event data can be limited,

but count data are commonly available from routine data sources such as government

agencies. The methods of analysis used and developed in this project will be those for

count data.

1.3 Disease Mapping

Firstly, we give some definitions. A map, as defined by MacEachren (1995) and Mon-

monier (1996), is a collection of spatially defined objects. This is a two-dimensional

visual representation of Cartesian or polar coordinate locations of objects and some-
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times their attributes; for example, a street map showing the streets and houses on

the streets. In this case the houses may have attributes relating to the population of

each household.

The term disease in disease mapping refers to the geographical distribution of disease

within a population. This distribution can be expressed either as location addresses of

individuals with the disease or total number of individuals with the disease in a small

region/tract. The word mapping refers to the visual representation of the geographical

distribution of the disease (Lawson and Williams, 2001).

1.3.1 Disease Maps

A disease map is a visual representation of a collection of disease objects. These

disease objects may be residential locations of individuals or summary statistics for a

group of individuals. These can be mortality (death rate due to the disease in ques-

tion) or morbidity (rate of disease prevalence/incidence) maps. Prevalence of disease

is the number of cases of disease in a population at a given point in time, and incidence

of a disease is the number of new cases arising in a population in a given period of

time (Beaglehole et al., 1993).

There are three types of disease maps corresponding to certain types of data. These

are:

• Dot maps used for case event data. See Figure 1.1.

• Choropleth maps for count data. Colour or shade of grey is used to represent

different levels of disease rates in a study area. See Figure 1.2.

• Isopleth maps/contour maps, used to display continuous surfaces of measures

made on counts or case event data. See Figure 1.3.

Below are the examples of a dot, choropleth and isopleth maps. These maps are

produced using R, a public domain package for statistics and graphics available at

http://cran.r-project.org/. The R codes used to produce Figures 1.1, 1.2 and 1.3 are

given in Appendix C.
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Figure 1.1: Humberside leukaemia and lymphoma case event map (1974-1986); data

obtained from Lawson (2001).
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Figure 1.2: Choropleth map of susceptibility to measles in Scotland, 2003 pre-school

(data from Health Protection Scotland).
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Figure 1.3: Isopleth map (using kernel smoothing; see Section 4.2) of susceptibility to

measles in Scotland for 2002.

Figure 1.1 displays the case event map of childhood leukaemia and lymphoma in the

north Humberside region of England for the period 1974-1986. Figure 1.2 displays

measles susceptibility proportions for pre-school children in Scotland in 2003. Figure

1.3 is the isopleth map of the ratio of the observed/expected counts of measles suscep-

tibility smoothed using kernel smoothing (see Chapter 4). The case event map (Figure

1.1) reveals clusters of leukaemia cases in the area. The choropleth map of measles

susceptibility (Figure 1.2) shows spatial distribution of measles susceptibility, indicat-

ing areas of high and low susceptibility. The isopleth map of measles susceptibility

(Figure 1.3) shows gradual change in measles susceptibility over space, and indicates

high and low susceptibility areas.

Historical Overview of Disease Mapping

The outbreak of epidemic diseases in the eighteenth and nineteenth century influ-

enced the use of disease maps to represent the geographical distribution of disease.

It appears that the first dot maps were used in North America at the close of the

eighteenth century showing the distribution of yellow fever (Howe, 1986; Stevenson,

1965). Seaman (1798) used two dot maps to show distribution of yellow fever in New
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York. In 1820, Pascalis Ouviere used a dot map which was larger than that of Sea-

man, to show the distribution of yellow fever (Howe, 1986). The aim was to establish

the factors that cause the disease. The concentration of disease was exhibited in one

restricted area with specific environmental factors. This gave support to the local

origin of the disease. Cartwright (1826) also used similar map focusing on Natchez in

Mississippi, which suffered yellow fever in 1823. Seaman, Ouviere and Cartwright were

anti-contagionists and they used the maps as a weapon of debate between them and

the contagionists. Harty (1820) also used a map to mark the dates of the beginning

of contagious fever from 1816-1818 in Ireland.

The outbreaks of cholera in the nineteenth century were also displayed in maps. The

disease maps were used by Baker (1833) to accompany his ‘Report of the Leeds Board

of Health’. The areas where cholera prevailed were shaded red on the map, and based

on the pattern of red areas he observed ‘how exceedingly the disease prevailed in

those parts of the town where there is a deficiency, often an extreme want, of sewage,

drainage and paving’ (Gilbert, 1958). Other maps of cholera were constructed by

Ormerod (1848) about the Oxford situation, Shapter (1849) who published a book

with a dot map representing the distribution of cholera deaths, and Petermann (1852)

who produced a cholera map of the British Isles. He showed the districts that had

the disease in 1831, 1832 and 1833. The most famous and celebrated cholera dot map

is that of Snow (1854). He showed the distribution of cholera deaths in the Broad

Street district of London in 1854 by placing a black dot at the victim’s residence.

He showed that cholera sufferers were those who drank from the Broad Street pump,

and as a result the pump was closed and cholera cases ceased immediately. Several

other maps of cholera were constructed after Snow’s map, including that of Acland

(1856). He used symbols of different shapes and colours to differentiate the cholera

cases in 1832, 1849 and 1854 and to distinguish cases of cholera and those of choleraic

diarrhoea. He found that altitude, drainage characteristics and the contamination of

water resources influence cholera incidence. A cholera map similar to that of Snow was

also constructed for cases of cholera in Hamburg and the adjoining suburb of Altona

(Deneke, 1895). These also associated cholera with contaminated water supplied only

to Hamburg.

Several other maps, apart from those of yellow fever and cholera were also published.
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In 1839 Joseph-Francois Malgaine produced a map of hernia in France, to test aetiolog-

ical theories relating to hernia. This map is considered to be the first statistical map

of disease because of ‘its use of transformation of raw data (the reciprocal transforma-

tion), its technique of agglomeration by departments, its use of shading to represent

class intervals, and its overlaying of external environmental information of test hy-

potheses’ (Glick, 1979). The other disease maps are those of Haviland (Glick, 1979).

The maps were produced to display the distributions of heart disease, dropsy, cancer

and phthisis in 1851 to 1860 in eleven registration divisions of England and Wales

(Glick, 1979).

The next development of disease mapping was during the First World War. It was

important to know which areas were affected by diseases. As a result two works were

produced. These are ‘Global Epidemiology’ by Simmons et al. (1944-54) representing

U.S. effort, and ‘World Atlas for Epidemic Diseases’ by Rodenwaldt and Jusatz (1961),

representing German effort. Unlike the Americans, the Germans included maps (Glick,

1979). Many other atlases, other than those of world wars, were also produced. These

include a disease atlas produced by May (1955), with seventeen maps that represented

major infectious diseases of the world. This was a U.S. work similar to the German

atlas. Howe produced atlases in 1963 with an update in 1971 (Howe (1963) and Howe

(1971)). The work showed for the first time the differences in mortality experienced

throughout the United Kingdom. Other atlases more detailed than that of Howe were

those of Gardner et al. (1983) and Gardner et al. (1984). These were atlases of mor-

tality for England and Wales which showed variations in distribution of diseases, and

new hypotheses of causation were derived from the atlases. An atlas of cancer inci-

dence (Kemp et al., 1985) and an atlas of mortality (Lloyd et al., 1987) were produced

for the 56 government districts of Scotland (see Lawson and Williams, 2001).

Advantages of Using Disease Maps

‘Maps provide an efficient and unique method of demonstrating distributions of phe-

nomena in space. Though constructed primarily to show facts, to show spatial distri-

butions with an accuracy which cannot be attained in pages of description or statistics,

their prime importance is as research tools. They record observations in a succinct

form; they aid analysis; they stimulate ideas and aid in the formation of working hy-

potheses; they make it possible to communicate findings’ (Howe, 1971).
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Disease maps are considered as an important contribution which a researcher can

make (Copperthwaite, 1972). They display geographical distribution of disease. They

can reveal unnoticed information which could not be detected from statistical tables,

therefore they are an enhancement to tabular or verbal methods of communication.

Display of disease information on a map provides visual relationship of the disease

and geographical location, which helps in understanding the impact of environment

on health. High risk areas for a disease can be identified, which aids health authorities

in allocation of health resources, by identifying which areas are in greatest need. For

example, Figures 1.2 and 1.3 indicate that the north and north-west areas of Scotland

are areas of the greatest need, as they have higher rates of susceptibility to measles

in relation to other areas. Disease maps can display more than one factor at a time

(multiple-factor maps). They can display the distribution of the disease and the to-

pography of a region, therefore aetiological hypotheses can be established from the

multiple-factor map. An example of a multiple-factor map is that of prevalence of

Burkitt’s lymphoma (Learmonth, 1972). The maps indicated that warm and rela-

tively moist areas around Uganda and coastal regions of Kenya and Tanzania had

high disease incidence in terms of tumours, while tumours were rare in the highlands

of south west Uganda, central Kenya, northern Tanzania and central Tanzania. When

analysing the maps it was concluded that the risk of tumour is related to the presence

of malaria (Glick, 1979).

Constructing Disease Maps

Lawson (2001) and Lawson and Williams (2001) outline points to take into consider-

ation when constructing disease maps:

Data: A decision has to be made on what kind of data are to be mapped as this affects

the method of mapping. Therefore the form of data to be mapped must be chosen

appropriately. It can be raw data, for example maps displaying observed counts of

disease in regions; or data obtained by statistical processing. For example, producing

isopleth maps requires further processing of disease data (see Chapter 4).

Geographical area: The geographical area of study for disease should be chosen or

defined with great care. Unlike in other areas of applications of spatial epidemiology,

the choice of geographical area in disease mapping may depend more on whether there
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is available data to analyse than on the need to do the disease study. These data

are commonly available at town level, which is too broad for epidemiological interest.

Use of smaller areas allows identification of more localised risks but also means lower

population figures and less stable estimates of rates.

Scale: The extent of aerial coverage possible and extent to which spatial structures

are observed on the map are determined by the scale of the map. On constructing a

disease map, the relationship between the map scale and the study/geographical area

has to be established first, as the scale chosen should represent variation of the disease

within the area of study. For example, consider Figure 1.2, the choropleth map of

measles susceptibility in Scotland. If we were to zoom in (changing scale to increase

resolution) to see more details, we would reduce the geographical area that can be

mapped. Zooming in will allow smaller areas to be examined but this should be done

at the same time as a change in resolution. Zooming out to a large aerial view (for

example, the whole of the UK), the map will lose resolution and have less detail about

the distribution of the disease.

Symbols : Inappropriate use of symbols can lead to the misrepresentation of data,

therefore the use of symbols should be given consideration when used in a map. Sym-

bols can be classified as point, line, colour and shading symbols with different sizes and

shape. Point symbols are used in disease mapping, to represent individual events and

a common size is used. When more than one disease is shown on the map, different

sizes and shapes representing each disease should be used. Different sizes of symbols

can also be used to show different measurements. For example, different symbol sizes

can be plotted at the centroid of each tract in a study area to represent the weight of

the number of counts at each tract, and the standardized mortality/morbidity ratio

(SMR) (ratio of the observed count within a tract relative to the expected count)

(see Section 1.3.2) can be represented this way. Line symbols are not commonly used

in disease mapping except on contour plots to display a continuous surface (isopleth

maps). A constant thickness of lines is used to show levels of constant effect/contour

height. Usually contour intervals are specified, and fewer intervals leads to a smoother

representation. Symbolisation can also be used to distort/exaggerate data in order to

highlight important features. Monmonier (1996) gives examples of this. The use of

symbols in this way should be carefully considered before it is used, as it can make

11



interpretation difficult.

Colour : Colours may be used in a choropleth map. There are problems associated

with the use of colour as arbitrary use of colour intensities and types can produce

distorted representation of disease distributions. Arbitrary scale differences between

colour hues are not easy to interpret as differences in disease incidence (Lawson and

Williams, 2001).

Interpretation of Maps

There are difficulties associated with the use of choropleth maps. The human eye is

attracted to bright colours and colour changes, thus areas displaying bright colours

may attract more attention than other areas. Change of colour can distort map ap-

pearance and influence the interpretation of the map. Use of different sizes and shapes

of symbols can also distort interpretation of the map (Lawson and Williams, 2001).

Snow (1854) used coffin symbols to depict cholera case addresses and these had an

immediate emotive impact (Walter, 1993). The way objects are arranged on a map

affects the interpretation. This is because a human eye can more quickly detect clus-

ters (important in interpretation of disease maps) than other features (Ripley, 1981;

Pickle and Herman, 1995). The choice of grey scaling can also affect interpretation,

as the grouping is arbitrary (Berke, 2004). Irregular sizes and shapes of geographical

areas make the interpretation difficult. Large less populated areas can visually dom-

inate smaller areas which have a larger population and are more reliably estimated

(Marshall, 1991). ‘The visual impact of larger areas is higher and may dominate the

map, leading to biased visual perception, whereas in human epidemiology it is the

smaller, urban areas, and not the rural surroundings, that are primarily of interest

due to population sizes’ (Berke, 2004).

Lawson and Williams (2001) made basic recommendations to help in the interpreta-

tion of maps, and these relate to simplification of maps and the use of colours and

symbols which represent the mapped data as clearly as possible. They suggested use

of monochrome colour schemes, displaying a relative risk in each region, inclusion of

statistical tables of the data used to produce the map, and production of an additional

map of variability of data or estimates used.

To circumvent the problem of irregular area sizes, Oslon (1976) suggested re-drawing
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a map so that areas are proportional to population sizes (a cartogram). This map does

not maintain the contiguity of neighbouring areas but maintains their shapes. Schul-

man et al. (1988) proposed a cartogram algorithm maintaining contiguity of neigh-

bouring areas but distorting their shapes. Non-contiguity cartograms can be more

easily produced than the contiguity cartograms (Marshall, 1991). Dorling (2008) also

argues for the use of worldmapper cartograms as they say more than the conventional

map. The problems associated with choropleth maps can be avoided by smoothing

estimates (see Section 1.4) and constructing isopleth maps which are easier to read

than choropleth maps.

1.3.2 The Standardised Mortality/Morbidity Ratio (SMR)

In disease mapping the simplest form of displaying a disease distribution on a map

is a crude representation of the observed rates, i.e. a map showing the number of

counts/total in each location. This representation does not take into account the

background population or the spatial distribution of population at risk of disease in

question. To take into account the background population, a measure/estimate of a

relative risk is obtained and mapped. Lawson (2001) defines relative risk as ‘the mea-

sure of excess risk found in relation to that supported purely by the local population

which is exposed or ‘at risk”. In disease mapping the estimate of the relative risk

compares the observed with the expected disease incidence and it is referred to as the

standardised mortality/morbidity ratio (SMR).

Let W be a study region with n tract/regions and Oi and Ei be number of observed

counts and expected counts in the ith tract respectively, i = 1, ..., n. Then the stan-

dardised mortality/morbidity ratio in the ith tract is given by the following:

SMRi =
Oi

Ei
, i = 1, ..., n. (1.1)

A value of SMR greater than 1 indicates a higher count than expected, less than 1

indicates fewer cases than expected and a value of 1 indicates that the observed and

expected counts are equal. See also below.

The variance of the SMR is given by:

V ar(SMRi) = V ar(
Oi

Ei
) =

V ar(Oi)

Ei
2 =

θiEi
Ei

2 =
θi
Ei

, i = 1, ..., n, (1.2)
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if it is assumed that Oi ∼ Poisson(θiEi), a simplification which ignores spatial rela-

tionships but is commonly used; and where θi is the unknown relative risk for the ith

region, estimated by SMRi.

The expected counts can be calculated in two basic ways. Expected counts can be ob-

tained as a product of death rates of a standard/reference population and the standard

population of the study community, referred to as indirect or external standardisation.

They can also be obtained from a product of death rates in the study community and

the standard population in the study community, referred to as direct standardisation

(Lawson and Williams, 2001). The standardised rates could be based on national,

regional or study window total rates.

There are problems associated with the use of SMRs (Lawson, 2001; Lawson et al.,

2000). Since they are based on the ratios of observed to expected counts, any slight

change in the expected values will give large changes in the estimates. A near zero

expected value will result in a very large SMR for any observed count. Also the SMR

does not differentiate between regions with zero observations. The variance of the

SMR is proportional to 1
Ei

, therefore the variance in regions/tracts with a small popu-

lation (and hence a small expected value) is large, and variance in tracts with a large

population (hence a large expected value) is small. A variety of methods have been

proposed to address the problems of SMRs and these methods will be discussed in

the next Section. These methods can also be applied to spatio-temporal disease data.

Looking at spatial and temporal epidemiological events helps to identify the disease

trends and reduce the mistake of interpreting one-off SMRs as the level of health in a

community (Lawson and Williams, 2001). Figure 1.2 is an example of a disease map

based on the SMRs of measles susceptibility in Scotland.

1.4 Techniques of Disease Mapping of Count Data

Both non-parametric/informal and parametric methods have been proposed to im-

prove relative risk estimation. The non-parametric methods discussed here use smooth-

ing tools to reduce noise from the SMRs, based on interpolation methods/non-parametric

methods. The parametric methods are based on modelling relative risk to produce es-

timates.
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1.4.1 Smoothing

Smoothing allows interpolation of data values on a grid to neighbouring locations for

which a data value is unavailable, so as to represent the disease variation continuously.

There are different smoothing methods which can be used to interpolate SMRs onto

a continuous surface. These methods include kernel smoothing, which was advocated

by Breslow and Day (1987), and has been discussed by Bowman and Azzalini (1997).

Brillinger (1990) used kernel smoothing for birth-rate data. Kernel smoothing has an

advantage over other smoothing methods because it preserves the positivity of the

SMRs, unlike other methods including kriging methods (Cressie, 1993). Kriging has

been used by Carrat and Valleron (1992), Berke (2004), Lajaunie (1991), McNeill

(1991), Oliver et al. (1992), Oliver et al. (1998), and Webster et al. (1994). For

example, Berke (2004) suggested that negative interpolates in kriging can be avoided

by choosing an appropriate method of kriging. He proposed using kriging on already

smoothed estimates, using smoothing based on empirical Bayes/shrinkage estimates.

Croner and De Cola (2001) used kriging to examine patterns over time in national

public health data.

Other smoothing methods are discussed by Lancaster and Salkauskas (1986), Green

and Silverman (1994), and Ripley (1981). Kelsall and Diggle (1998) proposed the use

of generalized additive models which allow incorporation of covariates. Kelsall and

Wakefield (2002) discussed approaches based on generalised linear modelling, similar

to Diggle et al. (1998).

1.4.2 Modelling

Let Oi, Ei and ni be the observed counts, expected counts and number of individuals

at risk of disease in the ith region with relative risk θi respectively, i = 1, ..., n. A

common model for the distribution of counts of a rare disease is the Poisson approxi-

mation to the Binomial distribution, i.e.

Oi ∼ Pois(Eiθi). (1.3)

The likelihood of Oi is given as

L(Oi|θ) =
∏n
i=1

exp(−Eiθi)
Oi!

(Eiθi)
Oi
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= exp(−∑n
i=1(Eiθi))

∏n

i=1
(Eiθi)

Oi∏n

i=1
Oi!

∝ exp(−∑n
i=1(Eiθi))

∏n
i=1(Eiθi)

Oi

where θ = (θ1, ..., θn). The log-likelihood of Oi given θi will be given by

l(θ) =
n∑
i=1

Oiln(Eiθi)−
n∑
i=1

Eiθi. (1.4)

Differentiating the likelihood with respect to each of the θi, we obtain the maximum

likelihood estimator of the relative risk θi as Oi
Ei

, which is the SMR. In Section 1.3.2,

we discussed the problems associated with mapping the SMRs and different models

have been developed to help to deal with these problems. We review these models in

Chapter 2.

1.5 Data

The data used in this thesis are based on the susceptibility to measles data obtained

from a population database for all of Scotland. Measles, mumps and rubella (MMR)

vaccine was introduced in the UK in 1988. This vaccine protects against measles,

mumps and rubella. The first uptake (MMR1) is recommended for children at ages 13

months and the second uptake (MMR2) is recommended for the children between the

ages of 3 years 4 months and 5 years (Friederichs et al., 2006). In each birth cohort,

for each postcode sector, the number of pre-school and primary school 1 and 2 school

children susceptible to measles is provided as at 1st September each year. It is assumed

that one dose of MMR vaccine has 90 % efficacy, i.e. 10 % of children who received

one dose are still susceptible, and two doses gives combined efficacy of 99 %, i.e. 1

% of children who received both doses are still susceptible. However, MMR uptake

has been decreasing since 1998 as a result of the association in the public mind of

MMR vaccine with autism (Wakefield et al., 1998) although this association has been

disproved (Demicheli et al., 2005; Baird et al., 2008). Number of children susceptible

in a postcode sector is estimated as number of children who have not received MMR

vaccine+0.1 × number of children who received one dose+0.01× number of children

who received a second dose.

The measles susceptibility data are available for seven different birth cohorts. We

have pre-school children born between 1st March 1995-28th February 1997, 1st March

1996-28th February 1998, 1st March 1997-28th February 1999, 1st March 1998-28th

February 2000, 1st March 1999-28th February 2001, 1st March 2000-28th February
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2002, and 1st March 2001-28th February 2003, with susceptibility assessed as at 1st

September 1999, 2000, 2001, 2002, 2003, 2004 and 2005, respectively. Primary 1 and 2

children were born between 1st March 1993-28th February 1995, 1st March 1994-28th

February 1996, 1st March 1995-28th February 1997, 1st March 1996-28th February

1998, 1st March 1997-28th February 1999, 1st March 1998-28th February 2000, and

1st March 1999-28th February 2001, with susceptibility assessed as at 1st Septem-

ber 1999, 2000, 2001, 2002, 2003, 2004 and 2005 respectively. Five of the pre-school

cohorts are also in primary 1 and 2 cohorts. These cohorts are those assessed for

susceptibility at 1st September 1999, 2000, 2001, 2002 and 2003 in pre-school, corre-

sponding to those assessed for susceptibility at 1st September 2001, 2002, 2003, 2004

and 2005 respectively in primary 1 and 2 children. All together we have 937 postcode

sectors with data available.

To be able to perform an ecological analysis, we link the susceptibility to measles data

to 2001 census data available at post code sector level from http://census.ac.uk//casweb.

We select 11 census variables which are thought could be relevant to whether children

in the local area get immunised or not. The data taken are in the form of census

indicator variables relating to the percentage of people in households with no car, per-

centage of people in overcrowded households, percentage of unemployed males, and

percentage of people in low social class households. The other data in the form of key

statistics are the percentage of children aged 0-4 years in a postcode sector (target

group for MMR vaccine), the percentage of households with dependent children, the

percentage of people born in the EU but outside Britain (referred to as born other

EU), the percentage of people born outside the EU (referred to as born elsewhere),

the percentage of people with or without qualifications, the percentage of lone parents

households and the percentage of people working in agriculture.

Analysis is also done at district level (large regions) to compare the results with those

for postcode sectors (small regions). These larger districts are the 56 governmental

districts of Scotland. The data for postcode sectors were combined to obtain data for

56 districts. Ethical approval was not required.
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Descriptive Statistics and Maps of Measles Susceptibility

Table 1.1 and Table 1.2 show descriptive statistics for the proportions of measles

susceptibility (raw data), for pre-school and primary school respectively, at district and

postcode sector levels. For pre-school (Table 1.1) at district level the median/mean

of proportions suggests that measles susceptibility decreased from 1999 to 2001, from

2001 to 2004 measles susceptibility increased and it decreased in 2005. The highest

range is in 2003. At postcode sector level, the trend is similar to districts except that

in 2004 susceptibility decreased and it increased again in 2005. The maps (Figures 1.4

and 1.5) show that generally there is increase in susceptibility over time with higher

susceptibility in 2003 and 2004, and in 2005 susceptibility decreased. Regions with

higher susceptibility were mostly those in the north and central areas.

For primary school 1 and 2 (Table 1.2), for both district and postcode sector levels

median/mean of the proportions suggests a decrease in susceptibility from 1999 to

2003 and an increase from 2003 to 2005. At district level, the highest range is in 2005.

The maps (Figures 1.6 and 1.7) show that most regions have lower susceptibility,

especially in the southern regions, but susceptibility increased in 2005 mostly in the

north and Highlands. In Chapters 3 and 4 this data will be smoothed to take into

account variation due to small counts or population so that better interpretation can

be made.
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Pre-School (Districts)

Year Minimum 1st Quartile Median Mean 3rd Quartile Maximum Range

1999 0.112 0.135 0.144 0.147 0.158 0.214 0.102

2000 0.115 0.133 0.142 0.147 0.156 0.228 0.113

2001 0.111 0.129 0.139 0.142 0.153 0.207 0.096

2002 0.113 0.138 0.150 0.152 0.165 0.206 0.093

2003 0.122 0.159 0.172 0.176 0.186 0.285 0.163

2004 0.130 0.161 0.176 0.182 0.187 0.284 0.118

2005 0.119 0.150 0.163 0.167 0.176 0.236 0.117

Pre-School (Postcode Sectors)

Year Minimum 1st Quartile Median Mean 3rd Quartile Maximum Range

1999 0.000 0.121 0.140 0.150 0.165 1.000 1.000

2000 0.000 0.122 0.141 0.150 0.167 1.000 1.000

2001 0.000 0.120 0.137 0.146 0.162 1.000 1.000

2002 0.000 0.129 0.148 0.157 0.174 1.000 1.000

2003 0.000 0.145 0.171 0.182 0.200 1.000 1.000

2004 0.000 0.000 0.148 0.131 0.190 1.000 1.000

2005 0.000 0.140 0.161 0.170 0.188 1.000 1.000

Table 1.1: Descriptive statistics for proportions susceptibile to measles, for pre-school

for districts (above) and postcode sectors (below)

Primary School (Districts)

Year Minimum 1st Quartile Median Mean 3rd Quartile Maximum Range

1999 0.033 0.053 0.068 0.072 0.087 0.151 0.118

2000 0.033 0.050 0.065 0.066 0.080 0.141 0.108

2001 0.031 0.047 0.059 0.064 0.076 0.137 0.106

2002 0.031 0.045 0.059 0.064 0.075 0.150 0.119

2003 0.030 0.044 0.056 0.061 0.072 0.127 0.097

2004 0.030 0.056 0.063 0.068 0.077 0.116 0.086

2005 0.042 0.066 0.078 0.082 0.091 0.172 0.130

Primary School (Postcode Sectors)

Year Minimum 1st Quartile Median Mean 3rd Quartile Maximum Range

1999 0.000 0.033 0.056 0.068 0.091 0.500 0.500

2000 0.000 0.036 0.056 0.069 0.083 1.000 1.000

2001 0.000 0.037 0.054 0.069 0.081 1.000 1.000

2002 0.000 0.037 0.055 0.071 0.080 1.000 1.000

2003 0.000 0.036 0.052 0.066 0.076 1.000 1.000

2004 0.000 0.044 0.061 0.075 0.083 1.000 1.000

2005 0.000 0.051 0.071 0.085 0.101 1.000 1.000

Table 1.2: Descriptive statistics for proportions susceptibile to measles, for primary

school for districts (above) and postcode sectors (below)
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Figure 1.4: Maps of measles susceptibility proportions for districts, for 1999, 2000,

2001, 2002, 2003, 2004 and 2005 for pre-school children.
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Figure 1.5: Maps of measles susceptibility proportions for postcode sectors, for 1999,

2000, 2001, 2002, 2003, 2004 and 2005 for pre-school children.
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Figure 1.6: Maps of measles susceptibility proportions for districts, for 1999, 2000,

2001, 2002, 2003, 2004 and 2005 for primary school children.
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Figure 1.7: Maps of measles susceptibility proportions for postcode sectors, for 1999,

2000, 2001, 2002, 2003, 2004 and 2005 for primary school children.
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Map of Names of Districts of Scotland

Figure 1.8 and 1.9 show a map of the 56 districts of Scotland and extracted central

districts of Scotland respectively, with the district names given on Table 1.3. A post-

code sector map is not presented here, as the postcode sectors are very small and not

easy to see in the map.

Area Number Area Name Area Number Area Name

1 Skye and Lochalsh 29 Perth and Kinross

2 Banff and Buchan 30 West Lothian

3 Caithness 31 Cumnock and Doon Valley

4 Berwickshire 32 Stewartry

5 Ross and Cromarty 33 Midlothian

6 Orkney 34 Stirling

7 Moray 35 Kyle and Carrick

8 Shetland 36 Inverclyde

9 Lochaber 37 Cunninghame

10 Gordon 38 Monklands

11 Western Isles 39 Dumbarton

12 Sutherland 40 Clydebank

13 Nairn 41 Renfrew

14 Wigtown 42 Falkirk

15 North East Fife 43 Clackmannan

16 Kincardine and Deeside 44 Motherwell

17 Badenoch and Strathspey 45 Edinburgh City

18 Ettrick and Lauderdale 46 Kilmarnock and Loudoun

19 Inverness 47 East Kilbride

20 Roxburgh 48 Hamilton

21 Angus 49 Glasgow City

22 Aberdeen City 50 Dundee City

23 Argyll and Bute 51 Cumbernauld and Kilsyth

24 Clydesdale 52 Bearsden and Milngavie

25 Kirkcaldy 53 Eastwood

26 Dunfermline 54 Strathkelvin

27 Nithsdale 55 Tweeddale

28 East Lothian 56 Annandale and Eskdale

Table 1.3: Table of names of the former 56 Districts of Scotland

(www.gro scotland.gov.uk) corresponding to the numbers on the map in Figure

1.8.
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Figure 1.8: Map of the 56 Districts of Scotland.
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Figure 1.9: Map of Central Districts of Scotland (Enlarged).

1.6 Aim of Thesis

This thesis focuses on disease mapping. In the first part of the thesis we investigate

and compare different approaches to the analysis and modelling of disease maps, using

spatial data techniques. Here we have pre-school and primary 1 and 2 susceptibility

to measles data available at different time points. The aims here are, using disease

mapping models:

• To compare susceptibility to measles at pre-school and primary 1 and 2 school

children. Children in primary 1 and 2 group are expected to have received a

booster to MMR at ages between 3 years 4 months and 5 years, so it is expected

that this group will have lower measles susceptibility than the pre-school group.

Visual comparison of maps will enable us to see if all areas or regions change or

decrease by the same amount or are there pockets where measles susceptibility

does not decrease as much as in others.

• To look at time trends in the spatial distribution of measles susceptibility for

pre-school and primary 1 and 2 school children. This may be able to show us

whether there has been an increase or decrease or an increase followed by a

decrease (or vice versa) in measles susceptibility over time. Also, for each group,
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with the use of maps we will be able to see whether susceptibility in all areas

changes by the same amount or not.

• To see if we can identify areas of high susceptibility at pre-school and primary

1 and 2 stages. These are important to public health as possible areas for a

targeted vaccination campaign.

• Using the ecological model, to see if any of the census variables can be useful in

the prediction of areas of high susceptibility.

The second part of the thesis focuses on developing methods for comparing disease

maps, especially through time. Non-parametric smoothing methods, e.g. kriging, have

been used to smooth data and compare trends over time, and these are explored to

see whether they can be useful for these data. Maps are similar to images, thus some

of the developed methods are based on methods which are used in image analysis

to compare a reference image to a distorted image. Some methods will be based on

methods used in the analysis of spatial point processes to test for complete spatial

randomness of a spatial point pattern. Other methods that we consider are the use

of ratio, difference and pseudo-colour maps (which use the primary colours red, green

and blue to highlight different levels of susceptibility). Spatial autocorrelation methods

and plots of parameters obtained from fitting models are also investigated.

1.7 Thesis Outline

The background and aim of this thesis are given above. In Chapter 2 we review

the methods that have been used in modelling of relative risks, including space-time

models and mapping of multiple diseases. In Chapter 3, we analyse the susceptibility

to measles data (described in Section 1.5) using spatial models, space-time models and

including census variables. Data are analysed at both 56 district and 937 postcode

sector levels of Scotland and the two sets of results are compared.

Except for visual comparison of maps and the use of space-time models, so far in disease

mapping methods have not been developed that can be used to compare extensively

two or more maps, to be able to detect changes that have taken place, especially

changes over time. As interpolation methods have been used to compare maps over

time, these are discussed in Chapter 4 (mainly kernel smoothing and kriging). These
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methods are applied to the susceptibility to measles data. In Chapter 5, new ideas for

comparing disease maps are developed. These ideas include adapting some methods

used in image analysis to compare a distorted image with a reference image, and

analogues of point process methods which compare empirical cumulative distributions.

In Chapter 6 the methods developed in Chapter 5 are tested on simulated data. As we

have susceptibility to measles data available for 1999-2005, in Chapter 7 the methods

that were found to be useful in Chapter 6 are used to compare maps of susceptibility

to measles, for both pre-school and primary 1 and 2 school children, for 1999-2005,

at both district and postcode sector level. We also use these methods to compare

maps produced from proportions of calls to NHS24 attributed to cold/flu and fever,

difficulty in breathing and cough, rash, and diarrhoea and vomiting syndromes (see

Chapter 7). Overall conclusions and discussion, including some suggestions for further

work, are given in Chapter 8.
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Chapter 2

Models for Disease Mapping of

Count Data

2.1 Introduction

In Chapter 1 we discussed SMRs and some of the problems associated with mapping

them. The SMR is the maximum likelihood estimator of the relative risk (see Section

1.4.2). In this chapter we look at different models that have been proposed and

used in disease mapping to address some of the problems relating to mapping of

SMRs. In Chapter 3 spatial data are analysed over a number of years, therefore we

need to review models which might be useful. We review the Poisson-Gamma model,

lognormal/logistic model, mixture models, linear Bayes method, space-time models

and how some of these models can be extended for mapping two or more diseases.

Different methods have been used to estimate parameters in these models, and these

methods are also reviewed here.

In most of the models, the focus of attention is on modelling the relative risks θi.

One simple model is to construct a regression model that includes covariates, i.e. a

log-linear model of relative risk with fixed effects (Lawson et al., 2003). The log-linear

model is used to ensure that the relative risks are positive. For example, we may

assume that there is a spatial trend or long range variation, and in this case the tract

centroid coordinates or functions of the coordinates can be used as covariates. Thus

we have

θi = exp(β0 + β1x1i + β2x2i), (2.1)
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where exp(β0) represents the overall rate in the whole study area, β1 and β2 are lin-

ear parameters, and x1i and x2i are the coordinates of the centroid of the ith region,

i=1,...,n. The model can be extended to include higher order trend surfaces, by in-

cluding powers of the coordinates. The model could also include covariates measured

in each region or tract, which could be found from national census data, relating to

socio-economic measures such as deprivation indicators for each region. For example,

the percentage of people unemployed can give a measure for increased disease risk due

to correlation with poor housing and ill-health. The model can be specified in general

as

θi = exp(xiβ), (2.2)

where x is an n× p matrix consisting of observations on p− 1 covariates and an inter-

cept term, β is a p x 1 parameter vector (β0, β1, ..., βp−1) and xi denotes the ith row of

x. However, fitting the above simple model does not guarantee that the disease map

will be clean of all noise. There may be unobserved effects, usually termed random

effects, which have been discussed by many authors both in statistical methodology

and epidemiology. These include Mantol et al. (1981), Tsutakwa (1988), Breslow and

Clayton (1993), Bernardinelli et al. (1995b), Lawson (2001), Lawson and Clark (2002),

and Richardson (2003).

Random effects are extra variation components which are estimable within a map

(Lawson, 2003). These can occur as a result of individuals in a region who may have

different susceptibilities to a disease of interest (frailty effect), or be associated with

spatial variation not accounted for by covariates in the analysis. There may be extra

Poisson variation or overdispersion, which occurs due to variation in disease rates ex-

ceeding their expected level under the Poisson model. One source of this overdispersion

is when there are large numbers of zero counts, as in rare diseases. Overdispersion can

occur due to unstructured/uncorrelated heterogeneity or structured heterogeneity (due

to correlation between spatial regions), sometimes referred to as spatial clustering or

spatial autocorrelation (Bernardinelli et al., 1995b) or to a combination of both. Un-

structured heterogeneity is a form of independent and spatially uncorrelated variation.

This occurs as a result of differences between spatial units. Structured heterogeneity

implies that there is spatial autoccorrelation between the regions. Regions which share

a boundary or are neighbours to each other tend to have similar disease rates, thus

spatial autocorrelation may arise as a result of clustering of a disease in question or by
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the existence of unobserved or frailty effects (Lawson et al., 2003). All these variations

should ideally be included within the chosen model.

2.2 Models

In this section, we review and discuss some common models that have been proposed

and used in disease mapping. These are two broad groups of models: non-spatial and

spatial. Spatial models take into account that neighbouring regions tend to have the

same disease rate, i.e. existence of spatial autocorrelation, while non-spatial models

ignore the existence of spatial autocorrelation. We also describe some methods which

are used to estimate the parameters in the models.

2.2.1 Poisson-Gamma Model

Clayton and Kaldor (1987) proposed the Poisson-Gamma model in which the relative

risks were assumed to be Gamma distributed. Let Oi, Ei, θi be the observed count,

expected count and relative risk parameter in the ith region respectively, i = 1, ..., n.

Then the observed counts are assumed to be distributed as

Oi ∼ Pois(Eiθi), i = 1, ..., n. (2.3)

Let the relative risks θi be independent and identically distributed. If the prior distri-

bution is such that

θi ∼ Γ(ν, α), (2.4)

with shape parameter ν and scale parameter α, yielding mean and variance, ν
α

and

ν
α2 , respectively, then the posterior distribution for θi will be Gamma distributed also,

where

p(θi|Oi) ∼ Γ(Oi + ν, Ei + α).

Then the posterior expectation is

E(θi|Oi, ν, α) =
Oi + ν

Ei + α
= wiSMRi + (1− wi)

ν

α
, (2.5)

where
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wi = Ei
Ei+α

and SMRi = Oi
Ei

(Lawson et al., 2003).

The marginal likelihood of Oi given θi will be negative Binomial with mean Eiν
α

and

variance Eiν
α

+ Ei
2ν
α2 . Estimation can be done using empirical or full Bayesian estimation

(see Section 3.4). When the observed counts Oi are large, the Bayes estimates will

be close to the SMRs, as the wi will be approximately 1. With Oi small, the Bayes

estimates will tend to be closer to the overall mean risk ν̂
α̂

, as the wi will be closer to

zero.

In the case where covariates are to be included, this model is restrictive but Clayton

and Kaldor (1987) suggested that area level or ecological covariates zi can be incor-

porated by allowing distinct values (αi) for the scale parameters of the distributions

of each θi, and assuming a log-linear model such that

E[log(θi)] = log(
ν

αi
) = zTi β (2.6)

so that the relative risks are now distributed as θi ∼ Γ(ν, αi). The Poisson-Gamma

model allows for overdispersion, but cannot cope with spatial correlation.

2.2.2 Lognormal and Logistic Model

A lognormal model was considered by Clayton and Kaldor (1987). This model was

further developed by Besag et al. (1991), and referred to as the Besag, York and

Mollié (BYM) model. This model assumes that the log relative risk is the sum of two

independent components. Taking the observed counts to be Poisson distributed as in

(2.3), the log relative risks are modelled as

log(θi) = α + ui + vi, (2.7)

with θi = exp(α+ui+vi), where α is the overall mean, ui is the structured heterogene-

ity (spatial autocorrelation or spatial clustering), vi is the unstructured heterogeneity

(which measures overdispersion in the individual region), and both ui and vi are as-

sumed to be independent. We note that when the rate of the disease is not very

small (i.e. the disease is not very rare), assuming the observed counts to be Poisson

distributed will not always be appropriate. In such a case the observed counts are as-

sumed to be Binomially distributed, and instead of the lognormal model, the logistic
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model will be obtained as

Oi ∼ Bin(ni, pi), logit(pi) = ln(
pi

1− pi
) = α + ui + vi. (2.8)

For the logistic model ni and pi are number of people and the unknown probability

of disease respectively in the ith region , i = 1, 2, ...n, with pi = eα+ui+vi

1+eα+ui+vi
. The

parameters α, ui and vi are as described in the lognormal model.

In the model, unstructured heterogeneity is assumed to be normally distributed as

vi ∼ N(0, 1
τv2 ).

For the structured heterogeneity, a spatial correlation structure is used. Several Gaus-

sian Markov random field models have been used (Best et al., 2005 and Ugarte et al.,

2006), but the most commonly used is the conditional autoregressive (CAR) model

proposed by Besag et al. (1991) and used as follows:

(ui|uj, i 6= j,
1

τ 2
u

) ∼ N(ūi,
1

τ 2
i

), i = 1, ..., n, j = 1, ..., n, (2.9)

where

ūi =
1∑

j,j 6=iwij

∑
j,j 6=i

ujwij, τi
2 =

τu
2∑

j,j 6=iwij
, (2.10)

and the weights are such that

wij = 1 if i and j are labels of adjacent regions, and 0 otherwise, (2.11)

hence taking account of the neighbourhood structure of the regions. Parameters τv
2

and τu
2 are the inverse variances of the random effects and they control the variability

of vi and ui respectively. The lognormal model can incorporate covariates so that (2.7)

becomes

log(θi) = α + ui + vi +
p∑
s=1

βsxis (2.12)

with θi = exp(α + ui + vi +
∑p
s=1 βsxis), where βs, s = 1, ..., p, are the coefficients of

the covariates and xis is the value of covariate s in the ith region, i = 1, ..., n. For the

logistic model, when the covariates are in the model the model (2.8) becomes:

Oi ∼ Bin(ni, pi), logit(pi) = α + ui + vi +
p∑
s=1

βsxis (2.13)

where ni and pi are number of people and the unknown probability of disease respec-

tively in the ith region, i = 1, 2, ...n, and the βs, s = 1, ..., p are the coefficients of

covariates x1, ..., xp. Therefore,
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pi = e
α+ui+vi+

∑p

j=1
βjxij

1+e
α+ui+vi+

∑p

j=1
βjxij

.

Unlike the Poisson-Gamma model, the log-normal and logistic models can easily in-

corporate the spatial correlation and include covariates. Estimation can be carried out

using empirical or full Bayesian estimation.

2.2.3 Mixture Models

Concerns (Lawson et al., 2000) that the use of parametric prior models for the rel-

ative risks could over-smooth the relative risks have led to the development of non-

parametric maximum likelihood (NPML) estimation for the prior of the relative risk.

This was first proposed by Clayton and Kaldor (1987), and developed by Schlattmann

and Böhning (1993) and Heisterkamp et al. (1993). These models are mixture models

which detect discontinuities in the map (differences in relative risk between neighbour-

ing regions (Knorr-Held and Rasser, 2000)). However, they do not take account of the

spatial autocorrelation. The risk variation is modelled by a mixture of components

not by a global model (Lawson et al., 2000).

The model assumes that small regions in the whole study area can be grouped into

discrete homogenous relative risk classes/components C1, ..., CK with constant relative

risk αk within the kth class (Böhning et al., 2000, and Lawson and Clark, 2000). There

are K distinct levels of overall risk, α1, ..., αK and probability pk of belonging to class

k, k = 1, ..., K such that

θi ∼ fθi(α1, ..., αk), and P (θi = αk) = pik (2.14)

Following Leyland and Davies (2005), for a mixture of Poisson distributions the con-

ditional likelihood is

f(Oi|α) =
K∑
k=1

pke
−αkEi(αkEi)

Oi

Oi!
, i = 1, ..., n. (2.15)

By Bayes theorem, the probability that the ith region belongs to a class k is estimated

as

p̂ik = P (wik = 1|Oi, Ei) =
p̂ke
−α̂kEi(α̂kEi)

Oi∑K
k=1 p̂ke

−α̂kEi(α̂kEi)Oi
, i = 1, ..., n, (2.16)

where the ith region is assigned to the class for which p̂ik is largest, wik is a la-

tent/hidden random variable and wik = 1 if the ith region belongs to class k and 0
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otherwise. The posterior empirical Bayes estimates are then weighted averages given

by

θ̂i = E(θi|Oi, Ei) =

∑K
k=1 α̂kp̂ke

−α̂kEi(α̂kEi)
Oi∑K

k=1 p̂ke
−α̂kEi(α̂kEi)Oi

(Heisterkamp et al., 1993). (2.17)

Biggeri et al. (2003) formalised the proposed approach using a pseudo-likelihood to

derive a transitional non-parametric maximum pseudo-likelihood (TNPMPL) estima-

tor. This method incorporates spatial autocorrelation. For each area, there are K

risks αik such that (2.15) becomes

f(Oi|αik, k = 1, ..., K) =
K∑
k=1

pke
−αikEi(αikEi)

Oi

Oi!
(2.18)

with the logarithm of αik modelled in terms of SMRs in the regions contiguous to i

(Leyland and Davies, 2005) as

log(αik) = βk + φklog(

∑
j wijOi∑
j wijEi

), (2.19)

with weights wij given by (2.11), and here also the posterior empirical Bayes estimates

are the weighted average of support points in each region as in (2.17) but in this case

weights are region specific. For both NPML and TNPML, the estimation is done via

the EM algorithm (see Section 2.5.1).

Models by Schlattmann and Bhning (1993) ignore the location of regions, i.e. members

of a mixture class may be located over the whole region. Knorr-Held and Rasser (2000),

proposed a spatial partition model which considered the location of regions. Here the

relative risks θi are assumed to be constant over a set of one or more contiguous

regions. The clusters Ck, k = 1, .., K are a partition of regions each with relative risk

αk which is constant among the regions belonging to that cluster. Some regions are

cluster centres. Cluster centres (K of them) are chosen at random. The regions are

then allocated to a cluster if the cluster centre is closest to it in terms of the minimal

number of boundaries that have been crossed to reach it, and regions that have same

distance to two or more clusters are assigned to the cluster with the smallest index

position (Knorr-Held and Rasser, 2000). The observed counts Oi are assumed to be

Poisson distributed with mean αjEi, and in region i of cluster j

log(αj) ∼ N(µ, σ2), j = 1, ..., K (2.20)

with hyperparameters µ and σ2, and prior for the number of clustersK ∼ Unif(1, cmax)

or a geometric distribution. In general cmax may be set to be number of regions (Best
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et al., 2005). Reversible jump MCMC is used to fit the cluster model.

Lawson and Clark (2002) also proposed a spatial mixture model that allows both

smoothness and discontinuities on the map. This model assumes that the log-relative

risks can be decomposed into three additive components, rather than the two used in

Besag et al. (1991), as

log(θi) = α + vi + piui + (1− pi)ϕi (2.21)

where vi is a component representing unstructured heterogeneity (measuring overdis-

persion in an individual region), and vi ∼ N(0, 1
τv2 ), pi ∼ beta(a, a). The two mixing

components are ui, i = 1, ..., n, a spatial correlation, and ϕi, i = 1, ..., n, a component

that models discrete jumps. When pi = 1 we obtain the BYM model, and pi = 0 for

every i gives a pure jump model (Lawson et al., 2000; Lawson and Clark, 2002). For

ui, the usual CAR model is adopted, and for the jump component the prior is

π(ϕ1, ..., ϕn) ∝ 1√
λ
exp(− 1

λ

∑
i j ‖ϕi − ϕj|),

The neighbours for this prior are defined as in the lognormal model and the prior uses

total absolute differences between neighbours (Lawson et al., 2003).

The authors observed that the maps produced from this model were visually closer

to those obtained from the SMRs than those from the BYM model. This suggests

the possibility of using models that do not over-smooth the map while allowing both

smoothing and jumping in the relative risks (Lawson and Clark, 2002).

2.2.4 Linear Bayes Method

Marshall (1991) used a linear Bayes method. If the prior distribution of θi has mean

mi and variance vi, the best linear Bayes estimator of the relative risk θi (in the sense

of total squared error loss) is

θ̂i = mi +
vi

mi
Ei

+ vi
(SMRi −mi). (2.22)

When Ei is large the estimate tends to the SMR, and for small Ei the estimate will

tend towards the prior mean. Assuming constant mean and variance, i.e. mi = m

and vi = v, and using the method of moments, the global estimates (estimates shrunk

towards the global mean) were obtained as

m̂ =

∑
iOi∑
iEi

(2.23)
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and

v̂ =
1∑
iEi

∑
i

Ei(SMRi − m̂)2 − m̂∑
iEi

. (2.24)

Since the estimate of v̂ can be negative, the convention is adopted that θ̂i = m̂ if v̂ < 0.

Marshall (1991) obtained the local estimates (considering spatial correlation), by using

only the regions that are neighbours to a region to obtain the prior mean and variance,

i.e.

m̂i =

∑
j
wijOj∑

j
wijEj

,

where wij = 1 if region i and j are neighbours, and 0 otherwise, and

v̂i = 1∑
j
wijEj

∑
j wijEj(SMRj − m̂j)

2 − m̂j∑
j
wijEj

(Leyland et al., 2005).

2.2.5 Space-time Modelling

In the above sections we have considered methods of smoothing when data are available

at one time point. When data are available at a number of different time points, space-

time models can be used to model the risk in space and time. These models consider

spatial smoothing, temporal smoothing and spatio-temporal interaction. Space-time

modelling may help in identifying time trends, and in producing maps at different

time points. It may be helpful in disease surveillance to monitor spatial patterns

over time, revealing regions which have consistently high relative risks, so these can

be investigated further (MacNab and Dean, 2001). Most space-time models used in

disease mapping are an extension of the Besag et al. (1991) (BMY) model.

Bernardinelli et al. (1995a) proposed a space-time model as follows. Let Oik be the

observed counts for the ith region, i = 1, ..., n, and the kth time interval, k = 1, ..., T .

Similarly Eik and θik are the expected count and relative risk in region i at time point

k. Then

Oik|θ ∼ Pois(Eikθik), log(θik) = α + ui + vi + β ∗ tk + δi ∗ tk, (2.25)

where α is a constant (overall mean rate), ui is the structured heterogeneity, vi is the

unstructured heterogeneity, β ∗ tk is the linear trend term in tk, where tk, k = 1, ..., T

is the kth time point, T is the total number of time points, and δi is the random

space-time interaction effect. The conditional autoregressive (CAR) model is used
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for the spatial correlation terms ui and for the space-time interaction terms δi. The

uncorrelated heterogeneity is assumed to have the Normal distribution

vi ∼ N(0, τv
2).

The parameters α, β, and the inverse parameters of τu, τv, and the δi are assigned

priors.

Waller et al. (1997) proposed a model where the hierarchical specification by Besag

et al. (1991) is applied to each time point k separately, k = 1, .., T . In this model

Oik|θ ∼ Pois(Eikθik), log(θik) = α + ui
k + vi

k, (2.26)

where Oik, Eik and θik are the observed count, expected count and relative risk in

region i at time point k. This model allows the spatial patterns at each time point

to be completely different. As in the log-normal model, the conditional autoregres-

sive (CAR) model is used for the spatial correlation at each time point k, and the

uncorrelated heterogeneity term at each time point k is

vi
k ∼ N(0, τvk

2).

Taking the observed counts to be Binomially distributed, this space-time model be-

comes

Oik|θ ∼ Bin(nik, pik), logit(pik) = α + ui
k + vi

k, k = 1, ..., T (2.27)

where nik and pik are number at risk and probability of risk in region i at time point

k respectively.

One space-time model that is based on a generalised additive mixed model (GAMM),

is a semi-parametric mixed effects model. This additive extension of generalised linear

mixed models was proposed and used by MacNab and Dean (2001) and MacNab

and Dean (2002). The model incorporates spatial random effects and both fixed and

random temporal effects.

Let Oit be the observed count and µit be the conditional expectation of Oit given

the random spatial and temporal effects, for the ith region i = 1, ..., n and year t,

t = 1, ..., T . Then the logarithm of the conditional mean count for the ith region is

taken as

log(µit) = log(nit) + log(m) + S0(t) + θi + Si(t), (2.28)
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where nit is population at risk in region i at time point t, m is the overall mean

rate, S0(t) is the fixed mean rate trend at time t over all local regions considered, the

θi are the random spatial effects (area specific relative risks which may be spatially

correlated) and Si(t) is the random temporal trend effect for the ith region at time

t. MacNab and Dean (2001) and (2002) used a conditional autoregressive model to

model the random spatial effects and used a cubic B-spline for the fixed S0(t) and

random Si(t) temporal effects. S0(t) is then given by

S0(t) =
K∑
k=1

β0,kpk(t) (2.29)

and

Si(t) =
K∑
k=1

βi,kpk(t), (2.30)

where β0,k and βi,k are estimates of the fixed and random effects respectively, and pk(t)

(p not a probability here) is the kth B-spline basis function evaluated at time t.

A special case of (2.28) replaces Si(t) by an approximating random linear trend such

that

log(µit) = log(nit) + log(m) + S0(t) + θi + βit. (2.31)

This model accommodates a non-linear trend modelled by a spline. Then log(m)+S0(t)

is the linear local region relative risk trend and the values of θi+βit are area-temporal

effects which measure the departure of local region relative risks from the overall spline

rate (MacNab and Dean, 2002). This model may represent a generalised linear model

with

E(O|b) = µ = exp(log(m) +Xa+ Zb) (2.32)

where a is a (K + 1) × 1 vector of fixed effects given by a = (log(m), β0,1, ..., β0,K)T ,

and b is a vector of random effects of length 2n given by b = (θ1, ..., θn, β1,1, ..., βn,K)T

with b ∼MVN(0,Σ). The design matrix X of the fixed effects will be nT × (K + 1),

i.e.

X =



1 p1(t1) ... pK(t1)

... ... ... ...

1 p1(t1) ... pK(t1)

... ... ... ...

1 p1(tT ) ... pK(tT )

... ... ... ...

1 p1(tT ) ... pK(tT )
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and Z is an nT × 2n matrix given by

Z =



Z0 Z1

Z0 Z2

... ...

Z0 ZT


where Z0 is an n× n identity matrix, Zl is a diagonal matrix of dimension n with all

diagonal elements equal to tl, l = 1, ..., T , and n=number of regions.

The GAMM model can be extended to include covariates. MacNab and Dean (2001)

and (2002) used Penalised-quasi likelihood (PQL) for estimation of the parameters but

an MCMC approach (see Section 2.6) can also be used. The advantage of the GAMM

model is the use of lower order B-splines, a simple design matrix for generalised mixed

models (GLMM) analysis, and computationally simple estimation, but the disadvan-

tage is lack of invariance to change of basis when using random coefficients with splines

(MacNab and Dean, 2001).

2.2.6 Mapping Multiple Diseases

In disease mapping, models for mapping two (bivariate models) or more diseases have

also been developed and could be used to compare maps at two time points. These

are joint models which are extensions of those used in the case of a single disease.

Since many diseases share common risk factors, for example smoking and alcohol

consumption, joint mapping of two or more related diseases may provide a way to

borrow strength across diseases as well as across nearby regions and provide better

estimates of risk (Best et al., 2005). When interest is in a rare disease, joint modelling

of a rare disease with a more common and related disease may help in increasing

precision in the estimates of the rare disease. The main aim of joint mapping is to find

similarities and dissimilarities in the spatial distribution of disease risk (Dabney and

Wakefield, 2005). Identifying similar patterns in the spatial variation of the related

diseases may give more convincing evidence of common risk factors than in the analysis

of a single disease (Held et al., 2005). For example, in a case when the risk factors of a

disease are known but unmeasured at an area level, the similarity of relative risk rates

to those of a second disease may imply that the diseases have common (or subset) risk

factors, and dissimilarity of spatial patterns may imply that the risk factors are not a
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cause of the second disease (Dabney and Wakefield, 2005).

In the case of two diseases, let O1i and O2i be observed counts from disease 1 and 2

respectively in region i. The observed counts are distributed as

O1i ∼ Pois(θ1iE1i), O2i ∼ Pois(θ2iE2i), (2.33)

where E1i ,E2i are expected counts for the two diseases and θ1i and θ2i are the unknown

relative risks for the two diseases in region i, i = 1, ..., n.

Knorr-Held and Best (2001) proposed a shared component model for the joint spatial

analysis of a disease, with the aim of identifying shared and disease specific varying

patterns of risk (Best et al., 2005). The relative risk is split into three components

and modelled as

log(θ1i) = α1 + ρiδ + β1i, log(θ2i) = α2 +
ρi
δ

+ β2i, (2.34)

where α1 and α2 are overall levels of relative risk for disease 1 and 2 respectively, ρi is

a shared component (representing unmeasured risk factors) shared by both diseases,

β1i and β2i are components specific to diseases 1 and 2 respectively, and δ allows for

a different gradient in the shared component for each disease.

The three components ρi, β1i and β2i, are assumed to be independent, with each one

following a spatial prior distribution. In principle, any spatial prior distribution can

be used (Best et al., 2005). Knorr-Held and Best (2001) used the spatial partition

model by Knorr-Held and Rasser (2000), and the Best et al. (2005) used the Besag et

al. (1991) spatial prior for each component.

The advantages of the shared model are the flexibility of a spatial prior and the ability

to estimate and map the shared and specific components of the risk separately. Held

et al. (2005) extended this model to more than two diseases.

Dabney and Wakefield (2005) proposed a proportional mortality model. Let the ob-

served counts be modelled as (2.33). The log-relative risk is given by

log(θ1i) = α1 + u1i + v1i, log(θ2i) = α2 + u2i + v2i, (2.35)

where u1i and u2i are spatially structured effects and v1i and v2i are unstructured

effects. Let the sum of the two disease counts in area i be Mi = O1i + O2i. Then
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Dabney and Wakefield (2005) assume

O1i|Mi ∼ Bin(Mi, pi) (2.36)

with logit function

logit(pi) = log(
E1i

E2i

) + α + ui
∗ + vi

∗, (2.37)

where

pi =
exp(log(E1i

E2i
) + (α1 − α2) + (u1i − u2i) + (v1i − v2i))

1 + exp(log(E1i

E2i
) + (α1 − α2) + (u1i − u2i) + (v1i − v2i))

, (2.38)

and α = α1 − α2 and ui
∗ can be thought of as u1i − u2i, so that values of the ui

∗

capture similarity and dissimilarity between the spatial random effects of each disease.

That is, large values will indicate that the two disease differ significantly (in terms of

spatial component) in region i, thus a map of the spatial components will highlight

similarities and dissimilarities between the two diseases. The unstructured vi
∗ can

also be taken as v1i − v2i and a map of these values will indicate the regions where

the unobserved unstructured effects are similar or dissimilar between the two diseases.

Area level covariates can be included in the model.

Space-time modelling of two diseases or two sub-groups of one disease was considered

by Richardson et al. (2006) as follows. Let O1it and O2it be observed counts from dis-

eases 1 and 2 in region i and time t, t = 1, ..., T . Then observed counts are distributed

as

O1it ∼ Pois(θ1itE1it), O2it ∼ Pois(θ2itE2it), (2.39)

where E1it, E2it are expected counts for the two diseases, and θ1it and θ2it are unknown

relative risks for the two diseases in region i, i = 1, ..., n, at time t. The log relative

risks are modelled in the most general model as

log(θ1it) = α1 +ρiδ+ξtκ+ςit+ε1it, log(θ2it) = α2 +
ρi
δ

+
ξt
κ

+ςit+ϑi+ηt+ε2it (2.40)

where ρi is the shared spatial pattern, ϑi is the disease 2 differential from the shared

spatial pattern (disease-space interaction in region i), and a spatially correlated (CAR)

prior is used for both of these, ξt is a shared time trend, ηt is the disease 2 differential at

time t from the shared time trend (disease-time interaction), and a first order random

walk prior is used for ξt and ηt. This random walk prior is a one-dimensional version of

the CAR prior with adjacency weight matrix defining the temporal neighbours of time

t as periods t − 1 and t + 1. The terms δ and κ are coefficients representing relative
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effects of the shared risk terms, and ςit is the space-time interaction for region i and

time t. The authors chose to assume ςit ∼ N(0, τς). The terms ε1it and ε2it account

for overdispersion and the authors chose a zero-mean multivariate normal distribution

for the distribution of (ε1it, ε2it)
T . This is an extension of the Knorr-Held and Best

(2001) model.

2.3 Comparison of Models

The Poisson-Gamma model is simple to use, but it is unable to cope with spatial

correlation between relative risks in neighbouring areas. The BYM model can ac-

commodate both spatial correlation and covariates. Lawson et al. (2000) concluded

in their analysis comparing models that the Poisson-Gamma and BYM models out-

perform the mixture models. Unlike the mixture models, the Poisson-Gamma and

BYM models are based on smoothing methods which often smooth over large discon-

tinuities in the risk surface, but these jumps may be important to help in allocation

of resources (Lawson and Clark, 2002; Lawson et al., 2003).

For the mixture models, the NPML approach performs very well in identifying re-

gions with extreme high relative risks but seems to fail when spatial autocorrelation

is present (Militino et al., 2001; Biggeri et al., 2003). However, the TNPML approach

addresses this and Biggeri et al. (2003) found that, unlike NPML, TNPMPL gives

estimates that are closer to the parametric models. The disadvantage of TNPMPL

is that it does not allow for incorporation of covariates. Compared to the mixture

models proposed by Lawson and Clark (2002), the NPML and TNPML approaches do

not consider that other regions in the map may have smooth relative risk transitions.

The strength of using non-parametric mixture models is the ability to divide a region

into clusters, making the production of a disease map simple. These clusters are pre-

sented in a map legend with no need to categorise relative risks into percentiles as in

parametric methods (Militino et al., 2001). The disadvantage is that it is difficult to

obtain standard errors of estimates provided by the EM algorithm (Dempster et al.,

1977).

Comparing the non-spatial and spatial model, even though non-spatial models per-

form well they do not incorporate spatial autocorrelation, which leads to the increase
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of autocorrelation in the residuals (Lawson et al., 2000).

In Chapter 3, the Poisson-Gamma model and BYM model are compared using the

measles data described in Section 1.5. The analysis is then done extensively with the

use of BYM models and the space-time model of Waller et al. (1997).

2.4 Estimation of Parameters

The most common method of estimation in disease mapping is the use of Bayesian

estimation for hierarchical models. The first level of the model is commonly the Poisson

model for observed counts, i.e.

Oi|θ ∼ Pois(Eiθi), (2.41)

and the second level models the extra Poisson variation through a prior distribution,

often Gamma. This distribution is given by the investigator, based on prior belief

concerning the behaviour of the relative risk parameters, and is parameterised by hy-

perparameters. Let L(O|θ) be the likelihood of the observed counts given the relative

risks and g(θ|λ) be the prior distribution of the relative risks given hyperparameters

λ, where O = (O1, O2, ..., On), θ = (θ1, θ2, ..., θn) are vectors of observed counts and

relative risks respectively. Then

p(θ|O, λ) ∝ L(O|θ)g(θ|λ) (2.42)

is the marginal posterior distribution of the relative risk describing the behaviour of

the parameters (relative risks) after the data are observed and prior assumptions have

been made. The relative risks θ may be estimated from the posterior distributions as

the posterior mean or mode. When there are many data the likelihood contributes more

to the relative risk estimation and when the data are fewer then the prior distribution

dominates.

