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Abstract 

In this research, mathematical formulations for the dynamics of raising sunken vessels using 

buoyant systems are developed in a form which is suitable for integrating control techniques to 

ensure both hydrodynamic and structural stability for a safe and stable salvaging operation 

based on both rigid body modeling and flexible body modeling concepts.   

 

Due to the coupled nature of salvage dynamics and for integrating controller techniques, the 

mathematical modeling is carried out as two subsystems. In the primary model, the salvage 

dynamics is formulated in such a way that the variation in additional buoyancy due to flow rate 

of filling gas inside the lift bags is the controlling force with respect to hydrostatic force due to 

weight, buoyancy and suction break out, hydrodynamic forces and uncertainty arises due to 

any external disturbances. In the secondary model, the purging of gas through the valves is 

taken as the control parameter by accounting the excess buoyancy available after suction break 

out and to the variation in pressure difference between gas inside lift bag and surrounding sea 

water pressure for a stable ascent.  

 

 

According to the simplified two-degree-of-freedom equations of rigid-body vessel motion, a 

state space model is developed for integrating the primary controller. Initially a proportional 

derivative (PD) controller is selected as the primary controller for  regulating the flow rate of 

filling gas inside the lift bags according to the buoyancy requirement and extended to other 

classic controllers like proportional integral and derivative (PID) controller  and sliding mode 

controller (SMC) for improving the performance. Numerical simulations are carried out in 

MATLAB & SIMULINK by solving the standard State Dependent Ricatti Equation in a body-

fixed coordinate reference frame. Preliminary results in terms of coordinate positions or 

trajectories, linear and angular velocity components of the raising body are evaluated based on 

an experimental pontoon model. A number of case studies are carried out for different target 

depths with the developed linear state space model including sensitivity analysis such as 



 
 

ix 
 

change in hydrodynamic coefficients, breakout lift force and the effect of external disturbances 

and uncertainty. SMC is found to be the optimum choice among these conventional controllers 

by satisfying the Lyapunov stability condition even for higher water depths with system 

robustness and capability to handle parameter variations, external disturbances and uncertainty. 

The tuning effort and chattering were found to be the two major draw backs of conventional 

sliding mode controller (CSMC), which is improved by integrating it with artificial 

intelligence such as fuzzy logic controller to bring together the advantages of both controllers 

to become fuzzy sliding mode controllers (FSMCs).  

 

In FSMCs, the performance of the CSMC is improved by dynamically computing the sliding 

surface slope by a FLC and adaptively computing the controller gain by another FLC. FLCs 

are designed using MATLAB’s fuzzy logic interface based on Mamdani’s implification 

method the combined models will be developed in SIMULINK. A two input fuzzy sliding 

mode controller (TIFSMC) is designed first and later simplified to single input fuzzy sliding 

mode controller (SIFSMC), for reducing the tuning effort and computational time. With the 

development of SIFSMC, the tuning process becomes standardized and hassle free and hence 

the well known chattering problem associated with SMCs is avoided. The comparative 

performance of the fuzzy sliding mode controllers over CSMC has been investigated by 

performing numerical simulations on the pontoon model. It is found that both FSMCs show 

30% of improvement in the tracking performance when compared to the CSMC, while 

maintaining its robustness. It is also noted that FSMCs are less sensitive to external 

disturbances and uncertainties in comparison with CSMC. The responses obtained by the 

SIFSMC are the same as those obtained by the TIFSMC, with the former involving a much 

less tuning effort and computational time. Simulation studies reveals the fact that for 

complicated non linear underwater operations like marine salvage involving uncertainty and 

external disturbances, a closed loop control system is mandatory and an adaptive controller 

like SIFSMC is the optimum choice as the primary controller for regulating the gas flow rate. 

 

Purge valve modeling is carried out according to the excess buoyancy available after suction 

breakout and to the variation in pressure difference between gas inside the lift bags and 

surrounding sea water for a stable ascent. A PID controller is designed as the secondary 

controller for regulating the purging of gas through the valves and found to be effective in 
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maintaining the ascent velocity within the stable region. Then a supervisory fuzzy logic 

controller is designed to monitor or switch between the primary and secondary controllers 

based on the buoyancy requirement for a safe and stable salvaging operation. The Gaussian 

membership functions are used for representing input and output variables, and the centroid 

method is used for defuzzification. Using a trial and error approach, the best inference 

mechanism to use in this case seems to be the prod-probor method. Because of simplicity and 

availability of the graphical user interface (GUI) in MATLAB, Mamdani inference engine is 

employed for designing the FLC that uses minimum operator for a fuzzy implication and max-

min operator for composition   The defuzzification technique used is found using trial and error 

and Centre of Gravity approach is the one which provides least integral square error. From the 

simulation studies, it is found that FLC is capable to maintain hydrodynamic stability in diving 

plane by suitably defining the linguistic fuzzy rules, which are created based on the author’s 

experience in conducting numerical simulation using primary and secondary controllers.  

 

Finally, in order to find the optimum location of lift bags on the vessel and to determine the 

controlled response of individual lift bags or the real case of lifting a very flexible structure, 

such as a long pipe, using multiple controlled lift bags, the problem is extended to a detailed 

flexible body modeling and control. In this regard, a chemical tanker is taken and modeled as 

an elastic Euler-Bernoulli beam with free–free boundary conditions. Free vibration analysis is 

carried out on the model via an analytical as well as finite element method, and the obtained 

responses such as natural frequencies and mode shapes are evaluated and compared. From the 

mode shape plots, the lift bags are located suitably on the “nodes of a mode” of the beam, 

where the displacement is negligible. Then the eigenvectors are normalized with respect to 

mass, and the equation of motion is developed in principal coordinates after defining the nodal 

forces and moments. Then the modal contributions of individual modes are analyzed according 

to their dc gain/peak gain value to define, which ones have greatest contribution and later 

several modal reduction techniques such as ‘modred-mdc’ and ‘modred-del’ are used to obtain 

the smallest state space models for individual lift bags that represents the pertinent system 

dynamics. Highest dc gain is obtained for the first two rigid modes, which implies that rigid 

body modes are more significant compared to flexible modes for the control of lifting during 

marine salvage. However flexible modes relate to structural hull girder moments which should 

also be considered. Preliminary results in terms of coordinate positions or trajectories, linear 
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and angular velocity components of the raising body at various sections of the vessel or beam 

nodes can be estimated. Longitudinal distribution of shear force and bending moments across 

the tanker are also evaluated. The full and reduced order modal responses for lift bags are 

compared in both frequency and time domains. It is observed that ‘unsorted modred-mdc’ is 

the preferred choice for modal order reduction compared to other modal reduction methods. 

Using a flexible body modeling approach the state space model is available for individual 

nodes on the beam. Thus controlled response of individual lift bags can be simulated. This is 

an advantage of flexible body modeling & control over rigid body modeling & control. Finally 

a supervisory fuzzy logic controller is integrated with the 4*4 flexible state space model 

obtained using ‘unsorted modred-mdc’ to obtain the controlled stable responses of individual 

external lift bags.  
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1 Introduction                                          
 
Marine salvage is an operation of rescuing a ship/vessel, its cargo or other properties from 

impending peril. The salvage comprises of towing and refloating a sunken or stranded vessel 

with the main purposes to prevent the marine environment from pollution and to clear a channel 

for the navigation. Ships sink or capsize because they lose their buoyancy or stability due to the 

collision, battle or weather damage, flooding and other means. The rescue of a damaged vessel is 

a very difficult task when compared to an intact ship in the same location. Salvaging of sunken 

ships requires both the recovery of sufficient buoyancy to bring the ship afloat and the suitable 

buoyancy distribution to regain the satisfactory condition of stability, trim and strength [113-116, 

119, 125].  

 

As far as marine salvage operation is concerned, literature sources reporting systematic data and 

information useful for system modeling are relatively few. Studies regarding the dynamics of 

salvage operation are of course complicated by the fact that, in addition to the influence of 

complicated hydrodynamic forces, moments and breakout forces, the external disturbances and 

uncertainty are always to be taken in to account. There are three methods commonly used in the 

marine salvage industry to extract the sunken objects from the sea bottom, i.e. by using the 

floating cranes (see Figure 1), the Remotely Operated Vehicles (ROVs)  (see Figure 2 ) and the 

buoyancy systems (see Figure 3). Floating cranes can be used for water depths of 2000 m with a 

good controllability; however the weight of cables becomes more than that of the payload for 

deeper lifts and hence the process becomes awkward and costly. As the cranes are fitted onto a 

moving vessel, there will be operational constraints due to the limiting sea state affected by 

weather conditions. Excessive cost of hiring and the limited availability of cranes are the major 

problems facing the salvage industry. ROVs, on the other hand, can be used in higher water 
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depths and they are highly controllable. Nevertheless, they can be only used for lifting smaller 

objects as the lifting capacity is limited by the size and power of the thrusters used for the 

propulsion. Buoyancy systems have the advantage that they can be used for lifting any size of 

objects from any depth with comparatively less costs [86, 113-119]. 

 

 
 

Figure 1: Floating Cranes for marine salvage [61] 

                                                                                                                                                                                                                                             

 

 
 

Figure 2: 8 Ton ROV used for marine salvage [87] 
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Figure 3: Scuba diver attaching inflated bags to the sunken vessel. 
                                    Photo - courtesy of J W Automarine [32, 61] 

 

The concept of using buoyancy systems (e.g. the gas inflated bags) for salvaging sunken vessels 

from the deep ocean has been around for centuries. This operation is based on the well-known 

‘Archimedes’ principle for which the force on the object can be determined by subtracting the 

weight of the object in air from the weight of the fluid displaced by that object [95]. In general, 

the bottoms of inflatable bags are attached to the payload to be lifted and inflated using pipes 

from the gas generating system. In salvage industry, there are mainly two types of lift bags are 

generally available for recovering sunken objects; one is parachute type and other is cylindrical 

type. Parachute type bags are generally preferred for lifting purpose, whereas cylindrical type lift 

bags are used for providing stability [33, 61, 98, 107, 111, 125].  

 

Parachute type bags are fitted with a suitable attachment point at or near the crown to allow a 

load restraining harness of heavy duty polyester webbing, which is fabricated to the top of the 

bag as shown in Figure 4(a). The harness together with the airbag skin has a safe working load 
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ratio of 6:1. Due to the relatively small storage space required for these bags in comparison with 

the upward force they are capable of exerting, they become essential tools for underwater 

salvage operations [132]. Cylindrical type bags (Figure 4(b)) are normally fitted inside the 

compartments of the vessel (normally in ballast tanks) to provide additional buoyancy as well as 

to make sure that the centre of buoyancy is above the centre of gravity [61, 98, 107, 111].  

 

 
 

 

Figure 4 (a) & (b): Commercial Inflated Lift Bags [125] 

 

The main drawback of using the inflating bags for marine salvage operation is due to the 

difficulty in controlling the vertical speed and pitch motion as the ship ascends. Due to the 

suction break out force, a large buoyancy force may be initially required to separate the ship 

from the seabed, resulting in an excessive vertical speed and pitch angle after break out.  During 

the ascent, any trapped air inside the hull may also expand and further increase the buoyancy. 
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Also due to the pressure difference between gas inside the lift bag and surrounding sea water 

pressure in accordance with the decrease in water depth during the ascent, the gas inside the lift 

bag expands. All these factors lead to an increase in buoyancy force and hence result in an 

excessive vertical speed as well as pitch angle during the ascend. Excessive vertical speed results 

in a potentially-hazardous working environment to divers and salvaging crews and this may 

cause the lift bag to breach the surface of the water so fast that the air escapes from the bottom 

(see Figure 5). High values of pitch angle cause the lift slings to break loose from payload and 

hence results to a further buoyancy loss. These all factors make the payload to sink back to the 

bottom which, in turn, results in a loss of time, damage to the hull, high operating and 

maintenance costs, and the risk to divers and crew members. Open bottom bags dump excess gas 

from the bottom during the ascent whereas enclosed lift bags only have a limited capacity to 

dump excess gas through the pressure release valves [33, 61, 125]. 

 
 

Figure 5:  A 25 ton capacity lift bag that broke free from USS Spiegel Grove during the salvage 

operation. The lift bag reached an altitude of approximately 30 meters. Photo - courtesy of 

Resolve Towing and Salvage, Inc [32, 98] 

Hence, in order to ensure hydrodynamic and structural stability during the ascent, it is required to 

design the following two types of control subsystems and a supervisory controller to monitor 

these sub controllers.  
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a. Primary Controller  

The function of the primary controller (Figure 6) is used to regulate the flow rate of 

filling gas inside the lift bags according to the buoyancy requirement with respect to 

hydrostatic, hydrodynamic, suction break out force components and uncertainty arises 

due to external disturbances for a stable ascent. It should be a closed loop control system 

(e.g. classic controllers like PD, PID or SMC) working on the output or feedback 

obtained from sensors.  

 
 

Figure 6: Design of a primary controller for regulating the gas flow rate 

 

 

a. Secondary Controller 

A secondary controller is proposed to regulate the opening of a purge valve fitted on the 

lift bags in accordance with the excess buoyancy available after suction breakout and to 

the variation in pressure difference b/w gas inside the lift bags and surrounding seawater 

pressure for a stable ascent. It can be controlled either mechanically (spring loaded) or 

electrically. But for adequate performance, it is better to control purge valves electrically. 

Therefore, in this thesis, a proportional integral and derivative (PID) algorithm is selected 

to regulate the purge valve opening based on the work of Farrell & Wood [32] as shown 

in Figure 7. In this case, the PID controller works according to the output from pressure 

sensor fitted on the lift bags, which can be used to estimate ascent velocity by converting 

pressure head into velocity head. Therefore purge valves with PID controller and sensor 
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(can be called an automatic purge valve) is considered as an integrated system fitted on 

the lift bags [33].  

 
 

 

                 Figure 7: Design of a secondary controller for regulating the purge valve opening 

 

c. Supervisory Controller  

As we have two sub controllers; the primary controller for regulating the flow rate of 

filling gas inside the lift bags and secondary controller for regulating the purging of gas 

through valves, now it is necessary to design a supervisory controller that can be used to 

monitor or switch between the primary controller and secondary controller according to 

the buoyancy requirement or ascent rate as shown in Figure 8 for a safe and stable 

salvage operation.  
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 Figure 8: 

Design of a supervisory controller for marine salvage 

 

 

            For example,  

1. For suction break out, increase the buoyancy by increasing the flow rate of filling 

gas inside the lift bags; i.e. to operate the primary controller. 
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2. During the ascent, reduce the ascent rate by opening the purge valves fitted on the 

lift bags; i.e. to operate the secondary controller. 

3. When the payload reaches near water surface, reduce the ascent rate by 

simultaneously operating the primary and secondary controller. 

4. etc…….. 

 

 

 

Hence the supervisory controller may be based on linguistic commands or the information (rules) 

provided by the salvor, which leads to the design of an intelligent controller for monitoring this 

task.  

 

Concluding Remarks  

 

In order to ensure hydrodynamic and structural stability during a salvage operation using 

buoyant systems, it is required to design two types of control sub systems; a primary controller 

for regulating the flow rate of filling gas inside the lift bags and a secondary controller for 

regulating the purging of gas through the valves fitted on lift bags. Then a supervisory controller 

should be designed to monitor or switch between these sub controllers according to the buoyancy 

requirement for a stable ascent.  
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2 Aim and Approach of the Research  
 
The primary aim of this research is to develop a numerical simulation tool for the dynamics of 

raising sunken vessel using buoyant systems by modeling the equation of motion in diving plane 

and regulating the motion variables by designing suitable control techniques to ensure a safe and 

steady ascent.   

 

A rigid body state space model will be developed after formulating the equation of motion in the 

diving plane for integrating the controller techniques. At the beginning, a proportional derivative 

(PD) controller will be designed as the primary controller for regulating flow rate of filling gas 

inside the lift bags according to buoyancy requirement. Then the control strategy will be 

extended to other classic controls like proportional integral and derivative (PID) controller  and 

sliding mode controller (SMC) for improving the performance. A sensitivity analysis will be 

performed on these controllers by taking account of considerable variation in hydrodynamic 

coefficients and suction breakout force. The performance of the controllers under the effect of 

external disturbances and uncertainties will also be investigated. Numerical simulations will be 

performed on a pontoon model in MATLAB & SIMULINK by solving the State Dependent 

Ricatti Equation (SDRE) in body-fixed coordinate system by using a numerical integration 

routine with variable time-step size.  

 

The performance of the already designed conventional sliding mode controller (CSMC) will be 

improved by integrating it with fuzzy logic algorithm to bring together the advantages of both 

controllers.  A two input fuzzy sliding mode controller (TIFSMC) will be designed first and 

simplified to single input fuzzy sliding mode controller (SIFSMC), for reducing the tuning effort 

and computational time. Fuzzy logic controllers will be designed using MATLAB’s fuzzy logic 

interface and the combined models will be developed in SIMULINK. The comparative 

performance of the fussy sliding mode controllers over CSMC will be investigated by 

performing numerical simulations on the pontoon model. 
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A PID controller will be designed as the secondary controller to regulate the purge valve opening 

fitted on the lift bags according to the excess buoyancy available after suction breakout and to 

the variation in pressure difference between gas inside the lift bags and surrounding sea water 

pressure for a stable ascent. Then a supervisory fuzzy logic controller will be designed to 

monitor or switch between the primary and secondary controllers based on the depth error and 

depth rate.  

 

Finally, in order to find the optimum location of lift bags on the vessel and to determine the 

controlled response of individual lift bags or the real case of lifting a sunken vessel using 

multiple controlled lift bags, the problem will be extended to a detailed flexible body modeling 

and control. For that a model analysis will be performed on a chemical tanker by approximating 

it as an Euler-Bernoulli beam with free-free boundary conditions and modal reduction techniques 

will be used to obtain the smallest state space model of individual lift bags. Supervisory fuzzy 

logic controller will be integrated with these state space models to obtain the controlled 

responses of individual lift bags.   
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3 Critical Review  
 

An extensive review of literatures available from sources such as internet, journals, research 

papers and books related to marine salvage, buoyancy systems, dynamics of marine vehicles, 

marine control systems and soil-structure interaction problems is presented. Those contributed to 

the present study are described briefly in the current section. As far as marine salvage operation 

is concerned, literature sources reporting systematic data and information useful for system 

modeling are relatively few. 

 

3.1 State-of-the-art of Marine Salvage  
 

In more recent years, the most publicized salvage was performed by an American treasure hunter 

Mel Fisher in very shallow water say 60 feet. He spent 17 years of his life in marine salvage 

industry. At this time, numerous individuals and groups have spent millions for doing research in 

this field with some success though majority are unpublished.  After World War I, a Royal Navy 

ship “Laurentic” which was sunk by a mine near Greenland, led to a salvage of 14 tons of gold 

worth $550,000,000 at current value in the form of 3211 ingots, leaving only 25 ingots behind.  

In the 30’s, 5½ tons of gold and 42 tons of sliver were salvaged from a sunken ship, the “Egypt”, 

by a private Italian company Sorina. During World War II, a remarkable salvor, Sir Williams 

retrieved a multimillion dollar cargo of gold from a sunken British ship “Niagara” by an 

observation bell, which was fired by Japanese during the voyage from Singapore to Australia. 

Most of these divers went free diving-using no equipment and staying submerged as long as their 

breath lasted (say 5 or 6 minutes) [43, 45, 86, 125]. It is observed that the divers can work and 

perform well in shallow water, though the practicality of divers decreases drastically with depth 

and the accompanying decompression. Divers have the advantages of human vision, judgement 

and manipulative skills. However, depth limitations, dive duration, risk, support requirements 

and cost often offset these advantages [121-125]. 
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In late 19th century, Mr. Denerouz invented a self contained underwater breathing apparatus and 

later in 1933, Commandant Yves Le Prieur developed a SCUBA system with a full face mask 

and free flow system. With the invention of SCUBA, the diving became a recognized method for 

salvage as well as deploying and recovering subsea equipments. The current experimentation and 

research in advanced diving systems utilizing pressurized habitats, lock-out saturated diving 

techniques and the various combinations for deep diving [43, 121-122]. 

 

Another milestone in the history of marine salvage is the appearance of manned submersibles 

and ROVs. Manned submersibles and atmospheric diving systems take man deeper than ambient 

pressure diving and incur no decompression debt. Perry developed a relatively small exploratory 

submersible PC3B that was used to trace a sunken atomic bomb off Spain. Later highly 

sophisticated submarines capable of diving up to 20000 ft like Woods Hole “Alvin” and 

Ifremer’s “Nautile” are appeared. These submarines are capable of exploring 97% of the bottom 

of the sea. The manned submersibles are generally limited to 1000 meters. Also they have short 

endurance due to human physical and psychological limitations and are costly to operate because 

of requirements to to ensure human safety. Owing to the dangers associated with deep-sea 

diving, Remotely Operated Vehicles (ROV) linked to the surface by umbilical started to replace 

human divers in the late 1970’s, to carry out observation, inspection and recovery tasks. One of 

the most widely used ROV was the eyeball RCV 225 and later ROVs ahave progressed to some 

very sophisticated equipment like AT & T’s “Scrab”  capable of cutting and burying cable, 

digging trenches and making surveys. Then hybrid ROVs like “Mantis” having dual capability of 

being used with a pilot and/or having an autopilot have been developed.  These ROVs can 

perform complicated tasks via tele-operation by human pilots on the surface vessels. However, 

the dragging force on the tether, time delay and operator fatigue make them difficult to operate 

and the daily operating cost is still expensive. Further developments in the field of sub-sea 

robotics led to the Autonomous Underwater Vehicles (AUV). Such AUVs benefit from an on-

board autonomous control system and can be linked to the surface via an acoustic modem to 

allow for the monitoring of the vehicle during a mission. They are more mobile and could have 

much wider reachable scope than ROVs. On-board power and intelligence could help AUV self-

react properly to changes in the system and its environment, thus avoiding many disastrous 
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situations. With the continuous advancements in navigation, control, artificial intelligence, 

material science, computer, sensor and communication systems, AUVs have become a very 

attractive platform in exploring the oceans, and numerous AUV prototypes have been developed, 

such as ODIN, REMUS, and ODYSSEY etc [43, 45, 86, 121-125]. 

 

The primary method of salvaging a sunken vessel is by means of providing self lift.  The 

conventional method of obtaining self-lift is by introducing compressed air in to a compartment 

or tank. To do this, initially the space that is to be dewatered must be sufficiently sealed to hold 

air pressure of few pounds over that of ambient sea pressure. Main ballast tanks that are intact 

can be blown down if the vents are closed and water may have expelled through the opening at 

the bottom. Another recent development has been the application of generated in-place foams to 

displace water from within salvage objects that considerably reduce the external lift requirement. 

The depth range for the use of foam will be from 400 to 600 feet with water temperatures 

ranging from 290F to 700 F.  A well known example was the use of two-component-urethane 

foam supplied in self-contained pressurized containers. When viewing the self lift aspects of past 

salvage operations, it is revealed that self-lift alone was never successful except when the vessel 

was near enough to the surface to be entered through hatches which were, or could be extended 

via cofferdams to a point above water. A well known example for this case is the unsuccessful 

salvage of submarine ‘S-5’ (875 tons) in 1920 as it discarded the use of any external lifting 

forces, while included only self-lift and required removal of water from all compartments and 

tanks. It is concluded that the external lift may be the deciding factor that makes the salvage 

success or failure [121-123].  

 

Source of external lift includes surface vessels such as lift ships and barges, floating cranes and 

submersible pontoons. Salvage ships, lift craft and cranes use purchase lift systems to raise 

whole or parts of sunken ships. Navy salvage ships can bow lift up to 200 tons, lift craft 600 tons 

over the stern and commercial cranes over 7,500 tons. Some sheer leg cranes can lift over 3,600 

tons. Combining crane and sheer leg purchases with deck purchases will increase the lift 

capacity. Lift ships have sheaves at the bow through which the lift cables are led to winches on 

deck. These lifting cables are hauled in by the winches or with a block and tackle purchase 
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arrangement. Lift barges have several lift stations in each side and are generally used in pairs. 

The wire cable slings are rigged between them and hoisting is accomplished by block and tackle 

power on deck. Lift ships and barge have floodable spaces permitting large changes in draft, in 

combination with tidal action to make lifts. U.S.Navy has raised sunken submarine ‘USS F-4’  

having dead weight 400 tons off Honolulu harbor in 1915 from a depth of 306 feet by the 

method of sweeping wire cables and chain slings under the hull and lifting with the scows. By 

using a command lift ship USNS MIZAR, U.S. Navy has recovered a deep research vessel, 

ALVIN from a depth of 5051 feet of Cape Cod, Massachusetts with the aid of a manned deep 

diving submersible DRV ALUMINAUT by attaching lift lines with her two manipulators and 

lifted to the surface in 1969. British salvage operations recovered the wreck of HMS THETIS by 

using a specially designed lift ship that literally hauls the sunken vessel from bottom by cables at 

the surface in 1939. TRUCULENT was salvaged in 1950 by using two large lift ships each 

having 600 tons lift capacity and also blowing out the main ballast tanks.  In 1966, a German 

sunken submarine ‘HAI’ was raised to the surface by a sea-going crane ‘MAGNUS III’ having 

improved sea keeping qualities. SMIT [107] has lifted a sunken Russian nuclear submarine 

‘Kursk’ using a semi submersible barge ‘Giant 4’ and returning her safely to the port of 

Murmansk. With the assistance of floating sheerlegs, SMIT salvage [107] removed the wreck of 

a 17645 DWT chemical tanker ‘Vicuna’ that had undergone an explosion and sank in the port of 

Paranagua, Brazil, while the ship was discharging methanol at Cattalini pier. Floating cranes are 

generally found to be less seaworthy than other floating vessels because of the height of the 

crane boom, though they have the advantage in boom reach [121-125].  

 

Submersible pontoons can provide a major external lift force of pre calculated amounts. Once the 

attachment is made, the pontoon become a valuable tool as it is not affected by sea state and can 

be left for long periods while other pontoons are being rigged. With the aid of salvage pontoons, 

U.S.Navy has recovered sunken submarines ‘S-4’ in 1924 and ‘S-51’ in 1925. Salvage pontoons 

are found to be a suitable choice for lifting sunken vessels and were used for the recovery of 

sunken submarine SQUALUS in 1939. In this case, control pontoons were used for limiting the 

distance the ship was lifted. With this invention, there had been a significant change in the 

techniques for raising sunken submarine within the limits of diving capability. But the problem 
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with the use of salvage pontoons is the lack of experienced personnel and realistic training. In 

order to gain experience, in 1969, U.S. Navy conducted an exercise of lifting a sunken submarine 

‘ex-HAKE’ from a depth of 100 feet by using salvage pontoons in Chesapeake Bay.  With this 

experience, U.S. Navy successfully righted and refloated a capsized destroyer escort hulk 

“REUBEN JAMES” with salvage pontoons in 1970. By the combined use of salvage pontoons 

and floating cranes, U.S. Navy successfully lifted a sunken harbor tug YTM-538. Collapsible 

pontoons of rubber and fabric have been used for test and evaluation basics only as in the salvage 

exercise involving ex-German submarines U-1105 and U-3008. Their advantage lies in the ease 

of transporting them to the salvage site and of handling them during placement, but they are 

vulnerable to damage and unreliable. It is noticed that collapsible pontoons of multi-ply 

construction have proved to be satisfactory after transporting them in commercial containers 

[121-123]. 

 

Lifting items with the ROV can be the simplest and most reliable type of recovery method 

(although the lift capacity is very small). ROVs may lift by gripping the target with its 

manipulator or through the application of a special recovery tool. The ship must recover the 

vehicle with the target attached or the target must be re-rigged for recovery when the ROV nears 

the surface. With the use of ROVs, SMIT Salvage team [107] succeeded in lifting the Japanese 

fishing vessel ‘Ehime Maru’, which sank after a collision with a submarine from a depth of 600 

meters. SMIT [107] has developed a diverless pollutant recovery system ‘POLREC’ which is 

capable of recovering oils, chemicals and other pollutants from wrecks in very deep water. The 

POLREC system utilizes a remote operated offloading unit that is cost effective as well as 

enables a diverless solution for the recovery of pollutants. By using POLREC system, SMIT 

Salvage successfully recovered the 4000 tonnes of styrene cargo on board of the chemical tanker 

‘Ievoli Sun’ that sank during a storm in the Channel near France at a depth of 95 meters. The 

POLREC system has also proved to be cost effective in the successful recovery of pollutants 

from tanker wrecks off the Korean and French coast. These kind of ROVs, can be used in higher 

water depths and they are highly controllable. Nevertheless, the major drawback is the lift 

capacity of the vehicle as it is limited by the size and power of the thrusters used for the 

propulsion. 
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Another threshold is the use of inflated bags for lifting sunken objects in an immersed fluid. 