2.4.1 Empirical and Full Bayesian Estimation

The earlier Bayesian hierachical disease methods focused on empirical Bayes methods

to estimate the relative risk. These methods use two-level hierarchical models and they

seek to approximate the posterior distribution. The estimates of the hyperparameters
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λ are the maximum likelihood estimates derived from the marginal likelihood of λ

given by

L(λ) =
∫
L(O|θ)g(θ|λ)dθ. (2.43)

In the empirical Bayes setting to estimate the parameters in the model it is common

to use penalised quasi-likelihood (PQL) methods (see Ugarte et al. (2006) and Section

2.5.2). PQL is straightforward and computationally simple, and performs very well

provided the expected count is not less than two (Leroux, 2000). The EM algorithm

(Dempster et al., 1977) is also commonly used (Section 2.5.1).

Recently, full Bayesian estimation of relative risk has become available due to success-

ful applications of Markov Chain Monte Carlo (MCMC; see Section 2.6) methods of

posterior sampling and its implementation in software packages. In the full Bayesian

approach, the hyperparameters of the prior distribution of the relative risks are given

a distribution (referred to as a hyperprior (f(λ)). Estimation is based on the posterior

distribution of the relative risk given the data.

In general, the joint posterior distribution of the relative risks and the hyperparameters

λ given the observed data is

p(θ, λ|O) ∝ L(O|θ)g(θ|λ)f(λ) (2.44)

with the marginal posterior distribution of θ given the observed data given by

m(θ|O) =
∫
p(θ, λ|O)dλ. (2.45)

The criticism of the empirical Bayesian estimation is that, as it uses estimates of hy-

perparameters, uncertainty is not allowed for in the hyperparameters (Leyland and

Davies, 2005). Bernardinelli et al. (1992) pointed out that the estimates produced

by empirical Bayesian estimation are inexact, as they are conditional on a point esti-

mate for the smoothing parameter, while the full Bayesian method gives approximate

estimates.

2.4.2 Choice of the Prior Distribution for Variance Parame-

ters

Choosing prior distributions is an important part of Bayesian analysis. These give

information about the unknown parameters, and combined with the probability distri-

bution of the data, this gives the posterior distribution which is used to make decisions
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concerning the unknown parameter (Gelman, 2002). Therefore, when assigning a prior

distribution one should consider the kind of information available and the properties

of the posterior distribution obtained.

In full Bayesian modelling, a challenge is in choosing the hyperprior distribution for

the variance (σ2) parameters. When the sample is large, the choice of hyperprior will

have less effect since the data will dominate the hyperprior, but for small sample sizes

the choice of hyperprior becomes very important. In practice, a sensitivity analysis

should be carried out by comparing reasonable choices of hyperpriors, to investigate

the influence of the hyperprior on the relative risks and other parameters.

Some of the proposed prior distributions are uniform distributions (Gelman et al.,

2003) and inverse-Gamma distributions (Spiegelhalter et al., 1994, 2003). These are

noninformative and improper prior distributions. A uniform distribution can be as-

signed to log(σ) as this will be working with a logarithm of a positive parameter, but

this gives an improper posterior distribution. Thus an option is to define σ ∼ U(0, A)

which yields a proper posterior distribution as A → ∞ (Gelman, 2006). For a non-

informative but proper prior, Gelman (2006) recommends approximating the uniform

distribution for σ by a uniform on a wide range i.e. σ ∼ U(0, 100) or a half-normal

distribution centered at zero with high standard deviation.

The inverse-gamma (ε, ε) is the most commonly used prior distribution on the variance

σ2, with ε set to low values such as 1 or 0.01 or 0.001. This prior distribution gives an

improper posterior distribution when the limit ε → 0, therefore reasonable values of

ε must be used. Gelman (2006) demonstrated that when low values of σ are possible

(near zero), then the inference is very sensitive to ε, and thus does not recommend

use of the inverse-gamma prior. In the case that more prior information is required,

Gelman (2006) recommends working with more flexible prior distributions that behave

well near zero rather than the inverse-gamma prior. He recommends half-t family dis-

tributions such as a half-Cauchy prior for σ with a high value of the scale parameter;

for example half-Cauchy (25).
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2.5 Techniques Used in Empirical Bayesian Esti-

mation

In this section some of the techniques used in empirical Bayesian estimation are briefly

discussed, namely the EM algorithm and penalised quasi-likelihood.

2.5.1 Estimation and Maximisation (EM) Algorithm

To compute the maximum likelihood estimates of the hyperparameters (λ) from the

marginal likelihood (2.43), the EM algorithm can be used (Dempster et al., 1977).

This algorithm computes the estimates through an iteration between an estimation

step (E-step) and a maximisation step (M-step). Using the log-likelihood, at the E-

step the estimate of the marginal posterior distribution of θ (2.42) is evaluated at a

particular set of values λ(p) after p iterations, thus, up to constant terms not involving

θ,

log[p(θ|O, λ = λ(p))] = log[L(O|θ)] + log[g(θ|λ = λ(p))]. (2.46)

Let q(λ
′|λ) = E[log(p(θ|λ′))|O, λ], assumed to exist for all pairs q(λ

′
, λ).

At the E-step q(λ|λ(p)) is computed. The M-step maximises (2.46) over the hyper-

parameters λ (Leyland and Davies, 2005), i.e. determines λ(p+1) which maximises

q(λ|λ(p)).

2.5.2 Penalised Quasi-likelihood

Penalised quasi-likelihood (PQL) (Breslow and Clayton, 1993) is an approximation

technique for generalized linear mixed models which uses weighted least-squares esti-

mation for estimating fixed effects parameters and likelihood equations from an ap-

proximating normal model for estimating variance components. Following the formu-

lation of Dean et al. (2004), let Oij, Eij and θij be the observed count, expected count

and relative risk for the ith region and j th age group, i = 1, ..., n, j = 1, ..., J , then

Oij ∼ Pois(Eijθij), i = 1, ..., n, j = 1, ..., J (2.47)

where Eij = nijaj, nij is the population in ith region and j th group and aj is a fixed

age effect.
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Decomposing region by age group we have:

log(θij) = mi + wij, i = 1, ..., n, j = 1, ..., J (2.48)

where mi represents the structured and unstructured heterogeneity, m ∼ N(0, Du),

Du = σ2
m(φQ−1 + (1 − φ)Iu), Q is an n × n matrix determined by the neighbour-

hood structure, Iu is the n × n identity matrix, and φ is the relative weight between

structured and unstructured variation (φ = 1 means no unstructured heterogeneity,

φ = 0 means no structured heterogeneity). The distribution of mi|m−i is taken as

N(m̄δi ,
σ2
m

δi
), where m−i is the set of the random effects excluding the ith one, and m̄δi

is the mean of the random effects corresponding to the δi regions in the neighbourhood

of region i. The term wij ∼ N(0, σ2
w) is the age-region interaction term independent

from mi.

In terms of a generalised linear mixed model (2.47) and (2.48) can be expressed gen-

erally as

E(O|b) = µb = g−1(α + (X)(β) + (Z)(b)) (2.49)

where α is the offset parameter vector given here by the log(nij), b is a vector of

random effects given by (uT , wT )T , (Z)(b) = Z1u+Z2w, where Z1 and Z2 are IJ × J

and IJ × IJ design matrices respectively and Z2 is an identity matrix. Here β is the

vector of fixed effects and is given by β = (log(aij)), i = 1, ..., n, j = 1, ..., J and X

is the corresponding design matrix (IJ × J). The function g−1(·) is the inverse of the

link function, so the linear predictor is η = g(µb). Thus for the log-linear predictor

η = log(µb), g−1 is the exponential function, and ηij = log(nij) + log(aj) +mi + wij.

The integrated quasi-likelihood function is given by (Dean et al., 2004)

|D|−
1
2

∫
exp[−1

2

∑
i,j

dij(Oij, µ
b
ij)−

1

2
bTD−1b]db (2.50)

where d(O, µ) = −2
∫ µ
O
O−u
u
du, var(b) = D, where

D =

 Du 0

0 σ2
wIw



Iw is the identity matrix of dimension IJ, and the covariance matrix D depends upon an

unknown vector ξ of variance components. The PQL is obtained by taking a quadratic

expansion of the exponent in (2.45) about its maximising value before integration.
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To use iterated weighted least squares to estimate the fixed effects, Breslow and Clay-

ton (1993) define the response Y to be Yij = ηij − α + (Oij − µij)g
′
(µij), where

g
′
(µij) = 1

µij
, i = 1, ..., n, j = 1, ..., J . The associated normal model is

Y = (X)(β) + (Z)(b) + ε, (2.51)

where ε ∼ N(0,W−1), W = diag[var(Oij|b)[g
′
(µij)]

2]−1, with β̂ = (XTV −1X)−1XTV −1Y ,

where (XTV −1X)−1 is the estimated asymptotic variance and V = W−1+(Z)(D)(ZT ).

Here V = W−1 + (Z1)(Du)(Z
T
1 ) + σ2

wIw and W = diag(µij). The random effects b

are estimated as empirical Bayes estimates of the posterior mean, and are given by

b̂ = (D)(ZT )V −1(Y −Xβ̂).

The REML equations (Harville, 1977) below (Dean et al., 2004) are used to estimate

variance components,

1

2
[(Y −Xβ̂)TV −1 ∂V

∂ξ
r

V −1(Y −Xβ̂)− tr(P ∂V
∂ξ

r

)] = 0, r = 1, 2, 3, (2.52)

where P = V −
1
2 (I −H)V −

1
2 , and H = V −

1
2X(XTV −1X)−1XTV −

1
2 is the hat matrix.

The asymptotic variance of ξ̂ is ζ−1, with the components of ζ given by

ζrs = 1
2
tr[P ( ∂V

∂ξ
r

)P ( ∂V
∂ξ
s

)], r, s = 1, 2, 3.

Given the initial estimates and initially fixing the variance components, PQL firstly

solves for the (β̂, b̂) using the equations above, then the variance components are then

updated and the process is repeated iteratively until convergence of both the mean

and variance parameters.

2.6 Markov Chain Monte Carlo Methods

In Bayesian disease mapping when it is not possible to obtain the estimated parameters

directly from the posterior distribution (due to the complexity of the models), poste-

rior sampling algorithms referred to as Markov Chain Monte Carlo Methods (MCMC)

are used. These methods use iterative simulation to sample parameters from a distri-

bution that becomes closer and closer to the posterior distribution, say g(θ|O), where

θ = (θ1, θ2, ...θn) and O = (O1, O2, ..., On) are the vectors of relative risks to be esti-

mated and observed counts respectively ,(n is the number of regions). Some of the

many authors who discuss these methods include Robert and Casella (1999), Gilks et
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al. (1996), and Casella and George (1992).

The distribution of the sampled parameters depends on the last value sampled, hence

the samples form a Markov chain. A Markov chain is a (time) sequence of random

variables, say θ0, θ1, ..., such that the next state, θt+1, t ≥ 0, is sampled from a distri-

bution P (θt+1|θt) which does not depend on the history of the chain (θ0, θ1, ..., θt−1)

but only on the current state θt. P (θt+1|θt) is referred to as the transition kernel of

the chain (Gilks et al., 1996). If the chain is run for a long time, then it will eventually

forget its initial state and will converge to a stationary distribution which does not

depend on time t and the starting state θ0. As t increases, the samples obtained are

dependent samples from the stationary equilibrium distribution.

The Markov chain has to be constructed in such a way that the stationary distribution

is the required posterior distribution. This requires constructing the correct transition

probabilities, to obtain the posterior distribution g(θ|O) as the equilibrium distribu-

tion. The convergence of the chain to a stationary distribution, which is assumed to

be the posterior distribution, should be assessed (see below).

The following algorithms are used for the construction of the Markov chain:

1. the Metropolis algorithm, and (its extension) the Metropolis-Hastings algorithm,

and more commonly

2. the Gibbs Sampler algorithm.

2.6.1 Metropolis and Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm (Hastings, 1970) is a generalisation of a Metropolis

algorithm (Metropolis et al., 1953). For the Metropolis-Hastings algorithm at each

time t, the next state θt+1 is obtained by sampling θ
′

from a proposal distribution

q(·|θt) which may depend on θt. The proposal function must be an irreducible and

aperiodic transition function (Tierney, 1995; Roberts, 1995) for suitable convergence.

Different choices of proposal function may be used.

The proposal θ
′

is accepted with probability α(θt, θ
′
), where

α(θ, θ
′
) = min{1, g(θ

′|O)q(θ|θ′)
g(θ|O)q(θ

′ |θ)
}. (2.53)
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If θ
′

is accepted, then the next state becomes θt+1 = θ
′
, otherwise the chain does not

move, i.e. θt+1 = θt.

The Metropolis algorithm considers only proposal distributions which are symmetric,

having the form q(θ|θ′) = q(θ
′ |θ). The acceptance probability in (2.53) reduces to

α(θ, θ
′
) = min{1, g(θ

′
|O)

g(θ|O)
}.

2.6.2 Gibbs Sampling

Gibbs sampling is a special and very popular case of Metropolis-Hastings, proposed by

Geman and Geman (1984). The proposal distribution is generated from the conditional

distribution of θi given all other θj, i = 1, ..., n, j = 1, ..., n, j 6= i, and the proposed

value is accepted with probability 1.

Let q(θj|θ
′
j) = p(θj|θt−1

−j ) if θ−j = θt−1
−j , and zero otherwise, where p(θj|θt−1

−j ) is the

conditional distribution of θj given all other θ values (denoted θ−j) at time t − 1,

j = 1, ..., n. Then

q(θ|θ
′
)

q(θ
′ |θ)

= g(θ
′
|O)

g(θ|O)
,

hence (2.53) gives α(θ, θ
′
) = 1.

2.6.3 Metropolis-Hastings Algorithm versus Gibbs Sampling

There are disadvantages and advantages associated with each algorithm. The Gibbs

sampling requires evaluation of a conditional distribution, and at each iteration it

samples a new single value for each θi, i = 1, ..., n, and does not provide block updates

of parameters. The Metropolis-Hastings algorithm does not need to evaluate a con-

ditional distribution, but it does not guarantee the acceptance of a new value, and it

provides block updates of parameters (Lawson et al., 2003).

2.6.4 Assessing Convergence

When using MCMC methods, the convergence of the Markov chain to a posterior

distribution has to be assessed. Robert and Cassela (1999) and Chen et al. (2000)

review methods to assess this convergence, by checking distributional properties of

the samples generated. The chain has to be run for an initial burn-in-period (period

before convergence is reached) until it can be assumed to have reached convergence.
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After convergence, the chains are run to produce more accurate posterior estimates.

The burn-in estimates are usually discarded and not used in calculating the estimate

of the parameter(s) of interest.

The accuracy of the estimates can be assessed using the Monte Carlo standard error

of the mean. This is the standard deviation of the difference between the mean of the

sampled values and the true posterior means. A rule of thumb is that the Monte Carlo

standard error (MCSE=Sd
n

), where Sd is the standard deviation of the chain values

and n is the number of iterations, should be less than 5% of the standard deviation of

the parameter estimate (Lawson et al., 2003).

When running a single chain, convergence can be assessed by methods which look for

stabilisation of the posterior probability in a time series. Brooks-Draper and Raftery-

Lewis diagnostics can also be used (Lawson et al., 2003). The Raftery-Lewis single

chain diagnostic estimates the number of iterations required to estimate accurate quan-

tiles, while the Brooks-Draper diagnostic estimates the number of iterations needed to

quote the mean estimate to a given number of significant figures with accuracy. These

diagnostics are used in packages such as MLwiN. Trace plots simply plot the value of

the estimated parameter across iterations.

Single chain methods can be used to assess multiple chains but there are also methods

which can only be used for multiple chains. Gelman and Rubin (1992), Brooks and

Gelman (1998) and Robert and Casella (1999) proposed the use of the Gelman-Rubin

statistic, used in packages such as WinBUGS. This statistic is based on running paral-

lel chains starting from different values and computes the ratio of between chain runs

to within chain runs. The output is a plot where the width of the central 80% interval

of the pooled runs is given by a green line, the blue line gives the average width of

the 80% interval of the within runs, and the ratio of the pooled/within is a red line

(Lawson et al., 2003), (See Section 3.2.1 for an example). Convergence is said to have

been achieved if the pooled/within ratio has converged to 1 and both the pooled and

within interval lines have converged to a stable value.

There is a debate about whether to run one single chain for a long time or multiple

chains with different starting points. However the multiple chains have an advantage

as they provide evidence for convergence across different subspaces (Lawson et al.,
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2003).

2.6.5 Assessing Goodness-of-fit

In Bayesian and hierarchical modelling (Lawson et al., 2003), the Bayesian Information

Criterion (BIC) is widely used to help in model selection, and can be estimated from

the output of an MCMC algorithm. For a model with log-likelihood l(θ), let p be the

number of linearly independent parameters, n be the number of data points and

l̂(θ) = 1
K

∑K
i=1 l(θi)

be the averaged log-likelihood over K posterior samples θi of θ, i = 1, ..., k. Then the

Bayesian Information Criterion value will be given by

2l̂(θ)− p ln(n).

Given two models, BIC attempts to identify the ”true” model, and the model with

the lowest value of BIC is the preferred model.

Spiegelhalter et al. (2002) have proposed another model choice criterion, called the

Deviance Information Criterion (DIC). This is based on the principle that DIC is given

by goodness of fit and complexity of the model. Following Spiegelhalter et al. (2002),

the goodness of fit is measured through deviance and is given by

D(θ) = −2logL(O|θ)

where O are the observed data. The complexity is measured by the estimate of the

effective number of parameters as

pD = Eθ|O(D)−D(Eθ|O(θ)) = D −D(θ),

which is the posterior mean deviance minus the deviance evaluated at the posterior

mean of the parameter. Thus, the DIC is then given by

DIC = D(θ) + 2pD = D(θ) + 2(D −D(θ)) = D + pD. (2.54)

The model with the smallest DIC is estimated to be the best model that fits a set of

data.

Analysis of residuals also helps in the assessment of model goodness of fit. A residual
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is defined as a standardised difference between the observed value and the fitted model

value. Standardisation is based on a measure of the variability of the difference be-

tween the two values (Lawson et al., 2003). The ith unstandardised residual is defined

as

ri = Oi − Ôi (2.55)

and the standardised residual as

ri =
(Oi − Ôi)√
var(Oi − Ôi)

, i = 1, ..., n. (2.56)

When the observed counts are Poisson distributed, we have

ri =
(Oi − Eiθ̂i)√
V ar(Oi − Eiθ̂i)

. (2.57)

The Pearson chi-squared residual sum of squares (RSS) can also be used to assess

goodness of fit. This is the sum of squares of the residuals in (2.57).

The following Bayesian residual was described by Carlin and Louis (1996), as

ri = Oi −
1

K

K∑
k=1

E(Oi|θ(k)
i ), (2.58)

where E(Oi|θi) is the expected value from the posterior predictive distribution and θ
(k)
i

is a set of k parameter values sampled from the posterior distribution by the MCMC

algorithm. When a constant region risk rate is assumed, then a residual which averages

the posterior samples will be given by

ri = Oi −
1

K

K∑
k=1

Eiθ
(k)
i . (2.59)

Spiegelhalter et al. (1996) suggested obtaining (2.56) at each iteration of a posterior

sampler and averaging over the converged sample.

2.7 Conclusion

In this chapter we have outlined and discussed the models which are used in disease

mapping of count data, together with the different methods that can be used to es-

timate parameters in these models. The models discussed are those used when data

are available at one time point and different time points (space-time models), and also
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models used in mapping two or more diseases.

Some models like the Poisson-Gamma and NPML models do not incorporate spatial

correlation, while models like the lognormal and logistic models and TNPML do eas-

ily allow for spatial correlation. As neighbouring regions tends to have similar disease

counts, it is better to take into account the spatial correlation. Fitting a non-spatial

model will not take this into account, therefore, spatial models may be preferred over

non-spatial models. Also, inclusion of covariates in a model will help with accounting

for unobserved effects, if they exist, thus models that allow for this may be preferred.

It is important to realise that in trying to circumvent the problems of mapping the

SMRs, we also should not over-smooth the relative risks, as this may result in wrong

interpretation of the distribution of the disease in question. Considering jumps in

the relative risks surface is of great importance also. The Poisson-Gamma and BYM

models are based on smoothing methods, while the non-parametric mixture models

NPML and TNPML detect discontinuities in the map. Thus, it may be helpful to put

these two concepts together, as in the model proposed by Lawson and Clark (2002)

(described in Section 4.2.3).

As for estimation of parameters, for empirical Bayesian estimation PQL is considered

to be straightforward and simple. Breslow and Clayton (1993) suggest that PQL is a

very useful approximation method except for the analysis of very small counts. The

PQL method was compared to maximum likelihood estimation by Leroux (2000), who

recommends maximum likelihood estimators only for very large sample sizes.

Even though full Bayesian estimation is used widely due to the availability of software

that can handle such complexity, Leyland and Davies (2005) argue that empirical

Bayesian estimation still has its place.

In the next chapter, using susceptibility to measles data described in Section 1.5, we

choose to fit models that are commonly used to these data. The Poisson-Gamma and

lognormal models are fitted using empirical and full Bayesian estimation, and the two

estimation methods are compared. The log-normal and logistic models are compared

to see which one will fit the data better and are used to compare maps over time. The

space-time model of Waller et al. (1997) is also fitted to the data and used to compare

maps over time. Inclusion of covariates is also considered.
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Chapter 3

Analysis of Measles Data

3.1 Introduction

Measles, mumps and rubella vaccine (MMR) uptake decreased since 1998 (Friederichs

et al., 2006) as a result of a postulated association with autism and bowel disease

claimed by Wakefield et al. (1998). The association has since been disproved by some

authors, including Demicheli et al. (2005) and Baird et al. (2008). There are pub-

lic health concerns with falling MMR vaccine rates and so it is of interest to examine

trends in MMR uptake over time and also regional variation in uptake rates. Recently,

there have been confirmed cases of measles in England and Wales, with cases in 2008

nearly 40% higher than in 2007 (www.hpa.org.uk/hpr/archives/2009/hpr0509.pdf).

In this chapter we analyse the measles susceptibility data described in Section 1.5. In-

creases in measles susceptibility estimates were predicted from the decreases in MMR

uptake (Friederichs et al., 2006). For each of the pre-school and primary 1 and 2

groups, the analysis is done at both district and postcode sector level. Children in the

primary 1 and 2 school group should have received an MMR booster, and so are ex-

pected to have lower susceptibility than pre-school children. The analysis will enable

us to compare susceptibility for these two groups.

For each group, pre-school and primary 1 and 2 children, susceptibility to measles is

compared over time for the period 2000-2005. This analysis will be able to show time

trends in the spatial distribution of measles susceptibility, and thus inform if there

has been an increase or decrease over time. As susceptibility maps will be produced

here, the spatial distribution of measles susceptibility will be visually compared over
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time, and the areas in which susceptibility has changed or not changed over time will

be able to be seen. If susceptibility has changed in some areas, it should be possible

to see whether different areas have changed by the same amount or not. As it is im-

portant for public health to know which areas have high susceptibility, the aim here is

also to see if these areas can be identified, as this may help with targeted vaccination

campaigns. Here visual comparison of maps is used but in Chapter 7 the descriptive

methods developed for this purpose will be used.

The census area level data, described in Section 1.5, is also used here to see if any of the

variables can be used to predict which areas have high susceptibility. Friederichs et al.

(2006) used the Scotland measles data, and found that the decrease in MMR uptake

was associated with increase in deprivation. Previous studies in England and Wales

have highlighted high educational attainment, deprivation and population density as

being negatively associated with MMR vaccine uptake (Wright and Polack, 2006).

A recent study for the whole of the UK has also shown that a lower uptake of the

MMR vaccine is associated with children who live in households with other children,

i.e. being the three or more in the family, lone parent households, households with

highly educated mother (AS/A level, degree or above), households with unemployed

or self-employed mother, and households with mother under 20 years or over 34 years

when she gave birth to cohort child (Pearce et al., 2008).

Friederichs et al. (2006), analysed measles data for Scotland pre-school and primary

1 and 2 school children, to assess MMR uptake across Scotland from its introduc-

tion in 1988 to 2005. A linear regression model was used to analyse the data and to

examine effects of deprivation on susceptibility to measles. The study we do here is

different from Friederichs et al. (2006) study in the sense that it is the first study to

use the spatial model, space-time model and spatial ecological model, to analyse Scot-

tish measles susceptibility data. Also maps of susceptibility to measles are produced

here, thus allowing the spatial distribution of measles susceptibility to be visualised

for each year and compared over time, which has not been done before. Friederichs et

al. (2006) used only the Carstairs index to examine effects of deprivation, whereas here

the four components of deprivation are used, i.e. percentage of people in households

with no car, percentage of people in households with low social class, percentage of

people in overcrowded households and percentage of unemployed males. These com-
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ponents are kept separate in the analysis to check if they had similar effects. Also

other variables are included: percentage of children aged between 0-4, percentage of

people born in other European Union countries (other than UK), percentage of people

born elsewhere (other than EU), percentage of lone parent households, and percentage

of people working in agriculture, percentage of people with no qualifications, and per-

centage of people with high qualifications (first degree, higher degree and professional

qualifications).

In the next section, the software used here is described. Using one data set of measles

susceptibility, an illustration of how the model fitting is done in disease mapping is

presented based on some of the models reviewed in Chapter 2 (which are considered to

be commonly used). This will also allow a comparison of empirical and full Bayesian

modelling. As our interest is in fitting a full Bayesian model to the whole data set, the

full Bayesian lognormal and logistic models are compared to see which one will fit the

data better, and the best fitting model will then be used to fit the rest of the data.

3.2 Model fitting

The software packages used here are R (http://www.r-project.org) for data manage-

ment, empirical Bayesian modelling, and selection of census variables and WinBUGS

(http://www.mrc-bsu.cam.ac.uk/bugs), for full Bayesian modelling. The WinBUGS

codes for the models fitted in this chapter are based on the ones given in Lawson et al.

(2003), and given in Appendix D. WinBUGS uses MCMC methods to sample from the

posterior distribution and allows mapping of the fitted parameters, including relative

risks and residuals, using a spatial module called GeoBUGS.

Firstly, to see how some of the models fit to the data, the Poisson-Gamma model,

lognormal model of Besag et al. (1991) and the logistic model (Section 3.2.2) were

fitted to the pre-school susceptibility to measles data for 1999 at district level. This

also will allow the comparison of these models in fitting these data. The empirical

and full Bayesian modelling based on the Poisson-Gamma and lognormal model are

compared. The full Bayesian lognormal model and full Bayesian logistic model were

also compared to select a model that fits the data best. In R we use the package

DCluster, which contains the functions empbaysmooth and lognormalEB which pro-
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duce empirical Bayesian estimates (EB) for a Poisson-Gamma and log-normal model

respectively. The estimates for the two models are all based on the models proposed

by Clayton and Kaldor (1987) and described in the previous chapter.

3.2.1 Poisson-Gamma and Log-normal Models

Firstly, the ratio of observed counts/expected counts and their standard errors were

obtained, for the raw susceptibility data for 1999 pre-school, for 56 districts. The

number of expected children susceptible to measles was obtained as

Ei = Ni ∗
∑

Oi∑
Ni
, i = 1, 2, ..., n,

whereNi andOi are total number of children and observed number of children (product

of total number and proportion susceptible) susceptible to measles in the ith district

respectively and n is the number of districts.

The empirical and full Bayesian Poisson-Gamma and log-normal (without the spatial

term) models were fitted. In the full Bayesian modelling, two chains with different

initial values were run. For the Poisson-Gamma model the first 2000 iterations were

discarded as burn-in and each chain was run for a further 2000 iterations. The pa-

rameters monitored were α and β of the Gamma distribution and the relative risks θi.

The parameters α and β were assigned an exponential hyperprior. For the log-normal

model, the first 4000 iterations were discarded as burn-in and chains were run for a

further 4000 iterations. The parameters monitored were the relative risk parameters

(θi), the overall mean (α) and the inverse variance of the uncorrelated heterogeneity,

tau.v (τv). When specifying the prior distributions for the parameters in the log-

normal model, Gamma(0.1, 0.001) priors were used for the inverse variance (τv). This

was assigned with an understanding that the hyperprior will give a large variance,

therefore it will be relatively flat over a large range, thus will have little influence on

the likelihood of the data.

Figures 3.1 and 3.2 show examples of how convergence was monitored for α and β in

the Poisson-Gamma model. The trace plots (Figure 3.1) of the estimated parameters

show that the parameter estimates have converged, i.e. simulation has stabilised. The

Gelman and Rubin plots (Figure 3.2) show that the parameters converged after 2000

iterations, as indicated by the pooled/within chain variance ratio (red) line having
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converged to 1 and both the pooled (green) and within (blue) interval widths lines

having converged to a stable value.

Table 3.1 shows the minimum, maximum, range and mean of the ratios of observed/expected

counts, and the empirical and full Bayesian estimates of relative risks obtained from

the Poisson-Gamma and log-normal models. Smoothing with both models increased

the minimum (from 0.512), reduced the maximum (from 2.342) and reduced the range

of the ratio of observed/expected (from 1.830), as would be expected. For the Poisson-

Gamma model, the empirical Bayesian range is 1.189 and the full Bayesian range is

1.161. For the log-normal model the range for the empirical estimates is 1.280 and for

the full Bayesian estimates the range is 1.356.

Figure 3.1: Trace plots diagnostic for α (a chains) and β (b chains), where red and

blue are the traces for chains 1 and 2.

Figure 3.2: Plots of Gelman and Rubin convergence diagnostic for α (a chains) and

β (b chains), where the pooled/within chain variance ratio line is red, pooled chain

variance line is green and within chain variance line is blue.

The range of susceptibility rates produced by the Poisson-Gamma model is slightly

greater for empirical Bayes than full Bayesian estimation, while for the log-normal
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model the range is higher for the full Bayesian method than the empirical Bayesian

method. Also, the mean of the smoothed rates produced by each model is smaller

than the mean of the ratios (observed/expected). Therefore, smoothing the rates has

helped remove random variability from the data due to small observed and expected

counts.

Figure 3.3 shows maps of the ratios (observed/expected) and of their standard errors

(top), maps of the empirical and full Bayesian estimates from the Poisson-Gamma

model (middle), and empirical and full Bayesian estimates from the log-normal model

(bottom). Cut-off points are chosen in such a way that all maps use the same ranges

of values so that they are comparable. The darker colour in the key indicates a higher

susceptibility rate, while lighter colour indicates a lower susceptibility rate. The stan-

dard error map shows that most regions have standard errors of 0.05-0.10 and these

are mostly those with high susceptibility rates, and regions in the central area with

low susceptibility rates have lower variation. The maps produced from the estimates

obtained by smoothing are smoother, with some extreme rates removed. The maps

produced by both empirical and full Bayesian methods have the same spatial pattern.

It can be observed that high susceptibility is found in the central regions and some

districts in the south. Table A.1 in Appendix A shows the ratio (observed/expected)

and the smoothed susceptibility rates from fitting the four models. For most districts

the empirical and full Bayesian models give the same or very close results.

Table 3.1 gives parameters for the Poisson-Gamma and lognormal models for empirical

and full Bayesian models. For the Poisson-Gamma models, the values of the parame-

ters are slightly larger for the full Bayesian than for the empirical Bayesian model. For

the lognormal models, the values of the parameters are slightly larger for the empirical

Bayesian model than for the full Bayesian model. The RSS values indicate that there

is no difference between fitting the Poisson-Gamma and lognormal empirical Bayesian

models, and there is no difference between fitting the Poisson-Gamma and lognormal

full Bayesian models.
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Figure 3.3: Maps of raw susceptibility to measles rates (observed/expected) (top left),

standard errors (top right), empirical Bayesian (middle right) for Poisson-Gamma

model and full Bayesian (middle left), and empirical Bayesian for log-normal (bottom

right) and full Bayesian for log-normal (bottom left), for estimates of susceptibility to

measles for pre-school 1999.
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SMR PG(EB) PG(FB) LN(EB) LN(FB)

Minimum 0.5115 0.5806 0.5822 0.5885 0.5745

Maximum 2.3420 1.7700 1.7430 1.8680 1.9300

Range 1.8305 1.1894 1.1608 1.2795 1.3555

Mean 1.1050 1.0770 1.076 1.0800 1.0950

a 9.86 10.73

b 9.16 9.99

α 0.0367 0.025

σ2
v 0.098 0.102

RSS 55.06 59.26 55.00 59.27

Table 3.1: Table of minimum, maximum, range and mean of observed/expected ratios

using the empirical (EB) and full Bayesian (FB) estimates of Poisson-Gamma (PG)

and log-normal (LN) models for pre-school 1999.

However, the RSS indicate that the empirical models fit these data better than the

full Bayesian model, we choose to pursue full Bayesian modelling as we have access to

WinBugs which will enable us to fit the models and producing maps easily.

In our analysis we are interested in fitting a model with covariates, to see if they

have any effects on susceptibility to measles, thus we choose to pursue the use of the

lognormal model. Firstly in the next section the lognormal model is compared with

the logistic model to see which of the two models will fit the data better.

The interest in this thesis is to use full Bayesian modelling to analyse the susceptibility

to measles data, therefore the lognormal and logistic model are compared based on

the full Bayesian analysis.

3.2.2 Comparing Log-normal and Logistic Models

The full Bayesian logistic model (2.8) in Appendix D was fitted to the 1999 pre-school

data and compared with the full Bayesian log-normal model (2.7) to see which of the

two models fits these data better. The overall goodness of fit measures used to com-

pare the models are the residual sum of squares (RSS), and the residual maps.

RSS for both the models is almost the same, 60.58 (lognormal) and 60.68 (logistic),

indicating that there is little difference in the way these models fits this measles sus-

ceptibility data. The maps of the standardised residuals in Figure 3.4 show that the
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Figure 3.4: Maps of standardised residuals of the log-normal (left) and logistic (right)

models for pre-school 1999.

two models fit the data very similarly, with only Lochaber district having a residual

in a different class when comparing the two maps. The range of the residuals for the

log-normal model is 2.570, with minimum -1.489 and maximum 1.081. The range of

the residuals for the logistic model is 2.588 with minimum -1.489 and maximum 1.099.

The DIC for lognormal model is 439.92 and for logistic model is 436.26. The change

in DIC is -3.66, indicating that the logistic model might fit these data better than the

lognormal model.

In the next section we choose to use the logistic model, especially since we have Ni and

Oi available in our datasets. Also susceptibility pi is not small in all areas, especially

for pre-school, so assuming a Poisson distribution will not always be appropriate. The

space-time model of Waller et al. (1997) is also used and ecological analysis is done

using the logistic model.

These models were fitted in WinBUGS, and Appendix D gives the WinBugs code.

For all the analyses convergence was checked using time series plots/traces and the

Gelman and Rubin convergence diagnostic. When specifying the prior distributions

for the parameters, Gamma(0.1, 0.001) priors were used for the inverse variances and

noninformative N(0,1E-05) priors were used for the regression coefficients and for the

intercept (i.e. a flat prior).
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3.3 Analysis of Measles Data for 56 districts

In this section, susceptibility to measles data for pre-school and primary 1 and 2, for

2000-2005, is analysed at district level. The logistic model (2.8) is fitted separately

to each of the 6 years in each group, and the space-time model (2.27) is also fitted

to each group of the pre-school and primary 1 and 2 children. The analysis will

enable us to compare measles susceptibility over time for each group and to compare

susceptibility to measles of pre-school children to primary 1 and 2 school children.

Also the difference between fitting a space-time model and a spatial model to each

time point will be assessed.

3.3.1 Comparing Maps Over Time at District Level

The logistic model (2.8) and space-time model (2.27) were fitted to both the pre-

school and primary 1 and 2 school data at district level. Convergence is different

for each model and for pre-school and primary 1 and 2 school children, and even in

each group, time points may have different burn-in periods. For the logistic model,

on average 6,000 (pre-school) and 4,000 (primary 1 and 2) iterations were run before

convergence was achieved and the parameter estimates are based upon a further 6,000

and 4,000 iterations for pre-school and primary 1 and 2 school children respectively.

For the space-time model, a burn-in of 12,000 (pre-school) and 10,000 (primary 1 and

2) iterations was needed and estimates are based upon a further 12,000 and 10,000

iterations respectively.

For pre-school, Figures 3.5 and 3.6 show maps of susceptibility obtained by fitting the

logistic model (2.8) to each time period for each of these groups, and the space-time

model (2.27), respectively. The limits on the maps were chosen such that all the maps

have the same groups, so that maps can be compared. For all the maps we tried

to balance a 5th in each group over all 6 maps and retain interpretable boundaries.

Looking at the logistic model (Figure 3.5), generally the maps show that susceptibility

is increasing over time, with 2003 and 2004 having the highest number of districts with

high susceptibility, and susceptibility decreased in 2005. In 2000 susceptibility is less

than 15% in central and south Scotland and greater than 16% in the north and west

of Scotland. The number of regions with susceptibility to measles of less than 15%

increased in 2001; this includes regions in the north east.
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Figure 3.5: District level maps of estimated probabilities of pre-school children sus-

ceptible to measles for 2000, 2001, 2002, 2003, 2004 and 2005 (logistic model).
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Figure 3.6: District level maps of estimated probabilities of pre-school children sus-

ceptible to measles for 2000, 2001, 2002, 2003, 2004 and 2005 (space-time model).
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Figure 3.7: Plots of variability components and mean with 95% credible interval bars,

for logistic and space-time Waller et al. (1997) models for pre-school children at district

level, against years 2000-2005.
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Pre-School

Year Logistic model Space-time model

α proportion σu σv σu σv

2000 −1.83 (-1.89,-1.77) 0.16 (0.15,0.17)) 0.08 (0.03,0.17) 0.21 (0.17,0.27) 0.05 (0.003,0.18) 0.57 (0.47,0.69)

2001 −1.86 (-1.92,-1.80) 0.16 (0.15,0.17) 0.08 (0.02,0.17) 0.22 (0.17,0.28) 0.05 (0.002,0.16) 0.58 (0.48,0.71)

2002 −1.78 (-1.84,-1.71) 0.17 (0.16,0.18) 0.07 (0.02,0.16) 0.22 (0.17,0.28) 0.05 (0.002,0.14) 0.56 (0.47,0.69)

2003 −1.56 (-1.60,-1.53) 0.21 (0.20,0.23) 0.15 (0.07,0.24) 0.09 (0.03,0.14) 0.07 (0.004,0.23) 0.54 (0.45,0.66)

2004 −1.57 (-1.62,-1.52) 0.21 (0.20,0.22) 0.10 (0.04,0.18) 0.17 (0.12,0.22) 0.07 (0.005, 0.27) 0.54 (0.44,0.66)

2005 −1.67 (-1.73,-1.62) 0.19 (0.18,0.20) 0.09 (0.03,0.18) 0.18 (0.14,0.24) 0.05 (0.004,0.25) 0.53 (0.43,0.64)

Primary School

Year Logistic model Space-time model

α proportion σu σv σu σv

2000 −2.75 (-2.84,-2.66) 0.06 (0.06,0.07) 0.23 (0.09,0.39) 0.31 (0.23,0.40) 0.27 (0.05,0.45) 0.21 (0.13,0.31)

2001 −2.80 (-2.87,-2.71) 0.06 (0.06,0.07) 0.22 (0.10,0.35) 0.29 (0.21,0.38) 0.27 (0.14,0.42) 0.19 (0.11,0.28)

2002 −2.76 (-2.81,-2.70) 0.06 (0.06,0.07) 0.29 (0.17,0.44) 0.16 (0.07,0.25) 0.29 (0.16,0.45) 0.17 (0.05,0.27)

2003 −2.85 (-2.93,-2.78) 0.06 (0.05,0.06) 0.22 (0.11,0.36) 0.27 (0.19,0.35) 0.24 (0.11,0.40) 0.23 (0.16,0.32)

2004 −2.71 (-2.78,-2.63) 0.07 (0.06,0.08) 0.18 (0.04,0.32) 0.25 (0.18,0.33) 0.21 (0.09,0.35) 0.18 (0.10,0.25)

2005 −2.47 (-2.52,-2.41) 0.08 (0.08,0.09) 0.21 (0.10,0.35) 0.21(0.14,0.28) 0.21 (0.06,0.30) 0.32 (0.25,0.41)

Table 3.2: Pre-school and primary 1 and 2 posterior means with lower and upper cred-

ible intervals in the brackets, for overall mean level (α), proportion ( eα

1+eα
), standard

deviations due to correlated heterogeneity (σu) and uncorrelated heterogeneity (σv)

for logistic and space-time (Waller et al., 1997) models for the 56 districts.

Thus susceptibility is lower in most regions in 2001 than 2000. In 2002, susceptibility

started to increase. The number of regions with less than 15% susceptibility decreases,

and pockets of increased measles susceptibility can be observed in the south and the

Borders regions. There is a global increase in susceptibility in 2003, with suscepti-

bility greater than 16% in the western regions, and in 2004 isolated regions with low

susceptibility can be seen in the south and Borders. Susceptibility decreased in 2005

but only in the north east and the Borders.

High susceptibility is also observed in the urban areas of Glasgow, Edinburgh, Ab-

erdeen and Dundee, especially from 2002 to 2005. As for the cities of Edinburgh and

Aberdeen, high susceptibility has been seen from 2000. The space-time model (Figure

3.6) maps give similar interpretation to the logistic model maps (Figure 3.5), but in

2001 the space-time model map shows that there were more regions with high measles

susceptibility (greater than 16%) than as shown by the logistic model. In 2004 and

2005, the space-time model shows that Badenoch and Strathspey district had a lower

measles susceptibility than as shown by the logistic model. Such differences may occur
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as the space-time model has only one α parameter, thus this model may give similar

results to the logistic model when α does not vary over time, as in the case of primary

1 and 2 school children (see Figures 3.8 and 3.9).

Table 3.2 gives values of the model parameters and plots of these parameters are

shown in Figure 3.7. For the logistic model and pre-school, the years 2000 to 2002

have similar overall proportion and structured standard deviations, and only a very

slight increase in unstructured standard deviation, indicating a slight change in spa-

tial variation. Spatial variation changed very significantly in 2003. This year had

the smallest unstructured variation, indicating that the regions became more similar

with high susceptibility and the highest structured standard deviation as clusters of

higher rates increased. The logistic model shows that the overall proportion ranges

from 0.16-0.21.

The credible intervals suggest that there was no real difference in overall proportion

from 2000 to 2002, but the overall proportion increased from 2002 and decreased in

2005, with 2003 and 2004 being similar and having the highest overall proportions.

This corresponds with what is shown by the maps, i.e the number of regions with high

susceptibility increased over time, and is higher in 2003 and 2004 with a decrease in

2005. The structured standard deviation ranges from 0.07-0.15 (logistic model) and

0.05-0.07 (space-time model), and the unstructured standard deviation ranges from

0.09-0.22 (logistic model) and 0.53-0.58 (space-time model). For both models and

both standard deviations, the credible intervals are wide. For the structured standard

deviation, for both models the credible interval suggests no real differences over time.

For unstructured standard deviation, for the space-time model the credible intervals

suggest no real differences but for the logistic model the credible intervals suggest that

the 2003 unstructured standard deviation was different from other years (lower).

With the exception of 2003, from both models unstructured standard deviations are

larger than structured standard deviations, indicating that variation in susceptibility

rates is more due to general differences between regions than local clustering.

For primary 1 and 2, Figures 3.8 and 3.9 show maps of susceptibility obtained by

fitting the logistic model (2.8) to each time period for each of these groups, and the

space-time model (2.27) respectively. The two models give similar maps. As expected,
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each year has fewer regions with higher measles susceptibility and lower probabilities of

children susceptible than in the pre-school group. Generally susceptibility increased

most from 2004 to 2005. In 2000 susceptibility is less than 5% in central Scotland

and there are isolated pockets of susceptibility greater than 9.5%. Table 3.3 and

Figure 3.10 show overall proportion ranging from 0.06-0.08 (logistic model), unstruc-

tured standard deviation ranging from 0.16-0.31 for the logistic model and 0.17-0.32

for space-time model, and structured standard deviation ranging from 0.18-0.29 for

logistic model and 0.21-0.29 for the space-time model. The two models give similar

results. Year 2000 had the greatest unstructured variability, indicating more variation

in susceptibility between regions than in other years.

In 2001, relative to 2000, susceptibility in northern regions over 9.5% tended to de-

crease. For both models unstructured standard deviation is slightly less than in 2000

but still indicating variation in susceptibility between regions. These two years have

the same overall proportion, which is the smallest among all years, indicating in gen-

eral for these two years susceptibility rates were lower compared to other years, and

almost similar local standard deviations. In year 2002 the central regions still have

susceptibility of less than 5%. There is a decrease in susceptibility in the southern,

Borders and north east regions, with pockets of increased susceptibility in the north

west and central regions. This year (2002) has the lowest unstructured standard de-

viation, indicating regions are more similar than in other years, and the highest local

standard deviation, indicating that there is more clustering of susceptibility rates than

in other years. In 2004 we observe increased susceptibility in the central regions, and

in 2005 an increase in susceptibility can be observed with susceptibility greater than

9.5% in the west and north. Also here some of the urban regions, Aberdeen and Ed-

inburgh, had high susceptibility rates for each year. An increased overall proportion

in 2004 and 2005 indicated the increase in high susceptibility rates.

For primary 1 and 2, 2005 has highest unstructured variability for the space-time

model, while for the logistic model 2000 had the highest unstructured variation. Cred-

ible intervals are wider for the standard deviation parameters and they do not suggest

any major differences over time, unlike for pre-school 2003 (logistic model). Also struc-

tured and unstructured deviation are roughly equal, unlike for pre-school. There is

very little change for α over time, though there is a suggestion of an increasing trend.
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Figure 3.8: District level maps of estimated probabilities of primary 1 and 2 school

children susceptible to measles for 2000, 2001, 2002, 2003, 2004 and 2005 (logistic

model).
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Figure 3.9: District level maps of estimated probabilities of primary 1 and 2 school

children susceptible to measles for 2000, 2001, 2002, 2003, 2004 and 2005 (space-time

model).
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Figure 3.10: Plots of variability components and mean with 95% credible interval bars,

for logistic and space-time Waller et al. (1997) models for primary 1 and 2 children

at district level, against years 2000-2005.
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The difference observed between the models may be due to the fact that when fitting

the space-time model, this model contains only one α. Because of that, the space-time

model may only really be appropriate if α does not vary over time, as in the case of

primary 1 and 2. Otherwise as in the case of pre-school, we obtain higher values of

unstructured variation than those obtained from the logistic model. Therefore in this

case it will be better to use the logistic model.

Comparing pre-school and primary 1 and 2 school children, the overall proportion

for pre-school is higher than it is for primary 1 and 2 school years, indicating that

pre-school children have higher susceptibility rates than primary 1 and 2, as expected.

Susceptibility is increasing significantly over time in pre-school compared to primary

1 and 2 school children, as can be observed from the maps of pre-school getting darker

more quickly (regions with high susceptibility increasing) over time than in the case

of primary 1 and 2. Urban districts of Edinburgh, Glasgow, Dundee and Abeerden

are indicated in both groups to have high susceptibility rates.

Generally, districts are relatively less similar in primary 1 and 2 than in pre-school,

indicated by higher standard deviations in primary 1 and 2 than pre-school. Some

birth cohorts are in both pre-school and primary 1 and 2 school groups. Susceptibility

was estimated in 2000, 2001, 2002 and 2003 for pre-school, corresponding to 2002,

2003, 2004 and 2005 for primary 1 and 2 school groups. The 2003 pre-school/ 2005

primary 1 and 2 birth cohort has the highest susceptibility in both groups.

The next section focuses on comparing maps at postcode level sector. The results

can then be compared to the district level results to see if there are any differences or

similarities.

3.4 Comparing Maps Over Time at Postcode Sec-

tor Level

It is expected that the same regions shown at district level to have high/low suscep-

tibility will be observed at postcode sector level, thus giving the same interpretation

of the maps, but, as the postcode sectors are smaller, there is more potential for

them to be spatially clustered than districts. Also there is more sampling variation
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at postcode sector level than at district level. For the postcode sector analysis, for

the logistic model, a burn-in period of 8,000 (pre-school) and 9,000 (primary 1 and 2)

iterations was used before convergence was achieved, and the parameter estimates are

based upon a further 10,000 iterations for both pre-school and primary 1 and 2. For

the space-time model, a burn-in of 12,000 iterations was needed for both pre-school

children and results are based on a further 12,000 iterations.

Figure 3.11 and Figure 3.12 show maps of susceptibility obtained by fitting the lo-

gistic model (2.8) to each time period for each of these groups, and the space-time

model (2.27) respectively. For pre-school, as at district level, generally susceptibility

to measles is increasing over time followed by a decrease in 2005. In 2000 susceptibility

is less than 15% in central and south Scotland and greater than 16% in the north and

the Highlands. In 2001, there is an increase in number of regions in the north east with

lower susceptibility of less than 15% and the number of postcode sectors with greater

than 16% susceptibility (higher susceptibility) decreases in the north. These postcode

sectors in the north again have an increase in susceptibility in 2002. In 2003 a global

increase in susceptibility is observed and this is increased further in 2004, but isolated

pockets of postcode sectors with low susceptibility can be seen here. Susceptibility

decreased in 2005, especially in the north east, south and the Borders. The urban

areas of Glasgow, Edinburgh, Aberdeen and Dundee have high susceptibility rates, as

observed in the districts.

Unlike the logistic model, the maps obtained from the space-time model (Figure 3.12)

show that susceptibility decreased in 2002, followed by an increase from 2003, while

for the logistic model susceptibility decreased in 2001, followed by an increase from

2002. The space-time model indicates that 2000 and 2001 have more regions with

susceptibility greater than 16% than are shown by the logistic model. The logistic

model shows that 2003 has more (almost twice as many) regions with susceptibility

greater than 16% than are shown by the space-time model.

Table 3.3 and Figure 3.13 show values and plots of parameters obtained from the

models. For the logistic model, the overall proportion ranges from 0.17-0.21. As

the number of postcode sectors with low susceptibility increased in 2001, the overall

proportion here is lower than in 2000.
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Figure 3.11: Postcode sector level maps of estimated probabilities of pre-school chil-

dren susceptible to measles for 2000, 2001, 2002, 2003, 2004 and 2005 (logistic model).
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Figure 3.12: Postcode sector level maps of estimated probabilities of pre-school chil-

dren susceptible to measles for 2000, 2001, 2002, 2003, 2004 and 2005 (space-time

model).
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Figure 3.13: Plots of variability components and mean with 95% credible interval bars,

for pre-school children, for logistic and space-time models, for 937 postcode sectors,

against years 2000-2005.
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Pre-School

Year Logistic model Space-time model

α proportion σu σv σu σv

2000 −1.77(-1.78,-1.75) 0.17 (0.16,0.17) 0.14 (0.10,0.17) 0.03 (0.01,0.06) 0.15 (0.12,0.19) 0.03 (0.008,0.05)

2001 −1.80 (-1.82,-1.78)) 0.16 (0.16,0.17) 0.14 (0.11,0.18) 0.03 (0.01,0.05) 0.17 (0.14,0.21) 0.03 (0.01,0.06)

2002 −1.72 (-1.74,-1.70) 0.18 (0.176,0.184) 0.16 (0.12,0.19) 0.03 (0.01,0.05) 0.16 (0.12,0.19) 0.02 (0.008,0.03)

2003 −1.55 (-1.57,-1.52) 0.21 (0.20,0.213) 0.17 (0.12,0.20) 0.04 (0.03,0.06) 0.15 (0.11,0.19) 0.13 (0.09,0.16)

2004 −1.57 (-1.62,-1.53) 0.21 (0.20,0.22) 0.15 (0.11,0.19) 0.06 (0.04,0.08) 0.15 (0.10,0.20) 0.03 (0.008,0.08)

2005 −1.63 (-1.65,-1.61) 0.20 (0.19,0.21) 0.11 (0.08,0.14) 0.02 (0.02,0.04) 0.11 (0.08,0.14) 0.02 (0.007,0.03)

Primary School

Year Logistic model Space-time model

α proportion σu σv σu σv

2000 −3.21 (-3.45,-2.87) 0.041( 0.03,0.06) 0.54 (0.44,0.62) 0.09 (0.01,0.18) 0.39 (0.30,0.47) 0.29 (0.24,0.33)

2001 −2.77 (-2.81,-2.73) 0.063 (0.060,0.065) 0.47 (0.36,0.56) 0.18 (0.09,0.24) 0.37 (0.30,0.46) 0.28 (0.24,0.33)

2002 −2.75 (-2.78,-2.71) 0.064 (0.062,0.066) 0.40 (0.31,0.50) 0.16 (0.03,0.22) 0.34 (0.27,0.41) 0.24 (0.20,0.29)

2003 −2.81 (-2.84,-2.77) 0.060 (0.058,0.063) 0.37 (0.28,0.46) 0.20 (0.14,0.25) 0.33 (0.25,0.40) 0.26 (0.22,0.31)

2004 −2.65 (-2.68,-2.62) 0.071 (0.068,0.073) 0.40(0.32,0.48) 0.11(0.02, 0.17) 0.30 (0.24,0.37) 0.26 (0.26,0.31)

2005 −2.48 (-2.51,-2.45) 0.084 (0.081,0.086) 0.40 (0.34,0.46) 0.05 (0.01,0.12) 0.25 (0.17,0.33) 0.37 (0.32,0.41)

Table 3.3: Pre-school and primary 1 and 2 posterior means, with 95% credible intervals

in brackets, for overall mean level (α), proportion ( eα

1+eα
), standard deviations due

to correlated heterogeneity (σu) and uncorrelated heterogeneity (σv) for logistic and

space-time (Waller et al., 1997) models for 937 postcode sectors.

There is an increase from 2002 to 2003, as it can be seen from the maps that high

susceptibility rates increased. The highest overall proportion is in 2003 and 2004, as

shown by the maps that most postcode sectors have higher susceptibility rates than in

other years, and in 2005 there was a slight decrease in overall proportion as postcode

sectors with high susceptibility rates decreased. The credible intervals for the overall

proportions suggests there was no real differences in overall proportion for 2000 to 2002

and in 2003 there was an increase in overall proportions and this remained similar in

2004, and there was no real difference in 2005.

For both models, the structured standard deviation ranges from 0.11-0.17 with wider

credible intervals suggesting no major differences over time for structured variation.

The unstructured standard deviations ranges from 0.02-0.06 for the logistic model and

0.02-0.13 for the space-time model. For the space-time model the credible intervals

suggests a change in 2003, while for both models for other years there are no major

differences.
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Figure 3.14: Postcode sector level maps of estimated probabilities of primary 1 and

2 children susceptible to measles for 2000, 2001, 2002, 2003, 2004 and 2005 (logistic

model).
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Figure 3.15: Postcode sector level maps of estimated probabilities of primary 1 and 2

children susceptible to measles for 2000, 2001, 2002, 2003, 2004 and 2005 (space-time

model).
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Figure 3.16: Plots of variability components and mean with 95% credible interval bars,

for primary 1 and 2 children, for logistic and space-time models, for 937 postcode

sectors, against years 2000-2005.
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Overall, for each year, the value of the structured standard deviation is higher than

for the unstructured variation, thus variability in susceptibility is more due to local

clustering of rates than variation between postcodes.

For primary 1 and 2 school children, the maps of susceptibility rates are shown in

Figures 3.14 and 3.15 for the logistic model (2.8) and space-time model (2.27) respec-

tively. It is observed that in 2000 the central postcode sectors had lower susceptibility

of less than 5%, and there are isolated pockets of high susceptibility greater than 9.5%.

In 2001 there is a reduction in the number of postcode sectors with high susceptibility

rates, but still pockets of these can be observed. The number of postcode sectors with

low susceptibility rates, less than 5%, increased in the central and the west regions.

There is a slight increase in the number of regions with high susceptibility rates in the

north in 2002, with low susceptibility rates increasing in the south. In 2003, there is a

slight increase of low susceptibility rates in the southern regions, with isolated pockets

of high susceptibility. Susceptibility increases in most districts in the north and north

west in 2004 and low susceptibility increased in the north east. In 2005 more regions

have increased high susceptibility rates, with susceptibility greater than 9.5% in the

north and west.

Table 3.4 and the plots of parameters in Figure 3.16 show that generally the overall

proportion (ranging from 0.041-0.084), is increasing over the years, but in 2003 there

is a decrease in overall proportion. This agrees with what is shown by the maps, as in

2003 the number of regions with high susceptibility rates, i.e greater than 9.5%, was

lower than in all other years. Overall proportion increased from 2004 to 2005, and

this is shown by an increase in the number of postcode sectors with high susceptibility

rates in this year. The structured standard deviation ranges from 0.37-0.54 for the

logistic model and 0.25-0.39 for the space-time model, and for both models the credible

intervals are wider, therefore there might be no big change between the years. The

unstructured standard deviation decreases initially over time with an increase from

2004 and 2005. This agrees with what the maps show, i.e. a decrease of clustering

of postcode sectors with similar rates and in 2004 to 2005 there was increased evi-

dence of clustering of postcode sectors with higher rates. The unstructured standard

deviation ranges from 0.25-0.39 for the logistic model and 0.24-0.37 for the space-time

model. This does not show much of a trend but the logistic model shows that there
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was a decrease in 2004 and 2005, while the space-time model indicates an increase

between these two years. Looking at the credible intervals, they suggest that there

was no real difference in overall proportions from 2000-2003 and from 2003-2005 there

was an increase in overall proportions. For the structured and unstructured standard

deviations, the credible intervals are wide and suggest no real differences over time.

As for districts, for both pre-school and primary 1 and 2 school children, maps given by

the space-time model (2.27) are similar to those of the logistic model (2.8). The logistic

model gives higher values for the structured standard deviations than the space-time

model and lower values for the unstructured standard deviations than the space-time

model. From both models it is observed that variation is due to structured variation

more than unstructured variation.

Comparing pre-school and primary 1 and 2 school children, as for districts, the overall

proportion for pre-school is higher than the overall proportion for primary 1 and 2,

indicating that pre-school children have higher susceptibility rates than primary 1 and

2, as expected. The 2003 (pre-school) and 2005 (primary 1 and 2) birth cohorts have

the highest susceptibility in both groups. Susceptibility is increasing more noticeably

over time in pre-school children than in primary 1 and 2 school children, as shown by

the regions in the maps becoming darker quickly for pre-school children than primary

1 and 2. For both pre-school and primary 1 and 2 children, and for both models, the

values of the structured standard deviation are higher than the unstructured standard

deviation. This shows that regional variation in susceptibility is due more to clustering

than general variation. Primary 1 and 2 has higher values for both standard deviations

and models than pre-school. Thus, susceptibility is more similar in postcode sectors

in pre-school children than in primary 1 and 2 children.

3.5 Comparison of District and Postcode Sector

Levels

Comparing maps fitted at districts (Figures 3.5-3.6 and 3.8-3.9) and postcode sec-

tor (Figures 3.11-3.12 and 3.14-3.15 ) levels, the interpretation is similar especially

for primary 1 and 2 school children (Figures 3.8-3.9 and Figures 3.14-3.15), and for

pre-school logistic model (Figures 3.5 and 3.11), except that at postcode sector level,
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there is more clustering than at district level. For pre-school, the space-time model

at district level (Figure 3.6) show that unlike at postcode sector level (Figure 3.12),

susceptibility was lower in 2000 and 2001 and increased in 2002. For postcode sectors,

susceptibility was higher in most regions in 2000 and 2001 and decreased in 2002. Ta-

bles 3.3 and 3.4 give estimates of the structured and unstructured standard deviations

for the districts and 937 postcode sectors respectively. For pre-school and for both

models, structured standard deviation (σu) is much higher at postcode sector level.

The unstructured standard deviation (σv) is lower at postcode level. For primary 1

and 2, for both models structured standard deviation is again higher at postcode level

than at district level. The unstructured standard deviation is lower at postcode level

than at district level for the logistic model, while the space-time model gives different

results, i.e. structured standard deviation is lower at district level than postcode sector

level.

The structured standard deviation tends to be larger at postcode sector level than at

district level i.e. there tends to be more spatial clustering of postcode sectors than

districts. This is because districts are larger and each of them has neighbours which

are large, and they have less variation in susceptibility rates than postcode sectors.

Therefore, there is more potential for the susceptibilities of the postcode sectors to be

spatially clustered than the larger districts. Districts are larger, and postcode sectors

are smaller and more likely to be binomial in distribution for susceptibility. Districts

are a combination of postcode sectors, and so by adding them up we accumulate extra

binomial dispersion giving unstructured variability, which is why the districts have

larger unstructured variation than postcode sectors.

The next section focuses on fitting an ecological model to the pre-school and primary

1 and 2 school susceptibility to measles data. Thus the relationship between suscep-

tibility and census variables is explored, both at district and postcode sector level.

3.6 Ecological Variable Selection

The census variables considered here are percentage of people in households with no

car, percentage of people in overcrowded households, percentage of unemployed males,

percentage of people in households with low social class, percentage of children aged
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0-4, percentage of households with dependent children, percentage of individuals born

in other European countries, percentage of individuals born outside EU (elsewhere),

percentage of lone parent households, percentage of individuals working in agriculture

and percentage of individuals with or without qualifications (five levels). Firstly the

correlation between each of the explanatory variables was investigated. The percent-

age of households with dependent children correlated with percentage of children aged

0-4, thus only the percentage with children aged 0-4 years was included in the model

as this is the age of vaccination. Also because of correlation of education levels, only

two categories were included in the model. These were no qualifications, or high qual-

ifications (i.e. first degree, high degree or professional qualification). Altogether, 11

census variables were used. These were percentage of people in households with no

car, percentage people in overcrowded households, percentage of unemployed males,

percentage of people in households with low social class, percentage of children aged

0-4, percentage of people born in other European countries, percentage of people born

outside EU (elsewhere), percentage of lone parent households, percentage of people

working in agriculture, percentage of people with high qualifications and percentage of

people with no qualifications. Scatter plots were used initially to assess the linearity

of the variables with logit(p) (see equation (3.1)) and they were linear.

For the ecological analysis, we fitted the logistic CAR model with covariates model

(2.13) using WinBUGS. Since we have 11 census variables, fitting all these in Win-

BUGS is very time consuming (convergence is very slow) and there were problems

with computer memory, especially when trying to use a DIC tool, to compare fitted

models and choose significant variables. (In some cases the computer may hang up,

and here WinBugs was run on a Windows XP Pentium 4 computer with 3GHz and

512MB of RAM).

In order to avoid these problems, firstly we fitted a generalised linear mixed model

(logistic regression) below:

Oi ∼ Bin(ni, pi), logit(pi) = α + vi +
p∑
j=1

βjxij, (3.1)

where ni and pi are number of people and the unknown probability of children sus-

ceptible to measles in the ith region respectively, α is a constant, vi ∼ N(0, σv) is the

random effect for region i and the βjs, j = 1, ..., p, are the coefficients of covariates

x1, ..., xp. Thus
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pi = e
α+vi+

∑p

j=1
βjxij

1+e
α+vi+

∑p

j=1
βjxij

.

The penalised-quasi-likelihood method was used to fit the model to each year’s/cohort’s

data in R, using function glmmPQL in library MASS, for both pre-school and primary

1 and 2 school children at each of district and postcode sector levels. By using back-

ward elimination, census variables significant at the 5% level were obtained.

Fitting models with significant census variables in WinBUGS, for districts, a burn-in

period of 8,000 (pre-school) and 10,000 (primary 1 and 2) iterations was used before

convergence was achieved and the parameter estimates are based upon a further 12,000

iterations for both pre-school and primary 1 and 2. For postcode sectors a burn-in

period of 12,000 (pre-school) and 15,000 (primary 1 and 2) iterations was used before

convergence was achieved and the parameter estimates are based upon a further 15,000

(pre-school) and 17,000 primary (1 and 2) iterations.

3.6.1 District Level

At district level, for pre-school, when all census variables are in the model (Table A.2

in Appendix A), the only significant variable at 5% level is the percentage of people

in households with low social class for 2003, 2004 and 2005 (and none for 2000-2002).

After backward elimination, the census variables found to be significant at the 5%

level (in Table A.3) are percentage of people in households with no car for the years

2002 and 2005, percentage of people in households with low social class for 2001-2005,

percentage of male unemployed for 2001, 2003 and 2004, and percentage of individuals

born in other EU countries for 2000 and 2001. For primary 1 and 2 school children,

when all census variables are in the model (Table A.4) the significant variables are

percentage of people in overcrowded households for 2000 and 2005, percentage of indi-

viduals born in other EU for 2000, 2001 and 2005, and percentage of individuals with

no qualification for 2005 only. The significant variables (after backward elimination)

are shown in Table A.5, namely percentage of people in overcrowded households for

2000, 2001, 2002 and 2005, percentage of children aged 0-4 years for 2002 and 2003,

percentage of individuals born in other EU countries for 2000, 2001, 2002, 2003 and

2005, percentage of people in households with no car for 2004, percentage of people

in households with low social class for 2003 and 2004, and percentage of individuals

with no qualifications for 2005 only.
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For both pre-school and primary 1 and 2 groups, susceptibility increases as percentage

of households with low social class, percentage of individuals born in other EU, and

percentage of people in households with no car, increase. For pre-school alone, sus-

ceptibility increases as percentage male unemployment increases. For primary 1 and 2

alone, susceptibility increases with increasing percentage of people who are not qual-

ified, and decreases with increase in percentage of people in overcrowded households

and percentage of children aged 0-4 years.

3.6.2 Postcode Sector Level

At postcode sector level, for pre-school, when all census variables are in the model

(Table A.6), the significant variables were the percentage of individuals born in other

EU countries for 2000, 2001 and 2003, percentage of individuals with no qualifica-

tions for 2000, percentage of individuals with high qualifications for 2000, 2001, 2003

and 2004, percentage of individuals working in agriculture and percentage of people in

households with no car for 2000, 2001, 2002, 2003 and 2005, percentage people in over-

crowded households for 2000 and 2001, percentage of individuals unemployed for 2001,

2002, 2003 and 2005, and percentage of people in households with low social class for

2000, 2001, 2002, 2003 and 2005. After backward elimination (Table A.7) the census

variables found to be significant at the 5% level were percentage of individuals born

in other EU countries for 2000-2003, percentage of individuals working in agriculture

for 2000-2003 and 2005, percentage of people in households with no car for 2000-2003

and 2005, percentage of people in overcrowded households for 2001 and 2002, percent-

age of individuals unemployed for 2001, 2002, 2003 and 2005, percentage of people in

households with low social class for 2001-2003 and 2005, and percentage of individuals

with high qualifications only significant for 2004. For primary 1 and 2, when all census

variables are in the model (Table A.8), the significant variables were the percentage of

individuals born in other EU countries for 2000-2004, percentage of individuals with

no qualifications for 2002, percentage of individuals with high qualifications for 2002,

percentage of individuals working in agriculture, percentage of people in households

with no car, percentage of people in overcrowded households and percentage of people

in households with low social class for 2000-2005, and percentage of individuals un-

employed for 2004 and 2005. After backward elimination (Table A.9), the significant

variables at 5% were percentage of individuals born in other EU countries, percentage
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of individuals working in agriculture, percentage of people in households with no car,

percentage of people in overcrowded households and percentage people in households

with low social class, for all years. Percentage of individuals with no qualifications

and high qualifications are only significant in 2002, with percentage of individuals un-

employment significant for 2003, 2004 and 2005.

In the next section, those variables found to be significant are fitted using a spatial

logistic model at both district and postcode sector level.

3.7 Ecological analysis of Measles Data at District

Level

In this section, we investigate the relationship between the spatial variation of suscep-

tibility to measles and census variables, over the period 2000-2005, for both pre-school

and primary 1 and 2 school children at district level. The logistic model (2.13) was

fitted for each year/cohort with census variables found to be significant in the 3 or

more years when using penalised-quasi-likelihood.

These census variables were percentage of male unemployment and percentage of peo-

ple in households with low social class for pre-school children, and percentage of people

born in other EU countries and percentage of people in overcrowded households for

primary 1 and 2 children. When fitting the model with census variables, there was a

problem with model convergence i.e. simulation stabilising when using these variables.

To solve this problem, each of the census variables was standardised by subtracting

its mean and dividing by its standard deviation before fitting in WinBUGS, and this

overcame the lack of convergence.

Maps of the levels of the census variables at district level in Figure 3.17 show that

percentage of people born in other EU countries is in general higher (at least 1.4%)

in Inverness, Aberdeen, North East Fife, Edinburgh, Midlothian and East Lothian.

Percentage of people in overcrowded households is lower in the northern districts and

higher in the western districts and central. Most districts (40 out of 56) have low

percentage of unemployment male, while percentage of people in households with low

social class is highest in the north and some districts in the south and major cities.

90



(10) <    0.5

(21)     0.5 -     0.8

(13)     0.8 -     1.1

(6)     1.1 -     1.4

(6) >=    1.4

Born in other EU countries

  200.0km

N

(2) <   10.0

(8)    10.0 -    15.0

(29)    15.0 -    20.0

(15)    20.0 -    25.0

(2) >=   25.0

Low social class

  200.0km

N

Figure 3.17: Maps of the levels of the census variables used in the logistic CAR model

for 56 districts.
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Figure 3.18: District level maps of estimated probabilities of children susceptible to

measles (pre-school) for 2000, 2001, 2002, 2003, 2004 and 2005 (logistic model with

census variables).
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Figure 3.19: District level maps of estimated probabilities of children susceptible to

measles (primary 1 and 2) for 2000, 2001, 2002, 2003, 2004 and 2005 (logistic model

with census variables).
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The maps of susceptibility to measles in Figure 3.18 (pre-school) and 3.19 (primary 1

and 2) were produced to see how they compare with the maps without census vari-

ables (Figures 3.5 and 3.8). The same spatial patterns are observed for maps without

and maps with census variables. This shows that inclusion of these variables does not

explain the spatial differences at district level.

Tables 3.4 (pre-school) and 3.5 (primary 1 and 2) show results obtained by fitting the

logistic CAR model (2.13) at district level. The signs of the parameter estimates for

the census variables do not change much over time (i.e. direction of relationship is

the same, negative/positive for all the years). Exceptions are percentage of people in

households with low social class in 2005 for both pre-school and primary 1 and 2, and

percentage of people in overcrowded households in 2003 and 2004 for primary 1 and

2.

2000 2001 2002

Parameter Mean LCL UCL Mean LCL UCL Mean LCL UCL

α -1.83 -1.91 -1.75 -1.86 -1.94 -1.78 -1.72 -1.76 -1.68

σu 0.09 0.03 0.17 0.08 0.03 0.17 0.11 0.03 0.20

σv 0.22 0.17 0.28 0.23 0.17 0.29 0.08 0.03 0.12

% unemployed 0.002 -0.01 0.01 0.003 -0.01 0.01 0.002 -0.003 0.008

%low social class -0.0001 -0.005 0.004 -0.0007 -0.006 0.004 -0.002 -0.004 0.0008

2003 2004 2005

Parameter Mean LCL UCL Mean LCL UCL Mean LCL UCL

α -1.61 -1.69 -1.54 -1.52 -1.56 -1.47 -1.68 -1.75 −1.62

σu 0.10 0.03 0.21 0.12 0.06 0.20 0.09 0.03 0.18

σv 0.20 0.15 0.26 0.10 0.05 0.15 0.19 0.14 0.24

% unemployed 0.01 -0.005 0.01 0.003 -0.006 0.01 0.004 −0.01 0.01

%low social class -0.0006 -0.005 0.004 -0.001 -0.004 0.002 0.0004 −0.004 0.0053

Table 3.4: Posterior mean parameter estimates for significant census variables (log

odds ratios) and standard deviation due to uncorrelated and correlated heterogeneity

with their lower (LCL) and upper (UCL) 95% credible limits, for pre-school children

for 2000-2005, for 56 districts.

For pre-school, the higher the percentage of unemployment males, the higher the prob-

ability of susceptibility. Susceptibility decreases with increase in percentage of people

in households with low social class, except for 2005 when susceptibility seems to in-

crease with increase in percentage of people in households with low social class. For

primary 1 and 2 children, susceptibility increases with increase in percentage born in
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other EU countries. Susceptibility decreases with increase in percentage of people in

overcrowded households for 2000, 2001 and 2005, but for 2003 and 2004 susceptibility

increases with increasing percentage of people in overcrowded households. The mag-

nitude of the effects is very small in all cases. Overall, the 95% credible intervals for

these census variables for both pre-school and primary 1 and 2 groups at district level

all include zero, suggesting that at district level these variables are not significantly

different from zero, i.e. in no case is there a significant effect.

As the explanatory variables in general have a small effect, there are very little changes

in the structured and unstructured variation when variables are in the model. For pre-

school (Tables 3.2 and 3.4), inclusion of variables in the model increased the clustering

standard deviation in 2000, 2002 and 2004 and decreased it in 2003 and 2005, with the

effect in 2001 remaining the same. The unstructured standard deviations increased in

2000, 2001, 2003 and 2005 and decreased in 2002 and 2004. We note for 2002 that the

inclusion of explanatory variables decreased very much the unstructured standard de-

viation from 0.22 to 0.11, indicating that explanatory variables accounted for regional

variation in measles susceptibility while in 2003 the unstructured variation increased

significantly.

2000 2001 2002

Parameter Mean LCL UCL Mean LCL UCL Mean LCL UCL

α -2.70 -2.84 -2.56 -2.74 -2.85 -2.64 -2.74 -2.87 -2.61

σu 0.22 0.07 0.40 0.30 0.17 0.47 0.25 0.12 0.39

σv 0.31 0.23 0.41 0.17 0.07 0.27 0.25 0.18 0.34

% born other EU 0.02 -0.02 0.06 0.002 -0.03 0.03 0.02 -0.01 0.06

% overcrowded -0.002 -0.02 0.02 -0.0003 -0.02 0.01 0.004 -0.01 0.02

2003 2004 2005

Parameter Mean LCL UCL Mean LCL UCL Mean LCL UCL

α -2.78 -2.89 -2.68 -2.63 -2.75 -2.51 -2.45 -2.56 -2.33

σu 0.25 0.14 0.40 0.16 0.054 0.31 0.21 0.08 0.36

σv 0.19 0.12 0.28 0.25 0.18 0.33 0.21 0.15 0.29

% born other EU 0.008 -0.02 0.04 0.03 -0.008 0.06 0.006 -0.03 0.04

% overcrowded 0.001 -0.01 0.02 0.003 -0.01 0.02 -0.003 -0.02 0.01

Table 3.5: Posterior mean parameter estimates for significant census variables (log

odds ratios) and standard deviation due to uncorrelated and correlated heterogeneity

with their lower (LCL) and upper (UCL) 95% credible limits, for primary school

children for 2000-2005, for 56 districts.

For primary 1 and 2 (Tables 3.3 and 3.5), there was a decrease in structured variation
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2000, 2002 and 2004, and an increase in 2001, 2003 and 2005. Inclusion of variables

increased the unstructured standard deviation in 2000, 2001, 2003 and 2005, and

decreased it in 2002 and 2004 for pre-school, while for primary 1 and 2 it remained

the same for 2000, 2004 and 2005, decreased for 2001 and 2003 and increased in 2002.

The following section focuses on fitting the models to smaller areas (postcode sectors)

than districts. It is expected that there will be less ecological bias at postcode sector

level as regions are smaller.

3.8 Ecological Analysis of Measles Data at Post-

code Sector Level

To describe the relationship between the spatial variation of susceptibility and census

variables at postcode sector level, the logistic CAR model (2.13) was again fitted for

each year/cohort with census variables found to be significant in 3 or more years when

using penalised-quasi-likelihood. For both pre-school and primary 1 and 2, these cen-

sus variables were: the percentage of people born in other EU countries, the percentage

of people working in agriculture, the percentage of people in households with no car,

the percentage of people in overcrowded households, the percentage of male unem-

ployed and the percentage of people households with low social class. For pre-school,

we note that even though percentage overcrowded was significant in only two of the

years 2000-2005 (2000 and 2001), this was included for consistency and comparability.

As for districts (Section 3.7), these census variables were standardised before fitting

them in the model.

Figure 3.20 shows maps of levels of the census variables which were included in the

model. For the percentage of people born in other EU countries most postcode sectors

have less than 2.5% of people in this category. For percentage of people working in

agriculture, it can also be seen that most postcode sectors with 5%−10% of the popu-

lation working in agriculture are in the northern part of Scotland. For the percentage

of people in households with no car, most postcode sectors in the north have 5-10%

of people in households without cars, while percentage of people in households with

no car is higher (at least 20%), in the south and central. Most postcode sectors have

less than 5% of people in overcrowded households. About 33 postcode sectors have at
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least 20% of male unemployed and close to half of the postcode sectors has 5%− 10%

of male unemployed. Most postcode sectors have at least 15% of people in households

with low social class, and these are found all over Scotland.

The maps of susceptibility in Figures 3.21 and 3.22 for pre-school and primary 1 and

2 children respectively, for the logistic model with census variables, show the same

spatial pattern over time as maps with no census variables, except that for each group

and each year the number of postcode sectors with high susceptibility is decreased

when the census variables are in the model, thus there is slight evidence that the ex-

planatory variables explain some of the spatial differences in susceptibility to measles.

Tables 3.6 and 3.7 give the results of the fitted logistic model with significant census

variables for pre-school and primary 1 and 2 respectively. It is observed that the signs

for the estimated coefficients of the census variables do not change over the years,

indicating that the directions of the relationships between the census variables and

susceptibility do not change over time, except for percentage of people in overcrowded

households in 2004 and 2005 for pre-school when the effect is almost zero.

The effect of having a larger percentage of the population born in other EU coun-

tries, larger percentage of people working in agriculture, larger percentage of people in

households with no car, and larger percentage of unemployed males is always positive

for both pre-school and primary 1 and 2 school children. An increase in the percentage

of each of these variables is associated with an increase in susceptibility. For percent-

age of the population born in other EU countries, there is an effect for all the cohorts

except for 2005 as the credible interval for that year spans zero, For the percentage of

people working in agriculture, there is an effect for all cohorts except for pre-school in

2004. For percentage of people in households with no car and percentage unemployed

males, there is no effect for 2004 pre-school for both, and no effect for percentage of

unemployed males for primary 1 and 2 for 2000 and 2001.

The effect of having a large percentage of people in overcrowded households and large

percentage of people in households with low social class is always negative, except for

percentage of people in overcrowded households in 2004 and 2005 for pre-school, where

this might as well be zero as the credible interval spans zero. Thus an increase in the

percentage of these variables results in a decrease in susceptibility.
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Figure 3.20: Maps of levels of census variables used in the logistic CAR model, for 937

postcode sectors.
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Figure 3.21: Postcode sector level maps of estimated probabilities of children suscep-

tible to measles (pre-school) for 2000, 2001, 2002, 2003, 2004 and 2005 (logistic model

with census variables).
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Figure 3.22: Postcode sector level maps of estimated probabilities of children suscep-

tible to measles (primary 1 and 2) for 2000, 2001, 2002, 2003, 2004 and 2005 (logistic

model with census variables).
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2000 2001 2002

Parameter Mean LCL UCL Mean LCL UCL Mean LCL UCL

α −1.75 −1.77 −1.73 −1.79 −1.81 −1.77 −1.71 −1.73 −1.69

σu 0.08 0.06 0.11 0.08 0.05 0.11 0.09 0.06 0.13

σv 0.03 0.02 0.06 0.03 0.02 0.06 0.03 0.02 0.05

% born other EU 0.03 0.01 0.05 0.03 0.005 0.05 0.02 0.00001 0.04

% working in agriculture 0.04 0.02 0.07 0.04 0.02 0.07 0.04 0.01 0.06

% no car 0.15 0.10 0.19 0.16 0.11 0.20 0.13 0.08 0.18

% overcrowded −0.02 −0.05 0.01 −0.02 −0.05 0.008 −0.005 −0.04 0.03

% unemployed 0.05 0.001 0.10 0.06 0.02 0.11 0.08 0.03 0.12

% low social class −0.13 −0.17 −0.10 −0.14 −0.18 −0.11 −0.15 −0.19 −0.11

2003 2004 2005

Parameter Mean LCL UCL Mean LCL UCL Mean LCL UCL

α −1.53 −1.55 −1.51 −1.59 −1.63 −1.56 −1.63 −1.65 −1.60

σu 0.11 0.08 0.15 0.14 0.09 0.19 0.07 0.05 0.10

σv 0.03 0.02 0.05 0.04 0.02 0.08 0.03 0.02 0.05

% born other EU 0.02 0.002 0.04 0.04 0.01 0.08 0.02 −0.005 0.04

% working in agriculture 0.03 0.005 0.06 0.007 −0.03 0.04 0.04 0.009 0.06

% no car 0.10 0.05 0.15 0.04 −0.02 0.09 0.09 0.04 0.13

% overcrowded −0.01 −0.04 0.02 0.002 −0.03 0.04 0.004 −0.02 0.03

% unemployed 0.103 0.06 0.15 0.02 −0.03 0.06 0.06 0.02 0.11

% low social class −0.16 −0.20 −0.13 −0.05 −0.09 −0.009 −0.15 −0.19 −0.12

Table 3.6: Posterior mean parameter estimates for significant census variables (log

odds) and standard deviation due to uncorrelated and correlated heterogeneity with

their lower (LCL) and upper (UCL) 95% credible limits for pre-school children, for

2000-2005, for 937 postcode sectors.

For pre-school and for primary 1 and 2 in 2000, the effect of percentage of people in

overcrowded households is not very large as this variable might as well be zero looking

at the 95% credible limits for all the years.

Percentage of people born in other EU countries, percentage of people working in

agriculture, percentage of people in households with no car, percentage of individu-

als unemployed, percentage of people in overcrowded households, and percentage of

people in households with low social class have standard deviations of 1.11%, 4.44%,

16.20%, 4.86%, 2.65% and 7.50% respectively (calculated from the census data).

As the census variables were standardised (Section 3.8), for pre-school children, as per-

centage of the population born in other EU countries in a sector changes by 1 standard

deviation, log odds of susceptibility changes by 0.02 to 0.04 across the years (Table

3.6). For a unit change in percentage of the population born in other EU countries
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2000 2001 2002

Parameter Mean LCL UCL Mean LCL UCL Mean LCL UCL

α −3.30 −3.58 −3.01 −2.76 −2.80 −2.72 −2.74 −2.77 −2.70

σu 0.38 0.28 0.47 0.31 0.23 0.39 0.26 0.19 0.34

σv 0.12 0.03 0.20 0.19 0.14 0.24 0.17 0.11 0.22

% born other EU 0.04 0.003 0.07 0.04 0.004 0.08 0.04 0.007 0.08

% working in agriculture 0.14 0.10 0.19 0.11 0.06 0.15 0.08 0.04 0.13

% no car 0.32 0.23 0.41 0.33 0.24 0.42 0.27 0.18 0.35

% overcrowded −0.04 −0.10 0.02 −0.07 −0.13 −0.01 −0.07 −0.13 −0.02

% unemployed 0.08 −0.003 0.16 0.07 −0.01 0.16 0.11 0.03 0.19

% low social class −0.31 −0.39 −0.24 −0.29 −0.36 −0.22 −0.26 −0.33 −0.19

2003 2004 2005

Parameter Mean LCL UCL Mean LCL UCL Mean LCL UCL

α −2.78 −2.82 −2.75 −2.63 −2.67 −2.60 −2.46 −2.49 −2.43

σu 0.23 0.16 0.32 0.30 0.22 0.39 0.33 0.27 0.39

σv 0.19 0.15 0.24 0.11 0.03 0.19 0.04 0.02 0.09

% born other EU 0.05 0.02 0.09 0.05 0.02 0.09 0.03 -0.005 0.06

% working in agriculture 0.09 0.05 0.14 0.06 0.02 0.11 0.05 0.01 0.10

% no car 0.24 0.16 0.33 0.18 0.09 0.26 0.13 0.05 0.21

% overcrowded −0.06 −0.12 −0.01 −0.06 −0.11 −0.004 −0.07 −0.12 −0.02

% unemployed 0.12 0.04 0.21 0.15 0.07 0.22 0.14 0.06 0.21

% low social class −0.27 −0.34 −0.20 −0.26 −0.32 −0.19 −0.23 −0.30 −0.17

Table 3.7: Posterior mean parameter estimates for significant census variables (log

odds) and standard deviation due to uncorrelated and correlated heterogeneity with

their lower (LCL) and upper (UCL) 95% credible intervals for primary 1 and 2 school

children, for 2000-2005, for 937 postcode sectors.

it is predicted that the log odds of susceptibility changes by a factor of 0.02
1.11

= 0.0180

to 0.04
1.11

= 0.0360 and the odds by e0.0180 = 1.0182 to e0.0360 = 1.0367. For a 1 stan-

dard deviation change in percentage of people working in agriculture, the log odds

of susceptibility changes by 0.007 to 0.04. Thus for a unit change in percentage of

people working in agriculture the log odds of susceptibility changes by 0.007
4.44

= 0.00158

to 0.04
4.44

= 0.00901 and the odds by e0.00158 = 1.00158 to e0.00901 = 1.00905. For

a 1 standard deviation increase in percentage of people in households with no car,

log odds of susceptibility changes by 0.04 to 0.16. For a unit change in percent-

age of people in households with no car the log odds of susceptibility is expected to

change by 0.04
16.20

= 0.00247 to 0.16
16.20

= 0.00988 and the odds by e0.00247 = 1.00247 to

e0.00988 = 1.00993. As percentage of people in overcrowded households changes by 1

standard deviation, log odds of susceptibility changes by -0.005 to 0.004. Thus for

a unit change in percentage of people in overcrowded households, log odds of sus-
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ceptibility changes by −0.005
2.65

= −0.00189 to 0.004
2.65

= 0.00151 and odds changes by

e−0.00189 = 0.998 to e0.00151 = 1.00151. As percentage of males unemployed increases

by 1 standard deviation, log odds of susceptibility changes by 0.02 to 0.10. Thus for a

unit change in percentage unemployed males the log odds of susceptibility changes by

0.02
4.86

= 0.00412 to 0.10
4.86

= 0.0206 and the odds by e0.00412 = 1.00413 to e0.0206 = 1.0208.

As percentage of people in households with low social class changes by 1 standard

deviation, log odds susceptibility changes by -0.16 to -0.05. Thus for a unit change

in percentage of people in households with low social class, log odds of susceptibility

changes by −0.16
7.5

= −0.0213 to −0.05
7.5

= −0.00667 and odds changes by e−0.0213 = 0.979

to e−0.00667 = 0.993.

For primary 1 and 2 school children, for a 1 standard deviation increase in percentage

of the population born in other EU countries, log odds changes by 0.03 to 0.05 across

the years (Table 3.7). For a unit change in percentage of the population born in other

EU countries, the log odds of susceptibility changes by 0.03
1.11

= 0.0270 to 0.05
1.11

= 0.0450

and the odds by e0.0270 = 1.0274 to e0.0450 = 1.0460. As percentage of people working

in agriculture increases by 1 standard deviation, log odds of susceptibility changes by

0.05 to 0.14. Thus for a unit change in percentage of people working in agriculture, the

log odds of susceptibility changes by 0.05
4.44

= 0.0113 to 0.14
4.44

= 0.0315 and the odds by

e0.0113 = 1.0114 to e0.0315 = 1.0320. For a 1 standard deviation increase in percentage

of people in households with no car, log odds of susceptibility changes by 0.13 to 0.33.

For a unit change in percentage of people in households with no car, the log odds of sus-

ceptibility is expected to change by 0.13
16.20

= 0.00802 to 0.33
16.20

= 0.0204 and the odds by

e0.00802 = 1.00805 to e0.0204 = 1.0206. As percentage of people in overcrowded house-

holds increases by 1 standard deviation, log odds of susceptibility changes by -0.07

to -0.04. Thus for a unit change in percentage of people in overcrowded households,

log odds of susceptibility changes by −0.07
2.65

= −0.0264 to −0.04
2.65

= −0.0151 and odds

changes by e−0.0264 = 0.974 to e−0.0151 = 0.985. As percentage of males unemployed

increases by 1 standard deviation, log odds of susceptibility changes by 0.007 to 0.15.

Thus for a unit change in percentage of males unemployed the log odds of susceptibil-

ity changes by 0.007
4.86

= 0.00144 to 0.15
4.86

= 0.0309 and the odds by e0.00144 = 1.00144 to

e0.0309 = 1.0314. As percentage of people in households with low social class increases

by 1 standard deviation, log odds of susceptibility changes by -0.31 to -0.2. For a

unit change in percentage of people in households with low social class, log odds of
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susceptibility changes by −0.31
7.5

= −0.0396 to −0.23
7.5

= −0.0294 and odds changes by

e−0.0396 = 0.961 to e−0.0294 = 0.971. Table 3.8 shows a summary of these changes in

the log odds and odds ratios.

Percentage of people in households with no car and percentage of people in households

with low social class have higher absolute values of the coefficients than other census

variables in the model for both pre-school and primary 1 and 2 children. This reflects

the work of Friederichs et al. (2006). The relationship between susceptibility and

these variables is much stronger than the relationship with other variables. For all

Pre-School Primary School

Variable Log Odds Odds Log Odds Odds

% born other EU 0.018 to 0.036 1.018 to 1.037 0.027 to 0.045 1.027 to 1.046

% working in agriculture 0.002 to 0.009 1.002 to 1.009 0.011 to 0.032 1.011 to 1.032

% no car 0.002 to 0.010 1.002 to 1.010 0.008 to 0.020 1.008 to 1.021

% overcrowded −0.002 to 0.002 0.998 to 1.002 −0.026 to −0.015 0.974 to 0.985

% unemployed 0.004 to 0.021 1.004 to 1.021 0.001 to 0.031 1.001 to 1.031

% low social class −0.021 to −0.007 0.979 to 0.993 −0.040 to −0.029 0.961 to 0.971

Table 3.8: Range of effects on log odds and odds for a unit change in each of the

census variables.

cohorts in both pre-school and primary 1 and 2 children, the magnitude of coefficients

is higher (in absolute value) in primary 1 and 2 children than in pre-school children.

This suggests that the relationship between susceptibility and all the census variables

in the model is stronger in primary 1 and 2 than in pre-school children.

It is observed from Tables 3.4 (no census variables), and Tables 3.7 and 3.8 (census

variable), that the inclusion of census variables in the model decreases the variabil-

ity due to clustering for all years for both pre-school (0.11-0.16 reduced to 0.07-0.14)

and primary 1 and 2 (0.37-0.54 reduced to 0.23-0.38) children, but the variability due

to clustering pattern over the years remains the same as for the model without cen-

sus variables. Inclusion of variables does not change the unstructured variability for

pre-school but there is a slight increase for primary 1 and 2.
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3.9 Comparing District and Postcode Sector Lev-

els

Ecological analysis at postcode sector level (small areas) may be expected to be closer

to analysis at individual level when compared to district level (large areas). Thus at

postcode sector level there might be less ecological bias but more measurement error

than at district level.

The census variables which were fitted at district level were also fitted at postcode

sector level (Tables 3.10 and 3.11) for a direct comparison of postcode sectors and dis-

tricts (Tables 3.5 and 3.6). These census variables were percentage of unemployment

males and percentage of people in low social class households for pre-school children,

and percentage of people born in other EU countries and percentage of people in over-

crowded households for primary 1 and 2 children.

For pre-school, the higher the percentage unemployed males the higher the suscepti-

bility at both district and postcode sector level. Susceptibility decreases with increase

in percentage of people in low social class households at both district and postcode

sector level, except for 2005 at district level when susceptibility seems to increase with

increase in percentage of people in low social class households.

2003 2004 2005

Parameter Mean LCL UCL Mean LCL UCL Mean LCL UCL

α -1.76 -1.78 -1.74 -1.80 -1.82 -1.78 -1.71 -1.74 -1.69

σu 0.12 0.09 0.16 0.12 0.09 0.15 0.13 0.09 0.16

σv 0.03 0.02 0.06 0.03 0.02 0.06 0.03 0.02 0.05

% unemployed 0.13 0.09 0.17 0.15 0.11 0.18 0.15 0.11 0.19

% low social class -0.11 -0.14 -0.08 -0.12 -0.15 -0.08 -0.12 -0.15 -0.09

2003 2004 2005

Parameter Mean LCL UCL Mean LCL UCL Mean LCL UCL

α -1.54 -1.56 -1.52 -1.57 -1.62 -1.53 -1.63 -1.65 -1.61

σu 0.13 0.10 0.17 0.14 0.09 0.19 0.08 0.05 0.11

σv 0.03 0.02 0.05 0.04 0.02 0.09 0.03 0.02 0.05

% unemployed 0.15 0.12 0.19 0.04 0.003 0.08 0.11 0.08 0.15

% low social class -0.14 -0.18 -0.11 -0.05 -0.09 -0.02 -0.13 -0.16 -0.10

Table 3.9: Posterior mean parameter estimates for significant census variables (log

odds ratios) and standard deviation due to uncorrelated and correlated heterogeneity,

with their lower (LCL) and upper (UCL) 95% credible limits for pre-school children

for 2000-2005 and 937 postcode sectors.
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2000 2001 2002

Parameter Mean LCL UCL Mean LCL UCL Mean LCL UCL

α -2.94 -3.11 -2.84 -2.78 -2.81 -2.73 -2.74 -2.78 -2.71

σu 0.47 0.35 0.58 0.42 0.32 0.51 0.36 0.28 0.44

σv 0.13 0.02 0.23 0.20 0.13 0.26 0.18 0.10 0.24

% born of other EU 0.06 0.02 0.10 0.06 0.02 0.10 0.06 0.02 0.10

% overcrowded -0.06 -0.11 -0.02 -0.06 -0.11 -0.02 -0.06 -0.10 -0.02

2003 2004 2005

Parameter Mean LCL UCL Mean LCL UCL Mean LCL UCL

α -2.80 -2.84 -2.77 -2.64 -2.68 -2.61 -2.47 -2.50 -2.45

σu 0.33 0.26 0.41 0.37 0.29 0.45 0.38 0.32 0.44

σv 0.21 0.15 0.26 0.12 0.03 0.19 0.05 0.02 0.11

% born of other EU 0.07 0.03 0.11 0.07 0.03 0.10 0.04 0.009 0.08

% overcrowded -0.06 -0.10 -0.02 -0.07 -0.11 -0.03 -0.10 -0.13 -0.06

Table 3.10: Posterior mean parameter estimates for significant census variables (log

odds ratios) and standard deviation due to uncorrelated and correlated heterogeneity,

with their 95% lower (LCL) and upper (UCL) credible limits for primary 1 and 2

school children for 2000-2005 and 937 postcode sectors.

For primary 1 and 2 children, susceptibility increases with increase in percentage of

people born in other EU countries at both district and postcode sector level. Suscep-

tibility decreases with increase in percentage of people in overcrowded households at

postcode sector level, while at district level it varies over the years, i.e. susceptibility

decreases with increase in percentage of people in overcrowded households for 2000,

2001 and 2005, but for 2003 and 2004 susceptibility increases with increasing percent-

age of people in overcrowded households.

For all years in both pre-school and primary 1 and 2 groups, the magnitude of all

coefficients is higher (in absolute value) at postcode sector level than district level,

thus the relationship between susceptibility and the census variables is stronger at

postcode sector level than district level. In fact, the 95% credible intervals for these

census variables for both pre-school primary 1 and 2 groups at district level all include

zero, suggesting that the effects of these variables are not significantly different from

zero, but this is not the case for postcode sectors.
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3.10 Discussion

In this chapter we first used the pre-school 1999 data set to illustrate the fitting of

the empirical and full Bayesian methods, using the commonly used disease models,

i.e. the Poisson-Gamma model and the lognormal model. These data were also used

to compare the log-normal and logistic models which both included the spatial term.

There was little difference in the way the two models fitted the data, the logistic model

was chosen for analysis of the data throughout the chapter.

In model fitting we compared the empirical and full Bayesian modelling (for both

Poisson-Gamma and log-normal models) based on the 1999 pre-school data. The re-

sults indicated that for these data smoothing with empirical Bayes is not very different

from full Bayesian smoothing.

To compare susceptibility over time, and compare susceptibility to measles of pre-

school to that of primary 1 and 2 school children, at district level (larger regions) and

postcode sector (smaller regions) level, a logistic model was fitted to each of the pre-

school and primary 1 and 2 school children groups, at each time point (2000-2005).

The space-time model (Waller et al. (1997)) was also fitted to each of pre-school

and primary 1 and 2 school children groups. For pre-school and primary 1 and 2, an

ecological model, i.e. a logistic model including census variables, was fitted at each

time point, at district and postcode sector level, to determine which census variables

will help predict higher susceptibility to measles. As the interest is in seeing if the

explanatory variables have the same effect in the different years, the space-time model

(Waller et al. (1997)) that includes census variables was not fitted. Fitting of models

at district and postcode sector level enabled comparison of measles susceptibility at

these two levels.

Comparing susceptibility over time, for both district and postcode sector levels, sus-

ceptibility was found to be increasing over the years for pre-school, with 2003 and

2004 being the highest, and a decrease was seen in 2005. For primary 1 and 2 school

children, the change in susceptibility was not very much until a higher increase in

2005 (this year is the same birth cohort as for pre-school 2003). For both district and

postcode sectors, there is greater geographical variation for primary 1 and 2 school

children than pre-school children. Since postcode sectors are smaller than districts,
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more clusters can be observed, thus the variation due to clustering is higher at post-

code level.

The census variables which were considered are the four components of deprivation,

which are: percentage of people in households with no car, percentage of people in

overcrowded households, percentage of people in households with low social class and

percentage of unemployed males. These were kept separate in the analysis to check if

these components had similar effects, and we also included other variables, i.e. per-

centage of children aged between 0-4, percentage of lone parent households, percentage

of people born in other European Union countries (other than UK), percentage of peo-

ple born elsewhere (other than EU), and percentage of people working in agriculture,

percentage of people with no qualifications, and percentage of people with high qual-

ifications. At district level, very few census variables were found to be significant

compared to postcode sector level, and their effect was nonsignificant, i.e. the credible

interval spanned zero.

At postcode sector level, some of the variation in susceptibility is explained by people

born in other EU countries (immigration) and people working in agriculture (rurality),

and all four components of deprivation (people with no car, overcrowded households,

low social class and unemployment). The effects of these components are different,

i.e. susceptibility increases with higher percentage of people in households with no car

and percentage of unemployed males, and decreases with higher percentage of people

in overcrowded households and percentage of people in low social class households.

Generally there are consistent results of explanatory variables over the years, thus

data could have been pooled together by fitting a space-time model, but this model

will give only one estimate and the year differences are random effects. Also this may

not work well for years such as 2004 for pre-school, which has only one significant

variable.

Both area and individual level factors may influence the high susceptibility rates, but

the weakness of this analysis is that it considered only area level factors, and so care

should be taken when interpreting the results, i.e. not to interpret them as individual

effects. The other weakness is that the census data are at 2001 which is unchanging

for 2005 and of less relevance than in 2000, 2001 and 2002.
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This analysis identified regions with high susceptibility, and these are the more rural

areas, highly deprived areas and areas with higher number of immigrants. These areas

may be at risk of measles outbreak and are the areas that mostly need to be targeted

when campaigning for measles, mumps and rubella (MMR) vaccine uptake.

The analysis here has shown that comparing maps over time is essential. For example,

public health practitioners would wish to identify pockets of areas with changes in

susceptibility from one year to the next. Thus the next chapter will focus on using

interpolation methods to compare maps over time. Systematic methods that can be

used to compare maps over time will be developed in Chapter 5.
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Chapter 4

Smoothing

4.1 Introduction

This chapter looks at some of the most commonly used smoothing or interpolation

methods used for smoothing count data to produce isopleth maps (continuous surface

maps displayed using contours). Choropleth maps are used to show spatial and tem-

poral patterns (see Chapter 3), but isopleth maps can help strengthen the ability to

visually communicate patterns over time (Croner and De Cola, 2001) and aid in map

comparison. We therefore consider them in this chapter before considering in Chapter

5 methods specifically developed to compare maps. A disadvantage of choropleth maps

is that the grey scale grouping is arbitrary and the choice can affect the interpretation,

so they must be interpreted with caution (see Chapter 3). Also, the patchy map may

be difficult to interpret due to varying size and shape of the regions, so isopleth maps

can be a solution to these problems (Berke, 2004).

In this chapter we focus on isopleth maps and consider various ways to produce them.

These may be compared with the choropleth maps in Chapter 3 produced from the

same data, of susceptibility to measles of pre-school children obtained from Health

Protection Scotland. This has been described in Section 1.5.

There are a number of methods that can be used to interpolate count data. These

methods originated with point process data where location is random and here location

is fixed. These methods include non-parametric kernel regression smoothers (Waller

and Gotway, 2004; Bowman and Azzalini, 1997; Hardle, 1990; Wand and Jones, 1995),

and kriging (Cressie, 1993; Waller and Gotway, 2004), which is a geostatistical method
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of smoothing, trend polynomial surfaces (Ripley, 1981), splines (De Boor, 1978) and

distance-weighted methods (Ripley, 1981). The trend polynomial, splines and distance

weighted methods make assumptions that do not take advantage of the spatial struc-

ture (Carrat and Valleron, 1992). Here we consider non-parametric kernel regression

smoothers, widely used and simpler to use, and kriging, which takes advantage of the

spatial structure.

Section 4.2 is a review of nonparametric kernel regression methods and Section 4.3 is

a review of kriging methods. In Section 4.4 kernel smoothing and ordinary kriging

are used to smooth data and produce isopleth maps. Firstly, pre-school measles sus-

ceptibility data at district level is used and methods compared. One method is then

chosen and used to smooth primary 1 and 2 data at district level and both pre-school

and primary 1 and 2 data at postcode sector level.

4.2 Nonparametric Kernel Regression

Following Waller and Gotway (2004), let Z1, Z2, ...Zn be data from a population with

probability distribution f(Z|θ), available at locations s1 = (x1, y1), ..., sn = (xn, yn)

respectively. To estimate the unknown parameters θ = (θ1, ..., θn), Brillinger (1990)

maximises the weighted log-likelihood of the data

∑n
j=1wijlog(f(zj|θ)),

where wij is a weight dependent on distance between the centroids of locations si and

sj. For different problems and different distributions we obtain different estimators.

Brillinger (1990) obtained an estimator of θ for the case when data are normally

distributed with mean θi and variance σ2 as

θ̂i =

∑n
j=1wijZj∑n
j=1wij

, i = 1, ..., n. (4.1)

This is a locally weighted mean at centroid i, obtained as a result of minimising

∑n
j=1wij(Zj − θi)2.

For rates ri = Zi
ni

, where Zi is Poisson distributed with mean and variance niθ, ni is

the population size in region i and θ is the risk of disease, the locally smoothed rate

is given by

r̂i =

∑n
j=1wijZj∑n
j=1wijnj

, i = 1, ..., n. (4.2)
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This is a ratio of two smoothers, one smoother applied to the Zi and one to the ni. This

is advantageous if we are concerned with smoothing variation in population which may

occur as a result of sampling or counting errors (Waller and Gotway, 2004). Kafadar

(1996) also proposed the use of a ratio smoother.

Different choices of weights (wij) give different estimators. Here we consider weights

based on kernel functions (Waller and Gotway, 2004). Then using weights

wij = K( si−sj
h

)

in (4.1) gives the estimator at location si as

θ̂i =

∑n
j=1 K( si−sj

h
)Zj∑n

j=1K( si−sj
h

)
, (4.3)

while (4.2) becomes

r̂i =

∑n
j=1K( si−sj

h
)Zj∑n

j=1K( si−sj
h

)nj
, (4.4)

where si = (xi, yi) and sj = (xj, yj) are the centroid locations for region i and j, h is

the smoothing parameter and K(·) is the kernel function, a bivariate probability den-

sity function which is symmetric about the origin and integrates over 1 for the whole

domain, e.g. Gaussian (Wand and Jones, 1995). Larger values of h lead to smoother

maps, while smaller values lead to less smooth maps. Equation (4.3) is often referred

to as the Nadaraya-Watson kernel estimator.

Observations near the edges of the study region tend to have fewer local neighbours

than interior regions. The resulting smoothed values near the edges are obtained

by averaging over smaller number of neighbours than the interior values (Waller and

Gotway, 2004). This is referred to as an edge effect or boundary bias. The kernel

estimators discussed above have the disadvantage of edge effects, thus the bias of this

estimator will be less in the interior than at the exterior or edges of the study area.

The local linear regression smoothers can provide boundary bias correction (Fan and

Gijbels, 1992; Simonoff, 1996).

A local polynomial regression estimator at location si minimises with respect to

βm,m = 0, ..., p

n∑
j=1

(Zj − β0 − β1(si − sj)− ...− βp(si − sj)p)2K(
si − sj
h

), (4.5)
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where K(·) is a kernel function and h is the bandwith/smoothing parameter, and p is

the order of the polynomial. Following Simonoff (1996), define the design matrix X

as

X =


1 (si − s1) ... (si − s1)p

... ... ... ...

1 (si − sn) ... (si − sn)p


and the weight matrix as

W = 1
h
diag[K( si−s1

h
), ..., K( si−sn

h
)].

Then when XT (W )(X) is invertible,

β̂ = (XT (W )(X))−1XT (W )(Z).

The estimator of β0 in (4.5) is then given by

β̂0 = y1
T (XT (W )(X))−1XT (W )(Z) = (A)(Z) (4.6)

where (y
1
) is the (p + 1) × 1 vector having the value 1 in the 1st entry and zero

elsewhere.

When p=1, (4.5) becomes

n∑
j=1

(Zj − β0 − β(si − sj))2K(
si − sj
h

). (4.7)

The local linear estimator of θi at location si is obtained by finding β̂0 and β̂ which

minimise (4.7). This can be given an explicit formula (Simonoff, 1996; Bowman and

Azzalini, 1997) as

θ̂i =
1

nh

n∑
j=1

{a2(si;h)− a1(si;h)(si − sj)}K( si−sj
h

)Zj
a2(si;h)a0(si;h)− a1(si;h)2

(4.8)

where ar(si;h) = 1
nh

∑n
j=1(si − sj)rK( si−sj

h
), r= 0, 1 or 2.

The Nadaraya-Watson estimator can be obtained the same way by omitting the β

term in (4.7).
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4.3 Kriging

Kriging is a geostatistical method used in the earth sciences (Cressie, 1993). This

method can be used in disease mapping to interpolate relative risk estimates onto a

continuous surface and produce isopleth maps. These maps strengthen the ability to

visualise disease patterns over time. Authors who have used kriging in disease mapping

include Berke (2004), Croner and De Cola (2001) and Carrat and Valleron (1992).

Kriging has an advantage over other interpolation methods such as splines, distance-

weighted methods and trend polynomial surface, as it takes into account the spatial

structure of the data (Croner and De Cola (2001); Carrat and Valleron (1992)). The

disadvantages are that kriging can produce negative interpolates and heterogeneous

variances in the estimates (Berke, 2004). Berke (2004) suggested that empirical Bayes

smoothing of the relative risk before using kriging can help address the problem of

heterogeneous variances, as empirical Bayes smoothing can shrink unstable estimates

to the local or global mean and, by borrowing strength from the neighbours, stabilise

the effect on variance. The problem of negative interpolates can also be addressed by

choosing an appropriate kriging method (Berke, 2004).

Let Z = (Z1, Z2, ..., Zn)T be the spatial data observed at locations si, with coordinates

(xi, yi), i = 1, 2, ..., n. Then kriging assumes that Z can be modelled as a stochastic

process, within the spatial linear model below. This model takes into account the

spatial correlation (Berke (2004); Cressie (1993)):

Z(s) = µ(s) + δ(s), δ(s) ∼ N(0,Σ), (4.9)

where µ(s) = E(Z(s)) is the mean structure, s = (s1, ..., sn)T is the set of locations,

δ(s) is the observation at location s of the correlated error process and Σ is a spa-

tially structured variance-covariance matrix. The structure of the spatial variation is

estimated by the use of a semi-variogram. The semi-variogram is defined as

γ(h) = 1
2
E(Z(s+ h)− Z(s))2,

where s is a location and s+h is a location at distance h from s. The classical estimator

of the semi-variogram for a given lag or distance h is

γ̂(h) =
1

2N(h)

∑
si,sj

(Z(si)− Z(sj))
2, (4.10)
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where the summation is over the N(h) pairs of locations si and sj at distance h from

each other. For irregular spatial location points, we sum over pairs si and sj such

that si and sj are between h − h
2

and h + h
2

distance apart. The computations of

γ(h) are repeated for 2h, 3h, 4h, ..., kh. Plotting γ̂(h) against h gives the empirical

semi-variogram.

There are different types of semi-variogram models which can be fitted to an empirical

semi-variogram. The basic models are the linear, spherical and exponential models

(Cressie, 1993). The expression for a linear model is:

γ(h) =

 0, h = 0,

C0 + b1h, h 6= 0.

The spherical model is:

γ(h) =


0, h = 0,

C0 + C1(1.5 h
C2
− 0.5( h

C2
)3), 0 < h < C2,

C0 + C1, h ≥ C2.

The exponential model is:

γ(h) =

 0, h = 0,

C0 + C1(1− e
−h
C2 ), h 6= 0.

If γ(h)→ C0 > 0 as h→ 0, C0 is called a nugget effect/variance (the amount by which

the variance differs from zero). This measures the small scale variance, due to mea-

surement error (which occurs when measurement is done several times and different

results obtained). C0 + C1 is called the sill and this describes the level of the semi-

variogram where the variance no longer increases (the level of an asymptote). There is

no sill in the linear model. The spherical model reaches an asymptote sharply, whereas

the exponential model levels out slowly. C2 is called the range of influence, and this

is the distance between two locations beyond which observations appear independent,

i.e. variance no longer increases. This is the distance at which the sill is reached.

When the semi-variogram is estimated without the nugget effect, kriging leads to di-

rect interpolation at the locations, giving predicted residuals equal to model residuals.

Predicting with the nugget effect gives smaller residuals, thus a smoother prediction

surface (Berke, 2004). The semi-variogram estimates parameters of the theoretical

model through a weighted or ordinary least squares technique (Cressie, 1993).
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There are different types of kriging which exist as a result of the underlying assump-

tions and the aims of the analysis (Cressie (1993) and Waller and Gotway (2004)). For

example, as a result of the knowledge and estimation of the spatial mean µ(s) in (4.9),

there is simple kriging (a linear prediction assuming a known mean), ordinary kriging

(a linear prediction with a constant unknown mean function) and universal kriging

(a linear prediction with non-stationary mean). We discuss ordinary and universal

kriging (commonly used methods) below.

4.3.1 Ordinary Kriging

In ordinary kriging (Waller and Gotway, 2004; Cressie, 1993) prediction assumes a

constant unknown mean and known semi-variogram, which still has to be fitted. If

Z = (Z1, Z2, ..., Zn)T is the spatial data observed at location si, i = 1, 2, ..., n, the

value of Z at location s0 can be estimated from the nearest sampling values by model

assumption (4.9) and the linear formula

Ẑ(s0) =
n∑
i=1

λiZ(si);
n∑
i=1

λi = 1. (4.11)

The estimation of the λis is based on using the semi-variogram γ(h) and two properties,

namely unbiasedness (E[Ẑ(s0)] = E[Z(s0)]) which is guaranteed by the constraint

(
∑n
i=1 λi = 1) and minimising mean squared prediction error (defined as E[Ẑ(s0) −

Z(s0)]2).

The λis are found by the method of Lagrange multipliers (Waller and Gotway, 2004).

We find λ1, ..., λn and the Lagrange multiplier φ that minimise the function

E[(
n∑
i=1

λiZ(si)− Z(s0))2]− 2φ(
n∑
i=1

λi − 1), (4.12)

where the second term is minimised when
∑n
i=1 λi = 1, ensuring unbiasedness.

The constraint
∑n
i=1 λi = 1 implies that

[
n∑
i=1

λiZ(si)−Z(s0)]2 = −1

2

n∑
i=1

n∑
j=1

λiλj(Z(si)−Z(sj))
2 +

n∑
i=1

λi(Z(s0)−Z(si))
2. (4.13)

Taking expectations of both sides of (4.13) we obtain

E[(
n∑
i=1

λiZ(si)−Z(s0))2] = −1

2

n∑
i=1

n∑
j=1

λiλjE[(Z(si)−Z(sj))
2]+

n∑
i=1

λiE[(Z(s0)−Z(si))
2].

(4.14)
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so that (4.12) becomes

−
n∑
i=1

n∑
j=1

λiλjγ(si − sj) + 2
n∑
i=1

λiγ(s0 − si)− 2φ(
n∑
i=1

λi − 1). (4.15)

Equation (4.15) is minimised by differentiating with respect to λ1, ..., λn and φ in turn

and setting the partial derivatives equal to zero to obtain a system of linear equations

below, referred to as ordinary kriging equations :

n∑
i=1

λiγ(si − sj) + φ = γ(s0 − si), i = 1, 2, ..., n,
n∑
i=1

λi = 1. (4.16)

To obtain the λis and φ, the system of linear equations above is solved and the re-

sults used in equation (4.11) to give the ordinary kriging predictor, where the weights

of Ẑ(s0) depend on both the spatial correlations between Z(s0) and each of the

Z(si), i = 1, ..., n and the spatial correlations between all pairs Z(si) and Z(sj),

i = 1, 2, ..., n, j = 1, 2, ..., n.

4.3.2 Universal Kriging

Let Z = (Z1, Z2, ..., Zn)T be the spatial data observed at locations si, with coordinates

(xi, yi), i = 1, 2, ..., n. Universal kriging assumes that µ(s) in equation (4.9) is a non-

stationary linear combination of p known functions f0(s), ..., fp(s). Thus, this kriging

method includes covariates. Following Cressie (1993), model (4.9) becomes

Z(s) =
p+1∑
j=1

fj−1(s)βj−1 + δ(s). (4.17)

When p = 0 and f0(s) = 1 we obtain the ordinary kriging model.

Model (4.17) can be written as

Z(s) = (X)(β) + δ(s) (4.18)

where β = (β0, ..., βp)
T is a vector of p+1 unknown parameters and X is an n× (p+1)

array with (i, j)th element fj−1(si), i = 1, ..., n, j = 1, ..., p+ 1.

The value at location s0 can be estimated from the nearest sampling values by model

assumption (4.17) and the linear formula

Ẑ(s0) =
n∑
i=1

λiZ(si); λTX = xT and
n∑
i=1

λi = 1. (4.19)
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Again, the estimation of the λis is based on using the semi-variogram γ(h), unbi-

asedness E[Ẑ(s0)] = E[λTZ] = λT (X)(β), which is guaranteed by the constraint

λTX = xT , λ = (λ1, ..., λn)T , x = (f0(s0), ..., fp(s0))T and minimising mean squared

prediction error (defined as E(Ẑ(s0)− Z(s0))2).

We find λ1, ..., λn and Lagrange multipliers φ0, ..., φp that minimise the function

E[(Z(s0)−
n∑
i=1

λiZ(si))
2]− 2

p+1∑
j=1

φj−1[
n∑
i=1

λifj−1(si)− fj−1(s0)]. (4.20)

Assuming that fo(s)=1 and using
∑n
i=1 λi = 1, then

[Z(s0)−
n∑
i=1

λiZ(si)]
2 = [xTβ + δ(s0)− λT (X)(β)−

n∑
i=1

λiδ(si)]
2 = [δ(s0)−

n∑
i=1

λiδ(si)]
2

(4.21)

which then gives

[Z(s0)−
n∑
i=1

λiZ(si)]
2 = −1

2

n∑
i=1

n∑
j=1

λiλj(δ(si)− δ(sj))2 +
n∑
i=1

λi(δ(s0)− δ(si))2. (4.22)

Taking expectations of both sides of equation (4.22), (4.20) becomes

−
n∑
i=1

n∑
j=1

λiλjγ(si−sj)+2
n∑
i=1

λiγ(s0−si)−2
p+1∑
j=1

φj−1[
n∑
i=1

λifj−1(si)−fj−1(s0)]. (4.23)

Differentiating (4.23) with respect to λ1, ..., λn and φ0, ..., φp and equating to zero,

gives estimators of λ1, ..., λn and φ0, ..., φp.

4.4 Comparing Measles Susceptibility Maps

Here we use susceptibility to measles data described in Section 1.5 at district and

postcode sector level, for 2000-2005. Firstly, we use kernel smoothing and ordinary

kriging to smooth the susceptibility ratios given by observed counts /expected counts

for pre-school at district level. Also ordinary kriging is used to smooth the empirical

Bayes estimates obtained by smoothing using the log-normal model without a spatial

component (see Section 3.3.2). The three methods are compared, and the one that

gives good results is used to smooth measles susceptibility data for primary 1 and 2

school children at district level, and for both pre-school and primary 1 and 2 school

children at postcode sector level. This analysis may help in comparing maps over time

using isopleth maps. It is expected that the isopleth maps will show gradual changes

instead of jumps as in the case of choropleth maps.
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The locations used are centroids of the districts. For kernel smoothing, the Nadaraya-

Watson kernel smoother from package JLLprod, function Blocc, in R was used, kernel

used here is Gaussian, and the smoothing parameter (h) is automatically chosen by

the R function. The package geoR in R was used to perform kriging.

2000 2001 2002

2003 2004 2005

Figure 4.1: Isopleth maps from kernel smoothing of susceptibility ratios (ob-

served/expected) for pre-school children for years 2000-2005, for districts.
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2000 2001 2002

2003 2004 2005

Figure 4.2: Isopleth maps from ordinary kriging of susceptibility ratios (ob-

served/expected) for pre-school children for years 2000-2005, for districts.
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2000 2001 2002

2003 2004 2005

Figure 4.3: Isopleth maps from ordinary kriging of empirical Bayesian estimates for

pre-school children for years 2000-2005, for districts.
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Figure 4.4: Semivariograms and fitted spherical model obtained from ordinary kriging

of susceptibility ratios (observed/expected), for pre-school children for years 2000-2005

for districts. Distance is measured in metres.
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Figure 4.5: Semivariograms and fitted spherical model obtained from ordinary krig-

ing of empirical Bayesian estimates, for pre-school children for years 2000-2005 for

districts. Distance measured in metres.
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The spatial structure is modelled by a spherical semi-variogram (the most widely used

method; see Section 4.3, and fitted by weighted least squares estimation). The codes

are given in Appendix C.

Figures 4.1-4.3 show an overlay of isopleth maps of susceptibility to measles on the map

of Scotland, for kernel smoothing, ordinary kriging of susceptibility rates and ordinary

kriging of empirical Bayesian estimates respectively. It can be observed that generally

the three smoothing methods do not give very different results, but rates seem to vary

across space more quickly with the kriging methods than kernel smoothing.

Generally for all the years, susceptibility is lower in the southern districts and higher

in the north and north west regions. The results are similar to those obtained from

the choropleth maps for pre-school, at district level in Chapter 3.

Figures 4.4 and 4.5 show semi-variograms and fitted spherical models for ordinary

kriging of raw and smoothed susceptibility rates respectively, and the values for the

nugget effect, sill and range are shown in Table 4.1.

Raw Rates Smoothed Rates

Year nugget variance sill range nugget variance sill range

2000 0.0075 0.0322 318716 0.0026 0.0032 212477

2001 0.0032 0.0236 212477 0.0026 0.0021 106239

2002 0.0055 0.0189 318716 0.0000 0.0041 106239

2003 0.0000 0.0762 562849 0.0000 0.0232 531194

2004 0.0000 0.1474 959658 0.0000 0.0287 531671

2005 0.0000 0.0749 732287 0.0000 0.0133 531194

Table 4.1: Table of nugget variance, sill and range in metres for raw susceptibility ratios

(observed/expected) and smoothed susceptibility ratios (observed/expected) obtained

from ordinary kriging.

The plots indicate that the spherical model does not fit the data very well as most

points are further away from the fitted model. A straight line may fit some of the years

better. The exponential model was also used and the plots obtained were similar to

those for the spherical model, so only the spherical model results are reported here.

The semi-variogram describes the spatial correlation between the susceptibility ratios,

thus should indicate how different the susceptibility ratios are at various distances

124



apart. Generally, the values of nugget variance, sill and range obtained from the raw

data are larger than those obtained from the smoothed data as expected, as smoothing

pulls rates towards the mean, so that variability between the rates decreases. The years

2000 and 2001 for the raw data and the years 2000, 2001 and 2002 for the smoothed

data have a nugget variance greater than zero, though the value of the theoretical

semivariogram at distance h =0 is strictly zero. These dissimilarities of susceptibility

rates at extremely small distances in general may occur due to scale variation and

error in measurements, though here we do not have measurements as we are using

aggregated values at the centroids.

Generally, the raw data and smoothed data results give similar interpretation, i.e.

the value of the sill reduces from 2001 with an increase in 2003 followed by another

increase in 2004, and a decrease in 2005. Thus spatial dependence among regions was

decreasing from 2000 to 2002, while from 2003 to 2004 spatial dependence among the

regions increases, with a decrease in 2005. We note that for the smoothed rates a slight

increase started in 2002. The range is larger for higher sill values and lower for lower

values sill, i.e. spatial autocorrelation exists for large distances when most regions are

clustered or have similar values, and spatial autocorrelation exists for shorter distances

when fewer regions are clustered . The higher sill and largest range are in 2003 and

2004, and for these two years, both the isopleth maps and choropleth maps in Chapter

3, showed that most districts had higher susceptibility.

As kernel smoothing and kriging of raw and smoothed the data do not give very

different interpretations and kernel smoothing does not require choice of model, kernel

smoothing is used to smooth data for primary 1 and 2 school children at district level,

and for pre-school and primary 1 and school children at postcode sector level. Isopleth

maps are produced for each case and maps compared.

Figure 4.6 shows maps for primary 1 and 2 school children at district level, using kernel

smoothing. As for pre-school children (Figure 4.1), lower susceptibility is present in

the south and higher susceptibility in the north. The years 2002, 2003 and 2004 seem

to be similar in the upper central districts.
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2000 2001 2002

2003 2004 2005

Figure 4.6: Isopleth maps from kernel smoothing for primary 1 and 2 school children

for years 2000-2005 for districts.
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Figure 4.7: Isopleth maps from kernel smoothing for pre-school children for years

2000-2005 for postcode sectors.
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Figure 4.8: Isopleth maps from kernel smoothing for primary 1 and 2 school children

for years 2000-2005 for postcode sectors.
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Figures 4.7-4.8 show isopleth maps based on kernel smoothing at postcode sector level

for pre-school and primary 1 and 2 school children. As for districts, lower susceptibility

is found in the southern regions and higher in the northern regions. The values of the

contours are higher than at district level. For pre-school, 2003 has higher values

than other years. For primary 1 and 2 school children, 2003 and 2004 have highest

susceptibility in the upper central region and this decreased in 2005 (Figure 4.8). For

both pre-school and primary 1 and 2 and for each year, there is a peak in the west

central Highlands, and these have lower population.

4.5 Discussion

In this chapter we have discussed nonparametric smoothing methods for disease map-

ping of count data and applied some of them to susceptibility to measles data of

pre-school children in Scotland. We considered two nonparametric kernel regression

methods, namely the Nadaraya-Watson kernel estimator and local linear regression es-

timator. Even though the Nadaraya-Watson kernel estimator is the simplest method

to use, it has a disadvantage of edge effects, however the local linear estimator has

edge effect correction.

We discussed the kriging methods based on ordinary and universal kriging. Universal

kriging is a refinement of ordinary kriging as it allows the incorporation of covariates

by means of regression modelling, so when covariates are available the relationship

between the spatial distribution of a disease and possible predictors can be modelled.

Smoothing was based on smoothing of the ratios of the observed counts/expected

counts for measles susceptibility, using the Nadaraya-Watson kernel estimator and

ordinary kriging, and also smoothing of empirical Bayes estimates (Section 4.3) by or-

dinary kriging as suggested by Berke (2004), as the empirical Bayes smoothing helps

to stabilise the variance by shrinking unstable estimates using neighbourhood data.

For kriging, the semivariogram was used to help in interpreting the spatial dependence

or structure. However, for the data used here the results were not satisfactory, as for

kriging the fitted spherical model did not fit the data well as most of the values are

far from the fitted curve. For both kernel and kriging methods, it was not very easy

to compare the maps and see what is happening over time, even though it could be
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observed that for both pre-school and primary 1 and 2 school children, and at district

and postcode sector levels, the isopleth maps retain high values of susceptibility in the

north regions and lower values in the south. The results obtained from the districts

and the postcode sectors are quite different. The postcode sectors highlighted a peak

in measles susceptibility in the west central Highlands where there are fewer people in

the population, but this was not observed in the district maps. Thus maps of postcode

sectors are more informative than maps of districts, and this indicates that choice of

geographical unit is also important when smoothing, and in this case it may be better

to use postcode sector level as it has more points than district level. Isopleth mapping

has advantages over choropleth mapping, discussed in Chapter 3. The most important

characteristic of isopleth mapping is that it is not restricted by the boundaries of the

area of study, thus avoiding sudden jumps between two neighbouring regions (Carrat

and Valleron, 1992). However, in this analysis these methods were not very useful.

In practice choropleth maps are more widely used to illustrate regional patterns of

disease and we focus on these in the following chapters.

In the next chapter the focus is on developing methods to compare maps. As maps

can be considered as a form of image, some of the methods which we consider are

based on image analysis methods, which are used to compare a distorted image to a

reference image.
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Chapter 5

Methods for Comparing Disease

Maps

5.1 Introduction

Much of the analyses in Chapters 3 and 4 are based on comparing maps visually,

and now in this chapter we look at more formal ways of comparing maps. In disease

mapping, there are various possible changes that can result in maps being different.

Differences can occur due to changes in the mean, changes in variability due to clus-

tering (local variability; single area or a group of local areas with a change in rate) or

changes in unstructured variability (global variability; overall mean stays the same but

high areas get higher and low areas get lower), as seen in Chapter 3. In this chapter we

develop descriptive methods or measures that can be used to compare maps. The aim

is to develop methods that can be used to identify or detect differences/similarities

between two maps, and, if possible, reveal and quantify the kind of difference that is

present.

In environmental research, methods and software have been developed to compare

maps of categorical data (Stehman, 1999; Hagen, 2002; Pontius, 2002; Hargrove et al.,

2006; Visser and Nijs, 2006; and Hagen, 2007). An example of a categorical map is

a land cover or land use map. There are several possible reasons for comparing such

maps. For example to find similarities or dissimilarities or to assess for which land

use category both maps are similar, to detect spatial or temporal changes, for vali-

dation of land use models, analyses of sensitivity and uncertainty of models, and for
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assessing map accuracy (Visser and Nijs, 2006). Some of these methods are based on

pixel by pixel comparison, for example kappa statistics used by Hagen (2002). Some

are pattern based comparisons which consider structural similarity, for example the

fuzzy polygon based matching technique and fractal analysis approach used by White

(2006). These methods do not apply directly in the area of disease mapping as the

maps do not consist of pixels and regions in the maps are irregular in shape. Further-

more each region has a quantitative rate associated with it as opposed to a categorical

label.