These range from ballast baskets to pontoon bags, air bags and lift bags with a lifting capacity 25 

kg to 600 metric tons and can be used as a means of lifting sunken objects without the use of 

heavy cranes and equipment [32, 61, 86, 98, 107, 113-119, 125]. These kinds of buoyant systems 

can be used for lifting any size of objects from any depth with comparatively less costs. But the 

problem with the use of lift bags is how to control the vertical acceleration during the ascent. In 

order to achieve some control over the ascent, some of the modern lift bags are fitted with 

manual dump valves that are attached to a lanyard for manually controlling the purging of gas by 

a diver. However, a problem arises when the lift bags being in the dynamic marine environment 

start to spin on their vertical axis due to the high current and seas, which causes the umbilical to 

become wrapped around the bag and cuts off the air vent and  leads to an uncontrolled ascent. As 

a remedy for these cases, Farrell & Wood [32] designed an automatic purge valve to control a lift 

bag’s ascent by limiting the expansion of gas through the valve installed on top of the lift bag. 

The automated purge valve monitors the changes in pressure to determine the ascent velocity of 

the lift bag and the resulting velocity is then evaluated by a proportional, integral and derivative 

(PID) control algorithm that outputs a signal to a purge valve installed on the top of the lift bag. 

The purge valve then opens or closes to control the purging of the expanded air volume and 

thereby allowing a smooth controlled ascent. The main drawback of this automatic purge valve 

system is that it never accounts the effect of suction breakout and hydrodynamic forces in the 

system modeling. Also the process of filling gas inside the lift bags is not controlled. Hence a 

safe and stable salving operation cannot be ensured. Nicholls-Lee et al. [86] investigated the 

concept design of a light weight cryogenic buoyancy system for the controlled removal of heavy 

objects from the sea bed. The system can be used to lift or lower large displacement objects 

under full remote control for a maximum depth of 350 m. But the limitation of this system is that 

in the modeling, they never include hydrodynamic forces in the system of equations and 

formulated only the equation of motion in vertical direction (heave), hence it is not suitable for 

controlling the pitch motions of the payload. Drobyshevski [26] presented stability aspects of up 

righting a capsized ship in the inverted mode and derived a mathematical formula for estimating 
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the maximum lift force supported by the lift bags.  

 

From the literature review, out of the various salvage techniques, the buoyant systems or lift bags 

are found to be the most suitable choice for lifting any vessel from any depth with 

comparatatively less costs. But the main problem associated with the use of lift bags is how to 

control the ascent velocity and pitch angle during the ascent. It seems that there is no simulation 

system currently available for modeling and control of buoyant systems to salvage sunken 

vessels from sea bottom. Therefore a further literature survey is carried out about the modeling 

dynamics of raising sunken vessels using buoyant systems and how to maintain hydrodynamic 

stability by designing suitable control techniques to ensure a safe and stable ascent as explained 

in the next section.  

 

3.2 Modelling Dynamics and Selection of Industrial Control Systems  
 

The mathematical formulation for the salvage dynamics and relative performance of industrial 

control systems adaptable for a safe and viable salvage operation has been investigated by 

conducting a literature survey about dynamics of underwater vehicles, marine control systems, 

soil-structure interaction problems, buoyancy systems and robotics.  

 

A critical review of literatures related to dynamics of marine vehicles, marine control systems 

such as Proportional Derivative controller (PD), Proportional Integral and Derivative controller 

(PID), Sliding Mode Controller (SMC), Fuzzy Logic Controller (FLC) and Neural Network 

(NN) has been carried out. Those which contributed to the present study are briefly described 

below. 

 

Underwater vehicle dynamics is highly nonlinear, coupled and time-varying. In addition to these, 

the hydrodynamic parameters are often poorly known and the vehicle may be subjected to 

unknown forces due to ocean currents. These difficulties make the control problem challenging. 

A well established model for marine vehicles in the control communities at present time is 
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described in Fossen [36] and Fossen [37]. It is a nonlinear six degree of freedom (DOF) model, 

written as an Euler-Lagrange system where the main force contributors are divided into 

separated terms. This makes the system easy to follow and a popular tool for nonlinear control 

and observer design. Perez and Fossen [92] derived the kinematic models that are used for the 

transformation of motion variables and forces between different coordinate systems used in both 

sea keeping and maneuvering problems. An advantage of this formulation is the use of matrix 

notation and operations that can be easily carried out in MATLAB. Many solutions have been 

proposed to solve the nonlinear complex problem of three dimensional tracking of underwater 

vehicles. A common approach applied has been to linearize the nonlinear dynamics about certain 

operating points usually given by the forward speed. Fjellstad [34] investigated the automatic 

feedback control of unmanned underwater vehicles (UUV). Euler quaternions are used for 

representing the singularity free attitude representation. It is found that, Euler parameters provide 

less computational effort in the calculation of kinematic equations in comparison with Euler 

angles. Fossen & Johansen [38] presented a survey of control allocation methods for over 

actuated vessels by modeling them as optimization problems, in order to minimize the use of 

control effort subject to actuator rate and position constraints, power constraints as well as 

operational constraints. Fossen & Paulson [39] derived a direct adaptive autopilot based on 

feedback linearization for the steering of ships. It is observed that the optimal course-keeping 

autopilots are superior to conventional autopilots in terms of performance and fuel economy. 

Paulsen et al. [89] derived an output feedback control system with a wave filter for providing 

asymptotic stability for marine vehicles. Simulation results shows that the rudder action required 

for this kind of controller is significantly less compared to PD controllers without wave filter. 

Fossen and Perez [40] addressed the problem of positioning and heading control of ships and 

offshore rigs by using Kalman filter and thus avoids the oscillatory wave induced motion from 

velocity and position measuring instruments. 

 

Stansbery & Cloutier [110] developed a State Dependent Riccati Equation (SDRE) control 

method to maneuver a space craft in to the close proximity of a tumbling target. To demonstrate 

the performance of the controller, a six degree of freedom model was formed.  The resulting 

controller produced desirable response to a wide range of target attitude variations as well as 
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position offsets from the target. Caccia & Veruggio [13] designed a general purpose guidance 

and control system based on an outer control loop generating reference values for inner speed 

controllers to execute user-defined task functions for unmanned under water vehicle autopilot 

performing auto heading, auto depth and auto speed operations. This approach, which does not 

require any pre planning, proved its feasibility in controlling the vehicle's motion in the presence 

of a high uncertainty in position estimates, typical of underwater robotics, and, because of its 

Lyapunov-based nature, seems to be suitable for accomplishing reactive guidance tasks in 

unknown environments. Hong-jian et al. [51] developed a semi physical virtual simulation 

system, which acts as a capable tool for long range training and intelligent behavioral operation 

for an AUV. 

 

Among various control techniques, the proportional-integral-derivative (PID) controller is found 

to be one of the dominant classical control techniques suitable for linear underwater vehicle 

control systems. But tuning the control coefficients KP, KI, and KD for a desired performance is 

one of the difficult problems faced by control engineers. Ziegler & Nichols [150] has proposed a 

classical technique for determining the optimal combination of three control coefficients. Lee et 

al. [72] designed a 6 DOF PID controller for determining the attitude and position of AUVs. 

They proposed a Clonal Selection algorithm for tuning the control coefficients. It is observed 

that the proposed technique provides better responses than the existing Ziegler-Nichols technique 

with respect to the settling time, overshoot and an affinity in submerging under water and turning 

the yaw angle through simulation. Bakkeheim et al. [9] used a Lypunov function as a design tool 

on a Proportional- Integral (PI) controller for marine thruster speed control by integrator 

resetting in order to improve the transient performance of the system with dynamic controllers. 

Alfro-Cid et al. [3-4] developed two PID controllers for the navigation and propulsion systems of 

an oil platform supply ship- Cyber Ship II. The control parameters have been optimized using 

genetic algorithms. Moreira et al [83] developed a two – dimensional path following guidance 

and control system for an autonomous marine surface vehicle, using a way- point guidance 

system, which is formulated based on the line of sight projection algorithm. The speed controller 

is achieved through state feedback linearization and heading controller is obtained through a 



 
 

21 
 

PID.  It is seen that the presented approach can be extended to higher dimensional control and 

guidance problems. 

 

The sliding mode controller (SMC) due to its robustness against modeling imprecisions and 

external disturbances has been successfully applied to the dynamic control of underwater 

vehicles. The SMC is a variable structure controller that restricts the system states inside a 

certain subspace of the whole state space and makes them asymptotically converge to their 

equilibrium point. It became widespread after the publication of a book by Itkis [57] and a paper 

by Utkin [126]. Yoerger and Slotine [139] and Healey and Lienard [49] at the Naval 

Postgraduate School (NPS) were among the first to demonstrate the applications of SMC to an 

AUV. Yorger & Slotine [139] developed a sliding mode depth controller for trajectory control of 

underwater vehicles neglecting cross coupling terms. They have investigated the effects of 

uncertainty of the hydrodynamic coefficients and negligence of cross-coupling terms by 

conducting computer simulations. Healey and Lienard [49] proposed multi variable sliding mode 

autopilot for the combined steering, diving and speed control of Autonomous Underwater 

Vehicles (AUV) with decoupled design. The proposed controller provides stability in vertical 

plane. Cristi et al. [22] applied the adaptive sliding mode control on an Autonomous Underwater 

Vehicle (AUV) in the diving plane, in which they used the adaptive control for compensating 

linear parameter uncertainties and the sliding mode control for handling the nonlinear systems. 

Fossen [37] described the use of a multi variable sliding mode controller in dynamic positioning 

of remotely operated vehicles (ROV). Dougherty & Woolweaver [25] investigated the efficacies 

of sliding mode control on the MUST vehicle. From the analysis it is found that sliding mode 

control has proved its capability in handling an uncertainty of the order of 50% in the estimation 

of the vehicles hydrodynamic parameters in the case of the heading and depth control of 

underwater vehicles. Jomes-Rui et al. [60] described the modeling and control of a remotely 

operated vehicle (ROV) using sliding mode controller and PID controllers. From the analysis it 

is found that results obtained from sliding mode controllers are much better than PID controllers.  
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Even though SMC has been well known for its robustness to parameter variations, it has the 

inherent problem of chattering phenomenon. This high-frequency control activity causes high 

heat losses in electrical power circuits and premature wear in actuators. In addition, the high 

control activity may excite unmodelled high-frequency dynamics, which in turn causes 

degradation to the controller performance. To overcome the undesired effects of chattering, 

Slotine & Li [105] proposed the adoption of a thin boundary layer neighbouring the switching 

surface, by replacing the sign function by a saturation function. The boundary layer approach 

makes the control activity continuous within the boundary layer and discontinuous outside the 

boundary layer. The adoption of a properly designed thin boundary layer has proven effective in 

completely eliminating chattering, however, leading to an inferior tracking performance. 

McGookin [80] presented the simulation results of a guidance and control system for homing 

and docking operations of an autonomous under water vehicle (AUV) using an optimal higher 

order sliding mode controller based on the State Dependent Riccatic Equation (SDRE). It is seen 

that higher order sliding mode controllers provide a minimum of controller effort and avoid 

chattering. Lee et al. [72] presented a discrete - time quasi sliding mode controller for the depth 

and contouring control of an autonomous underwater vehicle VORAM in the presence of 

parameter uncertainties and a long sampling interval.  It is observed that the controller makes the 

system stable without any observer even in the presence of system uncertainties and external 

disturbances.  Salgado & Jouvencel [100] proposed a higher order sliding mode controller for the 

depth control of a torpedo shaped AUV “TAIPAN” to avoid the chattering effects as inherently 

seen with conventional sliding mode controller. The results are compared with a conventional 

sliding mode controller and a PD controller. It is found that higher order sliding mode controller 

is faster and precise than other control laws. Soylu et al. [108] designed a chattering free sliding 

mode controller for the trajectory control of remotely operated vehicles (ROVs). The controller 

uses an adaptive term instead of the conventional discontinuous switching term, which 

continuously compensates for the unknown system dynamics caused by poorly approximated 

non linear hydrodynamics or sudden environmental loads. 

 

The process of obtaining optimal performance from a SMC involves tuning important design 

parameters associated with it. For an inexperienced designer, this parameter tuning process can 
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be extremely tedious and time consuming. Therefore parameter optimization techniques like 

Genetic Algorithm are used nowadays for an optimum performance. This method of parameter 

optimization provides solutions for a given problem by emulating the natural evolution process 

of species. McGookin & Murray-Smith [81] developed a genetic algorithm for the optimization 

of a sliding mode controller for the diving and heading maneuvers of a linear submarine model. 

From the analysis it is shown that for submarine applications, Genetic Algorithms provided a 

much faster method for obtaining an optimum design than conventional tuning based on trial and 

error methods. 

 

 

Because of the possibility to express human experience in an algorithmic manner, fuzzy logic 

has been largely employed in dynamic control of underwater systems. Fuzzy logic control (FLC) 

has become a developing area of research after the introduction of fuzzy logic by Zadeh [147]. In 

Fuzzy logic controllers, the controlling action is through artificial intelligence i.e. linguistic 

expressions (fuzzy rules) based on the knowledge of operator.  Therefore FLC is suitable for 

controlling the systems with complex, ill-defined, time varying and non linear dynamics. The 

theoretical basis of fuzzy logic control (FLC) is that any real continuous function over a compact 

set can be approximated to any degree of accuracy by the fuzzy inference system. A fuzzy 

system provides an effective approach to handle nonlinear systems even without knowing the 

proper system dynamics by the smooth approximation of a nonlinear mapping from system input 

space to system output space. DeBitetto [24] has investigated a 14-rule fuzzy logic controller for 

the depth control of a UUV. Ren & Yang [97] proposed a novel approach to meet the attitude 

control of a fully submerged hydrofoil catamaran through a Tagaki- Sugeno (T-S) fuzzy 

interpolation system. The effectiveness of the fuzzy controller is demonstrated by conducting 

simulation on the vessel “HB200BA1”.  However, determining the linguistic rules and the 

membership functions requires experimental data and, therefore, very time-consuming and it is 

difficult to determine response time and stability. 

 

Due to the similarity between the Fuzzy logic control & Sliding mode controller, there is a 

growing technique to integrate the advantages of FLC & SMC to acquire stability, optimum 
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performance and robustness is an acting area of research in control engineering, which leads to 

the design of fuzzy sliding mode controller (FSMC). The first approach taken by many 

researchers is to use FLC for the determination of the movement of the sliding surface of a 

classical SMC. Lee et al. [75] developed a SMC with a fuzzy variable boundary layer. In this 

controller, the absolute value of the switching function and the angle between the switching 

function and state vector were used as inputs and the thickness of the boundary layer was 

obtained as the output. Choi et al. [17] suggested an important study, where a translation and 

rotation scheme has been defined for second-order systems and the existence of sliding mode 

with the linear time-varying sliding surface has been proved. Fung et al. [41] proposed a FSMC 

for a slider-crank mechanism, where switching function and its derivative were taken as inputs 

and change of control gain as output. Yagiz and Hacioglu [135] developed a fuzzy sliding mode 

controller in which a fuzzy logic algorithm is used for dynamically computing the sliding surface 

slope with respect to the error states. Robustness of the proposed controller is investigated by 

implementing it on a planner robot and the results have been compared with a conventional SMC 

and a PID controller. It is found that FSMC has supreme trajectory tracking ability compared to 

the other two methods without losing its robust behavior. Eksin et al. [27-29] introduced a single 

input single output FSMC with a self tuning sliding regime, where the slope of the sliding 

surface is continuously updated by a new time-varying coefficient. The proposed method shows 

good transient response over classical controller techniques and reduces tuning effort. Zhang et 

al. [148] proposed a fuzzy time-varying sliding mode controller with global robustness for non 

linear systems having uncertainties.  Yorgancioglu and Komurcugil [141] proposed a single 

input fuzzy logic controller for continuously computing the slope of the sliding surface, with the 

result that the sliding surface is rotated in such a direction that the tracking performance of the 

system under control is improved. They have concluded that the proposed fuzzy moving sliding 

surface approach with one dimensional rule base significantly reduce the large number of 

linguistic fuzzy rules and hence reduces tuning effort and computational time in  comparison 

with conventional controllers. In order to enhance the tracking performance inside the boundary 

layer, some adaptive strategy should be used for uncertainty/disturbance compensation. The 

problem of compensating uncertainty or disturbance in the dynamic positioning of remotely 

operated underwater vehicles is considered by Bessa et al. [11] by implementing an adaptive 
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fuzzy sliding mode controller for handling the stabilization and trajectory tracking problems. The 

adopted approach is based on the sliding mode control strategy and enhanced by an adaptive 

fuzzy algorithm. The stability and convergence properties of the closed-loop system are 

analytically proved using Lyapunov stability theory and Barbalat’s lemma. It is observed that the 

incorporation of an adaptive fuzzy algorithm within the boundary layer made a better trade-off 

between tracking performance and chattering. Xin and Zaojian [133] developed a fuzzy sliding 

mode controller with adaptive disturbance approximation to deal with the tracking regulation of 

an underwater robot, where the stability and convergence of the closed loop system is satisfied 

by Lyapunov stability condition. Second approach for improving the performance of SMC is to 

adaptively tune the controller gain with respect to error states by a FLC. Abdelhameed [1] has 

proposed a technique to adaptively tune the switching gain of the sliding mode controller by 

using a fuzzy logic system, where a chattering index and the absolute values of the sliding 

function and its first derivative are used as inputs. Ha et al. [47] presented a fuzzy tuning 

approach to SMC for tracking-performance enhancement in a class of nonlinear systems. The 

sliding surface can rotate or shift in the phase space in such a direction that that tracking 

behavior can be improved. Tokat et al. [120] proposed new approaches for on-line tuning of the 

linear sliding surface slope in sliding mode controllers. A new switching function definition was 

made in new coordinate axes for better transient response. They observed that by adaptively 

tuning the control gain by fuzzy logic, the performance of the conventional sliding mode 

controller can be considerable improved such as reducing chattering, better tracking performance 

and good transient response.  

 

Almost independently from above nonlinear control researches, due to the approximation 

capacities of neural networks (NN) for nonlinear mappings and their learning characteristics, 

considerable interests have been taken on the applications of neural networks to the subsea 

control problems [23, 54-56, 69-70, 90, 128, 130, 143-146]. Using NN in constructing 

controllers has the advantage that the dynamics of the controlled system need not be completely 

known. There are two main approaches in NN, one is learning with a forward model and the 

other is by direct learning. In the former approach, generally, the forward model is trained by the 

output error or state error and then used for gain derivation, while in the latter approach, the state 
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or output error is used directly to map the desired control input. Yuh [144] developed a neural 

network controller using a recursive adaptation algorithm with a critic function. (reinforced 

learning approach). The particularity of this controller is that the system has the capability to 

adjust itself online and directly without an explicit model of vehicle dynamics. The common 

feature of these neural network control schemes was just to approximate the smooth uncertainties 

of the vehicles’ dynamics using general multi-layer neural networks, and the networks’ weights 

values were updated by back propagation algorithm. Li & Lee [76] presented a semi-globally 

stable neural network adaptive control scheme for diving control of an AUV, where the 

unstructured uncertainties in the pitch motion of the vehicle are assumed to be unbounded, 

whereas they still satisfy certain growth conditions characterized by ‘bounding functions’. 

Adaptation laws for the unknown bounds of uncertainties are derived from Lypunov-based 

method as well as the update laws of the networks’ weights values. Under a certain relaxed 

assumptions on the control gain functions, the presented control scheme can guarantee that all 

the signals in the closed-loop system are uniformly ultimately bounded (UUB). Ishii et al. [56] 

have proposed a neural network based control system called “Self-Organizing Neural-Net-

Controller System” (SONCS) for the heading control of an AUV “Twin-Burger”. They have 

used a quick adaptation method of the controller called “Imaginary Training” to improve the 

time-consuming adaptation process of SONCS. However, it is difficult to obtain analytical 

results concerning with the stability of networks [70]. In practice, while we construct a neural 

network to approximate a given unknown dynamics, we could not exactly determine the number 

of hidden neurons or the basis of given unknown function a priori. Therefore, there always 

remains certain mismatching, that is the network’s reconstruction error. For this reason, 

robustness has become one of the most important issues in the neural network control problems. 

Also NN-based controllers have the disadvantage that no formal mathematical characterization 

exists for the closed-loop system behavior. The validation of the final design can only be 

demonstrated experimentally. 
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3.3 Summary of Literature Survey  
 

The effectiveness of various methods for recovering sunken vessels from sea bottom is examined 

and relative performance of industrial control systems adaptable for under water dynamics has 

also been investigated and leads to the following conclusions: 

 

• Buoyant systems can be used for lifting any vessel from any depth with comparatively 

less costs. But control is the biggest problem. 

 

• PD & PID controller are the simple classic controller technique suitable for linear 

deterministic systems, but they are not suitable for non linear systems involving 

uncertainty and external disturbances.  

 

• SMC is found to be a suitable choice for handling non linear underwater problems having 

uncertainty arises due to external disturbances such as wind, current etc. SMC shows 

robustness, insensitiveness to parameter variations and external disturbance and good 

transient performance, but chattering is the disadvantage.  

 

• FLC is the intelligent control technique suitable for complex systems where the  

system dynamics is properly unknown. Human experience can be incorporated, where it 

is difficult to check the stability and robustness, also expert knowledge and cycles of trial 

& error is required for the desired performance.  

 

• Neural Network is much a complex intelligent control technique. Not suitable for real 

time control and there is unpredictability in training time.  
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• Due to the adaptive nature, FSMC is found to be the optimum choice for handling non 

linear underwater problems involving uncertainty, external disturbances, system 

modeling errors etc and avoids chattering associated with SMCs.  

 

3.4 Contributions of the Thesis 

 
• A mathematical formulation for the dynamics of raising sunken vessels using buoyant 

systems is developed according to the principles of submarine dynamics, soil-structure 

interaction problems and thermodynamics and a linear mathematical state space model is 

formulated in Section 4.1 for integrating the primary controller based on the two degree 

of freedom equation of motion in diving plane.  

  

• Purge valve Modelling is carried out according to the work of Farell & Wood [33] in 

Section 4.2.  

 
• The relative efficacies of various controller techniques as a primary controller for 

regulating the gas flow rate are investigated in this thesis. Initially a PD controller is 

designed to regulate the flow rate of filling gas inside the bags in Section 5.1.1 and then 

extended to a PID controller in Section 5.1.2 for superior performance.  Later a 

conventional sliding mode controller is designed for the same purpose with robustness 

and capability to handle external disturbance, uncertainty and modeling errors in Section 

5.1.3. The performances of these three classic controllers are investigated by conducting 

numerical simulation case studies on a pontoon model.  

 
• The performance of the conventional sliding mode controller is improved by integrating 

it with fuzzy logic algorithms for dynamically computing the sliding surface slope and to 

adaptively tuning the controller gain to make fuzzy sliding mode controllers. A two input 

fuzzy sliding mode controller and a single input fuzzy sliding mode controller are 

designed in Section 6.1.1 and Section 6.1.2. The effectiveness of the proposed controllers 
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over conventional SMC is investigated by performing simulation on the pontoon model 

in Section 6.2.   

 

 
• A PID controller is designed as the secondary controller to regulate the purge valve 

opening according to the excess buoyancy available after suction breakout and to the 

variation in pressure difference between gas inside the lift bag and surrounding sea water 

pressure for a stable ascent in Section 7.1.   

 

• A supervisory fuzzy logic controller is designed in Chapter 8 to monitor or switch 

between the primary and secondary controllers for a safe and stable salvage operation.  

 

• In order to find the optimum location of lift bags on the vessel and to determine the 

individual response of lift bags or to use multiple controlled lift bags, the rigid body 

modeling & control is extended to flexible body modeling & control in Chapter  9. A 

chemical tanker is appropriately selected for this purpose. 

 

• Simulation programs are written in MATLAB & SIMULINK.   
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3.5 Organisation of the Thesis 
 

The thesis is organized in to 11 chapters. Their contents are outlined as follows:  

 

Chapter 4 is the rigid body mathematical modeling. In this section, a mathematical model 

describing the rigid body dynamics of lifting a sunken vessel using gas inflating systems will be 

presented and analyzed with respect to hydrostatic force due to weight, buoyancy and suction 

breakout and hydrodynamic forces in vertical diving plane. Here modeling is carried out in such 

a way that the variation of additional buoyancy provided by lift bags due to change in gas flow 

rate is taken as the control parameter. Purge valve modeling is carried out separately by 

considering the excess buoyancy available after suction breakout and to the pressure difference 

between gas inside the lift bags and surrounding sea water pressure in accordance with the depth 

variations for a stable ascent. Here purge valve area is considered to be the control parameter.  

 

Chapter 5 is the primary controller design by conventional approach. A PD controller is initially 

selected as the primary controller for regulating the flow rate of filling gas inside the lift bags 

and then extended to PID and SMC for improving the performance.  The effectiveness of these 

classic controllers is investigated by conducting numerical simulations on a pontoon model.   

 

Chapter 6 presents the modification of primary controller by artificial intelligence.  In this 

section a new design approach is implemented by integrating fuzzy logic algorithm with the 

sliding mode controller to bring together the advantages of both controllers. The performance of 

the CSMC is improved by dynamically computing the sliding surface by a FLC and adaptively 

tuning the controller gain by another FLC. A TIFSMC is designed first and simplified to 

SIFSMC for reducing the tuning effort and computational time. Computational simulations are 

carried out on the pontoon model to show the comparative performance of fuzzy sliding mode 

controllers over conventional sliding mode controller.  
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Chapter 7 discusses the design of the secondary controller. A PID controller is selected as the 

secondary controller to regulate the area of purge valve opening in accordance with the excess 

buoyancy available after suction breakout and according to the variation in pressure difference 

between the gas inside the lift bags and surrounding sea water pressure for a stable ascent.  

 

Chapter 8 covers the design of supervisory controller. A fuzzy logic controller is designed to 

monitor or switch between the primary and secondary controllers for a safe and stable salvage 

operation.  

 

Chapter 9 presents the flexible body modeling and control approach for the marine salvage 

operation. In order to find the optimum location of lift bags on the vessel and to find the 

controlled responses of individual lift bags, the rigid body modeling & control is extended to a 

detailed flexible body modeling & control. In this section, the vessel or payload is considered as 

an Euler-Bernoulli beam with free-free boundary conditions and the supervisory fuzzy logic 

controller is integrated to the smallest state space models of individual lift bags to obtain the 

controlled responses.  

 

Chapter 10 describes the analysis of all numerical simulation results and leads to a number of 

conclusions.   

 

Chapter 11 covers the future recommendations in the area of this research.   