In disease mapping, space-time models have been used to compare two or more maps,

and models developed for joint modelling of disease may also be useful in comparing

two disease maps (see for example Dabney and Wakefield, 2005). Here we develop

descriptive methods for map comparison.

The obvious starting point is the visual comparison of maps, as seen in Chapter 3

(for example, Figure 3.3). The other methods used in that chapter are based on plots

against time of parameters obtained from fitted models (the overall mean, variability

due to clustering and unstructured variability) (for example, Figure 3.7). Other pos-

sibilities include ratio maps, maps of differences, pseudo-colour maps produced from

red, green and blue additive primary colours, spatial autocorrelation methods, and

the adaption of some ideas that have been used in spatial point processes and image

analysis.

In this chapter various methods are described and new ones derived. These are illus-

trated on two maps produced from the proportions (raw data) susceptible to measles

for pre-school children in Scotland, for the years 2000 and 2001 at district level. A

simulation study is done in Chapter 6 and more systematic comparisons on real data

are presented in Chapter 7.

5.2 Preliminary Analysis

Different methods may be used to perform the preliminary analysis of the data. These

can give better understanding of the data by showing the overall distribution of the

data for each map. Here we consider histograms and boxplots. Figure 5.1 shows

histograms of proportions of susceptibility to measles for 2000 and 2001 respectively.
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Figure 5.1: Histograms based on the proportions of pre-school susceptibility to measles

data, for 2000 and 2001.

These data are slightly different. The year 2000 has more regions with higher rates

than 2001. This is also shown by the boxplots in Figure 5.2, in which the median in

2000 is slightly higher than in 2001, as is the whole boxplot, indicating that there are

more districts in 2000 with higher susceptibility than in 2001. These plots do not take

into account the spatial distribution of the data but show how the rates in each map

are distributed.
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Figure 5.2: Boxplots based on the proportions of pre-school susceptibility to measles

data, for 2000 and 2001.

5.3 Use of Maps

Often in disease mapping, maps are produced from the smoothed rates. These maps

can be visually compared to assess whether there are any differences or similarities
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in the spatial distribution over the years of the disease in question. Here we discuss

the use of ratio maps, difference maps and pseudo-colour maps, which will help in

comparing the rates of two maps in each region. These maps will allow us to see easily

whether a disease rate in a region has changed or not, and, if the rate is different,

which map has a larger/smaller rate.

Ratio and Difference Maps

To compare two maps using a ratio map, for each region the ratio of the disease rates

for map 2 relative to map 1 is obtained and these ratios are mapped, i.e. we map

ri = p2i

p1i
, i = 1, ..., n, where ri is the ratio for region i, n is total number of regions, and

p1i and p2i are rates for map 1 and map 2 respectively, for region i. A ratio of 1 will

indicate that at that region the maps are identical, a ratio greater than 1 will indicate

that the maps are dissimilar at that region and map 2 has a larger rate than map 1,

while a ratio less than 1 will indicate that the maps are dissimilar at that region and

map 2 has a smaller rate than map 1.

For the differences map, for each region the difference between two rates is obtained,

i.e. the map 2 rate less the map 1 rate, and a map based on these differences is pro-

duced. Identical regions will have a value of zero, and dissimilar regions will have a

value greater or smaller than zero, depending on whether map 2 has the larger or the

smaller rate compared to map 1.

Thus the ratio and difference maps can highlight similarities and differences in indi-

vidual regions, and also show which of the two maps has more or fewer regions of

higher/lower rates than the other. The ratio map may not work well in the case when

zero counts are present and when expected counts are small. In that case only the

difference map may be used.

Pseudo-Colour Map

This map is based on the idea of a pseudo-colour image (see, for example, Glasbey

and Horgan, 1995), which can be used to illustrate the combinations of different vari-

able values available for each pixel in an image and display them simultaneously. A

pseudo-colour image uses the additive primary colours, red, green and blue. To apply

this idea to compare two maps, the disease rates vector for one map is used to define
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one colour dimension, for example red, and the disease rates vector for the other map

is used to define the other two colour dimensions, for example both green and blue

colours.

In a digital greyscale image, the intensity of a pixel is usually represented as an inte-

ger in the range 0 (black) to 255 (white). In a colour image, the colour at each pixel

is defined by three intensity values, one each for the amount of red, green and blue

defining the colour. Each of these is usually also recorded as a value between 0 and

255 inclusive. For example, the (R,G,B) triple (255,0,0) represents pure strong red,

(0,255,0) represents pure strong green and (0,0,255) represents pure strong blue. Other

combinations give other colours. Equal values for R, G and B define a shade of grey.

For each rate vector, the rates are allocated colour corresponding to the intensities

between 0 and 255, therefore the rate vector has to be scaled first to obtain a new

vector with rates between 0 and 255. In order to achieve this and produce a map, we

proceed as follows:

1. For each map or rate vector find the 5th percentile and the 95th percentile.

2. Take the minimum of the two 5th percentiles and the maximum of the two 95th

percentile values and obtain the difference between the two, i.e. a range.

3. For each rate vector use the minimum and the range from step 2 to scale the rate

vector to obtain a new vector, as follows: X1 = (X − minimum) ∗ 255
range

, where

X1 and X are the values in the new and old rate vectors respectively. A value

of less than 0 is clipped to the value 0 and a value of more than 255 is clipped

to the value 255.

4. The three new scaled rate vectors together define a colour at each region. As

there are three colour dimensions but only two maps, one scaled rate vector is

used to define the value of one colour dimension and the other scaled rate vector

is used to define the values (set equal) in each of the other two colour dimensions.

For example, the value of the scaled rate in a given region of map 1 may give

each of the R (red) and B (blue) values (set equal), and the value of the rescaled

rate in that same region of map 2 may give the value G (green), or vice versa.

There are three different ways to do this colour assignment to either map. The

resulting (R,G,B) combination then gives the pseudo-colour to use to shade that
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region in the pseudo-colour map.

5. Produce a pseudo-colour map based on these colours (here we use a function rgb

in the software R, used for primary colour specification for displaying purposes).

Figure 5.3 gives all six sample pseudo-colour maps with colours allocated in three

different ways to each map. Measles susceptibility rates for 2000 and 2001 are used.

The first map (top left) results from allocating both green and blue to 2000 and red

to 2001. Blue regions are those where susceptibility is higher in 2000 than 2001 and

pink/brown regions are those where susceptibility is higher in 2001. The first map

(bottom left) results from allocating the other way round, i.e. allocating red to 2000

and green and blue to 2001. Now pink/brown regions are those where susceptibility

is higher in 2000 and blue regions are those where susceptibility is higher in 2001.

The middle map (top) is a result of allocating red and blue to 2000 and green to 2001.

Pink/purple indicates regions with higher susceptibility in 2000 and a green colour

indicates those with higher susceptibility in 2001. The middle map (bottom) results

from allocating green to 2000 and red and blue to 2001. Green regions are those with

higher susceptibility in 2000 and pink/purple are those with higher susceptibility in

year 2001.

The third map (top right) results from allocating red and green to 2000 and blue

to 2001, giving yellow/green regions when susceptibility is higher in 2000 than 2001

and blue/lilac regions when susceptibility is higher in 2001. The other third map

(bottom right) results from allocating blue to 2000 and red and green to 2001, and

now blue/lilac regions are where susceptibility is higher in 2000 and yellow regions

where susceptibility is higher in 2001.

For all these maps, a grey colour indicates that the maps are similar at that region,

i.e. have similar rates. For each rate vector, the lighter the colour the higher the rate,

and the darker the colour the smaller the rate in relation to other rates in the map.

This map allows us to identify visually and quickly regions with similar or different

rates. Here we chose the option of allocating red and blue to one map and green to

the other, as it is easier to know what colours to expect, i.e. red and blue gives colour

not very far from red (pink/purple) if the rate in that map is higher than in the map

allocated green, and the use of green gives a greenish colour if the rate in the map
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defining the green is higher. The R software code for the pseudo-colour map is given

in Appendix C.

5.3.1 Illustration Using Two Maps

Figure 5.4 shows maps of susceptibility to measles for 2000 and 2001, ratio maps

obtained by mapping the ratio of 2001 to 2000 and a difference map (2000-2001).

Three limits were chosen in the case of the difference and ratio maps, and this was

done in such a way that the middle interval will be a narrow interval around 0 for

the difference map and a narrow interval around 1 for the ratio map. From visual

comparison, some differences can be observed in the susceptibility to measles maps

(top two maps) For both years, susceptibility to measles is higher in the northern and

western regions and lower in the southern regions, but in 2001 the number of regions

with lower susceptibility increased to include more of the north east.

Using the suggested maps the regions with similar or different susceptibility rates

can easily be identified, and more easily observed than from the susceptibility maps

themselves. The ratio map plots the ratio of 2001 over 2000. Susceptibility is similar

(not changed in 2001) in a few central districts for both years, i.e. with a ratio of 0.99

(inclusive)-1.01 (inclusive). This includes urban areas of Glasgow and Edinburgh.

In 2001 susceptibility increased for a few districts (darker districts with ratio over

1.01). These are some districts in the south, and some in the north, including districts

such as Sutherland, Lochaber and Berwickshire. In most districts all over Scotland

measles susceptibility decreased in 2001 (lighter regions, with a ratio under 0.99), but

mostly those in the north east and south. This confirms what we see in the maps

of susceptibility, i.e. susceptibility decreases in 2001 to include the north east. The

average of the ratios is 0.97, the median is 0.98 and the range is 0.30. As the median

and mean ratio are both close to 1, and the range is low most regions are similar.

The difference map plots the rates for 2000 minus the rates for 2001. This gives a

similar picture to the ratio map. The darker regions are where susceptibility increased

in 2000, and lighter regions are where susceptibility was higher in 2001 or was lower

in 2000. The regions with high susceptibility in 2000 are in the west, north east and

south.
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2000 (Red) and 2001
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Figure 5.3: Pseudo-colour maps for proportions of pre-school children susceptible to

measles, for 2000 and 2001 with colour allocated in different ways. The left maps use

green and blue for 2000 and red for 2001 (top), and red for 2000 and green and blue

for 2001 (bottom). The middle maps use red and blue for 2000 and green for 2001

(top), and green for 2000 and red and blue for 2001 (bottom). The right maps use red

and green for 2000 and blue for 2001 (top), and blue for 2000 and red and green for

2001 (bottom).
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under 0.133
0.133 − 0.142
0.142 − 0.15
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Measles Susceptibility Proportions
for Pre−School 2000

under 0.133
0.133 − 0.142
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for Pre−School 2001

under 0.99
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Proportions for  Pre−School 2001/2000

under −0.001
−0.001 − 0.001
over 0.001

Difference Map of Measles Susceptibility
Proportions for  Pre−School 2000−2001

Figure 5.4: Susceptibility maps based on proportions of pre-school children susceptible

to measles, for 2000 and 2001, and corresponding ratio (2001/2000) and difference

maps (2000-2001).
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There are pockets of districts which had high susceptibility rates in 2001 which are

similar for those indicated by the ratio map. Roxburgh district (see Figure 1.4) was

highlighted by the ratio map as having susceptibility rates that are similar for both

2000 and 2001, but the difference map indicates that this district had higher suscep-

tibility in 2001.

The pseudo-colour map in Figure 5.3 (top middle plot) shows that there are districts

with greyish colour, i.e. where measles susceptibility is similar in the two years, very

few regions where susceptibility is higher or increased in 2001 (green) and more dis-

tricts where susceptibility is higher in 2000 than 2001 (pink/purple). Regions in the

north east, southern part and some in the west had higher susceptibility rates in 2000.

Sunderland, Lochaber and Tweeddale are shown to have higher susceptibility in 2001

and this is consistently shown by all the maps. Inverness and Stirling are among those

in which susceptibility remained similar for both years. Even though the district of

Badenoch and Strathspey is indicated by the ratio map and difference map to have

higher susceptibility in 2001, the pseudo-colour map shows this region as having the

same higher of susceptibility rate (very pale white colour) in both years, and this

higher susceptibility rate can be visually seen on the susceptibility maps.

Use of the ratio map, difference map and pseudo-colour map together with the maps

based on rates may help in making better conclusions about the changes that have

taken place in the regions, by identifying those regions where the rates have increased,

decreased or remained the same.

5.4 Plots of Parameters

In disease mapping, when using models (spatial or space-time) to fit or smooth rates

at different time points, as in Chapter 4, we obtain fitted parameters for the overall

mean and variability due to structured and unstructured heterogeneity. These param-

eters can be plotted against time and the trend observed to summarise the nature of

differences between maps.
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5.4.1 Illustration Using Two Maps

Table 5.1 shows the results obtained from fitting the logistic model and the Waller

et al. (1997) space-time model. Since here we are comparing only two maps, it is

easy to compare the parameter values from the table. Even though the values of the

parameters from the two models are not the same, the interpretation of the results is

similar.

Pre-school

Year Logistic model Space-time model

α mean σu σv σu σv

2000 −1.83 (0.03) 0.14 (0.005) 0.08 (0.03) 0.21 (0.02) 0.05 (0.06) 0.57 (0.06)

2001 −1.86 (0.03) 0.13 (0.005) 0.08 (0.04) 0.22 (0.03) 0.05 (0.04) 0.58 (0.06)

Table 5.1: Pre-school posterior means for overall mean level (α), mean ( eα

1+eα
), standard

deviations due to correlated heterogeneity (σu) and uncorrelated heterogeneity (σv) for

the logistic and space-time (Waller et al., 1997) models, with standard deviations in

brackets.

The logistic model indicates that the overall mean has changed very slightly between

years (0.14 (2000), 0.13 (2001)). Both models indicate that standard deviation due to

clustering is the same for both years (σu=0.08 (logistic model), σu=0.05 (space-time

model)) and there is a very slight change in standard deviation due to unstructured

heterogeneity (σv=0.21 (2000) and σv=0.22 (2001) for the logistic model; σv=0.57

(2000)) and σv=0.58 (2001) for the space-time model).

Taking into account standard errors, there is no difference between the years in any

of the parameters, so the two models say the two maps are virtually identical. This

suggests that the maps are over interpreted and that statistical tests are needed, and

that is why we want to investigate the use of other methods.

5.5 Spatial Autocorrelation Methods

Spatial autocorrelation is present when the value of a spatial variable for a region is

associated with the values of that same variable at neighbouring regions. For exam-

ple, spatial autocorrelation exists when similar high/low values cluster together on a
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map (Sokal and Uytterschaut, 1987; Odland, 1988; Gebhardt, 1998; and Rosenberg

et al., 1999). When data are mapped, the map contains the information about how

the values of the variable are arranged in space, thus here we look at some descriptive

statistical methods that are used to analyse spatial distribution by measuring spa-

tial autocorrelation. These methods may not necessarily help in detecting differences

between maps but may aid in comparing the spatial distribution/structure of two or

more disease maps by giving a measure of strength of spatial dependency for each

map, thus we will be able to know which map has the strongest spatial dependency.

The statistical methods described here are used for real-valued variables, namely

Moran’s I, Geary’s c and the spatial correlogram based on each of these two measures.

5.5.1 Moran’s I, Geary’s c and Spatial Correlogram

Moran’s I (Moran, 1950) and Geary’s c (Geary, 1954), are the standard statistics

for testing the independence of real-valued area data (Gebhardt, 1998). The null

hypothesis is that all the values are independent. Moran’s I is a product-moment

correlation and Geary’s c is a distance-like coefficient. Moran’s I is inversely related

to Geary’s c. It is a measure of global spatial autocorrelation, while Geary’s c is more

sensitive to local spatial autocorrelation.

Let x = {xi, i = 1, 2, ..., n} be real-valued data for n regions. Then Moran’s I is given

by

I =
n∑

i

∑
j wij

∑
i

∑
j wij(xi − x)(xj − x)∑

i(xi − x)2
(5.1)

where wij is a measure of adjacency between regions i and j, with wii = 0.

This is a spatial autocovariance (numerator) standardised by two terms. These are∑
i(xi − x)2, which measures variation in the values of x but not on their spatial

arrangement, and n∑
i

∑
j
wij

, which measures connectivity of a set of regions and the

value of which can change with the rearrangement of regions but not with changes in

x. The values of I range from -1 to +1 (Odland, 1988).

Various forms of wij have been used, for example,

• wij = 1 when regions are neighbours, i.e. share a boundary, and wij = 0 other-

wise,
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• wij = 1
vi

where vi is the number of neighbours of a region,

and

• wij = 1 if the distance (i.e. distance between regions or distance between their

centroids) between i and j is less than a threshold, and wij = 0 otherwise.

The expected value of Moran’s I is − 1
n−1

. When values of a spatial variable are

independent of neighbouring values I should be close to this expected value. Values of

I greater than this expected value indicate positive spatial autocorrelation, i.e. values

of a spatial variable tend to be similar to neighbouring values (large or small values

are spatially clustered), and values of I less than the expected value indicate negative

spatial autocorrelation, i.e. neighbouring values are not independent but tend to be

dissimilar. As the number of regions (n) becomes large the expected value approaches

zero.

Geary’s c is an alternative statistic to Moran’s I. Let x = {xi, i = 1, 2, ..., n} be a set

of real-valued data for n regions. Then Geary’s c is given by

c =
n− 1

2
∑
i

∑
j wij

∑
i

∑
j wij(xi − xj)2∑
i(xi − x)2

, (5.2)

again as for Moran’s I wij is a measure of adjacency between regions i and j, with

wii = 0. This statistic lies between 0 and 2.

The expected value of Geary’s c is 1 for independent neighbouring values, smaller than

1 for positive spatial autocorrelation, and larger than 1 for negative spatial autocorre-

lation. Thus large values of I correspond to small values of c and vice versa (see also

Figure 5.5).

A spatial correlogram is a graph of a spatial autocorrelation coefficient against distance

between regions. For a given variable, this is computed by evaluating the spatial au-

tocorrelation coefficient for sets of pairs of regions at specified distance classes. In

general, in a correlogram positive autocorrelation coefficients will indicate that re-

gions at a given distance apart are similar, and negative autocorrelation coefficients

will indicate that regions at a given distance apart are dissimilar. When assessing

statistical significance of the spatial correlogram, it must be considered that the indi-

vidual coefficients are not independent, thus a Bonferroni method which approximates

the adjusted significance probability for multiple testing is used (Fortin et al., 2002;
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Sokal and Uytterschaut, 1987). Therefore, the significance of a spatial correlogram is

tested by using the Bonferroni criterion, i.e. the spatial correlogram is significant if

at least one of its Moran’s I or Geary’s c values is significant at P < α
k
, where k is the

number of distance classes, α is the standard type I error and P is the p-value of the

coefficient.

5.5.2 Illustration Using Two Maps

For both Moran’s I and Geary’s c (including spatial correlograms), the results ob-

tained have a similar interpretation. The overall Moran’s I and Geary’s c statistics

for 2000 are 0.449 and 0.421 respectively, and for 2001 the values are 0.459 and 0.456

respectively with n = 56 districts. These results indicate that for both years there is

a positive spatial autocorrelation, i.e. neighbouring districts are similar and spatial

autocorrelation is not very different. For both statistics, the value is a little lower for

2001 than for 2000.

The spatial correlograms in Figure 5.5 are all significant using the Bonferroni criterion

with α = 0.05 and k = 12 (number of distance classes), so α
k

= 0.004. The coef-

ficients and their distance classes and p-values are shown in Tables 5.2 (Moran’s I)

and 5.3 (Geary’s c). These calculations were done in R, and the distances used were

chosen automatically by the function used (in this case as distances which are about

55.33 kilometres apart). The distances are 32.39, 87.72, 143.06, 198.39, 253.72, 309.05,

364.39, 419.72, 475.05, 530.39, 585.72 and 641.05. Here we use wij such that wij = 1

when regions are neighbours, i.e. share a boundary, and wij = 0 otherwise.

The spatial correlograms for the two years look similar. There is a positive autocorre-

lation at the first two short distances (32.39 and 87.72) and negative autocorrelation

at long distances for both 2000 and 2001, indicating clustering. These plots confirm

the existence of similar positive spatial autocorrelation, thus the spatial distributions

are similar for the two maps. The conclusion is the same for both spatial measures.

However, these measures do not give a comparison of the pattern in the two maps.
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2000 2001

class distance in kilometres coefficient p-value coefficient p-value

1 32.39 0.324 5.97e-06 0.330 5.88e-06

2 87.72 0.400 1.04e-12 0.292 1.10e-07

3 143.06 0.005 3.42e-01 0.048 1.26e-01

4 198.39 -0.074 8.21e-01 -0.051 7.02e-01

5 253.72 -0.087 7.84e-01 -0.107 8.45e-01

6 309.05 -0.460 9.99e-01 -0.277 9.94e-01

7 364.39 -0.522 9.99e-01 -0.410 9.98e-01

8 419.72 -0.245 8.53e-01 0.051 2.99e-01

9 475.05 -0.090 4.98e-01 0.109 2.20e-01

10 530.39 -0.368 9.99e-01 -0.422 9.99e-01

11 585.72 -0.580 9.99e-01 -0.492 9.99e-01

12 641.05 -0.719 9.86e-01 -0.843 9.87e-01

Table 5.2: Coefficients of Moran’s I with distance classes and p-values used to produce

spatial correlograms for 2000 and 2001. The p-values are compared to α
12

.

2000 2001

class distance in kilometres coefficient p-value coefficient p-value

1 32.39 0.573 7.65e-07 0.605 1.90e-06

2 87.72 0.643 4.19e-06 0.706 5.53e-05

3 143.06 0.985 4.53e-01 1.098 8.08-01

4 198.39 1.110 7.89e-01 1.034 6.05e-01

5 253.72 1.521 9.95e-01 1.465 9.93e-01

6 309.05 2.426 9.99e-01 2.034 9.99e-01

7 364.39 2.676 9.99e-01 2.247 9.98e-01

8 419.72 1.421 8.76e-01 0.978 4.77e-01

9 475.05 0.970 4.67e-01 1.077 5.87e-01

10 530.39 3.814 9.99e-01 4.296 9.99e-01

11 585.72 4.559 9.99e-01 3.947 9.99e-01

12 641.05 2.298 9.86e-01 2.608 9.87e-01

Table 5.3: Coefficients of Geary’s c with distance classes and p-values used to produce

spatial correlograms for 2000 and 2001. The p-values are compared to α
12

.
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Figure 5.5: Spatial correlograms for Moran’s I and Geary’s c for pre-school suscepti-

bility to measles in years 2000 and 2001 at district level, with the red points (the first

two) indicating a distance in kilometres at which positive autocorrelation is significant.
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5.6 Analogues of Some Point Process Methods

In a spatial point process, a spatial point pattern is a data set of points referred

to as events, distributed within a region at different locations (Diggle, 2003). To

test for complete spatial randomness (CSR) of a spatial point pattern (Diggle, 2003)

several distance based methods are used. One of these is the inter-event distances

(geographical distance between two events) method, for which a summary description

of a pattern of n events in a region is the empirical cumulative distribution function

(ecdf) of the 1
2
n(n−1) distinct inter-event distances. Another is the nearest neighbour

distances method for which xi is the distance from the ith event to the geographically

nearest event, i = 1, 2, ..., n, thus the empirical cumulative distribution is based on the

n nearest neighbour distances. The ecdf of either of these sets of differences is then

compared to the corresponding cumulative distribution function expected under CSR,

or two ecdfs from separate samples may be compared in a two sample test. The two

ecdfs can be tested for a significant difference using the Kolmogorov-Smirnoff (KS)

test (Durbin, 1973), for example. In our case we compare two cumulative distribution

functions (cdfs). The two-sample KS test tests whether two data sets arise from

distributions with the same cdf or not. It compares the cumulative distributions by

using the maximum vertical deviation (distance (D)) between the two curves as the

test statistic.

Another method used in point processes is the point to nearest event distances method,

in which xi is the distance from the ith of m sample points in space to the nearest of

the n events. This method will not be useful in comparing disease maps, as the rates

corresponding to the areas in the maps typically are fairly limited in number and to

sample values from these to use would be to use the values more than once (as sample

points and ”events”).

Here in the case of disease mapping, we adapt the idea of obtaining this kind of

empirical cumulative distribution to describe the maps. Instead of distances, the

absolute differences between disease rates are used, for each of two disease maps the

cdf of the differences is obtained, and the two cdfs are compared to test if there is

any difference between the maps. Below we outline different implementations of this

approach.

147



5.6.1 Methods

1. Inter Region Differences (IRD)

This method is an analogy of the inter-event distance method. For each map, the

cdf is calculated from the numerical differences between all possible distinct pairs

of rates. Let xi now be be the ith smallest inter-region difference, i = 1, ..., l.

Then the cdf is given by

F̂n(x) =
i

1
2
n(n− 1)

, xi < x < xi+1, i = 0, ...l, (5.3)

where n is the number of regions, l = 1
2
n(n− 1), and x0 = −∞ and xi+1 = +∞.

2. Most Similar Differences (MSDI) and Most Dissimilar Differences

(MDD)

These are two methods analogous to the method of nearest neighbour distances.

For each map, let xi be the numerical difference between the rate of the ith

region, i = 1, ..., n and the most similar or most dissimilar rate to this amongst

all other regions in the map. Then we refer to xi as a most similar or most

dissimilar difference. This method includes duplicate differences.

3. Average Neighbour Differences (AVND)

This method takes the average of the differences between the disease rate of a

region and the rates of its neighbouring regions. Let xi be the average difference

of the rate of the ith region and the rates of its neighbouring regions, i = 1, ..., n.

Then we refer to this as the ith average neighbour difference.

4. Most Similar Neighbour Differences (MSND) and Most Dissimilar

Neighbour Differences (MDND)

These are two methods which we use based on the differences between the rate

of a region and the rates of its neighbouring regions. Let xi be the difference

between the rate of ith region and the most similar or most dissimilar rate

among its neighbouring regions only, i = 1, .., n. Then we refer to the xi as most

simil ar neighbour differences or most dissimilar neighbour differences. (These

could include duplicated difference values between reciprocal nearest or farthest

neighbouring values).
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For approaches 2-4 there are n such differences used to construct the cdf. The empirical

cumulative distribution function is given by

F̂n(x) =
1

n

n∑
i=1

Ixi≤x (5.4)

where n is the number of regions and I is the 0/1 indicator function.

All of these methods are invariant to location, i.e. if r1, .., rn are rates for map 1 and

s1 = r1 + c, .., sn = rn+ c, are rates for map 2, for regions 1,...,n, where c is a constant,

then all IRD, MSDI, MDD, AVND, MSND and MDND will be the same for the two

maps.

When comparing two maps, in the case when the rates in map 2 are different from those

in map 1, it is expected that the differences between the rate of the ith region and the

rates of other regions in one map will be different from those in the other map, and so it

is expected that the IRD, MSDI and MDD will detect this change. The AVND, MSND

and MDND methods use the neighbourhood structure. These methods are expected

to detect differences between the two maps when the rates of a region and the rates

of its neighbouring regions are different in the two maps. Thus these methods should

indicate whether a change has occurred or not in the neighbourhood rate patterns.

The structure of the two maps has to be the same to use these methods.

For all these methods, the cumulative distributions of the differences for each map

are drawn on one plot and compared using the two-sided Kolmogorov-Smirnov test to

test for differences in the cdfs. The KS test is used here as it makes no assumption

about the distribution of the data. We use the p-value of the KS test to assess the

significance of the difference in the cdfs.

5.6.2 Illustration Using Two Maps

Figure 5.6 gives illustrative graphs of cdfs based on the methods above. For AVND,

MSND and MDND n =53 districts as the islands have been excluded since these

methods uses the neighbourhood structure. The function used to implement these

methods was written in R and is given in Appendix C. For the IRD method we

observe that for most x values, the proportion of values less than x in 2000 is very

similar to that in 2001, thus most of the differences for these two years are similar.
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Figure 5.6: Empirical cumulative distribution function graphs (n= non-missing obser-

vations and m= missing observations) and tests based on the proposed methods IRD,

MSDI, MDD, AVND, MSND and MDND for pre-school susceptibility to measles for

years 2000 (shown in blue) and 2001 (shown in red).

The value of the test statistic is D=0.038 (p-value = 0.22), thus there is no significant

difference between the two cdfs for the two years, indicating similarities in their inter-

region differences. For MSDI (D=0.23, p-value=0.098), so generally for most x values,

the proportion of values less than x in 2000 is close to that in 2001. This also applies to

AVND (D=0.13, p-value= 0.75), MSND (D=0.17, p-value=0.43) and MDND (D=0.11,

p-value=0.89). These test statistics all indicate similarity of the cdfs, although some

differences can be seen. For MDD (D=0.45, p-value = 2 ∗ 10−5), for all x values, the

proportion of values less than x in 2000 is clearly different from 2001, and the KS test

indicates that there are significant differences between the two. Therefore, except for

MDD all methods indicate that the maps are similar. From Chapter 1 (Figure 1.5)

we observe that about 4 districts moved to the lowest category, i.e. susceptibility of
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less than 14.5% in 2001, thus as MDD depends on how different the rates are, this

measure may have detected this change.

5.7 Image Analysis Methods

In this section, we discuss and adapt for disease maps some methods used to compare

digital images. In the field of image analysis, degradation of visual quality of digi-

tal images may occur as a result of image distortions during acquisition, processing,

compression, storage, transmission and/or reproduction (Wang et al., 2004). Image

distortion can be assessed subjectively by eye, where a group of people is asked to

compare a distorted image with the reference image, and to provide a score on a dis-

tortion scale. The mean score may be taken as an index of image quality, thus this

method is known as the mean opinion score (MOS) (Bouzerdoum et al., 2004). How-

ever, although this method reflects well human visual perception, it is inconvenient,

time-consuming and costly, and as a result researchers in this field have been develop-

ing objective quality measures.

Objective image quality measures can be classified into three approaches. These are

full-reference measures, where the original image is known, no-reference measures,

where no original image is available, and reduced-reference measures where the origi-

nal is partially available (Wang et al., 2004; Bouzerdoum et al., 2004). Here we will

only focus on full-reference image quality measures, as some of these are applicable to

comparing disease maps.

There are two groups of objective image quality measures. The first are mathemati-

cally defined, such as mean square error (MSE) and peak-signal-to-noise ratio (PSNR)

(Mulopulos et al., 2003). These measures are simple and easy to calculate and results

based on these are not influenced by the the individual observer (Wang et al., 2002).

However, these do not correlate well with the human visual system (HVS) (Mulopulos

et al. 2003; Wang et al., 2004). The second group of measures incoporates HVS char-

acteristics, and includes image quality measures such as the universal image quality

measure (UIQI) (Wang et al., 2004), the structural similarity index (SSIM) (Wang et

al., 2004), the new weighted mean square error (NwMSE) (Samet et al., 2005), neural

network based image quality measures (Bouzerdoum et al., 2004) and singular value
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decomposition (SVD) based image quality measures (Shnayderman et al., 2006).

The SVD based measure is not useful for maps, as here it will not be easy to use blocks

and we cannot obtain singular values unless a map is rearranged in a rectangular grid.

The neural network based image quality measure is not considered either, as human

subjects would be needed to generate data to train the network.

The MSE and PSNR quantify size of the image error, therefore we adapt these mea-

sures for comparing disease maps as they may help in quantifying the difference be-

tween the maps. Among the objective measures that incorporate HVS characteristics,

only the SSIM, which is an improved version of UIQI, will be adapted. This measures

structural distortion, and in our case may help in measuring the overall structural

differences. These three measures will be discussed in detail in the next sections.

5.7.1 Mean Square Error and Peak-to-signal-noise Ratio

The equations for mean square error and the peak-to-signal-noise ratio measure, as

used in image analysis and given by Mulopulos et al. (2003), are given below. The

mean square error is is not invariant to location and is calculated as

MSE =
1

MN

M∑
y=1

N∑
x=1

[I(x, y)− I ′(x, y)]2 (5.5)

for an M ×N image, where I(x, y) is the intensity in pixel (x, y) of the original image

and I’(x, y) is the intensity of the corresponding pixel in a distorted image. When

MSE is equal to zero this indicates that the image to be assessed for distortion is a

perfect reproduction of the original image, and the larger is MSE the more the image

differs from the original.

The peak-to-signal-noise ratio (PSNR) is inversely related to MSE on a logarithmic

scale, and again measures the pixel difference between the original and distorted im-

ages. This is given by

PSNR = 10 ∗ log10(
P 2

MSE
) (5.6)

where P is the range of the pixel values (maximum peak-to-peak signal swing) (for

8-bit images P could be taken as 255). A PSNR of zero indicates that the images differ

greatly (as MSE is large) and infinite PSNR indicates identical images. This measure
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takes account of variation within the images when computing the difference between

images.

Images are defined on a rectangular grid of pixels, while maps are not. However, these

measures can still be used to compare corresponding regions in two maps with the

same structure. Here MSE is referred to as Mean square difference (MSD) and is

given by

MSD =
n∑
i=1

(xi − yi)2/n, ≥ 0 (5.7)

where xi and yi are rates in region i in map 1 and map 2 respectively, i = 1, ..., n, and

n is the number of regions in each of the maps. A zero value will indicate that there

are no differences in the maps examined, while large MSD indicates large difference(s).

The PSNR is taken as

PSNR =
P 2

MSD
, (5.8)

where P can be taken to be the range of rates across both the two maps (the resulting

measure being referred to here as PSNRR), or P can be the maximum absolute differ-

ence between rates in the two maps i.e. max|xi − yi|, i = 1, ..., n (referred to here as

PSNRM). When maps are very different PSNRR or PSNRM will be near zero, while

identical maps will give an infinite value. The log scale is not used here as we do not

have very large values.

5.7.2 Structural Similarity Index

The SSIM is a modified version of UIQI, and was designed to correlate closely with

the human visual system. It was developed by Wang et al. (2004) and is a more

complicated measure of structural information change. This measures distortion as a

product of three different factors, namely luminance, contrast and correlation (struc-

ture). Let x = {xi, i = 1, 2, ..., N} and y = {yi, i = 1, 2, ...,M} be the original and the

distorted images, where N and M are now the total number of pixels for the reference

and distorted images respectively. Then the mean luminance term (term measuring

closeness of the means) is given by

l(x,y) = 2µxµy+C1

µx2+µy2+C1
,

where µx and µy are the mean pixel intensities for the reference and distorted images

respectively and C1 is a constant. The contrast term (term measuring the difference
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in variability) is given by

c(x,y) = 2σxσy+C2

σx2+σy2+C2
.

where σx and σy are the standard deviations for the reference and distorted image

respectively and C2 is another constant, and the correlation structure term is given by

s(x,y) = σxy+C3

σxσy+C3
,

where C3 is another constant. Wang et al. (2004) took C3 = C2

2
, Ci = (KiL)2, i =

1, 2, where Ki � 1 is a small arbitrary constant and L is the range of pixel values (255).

The constants Ci, i = 1, 2, 3 are included to avoid unstable results when (µx
2 + µy

2)

or (σx
2 + σy

2) or (σxσy) is close to zero (Wang et al., 2004). The structural similarity

index is then given by

SSIM(x,y) = l(x,y) ∗ c(x,y) ∗ s(x,y)

=
2µxµy + C1

µx2 + µy2 + C1

∗ 2σxσy + C2

σx2 + σy2 + C2

∗
σxy + C2

2

σxσy + C2

2

=
2µxµy + C1

µx2 + µy2 + C1

∗ 2σxσy + C2

σx2 + σy2 + C2

∗ 2σxy + C2

2σxσy + C2

=
(2µxµy + C1)(2σxy + C2)

(µx2 + µy2 + C1)(σx2 + σy2 + C2)
. (5.9)

This measure satisfies the following conditions

1. Symmetry: SSIM(x,y) = SSIM(y,x),

2. Boundedness: SSIM(x,y) ≤ 1, and

3. Unique maximum: SSIM(x,y) = 1 if and only if x=y (Wang et al., 2004).

This is a single overall quality measure of the entire image. Without the constants we

have the UIQI.

A mean adaptive SSIM index (localised quality measure) where the local statistics

(mean, standard deviation and covariance) are computed within a local square window

which moves pixel by pixel over the entire image can also be used, and is given by

MSSIM(x,y) =
1

Q

Q∑
i=1

SSIM(xi, yi) (5.10)

where xi and yi are now the image contents in the ith local window, SSIM(xi, yi)

is the SSIM of the ith local window, and Q is the number of local windows of the

154



image. A zero SSIM/MSSIM index indicates that the images differ greatly and an

SSIM/MSSIM index of value 1 indicates identical images. The adaptive measure

should help to quantify local differences.

For comparing disease maps, we consider SSIM. Let x = {xi, i = 1, 2, ..., n} and

y = {yi, i = 1, 2, ..., n} be the rates of the regions for maps 1 and 2 respectively, where

n is the number of regions in each map. In equation (5.9) for Ci = (KiL)2, i = 1, 2, L

can be taken as P in the peak-to-signal-noise ratio, i.e. L can be taken to be the range

of rates over the two maps, giving what we call SSIMR, or L can be the maximum

absolute difference between values of the two maps i.e. max|xi−yi|, i = 1, ..., n, giving

the SSIMM measure. Here we will also use UIQI, i.e. SSIM without constants, to

compare maps but we choose to refer to it as SSIM. Therefore for SSIM, SSIMR and

SSIMM a value of 1 indicates that the maps are similar and a zero value will indicate

that the maps are very different. Wang et al. (2004) used K1 = 0.01 and K2 = 0.03.

MSSIMM will not work here as this will require us to define local windows, but because

of irregular regions this becomes difficult. We tried to use a region and its immediate

neighbours to define a local window, however this did not work very well.

As the structural similarity index measures the structural information change between

two images, in the case of comparing disease maps it may be able to give a good

approximation of how much global structural change has occurred between two maps.

The function used to implement these methods was written in R and is given in

Appendix C.

5.7.3 Illustration Using Two Maps

Table 5.4 shows the values of the image based measures used to compare the pre-school

maps of measles susceptibility in 2000 and 2001 at district level.

In Table 5.4 we observe that the value of MSD is close to zero, indicating that the

maps are very similar. The values of PSNRR and PSNRM are very different but both

far from zero, and, according to the interpretation of these measures, they also indicate

that the maps are similar.
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Year MSD PSNRR PSNRM SSIM SSIMR SSIMM

2000-2001 0.0001 118.6 15.3 0.88 0.88 0.88

Table 5.4: Values of MSD, PSNRR (PSNR with P=Range), PSNRM (PSNR with P=

Maximum absolute difference), SSIM, SSIMR (SSIM with L= Range), SSIMM (SSIM

with L= Maximum absolute difference), to compare proportions of pre-school children

susceptible to measles in years 2000 and 2001 at district level.

The values of SSIM, SSIMR and SSIMM are identical to two decimal places. The

value of L used for calculating SSIMR or SSIMM does not make any difference, as

we obtain similar results. With the data that is used here we found that varying the

values of K1 and K2 does not affect the value of the structural similarity index much.

We tried values in the range 0.0001-0.05. Here we use K1 = 0.002 and K2 = 0.003.

The SSIM, SSIMR and SSIMM values of 0.88 are close to 1, and are interpreted as

the maps being more similar than different.

With the difference based measures in Section 5.6, we have p-values to assess the

differences, but with the image analysis measures there is no frame of reference to

decide if two maps are sufficiently different, therefore we will develop simulation tests.

5.8 Summary

In this chapter we have developed some methods that can be used to compare two or

more disease maps. Although visual comparison of maps helps in identifying the dif-

ferences and similarities of the spatial distributions of the maps, use of other measures

may help in reaching more informative conclusions. Some of these methods have the

advantage of comparing maps objectively without the individual observer’s influence.

The methods considered were ratio maps, difference maps, pseudo-colour maps, and

plots of model parameters (overall mean and structured and unstructured variability )

against time. Methods used to measure the spatial autocorrelation, i.e. Moran’s I and

Geary’s c with their spatial correlograms, were also considered. We also adapted some

methods used in image analysis to compare a distorted image to a reference image,

and some empirical distribution function methods used for point processes.
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For the image analysis based methods, MSD and PSNRR/PSNRM do not take into

account the spatial structure while SSIM does. For the empirical distribution function

methods, IRD, MSDI and MDD do not take into account the neighbourhood struc-

ture, while AVND, MSND and MDSN make use of neighbourhood structure. Methods

which do not use the neighbourhood structure may be more helpful in detecting the

differences due to change in rate(s) of region(s) anywhere in the map, while methods

that do use this structure may be able to detect differences due to change in the rates

of the neighbouring regions. The spatial autocorrelation methods may confirm an ex-

istence or non-existence of positive spatial autocorrelation for the two maps, but these

methods will not assist in detecting the differences or similarities that exist between

the maps.

All these methods were applied to proportions (raw data) of susceptibility to measles

for pre-school children for 2000 and 2001. In Chapter 7 the methods are applied to

both raw and smoothed data to see if it makes any difference to the results.

Visual comparison of the two maps (Figure 5.3) suggests that the spatial distributions

are not very different, with just a few districts which had high susceptibility in 2000

having slightly lower susceptibility in 2001. When visually comparing maps it is not

very easy to know whether the rate of a region has changed or not, so use of the

ratio, difference and pseudo-colour maps may help. For the example in this chapter,

the ratio, difference and pseudo-colour maps were able to reveal the regions in which

susceptibility to measles changed, i.e. was lower/higher in 2001 than 2000, and the

regions where measles susceptibility was similar.

Maps of the same disease at different time points may differ because of a change in the

mean level or change in variability due to structured or unstructured heterogeneity.

When using disease mapping models, the values of these parameters are obtained from

the models. The plots of these parameters against time will show how each of these

parameters has changed over time. In the example used here, as we were just compar-

ing two maps, it is easy to see what has happened to these parameters. These values

suggested no change in structured variability, i.e. spatial correlation was similar. This

similarity is confirmed by the spatial autocorrelation methods. There is a very slight

change in the mean and the unstructured variability, i.e. susceptibility in districts

became slightly more dissimilar in 2001 than it was in 2000.
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The empirical distribution function methods are based on differences. These may give

an informative idea as to how the spatial distributions of the values of the spatial

variable differ or are similar between maps. For the example used here, we find that,

except for MDD, all of these methods indicate that the two maps are not significantly

different. It is hoped that the use of these methods can detect any change in the

spatial distribution, including clustering, as some methods target the neighbourhood

structure.

For the image analysis based methods, MSD and PSNRR/PSNRM may help in quan-

tifying the existence of any differences between the maps. For PSNRR/PSNRM, since

we obtain different values depending on what the range value P is, these two methods

will have to be compared to see which one performs best in general. Both MSD and

PSNRR/PSNRM indicate that the maps are not very different. SSIM/SSIMM/SSIMR

compare the structures of two maps. These indicated some similarities in the maps.

In the next chapter, all of these methods will be tested more extensively using simu-

lated data. In Chapter 7, the methods which perform well in the simulations will be

applied to susceptibility to measles data for pre-school and primary 1 and 2 school

children in Scotland. In Chapter 7 we also explore the use of these methods to com-

pare maps based on two different spatial variables, i.e. with different means. For this

we use the NHS24 data and compare call uptake for different health syndromes.

Moran’s I and Geary’s c will not be pursued further as they are not measures to detect

differences or similarities but to inform us of the existence of spatial autocorrelation,

although differences in the measures between two maps will suggest some difference

in spatial pattern.

Summary of Suggested/Developed Measures

1. Map Based Methods: Ratio maps, Difference maps and Pseudo-colour maps.

2. Plots of parameters: Overall mean, Unstructured and Structured Variation.

3. Spatial Autocorrelation Methods: Moran’s I, Geary’s c and their spatial

correlograms.

4. Image Analysis Based Methods: Mean Square Difference, Structural similar-

ity Index (SSIM/SSIMM/SSIMR) and Peak-to-Signal-Noise Ratio (PSNRR/PSNRM).
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5. Point Process Based Methods: Inter Region Differences (IRD), Most Simi-

lar Differences (MSDI), Most Dissimilar Difference (MDD), Average Neighbour

Differences (AVND), Most Similar Neighbour Differences (MSND) and Most

Dissimilar Neighbour Differences (MDND).
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Chapter 6

Simulation Study

6.1 Introduction

In Chapter 5 we discussed the new methods or measures that we develop to compare

two or more disease maps. In this chapter, a simulation study is carried out in order

to assess the sensitivity and power of the methods to detect differences between two

maps, in the case when the mean level or variances due to unstructured or structured

heterogeneity have changed. This will help in understanding and knowing the suit-

ability of the measures to detect differences. Also recommendations about the ones

that are more useful will be given.

Before carrying out the full simulation described above, the methods are compared

using data simulated from an existing map, by adding noise to the values of the map.

The measures used are Mean square difference (MSD), the two peak to signal noise

ratio measures, referred to here as PSNRR and PSNRM, the Structural Similarity

Index Measures (SSIM, SSIMM and SSIMR), and the point process based measures

referred to as Inter Region Differences (IRD), Most Similar Differences (MSDI), Most

Dissimilar Differences (MDD), Average Neighbour Differences (AVND), Most Similar

Neighbour Differences (MSND) and Most Dissimilar Neighbour Differences (MDND)

measures (see Chapter 5).
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6.2 Generating Data from a Map

The map of proportions of susceptibility to measles (raw data) for 2000, for 56 districts,

is used to simulate data and assess the ability of the methods to detect change. This

is achieved by multiplying the proportions susceptible in each district by different

multiples, and for each multiple, each method is assessed. Two extreme cases are

explored. One is when the whole map or all districts change at the same rate (a large

change in the map), i.e. all proportions are scaled by the same multiple, and the

second case is when only one district changes (a small change in the map), i.e. the

proportion for only one district is scaled by a multiple. The next section gives the

results obtained, using the multiples 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90

and 2.0 (1.10 is a 10% change and 2.0 is a 100% change).

6.2.1 Results

Figure 6.1 shows maps of susceptibility to measles for pre-school year 2000 when the

proportions for all the districts are multiplied by each of 1.1, 1.2 and 1.3 to generate

a new map. All the districts are getting darker very quickly, and for the multiple 1.3,

all the districts except 1 are darker. In Figure 6.2 only Stirling district (see Figure

1.4) is multiplied by 1.1, 1.2 and 1.3. The district gets darker quickly.

Table 6.1 gives values of the image analysis based methods MSD, PSNRM, PSNRR,

and SSIM and p-values of point process based methods, IRD, MSDI, MDD, AVND,

MSND and MDND when the proportions are changing. For both cases, except for

PSNRM which is constant throughout, all the image analysis based measures detect

the changes.

PSNRM is a constant because of the way it is obtained. Let Xi and Yi = kXi, where

i = 1, ..., n are the rates of map 1 and map 2 respectively.

PSNRM= (max|Xi−kXi|)2

MSD
= (max|Xi(1−k)|)2∑n

i=1
(Xi−kXi)2/n

= (1−k)2max(|Xi|)2∑n

i=1
X2
i (1−k)2/n

= max|Xi|2∑n

i=1
X2
i /n

= constant

while PSNRR=max(Xi,kXi)−min(Xi,kXi)
MSD

=
kX(n)−X(1)

MSD
, where X(n) and X(1) are the maxi-

mum and minimum of the Xis. For the image analysis based methods, MSD is closer

to zero when maps are the same. The MSD value clearly increases in both cases as the

change in the maps increases. PSNRR is taken to be infinity when there is no change

in the map. It can be observed that PSNRR changes fast in both cases, though the
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PSNRR values for when one district changes are larger than when all districts change.

under 0.133
0.133 − 0.142
0.142 − 0.15
0.15 − 0.163
over 0.163

2000

under 0.133
0.133 − 0.142
0.142 − 0.15
0.15 − 0.163
over 0.163

2000 Multiplied by 1.1

under 0.133
0.133 − 0.142
0.142 − 0.15
0.15 − 0.163
over 0.163

2000 Multiplied by 1.2

under 0.133
0.133 − 0.142
0.142 − 0.15
0.15 − 0.163
over 0.163

2000 Multiplied by 1.3

Figure 6.1: District susceptibility maps based on proportions (raw data) of pre-school

children susceptible to measles for 2000, and multiplying the proportions by 1.1, 1.2

and 1.3.
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under 0.133
0.133 − 0.142
0.142 − 0.15
0.15 − 0.163
over 0.163

2000

under 0.133
0.133 − 0.142
0.142 − 0.15
0.15 − 0.163
over 0.163

2000 Multiplied by 1.1

under 0.133
0.133 − 0.142
0.142 − 0.15
0.15 − 0.163
over 0.163

2000 Multiplied by 1.2

under 0.133
0.133 − 0.142
0.142 − 0.15
0.15 − 0.163
over 0.163

2000 Multiplied by 1.3

Figure 6.2: District susceptibility maps based on proportions (raw data) of pre-school

children susceptible to measles for 2000, and multiplying only the proportion for Stir-

ling district (see Figure 1.4) by 1.1, 1.2 and 1.3.
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All Districts Changing

Multiple MSD PSNRR PSNRM SSIM IRD MSDI MDD AVND MSND MDND

1.1 0.00022 84.3 2.4 0.99 0.038 0.98 0.036 0.59 0.89 0.74

1.2 0.00088 28.8 2.4 0.97 1.5e− 05 0.77 2.8e− 05 0.43 0.58 0.30

1.3 0.00197 16.7 2.4 0.93 1.0e− 10 0.46 2.3e− 08 0.13 0.30 0.082

1.4 0.00351 11.9 2.4 0.89 1.1e− 16 0.46 1.3e− 11 0.028 0.2 0.029

1.5 0.00548 9.4 2.4 0.85 0.00 0.46 9.1e− 15 0.0082 0.082 0.0044

1.6 0.00789 7.9 2.4 0.81 0.00 0.46 1.1e− 16 0.002 0.05 0.0011

1.7 0.01074 6.9 2.4 0.76 0.00 0.46 0.00 0.00042 0.05 0.00022

1.8 0.01402 6.2 2.4 0.72 0.00 0.23 0.00 0.00018 0.029 3.8e− 05

1.9 0.01775 5.7 2.4 0.68 0.00 0.098 0.00 7.3e− 05 0.029 1.5e− 05

2.0 0.02191 5.3 2.4 0.64 0.00 0.06 000 1.1e− 05 0.016 5.8e− 06

Stirling District Changing

Multiple MSD PSNRR PSNRM SSIM IRD MSDI MDD AVND MSND MDND

1.1 4.4e− 06 2926 56 1.00 1.00 1.00 1.00 0.89 1.00 0.97

1.2 1.8e− 05 731 56 0.98 0.79 1.00 1.00 0.74 1.00 0.74

1.3 3.9e− 05 325 56 0.96 0.53 1.00 1.00 0.58 1.00 0.43

1.4 7.0e− 05 183 56 0.93 0.42 1.00 1.00 0.43 1.00 0.30

1.5 1.1e− 04 132 56 0.89 0.34 1.00 0.098 0.43 1.00 0.30

1.6 1.6e− 04 117 56 0.85 0.34 1.00 2.3e− 08 0.43 1.00 0.30

1.7 2.2e− 04 107 56 0.81 0.32 1.00 9.1e− 15 0.30 1.00 0.30

1.8 2.8e− 04 100 56 0.77 0.30 1.00 0.00 0.30 1.00 0.30

1.9 3.5e− 04 94 56 0.72 0.30 1.00 0.00 0.30 1.00 0.30

2.0 4.4e− 04 90 56 0.68 0.28 1.00 0.00 0.30 1.00 0.30

Table 6.1: Values of MSD,PSNRR, PSNRM, SSIM and p-values for IRD, MSDI, MDD,

AVND, MSND and MDND, for changing susceptibility for all districts (top) and for

changing only Stirling district (bottom).

SSIM/SSIMM/SSIMR are taken to be 1 when maps are the same. The values of these

three methods are all identical to two decimal places, indicating that the constants

used in SSIMM and SSIMR are not useful here as they are only needed when the mean

and variances of the maps are very close to zero, thus we only refer to SSIM. For a

10% change in all districts the value of 0.99 is obtained, indicating a slight difference

in structure of the maps, and the value decreases steadily for larger changes. For a

10% change in one district the value of SSIM is 1, so change has not been detected

here, but from 20% SSIM/SSIMM/SSIMR decreases steadily.

For the point process based methods, when changing the rates for all districts, the

p-values of the measures show that IRD and MDD detect the change at 10% change,

MDND and AVND at 40% change and MSND at 60% change. MSDI does not detect

the change before 100% change. When only one district is changed, none of these
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measures are sensitive to this change except MDD at 60% change. Thus, unlike the

image analysis based methods, at least in this example, the point process measures

are not sensitive when one district changes, and IRD and MDD are the most sensitive

to change in rates when all the districts are changing

In this section the methods have been assessed using a specific data set, and it can

been seen that some methods have the ability to detect change. When changing the

proportions the spatial structure is not taken into account. These methods may behave

differently under different circumstances. Thus, in the next section, we simulate data

from a spatial model and assess these methods systematically, under different scenarios

of changing mean, unstructured and structured variations. This analysis may help in

determining both the sensitivity and power of each method.

6.3 Generating Data from a Model

In this simulation study we assess the ability of these methods to detect differences in

disease maps. We change the mean level, the standard deviation due to unstructured

heterogeneity or structured heterogeneity, one at a time. In order to achieve this,

we chose to simulate the data using the log-normal model (Besag et al., 1991), and

based the simulation on the neighbourhood structure of the 53 (out of 56) districts

of Scotland (mainland Scotland, i.e. excluding the islands). The log-normal model is

chosen for the simulation as it allows the incorporation of the spatial structure.

6.3.1 Simulation Model

The observed counts are generated from the Poisson distribution

Oi ∼ Pois(Niθi), (6.1)

where Ni is the population size in the ith region, i = 1, 2, ..., n (n = 53). Now,

the population of Scotland is approximately 5 million, and if divided equally among

the 56 regions each will have approximately a population size of 100 000. To try to

be realistic, we sample population size of region i from a Uniform distribution with

a minimum of 50 000 below 100 000 and a maximum of 50 000 above 100 000, i.e

Ni ∼ U(50000, 150000).
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The θis are the disease risks and are given by

θi = exp(α + Ui + Vi), i = 1, ..., 53, (6.2)

where α = log(µ) is the overall mean level, µ is the disease rate, Vi is the unstructured

heterogeneity distributed as

Vi ∼ N(0, σ2
v), (6.3)

σ2
v is the unstructured or global variability, and Ui is the structured heterogeneity and

depends on the adjacent neighbours.

To simulate the Uis, we follow Hsiao et al. (2000). U is written as a vector, i.e.

U = (U1, ..., Un−1, Un), with precision matrix Q = D × (I − C), where D is an n × n

diagonal matrix with dii = niλ, ni is the number of neighbours for region i, and λ is

the inverse variance of U (λ = 1
σ2
u
), representing the local spatial effect, and σ2

u is the

structured or local variability. I is the n×n identity matrix and C is the n×n matrix

with (i, j)th entry cij = wij
ni

, where wij = 1 for neighbouring regions and 0 otherwise,

i, j = 1, 2, ..., n. Now, based on results of Besag and Kooperberg (1995), as outlined

by Hsiao et al. (2000), from the multivariate normal distribution we generate values

x1, ..., xn−1, i.e.

xi ∼MVN(0, (Q∗)−1) (6.4)

where Q∗ is the upper left (n− 1)× (n− 1) matrix of Q. To obtain U ,

Un =

∑
xi
n

, Ui = xi − Un, 1 ≤ i ≤ n− 1. (6.5)

When comparing maps, it will be helpful to understand what change has taken place,

i.e. is the change due to a change in mean, unstructured or structured variation

between two maps. Thus, the data (map) are generated in such a way that the ability

of the methods to detect differences in disease maps can be assessed when changing

overall mean level, change in variance due to unstructured heterogeneity or change in

variance due to structured heterogeneity. Thus if θi1 and θi2 are the disease risks in

region i for maps 1 and 2 respectively, for region i, i = 1, ..., n,

θi1 = exp(log(µ) + Ui + Vi), θi2 = exp(log(kµ) + Ui + Vi) (6.6)

in the case of changing the mean level, where the overall mean α = log(µ). A change

in the mean level takes place when we change the disease rate µ, thus we take the
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logarithm of the changed disease rate, i.e. log(kµ). Also we take

θi1 = exp(α + Ui + Vi), θi2 = exp(α + kUi + Vi) (6.7)

in the case of changing structured variation, and

θi1 = exp(α + Ui + Vi), θi2 = exp(α + Ui + kVi) (6.8)

in the case of changing the unstructured variation, where in all cases the multiple is

taken as k = 1, 1.10..., 4, in steps of 0.10, and k = 1 under the null hypothesis of

no change between maps 1 and 2. For k > 1, k = 1.10 is a 10% change and k = 4

represents a 300% percentage change. Altogether there are 31 of these multiples at

intervals of 0.10. The observed data are then obtained as

Oi1 ∼ Pois(Niθi1), Oi2 ∼ Pois(Niθi2), (6.9)

where Ni, Ui and Vi are identical in both sets of data. For each map and for each

region we obtain a rate based on the observed count generated and the total number

in the region i. The two maps are then compared based on these rates and the ability

of each of the methods to detect the differences is assessed at each kth multiple.

6.3.2 Method of Generating Data

The function for simulation of data from the above model was written in R and the

simulation code is given in Appendix C. In order to assess each of the developed

methods, we generated data sets with different parameter values for µ, σ2
v , λ. We

considerered the case when the disease is common, rare, and when there are lots of

zero counts (as for a very rare disease), i.e. with µ = 1
10

(α = −2.30), µ = 1
1000

(α =

−6.91), µ = 1
100000

(α = −11.51) respectively. As this simulation is not based on

the results of any real data set, it is not easy to assign the values of the variances of

U and V , but the important aspect here is to be able to assess the behaviour of the

developed methods when these parameters change. We consider two possibilities for

the variances. In the first instance, for each case of µ we take the standard deviation

of V and U to be the same magnitude as µ = 0.1, i.e. we have three scenarios:

• for a common disease: µ = 1
10
, σv = 0.1, λ = 100 (σu = 0.1),

• for a rare disease: µ = 1
1000

, σv = 0.1, λ = 100 (σu = 0.1),
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• and for a very rare disease: µ = 1
100000

, σv = 0.1, λ = 100 (σu = 0.1).

In the second instance, since in the case of a rare disease the absolute value of α is

approximately 3 times the value of α for a common disease, we take the standard

deviation parameters to be 3 times the standard deviation parameters of the common

disease case. For very rare disease, the value of α is approximately 5 times the value

of α in the common disease case, thus the parameter values for the variabilities in this

case were taken to be 5 times those in the common disease case. Thus we have

• for a common disease: µ = 1
10
, σv = 0.1, λ = 100 (σu = 0.1),

• for a rare disease: µ = 1
1000

, σv = 0.3, λ = 100/9 (σu = 0.3),

• for a very rare disease: µ = 1
100000

, σv = 0.5, λ = 4 (σu = 0.5).

It is expected that the size of the population in the regions will be between 50 000 and

100 000. Therefore, the numbers of observations are expected to be between 5000 and

10 000, 50 and 100, 0.5 (0) and 1 for the case of common, rare and very rare disease

respectively.

In each of the three scenarios that we consider, i.e. rare disease, common disease and

very rare disease, and for each multiple k, we generated different data sets, based on

whether we are assessing methods when there is a change in mean level, or change in

variability due to unstructured heterogeneity, or change in variability due to structured

heterogeneity.

For each multiple k, we generate Ni, Vi and Ui, i = 1, ..., n, where n is number of

regions, and use them to obtain θi1 and θi2 which are then used to obtain the observed

values Oi1 and Oi2 for maps 1 and 2. Firstly the generation of data was done with

N = (N1, ..., Nn) fixed for all multiples, i.e. generating N once, and it was observed

that the results obtained were similar to when N is not fixed. We decided to generate

N separately for each multiple. This is done as follows (see detailed code in Appendix

C):

• specify µ, σv and σu,

• for each of simulations 1:1000,

• for k in 1,1.1,...,4,
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• generate Vi, Ui and Ni, i = 1, ..., n,

• generate Oi, i = 1, ..., n.

The number of simulations was chosen to be n = 1000, as this was thought to be large

enough to help us obtain good estimates of the mean for each measure and simulations

where quick to run. In practice, to determine the number of simulations needed to get

a good estimate of the mean the following sample size formula can be used,

n =
(z1−α/2s)

2

ε2
(Lyman, 1998),

where n is now the number of simulations, z1−α/2 is the 1− α/2 quantile of the standard

normal distribution and α is the significance level, ε is the desired level of accuracy

of the estimate (which has to be specified), and s is the estimate of the population

standard deviation (obtained from a pilot study as this study is not based on a real

situation).

For each measure, the desired level of accuracy ε has to be specified. Also, since the

simulation is done at each kth multiple, for each measure and each kth multiple we

will obtain a different value of n. Since this simulation involves generating data for all

the measures at the same time, one might average the number of simulations obtained

for all the measures to obtain one value of n, or choose to use the largest of all the

ns depending on whether the value is sensible to use (i.e. not very large and time

consuming).

To summarise the values of the different measures obtained from the simulations, we

use the average of the obtained values for each measure over the 1000 simulations,

together with the standard deviation and standard error. The average values are

plotted against the multiple k so it can be seen how the measure behaves (showing

sensitivity of the measure to deviations from k = 1). We also use the critical value

approach to summarise results. Here, when the measure behaviour is such that when

the difference in the maps increases the value of the measure increases, the 95th

percentile of the null distribution of the measure is obtained (i.e. the distribution of

the measure when the multiple k = 1), and when the behaviour is such that the value

of the measure decreases when there are differences in the maps, the 5th percentile of

the null distribution is obtained. For each case and each measure the proportion of

obtained values that are more extreme than the percentile obtained is plotted against
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the multiple k. These plots will indicate the power of the measure to detect differences.

Another approach used is a p-value approach. For each multiple k, for each new

simulation a p-value was found for each observed measure by finding the proportion

of the 1000 simulated values making up the null distribution (k = 1) that are at least

as extreme as the value of the observed measure, which may be extremely large or

small depending on the measure. The average of the p-values is then plotted against

the multiple k, to help observe how statistically significant the value of the measure is

to detect a change.

6.4 Results

In this section we discuss the results of the simulation study. Here the results reported

are for the case in which the standard deviations of U and V are taken to be the same

(i.e. 0.1) for each of the three scenarios considered, as the results for the other case

are similar.

When there is a change in the map, it is expected that the value of MSD should increase

and the values of PSNRR/PSNRM and SSIM/SSIMM/SSIMR should decrease. SSIM,

SSIMM and SSIMR give similar results and therefore here we discuss SSIM as SSIMM

and SSIMR are variations of SSIM and are only useful when SSIM is unstable (see

Chapter 5). PSNRR and PSNRM give similar results except in a few cases, therefore

the results given here will be based on PSNRR and we will refer to PSNRM whenever

there are differences between the two measures. For the point process measures IRD,

MSDI, MDD, AVND, MSND and MDND, the p-values should decrease as the maps

change more. When there is a significant difference the p-value should be less than

0.05 (for a 5% test).