 

Appendix A contains the estimation of additional buoyancy required for inflating 

 

Appendix B presents the derivation of analytical Solution of Euler- Bernoulli Beam with Free- 

Free boundary conditions. 
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4 Rigid Body Mathematical Modelling 

 
Ship calculations for the salvaging operation are typically less detailed than those in the 

preliminary design, which depends on the available information pertaining to a particular ship 

scenario. A number of assumptions are usually required to simplify the problem. Forces acting 

on a sunken vessel consist of hydrostatic (i.e. weight, buoyancy and suction breakout force) and 

hydrodynamic components. The variation of hydrodynamic forces with velocities, accelerations 

and control surface deflections are expressed in terms of hydrodynamic coefficients.  These 

coefficients can be derived from physical model tests or theory, the number of coefficients used 

being subject to the amount of data available, past experience etc. The most significant task in 

this thesis is how to model the salvage dynamics in a form which is suitable for integrating 

control techniques to ensure hydrodynamic stability during the ascent. Due to the coupled nature 

of salvage dynamics and to integrate controller techniques, the mathematical modeling is carried 

out as two subsystems. In the primary model, the salvage dynamics is formulated in such a way 

that the variation in additional buoyancy due to flow rate of filling gas inside the lift bags is the 

controlling force with respect to hydrostatic force due to weight, buoyancy and suction break out 

and hydrodynamic forces. In the secondary model, the purging of gas through the valve is taken 

as the contol parameter by accounting the excess buoyancy available after suction break out and 

to the variation in pressure difference between gas inside lift bag and surrounding sea water 

pressure for a stable ascent. The purpose of the simulation system is to bring the vessel with the 

lift bags just below the surface by the supervisory controller and towed to the nearby port.  
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4.1 Primary Model of a Raising Vessel 
 

To describe the motion of a raising vessel, two reference frames are considered as seen in Figure 

9, including the earth - and body-fixed frames. The origin of the body-fixed frame coincides with 

the centre of gravity (Cg) of the vessel being in the principle plane of symmetry. The origin of 

the earth-fixed coordinate system is considered to be fixed at sea bottom. The positions and 

orientations of the vessel (kinematic variables) are described with respect to the earth-fixed 

coordinates whereas the linear and angular velocities of the vessel (dynamic variables) are 

defined in body-fixed coordinates. The transformation between the two coordinate systems is 

done by Euler angles (Φ, θ, ψ) or by using kinematic relations [6, 36-37].  

 

To describe the dynamics of the sunken vessel ascending from the seafloor, it is preliminarily 

assumed that: 

 

• the vessel behaves as a rigid body 

• the acceleration of a point on the surface of the earth is neglected, 

• the external loads comprise of the breakout, hydrostatic and hydrodynamic  

            components, and the seabed is flat creating a total breakout lift force of 1.3 times  

            the ship’s wet weight [101, 129]. 

 

4.1.1 Equations of Vessel Motion 

 
As the problem is concerned with the dynamics of raising sunken vessels (i.e. the control 

surfaces are inactive and the depth control is by regulating the additional buoyancy provided by 

the inflating system), it is further assumed to consider only the diving or vertical-plane (surge, 

heave and pitch) motions in the stability analysis. However, the surge equation couples with 

heave and pitch, through the meta-centric height. This dynamic coupling could be eliminated by 

redefining hydrodynamic coefficients with respect to the ship’s Cg instead of its geometric centre 
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[12, 22, 34, 65]. For a sunken vessel, it is also known that the forward speed is zero. However, 

due to external forces such as currents, the surge motion may exist, which can be considered as 

an external disturabance to the system. As an adaptive non linear controller can effectively 

handle system modeling errors, external disturbances and uncertainty and thereby maintain 

hydrodynamic stability in diving plane, so that in this study, we discard the surge terms  in the 

development of equation of motion. Thus, the system model variables include the heave velocity 

(w), pitch angle (θ), pitch rate (q) and global depth position  from sea bottom (z) [49, 50, 96, 105, 

139-140].     

 
 

Figure 9: Vessel model and reference coordinates [36, 37] 

 

The equations of motion presented here are the core of the simulation program in MATLAB & 

SIMULINK. These equations, using body axes variables are solved for the motions in diving 

plane. These variables are then transformed to the earth–fixed coordinates using the kinematic 
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relations (i.e. by Euler angles) [36-37].  The system is then placed in state space form so that 

state space model can be formed simply by assigning states to the associated variables.  

 

According to Newton – Euler approach, the equations of motion for heave and pitch are [37]:       

 

( )        (1)                                                                                                                        2
G Gm w x q z q Z− − =   

 

[ ] 2)                                                                                                           (yy G GI q m z ( wq ) x w M+ − =                                                                                                                                                
 

Where, m is the vessel mass, Iyy the mass moment of inertia,  xG, zG   the coordinates of the centre 

of gravity in Xb  and Zb directions respectively, Z   the heave force and M the pitch moment. 

 

The right hand side of the above equations consists of hydrostatic, hydrodynamic, break out and 

control force components. 

 

4.1.1.1     Hydrostatic Force and Moments 
 

Hydrostatic force and moments are due to the vessel weight W and buoyancy B. The buoyancy of 

the sunken vessel may be changed due to the sea density variation and to the compressibility of 

the hull, which can be accounted by considering a linear change in volume with depth.  
 

Therefore, the buoyancy force provided by the sea water is given by [31] 

 

( / )                                                                                                     (3)oB g zρ µ ρ ρ= ∇ +  

 

In which µ is the increase in buoyancy per unit increase in depth in sea water of standard density 

ρo, ρ the actual density of surrounding sea,∇  the volumetric form displacement, g the 

gravitational acceleration and z the vertical coordinate position or depth from sea bottom. 
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The net hydrostatic force in the inertia coordinate system is (B-W) in the positive Z direction 

(upwards) (i.e. buoyancy is taken as positive and gravity is negative). Therefore, in the body-

fixed coordinate system, the hydrostatic components of force and moments for heave/pitch 

motions are [36-37]: 

 
( ) cos                                                                                                                                            (4)hsZ B W θ= −  

 

(5)( )sin ( ) cos                                                                                                   hs B G B GM z B z W x B x Wθ θ= − − − −  

 

Where θ is the pitch angle and xB,  zB   are the coordinates of the centre of buoyancy in Xb and Zb 

directions respectively.  

 

4.1.1.2  Hydrodynamic Force and Moments 

 

The hydrodynamic components of force and moments for heave/pitch motions are [12, 34, 36 - 

37, 65, 96]: 

 

(6)                                                                                                                           hd w q w qZ Z w Z q Z w Z q= + + + 
   

(7)                                                                                             hd w q w qM M w M q M w M q= + + + 
 

 Where,  

3 4 2 3

4 5 3 4    (8)

1 1 1 1( ), ( ), ( ), ( ),
2 2 2 2
1 1 1 1( ), ( ), ( ), ( )     
2 2 2 2

w w q q w w q q

w w q q w w q q

Z l Z Z l Z Z l Z Z l Z

M l M M l M M l M M l M

ρ ρ ρ ρ

ρ ρ ρ ρ

′ ′ ′ ′= = = =

′ ′ ′ ′= = = =

   

   

 

 

in which wZ ′  the non dimensional added mass coefficient in heave, qZ ′    the non dimensional added 

mass coefficient in pitch,  wZ ′  & qZ ′   are the non dimensional heave force coefficients induced by 

angle of attack,  wM ′  the non dimensional added mass moment of inertia coefficient in heave,  qM ′  

the non dimensional added mass moment of inertia coefficient in pitch, wM ′  & qM ′   are the non 
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dimensional pitch moment coefficients from heave and pitch  respectively and l is the length of 

the vessel. Forces and moments due to external disturbances such as wind, current etc that 

creates uncertainty during the marine salvage operation are also to be accounted during the 

controller design.  

 

4.1.1.3       Breakout Force  

 

The breakout or suction force (R) accounts for the difference between the total lift force required 

(F) and the object’s wet weight (G = W-B). It is theoretically and empirically difficult to estimate 

this breakout force due to the involvement of several variables and unknowns. In general, the 

amount of breakout force & estimation of break out time depends on the seafloor soil 

characteristics (i.e. the compressibility of soil skeleton and pore water, permeability etc.), the 

embedment depth and time, the object shape parameters and the loading conditions. The total lift 

force (F) required for the complete extraction of the object from the sea bottom should be greater 

than their submerged  weight (G) due to the ground reaction (R) exerted by the soil (see Figure 

10) [35, 82, 101, 129]. 

 

Sawicki and Mierczynski [101] proposed a simple formula for the estimation of total lift force 

as:                                                                                                                                                                                                                                                                                                                                                                                  

 

( )                                                                                                                                     (9)pF G R 1 k * G= + = +  

 

Where kp is an empirical coefficient depending on the nature of subsoil and its values are  

given as [101]: 

 

 

p      (10)

0.05-0.1 coarse sand
k 0.15-0.20 fine sand                                                          

0.25-0.45 clayey bottom


= 


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Figure 10: Lift force model to extract an object from the seabed [101] 

 

Vaudrey [129] investigated the efficacy of 3 analytical methods (i.e. Muga, Liu and Lee 

methods) for the prediction of breakout forces with different object shapes such as a cylinder, 

sphere and block, with and without breakout force reduction techniques. From the analysis, it 

was observed that the use of breakout reduction methods such as the mud suction tubes, water 

flooding and air jetting would reduce the total lift force by approximately 15% and eliminate the 

snap loading condition. The selection of breakout reduction methods depends on the particular 

salvage operation, bottom soil conditions and the availability of equipments. From the above 

literature [101,129], the total lift force is assumed to be 1.3 times the wet weight of the vessel. 

Break out time can be calculated based on the work of Mei et al [82] & Foda [35]. Note that the 
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break out component of suction lift force is only 0.3 times the wet weight in the negative Z 

direction.  

 

Therefore, heave component of break out suction force in body fixed coordinate system (i.e. in 

positive Z direction) can be written as: 

 

          (11)0.3                                                                                                                            suctionZ ( B W )cosθ= −  

Similarly, pitch component of break out suction force in body fixed frame can be written as: 

  
     (12)0.3*[ ( )sin ( ) cos ]                                                                            suction B G B GM z B z W x B x Wθ θ= − − − −  

 

4.1.1.4  Control Force: - Additional Buoyancy provided by the Inflating System  

 

For the sunken vessel resting on the seafloor, the vessel weight is balanced by both the buoyancy 

and the ground reaction. Additional force required to lift the vessel should overcome both the in-

water object weight and the ground reaction. This force, described in terms of the buoyancy, 

could be provided by the volume of gas inside the lift bags.  The gas-generating system (solid, 

liquid or cryogenic pressurised system) is used such that the produced gas is pumped into the lift 

bags at a desired flow rate using pipes for a stable ascent. 

 

The variation of volume with respect to time in the lift bags is accounted by considering the flow 

rate of filling gas inside the lift bags as follows: 

 

Therefore, the control parameter is: 

   

     (13)= =                                                                                                                                                   c

dVu V f
dt

=   

Where f  is the gas flow rate (m3/s).  

 

Consequently, the additional buoyancy provided by the lift bags can be written as: 
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g (14)                                                                                                                                                            aB ( )gVρ ρ= −  

 

The components of additional buoyancy for heave mode in body fixed frame can be written as: 

 

g (15)                                                                                                                                                 ahB ( )gV cosρ ρ θ= −  

 

Similarly, the components of additional buoyancy per unit time for the pitch mode can be written 

as: 

 

g g      (16) -                                                                                                     ap B BB z ( )gV sin x ( )gV cosρ ρ θ ρ ρ θ= − − −  

 

4.1.2 Kinematic Relations 

 

The kinematic relations are used to transform the motion variables from local to global 

coordinate systems. The kinematic relations for heave and pitch can be obtained from Fossen 

[36] and Fossen [37]: 

 

The simplified kinematic relations for heave and pitch motions are (u, v, p, r, Φ=0): 

 
(17)                                                                                                                                                                     z wcosθ=  

(18)                                                                                                                                                                   qθ =  

 

4.1.3 Development of State-Space Model 
 

By accounting the components of hydrostatic, hydrodynamic, suction break out and additional 

buoyancy force components, the equation of motion for heave mode can be rewritten from Eq. 

(1) as:  
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I.e by integrating Eqs. (4), (6), (11) & (15) in Eq. (1),  

 

( ) g     (19)  0.3  +   2
G G w q w qm w x q z q ( B W )cos Z w Z q Z w Z q ( B W )cos ( )gV cosθ θ ρ ρ θ− − = − + + + + + − − 

     

 

Similarly equation of motion for pitch mode can be modified from Eq. (2) by integrating Eqs. 

(5), (7), (12) & (16) as: 

 

[ ]

g g0.3 20)

=  +   +

                       [ ]      (

yy G G B G B G w q w q

B G B G B B

I q m z ( wq ) x w ( z B z W )sin ( x B x W )cos M w M q M w M q

* ( z B z W )sin ( x B x W )cos z ( )gV sin x ( )gV cos

θ θ

θ θ ρ ρ θ ρ ρ θ

+ − − − − − + + +

− − − − − − − −

 
   

 

For small values of pitch angle, it is assumed that sinθ = θ and cosθ=1. Imposing linearization 

about an equilibrium point (i.e. discarding q2 term) and neglecting the products of small motions 

or coupled terms (i.e. neglecting wq term), the equations of motion for heave and pitch mode can 

be rewritten from Eqs. (19) & (20) as: 

 

( ) g      (21)             G w q w qm w x q 1.3( B W ) Z w Z q Z w Z q ( )gVρ ρ− = − + + + + + − 
     

[ ]

g g       (22)

=  +   +

                                                                                             

yy G B G B G w q w q

B B

I q m x w 1.3( z B z W ) 1.3( x B x W ) M w M q M w M q

z ( )gV x ( )gV

θ

ρ ρ θ ρ ρ

+ − − − − − + + +

− − − −

 
   

 

Kinematic relation for heave mode can be modified from Eq. (17) as: 

 

(23)                                                                                                                                                                      z w=  

 

Eqs. (21) & (22) can be rearranged as: 

 

g       (24)            G q w w q( mx Z )q ( m Z )w Z w Z q 1.3( B W ) ( )gVρ ρ− − + − = + + − + − 
   
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g g (25)
=  

                                              
yy q G w w q B G

B G B B

( I M )q ( mx M )w M w M q 1.3( z B z W )
1.3( x B x W ) z ( )gV x ( )gV

θ
ρ ρ θ ρ ρ

− + − − + − −
− − − − − −

 
 

 

 

Eqs. (24) & (25) along with kinematic relations in Eqs. (23) & (18) to form the state space model 

as:  

 

[ ]
G q w q w g

yy q G w q B G w g B (26)

mx Z 0 m Z 0 q Z 0 Z 0 q ( )*g
I M 0 mx M 0 M 1.3*(z B z W) M 0 ( )*g*x

V(t)          
0 0 0 1 w 0 0 1 0 w 0
0 1 0 0 z 1 0 0 0 z 0

− − − ρ−ρ         
         − − − θ − − θ − ρ−ρ         = +
         
         
         

 

 









 

 

Which has the form,  

                                                                          

[ ]{ } [ ]{ } [ ]{ } (27)                                                                                                                                                  0 s 0 s 0 cM x A x B u= +  

 

Where,  

     [ ]                                                                                                                       (28)

G q w

yy q G w
0

mx Z 0 m Z 0
I M 0 mx M 0

M
0 0 0 1
0 1 0 0

− − − 
 − − − =
 
 
 

 

   

 

[ ] (29)                                                                       

q w

q B G w
0

Z 0 Z 0
M 1.3* ( z B z W ) M 0

A
0 0 1 0
1 0 0 0

 
 − − =
 
 
 

 

       

{ } { } (30-32) ,                                                                                                          

g

g B
0 s c

( )* g q
( )* g* x

B , x u V( t ) f
0 w
0 z

ρ ρ
ρ ρ θ

−   
   − −   = = = =
   
   
   

  

            

Where xs is the state vector and uc is the control vector.  
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Eq. (27) can be reduced in the form,  

 

 { } [ ]{ } [ ]{ } (33)                                                                                                                                            S S Cx A x B u= +  
 

Which is the State Dependant Riccati Equation (SDRE), in which [A] is the system matrix and 

[B] is the input matrix, which are given by 

 

[ ] [ ] [ ] [ ] [ ] [ ]                                                                                                                                            (34)1 1

0 0 0 0A M A , B M B− −
= =  

 

The effect of uncertainty and external disturbance that would cause the system to deviate from 

the equilibrium point should be accounted in the system modeling for the accurate performance. 

Therefore, Eq. (33) can be modified as: 

 

{ } [ ]{ } [ ]{ }+ d (t)                                                                                                                                 (35) S S Cx A x B u= +  
 

In which, d(t) is the unknown function representing the model uncertainty and external 

disturbances arises mainly due to wind, current, waves or voyage etc. They are normally 

unknown, but possibly bounded.  

 
 

4.2     Secondary model: Automated Purge Valve Modeling 
 

According to section 4.1.1.3, the lift force required to extract an object from sea bottom is 

typically about 1.3 times the wet weight. This implies that, soon after the suction break out, 

excessive buoyancy is present within the lift bags that cause a sudden increase in vertical speed. 

Also, during the ascent through water column, the lift bags experience a decrease in pressure 

with respect to the variation in depth. This decrease in pressure causes the volume of gas inside 

the lift bags to expand, resulting in an increase in buoyant force [32, 61, 111]. The automated 

purge valve is designed to eliminate the vertical acceleration experienced by the lift bags during 
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the ascent by restricting the expansion of gas through the valves.  As the lift bag ascends, the 

expanded gas is purged through the valve in a controller manner to compensate for gas 

expansion by which, constant buoyancy can be always maintained. A microprocessor can be 

used to sample the pressure at predetermined intervals by which the change in pressure over each 

interval can be calculated, which is then interpolated by a PID control algorithm to find the 

ascent velocity and then the actual depth. Opening or closing of valves are carried out 

accordingly with system commands that will alter the amount of gas purged [33].   

 

The pressure at any sea depth can be calculated based on the fundamentals of fluid mechanics as 

follows:  

 

(36)                                                                abs atmp gh pρ= +  

 

Where,  

pabs is the absolute pressure in N/m2, ρ is the density of sea water = 1025 kg/m3, g is the 

acceleration due to gravity = 9.81 m/s2, h is the water depth in m, patm is the atmospheric pressure 

= 1.01325 bar = 101325 N/m2 

 

Assuming constant temperature (Isothermal process) and for a non flow system, the expansion of 

gas inside the lift bags is according to Boyle’s law as: 

 

(37)                                                                                1 1 2 2p v p v=  

In which, P1 is the initial absolute pressure in N/m2, V1 is the initial volume in m3 

P2 is the final absolute pressure in N/m2, V2 is the final volume in m3. 

 

Therefore, final volume,   

 

(38)                                                                                  1 1
2

2

p VV
p

=  
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Note                    

If we are considering a flow process, then steady flow energy equation is to be accounted for 

calculating the change in volume. For more detail refer Nag [84]. 

 

The density of gas in the lift bag for different depths during the ascent can be calculated as: 

According to Characteristic Gas Equation,  

 

(39)                                                                            pV mRT=  

Therefore,  

 

                                                                                                                                            (40)mp RT RT
V

ρ= =  

i.e.  

    (41)                                                                                                                   abs
gas

p
RT

ρ =  

Where R is the characteristic gas constant, for air = 286.9 J/kg.K and T is the absolute 
temperature assuming a constant value say 290 K. 

 

The exponential increase in buoyancy force with respect to the gas expansion is according to: 

 

2 (42)             ( ) V                                             gasB gρ ρ= − × ×  

Where B is the buoyant force in N.  

 
The equation of motion in vertical direction can be written as:   

2 (43)
1( )                                                      
2a d bagm m w 1.3( B W ) c A wρ+ = − −  

Where, ma is the added mass, Abag is the area of bag surface perpendicular to motion and cd is the 

drag coefficient=0.1.  
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By integrating the above equation with time provides the velocity of ascent. Further integrating 

the velocity with time provides the depth position at each point in time.  Note that for initial 

calculations, drag force is assumed to be zero.  

 

The pressure difference between the gas inside the top of lift bag and outside water is found as; 

(44)                                                                                              bag
bag

Bdp
A

=  

The purge velocity can be found by equating pressure head and kinetic head according to 
Bernoulli’s theorem as,  

 

(45)                                                                    
2

bag purgedp v
g 2gρ

=  

Therefore,  

 

bag
(46)

2
                                                               purge

gas

dp
v

ρ
=  

Volume air purged through valves is obtained as: 

 

(47)                                                                                       purge purge purgeV v A dt= × ×  

Here area of purge valve opening ‘Apurge’ is the desired control parameter. dt is the time interval 
between system responses.  

 

Now the present volume of gas inside the bag is estimated by subtracting the previous volume of 
gas inside the bag to the gas purged during the last time interval.  

i.e.  
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2 (48)                                                                                                                         bag purgeV V V= −  

In which, Vbag is the present volume of gas inside the lift bag, V2 is the previous volume of gas 
inside the bag and Vpurge is the purge volume. 

 

With this, new buoyancy can be evaluated as, 

 

bag (49)        ( ) V                                             gasB gρ ρ= − × ×  

Now the iteration goes back to the Eq.43 and continues. This is the way an automatic purge 

valve works according to the excess buoyancy available after suction break out and to the 

pressure difference between the gas inside the lift bags and surrounding sea water pressure for a 

stable ascent.  
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5 Design of Primary Controller by Conventional  

        Approach 

 

For a complex under water nonlinear operations like marine salvage involving uncertainty and 

external disturbances, it is not possible to completely describe the system dynamics in a 

mathematical form. Due to the coupled nature of underwater dynamics, it is really difficult to 

design a control system fully based on the developed mathematical equations. Therefore the 

remaining possibility is to decouple the system dynamics based on some suitable assumptions 

and design a control system, which is capable of handling non linearity, system modeling errors, 

insensitiveness to parameter variations (i.e. mainly variation in hydrodynamic coefficients and 

suction breakout force) and external disturbance etc. Therefore the relative effectiveness of 

various control systems as a primary controller for regulating the gas flow rate is investigated in 

this chapter.  

 
The function of the primary controller is to regulate the flow rate of filling gas inside the lift bags 

according to the buoyancy requirement in accordance with the hydrostatic force due to weight, 

buoyancy and suction breakout, hydrodynamic forces and uncertainty arises due to external 

disturbance such as wind, current or voyage etc for a safe and stable salvage operation.  

 

Initially it is proposed to design conventional classic controllers like PD, PID and SMC for 

attaining the desired functionalities and later trying to integrate those with artificial intelligence 

techniques to get the optimum performance.  

 

Note that in this section of the thesis there is also an active but not optimized purge gas 

controller. This results in the primary controller feeding air into the balloons whilst the purge 

controller is releasing gas. This is overcome by having a supervisory controller, over the primary 

inlet and secondary purge controllers, as described in Section 8. 
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5.1. Proportional Derivative Controller (PD) 

 
Because of the simpler structure, at the beginning a proportional derivative controller (PD) is 

selected as the primary controller to regulate the gas flow rate. PD controller is a linear control 

technique consists of two basic terms: proportional term (kp) and derivative terms (kd). 

Proportional term determines the reaction to the current error (e), here the error is multiplied by a 

constant kp.  Derivative term determines the control action to the rate at which error is changing 

(ė), the first derivative is calculated and multiplied by a constant kd.  

 

The control law for the PD controller is formulated as [37]: 

 

(50)                                                              p d p com du k e - k e k ( z - z ) - k ( w )= =  

Where, u is the control vector, zcom is the commanded or target depth, z is the actual depth from 

sea bottom and w is the heave velocity.  

 

Figure 11 shows the SIMULINK block diagram of the PD controller for regulating the gas flow 

rate. The state space model for the proposed SIMULINK model for linear deterministic system is 

calculated based the equation Eq. (33). 
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Figure 11: SIMULINK block diagram of the PD Controller for regulating the gas flow  

                  rate [91] 

 

The response of the PD controller is investigated by conducting numerical simulations on a 

small-scale pontoon model in MATLAB [99] & SIMULINK [103]. The pontoon is a 

rectangular-shaped structure with watertight compartments for internal deployment of lift bags 

and gas generating system. External lift bags are also provided for achieving the desired lift. 

Normally internal bags are placed inside the vessel to make sure that centre of buoyancy CB is 

above the centre of gravity Cg for stability.  The lift bag diameter and length are 1.129 m & 1.8 m 

respectively and the maximum space inside a single compartment for the installation of a gas 

generator including piping is 0.29 m in diameter and 2 m in length [119]. Figure 12 exemplifies 

the installation of inflating system inside a single pontoon compartment.   
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Figure 12: Pontoon compartment with inflating system [119] 

 

The weight, length, breadth and mass moment of inertia about Yb axis of the pontoon model are 

9320 kg, 6m, 3m and 1481.31 kgm2 respectively. The hydrodynamic coefficients used in the 

simulation are wZ ′
= -0.0157, qZ ′  = -0.00041, wZ ′ =-0.043938, qZ ′ =-0.017455, wM ′ = -0.00053, qM ′ = -

0.00079, wM ′ =-0.011175 and qM ′ =-0.01131 respectively [36-37, 80, 96].  

 

Simulation is initially performed for a target depth of 50 m from sea bottom. According to 

Section 4.1.1.3, the break out force for the pontoon model can be estimated as 103341.68 N (of 

the order of 105). According to Foda [35], for the estimated break out force, the break out time 

can be obtained as 100 sec. The minimum volume of gas required for breakout for a depth of 50 

m (i.e. sea bottom is at 50 m from sea surface) is calculated based on the hydrostatic principles 

as 10.35 m3 (see Appendix A).  As the volume of one single inflated lift bag is 1.8 m3, a total of 

6 lift bags are required for the inflation. The buoyancy force provided by all lift bags are 

considered as a whole in the rigid body modeling approach.  
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For the desired performance, the PD controller is optimally tuned by trial and error method to 

obtain the proportional constant, kp = 0.05 and derivative constant, kd = 120.  Simulated responses 

are presented in Figures 13-17. 

 

 

 
Figure 13: Variation of ship vertical position from sea bottom (50 m) 

 

 

 
 

Figure 14: Variation of ship ascent velocity (50 m) 
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Figure 15: Variation of ship pitch angle (50 m) 

 

 

 
 

Figure 16: Variation of ship pitch rate (50 m) 
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Figure 17: Variation of gas flow rate (50 m) 

 

It is observed form Figure 13 that by properly tuning the PD controller, the system attains the 

steady state condition, i.e.  reaching the target depth in 800 s without any overshoot. It is also 

noted from Figure 13 that after reaching the target depth, even if the simulation time is increased, 

it has no effect on the system performance. Figure 14 shows that the maximum value of ascent 

velocity is found to be 0.33 m/s – being within the required range (<0.6 m/s) [12, 61, 65], which 

is quite feasible for a stable salvage operation. When the vessel reaches the commanded depth, 

the PD controller reduces the ascent velocity to almost zero value. The depth rate and ascent 

velocity responses reveal similar trend to the results of Nicholls-Lee et al. [86]. 

 

From Figure 15, the pitch angle is found to increase with time, reaching a maximum value and 

thereafter decreasing. The maximum value of pitch angle is found to be about 11.8 degrees (<15 

degrees) [12, 65], which implies that the motion is stable. Similar to ascent velocity in Figure 14, 

the pitch angle in Figure 15 initially increases to a higher value after the break out and reduces 

when the payload reaches the commanded depth. This is due to the reason that the controller 

generates pitch angle commands as per the depth error. At the beginning, the depth error is large 

thereby the controller produces a higher value of pitch angle to eliminate this error. Figure 16 

shows that how the pitch rates become nearly equal to zero when the pontoon reaches the 
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required position. It is seen from Figure 17 that the controller sets initial flow rate value as 0.15 

m3/s for the suction breakout and soon after the break out period, it reduces flow rate 

significantly for the desired performance. Once the target depth is fulfilled, the controller further 

reduces the flow rate to almost zero value.  

 

From the initial simulation results for 50 m depth, it is realized that the PD controller is good 

enough for controlling the depth and pitch motions without any overshoot and having less steady 

state error. The performance of the PD controller is further evaluated by conducting simulation 

for higher target depths say 100 m & 150 m from sea bottom with the same tuned coefficients (kp 

= 0.5 & kd = 120). The obtained responses are presented in Figures 18-22 for 100 m depth and 

Figures 23-27 for 150 m respectively.   

 
 

         Figure 18: Variation of ship vertical position from sea bottom (100 m) 
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Figure 19: Variation of ship ascent velocity (100 m) 

 

 

 
 

 Figure 20: Variation of ship pitch angle (100 m) 
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Figure 21: Variation of ship pitch rate (100 m) 

 

 
 

Figure 22: Variation of gas flow rate (100 m) 
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Figure 23: Variation of ship vertical position from sea bottom (150 m) 

 

 
Figure 24: Variation of ship ascent velocity (150 m) 
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Figure 25: Variation of ship pitch angle (150 m) 

 

 
 

Figure 26: Variation of ship pitch rate (150 m) 
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Figure 27: Variation of gas flow rate (150 m) 

 

It is seen from Figures 18 & 23 that, with the same tuned parameters (kp = 0.18 & kd = 60), the 

PD controller is able to reach the commanded depths (i.e. 100 m & 150 m) without any 

overshoot and having less steady state error in the same reaching time (i.e. 800 s) as for 50 m 

water depth.  But the Figures 19 & 24 reveals that the maximum ascent velocity for both the 

cases are 0.65 m/s and 0.99 m/s, which are beyond the stable limit (> 0.6 m/s). This much higher 

value of ascent velocity leads to the effect of drag force on the system, which may damage the 

lift bag adversely. The maximum value of pitch angle for both cases are found from Figures 20 

&25 to be 240, & 350 respectively (> 15 degrees), they are totally unacceptable for a stable 

salvage operation.  Higher values of pitch angle often cause the lift slings to break loose from the 

payload and hence results in a buoyancy loss and cause further damage to the system. Figures 21 

& 26 shows that the pitch rates for 100 m & 150 m having the same trend as before for 50 m 

water depth, but they are of much higher value. Flow rates for both cases are initially fixed at 0.3 

m3/s & 0.46 m3/s for suction break out and reduces considerably after break out as presented in 
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Figures 22 & 27. However it is seen that the PD control action is not able to regulate the depth 

and pitch motions within the stable region.  

 

Remarks 

 

The numerical simulation results using PD controller as the primary controller for regulating the 

gas flow rate shows that the controller is suitable for regulating the depth and pitch motions for 

smaller target depths with no overshoot and having less steady state error by properly tuning the 

controller. But, for higher depths with the same tuned coefficients, the performance of the 

controller is very poor as the ascent velocity and pitch angle goes beyond the stable region. 

Remembering the fact, that for complex underwater operations like marine salvage it is really 

difficult to retune the controller coefficients frequently for the desired performance, it is required 

to choose some other controller techniques for meeting the desired functionalities.  



 
 

62 
 

 

5.2 Proportional Integral and Derivative Controller (PID) 
 

As the results obtained using PD controller for regulating the gas flow rate is not satisfactory due 

to the higher values of ascent velocity and pitch angle, especially for higher water depths, now a 

PID controller is chosen as the primary controller for regulating the gas flow rate.  

 

PID is a linear control methodology with a very simple control structure as shown in Figure 28. 

It is a closed loop control system which consists of three basic terms: proportional, integral and 

derivative terms. Proportional term determines the reaction to the current error; i.e. to handle an 

immediate error, the error is multiplied by a constant kp.  Integral term determines the reaction to 

the sum of the current and past error values; i.e. the integral part works to learn from the past, the 

error is integrated and multiplied by a constant ki. Derivative term determines the control action 

to the rate at which error is changing; i.e. the derivative part works to predict the future, the first 

derivative is calculated and multiplied by a constant kd.  A PID controller is trying to eliminate 

the error between the desired output and the actual output value by generating a control action 

such as an actuation signal that drives the plant [4, 63, 74].  A PID controller is called a PI, PD or 

P controller in the absense of the respective control actions.  

 
Figure 28: PID controller with plant control structure [4, 63] 
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The PID control law is formulated as: 

                                                           (51). . .                                  p i d
deu k e k e dt k
dt

= + +∫  

 

Where u is the control action, e is the error signal, kp, ki and kd are proportional, integral and 

derivative gains respectively.  

 

 

Table 1: The effect of increasing coefficients [63, 74] 

 

 Rise Time  Overshoot Settling Time Steady State 

Error 

kp Decrease Increase Small change Decrease  

ki Decrease  Increase  Increase Remove 

kd Small 

change  

Decrease  Decrease Small change 

 
Table 1 explains the effect of increasing coefficients in the PID controller response. The 

proportional term improves the rise time of the response and slightly improves the steady-state 

error. However, the proportional term can induce oscillations if the gain value is too high. The 

inclusion of the integral term improves the permanent action as it eliminates the steady-state 

error. The derivative term can be used to improve the transient response by damping unwanted 

overshoots. Nevertheless, it must be used with caution as it amplifies any existent noise in the 

signal. The SIMULINK block diagram of the proposed PID controller for regulating the gas flow 

rate is shown in Figure. 29. 

 

 



 
 

64 
 

 
 

 
Figure 29: SIMULINK block diagram of the PID Controller for regulating the gas flow rate  

 

The performance of the PID controller is analyzed by conducting simulation for three target 

depths 50 m, 100 m & 150 m from sea bottom with the same value of gain constants. PID 

coefficients are found online by using SIMULINK PID tuner. The obtained responses are shown 

in Figures 30-38. Depth controller results are produced separately for the three target depths, just 

to show how the system reaches the target depth with the controller commands as shown in 

Figures 30-32.  
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                       Figure 30: Variation of ship vertical position from sea bottom (50 m) 

 

 
 

Figure 31: Variation of ship vertical position from sea bottom (100 m) 

 

 
 

Figure 32: Variation of ship vertical position from sea bottom (150 m) 
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Figures 30-32 shows that there is considerable overshoot present in all the three cases, even 

though the controller is properly tuned, which may be due to the presence of the integral action 

in PID controller. Also it is observed that, the presence of integral action makes the settling time 

more for the proposed controller (2500 s for all the three cases) in comparison with the PD 

controller, where it is only 800s.  

 

The variation of ascent velocity, pitch angle and pitch rate for the three commanded depths with 

time are presented in Figures 33-35. From Figure 33, the maximum value of ascent velocity for 

the three target depths are found to be 0.09, 0.18 & 0.28 m/s, which are well below 0.6 m/s. This 

implies that the ascent is stable, though an overshoot is present with the controller. Due to the 

presence of overshoot, the ascent velocity falls below zero value to reduce the error and to make 

the system to drive towards steady state.  

 
Figure 33: Variation of ship ascent velocity (50m, 100m & 150 m) 
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Figure 34: Variation of ship pitch angle (50m, 100m & 150 m) 

 

 
 

Figure 35: Variation of ship pitch rate (50m, 100m & 150 m) 
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Figure 34 shows that the maximum value of pitch angle for the three target depths are 30, 60 and 

9.20 respectively, which are within the safe range (<150). Hence it is realized that the PID 

controller is able to control the pitch motion even for higher water depths for the linear 

deterministic model with the addition of integral term compared to the PD controller. Pitch rates 

for the three cases follow the same trend as the results obtained with the PD controller as shown 

in Figure 35.  

 

The variation of control parameter, i.e. flow rate of filling gas inside the lift bags for the three 

target depths are displayed separately for better visibility in Figures 36-38. In all the three cases, 

after the suction break out (i.e. 100s), the controller reduces the initial flow rate value 

significantly and finally reaches zero as soon as the pontoon reaches the commanded depths.  

 
 

Figure 36: Variation of gas flow rate (50 m) 
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Figure 37: Variation of gas flow rate (100 m) 

 

 
 

Figure 38: Variation of gas flow rate (150 m) 

 

From the simulation, it is understood that the proposed PID controller is suitable for controlling 

the heave and pitch motions within the stable region even for higher water depths with the same 

tuned settings, though slight overshoot is present with the system. The presence of integral action 
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resulting to an overshoot as well as increase the settling time, at the same time, it is effective in 

regulating the state variables within the stable region along with proportional and derivative 

terms. The performance of the PID controller is further investigated by conducting case studies 

regarding sensitivity analysis and by considering the effect of external disturbance.  

 

Case 1: Sensitivity Analysis: - Variation in break out force 

 

A preliminary sensitivity analysis is carried out by considering the effect of variation in breakout 

force on the trajectory of simulation. According to Section 4.1.1.3, the total break out lift force is 

estimated to be in the range of 1.05-1.45 times the wet weight. For the pontoon model, which is 

calculated to be in the range 8508.5 kgf - 11749.83 kgf (see Appendix A). These lower and 

higher values of break out force are accounted in the simulation for a target depth of 100 m from 

sea bottom. From the simulation response (Figures 39-43), it is found that there is no significant 

variation in response trajectories except that there is slight change in breakout time due to this 

variation. Break out time for the 8508.5 kgf is found to be 80 s, whereas for 11749.83 kgf, it is 

112s.  

 
 

Figure 39: Variation of ship vertical position from sea bottom (100 m, 8508.5kgf) 
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Figure 40: Variation of ship vertical position from sea bottom (100 m, 11749.83kgf) 

 

 
 

Figure 41: Variation of ship ascent velocity (100 m) 
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Figure 42: Variation of ship pitch angle (100 m) 

 

 
Figure 43: Variation of ship pitch rate (100 m) 
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Case 2: Sensitivity Analysis: - Variation in hydrodynamic coefficients.   

 

As it is really difficult to exactly determine the hydrodynamic coefficients for the given pontoon 

model, a 50% variation in hydrodynamic coefficients obtained from literature are considered to 

be taking place. Simulation is performed by considering this variation in system dynamics with 

the proposed PID controller for a target depth of 100 m.  

 

50% variation in hydrodynamic coefficients (denoted as ‘0.5 hc’) results in a considerable 

change in state space model and the obtained simulation response, as presented in Figures 44-48, 

reveals that it is required to retune the PID controller for obtaining the desired response, which is 

not feasible for a marine salvage operation as manual retuning is difficult to carry out 

underwater.  

 

 

 
 

Figure 44: Variation of ship vertical position from sea bottom (100 m) 
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Figure 45: Variation of ship ascent velocity (100 m) 

 

 
Figure 46: Variation of ship pitch angle (100m) 
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Figure 47: Variation of ship pitch rate (100m) 

 

 
Figure 48: Variation of gas flow rate (100 m) 

 

From the simulation results (Figures 44 - 48), it is understood that the performance of the PID 

controller is considerably degraded for the 50% variation in hydrodynamic coefficient values. 

Figure 44 shows that the controller is not capable of lifting the payload to the commanded depth 

under the effect of this variation in hydrodynamic coefficients. Pitch angle in Figure 46 is found 

to increase with time, which is not a good trend. Hence, it is realized that the proposed PID 

controller is not suitable for handling the parameter variations and they are very sensitive to the 

changes in system dynamics.  
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Case 3: Sensitivity Analysis: - Effect of external disturbances and uncertainty 

 

In a marine salvage operation, there will be always chances of external disturbances occurring 

due to wind, current or voyage and uncertainties such as loss of buoyancy due to any lift bag 

failure, a sudden increase in added mass, volume of trapped air escaping  etc. It is really difficult 

to predict it accurately.  

 

In our simulation system, the external disturbance and parameter uncertainties are modeled as 

[36]: 

 

   (52)                                      d( t ) 0.05 0.25cos( 3 t )π= +  

The effect of external disturbances and uncertainties (denoted as ‘ed’) on the performance of PID 

controller is investigated by conducting numerical simulations for 100 m target depth in which 

the state space model is modified according to the Eq. 35 for calculating the state space model. 

The simulation results are plotted in Figures 49-53. 

 

 
 

Figure 49: Variation of ship vertical position from sea bottom (100 m) 
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Figure 50: Variation of ship ascent velocity (100 m) 

 
 

Figure 51: Variation of ship pitch angle (100m) 
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Figure 52: Variation of ship pitch rate (100m) 

 
 

Figure 53: Variation of gas flow rate (100 m) 

 

Figure 49 shows that due to effect of external disturbances, the system deviates from its 

equilibrium point and the payload reaches higher depth as the PID controller is not able to attain 

steady state. Even if the payload reaches the commanded depth, the ascent velocity in Figure 50 
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is not converging to zero. This implies that the proposed PID controller is not capable of 

handling external disturbances. Pitch response from Figures 51 & 52 shows satisfactory results 

with the PID controller. From Figure 53, it is understood that the controller action for the 

modified state space model is almost similar to the case without external disturbances for 100m.  

 

Case 4: Sensitivity Analysis: - Sensor Failure.   

 

Suppose, in worst situations, there can be chances of sensor failure (denoted as ‘sf’) in marine 

salvage operations, which might occur due to strong currents or voyage of other ships etc. The 

behavior of the PID controller in such situation is investigated by conducting open loop 

simulation for 100 m. The obtained responses are plotted in Figures 54-57. 

 

 
 

Figure 54: Variation of ship vertical position from sea bottom (100 m) 
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Figure 55: Variation of ship ascent velocity (100 m) 

 
 

Figure 56: Variation of ship pitch angle (100m) 
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Figure 57: Variation of ship pitch rate (100m) 

 

From Figure 54, it is found that the system is completely unstable as the payload reaches nearly 

480 m due to the feedback sensor failure. As sensor fails, the controller cannot be able to track 

the reference trajectory and the payload reaches higher positions abruptly by losing the control 

action. Also the pitch angle, in Figure 56, is found to go on increasing with time and to reaching 

high values, which implies the chance of lift bags to loose free from payload and breach the 

surface of water too fast and cause damage to the hull and risks to divers and crew members. 

This reveals that for a complex underwater operation like marine salvage, a closed loop control 

system is mandatory. Therefore, the only solution is to avoid such situations by providing better 

protection to the controller components.  

 

Remarks  

From the case studies, it is found that PID controller gives satisfactory results for almost all 

water depths by approximating a linear deterministic model with considerable overshoot, where 

as in the presence of parameter variations, non linearity and external disturbances, good results 

are not guaranteed. This is due to the fact that the PID controller is using a linear control law, 

which is not suitable for non linear undeterministic dynamics. In the case of the disturbance 
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change, the performance of the PID controller is considerably degraded because it uses constant 

gains although operation conditions are changing.  It is also noted that for salvage operations, a 

closed loop control system is mandatory to achieve the desired performance, therefore it is 

important to try to avoid failure in controller components especially sensor failure as it 

significantly affects the performance of the controller.  

 

5.3 Conventional Sliding Mode Controller (CSMC) 
 

From the simulation studies, it is understood that the well-developed linear classic controllers 

like PD & PID fails in satisfying performance requirements especially when changes in the 

system and environment occur during the salvage operation. Therefore now it is required to 

adopt a control system, which is capable of handling non linearity, parameter variations and 

external disturbances with good robustness. A sliding mode controller (SMC) is selected as the 

primary controller for regulating the flow rate of filling gas inside the lift bags according to 

buoyancy requirement so that the system attains stability in diving plane. This selection was 

made due to the following reasons [3, 12, 15, 22, 34, 36-38, 49-50, 58-60, 65, 68, 80-81, 104-

106, 109, 126, 131, 139-140, 145,149-150]: 

 

• SMC compensates for nonlinear behaviours 

• SMC provides robustness to uncertainty 

• SMC is straightforward to implement 

 

In a closed loop control system, the function of the controller is to make the state variable xs 

follow the desired state xd with a prescribed dynamic characteristic in the presence of uncertainty 

and disturbances. The state variable error is defined as [12, 65,139]: 

 

(53)                                                                                                   d s come x - x z - z= =                                                                                      

 

Or in general, the state variable error vector can be written as  
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         (54)                                                                           ( n 1 ) Te ( e,e,e.....e )−=                                       

Where n is the order of the system. In the development of sliding mode controller, a sliding 

surface (σ) is to be created from a linear combination of the state variable errors such as position, 

velocity and acceleration. The aim is to drive the system to the sliding surface and ultimately to 

the condition σ =0 while making sure that the state variables are always reducing. The sliding 

surface σ can be defined for an nth order system as [12, 49-50, 65, 80-81, 105]: 

 

 (55)                                                                                          n 1d( ) e
dt

σ λ −= +  

 

Therefore, for a second order nonlinear system (n = 2), the corresponding sliding surface would 

be defined as: 

 

           (56) +                                                                         e eσ λ=   

Where λ is the slope of the sliding surface. Then, the Lypunov method can be used to formulate 

the control law (uc), which is further developed by defining a  positive definite function , V(σ) > 

0 where the derivative of this function for all times greater than zero is negative. By defining a 

positive definite Lyapunov function’s derivative as negative, we guarantee that the sliding 

surface (σ) is always reducing [37, 65, 139-140]. 

  

Let the Lypunov function, 

 

[ ]1                                                                                            (57)
2

2

s sV( x ) ( x )σ=        

                                                                                                                                                                              

The scalar function σ (xs) is the weighted sum of the errors in the states xs [12, 65].  

 

(58)                                                                                             T
s s( x ) s xσ =  



 
 

84 
 

The time derivative of Lypunov function V (xs) should be negative in order to provide stability 

[12, 37, 49-50], 

                   

(59)                                                                                                             sV( x ) 0σσ= <                                                                                                  

This can be accomplished if,   

                    

(60)                                                                                                                                                         2σσ η σ= −  

The term η2 is an arbitrary positive quantity, selected to ensure that V is negative even in the 

presence of modeling errors and disturbances. Therefore,                  

 

(61)                                                                                                                                 2 2 sgn( )
σ

σ η η σ
σ

= − = −  

Where sgn (σ) is the signum function that is discontinuous across the sliding surface provided to 

ensure stability and is given by [12, 37, 65]: 

      

1,      if   0
0       if  = 0                                                                                                             (62)
-1,     if   0

sgn( )
σ

σ σ
σ

>= 
<

                                                                                       

From Eqs. (58) and Eqs. (33), 

                                                                                                  

[ ]  (63)                                                                                                              T T
s s cs x s Ax Buσ = = +   

Combining Eqs. (61) and (63), we can write  

              

[ ]                                                        (64)                                               T T 2
s s cs x s Ax Bu sgn( )σ η σ= = + = −                                                         

By solving the above equation, the control law uc is obtained as: 

 

(65)                                                                                                    
1 1T T T 2

cu s B s A s B sgn( )η σ
− −

   = − −                          
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In which the first term describes the nonlinear state feedback whereas the second term represents 

the switching control law. A control law of the form (Eq. 65) guarantees the stability for 

nonlinear systems whereas the discontinuous term (sgn (σ)) results in undesirable chattering 

around the sliding point. It can be avoided by smoothing the control law with in a thin boundary 

layer around the sliding surface. This can be achieved by choosing a boundary layer thickness Φb 

and replacing the discontinuous signum function by a continuous saturation function (sat (σ/Φb)) 

[3, 12, 37, 65, 106, 139-140]. This saturation function has the same end points as the signum 

function, however the function has a more gradual transition towards zero value as σ → 0. Next, 

the control law uc can be written after linearization and smoothing as [22, 49-50, 65, 72, 127, 

139]: 

 

                                                                                        (66)
1 1T T T

C S
b

u s B s Ax s B sat ση Φ
− −     = − −         

Where 

  
( )

                                                                                    (67)
sgn 

  =                                             
b

b

sat
σ σ Φ

σ
σΦ σ ΦΦ

 > 
   ≤  

 

 

The values of A and B can be obtained from Eq. (34). By further letting 1[ ]T Tk s B s A−= , Eq. (66) 

becomes:   

 

     (68)                                                                                                                         
1T

C S b
u kx s B sat( )ση Φ

−
 = − −    

The gain vector k can be calculated in MATLAB using the pole placement method [12, 65]. 

Figure 58 represents the SIMULINK block diagram of the conventional sliding mode controller 

for regulating the gas flow rate.  
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Figure 58: SIMULINK block diagram of the Conventional Sliding Mode Controller 

(CSMC) for regulating the gas flow rate  

 

Simulations are initially performed on the pontoon model for target depths of 50 m, 100 m & 

150 m from sea bottom. The obtained vertical dynamic responses and the variation of control 

parameter are plotted in Figures 59-67. From Figures 59-61, it is found that in all the three cases, 

the payload reaches the respective commanded depths without any overshoot by properly tuning 

the sliding mode controller. The rise time required for the SMC to reach steady state is nearly 

equal to that of PD controller. After reaching the desired depth, even if the simulation time is 

increased, it has no effects on the system performance due to the controller action. The settling 

time required in all the three cases are exactly same and equals to 1500 s. Figure 62 shows that 

there is a steep increase in the value of ascent velocity soon after the suction break out, while it 

reduces significantly due to the sliding mode controller action. The maximum value of ascent 

velocity is found be 0.45 m/s- being within the required range (< 0.6 m/s). This implies how the 

pontoon motion is stable. When the vessel reaches the commanded depth, the controller reduces 
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the ascent velocity to almost zero value in all the three cases. While conducting simulations, it is 

noted that for higher target depths (see 150m case) with the same tuned settings, the peak of the 

response become flat instead of sharp to make the depth rate or ascent velocity within the stable 

region. With the use of non linear control law, the performance of SMC is found to be much 

better than the PD and PID controller for regulating the depth rate and pitch motion even for 

higher water depths.  

 
Figure 59: Variation of ship vertical position from sea bottom (50 m) 

 

 
 

Figure 60: Variation of ship vertical position from sea bottom (100 m) 



 
 

88 
 

 

 
Figure 61: Variation of ship vertical position from sea bottom (150 m) 

 
 

Figure 62: Variation of ship ascent velocity for 50 m, 100 m & 150 m 
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Similar to the ascent velocity in Figure 62, the pitch angle in Figure 63 increases soon after break 

out, reaching a maximum value and thereafter decreasing. The maximum value of pitch angle is 

found to be about 12 degrees, which is within the required limit (< 15 deg.). Nevertheless, the 

pitch angle becomes almost zero, when the pontoon reaches, the commanded depth due to the 

fact that the controller generates pitch angle commands as per the depth error. Similar to the 

response curve for ascent velocity in Figure 62, the peak of the pitch angle response curve in 

Figure 63 becomes flat instead of sharp for higher water depths (see 150 m case) with the same 

tuned settings to make sure that the response never goes beyond the stable region (i.e. > 15 deg.). 

The variations in pitch rate for the three target depths are produced in Figures 64. It is noted that 

the pitch rates for all three target depths reaches a higher value after breakout and thereafter 

decreasing and finally attains zero value, when the pontoon reaches the target depth. 

 

 
Figure 63: Variation of ship pitch angle for 50m, 100m & 150 m  
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Figure 64: Variation of ship pitch rate for 50, 100 & 150 m 

 

For better visibility, gas flow rates for the three target depths are presented separately as shown 

in Figures 65-67. Initially for all the three target depth cases, the controller sets the flow rate to a 

higher value 0.096, 0.1 and 0.108 m3/s to reach the additional buoyancy to overcome the suction 

break out force and to achieve the desired depths. It is seen that soon after the break out, the 

SMC reduces the flow rate significantly to reduce the ascent rate. Once the target depth is 

fulfilled, the controller further reduces the flow rate to almost zero value.  
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Figure 65: Variation of gas flow rate (50m) 

 
 

Figure 66: Variation of gas flow rate (100m) 
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Figure 67: Variation of gas flow rate (150m) 

 

From the simulation, it is understood that the proposed SMC is suitable for controlling the heave 

and pitch motions without overshoot, moderate settling time and having no steady state error 

even for higher water depths with the same tuned settings in comparison with PD and PID 

controllers, which is the most important requirement in a salvage operation. This is mainly due to 

the reason that the SMC uses a non linear control law, where as PD & PID controllers use a 

linear one. Also, it is proved that the designed SMC is capable of handling non linear salvage 

dynamics with the assumption of a linearised state space model, which implies the supremacy of 

SMC in comparison with PD and PID controllers. During the simulation, the most difficult task 

faced by the author is how to tune the controller precisely (i.e. to find the controller gain and 

slope of the sliding surface) for the optimum performance. The performance of the SMC is 

further investigated by conducting case studies including sensitivity analysis and considering the 

effect of external disturbance.  
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Case 1: Sensitivity Analysis: - Variation in break out force 

As discussed earlier, a preliminary sensitivity analysis is carried out by considering the effect of 

variation in breakout force on the trajectory of simulation. The lower and higher values of total 

break out lift force (8508.5 kgf & 11749.83 kgf) are accounted in the simulation for a target 

depth of 100 m from sea bottom. From the simulation response (Figures 68-74), it is found that 

there is no significant variation in response trajectories where as there is considerable change in 

initial gas flow rate value to make sure that the pontoon breaks free from sea bed within the same 

time (i.e. 100s).   

 

 
 

Figure 68: Variation of ship vertical position from sea bottom (100 m, 8508.5kgf) 

 
 

Figure 69: Variation of ship vertical position from sea bottom (100 m, 11749.83kgf) 
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Figure 70: Variation of ship ascent velocity (100 m) 

 

 
Figure 71: Variation of ship pitch angle (100 m) 
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Figure 72: Variation of ship pitch rate (100 m) 

 

 

 
 

Figure 73 Variation of gas flow rate (100 m, 8508.5 kgf) 
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Figure 74: Variation of gas flow rate (100 m, 11749.83kgf) 

 

Case 2: Sensitivity Analysis: - Variation in hydrodynamic coefficients.  

 

A sensitivity analysis is performed with the proposed SMC by allowing a 50 % variation in 

hydrodynamic coefficients used in the simulation program. Simulation is carried out by 

considering this variation for a target depth of 100 m from sea bottom on the pontoon model. 

From the simulation results (Figures 75-79), it is found that SMC is still able to maintain 

hydrodynamic stability throughout the ascent even with this 50% variation in hydrodynamic 

coefficients. Figure 75 shows that the reaching time for attaining the target depth decreases from 

1500s (see Figure 60) to nearly 900s due to this variation. There is no significant variation in 

response trajectories, except the maximum value of pitch angle reduces from 120 to 80.   
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Figure 75: Variation of ship vertical position from sea bottom (100 m) 

 

 
 

Figure 76: Variation of ship ascent velocity (100 m, 0.5hc) 
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Figure 77: Variation of ship pitch angle (100 m, 0.5hc) 

 

 

 
Figure 78: Variation of ship pitch rate (100 m, 0.5hc) 
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Figure 79: Variation of gas flow rate (100 m, 0.5hc) 

 

Case 3: Effect of External Disturbance and Uncertainty  

 

External disturbances and uncertainties are modeled according to the Eq.52 and included in the 

system dynamics as per Eq. (35). By considering this effect, simulation is carried out on the 

pontoon model for a commanded depth of 100 m. The obtained simulation responses are plotted 

in Figures 80-84. From Figure 80, it is seen that due to the effect of external disturbances, the 

payload takes more time to reach the commanded depth (1800 s) in comparison with the model 

without disturbances (1500 s). This is due to the reason that conventional SMC uses constant 

sliding surface slope and control gains throughout the simulation irrespective of the change in 

system dynamics due to external disturbances, which is one of the minor drawbacks of 

conventional sliding mode controllers. It is also noted that the pontoon reaches the commanded 

depth without overshoot and less steady state error. Figures 81-82 shows that both heave velocity 

and pitch angle are stable. This shows that the designed SMC is capable of handling external 

disturbance and uncertainty with system robustness even with the same tuned settings while 

compared with PD and PID controllers. From the simulation, it is observed that with the use of a 

variable structure controller like SMC for regulating the gas flow rate, the entire process is quasi-
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static (changes take place in infinitely small manner) or in mechanical equilibrium, i.e. the 

controller switches from one equilibrium state to another equilibrium state, thus stability can be 

ensured. This verifies the supremacy of SMC in comparison with other controllers like PD, PID, 

Fuzzy Logic and Neural Network for handling non linear underwater problems involving 

uncertainty and external disturbances.   

 

 
Figure 80: Variation of ship vertical position from sea bottom (100 m, ed) 

 

 

 
 

Figure 81: Variation of ascent velocity (100 m, ed) 
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Figure 82: Variation of ship pitch angle (100 m, ed) 

 

 
 

Figure 83: Variation of ship pitch rate (100 m, ed) 
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Figure 84: Variation of gas flow rate (100 m, ed) 

 

Drawbacks of CSMC: - Chattering 

 

It is found that the proposed CSMC is capable of handling non linearity, parameter variations 

and uncertainty arises due to external disturbances with good robustness, while maintaining 

hydrodynamic stability in diving plane for the linear state space model in comparison with PD & 

PID controllers. In the presence of external disturbances, the performance of the CSMC slightly 

degraded as it uses constant sliding surface slope and controller gain throughout the simulation 

irrespective of the variation in system dynamics.  While performing simulation, the main 

difficulty faced is how to tune the controller precisely for the desired optimum performance. This 

operation is normally carried out by trail and error method, which is cumbersome. A constant 

higher value of controller gain often leads to well known chattering due to high frequency 

switching as shown in Figures. 85-89 that may results in high heat losses in electrical circuits and 

premature wear in actuators.  
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Figure 85: Variation of ship vertical position from sea bottom (100 m) 

 
Figure 86: Variation of ascent velocity (100 m) 
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Figure 87: Variation of ship pitch angle (100 m) 

 

 
Figure 88: Variation of ship pitch rate (100 m) 

 



 
 

105 
 

 
Figure 89: Variation of gas flow rate (100 m) 

 

Clearly this level of chattering would be totally unacceptable as it would waste a large amount of 

gas. Can you not get less chatter? 