6.4.1 Effects of Changing Mean Level

Figures 6.7-6.9 show maps from the simulated data when changing mean level for com-

mon, rare and very rare disease respectively. It can be observed that when changing

mean level the differences in the maps can be easily seen. It is observed that as the

disease rate µ increases and overall mean increases, more regions are getting darker,

i.e. the number of regions with high rates increases quickly for both common and rare
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disease, while for very rare disease the change is very slow. The measures may be able

to help in detecting and quantifying this kind of change. Figures 6.6-6.8 give plots

of average values for each measure against the multiples of the mean when changing

the mean level for the three scenarios, i.e. µ = 1
10
, σv = 0.1, λ = 100, for common

disease, µ = 1
1000

, σv = 0.1, λ = 100 for rare diseases and for very rare diseases

µ = 1
100000

, σv = 0.1, λ = 100 respectively.

Mean Square Difference (MSD)

Among all the measures, MSD seems to be the best measure and performs well (it is

sensitive and powerful) for all three scenarios (common, rare and very rare disease),

but is less sensitive and powerful for a very rare disease. Change is detected at 10% for

all scenarios. A multiple close to k = 1.75 is required before the power becomes high

or the p-value low in the case of very rare disease (Figures 6.9 and 6.10). Absolute

values of MSD increase as the differences in the maps increase but there is no reference

point for the method, so the Monte Carlo p-value approach will be useful to decide

when a significant difference is present (this is done in Chapter 7).

Peak-to-Signal Noise Ratio (PSNRR)

PSNRR performs well only for common and rare disease. For very rare disease, PSNRR

decreases very slowly and fluctuates and the power is low (Figure 6.9). The p-value

plots (Figure 6.10) show that for PSNRR when the disease is very rare the p-value

does not go below 0.05, so it will not be useful in this case. Change is detected at 10%

for both common and rare disease.

Structural Similarity Index Measure (SSIM)

SSIM performs well for a common disease and moderately well for a rare disease.

When the disease is very rare, SSIM fluctuates and is unstable. This measure does

detect differences due to change in mean level for common and rare disease at 10% and

40% change in disease rate respectively, but the value of the measure does not change

very fast. This may be because SSIM depends on the mean, variances and correlation

of the two maps, and since here the unstructured and structured variability is the

same for both maps and only the mean is changing, the value of the measure may not

change very quickly.
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Figure 6.3: Sample map 1 and map 2 produced from the simulated data, at 0%, 10%,

20%, 30% and 40% change in disease rate µ for a common disease. Here µ = σu =

σv = 1
10

.
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Figure 6.4: Sample map 1 and map 2 produced from the simulated data, at 0%, 10%,

20%, 30% and 40% change in disease rate µ for a rare disease. Here µ = σu = σv = 1
1000

.
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40% Change

Figure 6.5: Sample map 1 and map 2 produced from the simulated data, at 0%,

10%, 20%, 30% and 40% change in disease rate µ for a very rare disease. Here

µ = σu = σv = 1
100000

.
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Inter Region Difference (IRD) and Most Dissimilar Difference (MDD)

Generally, IRD and MDD detect the differences in a similar manner. Among the

point process based methods, these are the most sensitive and powerful. For a very

rare disease, IRD and MDD do not perform well and give misleading results, i.e. we

obtain a value less than 0.05 when the means are the same for two maps, indicating

that there are differences. The plots of average values against multiples of the mean

(Figure 6.13) show that these values fluctuate as the mean level changes. The p-value

plots (Figure 6.14) show that both measures do not go below 0.05 when the disease is

very rare. The power to detect changes is close to zero. Overall, IRD (at 10% and 30%

for common and rare disease respectively) detects changes slightly faster than MDD

(at 20% and 40% for common and rare disease respectively).

Most Similar Neighbour Difference (MSND) and Most Dissimilar Neigh-

bour Difference (MDND)

MSND and MDND behave very similarly. They perform better for a common disease

than other scenarios in terms of power and sensitivity. MSND and MDND both detect

a change at 30% for a common disease and at 60% for a rare disease. For a very rare

disease MSND does not detect a difference until 100% change and MDND at 110%

change.

Most Similar Difference (MSDI) and Average Neighbour Difference (AVND)

AVND and MSDI perform poorly for all disease scenarios and they detect the changes

very late. MSDI detects change at 110%, 140% and 120% for common, rare and very

rare disease. AVND detect change at 90%, 140% and 200% for common, rare and

very rare disease. Unlike other measures, the p-value plots (Figure 6.10) for MSDI

and AVND show that when a disease is very rare the p-value goes below 0.05 faster

than other disease cases. The power plots (Figure 6.9) also show that MSDI is more

powerful in the case when the disease is very rare than other disease cases, and AVND

is more powerful when the disease is very rare than when it is rare.
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Figure 6.6: Mean of simulated values of each measure versus k for a common disease

(µ = σu = σv = 1
10

), when changing mean level α, with µ2 = kµ1, where µ1 = µ.
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Figure 6.7: Mean of simulated values versus k for a rare disease (µ = σu = σv = 1
1000

),

when changing mean level α, with µ2 = kµ1, where µ1 = µ.
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Figure 6.8: Mean of simulated values versus k for a very rare disease (µ = σ2
u = σ2

v =

1
100000

), when changing mean level α, with µ2 = kµ1, where µ1 = µ.
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Figure 6.9: Plots of empirical power when changing mean level α, with µ2 = kµ1,

where µ1 = µ, for common (µ = 1
10

), rare (µ = 1
1000

) and very rare (µ = 1
100000

)

diseases.
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Figure 6.10: Plots of average p-values against multiples of the disease rate, with

horizontal line at p=0.05, for common (µ = 1
10

), rare (µ = 1
1000

) and very rare (µ =

1
100000

) diseases.
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For common and rare disease, MSD, PSNRR/PSNRM, IRD, MDD, MSND/MDND

detect differences quickly, and SSIM, MSDI and AVND change but not very fast. In

the case of a rare disease, these measures do not change as fast as in the case of a

common disease. For a very rare disease, only MSD detects changes at all fast, the rest

of the measures are very slow in detecting the differences and MDD is also now rather

unstable. Tables B.1-B.5 (Appendix B) give the average values of these measures with

standard deviations and standard errors for MSD, PSNRR, SSIM, IRD, MSDI, MDD,

AVND, MSND and MDND respectively.

The power plots (Figure 6.9) show that the power rises very rapidly to 1 for common

disease for MSD, PSNRR and IRD, followed by SSIM, MDD, MSND/MDND. MSDI

and AVND are not as powerful as the other measures. For rare disease, MSD and

PSNRR are the most powerful, followed by IRD, MDD, MSND/MDND then SSIM,

with MSDI and AVND being less powerful. For very rare disease, MSD is best, followed

by MSDI, AVND, MSND/MDND, while the other measures have very low or near zero

power.

The p-value plots (Figure 6.10), show that for common disease, the p-value of MSD,

PSNRR, SSIM, IRD, MSDI, MDND/MSND changes to near zero extremely fast, while

MDD and AVND change to less than 0.05 very slowly. For rare disease, MSD and

PSNRR change to zero very fast, followed by IRD, MDD, MSND/MDND then SSIM,

MSDI and AVND. For very rare disease, MSD changes to less than 0.05 fastest but

not until k is near to about 1.75, followed by MSDI, AVND, MSND/MDND, while

PSNRR, SSIM, IRD and MDD do not ever change to less than 0.05.

6.4.2 Effects of Changing Unstructured and Structured Vari-

ation

Figures 6.11-6.16 show some maps produced from the simulated data when changing

structured and unstructured variability separately for common, rare and very rare

disease. Unlike in the case of a change in the mean (Figures 6.3-6.5), when a change in

the unstructured or structured variability has taken place the maps do not necessarily

show very big differences as the variance is not changing very much. It is expected that

as global variation changes regions will become less similar. For structured variation,

it is expected that clusters of regions with similar rates will increase.
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Figure 6.11: sample map 1 and map 2 produced from the simulated data, at 0%,

10%, 20%, 30% and 40% change in variability due to unstructured heterogeneity for

a common disease . Here µ = σu = σv = 1
10

.

182



under 0.08628
0.08628 − 0.09514
0.09514 − 0.10476
0.10476 − 0.1119
over 0.1119

Map 1

under 0.08628
0.08628 − 0.09514
0.09514 − 0.10476
0.10476 − 0.1119
over 0.1119

0% change

under 0.08628
0.08628 − 0.09514
0.09514 − 0.10476
0.10476 − 0.1119
over 0.1119

10% change

under 0.08628
0.08628 − 0.09514
0.09514 − 0.10476
0.10476 − 0.1119
over 0.1119

20% change

under 0.08628
0.08628 − 0.09514
0.09514 − 0.10476
0.10476 − 0.1119
over 0.1119

30% change

under 0.08628
0.08628 − 0.09514
0.09514 − 0.10476
0.10476 − 0.1119
over 0.1119

40% change

Figure 6.12: Sample map 1 and map 2 produced from the simulated data, at 0%, 10%,

20%, 30% and 40% change in variability due to structured heterogeneity for a common

disease. Here µ = σu = σv = 1
10

.
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Figure 6.13: Sample map 1 and map 2 produced from the simulated data, at 0%,

10%, 20%, 30% and 40% change in unstructured variability for a rare disease. Here

µ = σu = σv = 1
1000

.
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Figure 6.14: Sample map 1 and map 2 produced from the simulated data, at 0%,

10%, 20%, 30% and 40% change in structured variability for a rare disease. Here

µ = σu = σv = 1
1000

.
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Figure 6.15: Sample map 1 and map 2 produced from the simulated data, at 0%, 10%,

20%, 30% and 40% change in unstructured variability for a very rare disease. Here

µ = σu = σv = 1
100000

.
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Figure 6.16: Sample map 1 and map 2 produced from the simulated data, at 0%,

10%, 20%, 30% and 40% change in structured variability for a very rare disease. Here

µ = σu = σv = 1
100000

.
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For both unstructured and structured variation, maps of 40% change show that vari-

ation has changed to some extent.

Tables B.6-B.10 (Appendix B) give the average values, standard deviations and stan-

dard errors for the change in standard deviation due to unstructured heterogeneity

for MSD, PSNRR, SSIM, IRD, MSDI, MDD, AVND, MSND and MDND respectively.

Tables B.11-B.15 (Appendix B) give the corresponding results for structured hetero-

geneity.

Figures 6.17-6.18 give plots of average values against k for unstructured and structured

heterogeneity respectively for a common disease, Figures 6.19-6.20 for a rare disease

and Figures 6.21 and 6.22 for a very rare disease. Figures 6.19 and 6.20 give the power

plots for unstructured and structured heterogeneity respectively. Figures 6.21 and 6.22

give the p-value plots for unstructured and structured heterogeneity respectively.

The results of structured and unstructured variation are discussed together here as

they are similar. In general, for a common disease all measures perform as expected,

i.e. detect change when it has taken place, except for PSNRM which increases instead

of decreasing (Figures 6.17 and 6.18). For rare disease (Figures 6.19 and 6.20), most

measures perform as expected, but PSNRM/PSNRR both go in the wrong direction,

as do the SSIM measures initially, and these measures are also becoming unstable.

These measures may be going in the wrong direction because these are ratios of two

values, thus as the data are few denominators/numerators become very unstable hence

unstable measures. For very rare disease (Figure 6.21 and 6.22), there is a great deal

of variability and all measures are unstable. Some measures go in the wrong direction

(PSNRM and SSIM measures) as the maps change and all measures have low power

(Figure 6.23 and 6.24). For all measures, the ability to detect change is slower for

changes in structured heterogeneity than in unstructured heterogeneity. The measures

will be more useful in detecting change in variability due to unstructured variability

for common diseases than other cases. No measure is powerful for very rare disease.

Mean Square Difference (MSD)

For both variabilities, MSD is sensitive for a common and a rare disease. In both cases

change is detected at 10% and 30% for common and rare disease, and for a very rare

disease at 80% (unstructured variation) and 110% (structured variation). The power
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plots (Figures 6.23 and 6.24) indicate that MSD is powerful in detecting changes for

a common disease. The p-value plots (Figures 6.25 and 6.26) show a similar picture.

Peak-to-Signal Noise Ratio (PSNRR/PSNRM)

Average value plots (Figures 6.17-6.22) indicate that for both unstructured and struc-

tured variation PSNRR is sensitive in detecting differences in the case when the disease

is common. PSNRR detects change at 10% for both unstructured and structured vari-

ability. The power plots (Figures 6.23 and 6.24) indicate that this measure is fairly

powerful in detecting change when disease is common, but is not at all powerful for

rare and very rare disease. This is also true for the sensitivity (see the p-value plots

in Figures 6.25 and 6.26). PSNRR/PSNRM are not useful for detecting changes in

the case of rare and very rare disease, as they go the wrong way. PSNRM in all cases

increases rather than decreases.

Structural Similarity Index Measure (SSIM/SSIMR/SSIMM)

This measure detects differences in the same way for both variabilities. The plots (Fig-

ures 6.17-6.22) of average values show that SSIM decreases slowly when the disease

is common while for a rare disease it is less sensitive. SSIM detects change at 20%

and 30% for unstructured and structured variability, for a common disease. For rare

disease, it increases then decreases. When disease is very rare, SSIM increases rather

than decreases, thus SSIM is not good in detecting differences in these cases. The

power plots (Figures 6.23 and 6.24) and p-value plots (Figures 6.25 and 6.26) show

that SSIM is sensitive and powerful in detecting changes only in the case of a common

disease, but not for rare and very rare disease.

Inter Region Difference (IRD) and Most Dissimilar Difference (MDD)

IRD and MDD behave similarly, but IRD is slightly more sensitive than MDD. For

unstructured variation, IRD detects change at 20% and 50% and MDD for 30% and

70% for common and rare disease respectively. For structured variation IRD detects

changes at 30% and 80%, MDD at 40% and 100% for common and rare disease. The

plots (Figures 6.17-6.22) show that IRD and MDD detect changes faster in the case of

unstructured than structured variability, and are more sensitive in a case of common

disease. As in the case of a change in the mean, when the disease is very rare IRD
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and MDD will not work very well, as they detect differences when the variability is

the same for both maps, i.e. the p-value is less than 0.05. The power plots (Figures

6.23 and 6.24) indicate that IRD and MDD are very powerful when the disease is com-

mon, and less so for a rare disease, and more powerful when changing unstructured

than structured variability, but not at all powerful when the disease is very rare. The

picture is the same in the p-value plots (Figures 6.25 and 6.26) for sensitivity. These

measures will be more useful for detecting change in the case of common disease.

Most Similar Neighbour Difference (MSND) and Most Dissimilar Neigh-

bour Difference (MDND)

For a common disease MSND and MDND detect differences earlier for unstructured

variation and very late for structured variation (at 40% and 110% respectively). For

a rare disease, MSND (at 80% and 200%) and MDND (at 90% and 230%) detect

differences very late for both unstructured and structured variation. When the dis-

ease is very rare, both measures are not sensitive to change for both unstructured and

structured variabilities. This can be observed from the plots (Figures 6.17-6.22) of

average values against the multiples k. The power plots (Figures 6.23 and 6.24) for

these measures look the same and indicate that the measures are powerful to detect

changes when disease is common, and not at all powerful for a very rare disease. The

p-value plots (Figures 6.25 and 6.26) show a similar picture.

Most Similar Difference (MSDI) and Average Neighbour Difference (AVND)

MSDI and AVND behave similarly. As for a change in the mean, these measures are

among the least sensitive of all the measures. For common and rare disease, changes

are detected very late, while for very rare disease the measures do not detect change at

all. For unstructured variation, AVND detects change at 110% and 200% for a com-

mon and rare disease, and MSDI at 160% and 220% for a common and rare disease.

For structured variation, except for MSDI detecting change at 230% for a common

disease, these methods do not seem to detect change for any scenario. The power plots

(Figures 6.23 and 6.24) indicate that for a common and a rare disease, the power rises

slowly as the variability changes. The p-value plots (Figures 6.25 and 6.26) show that

MSDI and AVND change very slowly for a common and a rare disease, and for a very

rare disease there is no significant change in either one.
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Figure 6.17: Mean of simulated values versus k for a common disease (µ = σu = σv =

1
10

), when changing unstructured variation, Vi2 = kVi1, where Vi1 = Vi.
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Figure 6.18: Mean of simulated values versus k for a common disease (µ = σu = σv =

1
10

), when changing structured variation, Ui2 = kUi1, where Ui1 = Ui.
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Figure 6.19: Mean of simulated values versus k for a rare disease (µ = σu = σv = 1
1000

),

when changing unstructured variation, Vi2 = kVi1, where Vi1 = Vi.
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Figure 6.20: Mean of simulated values versus k for a rare disease (µ = σu = σv = 1
1000

),

when changing structured variation, Ui2 = kUi1, where Ui1 = Ui.
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Figure 6.21: Mean of simulated values versus k for a very rare disease (µ = σu = σv =

1
100000

), when changing unstructured variation, Vi2 = kVi1, where Vi1 = Vi.
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Figure 6.22: Mean of simulated values versus k for a very rare disease (µ = σu = σv =

1
100000

), when changing structured variation, Ui2 = kUi1, where Ui1 = Ui.
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Figure 6.23: Plots of empirical power when changing unstructured variability, for

common (µ = 1
10

), rare (µ = 1
1000

) and very rare (µ = 1
100000

) diseases.
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Figure 6.24: Plots of empirical power when changing structured variability, for common

(µ = 1
10

), rare (µ = 1
1000

) and very rare (µ = 1
100000

) diseases.
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Figure 6.25: Plots of average p-values against k of the standard deviation of the

unstructured heterogeneity, with horizontal line at p=0.05, for common (µ = 1
10

), rare

(µ = 1
1000

) and very rare (µ = 1
100000

) diseases.
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Figure 6.26: Plots of average p-values versus k of the standard deviation of the

structured heterogeneity, with horizontal line at p=0.05, for common (µ = 1
10

), rare

(µ = 1
1000

) and very rare (µ = 1
100000

) diseases.
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6.5 Conclusions and Recommendations

In this chapter, the developed methods have been assessed by generating data from an

existing map for map comparison and, and more formally, by generating map data from

a spatial model. Assessing methods by generating data from an existing map showed

that when the whole map is changing most methods detect differences quickly espe-

cially the image analysis based methods MSD, PSNRM and SSIM, although PSNRR

remained constant throughout. The point process based methods IRD and MDD also

detected the differences. When changing the data for one region, MSD, PSNRM and

SSIM do detect these changes but for the point process based methods only MDD

detected the change late (80% change). This shows that some of these developed

methods will be helpful when detecting change when it has occurred.

For the simulation study based on the model, it is observed that for each of the sce-

narios, i.e. common, rare and very rare diseases, most measures perform well for a

common disease, not quite so well for rare disease, and no measure performs very

well when the disease is very rare. Performance also depends on whether we are as-

sessing change in the mean level or change in the variance due to unstructured or

structured heterogeneity. The measures detect differences earlier and perform better

when changing mean level than when changing either variability. Regarding variabili-

ties, the measures detect changes earlier for changes in unstructured variability than

structured variability. The measures cannot obviously distinguish between the differ-

ent types of change. Tables 6.2 and 6.3 give a qualitative summary of the performance

of each measure according to their sensitivity and power respectively. The measure

is classified as sensitive if it detects a change at about 40% change in disease rate or

variability (see Table 6.4), and classified as powerful if it reaches power of at least

70% at about k = 1.5. No measure works well for a very rare disease, except MSD to

detect a change in mean.

6.5.1 Performance of Measures

MSD performs well for the three scenarios in the case of a change in mean level but is

mainly more sensitive and more powerful for a common or a rare disease. For change

in the variance of unstructured and structured heterogeneity, in terms of sensitivity

and power, this measure will work well for common diseases, and in terms of sensitivity
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only for rare diseases. For very rare diseases, sensitivity to changes is very small and

the power to detect changes is close to zero.

Measure Disease Change in Mean Change in σu Change in σv

Common sensitive sensitive sensitive

MSD Rare sensitive sensitive sensitive

Very rare sensitive not sensitive not sensitive

Common sensitive sensitive sensitive

PSNRR rare sensitive not sensitive not sensitive

Very rare not sensitive not sensitive not sensitive

Common sensitive sensitive sensitive

SSIM Rare sensitive not sensitive not sensitive

Very rare not sensitive not sensitive not sensitive

Common sensitive sensitive sensitive

IRD/MDD Rare sensitive not sensitive not sensitive

Very rare not sensitive not sensitive not sensitive

Common not sensitive not sensitive not sensitive

MSDI/AVND Rare not sensitive not sensitive not sensitive

Very rare not sensitive not sensitive not sensitive

Common sensitive sensitive sensitive

MSND/MDND Rare not sensitive not sensitive not sensitive

Very rare not sensitive not sensitive not sensitive

Table 6.2: Performance of measures according to sensitivity. The measure is classified

as sensitive if it detects a change at about 40% change in disease rate or variability.

When the mean level is changing, PSNRR is more sensitive and has greater power in

detecting differences when the disease is common and rare than for very rare diseases.

When the disease is very rare, this measure detects differences very slowly and is not

so powerful. For a change in variability (both cases), this measure performs better

for common disease in terms of sensitivity and power. In fact, for both variabilities,

for both rare and very rare disease it does not seem to be sensitive to differences and

power to detect change is close to zero. We note here that in relation to the Peak

to Signal noise ratio, two measures were proposed, namely PSNRR and PSNRM (see

Chapter 5). For a change in the mean these two measures behave similarly (Figures

6.6-6.8). Neither is useful when changing global variability or local variability (Figures
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Disease Measure Change in Mean Change in σu Change in σv

Common powerful powerful powerful

MSD Rare powerful not powerful not powerful

Very rare powerful not powerful not powerful

Common powerful powerful powerful

PSNRR Rare powerful not powerful not powerful

Very rare not powerful not powerful not powerful

Common powerful powerful powerful

SSIM Rare not powerful not powerful not powerful

Very rare not powerful not powerful not powerful

Common powerful powerful powerful

IRD/MDD Rare powerful not powerful not powerful

Very rare not powerful not powerful not powerful

Common powerful not powerful not powerful

MSDI/AVND Rare not powerful not powerful not powerful

Very rare not powerful not powerful not powerful

Common powerful powerful powerful

MSND/MDND Rare powerful not powerful not powerful

Very rare not powerful not powerful not powerful

Table 6.3: Performance of measures according to power. The measure is classified as

powerful if it reaches power of at least 70% at about k = 1.5.

6.17-6.22), except PSNRR which may be useful for common disease.

SSIM detects differences when changing the mean in the case of a common and a

rare disease and when changing either of the variabilities for common disease only.

It performs very poorly for a very rare disease when changing the mean level, and

for a rare and a very rare disease when changing the variability (in both cases). The

power to detect change is higher when the disease is common in the case of a change

in the mean or a change of the variability. (We note that for SSIM two other measures

were also proposed, namely SSIMM and SSIMR (see Chapter 5), and these measures

perform the same as SSIM).

As for the measures involving differences, IRD and MDD perform similarly, MSDI

and AVND perform similarly, and MSND and MDND perform similarly. For IRD and

MDD, IRD detects differences slightly earlier than MDD. When changing the mean
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level and variability due to unstructured variability, these measures are sensitive to

differences when the disease is common and rare, and in the case of changing struc-

tured variability when the disease is common only. They do not work very well for a

very rare disease, as they detect very small differences, i.e when there is no mean or

variability change. In terms of the power, the measures are powerful when the disease

is common or rare for a change in the mean and unstructured variability for IRD only.

They are also powerful for a common disease only in the case of structured variability.

For MSDI and AVND, for both changes in mean and variance, these measures detect

the differences very late, and are not sensitive to changes.

MSND and MDND are sensitive in detecting changes for common diseases when chang-

ing the mean and variability due to unstructured heterogeneity and not sensitive to

change in structured heterogeneity. The measures are powerful in detecting change in

mean for a common and a rare disease, and detecting change due to unstructured and

structured variability for a common disease only.

6.5.2 Performance According to Disease Scenario

Generally the measures perform well for a common disease, with the exception of

AVND and MSDI. For a rare disease, most measures perform well, except for AVND,

MSDI, MSND and MDND, for change in mean. For change in unstructured and

structured variabilities, only MSD performs well. Except for MSD for a change in the

mean, no measure performs well for a very rare disease.

Common disease: MSD, PSNRR, SSIM, IRD, MDD, MSND and MDND can be

used to help detect differences when the mean level or variability due to unstructured

and structured heterogeneity has changed.

Rare disease: When the mean level has changed, MSD, PSNRR, SSIM, IRD and

MDD may be useful for detecting differences. (MSND and MDND may be used when

a large difference has occurred). MSD may be useful for detecting differences due

to unstructured and structured variability. (IRD, MDD, MSND and MDND may be

helpful only when large differences have occurred).

Very rare disease: Except for MSD, in the case of changing the mean level and also
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in the case of a large change in unstructured and structured variability, no measure is

good at detecting any kind of change.

6.5.3 Performance According to Type of Change

Table 6.4 gives the percentage change (roughly) in disease rate (changing mean level),

unstructured variability and structured variability, at which each measure starts to

detect change, for each scenario.

Change in Mean Level: MSD, PSNRR , SSIM, IRD, MDD, MSND and MDND are

the most sensitive and most powerful for detecting change when the disease is common.

AVND and MSDI have very poor sensitivity. For a rare disease, MSD, PSNRR and

IRD are the most sensitive and most powerful, followed by MDD and SSIM. MSND

and MDND detect changes late, followed by AVND and MSDI.

For a very rare disease, only MSD may be helpful in detecting changes, other measure

detect change very late (MSDI , AVND, MSND and MDND). PSNRR and SSIM do

not detect the changes, and IRD and MDD indicate differences when no change has

occurred (which can be misleading).

Change in Unstructured Variability: For a common disease, MSD, PSNRR, IRD,

SSIM and MDD are the most sensitive and powerful, followed by MSND and MDND.

AVND and MSDI have very poor sensitivity.

When the disease is rare, MSD is the most sensitive and powerful, and all other

measures are not sensitive as change is detected late. IRD, MDD, MSND and MDND

are all sensitive and powerful only when large differences have occurred. The worst

are AVND and MSDI which detect the differences far later. SSIM and PSNRR do

not detect changes when disease is rare, and for a very rare disease only MSD detects

changes (very late), while other measures do not detect changes (IRD and MDD give

the same results as for change in mean).

Change in Structured Variability: For a common disease, MSD, PSNRR, SSIM

and IRD are the most sensitive and powerful in detecting changes, followed by MDD.

MSND and MDND are powerful but not sensitive, as they detect the change very late.

AVND and MSDI have poor sensitivity and power.
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When the disease is rare, MSD is the most sensitive and powerful, and all other

measures only detect change very late or not at all. For a very rare disease, MSD

detects changes very late while other measures do not detect changes. IRD and MDD

give the same results as for a change in the mean and unstructured variability.

Disease Measure % Change in disease rate % Change in σv % Change in σu

Common 10 10 10

MSD Rare 10 30 30

Very rare 10 80 110

Common 10 10 10

PSNRR Rare 10 not at all not at all

Very rare not at all not at all not at all

Common 10 20 30

SSIM Rare 40 not at all not at all

Very rare not at all not at all not at all

Common 10 20 30

IRD Rare 30 50 80

Very rare 0 (misleading) 0 (misleading) 0 (misleading)

Common 20 30 40

MDD Rare 40 70 100

Very rare 0 (misleading) 0 (misleading) 0 (misleading)

Common 90 110 not at all

AVND Rare 140 200 not at all

Very rare 200 not at all not at all

Common 110 160 230

MSDI Rare 140 220 not at all

Very rare 120 not at all not at all

Common 30 40 110

MSND Rare 60 80 200

Very rare 100 not at all not at all

Common 30 40 110

MDND Rare 60 90 230

Very rare 110 not at all not at all

Table 6.4: Percentage change in disease rate and standard deviations of unstructured

and structured heterogeneity at which each measure starts to detect change, for each

disease scenario.

In a real situation, when comparing two maps, the difference may be due to change in

more than one of the three parameters (mean, unstructured and structured variability)

or all three parameters together. It is not possible to consider the value of one measure

and conclude whether the difference is due to a change in the mean or unstructured or
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structured variability. Since the simulation study has revealed the performance of the

measures under different scenarios, it may be helpful to use a combination of different

measures to assess the differences. When a change is thought to have taken place,

model fitting will also help to establish the nature of the change.

In the next chapter, some of the measures are used to compare susceptibility to measles

maps and also to compare NHS24 call uptake maps for different types of syndromes.
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Chapter 7

Comparing Maps Using Descriptive

Methods

7.1 Introduction

This chapter focuses on using some of the methods developed in Chapter 5 and tested

in Chapter 6, to assess the differences between real disease maps. The methods are

applied to two groups of data sets. The first group consists of the susceptibility to

measles data (described in Chapter 1) for Scotland for 1999-2005, both at district and

postcode sector level. In the second group NHS24 call uptake data are also used, to

compare call uptake for different syndromes in Scotland at postcode district level. The

NHS24 data will be described later in this chapter.

The main aim is to investigate whether the methods are able to assist in the inter-

pretation of map comparisons, to detect differences, and if so, can they indicate what

kind of differences (mean, unstructured or structured variation) are there, and can

the methods help quantify these differences. The susceptibility to measles results are

compared to the results of the modelling of susceptibility to measles in Chapter 4.

In Chapter 6, we assessed the methods for comparing maps in the case of common

disease (large mean rate), rare disease (small mean rate) and very rare disease (very

small mean rate). The data sets we use here both fall under the common disease case.

Therefore here we will only use the methods which were found to be most sensitive

and powerful to assess the differences for the case of common disease. The methods

used are MSD, SSIM, IRD and MSND. MSD and IRD just depend on the values of a
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variable but do not use neighbourhood structure, whereas SSIM and MSND do take

account of the neighbourhood structure, so using these methods together may give

a better idea of what, if any, difference there is between maps. Pseudo-colour maps

(see Chapter 5) were also used to help visualise the map regions that are different and

those that are similar.

Since MSD is just a value without a reference point, we use a simulation method to

find a p-value of the observed MSD value obtained to compare two maps. We use

1000 simulations, and for each simulation we obtain a MSD value. Each simulation

was carried out by simulating n observed counts (n=number of districts or postcode

sectors) from the Poisson distribution with means set to the observed rates of the first

year, and simulated proportions are then obtained. The MSD value of this chosen

first year and the new proportions is obtained, thus giving 1000 MSD values to make

up a null distribution (where the null hypothesis is that the second year’s map is not

different to the first). The simulated proportions therefore represent the second map

under the null hypothesis. A p-value of the observed MSD obtained to compare the

two years is found by finding the proportion of the 1000 simulated MSD values making

up the null distribution that are at least as extreme as the value of the observed MSD,

i.e. as MSD is expected to increase when differences are present, the proportion of

the 1000 values that are greater than or equal to MSD is found. SSIM does have a

reference point, however we also used the same p-value approach for SSIM to decide

at what point the value of SSIM becomes significant.

For susceptibility to measles data, the methods are applied both to the raw data (pro-

portions) and smoothed data to see how they compare. The data were smoothed using

the empirical Bayesian smoothing with the Poisson-Gamma model (see Chapter 4 for

the description of the model). The function empbaysmooth in the package DCluster

in R was used to obtain the estimates. The discussion of the results is based mainly

on the proportion results as this will allow comparison with the modelling results.

In the next section susceptibility to measles maps are compared at district and post-

code sector. This will then be followed by comparing maps based on NHS24 call

uptake for health related syndromes.
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7.2 Comparing Measles Maps of Scotland

In this section the measures are applied to the measles data at both district and

postcode sector level for 1999-2005. This will help in comparing measles susceptibility

over time at each level. The results are compared with the modelling analysis in

Chapter 3. Since districts are larger and postcode sectors are smaller, this analysis

may help in revealing whether the developed methods perform the same or differently

for both large and small areas.

7.2.1 District Level

Table 7.1 gives values for the measures for comparing two successive time periods at a

time, for pre-school children and primary 1 and 2 school children, from 1999-2005 at

district level using both raw data and smoothed data.

PRE-SCHOOL CHILDREN

Proportions Smoothed Rates

Years MSD SSIM IRD MSND MSD SSIM IRD MSND

1999-2000 9.6e− 05 (0.94) 0.88(0.91) 8.7e− 01 0.98 0.0014 0.87 6.8e− 01 0.979

2000-2001 1.2e− 04 (0.80) 0.88(0.81) 2.2e− 01 0.90 0.0012 0.90 7.9e− 01 0.617

2001-2002 2.0e− 04 (0.15) 0.88(0.86) 7.4e− 01 0.46 0.0016 0.84 3.9e− 03 0.617

2002-2003 8.4e− 04 (0.00) 0.78(0.19) 6.4e− 08 0.62 0.0043 0.74 0.0e+ 00 0.153

2003-2004 2.1e− 04 (0.46) 0.90(0.58) 5.2e− 02 0.46 0.0021 0.92 3.9e− 01 0.098

2004-2005 3.8e− 04 (0.04) 0.90(0.58) 9.2e− 05 0.90 0.0030 0.85 4.5e− 10 0.905

PRIMARY SCHOOL CHILDREN

Proportions Smoothed Rates

Years MSD SSIM IRD MSND MSD SSIM IRD MSND

1999-2000 8.6e− 05 (0.91) 0.94(0.94) 2.2e− 07 0.33 0.0092 0.95 2.0e− 02 0.774

2000-2001 7.7e− 05 (0.39) 0.92(0.30) 5.6e− 01 0.77 0.0125 0.92 7.1e− 01 0.905

2001-2002 5.1e− 05 (0.86) 0.95(0.92) 3.2e− 01 0.90 0.0095 0.94 9.9e− 02 0.979

2002-2003 6.4e− 05 (0.77) 0.94(0.65) 5.6e− 01 0.77 0.0093 0.95 4.4e− 01 0.774

2003-2004 1.5e− 04 (0.01) 0.88(0.03) 2.8e− 02 0.77 0.0234 0.82 0.0e+ 00 0.021

2004-2005 3.5e− 04 (0.00) 0.84(0.03) 4.8e− 05 0.62 0.0188 0.86 1.0e− 05 0.774

Table 7.1: Values of measures MSD (with p-values in brackets), SSIM (with p-values

in brackets), IRD (these are p-values) and MSND (these are p-values) obtained for the

susceptibility to measles susceptibility raw data and smoothed rates of pre-school chil-

dren(top) and primary 1 and 2 school children (bottom), at district level, comparing

two successive years at a time.
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The MSD values obtained after smoothing are larger than those obtained for the

raw data, while the SSIM values after smoothing are closer to those obtained before

smoothing. IRD results are similar for smoothed and raw data, except for pre-school

2001-2002 which gives different results. MSND results are generally similar though

2003-2004 is different. The interpretation here is based on the raw data as this will

allow us to compare the use of the descriptive methods with the modelling results.

MSD

Comparing the maps using the results in Table 7.1, for the raw data, in general for

pre-school children MSD is close to zero and increases over time, with a decrease in

2003-2004. This indicates that the maps are becoming less similar year on year, with

2002 and 2003 being more different. The years 2002-2003 have the highest value, fol-

lowed by 2004-2005, and these are the only two cases where the p-value is significant,

i.e. MSD has detected the differences in these two cases. For primary 1 and 2, MSD

is very close to zero but decreases from 1999 to 2002, and increases from 2002-2005.

Similarly as for pre-school, it indicates that maps are becoming less similar year on

year. The highest value of MSD is in 2004-2005 followed by 2003-2004. These are the

only cases where the p-value is significant.

SSIM

For pre-school, the SSIM values for 1999-2000, 2000-2001 and 2001-2002 are similar

and not very far below 1, indicating that there are no major differences between each

pair of years. For 2002 and 2003 the SSIM value is the smallest, showing that there

were larger differences between these two years compared to other years. All the p-

values indicate that if there are any differences indicated by SSIM these differences

are not significant, i.e there is no difference between any consecutive pair of years.

For primary 1 and 2, SSIM is smaller than 1 but not very far from 1 and generally

decreases across time. It is higher (0.95) for 2001-2002 and lowest (0.84) for 2004-2005.

This indicates that 2001 and 2002 are the most similar years, and 2004 and 2005 are

the most different years. The years 2003 and 2004 and the years 2004 and 2005, are

the only pairs with significant p-values, thus there are differences between these pairs

according to this measure. The SSIM values of 0.88 and 0.84 for primary 1 and 2 are

significant (p-values of 0.03), while the SSIM values of 0.88 (p-values 0.91, 0.81, 0.86)
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and 0.78 (p-values of 0.19) for pre-school are not significant. This may be because of

change in disease frequency as susceptibility for pre-school is higher than at primary

1 and 2.

IRD and MSND

For pre-school, the Kolmogorov-Smirnov (KS) p-value for IRD is only significant (less

than 0.05) for 2002-2003 and for 2004-2005, indicating differences between these pairs,

with 2002-2003 having the smallest p-value. For other pairs of years no differences

were suggested. For primary 1 and 2, the KS p-value for IRD is significant (detected

differences) for 1999-2000, 2003-2004, and for 2004-2005. MSND did not indicate any

differences for either pre-school or primary 1 and 2 school children. This measure is

restricted to detecting changes that take place only when the difference between a

rate of region and the most similar rate to it in its neighbouring regions has changed.

Therefore, it may not detect changes when a different kind of change has taken place

anywhere in the map.

We note that SSIM takes into account the differences in the spatial structure, and

MSND takes into account the neighbourhood structure, while MSD and IRD depend

on whether there has been a change anywhere in the map, so they are sensitive to any

change in the disease rates, which may not be detected by SSIM and MSND. Overall,

MSD and IRD indicated that there are differences in 2002-2003 and 2004-2005 for

pre-school, and MSD, IRD and SSIM indicate differences in 2003-2004 and 2004-2005

for primary school. We note that for primary 1 and 2 IRD indicated a difference

between 1999-2000, even though 1999-2000 has the smallest MSD and one of the high-

est SSIM values, which are not significant values. This was investigated further by a

pseudo-colour map to allow us to visualise the differences. Pseudo-colour maps were

also produced for 2002-2003 and 2004-2005 for pre-school, and 2004-2005 for primary

1 and 2. These are presented in Figure 7.1.

Pseudo-Colour Maps

The pseudo-colour map for pre-school for 2002-2003 shows that there are a few regions

(grey) where the rates in these two years are similar, but most regions are green, in-

dicating that most regions in 2003 had higher susceptibility to measles rates than in

2002, i.e. there was a global increase in susceptibility in 2003, which is greater in the
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western districts. This was also observed in Chapter 4 when comparing these maps.

There are no regions where susceptibility was higher in 2002 (i.e. pink/purple regions).

Therefore MSD, SSIM and IRD were able to detect these differences. This map clearly

shows where the differences are. For 2004-2005, there are regions (grey) where suscep-

tibility is the same for the two years, and there are more regions (pink/purple) where

susceptibility to measles is higher for 2004 than 2005, i.e. susceptibility decreased in

2005.

Grey−Maps Similar
Pink/Purple−2002 > 2003
Green−2003 > 2002

Pre−School
2002 (Red and Blue)

and 2003 (Green)

Grey−Maps Similar
Pink/Purple−2004 > 2005
Green−2005 > 2004

Pre−School
2004 (Red and Blue)

and 2005 (Green)

Grey−Maps Similar
Pink/Purple−1999 > 2000
Green−2000 > 1999

Primary 1 and 2
1999 (Red and Blue)

and 2000 (Green)

Grey−Maps Similar
Pink/Purple−2004 > 2005
Green−2005 > 2004

Primary 1 and 2
2004 (Red and Blue)

and 2005 (Green)

Figure 7.1: Pseudo-colour maps using raw proportions at district level for pre-school

children for 2002 and 2003, 2004 and 2005, and for primary 1 and 2 for 1999 and 2000,

2004 and 2005.
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There are no green regions (indicating susceptibility is higher in 2005).

For primary 1 and 2 school children, in the pseudo-colour map for 1999-2000, there are

regions (grey) where both years are similar and the remaining regions (pink/purple)

are where susceptibility to measles is higher in 1999. (There are no green regions where

susceptibility is higher in 2000). So the differences are due mainly to the decrease of

susceptibility in most regions in 2000. For 2004-2005, the pseudo-colour map shows

that there are regions (grey) where these two years are similar, but most regions are

green (only one region is pink/purple) indicating that susceptibility to measles in-

creased in those regions in 2005.

So the descriptive statistics and pseudo colour-maps suggest a global increase in sus-

ceptibility in 2003 relative to 2002 and global decrease in susceptibility in 2005 relative

to 2004, thus there are no pockets of local increase or decrease in measles susceptibility.

Comparison with Modelling Results

The results based on these measures compare well with the results obtained from

modelling in Chapter 3 (Section 3.4), comparing 2000-2005. For pre-school, it was

observed that susceptibility to measles was increasing over the years, with a decrease

in susceptibility in 2005.

The year 2003 is detected by MSD, SSIM and IRD to be different from 2002. Us-

ing the logistic model results, in 2003 there was a global increase in susceptibility as

shown by the maps. The overall proportion changed (from 0.17 with CI (0.16,0.18)

to 0.21 with CI (0.20,0.23)). Also the clustering indicated by the structured standard

deviation changed from 0.07 with CI (0.02, 0.16) to 0.15 with CI (0.07,0.24)) and

the regional variation (unstructured standard deviation) changed, from 0.22 with CI

(0.17,0.28) to 0.09 with CI (0.03,0.14)). This year (2003) had the highest overall pro-

portion and unstructured standard deviation and lowest structured deviation among

all the years. The credible intervals suggest an increase in overall proportion and a

decrease in unstructured standard deviation in relation to 2002. The credible inter-

vals for the structured standard deviations are wide and do not suggest any major

changes. In 2005 there was a decrease in susceptibility relative to 2004. The overall

proportion changed (from 0.21 with CI (0.20,0.22) to 0.19 with CI (0.18,0.20)), struc-

tured standard deviation changed (from 0.10 (0.04,0.18) to 0.09 with CI (0.03,0.18))
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and unstructured standard deviation changed (from 0.17 with CI (0.12,0.22) to 0.18

with CI (0.14,0.24)). The credible intervals suggest a decrease in overall proportion in

2005 relative to 2004. The credible intervals for unstructured and structured standard

deviations are wide and do not suggest any major changes. MSD, IRD and SSIM

indicated differences between 2004 and 2005.

For primary 1 and 2, there was an increase from 2004 to 2005 in regions with high

susceptibility. From 2004 to 2005, from Table 3.3, the logistic model shows a change in

overall proportion from 0.07 with CI (0.06,0.08) to 0.08 with CI (0.08,0.09), a change

in structured variation (from 0.18 with CI (0.04,0.32) to 0.21 with CI (0.10,0.35)) and

a change in unstructured standard deviations (from 0.25 with CI (0.18,0.32) to 0.21

with CI (0.14,0.28)). The credible intervals suggest an increase in overall proportion in

2005 relative to 2004. The credible intervals for unstructured and structured standard

deviations are wide and do not suggest any major changes. MSD, IRD and SSIM

again suggested differences between these two years.

Susceptibility measured in 2003 for pre-school and 2005 for primary 1 and 2 is for the

same birth cohort. The results of modelling highlighted this birth cohort as having

the largest susceptibility to measles. MSD, SSIM and IRD were able to detect these

differences. Pre-school 2002-2003 and primary 1 and 2 2004-2005 have the highest

MSD with a significant p-value, lowest SSIM (but not significant for pre-school but

significant for primary 1 and 2 school children), and a significant p-value for IRD. All

of these indicate that the largest change was between 2002 and 2003 for pre-school,

and between 2004 and 2005 for primary 1 and 2 school children. The pseudo-colour

maps showed that most regions in this cohort had higher susceptibility in 2003 than

2002 (pre-school) and in 2005 than 2004 (primary 1 and 2).

7.2.2 Postcode Sector Level

Table 7.2 gives values for the measures for comparing two successive periods at a

time at postcode sector level, for pre-school and primary 1 and 2 school children, for

1999-2005. As at district level, the MSD values for the smoothed data are larger

than for the raw data. For pre-school the SSIM values are mostly smaller for the

smoothed data than the raw data, while for primary school the SSIM values are larger

for the smoothed data than the raw data. IRD gives a similar interpretation for both
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smoothed and raw data, while MSDN gives similar interpretation in some cases and

in other cases it gives different results for smoothed and raw data.

PRE-SCHOOL CHILDREN

Proportions Smoothed Rates

Years MSD SSIM IRD MSND MSD SSIM IRD MSND

1999-2000 1.7e− 05 (1.00) 0.82(1.00) 0.0e+ 00 2.5e− 07 0.0048 0.53 0.0e+ 00 1.5e− 01

2000-2001 1.4e− 05 (1.00) 0.81(1.00) 0.0e+ 00 1.2e− 13 0.0059 0.44 0.0e+ 00 9.8e− 01

2001-2002 1.4e− 05 (1.00) 0.79(1.00) 0.0e+ 00 2.8e− 01 0.0054 0.59 0.0e+ 00 2.2e− 03

2002-2003 2.7e− 04 (1.00) 0.36(0.00) 0.0e+ 00 0.0e+ 00 0.0084 0.52 0.0e+ 00 1.2e− 06

2003-2004 3.9e− 04 (1.00) 0.10(0.00) 0.0e+ 00 0.0e+ 00 0.0274 0.13 0.0e+ 00 0.0e+ 00

2004-2005 1.1e− 04 (1.00) 0.16(0.00) 0.0e+ 00 0.0e+ 00 0.0259 0.05 0.0e+ 00 0.0e+ 00

PRIMARY SCHOOL CHILDREN

Proportions Smoothed Rates

Years MSD SSIM IRD MSND MSD SSIM IRD MSND

1999-2000 0.0028 (0.16) 0.64(0.01) 0.0e+ 00 4.0e− 09 0.034 0.83 0.0e+ 00 6.2e− 06

2000-2001 0.0024 (0.66) 0.74(0.47) 0.0e+ 00 8.3e− 01 0.045 0.81 0.0e+ 00 4.2e− 03

2001-2002 0.0044 (0.26) 0.59(0.06) 0.0e+ 00 1.9e− 01 0.036 0.82 0.0e+ 00 1.7e− 02

2002-2003 0.0057 (0.40) 0.53(0.03) 0.0e+ 00 4.9e− 01 0.029 0.83 0.0e+ 00 7.0e− 02

2003-2004 0.0052 (0.40) 0.61(0.17) 0.0e+ 00 1.0e− 01 0.037 0.73 0.0e+ 00 3.8e− 02

2004-2005 0.0080 (0.23) 0.43(0.001) 0.0e+ 00 1.1e− 04 0.031 0.70 0.0e+ 00 4.3e− 04

Table 7.2: Values of measures MSD (with p-values in brackets), SSIM (with p-values

in brackets), IRD (these are p-values) and MSND (these are p-values) obtained for

the susceptibility to measles susceptibility raw data and smoothed rates of pre-school

children (top) and primary 1 and 2 school children (bottom), at postcode sector level,

comparing two successive years at a time.

MSD

For pre-school, the value of MSD initially decreases but increases for 2002-2003 (the

second highest value) and for 2003 and 2004 (highest value). This indicates that the

maps become more dissimilar year on year, with 2003 and 2004 being the least similar

pair of successive years than all other years. For all the pairs the obtained p-value is

1, so that this measure indicates that there are no differences. For primary 1 and 2,

generally the MSD values increase over the years, indicating differences are increasing

over the years, with 2004 and 2005 having the highest MSD. Again, the p-values are

not significant.

216



SSIM

For both pre-school and primary 1 and 2 school children, SSIM decreases over the

years. For pre-school, 2003-2004 have the smallest SSIM, and for primary 1 and 2,

2004-2005 have the smallest SSIM, showing these pairs are more different. For pre-

school, the p-value is significant for 2002-2003, 2003-2004, and 2004-2005, and for

primary 1 and 2, for 1999-2000, 2002-2003, and 2004-2005, indicating differences be-

tween these pairs.

IRD and MSND

IRD is significant for all pairs, for both pre-school and primary 1 and 2 children,

indicating differences between the years. For pre-school, MSND is significant for all

pairs except 2001-2002. For primary school, MSND is only significant for the pairs

1999-2000 and 2004-2005.

Overall, even though MSD p-values are not significant, the other measures still high-

light that there are differences year on year. Similarly as at district level, the birth

cohort for which susceptibility was measured at 2003 for pre-school and at 2005 for

primary 1 and 2 school children shows greater differences when compared to other

years.

The pseudo-colour maps for pre-school, 2002-2003 and 2003-2004, and primary school,

1999-2000, 2004-2005 are shown in Figure 7.2. These are the pairs of years which

the measures detected to be very different compared to others. For pre-school, even

though 2004-2005 has the smallest SSIM, 2002-2003 was chosen because of its larger

MSD. For primary school, 1999-2000 has the second highest SSIM and second smallest

MSD, but it was chosen because MSND was significant.

Pseudo-Colour Map

For pre-school, the map for 2002-2003 shows that there are postcode sectors (grey)

where these two years are similar, but there are more green postcode sectors where

in 2003 susceptibility to measles was higher than in 2002, and very few pink/purple

(mainly on the eastern side), where susceptibility to measles was higher in 2002 than

2003. This indicates that susceptibility to measles increased in 2003, but there may

also be an increased variance as the trends are different in the east and west.
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Grey−Maps Similar
Pink/Purple−2002 > 2003
Green−2003 > 2002

Pre−School
2002 (Red and Blue)

and 2003 (Green)

Grey−Maps Similar
Pink/Purple−2003 > 2004
Green−2004 > 2003

Pre−School
2003 (Red and Blue)

and 2004 (Green)

Grey−Maps Similar
Pink/Purple−1999 > 2000
Green−2000 > 1999

Primary 1 and 2
1999 (Red and Blue)

and 2000 (Green)

Grey−Maps Similar
Pink/Purple−2004 > 2005
Green−2005 > 2004

Primary 1 and 2
2004 (Red and Blue)

and 2005 (Green)

Figure 7.2: Pseudo-colour maps using raw proportions at postcode sector level for

pre-school children for 2002 and 2003, and 2003 and 2004, and for primary 1 and 2

children for 1999 and 2000, and 2004 and 2005.
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For 2003-2004, there are postcode sectors (grey) where susceptibility to measles is

similar for the two years, but more pink/purple postcode sectors indicate that in 2004

susceptibility generally increased.

For primary school children, the pseudo-colour map for 1999-2000 indicates that there

are grey regions where these years are similar, but there are also more pink/purple

regions where susceptibility is higher in 1999. For 2004 and 2005, there are also grey

regions where susceptibility is similar for both years, but there are more green regions

where susceptibility was higher in 2005 than 2004.

Comparing with Modelling Results

These results compare fairly well with the modelling results. For pre-school, the mod-

elling results for 2002 to 2004 for susceptibility to measles were as follows. From 2002

to 2003 there was a change in overall proportion, from 0.18 (0.176, 0.184) to 0.21 with

CI (0.20,0.213). Structured standard deviation changed from 0.16 with CI (0.12,0.19)

to 0.17 with CI (0.12,0.20) and unstructured standard deviation changed from 0.03

with CI (0.01,0.05) to 0.04 with CI (0.03,0.06). The credible intervals suggest an in-

crease in overall proportion, while for unstructured and structured standard deviations

the credible intervals do not suggest any real differences. From 2003 to 2004 there was

a slight change in overall proportion from 0.21 with CI (0.20,0.213) to 0.20 with CI

(0.19,0.21), a change in structured standard deviation from 0.17 with CI (0.12,0.20) to

0.15 with CI (0.11,0.19) and change in unstructured standard deviation from 0.04 with

CI (0.03,0.06) to 0.06 with CI (0.04,0.08). The credible intervals for overall proportion,

unstructured and structured deviations do not suggest any real change from 2003 to

2004. However, SSIM, IRD and MSND detected differences between 2002 and 2003

and also between 2003 and 2004, confirming visual impression. This suggests that the

modelling results may not always detect changes as the map comparison measures.

For primary school, from 2004 to 2005, there was a change in overall proportion from

0.071 with CI (0.068,0.073) to 0.084 with CI (0.081,0.086), a similar structured stan-

dard deviation 2004 (0.40 with CI (0.32,0.48)) and 2005 (0.40 with CI (0.34,0.36)),

and unstructured standard deviation changed from 0.11 with CI (0.02,0.17) to 0.05

with CI (0.01,0.12). The credible interval suggests an increase in overall proportion.

SSIM, IRD and MSND detected differences between 2004 and 2005.
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7.2.3 Comparing District and Postcode Sector Level

Generally for districts the results given by all measures more or less agree, while for

postcode sectors there are different results for MSD, SSIM, IRD and MSND. We note

that for postcode sectors regions are smaller than the districts, therefore the sample

size is smaller. So postcode sectors have sampling variation which is greater than for

districts. Thus some of the measures may not be able to detect differences for postcode

sectors but detect differences at district level. MSD p-values at postcode sector level

are not significant for any pair of years, while for some years at district level MSD has

detected some differences. SSIM detected differences in some of the pairs at postcode

level for pre-school, but did not detect difference for the same pairs at district level,

and the measure detected differences for the pair 2004-2005 at district level but not

at postcode sector level. MSND detected differences in most pairs at postcode sector

level, while at district level the p-values were not significant for any pair of years. This

may be because MSND depends on the neigbourhood structure and a postcode sector

has more neighbouring regions than a district.

7.3 Comparing Maps of Proportions of NHS24 Call

Uptake

NHS24 is a Scotland wide 24 hour emergency telephone and health information service.

In this section we use NHS24 data and compare maps of different health syndromes.

These data represents NHS24 call rates for different health problems for each postcode

district in Scotland. We assess the spatial differences between maps of proportions of

NHS24 calls attributed to four syndromes, namely colds/flu and fever (CFF), rash

(RASH), difficulty in breathing and cough (DBC), and for diarrhoea and vomiting

(DV). Kavanagh and Robertson (2008) investigated the spatial clustering of the call

rates between regions and the effect of deprivation on call rates.

7.3.1 Data

The raw data used here are a 6 months (September 2007-March 2008) data at postcode

district level. The raw data contains counts for the number of individuals calling

NHS24 with different syndromes, namely colds and flu, coughs, diarrhoea, difficulty
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in breathing, double vision, fever, eye problem, lumps, rash, vomiting and other.

Here we chose to put together some of these syndromes to form four new groups of

syndromes, to compare their call uptake. The colds/flu and fever (CFF) syndrome

combines colds/flu syndrome and the fever syndrome; difficulty in breathing and cough

(DBC) combines difficulty in breathing and cough syndromes; diarrhoea and vomiting

(DV) syndrome combines diarrhoea and vomiting syndromes; and RASH is the rash

syndrome alone. For each of the new four syndromes, the total counts were converted

into call proportions by dividing by the total number of calls for each individual

postcode district.

Descriptive Statistics

Table 7.3 shows descriptive statistics for CFF, RASH, DBC and DV. It can be observed

that DBC and DV have the same mean, with DBC having a higher median, followed by

CFF then RASH. Therefore overall DBC has highest proportion of call uptake while

RASH has the least proportion of call uptake. The maximum observed proportion of

calls for DV is 1, as some postcode districts have call uptake for DV only.

Syndrome Minimum 1st Quartile Median Mean 3rd Quartile Maximum

CFF 0.000 0.072 0.088 0.082 0.100 0.235

RASH 0.000 0.029 0.041 0.039 0.048 0.200

DBC 0.000 0.100 0.118 0.109 0.131 0.500

DV 0.000 0.086 0.104 0.109 0.117 1.000

Table 7.3: Summary statistics for NHS24 syndromes.

Figure 7.3 shows maps of proportions of calls due to the four syndromes, at postcode

district level. For colds/flu and fever (CFF) syndrome, there is a higher number of

calls made in the central and north west regions, but most postcode districts have

lower call uptake. Call uptake for difficulty in breathing and cough (DBC) syndrome

is higher in the north west, eastern, central and south regions, with pockets of lower

call uptake in the north. For RASH syndrome, most postcode districts have a lower

call uptake with pockets of higher call uptake in the western regions.

There is higher call uptake for diarrhoea and vomiting (DV) syndrome mainly in the

north west, south, central and eastern regions and lower call uptake in the north.
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under 0.066
0.066 − 0.082
0.082 − 0.093
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Diarrhoea and Vomiting

Figure 7.3: Maps of proportions of calls to NHS24 for Colds/Flu and Fever (CFF),

Difficulty in Breathing and Cough (DBC), RASH, and Diarrhoea and Vomiting (DV),

at postcode district level.
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This seems similar to the spatial pattern of calls due to difficulty in breathing and

cough syndrome (DBC). DBC has more regions with higher call uptake than other

syndromes, while RASH has lower call uptake in most regions than other syndromes.

Looking at the correlations between the proportions of calls due to the different syn-

dromes, it can be observed that the correlations are small: CFF and DBC (0.47), CFF

and RASH (0.26), CFF and DV (-0.17), DBC and RASH (0.19), DBC and DV (-0.21),

RASH and DV (-0.13). Thus it is expected that the descriptive methods may indicate

big differences between these syndromes in terms of proportions of calls made.

7.3.2 Analysis

The descriptive methods proposed can certainly be used if comparing, for example,

call proportions for DV in one time period with call proportions for DV in another

time period, but not necessarily when comparing for example call proportions for DV

and call proportions for RASH as mean levels are different. It is expected that for

the latter all the methods would indicate a difference in the maps owing to a different

mean level rather than from a different spatial distribution. Standardisation of data

in some way or use of spatial correlation measures may be helpful in this case.

Here the means are standardised before applying the methods. To compare two syn-

dromes, we find the mean of the proportions for each syndrome and multiply one group

of proportions by the ratio of the two means so that the two groups end up with the

same mean.

Results

Table 7.4 gives the results of the measures applied to the standardised proportions.

MSD p-values indicate that all the pairs of syndromes are different except for CFF and

RASH. The SSIM and IRD p-values are all significant for all the pairs of syndromes,

thus according to all these measures there are significant differences between each of

the syndrome pairs. MSND indicates that there are differences between all pairs of

syndromes except CFF and DBC, and DBC and DV.

The pseudo colour maps are shown in Figures 7.4-7.5. For CFF and DBC, there are

pockets of regions in the north east, south and west where call uptake is higher for
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DBC than CFF (green), and similarly, there are pockets of regions in the west and

north east where call uptake is higher for CFF than DBC (pink/purple). For CFF

and RASH there are more regions where call uptakes for these syndromes are similar,

but call uptake attributed to CFF is higher in most regions than for RASH. CFF and

DV show a few more pink/purple regions, indicating that CCF has a higher number

of regions with higher call uptake than DV, mostly in the north eastern and central

regions. The spatial distributions of the CFF and DV map, and the CFF and DBC

map look similar, as in both maps DV has few regions with higher call uptake (these

are in the eastern part of Scotland).

For DV and RASH, and DBC and RASH, there are a few regions where RASH call

uptake is higher than for other syndromes, mainly in the eastern part of Scotland, but

these maps mostly indicate a higher DV or DBC call uptake.

Generally, RASH call uptake is lower in most regions compared to the other three

syndromes, CFF call uptake is higher compared to RASH and DV but it is similar to

the call uptake of DBC.

Standardised Proportions

Syndromes MSD SSIM IRD MSND

CFF and DBC 0.0013 (0.063) 0.46(0.00) 0.0e+ 00 6.3e− 02

CFF and RASH 0.0029 (0.002) 0.24(0.00) 0.0e+ 00 4.0e− 05

CFF and DV 0.0107 (0.000) −0.12(0.00) 0.0e+ 00 2.6e− 03

DBC and RASH 0.0054 (0.002) 0.17(0.00) 0.0e+ 00 5.8e− 09

DBC and DV 0.0193 (0.000) −0.15(0.00) 0.0e+ 00 2.6e− 01

RASH and DV 0.0027 (0.000) −0.12(0.00) 0.0e+ 00 4.6e− 07

Table 7.4: Values of measures MSD (with p-values in brackets), SSIM (with p-values),

IRD and MSND for comparison of maps based on call uptake for NHS24 for Colds/Flu

and Fever (CFF), RASH, Difficulty in Breathing and Cough (DBC) and Diarrhoea and

Vomiting (DV), for standardised proportions at postcode district level.
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of CFF (Red and Blue)
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Figure 7.4: Pseudo-colour maps at postcode district level for the standardised pro-

portions of calls to NHS24 for Colds/Flu and Fever (CFF) versus each of Difficulty in

Breathing and Cough (DBC), RASH, Diarrhoea and Vomiting (DV), and DBC versus

DV.
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Figure 7.5: Pseudo-colour maps at postcode district level for standardised proportions

of calls to NHS24 for Diarrhoea and Vomiting (DV) versus RASH, and Difficulty in

Breathing and cough (DBC) versus RASH.

7.4 Conclusions

In this chapter we have applied some of the proposed methods, i.e. the pseudo-colour

map, MSD, IRD, SSIM and MSND, from Chapter 5, to susceptibility to measles of

pre-school and primary 1 and 2 school children from 1999 to 2005, at both district and

postcode sector level. The methods were also applied to proportions of NHS24 calls in

Scotland attributed to four syndromes. For all data sets, the aim was to assess if the

methods could detect the differences, and if differences were detected, to assess what

change has taken place and if possible quantify the differences.

These methods may be helpful in establishing whether differences exist or not between

maps, but will not be able to establish what kind of change has occurred. The meth-

ods can also detect changes which are visually seen on maps but not indicated by the

modelling results. Thus these methods may be used together with model fitting in

order to try to establish the kind of change that has taken place. Thus these methods

may be most suitable for use in exploratory analysis.

The results for susceptibility to measles were compared with the modelling results in
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Chapter 3, for both districts and postcode sectors and led to similar conclusions. The

pseudo-colour maps were found to be a useful way of highlighting the differences in the

data between years. These maps were able to show the regions where susceptibility

decreased, increased or did not change for the years that were compared. For example

in Chapter 4, for pre-school at district level, susceptibility to measles increased in most

districts and the pseudo-colour map has highlighted this very well. The MSD, SSIM

and IRD measures also detected these differences. The measures were able to highlight

that the birth cohort for 2003 pre-school and 2005 primary 1 and 2 differ from other

years.

MSD p-values were not significant at postcode sector level for any pair of years, sug-

gesting this measure may not work well for comparing maps based on very small

regions. SSIM detected changes mostly at postcode sector level. We note that there is

a limitation to the way the p-values were obtained for MSD and SSIM. The method of

obtaining monte carlo p-values assumes that map 1 is fixed and that all the sampling

variation is contained in map 2. An alternative strategy would be to treat both maps

as subject to sampling variation, i.e. get rates from map 1 or average of map 1 and 2,

simulate map 1 and map 2 using same rates, calculated MSD/SSIM, and repeat the

process to get p-values.

MSND was able to detect differences only at postcode sector level, which suggests

that these measures may not work well when comparing maps based on large regions

but may do well for smaller regions. Since postcode sectors are smaller than districts,

each postcode sector has a larger number of neighbouring regions than each district.

Furthermore there is more variation in susceptibility rates at postcode sector level

than districts as postcode sectors are smaller than districts, and have smaller sample

size. Thus there is more potential for MSND to detect differences at postcode sector

level as this measure depends on this neighbourhood structure.