 

5.4    Concluding Remarks  

 
In this chapter, the relative efficacies of PD, PID and CSMC are investigated as a primary 

controller for regulating the volume flow rate of filling gas inside the lift bags for a safe and 

stable ascent. The obtained numerical simulation results highlight the following findings.  

 

• PD controller: is suitable for regulating the depth and pitch motions for smaller target 

depths with no overshoot and having less steady state error. But, for higher commanded 

depths with the same tuned coefficients, the performance of the controller is very poor as 

the ascent velocity and pitch angle goes beyond the stable region. 

 

• PID controller: gives satisfactory results for all most all target depths by approximating a 

linear deterministic model with considerable overshoot, where as in the presence of 
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parameter variations, non linearity and external disturbances, good results are not 

guaranteed. 

 

• CSMC: is capable of handling non linearity, parameter variations and uncertainty arises 

due to external disturbances with good robustness, while maintaining hydrodynamic 

stability in diving plane for almost all commanded depths by approximating a linear state 

space model in comparison with PD & PID controllers. Tuning effort and chattering are 

the two major draw backs of CSMC.  

 

• For salvage operations, a closed loop control system is mandatory to achieve the desired 

performance, therefore try to avoid failure in controller components especially sensor 

failure as it significantly affects the performance of the controllers.  
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6 Modification of Primary Controller by Artificial   

     Intelligence  
 
The proposed CSMC shows good robustness with the linear state space model and able to 

maintain hydrodynamic stability in diving plane even in the presence of parameter variations, 

external disturbances and uncertainty. The major problem associated with the CSMC is tuning 

effort and that may leads to well known ‘chattering’. It is noted that under the effect of external 

disturbance and uncertainty, even though the system is stable, there is slight degradation in the 

system performance, which may be due to the CSMC using a constant values of sliding surface 

slope (λ) and controller gain (k) throughout the process irrespective of the change in system 

dynamics. Since it is almost impossible to manually retune the control parameters under water, 

it is highly desirable to have controllers capable of self-adjusting their control parameters (i.e. 

adaptive controllers) when the overall performance degrades due to any uncertainties or any 

system failure. From the literature review, it is found that the performance of CSMC can be 

considerably improved by integrating it with fuzzy logic to become an adaptive non linear 

controller called a fuzzy sliding mode controller.  

 

 

6.1 Design of a Fuzzy Sliding Mode Controller  
 

In a sliding mode controller, the states switch between the stable and unstable trajectories until 

the state variables reach the sliding surface. The phase trajectory of a sliding mode controller can 

be divided into two stages: the reaching and the sliding mode. The reaching or hitting phase is 

the trajectory starting from the given initial conditions of the sliding surface and tending towards 

the sliding surface; then the sliding mode starts once the state variables converge to the sliding 

surface. When the state variables are in the sliding mode, the system remains on the sliding 

surface and the states go to the origin while the system is insensitive to parameter variations or 
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external disturbances. That is the controller works effectively in the sliding mode. On the 

contrary, when the system acts in the reaching mode, tracking errors cannot be directly 

controlled, hence the system becomes sensitive to parameter variations. This implies that the 

robustness of the sliding mode controller resides in its sliding phase rather than the reaching 

phase, owing to the fact that the conventional sliding mode controllers uses fixed (invariant) 

sliding surfaces. Conventional sliding mode controllers with predetermined fixed slope (λ) 

degrade the dynamic performance of the system during the reaching mode; i.e. the controllers 

with minimum values of slope (λmin) lead to a slower error convergence but better tracking 

performance, whereas controllers with maximum values of slope (λmax) lead to a faster error 

convergence along which the tracking accuracy can be degraded. In addition, finding the 

optimum value of slope for the given controller is a complicated task [142]. Thus, a very 

important task in sliding mode controller design is to continuously change the slope of the 

sliding surfaces based on the state errors and their derivatives. This task is accomplished by 

using a Fuzzy Logic Controller (FLC) that continuously computes the slope of the sliding 

surface according to the values of state error and its derivatives.  The chattering can also be 

effectively eliminated by this approach [11, 17, 27-29, 75, 88, 120, 135-136, 141-142, 148]. 

Another difficulty faced by the control engineers in sliding mode controller design is how to tune 

the controller effectively for a desired performance. Normally, this operation is carried out by a 

trial and error but this is cumbersome and time consuming. A constant high value of controller 

gain often leads to chattering. This problem can be overcome by adaptively tuning the controller 

by another FLC that computes the controller gain k based on the sliding surface σ and its 

variation [1, 10, 46-47, 52]. Hence, it is found that the performance of the conventional sliding 

mode controller can be effectively improved by using the FLC for continuously computing the 

slopes of the sliding surface instead of a constant sliding surface and also adaptively tuning the 

controller gain (k) by another FLC.   
 

6.1.1  Design of Two Input Fuzzy Sliding Mode Controller (TIFSMC) 
 

In this section, the performance of the conventional sliding mode controller is improved by using 

two conventional or two input fuzzy logic controllers TIFLC1 and TIFLC2, as shown in Figure 
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90.  The first TIFLC1 is used for computing the slope of the sliding surface dynamically 

according to the system states such as error and change in error so that the tracking performance 

can be improved, thus maintaining the robustness throughout the process. The second TIFLC2 

then calculates the controller gain adaptively with respect to the sliding surface σ and its 

derivativeσ , thereby eliminating the complex process of tuning and reduces chattering. 

 
Figure 90:  SIMULINK block diagram of a Two Input Fussy Sliding Mode Controller 

                       (TIFSMC) for regulating the gas flow rate  

 

TIFLC1 computes the value of λ dynamically based on the system error (e) and change of error 

(ė) so that the tracking performance of the system can be improved. The combination of 

trapezoidal and triangular membership functions (µ) are used for modeling the input variables e 

& ė as shown in Figures 91(a).  The shapes of all membership functions for the output λ are 

chosen being triangular, fully-overlapping and fully-symmetric, as shown in Figure 91(b). Seven 

linguistic sets have been chosen as NB, NM, NS, ZE, PS, PM, PB for the inputs and VVS, VS, 

S, M, B, VB, VVB for the outputs, where the abbreviations N stands for negative, P positive, ZE 

zero, B big, M medium, S small and V very, respectively. It is assumed that the input variables 
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are normalized within a universe of discourse (UOD) of [-1 1] during the process of fuzzification 

[88]. Two dimensional fuzzy rules for computing λ are designed in such a way that the values of 

λ are always positive in order to satisfy the conditions of stability [135-136, 142]. These seven 

linguistic sets lead to 49 fuzzy rules as shown in Table 2. Figure 92 graphically represents the 

input-output relation (i.e. fuzzy control surface) or the variation of sliding surface with error 

states for the TIFLC1.  

 

 
                              (a) 

 
                             (b) 

 

Figure 91: (a) TIFLC 1 input membership functions (b) output membership functions 



 
 

111 
 

 

Table 2. Two- dimensional fuzzy rule table to compute λ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 92: Variation of sliding surface with error states 

 

e(t) 

 

ė(t) 

NB NM NS ZE PS PM PB 

  NB M S VS VVS VS S M 

  NM B M S VS S M B 

  NS VB B M S M B VB 

  ZE VVB VB B M B VB VVB 

  PS VB B M S M B VB 

  PM B M S VS S M B 

  PB M S VS VVS VS S M 
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The controller TIFLC2 computes the controller gain (k) dynamically based on the sliding surface 

σ and its derivative σ  by which chattering can be avoided. For simplicity, the triangular, fully 

overlapping and fully symmetrical membership functions are used for representing the 

input/output variables. Fuzzy rules are selected in such a way that the control gain k is always 

maintained to positive values in order to satisfy the Lyapunov stability condition as shown in 

Table 3. Figure 93 shows the three dimensional representation of the input-output relation (i.e. 

fuzzy control surface) or the adaptive tuning of control gain with sliding surface error states of 

TIFLC2. 
 

 

 

 

 

Table 3. Two dimensional fuzzy rules to compute k 

 σ(t) σ (t) 

NB NM NS ZE PS PM PB 

NB M B VB VVB VB B M 

NM S M B VB B M S 

NS VS S M B M S VS 

ZE VVS VS S M S VS VVS 

PS VS S M B M S VS 

PM S M B VB B M S 

PB M B VB VVB VB B M 
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Figure 93: Adaptive tuning of control gain with sliding surface error states  

 

 

 

 

 

6. 1. 2  Design of  Single Input Fuzzy Sliding Mode Controller  (SIFSMC)   
 

The design procedure of the TIFSMC is complicated due to the involvement of large number of 

fuzzy rules and parameters to be tuned. The TIFSMC requires the process of fuzzification, rule 

inferences, defuzzification process that involved extensive computation which leads to the 

requirement of high performance computing. As a remedy to this problem, a SIFSMC was 

recently proposed by various researchers to reduce the large number of fuzzy rules, hence 

minimum computational time and less tuning effort [141]. The SIFSMC allows the control 

surface to represent in a 2-D form, i.e. approximation as a linear or piecewise linear surface 

irrespective of the 3-D surface by which the number of tuning parameters can be considerably 
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reduced. In the SIFSMC, the single fuzzy input variable (ed) is defined as the absolute magnitude 

difference between the state error (e) and its derivative (edot) [141]. 

 

          (69)                                de ( t ) e( t ) e( t )                                                                       = −
 

 

Figure 94: SIMULINK block diagram of a Single Input Fuzzy Sliding Mode Controller 

                    (SIFSMC) for regulating the gas flow rate  

 

 

The SIMULINK block diagram of a SIFSMC for regulating the flow rate of filling gas inside the 

lift bags is shown in Figure 94. The SIFLC1 dynamically computes the sliding surface slope (λ) 

according to the fuzzy input variable ed. Similar to the previous case, both the triangular and 

trapezoidal membership functions are used for modeling the input variable ed, while the 

triangular membership functions are used for representing the output λ. One dimensional fuzzy 

rules are formulated based on the work of Yorgancioglu & Komurcugil [141]. Table 4 shows 

that the fuzzy rules are considerably reduced from 49 to 7 in comparison with the TIFLC1 (see 

Table 2). As it is a single input- single output system, the input-output relation or dynamic 

variation of sliding surface with error state can be approximated as a straight line as shown in 

Figure 95. 
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Table 4: One dimensional fuzzy rules to compute λ 

Rule No One dimensional fuzzy rules 

1 If  (ed is NB) then ( λ is VVB) 

2 If  (ed is NM) then (λ is VB) 

3 If (ed is NS) then (λ is B) 

4 If (ed is ZE) then (λ is M) 

5 If (ed is PS) then (λ is S) 

6 If (ed is PM) then (λ is VS) 

7 If (ed is PB) then (λ is VVS) 
 

 

 
 

Figure 95: Variation of sliding surface slope with ed 

 

The fuzzy logic controller SIFLC2 computes the controller gain adaptively based on the sliding 

surface σ. The triangular, fully symmetrical and fully overlapping membership functions are used 

for modeling both input and output variables. Table 5 represents the  
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1-D fuzzy rule table to compute the gain k that considerably reduced from 49 to 7 compared to 

TIFLC 2 (see Table 3). Figure 96 represents the fuzzy control surface or the adaptive tuning of 

control gain with sliding surface.  

 

Table 5 One dimensional fuzzy rules to compute k 

Rule  

No 

One dimensional fuzzy rules 

1 If  (σ is NB) then (k is VVS) 

2 If  (σ is NM) then (k is VS) 

3 If (σ is NS) then (k is S) 

4 If (σ is ZE) then (k is M) 

5 If (σ is PS) then (k is B) 

6 If (σ is PM) then (k is VB) 

7 If (σ is PB) then (k is VVB) 
 

 

 

Figure 96:  Adaptive tuning of control gain with sliding surface 
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6.2 Comparison with Conventional Sliding Mode Controller 
 

The performance of the TIFSMC and SIFSMC over CSMC is investigated by performing 

simulation on the pontoon model for a higher target depth say 300 m. The obtained responses are 

shown in Figures 97-101.  

 
 

Figure 97: Variation of ship vertical position from sea bottom (300m) 

 

 
 

Figure 98: Variation of ship ascent velocity (300 m) 
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Figure 99: Variation of ship pitch angle (300m) 

 

 
Figure 100: Variation of ship pitch rate (300m) 
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Figure 101: Variation of gas flow rate (300m) 

 

Overall, all three controllers show good performance over the system. In all the three cases the 

pontoon reaches the target depth in 1600s. The most important thing while conducting 

simulation is after designing the SIFSMC, the tuning process (i.e. to determine the slope of the 

sliding surface λ & control gain k) become very easy and standardized by simply looking the 1-D 

fuzzy control surfaces of SIFSMC as shown in Figures 95 & 96 and hence chattering can be 

considerably avoided. This is the highest advantage as far as control engineering is concerned 

while maintaining the robustness property of SMCs. But, it is better to remember that, for 

designing a SIFSMC, firstly it is required to design CSMC as the base, then extended it to 

TIFSMC and finally simplified to SIFSMC. When Figures 97 is considered, the slow response of 

the CSMC is further improved by continuously varying the sliding surface slope and online 

tuning the controller gain so that the steady state error  is considerably reduced. Figure 98 & 99 

shows how all the three controllers maintains ascent velocity and pitch angle within the stable 

region by flattening the peak curve instead of a sharp one for higher commanded water depths in 

comparison with lower target depths. This verifies the supremacy of SMCs over PD & PID 
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controllers especially for higher water depths. It is observed that FSMCs are free from chattering 

due to high frequency switching as inherently seen with CSMCs. The rise time produced by all 

controller models are nearly the same, but the time required for the state variables to attain the 

steady state condition is lesser in FSMCs than the CSMC. In all cases, the state variables attain 

their steady state, indicating how the dynamic system is stable throughout the process. The 

percentage of overshoot is negligible with all controllers. Since it is difficult to visually observe 

the comparative performance of these controllers, the Integral Absolute Error (IAE) and Integral 

of Time multiplied Absolute Error (ITAE) and steady state error (ess) are considered during the 

simulations, which are given in Table 6. It is found that both FSMCs show about 30% of 

improvement in the IAE index compared to the CSMC. In addition, in terms of the transient 

response, both FSMCs better perform. For the TIFSMC, the above transient performance is 

obtained after a lengthy complex tuning process of fuzzification, defuzzification and inference of 

49 rules. If these processes had not been properly tuned, unsatisfactory results would have been 

produced by the TIFSMC. Irrespective of the 3D control surface of TIFSMC in Figures 92 and 

93, SIFSMC requires only two parameters to be tuned; slope of the linear control surface and the 

break point as shown in Figures 95 and 96. Table 6 shows the computational time required for 

the two FSMCs. It is seen that SIFSMC is two orders of magnitude faster than TIFSMC. This is 

due to the reduction in linguistic fuzzy rules from 49 to 7 for both the FLCs. Finally, it is worth 

emphasizing that the SIFSMC can be implemented using a much slower and low cost processor 

with minimum tuning effort. 

 

 

 

Table 6 Performance measures for the three controllers 

 CSMC TIFSMC SIFSMC 

IAE  2.68 0.804 0.78 

ITAE 5.20 0.790 0.716 

ess 0.08 0.02 0 

 



 
 

121 
 

Table 7 Comparison of computational time 

Controller Computational time       

           (s) 

CFSMC 500 

SIFSMC 4 

 

 

From the simulation results, it is found that, there is no significant visible difference between the 

performances of CSMC, TIFSMC & SIFSMC for the linear deterministic state space model 

under normal conditions. But with the development of SIFSMC, the tuning process become 

standardized and hassle free and hence the well known chattering problem present with SMCs 

can be avoided. The performance of the TIFSMC & SIFSMC over CSMC is further evaluated by 

considering the effect of external disturbances and uncertainties in the system modeling.  

 

 

Effect of External Disturbance and Uncertainty 

 

As explained earlier external disturbances and uncertainties are modeled according to the Eq.52 

and included in the system dynamics as per Eq. (35). By considering this effect, simulation is 

carried out on the pontoon model for a commanded depth of 300 m. The obtained simulation 

responses are plotted in Figures 102-106.  
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Figure 102: Variation of ship vertical position from sea bottom (300m) 

 

 
Figure 103: Variation of ship ascent velocity (300m) 
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Figure 104: Variation of ship pitch angle (300m) 
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Figure 105: Variation of ship pitch rate (300m) 

 
Figure 106: Variation of gas flow rate (300m) 
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From the response plots, it is observed that all the three controllers maintain hydrodynamic 

stability even in the presence of uncertainty due to external disturbances. By comparing the 

simulation response of the system with and without external disturbances, i.e. by comparing 

Figures 102-106 with Figures 97-101, it is noted that both FSMCs are less sensitive to external 

disturbances compared with CSMC. Figure 102 shows that under the effect of external 

disturbances, the CSMC takes more time to reach the commanded depth (2000s) in comparison 

with TIFSMC & SIFSMC, where it is only 1600s.  These are due to the reason that CSMC uses 

constant sliding surface slope (λ) and control gain (k) throughout the simulation irrespective of 

the change in system dynamics due to external disturbances. Hence it is realized that for a 

complex non linear underwater operations like marine salvage, where there is always possibility 

of sudden change in system environment, uncertainty and external disturbances, it is better to 

adopt a non linear adaptive controllers like TIFSMC & SIFSMC for regulating the gas flow rate, 

in which SIFSMC is the optimum choice due to less tuning effort and computational time.    

 

6.3     Concluding Remarks 
In this chapter, a new controller design is implemented that brings together the advantages of 

both fuzzy logic and sliding mode controllers. A conventional sliding mode controller (CSMC) 

is first designed and then its performance is improved by extending to TIFSMC & then 

simplified to SIFSMC. With the development of SIFSMC, the tuning process become 

standardized and hassle free and hence the well known chattering problem associated with 

SMCs can be avoided. It is found that both FSMCs show 30% of improvement in the tracking 

performance when compared to the CSMC, while maintaining its robustness. It is also noted that 

both FSMCs are less sensitive to external disturbances and uncertainties in comparison with 

CSMC. The responses obtained by the SIFSMC are the same as those obtained by the TIFSMC, 

with the former involving a much less tuning effort and computational time. Therefore, an 

adaptive controller like SIFSMC proves to be the preferred option amongst the considered 

controllers as the primary controller for regulating the gas flow rate. 
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7. Design of Secondary Controller  
 

In this chapter a secondary controller is proposed to regulate the area of purge valve opening 

fitted with lift bags in accordance with the excess buoyancy available after suction breakout and 

according to the variation in pressure difference between the gas inside the lift bags and 

surrounding sea water pressure for a stable ascent.  

 

Consider the problem of lifting the pontoon model lying at sea bottom, which is at a distance of 

300 m from sea surface.  Total breakout lift force required for the pontoon is calculated as 10.67 

m3 (see Appendix A). As the volume of one single inflated lift bag is 1.8 m3, a total of 6 lift bags 

are required for inflation. The buoyancy force provided by all 6 lift bags are taken together in the 

rigid body modeling. During the ascent, as the water depth decreases (i.e. distance from sea 

bottom increases), there is considerable decrease in surrounding sea water pressure as shown in 

Figure 107. 

 

 

Figure 107: Decrease in sea water pressure during the ascent 
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Figure 107 shows that the decrease in sea water pressure is linearly with respect to the variation 

in depth. At sea surface the absolute pressure is same as the atmospheric pressure. Suppose, if 

there is no purging, the total expansion of gas inside the lift bags according to this decrease in 

surrounding sea water pressure is plotted in Figure 108.  This expansion of gas results to an 

exponential increase in buoyancy force as shown in Figure 109, which leads to an unpredictable 

acceleration during the ascent. The excess buoyancy available after suction breakout also causes 

a sudden increase in acceleration after the breakout.  

 

 
Figure 108: Total expansion of gas inside the lift bags during the ascent  

 

 
Figure 109: Increase in buoyancy force during the ascent 



 
 

128 
 

Hence, in order to reduce the excess buoyancy available after the suction breakout and to avoid 

the unpredictability in the acceleration due to the expansion of gas during the ascent, purge 

valves are provided at the top of the lift bags. The function of the secondary controller is to 

regulate the area of purge valve opening in accordance with the excess buoyancy available after 

suction break out and according to the variation in pressure difference between gas inside the lift 

bag and surrounding sea water pressure for a stable ascent.  A PID controller is proposed for 

achieving this purpose.  

 

7.1 Proportional Integral and Derivative Controller (PID) 

 
A PID controller is selected as the secondary controller to regulate the purge valve opening as 

explained in Farrell & Wood [32]. Explanation of the working components of a PID controller is 

given in Section 5.2. Purge valve modeling is already carried out in Section 4.2. 

 

In order to simulate the properties of purge valve’s actual response, an equation is formulated as 

discussed in Section 4.2 to take the PID control response and translates that into a   purge area 

size. 

 

(70)                                                                                       purge purge purgeV v A dt= × ×   

In which,  

[ ]purgeA PID=  = area of valve opening in m2 (control parameter) 

Vpurge = volume of air purged (m3) 

dt = time interval  

Here the purge valve opening is controlled according to the feedback obtained from sensors 

based on the system error. The error is the difference between desired depth and actual depth.  

i.e.  
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(71)                                                               come z z= −  

Where zcom is the commanded depth and z is the actual depth.  

 

The control law is formulated as: 

 

(72)[ ]=k*( )                                                                            PID P I D+ +  

In which,  

 

 (73)                                                                                           1P p* e=  

 

     (74)                                                                                          1 0 0I i* (( e e ) / t I )= + +  

 

      (75)                                                                                                                   1 0D d * ( e e ) / dt= −  

Where,  
P = proportional control response, I = integral control response, D = derivative control response, 
k = control response gain constant, p = proportional constant, i = integral constant, d = derivative 
constant, e1 = instantaneous error, e0 = previous error measured, I0 = cumulative integral 
response, dt = time interval between system response, t = total time.  

 

The performance of the automated purge valve using PID controller is investigated by 

conducting simulation for the lifting of pontoon model lying at sea bottom having distance 

250m, 300m & 350 m from sea surface using lift bags.  The obtained responses are shown in 

Figures 110-113.  
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Figure 110: Variation of ship vertical position from sea bottom  

 

 
Figure 111: Variation of ship ascent velocity 
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Figure 112: Variation in purge area (control parameter) 

 

 
Figure 113 Variation of gas pressure inside the lift bags.  
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Figure 110 shows that in the all the three cases, the vessel reaches the target depths without any 

overshoot by properly tuning the PID controller. The maximum value of ascent velocity among 

the three target depths is found from Figure 111 to be 0.5 m/s (<0.6 /s), which implies that the 

ascent is stable. Figure 112 shows how the controller regulates the purging of gas through valves 

in accordance with the excess buoyancy available after breakout and to the variation in pressure 

difference between gas inside the lift bags and surrounding sea water pressure for a stable ascent. 

The purge area suddenly increase from 0-60 cm2 for reducing the excess buoyancy available 

after suction breakout and thereafter remains a constant value for handling the increase in 

buoyancy due to the expansion of gas inside the lift bags and finally reduces zero after the 

pontoon reaches the commanded depths. From Figure 113, the variation of gas pressure inside 

the lift bags is found to be in the range 5-120 kPa.  

 

 

7.2 Concluding Remarks 

 

In this chapter, a PID controller is designed as the secondary controller for regulating the purging 

of gas through the valves in accordance with the excess buoyancy available after suction 

breakout and to the pressure difference between gas inside the lift bags and surrounding sea 

water pressure for a stable ascent. PID controller is found to be effective in maintaining the 

ascent velocity within the stable region by properly tuning the control coefficients.  
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8.  Design of Supervisory Controller  

 

For maintaining hydrodynamic stability in a salvage operation using buoyant systems, a SIFSMC 

is selected as the primary controller for regulating the flow rate of filling gas inside the lift bags 

and a PID controller is chosen as the secondary controller to regulate the purging of gas through 

the valves fitted on the lift bags.  Now for a stable salvage operation, it is required to monitor or 

switch between these two sub controllers by a supervisory controller as per the depth error and 

depth rate.  In such situations, the only possibility is to choose an intelligent controller such as 

fuzzy logic controller (FLC) as the supervisory controller for monitoring the primary and 

secondary controllers as shown in Figure 114. 

 

FLC issues system commands to effect the changes in depth, while also regulating the pitch 

angle of the vehicle. Due to the non linear nature of fuzzy mathematics, it can be applied for 

marine salvage problems. But the problem associated with FLC is how to generate the linguistic 

fuzzy rules for meeting the desired functionalities.  

 

 

Figure 114: Design of a Fuzzy logic controller for monitoring two control subsystems 

 

In Fuzzy logic controllers, the controlling action is through artificial intelligence i.e. linguistic 

expressions (fuzzy rules) based on the knowledge of operator or salvor. The majority of the 

FLCs use a two dimensional rule base (2D) that is derived from the error and derivative of error 
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according to the system state and its derivative.  FLCs are designed with respect to a phase plane 

determined by the state error (e) and its derivatives (ė). The general heuristic approach in 

designing FLCs is to separate the phase plane into two semi planes with a diagonal line. Positive 

control outputs are placed in one semi plane and negative control outputs are located in the other. 

The magnitude of the control output is proportional to the distance from the diagonal line and 

that forms a diagonal symmetric rule table; i.e. when the system states are far from the diagonal, 

the controller signal is big and vice versa. Absolute values of control input change proportionally 

with respect to the distance of the representative point from the diagonal line. The diagonal line 

can be treated as a switching line, which is similar to the sliding line of an SMC [24, 64, 73, 88, 

97, 147]. 

 

The benefits of the fuzzy logic controller are [24, 88, 147]: 

 

• Simplicity, by not requiring a dynamic model, which leads to the rapid development 
of a working design 

• better matching of the control strategy and complexity with performance objectives 
and limitations 

• easy modification of the controller through the use of linguistic fuzzy rules 

 

Based on the experience learned while conducting numerical simulations on primary and 

secondary controllers, a supervisory fuzzy logic controller is designed by utilizing MATLAB 

Fuzzy Logic toolbox [42] and integrated in SIMULINK  as shown in Figure 115. Here inputs to 

the FLC are the depth error (ze) and depth rate (w). Depth error is defined as the commanded 

depth minus the measured depth. The output or control variable is ‘u’ which regulates the 

buoyancy with respect to the depth error and depth rate. After carrying out the stability check 

using different kinds of membership functions, Gaussian membership functions are finally used 

for representing the input and output variables as shown in Figures 116-117. Using a trial and 

error approach, the best inference mechanism to use in this case seems to be the prod-probor 
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method. Because of simplicity and availability of the graphical user interface (GUI) in 

MATLAB, the Mamdani inference engine is employed for designing the FLC that uses the 

minimum operator for a fuzzy implication and max-min operator for composition   The 

defuzzification technique used is found using a trial and error and centroid  method is the one 

which provides least integral square error. Table 8 shows fuzzy rule base consists of 49 rules for 

computing the output variable, which are formulated based on the author’s experience in 

performing numerical simulation using depth error and depth rate as the system states and 

change in volume of gas inside the lift bag as the output. The definition of fuzzy control actions 

are defined in Table 9.  

 

 
Figure 115: SIMULINK block diagram of a supervisory FLC for marine salvage  
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Figure 116 (a): Membership functions for the input variable ze 

 

Figure 116 (b): Membership functions for the input variable ‘w’ 

 

 

Figure 117: Membership functions for the output variable ‘u 
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Table 8. Two dimensional fuzzy rules to compute u 

ze 

 

     w 

NB NM NS ZE PS PM PB 

PB Z PS PM PB PB PB PB 

PM NS Z PS PM PB PB PB 

      PS NM NS Z PS PM PB PB 

ZE NB NM NS Z PS PM PB 

NS NB NB NM NS Z PS PM 

NM NB NB NB NM NS Z PS 

NB NB NB NB NB NM NS Z 

 

 

The variation of control action ‘u’ with respect to the depth error (ze) and depth rate (w) is shown 

in Figure 118. Positive value of u implies filling gas inside the lift bags, where as negative value 

implies taking gas or purging gas out from the bags.  Thus by the combined action of filling gas 

in to the lift bag and by regulating the purging of gas through the valves in accordance with the 

depth error and its derivative, a stable ascent can be ensured. 