When smoothing, the rates are pulled towards their means, thus they become more

similar and hence there is less variation between them. For susceptibility to measles

data, for most methods, similar interpretations were obtained from the results based

on smoothed data and those from the raw proportions, except that the MSD values

become larger when the data are smoothed.
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Comparing measles susceptibility over time involves a relatively small change between

maps as the mean levels are similar. These descriptive measures have shown to be

useful when comparing maps where small changes have occurred, as in the case of

measles susceptibility. When comparing maps with different mean level, as in the case

of the NHS24 data, mean standardisation is needed. Here standardisation was carried

out by multiplying one map by the ratio of the means of the two maps which are being

compared. Other possibilities are: multiplying by the difference between the means

of the two maps, or finding Z1 = R1−M1

Sd1
and Z2 = R2−M2

Sd2
where R1, R2 are the rates

of map 1 and 2, M1,M2 are the means of map 1 and 2, Sd1 and Sd2 are the standard

deviations of the rates of map 1 and 2, and Z1 and Z2 are the new standardised rates

which can be mapped and compared. But for these two cases there are issues of neg-

ative values and a way of dealing with these needs to be addressed.

Thus the descriptive methods may be useful when comparing susceptibility to measles

map, but probably are not so useful in the case of the NHS24 data. In this case spatial

correlation methods may be more appropriate, and these were used for these data by

Kavanagh and Robertson (2008).
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Chapter 8

Summary, Conclusions and Further

Work

The work carried out in this thesis is divided into two parts. For the first part of this

thesis, we investigated and compared different approaches to the analysis of disease

maps through modelling. These methods are based on the modelling of relative risk,

which allows the production of choropleth maps (Chapter 3), and smoothing of rel-

ative risk using non-parametric methods, which allows production of isopleth maps

(continuous surface maps) (Chapter 4). As we make use of susceptibility to measles

data of Scotland, for pre-school and primary 1 and 2 school children, for the period

1999-2005, some of these methods are used to analyse the susceptibility to measles.

Our aim also was to analyse spatial trends in susceptibility to measles over time, and

with the use of spatial ecological models, to investigate the relationship between sus-

ceptibility in areas and markers of inequality between areas.

The second half of the thesis focuses on the comparison of disease maps and on the

investigation and development of methods to compare disease maps. The methods

were investigated through simulation and were again illustrated on the measles data

as well as on NHS24 call uptake data.
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8.1 Modelling

8.1.1 Comparing Maps Over Time

A spatial logistic model based on the model proposed by Besag et al. (1991) and a

space-time model proposed by Waller et al. (1997) were used to analyse the suscepti-

bility to measles data, and to compare maps over time at district and postcode sector

levels. The results were satisfying in that we were able to visually compare the maps

and identify regions where susceptibility to measles had changed or had not changed

over the years. For both district and postcode sector levels, the maps were seen to

become less similar over the years, as in general, susceptibility was increasing over

time. Maps from both models indicated that for all the years, measles susceptibil-

ity tended to be higher in the rural regions of the north west part of Scotland (the

Highlands). For pre-school children, measles susceptibility was high in 2003 and 2004,

while for primary 1 and 2 school children, measles susceptibility was high in 2005. The

pre-school children group whose susceptibility was assessed in 2003, and the primary

1 and 2 school children group whose susceptibility was assessed in 2005 is the same

group, i.e. children born between 1/3/1999 and 28/2/2001. Therefore, for this birth

cohort many regions may have children who did not receive first and second uptake

of measles, mumps and rubella (MMR) vaccine. This means that if there was to be

an outbreak of measles in the future, these birth cohorts are likely to be affected the

most.

The proportion, and the structured (local) and unstructured (global) standard devi-

ation values obtained from the models also helped to a certain extent to understand

whether the change in susceptibility was a result of change in these parameters (see

Chapter 3 for plots of these parameters). In general, both models indicate that, for

each year, at district level the difference in the rates is more due to unstructured

variation than structured variation, and at postcode sector level the difference is due

more to structured variation than unstructured. Therefore there is a difference in

analysing the data at district and postcode sector level. This is because districts are a

combination of postcode sectors, so by adding them up we accumulate extra binomial

dispersion giving unstructured variability. Postcode sectors are smaller than districts

and we expect more clustering at postcode sector level than at district level, thus

obtain higher structured variation.
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Only the logistic model gives the values of the overall proportion for each year sepa-

rately, while the space-time model gives one single overall mean value, but could be

extended by including a trend. As these models are different, they tend not to give

similar results in some cases. For example, for pre-school children, the logistic model

indicates that the change in unstructured standard deviation between 2002 and 2003

is about 0.13, while the space-time model indicates that the change is about 0.02.

From the logistic model, for pre-school children, for districts, the overall proportion is

highest in 2003, and overall proportion is the highest for 2003 and 2004 for postcode

sectors. For primary 1 and 2, the overall proportion is highest in 2005 for both district

and postcode sectors.

In Bayesian modelling, choosing a hyperprior for the variance parameters is not easy,

therefore a sensitivity test is normally carried out prior to the analysis of the data,

to make sure that a reasonable hyperprior is chosen. In our analysis an exhaustive

sensitivity analysis was not carried out but a noninformative prior, a gamma distribu-

tion, was assigned to the inverse variance parameters, i.e. Gamma(0.1, 0.001). This

was assigned with an understanding that the hyperprior will give a large variance,

therefore it will be relatively flat over a large range, thus will have little influence on

the likelihood of the data. However, carrying out a detailed sensitivity test may have

helped us assess the suitability of this hyperprior and its influence on the values of

parameters obtained.

8.1.2 Ecological Analysis

Models were also fitted to assess the effect of covariates on measles susceptibility.

The census variables considered were percentage of people in households with no car,

percentage of people in overcrowded households, percentage of unemployed males, per-

centage of people in households with low social class, percentage of children aged 0-4

years, percentage of lone parent households, percentage of educational qualifications

(there were five levels but here we considered percentage of people with no qualifica-

tions and high qualifications only, as other levels are correlated with these), percentage

of people born in a country outside the EU (born elsewhere), percentage of people born

in a country within the EU but outside the UK (born other EU), and percentage of

people working in agricultural (a rurality marker). The first four markers are the
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components of the Carstairs scores for deprivation, but they were put in the model

separately to check if they all have similar effects. In fact the results show that they

do not have similar effects. Percentage of people in overcrowded households and per-

centage of people in low social class households have a negative effect and percentage

of people in households with no car and percentage of unemployed males showed a

positive effect on measles susceptibility.

An ecological analysis was performed at district and postcode sector level. At district

level, the overall results indicated that the geographical differences in susceptibility

to measles cannot be explained by any of the census variables, as the parameters are

very small and the credible intervals span zero. At postcode sector level, some of the

geographical differences in susceptibility to measles can be explained by some of the

explanatory variables. Susceptibility increases with high percentage of people born in

other EU countries, working in agriculture, no car, and unemployed, and susceptibil-

ity decreases where there is a high percentage of people in overcrowded households

and low social class. Among these variables, the most important variables for pre-

diction of measles susceptibility are percentage of people in households with no car

and percentage of people in households with low social class. Thus more rural areas

are associated with high susceptibility (this may be due to difficulty in accessing or

getting to a doctor).

8.2 Smoothing

As our interest was to compare maps over time and develop methods that can be used

to compare maps over time, we investigated smoothing methods and produced isopleth

maps, which can be used to compare maps over time. The smoothing or interpola-

tion methods considered were nonparametric kernel regression methods and kriging

methods (Chapter 4). The analysis was based on smoothing the ratio of the observed

counts/expected counts, using the Nadaraya-Watson kernel estimator and ordinary

kriging, and smoothing of empirical Bayes estimates by ordinary kriging. Overall,

the isopleth maps produced from these three methods did not differ that much. The

isopleth maps strengthen the ability to visualise data over time, and as they are not

restricted by region boundaries of study, sudden jumps are avoided between two neigh-

bouring regions. However, for the data and map area used here, these methods did not
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work very well. For kriging, models used did not fit the data well, and for the produced

maps it was not easy to see change over time in regions of high/low susceptibility.

When smoothing data, the interpolation methods ”borrow” information from the

neighbouring regions and estimates of regions close to the edge are more likely to

be biased. Use of methods that allow for inclusion of edge effects may help this sit-

uation. The local linear estimator is a nonparametric regression method with edge

effect correction. This method was discussed in Chapter 2, but it was not used to

analyse the susceptibility to measles data. The use of this method may have allowed

us to compare the results to those produced by the Nadaraya-Watson kernel estimator,

which is a simpler method to use but does not allow for edge effect correction.

8.3 Methods for Comparing Disease Maps

Even though the use of the models provides estimates that can be mapped to visualise

the spatial distribution of a disease, and provides values of parameters that can be

compared over time, we sought to develop measures to compare two maps on a num-

ber of facets. These methods were explained in Chapter 5. The aim was to develop

measures that can detect differences between maps when mean or variability due to

unstructured or structured heterogeneity has changed.

The first methods considered are visual ones to help in identifying a region whose

rate has changed or whose rate remained similar, namely the ratio maps, difference

maps and pseudo-colour maps. The second group of methods were methods based on

differences between rates, which are analogues of distance methods used in point pro-

cesses to test for complete spatial randomness or for differences in spatial distribution

of two point processes. These methods were thought to be appropriate here as they

would allow us to compare the difference between maps based on the rates, and some of

these methods will be able to assess the change in the neighbourhood structure. These

methods included Inter Region Differences (IRD), Most Similar Differences (MSDI)

and Most Dissimilar differences (MDD), which may help in detecting change when

differences between the rate of a region and rates of other regions have changed. The

Average Neighbour Differences (AVND), Most Similar Neighbour Differences (MSND)

and Most Dissimilar Neighbour Differences (MDND) methods, consider the change in
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the rates within the neighbourhood structure of the map. All of these methods give a

p-value of a test of difference in two cdfs as an assessment of change. As maps are sim-

ilar to images, the third group of methods were adaptations of methods used in image

analysis to compare a distorted image to a reference image. These methods were mean

square error, referred to here as mean square difference (MSD), two variations of peak

to signal noise ratio, namely PSNRR and PSNRM, and three versions of the struc-

tural similarity index measure, namely SSIM, SSIMM and SSIMR. MSD and PSNRR

may help in quantifying the difference between the maps, and SSIM/SSIMM/SSIMR

compare the structure of disease maps. The last group of methods considered were

methods that measure spatial autocorrelation (Moran’s I and Geary’s c), but these

methods were not pursued as they can only indicate if spatial autocorrelation exists

or not, but cannot detect the differences and similarities between maps.

The results of this work are disappointing in the sense that no measure is able to

detect exactly what kind of change has taken place (change in mean, structured or

unstructured variation). However, useful results have been obtained, as most measures

are able to indicate that there are differences when differences exist, and measures like

SSIM are able to indicate by how much the map structures differ. The pseudo-colour

map is a very useful tool, as it highlights clearly where the differences are on the map.

8.3.1 Simulation Study

The simulation study in Chapter 6 helped to determine the ability of the methods

to detect change. Firstly some informal investigations were carried out. Data were

generated from an existing map by changing all the values in the map by a certain

multiple, and also by just changing one region in a map. Different multiples were used.

This analysis showed that the image based analysis methods are better in detecting

change in both cases, while the point process based methods are not so good at de-

tecting change in a single region. When all regions are changing, IRD and MDD seem

to detect the difference fastest.

A more formal simulation was conducted by simulating data from a spatial model.

This helped in determining the sensitivity and power of the methods (point process

and image analysis methods), to detect change (in the mean, unstructured or struc-

tured variability). Some of the methods are very sensitive and powerful in detecting
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changes, some are not. This also depends on what kind of change has taken place and

on whether the disease is common, rare or very rare. Overall, some methods will be

helpful, depending on the situation addressed, and some methods will not be helpful

at all.

For the difference based methods, IRD and MDD behave similarly, MSND behaves like

MDND and AVND behaves like MSDI. All the measures detect change earlier in the

case of change in mean than for a change in unstructured and structured variability.

For variability, the results are similar but slightly better for change in unstructured

rather than structured variability. In the case of a common disease, for a change in

mean, unstructured and structured variability, all the methods show ability to de-

tect changes. The most sensitive and powerful are MSD, PSNRR, SSIM, IRD, MDD,

MSND and MDND, with the exception of MSND and MDND for structured variabil-

ity as these detect differences very late. For rare disease, for change in mean, the

results were as for common disease with the exception of MSND and MDND, which

detect differences late. For unstructured and structured variability, MSD is the most

sensitive and powerful. For very rare disease, no method really works well in this case

except for MSD which may be helpful in the case of change in mean.

For structured and unstructured variation, PSNRM changes in the wrong direction for

all disease scenarios, and also does this for very rare disease in the case of change in

mean. PSNRR changes in the wrong direction for rare and very rare disease for change

in unstructured variation. SSIM, SSIMM ansd SSIMR give similar results, as the only

difference between them is that SSIMM and SSIMR include constants to stabilise the

denominator when the mean or variance is zero.

The weakness of the simulation study is that the performance of the methods is as-

sessed based only on changing mean or unstructured or structured variability one at

a time, and therefore the results are not known when more than one of these three

has changed. This simulation could be extended to assess this, however if this was

done we will still not know what has changed. The performance of methods like

SSIM/SSIMM/SSIMR cannot be truly assessed, as this depends on the mean, vari-

ability and correlation of the rates. These measures should give values between −1

and 1, and about 1 if there are no differences in the maps. In generating data when

the value of the variability is very low, these measures give very low values even when
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the compared maps arise from the same distribution. This was observed when gen-

erating data from the Poisson distribution without the inclusion of the unstructured

and structured heterogeneity term. In this situation the correlation is about zero so

the SSIM becomes very unstable. However, in disease mapping this is not an issue of

concern as structured spatial variability is always present leading to spatial correla-

tion.

All of the point process based type methods based the test of the difference be-

tween cdfs on the Kolmogorov-Smirnoff test statistic. Other such test statistics could

have been used as well for comparison of results, for example, Cramer-von-Mises

(en.wikipedi.org/wiki/cramer-van-mises criterion).

8.3.2 Comparing Maps

The methods which worked well in the simulation study were used to compare maps

of susceptibility to measles over time, at district and postcode sector level, and on

the NHS24 data to compare proportions of NHS24 calls based on different syndromes.

Both data sets fall under the scenario of common disease, therefore we chose methods

that were shown by the simulation study to perform well in this case. These were

MSD, IRD, MDD, SSIM and MSND and MDND, but since IRD and MDD behave

similarly and MSND and MDND behave similarly, only IRD and MSND were used.

The pseudo-colour maps were also plotted to help in visualising the differences between

maps.

For measles susceptibility data, the methods were applied to both raw and smoothed

data (empirical Bayes using the Poisson-Gamma model), to see how the two compare,

but interpretation of the results was based on the results of the raw data. (The

results obtained from raw and smoothed data were similar in interpretation). For

the susceptibility to measles data, MSND could not detect any differences at district

level, but could detect change at postcode sector level, and MSD was not significant

at postcode sector level. Therefore, some of the methods may be affected by whether

the analysis is based on large or small areas. Further investigation is needed to assess

this issue. These methods detect differences in the maps, but the problem is that it is

difficult to know whether it is the mean, or the variabilities that have changed. The

simulation study was based at district level. On the real data it can be observed that
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MSD and IRD (Table 7.1) detect changes together at district level. MSD and IRD

were found to detect changes earlier than other methods in the simulation study. At

postcode sector level the methods that seem to detect differences together are SSIM,

IRD and MSND (Table 7.2).

The methods can also be used on two different spatial variables, for example, in the

case of comparing NHS24 syndromes in Chapter 7. In such a case when the two

spatial variables have different means, these means will have to be standardised so

that they are comparable before the methods can be used. If this is done, the methods

proposed can be applied to pairs of maps, differences visualised by plotting the pseudo-

colour map, and differences quantified by model fitting using the two different data

sets to compare and interpret model parameters. Standardisation of the mean of the

proportions of NHS24 syndromes helped in comparing the maps.

8.4 Suggestion for Analysing Distribution of Dis-

ease

8.4.1 Selection of Developed Methods for Comparing Disease

Maps

In this thesis descriptive methods have been developed/suggested to compare two or

more disease maps. These methods can only indicate that a difference does or does

not exist between maps, but cannot indicate what kind of change has taken place,

therefore these can be used for exploratory analysis. A suitable model from Table

8.2 can then be used to identify whether the mean level, local or global variation has

changed.

The first place to start is to produce maps of the disease in question based on, for

example, proportions, the ratio, difference, and pseudo-colour maps, as these will

indicate where change has taken place in the map. Then Table 8.1 can be used to

select suitable methods to quantify the amount of change. Table 8.1 show descriptive

methods according to disease type. Of MSD and PSNRR one is advised to use MSD

as it performs better than PSNRR. Of IRD and MDD, one should use IRD, and of

MSND and MDND either of the two methods can be used.
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Type of Disease Suitable Methods

Common Mean Square Difference (MSD)

Peak-to-Signal-noise-ratio (PSNRR)

Structural Similarity Index (SSIM)

Inter Region Differences (IRD)

Most Dissimilar Differences (MDD)

Most Similar Neighbour Difference (MSND)

Most Disimilar Neighbour Difference (MDND)

Rare Mean Square Difference (MSD)

Peak-to-Signal-Noise-Ratio (PSNRR)

Structural Similarity Index (SSIM)

Inter Region Differences (IRD)

Most Dissimilar Differences (MDD)

Very rare Mean Square Difference (MSD)

Table 8.1: Table showing descriptive methods that can be used to compare disease

maps, according to disease type.

8.4.2 Selection of Models

In disease mapping often the ratios of the observed to the expected counts (the stan-

dardised mortality/morbidity ratios (SMRs) are obtained and mapped, but there are

problems associated with mapping SMRs (see Section 1.3.2). In Chapter 2, we re-

viewed models that can be used to address these problems by smoothing the SMRs,

to allow better interpretation of the map.

The choice of the model will depend on the aim of the analysis. For example, one

may have data available at one time point and be interested to see how the disease

is spatially distributed, and to identify areas with high/low disease rates. Also one

may have data for a specific disease available at different time points, and the aim

might be to observe and compare the spatial distribution of the disease over time, and

see if the disease rates have decreased or increased over time. As disease counts of

neighbouring regions tend to be similar, due to clustering or spatial autocorrelation,

it will be better to consider models that take this into account. The other aim may

be to see if any ecological variable can predict areas of high disease rates and explain

some of the spatial differences that may exist. Including covariates in the models will

help account for unobserved effects, if these exist, thus this kind of models may be
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preferred.

The other issue to consider is that some models smooth the data without considering

jumps in relative risk surface, and these jumps are of great importance to help in

allocation of resources. Some models consider jumps in the relative risk but ignore

smoothing, and some models take both of these into account. The models that allow

for smoothness and discontinuities on the map may be a better choice. Table 8.2

gives a summary of some disease mapping models that one can consider to analyse the

distribution of disease.

Model Allow Spatial Allow Allow Allow

Autocorrelation Covariates Smoothness Discontinuities

Poisson-Gamma No Yes Yes No

Lognormal/Logistic Yes Yes Yes No

Mixture Models

NPML No Yes No Yes

TNPMPL Yes Yes Yes No

Lawson and Clark (2002) Yes Yes Yes Yes

Linear Bayes Method Yes No Yes No

Space-time Models

Waller et al. (1997) Yes Yes Yes No

Bernardinelli et al. (1997) Yes Yes Yes No

Table 8.2: Table showing whether a disease mapping model takes into account spatial

autocorrelation, covariates, smoothness or discontinuities. The models are Poisson-

Gamma, lognormal/logistic model, mixture models based on nonparametric maxi-

mum likelihood estimation (NPML), transitional nonparametric maximum pseudo-

likelihood estimator (TNPMPL), and the Lawson and Clark (2002) model, linear Bayes

methods and the space-time models of Waller et al. (1997) and Bernardinelli et al.

(1997).

8.5 Further Work

More work still needs to be done in developing methods for comparing disease maps.

In the work done here, further simulation study may be done to further assess the

performance of the developed methods. This study may be based on changing mean,
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unstructured and structured variability at the same time and also changing two at the

same time while the other one is not changed. It would be useful to try more sys-

tematically to relate the value of the measure to the change in the value of the model

parameters or type of change that has taken place, as in practice we would like to be

able to compute one of the proposed measures and know from that what is different

between the two maps.

Models used in disease mapping give values for the mean, and degree of unstructured

and structured variation. These values can vary depending on what model has been

used. It may be helpful to develop a model that can include a parameter which mea-

sures the difference between change in mean, and degree of unstructured or structured

variability between two maps. In disease mapping there are models that have been

developed for mapping two or more diseases, and these models help in identifying sim-

ilarities and dissimilarities in the spatial distribution of the disease risk (see Chapter

3). This sort of idea may be adapted to develop a model that can be used to compare

disease maps. For example, the proportional mortality model proposed by Dabney and

Wakefield (2005) to model two diseases may be possibly modified to the situation of

comparing two maps. This will allow us to identify regions where either the mean, or

the unstructured or structured variation has changed, by mapping the values obtained

for each region. These values are the differences between the mean, or unstructured or

unstructured variability of map 1 and map 2, and by looking at these values we may

be able to see how much change has taken place and where, and know what type of

change has occurred.

For comparing maps with different mean levels as in the NHS24 data, investigating

different strategies for standardising the means of rates will be generally useful.

240



Appendix A

Chapter 3 Tables

A.1 Relative Risks (Section 3.2.1)

District Observed SMR EB-Poisson-Gamma FB-Poisson-Gamma EB-log-normal FB-log-normal

1 58 2.34 1.77 1.74 1.87 1.93
2 313 1.26 1.24 1.24 1.24 1.25
3 127 1.24 1.20 1.20 1.19 1.23
4 67 1.62 1.45 1.44 1.46 1.44
5 200 1.63 1.55 1.54 1.56 1.58
6 65 0.97 1.00 1.00 0.99 1.39
7 361 1.57 1.52 1.52 1.53 1.54
8 86 1.05 1.06 1.06 1.05 1.41
9 70 1.10 1.09 1.09 1.08 1.12
10 278 1.21 1.19 1.19 1.19 1.20
11 108 1.67 1.50 1.50 1.52 1.86
12 37 0.99 1.03 1.03 1.01 1.09
13 52 1.79 1.48 1.47 1.50 1.57
14 104 1.30 1.25 1.24 1.24 1.21
15 269 1.19 1.18 1.18 1.17 1.17
16 239 1.23 1.21 1.21 1.20 1.21
17 51 1.79 1.48 1.47 1.50 1.54
18 120 0.98 1.00 1.00 0.99 0.98
19 206 1.25 1.22 1.22 1.22 1.24
20 121 0.84 0.89 0.89 0.89 0.88
21 347 1.11 1.11 1.11 1.11 1.11
22 725 1.33 1.31 1.31 1.31 1.32
23 170 1.04 1.04 1.04 1.04 1.03
24 206 1.17 1.16 1.16 1.15 1.13
25 499 0.83 0.84 0.85 0.84 0.84
26 467 0.91 0.93 0.93 0.92 0.92
27 193 1.44 1.39 1.39 1.39 1.38
28 354 0.91 0.93 0.93 0.93 0.92
29 503 1.44 1.41 1.41 1.41 1.41
30 611 0.94 0.94 0.94 0.94 0.94
31 119 0.64 0.73 0.73 0.74 0.72
32 80 1.91 1.63 1.61 1.66 1.63
33 290 0.77 0.80 0.80 0.80 0.80
34 348 1.55 1.50 1.50 1.50 1.48
35 274 0.80 0.83 0.83 0.83 0.81
36 229 0.61 0.66 0.66 0.67 0.63
37 416 0.69 0.71 0.71 0.72 0.70
38 391 0.88 0.90 0.90 0.90 0.88
39 191 0.56 0.62 0.63 0.64 0.62
40 120 0.51 0.62 0.63 0.65 0.61
41 539 0.55 0.58 0.58 0.59 0.57
42 450 1.11 1.11 1.11 1.11 1.10
43 175 0.86 0.90 0.90 0.89 0.88
44 502 0.75 0.77 0.78 0.78 0.77
45 1486 1.39 1.39 1.38 1.38 1.38
46 259 0.67 0.71 0.72 0.72 0.70
47 320 0.88 0.90 0.90 0.90 0.88
48 356 0.91 0.92 0.92 0.92 0.91
49 1857 0.67 0.68 0.68 0.68 0.68
50 527 0.95 0.96 0.96 0.96 0.96
51 224 1.05 1.05 1.05 1.05 1.03
52 131 0.77 0.78 0.78 0.75
53 195 0.77 0.81 0.81 0.81 0.78
54 255 0.55 0.60 0.61 0.62 0.60
55 69 1.44 1.30 1.30 1.30 1.27
56 125 1.54 1.44 1.44 1.45 1.43

Table A.1: Observed values, SMR values and empirical Bayes (EB) and full Bayes

(FB) estimates relative risks from Poisson-Gamma and log normal models for pre-

school 1999.
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A.2 Census variable selection for 56 districts (Sec-

tion 3.7.1)

2000 2001 2002

Variable Estimate sd p-value Estimate sd p-value Estimate sd p-value

Intercept −1.3737 0.618 0.0314 −1.9677 0.661 0.0047 −2.1744 0.660 0.0020

% no car 0.0008 0.005 0.8716 −0.0012 0.005 0.8148 0.0036 0.005 0.4836

% overcrowded −0.0031 0.026 0.9028 −0.0067 0.027 0.8077 0.0111 0.027 0.6840

% unemployed −0.0011 0.014 0.9374 0.0082 0.015 0.5835 0.0136 0.015 0.3642

% low social class −0.0091 0.008 0.2697 −0.0101 0.009 0.2515 −0.0142 0.009 0.1093

% children age 0-4 −0.0687 0.051 0.1809 −0.0357 0.054 0.5094 0.0123 0.054 0.8198

% born other EU 0.1078 0.074 0.1502 0.0907 0.078 0.2532 0.0415 0.078 0.5991

% born elsewhere 0.0010 0.034 0.9769 0.0126 0.037 0.7321 −0.0107 0.036 0.7697

% no qualifications 0.0018 0.012 0.8775 0.0089 0.012 0.4773 0.0093 0.012 0.4556

% high qualifications −0.0015 0.010 0.8843 0.0053 0.011 0.6330 0.0105 0.011 0.3446

% working in agriculture 0.0007 0.013 0.9541 −0.0058 0.013 0.6668 −0.0072 0.013 0.5929

% lone parent households −0.0005 0.029 0.9875 0.0041 0.031 0.8952 −0.0169 0.031 0.5876

2003 2004 2005

Variable Estimate sd p-value Estimate sd p-value Estimate sd p-value

Intercept −1.4950 0.780 0.0617 −1.1774 0.801 0.1487 −1.9889 0.716 0.0080

% no car 0.0053 0.006 0.3907 0.0029 0.006 0.6481 0.0065 0.006 0.2589

% overcrowded 0.0210 0.032 0.5153 0.0080 0.033 0.8088 −0.0099 0.029 0.7391

% unemployed 0.0195 0.017 0.2702 0.0222 0.018 0.2230 0.0135 0.016 0.4076

% low social class −0.0213 0.010 0.0438 −0.0224 0.011 0.0398 −0.0223 0.009 0.0232

% children age 0-4 −0.0163 0.063 0.7983 −0.0140 0.065 0.8302 0.0308 0.058 0.5998

% born other EU 0.0230 0.093 0.8066 0.0085 0.096 0.9302 0.0524 0.087 0.5485

% born elsewhere −0.0355 0.043 0.4144 −0.0121 0.045 0.7874 −0.0419 0.040 0.3012

% no qualifications 0.0073 0.015 0.6180 0.0068 0.015 0.6521 0.0129 0.013 0.3400

% high qualifications 0.0075 0.013 0.5633 −0.0001 0.013 0.9911 0.0097 0.012 0.4245

% working in agriculture −0.0106 0.016 0.5032 −0.0117 0.016 0.4708 −0.0082 0.014 0.5741

% lone parent households −0.0414 0.036 0.2610 −0.0518 0.037 0.1728 −0.0257 0.033 0.4468

Table A.2: Parameter estimates, standard errors and p-values of all census variables

for pre-school, derived from logistic regression model using Penalized-quasi likelihood.

2000 2001 2002

Variable Estimate sd p-value Estimate sd p-value Estimate sd p-value

Intercept −1.9232 0.030 0.0000 1.8508 0.087 0.000 −1.6635 0.065 0.0000

% no car − − − − − − 0.0082 0.002 0.0000

% unemployed − − − 0.0169 0.007 0.0197 − − −
% low social class − − − −0.0118 0.005 0.0335 −0.0145 0.001 0.0011

% born other EU 0.1496 0.028 0.0000 0.1259 0.032 0.0003 − − −
2003 2004 2005

Variable Estimate sd p-value Estimate sd p-value Estimate sd p-value

Intercept −1.4202 0.080 0.0000 −1.3620 0.081 0.0000 −1.5200 0.07 0.0000

% no car − − − − − − 0.0037 0.002 0.0507

% unemployed 0.0302 0.008 0.0008 0.0190 0.009 0.0311 − − −
% low social class −0.0213 0.006 0.0015 −0.0186 0.006 0.0054 −0.0117 0.004 0.0140

Table A.3: Parameter estimates, standard errors and p-values of census variables

significant at the 5% level for pre-school, derived from logistic regression model using

Penalized-quasi likelihood.
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2000 2001 2002

Variable Estimate sd p-value Estimate sd p-value Estimate sd p-value

Intercept −4.2509 1.36 0.0030 −2.8189 1.36 0.0446 −1.8551 1.34 0.1736

% no car −0.0001 0.011 0.9955 0.0035 0.011 0.7386 −0.0009 0.010 0.9311

% overcrowded −0.1284 0.057 0.0297 −0.0814 0.010 0.1613 −0.0385 0.056 0.4985

% unemployed −0.0293 0.030 0.3403 −0.0173 0.031 0.5760 0.0115 0.030 0.7050

% low social class −0.0049 0.018 0.7869 −0.0063 0.018 0.7288 −0.0174 0.018 0.3355

% children age 0-4 −0.0114 0.112 0.9192 −0.0867 0.112 0.4465 −0.1352 0.111 0.2309

% born other EU 0.4709 0.158 0.0047 0.3364 0.158 0.0394 0.2607 0.156 0.1028

% born elsewhere −0.0318 0.077 0.6794 0.00337 0.076 0.9652 0.0227 0.075 0.7627

% no qualifications 0.0446 0.025 0.0850 0.0236 0.025 0.3587 0.0129 0.025 0.6094

% high qualifications 0.0220 0.022 0.3259 0.0038 0.022 0.8665 −0.0053 0.022 0.8119

% working in agriculture −0.0112 0.027 0.6784 −0.0124 0.027 0.6485 −0.0138 0.027 0.6115

% lone parent households 0.0370 0.063 0.5591 −0.0153 0.063 0.8103 −0.0558 0.063 0.3787

2003 2004 2005

Variable Estimate sd p-value Estimate sd p-value Estimate sd p-value

Intercept −1.8684 1.37 0.1794 −2.0608 1.28 0.1137 −4.2593 1.44 0.0049

% no car −0.0019 0.011 0.8601 0.0081 0.010 0.4185 −0.0076 0.011 0.5037

% overcrowded −0.0191 0.058 0.7410 0.0242 0.052 0.6495 −0.1288 0.061 0.0400

% unemployed 0.0241 0.031 0.4383 0.0346 0.028 0.2342 −0.0258 0.032 0.4238

% low social class −0.0208 0.018 0.2615 −0.0262 0.016 0.1286 −0.0153 0.019 0.4280

% children age 0-4 −0.1337 0.112 0.2394 −0.0325 0.104 0.7559 −0.0045 0.119 0.9697

% born other EU 0.1949 0.159 0.2285 0.0368 0.150 0.8076 0.5162 0.168 0.0036

% born elsewhere 0.0246 0.075 0.7468 −0.0218 0.070 0.7587 −0.0201 0.082 0.8083

% no qualifications 0.0111 0.025 0.6683 0.0014 0.024 0.9542 0.0613 0.027 0.0257

% high qualifications −0.0029 0.022 0.8997 0.0039 0.021 0.8527 0.0196 0.024 0.4086

% working in agriculture −0.0229 0.027 0.4131 −0.0167 0.026 0.5169 −0.0165 0.028 0.5614

% lone parent households −0.0614 0.064 0.3438 −0.0905 0.060 0.1364 0.0073 0.066 0.9124

Table A.4: Parameter estimates, standard errors and p-values of all census variables

for primary 1 and 2, derived from logistic regression model using Penalized-quasi

likelihood.

2000 2001 2002

Variable Estimate sd p-value Estimate sd p-value Estimate sd p-value

Intercept −2.6670 0.287 0.0000 −2.8369 0.110 0.0000 −1.9161 0.433 0.0001

% overcrowded −0.0808 0.023 0.0001 −0.0560 0.018 0.0035 −0.0520 0.017 0.0043

% children age 0-4 − − − − − − −0.1637 0.072 0.0269

% born other EU 0.3136 0.082 0.0000 0.3386 0.060 0.0000 0.2692 0.065 0.0001

2003 2004 2005

Variable Estimate sd p-value Estimate sd p-value Estimate sd p-value

Intercept −1.6802 0.497 0.0014 −2.3924 0.125 0.0000 −3.1723 0.319 0.0000

% no car − − − 0.0100 0.003 0.0043 − − −
% overcrowded − − − − − − −0.1531 0.026 0.0000

% low social class −0.0177 0.008 0.0321 −0.0288 0.008 0.0010 − − −
% children age 0-4 −0.1827 0.008 0.0177 − − − − − −
% born other EU 0.1802 0.073 0.0179 − − − 0.4351 0.092 0.0000

% no qualifications − − − − − − 0.0234 0.009 0.0145

Table A.5: Parameter estimates, standard errors and p-values of census variables

significant at the 5% level for primary 1 and 2, derived from logistic regression model

using Penalized-quasi likelihood.
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A.3 Census variable selection for 937 postcode sec-

tors (Section 4.5.2)

2000 2001 2002

Variable Estimate sd p-value Estimate sd p-value Estimate sd p-value

(Intercept) −2.0530 0.110 0.0000 −1.9463 0.108 0.0000 −1.7627 0.105 0.0000

% children age 0-4 0.0050 009 0.5731 −0.0041 0.009 0.6386 −0.0084 0.009 0.3315

% born other EU 0.0672 0.014 0.0000 0.0454 0.014 0.0009 0.0215 0.013 0.1113

% born elsewhere −0.0090 0.006 0.1061 −0.0076 0.006 0.1662 −0.0050 0.005 0.3560

% no qualifications 0.0053 0.002 0.0075 0.0024 0.002 0.2217 0.0003 0.002 0.8805

% high qualifications 0.0052 0.002 0.0051 0.0038 0.002 0.0369 0.0027 0.002 0.1330

% lone parent households −0.0017 0.004 0.6801 0.0002 0.004 0.9579 0.0041 0.004 0.3118

% working in agriculture 0.0074 0.002 0.0076 0.0084 0.003 0.0022 0.0084 0.003 0.0022

% no car 0.0075 0.001 0.0000 0.0076 0.001 0.0000 0.0067 0.001 0.0000

% overcrowded −0.0168 0.005 0.0008 −0.0135 0.004 0.0063 −0.0017 0.005 0.7203

% unemployed 0.0044 0.004 0.2453 0.0102 0.004 0.0065 0.0158 0.004 0.0000

% low social class −0.0118 0.002 0.0000 −0.0134 0.002 0.0000 −0.0170 0.002 0.0000

2003 2004 2005

Variable Estimate sd p-value Estimate sd p-value Estimate sd p-value

(Intercept) −1.6442 0.110 0.0000 −1.8007 0.160 0.0000 −1.6296 0.102 0.0000

% children age 0-4 −0.0112 0.009 0.2101 −0.0028 0.014 0.8336 −0.0037 0.008 0.6508

% born other EU 0.0305 0.014 0.0292 0.0196 0.022 0.3651 0.0195 0.013 0.1345

% born elsewhere −0.0081 0.006 0.1488 −0.0033 0.008 0.6621 −0.0093 0.005 0.0741

% no qualifications 0.0027 0.002 0.1675 0.0032 0.003 0.2780 0.0012 0.002 0.5135

% high qualifications 0.0040 0.002 0.0351 0.0082 0.003 0.0030 0.00317 0.002 0.0746

% lone parent households 0.0047 0.004 0.2628 −0.0006 0.006 0.9282 −0.00097 0.004 0.8249

% working in agriculture 0.0075 0.003 0.0116 0.0002 0.004 0.9508 0.0077 0.003 0.0047

% no car 0.0052 0.001 0.0000 0.0001 0.002 0.9478 0.0039 0.001 0.0009

% overcrowded −0.0025 0.005 0.6041 −0.0023 0.007 0.7352 −0.0007 0.004 0.8732

% unemployed 0.0213 0.004 0.0000 0.0056 0.005 0.2150 0.0152 0.004 0.0000

% low social class −0.0205 0.002 0.0000 −0.0022 0.003 0.4204 −0.0170 0.002 0.0000

Table A.6: Parameter estimates of all census variables in the model with their standard

errors and p-values, pre-school, 937 postcode sectors for years 2000-2005, derived from

logistic regression model using Penalized-quasi likelihood.

2000 2001 2002

Variable Estimate sd p-value Estimate sd p-value Estimate sd p-value

Intercept −1.7817 0.024 0.0000 −1.8222 0.024 0.0000 −1.7251 0.023 0.0000

% born other EU 0.0462 0.009 0.0000 0.0394 0.008 0.0000 0.0240 0.008 0.0038

% working in agriculture 0.0103 0.002 0.0000 0.0100 0.002 0.0001 0.0087 0.002 0.0004

% no car 0.0085 0.001 0.0000 0.0077 0.001 0.0000 0.0068 0.001 0.0000

% overcrowded −0.0147 0.005 0.0025 −0.0135 0.005 0.0050 − − −
% unemployed − − − 0.0112 0.004 0.0026 0.0167 0.003 0.0000

% low social class −0.0113 0.002 0.0000 −0.0144 0.002 0.0000 −0.0185 0.002 0.0000

2003 2004 2005

Variable Estimate sd p-value Estimate sd p-value Estimate sd p-value

Intercept −1.5334 0.024 0.0000 −1.6620 0.025 0.0000 −1.6013 0.034 0.0000

% born other EU 0.0213 0.009 0.0133 − − − − − −
% high qualifications − − − 0.0060 0.001 0.0000 0.0018 0.001 0.0345

% working in agriculture 0.0087 0.003 0.0010 − − − 0.0090 0.002 0.0002

% no car 0.0056 0.001 0.0000 − − − 0.0038 0.001 0.0004

% unemployed 0.0226 0.004 0.0000 − − − 0.0149 0.004 0.0000

% low social class −0.0215 0.002 0.0000 − − − −0.0169 0.002 0.0000

Table A.7: Parameter estimates of significant census variables at 5% level, with their

standard errors and p-values, for pre-school, 937 postcode sectors, for 2000-2005, de-

rived from logistic regression model using Penalized-quasi likelihood.
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2000 2001 2002

Variable Estimate sd p-value Estimate sd p-value Estimate sd p-value

Intercept −2.9859 0.227 0.0000 −3.1258 0.229 0.0000 −3.3335 0.227 0.0000

% children age 0-4 0.0186 0.018 0.3106 0.0284 0.019 0.1251 0.0273 0.018 0.1327

% born other EU 0.1446 0.028 0.0000 0.1294 0.028 0.0000 0.1296 0.027 0.0000

% born elsewhere −0.0179 0.012 0.1311 −0.0113 0.012 0.3363 −0.0110 0.011 0.3374

% no qualifications 0.0063 0.004 0.1287 0.0078 0.004 0.0609 0.0129 0.004 0.0017

% high qualifications 0.0052 0.004 0.1668 0.0062 0.004 0.1035 0.0097 0.004 0.0100

% lone parent households −0.0083 0.009 0.3572 −0.0135 0.009 0.1370 −0.0158 0.009 0.0725

% working in agriculture 0.0330 0.005 0.0000 0.0232 0.006 0.0000 0.0158 0.006 0.0050

% no car 0.0171 0.002 0.0000 0.0184 0.002 0.0000 0.0150 0.002 0.0000

% overcrowded −0.0578 0.011 0.0000 −0.0583 0.011 0.0000 −0.0545 0.011 0.0000

% unemployed −0.0069 0.008 0.3841 −0.0033 0.008 0.6805 0.0076 0.008 0.3374

% low social class −0.0210 0.004 0.0000 −0.0222 0.004 0.0000 −0.0228 0.004 0.0000

2003 2004 2005

Variable Estimate sd p-value Estimate sd p-value Estimate sd p-value

Intercept −2.8828 0.219 0.0000 −2.5016 0.199 0.0000 −2.3477 0.203 0.0000

% children age 0-4 −0.0046 0.018 0.7980 −0.0242 0.017 0.1459 −0.0208 0.016 0.2063

% born other EU 0.1081 0.027 0.0001 0.0606 0.025 0.0164 0.0394 0.025 0.1217

% born elsewhere −0.0140 0.011 0.2179 −0.0095 0.010 0.3564 −0.0129 0.010 0.2154

% no qualifications 0.0036 0.004 0.3616 −0.0009 0.004 0.7996 0.0019 0.004 0.6119

% high qualifications 0.0047 0.004 0.2036 0.0028 0.003 0.4108 0.0035 0.003 0.3121

% lone parent households −0.0036 0.009 0.6800 0.0079 0.008 0.3245 0.0018 0.008 0.8185

% working in agriculture 0.0202 0.006 0.0003 0.0166 0.005 0.0017 0.0133 0.005 0.0109

% no car 0.0138 0.002 0.0000 0.0109 0.002 0.0000 0.0063 0.002 0.0073

% overcrowded −0.0411 0.010 0.0001 −0.0196 0.009 0.0396 −0.0242 0.009 0.0103

% unemployed 0.0146 0.008 0.0582 0.0271 0.007 0.0002 0.0307 0.007 0.0000

% low social class −0.0265 0.004 0.0000 −0.0312 0.004 0.0000 −0.0281 0.004 0.0000

Table A.8: Parameter estimates of all census variables in the model with their standard

errors and p-values, primary 1 and 2, 937 postcode sectors, for years 2000-2005, derived

from logistic regression model using Penalized-quasi likelihood.

2000 2001 2002

Variable Estimate sd p-value Estimate sd p-value Estimate sd p-value

Intercept −2.6426 0.050 0.0000 −2.6765 0.051 0.0000 −3.1436 0.177 0.0000

% born other EU 0.1056 0.017 0.0000 0.0993 0.017 0.0000 0.0967 0.020 0.0000

% no qualifications − − − − − − 0.0094 0.004 0.0099

% high qualifications − − − − − − 0.0086 0.003 0.0144

% working in agriculture 0.0368 0.005 0.0000 0.0282 0.005 0.0000 0.0198 0.005 0.0002

% no car 0.0154 0.002 0.0000 0.0173 0.002 0.0000 0.0149 0.002 0.0000

% overcrowded −0.0590 0.010 0.0000 −0.0579 0.011 0.0000 −0.0550 0.010 0.0000

% low social class −0.0218 0.004 0.0000 −0.0232 0.004 0.0000 −0.0201 0.004 0.0000

2003 2004 2005

Variable Estimate sd p-value Estimate sd p-value Estimate sd p-value

Intercept −2.7329 0.049 0.0000 −2.5735 0.045 0.0000 −2.3477 0.044 0.0000

% born other EU 0.0917 0.017 0.0000 0.0653 0.015 0.0000 0.0316 0.016 0.0421

% working in agriculture 0.0231 0.005 0.0000 0.0162 0.005 0.0007 0.0151 0.005 0.0014

% no car 0.0137 0.002 0.0000 0.0112 0.002 0.0000 0.0066 0.002 0.0039

% overcrowded −0.0423 0.010 0.0000 −0.0207 0.009 0.0256 −0.0257 0.009 0.0054

% unemployed 0.0155 0.008 0.0414 0.0286 0.007 0.0001 0.0319 0.007 0.0000

% low social class −0.0272 0.004 0.0000 −0.0328 0.004 0.0000 −0.0289 004 0.0000

Table A.9: Parameter estimates of significant census variables at 5% level, with their

standard errors and p-values, for primary 1 and 2, 937 postcode sectors, for 2000-2005,

derived from logistic regression model using Penalized-quasi likelihood.
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Appendix B

Chapter 6 Tables

B.1 Changing Mean Level (Section 6.4.1)

Mean Square Difference

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 2.2e− 06 4.8e− 07 1.5e− 08 2.2e− 08 4.7e− 09 1.5e− 10 2.2e− 10 5.2e− 11 1.7e− 12

1.1 1.1e− 04 5.3e− 06 1.7e− 07 3.3e− 08 6.3e− 09 2.0e− 10 2.3e− 10 5.5e− 11 1.7e− 12

1.2 4.2e− 04 1.6e− 05 5.0e− 07 6.6e− 08 1.1e− 08 3.4e− 10 2.5e− 10 5.9e− 11 1.9e− 12

1.3 9.3e− 04 2.9e− 05 9.3e− 07 1.2e− 07 1.5e− 08 4.7e− 10 2.6e− 10 6.0e− 11 1.9e− 12

1.4 1.7e− 03 5.2e− 05 1.7e− 06 1.9e− 07 2.0e− 08 6.3e− 10 2.8e− 10 6.9e− 11 2.2e− 12

1.5 2.6e− 03 7.9e− 05 2.5e− 06 2.9e− 07 2.6e− 08 8.1e− 10 3.1e− 10 7.3e− 11 2.3e− 12

1.6 3.7e− 03 1.2e− 04 3.7e− 06 4.0e− 07 3.1e− 08 9.8e− 10 3.3e− 10 7.4e− 11 2.3e− 12

1.7 5.1e− 03 1.5e− 04 4.7e− 06 5.4e− 07 3.9e− 08 1.2e− 09 3.5e− 10 7.9e− 11 2.5e− 12

1.8 6.6e− 03 2.0e− 04 6.4e− 06 6.9e− 07 4.3e− 08 1.4e− 09 3.8e− 10 8.7e− 11 2.7e− 12

1.9 8.4e− 03 2.5e− 04 8.0e− 06 8.7e− 07 5.5e− 08 1.7e− 09 4.0e− 10 9.0e− 11 2.8e− 12

2.0 1.0e− 02 3.1e− 04 9.7e− 06 1.1e− 06 6.0e− 08 1.9e− 09 4.3e− 10 9.9e− 11 3.1e− 12

2.1 1.2e− 02 3.6e− 04 1.1e− 05 1.3e− 06 6.9e− 08 2.2e− 09 4.7e− 10 1.1e− 10 3.3e− 12

2.2 1.5e− 02 4.4e− 04 1.4e− 05 1.5e− 06 7.7e− 08 2.4e− 09 5.1e− 10 1.1e− 10 3.6e− 12

2.3 1.7e− 02 5.3e− 04 1.7e− 05 1.8e− 06 8.8e− 08 2.8e− 09 5.4e− 10 1.2e− 10 3.8e− 12

2.4 2.0e− 02 6.1e− 04 1.9e− 05 2.1e− 06 1.0e− 07 3.1e− 09 5.7e− 10 1.2e− 10 3.9e− 12

2.5 2.3e− 02 6.8e− 04 2.2e− 05 2.4e− 06 1.1e− 07 3.4e− 09 6.2e− 10 1.3e− 10 4.1e− 12

2.6 2.6e− 02 7.7e− 04 2.4e− 05 2.7e− 06 1.2e− 07 3.8e− 09 6.6e− 10 1.4e− 10 4.4e− 12

2.7 3.0e− 02 9.2e− 04 2.9e− 05 3.0e− 06 1.3e− 07 4.3e− 09 7.1e− 10 1.5e− 10 4.8e− 12

2.8 3.3e− 02 1.0e− 03 3.2e− 05 3.4e− 06 1.4e− 07 4.4e− 09 7.7e− 10 1.6e− 10 5.0e− 12

2.9 3.7e− 02 1.1e− 03 3.5e− 05 3.8e− 06 1.6e− 07 5.0e− 09 8.1e− 10 1.6e− 10 5.0e− 12

3.0 4.1e− 02 1.2e− 03 3.9e− 05 4.2e− 06 1.7e− 07 5.4e− 09 8.5e− 10 1.6e− 10 5.2e− 12

3.1 4.6e− 02 1.3e− 03 4.1e− 05 4.6e− 06 1.9e− 07 6.0e− 09 9.0e− 10 1.7e− 10 5.4e− 12

3.2 5.0e− 02 1.4e− 03 4.6e− 05 5.1e− 06 1.9e− 07 6.1e− 09 9.6e− 10 1.8e− 10 5.7e− 12

3.3 5.5e− 02 1.5e− 03 4.9e− 05 5.5e− 06 2.2e− 07 6.9e− 09 1.0e− 09 1.9e− 10 5.9e− 12

3.4 6.0e− 02 1.7e− 03 5.4e− 05 6.0e− 06 2.3e− 07 7.4e− 09 1.1e− 09 2.0e− 10 6.4e− 12

3.5 6.5e− 02 1.9e− 03 5.9e− 05 6.5e− 06 2.5e− 07 7.8e− 09 1.1e− 09 2.1e− 10 6.6e− 12

3.6 7.0e− 02 2.1e− 03 6.6e− 05 7.0e− 06 2.7e− 07 8.7e− 09 1.2e− 09 2.2e− 10 7.1e− 12

3.7 7.5e− 02 2.3e− 03 7.2e− 05 7.6e− 06 2.8e− 07 8.9e− 09 1.3e− 09 2.3e− 10 7.3e− 12

3.8 8.1e− 02 2.4e− 03 7.7e− 05 8.2e− 06 3.0e− 07 9.5e− 09 1.3e− 09 2.4e− 10 7.5e− 12

3.9 8.7e− 02 2.6e− 03 8.3e− 05 8.7e− 06 3.1e− 07 9.8e− 09 1.4e− 09 2.5e− 10 7.8e− 12

4.0 9.3e− 02 2.7e− 03 8.6e− 05 9.4e− 06 3.3e− 07 1.1e− 08 1.5e− 09 2.6e− 10 8.1e− 12

Table B.1: MSD summary measures (mean, standard deviation (sd), standard error

(se)), for change in mean.
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Peak-to Signal Noise Ratio

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 1832.94 827.260 26.1603 34.36 11.503 0.3638 10.64 3.82 0.1206

1.1 51.28 17.046 0.5390 26.09 8.565 0.2708 10.94 4.00 0.1265

1.2 18.50 5.387 0.1704 16.65 4.663 0.1475 10.85 3.86 0.1222

1.3 11.09 3.093 0.0978 11.93 3.617 0.1144 10.67 3.65 0.1155

1.4 7.86 2.041 0.0646 9.14 2.433 0.0769 10.53 3.64 0.1151

1.5 6.28 1.480 0.0468 7.38 1.788 0.0565 10.48 3.64 0.1150

1.6 5.36 1.248 0.0395 6.33 1.467 0.0464 10.26 3.34 0.1057

1.7 4.75 1.059 0.0335 5.51 1.207 0.0382 10.32 3.39 0.1071

1.8 4.28 0.942 0.0298 4.97 1.044 0.0330 9.98 3.27 0.1033

1.9 3.94 0.815 0.0258 4.57 0.930 0.0294 10.23 3.52 0.1112

2.0 3.67 0.765 0.0242 4.25 0.875 0.0277 9.91 3.48 0.1100

2.1 3.45 0.652 0.0206 3.96 0.737 0.0233 9.71 3.24 0.1024

2.2 3.33 0.626 0.0198 3.76 0.721 0.0228 9.62 3.08 0.0975

2.3 3.17 0.585 0.0185 3.58 0.653 0.0207 9.19 2.96 0.0936

2.4 3.06 0.592 0.0187 3.39 0.605 0.0191 9.14 2.87 0.0906

2.5 2.98 0.546 0.0173 3.30 0.591 0.0187 8.98 2.79 0.0883

2.6 2.90 0.505 0.0160 3.23 0.584 0.0185 8.83 2.83 0.0896

2.7 2.81 0.497 0.0157 3.14 0.568 0.0180 8.78 2.82 0.0892

2.8 2.74 0.512 0.0162 3.03 0.520 0.0164 8.46 2.62 0.0830

2.9 2.70 0.448 0.0142 2.96 0.499 0.0158 8.31 2.58 0.0816

3.0 2.62 0.480 0.0152 2.93 0.511 0.0162 8.15 2.42 0.0766

3.1 2.58 0.455 0.0144 2.83 0.472 0.0149 7.92 2.32 0.0732

3.2 2.53 0.403 0.0127 2.78 0.448 0.0142 7.84 2.43 0.0768

3.3 2.52 0.404 0.0128 2.73 0.474 0.0150 7.70 2.38 0.0752

3.4 2.44 0.383 0.0121 2.69 0.464 0.0147 7.53 2.14 0.0677

3.5 2.45 0.422 0.0134 2.63 0.440 0.0139 7.49 2.29 0.0725

3.6 2.41 0.398 0.0126 2.63 0.457 0.0144 7.36 2.12 0.0670

3.7 2.39 0.420 0.0133 2.58 0.451 0.0143 7.14 1.96 0.0619

3.8 2.35 0.361 0.0114 2.53 0.441 0.0139 7.14 2.03 0.0643

3.9 2.34 0.394 0.0125 2.51 0.409 0.0129 6.93 1.90 0.0600

4.0 2.34 0.393 0.0124 2.50 0.436 0.0138 6.92 1.96 0.0620

Structural similarity Index Measure

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 0.99 0.0023 7.3e− 05 0.59 0.100 0.00317 0.0160 0.142 0.0045

1.1 0.98 0.0028 8.8e− 05 0.60 0.097 0.00307 0.0160 0.143 0.0045

1.2 0.96 0.0033 1.1e− 04 0.59 0.094 0.00297 0.0176 0.139 0.0044

1.3 0.93 0.0044 1.4e− 04 0.59 0.091 0.00289 0.0180 0.136 0.0043

1.4 0.89 0.0049 1.6e− 04 0.57 0.093 0.00293 0.0164 0.129 0.0041

1.5 0.85 0.0055 1.7e− 04 0.56 0.086 0.00272 0.0114 0.132 0.0042

1.6 0.80 0.0055 1.7e− 04 0.54 0.081 0.00255 0.0145 0.118 0.0037

1.7 0.76 0.0057 1.8e− 04 0.52 0.076 0.00240 0.0127 0.123 0.0039

1.8 0.72 0.0059 1.9e− 04 0.49 0.075 0.00238 0.0092 0.114 0.0036

1.9 0.68 0.0060 1.9e− 04 0.47 0.068 0.00214 0.0215 0.109 0.0034

2.0 0.64 0.0059 1.9e− 04 0.45 0.062 0.00196 0.0128 0.109 0.0034

2.1 0.60 0.0056 1.8e− 04 0.43 0.062 0.00195 0.0153 0.107 0.0034

2.2 0.57 0.0054 1.7e− 04 0.42 0.059 0.00186 0.0134 0.100 0.0032

2.3 0.53 0.0054 1.7e− 04 0.39 0.054 0.00171 0.0123 0.099 0.0031

2.4 0.50 0.0051 1.6e− 04 0.37 0.054 0.00169 0.0154 0.095 0.0030

2.5 0.47 0.0049 1.5e− 04 0.36 0.050 0.00159 0.0148 0.092 0.0029

2.6 0.45 0.0047 1.5e− 04 0.34 0.048 0.00153 0.0146 0.087 0.0028

2.7 0.42 0.0046 1.5e− 04 0.33 0.045 0.00141 0.0106 0.086 0.0027

2.8 0.40 0.0045 1.4e− 04 0.31 0.043 0.00135 0.0143 0.080 0.0025

2.9 0.38 0.0041 1.3e− 04 0.30 0.041 0.00131 0.0094 0.076 0.0024

3.0 0.36 0.0040 1.3e− 04 0.28 0.038 0.00120 0.0148 0.075 0.0024

3.1 0.34 0.0039 1.2e− 04 0.27 0.037 0.00116 0.0128 0.073 0.0023

3.2 0.32 0.0039 1.2e− 04 0.26 0.035 0.00112 0.0121 0.069 0.0022

3.3 0.31 0.0036 1.1e− 04 0.25 0.034 0.00108 0.0141 0.070 0.0022

3.4 0.29 0.0033 1.0e− 04 0.24 0.033 0.00103 0.0114 0.066 0.0021

3.5 0.28 0.0033 1.0e− 04 0.23 0.032 0.00100 0.0110 0.065 0.0020

3.6 0.27 0.0030 9.6e− 05 0.22 0.029 0.00091 0.0110 0.059 0.0019

3.7 0.25 0.0030 9.6e− 05 0.21 0.027 0.00086 0.0093 0.060 0.0019

3.8 0.24 0.0029 9.1e− 05 0.20 0.026 0.00083 0.0134 0.060 0.0019

3.9 0.23 0.0027 8.6e− 05 0.19 0.026 0.00082 0.0120 0.057 0.0018

4.0 0.22 0.0027 8.5e− 05 0.18 0.025 0.00078 0.0120 0.054 0.0017

Table B.2: PSNRR (above) and SSIM (below) summary measures (mean, standard

deviation (sd), standard error (se)), for change in mean.
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Inter Region Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 8.6e− 01 1.8e− 01 5.5e− 03 1.8e− 01 2.8e− 01 8.8e− 03 6.8e− 03 2.9e− 02 9.1e− 04

1.1 4.8e− 02 7.2e− 02 2.3e− 03 1.4e− 01 2.5e− 01 7.8e− 03 5.6e− 03 2.7e− 02 8.4e− 04

1.2 4.6e− 05 2.6e− 04 8.2e− 06 8.5e− 02 2.1e− 01 6.6e− 03 6.1e− 03 3.0e− 02 9.5e− 04

1.3 8.6e− 09 6.7e− 08 2.1e− 09 3.7e− 02 1.3e− 01 4.3e− 03 4.8e− 03 2.9e− 02 9.3e− 04

1.4 2.5e− 12 5.5e− 11 1.7e− 12 1.0e− 02 6.8e− 02 2.1e− 03 4.0e− 03 2.8e− 02 8.8e− 04

1.5 1.2e− 15 3.7e− 14 1.2e− 15 2.8e− 03 3.0e− 02 9.4e− 04 1.5e− 03 1.4e− 02 4.4e− 04

1.6 0.0e + 00 0.0e + 00 0.0e + 00 1.1e− 03 2.0e− 02 6.2e− 04 1.4e− 03 1.8e− 02 5.7e− 04

1.7 0.0e + 00 0.0e + 00 0.0e + 00 9.6e− 07 1.9e− 05 5.9e− 07 4.5e− 04 7.5e− 03 2.4e− 04

1.8 0.0e + 00 0.0e + 00 0.0e + 00 1.4e− 03 3.3e− 02 1.0e− 03 8.7e− 04 1.7e− 02 5.5e− 04

1.9 0.0e + 00 0.0e + 00 0.0e + 00 1.2e− 07 3.6e− 06 1.2e− 07 2.3e− 04 3.7e− 03 1.2e− 04

2.0 0.0e + 00 0.0e + 00 0.0e + 00 1.6e− 12 4.9e− 11 1.6e− 12 5.1e− 05 8.3e− 04 2.6e− 05

2.1 0.0e + 00 0.0e + 00 0.0e + 00 2.8e− 13 8.5e− 12 2.7e− 13 2.5e− 05 4.9e− 04 1.5e− 05

2.2 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 4.8e− 06 1.1e− 04 3.5e− 06

2.3 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 1.9e− 06 3.1e− 05 9.9e− 07

2.4 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 1.2e− 04 3.6e− 03 1.1e− 04

2.5 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 9.9e− 09 2.5e− 07 8.0e− 09

2.6 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 7.5e− 09 1.7e− 07 5.3e− 09

2.7 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 6.9e− 09 1.7e− 07 5.4e− 09

2.8 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 2.4e− 09 5.4e− 08 1.7e− 09

2.9 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 1.2e− 06 3.9e− 05 1.2e− 06

3.0 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 6.1e− 11 1.7e− 09 5.4e− 11

3.1 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 8.9e− 11 2.7e− 09 8.4e− 11

3.2 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 1.6e− 09 5.1e− 08 1.6e− 09

3.3 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 3.7e− 13 8.3e− 12 2.6e− 13

3.4 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 4.1e− 12 1.3e− 10 4.1e− 12

3.5 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 1.1e− 09 3.4e− 08 1.1e− 09

3.6 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 2.3e− 16 6.6e− 15 2.1e− 16

3.7 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 5.7e− 13 1.8e− 11 5.7e− 13

3.8 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 5.6e− 14 1.8e− 12 5.6e− 14

3.9 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 2.3e− 18 6.7e− 17 2.1e− 18

4.0 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 2.8e− 15 8.7e− 14 2.8e− 15

Most Similar Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 0.41888 0.2863 9.1e− 03 0.3871 0.284 0.00899 0.55180 0.3024 9.6e− 03

1.1 0.39574 0.2859 9.0e− 03 0.3876 0.285 0.00902 0.51833 0.3009 9.5e− 03

1.2 0.35504 0.2858 9.0e− 03 0.3543 0.273 0.00864 0.45881 0.3071 9.7e− 03

1.3 0.31197 0.2687 8.5e− 03 0.3136 0.273 0.00864 0.39074 0.3018 9.5e− 03

1.4 0.24557 0.2407 7.6e− 03 0.2992 0.268 0.00849 0.30219 0.2810 8.9e− 03

1.5 0.19794 0.2238 7.1e− 03 0.2408 0.253 0.00802 0.24470 0.2746 8.7e− 03

1.6 0.15035 0.1953 6.2e− 03 0.2082 0.243 0.00768 0.18980 0.2374 7.5e− 03

1.7 0.11985 0.1690 5.3e− 03 0.1786 0.229 0.00723 0.15102 0.2098 6.6e− 03

1.8 0.08412 0.1472 4.7e− 03 0.1423 0.193 0.00610 0.11797 0.1957 6.2e− 03

1.9 0.06598 0.1182 3.7e− 03 0.1209 0.191 0.00605 0.08956 0.1575 5.0e− 03

2.0 0.05642 0.1131 3.6e− 03 0.0922 0.155 0.00490 0.06342 0.1227 3.9e− 03

2.1 0.03395 0.0751 2.4e− 03 0.0765 0.142 0.00450 0.05120 0.1106 3.5e− 03

2.2 0.02609 0.0646 2.0e− 03 0.0769 0.149 0.00472 0.03332 0.0738 2.3e− 03

2.3 0.02193 0.0544 1.7e− 03 0.0590 0.121 0.00381 0.02673 0.0716 2.3e− 03

2.4 0.01561 0.0466 1.5e− 03 0.0461 0.104 0.00329 0.01948 0.0570 1.8e− 03

2.5 0.01191 0.0407 1.3e− 03 0.0364 0.088 0.00277 0.01144 0.0368 1.2e− 03

2.6 0.00975 0.0327 1.0e− 03 0.0355 0.101 0.00320 0.01237 0.0417 1.3e− 03

2.7 0.00694 0.0228 7.2e− 04 0.0278 0.073 0.00230 0.00926 0.0319 1.0e− 03

2.8 0.00711 0.0239 7.6e− 04 0.0214 0.057 0.00181 0.00653 0.0251 7.9e− 04

2.9 0.00493 0.0204 6.5e− 04 0.0162 0.054 0.00170 0.00472 0.0181 5.7e− 04

3.0 0.00432 0.0246 7.8e− 04 0.0145 0.053 0.00166 0.00476 0.0197 6.2e− 04

3.1 0.00339 0.0184 5.8e− 04 0.0121 0.040 0.00126 0.00404 0.0160 5.1e− 04

3.2 0.00188 0.0089 2.8e− 04 0.0099 0.034 0.00109 0.00262 0.0101 3.2e− 04

3.3 0.00173 0.0090 2.8e− 04 0.0079 0.033 0.00105 0.00214 0.0083 2.6e− 04

3.4 0.00170 0.0123 3.9e− 04 0.0062 0.024 0.00076 0.00200 0.0150 4.7e− 04

3.5 0.00111 0.0051 1.6e− 04 0.0057 0.022 0.00069 0.00175 0.0144 4.6e− 04

3.6 0.00083 0.0071 2.3e− 04 0.0041 0.015 0.00047 0.00116 0.0048 1.5e− 04

3.7 0.00111 0.0070 2.2e− 04 0.0029 0.012 0.00038 0.00110 0.0058 1.8e− 04

3.8 0.00072 0.0074 2.3e− 04 0.0044 0.022 0.00068 0.00096 0.0049 1.5e− 04

3.9 0.00049 0.0025 7.8e− 05 0.0030 0.016 0.00049 0.00074 0.0048 1.5e− 04

4.0 0.00028 0.0011 3.5e− 05 0.0029 0.022 0.00070 0.00058 0.0030 9.4e− 05

Table B.3: IRD (above) and MSDI (below) summary measures (mean, standard devi-

ation (sd), standard error (se)), for change in mean.
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Most Dissimilar Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 7.5e− 01 2.7e− 01 8.5e− 03 1.6e− 01 2.6e− 01 8.4e− 03 0.00813 0.075 0.00236

1.1 1.2e− 01 1.8e− 01 5.7e− 03 1.7e− 01 2.8e− 01 8.8e− 03 0.00586 0.052 0.00164

1.2 3.0e− 03 9.6e− 03 3.0e− 04 1.1e− 01 2.3e− 01 7.3e− 03 0.01022 0.070 0.00221

1.3 3.7e− 05 2.4e− 04 7.6e− 06 7.6e− 02 2.0e− 01 6.2e− 03 0.01422 0.081 0.00257

1.4 3.1e− 07 3.5e− 06 1.1e− 07 4.4e− 02 1.5e− 01 4.7e− 03 0.01232 0.063 0.00198

1.5 1.9e− 09 2.6e− 08 8.2e− 10 2.8e− 02 1.2e− 01 3.9e− 03 0.01524 0.066 0.00208

1.6 1.9e− 12 2.4e− 11 7.5e− 13 9.9e− 03 6.6e− 02 2.1e− 03 0.01289 0.044 0.00140

1.7 5.8e− 14 1.5e− 12 4.8e− 14 4.5e− 03 4.7e− 02 1.5e− 03 0.01537 0.057 0.00181

1.8 1.1e− 15 2.3e− 14 7.2e− 16 3.6e− 03 3.6e− 02 1.1e− 03 0.01741 0.061 0.00193

1.9 2.2e− 19 7.0e− 18 2.2e− 19 1.2e− 03 2.0e− 02 6.4e− 04 0.01189 0.048 0.00152

2.0 0.0e + 00 0.0e + 00 0.0e + 00 7.7e− 04 1.5e− 02 4.7e− 04 0.01154 0.044 0.00138

2.1 0.0e + 00 0.0e + 00 0.0e + 00 8.0e− 04 1.9e− 02 6.0e− 04 0.01210 0.048 0.00150

2.2 0.0e + 00 0.0e + 00 0.0e + 00 3.3e− 04 9.6e− 03 3.0e− 04 0.01097 0.046 0.00144

2.3 0.0e + 00 0.0e + 00 0.0e + 00 2.5e− 06 7.0e− 05 2.2e− 06 0.01281 0.057 0.00181

2.4 0.0e + 00 0.0e + 00 0.0e + 00 5.3e− 07 1.5e− 05 4.9e− 07 0.01030 0.040 0.00128

2.5 0.0e + 00 0.0e + 00 0.0e + 00 7.2e− 07 1.7e− 05 5.3e− 07 0.00783 0.037 0.00118

2.6 0.0e + 00 0.0e + 00 0.0e + 00 2.1e− 09 6.7e− 08 2.1e− 09 0.00743 0.037 0.00116

2.7 0.0e + 00 0.0e + 00 0.0e + 00 2.7e− 11 8.4e− 10 2.7e− 11 0.00488 0.026 0.00082

2.8 0.0e + 00 0.0e + 00 0.0e + 00 3.0e− 15 9.3e− 14 2.9e− 15 0.00275 0.022 0.00070

2.9 0.0e + 00 0.0e + 00 0.0e + 00 2.3e− 13 6.0e− 12 1.9e− 13 0.00427 0.024 0.00076

3.0 0.0e + 00 0.0e + 00 0.0e + 00 6.9e− 13 2.1e− 11 6.7e− 13 0.00521 0.031 0.00098

3.1 0.0e + 00 0.0e + 00 0.0e + 00 5.8e− 09 1.8e− 07 5.8e− 09 0.00259 0.016 0.00051

3.2 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.00271 0.019 0.00062

3.3 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.00273 0.021 0.00066

3.4 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.00176 0.015 0.00047

3.5 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.00161 0.016 0.00051

3.6 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.00136 0.013 0.00041

3.7 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.00167 0.015 0.00048

3.8 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.00148 0.015 0.00046

3.9 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.00098 0.011 0.00036

4.0 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.00149 0.016 0.00051

Average Neighbour Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 6.1e− 01 0.26970 8.5e− 03 0.3946 0.287 0.00907 0.4552 0.311 0.00982

1.1 5.8e− 01 0.27304 8.6e− 03 0.3807 0.286 0.00905 0.4214 0.311 0.00984

1.2 4.6e− 01 0.26226 8.3e− 03 0.3514 0.283 0.00894 0.3611 0.302 0.00957

1.3 3.5e− 01 0.23970 7.6e− 03 0.3252 0.284 0.00899 0.3217 0.298 0.00943

1.4 2.4e− 01 0.19571 6.2e− 03 0.2938 0.273 0.00863 0.2702 0.286 0.00905

1.5 1.6e− 01 0.15420 4.9e− 03 0.2600 0.265 0.00838 0.2188 0.263 0.00831

1.6 1.1e− 01 0.11859 3.8e− 03 0.2167 0.243 0.00768 0.1702 0.242 0.00766

1.7 7.4e− 02 0.08919 2.8e− 03 0.1879 0.237 0.00750 0.1355 0.211 0.00667

1.8 5.0e− 02 0.06646 2.1e− 03 0.1643 0.224 0.00710 0.1216 0.201 0.00636

1.9 3.3e− 02 0.05033 1.6e− 03 0.1338 0.192 0.00607 0.0880 0.170 0.00537

2.0 2.5e− 02 0.04111 1.3e− 03 0.1009 0.165 0.00522 0.0807 0.165 0.00521

2.1 1.7e− 02 0.03021 9.6e− 04 0.0995 0.164 0.00519 0.0531 0.124 0.00392

2.2 1.2e− 02 0.02650 8.4e− 04 0.0691 0.129 0.00409 0.0497 0.119 0.00376

2.3 8.8e− 03 0.02022 6.4e− 04 0.0612 0.124 0.00394 0.0509 0.125 0.00395

2.4 5.7e− 03 0.01318 4.2e− 04 0.0487 0.110 0.00347 0.0371 0.100 0.00317

2.5 4.4e− 03 0.00998 3.2e− 04 0.0410 0.094 0.00299 0.0233 0.074 0.00234

2.6 2.8e− 03 0.00668 2.1e− 04 0.0335 0.084 0.00265 0.0227 0.073 0.00231

2.7 2.4e− 03 0.00661 2.1e− 04 0.0267 0.076 0.00239 0.0178 0.061 0.00194

2.8 1.9e− 03 0.00613 1.9e− 04 0.0222 0.064 0.00204 0.0152 0.054 0.00172

2.9 1.2e− 03 0.00341 1.1e− 04 0.0200 0.059 0.00186 0.0143 0.055 0.00174

3.0 8.5e− 04 0.00279 8.8e− 05 0.0170 0.046 0.00147 0.0121 0.043 0.00136

3.1 6.0e− 04 0.00174 5.5e− 05 0.0127 0.037 0.00118 0.0138 0.055 0.00173

3.2 5.0e− 04 0.00141 4.5e− 05 0.0110 0.034 0.00109 0.0103 0.040 0.00127

3.3 4.1e− 04 0.00180 5.7e− 05 0.0067 0.021 0.00067 0.0101 0.041 0.00129

3.4 2.8e− 04 0.00103 3.3e− 05 0.0071 0.033 0.00103 0.0095 0.042 0.00133

3.5 2.5e− 04 0.00106 3.4e− 05 0.0056 0.023 0.00074 0.0073 0.038 0.00121

3.6 2.0e− 04 0.00095 3.0e− 05 0.0056 0.024 0.00075 0.0091 0.038 0.00120

3.7 1.7e− 04 0.00104 3.3e− 05 0.0037 0.021 0.00065 0.0074 0.031 0.00098

3.8 1.3e− 04 0.00071 2.2e− 05 0.0037 0.021 0.00066 0.0054 0.022 0.00068

3.9 7.8e− 05 0.00035 1.1e− 05 0.0038 0.022 0.00069 0.0050 0.025 0.00080

4.0 1.0e− 04 0.00056 1.8e− 05 0.0036 0.024 0.00076 0.0075 0.032 0.00100

Table B.4: MDD (above) and AVND (below) summary measures (mean, standard

deviation (sd), standard error (se)), for change in mean.
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Most Similar Neighbour Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 8.9e− 01 1.4e− 01 4.5e− 03 3.5e− 01 2.9e− 01 9.2e− 03 0.22248 0.2523 8.0e− 03

1.1 4.3e− 01 2.3e− 01 7.4e− 03 3.0e− 01 2.9e− 01 9.2e− 03 0.22627 0.2537 8.0e− 03

1.2 1.1e− 01 1.0e− 01 3.3e− 03 2.4e− 01 2.8e− 01 8.8e− 03 0.20908 0.2501 7.9e− 03

1.3 2.3e− 02 3.6e− 02 1.1e− 03 1.6e− 01 2.4e− 01 7.6e− 03 0.18683 0.2431 7.7e− 03

1.4 5.7e− 03 1.2e− 02 3.9e− 04 9.6e− 02 1.8e− 01 5.8e− 03 0.16597 0.2367 7.5e− 03

1.5 1.2e− 03 4.4e− 03 1.4e− 04 5.4e− 02 1.4e− 01 4.3e− 03 0.13793 0.2206 7.0e− 03

1.6 3.0e− 04 1.2e− 03 3.8e− 05 2.6e− 02 9.6e− 02 3.0e− 03 0.12222 0.2226 7.0e− 03

1.7 1.0e− 04 6.5e− 04 2.1e− 05 1.0e− 02 4.8e− 02 1.5e− 03 0.09408 0.1916 6.1e− 03

1.8 2.8e− 05 1.9e− 04 6.1e− 06 8.5e− 03 5.4e− 02 1.7e− 03 0.07703 0.1727 5.5e− 03

1.9 5.3e− 06 3.5e− 05 1.1e− 06 2.6e− 03 1.7e− 02 5.4e− 04 0.05662 0.1462 4.6e− 03

2.0 2.1e− 06 2.0e− 05 6.2e− 07 5.5e− 04 3.3e− 03 1.0e− 04 0.04281 0.1204 3.8e− 03

2.1 7.8e− 07 8.4e− 06 2.7e− 07 7.2e− 04 6.6e− 03 2.1e− 04 0.03577 0.1154 3.6e− 03

2.2 3.8e− 07 4.6e− 06 1.4e− 07 2.1e− 04 2.3e− 03 7.3e− 05 0.03280 0.1113 3.5e− 03

2.3 7.9e− 08 1.3e− 06 4.0e− 08 4.6e− 05 4.3e− 04 1.4e− 05 0.02187 0.0875 2.8e− 03

2.4 4.8e− 08 5.9e− 07 1.9e− 08 3.5e− 05 5.3e− 04 1.7e− 05 0.02018 0.0924 2.9e− 03

2.5 2.3e− 08 4.9e− 07 1.5e− 08 2.5e− 05 3.4e− 04 1.1e− 05 0.01351 0.0659 2.1e− 03

2.6 1.9e− 09 2.6e− 08 8.2e− 10 4.1e− 05 9.5e− 04 3.0e− 05 0.00849 0.0505 1.6e− 03

2.7 1.4e− 09 2.5e− 08 8.0e− 10 9.0e− 07 1.1e− 05 3.4e− 07 0.01025 0.0584 1.8e− 03

2.8 1.1e− 09 2.5e− 08 8.0e− 10 2.4e− 07 2.1e− 06 6.7e− 08 0.00708 0.0427 1.3e− 03

2.9 2.3e− 09 6.7e− 08 2.1e− 09 4.3e− 07 7.5e− 06 2.4e− 07 0.00446 0.0277 8.7e− 04

3.0 5.2e− 11 9.2e− 10 2.9e− 11 5.5e− 07 1.5e− 05 4.9e− 07 0.00518 0.0403 1.3e− 03

3.1 9.5e− 11 2.7e− 09 8.4e− 11 6.7e− 08 1.3e− 06 4.0e− 08 0.00403 0.0346 1.1e− 03

3.2 3.0e− 10 8.2e− 09 2.6e− 10 6.7e− 08 1.3e− 06 4.2e− 08 0.00210 0.0243 7.7e− 04

3.3 4.2e− 12 7.9e− 11 2.5e− 12 3.0e− 09 6.8e− 08 2.1e− 09 0.00248 0.0235 7.4e− 04

3.4 5.7e− 13 6.8e− 12 2.1e− 13 1.1e− 08 2.0e− 07 6.3e− 09 0.00125 0.0120 3.8e− 04

3.5 1.1e− 11 2.7e− 10 8.5e− 12 4.3e− 09 7.6e− 08 2.4e− 09 0.00273 0.0319 1.0e− 03

3.6 1.0e− 13 9.0e− 13 2.8e− 14 2.4e− 10 2.0e− 09 6.4e− 11 0.00044 0.0048 1.5e− 04

3.7 8.0e− 13 2.1e− 11 6.8e− 13 9.5e− 11 1.3e− 09 4.0e− 11 0.00060 0.0056 1.8e− 04

3.8 1.2e− 13 2.2e− 12 6.8e− 14 4.7e− 11 8.9e− 10 2.8e− 11 0.00030 0.0033 1.1e− 04

3.9 2.1e− 13 5.8e− 12 1.8e− 13 1.8e− 10 3.1e− 09 9.6e− 11 0.00026 0.0027 8.5e− 05

4.0 7.9e− 14 1.6e− 12 5.1e− 14 3.8e− 10 8.6e− 09 2.7e− 10 0.00080 0.0091 2.9e− 04

Most Dissimilar Neighbour Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 9.4e− 01 1.1e− 01 3.3e− 03 4.3e− 01 3.2e− 01 1.0e− 02 0.33729 0.3126 0.00989

1.1 5.8e− 01 2.4e− 01 7.7e− 03 3.7e− 01 3.2e− 01 1.0e− 02 0.34071 0.3207 0.01014

1.2 1.6e− 01 1.4e− 01 4.3e− 03 3.0e− 01 3.1e− 01 9.9e− 03 0.29171 0.3035 0.00960

1.3 4.0e− 02 5.7e− 02 1.8e− 03 2.1e− 01 2.9e− 01 9.1e− 03 0.25999 0.3059 0.00967

1.4 1.0e− 02 2.0e− 02 6.4e− 04 1.4e− 01 2.4e− 01 7.6e− 03 0.22888 0.2924 0.00925

1.5 2.3e− 03 7.1e− 03 2.2e− 04 8.6e− 02 1.9e− 01 5.9e− 03 0.18922 0.2777 0.00878

1.6 4.5e− 04 1.4e− 03 4.3e− 05 4.2e− 02 1.2e− 01 3.9e− 03 0.15220 0.2530 0.00800

1.7 1.2e− 04 6.2e− 04 2.0e− 05 2.3e− 02 8.5e− 02 2.7e− 03 0.12174 0.2255 0.00713

1.8 4.2e− 05 2.6e− 04 8.3e− 06 1.5e− 02 7.4e− 02 2.3e− 03 0.10023 0.2057 0.00651

1.9 1.2e− 05 1.4e− 04 4.4e− 06 7.5e− 03 5.3e− 02 1.7e− 03 0.06721 0.1645 0.00520

2.0 3.5e− 06 3.4e− 05 1.1e− 06 1.8e− 03 1.2e− 02 3.9e− 04 0.06149 0.1656 0.00524

2.1 2.2e− 06 3.2e− 05 1.0e− 06 2.3e− 03 2.6e− 02 8.2e− 04 0.04457 0.1355 0.00429

2.2 2.6e− 07 2.8e− 06 8.7e− 08 4.5e− 04 4.8e− 03 1.5e− 04 0.04352 0.1338 0.00423

2.3 4.1e− 08 4.1e− 07 1.3e− 08 1.8e− 04 2.7e− 03 8.6e− 05 0.03445 0.1252 0.00396

2.4 2.3e− 08 3.5e− 07 1.1e− 08 2.1e− 04 4.2e− 03 1.3e− 04 0.02798 0.1151 0.00364

2.5 7.6e− 09 1.3e− 07 4.0e− 09 4.5e− 05 5.8e− 04 1.8e− 05 0.01616 0.0839 0.00265

2.6 1.2e− 08 3.4e− 07 1.1e− 08 3.2e− 05 4.1e− 04 1.3e− 05 0.01336 0.0659 0.00208

2.7 1.1e− 09 1.5e− 08 4.7e− 10 2.9e− 05 5.3e− 04 1.7e− 05 0.01041 0.0514 0.00163

2.8 3.0e− 10 4.3e− 09 1.4e− 10 2.1e− 06 3.4e− 05 1.1e− 06 0.00840 0.0568 0.00180

2.9 9.7e− 11 1.6e− 09 5.2e− 11 8.8e− 07 1.5e− 05 4.6e− 07 0.00629 0.0485 0.00153

3.0 4.7e− 11 6.3e− 10 2.0e− 11 1.2e− 07 1.2e− 06 3.8e− 08 0.00662 0.0467 0.00148

3.1 4.2e− 11 1.1e− 09 3.6e− 11 2.2e− 06 6.4e− 05 2.0e− 06 0.00485 0.0333 0.00105

3.2 2.0e− 11 3.4e− 10 1.1e− 11 6.3e− 07 1.4e− 05 4.3e− 07 0.00236 0.0233 0.00074

3.3 1.5e− 11 3.3e− 10 1.0e− 11 3.2e− 08 9.0e− 07 2.9e− 08 0.00342 0.0316 0.00100

3.4 1.2e− 12 2.1e− 11 6.7e− 13 1.5e− 08 2.1e− 07 6.7e− 09 0.00221 0.0204 0.00064

3.5 1.8e− 13 2.0e− 12 6.4e− 14 3.0e− 08 9.0e− 07 2.8e− 08 0.00462 0.0548 0.00173

3.6 1.6e− 13 2.0e− 12 6.3e− 14 1.1e− 08 3.3e− 07 1.1e− 08 0.00059 0.0075 0.00024

3.7 5.9e− 15 6.7e− 14 2.1e− 15 1.3e− 09 4.0e− 08 1.3e− 09 0.00095 0.0116 0.00037

3.8 2.2e− 14 2.9e− 13 9.2e− 15 1.6e− 10 2.1e− 09 6.5e− 11 0.00041 0.0041 0.00013

3.9 4.2e− 14 9.9e− 13 3.1e− 14 1.8e− 10 4.0e− 09 1.3e− 10 0.00064 0.0094 0.00030

4.0 7.0e− 14 1.4e− 12 4.4e− 14 1.1e− 10 1.7e− 09 5.4e− 11 0.00141 0.0162 0.00051

Table B.5: MSND (above) and MDND (below) summary measures (mean, standard

deviation (sd), standard error (se)), for change in mean.
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B.2 Changing Unstructured Variation (Section 6.4.2)

Mean Square Difference

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 2.2e− 06 4.6e− 07 1.5e− 08 2.2e− 08 4.6e− 09 1.4e− 10 2.2e− 10 5.2e− 11 1.6e− 12

1.1 3.3e− 06 7.1e− 07 2.3e− 08 2.2e− 08 4.5e− 09 1.4e− 10 2.2e− 10 5.5e− 11 1.7e− 12

1.2 6.6e− 06 1.5e− 06 4.6e− 08 2.2e− 08 4.8e− 09 1.5e− 10 2.2e− 10 5.4e− 11 1.7e− 12

1.3 1.2e− 05 2.9e− 06 9.1e− 08 2.3e− 08 4.9e− 09 1.6e− 10 2.2e− 10 5.2e− 11 1.6e− 12

1.4 2.0e− 05 4.9e− 06 1.6e− 07 2.4e− 08 5.1e− 09 1.6e− 10 2.2e− 10 5.3e− 11 1.7e− 12

1.5 3.0e− 05 7.7e− 06 2.4e− 07 2.5e− 08 5.3e− 09 1.7e− 10 2.2e− 10 5.3e− 11 1.7e− 12

1.6 4.3e− 05 1.1e− 05 3.4e− 07 2.6e− 08 5.5e− 09 1.7e− 10 2.2e− 10 5.2e− 11 1.6e− 12

1.7 5.8e− 05 1.5e− 05 4.8e− 07 2.8e− 08 6.0e− 09 1.9e− 10 2.2e− 10 5.7e− 11 1.8e− 12

1.8 7.5e− 05 2.0e− 05 6.3e− 07 2.9e− 08 6.4e− 09 2.0e− 10 2.3e− 10 5.3e− 11 1.7e− 12

1.9 9.5e− 05 2.6e− 05 8.2e− 07 3.2e− 08 7.1e− 09 2.3e− 10 2.3e− 10 5.5e− 11 1.8e− 12

2.0 1.2e− 04 3.2e− 05 1.0e− 06 3.4e− 08 7.7e− 09 2.4e− 10 2.2e− 10 5.6e− 11 1.8e− 12

2.1 1.4e− 04 3.7e− 05 1.2e− 06 3.6e− 08 8.4e− 09 2.7e− 10 2.2e− 10 5.3e− 11 1.7e− 12

2.2 1.7e− 04 5.1e− 05 1.6e− 06 4.0e− 08 8.9e− 09 2.8e− 10 2.3e− 10 5.6e− 11 1.8e− 12

2.3 2.1e− 04 6.0e− 05 1.9e− 06 4.3e− 08 1.1e− 08 3.3e− 10 2.2e− 10 5.6e− 11 1.8e− 12

2.4 2.4e− 04 7.2e− 05 2.3e− 06 4.6e− 08 1.2e− 08 3.7e− 10 2.2e− 10 5.4e− 11 1.7e− 12

2.5 2.8e− 04 8.3e− 05 2.6e− 06 5.0e− 08 1.3e− 08 4.0e− 10 2.3e− 10 5.4e− 11 1.7e− 12

2.6 3.2e− 04 9.5e− 05 3.0e− 06 5.4e− 08 1.4e− 08 4.3e− 10 2.3e− 10 5.5e− 11 1.7e− 12

2.7 3.6e− 04 1.1e− 04 3.6e− 06 5.9e− 08 1.5e− 08 4.9e− 10 2.3e− 10 5.6e− 11 1.8e− 12

2.8 4.1e− 04 1.3e− 04 4.1e− 06 6.4e− 08 1.7e− 08 5.3e− 10 2.3e− 10 5.2e− 11 1.6e− 12

2.9 4.6e− 04 1.5e− 04 4.6e− 06 6.8e− 08 1.8e− 08 5.8e− 10 2.3e− 10 5.5e− 11 1.7e− 12

3.0 5.2e− 04 1.7e− 04 5.3e− 06 7.4e− 08 2.2e− 08 6.9e− 10 2.3e− 10 5.7e− 11 1.8e− 12

3.1 5.8e− 04 2.0e− 04 6.2e− 06 8.0e− 08 2.2e− 08 7.1e− 10 2.3e− 10 5.5e− 11 1.8e− 12

3.2 6.4e− 04 2.2e− 04 6.8e− 06 8.6e− 08 2.6e− 08 8.4e− 10 2.3e− 10 5.7e− 11 1.8e− 12

3.3 7.0e− 04 2.4e− 04 7.6e− 06 9.4e− 08 2.9e− 08 9.0e− 10 2.3e− 10 6.1e− 11 1.9e− 12

3.4 8.0e− 04 2.8e− 04 8.9e− 06 1.0e− 07 3.1e− 08 9.8e− 10 2.3e− 10 5.9e− 11 1.9e− 12

3.5 8.5e− 04 3.1e− 04 9.8e− 06 1.1e− 07 3.4e− 08 1.1e− 09 2.4e− 10 6.0e− 11 1.9e− 12

3.6 9.6e− 04 3.6e− 04 1.1e− 05 1.2e− 07 3.7e− 08 1.2e− 09 2.4e− 10 6.0e− 11 1.9e− 12

3.7 1.0e− 03 3.9e− 04 1.2e− 05 1.3e− 07 4.5e− 08 1.4e− 09 2.4e− 10 6.1e− 11 1.9e− 12

3.8 1.1e− 03 4.3e− 04 1.4e− 05 1.3e− 07 4.7e− 08 1.5e− 09 2.4e− 10 6.0e− 11 1.9e− 12

3.9 1.2e− 03 5.3e− 04 1.7e− 05 1.4e− 07 4.7e− 08 1.5e− 09 2.4e− 10 5.8e− 11 1.8e− 12

4.0 1.3e− 03 4.9e− 04 1.5e− 05 1.6e− 07 5.3e− 08 1.7e− 09 2.4e− 10 6.2e− 11 2.0e− 12

Table B.6: MSD summary measures (mean, standard deviation (sd), standard error

(se)), for change in unstructured variation.
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Peak-to Signal Noise Ratio

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 1806.5 759.46 24.016 34.2 11.60 0.367 10.7 3.62 0.114

1.1 1328.4 552.19 17.462 35.7 12.35 0.391 10.7 3.92 0.124

1.2 737.6 288.12 9.111 36.8 13.54 0.428 10.6 3.65 0.116

1.3 452.7 157.99 4.996 37.3 13.29 0.420 10.6 3.77 0.119

1.4 304.3 95.39 3.016 38.4 13.40 0.424 10.7 3.90 0.123

1.5 224.2 67.78 2.143 39.3 13.00 0.411 11.1 4.04 0.128

1.6 174.8 51.95 1.643 39.4 13.72 0.434 10.5 3.52 0.111

1.7 142.1 39.66 1.254 39.7 13.74 0.434 11.0 3.85 0.122

1.8 119.5 31.55 0.998 40.0 13.15 0.416 10.9 4.06 0.128

1.9 105.0 28.64 0.906 41.1 13.26 0.419 11.0 3.82 0.121

2.0 93.0 24.45 0.773 39.6 12.04 0.381 10.9 3.77 0.119

2.1 84.2 21.85 0.691 40.5 13.75 0.435 10.9 4.00 0.127

2.2 76.2 21.02 0.665 40.1 12.65 0.400 11.0 4.03 0.127

2.3 70.4 18.85 0.596 39.8 12.54 0.397 11.0 4.01 0.127

2.4 65.5 16.87 0.534 40.0 12.05 0.381 11.0 3.99 0.126

2.5 61.5 15.77 0.499 39.3 12.08 0.382 11.1 3.89 0.123

2.6 58.1 14.84 0.469 39.4 12.13 0.384 11.1 4.23 0.134

2.7 55.4 15.13 0.478 38.0 10.87 0.344 11.0 3.87 0.122

2.8 52.2 13.56 0.429 38.1 10.94 0.346 11.2 3.95 0.125

2.9 50.0 12.77 0.404 37.0 10.57 0.334 11.2 4.15 0.131

3.0 49.2 12.85 0.406 36.4 10.34 0.327 11.0 3.95 0.125

3.1 46.6 12.05 0.381 36.4 10.51 0.332 11.0 3.94 0.125

3.2 45.1 11.50 0.364 36.1 10.29 0.325 11.3 4.44 0.141

3.3 44.1 11.28 0.357 35.8 10.26 0.324 11.3 4.14 0.131

3.4 42.6 10.82 0.342 35.5 10.27 0.325 11.2 4.11 0.130

3.5 41.1 10.79 0.341 34.5 9.50 0.300 11.4 4.10 0.130

3.6 40.6 10.65 0.337 34.7 9.85 0.311 11.3 4.07 0.129

3.7 39.5 10.80 0.342 33.9 9.83 0.311 11.4 4.08 0.129

3.8 38.9 10.25 0.324 34.1 9.50 0.301 11.4 4.32 0.137

3.9 38.1 9.83 0.311 33.6 9.44 0.299 11.4 4.28 0.135

4.0 36.9 9.85 0.311 33.8 9.63 0.305 11.9 4.38 0.139

Structural Similarity Index Measure

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

1.0 0.99 0.0023 7.3e− 05 0.59 0.098 0.0031 0.012 0.14 0.0046

1.1 0.99 0.0030 9.3e− 05 0.61 0.095 0.0030 0.015 0.14 0.0045

1.2 0.98 0.0044 1.4e− 04 0.62 0.100 0.0031 0.012 0.14 0.0043

1.3 0.97 0.0069 2.2e− 04 0.62 0.096 0.0030 0.020 0.14 0.0044

1.4 0.95 0.0098 3.1e− 04 0.63 0.091 0.0029 0.021 0.14 0.0046

1.5 0.94 0.0129 4.1e− 04 0.63 0.089 0.0028 0.025 0.14 0.0045

1.6 0.92 0.0158 5.0e− 04 0.63 0.091 0.0029 0.013 0.14 0.0044

1.7 0.89 0.0192 6.1e− 04 0.62 0.087 0.0028 0.026 0.14 0.0046

1.8 0.87 0.0209 6.6e− 04 0.62 0.088 0.0028 0.016 0.14 0.0043

1.9 0.85 0.0248 7.8e− 04 0.63 0.081 0.0026 0.029 0.14 0.0044

2.0 0.83 0.0275 8.7e− 04 0.62 0.083 0.0026 0.017 0.15 0.0046

2.1 0.80 0.0297 9.4e− 04 0.61 0.084 0.0027 0.024 0.14 0.0044

2.2 0.78 0.0317 1.0e− 03 0.60 0.078 0.0025 0.024 0.14 0.0045

2.3 0.76 0.0333 1.1e− 03 0.59 0.081 0.0025 0.028 0.14 0.0045

2.4 0.73 0.0363 1.1e− 03 0.58 0.079 0.0025 0.027 0.14 0.0045

2.5 0.71 0.0390 1.2e− 03 0.57 0.080 0.0025 0.028 0.14 0.0044

2.6 0.69 0.0367 1.2e− 03 0.56 0.082 0.0026 0.027 0.14 0.0045

2.7 0.67 0.0396 1.3e− 03 0.55 0.077 0.0024 0.025 0.14 0.0044

2.8 0.65 0.0414 1.3e− 03 0.54 0.074 0.0023 0.036 0.14 0.0043

2.9 0.63 0.0412 1.3e− 03 0.53 0.078 0.0025 0.032 0.14 0.0043

3.0 0.61 0.0429 1.4e− 03 0.52 0.072 0.0023 0.028 0.14 0.0044

3.1 0.60 0.0443 1.4e− 03 0.51 0.075 0.0024 0.027 0.13 0.0042

3.2 0.58 0.0445 1.4e− 03 0.50 0.074 0.0023 0.045 0.14 0.0044

3.3 0.56 0.0437 1.4e− 03 0.48 0.070 0.0022 0.037 0.14 0.0044

3.4 0.54 0.0462 1.5e− 03 0.47 0.073 0.0023 0.034 0.14 0.0045

3.5 0.53 0.0465 1.5e− 03 0.46 0.070 0.0022 0.040 0.14 0.0046

3.6 0.51 0.0462 1.5e− 03 0.45 0.070 0.0022 0.038 0.14 0.0045

3.7 0.50 0.0466 1.5e− 03 0.44 0.072 0.0023 0.040 0.15 0.0046

3.8 0.48 0.0465 1.5e− 03 0.43 0.070 0.0022 0.038 0.14 0.0044

3.9 0.47 0.0468 1.5e− 03 0.42 0.072 0.0023 0.037 0.14 0.0044

4.0 0.45 0.0478 1.5e− 03 0.42 0.070 0.0022 0.048 0.14 0.0045

Table B.7: PSNRR (above) and SSIM (below) summary measures (mean, standard

deviation (sd), standard error (se)), for change in unstructured variation.
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Inter Region Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 8.7e− 01 1.7e− 01 5.4e− 03 1.6e− 01 2.6e− 01 8.2e− 03 0.00588 0.0274 0.00087

1.1 2.6e− 01 2.3e− 01 7.2e− 03 1.7e− 01 2.6e− 01 8.2e− 03 0.00497 0.0253 0.00080

1.2 1.9e− 02 6.0e− 02 1.9e− 03 1.4e− 01 2.5e− 01 7.8e− 03 0.00506 0.0236 0.00075

1.3 1.5e− 03 1.6e− 02 5.0e− 04 1.2e− 01 2.2e− 01 7.1e− 03 0.00586 0.0258 0.00081

1.4 1.6e− 04 2.3e− 03 7.2e− 05 7.1e− 02 1.9e− 01 6.0e− 03 0.00638 0.0247 0.00078

1.5 1.7e− 05 3.5e− 04 1.1e− 05 4.9e− 02 1.6e− 01 5.0e− 03 0.00779 0.0347 0.00110

1.6 1.4e− 05 3.1e− 04 9.7e− 06 2.5e− 02 1.1e− 01 3.4e− 03 0.00587 0.0258 0.00082

1.7 9.2e− 08 1.7e− 06 5.3e− 08 1.2e− 02 7.2e− 02 2.3e− 03 0.00493 0.0242 0.00077

1.8 4.2e− 09 1.2e− 07 3.7e− 09 5.3e− 03 5.4e− 02 1.7e− 03 0.00593 0.0298 0.00094

1.9 1.8e− 15 3.9e− 14 1.2e− 15 2.6e− 03 3.1e− 02 9.7e− 04 0.00461 0.0214 0.00068

2.0 9.3e− 15 2.7e− 13 8.4e− 15 4.3e− 04 5.1e− 03 1.6e− 04 0.00685 0.0311 0.00098

2.1 3.7e− 16 1.2e− 14 3.7e− 16 7.1e− 04 1.3e− 02 4.1e− 04 0.00558 0.0258 0.00082

2.2 2.6e− 17 6.3e− 16 2.0e− 17 3.8e− 06 5.5e− 05 1.7e− 06 0.00612 0.0269 0.00085

2.3 1.6e− 13 5.0e− 12 1.6e− 13 6.0e− 07 1.8e− 05 5.8e− 07 0.00618 0.0266 0.00084

2.4 0.0e + 00 0.0e + 00 0.0e + 00 8.2e− 06 2.6e− 04 8.2e− 06 0.00636 0.0271 0.00086

2.5 0.0e + 00 0.0e + 00 0.0e + 00 1.4e− 10 2.4e− 09 7.7e− 11 0.00509 0.0237 0.00075

2.6 0.0e + 00 0.0e + 00 0.0e + 00 5.3e− 07 1.6e− 05 4.9e− 07 0.00482 0.0242 0.00077

2.7 0.0e + 00 0.0e + 00 0.0e + 00 3.4e− 11 7.6e− 10 2.4e− 11 0.00628 0.0284 0.00090

2.8 0.0e + 00 0.0e + 00 0.0e + 00 4.5e− 13 1.4e− 11 4.5e− 13 0.00660 0.0326 0.00103

2.9 0.0e + 00 0.0e + 00 0.0e + 00 6.7e− 19 1.8e− 17 5.7e− 19 0.00548 0.0251 0.00079

3.0 0.0e + 00 0.0e + 00 0.0e + 00 2.1e− 16 6.5e− 15 2.1e− 16 0.00744 0.0332 0.00105

3.1 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.00735 0.0349 0.00110

3.2 0.0e + 00 0.0e + 00 0.0e + 00 2.1e− 16 6.5e− 15 2.1e− 16 0.00486 0.0236 0.00075

3.3 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.00595 0.0280 0.00088

3.4 0.0e + 00 0.0e + 00 0.0e + 00 3.3e− 14 1.0e− 12 3.3e− 14 0.00552 0.0249 0.00079

3.5 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.00655 0.0324 0.00102

3.6 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.00591 0.0295 0.00093

3.7 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.00597 0.0310 0.00098

3.8 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.00448 0.0215 0.00068

3.9 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.00481 0.0223 0.00070

4.0 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.0e + 00 0.00400 0.0220 0.00070

Most Similar Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

1.0 0.4147 0.275 0.00870 0.3643 0.272 0.00859 0.53 0.30 0.0096

1.1 0.4068 0.276 0.00873 0.3771 0.279 0.00882 0.55 0.30 0.0096

1.2 0.3789 0.281 0.00889 0.3685 0.273 0.00865 0.55 0.30 0.0095

1.3 0.3514 0.276 0.00874 0.3674 0.280 0.00885 0.57 0.30 0.0094

1.4 0.3169 0.276 0.00873 0.3435 0.280 0.00886 0.52 0.30 0.0094

1.5 0.2896 0.270 0.00855 0.3286 0.270 0.00855 0.54 0.30 0.0094

1.6 0.2525 0.249 0.00786 0.2992 0.267 0.00844 0.55 0.31 0.0097

1.7 0.2084 0.243 0.00769 0.2900 0.268 0.00846 0.55 0.30 0.0094

1.8 0.1776 0.217 0.00685 0.2704 0.265 0.00838 0.55 0.30 0.0095

1.9 0.1521 0.202 0.00640 0.2502 0.259 0.00819 0.54 0.31 0.0097

2.0 0.1285 0.181 0.00572 0.2253 0.253 0.00799 0.54 0.30 0.0095

2.1 0.1075 0.167 0.00529 0.2081 0.236 0.00746 0.55 0.30 0.0094

2.2 0.0823 0.149 0.00471 0.1791 0.226 0.00714 0.55 0.30 0.0096

2.3 0.0678 0.126 0.00399 0.1613 0.214 0.00676 0.53 0.30 0.0096

2.4 0.0605 0.117 0.00368 0.1316 0.184 0.00582 0.55 0.30 0.0096

2.5 0.0547 0.117 0.00371 0.1209 0.184 0.00582 0.54 0.30 0.0096

2.6 0.0386 0.088 0.00278 0.1085 0.175 0.00552 0.54 0.30 0.0093

2.7 0.0370 0.088 0.00278 0.0936 0.163 0.00515 0.55 0.30 0.0096

2.8 0.0298 0.074 0.00235 0.0890 0.154 0.00485 0.54 0.30 0.0095

2.9 0.0259 0.076 0.00240 0.0696 0.129 0.00408 0.55 0.29 0.0093

3.0 0.0192 0.056 0.00178 0.0651 0.127 0.00402 0.54 0.30 0.0095

3.1 0.0182 0.056 0.00178 0.0569 0.116 0.00366 0.56 0.30 0.0096

3.2 0.0127 0.039 0.00124 0.0479 0.109 0.00344 0.53 0.29 0.0093

3.3 0.0097 0.030 0.00094 0.0438 0.106 0.00335 0.54 0.30 0.0094

3.4 0.0087 0.030 0.00095 0.0358 0.093 0.00295 0.54 0.30 0.0094

3.5 0.0097 0.045 0.00141 0.0303 0.078 0.00248 0.53 0.30 0.0094

3.6 0.0081 0.031 0.00097 0.0314 0.086 0.00273 0.51 0.30 0.0095

3.7 0.0065 0.036 0.00115 0.0252 0.068 0.00214 0.53 0.30 0.0096

3.8 0.0072 0.032 0.00101 0.0215 0.058 0.00185 0.54 0.30 0.0096

3.9 0.0059 0.034 0.00107 0.0212 0.061 0.00193 0.54 0.30 0.0094

4.0 0.0034 0.014 0.00045 0.0168 0.050 0.00158 0.54 0.31 0.0097

Table B.8: IRD (above) and MSDI (below) summary measures (mean, standard devi-

ation (sd), standard error (se)), for change in unstructured variation.
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Most Dissimilar Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 7.5e− 01 2.7e− 01 8.6e− 03 1.6e− 01 2.6e− 01 8.4e− 03 0.00735 0.069 0.00220

1.1 3.4e− 01 3.1e− 01 9.8e− 03 1.8e− 01 2.8e− 01 8.9e− 03 0.01213 0.096 0.00303

1.2 8.2e− 02 1.8e− 01 5.7e− 03 1.4e− 01 2.4e− 01 7.7e− 03 0.00846 0.076 0.00241

1.3 2.2e− 02 8.9e− 02 2.8e− 03 1.4e− 01 2.5e− 01 8.1e− 03 0.01463 0.106 0.00334

1.4 6.8e− 03 5.3e− 02 1.7e− 03 1.0e− 01 2.2e− 01 6.9e− 03 0.00912 0.080 0.00253

1.5 2.7e− 03 3.7e− 02 1.2e− 03 7.7e− 02 1.9e− 01 6.1e− 03 0.01241 0.094 0.00299

1.6 4.1e− 03 4.4e− 02 1.4e− 03 5.7e− 02 1.7e− 01 5.4e− 03 0.01171 0.093 0.00293

1.7 1.1e− 03 2.4e− 02 7.7e− 04 4.4e− 02 1.5e− 01 4.7e− 03 0.00704 0.066 0.00208

1.8 3.8e− 04 6.5e− 03 2.0e− 04 2.5e− 02 1.0e− 01 3.3e− 03 0.00937 0.087 0.00274

1.9 1.7e− 03 3.9e− 02 1.2e− 03 2.4e− 02 1.1e− 01 3.5e− 03 0.01283 0.101 0.00318

2.0 3.0e− 04 9.6e− 03 3.0e− 04 9.8e− 03 6.6e− 02 2.1e− 03 0.01174 0.093 0.00294

2.1 2.7e− 06 7.0e− 05 2.2e− 06 7.9e− 03 6.3e− 02 2.0e− 03 0.00677 0.066 0.00209

2.2 1.4e− 04 4.2e− 03 1.3e− 04 3.4e− 03 4.1e− 02 1.3e− 03 0.01093 0.085 0.00269

2.3 1.2e− 07 2.1e− 06 6.6e− 08 2.3e− 03 3.1e− 02 9.9e− 04 0.00883 0.077 0.00244

2.4 3.0e− 04 9.6e− 03 3.0e− 04 2.0e− 03 3.5e− 02 1.1e− 03 0.00847 0.074 0.00235

2.5 4.4e− 06 1.4e− 04 4.4e− 06 9.2e− 04 1.6e− 02 5.0e− 04 0.01110 0.086 0.00272

2.6 1.6e− 05 5.1e− 04 1.6e− 05 1.4e− 04 2.7e− 03 8.5e− 05 0.00690 0.063 0.00198

2.7 5.8e− 09 1.8e− 07 5.8e− 09 3.2e− 04 9.6e− 03 3.0e− 04 0.01333 0.100 0.00315

2.8 2.8e− 10 8.2e− 09 2.6e− 10 2.2e− 04 6.4e− 03 2.0e− 04 0.00932 0.083 0.00262

2.9 8.8e− 12 2.6e− 10 8.2e− 12 9.8e− 04 2.4e− 02 7.7e− 04 0.00920 0.076 0.00240

3.0 8.4e− 16 2.2e− 14 7.1e− 16 5.8e− 04 1.8e− 02 5.8e− 04 0.01074 0.089 0.00281

3.1 3.1e− 16 6.9e− 15 2.2e− 16 7.4e− 09 1.8e− 07 5.8e− 09 0.00417 0.047 0.00149

3.2 4.8e− 14 1.5e− 12 4.8e− 14 2.9e− 05 9.1e− 04 2.9e− 05 0.00847 0.072 0.00229

3.3 2.9e− 15 9.3e− 14 2.9e− 15 1.1e− 10 2.8e− 09 8.8e− 11 0.00773 0.077 0.00243

3.4 4.1e− 17 1.1e− 15 3.4e− 17 8.2e− 09 1.9e− 07 6.2e− 09 0.01176 0.091 0.00286

3.5 0.0e + 00 0.0e + 00 0.0e + 00 3.4e− 10 8.5e− 09 2.7e− 10 0.00928 0.075 0.00237

3.6 0.0e + 00 0.0e + 00 0.0e + 00 2.7e− 11 8.4e− 10 2.7e− 11 0.00847 0.077 0.00242

3.7 7.0e− 18 2.2e− 16 7.0e− 18 1.6e− 11 3.6e− 10 1.1e− 11 0.01227 0.095 0.00301

3.8 0.0e + 00 0.0e + 00 0.0e + 00 2.2e− 06 7.0e− 05 2.2e− 06 0.00943 0.084 0.00265

3.9 6.7e− 13 2.1e− 11 6.7e− 13 9.3e− 08 2.9e− 06 9.3e− 08 0.00419 0.054 0.00171

4.0 0.0e + 00 0.0e + 00 0.0e + 00 1.1e− 11 2.7e− 10 8.5e− 12 0.01080 0.091 0.00288

Average Neighbour Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

1.0 0.61111 0.2754 8.7e− 03 0.3916 0.284 0.00897 0.45 0.32 0.0100

1.1 0.58282 0.2711 8.6e− 03 0.3813 0.282 0.00893 0.45 0.31 0.0098

1.2 0.50018 0.2697 8.5e− 03 0.3842 0.284 0.00898 0.46 0.31 0.0098

1.3 0.40554 0.2578 8.2e− 03 0.3623 0.289 0.00913 0.46 0.32 0.0102

1.4 0.31220 0.2464 7.8e− 03 0.3372 0.280 0.00885 0.46 0.32 0.0101

1.5 0.23853 0.2142 6.8e− 03 0.3265 0.277 0.00876 0.45 0.31 0.0097

1.6 0.17341 0.1807 5.7e− 03 0.2983 0.269 0.00851 0.47 0.32 0.0102

1.7 0.14235 0.1678 5.3e− 03 0.2542 0.260 0.00823 0.44 0.31 0.0098

1.8 0.09994 0.1305 4.1e− 03 0.2530 0.268 0.00846 0.45 0.32 0.0100

1.9 0.07309 0.1051 3.3e− 03 0.2129 0.244 0.00771 0.45 0.31 0.0099

2.0 0.06240 0.0969 3.1e− 03 0.1849 0.225 0.00711 0.45 0.32 0.0102

2.1 0.04271 0.0715 2.3e− 03 0.1697 0.216 0.00683 0.46 0.32 0.0101

2.2 0.03520 0.0653 2.1e− 03 0.1542 0.215 0.00681 0.43 0.31 0.0099

2.3 0.02686 0.0620 2.0e− 03 0.1284 0.187 0.00591 0.45 0.32 0.0101

2.4 0.02005 0.0449 1.4e− 03 0.1112 0.181 0.00573 0.46 0.31 0.0097

2.5 0.01530 0.0357 1.1e− 03 0.0863 0.149 0.00473 0.44 0.31 0.0098

2.6 0.01101 0.0280 8.9e− 04 0.0758 0.135 0.00427 0.44 0.31 0.0097

2.7 0.00845 0.0191 6.0e− 04 0.0627 0.119 0.00377 0.44 0.31 0.0098

2.8 0.00815 0.0222 7.0e− 04 0.0575 0.114 0.00360 0.45 0.32 0.0100

2.9 0.00604 0.0243 7.7e− 04 0.0530 0.106 0.00336 0.46 0.31 0.0098

3.0 0.00380 0.0127 4.0e− 04 0.0425 0.092 0.00292 0.45 0.32 0.0100

3.1 0.00360 0.0143 4.5e− 04 0.0325 0.083 0.00263 0.44 0.31 0.0098

3.2 0.00234 0.0076 2.4e− 04 0.0308 0.080 0.00254 0.43 0.31 0.0098

3.3 0.00222 0.0095 3.0e− 04 0.0232 0.064 0.00203 0.46 0.31 0.0098

3.4 0.00202 0.0086 2.7e− 04 0.0272 0.068 0.00214 0.44 0.30 0.0096

3.5 0.00123 0.0051 1.6e− 04 0.0181 0.054 0.00172 0.44 0.32 0.0100

3.6 0.00147 0.0073 2.3e− 04 0.0181 0.051 0.00160 0.44 0.31 0.0097

3.7 0.00099 0.0042 1.3e− 04 0.0120 0.037 0.00117 0.44 0.32 0.0100

3.8 0.00089 0.0040 1.3e− 04 0.0128 0.044 0.00139 0.42 0.31 0.0097

3.9 0.00049 0.0019 5.9e− 05 0.0099 0.039 0.00123 0.45 0.31 0.0099

4.0 0.00040 0.0025 7.8e− 05 0.0113 0.040 0.00128 0.43 0.31 0.0097

Table B.9: MDD (above) and AVND (below)Summary measures (mean, standard

deviation (sd), standard error (se)), for change in unstructured variation.
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Most Similar Neighbour Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 8.9e− 01 1.5e− 01 4.6e− 03 3.3e− 01 2.9e− 01 9.2e− 03 0.229 0.25 0.0079

1.1 5.5e− 01 2.5e− 01 7.9e− 03 3.3e− 01 2.9e− 01 9.3e− 03 0.220 0.25 0.0079

1.2 1.9e− 01 1.6e− 01 5.1e− 03 3.0e− 01 2.9e− 01 9.2e− 03 0.224 0.25 0.0080

1.3 5.5e− 02 7.2e− 02 2.3e− 03 2.6e− 01 2.9e− 01 9.1e− 03 0.213 0.24 0.0075

1.4 1.6e− 02 2.8e− 02 8.8e− 04 1.8e− 01 2.5e− 01 7.9e− 03 0.220 0.24 0.0077

1.5 5.1e− 03 1.3e− 02 4.2e− 04 1.4e− 01 2.3e− 01 7.2e− 03 0.243 0.26 0.0083

1.6 1.4e− 03 4.7e− 03 1.5e− 04 9.3e− 02 1.7e− 01 5.5e− 03 0.237 0.26 0.0082

1.7 4.9e− 04 1.6e− 03 5.0e− 05 6.5e− 02 1.5e− 01 4.9e− 03 0.212 0.24 0.0077

1.8 1.8e− 04 1.1e− 03 3.6e− 05 4.3e− 02 1.2e− 01 3.7e− 03 0.216 0.25 0.0080

1.9 6.2e− 05 3.8e− 04 1.2e− 05 2.0e− 02 6.6e− 02 2.1e− 03 0.220 0.25 0.0078

2.0 2.6e− 05 1.5e− 04 4.8e− 06 1.4e− 02 6.4e− 02 2.0e− 03 0.234 0.26 0.0082

2.1 6.8e− 06 4.9e− 05 1.5e− 06 9.1e− 03 5.7e− 02 1.8e− 03 0.223 0.25 0.0079

2.2 1.9e− 06 1.3e− 05 4.2e− 07 5.7e− 03 4.3e− 02 1.4e− 03 0.226 0.26 0.0084

2.3 6.6e− 07 5.7e− 06 1.8e− 07 2.4e− 03 2.5e− 02 7.8e− 04 0.224 0.25 0.0079

2.4 1.7e− 06 3.4e− 05 1.1e− 06 1.4e− 03 2.5e− 02 7.8e− 04 0.224 0.25 0.0079

2.5 4.1e− 07 7.1e− 06 2.2e− 07 6.8e− 04 1.0e− 02 3.2e− 04 0.233 0.26 0.0081

2.6 6.6e− 08 7.3e− 07 2.3e− 08 5.4e− 04 5.9e− 03 1.9e− 04 0.215 0.25 0.0078

2.7 6.4e− 08 8.6e− 07 2.7e− 08 8.2e− 05 1.1e− 03 3.4e− 05 0.228 0.26 0.0082

2.8 3.2e− 08 5.5e− 07 1.7e− 08 4.2e− 05 3.8e− 04 1.2e− 05 0.226 0.25 0.0080

2.9 4.5e− 09 7.3e− 08 2.3e− 09 8.1e− 05 1.3e− 03 4.1e− 05 0.216 0.26 0.0081

3.0 2.0e− 08 2.8e− 07 9.0e− 09 2.0e− 05 5.1e− 04 1.6e− 05 0.229 0.26 0.0082

3.1 1.3e− 09 2.4e− 08 7.7e− 10 1.6e− 04 4.2e− 03 1.3e− 04 0.216 0.25 0.0079

3.2 1.1e− 09 2.4e− 08 7.6e− 10 4.2e− 06 7.2e− 05 2.3e− 06 0.216 0.25 0.0078

3.3 3.3e− 10 4.1e− 09 1.3e− 10 4.5e− 06 8.0e− 05 2.5e− 06 0.214 0.25 0.0078

3.4 9.1e− 10 2.4e− 08 7.6e− 10 1.8e− 06 3.5e− 05 1.1e− 06 0.225 0.25 0.0080

3.5 7.8e− 10 2.4e− 08 7.5e− 10 2.4e− 07 3.5e− 06 1.1e− 07 0.232 0.26 0.0081

3.6 4.8e− 11 8.9e− 10 2.8e− 11 2.3e− 06 7.0e− 05 2.2e− 06 0.199 0.25 0.0078

3.7 2.9e− 10 8.2e− 09 2.6e− 10 1.7e− 07 3.1e− 06 9.7e− 08 0.208 0.25 0.0079

3.8 1.5e− 11 2.8e− 10 8.9e− 12 6.0e− 08 1.2e− 06 3.9e− 08 0.215 0.25 0.0080

3.9 3.2e− 11 8.5e− 10 2.7e− 11 5.4e− 08 7.3e− 07 2.3e− 08 0.210 0.25 0.0080

4.0 5.7e− 12 8.5e− 11 2.7e− 12 1.0e− 07 2.9e− 06 9.3e− 08 0.194 0.25 0.0078

Most Dissimilar Neighbour Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

1.0 9.5e− 01 9.5e− 02 3.0e− 03 4.2e− 01 3.3e− 01 1.0e− 02 0.34 0.31 0.0099

1.1 6.7e− 01 2.4e− 01 7.5e− 03 4.1e− 01 3.3e− 01 1.0e− 02 0.35 0.32 0.0100

1.2 2.8e− 01 2.0e− 01 6.2e− 03 3.6e− 01 3.2e− 01 1.0e− 02 0.35 0.33 0.0103

1.3 9.5e− 02 1.0e− 01 3.2e− 03 3.3e− 01 3.2e− 01 1.0e− 02 0.35 0.32 0.0100

1.4 2.9e− 02 4.5e− 02 1.4e− 03 2.5e− 01 2.9e− 01 9.3e− 03 0.35 0.32 0.0101

1.5 8.6e− 03 1.8e− 02 5.8e− 04 2.0e− 01 2.7e− 01 8.6e− 03 0.34 0.31 0.0099

1.6 2.5e− 03 6.7e− 03 2.1e− 04 1.4e− 01 2.4e− 01 7.5e− 03 0.36 0.32 0.0101

1.7 9.3e− 04 3.4e− 03 1.1e− 04 9.6e− 02 1.9e− 01 6.1e− 03 0.33 0.31 0.0099

1.8 3.1e− 04 1.3e− 03 4.1e− 05 7.7e− 02 1.8e− 01 5.6e− 03 0.33 0.32 0.0100

1.9 1.3e− 04 8.2e− 04 2.6e− 05 3.6e− 02 1.1e− 01 3.4e− 03 0.34 0.31 0.0098

2.0 4.0e− 05 3.2e− 04 1.0e− 05 2.7e− 02 9.1e− 02 2.9e− 03 0.34 0.32 0.0100

2.1 1.2e− 05 9.3e− 05 2.9e− 06 1.5e− 02 6.2e− 02 2.0e− 03 0.33 0.31 0.0099

2.2 1.1e− 05 2.6e− 04 8.2e− 06 9.7e− 03 4.9e− 02 1.5e− 03 0.34 0.32 0.0101

2.3 8.1e− 07 4.8e− 06 1.5e− 07 3.9e− 03 3.1e− 02 9.7e− 04 0.35 0.32 0.0101

2.4 4.0e− 07 3.3e− 06 1.0e− 07 2.0e− 03 2.0e− 02 6.2e− 04 0.35 0.31 0.0099

2.5 4.8e− 07 8.0e− 06 2.5e− 07 1.7e− 03 1.8e− 02 5.8e− 04 0.35 0.31 0.0098

2.6 1.0e− 07 1.3e− 06 4.2e− 08 4.6e− 04 3.6e− 03 1.1e− 04 0.32 0.30 0.0096

2.7 2.3e− 08 2.2e− 07 7.1e− 09 3.1e− 04 6.5e− 03 2.1e− 04 0.33 0.32 0.0101

2.8 2.6e− 08 3.8e− 07 1.2e− 08 1.6e− 04 2.0e− 03 6.2e− 05 0.34 0.32 0.0101

2.9 3.6e− 09 4.7e− 08 1.5e− 09 1.4e− 04 1.9e− 03 6.0e− 05 0.33 0.31 0.0098

3.0 5.2e− 09 7.1e− 08 2.2e− 09 2.3e− 05 3.0e− 04 9.6e− 06 0.35 0.32 0.0103

3.1 1.0e− 09 9.9e− 09 3.1e− 10 3.2e− 05 4.6e− 04 1.4e− 05 0.33 0.31 0.0098

3.2 1.1e− 09 1.9e− 08 5.9e− 10 1.3e− 05 2.6e− 04 8.3e− 06 0.32 0.31 0.0097

3.3 2.4e− 10 4.1e− 09 1.3e− 10 6.9e− 06 1.4e− 04 4.4e− 06 0.34 0.32 0.0101

3.4 3.2e− 10 4.6e− 09 1.4e− 10 1.3e− 05 1.8e− 04 5.5e− 06 0.34 0.32 0.0100

3.5 1.1e− 10 1.7e− 09 5.3e− 11 1.7e− 06 3.3e− 05 1.0e− 06 0.34 0.31 0.0099

3.6 1.7e− 10 4.1e− 09 1.3e− 10 9.6e− 07 1.4e− 05 4.5e− 07 0.32 0.32 0.0100

3.7 3.8e− 11 1.1e− 09 3.6e− 11 2.5e− 07 5.8e− 06 1.8e− 07 0.34 0.32 0.0101

3.8 3.5e− 12 8.1e− 11 2.6e− 12 3.0e− 07 5.9e− 06 1.9e− 07 0.33 0.32 0.0100

3.9 7.7e− 12 1.2e− 10 3.8e− 12 2.3e− 07 3.4e− 06 1.1e− 07 0.32 0.32 0.0101

4.0 6.2e− 12 1.2e− 10 3.6e− 12 9.9e− 08 1.4e− 06 4.3e− 08 0.29 0.30 0.0096

Table B.10: MSND (above) and MDND (below) summary measures (mean, standard

deviation (sd), standard error (se)), for change in unstructured variation.
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B.3 Changing Structured Variation (Section 6.4.2)

Mean Square Difference

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 2.2e− 06 4.7e− 07 1.5e− 08 2.2e− 08 4.7e− 09 1.5e− 10 2.2e− 10 5.1e− 11 1.6e− 12

1.1 2.9e− 06 7.3e− 07 2.3e− 08 2.2e− 08 4.7e− 09 1.5e− 10 2.2e− 10 5.2e− 11 1.7e− 12

1.2 5.0e− 06 1.9e− 06 6.0e− 08 2.2e− 08 4.9e− 09 1.6e− 10 2.2e− 10 5.3e− 11 1.7e− 12

1.3 8.5e− 06 3.8e− 06 1.2e− 07 2.3e− 08 4.9e− 09 1.5e− 10 2.2e− 10 5.5e− 11 1.7e− 12

1.4 1.4e− 05 8.1e− 06 2.6e− 07 2.4e− 08 5.2e− 09 1.6e− 10 2.2e− 10 5.4e− 11 1.7e− 12

1.5 2.0e− 05 1.1e− 05 3.3e− 07 2.4e− 08 5.4e− 09 1.7e− 10 2.2e− 10 5.3e− 11 1.7e− 12

1.6 2.7e− 05 1.4e− 05 4.4e− 07 2.5e− 08 5.4e− 09 1.7e− 10 2.2e− 10 5.2e− 11 1.7e− 12

1.7 3.7e− 05 2.2e− 05 6.9e− 07 2.6e− 08 5.9e− 09 1.9e− 10 2.2e− 10 5.3e− 11 1.7e− 12

1.8 4.9e− 05 3.0e− 05 9.6e− 07 2.7e− 08 6.4e− 09 2.0e− 10 2.2e− 10 5.3e− 11 1.7e− 12

1.9 6.2e− 05 3.6e− 05 1.1e− 06 2.9e− 08 7.9e− 09 2.5e− 10 2.2e− 10 5.3e− 11 1.7e− 12

2.0 7.6e− 05 5.1e− 05 1.6e− 06 3.0e− 08 7.7e− 09 2.4e− 10 2.2e− 10 5.5e− 11 1.7e− 12

2.1 9.3e− 05 6.0e− 05 1.9e− 06 3.1e− 08 9.0e− 09 2.9e− 10 2.3e− 10 5.5e− 11 1.7e− 12

2.2 1.1e− 04 8.4e− 05 2.7e− 06 3.3e− 08 9.7e− 09 3.1e− 10 2.2e− 10 5.6e− 11 1.8e− 12

2.3 1.3e− 04 8.6e− 05 2.7e− 06 3.5e− 08 1.2e− 08 3.7e− 10 2.2e− 10 5.5e− 11 1.7e− 12

2.4 1.5e− 04 1.1e− 04 3.6e− 06 3.7e− 08 1.5e− 08 4.9e− 10 2.3e− 10 5.5e− 11 1.7e− 12

2.5 1.8e− 04 1.3e− 04 4.2e− 06 4.1e− 08 1.6e− 08 5.2e− 10 2.2e− 10 5.6e− 11 1.8e− 12

2.6 2.1e− 04 1.6e− 04 5.1e− 06 4.2e− 08 1.5e− 08 4.9e− 10 2.3e− 10 5.7e− 11 1.8e− 12

2.7 2.3e− 04 1.7e− 04 5.2e− 06 4.6e− 08 2.4e− 08 7.7e− 10 2.2e− 10 5.4e− 11 1.7e− 12

2.8 2.6e− 04 2.2e− 04 6.8e− 06 4.8e− 08 2.4e− 08 7.5e− 10 2.3e− 10 5.6e− 11 1.8e− 12

2.9 3.1e− 04 2.7e− 04 8.7e− 06 5.2e− 08 2.5e− 08 7.8e− 10 2.3e− 10 5.7e− 11 1.8e− 12

3.0 3.3e− 04 2.7e− 04 8.5e− 06 5.7e− 08 3.7e− 08 1.2e− 09 2.3e− 10 5.6e− 11 1.8e− 12