 

 
The performance of the supervisory fuzzy logic controller is investigated by performing 

simulation on the pontoon model, which is lying at sea bottom 250 m, 300 m & 350 m below the 

sea surface and the obtained responses are plotted in Figures 119-123.  
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Table 9: Definition of fuzzy output control action 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 118: Variation of control action with depth error and depth rate 

Output     

   ‘u’ 

Meaning Control Action 

     Z  Zero Both Primary and Secondary controllers are off 

     PS Positive Small Small rate of filling gas in to the lift bag : operating 
primary controller  

     PM  Positive Medium Medium rate of filling gas in to the lift bag :  
operating primary controller  

     PB Positive Big Large rate of filling gas in to the lift bag : operating 
primary controller  

     NS  Negative Small Small purging of gas from lift bag: operating 
secondary controller  

    NM  Negative Medium Medium purging of gas from lift bag : operating 
secondary controller  

    NB  Negative Big Large rate of purging gas from lift bag: operating  
secondary controller.  
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Figure 119:  Variation of ship vertical position from sea bottom  

 

 
 

Figure 120:  Variation of ship ascent velocity  
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Figure 121:  Variation of ship pitch angle 

 

 
 

Figure 122:  Variation of ship pitch rate 
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Figure 123:  Net flow rate (at local pressure) in and out of lift bags 

 

Figure 119 shows that in all the three cases the pontoon reaches the target depth in 1600s with no 

overshoot and less steady state error. The maximum value of ascent velocity among the three 

target depths is found from Figure 120 to be 0.45 m/s (<0.6 m/s), which leads to the conclusion 

that the controller is  capable to maintain ascent velocity within the stable range for even higher 

water depths. From Figure 121, the maximum value of pitch angle for the three cases are found 

to be 130, which shows that pitch is stable (< 150). Pitch rates for the three case approaches zero 

when the pontoon reaches the commanded depth as shown in Figure 122. Figure 123 shows how 

the fuzzy control action regulates the volume inside the lift bags according to the depth error and 

depth rate for a stable ascent. It is noted that the controller initially sets positive flow rate for 

suction breakout and after the suction breakout (i.e.100 s), the controller reduce the flow rates to 

negative value in order to overcome the excess buoyancy available and thereafter maintains a 
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constant value for handling the variation in additional buoyancy due to the expansion of gas 

inside the lift bags with respect to the decrease in depth and finally reaches zero value after the 

pontoon reaches the commanded depth.  From the simulation studies it is found that the proposed 

supervisory FLC is suitable for maintaining hydrodynamic stability for even higher commanded 

depths by suitably designing the fuzzy membership functions, scaling factors and linguistic fuzzy 

rules.  

 

8.1 Concluding Remarks  
 

A supervisory fuzzy logic controller is designed to monitor or switch between the primary and 

secondary controllers as per the depth error and depth rate for a stable ascent. From the 

simulation studies, it is found that the proposed supervisory FLC is able to maintain 

hydrodynamic stability for even higher water depths without overshoot and less steady state 

error. This is because the FLC uses a non linear control law that is developed based on the 

author’s experience in conducting numerical simulations on primary and secondary controllers 

and also due to the stability analysis by using different combinations of fuzzy membership 

functions and scaling factors by the trial and error method.  Thus the supervisory fuzzy logic 

controller becomes adaptable for a safe and stable salvage operation.  
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9 Extending to Flexible Body Modeling & Control  
 
In the rigid body modeling & control approach, the state space model is created by considering 

the total additional buoyancy provided by all lift bags together and the responses are available 

for the whole motion of the payload. But in actual practice, lift bags are located at different 

locations on the vessel and their location significantly affects the hydrodynamic and control 

responses. Whilst rigid body modeling can be extended to include the response of individual lift 

bags and to control them separately, i.e. to use multiple controlled lift bags to ensure both 

hydrodynamic and structural stability, it cannot deal with more complicated lifts, such as a 

flexible pipeline. Although it continues to consider the case of ship salvage, this chapter extends 

the theory to allow for this possibility. For meeting these objectives, the rigid body modeling & 

control approach is extended to a detailed flexible beam modeling & control. 

 

In the flexible body modeling & control approach, the vessel or payload is modeled as an  

Euler-Bernoulli beam with free – free boundary conditions as shown in Figure 124. Initially free 

vibration analysis or eigen value analysis of the vessel is carried out in MATLAB using 

analytical and finite element method to obtain the natural frequencies (eigen values) and  mode 

shapes (eigen vectors) and the obtained responses are compared. By looking the mode shapes, 

the optimum location of lift bags on the vessel can be determined.  Within the controller it is not 

possible to integrate the coupled motions equation of motion, so it is required to convert from 

physical to principal coordinates. For that, the eigenvectors are normalized with respect to mass 

and the equation of motion is developed in principal coordinates, after defining the nodal forces 

and moments. Nodal forces and moments can be determined from the hydrostatic, 

hydrodynamic, suction breakout and additional buoyancy force components as explained in 

Section 4.1.1.1- 4.1.1.4. The uncoupled equations of motion in principal coordinates are 

transformed in to a state space form. The modal contributions of individual modes are analyzed 
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according to their dc gain/peak gain value to define which ones having the greatest contribution. 

Finally efficacies of modal reduction techniques such as ‘modred’ (both ‘mdc’ & ‘del’ sub 

functions) methods with sorted / unsorted modes are used to obtain a smallest state space model 

(4*4) that accurately represents the pertinent flexible body dynamics. Later supervisory fuzzy 

logic controller is integrated with the flexible state space model of each lift bags to obtain the 

controlled stable responses.            

                       

 
 

Figure 124: Concept of a beam model with lift bags for marine salvage 
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9.1 Euler-Bernoulli Equation 

 

The Euler-Bernoulli equation for the transverse vibration of a beam within the X-Z plane is 

given by [2, 21, 71, 94], 

 

( )  (76)                                                                                   
2 2 2

2 2 2

z zEI A F x,t
x x t

ρ   ∂ ∂ ∂
+ =   ∂ ∂ ∂     

In which, z (x, t) is the deflection at location x along the beam at time t, E –Young’s modulus or 

modulus of elasticity of the beam material, I – Second moment of area of the beam cross section 

about the neutral axis, m - Mass per unit length = ρA. Where ρ is the density of the material and 

A is the cross sectional area of the beam.  

 

F(x, t) is the force excitation on the beam, which is a function of both space & time, can be 

represented as the summation of all the point forces [112], 

                                                                                                                                            

( )
r

i
i=1

(77)     = (x,t)                                                                                                         F x,t f∑  

In which r is the total number of input forces. 
 
fi(x, t) is the set of point forces fi(t) located at x=li, 

which can be expressed as a distributed force per unit length according to  

 

( ) i (78)                      = F )                                                                                              i if x,t ( t ) ( x lδ −  

 

Where δ(x-li) is the Dirac Delta function for  i = 1, 2….r  and Fi(t) is the universally distributed 

force per unit length
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For the beam with free-free boundary conditions, the shear force and bending moment at the two 

ends are zero [21],   

 

i.e. 

 

 (79)=0,     =0,                                                                         
2 2

2 2
x 0 x l

z( x,t ) z( x,t )
x x= =

∂ ∂
∂ ∂  

 

(80)=0,     =0,                                                                        
3 3

3 3
x 0 x l

z( x,t ) z( x,t )
x x

= =

∂ ∂
∂ ∂  

 

In Euler-Bernoulli beam theory, the assumption is plane cross section of the beam remains plane 

and normal to the neutral axis before and after the bending. i.e.  Euler-Bernoulli beam theory 

neglects rotational inertia and deformation due to shear forces. 

 

9.1.1 Analytical Solution  

 

The natural frequencies of the vessel for any mode of vibration can be found using analytical 

method as [21],  

 

n (81)
( )1=                                                                                                                      

2

2

n

kl EIf
l Aπ ρ

 
  

 

Where,  fn    is the natural frequency for any mode of vibration in hz and  l is the length of the 

vessel.  

 

The value of (kl)n   can be obtained by solving the equation   coshklcoskl =1 as shown in Table 10.  
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Table 10 Graphical solution of coshklcoskl=1 

 

(kl)1 (kl)2 (kl)3 (kl)4 (kl)5 (kl)6 

0 4.73  7.853 10.996 14.137 17.279 

 

 

Therefore, by substituting the various values of (kl) n  in Eq. (81), the respective natural 

frequencies for any mode of vibration can be found. The value (kl)1 =0 is disregarded as it does 

not give rise to an oscillatory motion.   

 

The mode shapes at number of positions (x/l) along the length of the beam can be obtained by,  

 

(82)
( ) ( ) ( ) cos( ) - ( ) ( )           
( ) ( )

n n
n n n n n

n n

cosh kl cos klx x x x xZ D cosh kl kl sinh kl sin kl
l l l sinh kl sin kl l l

    −           = + +              −               
 

 

In order to plot the vibration profiles, the value of Z is calculated at number of points along the 

beam and the resulting profile is then normalized. 

 

See Appendix B for the detailed derivation of analytical solution of an Euler-Bernoulli beam 

with free-free boundary conditions. 

 

 

 

9.1.2    Finite Element Solution  

 
For a beam with free-free boundary conditions, the displacement z(x, t) can be represented as 

[53],  
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(83)                =                                                                                         -i t
0z z e ω

 

Where z0 is the amplitude and ω is the natural frequency of vibration. 

 

Therefore,  

 
-i t

0               (84)                     z = z e -i                                                                  ω ω×          
                                                     

-i t
0                                       (85)z = z e -i z                                            2iω ω ω ω× ×− = −                                                                                                                                                                

 

Substituting Eq. (85) in Eq. (76), the eigenvalue problem is obtained as,    
 

   (86)                                                                                                
2 2

2
2 2

zEI A z 0
x x

ρ ω ∂ ∂
− = ∂ ∂   

The above eigenvalue problem in differential form can be converted to finite element 

formulation as [8, 53, 79]: 

 

[ ] [ ] (87)                                                                                                   2
i i iM { z } K { z } 0ω− + =  
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i.e.  

 

[ ] [ ] (88)                                                                                                             2
i iK M { z } 0ω − =   

Therefore,   

 [ ] [ ]         (89)                                                                                                            2
iK M 0ω− =

 
Where,  

ωi  is the eigenvalue or natural frequencies of the beam and zi is the eigenvector or mode shape of 

the beam, which can be obtained from eigenvalue analysis in MATLAB. [M] - Mass matrix of 

the system, [K] - Stiffness matrix of the system, which can be calculated based on finite element 

principles as shown below: 

 

 

Figure 125: Two DOF beam element 

 

A 2D prismatic homogeneous isotropic beam element is shown in Figure 125 [16, 53, 77-78, 

137]. The longitudinal axes of the element lies along the X axis. The element has a constant 

moment of inertia Ie, modulus of elasticity E, density ρ, length le and area of cross section Ae . 

Beam element is considered with two nodes at its ends. Each node is having two dof. I.e. the 

translation in Z axis (heave) and rotation about Y axis or XZ plane (pitch).  
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Degree of freedoms of the element can be expressed as: 

 
T

1 1 2 2 (90)        [ ]                                                                  eu z , ,z ,θ θ=
 

The displacement function can be approximated as: 

 

( ) (91)                                                   1 1 1 2 2 3 2 4z x,t z ( t ) ( x ) ( t ) ( x ) z ( t ) ( x ) ( t ) ( x )ψ θ ψ ψ θ ψ= + + +  

 

Where the shape functions ψ1(x), ψ2(x), ψ3(x) and ψ4(x) are obtained by applying boundary 

conditions at the corresponding nodes as [16, 67]: 

 

 

                                  (92)                                                                          
2 3

1 2 3
b b

3x 2x( x ) 1
l l

ψ = − +
 

(93)                                                                                                     
2 3

2 2
b b

2x x( x ) x
l l

ψ = − +
 

        (94)                                                                                                  
2 3

3 2 3
b b

3x 2x( x )
l l

ψ = −
 

(95)                                                                                                         
2 3

4 2
b b

x x( x )
l l

ψ −
= +  

 

Strain energy of the element is [16, 53]: 

 

[ ]
22

2
(96)

1                                                                       
2

le
Te

e ee
0

EI zS.E dx u K u
2 x

 ∂
= =∫  ∂ 

 

 

Therefore, the consistent stiffness matrix is obtained as [16],  
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[ ]
0

(97)

6 12

4 6
6 12 4 6 12 2 6=                           

6 12

2 6

2 3
e e

2l le eij e e'' ''
i j 2 3 2 2 3 2e

0 e e e e e e e e
2 3

e e

2
e e

x
l l

x
l l x 6 x x xK EI ( x ) ( x )dx EI dx

x l l l l l l l l
l l

x
l l

ψ ψ

 + 
 
 
− +    = + − + − − +∫ ∫     − 
 
 
− + 
  

 

After integrating,  
 
 

[ ]
e e

e e e e

e e

e e e e

           (98)

12 6 -12 6
6 4 6 2

                                         
12 -6 12 -6

6 2 -6 4

2 2
e

3e
e

2 2

l l
l l l lEIK

l ll
l l l l

 
 − =
 −
 
 

 

 
Kinetic Energy of the element can be expressed as [16]: 

 

[ ]
2

T
e e (99)

1=   u u                                                                                     
2

le
e

e
0

A zK.E dx M
2 t
ρ ∂ = ∫  ∂ 

   

 

 

The consistent mass matrix is obtained as [16, 53]: 

[ ]

2

2 2 2le

j
0 e

(100)   

1-3 2

-2
( ) =  1-3 2 -2 3 2            

3 2

3

2 3
e e

2 3

2 3 2 3 3 3leij e e
e i e 2 3 2 2 3 22 3e

0 e e e e e e e
2 3

e e

2 3

2
e e

x x
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x xx
l l x x x x x x x xM A ( x ) x dx A x dx

l l l l l l l lx x
l l
x x
l l

ρ ψ ψ ρ

 
+ 

 
 

+ 
  = + + − − +∫ ∫      −

 
 
 − +
  
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After integrating,   
 
 
 

[ ]
e e

e e e e

e e

e e e e

        (101)         

156 22 54 -13
22 4 13

                                  
13 156 -22

-13 -22 4

2 2
e e

e

2 2

l l
l l l 3lA l

M
54 l l420

l 3l l l

ρ
 
 − =
 
 

− 

 

 

9.2 Equation of motion in Principal Coordinates 

 

The general equation of motion for a multi degree of freedom forced vibration system in physical 

coordinates is, 

 

(102)                                                                                                         Mz Cz Kz F+ + =   
Here the mass, damping and stiffness matrices are non diagonal matrices. Therefore the above 

equation leads to n coupled second order differential equations. As it is not possible to integrate 

controller techniques with coupled motions, the equation of motion needs to be uncoupled.  

Therefore, it is required to transform equation of motion from physical coordinates to principal 

coordinates.  For that, firstly the eigenvalue problem is solved using FEM (see Section 9.1.2) so 

that the eigenvectors are obtained as zm(1), zm(2), zm(3)……..zm(n).  Then the eigenvectors are 

normalized with respect to mass in order to obtain identity mass matrix and diagonal stiffness 

matrix consists of square of eigenvalues as diagonal elements [5, 7, 14, 19-20, 48, 53, 62, 66-67, 

85, 93, 102].  

 

Normalized eigenvector [48],  

 

T 1/2
mi

(103)                                                                                
[z ]

mi mi
ni

mi i

z zz
Mz q

= =  
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Where qi is defined as [48]: 

 
1/2

2

1
      (104)      =                                                                                    

n

i k mkik
q m z

=

 ∑    

Then the modal matrix of the system is defined as, 

 

      (105)[ ]=[ (1)  (2)  ......... (n)]                                                                 n n n nz z z z  

According to superposition principle, with the assumption of proportional damping, the solution 

of Eq. (102) can be expressed as a linear combination of normal modes as [48, 67]: 

 
-1       (106)( ) [ ] ( ) or  ( ) = [ ] ( )                                                        n p p nz t z z t z t z z t=  

Where zp(t) is the vector of amplitudes of different vibration modes in principal coordinates (or 

simply amplitudes of different vibration modes), z(t) is the displacement in physical coordinates 

or vector of physical cartesian coordinates of the beam nodes and zn is the modal matrix or 

matrix of modal shape vectors (displacement of beam nodes) normalized with respect to mass for 

each vibration mode.  

 

Therefore, the equation of motion in principal coordinates can be written as [5, 14, 48, 53, 67, 

134, 138], 

 

i (107)2                                                          2
pi i pi i pi piz ( t ) z ( t ) z ( t ) F ( t )ζ ω ω+ + =   

 

Where,  

 

 Fpi (t) = [zn]T Fi(t) is the vector of force in principal coordinates, ζ is the critical damping and i 

denote the number of modes, i.e. i =1, 2……..n. 
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Therefore,  

 

[ ]

1 1 1 1 1 1

1 1

1 1 1 c

( ) ( ) ( ) ( )

( ) ( ) ( ) ......... ( )
( ) ( )

n n c n c n n

T nc nc c nc c nc n
pi n i

nc nc nc

z l .......... z l z l ......... z l
......... ......... ......... ......... ......... .........
z l .......... z l z l z l

F ( t ) z F ( t )
z l .......... z l z

+

+

+ + +

= =
1 c+1 1 n

1 c c+1

(108)      
( ) ........ ( )

......... ......... ......... ......... ......... .........
( ) ( ) ( ) ........ ( )

i
nc

n n n n n

* F ( t )
l z l

z l ......... z l z l z l

+

 
 
 
 
 
 
 
 
  

                    

 

Where  zni(lj) represents modal shape at mode i location ‘lj’. Fp(t) is the force in principal 

coordinates and Fi(t) represents the excitation force in the physical system.  

 

Thus a set of n uncoupled second order differential equations are obtained from the set of n 

coupled second order differential equations.   

 

9.3 Development of State Space Model 
 

In order to integrate the controller, it is required to represent the system of equations in principal 

coordinates to a state space form. By modeling the equation of motion in principal coordinates, n 

coupled second order differential equations are transformed in to n uncoupled second order 

differential equations.  These n uncoupled second order differential equations can be written in a 

state space model as 2n first order differential equations having the following form [48, 53]:                   

                                                             

(109)                                                                                                                      x Ax Bu= +  

(110)                                                                                                                         y Cx Du= +  

In which, x is the state vector, u the control vector, y the output vector, A the system matrix, B 

the input matrix, C the output matrix and D the direct transmission matrix of the system.   
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For example, suppose we are considering only the first three modes, then the equations of motion 

in principal coordinates can be written from Eq. (107) as: 

 

          (111)1 1 1 1 1 1 12                                                             2
p p p pz z z Fζ ω ω+ + = 

 

2 2 2 2 2 2 2         (112)2                                                                         2
p p p pz z z Fζ ω ω+ + = 

 

3 3 3 3 3 3 3            (113)2                                                                      2
p p p pz z z Fζ ω ω+ + = 

 
Let, 

1 1 1 2 (114) is the amplitude of vibration mode 1, then                                   p pz z z z= =  

2 3 2 4 (115)      is the amplitude of vibration mode 2, then                          p pz z z z= =  

3 5 3 6 (116)      is the amplitude of vibration mode 3, then                         p pz z z z= =  
 
Therefore, 

 

         (117)1 2     =                                                                                     z z  

 
2

2 1 1 1 1 1 1 1 1 1 1 1 2 1 (118)-2 = -2                                                         2
p p p p pz z z z F z z Fω ζ ω ω ζ ω= = − + − +    

 

(119)3 4=                                                                                  z z  

 
2 2

(120)4 2 2 2 2 2 2 2 2 3 2 2 4 2        -2 = -2                            p p p p pz z z z F z z Fω ζ ω ω ζ ω= = − + − +    

 

         (121)5 6=                                                                                                        z z  
2

(122)6 3 3 3 3 3 3 3 3 5 3 3 6 3-2 = -2                          2
p p p p pz z z z F z z Fω ζ ω ω ζ ω= = − + − +  

 
 

Eqs. (117-122) can be written in matrix form as: 
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1 1
2

12 1 1 1 2

3 3
2

24 2 2 2 4

5 5
2

36 3 3 3 6

00 1 0 0 0 0
- 2 0 0 0 0

00 0 0 1 0 0
              

0 0 2 0 0
00 0 0 0 0 1

0 0 0 0 2

p

c
p

p

z z
Fz z

z z
u

Fz z
z z

Fz z

ω ξ ω

ω ξ ω

ω ξ ω

      
      −       
      

= +       
− −       

      
      

− −              













(123)        

 
 

This is the form x Ax Bu= + , where the system matrix A is made up of each eigenvalue and 

damping for each mode [48, 53, 134].  

 

 

2
1 1 1

2

2

(124)       

0 1
- 2

0
   or                       

2
0 1

2

i i i

n n n

.... .... ....

.... .... ....
I

A A.... .... .... .... ....
..... .... ....
.... .... ....

ω ξ ω

ω ξ ω

ω ξ ω

 
 −    = =  − −   
 
 − − 

 

 

Input matrix B is made up of applied force at the nodes.  

 

1

2

(125)

0

0 0 0
                                                                                  

p

T
p pi n i

pn

F

B or B
F F z F
....
F

 
 
 
     

= = =     
    
 
 
  

 

 

 

State vector x consists of amplitudes of vibration and its derivatives for each mode in principal 

coordinates,  

 

 (126)                                                                                                                               pi

pi

z
x

z
 

=  
 
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Suppose we are interested in three displacements and three velocities as system output, then the 

output matrix equation can be written from Eq. (110) as: 

 

p1 1

p2 2

p3 3

p4 4

p5 5

p6 6

(127)

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

                           
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

p

y z
y z
y z

y Cz
y z
y z
y z

    
    
    
    

= = =    
    
    
    

        

 

 

(As there is no state by pass, direct transmission matrix D=0) 

 

 

Output vector in physical coordinates can be obtained by transformation from principal 

coordinates as [48]: 

 

p1 11 11 n11 n12 n13

p21 n11 n12 n13

p32 n21 n22 n23

p42 n21 n22 n23

p53 n31 n32 n33

p63 n31 n32 n33

z 0 z 0 z 0
0 z 0 z 0 z
z 0 z 0 z 0
0 z 0 z 0 z
z 0 z 0 z 0
0 z 0 z 0 z

n p

n p

y z yz
yz
yz

z z y
yz
yz
yz

+    
    
    
    

= = = =    
    
    
    
         







12 3 13 5

11 2 12 4 13 6

21 1 22 3 23 5

21 2 22 4 23 6

31 1 32 3 33 5

31 2 32 4 33 6

(128)              

n p n p

n p n p n p

n p n p n p

n p n p n p

n p n p n p

n p n p n p

z y z y
z y z y z y
z y z y z y
z y z y z y
z y z y z y
z y z y z y

+ 
 + + 
 + +
 

+ + 
 + +
 

+ +  

 

 
9.3.1    Estimation of Individual Modal Contributions

 

 

In a model analysis problem, all the modes do not contribute significantly to the overall system 

behavior. In some problems, low frequency modes are important, whereas in some other cases 

high frequency modes are relevant. Therefore, while performing modal analysis, it is required to 

estimate the contributions of individual modes in the overall system behavior. Contributions of 

individual mode over the system behavior can be obtained from state space model as follows: 
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For the First mode (i=1), the state space model may be written from Eq. (123) as: 

 

1 1
2

12 1 1 1 2

    (129)
00 1

                                            
- 2 c

p

z z
u

Fz zω ξ ω
      

= +       −       




 

 

Similarly, for the Second mode (i=2), the state space model can be written as: 

 

3 3
2

24 2 2 2 4

(130)      
00 1

                                        
- 2 c

p

z z
u

Fz zω ξ ω
      

= +       −       




 

 

For the Third mode (i=3), the state space model can be written as: 

5 5
2

36 3 3 3 6

(131)                          
00 1

                         
- 2 c

p

z z
u

Fz zω ξ ω
      

= +       −       




 

 

 

Suppose, we are only interested in displacements as outputs, then ouput vector can be  

defined from Eq. (128) as: 
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p1

p2
1 n11 n12 n13

p3
2 n21 n22 n23

p4
3 n31 n32 n33

p5

p6

      (132)

z 0 z 0 z 0
z 0 z 0 z 0                                                         
z 0 z 0 z 0

y
y

z
y

z z
y

z
y
y

 
 
         = =               
 
  

 

 

 

9.4   Model Reduction Techniques 

  

The structure or beam can vibrate with many modes. In the development of flexible state space 

model, n uncoupled second order differential equations are converted into 2n first order 

differential equations. Therefore the size of system matrix is twice the number of modes to be 

included in the analysis. Hence if large number of modes are included in the analysis, the process 

become cumbersome and leads to high computational time [48].  However all the modes do not 

contribute significantly to the overall responses. Hence it is sensible to use the important modes, 

that cause the maximum disturbances, and to develop a state space model that includes the most 

significant modes in the analysis at the same time it might account for the effect of eliminated 

modes in the remaining system. The objective of the modal reduction technique is to provide the 

smallest state space model that accurately represents the flexible system dynamics [48, 53, 66-

67].  

 

9.4.1 Sorting of Modes by dc gain approach 

 

The common method for reducing the modal size is to simply truncate the higher frequency 

modes. This kind of elimination is not valid for all cases and leads to less desired accuracy. 

Therefore, accurate reduced models can be obtained by sorting the modes based on their 
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individual contribution to the overall response (see Section 9.31) and keeping only important 

modes. In other words, the size of the model can be reduced by discarding those modes, which 

do not contribute to the overall response. The contribution of each mode to the overall response 

is calculated in terms of ‘dc gain’ [48, 53, 62, 66, 137].  

 

The transfer function for the displacement of the jth node due to a force applied at kth node for the 

ith mode is [48, 53]: 

 

2 2
            (133)(damped system)                                                       

2
nji nki ji

jki
i i i ki

z z z
z

s s Fζ ω ω
= =

+ +  

 

2 2
(134)(undamped system)                                                                               nji nki ji

jki
i ki

z z z
z

s Fω
= =

+  

 

This is the contribution from ith mode to the transfer function zjk. Therefore total contribution is 

obtained by summing all such contributions from individual modes as: 

 

2 2
1

(135)(damped system)                                                           
2

m
nji nki j

jk
i i i i k

z z z
z

s s Fζ ω ω=

= =
+ +∑

 

2 2
1

(136)                                  (undamped system)                                           
m

nji nki j
jk

i i k

z z z
z

s Fω=

= =
+∑

 
Where, znji   znki    are the product of the jth  (output) row and kth  (input or force applied) row terms 

of  ith  eigenvector. ωi is the eigenvalue or resonant frequency of the ith mode and m is the total 

number of modes to be included [48, 53].  

 



 
 

161 
 

The dc gain for each mode is obtained by substituting s=jω=0 in the Eqs. (133) & (134), which 

is same for both undamped and damped systems as: 

 

i.e.  

dc gain for ith  mode is,  

 

2
(137)=                                                                                               ji nji nki

ki i

z z z
F ω

 
Peak gain of each mode is obtained at resonance. Therefore, substituting s=jωi in the Eq. (133), 

so that peak gain for ith mode is obtained as [48, 53]:  

 

(138)           (dc gain)                                                                                         
2 i

jpeak gain
ζ

= −
 

The relationship between dc gain and peak gain of a mode is that dc gain term is dived by 2ζ and 

multiplied by ‘–j’, which gives a 90 degree phase shift at resonance. ζ is the critical damping, 

which is typically small for mechanical structures and hence amplifies the response with a 

resonant peak [48, 53, 66].  

 
2

(139)                                                                                                                      
2

i
i

i

α βωζ
ω

+
=

 

 

In which α and β are the damping coefficients of mass and stiffness matrices respectively. 

 

Note 

If the same value of ζ is used for all modes (uniform damping), there is no difference in sorting 

the model using dc gain or peak gain. If the modes have different damping, then peak gain must 

be used to sort the modes for importance [48].  
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In the considered problem, the force and moments are distributed on the beam nodes, therefore it 

is required to define a composite forcing function or force vector, which consists of force applied 

to each node times the eigenvector value for that node. Therefore, for a single input system, the 

composite forcing vector will be (1 × ndof) × (ndof × nmodes) = (1×nmodes). Thus a composite 

force vector is obtained for each mode, which then multiplied element by element by the rows of 

the eigenvector matrix corresponding to nodal displacements [48].   

 

9.4.2   Modred method 

 

Though reduced models can obtained effectively by sorting of modes based on their dc gain 

value, still there is an error introduced due to neglecting the contribution of  eliminated modes in 

the overall dc gain.  The MATLAB function “modred” (MODel order REDuction) is introduced 

to eliminate this error, which is based on the assumptions that some modes being more important 

than other [48, 53]. This allows reducing size of the problem to that of the ‘important modes’. 

The Modred function has two options or sub functions; the ‘mdc’ (Matched DC gain) option 

reduces defined states by setting the derivatives of the state to be eliminated to zero and then 

solving for the remained states, which is analogous to Guyan reduction in that the low frequency 

effects of the eliminated states are included in the remaining states. The other option ‘del’ simply 

eliminates the defined states, typically associated with the higher frequency modes [48]. 

                 

In the modred function, firstly it is required to define the states to be eliminated. The states to be 

eliminated can be defined as a vector of arbitrary states or as a continuous partition or block of 

states, from one index greater than the number of states to be kept to the total number of states. If 

the sorting is carried out according to dc gain or peak gain, the most important modes are 

separated from the less important modes and maintained. If unsorted states are used for the 
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modred method, higher frequency modes are eliminated while maintaining the lower frequency 

modes [48, 53, 62, 66-67].  

 

Let zk represents the modes to be kept and ze represents the modes to get eliminated.  Therefore 

state space model can be written as [48, 53]: 

 

  (140)                                                                                         k kk ke k k

e ek ee e e

z A A z B
u

z A A z B
       

= +       
       




 

 

The output equation can be written as [48, 53]: 

 

[ ] (141)                                                                                                        k
k e

e

z
y C C Du

z
 

= + 
 

 

Expanding the state space equations in Eq. (140),  

 

    (142)                                                                                                     k kk k ke e kz A z A z B u= + +
  

     (143)                                                                                                      e ek k ee e ez A z A z B u= + +  

 

By the principle of ‘mdc’ sub function, setting the derivative of states to be eliminated as zero 

[48, 53]: 

i.e. 

 

       (144)     0                                                                                                                            ez =  

Therefore, solving for ze   in Eq. (143),    

 
1 1 (145)                                                                                                       e ee ek k ee ez A A z A B u− −= − −  
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Substituting Eq. (145) in to Eq. (142) and grouping terms: 

 
1 1 1 1

k (146)(  = ( - )z +( - )                                           k kk k ke ee ek k ee e k kk ke ee ek k ke ee ez A z A A A z A B u ) B u A A A A B A A B u− − − −= + − − +  

 

The above equation can be rewritten as [48, 53]: 

 

(147)                                                                                                                  red red red redz A z B u= +  

 

 

 

Where,   

 
1 1 (148)and     = ( - )  = ( - )                                                                                   red kk ke ee ek red k ke ee eA A A A A B B A A B− −

 
Similarly, expanding the output equation and substituting the value of ze leads to: 

 
1 1 1 1

k       (149)    ( (C )z ( )    k k e e k k e ee ek k ee e k e ee ek e ee ey C z C z Du C z C A A z A B u ) Du C A A D C A B u− − − −= + + = + − − + = − + −
 

The above equation can be rewritten as [48, 53]: 

 

(150)                                                                                                                red red red redy C z D u= +  

 

Where,  

 
1 1 (151)and                    =  (C )  D = ( )                                                                    red k e ee ek red e ee eC C A A D C A B− −− −  
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9.5 Results and Discussion  
 

For carrying out the flexible body analysis and control, a Chemical Tanker is suitably taken as 

shown in Figure 126. Geometric particulars of the chemical tanker are given in Table 11. 

Initially modal analysis of the chemical tanker is performed, without the controller, to obtain the 

free vibration analysis and forced vibration analysis responses and supervisory fuzzy logic 

controller (see Chapter 8) is integrated later to obtain the controlled stable responses.  

 
Figure 126: Chemical Tanker model [118] 

 

Table 11 Geometric Particulars of the chemical tanker 

 

Main Dimensions 

LOA   78.02 m 

LBP   72.40 m 

Breadth   12 m 

Depth    5.4 m 

Displacement 3200  
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9.5.1 Motion Responses without Controller  
 
At the beginning, free vibration analysis or eigenvalue analysis of the tanker  is carried out in 

MATLAB using both analytical and finite element method and the obtained responses such as 

eigen values (natural frequencies) and eigen vectors (mode shapes) are compared. Then the 

forced vibration analysis of the sunken chemical tanker using buoyant systems is carried out. For 

that, primarily it is required to estimate the nodal forces and moments. As a first step, we need to 

fix lift bags suitably on the vessel. Internal (cylindrical type) lift bags are placed inside the tanker 

(i.e. in ballast tanks) and external (parachute type) lift bags are attached outside. The position of 

external lift bags can be suitably located by looking the mode shape plots obtained from 

eigenvalue analysis. Nodal force and moments can be computed from Section 4.1.1.1-4.1.1.4. 

Then the eigenvectors are normalized with respect to mass and equation of motion is developed 

in principal coordinates after defining the nodal forces and moments.  Then the modal 

contributions of individual modes are analyzed according to their dc gain/peak gain value to 

define which ones have greatest contribution. Finally effectiveness of various modal reduction 

techniques such as ‘modred’ (both ‘mdc’ & ‘del’ sub functions) methods with sorted and 

unsorted modes are analyzed to obtain the smallest state space models of  individual nodes or lift 

bags that accurately represents the pertinent system dynamics.  

 

9.5.1.1 Free Vibration Analysis (Eigenvalue Analysis) 

 
A two dimensional Euler- Bernoulli beam model with free - free boundary conditions is 

developed in MATLAB.  Eigenvalue analysis is carried out by finite element method using 

different number of elements, a convergence check is also carried out and it is found that an 11 

element beam model is the preferred one. Finite element modal analysis results (eigenvalues and 

eigenvectors) are compared with analytical solutions and it is seen that both are quite matching.  

Table 12 compares the eigenvalues of the 11 element tanker model from finite element and 

analytical solutions. 
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The mode shapes of the chemical tanker obtained from finite element free vibration analysis are 

shown in Figures 127-138, in which the first two modes are rigid body modes (heave and pitch) 

corresponding to zero frequency and rest of them are flexible modes. Note that, the eigenvectors 

are normalized with respect to unity for plotting.  Figure.138 shows the resonant frequency 

corresponding to each mode.   

 

 

 

 

Table 12 Comparison of resonant frequencies of the tanker 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mode 

No. 

Resonant Frequency (Hz) 

Analytical  FEM  % 

Difference 

1 0 0 0 

2 0 0 0 

3 4.683 4.683 0 

4 12.908 12.910 -0.015 

5 25.305 25.321 -0.063 

6 41.830 41.900 -0.167 

7 62.487 62.711 -0.358 

8 87.275 87.857 -0.667 

9 116.194 117.480 -1.107 

10 149.245 151.725 -1.662 

11 186.427 190.485 -2.177 
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Figure 127: First rigid body (heave) response, 0 Hz. 

 
Figure 128: Second rigid body (pitch) response, 0 Hz. 

 
Figure 129: First flexible body response, 5 Hz. 
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Figure 130: Second flexible body response, 13 Hz. 

 
Figure 131: Third flexible body response, 25 Hz. 

 
Figure 132: Fourth flexible body response, 42 Hz. 
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Figure 133: Fifth flexible body response, 63 Hz. 

 
Figure 134: Sixth flexible body response, 88 Hz. 

 
Figure 135: Seventh flexible body response, 117 Hz. 
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Figure 136: Eighth flexible body response, 152 Hz. 

 
Figure 137: Ninth flexible body response, 190 Hz. 
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Figure 138:  Resonant frequency versus mode number 

 

9.5.1.2 Forced Vibration Analysis  
 

In order to carry out the forced vibration analysis of the sunken chemical tanker, primarily it is 

required to carry out the force modeling, i.e. to define the nodal force and moments. For the 

chemical tanker salvage using buoyant systems, the major forces to be considered are hydrostatic 

force due to weight and buoyancy, suction break out force and the additional buoyancy provided 

by the inflating system (see section 4.1.1.1 – 4.1.1.4).  Total lift force required to extract the 

sunken tanker from sea bottom is estimated to be 1.3 times the wet weight, which is equals to 

3616.815 tonnes (see Appendix A).                                                                           

  

Suppose if we are using lift bags [30] with 1.5m diameter and 18 m length that can displace 565 

tonnes with 2.8 bar working pressure.  

 

Therefore number of lift bags required  

                                 = total lift force required/ lifting capacity of a lift bag 

                                 = 3616.815/565=6.40~ 7 
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Considering buoyancy losses, total 7 lift bags are required for inflating.  Therefore additional 

buoyancy provided by lift bags= 7*565=3955 tonne, which is much higher than the total lift 

force required. Therefore for mathematical calculations, we are redesigning lift bags having lift 

capacity 517 tonnes each so that in total they can offer 517*7=3619 tonne, which is equal to the 

lift force required.  

 

Thus we are attaching two vertical parachute type lift bags externally on each side of the tanker 

and three cylindrical bags (internal) horizontally in the ballast tank to maintain hydrodynamic 

stability as shown in Figure 139.  The positions of external lift bags can be located according to 

the eigenvalue or free vibration analysis of the chemical tanker (see Section 9.5.1.1).  The lift 

bags can be attached at the “node of a mode”, the point where the displacement is negligible. As 

we need to fix the four external bags, it is relevant to consider the third flexible mode response 

as plotted in Figure 133. From the response, it is seen that there are four “node of modes”, which 

are at nodes 2, 5, 8 and 11. Therefore, the external lift bags can be fixed at node 2, 5, 8 & 11 

respectively. Internal lift bags can be placed suitably on the ballast tanks of the tanker. Now it is 

required to define the nodal positions on the beam.  

 

 

Nodal positions on the beam 

The length of chemical tanker is 78 m and during the finite element free vibration analysis, the 

vessel length is divided in to 11 finite elements (i.e. 12 nodes), therefore, the length of each 

element = 78.02/11=7.09 m. Table 13 shows the location of beam nodes across the vessel length.  

 

Table 13:  Location of nodes from vessel aft  

Node Distance from 

aft  (m) 

1 0 

2 7.09 
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From the chemical tanker GA (Figure 126), it is found that ballast tanks are situated at frame 27 

to frame 113 and one longitudinal frame spacing is 0.57 m.   

 

i.e. 27th frame= 27*0.57=15.39 m from aft. 

     113th frame = 113*0.57=64.41 m from aft.  

 

Therefore, 3 internal lift bags can be placed horizontally between the length 15.39 m and 64.41 

m from the aft end of the vessel as shown in Figure 140. In order to incorporate this in to the 

beam model, suitably internal lift bags are placed between node 3 and node  

10 for a length of 49.645m. 

3 14.185 

4 21.28 

5 28.37 

6 35.46 

7 42.56 

8 49.65 

9 56.74 

10 63.83 

11 70.93 

12 78.02 

(fore end) 
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Figure 139: Arrangement of lift bags for the chemical tanker salvage 

 

 
 

Figure 140: Arrangement of lift bags on beam nodes 

 

 

 

9.5.1.2.1   Force Modeling  
 

In the dynamics of raising sunken chemical tanker using buoyant systems, the major forces to be 

considered are hydrostatic force due to weight, buoyancy and suction breakout, hydrodynamic 

force and additional buoyancy provided by lift bags as explained in Section 4.1.1.1- 4.1.1.4.  
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According to Section 4.1.1.3, hydrostatic force acting downwards due to weight, buoyancy and 

suction breakout is 1.3 (W-B), which is assumed to be uniformly distributed along the vessel 

length. Therefore, 1.3(W-B)/l is the net hydrostatic force acting downwards at a particular beam 

node. Hydrodynamic force can be computed from Eqs. (6) & (7) of Section 4.1.1.2, which are 

also considered as uniformly distributed along the vessel length. Additional buoyancy provided 

by external or parachute type lift bags are taken as point loads where as buoyancy  provided by 

internal or cylindrical type lift bags are treated as universally distributed load (UDL).   

 

Nodal force and moments across the vessel length are computed according to classical strength 

of material’s principles [95] and its values are given in Table 14. These values of exciting nodal 

force and moments need to put in the MATLAB program for obtaining the forced vibration 

analysis results.  
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Table 14: Nodal Forces and Moments 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Node  Nodal 

Force 

(MN) 

Nodal Moment 

(anticlockwise) 

 (MN.m) 

12  

(fore end) 

35.48 

(↓) 

0 

11 27.19 

(↓) 

10.91 

10 13.81 

(↓) 

9.20 

9 12.77  

(↓) 

22.86 

8 6.64   

(↓) 

44.03 

7 10.66 

(↓) 

36.65 

6 9.61 

(↓) 

36.61 

5 3.48 

(↓) 

44.16 

4 7.51 

(↓) 

23.26 

3 6.45 

(↓) 

9.83 

2 1.85  

(↑) 

11.44 

1  

(aft end) 

0 0 
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9.5.1.2.1.1   Estimation of Shear Force and Bending Moments  

 
Shear force and bending moment at any point on the vessel length are estimated from force 

modeling based on the principles of strength of materials [95] and its values are provided in 

Table 15.   

 

 

Table 15:   Shear force and bending moment at beam nodes 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Table 15, the longitudinal distribution of shear force and bending moment across the beam 

length is plotted in Figures 141 & 142 respectively.  The maximum value of shear force is 

Node  Shear 

Force 

(MN) 

Bending Moment 

(anticlockwise) 

       (MN.m) 

12 0 0 

11 3.24 (↑) 10.91 

10 1.40 (↑) 9.20 

9 2.45 (↑) 22.86 

8 3.51  (↑) 44.03 

7 0.52 ( ↓) 36.65 

6 0.54( ↑) 36.61 

5 1.59 (↑) 44.16 

4 2.43( ↓) 23.26 

3 1.38 ( ↓) 9.83 

2 1.84 (↑) 11.44 

1 0 0 
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3.51MN, which is at node 8 (i.e. at lift bag 3) and the bending moment is 44.16 MN.m at node 5 

(i.e. at lift bag 2).  

 

 
Figure 141: Longitudinal distribution of shear force 

 
Figure 142: Longitudinal distribution of bending moment 

 

9.5.1.2.2 Forced Vibration Analysis Responses 
 

The first step in any modal analysis is to understand the resonant frequencies of the model.  

From Figure 143, it is found that the resonant frequencies of the tanker are within the order 100 
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to 104. As we are using 11 element beam, total 22 modes are considered for the analysis, out of 

which the first two modes are rigid body modes corresponding to 0 Hz frequency and rest are 

flexible modes. Now the sorting of modes are carried out by their ‘dc gain’ value to measure the 

individual modal contribution to the overall response.  Figure 144 shows the low frequency gain 

for the first two rigid body modes (mode 1 & mode 2) and dc gains for all other modes versus 

mode number.  The modes are sorted according to their dc gain in the order as:    

 

 1     2     3     4     6     8     7     9    11    12    10    14    18    13    20    19    22    17    16    21    

15     5 

 

As expected, it is observed that, for this problem, the first two rigid body modes are more 

important than the flexible modes.  

 

 
Figure 143: Resonant frequency versus mode number 
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Figure 144: Unsorted dc gain value of each mode versus mode number 

 

 
Figure 145: Unsorted dc gain value of each mode versus resonant frequency 
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Unsorted dc gain value of each mode versus its resonant frequency is shown in Figure 145. It is 

noted that as the frequency increases, the general trend is to have modes with lower dc gain 

values. Highest dc gain is obviously for the first two rigid modes.   

 

Now modes are sorted according to their dc gain value and allocate index numbers from higher 

dc gain modes to lower dc gain modes as shown in Figure 146.  

 

 
Figure 146: sorted dc value of each mode vs. number of modes 

 

It should be noted that for hull bending effects the gain associated with hull curvature will be 

important and this should be taken into account when deciding frequency cut-off values. 

 

9.5.1.2.2.1      Full and Reduced Model Responses  

   
As controller needs to integrate with the smallest state space model, which accurately represents 

the flexible body dynamics, the responses obtained from various model reduction techniques 

using either sorted or unsorted modes with full model responses are compared in both frequency 
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and time domain. Finally state space models are developed using the optimum modal reduction 

technique.  

 

In this section, three different sets of model matrices and eigenvalue vectors are defined. The 

first one uses all the modes and frequencies in their original unsorted form (i.e. full modal), 

which is mainly used to determine the frequency and time domain responses of the non reduced 

model for comparison. The second one (denoted with the “unsorted” suffices) uses only the 

number of modes specified by the user in their original unsorted order that is used to visualize 

the effects of a simple truncation of higher frequency modes without sorting or ranking. The 

third set (denoted with the “sorted” suffices) takes the number of modes specified by the user 

and sort and rank them according to their dc gain value and includes only modes with the highest 

dc gains. After that reduced models are obtained using ‘modred’ technique using both ‘mdc’ and 

‘del’ sub functions,  which are considering either unsorted modes or dc gain sorted modes as the  

important modes to be kept. Output can be determined in terms of heave displacement, heave 

velocity, pitch displacement and pitch rate at beam nodes by suitably defining the output matrix 

C. Initially the output matrix C is separated into displacement and velocity matrices and the 

heave and pitch responses are obtained by allocating corresponding row of the output matrix. 

Force modeling is carried out in such a way that the simulations are produced for the response of 

the tanker at the time of breakout.  

 

9.5.1.2.2.1.1 Heave displacement 

 

Heave displacement can be obtained for any node on the beam. In order to compare the various 

modal reduction techniques, initially responses are plotted for the lift bag 1 (i.e. node 2).   

 

At the beginning, responses are obtained by simply using ‘unsorted’ and ‘sorted’ reduced 

models. The first six unsorted modes (modes 1-6, i.e. first two rigid bodes and first four flexible 

modes) are included and its frequency domain contributions are overlaid with the full model in 

Figure 147. From simulation, dc gain error relative to the full model is found to be +0.0796% 

because of discarding the dc gain contribution from high frequency eliminated modes.  
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In Figure 148, six sorted modes (modes 1-4, 6, 8) by dc gain approach are included and its 

individual contributions are depicted with full model. The dc gain error relative to full 22-mode 

model is -0.3429 %, which is due to discarding the contribution from other flexible modes.  

 
 

Figure 147: Heave displacement of lift bag 1- first 6 unsorted modes included 

 
 

Figure 148: Heave displacement of lift bag 1- first 6 sorted modes included. 

 

It is found that the response obtained from reduced models using ‘unsorted’ and ‘sorted’ 

methods tally very well with full model responses at lower frequencies, whereas for higher 

frequencies the responses from reduced models deviate from full model responses. This is due to 
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the discarding of higher frequency modes in the reduced system. Therefore it is better to adopt 

modal order reduction techniques to obtain an optimum reduced model.  

 

Now the responses are taken using modal reduction technique such as ‘modred-del’ and modred-

mdc’ using both unsorted and sorted models. In Figure 149, reduced models are obtained using 

‘modred-del’ option keeping first six unsorted modes; i.e. the first six low frequency modes are 

maintained in the model, whereas higher frequency modes are eliminated. The overall frequency 

response with six overlaid individual mode contributions is plotted. It is observed that at high 

frequencies reduced and full model responses attenuate with frequencies. The dc gain error 

relative to full model is +0.0796 because of eliminating the contribution from higher frequency 

modes. (Note, as discussed earlier, for hull flexure it is necessary to consider the contribution to 

curvature and this may require more nodes to be included.) 

 

In Figure 150, reduced models are obtained using ‘modred-del’ option keeping first six sorted 

modes (modes 1-4, 6, 8). The overall frequency response with six overlaid individual mode 

contributions is plotted. The dc gain error relative to full model is -0.3429 % because of 

eliminating the contribution from other flexible modes.  
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    Figure 149: Heave displacement of lift bag 1- first 6 unsorted modes included:  

                       ‘modred-del’. 

 
 

            Figure 150: Heave displacement of lift bag 1- first 6 sorted modes 

                                included-‘modred-del’  
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Now the responses are obtained using ‘modred-mdc’ option. In Figure 151, reduced models are 

obtained using ‘modred-mdc’ option keeping first six unsorted modes; i.e. the first six low 

frequency modes are maintained in the model, whereas remaining higher frequency modes are 

reduced.  The overall frequency response with four overlaid individual mode contributions is 

plotted. The dc gain error relative to full model is found to be -0.00087794 %, which is a positive 

sign. This is due to the reason that in modred-mdc using unsorted modes, the low frequency 

effects of the eliminated states (i.e. high frequency modes) are included in the remaining states. 

Therefore, this method is found to be more convenient compared to other reduction methods. 

 

In Figure 152, reduced models are obtained using ‘modred-mdc’ option keeping first six sorted 

modes i.e. (modes 1-4, 6, 8). It is seen that the reduced model represents the overall 

contributions.  The dc gain error relative to full model is found to be -0.0064 %, which implies 

that this method is less convenient compared to the previous one.  

 

 
 

            Figure 151: Heave displacement of lift bag1- first 6 unsorted modes included- 

                                ‘modred-mdc’  
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Figure 152: Heave displacement of lift bag1 - first 6 sorted modes included, ‘modred- 

                    mdc’ 

 

Now the responses of the tanker are found in time domain. The heave displacement of lift bag 1 

at the time of breakout is plotted in time domain using various modal reduction techniques.  

Figure 153 shows the time domain response for the full model, unsorted reduced model and 

sorted reduced models. It is found that the response obtained from full model and reduced 

models are exactly same. Heave displacement is found to be increases with time. The peak error 

of unsorted reduced model and sorted reduced model in comparison with full model is -0.0023% 

and 0.0109 % respectively.  This shows that unsorted model truncation is more suitable 

compared to sorted model truncation, which means that low frequency modes are more 

important in a marine salvage operation in comparison with higher frequency modes.  
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Figure 153: Heave displacement of lift bag 1 for all modes included, first 6 modes  

                    included-unsorted & sorted modal truncation 

 

The time domain response of lift bag 1 for the full model, and two unsorted reduced models: - 

‘modred-del’ and ‘modred-mdc’ options is presented in Figure 154. It is found that there is no 

visible difference in the transient response of the above models. The peak error of unsorted 

‘modred-del’ and ‘modred-mdc’ options in comparison with full model is -0.0023% and 

0.000072472% respectively.  This implies that both reduction method responses are valid, 

though ‘unsorted modred-mdc’ option is the most convenient one for modal order reduction as it 

includes the low frequency effects of the eliminated high frequency modes in the reduced model. 
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Figure 154: Heave displacement of lift bag 1 for all modes included, first 6 

unsorted modes included-‘modred-mdc’ & ‘modred-del’ 

 

 
 

Figure 155: Heave displacement of lift bag 1 for all modes included, first 6 

                    sorted modes included-‘modred-mdc’ & ‘modred-del’. 
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Figure 155 shows the time domain response of lift bag 1 for the full model, and two sorted 

reduced models: - ‘modred-del’ and ‘modred-mdc’ options. It is found that there is no visible 

difference in the transient response of the above models. The peak error of sorted ‘modred-del’ 

and ‘modred-mdc’ options in comparison with full model is 0.0109% and 0.00085478% 

respectively.  This implies that both reduction method responses are valid, though sorted 

‘modred-mdc’ option is the preferred one as it includes the low frequency effects of the 

eliminated modes in the reduced model.   

 

Table 16 shows the comparative performance of various reduction methods used for modal order 

reduction.  
 

Table 16: Reduction methods summary 

 

Reduction method Dc gain error               

        % 

Peak error  

     % 

Unsorted  +0.0796 -0.0023 

Sorted  -0.3429 0.0109 

Unsorted Modred-del +0.0796 -0.0023 

Unsorted Modred-mdc -0.00087794 0.000072472 

Sorted Modred-del +0.0624 0.0109 

Sorted Modred-mdc  -0.0064 0.00085478 

 

 

From Table 16, it is found that unsorted reduced models show better performance compared to 

sorted reduced models. This is due to the reason that low frequency modes are more significant 

compared to high frequency modes for the marine salvage problem. The overall transient 

response of the system is matched well by the ‘mdc’ option while the ‘del’ option has slight 

error, which might be due to the reason that ‘modred-mdc’ option minimizes the low frequency 

errors by including the contribution of the unused modes while ‘modred-del’ option does not 

account for the dc gains of the eliminated modes in the reduced system. Thus it is observed that 
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‘modred-mdc’ is the preferred method for model order reduction in which, ‘unsorted modred-

mdc’option is the optimum choice for marine salvage.  

 

Now using ‘unsorted modred-mdc’ method, heave displacements of other external lift bags in 

frequency and time domain are estimated and compared with full model responses as shown in 

Figures 156-161. From the plots, heave displacement is found to be increase with time.  

 

Lift bag 2 (node 5) 

 

 
 

Figure 156: Heave displacement of lift bag 2 - first 6 unsorted modes included 
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Figure 157: Heave displacement of lift bag 2 - first 6 unsorted modes included 

 

Lift bag 3 (node 8) 

 
 

Figure 158: Heave displacement of lift bag 3 - first 6 unsorted modes included 
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Figure 159: Heave displacement of lift bag 3 - first 6 unsorted modes included. 

 

Lift bag 4 (node 11) 

 

 
 

Figure 160: Heave displacement of lift bag 4 - first 6 unsorted modes included. 
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Figure 161: Heave displacement of lift bag 4 - first 6 unsorted modes included. 

 

9.5.1.2.2.1.2  Heave velocity responses  

 

The heave velocity response of the tanker obtained using ‘unsorted modred-mdc’ option is 

plotted with respect to frequency and time as shown in Figures 162-169. The heave velocity is 

found to increase with time, which implies that the motion is not stable. Hence a controller 

should be integrated with the model to ensure hydrodynamic stability during the ascent.  

 

Lift bag 1 (node 2) 

 
 

Figure 162: Heave velocity of lift bag 1- first 6 unsorted modes included 
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Figure 163:  Heave velocity of lift bag 1- first 6 unsorted modes included 

 

Lift bag 2 (node 5) 

 

 
 

Figure 164:  Heave velocity of lift bag 2- first 6 unsorted modes included 
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Figure 165:  Heave velocity of lift bag 2- first 6 unsorted modes included 

 

 

Lift bag 3 (node 8) 

 
 

Figure 166:  Heave velocity of lift bag 3- first 6 unsorted modes included 
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Figure 167:  Heave velocity of lift bag 3- first 6 unsorted modes included 

 

Lift bag 4 (node 11) 

 

 
 

Figure 168:  Heave velocity of lift bag 4- first 6 unsorted modes included 
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Figure 169:  Heave velocity of lift bag 4- first 6 unsorted modes included 

 

9.5.1.2.2.1.3 Pitch displacement 

             

For pitch response, ‘sorted modred-mdc’ method is found to be the optimum choice. The pitch 

displacement of the chemical tanker obtained using ‘sorted modred-mdc’ is compared with the 

full model response in frequency and time domain as shown in Figures. 170 – 177. Pitch 

displacement of the tanker is found to be fluctuates with time, which implies the necessity of a 

controller to be integrated with the model.  

 

Lift bag 1 

 

 
 

Figure 170:  Pitch displacement of lift bag 1- first 6 sorted modes included 
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Figure 171:  Pitch displacement of lift bag 1- first 6 sorted modes included 

 

Lift bag 2 

 
Figure 172:  Pitch displacement of lift bag 2- first 6 sorted modes included 
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Figure 173:  Pitch displacement of lift bag 2- first 6 sorted modes included 

 

Lift bag 3 

 
 

Figure 174:  Pitch displacement of lift bag 3- first 6 sorted modes included 
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Figure 175:  Pitch displacement of lift bag 3- first 6 sorted modes included 

 

 

Lift bag 4 

 
 

Figure 176:  Pitch displacement of lift bag 4- first 6 sorted modes included 
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Figure 177:  Pitch displacement of lift bag 4- first 6 sorted modes included 

 

9.5.1.2.2.1.4 Pitch velocity  

 

Pitch velocity variation with respect to frequency and time domain is plotted in Figures 178-185. 