3.1 3.8e− 04 3.8e− 04 1.2e− 05 6.0e− 08 3.4e− 08 1.1e− 09 2.3e− 10 5.5e− 11 1.7e− 12

3.2 4.1e− 04 3.2e− 04 1.0e− 05 6.4e− 08 4.1e− 08 1.3e− 09 2.3e− 10 5.7e− 11 1.8e− 12

3.3 4.4e− 04 3.6e− 04 1.1e− 05 7.0e− 08 5.1e− 08 1.6e− 09 2.3e− 10 5.5e− 11 1.8e− 12

3.4 5.0e− 04 4.4e− 04 1.4e− 05 7.4e− 08 4.8e− 08 1.5e− 09 2.3e− 10 5.9e− 11 1.9e− 12

3.5 5.6e− 04 6.7e− 04 2.1e− 05 7.5e− 08 4.2e− 08 1.3e− 09 2.3e− 10 5.6e− 11 1.8e− 12

3.6 6.1e− 04 6.5e− 04 2.1e− 05 8.0e− 08 5.6e− 08 1.8e− 09 2.3e− 10 5.4e− 11 1.7e− 12

3.7 6.4e− 04 5.7e− 04 1.8e− 05 9.7e− 08 1.3e− 07 4.0e− 09 2.3e− 10 5.8e− 11 1.8e− 12

3.8 7.4e− 04 7.1e− 04 2.3e− 05 9.2e− 08 6.3e− 08 2.0e− 09 2.3e− 10 5.9e− 11 1.9e− 12

3.9 8.2e− 04 1.0e− 03 3.2e− 05 1.1e− 07 1.2e− 07 3.8e− 09 2.3e− 10 5.9e− 11 1.9e− 12

4.0 8.7e− 04 8.1e− 04 2.6e− 05 1.1e− 07 1.1e− 07 3.4e− 09 2.3e− 10 6.0e− 11 1.9e− 12

Table B.11: MSD summary measures (mean, standard deviation (sd), standard error

(se)), for change in structured variation.
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Peak-to Signal Noise Ratio

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 1848.4 894.9 28.299 34.5 12.46 0.394 10.6 3.75 0.119

1.1 1446.1 552.6 17.476 35.8 12.39 0.392 10.6 3.74 0.118

1.2 916.9 320.7 10.140 36.0 12.47 0.394 10.6 3.48 0.110

1.3 593.0 202.7 6.410 35.8 12.12 0.383 10.8 3.72 0.118

1.4 417.2 139.6 4.413 37.2 13.78 0.436 11.0 4.21 0.133

1.5 310.1 108.1 3.420 37.7 14.05 0.444 10.8 3.96 0.125

1.6 240.4 78.9 2.494 38.3 14.14 0.447 10.8 3.89 0.123

1.7 192.6 64.2 2.032 37.0 12.77 0.404 10.8 3.83 0.121

1.8 161.7 49.5 1.566 38.7 14.11 0.446 10.8 3.95 0.125

1.9 138.7 44.0 1.391 38.1 13.58 0.429 10.9 3.99 0.126

2.0 122.3 38.2 1.207 38.5 12.97 0.410 10.8 3.88 0.123

2.1 111.2 36.6 1.158 39.5 14.34 0.454 10.6 3.77 0.119

2.2 99.8 30.7 0.970 38.5 13.11 0.415 11.0 3.99 0.126

2.3 89.3 26.0 0.823 38.8 13.60 0.430 10.7 3.76 0.119

2.4 84.6 25.6 0.811 39.3 13.35 0.422 10.8 3.85 0.122

2.5 77.3 23.0 0.728 37.9 13.16 0.416 10.9 3.95 0.125

2.6 73.3 22.4 0.709 37.8 12.87 0.407 10.9 3.79 0.120

2.7 68.5 20.9 0.662 38.6 13.78 0.436 10.9 3.76 0.119

2.8 64.2 18.8 0.595 38.1 12.78 0.404 10.8 3.95 0.125

2.9 61.8 18.1 0.572 37.7 12.88 0.407 10.9 3.94 0.125

3.0 58.2 16.5 0.523 37.0 11.96 0.378 10.9 3.71 0.117

3.1 56.4 15.6 0.493 38.0 12.35 0.391 10.8 3.80 0.120

3.2 54.6 15.9 0.504 36.6 11.90 0.376 11.2 4.11 0.130

3.3 52.7 15.7 0.496 37.3 12.32 0.390 11.3 4.18 0.132

3.4 51.0 14.6 0.462 36.8 11.99 0.379 11.2 3.94 0.125

3.5 48.8 13.6 0.430 35.9 11.23 0.355 11.1 4.12 0.130

3.6 46.8 13.3 0.422 36.1 11.60 0.367 11.2 4.23 0.134

3.7 46.0 13.3 0.422 36.0 11.29 0.357 11.2 4.25 0.134

3.8 44.9 12.9 0.406 35.1 10.86 0.343 11.1 4.08 0.129

3.9 43.6 12.5 0.396 35.4 11.95 0.378 11.1 4.10 0.130

4.0 43.6 12.4 0.391 34.6 10.42 0.330 11.1 4.24 0.134

Structural Similarity Index Measure

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 0.99 0.0024 7.7e− 05 0.59 0.103 0.0033 0.022 0.14 0.0045

1.1 0.99 0.0024 7.7e− 05 0.61 0.101 0.0032 0.015 0.14 0.0043

1.2 0.99 0.0033 1.1e− 04 0.61 0.102 0.0032 0.017 0.14 0.0044

1.3 0.98 0.0059 1.9e− 04 0.61 0.096 0.0030 0.019 0.14 0.0045

1.4 0.97 0.0089 2.8e− 04 0.62 0.096 0.0031 0.020 0.14 0.0045

1.5 0.95 0.0129 4.1e− 04 0.62 0.100 0.0032 0.017 0.15 0.0046

1.6 0.94 0.0156 4.9e− 04 0.62 0.096 0.0030 0.019 0.14 0.0045

1.7 0.92 0.0206 6.5e− 04 0.61 0.098 0.0031 0.017 0.14 0.0043

1.8 0.91 0.0243 7.7e− 04 0.61 0.092 0.0029 0.019 0.14 0.0044

1.9 0.89 0.0289 9.1e− 04 0.61 0.095 0.0030 0.024 0.14 0.0044

2.0 0.87 0.0336 1.1e− 03 0.60 0.095 0.0030 0.018 0.14 0.0044

2.1 0.85 0.0372 1.2e− 03 0.60 0.089 0.0028 0.014 0.14 0.0044

2.2 0.83 0.0424 1.3e− 03 0.59 0.086 0.0027 0.031 0.14 0.0045

2.3 0.81 0.0425 1.3e− 03 0.58 0.089 0.0028 0.026 0.13 0.0042

2.4 0.79 0.0471 1.5e− 03 0.58 0.088 0.0028 0.022 0.14 0.0044

2.5 0.77 0.0504 1.6e− 03 0.57 0.086 0.0027 0.026 0.14 0.0046

2.6 0.75 0.0533 1.7e− 03 0.57 0.083 0.0026 0.021 0.14 0.0044

2.7 0.73 0.0561 1.8e− 03 0.56 0.083 0.0026 0.022 0.14 0.0045

2.8 0.71 0.0601 1.9e− 03 0.55 0.085 0.0027 0.022 0.14 0.0046

2.9 0.69 0.0626 2.0e− 03 0.54 0.083 0.0026 0.023 0.14 0.0045

3.0 0.68 0.0627 2.0e− 03 0.53 0.085 0.0027 0.027 0.14 0.0046

3.1 0.66 0.0655 2.1e− 03 0.53 0.086 0.0027 0.019 0.14 0.0044

3.2 0.64 0.0656 2.1e− 03 0.51 0.083 0.0026 0.032 0.14 0.0045

3.3 0.63 0.0651 2.1e− 03 0.50 0.085 0.0027 0.031 0.14 0.0045

3.4 0.61 0.0671 2.1e− 03 0.49 0.083 0.0026 0.028 0.14 0.0044

3.5 0.60 0.0679 2.1e− 03 0.48 0.082 0.0026 0.029 0.15 0.0047

3.6 0.58 0.0717 2.3e− 03 0.48 0.087 0.0028 0.027 0.14 0.0045

3.7 0.56 0.0703 2.2e− 03 0.47 0.084 0.0026 0.026 0.15 0.0046

3.8 0.55 0.0711 2.2e− 03 0.46 0.083 0.0026 0.030 0.14 0.0044

3.9 0.53 0.0749 2.4e− 03 0.45 0.089 0.0028 0.027 0.14 0.0045

4.0 0.52 0.0732 2.3e− 03 0.44 0.084 0.0027 0.028 0.14 0.0044

Table B.12: PSNRR (above) and SSIM (below) summary measures (mean, standard

deviation (sd), standard error (se)), for change in structured variation.
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Inter Region Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 8.7e− 01 1.7e− 01 5.3e− 03 1.8e− 01 2.7e− 01 8.6e− 03 0.0067 0.031 0.00099

1.1 5.6e− 01 3.0e− 01 9.4e− 03 1.7e− 01 2.7e− 01 8.6e− 03 0.0065 0.030 0.00096

1.2 1.8e− 01 2.2e− 01 6.9e− 03 1.7e− 01 2.7e− 01 8.5e− 03 0.0075 0.041 0.00129

1.3 4.2e− 02 9.9e− 02 3.1e− 03 1.4e− 01 2.5e− 01 7.8e− 03 0.0074 0.035 0.00111

1.4 1.1e− 02 4.4e− 02 1.4e− 03 1.3e− 01 2.4e− 01 7.5e− 03 0.0055 0.026 0.00082

1.5 2.4e− 03 1.6e− 02 5.0e− 04 9.5e− 02 2.0e− 01 6.4e− 03 0.0051 0.025 0.00079

1.6 5.5e− 04 5.1e− 03 1.6e− 04 6.9e− 02 1.8e− 01 5.5e− 03 0.0056 0.023 0.00072

1.7 4.3e− 04 1.0e− 02 3.3e− 04 6.2e− 02 1.7e− 01 5.4e− 03 0.0053 0.024 0.00077

1.8 1.1e− 05 1.4e− 04 4.4e− 06 4.8e− 02 1.6e− 01 5.0e− 03 0.0058 0.028 0.00090

1.9 3.2e− 05 9.6e− 04 3.0e− 05 3.4e− 02 1.3e− 01 4.2e− 03 0.0065 0.030 0.00095

2.0 1.2e− 05 3.3e− 04 1.1e− 05 1.9e− 02 9.2e− 02 2.9e− 03 0.0059 0.028 0.00090

2.1 1.2e− 07 2.3e− 06 7.1e− 08 1.7e− 02 9.2e− 02 2.9e− 03 0.0052 0.025 0.00078

2.2 3.6e− 07 1.1e− 05 3.6e− 07 1.0e− 02 6.8e− 02 2.1e− 03 0.0060 0.031 0.00097

2.3 6.1e− 13 1.3e− 11 4.0e− 13 5.8e− 03 5.0e− 02 1.6e− 03 0.0056 0.026 0.00082

2.4 3.2e− 12 6.6e− 11 2.1e− 12 3.3e− 03 3.8e− 02 1.2e− 03 0.0060 0.032 0.00100

2.5 9.7e− 08 3.1e− 06 9.7e− 08 2.3e− 03 3.4e− 02 1.1e− 03 0.0059 0.028 0.00088

2.6 4.9e− 14 1.1e− 12 3.6e− 14 2.9e− 03 4.3e− 02 1.4e− 03 0.0047 0.021 0.00068

2.7 2.2e− 11 6.8e− 10 2.2e− 11 1.6e− 03 2.3e− 02 7.3e− 04 0.0071 0.029 0.00091

2.8 9.5e− 13 3.0e− 11 9.5e− 13 1.1e− 03 2.1e− 02 6.6e− 04 0.0058 0.026 0.00083

2.9 5.7e− 17 1.5e− 15 4.7e− 17 1.7e− 05 3.2e− 04 1.0e− 05 0.0046 0.020 0.00064

3.0 3.7e− 17 1.1e− 15 3.4e− 17 4.3e− 05 1.0e− 03 3.3e− 05 0.0057 0.025 0.00078

3.1 0.0e + 00 0.0e + 00 0.0e + 00 7.8e− 05 2.2e− 03 7.0e− 05 0.0065 0.032 0.00100

3.2 0.0e + 00 0.0e + 00 0.0e + 00 1.3e− 05 3.4e− 04 1.1e− 05 0.0058 0.025 0.00079

3.3 0.0e + 00 0.0e + 00 0.0e + 00 4.9e− 08 1.5e− 06 4.9e− 08 0.0066 0.034 0.00109

3.4 0.0e + 00 0.0e + 00 0.0e + 00 6.4e− 06 2.0e− 04 6.4e− 06 0.0054 0.024 0.00077

3.5 0.0e + 00 0.0e + 00 0.0e + 00 2.2e− 06 6.8e− 05 2.2e− 06 0.0047 0.019 0.00059

3.6 0.0e + 00 0.0e + 00 0.0e + 00 1.4e− 07 4.3e− 06 1.4e− 07 0.0057 0.026 0.00081

3.7 0.0e + 00 0.0e + 00 0.0e + 00 3.0e− 10 6.6e− 09 2.1e− 10 0.0048 0.022 0.00070

3.8 0.0e + 00 0.0e + 00 0.0e + 00 8.5e− 12 2.7e− 10 8.5e− 12 0.0043 0.020 0.00062

3.9 0.0e + 00 0.0e + 00 0.0e + 00 4.3e− 12 1.3e− 10 4.1e− 12 0.0057 0.027 0.00085

4.0 0.0e + 00 0.0e + 00 0.0e + 00 7.1e− 16 2.1e− 14 6.6e− 16 0.0051 0.023 0.00072

Most Similar Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 0.415 0.283 0.0090 0.383 0.283 0.0090 0.54 0.30 0.0095

1.1 0.395 0.277 0.0088 0.381 0.279 0.0088 0.54 0.30 0.0095

1.2 0.408 0.285 0.0090 0.379 0.283 0.0090 0.54 0.30 0.0094

1.3 0.380 0.285 0.0090 0.356 0.272 0.0086 0.54 0.30 0.0096

1.4 0.387 0.274 0.0087 0.375 0.283 0.0090 0.54 0.30 0.0094

1.5 0.351 0.280 0.0088 0.355 0.278 0.0088 0.53 0.30 0.0096

1.6 0.326 0.273 0.0086 0.343 0.269 0.0085 0.53 0.30 0.0096

1.7 0.289 0.263 0.0083 0.326 0.276 0.0087 0.54 0.30 0.0095

1.8 0.274 0.260 0.0082 0.327 0.273 0.0086 0.54 0.29 0.0093

1.9 0.269 0.264 0.0083 0.302 0.271 0.0086 0.54 0.30 0.0095

2.0 0.234 0.257 0.0081 0.290 0.272 0.0086 0.55 0.30 0.0095

2.1 0.203 0.234 0.0074 0.288 0.269 0.0085 0.56 0.30 0.0094

2.2 0.191 0.234 0.0074 0.255 0.254 0.0080 0.55 0.30 0.0095

2.3 0.173 0.218 0.0069 0.262 0.265 0.0084 0.54 0.29 0.0093

2.4 0.159 0.211 0.0067 0.236 0.251 0.0079 0.53 0.31 0.0096

2.5 0.140 0.196 0.0062 0.227 0.251 0.0079 0.53 0.30 0.0094

2.6 0.117 0.179 0.0057 0.196 0.235 0.0074 0.56 0.30 0.0095

2.7 0.104 0.160 0.0051 0.195 0.233 0.0074 0.57 0.30 0.0094

2.8 0.086 0.141 0.0045 0.178 0.219 0.0069 0.54 0.30 0.0094

2.9 0.086 0.147 0.0046 0.165 0.218 0.0069 0.53 0.30 0.0093

3.0 0.072 0.141 0.0045 0.147 0.208 0.0066 0.53 0.30 0.0096

3.1 0.061 0.123 0.0039 0.142 0.205 0.0065 0.54 0.30 0.0095

3.2 0.061 0.128 0.0040 0.127 0.190 0.0060 0.55 0.30 0.0096

3.3 0.049 0.115 0.0036 0.120 0.188 0.0059 0.53 0.30 0.0095

3.4 0.045 0.098 0.0031 0.102 0.172 0.0054 0.55 0.30 0.0094

3.5 0.039 0.096 0.0031 0.096 0.169 0.0053 0.57 0.30 0.0095

3.6 0.033 0.090 0.0029 0.094 0.166 0.0052 0.54 0.30 0.0094

3.7 0.030 0.074 0.0024 0.089 0.162 0.0051 0.53 0.30 0.0094

3.8 0.024 0.066 0.0021 0.075 0.143 0.0045 0.54 0.30 0.0094

3.9 0.021 0.063 0.0020 0.069 0.138 0.0044 0.52 0.31 0.0097

4.0 0.022 0.069 0.0022 0.055 0.112 0.0035 0.56 0.30 0.0094

Table B.13: IRD (above) and MSDI (below) summary measures (mean, standard

deviation (sd), standard error (se)), for change in structured variation.
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Most Dissimilar Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 7.6e− 01 2.7e− 01 8.4e− 03 1.6e− 01 2.7e− 01 8.5e− 03 0.01004 0.080 0.00253

1.1 5.0e− 01 3.4e− 01 1.1e− 02 1.8e− 01 2.8e− 01 8.8e− 03 0.00958 0.076 0.00239

1.2 2.4e− 01 3.0e− 01 9.4e− 03 1.6e− 01 2.7e− 01 8.5e− 03 0.00924 0.085 0.00269

1.3 9.8e− 02 2.0e− 01 6.2e− 03 1.4e− 01 2.5e− 01 7.8e− 03 0.00941 0.084 0.00266

1.4 4.8e− 02 1.4e− 01 4.5e− 03 1.4e− 01 2.5e− 01 7.8e− 03 0.00552 0.063 0.00199

1.5 1.8e− 02 7.9e− 02 2.5e− 03 1.2e− 01 2.4e− 01 7.5e− 03 0.01039 0.081 0.00257

1.6 1.2e− 02 6.7e− 02 2.1e− 03 8.8e− 02 2.1e− 01 6.5e− 03 0.00900 0.079 0.00248

1.7 6.2e− 03 4.8e− 02 1.5e− 03 9.1e− 02 2.2e− 01 6.8e− 03 0.01125 0.093 0.00294

1.8 2.4e− 03 2.2e− 02 7.1e− 04 7.2e− 02 2.0e− 01 6.2e− 03 0.00863 0.075 0.00237

1.9 4.0e− 03 4.6e− 02 1.4e− 03 6.4e− 02 1.8e− 01 5.7e− 03 0.01200 0.097 0.00305

2.0 5.3e− 04 5.7e− 03 1.8e− 04 4.7e− 02 1.6e− 01 5.0e− 03 0.00929 0.078 0.00248

2.1 9.6e− 04 2.1e− 02 6.6e− 04 3.4e− 02 1.3e− 01 4.1e− 03 0.01086 0.082 0.00259

2.2 9.7e− 04 2.0e− 02 6.3e− 04 3.0e− 02 1.3e− 01 4.0e− 03 0.01021 0.084 0.00266

2.3 4.7e− 05 1.0e− 03 3.3e− 05 2.0e− 02 1.0e− 01 3.2e− 03 0.01141 0.086 0.00272

2.4 1.1e− 04 2.7e− 03 8.4e− 05 1.5e− 02 8.5e− 02 2.7e− 03 0.00922 0.079 0.00249

2.5 7.5e− 04 2.4e− 02 7.4e− 04 1.5e− 02 8.7e− 02 2.7e− 03 0.00609 0.061 0.00191

2.6 9.6e− 06 2.7e− 04 8.6e− 06 1.6e− 02 9.2e− 02 2.9e− 03 0.00926 0.080 0.00254

2.7 2.7e− 07 4.5e− 06 1.4e− 07 7.0e− 03 5.7e− 02 1.8e− 03 0.00991 0.083 0.00263

2.8 4.9e− 07 1.5e− 05 4.9e− 07 6.6e− 03 5.8e− 02 1.8e− 03 0.01219 0.092 0.00291

2.9 4.9e− 07 1.5e− 05 4.9e− 07 4.3e− 03 4.7e− 02 1.5e− 03 0.00927 0.083 0.00264

3.0 3.5e− 10 8.5e− 09 2.7e− 10 2.8e− 03 3.8e− 02 1.2e− 03 0.01023 0.086 0.00271

3.1 1.5e− 08 4.8e− 07 1.5e− 08 2.8e− 03 4.0e− 02 1.3e− 03 0.01195 0.094 0.00297

3.2 5.1e− 10 9.3e− 09 3.0e− 10 1.2e− 03 2.0e− 02 6.3e− 04 0.00773 0.072 0.00226

3.3 8.6e− 11 2.7e− 09 8.4e− 11 6.5e− 04 1.2e− 02 3.7e− 04 0.00499 0.054 0.00172

3.4 2.7e− 11 8.4e− 10 2.7e− 11 9.9e− 04 2.4e− 02 7.5e− 04 0.00859 0.077 0.00245

3.5 8.4e− 10 2.4e− 08 7.6e− 10 1.9e− 03 3.1e− 02 9.8e− 04 0.01211 0.098 0.00309

3.6 2.4e− 12 7.5e− 11 2.4e− 12 2.1e− 04 3.8e− 03 1.2e− 04 0.01084 0.086 0.00272

3.7 8.1e− 12 2.6e− 10 8.1e− 12 2.0e− 04 4.3e− 03 1.4e− 04 0.01035 0.086 0.00273

3.8 1.2e− 14 3.8e− 13 1.2e− 14 6.1e− 04 1.4e− 02 4.3e− 04 0.01023 0.087 0.00276

3.9 1.8e− 13 5.8e− 12 1.8e− 13 5.1e− 05 1.6e− 03 5.0e− 05 0.00912 0.082 0.00259

4.0 2.7e− 11 8.4e− 10 2.7e− 11 1.1e− 04 2.8e− 03 8.7e− 05 0.01024 0.091 0.00286

Average Neighbour Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 0.592 0.27 0.0086 0.390 0.29 0.0092 0.44 0.31 0.0099

1.1 0.608 0.27 0.0085 0.369 0.29 0.0090 0.45 0.32 0.0100

1.2 0.577 0.27 0.0087 0.389 0.28 0.0088 0.45 0.32 0.0101

1.3 0.533 0.28 0.0089 0.389 0.28 0.0088 0.45 0.32 0.0100

1.4 0.525 0.28 0.0088 0.399 0.29 0.0093 0.46 0.31 0.0099

1.5 0.500 0.28 0.0089 0.404 0.30 0.0094 0.43 0.31 0.0099

1.6 0.452 0.28 0.0089 0.367 0.29 0.0092 0.44 0.31 0.0098

1.7 0.428 0.28 0.0089 0.383 0.28 0.0089 0.43 0.31 0.0098

1.8 0.392 0.28 0.0088 0.372 0.28 0.0089 0.46 0.31 0.0097

1.9 0.375 0.27 0.0085 0.355 0.28 0.0087 0.46 0.31 0.0098

2.0 0.349 0.28 0.0088 0.357 0.28 0.0090 0.44 0.32 0.0101

2.1 0.337 0.27 0.0086 0.344 0.28 0.0088 0.45 0.32 0.0100

2.2 0.294 0.25 0.0079 0.335 0.28 0.0087 0.46 0.31 0.0099

2.3 0.276 0.26 0.0082 0.340 0.28 0.0088 0.47 0.32 0.0101

2.4 0.271 0.26 0.0082 0.340 0.28 0.0088 0.44 0.31 0.0098

2.5 0.243 0.25 0.0078 0.321 0.27 0.0085 0.46 0.32 0.0101

2.6 0.232 0.24 0.0075 0.332 0.28 0.0088 0.46 0.32 0.0101

2.7 0.226 0.24 0.0076 0.319 0.28 0.0089 0.46 0.31 0.0097

2.8 0.198 0.23 0.0072 0.295 0.28 0.0088 0.46 0.31 0.0098

2.9 0.187 0.22 0.0070 0.280 0.27 0.0085 0.44 0.31 0.0097

3.0 0.166 0.21 0.0065 0.279 0.27 0.0086 0.45 0.31 0.0098

3.1 0.161 0.20 0.0064 0.263 0.26 0.0084 0.44 0.31 0.0098

3.2 0.142 0.19 0.0060 0.245 0.25 0.0080 0.45 0.32 0.0101

3.3 0.130 0.18 0.0058 0.231 0.25 0.0078 0.46 0.32 0.0101

3.4 0.116 0.17 0.0054 0.232 0.25 0.0080 0.44 0.32 0.0100

3.5 0.107 0.16 0.0052 0.218 0.25 0.0078 0.44 0.32 0.0101

3.6 0.092 0.15 0.0048 0.213 0.24 0.0077 0.46 0.31 0.0097

3.7 0.087 0.14 0.0045 0.205 0.24 0.0075 0.44 0.31 0.0098

3.8 0.084 0.14 0.0044 0.186 0.22 0.0071 0.45 0.30 0.0096

3.9 0.068 0.12 0.0038 0.180 0.22 0.0070 0.46 0.32 0.0101

4.0 0.069 0.13 0.0041 0.165 0.21 0.0067 0.46 0.31 0.0098

Table B.14: MDD (above) and AVND (below) summary measures (mean, standard

deviation (sd), standard error (se)), for change in structured variation.
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Most Similar Neighbour Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 9.0e− 01 0.14062 4.4e− 03 3.3e− 01 0.28943 9.2e− 03 0.23 0.26 0.0082

1.1 8.5e− 01 0.17149 5.4e− 03 3.3e− 01 0.29154 9.2e− 03 0.22 0.25 0.0080

1.2 7.3e− 01 0.22896 7.2e− 03 3.4e− 01 0.28573 9.0e− 03 0.23 0.26 0.0082

1.3 5.8e− 01 0.26753 8.5e− 03 3.3e− 01 0.29169 9.2e− 03 0.24 0.27 0.0084

1.4 4.5e− 01 0.25851 8.2e− 03 3.3e− 01 0.29454 9.3e− 03 0.23 0.25 0.0080

1.5 3.2e− 01 0.23429 7.4e− 03 3.3e− 01 0.29130 9.2e− 03 0.22 0.26 0.0081

1.6 2.3e− 01 0.20298 6.4e− 03 2.9e− 01 0.28820 9.1e− 03 0.22 0.26 0.0081

1.7 1.7e− 01 0.17513 5.5e− 03 2.9e− 01 0.28609 9.0e− 03 0.22 0.25 0.0081

1.8 1.2e− 01 0.15556 4.9e− 03 2.6e− 01 0.27500 8.7e− 03 0.23 0.25 0.0080

1.9 8.3e− 02 0.11898 3.8e− 03 2.6e− 01 0.28176 8.9e− 03 0.22 0.24 0.0077

2.0 6.0e− 02 0.10496 3.3e− 03 2.1e− 01 0.26440 8.4e− 03 0.22 0.25 0.0080

2.1 3.7e− 02 0.07616 2.4e− 03 2.1e− 01 0.27137 8.6e− 03 0.24 0.26 0.0082

2.2 2.7e− 02 0.06048 1.9e− 03 1.7e− 01 0.24451 7.7e− 03 0.22 0.25 0.0080

2.3 1.7e− 02 0.04976 1.6e− 03 1.5e− 01 0.22809 7.2e− 03 0.24 0.26 0.0083

2.4 1.2e− 02 0.03294 1.0e− 03 1.4e− 01 0.21336 6.7e− 03 0.22 0.25 0.0078

2.5 7.5e− 03 0.02365 7.5e− 04 1.2e− 01 0.19935 6.3e− 03 0.22 0.25 0.0077

2.6 5.5e− 03 0.01937 6.1e− 04 1.1e− 01 0.19439 6.1e− 03 0.23 0.26 0.0083

2.7 4.6e− 03 0.01757 5.6e− 04 8.3e− 02 0.17419 5.5e− 03 0.23 0.25 0.0079

2.8 2.6e− 03 0.00969 3.1e− 04 8.0e− 02 0.18036 5.7e− 03 0.23 0.25 0.0079

2.9 2.7e− 03 0.01645 5.2e− 04 5.9e− 02 0.14486 4.6e− 03 0.23 0.26 0.0081

3.0 9.2e− 04 0.00610 1.9e− 04 4.6e− 02 0.12435 3.9e− 03 0.23 0.26 0.0083

3.1 1.0e− 03 0.00660 2.1e− 04 4.3e− 02 0.12157 3.8e− 03 0.23 0.25 0.0080

3.2 5.0e− 04 0.00506 1.6e− 04 3.2e− 02 0.10360 3.3e− 03 0.24 0.26 0.0082

3.3 3.9e− 04 0.00297 9.4e− 05 2.0e− 02 0.06481 2.0e− 03 0.23 0.25 0.0078

3.4 2.4e− 04 0.00174 5.5e− 05 2.3e− 02 0.08717 2.8e− 03 0.24 0.26 0.0082

3.5 2.2e− 04 0.00285 9.0e− 05 1.5e− 02 0.06057 1.9e− 03 0.23 0.26 0.0081

3.6 7.2e− 05 0.00043 1.4e− 05 1.5e− 02 0.07415 2.3e− 03 0.23 0.25 0.0080

3.7 4.9e− 05 0.00059 1.9e− 05 1.0e− 02 0.05516 1.7e− 03 0.21 0.24 0.0077

3.8 2.2e− 05 0.00015 4.8e− 06 8.2e− 03 0.04875 1.5e− 03 0.23 0.25 0.0079

3.9 3.6e− 05 0.00038 1.2e− 05 6.0e− 03 0.03415 1.1e− 03 0.23 0.26 0.0082

4.0 1.4e− 05 0.00012 3.7e− 06 3.9e− 03 0.02410 7.6e− 04 0.22 0.25 0.0080

Most Dissimilar Neighbour Differences

µ = 1
10 , sdu = 0.1, sdv = 0.1 µ = 1

1000 , sdu = 0.1, sdv = 0.1 µ = 1
100000 , sdu = 0.1, sdv = 0.1

Multiple mean sd se mean sd se mean sd se

1.0 9.4e− 01 0.10121 3.2e− 03 4.1e− 01 0.3178 1.0e− 02 0.33 0.32 0.0100

1.1 9.2e− 01 0.12742 4.0e− 03 4.1e− 01 0.3284 1.0e− 02 0.33 0.32 0.0101

1.2 8.4e− 01 0.18772 5.9e− 03 4.0e− 01 0.3143 9.9e− 03 0.36 0.32 0.0101

1.3 7.0e− 01 0.24317 7.7e− 03 4.1e− 01 0.3226 1.0e− 02 0.35 0.32 0.0101

1.4 5.8e− 01 0.27054 8.6e− 03 4.2e− 01 0.3316 1.0e− 02 0.35 0.32 0.0101

1.5 4.5e− 01 0.25819 8.2e− 03 4.2e− 01 0.3334 1.1e− 02 0.35 0.32 0.0101

1.6 3.5e− 01 0.25131 7.9e− 03 3.8e− 01 0.3281 1.0e− 02 0.34 0.32 0.0101

1.7 2.5e− 01 0.22142 7.0e− 03 3.7e− 01 0.3228 1.0e− 02 0.35 0.32 0.0101

1.8 1.9e− 01 0.19866 6.3e− 03 3.4e− 01 0.3214 1.0e− 02 0.35 0.32 0.0102

1.9 1.4e− 01 0.17850 5.6e− 03 3.2e− 01 0.3196 1.0e− 02 0.35 0.32 0.0101

2.0 1.0e− 01 0.14922 4.7e− 03 2.9e− 01 0.3149 1.0e− 02 0.35 0.32 0.0100

2.1 6.6e− 02 0.11232 3.6e− 03 2.8e− 01 0.3113 9.8e− 03 0.36 0.32 0.0101

2.2 4.7e− 02 0.09187 2.9e− 03 2.5e− 01 0.2925 9.3e− 03 0.35 0.31 0.0099

2.3 3.1e− 02 0.07215 2.3e− 03 2.2e− 01 0.2844 9.0e− 03 0.35 0.32 0.0100

2.4 2.3e− 02 0.05080 1.6e− 03 2.1e− 01 0.2736 8.7e− 03 0.32 0.31 0.0099

2.5 1.5e− 02 0.04576 1.4e− 03 1.8e− 01 0.2627 8.3e− 03 0.36 0.32 0.0103

2.6 1.1e− 02 0.03076 9.7e− 04 1.6e− 01 0.2447 7.7e− 03 0.33 0.31 0.0099

2.7 8.9e− 03 0.02891 9.1e− 04 1.3e− 01 0.2181 6.9e− 03 0.35 0.32 0.0101

2.8 6.1e− 03 0.02335 7.4e− 04 1.3e− 01 0.2229 7.0e− 03 0.34 0.30 0.0096

2.9 4.9e− 03 0.02072 6.6e− 04 1.0e− 01 0.2026 6.4e− 03 0.35 0.32 0.0101

3.0 2.3e− 03 0.01332 4.2e− 04 8.0e− 02 0.1724 5.5e− 03 0.34 0.32 0.0100

3.1 2.6e− 03 0.01544 4.9e− 04 7.5e− 02 0.1708 5.4e− 03 0.34 0.32 0.0101

3.2 1.6e− 03 0.01933 6.1e− 04 6.1e− 02 0.1567 5.0e− 03 0.35 0.32 0.0101

3.3 7.4e− 04 0.00397 1.3e− 04 4.3e− 02 0.1203 3.8e− 03 0.35 0.31 0.0098

3.4 7.8e− 04 0.00513 1.6e− 04 4.3e− 02 0.1235 3.9e− 03 0.33 0.31 0.0100

3.5 5.7e− 04 0.00395 1.2e− 04 3.4e− 02 0.1070 3.4e− 03 0.33 0.31 0.0098

3.6 5.2e− 04 0.00723 2.3e− 04 2.6e− 02 0.0901 2.8e− 03 0.34 0.31 0.0099

3.7 9.1e− 05 0.00052 1.6e− 05 2.1e− 02 0.0757 2.4e− 03 0.35 0.33 0.0103

3.8 2.5e− 04 0.00433 1.4e− 04 1.6e− 02 0.0689 2.2e− 03 0.34 0.31 0.0098

3.9 7.4e− 05 0.00056 1.8e− 05 1.3e− 02 0.0563 1.8e− 03 0.35 0.32 0.0100

4.0 5.2e− 05 0.00042 1.3e− 05 1.1e− 02 0.0512 1.6e− 03 0.35 0.31 0.0099

Table B.15: MSDN (above) and MDND (below) Summary measures (mean, standard

deviation (sd), standard error (se)), for change in structured variation.
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Appendix C

R Codes

C.1 Chapter 1, 4, 5, 6 and 7 Codes

C.1.1 Dot Map (Section 1.3.1)

leukaemia is a text file which contains locations of disease addresses in x, y coordinates

in two columns.

leukaemia<-read.table("leukaemia.txt",header=TRUE)

coordinates is a shape file with Humberside boundaries

coordinates<-readShapePoly("coordinates.shp")

plot(coordinates)

par("new"=TRUE)

plot(leukaemia,pch=20,xlab="",ylab="",axes=FALSE,frame=TRUE)

C.1.2 Choropleth Map

To use function leglabs in R to make the legend breaks:

library(maptools)

To create quantiles for susceptibility rates to use to allocate colour to each quantile:

brks <- round(quantile(susceptible,probs=seq(0, 1, 0.2)),digits=2)

where susceptible is a vector of rates.

To define colours:

colours <-c("lightblue","skyblue2","skyblue3","blue3","blue4")

To plot boundaries of the map:
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plot(coordinates,type="l",asp=0.85,axes=FALSE,frame=TRUE,xlab="",ylab="")

where coordinates is a file containing boundary coordinates in two columns (eastings

and northings).

To add colours to the map:

polygon(coordinates,col=colours[findInterval(susceptible,brks,all.inside=TRUE)])

To add a legend:

legend(x=1∗105, y=7.5∗105, legend=leglabs(brks),fill=colours,cex=0.6,bty="n")

To add a title:

title(main=paste("Susceptibility Map"))

C.1.3 Kriging (Section 4.4)

Load package for kriging:

library(geoR)

To carry out kriging:

geo <- as.geodata(smrcoords,coords.col=1:2,data.col=3)

bin<-variog(geo) where smrcoords is a file containing susceptibility ratios (ob-

served/expected counts) and centroids for the regions, where column 1 is x-coordinates,

and column 2 is y-coordinates for the centroids and column 3 is the susceptibility ra-

tios.

Estimate spherical variogram using weighted least square method:

wls<-variofit(bin,fix.nugget=FALSE,cov.model="spherical",max.dist=bin$max.dist)

pred<-expand.grid(seq(15000,400000,l=15),seq(600000,900000,l=15))

krig<-krige.conv(geo,loc=pred, krige=krige.control(type.krige="ok",obj.m=

wls))

plot(scot$X,scot$Y,axes = FALSE, frame = TRUE,xlab="",ylab="")

contour(krig,nlevel=18,labcex=0.7,lty = "solid",axes = FALSE, frame = TRUE,

xlab="",ylab="",add=TRUE)

title("Kriging Map") Plot semi-variogram:

plot(bin ,main="Plot of Semi-Variogram")
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lines(wls)

C.1.4 Kernel Smoothing (Section 4.4)

Load package with Nadaraya-Watson kernel smoother:

library(JLLprod)

smrcoords.txt is a file which contains the regions centroids and measles susceptibility

ratios in three columns

smrcoords<-read.table("smrcoords.txt",sep=",",header=TRUE)

Kernel smoothing for 2000:

kern<-Blocc(smrcoords$X,smrcoords$Y,smrcoords$ratios)

plot(scot$X,scot$Y,type="l",asp=0.9,axes = FALSE,xlab="",ylab="")

contour(kern$xxe,kern$zze,kern$r,nlevel=10,labcex=0.5,lty = "solid",axes

= TRUE, frame = TRUE,xlab="",ylab="",add=TRUE)

title("Kernel Smoothing Map")

C.1.5 Pseudo-Colour Map

x1 and x2 are numeric vectors of rates for map 1 and map 2.

Find 5th and 95th percentile of each one (xq5, yq5 say and xq95 and yq95), using

type 4 quantiles:

xq5<- quantile(x1, 0.05, type=4)

xq95<-quantile(x1, 0.95, type=4)

yq5<- quantile(y1, 0.05, type=4)

yq95<-quantile(y1, 0.95, type=4)

Take the minimum of the two 5th percentiles and the maximum of the two 95th per-

centiles:

newmin<-min(xq5, yq5)

newmax<-max(xq95, yq95)

Scale each vector to give new rate vectors scaledx and scaledy, so each new one

ranges from 0 to 255 (the usual intensity range for images):

range<-newmax-newmin
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scaledx <-(x1- newmin)*255/range

scaledx[scaledx<0]=0

scaledx[scaledx>255]=255

scaledx<-round(scaledx,0)

scaledy <-(y1- newmin)*255/range

scaledy[scaledy<0]=0

scaledy[scaledy>255]=255

scaledy=round(scaledy,0)

Allocate colours to new rate vectors, using scaledx (map 1) to define red and blue,

and scaledy (map 2) to define green:

ycol2 <- rgb(scaledx,scaledy,scaledx,maxColorValue=255)

Produce a pseudo-colour map and add an interpretative legend:

plot(coord,type="l",asp=0.85,axes=FALSE,frame=TRUE,xlab="",ylab="")

polygon(coord,col=ycol2)

legend(3.05∗105, 9.8∗105,c("Gray-Maps Similar","Red-Map 1 > Map 2", "Green-Map

2 > Map 1"),cex=0.568,bty="n")

title(main=paste("Pseudo-Colour Map"))

C.1.6 Image Analysis based Methods

Function IMAGE computes image analysis based measures to compare two maps.

Function input:

x1 and x2 are numeric vectors of relative risks for map 1 and map 2.

Function output:

MSD is the mean square difference of relative risks between two maps. (A value of zero

indicates that similar maps and large values indicate that maps differ greatly).

PSNRR is a form of peak-to-signal-noise ratio given by P 2/MSD, where P is the differ-

ence between the maximum of the two sets of relative risks and the minimum of the

two set of relative risks. (A value of zero indicates that maps are very different and

large values indicate similar maps).

PSNRM is a form of peak-to-signal-noise ratio given by P 2/MSD where P is the max-
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imum absolute difference between the two sets of relative risks. (A value of zero

indicates that maps are very different and large values indicate similar maps).

SSIM/SSIMM/SSIMR are a form of structural similarity index given by (2µxµy+C1)(2σxy+

C2)/(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2), where µx and µy are the means for relative risks

in maps 1 and 2 respectively, σxy is correlation between the two sets of relative

risks, and σ2
x and σ2

y are the variances of relative risks in maps 1 and 2 respectively.

Ci = (Ki ∗ L)2, i = 1, 2, and Ki is a very small arbitrary constant used to avoid un-

stable results when (µ2
x + µ2

y) or (σ2
x + σ2

y) are near zero.

For SSIM, constants are set to zero. For SSIMM, L is taken as the maximum absolute

difference between the two sets of relative risks for the ith region. For SSIMR, L is

the difference between the maximum of the two set of relative risks and the minimum

of the two sets of relative risks.

IMAGE <- function(x1,y1) {

w<-(is.numeric(x1))&(is.numeric(y1))

if(!w)

stop("Error! data must be numeric vectors")

k<-(length(x1)==length(y1))

if(k)

n<-length(x1)

else stop("Error! vectors must be of the same length")

#For MSD:

alldiff<-x1-y1

alldiffsq<-(alldiff)2

MSD<-sum(alldiffsq)/n

if(is.na(MSD)) stop("Obtained NaN value for MSD")

if(is.infinite(MSD)) stop("Obtained infinite value for MSD")

#For PSNRR:

Rangevalues<-max(x1,y1)-min(x1,y1)

Rangevaluessq<-(Rangevalues)2

PSNRR<-Rangevaluessq/MSD

if(is.na(PSNRR)) stop("Obtained NaN value for PSNRR")
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if(is.infinite(PSNRR)) stop("Obtained infinite value for PSNRR")

#For PSNRM:

Mvalues<-abs(x1-y1)

R<-max(Mvalues)

Rsq<-R2

PSNRM<-Rsq/MSD

if(is.na(PSNRM)) stop("Obtained NaN value for PSNRM")

if(is.infinite(PSNRM)) stop("Obtained infinite value for PSNRM")

#For SSIM:

mpart<-(2*mean(x1)*mean(y1))/((mean(x1))2+(mean(y1))2)

vpart<-(2*sd(x1)*sd(y1))/(var(x1)+var(y1))

cpart<-(cov(x1,y1))/(sd(x1)*sd(y1))

SSIM<-mpart*vpart*cpart

if(is.na(SSIMR)) stop("Obtained NaN value for SSIMR")

if(is.infinite(SSIMR)) stop("Obtained infinite value for SSIMR")

#For SSIMR:

mpartR<-((2*mean(x1)*mean(y1))+(0.001*(max(x1,y1)-min(x1,y1)))2)

/((mean(x1))2+ (mean(y1))2+(0.001*(max(x1,y1)-min(x1,y1)))2)

vpartR<-((2*sd(x1)*sd(y1))+(0.002*(max(x1,y1)-min(x1,y1)))2)/

((var(x1)+var(y1))+ (0.002*(max(x1,y1)-min(x1,y1)))2)

cpartR<-(cov(x1,y1)+(0.001*(max(x1,y1)-min(x1,y1)))2)/

((sd(x1)*sd(y1))+(0.001*(max(x1,y1)-min(x1,y1)))2)

SSIMR<-mpartR*vpartR*cpartR

if(is.na(SSIMR)) stop("Obtained NaN value for SSIMR")

if(is.infinite(SSIMR)) stop("Obtained infinite value for SSIMR")

#For SSIMM:

mpartM<-((2*mean(x1)*mean(y1))+(0.001*max(abs(x1-y1)))2)/((mean(x1))2+

(mean(y1))2+(0.001*

max(abs(x1-y1)))2)

vpartM<-((2*sd(x1)*sd(y1))+(0.002*max(abs(x1-y1)))2)/(var(x1)+var(y1)+

(0.002*max(abs(x1-y1)))2)
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cpartM<-(cov(x1,y1)+(0.001*max(abs(x1-y1)))2)/((sd(x1)*sd(y1))+

(0.001*max(abs(x1-y1)))2) SSIMM<-mpartM*vpartM*cpartM

if(is.na(SSIMM)) stop("Obtained NaN value for SSIMM")

if(is.infinite(SSIMM)) stop("Obtained infinite value for SSIMM")

c(MSD,PSNRR,PSNRM,SSIMR,SSIMM,SSIM)

}

C.1.7 Point Process based Methods

Function IED computes vectors of absolute differences from the relative risks of regions

in a map.

Function input:

RR, a vector of length n containing relative risks of n regions of a map.

wm, an n×nadjacency weight matrix with entries 1 (when regions are neighbours) and

0 (when regions are not neighbours).

Function output a list with the following difference components:

diff, a vector of length 1
2
n(n− 1) of absolute differences between all possible distinct

pairs of relative risks in a map.

mindiff, a vector of length n with the ith entry as the absolute difference between

the ith relative risk and the most similar relative risk in the map.

maxdiff, a vector of length n with the ith entry as the absolute difference between

the ith relative risk and the most dissimilar relative risk in the map.

aveneigh, a vector of length n with the ith entry as the average difference between

the relative risk of region i and the relative risks of its neighbouring regions.

maxneigh, a vector of length n with the ith entry as the absolute difference between

the relative risk of ith region and the most dissimilar relative risk of its neighbouring

regions.

minneigh, a vector of length n with the ith entry as the absolute difference between

the relative risk of ith region and the most similar relative risk of its neighbouring

regions.

IED<-function(RR,wm)

{
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n <-length(RR)

Check2<-(length(RR)==dim(wm)[1])

if (!Check2) stop("Error! weight matrix has wrong dimension")

#Replicate each risk value n times

m.RR<-matrix(rep(RR,n),ncol=n,byrow=T)

#Obtain absolute difference:

diff.RR<- abs(RR - m.RR)

#Extract the Lower triangular matrix from diff.R (only need this):

m.diff.RR<-diff.RR[lower.tri(diff.RR)]

#Obtain matrix excluding the difference between a value and itself (diagonal ele-

ments):

keep.RR<-matrix(T,nrow=n,ncol=n)

diag(keep.RR)<- F

m.keep.RR<-matrix(c(diff.RR)[c(keep.RR)],nrow=n-1,ncol=n)

# Obtain (nearest value) of absolute differences:

min.diff.RR<-apply(m.keep.RR,2,min)

# Obtain (farthest value) of absolute differences:

max.diff.RR<-apply(m.keep.RR,2,max)

# Obtain absolute difference for neighbours:

neigh.RR←sweep(wm,1,diff.RR,FUN="*")

# Obtain average of absolute differences from neighbours:

sumnear<-apply(neigh.RR,2,sum)

sumweight<-apply(wm,2,sum)

aveneigh.RR<-sumnear/sumweight

# Obtain maximum absolute differences of neighbours

max.neigh.RR<-apply(neigh.RR,2,max)

Exclude islands: k a vector of indices of any regions (islands) to be omitted

max.neigh.RR<-max.neigh.RR[-k]

# Obtain minimum absolute differences of neighbours:
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wm[wm==0]<-NA

neigh.RR<-sweep(wm,1,diff.RR,FUN="*")

min.neigh.RR<-apply(neigh.RR,2,function(x) min(x[!is.na(x)]))

# Exclude islands:

min.neigh.RR<-min.neigh.RR[-i]

list(diff=m.diff.RR,mindiff=min.diff.RR,maxdiff=max.diff.RR,aveneigh=aveneigh.RR,

minneigh=min.neigh.RR,maxneigh=max.neigh.RR)

}

Function compare uses ks.test from library Hmisc to apply the two-sided Kolmogorov

Smirnoff test to compare two empirical cdfs. It plots two empirical cdfs and adds the

K-S p-value to the plot.

Function input:

xx, any of the vectors of the absolute differences computed from map 1 by function

IED.

yy, any of the vectors of absolute differences computed from map 2 by function IED.

compare<-function(xx,yy)

{

library(Hmisc)

KS<- ks.test(xx,yy)

Ecdf(xx,xlab="2000 (blue), 2001 (red)",xlim=range(xx,yy),col="blue")

Ecdf(yy,col="red",add=TRUE,text((max(xx)+max(yy))/2.4,0.4,

paste("KS p-value=",signif(KS$p,2) )))

}

Function comp.all6 uses function compare to compare each of the difference compo-

nents, obtained from function IED, for two maps. It then extracts the p-values from

the results.

Function input:

xx, any of the vectors of the absolute differences computed from map 1 by function

IED.

yy, any of the vectors of absolute differences computed from map 2 by function IED.
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Function output:

the p-values for the Kolmogorov-Smirnoff test for each difference component.

comp.all6<-function(xx,yy)

{

Check1<-(length(xx)==length(yy))

if (!Check1) stop("Error! numeric vectors have different lengths")

IRD<-compare(xx,yy,"IRD")

MSDI<-compare(xx,yy,"MSDI")

MDD<-compare(xx,yy,"MDD")

MSND<-compare(xx,yy,"MSND")

MDND<-compare(xx,yy,"MDND")

AVND<-compare(xx,yy,"AVND")

c(IRD$p,MSDI$p,MDD$p,MSND$p,MDND$p,AVND$p)

}

Function bigf takes two vectors of relative risks (for two maps) and calls function

IED twice to obtain difference components for each map. Function comp.all6 is then

used to compare the maps by comparing the empirical cdfs of each of the difference

components using the Kolmogorov-Smirnoff test.

Function input:

X1, a vector of relative risks for map 1.

X2, a vector of relative risks for map 2.

wm, an adjacency n×n weight matrix with entries 1 (when when the regions are neigh-

bours) and 0 (when when the regions are not neighbours).

Function output:

Kolmogorov-Smirnoff test p-values for each of the difference components.

bigf<-function(X1,Y1,wm)

{

Check<-(length(X1)==dim(wm)[1]) & (length(Y1)==dim(wm)[2])

if (!Check) stop("Error! weight matrix has wrong dimension")

y1<-IED(X1,wm)

y2<-IED(Y1,wm)
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y3<-comp.all6(y1,y2)

y3

}

C.1.8 Simulation Code

Function simul simulates a number of times two observed samples, one from each of

two maps, each generated using a Poisson distribution, and compares the maps using

methods based on image analysis and point process methodology. It calls function

IMAGE and function bigf.

For the first sample, the Poisson mean is N ∗ θ where N is the vector of the number

of people in each region of the map, simulated from the Uniform distribution, and θ is

a vector of risks obtained from log(θi) = α+Ui + Vi, i.e. θi = exp(α+Ui + Vi). Three

values of α are used to represent three cases: common disease, rare disease and very

rare disease. U is simulated from the CAR-normal model with precision lambda.st

and V is simulated from a Normal distribution with mean 0 and standard deviation

sd.un which measures unstructured variability. For the second sample, different mul-

tiples of the precision of U are used to vary the level of structured heterogeneity. The

observed sample counts are divided by N to obtain proportions (rates) which are used

to compare the two maps.

Function input:

n, the no. of regions

n.comp, the number of multiples to use

mu.x, the disease rate

lambda.st, the precision inverse matrix for structured variability

sd.un, the standard deviation for unstructured variability

mu.inflate, a constant controlling multiples of the disease rate

sd.un.inflate, a constant controlling multiples of the standard deviation of unstruc-

tured variability

sd.st.inflate, a constant controlling multiples of the precision of structured vari-

ability

n.sims, number of simulations performed

min.pop, the minimum population size
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max.pop, the maximum population size

neighb, a vector of length n containing number of neighbours for each region

wm, an n×n adjacency weight matrix with entries 1 (when the regions are neighbours)

and 0 (when the regions are not neighbours).

Function output:

a list Z3.st containing:

Z1.st, values for the image analysis methods

Z2.st, a list of p-values for the difference based methods

XM.st, a matrix of disease rates for the first sample

YM.st, a matrix of disease rates for the second sample

V.st, is a matrix of unstructured random effects

NM.st, is a matrix of total population in each region

neighb, is a vector of size n with number of neighbours for each region

wm, is a weight matrix

ZZ.st, is a matrix containing values each of the 12 measures with Z1.st and Z2.st

for each simulation

simul<-function(n,n.comp,mu.x,lambda.st,sd.un,mu.inflate,sd.un.inflate,

sd.st.inflate, n.sims,min.pop=50000,max.pop=150000,neighb,wm)

{

library(MASS)

# Define arrays

Z1.st<-matrix(NA,nrow=n.comp,ncol=6)

Z2.st<-matrix(NA,nrow=n.comp,ncol=12)

XM.st<-matrix(NA,nrow=n,ncol=n.comp)

YM.st<-matrix(NA,nrow=n,ncol=n.comp)

NM.st<-matrix(NA,nrow=n,ncol=n.comp)

theta.x<-matrix(NA,nrow=n,ncol=n.comp)

theta.y<-matrix(NA,nrow=n,ncol=n.comp)

I<-diag(n) #identity matrix

#Check input

s<-(length(neighb)==dim(I)[1])

if (!s) stop("Error! vector neighb has wrong length")
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D<-diag(neighb*lambda.st)

t<-(length(neighb)==dim(wm)[1])

if (t)

C<-wm/neighb

else stop("Error! vector neighb and weight matrix wm have different dimensions")

#Calculating variance matrix for structured heterogeneity

Q<-D*(I-C)

Q.x<-Q[1:n-1,1:n-1], Upper left (n-1) by (n-1) matrix of Q.x

for (i in seq(1,n.comp,by=1))

{

N.st<-round(runif(n,min.pop,max.pop),0)

V.un<-rnorm(n,mean=0,sd=sd.un)

x.val<-mvrnorm(1,rep(0,n-1),solve(Q.x)),

#Variance matrix is the inverse of Q.x

Un<-sum(x.val)/n

U.x<-x.val-Un

U<-c(U.x,Un)

theta.st.x<-exp(log(mu.x)+U+V.un)

#FOR MEAN

#Simulation based on changing mean level.

theta.st.y<-exp(log((1+(i-1)*mu.inflate)*mu.x)+U+V.un)

#FOR UNSTRUCTURED VARIATION

#Simulation based on changing unstructured variation.

theta.st.y<-exp(log(mu.x)+(1+(i-1)*sd.st.inflate)*U+V.un)

#FOR STRUCTURED VARIATION

#Simulation based on changing unstructured variation.

theta.st.y<-exp(log(mu.x)+U+(1+(i-1)*sd.un.inflate)*V.un)

#Proportions:

#Obtain counts for two maps from the Poisson distribution, get proportions and use

#image analysis and point processes methods to compare the maps

X.st[i,]<-rpois(n,N.st*theta.st.x)/N.st

Y.st[i,]<-rpois(n,N.st*theta.st.y)/N.st
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theta.x[i,]<-theta.st.x

theta.y[i,]<-theta.st.y

XM.st[i,]<-X.st

YM.st[i,]<-Y.st

NM.st[i,]<-N.st

Z1.st[i,]<-IMAGE(X.st,Y.st)

Z2.st[i,]<-bigf(X.st,Y.st,wm)

}

#Output list(Z1.st=Z1.st,Z2.st=Z2.st,XM.st=XM.st,YM.st=YM.st,NM.st=NM.st)

}

#end of function

#Set parameters for simulations

set.seed(123)

n<-53

n.sims<-1000

n.comp<-31

mu.x<-1/1000

sd.un<-0.1

lambda.st<-100

mu.inflate<-1

sd.st.inflate<-1

sd.un.inflate<-0.10

#CARRY OUT SIMULATIONS

ZZ.st<-array(NA,c(n.sims,n.comp,12)), #array for results

dimnames(ZZ.st)<-list(NULL,NULL,c("MSD","PSNRR","PSNRM","SSIMR",

"SSIMM","SSIM","IRD","MSDI","MDD","AVND","MSND","MDND"))

for (i in 1:n.sims) {

Z3.st<-simul(n,n.comp,mu.x,lambda.st,sd.un,mu.inflate,sd.un.inflate,

sd.st.inflate,neighb=neighb,wm=wm)

ZZ3<-cbind(Z3.stZ1.st, Z3.stZ2.st)

ZZ.st[i,,]<-ZZ3

}
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Appendix D

WinBUGS Codes

D.1 Chapter 4

D.1.1 Poisson-Gamma model

model{

for (i in 1:N)

where N is the number of regions.

Poisson likelihood for observed counts

y[i]∼ dpois(mu[i])

mu[i]<-e[i]*theta[i]

Calculate relative risks

theta[i] ∼ dgamma(a,b)

Calculate residuals

Residuals[i]<-(y[i]-e[i]*theta[i])/sqrt(e[i]*theta[i])

Calculate residual sum of squares

RSS[i]<-inprod(Residuals[],Residuals[])

}

Prior distribution for population parameters

a~dexp(0.1)

b~dexp(0.1)

Population mean and variance
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mean<-a/b

var <-a/pow(b,2)

}

D.1.2 Log-normal model

model {

for (i in 1:N)

{

Poisson likelihood for observed counts

y[i]∼dpois(mu[i])

log(mu[i])<-log(e[i])+alpha+u[i]+v[i]

Relative risks

theta[i]<-exp(alpha+u[i]+v[i])

Residuals

Residuals[i]<-(y[i]-e[i]*theta[i])/sqrt(e[i]*theta[i])

Residual sum of squares

RSS[i]<-inprod(Residuals[],Residuals[])

Prior on uncorrelated heterogeneity

v[i]∼dnorm(0,tau.v)

}

eps<-1.0E-6

Prior on correlated heterogeneity where sumNumNeigh is the sum of number of neigh-

bours for all regions.

u[1:N]∼car.normal(adj[],weights[],num[],tau.u)

for (k in 1:sumNumNeigh)

{

weights[k]<-1

}
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Improper prior for the mean relative risk in the study region

alpha∼dflat()

mean<-exp(alpha)

varu<-1/tau.u

varv<-1/tau.v

stdeu<-sqrt(varu)

stdev<-sqrt(varv)

Hyperprior on inverse variances

tau.u∼dgamma(0.1,0.001)

tau.v∼dgamma(0.1,0.001)

}

D.1.3 Logistic model

model {

for (i in 1:N) {

Binomial likelihood for observed counts y[i] dbin(p[i],n[i])

logit(p[i])<-alpha+u[i]+v[i]

Residuals[i]<-(y[i]-n[i]*p[i])/sqrt(n[i]*p[i])

RSS[i]<-inprod(Residuals[],Residuals[])

Prior on uncorrelated heterogeneity

v[i]∼dnorm(0,tau.v)

}

eps<-1.0E-6

Prior on correlated heterogeneity where sumNumNeigh is the sum of number of neigh-

bours for all regions

u[1:N]∼car.normal(adj[],weights[],num[],tau.u)

for (k in 1:sumNumNeigh)

{

weights[k]<-1

}
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Improper prior for the mean relative risk in the study region

alpha∼dflat()

mean<-exp(alpha)

Variability and standard deviations for correlated and uncorrelated heterogeneity.

varu<-1/tau.u

varv<-1/tau.v

stdeu<-sqrt(varu)

stdev<-sqrt(varv)

Prior for the inverse variances

tau.u∼dgamma(0.1,0.001)

tau.v∼dgamma(0.1,0.001)

}

D.1.4 Logistic model with variables

model {

for (i in 1:N)

{

Binomial likelihood for observed counts with census variables born other EU (bor-

noeu), working in agriculture (workagr), no car (nocar), overcrowding (overcr), unem-

ployment (unemp) and low social class (lowsc)

y[i] dbin(p[i],n[i])

logit(p[i])<-alpha+u[i]+v[i]+beta1*bornoeu[i]+

beta2*workagr[i]+beta3*nocar[i]+beta4*overcr[i]+beta5*unemp[i]

+beta6*lowsc[i]

Prior on uncorrelated heterogeneity

v[i]∼dnorm(0,tau.v)

}

eps<-1.0E-6

Prior on correlated heterogeneity where sumNumNeigh is the sum of number of neigh-

bours for all regions
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u[1:N]∼car.normal(adj[],weights[],num[],tau.u)

for (k in 1:sumNumNeigh)

{

weights[k]<-1

}

Prior on regression coefficients

beta1∼dnorm(0.0,1.0E-6)

beta2∼dnorm(0.0,1.0E-6)

beta3∼dnorm(0.0,1.0E-6)

beta4∼dnorm(0.0,1.0E-6)

beta5∼dnorm(0.0,1.0E-6)

beta6∼dnorm(0.0,1.0E-6)

Improper prior for the mean relative risk in the study region

alpha∼dflat()

mean<-exp(alpha)

Variability and standard deviations for correlated and uncorrelated heterogeneity

varu<-1/tau.u

varv<-1/tau.v

stdeu<-sqrt(varu)

stdev<-sqrt(varv)

Hyperprior on inverse variances

tau.u∼dgamma(0.1,0.001)

tau.v∼dgamma(0.1,0.001)

}

D.1.5 Waller et al. (1997) space-time model

model {

for (t in 1:T)

where T is total time points.

for (i in 1:N)

{
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Binomial likelihood for observed counts

y[i,t]∼dbin(p[i,t],n[i,t])

logit(p[i,t])<-alpha+u[i,t]+v[i,t]

}

}

Prior on correlated heterogeneity

u1[1:N]∼car.normal(adj[],weights[],num[],tau.u[1])

u2[1:N]∼car.normal(adj[],weights[],num[],tau.u[2])

u3[1:N]∼car.normal(adj[],weights[],num[],tau.u[3])

u4[1:N]∼car.normal(adj[],weights[],num[],tau.u[4])

u5[1:N]∼car.normal(adj[],weights[],num[],tau.u[5])

u6[1:N]∼car.normal(adj[],weights[],num[],tau.u[6])

for (i in 1:N)

u[i,1]<-u1[i]

u[i,2]<-u2[i]

u[i,3]<-u3[i]

u[i,4]<-u4[i]

u[i,5]<-u5[i]

u[i,6]<-u6[i]

Prior on uncorrelated heterogeneity

} for (i in 1:N)

{

v1[i]∼dnorm(0,tau.v[1])

v2[i]∼dnorm(0,tau.v[2])

v3[i]∼dnorm(0,tau.v[3])

v4[i]∼dnorm(0,tau.v[4])

v5[i]∼dnorm(0,tau.v[5])

v6[i]∼dnorm(0,tau.v[6])

}

for (i in 1:N)

{

v[i,1]<-v1[i]
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v[i,2]<-v2[i]

v[i,3]<-v3[i]

v[i,4]<-v4[i]

v[i,5]vv5[i]

v[i,6]<-v6[i]

}

for (k in 1:sumNumNeigh)

{ weights[k]<-1

Improper prior for the mean relative risk in the study region

alpha∼dflat()

mean<-exp(alpha)

Hyperprior on inverse variances

for (i in 1:T)

{

tau.u[i]∼dgamma(0.1,0.001)

tau.v[i]∼dgamma(0.1,0.001)

Variability and standard deviations for correlated and uncorrelated heterogeneity.

varu[i]<-1/tau.u[i]

varv[i]<-1/tau.v[i]

stdeu[i]<-sqrt(varu[i])

stdev[i]<-sqrt(varv[i]) }
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