Pitch velocity of the tanker is found to be in the order of 10-3. It is noticed that pitch velocity 

fluctuates with time.  

 

Lift bag 1 (node 2) 

 

 
Figure 178:  Pitch velocity of lift bag 1- first 6 sorted modes included 
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Figure 179:  Pitch velocity of lift bag 1- first 6 sorted modes included 

 

 

Lift bag 2 

 
 

Figure 180:  Pitch velocity of lift bag 2- first 6 sorted modes included 
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Figure 181:  Pitch velocity of lift bag 2- first 6 sorted modes included 

Lift bag 3  

 
 

Figure 182:  Pitch velocity of lift bag 3- first 6 sorted modes included 
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Figure 183:  Pitch velocity of lift bag 3- first 6 sorted modes included 

 

 

Lift bag 4 

 
 

Figure 184:  Pitch velocity of lift bag 4- first 6 sorted modes included 
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Figure 185:  Pitch velocity of lift bag 4- first 6 sorted modes included 

 

 

9.5.2  Motion Responses with Controller  
 

From the modal analysis results, heave velocity of the tanker is found to be increasing with time. 

Also pitch motion is seen to be fluctuating with time. Hence in order to maintain hydrodynamic 

stability, it is necessary to integrate a control system with the model. By flexible body modeling 

approach the state space model is available for individual nodes on the beam. Thus controlled 

response of individual lift bags can be simulated. This is the advantage of flexible body 

modeling & control over rigid body modeling & control. The reduced state space model (4*4) 

obtained using the optimum model order reduction technique ‘modred-mdc’ is used for carrying 

out the simulation in SIMULINK. Supervisory fuzzy logic controller is integrated to state space 

models corresponding to each lift bags separately to get the individual controlled responses.  

 

From the section 4.1.1.3, the total lift force required for breakout is obtained as 3616.815 tonne 

and the break out time for the estimated force is found to be 400 s [35, 82].  The controlled 

responses obtained for a target depth of 300 m from sea bottom is plotted for the four external 

lift bags separately as shown in Figures 186-205.  
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Lift bag 1 

Figu

re 186:  Variation of vertical position of lift bag 1 from sea bottom 

 
Figure 187:  Variation of ascent velocity of lift bag 1 
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Figure 188:  Variation of pitch angle of lift bag 1 

 

Figu

re 189:  Variation of pitch rate of lift bag 1 
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Figure 190:  Net flow rate (at local pressure) in and out of lift bag 1 

Lift bag 2 

 
Figure 191:  Variation of vertical position of lift bag 2 from sea bottom   

 
Figure 192:  Variation of ascent velocity of lift bag 2 

 
Figure 193:  Variation of pitch angle of lift bag 2 



 
 

211 
 

 
Figure 194:  Variation of pitch rate of lift bag 2 

 

 

 
Figure 195:  Net flow rate (at local pressure) in and out of lift bag 2 
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Lift bag 3 

 

 
Figure 196:  Variation of vertical position of lift bag 3 from sea bottom   

Figure 197:  Variation of ascent velocity of lift bag 3  

 
Figure 198:  Variation of pitch angle of lift bag 3  
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Figure 199:  Variation of pitch rate of lift bag 3  

 

 
Figure 200:  Net flow rate (at local pressure) in and out of lift bag 3 
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Lift bag 4 

 
                           Figure 201:  Variation of vertical position of lift bag 4 from sea bottom   

 
Figure 202:  Variation of ascent velocity of lift bag 4  

 
Figure 203:  Variation of pitch angle of lift bag 4  
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Figure 204:  Variation of pitch rate of lift bag 4  

 
Figure 205:  Net flow rate (at local pressure) in and out of lift bag 4 

 

From the response plots (Figures 186-205), it is seen that all the four external lift bags have 

steady state behavior by integrating the controller in comparison with the results obtained 

without controller (Figures 154-185); i.e. the heave velocity of lift bags initially increases after 

breakout and reaches a higher stable value and then decreases to zero when the tanker reaches 

the target depth. Pitch response of the tanker follows the same trend as the ascent velocity curve.  

It is also noted that by integrating the controller, fluctuating pitch motions of lift bags avoided, 

hence stability ensured. From Figure 186, 191, 196 & 201, lift bag 1 and lift bag 2 reaches the 

target depth in 2800s, where as lift bag 3 and lift bag 4 takes 4000 s to achieve the target depth. 

Therefore the aft part of the tanker rises faster than bow part. This is mainly because controller is 
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integrated to each lift bag separately and there is no communication between the lift bags.  This 

is one of the drawbacks of the present model. The maximum value of ascent velocity among the 

four lift bags is found to be 0.21 m/s < 0.6 m/s, which implies that the ascent is stable.  The 

maximum value of pitch angle for lift bags (see Figure 193) is found to be about 8.2 degrees, 

which is within the required limit. Pitch rates of the lift bags become nearly equal to zero when 

the bags reach the target depth. Figures 190, 195, 200 & 205 shows that the control action for lift 

bag 1 & lift bag 2 are identical, while lift bag 3 and lift bag 4 are having the same control output. 

This is due to the reason that state space models of lift bag 1 and lift bag 2 are almost same, 

whereas lift bag 3 and lift bag 4 are having the same state space model. It is also due to the 

reason that there is no communication between the lift bags.  

 

Even though the system is stable by using multiple controlled lift bags, for more uniform lifting 

of the vessel, it is required to build an integrated network of control system, in which there is a 

master controller which gives commands to all the lift bags in order to attain a uniform ascent.  

 

 

9.6 Concluding Remarks  
 

In this chapter, the real case of lifting a sunken chemical tanker using multiple controlled gas 

inflating bags is considered by modeling the vessel as an Euler-Bernoulli beam with free-free 

boundary conditions. Initially modal analysis of the chemical tanker is performed without 

controller to obtain the free vibration and forced vibration analysis responses and supervisory 

fuzzy logic controller is integrated later with the state space model of individual lift bags to 

obtain the controlled stable responses. The longitudinal distribution of shear force and bending 

moment across the vessel length is estimated and the maximum value of shear force is found to 

be 3.51MN, which is at node 8 (i.e. at lift bag 3) and the bending moment is 44.16 MN.m at node 

5 (i.e. at lift bag 2). The modal contributions of individual modes are analyzed according to their 

dc gain value and highest dc gain is obtained for the first two rigid modes, which implies that 

rigid body modes are more significant compared to flexible modes for marine salvage. Finally 
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the effectiveness of various modal reduction techniques are investigated in both frequency and 

time domain to obtain the smallest state space model (4*4) that accurately represents the 

pertinent flexible body dynamics and ‘unsorted modred-mdc’ is found to be the optimum choice 

for modal order reduction as it minimizes the low frequency errors by including the contribution 

of the unused modes in the reduced model. From the modal analysis results, the heave response 

of the tanker is found to be increasing with time, whereas pitch motion is seen to be fluctuating 

with time. Therefore, in order to maintain hydrodynamic stability, it is necessary to integrate a 

control system with the model. Using the flexible body modeling approach the state space model 

is available for individual nodes on the beam. Thus the controlled response of individual lift bags 

can be simulated. This is the advantage of flexible body modeling & control over rigid body 

modeling & control. Hence supervisory fuzzy logic controller is integrated with the 4*4 flexible 

state space model obtained using ‘unsorted modred-mdc’ method to obtain the controlled stable 

responses of each external lift bags. From the response plots, it is seen that all the four external 

lift bags have steady state behavior. Lift bag 1 and lift bag 2 reach the target depth in 2800s, 

whereas lift bag 3 and lift bag 4 take 4000 s to achieve the target depth. Therefore the aft part of 

the tanker rises faster than bow part. This is mainly because controller is integrated to each lift 

bag separately and there is no communication between the lift bags.  This is one of the 

drawbacks of the present control system. Even though the system is stable in the application of 

using multiple controlled lift bags, it is required to build an integrated network of controllers, in 

which there is a master controller which gives commands to subsidiary lift bags for attaining a 

more uniform ascent.  
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10  Conclusions  
 
A rigid body mathematical formulation for the dynamics of raising sunken vessel using buoyant 

systems is derived according to the principles of underwater dynamics, thermodynamics and 

soil-structure interaction problems and a state space model is developed from the equation of 

motion in diving plane for integrating the controller in Chapter 4. In the rigid body modeling 

approach, additional buoyancy provided by all lift bags are considered together and the overall 

system behavior is analyzed. The breakout force for the proposed model is estimated based on 

the work of Sawicki and Mierczynski [101]. Breakout time is estimated according to Foda [35] 

and Mei et al [82]. The system is lineraised about the equilibrium point [49]. The effect of 

coupling surge motion with heave and pitch is neglected by redefining the hydrodynamic 

coefficients with respect to vessel’s centre of gravity, instead of geometric centre [12]. Purge 

valve modeling is carried out according to Farrell & Wood (32).  

 

In order to ensure hydrodynamic and structural stability during a salvage operation using 

buoyant systems, two control subsystems are proposed for each bag and then a supervisory 

controller is suggested to monitor the primary and secondary controllers. The function of the 

primary controller is to regulate the flow rate of filling gas inside the lift bags according to the 

buoyancy requirement in accordance with hydrostatic force due to weight, buoyancy and suction 

breakout, hydrodynamic forces and uncertainty arises due to any external disturbances. The 

secondary controller is proposed to regulate the purge valve opening based on suction breakout 

and the pressure difference between gas inside the lift bags and surrounding sea water pressure 

for a stable ascent. The function of the supervisory controller is to monitor or switch between 

primary and secondary controllers as per the depth error and depth rate for a stable ascent. The 

efficacies of classic controllers like PD, PID and SMC are investigated as the primary controller 

for regulating the flow rate of filling gas inside the lift bags in Chapter 5. A number of case 

studies are carried out for different target depths, with the developed linear state space model 
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including sensitivity analysis such as change in hydrodynamic coefficients, breakout lift force 

and the effect of external disturbances and uncertainty. A PD controller is found to be suitable 

for regulating the depth and pitch motions for smaller target depths with no overshoot and having 

less steady state error. But, for higher commanded depths with the same tuned coefficients, the 

performance of the controller is very poor, as the ascent velocity and pitch angle goes beyond the 

stable region. A PID controller gives satisfactory results for almost all target depths by 

approximating a linear deterministic model with considerable overshoot; whereas in the presence 

of parameter variations, non linearity and external disturbances, good results are not guaranteed. 

CSMC maintains hydrodynamic stability in the diving plane by satisfying the Lyapunov stability 

condition [49] for all commanded depths by approximating a linear state space model in 

comparison with PD & PID controllers even in the presence of parameter variations, external 

disturbances and uncertainty. The tuning effort and chattering were found to be the two major 

drawbacks of CSMC, which is improved by integrating it with fuzzy logic to become fuzzy 

sliding mode controllers as explained in Chapter 6. In FSMCs, the performance of the CSMC is 

improved by dynamically computing the sliding surface slope by a FLC and adaptively 

computing the controller gain by another FLC. FLCs are designed based on Mamdani’s 

implification method [88]. A TIFSMC is designed first and then simplified to SIFSMC.  With 

the development of SIFSMC, the tuning process becomes standardized and hassle free and hence 

the well known chattering problem associated with SMCs is avoided. It is found that both 

FSMCs show 30% of improvement in the tracking performance when compared to the CSMC, 

while maintaining its robustness. It is also noted that FSMCs are less sensitive to external 

disturbances and uncertainties in comparison with CSMC. The responses obtained by the 

SIFSMC are the same as those obtained by the TIFSMC, with the former involving a much less 

tuning effort and computational time. Simulation studies reveal the fact that for complicated non 

linear underwater operations, like marine salvage, involving uncertainty and external 

disturbances a closed loop control system is mandatory and an adaptive controller like SIFSMC 

is the optimum choice amongst the considered controllers as the primary controller for regulating 

the gas flow rate. 
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A PID controller is designed as the secondary controller for regulating the purge valve opening 

according to the excess buoyancy available after suction breakout and to the pressure difference 

between gas inside the lift bags and surrounding sea water pressure for a stable ascent in Chapter 

7. A PID controller is found to be effective in maintaining the ascent velocity within the stable 

region. In Chapter 8, a supervisory fuzzy logic controller is designed to monitor or switch 

between the primary and secondary controllers as per the depth error and depth rate for a stable 

ascent. From the simulation studies, it is found that FLC is able to maintain hydrodynamic 

stability in the diving plane by suitably defining the linguistic fuzzy rules, membership functions 

and scaling factors, which are created based on the author’s experience in conducting numerical 

simulation using primary and secondary controllers and also carrying out the stability analysis 

using trial and error method. The Gaussian membership functions are used for representing input 

and output variables after carrying out the stability check using various kinds of membership 

functions and the centroid method is used for defuzzification. Using a trial and error approach, 

the best inference mechanism to use in this case seems to be the prod-probor method. Because of 

simplicity and availability of the graphical user interface (GUI) in MATLAB the Mamdani 

inference engine is employed for designing the FLC. This uses minimum operator for a fuzzy 

implication and max-min operator for composition. The defuzzification technique used the trial 

and error and Centre of Gravity approach, which provides least integral square error. 

 

In the rigid body modeling approach, the state space model is created by considering the total 

additional buoyancy provided by all lift bags together and the responses are available for the 

whole motion of the payload. But in actual practice, lift bags are located at different locations on 

the vessel and their location significantly affects the hydrodynamic and control responses.  

 

Using the rigid body modeling approach, it is not possible to determine how the location of 

individual lift bags affects the hydrodynamic and control responses for a very flexible body such 

as a long pipe. Also in some complicated situations, it would be necessary to control individual 

lift bags separately to limit pipe bending, i.e. to use multiple controlled lift bags to ensure both 

hydrodynamic and structural stability,. For meeting these objectives, the rigid body modeling & 



 
 

221 
 

control approach is extended to detailed flexible beam modeling & control in Chapter 9 

(however the method is still applied to the tanker).  

 

The real case of lifting a sunken chemical tanker using adaptively controlled gas inflating bags is 

considered by modeling the vessel as an Euler-Bernoulli beam with free-free boundary 

conditions. Initially modal analysis of the chemical tanker is performed without a controller to 

obtain the free vibration and forced vibration analysis responses and supervisory fuzzy logic 

controller as explained in Chapter 8 is integrated later with the state space model of individual 

lift bags to obtain the controlled stable responses. Optimum location of lift bags on the vessel is 

determined by looking at the mode shape plots obtained from free vibration analysis of the 

tanker. Lift bags are normally placed on ‘nodes of a mode’ where the displacement is negligible. 

Force modeling is carried out based on the hydrostatic, hydrodynamic, suction breakout and 

additional buoyancy force components as explained in Section 4.1.1.1- 4.1.1.4. The longitudinal 

distribution of shear force and bending moment across the vessel length is estimated and the 

maximum value of shear force is found to be 3.51MN, which is at node 8 (i.e. at lift bag 3) and 

the bending moment is 44.16 MN.m at node 5 (i.e. at lift bag 2). The modal contributions of 

individual modes are analyzed according to their dc gain value to define which ones have the 

greatest contribution. Highest dc gain is obviously obtained for the first two rigid modes, which 

implies that rigid body modes are more significant compared to flexible modes for marine 

salvage (although to avoid exceeding allowable hull girder moments higher modes may also be 

important). Finally efficacies of various modal reduction techniques are investigated in both 

frequency and time domain to obtain a smallest state space model (4*4) that accurately 

represents the pertinent flexible body dynamics. It is found that ‘unsorted modred-mdc’ is the 

optimum choice for modal order reduction as it minimizes the low frequency errors by including 

the contribution of the unused modes in the reduced model. From the modal analysis results, the 

heave velocity of the tanker is found to be increasing with time, whereas pitch motion is seen to 

be fluctuating with time. Therefore, in order to maintain hydrodynamic stability, it is necessary 

to integrate a control system with the model. By flexible body modeling approach the state space 

model is available for individual nodes on the beam. Thus controlled response of individual lift 

bags can be simulated. This is the advantage of flexible body modeling & control over rigid body 
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modeling & control. Hence supervisory fuzzy logic controller is integrated with the 4*4 flexible 

state space model obtained using ‘unsorted modred-mdc’ to obtain the controlled stable 

responses of each external lift bags. From the response plots, it is seen that all the four external 

lift bags have steady state behavior. Lift bag 1 and lift bag 2 reach the target depth in 2800s, 

whereas lift bag 3 and lift bag 4 take 4000 s to achieve the target depth. Therefore the aft part of 

the tanker rises faster than bow part. This is mainly because the controller is integrated into each 

lift bag separately and there is no communication between the lift bags.  This is one of the 

drawbacks of the present control system. Even though the system is stable in the application of 

using multiple controlled lift bags, it will be necessary to build an integrated network of 

controllers, in which there is a master lift bag which gives commands to subsidiary lift bags for 

attaining a more uniform ascent.  
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11 Future Recommendations 
 
It will be more appropriate to design a suitable breakout model to predict the exact breakout 

force and time for more precised results.  

 
In the long run, it is possible to design an integrated lift system using multiple controlled lift 

bags to ensure a safe ascent. This system will be important for controlling the pitch rate as well 

as ascent rate. For that sensors need to provide at individual lift bags and there should be proper 

communication between a master controller and the various subsidiary lift bags by a network. 

Purge valves in the individual lift bags should also be controlled by another network integrated 

with pressure sensors connected to each lift bag.  

 

Such a control system can be integrated with our flexible beam modeling & control approach. 

Using the flexible structure technique developed in this thesis the method could be used to model 

and control the salvage, or installation of long flexible structures such as pipes. 
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Appendix A 

 
Estimation of Additional Buoyancy Required for Inflating 

 

Consider the problem of lifting a sunken vessel (e.g. Pontoon model) having weight 9.32 tons 
lying at sea bottom, which is at 100m from sea surface.  

Given parameters:  

Weight of the vessel (mass in air), W = 9.32 tonnes = 9320 kgf = 91429.20 N 

Assume the vessel is made up of steel having a density of 7850 kg/m3,  

 i.e.  ρsteel = 7850 kg/m3. 

But weight = volume * g*density  

Therefore, volume of the steel = W/ρsteel = 91429.20 /7850*9.81 = 1.187 m3
 

The buoyancy force provided by seawater is,  

B g= ρ ∇ = 1025 * 9.81*1.187 = 11935.58 N 

Therefore, in water object weight = 91429.20 -11935.58 = 79493.62 N 

Total lift force (suction break out force) required to extract an object from sea bottom is the 
summation of in water object weight and ground reaction. 

Total lift force is assumed as 1.3 times the wet weight of the vessel  

                            = 1.3 * 79493.62 = 103341.70 N                                                                       

Suppose air is used as the gas in lift bags, 

Then the buoyancy provided by the inflating system is, 

                            = V* (ρwater – ρair)*g 

But due to compressibility, the density of air changes with respect to surrounding sea water 
pressure. 
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The absolute pressure at sea bottom,  

Pabs=ρgh+Patm=1025*9.81*100+101325=1106850 N/m2 

Therefore, density of air at sea bottom, 

ρair=Pabs/R*T=1106850/286.9*290= 13.30 kg/m3 

Therefore, the minimum volume of air required for inflating, 

               V = (103341.70/ (1025-13.30)*9.81 =   10.41 m3 
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APPENDIX B 
 

Analytical Solution of Euler- Bernoulli Beam with Free- Free Boundary 

Conditions 

 

For the transverse free vibration of a beam having constant moment of inertia (I) and modulus of 

elasticity (E), the Euler - Bernoulli beam equation can be rewritten from Eq.(76) as,  

 

(152)0                                                                                                           
4 2

4 2

z zEI A
x t

ρ∂ ∂
+ =

∂ ∂  
Where the displacement z is a function of both space and time.   

 

i.e.  

(153)                                                                                                                         z f ( x,t )=
 

In order to solve Eq. (152), let the displacement can be approximated as [2, 94], 

 

(154)                                                                                                         nz( x,t ) Z( x )sin tω=  

Where Z(x) is a function of x alone and ωn  is the natural frequency of vibration or mode order.  

Therefore,  

 
4 4

4 4
(155-156)

d   and                                                                       
d n n n

z Z zsin t Z cos t
x x t

ω ω ω∂ ∂
= =

∂ ∂   
Therefore,  

 
2

2
2

(157)                                                                                                                   n n
z Z sin t

t
ω ω∂

= −
∂  

Substituting Eq. (155) & (157) in Eq. (152) leads to: 
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(158)
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d

4
2

n n n4

ZEI sin t A Z sin t
x

ω ρ ω ω− =  

 

(159)
d 0                                                                                               
d

24
n

n4

AZ Z sin t
x EI

ρ ω
ω

 
− = 

   

i.e.    
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In which,     
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4 nAk
EI

ρ ω
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Let   

 

0 (162)                                                                                                                            xZ Z eλ=
 

Therefore,  

 
2 3 4

2 3 4
0 0 0 02 3 4

   (163)e , =  e , =  e  & =  e                                   x x x xZ Z Z ZZ Z Z Z
x x x x

λ λ λ λλ λ λ λ∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂  
Therefore, Eq. (160) becomes: 

 

              (164)0                                                                                                4 x 4 x
0 0Z e k Z eλ λλ − =  

(165)0                                                                                                             x 4 4
0Z e kλ λ − = 

 
i.e.  
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 (166)0                                                                                                                         4 4kλ − =
 

Which is the characteristic equation and its solutions can be obtained as follows: 

 

(167)( )( ) 0                                                                                                         2 2 2 2k kλ λ− + =
  

                          (168) &                                                                                    2 2 2 2k kλ λ= = −  

Therefore,  

 

(169)                                                                                                                  k , k ,ik , ikλ = − −
 

Substituting the values of λ in Eq. (162) leads to: 

 

1 2 3 4 (170)+ + +                                                                                             kx kx ikx ikxZ c e c e c e c e− −=
 

Where c1, c2, c3 & c4 are arbitrary constants. 

 

But, 

 

(171) =  =                                                                            kx ikxcosh kx sinh kx, cos kx i sin kxe e± ±± ±
 

Therefore, Eq. (170) becomes: 

 

1 2 3 4 (172)( )+ ( )+ ( )+ ( )      Z c cosh kx sinh kx c cosh kx sinh kx c cos kx i sin kx c cos kx i sin kx= + − + −
 

 i.e.  

 

3 4 3 4 1 2 1 2 (173)[ ( )]+cos [ ]+ [ ]+cos [ ]                                 Z sin kx i c c kx c c sinh kx c c h kx c c= − + − +
 

Therefore,  

 

    (174)+ cos + + cos                                                                           Z Asin kx B kx C sinh kx D h kx=
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Which is the general solution of beam vibration. Where A=i (c3-c4), B= (c3+c4), C= (c1-c2), D= 

(c1+c2). The values of A, B, C & D can be obtained by applying the boundary conditions as 

shown in Eq. (79) & (80).  

 

From Eq. (174),  

 

  (175)( + + )                                                                    Z k Acos kx B sin kx C cosh kx D sinh kx
x

∂
= −

∂
 

2
2

2
(176)      (- + + )                                                            Z k Asin kx B cos kx C sinh kx D cosh kx

x
∂

= −
∂  

3
3

3
(177)(- + + )                                                                 Z k Acos kx B sin kx C cosh kx D sinh kx

x
∂

= +
∂  

Now the Eqs. (79) & (80) becomes,  

 

x=0

     (178)=                                                                       
2

2
2

d z k (-B D ) 0 B D
dx

+ = ⇒ =
 

x=0

      (179)= (- )                                                                      
3

3
3

d z k A C 0 A C
dx

+ = ⇒ =  

2

x=

     (180)= (-  )=                                    
2

2
l

d z k Asin kl - B cos kl C sinh kl D cosh kl 0
dx

+ +  

 

3

x=

(181)= (-  + )=                                        
3

3
l

d z k Acos kl B sin kl C cosh kl D sinh kl 0
dx

+ +
 

Replacing A=C and B=D in Eq. (180) & (181), we get,  

 

   (182)(  )=                                                     - C sin kl - D cos kl C sinh kl D cosh kl 0+ +  

 

(183)(  + )=                                                        - C cos kl D sin kl C cosh kl D sinh kl 0+ +
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After rearranging,  

 

(184) ) =                                                                C(sinh kl sin kl D(cosh kl cos kl ) 0− + −  

 

    (185) ) =                                                          C(cosh kl cos kl D(sinh kl sin kl ) 0− + +
 

Eqs. (184) & (185) can be written in matrix form as: 

 

(186)
 )

=                                                         
(sinh kl sin kl (cosh kl cos kl ) C

0
(cosh kl cos kl ) (sinh kl sin kl ) D

− −   
   − +     

i.e.  

 

(187)
 )

=                                                                  
(sinh kl sin kl (cosh kl cos kl )

0
(cosh kl cos kl ) (sinh kl sin kl )

− −
− +  

 

 (188) -( =                                      2 2 2 2sinh kl sin kl cosh kl cos kl 2cosh kl cos kl ) 0− + −
 

I.e. 

 

(189) - =                                          2 2 2 2sinh kl cosh kl sin kl cos kl 2cosh kl cos kl 0− − +
 

But,   

 

(190)-1    + 1                                                          2 2 2 2sinh kl cosh kl , sin kl cos kl− = =
 

Therefore, Eq. (189) becomes,  

 

   (191)-2 2 =0                                                                                               cosh kl cos kl+  

 

 

Therefore,  
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(192)=1                                                                                                           cosh kl cos kl
 

This equation is satisfied by a number of kl values, each corresponding to a normal mode of 

vibration.  

 

Graphical solution of the equation  coshklcoskl =1 provides the following values as shown in 

Table 17 [21, 94]. 

 

                                Table 17 Graphical solution of coshklcoskl=1  

 

(kl)1 (kl)2 (kl)3 (kl)4 (kl)5 (kl)6 

0 4.73  7.853 10.996 14.137 17.279 

 

Evaluation of Natural Frequencies 

 

From Eq. (161),  

 

2
2 2       (193)

  ( ) = =k =k =                         
2 4 2

4 2n
n n 2 2

A k EI EI l EI kl EIk
EI A A l A l A

ρ ω
ω ω

ρ ρ ρ ρ
= ⇒ ⇒

 

Therefore, 

 

n (194)
( )1=                                                                                                                     

2

2

n

kl EIf
l Aπ ρ

 
    

Where n = 2, 3, 4,…… 

Therefore, by substituting in the above equation the various (kl) n  values, the respective natural 

frequencies for any mode of vibration can be found. The value (kl)1 =0 is disregarded as it does 

not give rise to an oscillatory motion.   
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Evaluation of Mode Shapes  

 

From Eqs. (174), (178) & (179),  

 

(195)+ cos + + cos ( ) (cos cos )           Z Asin kx B kx C sinh kx D h kx C sin kx sinh kx D kx h kx= = + + +  

But from Eq. (184),  

 

    (196) ) =             
 )

(cosh kl cos kl )C(sinh kl sin kl D(cosh kl cos kl ) 0 C D
(sinh kl sin kl

−
− + − ⇒ = −

−  

Substituting Eq. (196) in Eq. (195), we get,  

 

(197) ( ) (cos cos )                                              
 )

(cosh kl cos kl )Z D sin kx sinh kx D kx h kx
(sinh kl sin kl

−
= − + + +

−  

i.e.  

 

 (198) (cosh cos )- ( )                                                
 )

(cosh kl cos kl )Z D kx kx sinh kx sin kx
(sinh kl sin kl

 −
= + + −   

 

(199)
( ) ( ) ( ) cos( ) - ( ) ( )          
( ) ( )

n n
n n n n n

n n

cosh kl cos klx x x x xZ D cosh kl kl sinh kl sin kl
l l l sinh kl sin kl l l

    −           = + +              −                 

By selecting the (kl) n values from Table 17, a number of profiles is derived representing the 

respective modes of vibration. In order to plot the vibration profiles, the value of Z is calculated 

at number of positions (x/l) along the length of the beam and the resulting profile is then 

normalized.  
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